A COMPUTER SOLUTION TO PARACHUTE DESIGN PROBLEMS

$B Y$

P.J.BROADBENT

The thesis submitted to the University of Leicester for the degree of Doctor of Philosophy

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U367937
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346
$\times 750217013$

A Computer Solution to Parachute Desiqn Problems

by P.J.Broadbent

Abstract

In this thesis a Pascal computer program is presented which calculates a proposed design of parachute from some simple input parameters, of the type specified by a customer to a parachute company. The program reduces by a significant degree time spent by parachute engineers in the preliminary design stages.

Parachute design is a process which (in common with much engineering design) can be regarded as consisting of a number of separate calculations. The most suitable method (or methods) for each calculation were selected after a thorough investigation of parachute design techniques. The chosen methods must be sufficiently accurate and readily conform to a computer treatment. The data required by the program have been collected from various sources and are stored in a number of files on a floppy disk.

The program is applied to requirements received by a parachute company and results obtained compared with the actual parachutes designed. The program is highly interactive with the user who is able to dispute its selection of values for various parameters. Because the designer can make a rapid and objective choice between a number of methods for various calculations, the existence of this program contributes to his knowledge of the relevance of the parameters involved in, and his understanding of, parachute design. Examples of these techniques are given in the text

Possibilities for expanding and improving the program exist in a number of areas. In some cases the data required for a particular parachute or particular design methods are not available or do not exist. Provision has been made for such data to be included in the program when they are received.

Acknowledgements

Without the help of a large number of people, the completion of this project, in its present form, would have been impossible.

Firstly I would like to thank my supervisor David Cockrell for his valuable criticism and encouragement throughout the course of this research.

I am grateful to my associate supervisor steve Lingard, Technical Director, $G Q$ Defence Equipment Limited, Woking, for the financial contribution whilst at the University of Leicester and for his advice during the last three years. Dr Lingard's design and development team have also been very helpful, thanks to: Dave Stephens (now at Marconi), Hu Pickerin, Tim Chadderton, David Gibney and Nigel Parker.

I have received assistance in the choice and operation of the computing methods used in the research from various people. Derek Andrews, head of the Computer Studies Department, Leicester University, has spared time to assist me in these areas of the work. I am also grateful to Martin Lee and Paul Manning of the Computer Studies Department and Tony Baxter of the Engineering Department, Leicester University for helping me in this field.

I would like to thank Dick Dennis of the Parachute Section, Flight Systems Department Q153, Royal Aircraft Establishment, Farnborough, who has provided me with some parachute data and his advice on various topics.

I am grateful to my colleagues Maher Higazy and Sisira Polpitiye for their helpful criticisms and suggestions.

The work presented in this thesis was initiated at the University of Leicester and I am grateful to Professor G.D.S.MacLellan the Head of the Engineering Department for

```
allowing me to use facilities in the department for my
research.
```


Contents

Page
Acknowledgements i
Contents iii
List of Tables viii
List of Figures x
Nomenclature xii
Chapter 1 Introduction 1
1.1 Historical Review 1
1.2 Aims of the Project 4
Chapter 2 A Description of the Computing Methods Used in the Research 6
2.1 Choice of Machine 6
2.2 Choice of Computer Language 7
2.3 Choice of Operating System 8
Chapter 3 A Detailed Examination of Parachute Design Techniques 10
3.1 Type of Parachute 13
3.2 Drag Coefficient 16
3.3 Area 18
3.4 Clusters 20
3.5 Rigging Line Length 24
3.6 Number of Rigging Lines 26
3.7 Staging 27
3.8 Opening loads 28
3.8.1 A Review of Opening Load Calculation Methods 29
3.8.2 Semi-Empirical Opening Distance Methods 31
3.8.2.1 The "Mass Ratio" Method 32
3.8.2.2 The Canopy Loading Method 32
3.8.2.3 The "Pflanz" Method 33
3.8.3 A comparison of Four Different Load Calculation Methods 34
3.8.4 Determination of the Forces on the Store, and the Trajectory, of a Two Stage Parachute System, Using Lingard's Semi-Empirical Opening Load Calculation Method 37
3.8.5 Cluster Opening Forces 42
3.9 Reefing 43
3.10 Structural Analysis 49
3.10.1 Design Factor 49
3.10.2 Solid Cloth Circular Parachutes 50
3.10.3 Cruciform Parachute 54
3.10.4 Slotted Canopies 56
3.10.5 Parawing Parachute 58
3.10.6 Reefing Line Stressing 59
3.11 Parachute Materials 61
3.11.1 Fabric 61
3.11.1.1 Fabric Strength 62
3.11.2 Tapes and Webs 63
3.11.3 Cord 63
3.11.4 Reserve Factors 64
3.12 Landing Control 64
3.13 Weight and Volume 64
3.13.1 Parachute Weight 65
3.13.2 Parachute Packing Density and Parachute Volume 66
3.13.3 Comparison With Approximate Methods 67
3.13.4 Geometric Porosity 67
3.14 Cost 69
3.15 Stability 70
3.16 Parachute Reliability 72
3.16.1 General Definitions 72
3.16.2 Preliminary Considerations 73
3.16.3 The Overall System Reliability Method 73
3.16.4 The Component Reliability Method 74
3.16.4.1 Parallel Components and Clusters 77
Chapter 4 The Parachute Design Program "paradesign" 79
4.1 Structure Diagram 79
4.2 Writing, Organising and Testing of the Program 80
4.2.1 Main Memory Management 80
4.2.2 Data Table Structure 83
4.2.3 Testing and Checking 84
4.3 Input and Output 84
4.3.1 Input Data 84
4.3.2 Output 85
4.4 Alteration and Development of the Program 85
4.4.1 Equations and Tables 85
4.4.2 General Development 86
Chapter 5 Results and Discussion 87
5.1 A Parachute Canopy for the X-RAE2 Remotely Piloted Vehicle 88
5.2 A Parachute System for the Sparrowhawk and Snipe Mk. 3 Remotely Piloted Vehicles 95
5.3 A Mail Dropping Canopy for the Royal Netherlands Navy 102
5.4 A Parachute Canopy for the Plessey Marine SSQ 954 Sonobuoy 109
5.5 A Parachute System Incorporating A Cluster of Three Canopies 115
5.6 Reefed Airborne Forces Parachute 121
5.7 Staging of an Airborne Forces Parachute 123
5.8 Ribbon Parachute 126
5.9 6.2m Flying Diameter Aeroconical Gliding Parachute 129
5.10 Discussion of Results 133
Chapter 6 Recommendations for Further Work 137
Chapter 7 Conclusions 138
References 139
Appendix A Types of Parachute 1A
A. 1 Type 1 - Flat Circular Parachute 1A
A.1.1 Canopy Weight Calculations 2A
A.1.2 Inputs Required for the Computer Program 4A
A. 2 Type 2 - Conical Parachute 5A
A.2.1 Parachute Weight 5A
A.2.2 Inputs Required for the Computer Program 5A
A. 3 Type 3 - Bi-Conical Parachute 6A
A.3.1 Canopy Weight Calculation 6A
A.3.2 Inputs Required for the Computer Program 9A
A. 4 Type 4 - Tri-Conical Parachute 10A
A.4.1 Canopy Weight Calculation 10A
A.4.2 Inputs Required for the Computer Program 13A
A. 5 Type 5 - Extended Skirt 10\% Flat Parachute 14A
A.5.1 Canopy Weight Calculation 14A
A.5.2 Inputs Required for the "paradesign" Computer Program 16A
A. 6 Type 6 - Extended Skirt 14.3\% Full Parachute 16A
A.6.1 Canopy Weight Calculation 16A
A.6.2 Inputs Required for the Computer Program 17A
A. 7 Type 7 - Hemispherical Parachute 18A
A.7.1 Canopy Weight Calculation 18A
A.7.2 Inputs Required for the "paradesign" Computer Program 20A
A. 8 Type 11 - Cruciform Parachute 21A
A.8.1 Canopy Weight Calculation 21A
A.8.2 Inputs Required for the Parachute Design Program 22A
A. 9 Type 12 - Flat Ribbon Parachute 23A
A.9.1 Canopy Weight Calculation 23A
A.9.2 Inputs Required for the Parachute Design Program 25A
A. 10 Type 13 - Conical Ribbon Parachute 25A
A.10.1 Canopy Weight Calculation 26A
A.10.2 Inputs Required for the "paradesign" Parachute Design Program 26A
A. 11 Type 15 - Hemisflo (Hemispherical Ribbon) Parachute 27A
A.11.1 Canopy Weight Calculation 27A
A.11.2 Inputs Required for the Parachute Design Program 30A
A. 12 Type 16a - Flat Ringslot Parachute 30A
A.12.1 Canopy Weight Calculation $31 A$
A. 12.2 Inputs Required for the "paradesign" Computer Program 32A
A. 13 Type 16b - Conical Ringslot Canopy 32A
A.13.1 Canopy Weight Calculation 33A
A.13.2 Inputs Required for the "paradesign" Computer Program 33A
A. 14 Type 17 - Ringsail Canopy 33A
A.14.1 Parachute Weight CaIculation 34A
A.14.2 Inputs Required for the Parachute Design Program 35A
A. 15 Type 18 - Disk-Gap-Band Parachute 36A
A.15.1 Canopy Weight Calculation 36A
A.15.2 Inputs Required for the Computer Program 38A
A. 16 Type 19 - Rotafoil Parachute 39A
A.16.1 Canopy Weight Calculation 39A
A.16.2 Inputs Required for the Computer Program 41A
A. 17 Type 21 - Gliding Aeroconical Parachute $41 A$
A.17.1 Canopy Weight Calculation 42A
A.17.2 Inputs Required for the "paradesign" Computer Program 42A
A. 18 Type 22 - Le Moigne Parachute 43A
A.18.1 Canopy Weight Calculation 43A
A.18.2 Inputs Required for the Parachute Design Program 43A
A. 19 Type 23 - Parawing (Single Keel) Parachute 44A
A.19.1 Canopy Weight Calculation 44A
A.19.2 Inputs Required for the Computer Program 46A
Appendix B Brief Description of the Warnier-Orr Structured Program Design Method 1B
Appendix C Structure Diagram 1 C
Appendix D Data Tables Used in the "paradesign" Program 1D
Appendix E "paradesign" Program Listing 1E

List of Tables

Table 2.1 Comparison of Fortran and Pascal 7
Table 3.1 Parachute Types 14
Table 3.2 Drag Coefficient: Non-Gliding Parachutes 17
Table 3.3 Force Coefficient: Gliding Parachutes 17
Table 3.4 Effect of Cluster on Drag Coefficient. Flat Circular Parachutes. Rate of Descent < 7.62 m/s 23
Table 3.5 Effect of Cluster on Drag Coefficient. Flat Circular Parachutes. Rate of Descent > 7.62 m/s 23
Table 3.6 Effect of Cluster on Drag Coefficient. Ringsail Parachutes. Diameter <9.30m 23
Table 3.7 Effect of Cluster on Drag Coefficient. Ringsail Parachutes. Diameter $>9.30 \mathrm{~m}$ 23
Table 3.8 Line Length Data 25
Table 3.9 Values of Fill Constant and Opening Force Coefficient for Various Canopies 33
Table 3.10 A Comparison of Four Opening Load Calculation Methods 36
Table 3.11 Values of the Ratio of Projected to Nominal Diameter 53
Table 3.12 Values of the Ratio of Flying Diameter to Nominal Diameter 58
Table 5.1 Specification for the X-RAE2 RPV 90
Table 5.2 Design Solution for the X-RAE2 RPV Canopy 91
Table 5.3 Specification for the Sparrowhawk and Snipe Mk. 3 RPVs 97
Table 5.4 Design Solution for the Sparrowhawk and Snipe Canopy 98
Table 5.5 Design Requirement Data for a Mail Dropping Parachute 104
Table 5.6 Design Solution for a Mail Dropping Canopy 105
Table 5.7 Specification for the Plessey SSQ 954 Canopy 110
-ix-
Table 5.8 Design Solution for the Plessey SSQ 954 Canopy 111
Table 5.9 System C Specification 116
Table 5.10 Computer Solution for a Cluster of Parachutes 117
Table 5.11 Airborne Forces Parachute Specification 120
Table 5.12 Design Solution for a Reefed Airborne Forces Parachute 121
Table 5.13 Design Solution for Staging of an Airborne Forces Parachute 124
Table 5.14 Ribbon Parachute Design Solution 127
Table 5.15 Design Requirements for an Emergency Escape Parachute 130
Table 5.16 Design Solution for a Gliding Aeroconical Parachute 131
Table D. 1 Fabric Material Data Used in the Parachute Design Program 4D
Table D. 2 Tape and Web Material Properties 5D
Table D. 3 Cord Material Data 9D
Table D. 4 Material Reliability Data 11D
Table D. 5 Gradients of the Non-Central t-Distribution Line 12D
Table D. 6 Constants of the Non-Central t-Distribution Line 13D

List of Fiqures

Page
$\begin{array}{ll}\text { Figure 3.1 Flow Chart to Illustrate the Stages of } \\ & \text { Parachute Design }\end{array}$
Figure 3.2 A Flow Chart for Cluster Design 21
Figure 3.3 Diagram of a Store and Canopy System 38
Figure 3.4 Aerodynamic Forces on the Store 40
Figure 3.5 Vent Reefing 44
Figure 3.6 Skirt Reefing 44
Figure 3.7 Reefing Flowchart 46
Figure 3.8 Cruciform Parachute Dimensions 55
Figure 3.9 Reefed Canopy Configuration 60
Figure 3.10 Bias and Block Construction Methods 65
Figure 3.11 Ribbon Parachute Gore Configuration 68
$\begin{array}{ll}\text { Figure } 4.1 \text { Parachute Design Represented in Warnier-Orr } \\ \text { Notation } & 80\end{array}$
Figure 4.2 paradesign Text File Organisation 82
Figure 4.3 A Data Table in Warnier-Orr Notation 83
Figure A. 1 Flat Circular Canopy Configuration 1A
Figure A. 2 Conical Canopy Configuration 5A
Figure A. 3 Bi-Conical Parachute Configuration 6A
Figure A. 4 Tri-Conical Parachute Configuration 10A
Figure A. 5 Extended Skirt Canopy Configuration 14A
Figure A. 6 Full Extended Skirt Canopy Configuration 16A
Figure A. 7 Hemispherical Parachute Configuration 18A
Figure A. 8 Cruciform Canopy Configuration 21A
Figure A. 9 Flat Ribbon Parachute Configuration 23A
Figure A. 10 Conical Ribbon Parachute Configuration 25A
Figure A. 11 Hemisflo Parachute Configuration 27A
Figure A. 12 Flat Ringslot Parachute Configuration 30A
Figure A. 13 Conical Ringslot Parachute Configuration 32A
Figure A. 14 Ringsail Parachute Configuration 33A
Figure A. 15 Disk-Gap-Band Parachute Configuration 36A
Figure A. 16 Rotafoil Parachute Configuration 39A
Figure A. 17 Aeroconical Parachute Configuration 41A

$$
-x i-
$$

Figure A. 18 Le Moigne Parachute Configuration 43A
Figure A. 19 Parawing Parachute Configuration 44A
Figure B. 1 Sequence in Warnier-Orr 1B
Figure B. 2 Repetition in Warnier-Orr 2B
Figure B. 3 Selection in Warnier-Orr Notation 2B
Figure D. 1 Data tables Used in the Program 2D

-xii-

Nomenclature

A Altitude
a Cluster line length ($=10-1 c$)
aa Gore width (parachute type 19)
ACU Total cut-out area of canopy
$A_{F} \quad$ Aerodynamic force in x direction
$A R \quad$ Cruciform parachute aspect ratio
area(x) Fabric panel areas
area $_{T}(x)$ Upper fabric panel areas
area $_{M}(x)$ Middle fabric panel areas
$\operatorname{area}_{B}(x)$ lower fabric panel areas
$A_{\gamma} \quad$ Table value (reliability calculation)
$A_{x} \quad$ Opening force coefficient
b Gore width (parachute type 19)
C Constant
$C_{0} \quad$ Drag coefficient (nominal)
$C_{D C} / C_{D}$ Drag coefficient correction for the effects of a cluster
$C_{00} \quad$ Drogue drag coefficient
$C_{\text {Dinal }}$ Final corrected drag coefficient of a parachute in a cluster
$\mathrm{C}_{\mathrm{D}} \mathrm{H} \quad \mathrm{High} \mathrm{C}_{\mathrm{D}}$
C_{D} Low C_{0}
$C_{00} \quad$ Drag coefficient (nominal)
C_{00} / C_{00}^{0} Drag coefficient correction for effects of the
rigging lines
$C_{D r} \quad$ Reefed drag coefficient
$C_{D P} \quad$ Projected drag coefficient
$C_{D P} / C_{D P O}$ Drag coefficient ratio
$C_{D S} \quad$ Store drag coefficient
$\left(C_{D} S\right)_{D}$ Drogue drag area
$\left(C_{D} S\right)_{r}$ Reefed drag area
C_{F}
CF Fabric cost
$C_{f A} \quad$ Force coefficient (gliding parachutes)
$C_{L} \quad$ Lift coefficient

C_{N}	Normal force coefficient
C_{M}	Moment coefficient
COF	Fabric material cost
C_{h}	Force coefficient
C_{5}	Constant
C_{k}	Opening force factor
C_{x}	Opening force coefficient
$\mathrm{C}_{\mathrm{Xd} \mathrm{r}}$	Opening force coefficient at disreef
$C^{\text {xL }}$	Cluster opening force coefficient
$C^{\text {xr }}$	Reefed opening force coefficient
$\mathrm{C}_{\mathrm{x} 1}$	Opening load factor
$\mathrm{C}_{\boldsymbol{Y}}$	Ratio $\mathrm{C}_{\mathrm{xL}} / \mathrm{C}_{\mathrm{x}}$
D	Canopy nominal diameter
d	Canopy diameter
d_{b}	Store base diameter
$D_{\text {c }}$	Canopy constructed diameter
Dcm	Canopy maximum diameter
D_{F}	Design factor
Dmax	Maximum drag
D_{0}	Canopy nominal diameter
$\begin{aligned} & D_{p} \\ & \text { dpack } \end{aligned}$	Canopy projected diameter (in flight) Packing density
D_{pr}	Estimated canopy inflated diameter
$\mathrm{D}_{\mathbf{r}}$	Reefed diameter
${ }^{\text {r }}$ r	Drag
D_{v}	Vent diameter
${ }_{8}$	Maximum gore width
$e(x)$	Gore widths
$e_{B}(x)$	Gore widths
$e_{M}(x)$	Gore widths
${ }_{\text {m }}$	Maximum gore width
$e_{T}(x)$	Gore widths
e_{v}	Gore width at the vent
e_{1}	Gore width
e_{2}	Gore width
F	Opening load
f	Degrees of freedom

f^{\prime}	Reefing line load
F_{A}	Maximum allowable load
F_{D}	Design load
$F_{d r}$	Maximum force at disreef
F_{1}	Load in the lines
Fr	Froude number
F_{r}	Reefed opening force
F_{5}	Steady state force
$\mathrm{F}_{\mathbf{s c}}$	Cluster opening force
f_{x}	Force coefficient
Fx	Force
$\mathrm{f}_{\mathrm{x} x}$	Degrees of freedom of material reliability data
${ }^{\mathrm{f}} \mathrm{y}$	Degrees of freedom of the trial loads
f_{1}	Degrees of freedom
f_{2}	Degrees of freedom
g	Acceleration due to gravity
G_{A}	Maximum load factor
gr	Ratio $\mathrm{f}_{1} / \mathrm{f}_{2}$ (reliability variable)
GW	Gap width
gxr	Confidence coefficient
h_{c}	Inflated part of the reefed canopy
h_{g}	Gore height, from skirt to vent
h_{9}	Gore height
HRS	Horizontal ribbon strength
HRW	Horizontal ribbon width
h_{8}	Gore height
h^{\prime}	Gore height
h_{x}	Non-inflated part of the reefed canopy
h_{1}	Gore height
h_{2}	Gore height
h_{2}	Gore height
h_{3}	Gore height
h_{4}	Gore height
h_{19}	Gore height
$I_{x x}$	Store Moment of inertia in x axis
$I_{y y}$	Store Moment of inertia in y axis
$\mathrm{I}_{2 z}$	Store Moment of inertia in z axis

k	Gore height ratio (h_{1} / h_{2})
kf	Store mass ratio
$\mathbf{k p}_{\mathbf{p}}$	Canopy mass ratio
Kr	Reliability variable
$\mathrm{K}_{\mathbf{S}}$	Constant
$\mathbf{k}_{\mathbf{x}}$	Fill constant
K_{1}	Constant
k_{1}	Gore height ratio (h_{1} / h_{2})
K_{2}	Constant
\mathbf{k}_{2}	Gore height ratio (h_{3} / h_{2})
L	Lift force
1 c	Cluster line length
12	Rigging line length
lc/D	Ratio of cluster line length to nominal diameter
le/D	Ratio of rigging line length to diameter
1_{r}	Reefing line length
m	Store mass
M	Aerodynamic moment
MA	Canopy mouth area
$M_{d a m p F}$	Aerodynamic damping moment
mf	Store mass
m_{F}	Store mass
mp_{p}	Canopy mass
mr	Maximum number of canopies that can fail without causing the mission to fail
N	Number of gores
n	Number of lines
N_{F}	Aerodynamic force in z direction
NHR	Number of horizontal ribbons
NLP	Number of lower fabric panels per gore
NMP	Number of middle fabric panels per gore
NP	Number of fabric panels per gore
Nr	Reliability variable
NR	Number of rings
$\mathrm{N}_{\mathbf{T}}$	Number of trials
NUP	Number of upper fabric panels per gore
NVT	Number of vertical tapes

$\mathrm{N}_{\mathbf{x}}$	Number of tests (materials)
$\mathrm{N}^{\mathbf{N}}$	Number of tests (parachute trials)
$\mathrm{N}^{\mathbf{V}}$	Number of tests
1	Number of tests
N_{2}	Number of tests
ONP (x)	Number of each fabric panel missing in canopy types
	21 and 22
p	Differential pressure
${ }^{\text {d }}$	Probability of failure of a cluster
p_{F}	Angular velocity around x axis
$\mathrm{p}_{\text {max }}$	Maximum differential pressure
$\mathrm{P}_{\boldsymbol{r}}$	Probability of failure of q canopies in a cluster
pr	Probability of failure of a single canopy
q	Number of canopies in cluster (reliability)
$q_{d r}$	Dynamic pressure at disreef
q.	Equilibrium dynamic pressure
q_{F}	Angular velocity around y axis
\underline{q}	Dynamic pressure
q_{M}	Maximum dynamic pressure
qo	Deployment dynamic pressure
\mathbf{r}	Radius of curvature
R	System reliability
Rb	Total reliability
R_{c}	Component reliability
$\mathrm{R}_{\mathbf{c} \times}$	Component reliability
r_{F}	Angular velocity around z axis
R_{H}	Mass ratio
$\mathrm{r}_{\text {max }}$	Maximum radius of curvature
$R_{\text {Mdr }}$	Mass ratio at disreef
R_{ML}	Cluster mass ratio ($=R_{M} / n_{C}$)
$\mathbf{R}_{\mathbf{M r}}$	Reefed mass ratio
R_{p}	Fully inflated canopy radius
$\mathrm{R}_{\mathrm{p} \boldsymbol{r}}$	Operational reliability
$\boldsymbol{r r}$	Ratio S_{1}^{2} / S_{2}^{2}
$\mathrm{R}_{8 y}$ ¢	System reliability
RW	Ring width
S	Standard deviation
\mathbf{S}	Store base area

```
-xvii-
```

SB	Strengthening band strength
SBS	Skirt band strength
S_{0}	Drogue canopy area
S.	The area of each parachute in a cluster
${ }^{\text {See }}$	Estimated area of a canopy in a cluster
S_{F}	Safety factor
S_{f}	Filling distance
S_{f}	Fabric strength
$S_{f(n a l}$	Final (corrected for the effects of the store) area
SG	Total gore area
S_{1}	Line strength
S_{0}	Canopy constructed, or nominal, area
S_{00}	Drogue area
Sp_{p}	Canopy projected area
S_{pr}	Inflated reefed area
S_{r}	Reefed area
S_{s}	Store cross sectional area
STR	Total exposed material area
S_{x}	Standard deviation of material properties
S_{y}	Standard deviation of test results
S_{1}	Standard deviation
S_{2}	Standard deviation
t	Time
T	Tension
TAPEHR	Overlap of radial tape on horizontal ribbon
$t_{\text {cru }}$	Cruciform canopy arm width
t_{f}	Inflation time
T_{F}	Critical fabric load
THR	Total horizontal ribbon length
$t_{i n f}$	Inflation time
T_{L}	Line strength
TLP	Total lower panel area
TOF	Total fabric area
TOT	Total radial tape length
TOL	Total rigging line length
TOVL	Total vent band length
T_{r}	Maximum tension in the canopy

TR	Total reinforcing length
$\mathrm{T}_{\text {AL }}$	Reefing line strength
TSB	Total skirt band length
T_{T}	Radial tape strength
TUP	Total upper panel area
TVB	Total vent band length
TVT	Total vertical tape length
TW	Radial tape width
U	Air velocity through the canopy fabric
u_{F}	Velocity in x direction
U_{F}	Ultimate safety factor
$\mathbf{U / \varphi}$	Reliability Variable
V	Rate of descent
VBS	Vent band strength
V_{0}	Deployment velocity
V_{F}	Velocity in y direction
VFR	Volumetric flow rate
V_{H}	Horizontal velocity
VLS	Vent line strength
V_{m}	Velocity at inflation to maximum diameter
Vo	Deployment velocity
VOL	Volume
V	Snatch velocity (velocity at the start of inflation)
V_{T}	Total velocity
VTAPEHR	Overlap of vertical tape on horizontal ribbon
VTS	Vertical tape strength
VTW	Vertical tape width
V_{x}	Speed
v_{x}	Vent area as a percentage of S_{0}
V_{1}	Velocity
W	Store weight
W_{F}	Velocity in z direction
WF	Total fabric weight
WHR	Total horizontal ribbon weight
WL	Total rigging line weight
WR	Total reinforcing weight

> -xix-

WRL	Reefing line weight
$\mathrm{w}_{\text {S }}$	Store weight
WSB	Total skirt band weight
WT	Total weight of the radial tapes
WTF	Fabric material weight
WTHR	Horizontal ribbon material weight
WTL	Rigging line material weight
WTR	Reinforcing band material weight
WTOT	Total canopy weight
$\mathrm{WTOT}_{\mathbf{c}}$	Cluster weight
WTRL	Reefing line material weight
WTSB	skirt band material weight
WTT	Vertical tape material weight
WTVB	Vent band material weight
WTVL	Vent line material weight
WTVT	Vertical tape material weight
WVB	Total weight of the vent band
WVL	Total vent line weight
WVT	Total vertical tape weight
\mathbf{x}	Counter
\bar{x}	Mean of material breaking strengths
x_{1}	Material breaking strength in ith test
Xr	Reliability variable
X_{1}	Opening force reduction factor
2	Number of lines
$2 x$	Reliability variable
$z 2$	Gore height (type 15)
α	Line angle to vertical
α_{F}	Angle of attack
β	Gore angle
β_{1}	Gore angle
β_{2}	Gore angle
β_{3}	Gore angle
$\boldsymbol{\gamma}$	Angle of attack (at tail of forebody)
Δx	Distance from store centre of gravity to centre of
	pressure

$\Delta \mathrm{P}$	Pressure drop across the canopy fabric
ζ	Reefing ratio
${ }^{n}$	Number of parachutes in a cluster
n_{2}	Fill constant
8	Pitch angle
${ }^{8}$	Trajectory angle
θ_{p}	Construction angle (parachute type 23)
$\theta \mathrm{r}$	Ratio $\mathrm{N}_{2} / \mathrm{N}_{1}$ (reliability)
${ }^{8}$	Construction angle (parachute types 5 and 6)
${ }^{8} \times 1$	Construction angle (parachute type 15)
${ }^{8} \times 2$	Construction angle (parachute type 15)
λ_{8}	Geometric porosity
μ	Canopy constructed cone angle
μ_{1}	Canopy constructed cone angle
μ_{2}	Canopy constructed cone angle
μ_{3}	Canopy constructed cone angle
Q	Air density
$\sum F_{F x}$	Force in x direction
$E F_{F Y}$	Force in y direction
$\sum_{F_{z}}$	Force in z direction
${ }^{\text {L }} \mathrm{F}_{\text {F }}$	Moment about x
${ }^{\Sigma 1} M_{F}{ }^{\prime}$	Moment about y
$\mathrm{EMF}_{\mathrm{F}}$	Moment about z
τ	Dimensionless time
τ_{0}	Dimensionless time of the peak of the lines taut snatch force
τ_{r}	Reefing line ratio
φ	Roll angle
φ_{r}	Canopy lines conversion angle (reefed)
$\boldsymbol{\psi}$	Yaw angle
ψ_{r}	Radial member conversion angle (reefed)
Superscript	
-	Derivative with respect to time

Chapter 1

Introduction

1. 1 Historical Review

The first design of a parachute appears in the sketchbook of Leonardo da Vinci in 1514. As far as is known this device was never manufactured and put into practice. Towards the end of the eighteenth century the first parachute jumps were made from balloons. During the nineteenth century exhibition jumps from high buildings and (especially) balloons became very popular. Jumping from aircraft by stunt men was more dangerous because the man was moving on exit from the plane, and opening of the parachute had to be delayed until it was clear of the aircraft. During the 1914-18 War pilot's lives were saved by the use of parachutes, and soon after this war it became compulsory for airmen to carry parachutes. The first technical analysis of parachutes was done in Germany and between the wars much research, mainly on opening behaviour, was performed.

In 1942 the British Parachute Section was established at the Royal Aircraft Establishment, Farnborough, under the leadership of W.D.Brown. In 1946 Johns (a member of this team) published "Parachute Design"1. In this paper the important design considerations are given as: opening, drag, strength and stability. These four would generally be regarded as the most important characteristics in the present day. Johns also describes the four types of parachute in use at that time: the gathered parasheet, ungathered parasheet, flat parachute and shaped parachute. The first step in the design (after choice of type of parachute presumably) is given by Johns as the choice of fabric porosity. After that the design procedure is essentially that presented in the modern parachute design guides.

In 1951 "Parachutes" by Brown ${ }^{2}$ was published. This is the first book written on the subject and describes most aspects of parachutes including: design, manufacture, aerodynamics and testing. In the introduction to the design chapter Brown states "...we are forced, for the time being, to extrapolate from empirical relationships which are not very reliable and are certainly limited to speed ranges and dimensions completely outside present day requirements". For many of the calculations in parachute design this problem is still present. The design section splits parachutes up into those which open near their release speed, and those which open after a substantial reduction in speed. In both these cases the procedure is similar to that given by Johns, although Brown's methods require a greater amount of empirical data.

In 1951 the first parachute design handbook was published, its second revision appeared in 1963^{3}. This book contains an excellent design chapter and some useful worked examples. It contains data for most commonly used parachutes and is extensively used at present.

By 1960 many different types of parachute were in use as well as other drag-generating systems such as rotor blades and inflatables. Parachutes became regarded as one type of "aerodynamic decelerator". Ibrahim ${ }^{4}$ defines parachutes as "...flexible, elastic bodies; their inflated shape depends on the flow conditions and vice versa". An engineering review of aerodynamic decelerators was published by Pepper and Maydew ${ }^{5}$ in 1971. This paper contains design information for slotted (ribbon,ringslot,ringsail) parachutes, and 215 references. A similar, more recent and restricted, review was published by Dennis ${ }^{6}$ in 1983.

By this time numerous tests were being performed on various types of parachutes (mainly in the United States). In order to keep track of the results the Parachute Design and Performance Data Bank was set up (1970-1973). Test results from 105 documents are held in this data bank and the data
are available to parachute design engineers on request. Because databases only became available in 1975-76, the software documented in reference 7 is crude by modern day standards, however any attempt to cut down on expensive parachute testing is useful. A similar system using a database is now available ${ }^{8}$.

In 1978 a further revision of the parachute design handbook was published ${ }^{9}$. This was essentially the same as the previous version but includes information on new types of parachutes and new design techniques (28 different types in general use are discussed). The design chapter contains a number of useful examples. Many of the techniques and data from this publication have been used in the present analysis.

The Kevlar design guide ${ }^{10}$, published in 1982, contains much useful information about Kevlar 29 and ribbon parachute design. Some of the formulae in this report can be applied to any type of parachute.

Lecture notes by Rnacke ${ }^{11}$ are another important source of parachute design data and formulae. These notes will form the basis of a forthcoming "Recovery System Design Manual" for the Naval Weapons Center, China Lake, California. These notes can be regarded as an "up-dated" version of the Recovery Systems Design Guide (reference 9), the section on ribbon parachutes is especially good.

Due to obvious difficulties, the assessment of parachute design work in Russia and Japan is impossible. In these countries, from a limited number of translated papers, it can be seen that useful work has been done in this field.

A large number of different design methods are contained in the pages of these publications. Most are based on experimental data, and may require some inputs from tests of a similar or scaled down parachute to the one being designed. In some cases the data used in the design has come from
obscure experiments performed many years ago and hence may not be very reliable. Also the basis for some of the curves of data presented in these design guides is not known. Whether values gleaned from interpolation and certainly from extrapolation from these curves and other parachute design data are reliable is a debatable point. A review of these techniques to select those most suitable for use by parachute design engineers, and to present a standardised design technique, is required. By clearly demonstrating where data are unreliable the present design analysis will aid this selection process.

There has been little use of computer methods in parachute design. The notable exceptions are in the fields of:
(i)Stressing - an interpolation method, based on a Fortran computer program is becoming increasingly used.
(ii)Inflation - Many computer methods have been used for the calculation of parachute inflation and trajectory characteristics. A computer program to calculate the inflation history of a parachute is used at the premises of the co-operating body (G.Q. Defence Equipment Ltd., Woking, Surrey). A version of this program is incorporated into the parachute design program presented in this thesis.
(iii)Design - The author is aware of a parachute design program used by Irvin Great Britain Ltd. at Letchworth.

1.2 Aims of the Project

(i) To devise a system, consisting of a number of separate programs, for the design of parachutes. This system requires some simple input data, and performs a number of separate calculations to give a theoretical design of parachute.
(ii)To make a critical assessment of the computing techniques available in order to select the most suitable computer language, operating system and machine for the program.
(iii) To collect the data required for the programs described in aim (i) above from literature and known design procedures. These data can then be stored in a computer in such a form that they can readily be added to and updated.
(iv)To perform a critical examination of the methods available to parachute designers. Thus the methods most suitable for inclusion in the design program are selected. Additionally a standard design technique for parachutes making the best use of the methods available, as well as consistency between designs and design engineers, is ensured.

Chapter 2

A Description of the Computing Methods Used in the Research

The software to be produced must be operational at the premises of the co-operating body (G.Q. Defence Equipment Ltd., Woking, Surrey), and must conform to this company's requirements.

2.1 Choice of Machine

A number of different computer systems are available both at Leicester University and the co-operating body. To a limited extent computer programs written on one machine can be transferred to and used on a different system.

At Leicester University the mainframe computer consists of two DEC VAX 8600 's, each with 20 megabytes of memory. The Computer Studies Department has a number of RML Nimbus and ACT Sirius micro-computers. Elsewhere in the university various mini-computers and micro-computers are available. At G.Q. Defence Equipment Ltd. Hewlett-Packard 9836 and ACT Sirius micro-computers are available.

One possibility was to write the software on the VAX computer at Leicester and transfer program files to Woking via British Telecom. However the equipment for doing this is not available so the software had to be written on a machine that is available at both Leicester and Woking. Therefore the Sirius micro-computer was chosen. An added problem that arises if the software is written on the VAX is that its storage is much larger than that of a micro-computer, and programs on the VAX would have to be checked on a microcomputer at Leicester before transferring them to Woking.

The Sirius I, manufactured by the American company Applied Computer Technology was introduced in 1981. At one time it was the 16-bit market leader in Europe. In America it is known as the Victor 9000. The Sirius's used at Leicester have $384 k$ bytes of memory, the one at woking has 512 k bytes of memory.

2.2 Choice of Computer Lanquage

The choice of the computer language to be used in the project was between Fortran,Basic and Pascal. Basic is not compiled and is therefore slower than the other two languages in this survey. It is also not really suitable for large programs and hence Basic was discounted. Fortran and Pascal are compared in table 2.1.

	advantages	disadvantages
Fortran	scientific	not structured old fashioned (1954)
Pascal	easy to use structured modern(1971)	not scientific

Table 2.1 Comparison of Fortran and Pascal.

Structured programming is a systematic approach to good program design. It is used to write large and complex programs in a manner that avoids the errors that plague programming in older languages such as Basic and Fortran. To write programs using structured programming methods a language like Pascal is required. Pascal contains a large number of flow-of-control statements (if...then...else, and while...do for example). It also supports various data structures not used in Fortran and Basic (records, pointers
etc.). To write a large computer program (typically one over 2000 lines of code) some forward planning using structure diagrams is essential and transferring from these diagrams to Pascal code is relatively simple. Pascal is becoming increasingly popular for use with micro-computers such as the Sirius. After consultation with staff at the Computer Studies Department, Leicester University, and the co-operating body (G.Q. Defence Equipment Ltd.) it was chosen as the language to be used. The main disadvantage of using Pascal for this project is that it is not scientific, and programming mathematical formulae is rather long winded (for example the facility to raise values to a power is not available).

2. 3 Choice of Operating System

The three commonly used micro-computer operating systems are: CP/M, MS-DOS, and UCSD. There are a number of different implementations of Pascal available with CP/M and MS-DOS: UCSD can only be used with UCSD Pascal. UCSD allows separately compiled portions of code to be incorporated into the main program (UCSD units ${ }^{12}$), so this operating system was chosen to be used for the parachute design program. This facility is not available in standard pascal.

Sets of pre-programmed routines can be grouped together in a separate 'unit' in such a way that any of the routines (procedures and functions) can be used as if they had been declared within the 'using' Pascal program (i.e. the program that uses the unit). Several units may be grouped together into a disk file called a 'library'. A unit consists of two parts: interface and implementation. The interface part is 'public', i.e. it is available to the 'using' program. The implementation part is 'private' to the unit, not available directly to the 'using' program. Because units are pre-compiled their use saves time whilst writing and checking a program; when an alteration is made to the program only the unit in which the change has been made needs to be
re-compiled. As well as providing the facility to store parts of the program that may not be used in every run in separate units, units can be used to split up the program as it becomes too large for the compiler. Also, using a unit, programs already written in UCSD Pascal can be incorporated into the main parachute design program.

Other advantages of UCSD Pascal over standard Pascal are listed in appendix $D 4$ of reference 13. The disadvantage of UCSD is that the Pascal code is not translated into machine code but into a sort of 'intermediate' language called p-code. This is much slower to run than machine code.

Chapter 3

A Detailed Examination of Parachute Design Techniques

Figure 3.1 has been constructed in order to set out, in a chronological form, the processes involved in parachute design. As well as the requirements listed in this figure some construction details are required, to enable the weight and volume of the parachute to be calculated. These details are different for each type of parachute.

In this chapter each stage in figure 3.1 is examined and the best method (or methods) for performing the parachute design calculations chosen from those available. The criteria used for choosing these methods are:
(i) accuracy.
(ii) reliability.
(iii) suitability for computer treatment.

Sections 3.1, 3.2, and 3.3 of this chapter outline the initial selections a parachute designer is required to make: choice of type of parachute and drag coefficient, as well as the calculation of the parachute area. Clusters of canopies are discussed in section 3.4. The length and numbers of the rigging lines are usually determined using methods given in sections 3.5 and 3.6 . Staging is discussed in section 3.7 and opening loads in 3.8. Parachute reefing is the subject of section 3.9 and stressing calculations are given in section 3.10. The choice of parachute materials is outlined in section 3.11. Sections 3.12 and 3.13 contain discussions of landing control and canopy weight and volume. Finally cost, stability and reliability are outlined in sections 3.14, 3.15 and 3.16 respectively.

Some of the equations and tables in this section and in appendices A and C have been given an extra identifier. This identifier refers directly to the parachute design program

Figure 3.1 (continued)
code (listed in appendix E), and to the program structure diagram (listed in appendix C). The identifier is a three or four figure number for an equation and a five figure number for a table. The number is dependent on the calculation in which the table or equation is first used, the numbering convention being given in figure 3.1.

3.1 Type of Parachute

In table 3.1 twenty-eight types of parachute are listed together with their construction details and uses. This information has been taken from references 9 and 11.

The two main uses of parachutes are descent and deceleration. Descent can be regarded as the delivery of a store; deceleration applications are usually at high velocities, e.g. the deceleration of aircraft. Generally solid cloth parachutes (flat circular, conical etc.) are used for descent applications and slotted parachutes (ribbon, ringslot etc.) are used for deceleration applications. However there are special cases such as emergency escape: this is a high velocity application for which a solid cloth parachute is employed.

Parachutes are divided into two sets: gliding and non-gliding. Gliding parachutes are those which impart a horizontal velocity or 'drive" to the parachute and load system. Non-gliding or conventional parachutes possess solely a drag generating role. The design of these two types differs in the initial stages but generally, after this, the same techniques are used.

Stability is an important criterion for the choice of the type of canopy. Some types of parachute are more stable than others. So if the required oscillation amplitude, expressed as a permitted range of oscillations, is less than ± 5 degrees, a stable parachute is required. Cruciform (or cross)

Type	Construction	Use
1. Flat Circular	Solid textile	Descent (obsolete)
2. Conical	Solid textile	Descent
3. Bi-conical	Solid textile	Descent
4. Tri-conical	Solid textile	Descent
5. Extended skirt flat	Solid textile	Descent
6. Extended skirt full	Solid textile	Descent
7. Hemispherical	Solid textile	Descent (obsolete)
8. Guide surface (ribbed)	Solid textile	Drogue, stabilization
9. Guide surface (ribless)	Solid textile	Drogue
10. Annular	Solid textile	Descent
11. Cross (cruciform)	Solid textile	Descent
12. Flat ribbon	Slotted textile	Descent, deceleration, drogue (obsolete)
13. Conical ribbon	Slotted textile	Descent, deceleration
14. Conical ribbon varied porosity	Slotted textile	Descent, deceleration, drogue
15. Hemisflo (ribbon)	Slotted textile	Drogue, supersonic
16. Ringslot	Slotted textile	Extraction, deceleration
17. Ringsail	Slotted textile	Descent
18. Disk-gap-band	Slotted textile	Descent
19. Rotafoil	Slotted textile	Drogue
20. Vortex ring	Slotted textile	Descent
21. TU slotted	Slotted textile	Descent
22. Le moigne	Slotted textile	Descent
23. Parawing single keel	Solid textile	Descent
24. Parawing twin keel	Solid textile	Descent
25. Parafoil (ram-air)	Solid textile	Descent
26. Sailwing	Solid textile	Descent
27. Volplane	Solid textile	Descent
28. Balloon (ballute)	Solid textile	Drogue,stabilization

parachutes with appropriate arm ratios and ribbon parachutes are known to be highly statically stable, and coupled with the fact that cruciform parachutes are very simple to make, means that this type is being used for an increasing number of applications. Most of the typical parachute systems studied in the results (chapter 5) are cruciform. The expression of stability in terms of a range of oscillations is meaningless in practical terms. It is sensible to design all parachutes to be stable and to check their stability by testing. The stability of a parachute canopy is highly dependent on the atmospheric conditions at the time of use. A high wind will greatly affect the parachute's performance and stability.

After consultation with the co-operating body some changes were made to the list of parachutes, table 3.1, for use in the parachute design program. Types 8, 9 and 10, the guide surface and annular parachutes, are not used by the co-operating body. Type 14 (conical ribbon, varied porosity) and type 20 (vortex ring) are of very complicated construction, so these five types have been removed from the table. An emergency escape parachute manufactured by the co-operating body is the $G Q$ Aeroconical canopy. This canopy is of similar construction to Type 21, the Tojo, or TU slotted canopy, and replaces it in the table. Types 24 and 25, parawing(twin keel) and parafoil(ram-air) are again very complicated and require completely different design techniques, beyond the scope of this project. Types 26 and 27, sailwing and volplane, have no force coefficient data available, so these four types, 24 to 27 , are also removed. If the force coefficient information is obtained parachute types 26 and 27 can be included in the program. Type 28, balloon(ballute), is not in general use and does not satisfy the requirements of a parachute as defined by Ibrahim (section 1.1), it is also removed. The ringslot parachute can be either flat (type 16a) or conical (type 16b).

3.2 Drag Coefficient

A parachute's drag coefficient indicates how effectively it produces drag with a minimum of cloth area.

The value of the drag coefficient for a particular parachute is obtained from curves or tables presented in the parachute design guides. Reference 9 contains curves of rate of descent versus drag coefficient for nine types of parachute. Each curve has been compiled using data from a limited number of tests, because these data are sparse a drag coefficient value chosen from a particular curve may be inappropriate for the parachute that is being designed.

A complete set of drag coefficient values are contained in tables 2.1 to 2.5 of reference 9 . Table 3.2 has been compiled from these values. This table contains drag coefficient data for non-gliding parachutes and represents the results from rate of descent trials on a number of parachutes. Following the practice of reference 9 two values are given. These may represent an uncertainty band as the accurate measurement of parachute drag coefficient is difficult. The higher value $\left(C_{0} H\right)$ is the drag coefficient at a low rate of descent, about $17 \mathrm{ft} / \mathrm{sec}(5.18 \mathrm{~m} / \mathrm{s})$, the lower one $\left(C_{D} L\right)$ is at a high rate of descent, about $30 \mathrm{ft} / \sec (9.14 \mathrm{~m} / \mathrm{s})$. So if the rate of descent given, V, lies between these values, the drag coefficient $\left(C_{0}\right)$ can be estimated from equation 3.1 .

$$
\begin{equation*}
C_{D}=C_{D} H-\left(C_{D} H-C_{D} L\right)(V-5.18) / 3.96 \tag{3.1}
\end{equation*}
$$

If V is higher than $9.14 \mathrm{~m} / \mathrm{s}$ then $C_{D}=C_{D} L^{(103)}$, if V is lower than $5.18 \mathrm{~m} / \mathrm{s}$ then $\mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \mathrm{H}$ (102).

For gliding parachutes a force coefficient which relates to both horizontal and vertical motion is taken from table 3.3. These values have also been extracted from reference 9, they represent average force coefficients from a number of tests.

Type	Draq coefficient range
1. Flat circular	$0.800-0.750$
2. Conical	$0.900-0.750$
3. Bi-conical	$0.920-0.750$
4. Tri-conical	$0.960-0.800$
5. Extended skirt (10\% flat)	$0.870-0.780$
6. Extended skirt (14.3\% full)	$0.900-0.750$
7. Hemispherical	$0.770-0.620$
8. Guide surface (ribbed)	$0.420-0.280$
9. Guide surface (ribless)	$0.340-0.300$
10. Annular	$1.000-0.950$
11. Cross (cruciform)	$0.820-0.600$
12. Flat ribbon	$0.500-0.450$
13. Conical ribbon	$0.550-0.500$
14. Conical ribbon (varied porosity)	$0.650-0.550$
15. Hemisflo (ribbon)	$0.460-0.300$
16. Ringslot	$0.650-0.560$
17. Ringsail	$0.900-0.750$
18. Disk-gap-band	$0.580-0.520$
19. Rotafoil	$0.990-0.850$
20. Vortex ring	$1.800-1.500$
28. Balloon (ballute)	$1.200-0.510$

Table 3.2 (10101) Drag Coefficient: Non-Gliding Parachutes

Type	$C_{F R}$
21. Aeroconical	0.875
22. Le moigne	0.950
23. Parawing (single keel)	1.000
24. Parawing (twin keel)	1.050
25. Parafoil (ram-air)	0.800
26. Sailwing	-
27. Volplane	-

Table 3.3(10102) Force Coefficient: Gliding Parachutes

The drag coefficient of a parachute is dependent on its construction. Alterations, especially cut-outs such as drive slots in the side of the canopy and vents in the top of the canopy, will change the drag coefficient, because the rate of descent is increased. When a parachute has been manufactured its drag coefficient is determined experimentally. In some cases this value is found to be very different from the original drag coefficient assumed for the parachute. This is demonstrated in reference 14 where the expected drag coefficient is 0.72-0.75 and the value calculated by experiment is 0.49-0.59, a decrease of as much as 35%. So care must be taken to choose the correct drag coefficient in order to realise the required rate of descent.

The values of drag and force coefficients presented in this section are only intended as a guide. In many cases the parachute designer will already know the coefficient he wishes to use from past experience.

3. 3 Area

Equation 3.2 is the basic drag coefficient definition for non-gliding parachutes.

$$
\begin{equation*}
D_{r}=C_{0} 1 / 2 \varrho v^{2} S_{0} \tag{3.2}
\end{equation*}
$$

Where:
D_{r} - Drag, which is equal to the weight of the store being delivered plus the weight of the parachute (W_{s}), in steady descent.
e - Air Density.
S_{0} - The constructed, or nominal, area, i.e. the total canopy area inclusive of any cut-outs.

The air density can be taken as the sea level value or calculated from equation 3.3 for the troposphere, where A is the altitude (metres). ${ }^{15}$.

$$
\begin{equation*}
\mathrm{e}=1.225\left(1-2.2605 \times 10^{-5} \mathrm{~A}\right)^{4.256} \tag{3.3}
\end{equation*}
$$

Re-arranging equation 3.2

$$
\begin{equation*}
S_{0}=2 w_{S} /\left(e v^{2} C_{0}\right) \tag{3.4}
\end{equation*}
$$

C_{0} is often expressed as C_{00} to indicate that it refers to the constructed, or nominal, area.

For gliding parachutes the force coefficient refers to the total velocity $\left(V_{T}\right)$. This can be calculated from equation 3.5 as both the vertical velocity (rate of descent (V)) and horizontal velocity $\left(V_{H}\right)$ are specified.

$$
\begin{equation*}
v_{T}=\left(v^{2}+v_{H}^{2}\right)^{1 / 2} \tag{3.5}
\end{equation*}
$$

Then if $C_{F R}$ is the canopy force coefficient, using a similar method to that used for non-gliding parachutes:

$$
\begin{equation*}
S_{0}=2 W_{S} /\left(e v_{T}^{2} C_{F R}\right) \tag{3.6}
\end{equation*}
$$

Many parachutes are designed for the recovery of remotely piloted vehicles (RPV's). These (and other) stores have a high cross sectional area which can be taken into account in the parachute area calculation, as they will inpart a certain amount of drag to the system. If S_{s} is the store cross-section area, and $C_{D S}$ the store drag coefficient, nominal area S_{0} is calculated from equation 3.4 or 3.6 and the final area with the store area taken into account $\left(S_{\text {final }}\right)$ from equation 3.7.

$$
\begin{equation*}
S_{\text {final }}=\left(C_{D} S_{0}-C_{D S} S_{S}\right) / C_{D} \tag{3.7}
\end{equation*}
$$

3.4 Clusters

A single parachute of nominal area greater than 30,000 square feet ($2787 \mathrm{~m}^{2}$) (301) creates stowage problems due to its weight and bulk. It opens very slowly and the type generally used for large parachutes (flat circular) is invariably unstable in descent. Parachutes of this size are replaced by a cluster of smaller canopies. The reliability of a parachute system can be improved by the use of a cluster because redundancy can be built into the system by the inclusion of extra parachutes. Flat circular parachutes can be used in clusters because they are flying at an angle of attack and their tendency to become unstable is suppressed. The use of a cluster speeds up inflation and hence the height loss during parachute opening is reduced. Two disadvantages of clusters are reduced drag efficiency and high inflation loads, these high loads are encountered because the canopies open separately.

The method used for cluster design is given in the Recovery Systems Design Guide ${ }^{9}$. Corrections are made to the drag coefficient selected for a single parachute to take into account the effects of the cluster and the effects of the rigging lines. From the final drag coefficient calculated the area of each canopy in the cluster can be determined. Figure 3.2 has been constructed to illustrate the calculations required in cluster design.

Data are available for flat circular and ringsail canopies. For flat circular parachutes there are data for a maximum cluster of four canopies. For large (>9.30 metre diameter) ringsail canopies data are available for a maximum cluster of two canopies, and for ringsail canopies of less than 9.30 metre diameter data are available for a maximum cluster of three canopies.

The number of parachutes in the cluster, η_{c}, is calculated from equation 3.8 which compares the largest sensible canopy

(2787 m^{2}) with the area calculated for a single canopy.

$$
\begin{equation*}
n_{c}=\left|\left(S_{0} / 2787\right)\right|+1 \tag{3.8}
\end{equation*}
$$

$C_{\text {Dfinal }}$ is the corrected drag coefficient:

$$
\begin{equation*}
C_{D f i n a l}=C_{D}\left(C_{D C} / C_{D}\right)\left(C_{D 0} / C_{D O}^{\prime}\right) \tag{3.9}
\end{equation*}
$$

Where ($C_{D C} / C_{D}$) is the correction made to the drag coefficient for the effects of the cluster (reduced drag efficiency). It is taken from tables 3.4-3.7 (figure 6.30 of reference 9). If the parachute is a ringsail canopy then its nominal diameter D must be estimated. Let $S_{e e}$ be the estimated constructed area,

$$
\begin{equation*}
s_{e e}=s_{0} / n_{c} \tag{3.10}
\end{equation*}
$$

and hence D (305).
($C_{00} / C_{D_{0}}$) is the correction for the effect of the length of the rigging lines on the canopy drag area. It is taken from a curve of $\left(C_{00} / C_{D 0}^{\prime}\right)$ versus le/D (figure 6.61 of reference 9 , equations 308-309 in the parachute design program). le is the parachute line length which is generally 98% of the cluster line length, lc (see figure 3.2). Therefore:

$$
\begin{equation*}
\left(l_{e} / D\right)=(98 / 100)\left(l_{c} / D\right) \tag{3.11}
\end{equation*}
$$

For good practice the ratio of cluster line length (lc) to nominal diameter D is taken from equation 3.12.

$$
\begin{equation*}
l_{c} / D=\left(\eta_{c}\right)^{1 / 2} \tag{3.12}
\end{equation*}
$$

Hence the corrected drag coefficient of each parachute in the cluster ($C_{0 \text { final }}$). The area of each parachute is:

$$
S e=\left(\begin{array}{ll}
C_{0} & S_{0} \tag{3.13}
\end{array}\right) /\left(\eta_{c} C_{0 \text { final }}\right)
$$

η_{C}	$c_{D C} / C_{D}$
1	1.000
2	0.980
3	0.965
4	0.920

Table 3.4 (10301)

n_{c}	$c_{0 C} / c_{0}$
1	1.000
2	0.890
3	0.840
4	0.780

Table 3.5 (10302)
(Rate of descent $\langle 7.62 \mathrm{~m} / \mathrm{sec}$) (Rate of descent $\rangle=7.62 \mathrm{~m} / \mathrm{sec}$)

Effect of Cluster on Draq Coefficient.
Flat Circular Parachutes

η_{c}	$C_{D C} / C_{D}$
1	1.000
2	0.990
3	0.960

Table 3.6 (10303)
(Diameter $<9.30 \mathrm{~m}$)

n_{c}	$c_{0 c} / c_{0}$
1	1.000
2	0.930

Table 3.7 (10304) (Diameter $>=9.30 \mathrm{~m}$)

Effect of Cluster on Drag Coefficient
 Ringsail Parachutes

hence D, l_{e}, l_{c} and a (312-315), where:

$$
\begin{equation*}
l_{c}=l_{e}+a \tag{3.14}
\end{equation*}
$$

3.5 Rigqing Line Length

The length of a parachute's rigging lines can affect its drag coefficient and its stability. Altering the length of the lines will change the drag area of the canopy and hence its drag efficiency. Shortening the rigging lines will decrease the amplitude of the parachute's oscillations whilst it descends.

Reference 9 suggests designing the line length to minimise canopy weight. However the rigging lines are of little importance to the total parachute weight, increasing the line length by 10% will only increase the parachute weight by about 2%.

The method chosen for use in the parachute design computer program is to calculate the canopy line length as the product of the canopy diameter in feet and a factor. Values of this factor, l_{e} / D or l_{e} / D_{c}, for most types of parachute are given in reference 9. In general le/D is 1.0 for solid cloth circular parachutes. These values along with others obtained from the co-operating body are listed in table 3.8. The constructed diameter for the Guide Surface, Vortex Ring and Parawing (single keel) canopies are calculated from equations 3.15-3.18.

Guide Surface (ribbed) (type 8)

$$
\begin{equation*}
D_{c}=0.63 \mathrm{D} \tag{3.15}
\end{equation*}
$$

Guide Surface (ribless) (type 9)

$$
\begin{equation*}
D_{c}=0.66 \mathrm{D} \tag{3.16}
\end{equation*}
$$

Vortex Ring (type 20)

$$
\begin{equation*}
D_{c}=1.9 \mathrm{D} \tag{3.17}
\end{equation*}
$$

Type	le/D ${ }_{0}$	le/D ${ }_{c}$
1.Flat Circular	1.00	-
2.Conical	1.00	-
3.Bi-conical	0.95	-
4.Tri-conical	0.90	-
5.Flat Extended Skirt	0.85	-
6.Full Extended Skirt	0.95	-
7.Hemispherical	1.00	-
8.Guide Surface (ribbed)	-	1.33
9.Guide Surface (ribless)	-	1.33
10.Annular	1.25	-
11.Cruciform (cross)	1.50	-
12.Flat Ribbon	1.00	-
13.Conical Ribbon	1.50	-
14. Conical Ribbon (varied porosity)	1.50	-
15. Hemisflo	2.00	-
16.Ringslot	1.00	-
17.Ringsail	1.20	-
18.Disk-gap-band	1.69	-
19. Rotafoil	1.00	-
20.Vortex Ring	-	1.00
21.Aeroconical	1.00	-
22.Le Moigne	1.00	-
23. Parawing (single keel)	-	1.00

Table 3.8 (10401) Line Lenath Data

Parawing (single keel) (type 23)

$$
D_{c}=\left(S_{0} / 0.692\right)^{1 / 2}
$$

(3.18)(408)

As for the drag coefficients given using equation 3.1, these values of the ratio of line length to diameter are only intended as a guide, the parachute designer may already know the figure he wishes to use.

A correction can be made to the drag coefficient of the parachute to take into account the effect of the rigging lines. This procedure, incorporating the correction factor, $\left(C_{00} / C_{00}\right)$, is described in the cluster calculations, section 3.4. No correction is made for single parachutes because l_{e} / D_{0} is usually 1.0 and at this value the correction factor is also 1.0.

3. 6 Number of Rigging Lines

For circular parachutes the number of lines is equal to the number of gores. One method used to determine the number of rigging lines is to calculate the number of lines required to give a gore width of 1 metre at the skirt, which is a convenient length for parachute packing. Parachutes usually have two risers and the number of lines must invariably be even. In some cases (see table 5.5) four or more attachment points may be required.

The parachute design program uses an old rule of thumb given in reference 9 which states that the number of lines should be equal to the canopy nominal diameter (in feet). This gives a gore width of π feet which is approximately 1 metre. In addition the program determines a number of lines which is divisible by four or six (501-506).

The number of lines on each arm of a cruciform canopy is dependent on the allowable fabric width, which is generally about one metre. If the arm width ($t_{c r u}$) is less than $1.5 m 12$ lines are used. If $t_{c r u}$ is greater than 1.5 m equation 3.19 , based on fabric widths, is used to calculate the number of lines (Z).

$$
\begin{equation*}
z=4\left(\left|\left(1.14 t_{c r u}+1.29\right)\right|+1\right) \tag{3.19}
\end{equation*}
$$

For the parawing (single keel) parachute (type 23, figure A.19) the number of gores, N, is calculated from equation
3.20 (D_{c} is known from equation 3.17), and z calculated from equation 3.21.

$$
\begin{align*}
& N=\left|\left(D_{c} 0.823 / 0.864\right)\right|+1 \tag{3.20}\\
& Z=3(2 N+1) \tag{3.21}
\end{align*}
$$

3.7 Staqing

If the deployment speed is high, instability of the store can occur so a two, or more, stage system may be required. Also the opening load of a large parachute at high speed may be excessive and damage can occur. staging involves the deployment of a small parachute called a drogue or auxiliary which stabilises the store and provide some initial deceleration. The drogue can be in the form of a spring loaded parachute or a solid body such as a cone. After a short time, usually about half a second, the main parachute is deployed.

The method used to calculate the drogue size is that given in the Recovery systems Design Guide ${ }^{9}$. This method requires the maximum allowable loading and the store base area to be supplied. It assumes that the maximum dynamic pressure, q_{M}, is equal to 1.15 times the steady state dynamic pressure, q_{e}, when the drogue is fully deployed.

$$
\begin{equation*}
q_{e}=W_{s} /\left(\left(C_{0} S\right)_{D}+\left(C_{0 S} S_{S}\right)\right) \tag{3.22}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \left(C_{D} S\right)_{0}-\text { drogue drag area } \\
& \left(C_{D S} S_{S}\right) \text { - store drag area }
\end{aligned}
$$

Putting $q_{M}=1.15 q_{e}$ and re-arranging 3.22 gives an equation for the drogue drag area:

$$
\begin{equation*}
\left(C_{D} S\right)_{D}=\left(1.15 W_{S} / q_{M}\right)-\left(C_{D S} S_{S}\right) \tag{3.23}
\end{equation*}
$$

The maximum dynamic pressure is calculated from equation 3.24.

$$
\begin{equation*}
q_{M}=F_{A} /\left(\left(C_{D} \quad S_{0}\right) C_{X 1}\right) \tag{3.24}
\end{equation*}
$$

F_{A} is the maximum allowable load (in Newtons). $C_{X_{1}}$, the opening load factor is taken from a mass ratio, R_{M}, versus $C_{x 1}$ curve, figure 6.25 of reference 9. Using a curve fitting routine this figure has been represented by equations (707-707c) in the parachute design program. Mass ratio R_{M} is the ratio of a measure of the mass of air included within the main canopy to the store mass:

$$
\begin{equation*}
R_{M}=\left(\left(C_{D} S_{0}\right)^{3 / 2} e\right) /\left(W_{S} / g\right) \tag{3.25}
\end{equation*}
$$

Using this method $\left(C_{D} S\right)_{D}$ is calculated. If it is less than zero no drogue is required. Otherwise the drogue area, $S_{00}{ }^{\prime}$ and diameter can be calculated by assuming that the drogue drag coefficient equals 0.5 (608). The trailing distance of the drogue is seven times the store base diameter (610), to take wake effects into account.

In the parachute design program the user is given the option to initialise this staging routine if the deployment velocity is greater than $100 \mathrm{~m} / \mathrm{s}$.

3.8 Opening Loads

The calculation of the opening force of a parachute is one of the most important stages in its design. Once the opening forces are known, the strength of the materials required can be determined. If an error is made in the calculation of the opening force the consequences could be catastrophic.

Established methods of predjcting canopy opening loads require specification of its shape and its variation with time as an empirical input. Because the canopy surface is
highly elastic and its interaction with the surrounding airflow complex, accurate values for canopy shapes during inflation are difficult to obtain. In advanced opening load calculation techniques (post 1970) the canopy shape is determined as an output. However in these techniques other data, such as the pressure distribution around the inflating canopy, are required, and these are not readily available.

In this section a number of old and new inflation theories are examined and compared so that the most suitable ones for inclusion in a parachute design computer program can be selected.

3.8.1 A Review of Opening Load Calculation Methods

The earliest inflation load calculation methods applied conservation of mass principles to a control volume defined by the parachute canopy. A good example of this technique is given by $0^{\prime} H^{\prime}{ }^{16}$ in 1948. These methods required knowledge of the shape of the canopy as it inflates, which o'Hara represented as a series of truncated cones. 0^{\prime} Hara's and other similar methods are known as "filling distance theories".

A second set of load calculation methods are known as "filling time theories". These methods use similar mechanical models to 0^{\prime} Hara, but appeared much later ($1960^{\circ} \mathrm{s}$). They include an equation which determines the volume flow rate into the canopy during opening. One such method is that of Heinrich ${ }^{17}$, this method is contained in the United States Air Force Parachute Handbook (reference 3). The results presented in this paper show that Heinrich's method compares well with measured forces for low deployment altitudes (below 10000ft). A useful summary of these and other opening load calculation methods was made by Roberts and Reddy ${ }^{18}$ in 1975.

More recently Purvis ${ }^{19}$ has devised an opening load
calculation method including fluid kinetics. In his paper Purvis predicts the introduction of an expanded finite-element inflation model. No experimental input is required but this and Heinrich's methods are too complicated for contemporary design use.

Two similar methods are those of Lingard ${ }^{20}$ and Wolf ${ }^{21}$. Both these analyses make the assumptions of inviscid flow and inelastic materials. Dimensional analysis techniques are used to identify the important parameters in parachute inflation as:

$$
\begin{align*}
& \text { Froude number } F_{r}=V_{0} /\left(g R_{p}\right)^{1 / 2} \tag{3.26}\\
& \text { Force coefficient } f_{x}=F_{x} /\left(q_{0} S_{p}\right) \tag{3.27}
\end{align*}
$$

Forebody (or store) mass ratio
$k f=3 \mathrm{mf} /\left(\begin{array}{l}\left.4 \mathrm{e} \pi \mathrm{R}_{\mathrm{p}}^{3}\right)\end{array}\right.$

$$
\text { Canopy mass ratio } k_{p}=3 m_{p} /\left(4 @ \pi R_{p}^{3}\right)
$$

where:

```
Vo - System initial velocity.
    Rp - Fully inflated canopy radius.
    Sp - Canopy area.
    Fx - Axial force.
    qo - Initial dynamic pressure.
    e - Atmospheric density.
    mf - Forebody mass.
    mp - Canopy mass.
```

In Wolf's method a system of four differential equations are derived. These equations must be .solved in order for inflation forces to be determined.

Lingard's semi-empirical method has been specially formulated for design use. It assumes a unique form of the force-coefficient dimensionless time curve.
dimensionless time $\tau=V_{s}\left(t-t_{i n f}\right) / D_{0}$

```
\(V_{s}\) - Snatch velocity (velocity at start of inflation)
\(D_{0}^{s}\) - Nominal diameter.
t - Time.
\(t_{i n f}-\) Inflation time.
```

Hence if the force coefficient - dimensionless time curve is known for one type of parachute, the opening force for a geometrically similar parachute can be calculated at any time t. The data required are $q 0, S_{p}, V_{s}, D_{0}$ and $t_{i n f}$.

$$
\begin{equation*}
t_{i n f}=k_{x} D_{0} / V_{s} \tag{3.31}
\end{equation*}
$$

where k_{x} is a constant, different for each type of parachute.

3.8.2 Semi-Empirical Opening Distance Methods

In these methods the peak opening force in infinite mass conditions, F_{x}, is defined as the steady state force F_{s} multiplied by an opening force coefficient $C_{x}{ }^{11}$.

$$
\begin{equation*}
F_{x}=F_{s} C_{x} \tag{3.32}
\end{equation*}
$$

Values of C_{x} are given in tables 2.1 and 2.2 of reference 9, which are summarized in table 3.9.

The opening force in finite mass conditions is obtained by multiplying F_{x} by a dimensionless opening force reduction factor X_{1} :

$$
\begin{equation*}
F_{x}=1 / 2 \varrho V^{2} C_{0} S_{0} C_{x} X_{1} \tag{3.33}
\end{equation*}
$$

This section considers three semi-empirical opening distance load calculation methods. Each requires no specialised input data. They are often used in design applications. If a quick calculation is required, or data for more complicated methods
are not available then one of the following methods can be employed.

3.8.2.1 The "Mass Ratio" Method

This method is described in the Recovery Systems Design Guide ${ }^{9}$. The mass ratio R_{M} is the ratio of a measure of the mass of air included within the canopy to the store mass. It is calculated using equation 3.34. Once this mass ratio is known, the opening force factor $C_{x 1}$ or C_{k}, a combination of C_{x} and X_{1}, is obtained from a $R_{M}-C_{x 1}$ curve, for example figure 6.25 of reference 9 , which has been fitted to equations (707-707c) in the parachute design program. Finally the maximum opening load, F, is calculated from equation 3.35 .

$$
\begin{aligned}
& R_{M}=\left(C_{D} S_{0}\right)^{3 / 2} \mathrm{e} /(\mathrm{m}) \\
& F=\left(C_{D} S_{0}\right)\left(1 / 2 \mathrm{e} \mathrm{~V}^{2}\right)\left(C_{x 1}\right) \\
& m \text { - mass of store. }
\end{aligned}
$$

3.8.2.2 The Canopy Loading Method

This method, developed by Knacke, is outlined in reference 11. Knacke argues that for a given canopy shape, the opening force reduction factor, X_{1}, is a function of canopy loading:

$$
\begin{equation*}
\text { Loading }=W /\left(C_{D} S_{0}\right) \tag{3.36}
\end{equation*}
$$

w - weight of store

A curve of X_{1} versus canopy loading is given in reference 11. Typical values are: $X_{1}=1.0$ for an aircraft decelerator (loading 14 k Pa), $X_{1}=0.33$ for a supply dropping parachute (loading 200 Pa) and $X_{1}=0.03$ for a man carrying parachute
(loading 25 Pa).

3.8.2.3 The "Pflanz" Method

This method was developed in Germany during the 1939-1945 war by Pflanz and Knacke. It assumes that the drag area versus time relationship for an inflating parachute canopy can be expressed in one of a variety of simple, definable forms. It is described in reference 11 but originally appeared in reference 22. X_{1}, the opening force reduction factor, is calculated from a curve of X_{1} vs A_{x} (fitted to equations (703-704b) in the parachute design program) where:

$$
\begin{aligned}
A_{x}= & 2 W_{s} /\left(\left(C_{0} S_{0}\right) \text { eg } v_{1} t_{f}\right) \\
v_{1}- & \text { velocity. } \\
t_{f}- & \text { inflation time: the time between line stretch and } \\
& \text { the canopy reaching its first steady state } \\
& \text { diameter. }
\end{aligned}
$$

From Scheubel's ${ }^{23}$ concept that the filling distance, S_{f}, can

Parachute Type	n_{2}	c_{x}
1. Flat Circular	9.0	1.80
5. Extended Skirt 10\% Flat	9.0	1.40
6. Extended Skirt 14.3\% Full	12.0	1.40
9. Guide Surface (Ribless)	5.0	1.40
11. Cruciform	11.8	1.20
12. Flat Ribbon	14.0	1.05
15. Hemisflo	20.0	1.15
16. Ringslot	14.0	1.05
17. Ringsail	7.0	1.10

be expressed in terms of the canopy's nominal diameter, D by:

$$
\begin{equation*}
S_{f}=\eta_{2} D \tag{3.38}
\end{equation*}
$$

the filling time, t_{f}, is expressed in terms of the deployment velocity V_{1} as:

$$
\begin{equation*}
t_{f}=\left(\eta_{2} \quad D\right) / V_{1} \tag{3.39}
\end{equation*}
$$

The fill constant, η_{2}, is also taken from table 3.9 (extracted from reference 11).

3.8.3 A Comparison of Four Different Load Calculation Methods

In order to choose the most suitable load calculation method for inclusion in the parachute design program, results obtained using the Lingard (section 3.8.1 and 3.8.4), mass ratio (section 3.8.2.1), canopy loading or Knacke (section 3.8.2.2) and Pflanz (section 3.8.2.3) methods, were compared with known, experimentally determined, values. Three different sets of input data have been used for this check:

(i)C9 Flat Circular Parachute

The C9 is a $28 f t$ diameter flat circular man carrying parachute. Reference 20 contains results of tests on this parachute, and the determination of its opening force using the 'Lingard' method. The case chosen was:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{s}}= & 77.46 \mathrm{~m} / \mathrm{s} \\
\mathrm{~m}= & 199.5 \mathrm{~kg} \\
\text { Altitude }= & 1830 \mathrm{~m} \\
& \left(\text { air density }=1.023 \mathrm{~kg} / \mathrm{m}^{3}\right. \text { (equation 3.3)) } \\
\mathrm{S}_{\mathrm{0}}= & 57.21 \mathrm{~m}^{2} \\
\mathrm{D}_{0}= & 8.53 \mathrm{~m} \\
\mathrm{t}_{\mathrm{f}}= & 0.99 \mathrm{sec} \\
& \text { Canopy filling time (equation 3.39 (taking } \\
& n_{2}=9 \text { for a flat circular canopy, table 3.9)) }
\end{aligned}
$$

$$
C_{D}=0.775 \text { (drag coefficient estimation) }
$$

(ii)Aeroconical Gliding Parachute (Test I)

A check on the program written for the 'Lingard' method (section 3.8 .4) was made using the following data for an Aeroconical gliding parachute.

$$
V_{s}=50 \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{m}=125 \mathrm{~kg}
$$

Altitude $=3000 \mathrm{~m}\left(\rho=0.9085 \mathrm{~kg} / \mathrm{m}^{3} \quad\right.$ (equation 3.3))
$S_{0}=38.5 \mathrm{~m}^{2}$
$D_{0}=7.38 \mathrm{~m}$
$t_{f}=1.33 \mathrm{sec}$
(equation 3.39, assuming $n_{2}=9$ as for a flat circular parachute)
$C_{R}\left(=C_{D}\right)=0.875$ (drag coefficient estimation)

(iii)Aeroconical Gliding Parachute (Test II)

Reference 20 contains experimental results and an opening force analysis using the 'Lingard" method of the Aeroconical gliding parachute. A case from this report was chosen to be analysed by the other three methods.

$$
\begin{aligned}
\mathrm{V}_{\mathbf{s}} & =72.11 \mathrm{~m} / \mathrm{s} \\
\mathrm{~m} & =135 \mathrm{~kg} \\
\text { Altitude } & \left.=460 \mathrm{~m}\left(\mathrm{e}=1.172 \mathrm{~kg} / \mathrm{m}^{3} \quad \text { (equation } 3.3\right)\right) \\
\mathrm{S}_{0} & =21.24 \mathrm{~m} \\
\mathrm{D}_{0} & =5.2 \mathrm{~m} \\
\mathbf{t}_{f} & \left.=0.65 \mathrm{sec} \text { (equation } 3.39, \text { assuming } n_{2}=9\right) \\
\mathbf{C}_{0} & =0.875 \text { as assumed above }
\end{aligned}
$$

From the results given in table 3.10 it can be seen that of the four opening load calculation methods tested, three are suitable for inclusion in the parachute design program. The canopy loading or Knacke method is discarded. The results obtained using this method differed vastly from those obtained using the other three. It underestimated on all three checks.

Method	Lingard	Mass Ratio	Knacke	Pflanz
Requires	$\tau-C_{F} \text { curve }$	-	C_{x}	C_{x} and t_{f}
Constraints	$\begin{array}{r} \text { incompress }- \\ \text { ible } \\ \text { flow } \end{array}$	-	$\begin{aligned} & \text { Altitude < } \\ & 20000 \mathrm{ft} \end{aligned}$	-
Results (N)				
Test 1 C9	25500 (2)	24493 (2)	20819 (20)	30072 (20)
Test 2 Aeroconical I	7361 (*)	7651 (*)	5008 (*)	8780 (*)
Test 3 Aeroconical II	20000 (10)	19821 (11)	16414 (34)	22623 (3)
Advantages	Low Error	Low Error Simple	Simple	Low Error
Disadvantages	Complicated c.p. With Approximate Methods	Approximate Underestimates	Approximate Underestimates	t_{f} required

Key

Figures in brackets indicate the percentage error compared with experimental results.

* - there was no experiment in test 2.

Table 3.10 A Comparison of Four Opening Load Calculation Methods

Results obtained using the 'Lingard' method have been shown to compare well with experimental results. Therefore in cases where the $C_{F}-\tau$ curve is available this method should be used. In cases where the 'Lingard' method cannot be used, either the simple 'mass ratio' method or the more complicated 'Pflanz' method will be adequate. Results obtained using these two methods were sufficiently accurate to indicate that the possible errors will be small, compared with the design factors (typically 2-3) applied. Therefore these three methods are incorporated in the parachute design program and the choice between them made by the user whilst running the program.
> 3.8.4 Determination of the Forces on the store, and the Trajectory, of a Two Stage Parachute System, Using Lingard's Semi-Empirical Opening Load Calculation Method

Lingard's method of calculating the opening load of an inflating parachute canopy, as described in section 3.8.1, has been incorporated in a Basic program on a Hewlett-Packard computer at the co-operating body. This program has been expanded in the following way to include the effects of staging (a drogue canopy can be incorporated) and the aerodynamic characteristics of the store. A trajectory calculation is also included. This procedure is incorporated into the parachute design program as described in section 4.2.1.

For reasons described in section 4.3.2 the output from this trajectory calculation is only directed to the sirius computer screen, it does not appear in a datafile and hence in the optional printed output. Also due to its complexity this part of the parachute design program is slow. If a quick design solution is required one of the other, more approximate, load calculation methods is recommended. However a trajectory calculation is often very important to the design of a parachute system. Altering the program to enable

NTS

Fiqure 3.3 Diagram of a Store and Canopy System

this output to be sent to a datafile should not prove too difficult.

For the canopy trajectory, Schatzle and Curry ${ }^{24}$ give the following six equations of motion, and three Euler equations, in three dimensions relative to axes fixed in the body, for a store (or forebody) in a forebody-parachute system (see figure 3.3).

$$
\begin{align*}
& \dot{u}_{F}=\left[F_{F x} / m_{F}+r_{F} v_{F}-q_{F} w_{F}\right. \\
& \dot{v}_{F}=\left[F_{F y} / m_{F}+p_{F} w_{F}-r_{F} u_{F}\right. \\
& \dot{w}_{F}=\left[F_{F z} / m_{F}+q_{F} u_{F}-p_{F} v_{F}\right. \\
& \dot{p}_{F}=\left[M_{F x} / I_{x x}\right. \tag{3.40}\\
& \dot{q}_{F}=\left(\sum M_{F y}+\left(I_{y y}+I_{x x}\right) p_{F} r_{F}\right) / I_{y y} \\
& \dot{r}_{F}=\left(\left[M_{F z}-\left(I_{y y}-I_{x x}\right) p_{F} q_{F}\right) / I_{y y}\right.
\end{align*}
$$

$$
\begin{align*}
& \theta=\left(q_{F} \cos \varphi-r_{F} \sin \varphi\right) \sec \psi \\
& \psi=q_{F} \sin \varphi-r_{F} \cos \varphi \tag{3.40}
\end{align*}
$$

$$
\varphi=p_{F}-\left(q_{F} \cos \varphi-r_{F} \sin \varphi\right) \tan \psi
$$

Where:

In a two-dimensional analysis $\mathrm{v}=0, \psi=0$ and $\mathrm{r}=0$. Rolling moment is neglected so $\varphi=0, p=0$ and equations 3.40 can be reduced to:

$$
\begin{align*}
\dot{u}_{F} & =\Sigma F_{F x} / m_{F}-q_{F} \dot{w}_{F} \\
\dot{w}_{F} & =\Sigma F_{F z} / m_{F}+q_{F} u_{F} \tag{3.41}\\
\dot{q}_{F} & =\Sigma M_{F y} / I_{Y y} \\
\theta & =q_{F}
\end{align*}
$$

and :

$$
\begin{aligned}
& {\left[F_{F_{X}}=-A_{F}-m_{F} g \sin \theta-T \cos \gamma\right.} \\
& \Sigma F_{F_{Z}}=-N_{F}+m_{F} g \cos \theta-T \sin \gamma \\
& E M_{F y}=M_{d a m p F}-N_{F} \Delta x-\bar{x} T \sin \gamma+M
\end{aligned}
$$

$$
\begin{aligned}
& x, y, z \text { - axes } \\
& p, q, r \text { - angular velocities around } x, y, z \\
& \text { u,v,w - velocities along } x, y, z \\
& \theta, \psi, \varphi \text { - pitch, yaw and roll angles } \\
& \sum F_{F_{X}}, \sum F_{F_{y}}, \Gamma F_{F z} \text { - forces in } x, y, z \\
& m_{F} \text { - mass of forebody } \\
& I_{x x}, I_{y y^{\prime}} I_{z z} \text { - moment of inertia in } x, y, z \\
& \Sigma M_{F_{x}}, \Sigma M_{F y}, \Sigma M_{F z} \text { - moment about } x, y, z \\
& \alpha_{F} \text { - angle of attack } \\
& \gamma \text { - angle of attack (at tail of forebody) } \\
& \text { T - tension (exerted by parachute) }
\end{aligned}
$$

Where:

$$
\begin{aligned}
A_{F}, N_{F}- & \text { Aerodynamic force on the store in } x \text { and } z \\
& \text { directions } \\
\Delta x \text { - } & \text { Distance from store centre of gravity to centre } \\
& \text { of pressure }
\end{aligned}
$$

M - Aerodynamic moment
$M_{d a m p F}$ - Aerodynamic damping moment (if required)

From figure 3.4 the aerodynamic forces on the store can be calculated as follows.

$$
\begin{align*}
& A_{F}=D_{F} \cos \alpha_{F}-L \sin \alpha_{F} \tag{3.43}\\
& N_{F}=D_{F} \sin \alpha_{F}+L \cos \alpha_{F}
\end{align*}
$$

Figure 3.4 Aerodynamic Forces on the Store

Expressing equation 3.41 in coefficient form:

$$
\begin{align*}
& A_{F}=\left(C_{D} \cos \alpha_{F}-C_{L} \sin \alpha_{F}\right) \bar{q}_{F} S_{b} \tag{3.44}\\
& N_{F}=\left(C_{D} \sin \alpha_{F}+C_{L} \cos \alpha_{F}\right) \bar{q}_{F} S_{b}
\end{align*}
$$

and

$$
\begin{equation*}
M=C_{M} \bar{q}_{F} S_{b} d_{b} \tag{3.44}
\end{equation*}
$$

Where:
D_{F} - Drag force on store
L - Lift force on store
C_{0} - Store drag coefficient
C_{L} - Store lift coefficient
$\overline{\mathrm{q}}_{\mathrm{f}}$ - Store dynamic pressure
S_{b} - Store base area
C_{M} - Store moment coefficient
d_{b} - Store base diameter

The displacement of the forebody in fixed (earth-based) axes can be calculated from:

```
dx = (u cos}0+w\operatorname{sin}0)d
dz = (w cos0 - u sin}0)d
```

re-arranging:

$$
\begin{align*}
& \dot{x}=u \cos \theta+w \sin \theta \tag{3.46}\\
& \dot{z}=w \cos \theta-u \sin \theta
\end{align*}
$$

Where:

$$
\begin{aligned}
& x, z-\operatorname{displacement} \text { in } x \text { (horizontal) and } z \text { (vertical) } \\
& \text { directions. }
\end{aligned}
$$

The parachute exerts a tension T on the system (figure 3.3). The tension exerted by the drogue canopy is calculated from equation 3.47, the drogue being assumed to be instantaneously deployed to its flying diameter using a spring or similar mechanism.

$$
\begin{equation*}
T=C_{D D} 1 / 2 \varrho v_{T}^{2} S_{D} \tag{3.47}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& C_{00} \text { - drogue drag coefficient } \\
& V_{T} \text { - total velocity } \\
& S_{D} \text { - drogue canopy area }
\end{aligned}
$$

After a certain time delay the main canopy is deployed. The tension this parachute exerts on the system is calculated using the method of Lingard ${ }^{20}$. τ_{0}, dimensionless time of the peak of the lines-taut snatch force, is calculated from equation 3.48, based on empirical results.

$$
\begin{equation*}
\tau_{0}=f\left(V_{T}\right) \tag{3.48}
\end{equation*}
$$

The inflation time

$$
\begin{equation*}
t_{i n f}=-\tau_{0} D_{0} / V_{T} \tag{3.49}
\end{equation*}
$$

and

$$
\begin{equation*}
t / t_{i n f}=\tau / \tau_{0} \tag{3.50}
\end{equation*}
$$

so at any time $t, \tau / \tau_{0}$ can be calculated and the tension exerted by the parachute obtained from a $\tau / \tau_{0}-C_{f}$ curve of the type of canopy in question.

Equations 3.41 and 3.46 are solved using a Runge-Kutta technique.

3.8.5 Cluster Opening Forces

Parachutes in clusters always open independently of each other and are therefore subject to high loads for a short time. The cluster opening forces are calculated using a method given in the Recovery Systems Design Guide. This method is based on the mass ratio opening load calculation method, section 3.8.2.1. Mass ratio, R_{M}, and opening load factor, C_{x}, are calculated as described in this section. If
all the parachutes in the cluster were to open together (synchronous opening) the opening force could be calculated from equation 3.51.

$$
\begin{equation*}
F_{s c}=\left(C_{0} S_{0}\right) 1 / 2 e v_{0}^{2} C_{x} / \eta_{c} \tag{3.51}
\end{equation*}
$$

Here $\left(C_{0} S_{0}\right)$ is the total nominal drag area of the cluster. For the more realistic non-synchronous opening case (the parachutes open independently of each other) $R_{M L}$ is defined:

$$
\begin{equation*}
R_{M L}=R_{M} / \eta_{C} \tag{3.52}
\end{equation*}
$$

$C_{X L}$ is calculated from figure 6.25 of reference 9 using $R_{M L}$ (curve fit equations (707-707c)). Then:

$$
\begin{equation*}
C_{Y}=c_{X L} / C_{X} \tag{3.53}
\end{equation*}
$$

And the non-synchronous opening load:

$$
\begin{equation*}
F=F_{S C} C_{Y} \tag{3.54}
\end{equation*}
$$

3.9 Reefing

Parachute reefing is a process in which the canopy opens in a number of separate controlled stages. It is similar to staging in as much as it serves to reduce the deployment loads on the canopy. The amount of reefing can be controlled to realise a maximum deployment load. This facility is especially useful for aircraft landing deceleration parachutes. The parachute is disreefed at touchdown to provide a high braking load.

There are two types of reefing: vent reefing and skirt reefing (see figures 3.5 and 3.6). In vent reefing a line attached to the centre of the vent is pulled down to reef the parachute.

Side View
Cross-Section

Fiqure 3.5 Vent Reefing

Fiqure 3.6 Skirt Reefing

The most common method of reefing, and the method assumed by the parachute design program, is skirt reefing. A reefing line which restricts the opening of the canopy is attached to the skirt. Mechanical reefing line cutters are used to cut
this line at a specified time, the canopy then fully inflates.

The method from reference 9 that is used to calculate drogue size (section 3.7) is also used to calculate the required reefed canopy area. This method involves equating the equilibrium (reefed or drogue deployed) dynamic pressure to a constant multiplied by the maximum dynamic pressure experienced by the system. The calculations used in this routine are listed in figure 3.7. $q_{d r}$, the maximum dynamic pressure which is assumed to occur at disreef, i.e. when the reefing line is cut, is estimated to be 1.1 times the steady state reefed dynamic pressure:

$$
\begin{equation*}
q_{d r}=1.1 W_{s} /\left(C_{0} S\right)_{r} \tag{3.55}
\end{equation*}
$$

(C_{0} S) ${ }_{r}$, the reefed drag area can be calculated from this equation.

The maximum dynamic pressure (at disreef) $q_{d r}$ is obtained from equation 3.56:

$$
\begin{equation*}
q_{d r}=F_{d r} /\left(C_{0} \quad S_{0} \quad C_{X d r}\right) \tag{3.56}
\end{equation*}
$$

$F_{d r}$ is the allowable maximum force at disreef, it is estimated to be equal to the weight of the store multiplied by the maximum allowable load factor:

$$
\begin{equation*}
F_{d r}=W_{S}\left(G_{A}-\sin \theta_{T}\right) \tag{3.57}
\end{equation*}
$$

G_{A} is the maximum load factor calculated from the allowable maximum load, E_{A}, which is assumed to be supplied.

$$
\begin{equation*}
G_{A}=F_{A} / W_{S} \tag{3.58}
\end{equation*}
$$

θ_{T} is the trajectory angle, if it is unknown vertical (downwards) deployment is assumed, i.e.

Figure 3.7 Reding Flowchart

$$
\begin{equation*}
\theta_{T}=-\pi / 2 \tag{3.59}
\end{equation*}
$$

$C_{x d r}$ is the opening load factor at disreef, it is taken from a curve of $C_{x d r}$ versus $R_{M d r}$, figure 6.25 of reference 9 (this curve is fitted to equation (808) in the parachute design program). $R_{M d r}$ is the mass ratio on disreef,

$$
\begin{equation*}
R_{M d r}=\left(\left(C_{D} S_{0}\right)^{3 / 2} \varrho\right) /\left(W_{S} / g\right) \tag{3.60}
\end{equation*}
$$

The reefing ratio 3 is defined as the ratio of the reefed to unreefed drag area.

$$
\begin{equation*}
\zeta=\left(C_{D} S\right)_{r} /\left(C_{D} S_{D}\right) \tag{3.61}
\end{equation*}
$$

The reefing line ratio, τ_{r}, is defined as the ratio of the reefed to the nominal canopy diameter.

$$
\begin{equation*}
\tau_{r}=D_{r} / D \tag{3.62}
\end{equation*}
$$

τ_{r} is obtained from a curve of ζ versus τ_{r}, figure 6.64 of reference 9 (the curves in this figure have been defined by equations (812-816) in the parachute design program). Data in this figure are available for a limited number of parachutes (see figure 3.7). Hence reefed diameter, D_{r} (817), the canopy reefed area, $S_{r}(818)$ and the reefed drag coefficient, $C_{0 r}$.

The length of the reefing line, l_{r}, is taken from equation 3.63.

$$
\begin{equation*}
I_{r}=\pi D_{r} \tag{3.63}
\end{equation*}
$$

The force encountered by the canopy opening to its reefed area is calculated using the mass ratio method, section 3.8.2.1. $R_{M r}$ is the reefed mass ratio.

$$
\begin{equation*}
R_{M r}=\left(\left(C_{D} S\right)_{r}^{3 / 2} \varrho\right) W_{S} / g \tag{3.64}
\end{equation*}
$$

Hence $C_{x r}$ from figure 6.25 of reference 9 (fitted to
equations (707-707c) in the parachute design program). And the reefed opening force:

$$
\begin{equation*}
F_{r}=\left(C_{x r}\right)\left(1 / 2 e v^{2}\right)\left(C_{D} S\right)_{r} \tag{3.65}
\end{equation*}
$$

If F_{r} is greater than the allowable maximum force, F_{A}, a second stage of reefing is required. In the parachute design program only a single stage of reefing is assumed as the reefing routine is seldom used. If more stages of reefing become increasingly required a modification will have to be made to the program to accommodate a multi-stage reefing facility.

The parachute design program enters this reefing routine if the calculated opening load is greater than the maximum load specified by the user.

3. 10 Structural Analysis

The stressing of parachute canopies is made difficult by the same complications as those encountered in the calculation of opening loads, i.e. the canopy shape is constantly changing during inflation. So the parachute designer can only guess at the shape of the canopy at the time of maximum load. In addition the canopy load distribution is determined by the canopy shape and the shape itself depends on the canopy load distribution. A possible solution to this problem is to use an iterative technique. Such a method, for slotted canopies, is described in section 3.10.4.

3.10.1 Design Factor

The design load, F_{D}, is obtained by multiplying the maximum opening force obtained, F, by a design factor, D_{F}.

$$
\begin{equation*}
F_{D}=F \cdot D_{F} \tag{3.66}
\end{equation*}
$$

The design factor includes an ultimate factor and a safety factor:

$$
\begin{equation*}
D_{F}=U_{F} \cdot S_{F} \tag{3.67}
\end{equation*}
$$

values of these factors are given in table 8.6 of reference 9.

The size of the design factor depends on whether the parachute is manned or not. Taking the maximum design factors from table 8.6 of reference 9 .
$D_{F}=3.1$ man carrying parachute
$D_{F}=2.3$ unmanned application
These factors can be changed by the designer if he so wishes. Design factors are often as low as 1.33 to 1.5, for military applications, but a factor of at least 2.0 is recommended, bearing in mind the accuracy of the opening load calculation.

3.10.2 Solid Cloth Circular Parachutes

Johns ${ }^{1}$ calculated the maximum tension in the canopy, T_{r} as:

$$
\begin{equation*}
T_{r}=1.5 \pi C_{D} e d V_{x}^{2} /(8 C) \tag{3.68}
\end{equation*}
$$

and the line load, F_{1} as:

$$
\begin{equation*}
F_{1}=\left(3 D_{m a x}\right) /(2 \mathrm{n} \cos \alpha) \tag{3.69}
\end{equation*}
$$

Where:

$$
\begin{aligned}
d & \text { - canopy diameter } \\
v_{x} & \text { - speed } \\
\text { Dmax } & \text { - maximum drag } \\
n & \text { - number of lines } \\
\alpha & \text { - angle the lines make with the vertical } \\
& \text { - a constant which depends on the type and } \\
& \text { construction of the parachute }
\end{aligned}
$$

Brown ${ }^{2}$ gives the following empirical formulae:

> Fabric Strength $S_{f}=(3 / 8)\left(D_{c m} / K_{S}\right)\left(V_{m} / 100\right)^{2}$
> Line Strength $S_{1}=21\left(D_{c m}^{2} / n\right)\left(V_{m} / 100\right)^{2}$

Where:
$\mathrm{D}_{\mathrm{c} m}$ - canopy maximum diameter
V_{m} - velocity at inflation to maximum diameter
K_{s} - constant, dependent on the type of parachute

Both these methods are from the 1940 's and values of the constants C and K_{s} are only supplied for the small number of parachutes in use at that time. Parachutes have altered substantially in the last 40 years. Different materials, construction techniques and types are commonplace. Therefore the validity of Johns theoretical and Brown's empirical formulae, in the present day, is doubtful.

A more recent and advanced stressing method is the 'Inflation Energy Transfer Method'. This was used by Houmard ${ }^{25}$ for the analysis of the Viking, Mars soft landing, parachute. This method calculates the work applied by the inflation gas (Mars atmosphere) during opening. This work is equated to the strain energy absorbing capacity of the primary structural components. Knowing this and the inflation time the cloth stress can be determined. To correctly formulate this method the canopy shape during inflation is required. Houmard obtained this from film of trials, but for general design use this information is unavailable. This method is therefore too complicated for inclusion in the parachute design program.

The stressing method generally used for solid cloth circular parachutes is similar to Johns ${ }^{1}$ method and given in the Recovery Systems Design Guide ${ }^{9}$. Using a membrane analysis technique, for a canopy of general curvature the critical fabric load T_{F} is taken from equation 3.72.

$$
\begin{equation*}
T_{F}=C_{S}(p r)_{\text {max }} \tag{3.72}
\end{equation*}
$$

Where:
r - radius of curvature
$r_{\text {max }}=D_{p} / 2$
D_{p} - projected canopy diameter (in flight)
C_{s} - constant
p - differential pressure

The canopy is assumed to be hemispherical and therefore $\mathrm{C}_{\mathrm{s}}=$ 0.5 . If S_{p} is the projected canopy area then:

$$
\begin{equation*}
p_{\max }=F_{D} / S_{p} \tag{3.74}
\end{equation*}
$$

Substituting for $r_{m a x}, p_{m a x}$ and $S_{p} \cdot$ in 3.72:

$$
\begin{equation*}
T_{F}=F_{D} /\left(D_{p} \pi\right) \tag{3.75}
\end{equation*}
$$

Fabric tensile strengths are usually quoted in (N / mm) *50 so the value of T_{F}, obtained from equation 3.75, must be multiplied by 50 and divided by 1000. Values of projected (inflated) diameter are given in table 3.11, they have been taken from tables 2.1-2.5 of reference 9.

The line strength, T_{L}, is calculated using a similar method to that of Johns.

$$
\begin{equation*}
T_{L}=F_{0} /(z \cos \alpha) \tag{3.76}
\end{equation*}
$$

Where α is the inclination of the rigging lines to the vertical. It is unknown at the time of maximum load so the worst case is assumed - full inflation.

$$
\begin{equation*}
\alpha=\sin ^{-1}\left(D_{p} /\left(2 l_{e}\right)\right) \tag{3.77}
\end{equation*}
$$

Type	D_{p} / D_{0}
1.Flat Circular	0.66
2.Conical	0.70
3.Bi-conical	0.70
4.Tri-conical	0.70
5.Extended skirt 10\% flat	0.68
6.Extended skirt 14.3\% full.	0.68
7. Hemispherical	0.66
18.Disk-gap-band	0.65
19.Rotafoil	0.90
21.Aeroconical	0.66
22. Le moigne	0.66

Table 3.11 (10901) Values of the Ratio of Projected to

 Nominal Diameterare factored from the line strength:
Radial tape strength, T_{T}. A factor of 0.9 is used, as in the Recovery System Design Guide ${ }^{9}$.

$$
\begin{equation*}
T_{T}=0.9 T_{L} \tag{3.78}
\end{equation*}
$$

The radial tapes are very important for the rotafoil and disk-gap-band parachutes so for these two types:

$$
\begin{equation*}
T_{T}=T_{L} \tag{3.79}
\end{equation*}
$$

Factors for the skirt band, vent band and vent line strengths are taken from the Kevlar Design Manual ${ }^{10}$.

$$
\begin{align*}
& \text { Vent Band VBS }=2.27 \mathrm{~T}_{\mathrm{L}} \\
& \text { Vent Line VLS }=1.00 \mathrm{~T}_{\mathrm{L}} \tag{3.81}
\end{align*}
$$

$$
(3.80)(906)
$$

Equation 3.81 assumes that the line strength is less than 6000 N which is true for the majority of cases.

```
Skirt Band SBS = 1.25 TL
```

The above factors are designed for ribbon parachutes and may be high for solid cloth circular canopies. The user of the parachute design program is able to change these stressing factors if he so wishes. However, the skirt and vent bands are very important, if either of them fails extensive canopy damage usually follows. Therefore an the use of an overstrength skirt and/or vent band is common practice.

A horizontal reinforcing band can be included if required. Since the main load path is from the canopy fabric to the radial tapes the strength of these bands does not need to be very high. The factor chosen for this component is the one that is used for horizontal ribbons in ribbon parachute design, so from reference ${ }^{10}$, strengthening band strength:

> one use of parachute $S B=0.55 \mathrm{~T}_{\mathrm{L}}$
> many uses of parachute $S B=0.46 \mathrm{~T}_{\mathrm{L}}$
(3.84)(910)

3.10.3 Cruciform Parachute

The stressing of this canopy uses similar techniques to those used for solid cloth circular parachutes (section 3.10.2). The geometry of the cruciform canopy must be determined, AR is the arm ratio:

$$
\begin{equation*}
A R=D_{c r u} / t_{c r u} \tag{3.85}
\end{equation*}
$$

Knowing the arm ratio the arm width can be calculated as follows:

$$
\begin{equation*}
t_{c r u}=\left(S_{0} /(2 A R-1)\right)^{1 / 2} \tag{3.86}
\end{equation*}
$$

Figure 3.8 Cruciform Parachute Dimensions
and hence the arm span, $D_{c r u}$, from equation 3.85 .
The fabric strength (N / mm) is obtained from equation 3.87, based on Johns ${ }^{1}$.

$$
\begin{equation*}
T_{F}=1.7 F_{D} /\left(D_{c r u} 1000\right) \tag{3.87}
\end{equation*}
$$

Line and tape strengths as for solid cloth circular parachutes:

$$
\begin{equation*}
T_{L}=F_{D} /(Z \cos \alpha) \tag{3.88}
\end{equation*}
$$

where $\alpha=\sin ^{-1}(0.69 \mathrm{D} /(2 \mathrm{le}))$

$$
\begin{equation*}
T_{T}=0.9 T_{L} \tag{3.90}
\end{equation*}
$$

A vent is unnecessary on the cruciform parachute, and the tape acts as skirt band and strengthening band, so the stressing of this type of canopy is very straightforward.
3.10.4 Slotted Canopies

One method that can be used to determine the stresses in ribbon parachutes is CANO. This is a Fortran code which uses a combination of finite element and iterative techniques to stress ribbon parachutes. It is based on the pressure strain Equilibrium Stressing method, and was devised by Mullins and Reynolds ${ }^{26}$ for the structural analysis of the Apollo earth landing system.

In this method the canopy is split into separate members (radial, vertical and horizontal) and the canopy pressure distribution is estimated. A trial pressure and skirt diameter are assumed.

Equilibrium of the canopy is established, first at the skirt then working vertically through the members to the vent. This solution is then compared with boundary conditions at the vent. This process is repeated, choosing a new diameter and pressure, until the boundary conditions are satisfied.

The results of tests on the Apollo landing parachute were inconclusive, in many cases CANO did not converge to give an answer. Garrard and Muramoto ${ }^{27}$ devised an improved version of CANO, CANO 2 , which included a Newton-Raphson procedure to speed up the iteration process. Results from this program were compared with those obtained from experiments by Konicke and Garrard ${ }^{28}$. The comparison between experimental and calculated stresses was poor.

A listing of a further improved version of CANO, CANOWG ${ }^{29}$, has been obtained. This version appears to produce results that agree well with experiment. However this program is not working on the sirius computer at the time of writing and therefore cannot be used in the parachute design program. Also the input required for cano includes the pressure distribution curve for the canopy which may prove difficult to obtain.

The methods used in the parachute design program for the stressing of slotted canopies are taken from the Kevlar Design Guide ${ }^{10}$. Flying diameter, D_{p}, is taken from table 3.12, and the rigging line angle, α, and hence the required rigging line strength, T_{L}, is calculated as for solid cloth circular parachutes, equations 3.76 and 3.77 (919-921). Horizontal ribbon strength, HRS, is factored from the line strength using equations 3.91 and 3.92.

$$
\begin{equation*}
\text { repeated use HRS }=0.55 \mathrm{~T}_{\mathrm{L}} \tag{3.91}
\end{equation*}
$$

one use HRS $=0.46 \mathrm{~T}$
This horizontal ribbon strength must be converted to a required fabric strength for the ringslot and ringsail canopies, as fabric is used for the rings as opposed to tape. To calculate this strength the parachute gore construction details are required. These and the required fabric strength are calculated in appendix A and the materials section (3.11).

The radial tape strength, assuming a double thickness of tape is used, for all parachutes except the ringsail (which has no radial tapes), T_{T} :

$$
\begin{equation*}
T_{T}=0.506 T_{L} \tag{3.93}
\end{equation*}
$$

The skirt band, vent band and vent line strengths are calculated using equations 3.80 to 3.82 (906,908,927).

The vertical tapes incorporated in ribbon parachutes, except the ringsail, carry little load. Their main contribution is to the geometric porosity of the canopy. Their numbers and the number of horizontal ribbons can be altered to realise a required geometric porosity (see section 3.13.4). So for all parachutes except ringsail, vertical tape strength, VTS:

$$
\mathrm{VTS}=0.25 \mathrm{~T}_{\mathrm{L}}
$$

Type	D_{p} / D_{0}
12. Flat ribbon	0.67
13. Conical ribbon	0.70
14. Conical ribbon (varied	0.70
15. Hemisflo	
16. Ringslotosity)	
17. Ringsail	0.62

Table 3.12 (10902) Values of the Ratio of Flying Diameter to Nominal Diameter

The vertical tapes are important for ringsail parachutes because there are no radial tapes so:

$$
\begin{equation*}
V T S=0.506 T_{L} \tag{3.95}
\end{equation*}
$$

3.10.5 Parawing Parachute

Due to its construction (figure A.19) the parawing requires a unique stressing method. It is assumed that flying diameter D_{p} is equal to $0.66 D_{c}$, as for most parachutes, tables 3.11 and 3.12. The constructed diameter, D_{c}, has been calculated in equation 3.18 (930). Fabric strength T_{F} in (N / mm):

$$
\begin{equation*}
T_{F}=F_{D} /\left(0.66 \pi D_{c} 1000\right) \tag{3.96}
\end{equation*}
$$

and line strength:

$$
\begin{equation*}
T_{L}=F_{0} /(z \cos \alpha) \tag{3.97}
\end{equation*}
$$

where $\alpha=\sin ^{-1}\left(0.66 D_{c} /(2\right.$ le $\left.)\right)$
Radial tape strength, T_{T}, is calculated as for the other types of parachute:

$$
\begin{equation*}
T_{T}=0.9 T_{L} \tag{3.99}
\end{equation*}
$$

and skirt band strength:

$$
\begin{equation*}
S B S=1.25 \mathrm{~T}_{\mathrm{L}} \tag{3.100}
\end{equation*}
$$

There is no vent on this parachute.

3.10.6 Reefing Line Stressing

Using a method taken from the Recovery Systems Design Guide ${ }^{9}$, the ratio of the load in the reefing line, f^{\prime}, to the maximum opening load, F, is:

$$
\begin{equation*}
f^{\prime} / F=\left(\left(\tan \psi_{r}-\tan \varphi_{r}\right) /(2 \pi)\right) \tag{3.101}
\end{equation*}
$$

ψ_{r} is the angle of conversion of the canopy radial members, and φ_{r} is the convergence angle of the canopy lines (figure 3.9).

$$
\begin{align*}
& \Psi_{r}=\sin ^{-1}\left(\left(D_{p r}-D_{r}\right) /\left(2 h_{x}\right)\right) \tag{3.102}\\
& \varphi_{r}=\sin ^{-1}\left(D_{r} /\left(2 l_{e}\right)\right) \tag{3.103}
\end{align*}
$$

h_{x} is the non-inflated part of the canopy (see figure 3.9).

$$
\begin{equation*}
h_{x}=D / 2-h_{c} \tag{3.104}
\end{equation*}
$$

Where the inflated part of the canopy:

$$
\begin{equation*}
h_{c}=\pi D_{p r} / 4 \tag{3.105}
\end{equation*}
$$

$D_{p r}$ is an estimation of the inflated diameter of the reefed canopy. This is calculated from the inflated reefed area, $S_{p r}$, which is estimated to be the ratio of the reefed drag

Fiqure 3.9 Reefed Canopy Configuration
area to the drag coefficient based on the projected canopy area:

$$
\begin{equation*}
S_{p r}=\left(C_{D} S\right)_{r} / C_{D P} \tag{3.106}
\end{equation*}
$$

$\left(C_{D} S\right)_{r}$ is known from equation 3.55. $C_{D P}$ is calculated using the drag coefficient ratio, $C_{D P} / C_{D P D}$. This is determined from figure 6.65 of reference 9 (this figure is defined by equations (936-940) in the parachute design program).

$$
\begin{equation*}
C_{D P 0}=C_{D} /\left(D_{p} / D_{0}\right)^{2} \tag{3.107}
\end{equation*}
$$

D_{p} is known from tables 3.11 and $3.12 C_{0 p}$ is calculated using equation 3.107 and the drag coefficient ratio.

The required reefing line strength, $T_{A L}$, is calculated by multiplying f^{\prime} by the design factor previously selected.

$$
\begin{equation*}
T_{R L}=f^{\prime} D_{F} \tag{3.108}
\end{equation*}
$$

3.11 Parachute Materials

Nylon and polyester are ideal materials for parachute applications because they have high strength to weight ratios. Problems with nylon can occur at the high temperatures caused by very high velocity applications, its strength is reduced at temperatures of over $250^{\circ} \mathrm{F}$ and it melts at $415^{\circ} \mathrm{F}$. In such cases kevlar can be used. This material is more expensive than nylon but it is stronger and operates well in temperatures in excess of $500^{\circ} \mathrm{F}$. Ribbon parachutes are generally used for high velocity, high temperature applications (e.g. aircraft deceleration), so kevlar is often used in their construction. The Kevlar Design Guide ${ }^{10}$ is intended for ribbon parachute design.

3.11.1 Fabric

The choice of canopy fabric depends on a number of criteria: strength, weight, width, cost, porosity, colour and availability. Most fabrics are supplied in a variety of colours so this criteria is not very important. The cost of a particular material changes every few months or so, keeping a list of costs up to date would prove difficult. Therefore, although it is important to the designer, material cost has not been included in the design program at this, choice of materials, stage. The availability of a particular material changes from day to day, so in order to use the materials most likely to be available at the co-operating body the materials chosen for the program have been taken from a list of $G Q$ Defence Equipment preferred materials.

The two most important criteria in the choice of a parachute fabric are width and strength. Fabrics are supplied to a minimum width. The maximum panel width of the canopy must be calculated from the ratio of the gore height to the number of fabric panels used (Appendix A), only fabrics of a greater minimum width can be used. The fabric ultimate tensile
strength must be greater than the calculated required fabric strength (section 3.11.1.1).

The user of the parachute design program has the choice of either selecting a fabric from those available to the program or inputting a fabric specification. The parachute design program accesses a table of fabrics (table D. 1 (11001)). from this table all the understrength and too narrow materials are removed. The remaining materials are displayed for the user to select one for use. He may require a low weight or highly porous (improved stability) material.

3.11.1.1 Fabric Strength

The required canopy fabric strength, T_{F}, has been calculated for all the types of parachute except the ringslot and ringsail canopies. A horizontal ribbon strength has been given for these parachutes. Now that their gore construction details are known from appendix A, the equivalent required fabric strength can be calculated.

The canopy ring width, $R W$, is calculated in section A.12.1 for the flat and conical ringslot parachutes and in section A. 14.1 for the ringsail parachute.
fabric strength (N / mm) $\mathrm{T}_{\mathrm{F}}=$ HRS/(RW 1000) (3.109)(1044, 1048, 1053)
T_{F} can be compared with fabric ultimate tensile strengths, and hence a suitable canopy fabric chosen.

For the ringslot and ringsail parachutes the minimum required canopy fabric width, including a sewing allowance of 50 mm , is equal to $R W+0.05$ meters (1054a).

3.11.2 Tapes and Webs

Nylon tapes and webs are used for the following parachute components: radial tape, skirt band, vent band, horizontal ribbon, vertical ribbon and reinforcing band. The criteria for choosing the tapes are, in order of importance: strength, weight, width, availability and colour. The tapes and webs available to the computer program are taken from a list of $G Q$ Defence Equipment preferred materials in order to satisfy the availability requirements - although the availability of a particular material at a particular time cannot be guaranteed.

The user of the program can either choose a material from those stored on disk or input a known material specification. The program compares the required strength of a component with a list of materials (table D. 2 (11002)) and neglects all the understrength tapes and webs, although a slightly understrength material is sometimes allowed if the safety factor used is high (2-3). The user is then able to choose from the remainder of the materials. A wide tape (2 inches or more) may be required for the skirt band, vent band, or horizontal ribbon, or low weight materials may be the important criteria.

3.11.3 Cord

Nylon cord is used. for parachute rigging and vent lines. Criteria for choosing the cord for a particular application, in order of importance, are: strength, weight, availability and colour. The colour of the cord is relatively unimportant as most cords are white. The availability requirement is satisfied by taking cords from the $G Q$ preferred materials list. The user has the choice of obtaining a material from those available to the program (table D.3 (11003)) or inputting an alternative specification. The program takes the required rigging line or vent line strength and removes all
the understrength cords in its table. The remainder are displayed to the user who generally chooses the lightest cord possible.

3.11.4 Reserve Factors

A reserve factor is calculated for each component by dividing the strength of the material used by the calculated required strength (1056-1065). Reserve factors of 1.0 represent the best possible use of materials. If a component has a reserve factor of less than 1.0 it is understrength, a factor of much greater than 1.0 indicates redundancy.

3.12 Landing Control

If the store is fragile its impact with the ground can be softened using a variety of methods: crushable materials, airbags or retro-rockets. The use of any of these accessories will add weight to the parachute system. A calculation of the effects of including landing control could be added to the parachute design program if required. At present no such calculation is included.
3.13 Weight and Volume

A parachute's weight can be estimated from its nominal diameter. This procedure is shown to be inaccurate in section 3.13.3. The weight calculation method employed in the program uses the gore dimensions and rigging line length, together with the canopy material properties, to calculate the weight of each component of the parachute system (fabric, tape, lines, etc.). The parachute volume is then determined from the total weight and the parachute packing density.

3.13.1 Parachute Weight

The calculation of total canopy weight, WTOT, for each type of parachute used in the parachute design program (table 3.1) is included in appendix A.

The canopy weight is dependent on the construction methods used. The canopy can be of either "block" or "bias" construction, see figure 3.10. In bias construction the gore

Bias

Block

Figure 3.10 Bias and Block Construction Methods
is divided into panels which are cut on the bias, i.e. the fabric threads are at 45 degrees to the meridian of the gore. In block construction the fabric threads are parallel to, and at right angles to, the meridian of the gore. The computer program assumes the canopy is block constructed as shown in figures A.1, A.2, etc.

The number of gores, N, is also required for the canopy weight calculation. This has already been calculated for the parawing (single keel) parachute (equation 3.20). For the
cruciform parachute (see figure 3.8) the number of gores per arm is usually:

$$
\begin{equation*}
N=Z / 4-1 \tag{3.110}
\end{equation*}
$$

more gores can be added to cruciform parachutes if required. For all the other types of parachute listed in table 3.1:

$$
N=Z(3.111)(1001,1004,1008,1014,1022,1025,1027,1032,
$$

If the parachute is reefed, reefing line weight (kg):

$$
\begin{equation*}
W R L=I_{x} / W T R L \tag{3.112}
\end{equation*}
$$

where $W T R$ is the reefing line material weight (m / kg). WRL is added to the total weight, WTOT (1846).

The weight of a cluster of η_{c} parachutes:

$$
\begin{equation*}
\text { WTOT }_{C}=\eta_{C} \text { WTOT } \tag{3.113}
\end{equation*}
$$

3.13.2 Parachute Packing Density and Parachute Volume

Parachutes are either hand packed or pressure packed. A typical hand packing density is $320 \mathrm{~kg} / \mathrm{m}^{3}$, this is the value normally used in parachute volume calculations by the co-operating body. Using a hydraulic press driven by a fluid pump a packing density of $720 \mathrm{~kg} / \mathrm{m}^{3}$ can be attained ${ }^{9}$. Care must be taken not to damage the canopy during pressure packing.

If dpack is the parachute packing density, the parachute volume:

```
VOL = WTOT/dpack
```


3.13.3 Comparison With Approximate Methods

The weight of a parachute can be estimated from its nominal diameter using figures 8.13 and 8.14 of reference 9. Data are available for flat circular, extended skirt, ringsail, ribbon and ringslot canopies. Two examples of flat circular parachutes have been taken from the results presented in this thesis (chapter 5).

The flat circular parachute designed for the X-RAE 2 remotely piloted vehicle is of 5.7 m nominal diameter and the parachute design program gives a weight of 1.4 kg . The weight given by figure 8.13 of reference 9 is $1.9 \mathrm{~kg}, 36 \%$ higher. The flat circular canopy designed for the Sparrowhawk and Snipe remotely piloted vehicles by the parachute design program has a nominal diameter of 9.2 m and a weight of 4.3 kg . Figure 8.13 of reference 9 gives a weight of $5.9 \mathrm{~kg}, 37 \%$ higher. So this approximate method gives a parachute weight of a third greater than expected and should be used with caution.

3.13.4 Geometric Porosity

Geometric porosity is defined as the ratio of the open canopy area to the total canopy area. This property is important for ribbon canopies because altering the geometric porosity will affect parachute weight and performance. Increasing the geometric porosity increases the canopy stability. The geometric porosity can be changed by altering the number of horizontal ribbons and vertical tapes used in the canopy's construction. This facility is available in the parachute design program. The geometric porosity is calculated for one gore of the canopy by determining the total exposed material area. This is subtracted from the gore area, hence the open area which is expressed as a percentage of the gore area.

Figure 3.11 Ribbon Parachute Gore Configuration

$$
\begin{equation*}
S G=h_{g}\left(\left(e_{s}+e(N H R-1)\right) / 2\right) \tag{3.115}
\end{equation*}
$$

The total exposed material area:

```
STR = ((THR - 0.2 NHR)/N) HRW + ((TOT -0.2 N)/N) TW
                        + ((TVT - N NVT O.2)/N) VTW - TAPEHR - VTAPEHR
```

where:

```
        TW - radial tape width
        VTW - vertical tape width
        TAPEHR - overlap of radial tape on horizontal ribbon
VTAPEHR - overlap of vertical tape on horizontal ribbon
            and radial tape
        TOT - total radial tape length (appendix A)
        THR - total horizontal ribbon length (appendix A)
        TVT - total vertical tape length (appendix A)
```

 TAPEHR \(=\) HRW.TW.NHR
 if NVT is odd then:

$$
\begin{aligned}
\text { VTAPEHR }= & |((N V T+1) / 2)| \text { NHR.HRW.VTW } \\
& +(\text { NVT }-1)(T W / 2-\text { HRW }) \text { VTW }
\end{aligned}
$$

if NVT is even then:

$$
\begin{aligned}
& \text { (3.119)(1859,1860) }
\end{aligned}
$$

Then geometric porosity (\%):

$$
\lambda_{g}=((S G-S T R) / S G) 100
$$

(3.120)(1862)

The effects of the skirt and vent band have been neglected as they are usually overlapped by horizontal ribbons.
3.14 Cost

For reasons of commercial security a detailed cost analysis is not included in this project. However, determination of the total cost of the materials used in the construction of a particular canopy is a simple calculation. If a large number of canopies are required, this unit cost must be kept as low as possible.

If COF is the fabric cost ($£ / \mathrm{m}^{2}$), then the total cost of the fabric in a canopy is:

$$
\begin{equation*}
\mathrm{CF}=\mathrm{COF} \cdot \mathrm{TOF} \tag{3.121}
\end{equation*}
$$

This calculation is repeated for all components of the system and hence the total unit cost determined (1302-1312):
3.15 Stability

The static stability characteristics in pitch for a descending parachute canopy can be determined from a wind tunnel test in which the component of normal force is measured over a range of angles of attack. The condition for static stability is that at the angle of attack at which the canopy is in equilibrium, i.e. $C_{N}=0$, that $d C / d \alpha$ shall be positive. Any shape of parachute ${ }^{N}$ canopy can^{N} be made to exhibit static stability by a suitable increase of its porosity.

A rule of thumb for static stability is that formulated at the co-operating body by Lingard, who proposes that for stability the canopy effective porosity (ratio of velocity through the fabric to rate of descent) be $>5-6 \%$. This is equivalent to:

$$
\begin{equation*}
\text { VFR/(MA.V) >0. } 1 \tag{3.122}
\end{equation*}
$$

where:
VFR - Volumetric air flow rate through the canopy.
MA - Mouth area.
V - Rate of descent.

The canopy mouth area, MA, can be calculated from the projected, in flight, diameter, D_{p}, which is obtained from tables 3.11 and 3.12 . The volumetric ${ }^{p}$ flow rate:

$$
\begin{equation*}
V F R=\left(S_{0}-A C U\right) U+A C U . V \tag{3.123}
\end{equation*}
$$

where:
ACU - The total cut out area (drive slots and vent)
U - The air velocity through the canopy fabric.

U can be determined using a relationship between the pressure drop across, and the velocity through, the fabric, quoted by Payne ${ }^{30}$:

$$
\begin{equation*}
\Delta \mathrm{P}=\mathrm{K}_{1} \mathrm{U}^{2}+\mathrm{K}_{2} \mathrm{U} \tag{3.124}
\end{equation*}
$$

where:

$$
\begin{aligned}
\Delta \mathrm{P} & \text { - pressure drop across the fabric } \\
\mathrm{U} & \text { - fluid velocity through the fabric } \\
\mathrm{K}_{1}, \mathrm{~K}_{2} & \text { - constants }
\end{aligned}
$$

To determine the constants K_{1} and K_{2} for a particular canopy the porosity of the canopy fabric must be known in both U.S. and U.K. units. In the United States fabric porosity (U in $\mathrm{ft}^{3} /\left(\mathrm{ft}^{2}\right.$ sec)) is measured at a pressure of $1 / 2$ inch water $\left(\Delta \mathrm{P}=2.6012 \mathrm{lb} / \mathrm{ft}^{2}\right)$. In the United Kingdom porosity is measured at 10 inches of water $\left(\Delta P=52.0236 \mathrm{lb} / \mathrm{ft}^{2}\right)$.

In steady state descent Lingard proposes that:

$$
\begin{equation*}
\Delta \mathrm{P}=1 / 2 \mathrm{e}^{2} \tag{3.125}
\end{equation*}
$$

This method can also be used to calculate the stability of ribbon parachutes. U, the velocity through the fabric, is assumed to be zero. The total open area of the ribbon parachute is calculated and VFR obtained from equation 3.123. The stability can then be calculated, as for solid cloth circular parachutes, using equation 3.122.

No stability calculation is available to the program at present for the cruciform and parawing (single keel) parachutes. However cruciform canopies, with appropriate arm ratios, are known from tests to be highly statically stable.

Dynamic stability characteristics in pitch, roll and yaw can be determined by formulating the full equations of motion about these axes. From the solutions to these equations the periods and damping times for these motions are obtained. Various mathematical models exist with which dynamic stability characteristics can be obtained: that developed at Leicester University ${ }^{31.32}$ for example, requires as inputs the full aerodynamic and inertial data for the canopy. Since it
has been written in Fortran it cannot be included for the present in this parachute design program. However provided the necessary inputs are available it has been used by the author as a supplement to this program.

3.16 Parachute Reliability

A reliability analysis can provide a parachute designer with some useful results. Firstly, the overall reliability of the system, together with the confidence in this figure, is calculated. Secondly, using the method proposed for parachutes in this section, the components of the system which possess the poorest reliability are pinpointed. Hence time spent on improving these components will be of benefit to the system reliability as a whole.

3.16.1 General Definitions

Reliability: an inverse measure of the expected failure rate, i.e. the figure obtained by subtracting the expected failure rate from unity.

Success (and failure): defining success (and failure) of a parachute mission is not simple. One possible statement is "the safe delivery of the store". But what is "safe delivery" if the store is a bomb? The best definition of failure is: "the failure of any portion of the parachute construction which will cause an unsuccessful drop, or a use in which the parachute was improperly packed so that the parachute deployed in such a manner as to cause failure of the system" ${ }^{33}$.

Confidence coefficient: represents the fact that not all the manufactured systems are used in the reliability tests. It is good practice to work to 90% confidence, i.e. 90% chance of the true reliability lying between the figure quoted and
unity.

Series Components: failure of these components results in failure of the whole system.

Parallel components: more than one component with the same function is present. The successful operation of one of these components will result in the successful operation of the entire system (provided there are no other failures).

3.16.2 Preliminary Considerations

The first stage in a reliability analysis is to obtain a full definition of the system by considering the following points:
(i)Limits of Applicability (system boundaries). e.g. "from deployment to touchdown", would neglect the separation from an aircraft and any ground disconnect mechanism.
(ii) Conditions of Use. e.g. maximum load, maximum deployment speed, etc.
(iii)Atmospheric Conditions (rain, snow, etc.). These are usually neglected but their effects can be included if enough data are available (very unlikely).
(iv)Success (and failure). To be defined as in section 3.16.1.

3.16.3 The Overall System Reliability Method

In this method a number of systems are tested. The failure rate from these tests, with allowance for confidence, is assumed to be the failure rate of all identical systems. If there are F_{T} failures in N_{T} trials, using F_{T} and the desired confidence coefficient, a value A_{T} is obtained from table I of reference 33. The system reliability, R, is then:

$$
\begin{equation*}
R=1-A_{T} / N_{T} \tag{3.126}
\end{equation*}
$$

at the chosen confidence coefficient.

This method is not suitable for parachute systems because of the large number of tests required.

3.16.4 The Component Reliability Method

This method involves calculating the reliability of each component of the system, and then calculating the system reliability from the reliability of the components and the operational reliability of the combination of components.

$$
\begin{equation*}
R=R_{p r} \quad R_{c 1} R_{c 2} \ldots R_{c N} \tag{3.127}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{R} & \text { - system reliability } \\
R_{c 1} & \cdots R_{p r}
\end{aligned} \text { - operational reliability }
$$

The first step in the analysis is to separate the parachute system into smaller systems (components). A preliminary analysis is performed to determine the components and sub-components most likely to fail. The other components can be neglected. Generally the parachute components most likely to fail are: risers, bridles, suspension lines, reefing line cutters (appendix B of reference 33 contains much reefing line cutter data) and mechanical disconnect systems. Components that can be ignored (unlikely to fail) are: deployment bags, reefing lines, break cords and radial canopy reinforcing.

The operational term is based on the rate of human error in the parachute packing process. It can be calculated using the method described in section 3.16.3. Appendix A of reference 33 contains some parachute packing reliability data, this is used in the parachute design program for the operational term, $R_{p r}$.

The material properties of the components must be known. Taking the suspension (or rigging) lines as an example. The line cord breaking strength is assumed to have a normal distribution. Its standard deviation is then:

$$
\begin{equation*}
\left.S_{x}=\left(\sum_{i=1}^{N_{x}}\left(x_{i}-\bar{x}\right)^{2}\right) /\left(N_{x}-1\right)\right)^{1 / 2} \tag{3.128}
\end{equation*}
$$

where:
x_{i} - breaking strength of the ith test.
N_{x} - number of tests
$\frac{x}{x}$ - mean of the breaking strength
and $f_{x x}\left(=N_{x}-1\right)$ is defined as the number of degrees of freedom of the tests. Appendix B of reference 33 contains much material data.

It is also assumed that the rigging line loads obtained from parachute drop tests have a normal distribution. Therefore:

$$
\begin{aligned}
\bar{y} & - \text { mean of the loads } \\
S_{y} & - \text { standard deviation of the loads } \\
N_{y} & - \text { number of drop tests }
\end{aligned}
$$

The set of data, loading or material, with the smallest standard deviation becomes S_{1}, N_{1} and f_{1}. The other set is S_{2}, N_{2}, f_{2}. Then:

$$
\begin{equation*}
z r=(\bar{x}-\bar{y}) / s \tag{3.129}
\end{equation*}
$$

where $S=\left(S_{x}^{2}+S_{y}^{2}\right)^{1 / 2}$

$$
r r=s_{1}^{2} / s_{2}^{2}
$$

$g r=f_{2} / f_{1}$
$\theta r=N_{2} / N_{1}$

$$
\begin{equation*}
N r=N_{2}(1+r r) /(1+\theta r . r r) \tag{3.134}
\end{equation*}
$$

$$
\begin{align*}
f & =f_{2}(1+r r)^{2} /\left(1+g r \cdot r r^{2}\right) \tag{3.135}\\
X r & =(N r / f)^{1 / 2} z r \tag{3.136}
\end{align*}
$$

Using $X r, \quad K r$ is calculated from graphs of the non-central t distribution ${ }^{33.34}$, at the required confidence coefficient, gr. Then:

$$
\begin{equation*}
\mathrm{U} / \sigma=\operatorname{Kr}((\mathrm{f}+1) / \mathrm{Nr})^{1 / 2} \tag{3.137}
\end{equation*}
$$

The reliability R_{c} is then obtained from tables in reference 33, and the system reliability, R, from equation 3.127. The complex mathematical basis for this method is given in appendix C of reference 33 .

If no detailed line load data are available the calculated required line load can be used (section 3.10). This load is \bar{y}. The standard deviation of the breaking strength of the line material $\left(S_{x}\right)=S$. The number of materials tested $\left(N_{x}\right)=$ $N r$, and $f=N_{x}-1$. The reliability is then calculated using equations $3.129,3.136$ and 3.137 .

Tables of the non-central t-distribution ${ }^{34}$ are only available at confidence coefficients of 90\%, 95\% and 99\%. A linear Xr versus $K r$ curve for each value of f can be constructed at each of these confidence coefficients, as shown in reference 33.

In order to obtain the value of $K r$ at any confidence coefficient two tables (D.5 and D.6) were constructed containing the gradients and constants of these lines. The gradient and constant of the $X r$ versus $K r$ line at any confidence coefficient is then obtained by interpolating between the table values.

The exact calculation of the overall confidence coefficient is complex (details in reference 33), so an assumption that the overall confidence coefficient is the product of the
component confidence coefficients is made. If an overall confidence coefficient of 90% is required for Nr components, the confidence coefficient of each component should be $(0.9)^{1 / N r}$. So for two components, packing and rigging lines, the confidence of each is 0.9487 .

3.16.4.1 Parallel Components and Clusters

A parachute may have two or more reefing line cutters each of reliability $R_{c, g \times r}$ where $g x y$ is the confidence coefficient. The reliability of two such components is ($\left.1-\left(1-R_{c, g \times r}\right)^{2}\right)$ at confidence coefficient gxr. For Nr parallel components the total reliability is:

$$
\begin{equation*}
R_{b}=1-\left(1-R_{b 1, g \times r 1}\right)\left(1-R_{b 2, g \times r 2}\right) \ldots\left(1-R_{b N, g \times r N}\right) \tag{3.138}
\end{equation*}
$$

If a system consisting of a cluster of parachutes can only operate successfully with all the parachutes in the cluster deployed then each canopy is represented by a series term in the model. So in a cluster of η_{c} parachutes, if R is the reliability of a single parachute and $R_{p r}$ is the packing reliability (operational term), the system reliability is:

$$
R_{s y s}=\left(\begin{array}{ll}
R & R_{p r} \tag{3.139}
\end{array}\right)^{n c}
$$

If one or more canopies can fail then the probability of failure of q identical canopies, P_{r}, out of a total of Nr parachutes in the cluster when the probability of failure of a single canopy is pr is:

$$
\begin{equation*}
P_{r}=(N r!/(q!(N r-q)!)) p r^{q}(1-p r)^{(N r-q)} \tag{3.140}
\end{equation*}
$$

If mr is the maximum number of canopies that can fail without causing the mission to fail then the probability of failure of the entire cluster is:

$$
\begin{equation*}
P_{d}=\sum_{r=n r+1}^{N_{r}} P_{r} \tag{3.141}
\end{equation*}
$$

and system reliability:

$$
R_{s y s}=\left(1-\left(1-R R_{p r}\right)^{m r+1}\right)\left(R R_{p r}\right)^{n c-m r-1} \quad(3.142)(1521)
$$

Chapter 4

The Parachute Design Program "paradesign"

Using the flow chart for parachute design, figure 3.1; the design methods outlined in chapter 3 were defined by a set of equations and tables of data. Each equation and table was given a unique number dependent on the calculation it refers to, see figure 3.1 for the numbering convention.

Before writing a program of the size of "paradesign" some forward planning is essential, especially when a highly structured language like Pascal is being used. So a structure diagram was first written as described in section 4.1. Using this diagram and the list of equations and tables of data the Pascal code was constructed, organised and tested, as described in section 4.2. Input to and output from the program are described in section 4.3. Section 4.4 contains details of possible alterations and improvements to the program.

4. 1 Structure Diagram

A structure diagram for the parachute design program was written using the Warnier-Orr method ${ }^{35}$, see appendix B for details of this notation. The problem of parachute design can be represented in Warnier-Orr notation as shown in figure 4.1. It is easily broken down into fifteen smaller problems. In Pascal each of these parts of the parachute design problem are ideal candidates for subroutines. They can be further split up using the Warnier-Orr technique.

This technique also gives the variables required by the program. A listing of the structure diagram is given in appendix C .
parachute design $\left\{\begin{array}{l}\text { select type } \\ \text { calculate area } \\ \text { cluster calculations } \\ \text { calculate line length } \\ \text { calculate number of lines } \\ \text { staging calculations } \\ \text { opening load determination } \\ \text { reefing calculations } \\ \text { stressing calculations } \\ \text { selection of materials } \\ \text { landing control } \\ \text { weight and volume calculations } \\ \text { cost } \\ \text { stability calculation } \\ \text { reliability calculation }\end{array}\right.$

Figure 4.1 Parachute Design Represented in Warnier-orr Notation

4. 2 Writing, Organising and Testing of the Program

4.2.1 Main Memory Management

Because of the length of the program and the large number of variables involved, three techniques have been employed in order to use the Sirius's memory economically and to make writing, editing and testing the program as easy as possible. See reference 12 for full details.
(i) Include files. The Pascal code is written in text files which are then compiled to form code files. The program is executed by reading a code file from disk into the computer's memory and then running it. Portions of Pascal code can be kept in separate text files which are known as include files. When compiling a Pascal program an include directive, ($* \$ I$ filename *), tells the compiler to treat all the program statements in filename
as if they were within the text file that contains the include directive. This procedure splits the code up into smaller files which are easier to edit than large ones.
(ii)Segments. UCSD Pascal programs consist of a number of segments of code. Only one segment needs to be contained in the Sirius's memory at once, the others can reside on disk. A Pascal program is a single code segment unless some of its routines have been declared as separate segments. Suitable candidates to be defined as segments are procedures that are only used once in a run of the program - as are many procedures in "paradesign". Some of the procedures in "paradesign" have been declared as segments and hence reside on disk until they are called.
(iii)Units. Separately compiled UCSD units are described in section 2.3. A Pascal version of the "Lingard" opening load method was written before "paradesign" was started and is incorporated in a unit "used" by "paradesign". Two other units containing most of the weight and volume calculations are "used" by the program. These units are called "linunit", "wavunit1" and "wavunit2" respectively.

As explained in section 2.3 the "interface" part of the unit, which contains variable and subroutine declarations is available to the "using" program. So, in order for all the variables and subroutines in "paradesign" to be available to all its program units the units must "use" other units: wavunit2 uses linunit, wavunit1 uses wavunit2 and linunit and paradesign uses all three units. The organisation of the text files, include files and units used in the program is shown in figure 4.2. Arrows indicate the using programs.

paradesign has the following include files: pdesignvr1, pdesignvr2, pdesign1, pdesign2, pdesign3.
linunit contains the include file pjbpasinf1.
So there are ten files of code in total.

```
Calculations contained in each file:
paradesign : stability, reliability and printout.
pdesignvr1 : a-s variables.
pdesignvr2 : s-z and greek variables.
pdesign1 : select type, drag coefficient, area,
                        cluster, line length, number of lines,
                        loading and reefing.
pdesign2 : structural strength.
pdesign3 : materials and landing control.
wavunit1 : circular and cruciform parachute weight
                        and volume.
wavunit2 : ringslot, ringsail, disk-gap-band,
                        rotafoil, parawing and ribbon weight and
                        volume.
linunit and
pjbpasinf1 : Lingard inflation method.
```

The variables contained in files pdesignvri and pdesignvr2 can only be used in the paradesign unit of the program. For a variable to be used in all parts of the program it must be declared in linunit.

4.2.2 Data Table Structure

Each table of data, as listed in appendix D, is contained in a text file on disk. The name of the file refers to the table's identifying number. For example file \#5:t10701.text contains table 10701, opening load data. The first line of the file contains a single integer giving the number of sets of data in the file, this can be represented in Warnier-orr notation by figure 4.3.
data
table
data set
(n)
where n is an integer.

Fiqure 4.3 A Data Table in Warnier-Orr Notation

When it is required the file is accessed by the program and this integer is compared with a constant, m10701 in this example, contained in the program. If the two are not equal there is an error and the program is terminated.

4.2.3 Testing and Checking

The program has been extensively tested during every stage of its development, from the basic structure shown in figure 4.1 to its final state. From reference 35 testing a program can be regarded as consisting of three operations: developing test cases, developing expected results and comparing expected results with actual results. Therefore much of the testing of the parachute design program has involved a comparison of computer results with hand calculations, for each type of parachute included in the program. When completed, a version of the program was given to the co-operating body where it was subjected to further testing, a number of improvements were suggested and made.

The operating system does not check the inputs given from the keyboard to the program. If, by mistake, a character is given where an integer is required the program, and operating system, will abort. To overcome this problem a routine was written to check all inputs to the program. This routine is contained at the beginning of linunit so that it is available to the whole program, see figure 4.2 .

4.3 Input and Output

4.3.1 Input Data

The program requires the following input data for each run:
(i) Type of parachute.
(ii)Rate of descent (m/s).
(iii)Store frontal area (m^{2}). This is especially important for remotely piloted vehicles (RPV's). If the store size is not known a guess ($0.3 \mathrm{~m}^{2}$ - small store, $1 \mathrm{~m}^{2}$ large store) will suffice .
(iv)Mass of store (kg).
(v)Deployment velocity (m/s).
(vi)Deployment altitude (m).
(vii)Allowable mass of parachute (kg).
(viii)Allowable volume of parachute (m^{3}).
(ix)Maximum shock load (N or $g^{\prime} s$).
(x)Horizontal velocity, gliding parachutes only (m/s).

Each parachute type requires some unique data as listed in appendix A.

4.3.2 Output

Whilst running the program output is presented to the user via the screen. After all the calculations have been completed the user is given an option to create a datafile of results which can be printed out. The output given by the program could be sent to a printer, however this procedure makes interaction with the program difficult as no output then appears on the sirius screen.

4.4 Alteration and Development of the Program

4.4.1 Equations and Tables

All the equations used have been numbered in the program text files, see the convention in figure 3.1 , so that if a change is required the equation in question can readily be accessed using the UCSD editor. New calculation methods for parachute design problems can be introduced by removing the old equations and inserting new ones, if new variables are required they must be declared in the program.

Additions and alterations to the tables of data can easily be made. The integer contained in the first line of each file, and its corresponding constant in the program, as described in section 4.2.2, must be changed if the number of sets of data in the file is changed. An expansion of the tables of materials data is expected. The introduction of new data
tables can be accomplished if the conventions listed in this section are followed.

4.4.2 General Development

The UCSD operating system only requires 256 k of the Sirius's 384 k of memory, the rest is not used. About 128 k of memory is available to the program and in its present state the program is stretching the Sirius's memory to the limit. The length of each unit of the program code, in 512 byte blocks is:

linunit 40 blocks

wavunit1 41
wavunit2 18 "
paradesign 117 "
this is a total of 216 blocks or 110 k bytes. Not all the code is contained in the memory at once, but this 110 k does not include the storage of the variables.

Further expansion of the "paradesign" part of the program will involve use of another unit as this part of the program is too large to be contained in one unit of code. Disk space to store another unit is scarce due to the increasing presence of the datafiles. This means that a major expansion of the program will not be possible unless the program text files are stored on a separate disk, which in turn would make alteration and development much more complicated.

For these reasons major expansions to the program are not recommended unless some compensation can be gained by the possible removal of unwanted parts of code (calculations or types of parachute).

Chapter 5

Results and Discussion

In order to demonstrate the possible use of the 'paradesign' program in a parachute company it has been employed to specify a selection of parachute systems from typical input data. The output from these computer solutions is presented in this chapter.

Input data for runs of the program have been collected from various sources. The most important input data is that received by a parachute company in the form of a specification. The parachute company takes these data to design a proposed system, and a formal proposal is made in the form of a published document. Four of these documents have been obtained and used for the basis of "paradesign" runs. The input data taken from each proposal has been used for computer solutions with different parachute canopies (cruciform, flat circular, extended skirt and hemispherical) and/or design methods. The results from these runs can provide the design engineer with a variety of possible systems to satisfy the initial specifications. He can easily make comparisons using the printed output given by the program, and irom these possibilities he can choose the one most suitable for use depending on his main required criteria: cost, stability, ease of manufacture, weight, etc. (or a combination of these). In this way the program is a time-saving device; repeating the design calculations by hand for a number of parachutes is a tedious and time consuming task.

The requirements for an airborne forces parachute have been obtained from the Royal fircraft Establishment. These data have been used to demonstrate reefing and staging. The staging and reefing routines contained in the program have been taken from the Recovery Systems Design Guide , as described in chapter 3. Examples of these techniques are
given in this reference, but the author has discovered some errors in these calculations. For example the sine of -90 degrees has been taken to be 1.0 instead of -1.0 , and 351 divided by 7017 is given as 0.0421 instead of 0.05. An example of a cluster is taken from reference 9 in order to demonstrate the cluster routine contained in the program, which is described fully in chapter 3. Some data were assembled to demonstrate ribbon parachute design.

A gliding parachute has been designed by the program using requirements for an emergency escape parachute. The canopy obtained is compared with that used in practice (the G.Q. 6.2 m flying diameter Aeroconical canopy).
5.1 A Parachute Canopy for the X-RAE2 Remotely Piloted

A design proposal based on a 4:1 arm ratio cruciform canopy has been specified for the recovery of this remotely piloted vehicle ${ }^{36}$. The specification is given in table 5.1.

Using this input data three different computer solutions have been formulated. The output is listed in table 5.2.
(i)Cruciform parachute. This computer solution is almost identical to the proposal made by the parachute company. The required tape and line strengths calculated using the computer model are greater than those in the proposal because the angle the rigging lines make with the vertical has been taken into account, this the parachute company failed to do. However the same materials are used throughout by the computer solution as were used in the proposal, so this discrepancy has no effect on the canopy's weight and volume. The fabric weight obtained is 5.6% less using the computer method, due to a difference in the allowance made for sewing. Since the imporous 4:1 arm ratio cruciform canopy is
known to be highly statically stable the stability required will be obtained using this parachute. The cruciform is also the easiest parachute to manufacture.
(ii)flat circular parachute. This parachute is more difficult to manufacture than the cruciform canopy, 32 fabric panels are required for the former as opposed to 12 for the latter. The same materials are used as for the cruciform canopy. The canopy weight was found to be 0.7% less than than that of the cruciform, and this parachute may be preferable as a low weight is required. The disadvantage of using a flat circular canopy is that a large vent (4.5\% of the nominal area (S_{0})) is needed to ensure the parachute has the required stability. This vent may increase the rate of descent to an unacceptable value since it will affect the canopy drag coefficient. To combat this a drag coefficient 5\% less than that recommended by the program was selected, hence ensuring a high area which in turn would give a lower rate of descent if the vent were not present. Also use of a vent of this size (22% of the parachute nominal diameter D_{0}) will severly restrict the parachute's opening. A better way to stabilise the canopy is to use a highly porous material, at present no highly porous wide material is available to the program. Parachutes of this kind are often stabilised by having a crown of low porosity material with high porosity elsewhere.
(iii)Conical parachute. The materials used for this canopy are the same as those used for the flat circular canopy, but due to its construction the conical parachute weighs less, i.e. it is more drag efficient than the flat circular canopy which is generally regarded as obsolete. The opening load has been calculated using the mass ratio method because the $C_{F}-\tau$ data required for the 'Lingard' method is not available for the conical parachute. However the result obtained is very similar to the opening load obtained using the 'Lingard' method
for the flat circular parachute. Stability of this parachute is ensured by the use of a large vent (5\% of the nominal area (S_{0})). As with the flat circular canopy the use of this vent may increase the rate of descent to an unacceptable value, the initial drag coefficient has been reduced as for the flat circular. The size of the vent could be reduced if a more porous fabric were used, but for consistency with the original proposal the same fabric has been employed for all three systems. A better way to stabilise this parachute is the inclusion of symmetrical slots. The canopy would then be an aeroconical with zero drive. A canopy with a 5% of S_{0} vent would probably never open.

Rate of Descent	$6 \mathrm{~m} / \mathrm{s}$
Mass of Vehicle	40 kg
Stability	$\pm 5^{\circ}$
Deployment Speed - Normal	50 KEAS
Deployment Speed - Power Drive	150 KEAS
Allowable Volume	$0.0062 \mathrm{~m}^{3}$
ddition the parachute recovery system must be as light as	
ible.	

Table 5.1 Specification for the X-RAE2 RPV
-91-

	Possible Computer Solutions			Manufacturer's Proposal
Type of Canopy	4:1 Cruciform	Flat Circular	Conical	4:1 Cruciform
Main Dimensions				-
$\begin{array}{r} \text { Nominal Area } \\ \left(\mathrm{m}^{2}\right) \end{array}$	26.57	25.51	23.91	26.57
Nominal Diameter (m)	5.82	5.70	5.52	5.82
Drag Coefficient	0.72	0.75	0.80	0.72
Line Length (m)	7.79	5.70	5.52	7.80
Number of Lines	12	16	16	12
Opening Load (N)	4476	5390	5592	4500
Opening Load Method	Lingard	Lingard	Mass Ratio	Lingard
Strength Calculations				
Safety Factor	1.5	1.5	1.5	1.5
Fabric Strength ((N / mm) * 50)	73.23	34.21	34.56	-
Skirt Band Strength (N)	-	481.76	503.69	-
Vent Band Strength (N)	-	481.76	503.69	-
Tape Strength (N)	521.11	481.76	503.69	507
Rigging Line Strength (N)	579.01	535.29	559.66	563
Vent Line Strength (N)	-	535.29	559.66	-
Fabric				
Specification	GQ MS 309	GQ MS 309	GQ MS 309	GQ MS 309
Strength $((N / m m) * 50)$	400	400	400	400
Weight ($\mathrm{gm} / \mathrm{m}^{2}$)	39	39	39	39
Width (m)	1.22	1.22	1.22	1.22

Table 5.2 Desion Solution for the X-RAE2 RPY Canopy

	Possible Computer Solutions			Manufacturer's Proposal
Type of Canopy	4:1 Cruciform	Flat Circular	Conical	4:1 Cruciform
Fabric (continued)			.	
Porosity at 10 in $\mathrm{H}_{3} \mathrm{O}$ ($\mathrm{ft}^{3} / \mathrm{ft}^{2} \mathrm{sec}$)	0	0	0	0
$\begin{aligned} & \text { Porosity at } \\ & 1 / 2 \text { in } \mathrm{H}_{2} \mathrm{O} \\ & \left(\mathrm{ft}^{3} / \mathrm{ft}^{2} \mathrm{sec}\right) \end{aligned}$	0	0	0	0
Reserve Factor	5.5	11.7	11.6	-
Skirt Band				
Specification	-	IAC S/15	IAC S/15	-
Strength (N)	-	670	670	-
Weight (gm/m)	-	2.6	2.6	-
Width (ma)	-	15	15	-
Reserve Factor	- .	1.4	1.3	-
Vent Band				
Specification	-	IAC S/15	IAC S/15	-
Strength (N)	-	670	670	-
Weight (gm/m)	-	2.6	2.6	-
Width (mm)	-	15	15	-
Reserve Factor	-	1.4.	1.3	-
Tape				
Specification	IAC S/15	IAC S/15	IAC 5/15	IAC $5 / 15$
Strength (N)	670	670	670	670
Weight (gm/m)	2.6	2.6	2.6	2.6
Width (mm)	15	15	15	15
Reserve Factor	1.3	1.4	1.3	1.3
Rigging Lines				
Part No.	P00107 2131	P00107 2131	P00107 $2131{ }^{\text {- }}$	P00107 2131
Specification	DTD 5620 SB603	DTD 5620 SB603	DTD 5620 SB603	DTD 5620 SB603
Strength (N)	670	670	670	670
Weight (m/kg)	588.2	588.2	588.2	588.2

Table 5.2 (continued

	Possible Computer Solutions			Manufacturer's Proposal 4:1 Cruciform
Type of Canopy	4:1 Cruciform	Flat Circular	Conical	
Rigging Lines (continued)			.	.
Reserve Factor	1.2	1.3	1.2	1.2
Vent Lines			-	
Part No.	-	P00107 2131	P00107 2131	-
Specification	-	DTD 5620 SB603	DTD 5620 SB603	-
Strength (N)	-	670	670	-
Weight (m/kg)	-	588.2	588.2	-
Reserve Factor	-	1.3	1.2	-
Construction Details				:
Vent Axea (8 of So)	-	4.5	5	-
Gore Width at Vent (m)	-	0.24	0.24	-
Maximum Gore Width (m)	-	1.13	1.06	-
Gore Height (m)	-	2.23	2.20	-
Cone Angle (degrees)	-	-	20	-
Number of Panels per Gore	-	2	2	- .
Arm Span (m)	7.79	-	-	7.80
Arn Width (m)	1.95	-	-	1.95
Material Weights (kg)	.			
Fabric	1.133	$1 . .065$	0.998	1.188
Skirt Band	-	0.047	0.044	-
Vent Band	-	0.010	0.010	-
Tapes	0.147	0.103	0.101	0.148
Lines	0.163	0.160	0.156	0.164
Vent Lines	-	0.022	0.023	-

Table 5.2 (continued)

	Possible Computer Solutions			Manufacturex's Proposal 4: 1 Cruciform
Type of Canopy	4:1 Cruciform	Flat Circular	Conical	
Material Weights (kg) (continued)				
Total	1.42	1.41	1.33	1.50
Volume (m^{3})	0.004	0.004	0.004	0.005
Packing Density ($\mathrm{kg} / \mathrm{m}^{3}$)	320	320	320	320
Stability	Assumed Stable	Calculated Stable	Calculated stable	Assumed Stable

Table 5.2 (continued)

5.2 A Parachute System for the Sparrowhawk and Snipe Mk. 3 Remotely Piloted Vehicles

A proposal based on a 3.5:1 arm ratio cruciform canopy has been specified for the recovery of both the Snipe Mk. 3 and Sparrowhawk remotely piloted vehicles ${ }^{37}$. A summary of the specification is given in table 5.3 .

Using this input data the parachute design program was used to give three computer solutions to this problem.
(i)Cruciform parachute. There are differences between the canopy proposed by the parachute manufacturer and the computer solution in the calculations of area and opening load. In the manufacturer's proposal the nominal area of the canopy has been calculated using a different method to that recommended in section 3.3. The area of the vehicle being delivered has been taken into account by subtracting its drag area from the canopy nominal area rather than the canopy drag area; which is the procedure followed in the program. Hence the nominal area calculated by the program is 1% less than that given in the proposal. The opening load calculated by the program is 22% greater than that given in the proposal. This may be partly due to the smaller canopy. It could also be due to the value of $\tau_{0}-$ the dimensionless time at the start of inflation. It is possible that this value was different in the proposal load calculation method and the computer program load calculation method, as τ_{0} is known to change with the size of parachute canopy. These differences have little effect on the weight and volume as the same materials are used for the fabric and the lines in the computer model as were used in the proposal; slightly heavier material being used for the tapes. This makes the total calculated volume 3.5\% larger than that in the proposal but comfortably within the requirements.
(ii) Flat circular parachute. The same materials are used for this canopy as for the proposed canopy. Due to construction differences the weight and volume of the flat circular canopy are less than that of the cxuciform canopy, this may make it preferable as the weight is specified to be as low as possible. However the stability of this parachute cannot be calculated as porosity data are only available in U.K. units for the fabric used (impression N8726), porosity data in both U.K. and U.S. units are required for a stability calculation to be made (section 3.15). Comparing results from the X-RAE 2 RPV flat circular canopy (section 5.1) it is unlikely that this parachute will be stable without the use of cut-outs or a highly porous fabric used in all or part of the canopy.
(iii)Hemispherical parachute. The ştability problem mentioned for the flat circular canopy is solved by using this type of parachute. A porous fabric is used, and with a vent of 3.5% of the constructed area the parachute is calculated to be stable. The opening load calculated for this parachute is less than that for the flat circular canopy because a different method has been used, data not being available for the 'Lingard' method. However the load obtained using the mass ratio method is very similar to the load given using the 'Lingard' method for the cruciform parachute in the original proposal. The weight and volume obtained using this canopy are the lowest of the parachutes investigated and hence this type is preferable. The disadvantage of the hemispherical is that, being shaped, it is more complicated to manufacture than either the cruciform or flat circular parachutes.

Rate of Descent	$5 \mathrm{~m} / \mathrm{s}$
Mass of Vehicle	81.6 kg
Stability	$\pm 5^{\circ}$
Glide Ratio	Nil
Recovery Velocity - Maximum	174 Knots
Recovery Velocity - Minimum	35 Knots
Maximum Volume	$0.022 \mathrm{~m}^{3}$

Table 5.3 Specification for the Sparrowhawk and Snipe Mk .3 RPVs
-98-

	Possible Computer Solutions			Manufacturer's Proposal 3.5:1 Cruciform
Type of Canopy	3.5:1 Cruciform	Flat Circular	Hemispherical	
Main Dimensions			.	
$\begin{aligned} & \text { Nominal Area } \\ &\left(\mathrm{m}^{2}\right) . \end{aligned}$	75.92	66.43	69.02	76.62
Nominal Diameter (m)	9.83	9.20	9.37	9.88
Drag Coefficient	0.70	0.80	0.77	0.70
Line Length (m)	12.49	9.20	9.37	12.51
Number of Lines	16	24	24	16
Opening Load (N)	9574	10956	7834	7800
Opening Load Method	Lingard	Lingard	Mass Ratio,	Lingard
Strength Calculations				-
Safety Factor	2.0	2.0	2.0	2.0
Fabric Strength $((N / m m) * 50)$	130.74	57.46	40.31	106.00
Skirt Band Strength (N)	-	870.49	622.44	-
Vent Band Strength (N)	-	870.49	622.44	-
Tape Strength (N)	1119.20	870.49	622.44	877.50
Rigging Line Strength (N)	1243.56	967.21	691.60	975.00
Vent Line Strength (N)	-	967.21	691.60	-
Fabric				
Part Number	-	-	P00115 3034	-
Specification	N 8726	N 8726	MIL C 7020 Type 1	N 8726
Strength ((N / mm) * 50)	400	400 .	370	400
Weight (gm/m ${ }^{2}$	40	40	37	40

Table 5.4 Design Solution for the Sparrowhawk and Snipe Canopy

	Possible Computer Solutions			Manufacturer's Proposal 3.5:1 Cruciform
Type of Canopy	3.5:1 Cruciform	Flat Circular	Hemispherical	
Fabric (continued)				
Width (m)	1.42°	1.42	0.950	1.42
Porosity at 10 in $\mathrm{H}_{2} \mathrm{O}$ ($\mathrm{ft}^{3} / \mathrm{ft}^{\left.\frac{3}{3} \mathrm{sec} \text {) }\right) ~}$	- -	-	11.00	-
Porosity at $1 / 2$ in $\mathrm{H}_{2} \mathrm{O}$ $\left(f t^{3} / f t^{2} \sec\right.$)	-	-	1.33	-
Reserve Factor	3.1	7.0	9.2	3.8
Skirt Band				
Part Number	-	P00167 0507	-	-
Specification	-	MIL T 5038 Type 3	IAC S/15	-
Strength (N)	-	890	670	-
Weight (gm/m)	-	3.7	2.6	-
Width (mm)	-	9.5	15	-
Reserve Factor	-	1.0	1.1	-
Vent Band				
Part Number	-	P00167 0507	-	-
Specification	-	MIL T 5038 Type 3	IAC S/15	-
Strength (N)	-	890	670	-
Weight (gm/m)	-	3.7	2.6	-
Width (mm)	-	9.5	15	-
Reserve Factor	-	1.0	1.1	-
Tape		.		
Part Number	P00167 5913	p00167 0507	-	p00167 0507
Specification	MIL T 5038 Type 3	MIL T 5038 Type 3	IAC 5/15	MIL T 5038 Type 3
Strength (N)	1112	890	670	890
Weight (gm/m)	4.7	3.7	2.6	3.7
Width (mm)	13	9.5	15	9.5
Reserve Factor	1.0	1.0	1.1	1.0

Table 5.4 (continued)

	Possible Computer Solutions			Manufacturer's Proposal
Type of Canopy	3.5:1 Cruciform	Flat Circular	Hemispherical	3.5:1 Cruciform
Rigging Lines				
Part No.	P00107 1850	P00107 1850	P00107 1850	P00107 1850
Specification	dtd 5620 CA 103	DTD 5620 CA103	DTD 5620 CA 103	DTD 5620 CA 103
Strength (N)	1350	1350	1350	1350
Weight (m/kg)	270.0	270.0	270.0	270.0
Reserve Factor	1.1	1.4	2.0	1.4
Vent Lines				
Part No.	-	P00107 1850	P00107 1850	-
Specification	-	DTD 5620 CA 103	DTD 5620 CA103	-
Strength (N)	- -	1350	1350	-
Weight (m/kg)	-	270.0	270.0	-
Reserve Factor	-	1.4	2.0	-
Construction Details				
Vent Area (8 of So)	-	2	3.5	-
Gore Width at Vent (m)	-	0.17	0.16	-
Maximum Gore Width (m)	-	1.21	0.86	-
Gore Height (m)	-	3.94	4.59	-
Number of Panels per Gore	-	3	6	-
Arm Span (m)	12.45	-	-	12.51
Arm Width (m)	3.56	-	-	3.57
Material Weights (kg)				
Fabric	3.217	2.899	2.432	3.171
Skirt Band	-	0.108	0.054	-
Vent Band	-	0.016	0.011	-
Tapes	0.546	0.370	0.299	0.433
Lines	0.752	0.835	0.851	0.755

Table 5.4 (continued)

	Possible Computer Solutions			Manufacturer's Proposal 3.5:1 Cruciform
Type of Canopy	3.5:1 Cruciform	Flat Circular	Hemispherical	
Material Weights (kg) (continued)	-			
Vent Lines	-	0.076	0.073	-
Total	4.51	4.30	3.72	4.36
Volume (m^{3})	0.014	0.014	0.012	0.014
Packing Density ($\mathrm{kg} / \mathrm{m}^{3}$)	320	320	320	320
Stability	Assumed Stable	-	Calculated Stable	Assumed Stable
Reliability at 90: Confidence	0.9949	0.9949	0.9949	-

Table 5.4 (Continued)

5.3 A Mail Dropping Canopy for the Royal Netherlands Navy

A design proposal based on a conical canopy has been specified for a mail dropping system ${ }^{38}$. The design requirements are given in table 5.5.

Using this design requirement data three different computer solutions have been made. The output is listed in table 5.6.
(i)Conical Parachute. The proposal and the computer solution use different stressing methods in the calculation of both fabric and line strengths. In the fabric strength calculation a factor of $1 / 2.15$ has been used in the proposal as a method derived from Johns ${ }^{1}$ has been employed. A factor of $1 / \pi$ (the normal factor for circular parachutes, see section 3.10.2) has been used in the computer program. This results in the computer program giving a required fabric strength 27% lower than that in the proposal. In the calculation of line strength the computer model takes into account the angle the lines make with the vertical, which is not done in the proposal, and hence a 12% higher required line (and tape) strength is given in the computer solution. The fabric and line materials are the same as used for the proposed canopy. The lines in the computer solution have a reserve factor of 0.9, but when this is compared with the high safety factor of 2.0 , for an unmanned application, this reserve factor is acceptable. Tape $G Q$ MS 158 replaces $G Q$ MS 193 for the skirt band, vent band and radial tapes, this is a heavier material. The fabric weight is calculated to be 14% higher by the computer program because a larger width is allowed for sewing (0.025 m as opposed to 0.02 m in the proposal). This, the heavier tape, and inclusion of the vent line weight, makes the total parachute weight 2.62 kg (the weight is 2.42 kg in the proposal). Adding in the mass of the parachute sleeve and connecting line, the weight becomes 3.02 kg , and at a packing density of $320 \mathrm{~kg} / \mathrm{m}^{3}$ the volume
is $0.0094 \mathrm{~m}^{3}$, well within the $0.0118 \mathrm{~m}^{3}$ maximum. The parachute is calculated to be unstable but no stability requirement has been made in the specification. If the vent were enlarged sufficiently a stable parachute would ensue.
(ii)Cruciform Parachute. When the mass of the parachute sleeve and connecting line is included the volume of this parachute is 7% over that required. This is due to the high opening load (24717N) calculated using the mass ratio method. The 'Lingard' method gives an opening load of 14184 N , a decrease of 43%, this will be different if the 'o' dimensionless inflation time, value was to be changed. The Pflanz method gives a load of 19427N, a decrease of 21%. If the lower load were used in the calculation the parachute volume would be within that required. However the mass ratio method was used to be consistent with the original proposal, and it is good practice to use the highest load obtained. The advantages of a 3.5:1 cruciform parachute are that it is easy to manufacture and is highly statically stable.
(iii)Extended Skirt 10% Flat. This canopy is similar to the conical canopy. The same materials are used for this canopy as in the original conical canopy proposed, apart from the fabric. Fabric MIL C 7020 Type 1 is used in preference to George Harris B1 as it is much lighter and more porous. As for the flat circular canopy the skirt band, vent band, tapes and lines have reserve factors of 0.9 but this is acceptable with the safety factor used (2.0). The weight and volume of this parachute are less than the other two considered (13\% less than the conical canopy and this makes the extended skirt canopy preferable for use for this application. Its manufacture is similar in difficulty to the conical canopy and, like the conical canopy, it is unstable.

Rate of Descent	$9 \mathrm{~m} / \mathrm{s}$
Mass of Store	72.2 kg maximum
	37.2 kg minimum
Deployment Speed	200 knots
Deployment Altitude	$92 \mathrm{~m} \mathrm{(300} \mathrm{ft)}$
Maximum Deployment Load	45 kN
Volume Available	$0.0118 \mathrm{~m}^{3}$
Attachment	4 Point
Also the mass of the parachute sleeve and connecting	
line, 0.4 kg, must be added to the total parachute mass.	

Table 5.5 Design Requirement Data for a Mail Dropping
Parachute

	Possible Computer Solutions			Manufacturer's
Type of Canopy	Conical	3.5:1 Cruciform	Extended Skirt 10i Flat	Conical
Main Dimensions				
$\begin{array}{r} \text { Nominal Area } \\ \left(\mathrm{m}^{2}\right) \end{array}$	18.66	21.33	19.06	18.66
Nominal Diameter (m)	4.87	5.21	4.93	4.87
Drag Coefficient	0.80	0.70	0.78	0.80
Line Length (m)	4.87	6.59	4.93	4.87
Number of Lines	16	16	16	16
Opening Load (N)	24717	24717	24717	23100
Opening Load Method	Mass Ratio	Mass Ratio	Mass Ratio	Mass Ratio
Strength Calculations				
Safety Factor	2.0	2.0	2.0	2.0
Fabric Strength ((N / mm) *50)	230.58	636.78	234.86	315.00
Skirt Band Strength (N)	2968.43	-	2956.83	2599.00
Vent Band Strength (N)	2968.43	-	2956.83	2599.00
Tape Strength (N)	2968.43	2890.24	2956.83	2599.00
Rigging Line Strength (N)	3298.26	3211.38	3285.37	2887.00
Vent Line Strength (N)	3298.26	-	3285.37	-
Fabric				
Part Number	-	P00115 3255	P00115 3034	-
Specification	GQ MS 502 (B1)	GQ Ms 330	MIL C 7020 Type 1	GQ MS 502 (B1)
Strength ($(\mathrm{N} / \mathrm{mm}) * 50)$	480	950	370	480

Table 5.6 Desian Solutions for a Mail Dropping Canopy

	Possible Computer Solutions			Manufacturer's Proposal Conical
Type of Canopy	Conical	3.5:1 Cruciform	Extended Skirt 101 Flat	
Fabric (continued)				
Weight (gm/m m^{2})	54	85	37	54
Width (m)	1.17	1.22	0.95	1.17
Porosity at 10 in $\mathrm{H}_{2} \mathrm{O}$ $\left(\mathrm{ft}^{3} / \mathrm{ft}^{2} \mathrm{sec}\right)$	0	3.0	11.0	0
Porosity at $1 / 2$ in $\mathrm{H}_{2} \mathrm{O}$ ($f t^{3} / f t^{2} \sec$)	0	0.2	1.3	0
Reserve Factor	2.1	1.5	1.6	1.5
Skirt Band				
Part Number	P00167 575 1	-	P00167 6202	P00167 6202
Specification	GQ MS 158	-	GQ MS 193	GQ MS 193
Strength (N)	3115	-	2670	2670
Weight (gm/m)	10.3	-	8.7	8.7
Width (mm)	12.5	-	8.0	8.0
Reserve Factor	1.0	-	0.9	1.0
Vent Band				
Part Number	P00167 5751	-	P00167 6202	P00167 6202
Specification	GQ MS 158	-	GQ MS 193	GQ MS 193
Strength (N)	3115	-	2670	2670
Weight (gm/m)	10.3	-	8.7	8.7
Width (mm)	12.5	-	8.0	8.0
Reserve Factor	1.0	-	0.9	1.0
Reinforcing				
Part Number	P00167 6202	-	P00167 6202	P00167 6202
Specification	GQ MS 193	-	GQ MS 193	GQ MS 193
Strength (N)	2670	-	2670	2670
Weight (gm/m)	8.7	-	8.7	8.7
Width (mm)	8.0	-	8.0	8.0
Reserve Factor	1.5	-	1.5	1.0

Table 5.6 (continued)
-107-

	Possible Computer Solutions			Manufacturer's Proposal
Type of Canopy	Conical	3.5:1 Cruciform	Extended Skirt 10: Flat	Conical
Tape				
Part Number	P00167 5751	P00167 6202	P00167 6202	P00167 6202
Specification	GQ MS 158	GQ MS 193	GQ MS 193.	G0 MS 193
Strength (N)	3115	2670	2670	2670
Weight (gm / m)	10.3	8.7	8.7	8.7
Width (mm)	12.5	8.0	8.0	8.0
Reserve Factor	1.0	0.9	0.9	1.0
Rigging Lines				
Specification	DTD 5620 CA 106			
Strength (N)	3100	3100	3100	3100
Weight (m/kg)	101.0	101.0	101.0	101.0
Reserve Factor	0.9	1.0	0.9	1.1
Vent Lines				
Specification	DTD 5620 CA 106	-	DTD 5620 CA 106	-
Strength (N)	3100	-	3100	-
Weight (m/kg)	101.0	-	101.0	-
Reserve Factor	0.9	-	0.9	-
Construction Details				
Vent Area (8 of So)	1.5	-	1.5	1.5
Gore Width at Vent (m)	0.11	-	0.12	0.11
Maximum Gore Width (m)	0.93	-	0.68	0.93
Gore Height (m)	2.19	-	1.80	2.26
Cone Angle (degrees)	20	-	-	20
Number of Panels per Gore	2	-	3	2
Arm Span (m)	-	6.60	-	-
Arm Width (m)	-	1.89	-	-

Table 5.6 (continued)
-108-

	Possible Computer Solutions			Manufacturer's Proposal
Type of Canopy	Conical	3.5:1 Cruciform	Extended Skirt 10: Flat	Conical
Material Weights (kg)				
Fabric	1.137	2.018	0.817	0.994
Skirt Band	0.156	-	0.096	-
Vent Band	0.021	-	0.018	-
Reinforcing	0.018	-	0.118	-
Tapes	0.401	0.546	0.343	0.625
Lines	0.804	1.076	0.812	0.804
Vent Lines	0.081	-	0.080	-
Total	2.62	3.64	2.28	2.42
Volume (m^{3})	0.008	0.011	0.007	0.008
Packing Density (kg/m)	320	320	320	320
Stability	Calculated Unstable	Assumed stable	Calculated Unstable	-

Table 5.6 (continued)
5.4 A Parachute Canopy for the plessey Marine SSQ 954

A design proposal based on either a 3:1 arm ratio cruciform canopy or a square parasheet canopy has been specified for the Plessey SSQ sonobuoy ${ }^{39}$. A summary of the specification is given in table 5.7.

Using this data two different computer solutions have been formulated. The output is listed in table 5.8.
(i)Cruciform Parachute. The stressing method used in the manufacturer's proposal is different from that used in the computer program. The required fabric strength has been halved because the proposal assumed that the fabric was double thickness in the crown area. Single thickness fabric was assumed in the computer model, and hence a stronger (and heavier) fabric is used. The required tape strength in the computer solution is about half that given in the proposal. This is because the tape used for parachute reinforcing has also been used for the rigging lines on the proposed cruciform canopy. A similar tape material has been used in the computer program and the proposal. However cord has been used for the lines in the computer prediction, hence the program gives a higher weight and volume than the manufacturer's proposal. Adding in the weight of the parachute sock the total mass is 0.039 kg and the volume $111 \mathrm{~cm}^{3}$, which is within the allowable of $117 \mathrm{~cm}^{3}$. The cruciform parachute is known to be highly statically stable and its ease of manufacture makes it suitable for these smaller sized parachutes.
(ii)Hemispherical parachute. A lower opening load was calculated for this parachute because the mass ratio method was used, hemispherical parachute data not being available for the Pflanz method. The same materials were used for this canopy as for the proposed cruciform canopy. The total parachute weight is 0.043 kg , and the
volume $123 \mathrm{~cm}^{3}$. This is greater than the allowable. Pressure packing to $367 \mathrm{~kg} / \mathrm{m}^{3}$ would be required to enable the volume of this canopy to be within the requirements. The parachute is stable with a small vent (1% of S_{0}). The same weight and volume problem would occur if other solid cloth circular parachutes (flat, conical, extended skirt, etc.) were to be used. However this canopy is so small (less than $1 / 2$ metre diameter) that manufacture of a shaped, hemispherical or extended skirt, parachute would be very difficult.

Store Mass	8.16 kg
Rate of Descent	$37.2 \mathrm{~m} / \mathrm{s}$
Deployment Speed	250 knots
Maximum Volume	$117.1 \mathrm{~cm}^{3}$
Parachute Sock Weight	0.003 kg

Table 5.7 Specification for the Plessey SSQ 954 Canopy

	Possible Computer Solution		Manufacturer's Proposal	
Type of Canopy	3:1 Cruciform	Hemispherical	3:1 Cruciforn	Square Parasheet
Main Dimensions			.	$\stackrel{\%}{.}$
Nominal Area (m^{2})	0.13	0.15	0.13	0.14
Nominal Diameter (m)	0.41	0.44	0.41	0.43
Drag Coefficient	0.70	0.62	0.70	0.66
Line Length (田)	0.49	0.44	-	-
Number of Lines	8	8	-	-
Opening Load (N)	1647	968	1647	1647
Opening Load Method	Pflanz	Mass Ratio	Pflanz	Pflanz
Strength Calculations				
Safety Factor	1.9	1.9	1.9	1.9
Fabric Strength $((N / m m) * 50)$	539.72	100.71	270.00	259.25
Skirt Band Strength (N)	-	219.20	-	-
Vent Band Strength (N)	-	219.20	-	-
Tape Strength (N)	367.82	219.20	843.00	843.00
Rigging Line Strength (N)	408.69	243.56	-	-
Vent Line Strength (N)	-	243.56	-	-
Fabric				
Part Number	P00115 155	P00115 3034	P00115 3034	P00115 3034
Specification	BSF 118/556A	MIL C 7020 Type 1	MIL C 7020 Type 1	Mil C 7020 Type 1
Strength $((N / m m) * 50)$	510	370	370	370
Weight (gm/m m^{2})	50	37	37	37

	Poosible Computer Solution		Manufacturer's Proposal	
Type of Canopy	3:1 Cruciform	Hemispherical	3:1 Cruciform	Square Parasheet
Fabric (continued)				
Width (m)	0.920	0.95	0.95	0.95
$\begin{aligned} & \text { Porosity at } \\ & 10 \text { in } \mathrm{H}_{2} \mathrm{O} \\ & \left(\mathrm{ft}^{3} / \mathrm{ft}^{2} \mathrm{sec}\right) \end{aligned}$	10	11.0	11.0	11.0
$\begin{aligned} & \text { Porosity at } \\ & 1 / 2 \text { in } \mathrm{H}_{2} \mathrm{O} \\ & \left(\mathrm{ft}^{3} / \mathrm{ft}^{2} \mathrm{sec}\right) \end{aligned}$	-	1.3	1.3	1.3
Reserve Factor	0.9	3.7	1.4	1.4
Skirt Band				
Part Number	-	P00167 0507	-	-
Specification	-	MIL T 5038 Type 3	-	-
Strength (N)	-	890	-	-
Weight (gm / m)	-	3.7	-	-
Width (mm)	-	9.5	-	-
Reserve Factor	-	4.1	-	-
Vent Band				
Part Number	-	P00167 0507	-	-
Specification	-	MIL T 5038 Type 3	-	-
Strength (N)	-	890	-	-
Weight (gm / m)	- .	3.7	-	-
Width (mm)	-	9.5	-	-
Reserve Factor	- .	4.1	-	-
Tape				
Part Number	P00167 0507	P00167 0507	-	-
Specification	MIL T 5038 Type 3	MIL T 5038 Type 3	R 807	R 807
Strength (N)	890	890	890	890
Weight (gm/m)	3.7	3.7	3.7	3.7
Width (mm)	9.5	9.5	-	-
Reserve Factor	2.4	4.1	1.1	1.1

Table 5,8 (continued)

	Possible Computer Solution		Manufacturer's Proposal	
Type of Canopy	3:1 Cruciform	Hemispherical	3:1 Cruciform	Square Parasheet
Rigging Lines				
Part No.	P00107 2131.	P00107 2131	-	-
Specification	DTD 5620 SB603	DTD 5620 SB603	-	-
Strength (N)	670	670	-	-
Weight (m/kg)	588.2	588.2	-	-
Reserve Factor	1.6	2.8	-	-
Vent Lines				
Part No.	-	P00107 2131	-	-
Specification	-	DTD 5620 SB603	-	-
Strength (N)	-	670	-	-
Weight (m/kg)	-	588.2	-	-
Reserve Factor	-	2.8	-	-
Construction Details				
Vent Area (8 of So)	-	1	- .	-
Gore Width at Vent (m)	-	0.01	-	-
Maximum Gore Width (m)	-	0.10	-	-
Gore Height (m)	-	0.23	-	-
Number of Panels per Gore	-	1	-	-
Arm Span (m)	0.49	-	-	-
Arm Width (m)	0.16	-	-	-
Material Weights (kg)				
Fabric	0.011	0.010	0.006	0.005
Skirt Band	-	0.004	-	-
Vent Band	-	0.001	-	-
Tapes	0.016	0.013	0.023	0.014

Table 5.8 (continued)

	Possible Computer Solution		Manufacturer's Proposal	
Type of Canopy	3:1 Cruciform	Hemispherical	3:1 Cruciform	Square Parasheet
Material Weights (kg) (continued)	,		-	
Lines	0.009	0.009	-	-
Vent Lines	-	0.003	- -	-
Total	0.036	0.040	0.029	0.019
Volume (cm^{3})	102	1.14	83	54
Packing Density ($\mathrm{kg} / \mathrm{m}^{3}$)	350	350	350	350
Stability	Assumed Stable	Calculated stable	Assumed Stable	Assumed Stable

Table 5.8 (continued)

5.5 A Parachute System Incorporating a cluster of Three Canopies

The design of clusters of parachutes is demonstrated by an example in the Recovery Systems Design Guide ${ }^{9}$. The specification taken from this report is given in table 5.9. The computer solution formulated from these input data is listed in table 5. 10.

Cluster data are available for two types of parachute: ringsail ard flat circular. In reference 9 ringsail parachutes have been used: the computer model uses flat circular canopies because in reference 9 some ringsail data are extrapolated from curves. This procedure is known to be very unreliable and therefore these ringsail data are unavailable to the computer model in its present form. The results from the computer model and reference 9 are similar, in both cases a system of three parachutes of approximately 50 m nominal diameter has been calculated. The overall C_{0} in the computer model is less than that in reference 9 , and the area is 22\% greater, because a different parachute type has been used. The opening load in the computer program is 30\% greater than that in reference 9. Overstrength fabric and lines have been used in this cluster example because the parachutes will not open together, if two of the canopies open at once, a load of 1.5 times the load calculated by the program would be encountered, hence a minimum reserve factor of 1.50 is recommended for the fabric and lines. The total weight of the three parachutes is 995 kg , which makes the weight of one equal to 332 kg . Although quite heavy, two people at least are required to lift it, this is much more manageable than a single parachute of over 900 kg , which would require a mechanical device to move it. The calculated parachute reliability is 0.9837 with a 90% confidence coefficient, assuming none of the parachutes can fail. If one canopy was allowed to fail the reliability becomes 0.9949, and if two canopies were allowed to fail the reliability is greater than 0.9999, again with a confidence of 90%.

Weight	50000 lbs
Maximum Rate of Descent	$30 \mathrm{ft} / \mathrm{sec}$
Altitude at Deployment	Sea Level
Deployment Velocity	$68 \mathrm{~m} / \mathrm{s}$

Table 5.9 System C Specification

Table 5. 10 Computer Solution for a cluster of Parachutes
Figures in brackets are those for the comparable system formulated in reference 9.

Table 5. 10 (continued)

5. 6 Reefed Airborne Forces Parachute

After consultation with the Royal Aircraft Establishment, Farnborough, a specification for an airborne forces parachute has been obtained and is listed in table 5.11. A parachute used for this application is the flat circular Irvin PX 1 Mk.4. These input data have been modified to demonstrate the reefing routine contained in the parachute design program. The allowable load was changed from 12 g maximum acceleration (about 18000 N) to 10000 N . The deployment altitude was raised from sea level to 600 m in order for the 'Lingard' opening load method to be used. The output is listed in table 5.12. Airbourne forces parachutes are never reefed, but this data is a good example for use in this way with the parachute design program.

The computer prediction is similar to the Irvin PX 1 Mk .4 parachute which also has a constructed diameter of 9.75 m and uses 32 rigging lines. As can be seen from table 5.12 the calculated opening load (unreefed) is 11332 N . One stage of reefing, making the initial canopy diameter 0.84 m increasing to 9.75 m shortly after opening, is required to reduce the load to 10000 N . The calculated weight of the canopy is 11.4% greater than the allowable weight given in the specification. The weight could be reduced if a lighter weight fabric was available to the program. The PX 1 Mk. 4 canopy has two different types of fabric in its construction: the program is unable to simulate this, instead it uses a large vent to stabilise the parachute.

Maximum Weight	330 lbs
Maximum Rate of Descent	$7 \mathrm{~m} / \mathrm{sec}$
Maximum Opening Load	12 g
Maximum Deployment Speed	140 knots
Deployment Altitude	Ground Level
Permitted Range of Oscillations	$\pm 15^{\circ}$
Maximum Canopy Weight	10 lbs
Bulk as low as possible	
Nylon materials	
Not prone to blown peripheries	
Non driving canopy	
Shelf life greater than ten years	

Table 5. 12 Design Solution for a Reefed Airborne Forces Parachute

skixt band, vent hand and radial tapes
```material properties part no. = 399167 5986 specification = mil t 6134 type2 strength = 1334.0 n weiglit = 4.5 gm/m width = 25.4 mm reserve factor = 1.4```
lines and vent lines
```material properties part no. = p00107 261 0 specification = mil c 5040 type2 strength = 1779.0 n weight = 320.0 m/kg reserve factor = 1.7```
reefing line
```material properties part no. = . p00107 213 1 specification = dtd 5620 sb603 strength = 670.0 n weight = 588.2 m/kg reserve factor = 1.2```
construction details
```vent area = 4.50 % of constructed area gore width at vent =0.20 m maximum gore width = 0.96 m gore height = 3.84 m number of panels per gore = 4```
total weight of each component
```weight of fabric = 3.180 kg weight of skirt band = 0.139 kg weight of vent band = 0.030 kg weight of tapes = 0.584 kg weight of lines = 0.995 kg weight of vent line = 0.124 kg weight of reefing line = 0.006 kg total weight = 5.06 kg volume = 0.0158m*m*m packing density = 320.0 kg/m*m*m```
parachute is stable
reliability $=0.9949$ at gor confidence

Table 5. 12 (continued)

### 5.7 Staging of an Airborne Forces Parachute

The airborne forces parachute data listed in table 5.11 were modified again to demonstrate staging. The deployment speed was raised to $110 \mathrm{~m} / \mathrm{s}$, as there is an option to use the staging routine in the program at deployment speeds of greater than $100 \mathrm{~m} / \mathrm{s}$, the deployment altitude is increased to 600 m for consistency with the reefing example, and the allowable shock load changed to 12000 (below the original requirement of 12 g maximum acceleration). The computer output is listed in table 5.13.

As shown in the output a 0.66 m diameter drogue is required for this system. Spring loaded auxiliary parachutes of this size are often used in these systems. The opening load is given as 11000 N to avoid the reefing routine. The same materials are used as for the reefed airborne forces parachute example.


rigging lines and vent lines
```material properlies part no. = p00107 261 0 specification = mil c 5010 type2 strength = 1779.0 n weight = 320.0 m/kg reserve factor = 1.6```
construction details
```vent area = 4.50 % of constructed area gore width at vent = 0.20 m maximum gore width = 0.96 m gore height = 3.84 m number of panels per gore = 4```
total weight of each component
```weight of fabric = 3.180 kg weight of vent line = 0.124 kg weight of vent band = 0.030 kg weight of skirt band = 0.139 kg weight of tapes = 0.584 kg weight of lines = 0.995 kg total weight = 5.05 kg volume = 0.0158 m*m*m packing density = 320.0 kg/m*m*m```
parachute is stable
reliability = 0.9949 at 908 confidence

Table 5.13 (continued)

5.8 Ribbon Parachute

The ribbon parachute routines in the program have been demonstrated by some data for a small (20 kg store) parachute. The input data and output for this example is in table 5.14.

High factors are used in the stressing of the skirt and vent bands, this is usual for ribbon parachutes. The canopy is stable due to its high geometric porosity, 28.2\%. This geometric porosity can be lowered by including more horizontal ribbons and vertical tapes. For instance if thirty horizontal ribbons are used the geometric porosity becomes 8\%. The weight of this parachute is very high considering it is so small. The reason for this is that heavy ribbons are used because no light weight, wide (2 in or 50 mm) ribbons are available to the program at present. In general ribbon parachutes are used for aircraft and motor vehicle deceleration applications, in which case the parachute weight is less important than in descent applications.

radial tape
```material properties part no. = s99167 598 6 specification = mil t 6134 type2 strength = 1334.0 n weight = 4.5 gm/m width = 25.4 mm reserve factor = 0.4```
vent band
```material properties part no. = p00167 050 7 specification = mil t }5038\mathrm{ type3 strength = 890.0 n weight = 3.7 gm/m width = 9.5 mm reserve factor = 1.3```
rigging lines and vent lines
```material properties part no. = p00107 213 1 specification = dtd 5620 sb603 strength = 670.0 n weight = 588.2 m/kg reserve factor = 2.1```
construction details
```vent area = 1.00 & of constructed area gore width at vent = 0.12 m maximum gore width = 0.91 m gore height = 1.53 m number of horiz ribbons = 20 number of vertical tapes = 5 gap width = 0.034 m```
geometric porosity $=28.2$ percent
total weight of each component
```weight of horiz ribbon = 10.066 kg weight of vert. tapes = 5.310 kg weight of radial tapes = 0.097 kg weight of vent band = 0.006 kg weight of skirt band = 0.033 kg weight of lines = 0.074 kg weight of vent line = 0.008 kg total weight = 15.59 kg volume = 0.0487 m*m*m packing density = 320.0 kg/m*m*m```
parachute is stable

Table 5.14 (continued)

### 5.9 6.2m Flying Diameter Aeroconical Gliding Parachute

Requirements for a gliding emergency escape personnel parachute have been taken from liason with the co-operating body and reference 40. These data are listed in table 5.15. The output for a computer solution from these requirements, together with the manufacturer's proposals are listed in table 5.16.

A parachute generally used for this application is the G.Q. Aeroconical 6.2 m flying diameter canopy. The parachute calculated by the parachute design program is similar to but smaller than this system, its nominal diameter of 8.24 m represents a flying diameter of only 5.4 m . Opening load and structural strength data determined by the program are similar to those for the 6.2 m Aeroconical canopy.

The construction of the 6.2 m Aeroconical parachute is very complicated. There are six fabric panels per gore, three large outer panels and three small inner ones. Three different materials are used for these panels. In the computer model the three small panels are assumed to be one large one, giving four panels in all, and the material used for all four panels is impression N 8726 fabric. The same tape is used in both the computer solution and the GQ Aeroconical 6.2 m canopy for the vent and skirt bands. A different tape from that in the 6.2 m canopy is used for the radials in the computer solution and different cord for the vent lines.

Both the parachute calculated by the program and the 6.2 m Aeroconical are stable due to the cut-outs incorporated in their canopies.

Rate of Descent	$6.5 \mathrm{~m} / \mathrm{s}$
Maximum Horizontal Velocity	$4.55 \mathrm{~m} / \mathrm{s}$
Maximum Store Weight	140 kg
Maximum Deployment Speed	$154 \mathrm{~m} / \mathrm{s}$
Maximum Deployment Altitude	1829 m

Table 5.15 Design Requirements for an Emergency Escape
Parachute

type of parachute - aexoconical
input data
rate of descent $=6.50 \mathrm{~m} / \mathrm{s}$   store size $=0.50 \mathrm{~m} \mathrm{~m}^{2}$   store weight $=1373.4 \mathrm{n}$   store cd $=0.70$   deployment velocity $=154.00 \mathrm{~m} / \mathrm{s}$   deployment altitude $=1829.0 \mathrm{~m}$   deployment attitude $=-90.00 \mathrm{degrees}$   allowable mass $=20.00 \mathrm{~kg}$   allowable volume $=0.0500 \mathrm{~m} \mathrm{~m}^{*} \mathrm{~m}$   cone angle $=20.00 \mathrm{degrees}$   maximum shock load $=50000.0 \mathrm{n}$   horizontal velocity $=4.55 \mathrm{~m} / \mathrm{s}$
output
main dimensions
$\begin{aligned} \text { nominal area } & =53.29 \mathrm{~m} \mathrm{~m}^{\mathrm{m}} \\ \text { nominal diameter } & =8.24 \mathrm{~m} \\ \mathrm{cr} & =0.80 \\ \text { line length } & =8.24 \mathrm{~m} \end{aligned}$
number of 1 ines $=20$ (20)
opening load calculated using lingardmethod $=31051.3 \mathrm{n}$
structural strength calculations
$\begin{aligned} \text { safety factor used } & =2.0 \\ \text { strength of fabric } & =181.81 \mathrm{n} / \mathrm{mm} \approx 50 \\ \text { strength of vent band } & =4934.09 \mathrm{n} \\ \text { strength of vent line } & =3289.39 \mathrm{n} \\ \text { strength of lines } & =3289.39 \mathrm{n} \\ \text { strength of tapes } & =2960.46 \mathrm{n} \\ \text { strength of skirt band } & =4934.09 \mathrm{n} \end{aligned}$
fabric
```material properties part no. = specification = n8726 (bsf 126/254, gq ms 502 (b1), and gq ms 330) material strength = 400.0 n/mm*50 material weight = 40.0 gm/m*m material width = 1.42.m reserve factor = 2.2```
skirt band and vent band
```material properties part no. = p00168 959 8 specification = gq ms 317 (gq ms 317) strength = 5800.0 n weight = 17.0 gm/m. width = 25.0 mm reserve factor = 1.2```



Table 5.16 (continued)
figures in brackets refer to the GQ 6.2 m Aeroconical canopy

### 5.10 Discussion of Results and Conclusions

A number of conclusions can be drawn from the results presented in this chapter:
(i)The parachute design program is consistent between applications and types of parachute.

In the manufacturer's proposals (references 36 to 39), different stressing methods have been used for the same type of parachute and hence inconsistency arises. For example the calculation of line strength should include the angle the lines make with the vertical. This angle is not known at the time of maximum load and so the worst case should be assumed - the canopy is fully inflated. This angle is generally about $20^{\circ}$ and if omitted from the calculation the line strength becomes $6.4 \%$ too low. The strengths of the canopy reinforcing tapes and vent lines are factored from the line strength so this angle is very important.

The safety factors built into the program are 2.3 for un-manned applications and 3.1 for manned applications. They have been taken from the Recovery Systems Design Guide. The user has the opportunity to alter these factors if he wishes. In the four, all un-manned, applications studied in the proposals (references 36 to 39), three different safety factors were used. Three of these proposed parachutes are cruciform, and for each of these a different safety factor has been used. This again will cause inconsistencies which can be avoided if the parachute design program is employed.
(ii)The program allows comparisons of standard design methods.

Three methods are used in the program for the calculation of opening load, the user is able to choose which he requires. Ideally the load obtained from each method is compared and the highest value taken as the opening load. However some of the methods are more reliable than others. The 'Lingard' method is the most accurate and should be used whenever possible, although when a cruciform parachute load is being calculated using this method, the empirical data used may not correspond to a similar cruciform to the one being designed. This problem is often solved by changing the dimensionless inflation time, $\tau_{0}$, value used, as this value is known to depend on the canopy mass.The canopy size is an important factor in the initial opening of the parachute. Additionally as shown in the mail dropping parachute example, section 5.3, loads obtained for a cruciform canopy can differ by up to $50 \%$ depending on the load calculation method used. Hence results obtained from the more approximate load calculation methods may not be reliable in some cases. Generally however, all three load calculation methods (Lingard, Pflanz and mass ratio) used in the "paradesign" program produce consistent results, as can be seen from the outputs.
(iii) Comparison of types of parachute.

The program demonstrates the improved drag efficiency of the conical, extended skirt and hemispherical parachutes over the flat circular parachute. Although still used for some applications this type is obsolescent. Irvin are replacing their PX1 Mk4 airborne forces flat circular mentioned in section 5.5 , by a cruciform parachute.

The program allows a number of different types of parachute to be compared for use in the same application in a reasonably short time.
(iv)More data is required for the program.

The program can call on data for seventy different materials. However this is insufficient. The ribbon parachute is excessively heavy, 15.6 kg compared to 2.62 kg for a conical parachute which is twice as large (section 5.3). This is due to no wide, light weight ribbons being available to the program. The porosity data in both U.K and U.S. units (section 3.15) are required for some fabrics so that a stability calculation can be made when they are used.

If the cluster, reefing, staging and ribbon parachute routines contained in the program are to be used extensively more data must be obtained to check these calculations. At present, due to a lack of suitable input data, no comparison with manufacturer's current specifications has been made.
(v)The program is of limited use for complicated parachutes.

For structurally complex canopies such as the 6.2 m flying diameter . Aeroconical, the design program gives solutions which only approximate to the manufacturer's (table 5.15). The final design of this canopy has been formulated after many hours of design trials and many modifications. To represent all this work in a single computer program will be very difficult. However the parachute design program can be used as an initial design attempt.

The program has allowed design methods and canopy types to be compared, it has also exposed manufacturer's inconsistencies. It has demonstrated the limits of empirical design methods when they are applied to certain canopy shapes. But most importantly it is a time-saving device. Preparing a proposal such as references 36 to 39 will take on average a week's work by a parachute design engineer. The program can give answers to a design specification in half an hour. Then the numerical output from the program has to be included in a written proposal. Tables 5.10, 5.12, 5.13, 5.14 and 5.16 are data files generated by the parachute design program which have been transferred to the word processor used to write this report. Using a similar technique the writing of design proposals can be further speeded up.

The program is limited by canopy design complexity as has been shown in the gliding aeroconical example (section 5.9). For highly complex parachutes such as the 6.2 m flying diameter aeroconical canopy it can be used in the preliminary design stages as a check, and it will give approximations to the weight and volume.

The main area in which the program can be expanded is in the materials section. The data tables can be added to so that a greater choice is available to the user. Expansion of the program in other areas which require more variables and lines of Pascal code will be difficult because in its present form (about 7000 lines of code and 300 variables) the program is stretching the Sirius computer to its limits.

## Chapter 6

## Recommendations for Further Work

Improvement and alteration of the parachute design program presented in this thesis will be essential in order to keep it up to date. So, as new design methods and types of parachute are introduced they must be incorporated into the program whenever possible. One immediate way of improving the program is by expansion of the materials data tables (tables D. 1 to D.3). Expansion and alteration of these tables is easily done as explained in section 4.4.1.

The program does not save the results from the trajectory calculation, section 3.8.4, so that they can be printed out if required. There are various reasons for this, including the difficulty of input/output operations in Pascal, and the slowness of this particular calculation which would become even worse if a file had to be created and the results sent to it. However a trajectory calculation is often required when designing a parachute system and a method of printing trajectory output is needed.

Section 4.4.2 has shown that in its present state the program is stretching the UCSD system used on the Sirius computer to its limit. One way to improve this situation would be to transfer the program to the language Modula- $2^{41}$. This language, introduced in 1979, is an improved version of Pascal, suitable for large software development (i.e. long programs similar to "paradesign"). Using this language interaction between different program units becomes easier. The input and output routines in Pascal have been improved on and interaction between the program and a printer and plotter will be possible. Modula-2 is more suitable for scientific programs than Pascal, an exponential operation is included. Some problems may be encountered in transferring the parachute design program to Modula-2, but in the long run this is the recommended course of action.

## Chapter 7

## Conclusions

In addition to the detailed conclusions stated in section 5.10 the following general conclusions are drawn.
(i)The parachute design program "paradesign" is a valuable time-saving device for a parachute design engineer.
(ii)The results presented in this thesis, obtained using the design program, have been shown to compare well with manufacturer's proposals. Some manufacturer's inconsistencies have been exposed.
(iii)Expansion of the program is essential to keep it up to date. More materials data are required, this can easily be obtained. Improved interaction with a printer and plotter, in order to enhance presentation of data generated $\partial y$ the program to the user, is required. However expansion is limited by the operating system used. In order to use the program to its full potential transferring it from Pascal to the new computer language Modula-2 is recommended.
(iv)In its present state the program is of limited use for complex parachutes, but improvement in this area, subject to the limits of (iii) above, is always possible.

## References

1.Johns,T.F. Parachute Design, R\&M 2402, HMSO, 1946.
2.Brown,W.D. Parachutes, Sir Isaac Pitman and Sons, London, 1951.
3.Solt,G.A.Jr. Performance of and Design Criteria for Deployable Aerodynamic Decelerators, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, ASD-TR-67-799, December 1963.
4.Ibrahim, S.K. An Overview of Munition Decelerator Tchnology with Recent Applications at Honeywell, AIAA 8th Aerodynamic Decelerator and Balloon Technology Conference, Hyannis, 1984.
5. Pepper, W.B. and Maydew,R.C. Aerodynamic Decelerators - An Engineering Review, AIAA Journal of Aircraft Vol.8, No.1, January 1971.
6.Dennis,D.R. Recent Advances in Parachute Technology, R.Ae.S. Aeronautical Journal, November 1983.
7.DeWeese,J.H. and McCarty,R.E. Parachute Design and Performance Databank, Air Force Flight Dynamics Laboratory, AFFDL-TR-74-45, January 1975.
8.Bozack,J. Computerized Parachute Data Base System, Aerosystems Department, Naval Weapons Center, China Lake, California, Survival and Flight Equipment Association, 20th Symposium, Las Vegas, 1982.
9.Ewing,E.W., Bixby,H.W. and Knacke,T.W. Recovery Systems Design Guide, Irvin Industries Inc., California, Technical Report AFFDL-TR-78-151, December 1978.
10.Pinnel,W.R. Materials and Design Criteria for Kevlar-29 Ribbon Parachutes, Air Force Wright Aeronautical Laboratories, Wright Patterson Air Force Base, Ohio, April 1982.
11.Knacke,T.W. Parachute Systems Technology, Lecture Notes From Helmut G. Heinrich Short Course on Parachute Systems Technology, University of Minnesota, July 1982. (unpublished)
12. Clark,R. et al UCSD p-system and UCSD Pascal. A Product for Mini- and Micro- Computers Version IV.O. User's Manual, SofTech Microsystems Inc., San Diego, Second Edition, January 1981.
13. Bowles,K.L. Beginner's Guide for the UCSD Pascai System, Byte Books, 70 Main Street, Peterborough, 1980.
14. Chadderton, T. Technical Report on Balloon Trials on a Cruciform Parachute for the $X$-RAE2 RPV, GQ Defence Equipment Ltd., Woking, Surrey, GQ TR 85503, March 1985.
15. Houghton, E.L. and Brock,A.E. Aerodynamics for Engineering Students, Edward Arnold Ltd., London.
16.0'Hara, F. Notes on the Opening Behaviour and the Opening Forces of Parachutes, Journal of the Royal Aeronautical Society, Vol. 53, 1949.
17.Heinrich,H.G. A Linearised Theory of Parachute Opening Dynamics, University of Minnesota, Minneapolis, Aeronautical Journal, Vol 76, 1972..
18.Roberts,B.W. and Reddy,K.R. A Discussion of Parachute Inflation Theories, American Institute of Aeronautics and Astronautics, 5th Decelerator Systems Conference, Albuquerque, New Mexico, November 1975.
19. Purvis,J.W. Theoretical Analysis of Parachute Inflation Including Fluid Kinetics, Journal of Aircraft, Vol. 19, No. 4, April 1982.
20.Lingard,J.S. A Semi-empirical Theory to Predict the Load-time History of an Inflating Parachute, Royal Aircraft Establishment Technical Report 79141, November 1979.
21. Wolf,D. A Simplified Model of Parachute Inflation, Sandia Laboratories, Albuquerque, New Mexico, 1973.
22.Pflanz,E. Retarding Forces During Unfolding of Cargo Parachutes, ATI 20126, United States Air Force Translation of German Report FGZ 331, September 1943.
23. Scheubel, F.N. Notes on the Opening Shock of a Parachute, Foreign Exploitation Section, Intelligence (T-2), Progress Report IRE-65, 1946.
24.Schatzle,P.R. and Curry,W.H. Flight-Simulation of a Vehicle With a Two Stage Parachute System, Sandia Laboratories Albuquerque, New Mexico, 1979.
25. Houmard,J.E. Stress Analysis of the Viking Parachute, AIAA Paper no. 73-444, AIAA Decelerator Systems Conference, Palm Springs, California, May 1973.
26.Mullins,W.M. and Reynolds,D.T. Stress Analysis of Spacecraft Parachutes Using Finite Elements and Large Deformation Theory, AIAA Paper no. 70-1195, AIAA Decelerator Systems Conference, Dayton, Ohio, September 1970.
27.Garrard,W.L. and Muramoto,K.K. Use of CANO for Stress Analysis in Ribbon Parachutes, Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, 1982.
28.Konicke,T.A. and Garrard,W.L. Stress Measurements in a Ribbon Parachute Canopy During Inflation and at Steady State, AIAA Paper no. 81-1944, AIAA Aerodynamic Decelerator and Balloon Technology Conference, San Diego, California, 1981.
29.Wu,K.-Y. A Method of Stress and Shape Calculation of a Ribbon Parachute, University of Minnesota, Minneapolis, 1984.
30.Payne, P.R. The Theory of Fabric Porosity as Applied to Parachutes in Incompressible Flow, Payne Inc., Annapolis, USA, Aeronautical Quarterly, Vol 29, August 1978.
31.Tory,C. and Ayres,R. Computer Model of a Fully Deployed Parachute, AIAA Journal of Aircraft, Vol 14, No. 7, July 1977.
32. Yavuz, T. Aerodynamics of Parachutes and Like Bodies in Unsteady Motion, PhD Thesis, University of Leicester, 1982.
33.Jailer,R.W. et al. Analysis of Heavy-Duty Parachute Reliability, WADD Technical Report 60-200, American Power Jet Company, Ridgefield, New Jersey, June 1960.
34.Resnikoff and Lieberman Tables of the Non-Central t-Distribution, Stanford University Press, Stanford, California, 1957.
35.Higgins,D. Designing Structured Programs, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1983.
36. Stephens,D. Proposal for X-RAE2 R.P.V. Parachute Recovery System, GQ Defence Equipment Limited, Woking, Surrey, November 1984.
37.Stephens,D. Technical Proposal for A.E.L. Sparrowhawk and Snipe Mk. 3 R:P.V. Parachute Recovery System, GQ Defence Equipment Limited, Woking, Surrey, GQ TR 85511, April 1985.
38.Stephens,D. Technical Proposal for Stokvis La Bree Mail Dropping Parachute System, $\mathrm{G}_{Q}$ Defence Equipment Limited, Woking, Surrey, GQ TR 85522, September 1985.
39. Hirst, D. Proposal for a Parachute for the Plessey SSQ 954 Sonobody, GQ Defence Equipment Limited, Woking, Surrey, GQ TR 86502, January 1986.
40.Lingard,J.S. Design Study for $G Q$ Experimental Parachute Type 3000, GQ Defence Equipment Limited, Woking, Surrey, July 1983.
41.Knepley, E. and Platt,R. Modula-2 Programming, Reston Publishing Company Inc., Reston, Virginia, 1985.

## Appendix A

## Types of Parachute

In this appendix each type of parachute used in the parachute design. program is considered. Canopy weight calculations are given and the input data required for the "paradesign" computer program is listed.

## A. 1 Type 1 - Flat Circular Parachute


inflated
profile
gore
layout


Fiqure A. 1 Flat Circular Canopy Confiquration
gore angle $\beta=360 / \mathrm{N}$ degrees

## A.1.1 Canopy Weight Calculations

From reference 9, gore height $\mathrm{h}_{\mathrm{S}}=\left(\mathrm{S}_{\mathrm{a}} /(\mathrm{N} \tan (\beta / 2))^{1 / 2}\right.$
(A.1)(1006)
and maximum gore width:

$$
\mathrm{e}_{\mathrm{s}}=2 \mathrm{~h}_{\mathrm{s}} \tan (\beta / 2)
$$

(A. 2 )(1007)

The vent constructed area:

$$
\begin{gathered}
S_{v}=v_{x} \cdot S_{0} / 100(A .3)(1042,1045,1049,1201,1225,1250,1293, \\
1613,1654,1681,1770,1797)
\end{gathered}
$$

where $v_{x}$ is the vent area as a percentage of $S_{0}$. Gore height from the skirt to the vent:

$$
h_{g}=h_{s}-\left(S_{v} /(N \tan (\beta / 2))^{1 / 2} \quad(A .4)(1202,1046)\right.
$$

If $N P$ is the number of fabric panels per gore then $h_{g} / N P+$ 0.05 is the maximum panel width for use in fabric selection (section 3.11.1), and the gore width at the largest panel:
gore width $e(1)=e_{s}-2 h_{g} \tan (\beta / 2) / N P$
To allow for sewing 25 mm is added to all fabric dimensions. Therefore the area of the largest panel in the gore:

$$
\begin{equation*}
\operatorname{area}(1)=\left(\left(e(1)+e_{s}+0.1\right) / 2\right)\left(\left(h_{g} / N P\right)+0.05\right) \tag{A.6}
\end{equation*}
$$

if $N P$ is not equal to 1 then:

$$
\begin{equation*}
e(2)=e(1)-2 h_{g} \tan (\beta / 2) / N P \tag{A.7}
\end{equation*}
$$

and $\operatorname{area}(2)=((e(2)+e(1)+0.1) / 2)\left(h_{g} / N P+0.05\right)$
equations A.7 and A. 8 are repeated to give gore widths to $e(N P)$ and fabric panel areas to area(NP). Then the total fabric area ( $\mathrm{m}^{2}$ ):

$$
\text { TOF }=N \sum_{x=1}^{N P} \operatorname{area}(x)
$$

(A.9)(1207, 1623)

WTF is the fabric material weight ( $\mathrm{gm} / \mathrm{m}^{2}$ ), the total fabric weight (kg):

$$
\mathrm{WF}=\mathrm{TOF} \cdot \mathrm{WTF} / 1000 \quad(\mathrm{~A} .10)(1209,1624)
$$

200 mm is added to the length of each rigging line and each radial tape for attachment purposes. And if WTL is the rigging line cord weight ( $\mathrm{m} / \mathrm{kg}$ ), the total line length ( m ) and weight (kg):

```
TOL = z(le + 0.2) (A.11)(1210,1238,1268,1625,1644,1662,
 1736,1758,1782,1815,1837)
```

WL $=$ TOL/WTL (A.12)(1211, 1239, 1269, 1626, 1645, 1663, 1737,
1759,1783,1816,1838)

If WTT is the tape weight ( $\mathrm{gm} / \mathrm{m}$ ), the total tape length ( m ) and weight (kg):

```
TOT =N((hg}/\operatorname{cos}(\beta/2))+0.2
WT = TOT.WTT/1000 (A.14)(1213,1665,1739,1818)
```

200 mm is also added to the lengths of the skirt band, vent band, and reinforcing band. RPN is the number of the fabric panel below the reinforcing band. If WTR is the reinforcing material weight ( $\mathrm{gm} / \mathrm{m}$ ), length ( m ) and weight ( kg ) of the reinforcing:

$$
\begin{array}{ll}
T R=N . e(R P N)+0.2 & (A .15)(1217,1632) \\
W R=T R \cdot W T R / 1000 & (A .16)(1218,1633)
\end{array}
$$

WTVB is the weight of the vent band material ( $\mathrm{gm} / \mathrm{m}$ ). .Total vent band length (m) and weight (kg):

```
TVB = N.e(NP) + 0.2
 (A.17)(1219)
WVB = TVB.WTVB/1000
(A. 18) (1220)
```

WTSB is the skirt band material weight (gm/m). Total skirt band length ( m ) and weight (kg):

$$
\begin{gathered}
T S B=N \cdot e_{S}+0.2(A .19)(1221,1246,1276,1636,1669,1743 \\
1766,1790,1823)
\end{gathered}
$$

$$
\begin{gathered}
W S B=\text { TSB.WTSB } / 1000(\text { A.20) }(1222,1247,1277,1637,1670 \\
1744,1767,1791,1824)
\end{gathered}
$$

200 mm is also added to each vent line, for attachment purposes. WTVL is the vent line material weight (m/kg), total vent line length ( m ) and weight (kg):

$$
\begin{align*}
& \text { TOVL } \left.=\mathrm{N}\left(\left(\mathrm{~h}_{\mathrm{S}}-\mathrm{h}_{\mathrm{g}}\right) / \cos (\beta / 2)\right)+0.2\right)  \tag{A.21}\\
& \text { WVL }=\text { TOVL } / \text { WTVL }
\end{align*} \quad(\mathrm{A} .22)(1224,1672,1747,1826), ~ l
$$

Total parachute weight, WTOT, is the sum of the component weights:

$$
\begin{array}{r}
W T O T=W F+W L+W T+W R+W V B+W S B+W V L(A .23)(1640, \\
1794,1827)
\end{array}
$$

## A.1.2 Inputs Required for the Computer Program

The inputs required are:
(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NP, the number of fabric panels per gore.


Fiqure A. 2 Conical Parachute Confiquration
$\mu$ is the canopy constructed cone angle. From reference 9:
gore angle $\beta=2 \sin ^{-1}(\sin (180 / N) \cos \mu) \quad(A .24)(1005,1651)$

## A.2.1 Parachute Weight

This is calculated as for the flat circular parachute using equations A. 1 to A. 23.

## A. 2. 2 Inputs Required for the Computer Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NP, the number of fabric panels per gore.
(iii) $\mu$, the canopy constructed cone angle.


Eiqure A. 3 Bi-Conical Parachute Confiquration

## key:

$\mu 1$ and $\mu_{2}\left(>\mu_{1}\right):$ the constructed cone angles, $h_{1} / h_{2}(=k)$ : the ratio of the gore heights.

## A.3.1 Canopy Weight Calculation

## Gore angles:

$$
\begin{aligned}
& \beta_{1}=2 \sin ^{-1}\left(\sin (180 / N) \cos \mu_{1}\right) \\
& \beta_{2}=2 \sin ^{-1}\left(\sin (180 / N) \cos \mu_{2}\right)
\end{aligned}
$$

(A.25)(1009)
(A. 26 ) (1010)
and the gore heights:

$$
\begin{gather*}
h_{2}=\left(S_{0} /\left(N \left(k^{2} \tan \left(\beta_{1} / 2\right)+\tan \left(\beta_{2} / 2\right)\right.\right.\right. \\
\left.\left.\left.+2 k \tan \left(\beta_{1} / 2\right)\right)\right)\right)^{1 / 2} \tag{A.27}
\end{gather*}
$$

$$
\begin{equation*}
h_{1}=k h_{2} \tag{A.28}
\end{equation*}
$$

maximum gore width:

$$
\begin{equation*}
e_{s}=2 h_{1} \tan \left(\beta_{1} / 2\right)+2 h_{2} \tan \left(\beta_{2} / 2\right) \tag{A.29}
\end{equation*}
$$

The vent constructed area is calculated from equation A.3. Then the gore height up to the vent:

$$
h_{1 g}=h_{1}-\left(S_{v} /\left(N \tan \left(\beta_{1} / 2\right)\right)\right)^{1 / 2} \quad(A .30)(1226,1251)
$$

gore width $e_{1}=2 h_{1} \tan \left(\beta_{1} / 2\right)$
(A. 31 ) $(1227,1252)$

NLP is the number of fabric panels in the lower part of the gore and NUP the number of panels in the upper part of the gore. Lower gore width and the largest panel area, including sewing allowance:

$$
\begin{align*}
& e_{B}(1)=e_{S}-2 h_{2} \tan \left(\beta_{2} / 2\right) / N L P  \tag{1228}\\
& \operatorname{area}_{B}(1)=\left(\left(e_{B}(1)+e_{S}+0.1\right) / 2\right)\left(h_{2} / N L P+0.05\right) \tag{A.33}
\end{align*}
$$

If NLP is not equal to 1 then:

$$
\begin{aligned}
& e_{B}(2)=e_{B}(1)-2 h_{2} \tan \left(\beta_{2} / 2\right) / N L P \quad(A .34)(1230) \\
& \operatorname{area}_{B}(2)=\left(\left(e_{B}(2)+e_{B}(1)+0.1\right) / 2\right)\left(h_{2} / N L P+0.05\right) \\
& (A .35)(1231)
\end{aligned}
$$

Equations A. 34 and A. 35 are repeated to $e_{B}$ (NLP) and $\operatorname{area}_{\mathrm{B}}$ (NLP). Similarly for the upper part of the gore, width and panel area:

$$
\begin{aligned}
& e_{T}(1)=e_{1}-2 h_{1 g} \tan \left(\beta_{1} / 2\right) / \text { NUP }(A .36)(1232,1262,1295) \\
& \operatorname{area}_{\mathrm{T}}(1)=\left(\left(e_{T}(1)+e_{1}+0.1\right) / 2\right)\left(h_{1 g} / \operatorname{NUP}+0.05\right) \quad(A .37) \\
& (1233,1263,1296)
\end{aligned}
$$

If NUP, the number of upper gore panels is not equal to 1 then:

$$
\begin{aligned}
& e_{T}(2)=e_{T}(1)-2 h_{1_{g}} \tan \left(\beta_{1} / 2\right) / N U P(A .38)(1234,1264, \\
& 1297) \\
& \text { area }_{T}(2)=\left(\left(e_{T}(2)+e_{T}(1)+0.1\right) / 2\right)\left(h_{1 g} / N U P+0.05\right) \\
& (\text { A. } 39)(1235,1265,1298)
\end{aligned}
$$

equations A.38 and A.39 are repeated to $e_{T}$ (NUP) and area $_{T}$ (NUP). The total fabric area $\left(\mathrm{m}^{2}\right)$ :

$$
\text { TOF }=\sum_{x=1}^{\text {NLP }} \operatorname{area}_{B}(x)+\sum_{x=1}^{\text {NUP }} \operatorname{area}_{T}(x) \quad(A .40)(1236,1299)
$$

WTF is the fabric material weight $\left(\mathrm{gm} / \mathrm{m}^{2}\right)$, so the fabric weight (kg):

$$
W F=T O F \cdot W T F / 1000
$$

(A. 41 ) (1237, 1300)

Rigging line and skirt band weights are taken from equations A. 11, A. 12, A. 19 and A. 20.

The radial tape material weight is WTT (gm/m), so the total length (m) and weight (kg) of the tapes:

$$
\begin{align*}
& \text { TOT }=N\left(h_{1 g} / \cos \left(\beta_{1} / 2\right)+h_{2} / \cos \left(\beta_{2} / 2\right)+0.2\right)(A .42)(1240) \\
& \text { WT }=\text { TOT.WTT } / 1000 \tag{A.43}
\end{align*}
$$

The canopy reinforcing band (if present) is assumed to be at width $e_{1}$ of the gore, the join between the wide and narrow parts. If $W T R$ is the reinforcing tape material weight, ( $g \mathrm{~m} / \mathrm{m}$ ), then the total reinforcing length ( m ) and weight (kg) :

$$
T R=N \cdot e_{1}+0.2
$$

$$
(\text { A. } 44)(1242,1603)
$$

$$
W R=T R \cdot W T R / 1000
$$

(A. 45 ) (1243, 1604)

WTVB is the vent band material weight ( $\mathrm{gm} / \mathrm{m}$ ). Vent band length ( m ) and weight (kg):

$$
\begin{array}{ll}
\mathrm{TVB}=\mathrm{N} \cdot \mathrm{e}_{\mathrm{T}}(\mathrm{NOP})+0.2 & (\mathrm{~A} .46)(1244,1274,1607) \\
\mathrm{WVB}=\mathrm{TVB} \cdot \mathrm{WTVB} / 1000 & (\mathrm{~A} .47)(1245,1275,1608)
\end{array}
$$

WTVL is the weight of the vent line ( $\mathrm{m} / \mathrm{kg}$ ). Vent line length ( m ) and weight ( kg ):

$$
\text { TOVL }=N\left(\left(h_{1}-h_{1 g}\right) / \cos \left(\beta_{1} / 2\right)+0.2\right) \quad(A .48)(1248,1278,
$$

WVL $=$ TOVL/WTVL
(A.49)(1249,1279,1612)

The total canopy weight can now be calculated using equation A. 23 .

## A. 3.2 Inputs Required for the Computer Program

The inputs required for the bi-conical parachute are:
(i) $v_{x}$, vent area as a percentage of total canopy area, $S_{0}$.
(ii)Canopy constructed cone angles, $\mu_{1}$ and $\mu_{2}$.
(iii) The gore height ratio, $h_{1} / h_{2}(=k)$.
(iv)NUP and NLP, the number of upper and lower fabric panels per gore.
A. 4 Type 4 - Tri-Conical Parachute

inflated profile

gore
layout

construction
schematic

## Fiqure A. 4 Tri-Conical Parachute Confiquration

key:

$$
k_{1}=h_{1} / h_{2}, \begin{aligned}
& \mu_{1}, \mu_{2}, \mu_{3}-\text { constructed cone angles. } \\
& k_{2}=h_{3} / h_{2}-\text { gore height ratios. } \\
& \beta_{1}, \beta_{2}, \beta_{3}-\text { gore angles. }
\end{aligned}
$$

## A.4.1 Canopy Weight Calculation

Gore angles:

$$
\begin{align*}
& \beta_{1}=2 \sin ^{-1}\left(\sin (180 / N) \cos \mu_{1}\right)  \tag{A.50}\\
& \beta_{2}=2 \sin ^{-1}\left(\sin (180 / N) \cos \mu_{2}\right)  \tag{A.51}\\
& \beta_{3}=2 \sin ^{-1}\left(\sin (180 / N) \cos \mu_{3}\right) \tag{1017}
\end{align*}
$$

gore heights:

$$
\begin{align*}
h_{2}= & \left(S_{0} /\left(N \left(\tan \left(\beta_{1} / 2\right)\left(k_{1}^{2}+2 k_{1}+2 k_{1} k_{2}\right)\right.\right.\right. \\
& \left.\left.\left.+\tan \left(\beta_{2} / 2\right)\left(1+2 k_{2}\right)+\tan \left(\beta_{3} / 2\right) k_{2}^{2}\right)\right)\right)^{1 / 2} \quad \begin{array}{l}
\text { (A.53) } \\
(1018)
\end{array}  \tag{A.53}\\
h_{1}= & k_{1} h_{2} \quad \text { (A.54)(1019) } \\
h_{3}= & k_{2} h_{2} \quad \text { (A.55)(1020) }
\end{align*}
$$

and maximum gore width:

$$
e_{s}=2 h_{1} \tan \left(\beta_{1} / 2\right)+2 h_{2} \tan \left(\beta_{2} / 2\right)+2 h_{3} \tan \left(\beta_{3} / 2\right)
$$

(A.56)(1021)

The vent constructed area is calculated from equation A. 3 .
Gore height $h_{1 g}$ and width $e_{1}$ from equations A. 30 and A. 31. Gore width:

$$
\begin{equation*}
e_{2}=2 h_{2} \tan \left(\beta_{2} / 2\right)+e_{1} \tag{A.57}
\end{equation*}
$$

The gore is split into three parts and: NLP - number of lower panels, NMP - number of middle panels, NUP - number of upper panels. Lower gore widths and panel areas, including sewing allowance, are calculated as follows:

$$
\begin{align*}
& e_{B}(1)=e_{S}-2 h_{3} \tan \left(\beta_{3} / 2\right) / N L P \\
& \operatorname{area}_{B}(1)=\left(\left(e_{B}(1)+e_{S}+0.1\right) / 2\right)\left(h_{3} / N L P+0.05\right)
\end{align*}
$$

if NLP is not equal to 1 ,

$$
\begin{align*}
& e_{B}(2)=e_{B}(1)-2 h_{3} \tan \left(\beta_{3} / 2\right) / N L P \\
& \operatorname{area}_{B}(2)=\left(\left(e_{B}(2)+e_{B}(1)+0.1\right) / 2\right)\left(h_{3} / N L P+0.05\right)( \tag{A.61}
\end{align*}
$$

A. 60 and A. 61 are repeated to $e_{B}$ (NLP) and area (NLP). Middle gore widths and fabric areas:

$$
\begin{align*}
& e_{M}(1)=e_{2}-2 h_{2} \tan \left(\beta_{2} / 2\right) / N M P \quad(A .62)(1258) \\
& \operatorname{areaM}(1)=\left(\left(e_{M}(1)+e_{S}+0.1\right) / 2\right)\left(h_{2} / N M P+0.05\right) \tag{1259}
\end{align*}
$$

if NMP is not equal to 1 then:

$$
\begin{aligned}
& e_{M}(2)=e_{M}(1)-2 h_{2} \tan (\beta 2 / 2) / N M P \quad(A .64)(1260) \\
& \operatorname{area}_{M}(2)=\left(\left(e_{M}(2)+e_{M}(1)+0.1\right) / 2\right)\left(h_{2} / N M P+0.05\right) \\
& (A .65)(1261)
\end{aligned}
$$

A. 64 and A. 65 are repeated to $e_{M}$ (NMP) and area (NMP). The top gore widths and panel areas are calculated as for the Bi-conical parachute, equations A. 36 to A.39. and if WTF is the fabric material weight $\left(\mathrm{gm} / \mathrm{m}^{2}\right)$, the total fabric area $\left(\mathrm{m}^{2}\right)$ and weight ( kg ) is:

$$
\begin{equation*}
\left.T O F=N \sum_{x=1}^{N L P} \operatorname{area}_{B}(x)+\sum_{x=1}^{\text {NMP }} \text { area }_{M}(x)+\sum_{x=1}^{N U P} \text { area }_{T}(x)\right) \tag{A.66}
\end{equation*}
$$

$$
\begin{equation*}
W F=T O F \cdot W T F / 1000 \tag{A.67}
\end{equation*}
$$

The weights of the rigging lines, vent band, vent lines, and skirt band are calculated as for the bi-conical parachute, section A.3.2. If WTT is the weight of the radial tapes ( $\mathrm{gm} / \mathrm{m}$ ), then length ( m ), including a sewing allowance, and weight (kg) of the tapes:

$$
\begin{align*}
& \text { TOT }=N\left(h_{1 g} / \cos \left(\beta_{1} / 2\right)+h_{2} / \cos \left(\beta_{2} / 2\right)+h_{3} / \cos \left(\beta_{3} / 2\right)\right. \\
&+0.2)  \tag{A.68}\\
&(A .68)(1)
\end{align*}
$$

$\mathrm{WT}=\mathrm{TOT} . \mathrm{WTT} / 1000$
(A.69)(1271)

The canopy reinforcing is assumed to lie on gore widths $e_{1}$
and $e_{2}$, WTR is the weight ( $g \mathrm{~m} / \mathrm{m}$ ) of the reinforcing material, so total reinforcing length (m) and weight (kg):

$$
\begin{aligned}
& T R=N\left(e_{1}+e_{2}\right)+0.4 \\
& \text { WR }=T R . W T R / 1000
\end{aligned}
$$

The total parachute weight is taken from equation A. 23.

## A.4.2 Inputs Required for the Parachute Desion Program

The inputs required for the tri-conical parachute are:
(i) $v_{x}$, the vent area as a percentage of total canopy area, $S_{0}$.
(ii) Constructed cone angles $\mu_{1}, \mu_{2}$, and $\mu_{3}$.
(iii) Gore height ratios $h_{1} / h_{2}\left(=k_{1}\right)$ and $h_{3} / h_{2}\left(=k_{2}\right)$.
(iv)NUP, NMP and NLP, the number of fabric panels in each part of the gore.

## A. 5 Type 5 - Extended Skirt 10\% Flat Parachute


inflated
profile
construction
schematic

Eiqure A. 5 Extended Skirt Canopy Confiquration
gore angle: $\quad \beta_{1}=360 / \mathrm{N}$ degrees

## A.5.1 Canopy Weight Calculation

From reference 9
gore height $h_{1}=0.858\left(S_{0} /\left(N \tan \left(\beta_{1} / 2\right)\right)\right)^{1 / 2}$
maximum gore width $e_{1}=2 h_{1} \tan \left(\beta_{1} / 2\right)$
(A.73)

$$
\begin{aligned}
& e_{s}=0.81 e_{1} \\
& h_{2}=0.2 h_{1}
\end{aligned}
$$

$$
(A .74)(1281)
$$

$$
\text { (A. } 75 \text { ) (1282) }
$$

$$
\begin{equation*}
\theta_{x}=\tan ^{-1}\left(\left(e_{1}-e_{s}\right) /\left(2 h_{2}\right)\right) \tag{1283}
\end{equation*}
$$

NLP is the number of lower panels, i.e. the number of fabric panels in the extended skirt. NUP is the number of upper gore panels. In the skirt, gore widths and areas are calculated as follows:

$$
\begin{align*}
& e_{B}(1)=e_{S}+2 h_{2} \tan \theta_{x} / N L P \\
& \operatorname{area}_{B}(1)=\left(\left(e_{B}(1)+e_{S}+0.1\right) / 2\right)\left(h_{2} / N L P+0.05\right)(1290) \tag{1290a}
\end{align*}
$$

if NLP is not equal to 1 then:

$$
\begin{aligned}
& e_{B}(2)=e_{B}(1)+2 h_{2} \tan _{x} / N L P \quad(A .79)(1291) \\
& \operatorname{area}_{B}(2)=\left(\left(e_{B}(2)+e_{B}(1)+0.1\right) / 2\right)\left(h_{2} / N L P+0.05\right) \\
& (A .80)(1292)
\end{aligned}
$$

A. 79 and A. 80 are repeated to $e_{B}$ (NLP) and area $A_{B}$ (NLP). The vent area, $S_{v}$, and gore height to the vent, $h_{1 g}$, are obtained from equations A. 3 and A.30. Then the upper fabric areas and gore widths, plus the total fabric area and weight, are obtained using the same method as that used for the bi-conical parachute: equations A. 36 to A. 41 .

The weights of the reinforcing, rigging lines, vent band, skirt band, and vent lines are obtained from equations A.44, A.45, A11, A12, A46, A47, A19, A20, A48 and A.49. The weight of the radial tapes is $W T T \mathrm{gm} / \mathrm{m}$, tape length ( m ) and weight (kg) :

$$
\begin{align*}
& \text { TOT }=N\left(h_{1_{g}} / \cos \left(\beta_{1} / 2\right)+h_{2} / \cos \theta_{x}+0.2\right)  \tag{A.81}\\
& W T=T O T . W T T / 1000 \tag{1602}
\end{align*}
$$

finally, the total canopy weight is obtained from equation A. 23 .

## A.5.2 Inputs Required for the "paradesiqn" Computer Program

(i) $v_{x}$, the vent area as a percentage of total canopy area, $S_{0}$.
(ii)NUP and NLP, the number of upper gore panels and the number of lower (skirt) panels.
A. 6 Type 6 - Extended Skirt $14.3 \%$ Full Parachute


Figure A. 6 Full Extended Skirt Canopy Configuration
gore angle: $\beta_{1}=360 / \mathrm{N}$ degrees

## A.6.1 Canopy Weight Calculation

From reference 9, the maximum gore width:

$$
e_{1}=0.81 D \sin (180 / N)
$$

(A.83)(1026)

Also from reference 9:

$$
\begin{array}{ll}
h_{1}=0.405 D \cos \left(\beta_{1} / 2\right) \\
e_{s}=e_{1} l_{e} /\left(l_{e}+0.116 \mathrm{D}\right) & (A .84) \\
h_{2}^{\prime}=0.116 D \\
\theta_{x}=\sin ^{-1}\left(\left(e_{1}-e_{S}\right) /\left(2 h_{2}^{\prime}\right)\right) & (A .86)(1287) \\
h_{2}=h_{2}^{\prime} \cos _{x} & (A .87)(1288)
\end{array}
$$

The canopy weight calculation is now the same as that for the flat extended skirt parachute, section A.5.2, starting with equation A. 77 .

## A.6.2 Inputs Reguired for the Computer Program

(i) $v_{x}$, the vent area as a percentage of $S_{0}$, the total canopy area.
(ii)NLP and NUP, the number of lower (skirt) panels and the number of upper gore panels.


Eiqure A. 7 Hemispherical Parachute Confiquration

## A.7.1 Canopy Weight Calculation

From reference 9, the maximum gore width:

$$
\begin{equation*}
e_{s}=0.7 \mathrm{D} \pi / \mathrm{N} \tag{A.89}
\end{equation*}
$$

The canopy vent area is calculated using equation A.3. Then the vent diameter, $D_{v}$, and the gore width at the vent, $e_{v}$, are calculated as follows:
$D_{v}=\left(2 S_{v} / \pi\right)^{1 / 2}$
(A. 90 ) (1050, 1614, 1682)
$e_{v}=\pi D_{v} / N$
(A.91)(1615,1683)
and the gore heights:

$$
\begin{align*}
& h_{s}^{\prime}=\pi 0.7 \mathrm{D} / 4  \tag{A.92}\\
& \mathrm{~h}_{\mathrm{g}}^{\prime}=\mathrm{h}_{\mathrm{s}}^{\prime}-\mathrm{D}_{\mathrm{v}} / 2 \tag{A.93}
\end{align*}
$$

If $N P$ is the number of fabric panels per gore, then the gore width at, and the area of, the largest panel, including sewing allowance, can be approximated as:

$$
\begin{align*}
& e(1)=\left(e_{v}-e_{s}\right) / N P+e_{s}  \tag{1619}\\
& \operatorname{area}(1)=\left(e_{s}+e(1)+0.1\right)\left(h_{g}^{\prime} / N P+0.05\right) / 2 \tag{A.95}
\end{align*}
$$

if NP is not equal to 1 then the gore widths and the areas of all panels in the gore (e(2) to $e(N P)$, area(2) to area(NP)) can be calculated from equations A.96 and A.97, where $n$ is the panel number.

$$
\begin{align*}
& e(n)=\left(e_{v}-e_{s}\right) n / N P+e_{s}  \tag{1620}\\
& \operatorname{area}(n)=(e(n-1)+e(n)+0.1)\left(h_{9}^{\prime} / N P+0.05\right) / 2 \tag{A.97}
\end{align*}
$$

The total fabric area and weight is calculated as for the flat circular parachute, equations A.9 and A.10. Also the weight of the skirt band, reinforcing band, and rigging lines are calculated as for the flat circular parachute (equations A. 19 , A. 20 , A. 15 , A. 16 , A. 11 and A. 12).

WTT is the radial tape weight ( $g m / m$ ). Total length ( $m$ ) and weight ( kg ) of the radial tapes:

$$
\begin{array}{ll}
\text { TOT }=\mathrm{N}\left(\mathrm{~h}_{\mathrm{s}}^{\prime}+0.2\right) & \text { (A.98)(1627) } \\
\text { WT }=\text { TOT } \cdot \mathrm{WTT} / 1000 & \text { (A.99)(1628) }
\end{array}
$$

WTVB is the vent band weight ( $\mathrm{gm} / \mathrm{m}$ ). The total length ( m ) and weight ( kg ) of the vent band:

$$
\begin{array}{ll}
\text { TVB }=N \cdot e_{v}+0.2 & (\text { A. 100)(1634) } \\
W V B=T V B \cdot W T V B / 1000 & (A .101)(1635)
\end{array}
$$

WTVL is the weight of the vent line material (m/kg). The total length (m) and weight (kg) of the vent line is:

$$
T O V L=N\left(D_{v} / 2+0.2\right)
$$

$$
(\text { A. } 102)(1638)
$$

WVL = TOVL/WTVL
(A. 103 ) (1639)

The total canopy weight is the sum of the weights of its components, equation A. 23.

## A.7.2 Inputs Required for the "paradesian" Computer Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NP, the number of fabric panels per gore.

## A. 8 Type 11 - Cruciform Parachute


$\begin{array}{ll}\text { inflated } & \text { plan } \\ \text { shape } & \text { view }\end{array}$

## Figure A. 8 Cruciform Canopy Configuration

## A.8.1 Canopy Weight Calculation

The maximum gore width (for use in canopy fabric selection, section 3.11 .1 ) is:

$$
\begin{equation*}
e_{s}=t_{c r u} / N \tag{A.104}
\end{equation*}
$$

The weight ( $\mathrm{gm} / \mathrm{m}^{2}$ ) of the canopy fabric is WTF. The total fabric area ( $\mathrm{m}^{2}$ ) and weight ( kg ) is:

$$
\begin{aligned}
& \text { TOF }= 4 N\left(e_{S}+0.05\right)\left(\left(d_{c r u}-N e_{S}\right) / 2+0.05\right) \\
&+N\left(e_{S}+0.05\right) N\left(e_{S}+0.05\right) \\
& W F= \text { TOF.WTF/1000 } \\
& \begin{aligned}
\text { WF } & \\
& \text { (A.105)(166)(1643) }
\end{aligned}
\end{aligned}
$$

The weight of the rigging lines, $W$, is calculated using the same method as used for the flat circular parachute, section A.1.1, equations A. 11 and A.12. The tape material weight
(gm/m) is WTT, the total tape length, including sewing allowance, and weight:

```
TOT = 2/2(d
WT = TOT.WTT/1000
(A. 108)(1647)
```

The total parachute weight:

$$
\text { WTOT }=W T+W L+W F \quad(A .109)(1648)
$$

As in many of the previous calculations the cruciform canopy weight is simple to determine, compared with the other canopy types available.

## A. 8. 2 Inputs Required for the Parachute Design Program

(i) The cruciform canopy arm ratio, $\mathrm{d}_{\mathrm{cru}} / \mathrm{t}_{\mathrm{cru}}$.


Fiqure A. 9 Flat Ribbon Parachute Confiquration

Key to Fiqure A. 9


## A.9.1 Canopy Weight Calculation

The maximum gore width, $e_{s}$, is calculated as for the flat circular parachute, section A.1.1, equations A. 1 and A.2. The vent constructed area, and the gore height, $h_{g}$, are
calculated using equations A. 3 and A.4. Then the ribbon widths:

$$
\begin{array}{ll}
e(1)=e_{S}-2(G W+H R W) \tan (\beta / 2) & (A .110)(1658) \\
e(2)=e(1)-2(G W+H R W) \tan (\beta / 2) & (A .111)(1659)
\end{array}
$$

equation A. 111 is repeated up to e(NHR-1). The total horizontal ribbon length (m) and weight (kg), taking WTHR as the horizontal ribbon material weight (g/m) are:

$$
\begin{equation*}
T H R=N \cdot e_{S}+0.2+\sum_{x=1}^{(N H R-1)}(N . e(x)+0.2) \tag{1660}
\end{equation*}
$$

WHR $=$ THR.WTHR/ 1000
(A. 113 ) (1661)

The weights of the rigging lines, radial tapes, skirt band and vent lines are calculated as for the flat circular parachute, section A.1.3, equations A. 11 to A. 14 and A. 19 to A. 22 .

NVT is the number of vertical tapes per gore, and TVT is their total length. If $N V T=0 \quad T V T=0$. If $N V T=1$ then $T V T=h_{g}+0.2$ (1667,1740a). If NVT is greater than 1 and odd then:

$$
\begin{equation*}
T V T=N\left(h_{g}+|(N V T / 2)| \cdot h_{g}+N V T 0.2\right) \tag{A.114}
\end{equation*}
$$

(1667a, 1741)
and if NVT is even then:

$$
T V T=\sum_{x=1}^{|N V T / 2|} 2\left(2 \times h_{g} /(N V T+1)+0.2\right) \quad(A .115)(1667 b, 1741 a)
$$

WTVT is the vertical tape material weight ( $\mathrm{g} / \mathrm{m}$ ) , weight of vertical tapes (kg):

$$
\mathrm{WVT}=\mathrm{TVT} \cdot \mathrm{WTVT} / 1000
$$

(A. 116 ) $(1668,1742)$

WTVB is the weight of the vent band material ( $\mathrm{gm} / \mathrm{m}$ ) , the vent band length and weight:
$T V B=N . e(N H R-1)+0.2$
(A. 117 ) (1673)

WVB $=$ TVB. WTVB/1000
(A. 118 ) (1674)
total ribbon parachute weight:

$$
W T O T=W V B+W V T+W H R+W L+W T+W S B+W V L \quad \text { (A.119) }
$$

## A.9.2 Inputs Required for the Parachute Design Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NHR, the number of horizontal ribbons.
(iii)NVT, the number of vertical tapes per gore.


Fiqure A. 10 Conical Ribbon Parachute Configuration
(see figure A. 9 for a key to ribbon parachutes)
$\mu$ is the canopy constructed cone angle. Gore angle $\beta$ is calculated as for the conical parachute, equation A. 24.

## A. 10.1 Canopy Weight Calculation

The canopy weight calculation is the same as for the flat ribbon parachute, section A.9.1.
A. 10.2 Inputs Reguired for the "paradesign" Parachute Design program
(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NHR, the number of horizontal ribbons.
(iii)NVT, the number of vertical tapes per gore.
(iv) $\mu$, the canopy constructed cone angle.


Eiqure A. 11 Hemisflo Parachute Confiquration
A.11.1 Canopy Weight Calculation

Reference 9 gives:
constructed diameter $D_{c}=\left(360 S_{0} /(210 \pi)\right)^{1 / 2}$
(A. 120) (1675)

$$
\begin{equation*}
e_{m a x}=\pi D_{c} / N \tag{A.121}
\end{equation*}
$$

and it can be deduced that:

$$
\begin{align*}
& e_{1}=\pi D_{c} \sin 75 / N \\
& h_{s}^{\prime}=0.9163 D_{c} \\
& h_{1}=6 h_{s}^{\prime} / 7 \tag{A.124}
\end{align*}
$$

$$
(\text { A. } 123)(1678)
$$

$$
\begin{aligned}
& h_{2}=h_{s}^{\prime} / 7 \\
& \theta_{x 2}=\sin ^{-1}\left(\left(e_{m a x}-e_{1}\right) / 2 h_{2}\right) \\
& \theta_{x 1}=\sin ^{-1}\left(e_{m a x} /\left(2 h_{1}\right)\right)
\end{aligned}
$$

The gore width at the vent, and the vent diameter can be calculated as for the hemispherical parachute, section A.7.2, equations A.3, A.90 and A.91. the gore height:

$$
\begin{equation*}
h_{g}=h_{1}-D_{v} / 2 \tag{1684}
\end{equation*}
$$

NHR is the number of horizontal ribbons. Starting at the bottom of the gore, ribbon widths:

$$
\begin{align*}
& e(1)=e_{1}+2 \text { HRW } \tan \theta_{x 2} \\
& e(2)=e(1)+2(H R W+G W) \tan _{x 2}
\end{align*}
$$

Equation A. 130 is repeated up to $e(n)$ which is equal to $e_{m a x}$. For the upper gore:

$$
\begin{align*}
& z z=h_{2} \cos \theta_{x 2}-n(H R W+(n-1) G W)  \tag{A.131}\\
& e(n+1)=e_{m a x}-2(G W-z z) \tan \theta x_{1} \\
& e(n+2)=e(n+1)-2(H R W-z z) \tan \theta_{x 1}
\end{align*}
$$

Equation A. 133 is repeated to e(NHR). WTHR is the weight ( $\mathrm{gm} / \mathrm{m}$ ) of the horizontal ribbons. The total horizontal ribbon length ( m ) and weight ( kg ) :

$$
\begin{equation*}
T H R=\sum_{x=1}^{\operatorname{NHR}}(N e(x)+0.2) \tag{A.134}
\end{equation*}
$$

$$
\begin{equation*}
\text { WHR }=\text { THR.WTHR } / 1000 \tag{1705}
\end{equation*}
$$

The weight of the lines is calculated as for the flat
circular parachute, equations A. 11 and A.12. The weights of the vent band and the vent lines are calculated as for the hemispherical parachute, equations A. 100 to A.103. The skirt band material weight ( $\mathrm{gm} / \mathrm{m}$ ) is WTSB. The total length ( m ) and weight (kg) of the skirt band:

$$
\begin{aligned}
& T S B=\mathrm{N} \cdot \mathrm{e}_{\mathrm{S}}+0.2 \\
& \mathrm{WSB}=\mathrm{TSB} \cdot \mathrm{WTSB} / 1000
\end{aligned}
$$

$$
\text { (A. } 136 \text { ) }(1719)
$$

$$
(\text { A. } 137)(1720)
$$

WTT is the weight of the radial tapes ( $\mathrm{gm} / \mathrm{m}$ ), the total tape length ( m ) and weight ( kg ):

$$
\begin{array}{ll}
\text { TOT }=N\left(h_{g}+h_{2}+0.2\right) & \text { (A.138)(1708) } \\
\text { WT }=\text { TOT } \cdot W T T / 1000 & \text { (A.139)(1709) }
\end{array}
$$

NVT is the number of vertical tapes per gore, and WTVT is the vertical tape material weight ( $\mathrm{gm} / \mathrm{m}$ ).

$$
\begin{equation*}
h_{g}^{\prime}=h_{g} \cos \theta_{x 1}+h_{2} \cos \theta_{x 2}+0.2 \tag{A.140}
\end{equation*}
$$

If NVT is 1 then TVT, the total length of the vertical tapes:

$$
\begin{equation*}
T V T=N\left(h_{g}^{\circ}+N V T 0.2\right) \tag{A.141}
\end{equation*}
$$

If NVT is greater than 1 and odd then:

$$
\begin{equation*}
T V T=N\left(h_{g}^{\prime}+|(N V T / 2)| h_{g}^{\prime}+N V T 0.2\right) \tag{1712}
\end{equation*}
$$

If NVT is even then:

$$
\begin{equation*}
\operatorname{TVT}=N\left(\sum_{x=1}^{|N V T / 2|}\left(2\left(x 2 h_{g}^{\prime}\right) /(N V T+1)\right)+N V T .0 .2\right. \tag{A.143}
\end{equation*}
$$

and: WVT $=$ TVT.WTVT/ 1000

$$
(\text { A. } 144)(1718)
$$

The total parachute weight is calculated from equation A. 119.

## A. 11.2 Inputs Required for the Parachute Design Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NHR, the number of horizontal ribbons.
(iii)NVT, the number of vertical tapes per gore.
A. 12 Type 16a - Flat Ringslot Parachute

inflated
shape

gore
details

construction
schematic
key
$\beta$ - gore angle (= 360/N degrees)
$e_{s}$ - maximum gore width
RW - ring width
GW - gap width
NR - number of rings
$D_{c}$ - constructed diameter
$D_{p}$ - flying diameter

## A.12.1 Canopy Weight Calculation

Using the methods of section A.1.1, flat circular parachute weight calculation, gore heights $h_{s}$ and $h_{g}$ and the maximum gore width, $e_{s}$ are calculated (equations A. 1 to A.4). The ring width:

$$
R W=\left(h_{g}-(N R-1) G W\right) / N R \quad(A .145)(1043,1047)
$$

Gore widths and ring areas, including sewing allowance:

$$
\begin{aligned}
& e(1)=e_{s}-2 R W \tan (\beta / 2) \\
& \operatorname{area}(1)=\left(e(1)+e_{S}+0.1\right)(R W+0.05) / 2 \quad \text { (A.147)(1730) } \\
& e(2)=e(1)-2 \mathrm{GW} \tan (\beta / 2) \\
& e(3)=e(2)-2 \mathrm{RW} \tan (\beta / 2) \\
& \operatorname{area}(2)=(e(3)+e(2)+0.1)(R W+0.05) / 2(A .150)(1733)
\end{aligned}
$$

Equations A. 148, A. 149 and A. 150 are repeated to e(2NR-2), e(2 NR - 1) and area(NR). WTF is the weight of fabric used for the rings ( $\mathrm{gm} / \mathrm{m}^{2}$ ). The total area ( $\mathrm{m}^{2}$ ) and weight ( kg ) of the rings is:

$$
\begin{array}{ll}
\text { TOF }=N\left(\sum_{X=1}^{N R} \operatorname{area}(x)\right) & \text { (A.151)(1734, 1756) } \\
W F=T O F \cdot W T F / 1000 & (A .152)(1735,1757)
\end{array}
$$

The weights of the rigging lines, radial tapes, skirt band and vent lines are calculated as for the flat circular parachute, section A.1.1, equations A. 11 - A.14, A. 19 - A. 22. The weight of the vertical tapes is calculated as for the ribbon parachute, section A.9.1, equations A. 114 to A. 116. WTVB is the vent band weight ( $\mathrm{gm} / \mathrm{m}$ ). The total length ( m ) and weight (kg) of the vent band:

$$
\begin{equation*}
\text { TVB }=\mathrm{N} \cdot \mathrm{e}(2 \mathrm{NR}-1)+0.2 \tag{1745}
\end{equation*}
$$

$W V B=T V B . W T V B / 1000$ (A. 154 ) (1746)

Finally the total canopy weight:

$$
W T O T=W V B+W S B+W V T+W T+W L+W F+W V L(A .155)(1749)
$$

## A. 12.2 Inputs Required for the "paradesign" Computer Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NR, the number of rings in the canopy.

key as in figure $A .12, \mu$ is the canopy constructed angle.

```
gore angle \beta=2 sin
```


## A.13.1 Canopy Weight Calculation

This calculation for the conical ringslot parachute is the same as that in section A.12.1 for the flat ringslot parachute.
A. 13.2 Inputs Required for the "paradesign" Computer Program
(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$
(ii)NR, the number of rings in the canopy.
(iii) $\mu$, the canopy constructed cone angle.
A. 14 Type 17 - Ringsail Parachute

inflated profile

gore layout

construction schematic

## A.14.1 Parachute Weight Calculation

From reference 9,
gore height $h_{s}=0.519 \mathrm{D}$
maximum gore width $e_{s}=5.21\left(h_{s} / N\right)$
gore angle $\beta=2 \tan ^{-1}\left(e_{s} / 2 h_{s}\right)$

The vent area and vent diameter, $S_{v}$ and $D_{v}$ are calculated as for the hemispherical parachute, section A.7.2. The gore height and fabric ring width:

$$
\begin{align*}
& h_{g}=h_{s}-0.519 D_{v}  \tag{1051}\\
& R W=h_{g} / N R
\end{align*}
$$

(A. 161)(1052)

Gore widths and fabric ring areas for the ringsail parachute:

$$
\begin{align*}
& e(1)=e_{s}-2 R W \tan (\beta / 2) \\
& \operatorname{area}(1)=\left(\left(e(1)+e_{s}+0.1\right) / 2\right) \quad(R W+0.05)(A .163)(1753) \\
& e(2)=e(1)-2 R W \tan (\beta / 2)  \tag{A.164}\\
& \operatorname{area}(2)=((e(2)+e(1)+0.1) / 2)(R W+0.05) \quad(A .165) \tag{A.165}
\end{align*}
$$

Equations A. 164 and A. 165 are repeated to $e(N R)$ and area(NR), where $N R$ is the number of rings. The fabric weight is then calculated as for the flat ringslot parachute, equations A. 151 and A.152. Rigging line and skirt band weights are calculated as for the flat circular parachute, equations A.11, A.12, A. 19 and A.20. WTVB is the vent band material weight ( $\mathrm{gm} / \mathrm{m}$ ). Total vent band length ( m ) and weight ( kg ):

$$
\begin{equation*}
T V B=N \cdot e(N R)+0.2 \tag{1762}
\end{equation*}
$$

```
WVB = TVB.WTVB/1000
```

(A. 167 ) (1763)

WTVT is the vertical tape material weight (gm/m). The total vertical tape length (m) and weight (kg):

```
TVT = N (hg}+0.2
(A.168)(1760)
WVT = TVT.WTVT/1000
(A. 169) (1761)
```

WTVL is the vent line weight ( $\mathrm{m} / \mathrm{kg}$ ). The total vent line length (m) and weight (kg):

$$
\begin{aligned}
& \text { TOVL }=\mathrm{N}\left(\mathrm{~h}_{S}-\mathrm{h}_{9}+0.2\right) \\
& \text { WVL }=\text { TOVL/WTVL }
\end{aligned} \quad(A .170)(1764)
$$

Total canopy weight:

$$
W T O T=W S B+W V L+W V B+W V T+W L+W T \quad(A .172)(1768)
$$

A.14.2 Inputs Required for the Parachute Design Program
(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NR, the number of fabric rings in the canopy.


Fiqure A. 15 Disk-Gap-Band Parachute Confiquration
gore angle $\beta=360 / \mathrm{N}$ degrees

## A.15.1 Canopy Weight Calculation

From reference 9
gore height $h_{1}=\left(S_{0} /(1.887 \mathrm{~N} \tan (\beta / 2))\right)^{1 / 2}$
(A. 173)(1036)
maximum gore width $e_{s}=2 h_{1} \tan (\beta / 2)$
(A.174)(1037)

The vent area, $S_{v}$, and gore height, $h_{g}$, are calculated as for the flat circular parachute, section A.1.1, equations A. 3 and A.4. Gore heights from reference 9:

$$
\begin{align*}
& \mathrm{h}_{2}=0.113 \mathrm{~h}_{1}  \tag{A.175}\\
& \mathrm{~h}_{3}=0.33 \mathrm{~h}_{1}
\end{align*}
$$

(A.176)(1773)

NUP is the number of upper panels and NLP is the number of lower panels. The total area of the lower panels, including sewing allowance, is:

$$
T L P=N L P\left(e_{s}+0.05\right)\left(h_{3} / N L P+0.05\right)
$$

(A. 177)(1774)

The upper gore width and the largest upper panel area:

$$
\begin{align*}
& e(1)=e_{s}-2 h_{g} \tan (\beta / 2) / N U P  \tag{A.178}\\
& \operatorname{area}(1)=\left(e_{s}+e(1)+0.1\right)\left(h_{g} / N U P+0.05\right) / 2 \tag{A.179}
\end{align*}
$$

if NUP is not equal to 1 then:

$$
\begin{align*}
& e(2)=e(1)-2 h_{g} \tan (\beta / 2) / N U P \\
& \operatorname{area}(2)=(e(1)+e(2)+0.1)\left(h_{g} / N U P+0.05\right) / 2 \tag{1778}
\end{align*}
$$

Equations A. 180 and A. 181 are repeated to $e(N U P)$ and area(NUP). The total upper fabric area:

$$
\operatorname{TUP}=\sum_{x=1}^{N U P} \operatorname{area}(x)
$$

(A. 182) (1779)
and if WTF is the fabric weight $\left(\mathrm{gm} / \mathrm{m}^{2}\right)$, the total fabric area ( $\mathrm{m}^{2}$ ) and weight ( kg ):

$$
T O F=N(T L P+T U P)
$$

(A. 183) (1780)

$$
W F=T O F \cdot W T F / 1000
$$

(A.184)(1781)

The weights of the rigging lines and skirt band are calculated as for the flat circular parachute, equations A.11, A.12, A. 19 and A.20. WTT is the radial tape weight ( $\mathrm{gm} / \mathrm{m}$ ), the total length ( m ) and weight ( kg ) of the tapes:

$$
\operatorname{TOT}=N\left(h_{g} / \cos (\beta / 2)+h_{2}+h_{3}+0.2\right)
$$

(A. 185) (1784)

$$
\begin{equation*}
\text { WT }=\text { TOT.WTT/ } 1000 \tag{A.186}
\end{equation*}
$$

WTR is the weight of the reinforcing (gm/m). The total reinforcing length and weight is:
$T R=2\left(N e_{S}+0.2\right)$
(A. 187)(1786)
WR $=T R \cdot W T R / 1000$
(A.188)(1787)

WTVB is the weight of the vent band (gm/m). The total vent band length ( m ) and weight ( kg ):

```
TVB = N.e(NP) + 0.2
 (A.189)(1788)
 WVB = TVB.WTVB/1000
 (A.190)(1789)
```

WTVL is the vent line weight ( $\mathrm{m} / \mathrm{kg}$ ). The total length ( m ) and weight (kg) of the vent lines is:

$$
\begin{aligned}
& \text { TOVL }=\mathrm{N}\left(\left(\mathrm{~h}_{1}-\mathrm{h}_{\mathrm{g}}\right) / \cos (\beta / 2)+0.2\right) \quad(\text { A. 191)(1792) } \\
& \text { WVL }=\text { TOVL } / \text { WTVL }
\end{aligned}
$$

The total canopy weight is calculated using equation A. 23.

## A. 15.2 Inputs Required for the Computer Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NUP and NLP, the number of upper and lower fabric panels per gore.

inflated
shape
gore
profile
construction
schematic

## Fiqure A. 16 Rotafoil Parachute Confiquration

gore angle $\beta=360 / N$ degrees

## A. 16.1 Canopy Weight Calculation

The maximum gore width is calculated as for the flat circular parachute equations A. 1 and A. 2 .

The vent area, $S_{v}$, and the gore height, $h_{g}$, are known from equations A.3 and A.4. The gore heights $h_{2}, h_{3}$ and $h_{4}$ must be supplied. Height $h_{1}$ :

$$
\begin{equation*}
h_{1}=0.105 D \cos (\beta / 2) \tag{A.193}
\end{equation*}
$$

Then the gore widths and areas are calculated as follows:

$$
\begin{equation*}
e(1)=e_{s}-2 h_{1} \tan (\beta / 2) \tag{A.194}
\end{equation*}
$$

$$
\operatorname{area}(1)=\left(e_{s}+e(1)+0.1\right)\left(h_{1}+0.05\right) / 2(A .195)(1804)
$$

let $a=\left(h_{4}+h_{3}+h_{s}-h_{g}\right) \tan 5$
(A.196)(1805)
and

$$
b=\left(h_{2}+h_{3}+h_{4}+h_{s}-h_{g}\right) \tan 5
$$

(A. 197)(1806)
then $e(2)=\left(e(1)-2 h_{2} \tan (\beta / 2)\right) / 2+a a$
(A.198)

$$
\begin{array}{r}
\operatorname{area}(2)=\left(h_{2}+0.05\right)(3 e(2) / 2+e(1) / 4+0.025+b / 2) \\
(A .199)(1808)
\end{array}
$$

$$
\begin{equation*}
e(3)=e(1)-2\left(h_{2}+h_{3}\right) \tan (\beta / 2) \tag{A.200}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{area}(3)=\left(h_{3}+0.05\right) & \left(e(2)-h_{3} \tan (\beta / 2) / 2+0.025\right. \\
& +e(3) / 4-\operatorname{aa} / 2) \tag{A.201}
\end{align*}
$$

$$
\begin{equation*}
e(4)=e(3)-2 h_{4} \tan (\beta / 2) \tag{A.202}
\end{equation*}
$$

$$
\operatorname{area}(4)=(e(4)+e(3)+0.1)\left(h_{4}+0.05\right) / 2(A .203)(1812)
$$

WTF is the weight of the fabric ( $\mathrm{gm} / \mathrm{m}^{2}$ ), total area $\left(\mathrm{m}^{2}\right)$ and weight (kg) of the fabric:

$$
T O F=\sum_{x=1}^{\sum} \operatorname{area}(x)
$$

(A. 204) (1813)
$\mathrm{WF}=\mathrm{TOF} . \mathrm{WTF} / 1000$
(A.205)(1814)

The weights of the rigging lines, radial tapes, skirt band and vent lines are calculated as for the flat circular parachute, equations A.11-A.14, A.19-A.22. WTR is the reinforcing weight ( $\mathrm{gm} / \mathrm{m}$ ). Total reinforcing length ( m ) and weight (kg):

$$
\begin{aligned}
T R= & N . e(3)+0.2+N(e(1) / 2-b+0.2)+N\left(h_{2} / \cos 5\right. \\
& +0.2)+N\left(\left((e(3) / 2-a)^{2}+h_{3}^{2}\right)^{1 / 2}+0.2\right)(A .206)
\end{aligned}
$$

$$
\begin{equation*}
W R=T R \cdot W T R / 1000 \tag{A.207}
\end{equation*}
$$

WTVB is the vent band weight ( $\mathrm{gm} / \mathrm{m}$ ). The total length ( m ) and weight ( kg ) of the vent band:

$$
\begin{array}{ll}
\text { TVB }=\text { N.e(4) }+0.2 & (A .208)(1821) \\
\text { WVB }=\text { TVB.WTVB } / 1000 & (A .209)(1822)
\end{array}
$$

The total parachute weight is taken from equation A. 23.

## A. 16. 2 Inputs Required for the Computer Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)The ratio of the gore heights, $h_{2}: h_{3}: h_{4}$.
A. 17 Type 21 - Gliding Aeroconical Parachute

gore angle $\beta=2 \sin ^{-1}(\sin (180 / N) \cos \mu)$
(A.210)(1005)
where $\mu$ is the canopy constructed angle.

## A. 17.1 Canopy Weight Calculation

The fabric panel areas, area(1) to area(NP), where NP is the number of fabric panels per gore, are calculated using the same method as that for the flat circular parachute, equations A. 1 to A. 8 . The area of the drive slots or missing panels must be taken into account in order to calculate the total fabric area for the aeroconical parachute. ONP(1) is the number of panel 1 (the largest) missing, $\operatorname{ONP}(2)$ is the number of panel 2 missing and so on up to ONP(NP). So the total aeroconical fabric area ( $\mathrm{m}^{2}$ ) is:

$$
\begin{equation*}
\operatorname{TOF}=\sum_{x=1}^{N P}((N-\operatorname{ONP}(x)) \operatorname{area}(x)) \tag{A.211}
\end{equation*}
$$

The weight of the fabric, the weights of the other components in the canopy and the total canopy weight are calculated as in section A.1.1 for the flat circular parachute.
A. 17.2 Inputs Required for the "paradesign" Computer Proqram
(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NP, the number of panels per gore.
(iii) $\mu$, the canopy constructed cone angle.
(iv)ONP(1) to ONP(NP), the number of each panel missing.


Figure A. 18 Le Moiqne Parachute Configuration
gore angle $\beta=360 / \mathrm{N}$ degrees.
A.18.1 Canopy Weiqht Calculation

The Le Moigne canopy weight is calculated using the methods employed for the aeroconical parachute, section A.17.1.

## A. 18.2 Inputs Required for the Parachute Design Program

(i) $v_{x}$, the vent area as a percentage of the total canopy area, $S_{0}$.
(ii)NP, the number of fabric panels per gore.
(iii)ONP(1) to ONP(NP), the number of each panel missing.


Fiqure A. 19 Parawing Parachute Confiquration
$\theta_{p}=\cos ^{-1} 0.923$

## A.19.1 Canopy Weiqht Calculation

Maximum gore width $e_{s}=0.823 D_{c} / N$
(A. 212 ) (1039)

Fabric areas and gore widths:

$$
\begin{align*}
& \operatorname{area}(1)=\left(0.125 D_{c}+0.025\right)\left(\left(e_{S} / 1.414+0.025\right)\right. \\
&\left.\left(e_{S} \tan \theta_{p} / 1.414+0.025\right)\right)+0.5\left(\left(e_{S} / 1.414\right.\right. \\
&+0.025)^{\left(( e _ { S } / 1 . 4 1 4 + 0 . 0 2 5 ) \left(e_{S} \tan \theta_{p} / 1.414\right.\right.} \\
&+0.025))+\left(0.125 D_{c} \tan \theta_{p}+0.025\right)(0.025 \\
&\left.\left.+e_{S} \tan \theta_{p} / 1.414\right)\right) \\
& e(1)=0.125 D_{c} / \tan \theta_{p}+e_{S} /\left(1.414 \cos _{p}\right) \quad(A .214)(1831)
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{area}(2)=\left(e(1)+e_{s} \tan _{p} / 2+0.075 / 2\right)\left(e_{S}+0.05\right) \\
& (\text { A.215 (1832) } \\
& e(2)=e_{S} \tan \theta_{p}+e(1)
\end{aligned}
$$

Equations A. 215 and A. 216 are repeated to area(N) and $e(N)$. WTF is the fabric weight ( $\mathrm{gm} / \mathrm{m}^{2}$ ). The total fabric area ( $\mathrm{m}^{2}$ ) and weight (kg):

$$
\begin{array}{ll}
\text { TOF }=2 \sum_{X=1}^{N} \operatorname{area}(x) \\
\text { WF }=\text { TOF.WTF } / 1000
\end{array} \quad \text { (A.217)(1835) }
$$

The line length and weight are calculated as for the flat circular parachute, equations A. 11 and A.12. WTT is the tape weight ( $\mathrm{gm} / \mathrm{m}$ ). The total length ( m ) and weight ( kg ) of the tapes:

$$
\begin{aligned}
& \text { TOT }=2\left(0.766 \mathrm{D}_{c}+0.2\right)+0.875 \mathrm{D}_{c}+0.2 \\
& +2 \sum_{x=1}^{N^{n}}\left(e(x)^{c}+0.2\right) \\
& \text { (A.219)(1839) } \\
& \text { WT = TOT.WTT/ } 1000 \\
& \text { (A.220)(1840) }
\end{aligned}
$$

WTSB is the skirt band weight ( $\mathrm{gm} / \mathrm{m}$ ). The total skirt band length (m) and weight (kg):

$$
\begin{array}{ll}
T S B=2\left(N e_{S}+0.2\right)+0.25 D_{c}+0.2 & (A .221)(1841) \\
\text { WSB }=T S B . W T S B / 1000 & (A .222)(1842)
\end{array}
$$

The total weight of the canopy:

```
WTOT = WSB + WT + WL + WF
```

(A.223)(1843)

## A. 19. 2 Inputs Reguired for the Computer Program

No extra input data is required for the parawing (single keel) parachute, the inputs listed in section 4.3.1 are sufficient.

## Appendix B

## Brief Description of the Warnier-Orr Structured Program Desion Method

The Warnier-Orr Notation is based on the following principles:
(i)Abstraction - unimportant detail is omitted.
(ii)Decomposition - a large problem is broken down into a number of smaller ones.
(iii)Separation of concerns - one thing is considered at a time.

The following programming techniques are represented by the Warnier-Orr notation:
(i) Sequence.

$$
A\left\{\begin{array}{c}
\mathrm{B} \\
\mathrm{C} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{D}
\end{array}\right.
$$

Eiqure B. 1 Sequence in Warnier-Orr

Command $A$ can be regarded as command $B$ followed by $C$ and finally D. The bracket can be read as "consists of". In Pascal:
(* A - does this *)
B;
C;
D.
(ii)Repetition.

$$
A\left\{\begin{array} { l } 
{ B } \\
{ ( n ) }
\end{array} \quad \text { or } \quad A \left\{\begin{array}{l}
B \\
(n, *) \text { ?test1 }
\end{array}\right.\right.
$$

## Fiqure B. 2 Repetition in Warnier-orr

In the first diagram of figure B. 2 command $A$ consists of $n$ instances of $B$, where $n$ is known at run time, this is a do loop in Pascal. The second diagram in figure B. 2 represents the general case, $A$ consists of $n$ or more instance of $B$ depending on test1. If $n$ is 0 then the diagram represents a while loop, while test1 is true $B$ is repeated. If $n$ is 1 the diagram represents a repeat loop, $B$ is repeated until test1 is true.
(iii)Selection.

$$
A\left\{\begin{array}{l}
\mathrm{B} \\
\text { ?test } 1 \\
+ \\
\mathrm{C}
\end{array}\right.
$$

¢represents an exclusive or

## Fiqure B. 3 Selection in Warnier-Orr Notation

Command $A$ consists of either $B$ or $C$ depending on test1. If test1 is true $B$ is performed, if it is false $C$ is performed. $B$ and $C$ are mutually exclusive operations. In Pascal:
(* A - does this *)
if test1 then $B$
else C.

## Appendix C

## Structure Diagram

In this appendix the Warnier-Orr structure diagram for the parachute design program is listed.

Key:
Underlined words represent separate procedures in the parachute design program (listed in appendix E).
skip means "do nothing".
The numbers in brackets refer to program equations and tables of data, see the key in figure 3.1 .
( $)$ represents exclusive or.
? represents if.


menu1 is table 3.1, menu2:
A - flat ringslot
B - conical ringslot
variables
type_no :integer;
type_no2 :ch (single character input)

a non qlide $\left\{\begin{array}{l}\text { obtain } C_{D} \\ \begin{array}{l}\text { input } C_{D} \\ \oplus_{\text {calculate }} C_{0}(101- \\ \text { calculate area and } \\ \text { diameter (201-203 } \\ \text { and 206a) }\end{array}\end{array}\right.$

variables
$C_{0} \quad$ :real; (drag coefficient)
$C_{F A}$ :real (force coefficient, gliding parachutes)
cluster

cluster $2 \quad\left\{\begin{array}{c}(302-315,10301- \\ 10304) \\ \text { xclustex=true } \\ \text { print cluster data }\end{array}\right.$
variables
xcluster :boolean
line length

$$
\left(\begin{array}{l}
\text { skip } \\
\text { ?xcluster=true } \\
\oplus \\
\text { line length 1 } \\
\text { ?type_no in }[1-7,10-19,21,22] \\
\oplus \\
\text { line length 2 } \\
\text { ?type_no in }[8,9,20,23]
\end{array}\right.
$$

line length $1 \quad\left\{\begin{array}{l}\text { calculate } l_{e}(401) \\ \text { print } l_{e}\end{array}\right.$
-4C-

variables
$l_{e} \quad$ real (line length)
le/ $D_{0}$ :real (ratio of line length to nominal diameter)
$l_{e} / D_{c}$ :real (ratio of line length to constructed diameter)
no of lines

$$
\left\{\begin{array} { l } 
{ \text { skip } } \\
{ \text { ?type_no in } [ 1 1 , 2 3 ] } \\
{ \oplus } \\
{ \text { no of lines } 2 }
\end{array} \left\{\begin{array}{l}
\text { input } z \\
\bigoplus_{\text {calculate }} \mathrm{z} \\
(501-506)
\end{array}\right.\right.
$$

variables
$Z$ :real (number of lines)
staging

$$
\left\{\begin{array}{l}
\begin{array}{l}
\text { staging } 2 \\
\text { ?equation (601) } \\
\text { true }
\end{array} \\
\begin{array}{l}
\text { ( }+ \text { (601-610) } \\
\text { xstaging=true } \\
\text { print staging }
\end{array} \\
\end{array}\right.
$$

variables
xstaging : boolean
opening loads

$$
\left\{\begin{array}{l}
\begin{array}{l}
\text { loads cluster } \\
\text { ?xcluster }=\text { true } \\
\text { loads }
\end{array} \\
\left\{\begin{array}{l}
\text { select method_no } \\
\text { calculate loads } \\
\text { print out }
\end{array}\right.
\end{array}\right.
$$


menu9 (three methods available):
1 - Lingard
2 - Pflanz
3 - Mass ratio
menu10 (two methods available):
1 - Lingard
3 - Mass ratio
menu11 (two methods available):
2 - Pflanz
3 - Mass ratio
variables:
method_no :integer

menu 12:
1 - synchronous opening of cluster
2 - non-synchronous opening of cluster
variables
$R_{M} \quad$ : real; (mass ratio)
$C_{x}$ : real (opening load factor)
reefing
$\left\{\begin{array}{l}(801-802) \\ \text { reefing } 1\end{array}\right.$

reefing2
$\left\{\begin{array}{l}(805-824) \\ \text { check } \\ 825 \\ \text { xreefing=true } \\ \text { print reefing }\end{array} \quad\left\{\begin{array}{l}\text { skip } \\ ?(824) \text { false } \\ \left(\begin{array}{l}\text { exit(parachute } \\ \text { design) } \\ \text { (load too } \\ \text { high) }\end{array}\right.\end{array}\right.\right.$

```
variables
xreefing :boolean
```


vent2

	$\left\{\begin{array}{l} \text { vent_band=true } \\ \text { vent_line }=\text { true } \end{array}\right.$
$\left\{\begin{array}{l}\text { vent3 } \\ ? \mathrm{v}_{\times}<>0\end{array}\right.$	$\left\{\begin{array}{l}\text { p vent band (906) } \\ (907)\end{array}\right.$
$\left\{\begin{array}{l} \nmid{ }_{\text {no_vent }} \\ ? v_{x}=0 \end{array}\right.$	$\left\{\begin{array}{l} \text { vent_band=false } \\ \text { vent_line }=\text { false } \end{array}\right.$

variables
horiz_ribbon : boolean; (horizontal ribbon)
skirt_band : boolean; (skirt band)
vent_band : boolean; (vent band)
fabric : boolean; (fabric)
vent_line : boolean; (vent line)
vert_tape : boolean; (vertical tape)
s_band : boolean; (reinforcing band)
tape : boolean; (radial tape)
$\mathrm{v}_{\mathrm{x}}$
: real; (vent area as a percentage of total canopy area, $S_{0}$ )
ss2

$$
\left\{\begin{array}{l}
(913-916) \\
\text { no of lines c }\left\{\begin{array}{l}
\text { input z } \\
(917-918) \\
\text { tape=true } \\
\text { fabric=true } \\
\text { s_band=false } \\
\text { skirt_band=false } \\
\text { vent_band=false } \\
\text { vent_line=false } \\
\text { horiz_ribbon=false } \\
\text { vert_tape=false }
\end{array}\right.
\end{array}\right.
$$



$$
\left\{\begin{array}{l}
(930-935) \text { including } z \text { calculation } \\
\text { fabric=true } \\
\text { tape=true } \\
\text { skirt_band=true } \\
\text { horiz_ribbon=false } \\
\text { vert_tape=false } \\
\text { vent_band=false } \\
\text { vent_line=false } \\
\text { s_band=false }
\end{array}\right.
$$


variables
reef_line : boolean (reefing line)
select material
$\left\{\begin{array}{l}\text { fabric } 1 \\ \frac{\text { tapes and webs }}{\text { select cord }} \\ \frac{\text { reserve factors }}{(1056-1065)} \\ \text { ? } \quad\left\{\begin{array}{l}\text { select fabric } \\ \text { ?fabric=true } \\ \text { matprint }\end{array}\right.\end{array}\right.$

material (component) $\left\{\begin{array}{l}\text { select tape from t11002 } \\ (+) \\ \text { input tape specification }\end{array}\right.$

material cord (com- $\left\{\begin{array}{l}\text { select cord from t11003 } \\ \left(\begin{array}{l}\text { pont }\end{array}\right. \\ \text { input cord specification }\end{array}\right.$
landing control $\{$ skip (not required at present)



not stable $\left\{\begin{array}{l}\text { exit(parachute_design) } \\ \bigoplus_{\text {continue }}\end{array}\right.$
variables
por5 : real; (porosity at $1 / 2$ inch $\mathrm{H}_{2} \mathrm{O}$ )
por 10 : real; (porosity at 10 inches $H_{2} 0$ )
U : real (fluid velocity through the canopy fabric)

system reliability $\left\{\begin{array}{l}\text { Rsys (1519) } \\ \text { ?xcluster=false } \\ \bigoplus_{\text {r_cluster }}\end{array}\left\{\begin{array}{l}R_{s y s} \quad \text { (1520) } \\ ? N F=0 \\ \bigoplus_{\text {Rsys }} \text { (1512) }\end{array}\right.\right.$
variables
Rsys : real; (system reliability)
NF : integer (number of parachutes in a cluster allowed to fail)

## Appendix D <br> Data Tables Used in the "paradesign" Program

Figure D. 1 shows the data table numbers and which calculation they are used in.

Table 10001, parachute types, is table 3.1 in this thesis. Tables 10101 and 10102, drag coefficient data, are tables 3.2 and 3.3. Tables 10301 to 10304, cluster data, are tables 3.4 to 3.7. Table 10401, line length to nominal diameter ratio data, is table 3.8. Table 10701, opening load data, is table 3.9. Tables 10901 and 10902, ratio of projected to nominal diameter data, are tables 3.11 and 3.12. Material data, tables 11001 to 11003, and reliability data, tables 11501 to 11503, are given below (tables D. 1 to D.6).



Figure D. 1 (continued)

Part No.	Specification	Width   (m)	$\begin{gathered} \text { Streng- } \\ \text { th (N) } \end{gathered}$	Weight $\left(\mathrm{gm} / \mathrm{m}^{2}\right)$	$\left\{\begin{array}{l} \text { Porosity } \\ \text { at } 10 \text { in } \\ \mathrm{H}_{2} \mathrm{O} \\ \left(\mathrm{ft}^{3} / \mathrm{f}\right. \end{array}\right.$	$\left\{\begin{array}{l} \text { Porosity } \\ \text { at } 1 / 2 \text { in } \\ \mathrm{H}_{2} \mathrm{O} \\ \left.t^{2} \mathrm{sec}\right) \end{array}\right.$
$\left\lvert\, \begin{aligned} & \mathrm{P} 00115 \\ & 1553 \end{aligned}\right.$	$\begin{array}{ll} \text { BSF } 118 / \\ 854 \end{array}$	0.920	475	50	20	-
$\left\lvert\, \begin{aligned} & \text { P00115 } \\ & 1555 \end{aligned}\right.$	$\begin{aligned} & \text { BSF } 118 / \\ & 556 A \end{aligned}$	0.920	510	50	10	-
$\left\lvert\, \begin{aligned} & \text { P00115 } \\ & 1171 \end{aligned}\right.$	$\begin{aligned} & \text { BSF } 118 / \\ & 793 / 4 B \end{aligned}$	0.920	510	50	10	-
$\left\lvert\, \begin{array}{ll} \mathrm{POO} 15 \\ 3034 \end{array}\right.$	MIL-C-70   20 Type I	0.950	370	37	11	1.33
$\left\{\begin{array}{l} \mathrm{P} 00115 \\ 3123 \end{array}\right.$	$\begin{aligned} & \text { GQ-MS- } \\ & 294 \end{aligned}$	1.200	400	44	0	0
$\begin{aligned} & \mathrm{P} 00115 \\ & 325 \mathrm{5} \end{aligned}$	$\begin{aligned} & \text { GQ-MS- } \\ & 330 \end{aligned}$	1.220	950	85	3	0.23
-	$\begin{aligned} & \text { GQ-MS- } \\ & 502 \text { (B1) } \end{aligned}$	1.170	480	54	0	0
-	N8726	1.420	400	40	-	-
-	$\begin{aligned} & \text { GQ-MS- } \\ & 309 \end{aligned}$	1.220	400	39	0	0

Table D. 1 Fabric Material Data Used in the Parachute Design

Part No.	Specification	Strength   (N)	Weight $(\mathrm{gm} / \mathrm{m})$	$\begin{aligned} & \text { Width } \\ & \text { (mm) } \end{aligned}$
B01832 0090	IAC/S 18/350	350	1.5	16.0
Pb00167 7509	GQ-MS-132	535	3.0	15.0
P00168 0552	GQ-MS-115	890	3.8	18.0
P00167 0507	$\begin{aligned} & \text { MIL-T_5038 } \\ & \text { Type III } \end{aligned}$	890	3.7	9.5
P00167 5913	$\begin{aligned} & \text { MIL-T-5038 } \\ & \text { Type III } \end{aligned}$	1112	4.7	13.0
S99167598 6	$\begin{aligned} & \text { MIL-T-6134 } \\ & \text { Type II } \end{aligned}$	1334	4.5	25.4
PO2106 0112	GQ-MS-289	1500	38.0	23.5
POO167 5507	GQ-MS-124	1780	5.2	12.0
P00167 5557	GQ-MS-318	1780	5.5	12.0
P00168 0764	$\begin{aligned} & \text { MIL-T-5038 } \\ & \text { Type III } \end{aligned}$	1780	6.2	19.0
P00157 2327	MIL-W-4088   Type I	2224	8.68	14.3
S99168 5780	$\begin{aligned} & \text { MIL-T-5038 } \\ & \text { Type } V \end{aligned}$	2224	6.2	14.3
S99168 6043	$\begin{aligned} & \text { MIL-T-5038 } \\ & \text { Type III } \end{aligned}$	2335	9.3	25.4


Part No.	Specification	Strength   ( N )	$\begin{aligned} & \text { Weight } \\ & (\mathrm{gm} / \mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { Width } \\ & (\mathrm{mm}) \end{aligned}$
P00157 2335	MIL-T-6134 Type I	2335	12.4	27.0
S99167 5994	MIL-T-5038 Type IV	2446	10.85	12.7
$599168 \quad 5826$	MIL-W-4088 Type II	2670	13.02	25.4
P00167 620 2	GQ-MS-193	2670	8.70	8.0
P00167 580	GQ-MS-296	3110	10.5	12.25
P00167 5751	GQ-MS-158	3115	10.3	12.5
P00169 5913	MIL-T-5038 Type II	4003	12.4	25.0
P00168 850	MIL-T-5038 TypeIV	4448	15.5	25.4
5991690114	MIL-W-5625	4448	15.5	12.7
P00168 8908	GQ-MS-131	5800	17.0	25.0
P00168 9598	GQ-MS-317	5800	17.0	25.0
S99169 021	MIL-W-5625	6672	18.6	14.3
P00167 5303	GQ-MS-252	6675	22.4	12.0
5991690156	MIL-W-5625	10008	23.25	15.9

Table D. 2 (continued)

Part No.	Specification	Strength   ( N )	Weight $(g m / m)$	Width   (mm)
S99169 O20 3	MIL-W-5625	10230	32.55	19.0
S99169 0059	MIL-W-4088   Type XVII	11120	35.65	25.4
P00168 9205	MIL-W-5625	17792	52.7	25.4
B02685 0091	IAC/S 1116	17800	39.5	25.0
P00168 8550	MIL-W-4088   Type XX	40032	100.8	25.4
B00754 0093	GQ-MS-267	28900	90.0	42.5
P00172 3821	GQ-MS-198	$24200^{\circ}$	89.0	50.0
P00172 4259	GQ-MS-256	17800	72.5	48.0
B01103 0092	BSF 124/224	1461	79.0	44.45
P00169 5832	MIL-W-4088   Type VIII	17792	49.6	43.66
P00169 5905	$\begin{aligned} & \text { MIL-T-5038 } \\ & \text { Type II } \end{aligned}$	5782	18.6	38.0
P00169 5921	$\begin{aligned} & \text { MIL-T-5038 } \\ & \text { Type IV } \end{aligned}$	6672	23.3	38.0
P00171 6824	MIL-W-4088   Type XII	5338	26.35	44.0

Table D. 2 (continued)

Part No.	Specification	Strength   $(\mathrm{N})$	Weight   $(\mathrm{gm} / \mathrm{m})$	Width   $(\mathrm{mm})$
P00173820 0	MIL-W-4088   Type IV	8006	37.2	76.0
S991729002	MIL-T-5608	6672	67.64	50.8
-	IAC/S 15	670	2.6	15.0

Table D. 2 (continued)

Part No.	Specification	Strength (N)	Weight (m/kg)
P00167 2571	GQ-MS-307	200	180
P00107 2107	DTD-5620-SA501	220	1666.7
P00107 1800	ḊTD-5620-CA 102	445	556
P00107 2131	DTD-5620-SB603	670	588.2
P00167 1850	DTD-5620-CA 103	1350	270
P00167 2610	MIL-C-5040   Type II	1779	320
P00107 2173	DTD-5620-CB203	1800	181.8
P00107 2474	DTD-5620-CC311	2000	222.2
P00107 2408	DTD-5620-CC302	2000	217.4
P00107 1915	DTD-5620 CA105	2450	140.9
P00167 2636	MIL-C-5040   Type III	2450	69
P00107 2050	DTD-5620-CB204	3100	90.9
P00107 2270	DTD-5620-SC701	3350	111.1
P00167 2262	DTD-5620-SC711	3350	111.1
P00107 2212	DTD-5620-CB205	5350	58.8
P00104 3857	DTD-5620-SB617	6650	42.0

Table D. 3 Cord Material Data

Part No.	Specification	Strength (N)	Weight (m/kg)
P00107 2327	DTD-5620-SC713	10700	35.7
	DTD-5620-CA106	3100	101

Table D. 3 (continued)

Material   Specification	Number of Tests	Mean Strength (N)	Standard   Deviation of   Strength   ( N )
DTD-5620-CC302	12	2459.6	195.2
DTD-5620-SC711	25	3920.8	178.9
GQ-MS-304	12	2687.0	254.1
DTD-5620-CA 105	18	2533.6	166.5
DTD-5620-CB2O3	25	2196.5	463.4
GQ-MS-307	50	1962.4	176.1
DTD-5620-CA 103	9	1421.1	113.3
MIL-C-5040B   Type I	50	538.2	17.7
MIL-C-5040B   Type IA	50	622.7	33.5
MIL-C-5040B   Type BII	50	1957.1	87.2
MIL-C-5040B   Type III	50	2682.1	49.8
MIL-C-5040B   Type IV	50	3429.4	73.4

[^0]| Degrees of <br> Freedom |  |  |  |
| :--- | :--- | :--- | :--- |
|  | Line Gradient at Confidence Coefficient of: |  |  |
|  |  | $95 \%$ | $99 \%$ |
|  | 0.5891 | 0.5000 | 0.3786 |
|  | 0.6177 | 0.5300 | 0.3714 |
|  | 0.6364 | 0.5525 | 0.4429 |
| 10 | 0.6597 | 0.5825 | 0.4762 |
| 11 | 0.6831 | 0.6075 | 0.5000 |
| 12 | 0.6900 | 0.6200 | 0.5167 |
| 13 | 0.7116 | 0.6350 | 0.5405 |
| 14 | 0.7320 | 0.6550 | 0.5548 |
| 15 | 0.7386 | 0.6625 | 0.5667 |
| 16 | 0.7529 | 0.6760 | 0.5810 |
| 17 | 0.7642 | 0.6832 | 0.5857 |
| 18 | 0.7660 | 0.7022 | 0.6000 |
| 19 | 0.7773 | 0.6981 | 0.6071 |
| 20 | 0.7788 | 0.7082 | 0.6143 |
| 21 | 0.7887 | 0.7159 | 0.6167 |
| 22 | 0.7905 | 0.7176 | 0.6357 |
| 23 | 0.7951 | 0.7259 | 0.6452 |
| 24 | 0.8000 | 0.7234 | 0.6571 |
| 29 | 0.8172 | 0.7367 | 0.6667 |
| 34 | 0.8195 | 0.7625 | 0.6850 |
| 39 | 0.8340 | 0.7719 | 0.7018 |
| 44 | 0.8611 | 0.7949 | 0.7227 |
| 49 | 0.8653 | 0.7895 | 0.7419 |

Table D. 5 Gradients of the Non-Central t-Distribution Line

Degrees of Freedom	Line Constant at Confidence Coefficient of:		
	90\%	95\%	99\%
6	-0.2775	-0.2000	-0.3171
7	-0.2548	-0.1380	0.0671
8	-0.2364	-0.0990	-0.2257
9	-0.2135	-0.1270	-0.2390
10	-0.2216	-0.1278	-0.2200
11	-0.1060	-0.1020	-0.1867
12	-0.1096	-0.0960	-0.2076
13	-0.1390	-0.1080	-0.1862
14	-0.1114	-0.0850	-0.1567
15	-0.1499	-0.0837	-0.1652
16	-0.1582	-0.0697	-0.1314
17	-0.1243	-0.0979	-0.1200
18	-0.1300	-0.0330	-0.0943
19	-0.1167	-0.0496	-0.0886
20	-0.1504	-0.0474	-0.0667
21	-0.1381	-0.0235	-0.1014
22	-0.1285	-0.0233	-0.1038
23	-0.1200	0.0157	-0.1143
24	-0.1486	-0.0020	-0.1167
29	-0.0563	-0.0252	-0.0690
34	-0.0455	0.0211	-0.0463
39	-0.0978	-0.0315	-0.0371
44	-0.0620	0.0579	-0.0526
49	-0.0866	0.0767	0.0055

Table D. 6 Constants of the Non-Central t-Distribution Line

## Appendix E

## "paradesign" Program Listing

In this appendix the parachute design program code is listed as well as the data files used in the program. The text files are listed in the following order:
pdesign1
pdesign2
pdesign3
linunit
pjbpasinf1
wavunit1
wavunit2
paradesign
pdesignvr1
pdesignvr2
t. 10101
t10102
t. 10301
t10302
t. 10303
t10304
t. 10701
t10901
t. 10902
t11001
t. 11002
t11003
t11501
t11502
t. 11503
pjblib
pages $2 \mathrm{E}-8 \mathrm{E}$
pages 9E-11E
pages $12 \mathrm{E}-17 \mathrm{E}$
pages 18E-25E
pages $26 \mathrm{E}-28 \mathrm{E}$
pages 29E-32E
pages $33 \mathrm{E}-38 \mathrm{E}$
pages 39E-45E
pages 46E-47E
page 48 E
page 49E
page 49E
page 50E
page 50E
page 51E
page 51E
page 52E
page 52E
page 53 E
page 53E
pages 54E-55E
page 56E
page 57E
page 57 E
page 58 E
page 58 E

segment procedure continue;
begin
writeln;
writelnn
readln
end;
segment function open_force(rm2:real):real;
begin
if $\mathrm{rm} 2<$
2
if $r \mathrm{~m} 2<=0.5$ then
open_force $:=0.7056-0.8278 * \mathrm{rm} 2+0.4444 * \mathrm{rm} 2 * \mathrm{rm} 2$
else if ( $\mathrm{rm} 2>0.5$ ) and ( $\mathrm{rm} 2<=3$ ) then


*     * ジ
$\begin{array}{ll}\text { writeln( } & \text { (21) aeroconical.); } \\ \text { writeln( } & \text { (22) } 1 \mathrm{e} \text { moigne }{ }^{\prime} \text { ) ; }\end{array}$





ニ～～	ニース～	－4E－
	－	
＊ご	ごさ＊＊	


Writeln；
if $a<>0$ then
writeln
begin
writeln（＇use sea level air density ？$\left.(y / n)^{\prime}\right)$ ；
checkyn；
if reply 1 in $\left[y^{\prime}, y^{\prime}\right]$ then rho：$=1.225$
if reply 1 in $\left[{ }^{\prime} y^{\prime}, '^{\prime} y^{\prime}\right]$ then rho：$=1.225$
so：$=(2 *$ ws $) /\left(\right.$ rho＊ $\left.\mathrm{v}^{*} \mathrm{v}^{*} \mathrm{~cd}\right)$ ；
writeln；
writeln；
writeln．
checkyn；is the store an rpv ？$\left.(\mathrm{y} / \mathrm{n})^{\prime}\right)$ ；
if reply1 in $\left[\mathrm{y}^{\prime}, \mathrm{Y}^{\prime}\right]$ then so：＝so－cds＊ss／cd；
$\mathrm{d}:=\mathrm{sqrat}(4 * \mathrm{so} / \mathrm{pi})$
segment procedure a＿glide；
xar ：integer；
：integer；
$\qquad$ begin
write（chr（12））：área calculation gliding parachute ${ }^{-}$）；
writeln（
writeln；

readin（dfile，value）；exit（a＿glide）；
if value＜＞min $\begin{gathered}\text { realn（dfile，type2）；}\end{gathered}$
x：＝2：
while type2く＞type＿no do
$\mathrm{x}:=\mathrm{x}+1$ ；
readin（dfile，type $)$ ）
readln（dfile， cfr$)$
if $x=(m 10102+1)$ then exit（parachute＿design）；
end；
writeln（：（1）use cr of ；cfr：4：2）；；
writeln checkch；
if choice $1=2$ then

rho：$=1.225 * \exp (4.256 * \ln (1-2.2605 e-5 * a)$ ）；
if a＜＞0 then
begin
writeln；take air density at sea level ？$\left.(y / n)^{\prime}\right)$ ； checkyn；
if reply 1 in $\left['^{\prime}, ' Y^{\prime}\right]$ then rho：$=1.225$
if vh＝0 then thetal：＝pi／2





$\underset{x}{\operatorname{var}} \quad$ integer;
segment procedure 11fiie;
begin
reset(dfile, $b: t 10401$. text' $) ; ~$
readln(dfile, value);
if value (>m 10401 then exit(parachute_design);

readln(dfile,le_do,le_dc);
$x:=2$;
while type $2<>$ type_no do
begin
if $x=(m 10401+1)$ then exit(parachute_design);
$\mathrm{x}:=x+1 ;$
readln(dfile,type 2$) ;$
readln(dfile,le_do,le_dc) end;
end;
segment procedure line_length;
begin
begin
writelc
writeln
writeln(
writeln(
writeln;


readln(dfile,etacx, xcdc_cd);
$x:=2$; etacx<>etac do
while etacx<>etac do
if $x=(m f i l e+1)$ then exit(parachute_design);
$x:=x+1$;
$x:=x+1$;
readln(dfile, etacx, xcdc_cd)
end;
close(dfile)
end:
segment procedure cluster:

if so>2787 then
begin
if not (ltype
(* area too large *) (2;
etac:=trunc ((so/2787)
if type_no $=17$ then
begin
see:-so/etac; end
if type_no=1 then
begin $\quad$ if $v<7.62$ then cfile(m10301, b: t10301.text', cdc_cd)
end
else if type_no=17 then
begin
if d<9. 3 then cfile(m10303, 'b:t10303.text', cdc_cd)
else cfile(m10304, $b: t 10304$. text', cdc_cd) end;
lc_do:=sqrt(etac);
le_do: $=(98 / 100) * 1 c_{\text {_ }}$ do; le_do: $=(98 / 100) * l \mathrm{c}$ _do;
if type_no $=1$ then
cdo_cprimedo: $=0.8874-0$.
if type_no=17 then
cdfinal:=cd*cdc_cd*cdo_cprimedo;
cdfinal:=cd*cdc_cd*cdo
se:=cdseach/cdfinal;
d:=sqrt(4*se/pi);
se:=sqrt(4*se/pi);
d:
le: $=1 \mathrm{le} \mathrm{do}^{*} \mathrm{~d}$;
lc:=1c_do*d;
ac:=1c-le;
xciuster: $=$ true
xciuster:=true
write(chr(12));
writeln (. cluster');
writeln(
writeln;
writeln;
writeln (.
writeln $\quad$ number of



segment procedure lingard;
begin
egin
initialise;
un;
f: =max_tension
end;

## segment procedure opening_loads;

var
$x$ :integer;
begin


writeln( ${ }^{\circ}$ select ${ }^{\circ}$ ); ;
$\begin{array}{ll}\text { writeln( } \\ \text { writeln( } & \text { (1) input opening load }{ }^{\prime} \text { ); ; } \\ \text { (2) load calculated by program }\end{array}$
if choice $1=1$ then
$\underset{\text { writeln( }}{\text { begin }} \quad$ input opening load ( $n)^{\prime}$ );
ctr(f);
exit(opening_loads)
exit(opening_loads)
if xcluster=true then loads_cluster
else
begin
if type_no in $[1,11,12,15,16]$ then
begin
Writeln(: select method');
$\begin{aligned} & \text { writeln( }\end{aligned} \quad$ (1) lingard ${ }^{\prime}$ );
$\begin{array}{ll}\text { writeln(: } & \text { (2) pflanz }{ }^{\circ} \text { ) }{ }^{\circ} \text {; } \\ \text { writeln( } & \text { (3) mass ratio }) ;\end{array}$
cti(method_no); ; in [1..3]) do
while not
writeln(
cti(method_no) error in value, please re-enter'); end


Writeln
cti( method_no):
while not (method_no in $[1,3]$ ) do
while not (method_no in $[1,3]$ ) do
begin
writeln(
cti(method_no) error in value, please re-enter');
end
end
else if
type_no in $[5,6,9,17] ~ t h e n ~$

end ;

if gxr>ga then
begin
write(chr(12));
writeln(
continue;
continue;
exit(para
f:=ga*ws ;
xreefing:=true;
write(chr(12));
2:write('pflanz');
3:write('mass ratio')
writeln(
writeln;
3:write (mass ratio)

segment procedure reefing;
(* flle pdesign2.
(*) this file contains the structural strength calculations




-	
$\because \because$	*


vert tape: $=$ false:
vent band: $=$ false; vent_band: :false
vent_1line: =false
s_band: $=$ false
s_ band: $=\mathrm{fal}$ se
and:


segment procedure ssreef:
begin
if (xreef
beg in


psi: $=\arctan \left((d p-d r) / \operatorname{sqr}\left(4^{*} h x^{*} h x-(d p r-d r) *(d p r-d r)\right)\right):$
fprime $f:=((\sin (p s i) / \cos (p s f))-(\sin (p h 1) / \cos (p h 1))) /\left(2^{*} p 1\right):$
reef_line:=true
begin
rescrictren, b:th1001.text'):
readin(dflle. value):

fo: $1:=1$ to m1 1001 do
begin
with tab11001[1] do
beg'n
readindrilie.tipart_nol:
readinditrin


-ニ.
(*) elle priesign3.
(*) this ille contains the following calculations:
(* se!ect raterial.
(* landing control.

procedure table_fabric:

$\underset{\text { tab11001 }}{\text { var }}$
flag_fab
counter
1
1
1
kk
1
no_fabric


1f vent_band then

writeln(' ${ }^{\text {esd:4:2. }}$, required material strength $=$ ',tf:4:2.



begin
with material do
begin

woredure tapes_and_webs:
begin


writeln('
writeln('
(1) chose material from table of embedded data'):
(2) input material properties'):
iteln!
(no_cord)


begin
if vent ine then matcord(vis. vimat.'vent line'):
if reef 1 Ine then matcord(tri,rimat.'reefing ine'):
matcord(ti, imat.'1ines')
end:
procedure reserve_factors:
begin
if fabric then rff: $=$ mtef/tf:
If vent band then revb: -vhmat. tustrength/whs:
if skirit band then rifsh: $=$ shmat.twstrength/sbs:







beg!n (drule 'bimoon text'):
readln(dfile, value):

wegin
ber
re
readln(dfile,cspec):
$\quad$ readln(dfile.cstrength. cwoight.crejy):
readln(dfile.ccolours)
end
for $1:=1$ to m 11003 do
begin
If strenpt th2*0.9> tabl $11003[1]$.cstrength then
flag_cord $[1]:=$ false

specification strength weight ():

writeln('
part no
begin if flag_cord[j] then
Countrr: $=$ counter 1 : :
If counter $=20$ then writeln( $\left(20^{\prime}\right)$
end
end:




procedure matprint:
If fabrjc then
begin
wile(chr(12));
writeln(
writeln:
fabric
and



'1teln( ${ }^{\circ}$ porosity at 10 in h2o - .por $\left.10: 3: 1,{ }^{\prime} \mathrm{ft} / \mathrm{sec}^{\prime}\right)_{\text {; }}$



ニーニ．ニー．
－※

ったたた
ニFFFEF F
flle linunit．
this flie contatns the followlag calculations：
lingard inflation program（including optional stacing and an inpu：checking．aerodynamic store）


：．．．＊．

$=3.1416$ ；
narray［1．．7］

n-ocrdurr lin_input_data:
-ocedure print_input: - ocedure print_input:
-ocrdane in!t vartabies:
rocedure print heading: r-ocedure print_heading:
:-ocolure ran_data: rocedure $1 / \mathrm{m}$ - print_out: n-ccedure chofce:
procedure inltialise: procedure inltialise: p-ocedure drogite_separation
pocedure drogue_impulsel:
intmlure tau_vilue: poneture tat value: rocedure ! mpuises:
proceduye coefficient:

p-otechure atthent var
var

 procedure rin:
:p crentat
p-ncedure convert_to_'nteger:


:real:
:Integer:
: boolean:
egin

 exit(convert-to_ Integer);




!:=1-1
end

[^1]

end
Pise ip $:=0 ;$
$\because \operatorname{inp}[1]=$
bectn
$t:=1:$
$i:=1$



convert_to_intcger(inp2.fp.b)
end
e!se
begin


for $\mathbf{x}:=1$ to $\mathbf{7}$ do

writelnt'


apco_data $[1, x]:=(30 * x-120) * p 1: 180$
rem:

end:
write(chr(12)): $\quad$ mput data for main parachute'):
wrltrln( $\quad$ !nput data for main parachute' $)$;
writeln(
$* * * * * * * * * * * * * * * * * * * * * * * * * * ') ; ~$
wifteln
writeln:
if drogue
beg!n
writeln( $\quad$ input estimated mass of main and drogue (kg)');
If drogue and aero_store then
beg!n

writeln( $\quad \begin{aligned} & \text { Input estimated } \\ & \text { ctr(mass_total) }\end{aligned}$
constr-area:=so:
(1) aeroconical 6.2')
(1) aeroconical 5.2');
(?) $(4)$ erocontca! 5.8'):
(4)
(5) A'v'):
(6) ribhon'):
(6) ribhon'):
(7) crucifort );
(8) aerocon!cal
(8) aerocon!cal (naces)'):
(9) $\left.24 m^{\prime}\right)$ :

hegin
c:
whin


writeln(' main depinyed 'main_time:3:2,' seconds after drogue deployefl'
else writeln(' pararhute deployed at '. गain_time:3:2.' seconds'):


write( $\quad$ is input data ok ? $\left.(y / n)^{\prime}\right)$ :
read $\ln ($ reply $)$ :
readln(reply):
if reply=' $n$ ' then
beg in
begin
lin_input_data:
print_Input
end:
procedure inft_varlab!es:
$x$ var integer:
$\begin{array}{ll}\mathrm{x} & \text { : integer: } \\ \mathrm{y} & \text { integer: } \\ \text { begin } & \end{array}$
for $y:=1$ to 3 do run_values $[x, y]:=0.0$
end:
mass $=$ ',store_mass:5:1,' $\mathrm{kg}^{\prime}$ ):
citeln(
ctime_step)
if drogue then
begin $\quad$ !n;ut drogur time (detachment from store (sers)' :
 ctrimain_time)
.
bey'n infela( input parachute deployment time (secs)'):
w-itelal
ctrimaln
col
解_altituce:=a:
e!se init_attitude:
'a't velocjty:=vd
p-ocelure print innut:
w-iteln(', mass= ',store_mass:3:1.' kg base area= ',base_area:4:2.


for $x:=1$ to 7 do writeln(aero_data[1, x]*180/p1 end
cise writeln(.
4: beg, $\begin{aligned} \\ t:=7.8^{\prime} \text { s }\end{aligned}$
 $+$





tauo: $=-$ total_velncty*tin.s05
end:
taun: $=-14.0$
end

If $t$ < $=0.5$ then lincef: $=t 1 * 0.074816 / 0.5$
else if $(t 1>0.5)$ and $(t 1<=0.887)$ then lincf: $=4.2025$. $6 e-1+t 1 *(-2.025129-$ else if $(t 1>0.887)$ and $(t 1<=0.997)$ then lincf $:=3.854211 \mathrm{e}-1 * t 1^{*}(-8.735664 \mathrm{e}-1+$ else if $\left(\begin{array}{c}t 1>0.977) \text { and }(t 1<=1.0) \\ 0.804) / 0.023\end{array}\right.$ then lincf: $=0.804-(t 1-0.977) *(0.865-$
else if $(t 1>1.0)$ and $(t .1<=1.1)$ then lincf:=0.865-(t1-1)/0.1*0.045
else 1 incf: $=0.82$ :
tension'):
n')

$\infty$
0
0
0
0

10 not arro_store then
heg in
basen_da:-0. 0 :
homen
besenama: on.
or_to-tall:=0.0:
iys $=0.0$
end:

> procedure tau_value:
> var $\quad$ real:
begin
case ptype of
1: beg!n $\begin{aligned} & \mathrm{t}:=10.0 / \text { sqr:(total velocity }) ;\end{aligned}$
> var $\quad$ :real;
beg:n
case ptype of
$1:$ beg!n
$t:=: 0.0 /$ sqr: (total veloc 1 ty$)$;
> $t:=10.0 /$ sqrt(total_velocfty);
taco: $=-$ total_velocity*t/8.805
> end:
begin
$t=6$
$t=6$
> t: =6.6.5/sqrt(total velocity):
> 3: teu0: $=-10.0$;



[^2]



end: (* case *)
end:
 else if $(t)>0.887)$ and $(t 1<=0.977)$ then lincf $:=854211 \mathrm{e}-1-t)^{*}$ else if $(t 1>0.977)$ and $(t 1<=1.0)$ then lincf: $=0.804-(t 1-0.977) *(0.865$ else if $(t 1>1.0)$ and $(t)<=1.1)$ then lincf: $=0.865-(t 1-1) / 0.1 * 0.045$ end:
procedure lin_print_out:
begin
 (gammaniso/pi, $7: 1$, tension: $8: 1$ ):
If (tension>max_tension) then max_tension: $=$ te
end:

procodure i:atialise:
begin
chosice:
ion
lin_input_data:
print_input:
In!t_variables:
sun_data;
peint_heading:
lin print out
(*ST b:pjbpas!nfi.text *)


$\begin{aligned} \text { run_values }[6,3]: & = \\ & \sin \text { (in(run_values }[3,1])\end{aligned}$
end;
procedure runge_kutta
var
: real;
: integer; : array[1.. :array $[1 . .6]$ of real;
:array $[1 . .6,1 \ldots 3]$ of real; begin $\quad$ array $1 \ldots 6,1 \ldots 3]$ of real begin derivitives;
for $i:=1$ to no_of_equations do begin
o[i]:=run_values $[i, 1] ;$
$p[i]:=r u n _v a l u e s[i, 2] ;$
 run_values $[i, 2]:=p[i]+w o r k$;
$z[i, 1]:=$ work
end;
time:=time+0.5*time_step;
derivitives;
for $i:=1$ to no_of_equations do
work: =time_step*O.5*run_values $[i, 3]$;
run_values $[i, 2]:=p[i]+$ work;
$z[i, 2]:=$ work
derivitives;
for $i:=1$ to no_of_equations do
begin
work: $=$ time_step* $0.5^{*}$ run_values $[i, 3]$;
run_values $[i, 1]:=0[i]+$ time_step* $(p[i]+$ work) ; run, values $[i, 2]:=p[i]+2.0^{*}$ work;
$z[i, 3]:=$ work
end;
time: =time+0.5*time_step;
for $i:=1$ to no_of_equations do
begin
run_values $[i, 1]:=0[i]+$ time_step* $(p[i]+(z[i, 1]+z[i, 2]+z[i, 3]) / 3.0) ;$
run_values $[i, 2]:=p[i]+\left(z[i, 1]+2.0^{*}(z[i, 2]+z[i, 3])+0.5^{*} t i m e _s t e p^{*}\right.$

[^3]f:=1inrho*total_velocity*total_velocity/2.0; area; area; $=$ aero_coeff[3]*qf*base_area*base_dia;
damp: $=-$ (cmqf *run_values $[2,3]+$ cmaldot*aldot) $\quad$ (
$\mathrm{f}[1]:=-$ af-store_mass*gravity*sin(run_values $[3,1]$ )-tension* $\cos ($ gamma) ; $\mathrm{f}[3]:=$ mdamp-nf*deltax_store-cg_to_tail*tension*sin(gamma) +aeromom; run_valuess $\{2 ; 3\}$; if aero_store then run_values $[3,3]:=f[3] /$ iyy
else run_values $[3,3]:=0$.

こった。	－．．	－	＊＊
	皆ご気运	$\stackrel{5}{6}$	สㅜ
さ	さここさ	ご	＊＊



$\because:$	－	：－	－こここごた	$\because$	－5	－	－
¢	¢	E－9		钅	－	$\stackrel{\substack{0 \\ 0}}{\sim}$	¢
$\pm$－	ここ	ご	ここここご，	ご	－－	－＊	ご

If nlp＜＞1 then
egin
for $x:=2$ to $n l p$ do
hey！$n$


arent［1］：＝（et！1）－e1－0．1）＇2＊（h1g＇nup＋0．05）：
if nup＜＞1 then
fne $x:=2$ in num do
et $[x]:=n t!x-1!-2^{*} h!p^{*} \sin (b e t a 1 / 2) /\left(\right.$ nup ${ }^{*} \cos ($ betal 2$\left.)\right)$ areat $[x]:=($ et $[x]+e t[x-1]+0.1) / 2^{*}(h 1 g /$ nup -0.05$)$
end
end ：
end：
tof
or $x:$
$x:-1$
for $x:=1$ to nup do tof：＝tof $-n^{*}$ areat $[x]$ ；
for $x:=1$ to $n l p$ do tof：$=$ tof $-n^{*}$ areab $[x]$ ； for $x:=1$ to nlp do tof：＝tof $-n^{*}$ areablx
wf：$=$ tnf＊wt $/, 000$ ：
 if $s_{\text {＿band }}$ then
trin $=n^{*} e^{2}+\mathbf{0 . 2}$ ；
 If vent＿band then
tvb：$=n *$ et［nupl－0．2：
 If skirt band then
beg＇n
tsb：$=\mathrm{n}^{*} \mathrm{cs}+0.2$ ：
$\kappa \mathrm{kb}:=\mathrm{tsh} * \mathrm{sbrat}$ ．tweelght／$/ 1000$ if vent＿line then
beg＇n
tov $:=n *(t h 1-h \cdot g)$ icns（beta $1 / 2)+0.2)$ ：
wvl：＝tovl／vimat．cweight 를

[^4]| 二．．． | － | ニッニーニ | － | － | － | － | 二ッた． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{\stackrel{\rightharpoonup}{E}}{\substack{\text { ci }}}$ |  | ¢ |  | \％ | E＂ |  |
| ごきこ | $\pm$＊ | －＊＊ | ＊ | $*$ | ＊＊ | こ＊ | 号 |





$$
\mathrm{var}_{\mathrm{x}}^{\mathrm{var}} \text { interer: }
$$

$$
\begin{aligned}
& \text { witeln } 1^{\prime} \\
& \text { es }:=0.81^{*} \mathrm{e} 1
\end{aligned}
$$

es：$=0.81 *=1 ;$
h2：$=0.2 * \mathrm{en} 1 ;$
thetax：
writeln（＇input number of lower panels（maximum 101＇）；

 areab $[1]:=(\mathrm{eb}[1]+\mathrm{es}+0.1) / 2 *(\mathrm{~h} 2 / \mathrm{n} 1 \mathrm{p}+0.05):$
If n ： $\mathrm{p}<>1$ then
begin $\quad$ nn－$x:=2$ to $n 1 p$ तo
eb $[x]:=e b[x-1]+2^{* h} 2^{*} \sin (t h e t a x) /\left(n!p^{*} \cos (t h e t a x)\right) ;$
$\quad$ areab $[x]:=(e b[x]-e b[x-1]-0.1) / 2^{*}\left(h 2 / n 1 p^{*}+0.05\right)$

hemispherical parachute'):
writeln( input number of panels per pore (maximum 20)'): ct1(inp):
e[1]:=(nv-es)/np-es:
if np $:>1$ then


area $[1]:=($ es -0.05$) *(\mathrm{hgpr} 1 \mathrm{me} / \mathrm{np}+0.05)$ :-
if $\mathrm{np}<>1$ then
frr x:-2 to np do arca[x]:-(n!x 1]*0.05)*(heprime np•n.0.7):


ol: $=7^{*}$ (1e+0.2):
tot: $\boldsymbol{1 0} \boldsymbol{x}^{*}($ hgryire-0.2);
wt: = tot*tmal. twwelght/ $/ 1000$
If s_band then
If $s_{5}$ band then


If vent_band then
 wvb: : tvb*vbmat.twve!ght/ $/ 1000$
end:
if skirt_band then
beg'n

if vent_line then
ov1: =n*(dv/2-0.2) ;
${ }^{5}$
procedure wav3:
begin
tof $:=4 * n *($ es +0.05$) *((d c r u-n * e s) / 2+0.05)+n^{*}($ es -0.05$) * n *(n .3+0.05) ~$









（＊	flle wavun！tz．
$1 *$	this flle contains the kelght
$1 *$	following types of parachute：
（＊	ringslot．
（＊	ringsall．
（＊	dis＇k－pap－band．
（＊	rota？oll．
（＊	paraw＇n\％（sincle knel）．
（＊	ribbon．
	vunit2：
int	ace
	＊St s5：1Inunit．code＊）1inun










var
$x$
begin
etan $=$ ar
integer:

eta: $\left.=\arctan \left(\cos ^{\prime}\left(2^{*}\right) \mathrm{h}\right)\right)$
$\mathrm{e}[1]:=\mathrm{es}-2^{*} \mathrm{rw}^{*} \sin ($ eta $)$
$e[1]:=e s-2^{*} r w^{*} \sin ($ eta $) / \cos ($ eta $):$
arca:1]: $=(e[1]-e s-0.1) / 2^{*}(r w-0.05)$;
for $x:=2$ to nr do
for $x=2$ to nr do
begin


 wl:mol/1mat. cwe'ght:
If vert_tape then
$\begin{aligned} & \text { beg!n } \\ & \text { vt: }=n *(h g+0.2): \\ & \text { wvt: }=\text { tvt*vtmat.twweight/1000 }\end{aligned}$
wvt: =tvt*vtmat. twweight/ $/ 1000$
end:
if vent band then end:
If vent_band then
beg $!n$
tvb: $=n^{*}$ e $[n r]+n .2:$
wrb: $=$ tvb*vbmat. twweight/ $/ 1000$ wob: = tvb* vbmat. twweight/ 1000
end:
if vent_line then



dc: $=1.05^{*} \mathrm{~d}:$
$\mathrm{sv}:=\mathrm{vx} / 100^{*} \mathrm{~s}$



area $[1]:=(e s+e[1]-0.1) / 2^{*}\left(h 1^{*} 0.05\right):$
as: $=(h 443+h s-h g)^{*} \sin \left(5^{*} p 1 / 180\right) / \cos \left(5^{*} \mathrm{p} 1 / 180\right)$ :

arca[2]: $=(h 2+0 . n J)^{*}\left(3^{*} \rho[21 / 2+c \mid 11 / 4+0.025+b / 2)\right.$ :
$c[3]:=e[1]-2^{*}(h 2-h 3)^{*} \sin (p 1 / n) / \cos (p 1 / n):$
arca $[3]:=(h 3-0.05) *\left(e[2]-63^{*} \sin (n d / n) /\left(2^{*} \cos (p 1 / n)\right)-0.025-\right.$


tnf: $=n^{*}($ arca $[1]$-area[2]-area[3]-area 4$\left.]\right)$;
$w f:=0!*: f / 1000$ :


Wt:- tot *tmat. imuefght/1000;
if s.band then
hegin band then
$\left.\mathrm{r}=\mathrm{n}^{*} \mathrm{e}[3]+n .2-\mathrm{n}^{*}(\mathrm{e}[1] / 2-\mathrm{b}-0.2)+\mathrm{n}^{*}(\mathrm{~h} 2) \cos \left(5^{*} \mathrm{p} 1 / 180\right)-0.2\right)+$
$\mathrm{n}^{*}\left(\operatorname{sqrt}\left((\mathrm{e}[3] / 2-\mathrm{a}) *(\mathrm{e}[3] / 2-\mathrm{a})+\mathrm{h} 3^{*} \mathrm{~h} 3\right)+0.2\right) ;$
end:
if vent_band then
begin
tvb: $=n^{*} e[4]+0.2$ :
nvb: $=$ tvb*vbmat.twweight/1000 end: if skirt_band then

tsh: $=n^{*}$ es +0.2 :
wsb: $:=$ tsb*sbrat. twweight/ $/ 1000$
end: end:
 end:
wtnt: $=w v 1-w s b-w(b-w r-w t-w]+w f$
end:
procedure wav9:
var $\quad$ Integer
x


bepin	
v_tape_hr: $=0$;	(** 1858 *)
	(* 1859 *)
	( $\mathrm{nvt}+1$ ) ${ }^{\text {+ }}$
nvt*(tmate twwidth ' $22^{*} 1000$ )-	
hrmat.twwidth/1000)*vimat tw	
end:	
str: $:=($ thr $-0.2 *$ nhr $) * h r m a t . t w w i d t h / 1000+(t o t-0.2 * n) *$ nat.twwidth/ $1000 *$   (tvt-n*nvt*0.2)*vtmat.twwidth/1000-tape_hr-v_tape_hr: (*1861*)	
larthle_g: $=(\mathrm{sq}-\mathrm{str}) / \mathrm{sg}^{*} 100$;	(* 1862 *)
procedure wav45;	
var	
$x \quad$ : integer	
begin	
If type_no=12 then eta: $=$ pl/n	(* 1650 *)
else	
beg!	
ctr(eu): input cone angle mu (degrees) :	
mu: - mu*pd/s80;	
beta: $=2 * \arcsin (\mathrm{sin}(\mathrm{pl} 1 / \mathrm{n}) * \cos (\mathrm{mu})$ );	(* 1651 *)
end: e enebeta/2 (*) 1652 *)	
if vent_band then	
begin -	
else vx: 0 ;	
sv: =vx*so/100:	(* 1654 *)
hg: =hs-sqrt(sv* $\cos (\mathrm{eta}) /(\mathrm{n} * \mathrm{~s} \ln (\mathrm{eta}))$ );	(* 1655 *)
	(* 1635a*)
write!n(' input number of horizontal ribbons (maximum 40)');	
whlle (nhr*hrmat.twwidth/1000) h hg do	(* 1656 *)
beg! $n$	
kriteln(' $\quad$ too many ribbons input a lower number'); $\operatorname{cti}(\mathrm{nhr})$	
end:	
gw: = (hg-nhr*hrmat.twwidth/1000)/(nhr-1) :	(* 1657 *)
e[1]: $\quad$ es $-2^{*}(\mathrm{gw}$-hrmat.twwidth/1000)* $\sin (\mathrm{eta}) / \cos (\mathrm{eta})$ :	(* 1658 *)
for $\mathrm{x}:=2$ to ( $\mathrm{nhr}-1)$ do	
	(* 1659 *)
thr : $\mathrm{n}^{*}$ es +0.2 ;	(*1660 *)
	(* 1651 *)
tol: $=\mathrm{z}^{*}(1 \mathrm{e}-0.2)$ :	(* 1662 *)
wl:-tol/1mat.cweight	(* 1663 *)


(*1640*)
(*SI b:pdesignvri.text *)
(*SI b:pdesignvr2.text *)

## *SI b:pdesigni.text *) *SI b:pdesign2.text *) (*SI b:pdesign3.text *)


begin
wt: $=0$;
$\mathrm{wr}:=0 ;$
$\mathrm{wb}:=0$;
$\begin{array}{ll}\ddot{0} \text { ö } \\ \text { II } \\ \text { "̈ } \\ 3 & 0 \\ 3 & 3\end{array}$

wht: $=0$;
wi:= i:
writcln(' wejght and volume calculation');
writeln:
if type_no in [3..7,21,22] then
if type_no in $[1,2,21,22]$ then wav23:
If type-no=3 then wav24;
f type_no=4 then wav25:
f type_no in $[5,6]$ then wav26;
f type_no $=7$ then wav27;
if tot: $=w s b+w v b+w r+w t+w]+w f+w v]$
end:- type no of
wav3:
wav5:
wav6;
wav7;
wav8;
wav9;
wav46
if type_no in [12,13] then wav45:

$\begin{array}{ll}\text { writeln( } \\ \text { writeln( } & \text { (2) input ajternative packing density'): }\end{array}$

wrjtcin(. Input parking density $\left.\left(\mathrm{kg} / \mathrm{m}^{*} \mathrm{~m}^{*} \mathrm{~m}\right)^{\prime}\right)$;




ost,
tabjlity.
eliabllity.
rint out (o


(*1850 *)
(* 1851 *)
end: $\qquad$

$$
\begin{aligned}
& \text { kriteln: } \\
& \text { if fabric then writeln(' }
\end{aligned}
$$

(* 1641 *)
(* 1845 *)
(* 1846 *)
(* 1847 *)
(* $1848 *)$
(* $1849 *)$


## total weight $=$ '. wtot: $4: 2 \mathbf{2}^{\prime} \mathrm{kg}{ }^{\prime}$ ):

$\begin{array}{ll}\text { If fabric then } & \text { writeln(' } \\ \text { if vent_line then } & \text { writeln }(,\end{array}$
if skirt band then writeln('
if s band then writeln('
if ho-iz_ribbon then writeln(,
$\begin{array}{ll}\text { if vert tape then } & \text { writeln(' } \\ \text { if } \\ \text { if tape then } & \text { writeln(', } \\ \text { if reef_lifne then } & \text { writeln(', }\end{array}$
writeln(
$\quad\left(m^{*} m^{*} m^{\prime}\right)$ :
continue:
if (wint>aw) or (vol>av) then
beg in
begin $\mathrm{kritc}(\mathrm{chr}(12))$ :


begin

cost
end:
If chnicel-3 then exit(parachute_design)
end
end
end:
procedu
procedure not_stable:
begin parachute is not stable'):
writeln
writc!n
writeln
writeln( $\quad$ (2) continue'):
checkch:
if chofce $1=1$ then exit(parachute_design)
end:
procedure stability;
$x$ integer:
begin
writelchr
writeln(
write!n:
if (type_no in [1..7,12,13.15..19.21.22]) and (por5<>99) and (por10<>99) then
if type_no in $[1, .7,16 \ldots 19,21.22]$ then
if (por5-por10)<>0 then

deltap: $=0.5^{*}-h n^{*} v^{*} v^{*} 1.967 \mathrm{e}-3^{*} 3.2808^{*} 3.2808 ;$
$\mathrm{u}:=0.3048^{*}\left(-\mathrm{k} 22+\operatorname{sqrt}\left(\mathrm{k} 22^{*} \mathrm{k} 22^{*} 4^{*} \mathrm{k} 11^{*} \operatorname{deltap}\right)\right) /\left(2^{*} \mathrm{k} 11\right)$
end $u:=0$ :
else
(*1405*)

-
$\stackrel{\circ}{\circ}$
$\stackrel{-}{2}$

" *
(* 1409 *)
(* 1409 *)


reset(nflle, b:t ${ }^{2} 1502$.text'):
-ead!n(dflie, value): if valuc<>>11502 than exit(rellability);
readlin(dflle, dof 2 m9 m95. m99):
 close(iftile):
 eset(dfi)e, h:t11503.text');
readindflle, value): ext(relfablity) :
readln(dfite.dof2.c9.c95.c(99):
while dof2<>dor do readlin(dif1le.dof2.c9,c95.c99):
close(dfile):
if cc $0 . .95$ then $\mathrm{ccc}:=(\mathrm{cc}-0.9) *(\mathrm{c} 95-\mathrm{c9}) / 0.05+\mathrm{c9}$
el se $\mathbf{c c c}:=(\mathrm{cc}-0.95) *(\mathrm{c} 99-\mathrm{c} 95) / 0.04+\mathrm{c} 95$ :




else $\mathrm{tv}:=100^{*} \mathrm{cc}-89$ :
rp:
10
not $x$ xcluster
else
begin
$(* 1520 *)$
$(* 1521 *)$

 end; $\operatorname{witeln(dfile):~}$
writeln(dfile):
writeln(dfile.
writein(difie.
else writeln(d
writeln(dfile,
writeln(dfile.
writeln(dfile,'
writeln(dfilc.'
writeln(dfile,
writeln(difle,
writeln(dfile,
witcla(difle,
write)n(dfile,


 If type_no in $[21,22.23]$ then writeln(dfile, $\quad$ g'): $\quad$ horizontal velocity $=$, writeln(dfile): $\quad$ output'): writeln(dylle,
if xcluster then output') If xcluster then
begin writeln(dfile,'
writeln(dflle, writeln(dflle, witeln(dfile,
writeln(dfile. writeln(dfile.
writeln(dfile, end
else

$c d=\prime, c d: 4: 2)$

:write(dfille,', incard'):
2:write(dfile,'pflanz');
3:write(dfile,'mass ratjo')
end: $\quad$ if xrecfing then writeln(dfi)e,' method $=$ ', max_tension:5:1, $n^{\prime}$ ) end xrecfing then writeln(dfiJe, method $=$ ', max_tension:5:1, ' $n^{\prime}$ )
if
else writeln(df'le. method $\left.,^{\prime}, f: 5: 1 .^{\prime} n^{\prime}\right)$ end:
(f xreefing then
begin
writeln(dfile);
reefing'):

$$
\begin{aligned}
\text { opening Joad } & \left.=\prime, f: 5: 1,^{\prime} \mathrm{n}^{\prime}\right) ; \\
\text { reefed dameter } & \left.=\prime . d r: 4: 2,^{\prime} \mathrm{m}^{\prime}\right) ; \\
\text { reefed area } & \left.=\prime, s r: 4: 2,^{\prime} \mathrm{m}^{*} \mathrm{~m}^{\prime}\right) ;
\end{aligned}
$$

length of reefing line $=, 1 r: 4: 2, \mathrm{~m}^{\prime}$ )
Structural strength of each component'):
safety factor used $=$, sf:3:1);
strength of fabric $=$
strength of vent ban
writeln(dfile,' strength of vent band
writeln(dfile., strength of vent line
writeln(dflle,' strength of reefing line
writeln(dfile);
if fabrjc then writeln(dfile, $\quad$ strength of fabric $\left.=, t f: 4: 2 .^{\circ} \mathrm{n}^{\prime} \mathrm{mm}^{*} 50^{\prime}\right)$ :
If fabrsc then writeln(dfile. strength of fabric $={ }^{\prime}$ (tf:4:2. $\mathrm{n} / \mathrm{mm}^{*} \mathrm{~m}^{\circ} \mathrm{O}$ )




If horiz ribbo
If fabrir then
hegin
writeln(dfile):
writeln(dfile,
writcln(dfile)
writeln(dfile.
writeln(dfile,
writeln(dfile.
writeln(dfile.
writeln(dfile.
writeln(dfile.
if pori0<98 then
writeln(dfile.
if porjc98 then
writrln(dfile.
writeln(dfile.
end:

if s_band then pt2('strengthening band'.rmat.rfr):
if horiz_ribbon then
pt2('horizontal ribbon'.hrmat, rfhr)
end:
If vert_tape then
begin
pt2('vertical tape'.vtmat.rfvt);
if tape then pt2('tape'.,tmat.rft);
if vent band then pt2('vent band'.vbmat, rfvb):
if vent line then $\mathrm{cp} 2($ 'vent line', vlmat, rfvi); if recf-1lne then cpa('recfing line', rlmat,rfri);
if typc_no in [1,2,5,6,7,12,13.21.22] then
wricin(dfile. construction detalls'):
if vent_band then
begin
writeln(dfile.' ): vent area $={ }^{\prime}, v x: 4: 2 .{ }^{\prime}$ : of constructed area'
writeldfile,
if type no=7 then

else if type no in [12.13] then writeln(dfile,e[nhr-1]:4:2,' m')
else writeln(dfile,e[np]:4:2,'. $m^{\prime}$ )
else writeln(dfile, e[np]:4:2,'. $m^{\prime}$ )
end:

else writeln(dfile. $\left.\quad: 4: 2, \mathrm{~m}^{\prime}\right) \quad$ gore height $=$ '.hg: $\left.4: 2 .^{\prime} \mathrm{m}^{\prime}\right)$ :





年：－



－$\because \sim \sim \sim$		＊－	－	－	
$\stackrel{\rightharpoonup}{m} \stackrel{\rightharpoonup}{\infty} \stackrel{0}{\circ}$		$\begin{aligned} & B_{0}{ }^{2} \\ & \text { Bin } \end{aligned}$	후ㅁㅜㅜㄱ	－	
		ご	Nิ	范	
	$\begin{aligned} & =0000 \\ & =0 \end{aligned}$		Es	䛔过	
			$\stackrel{\text { Nö }}{ }$	岂㕆	
シ年足号		－\％	这荡	¢0	
上がったち		先边こ	二2	－\％	
			$\cdots$	唇	¢
过坛		$\bigcirc \stackrel{\rightharpoonup}{0}$	\％	发亏	
－＊＊＊＊	－＊＊＊＊＊	＊＊	$\stackrel{*}{*}$	$\stackrel{*}{*}$	ジジきシ＊＊＊＊＊＊＊＊＊＊＊


＊		－		－	＊		＊		－	
$\begin{aligned} & \Xi \\ & \exists \end{aligned}$						$\overline{\mathrm{E}}$		或傿		
		$\bullet$		＊		品范	＊		＊	



```
l* arctan(vh'v)
```

* 



"
(*) elf pdesipnverz.
(*)'s file contains varlables from a to $z$ and greek variables.
a to $z$ and greek var
(* table value (reliability)
(* fabric strength
(* Ine strength
(* tape strength
(* width (typeli (cruciform))
(* reefing line load
(* velocity (stability)
(* reliability parameter
(* rate of descent
(* horiznntal velocity
(* total velocity
(* vent band strength
(* vent line strength
(* vertical tape strength
(* volumetric flow rate


-
is flle cof variable (cont)

$$
\begin{aligned}
& 09 \text { guide sur } \\
& 0.340 \text { o. } 300 \\
& 10 \text { a annular }
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { annular } \\
& 1.000 \quad 0.950
\end{aligned}
$$

$$
\begin{aligned}
& 11 \text { cross } \\
& 0.8200 .600 \\
& 12 \text { flat ribbon }
\end{aligned}
$$

12500.150
0.3000 .450
13 conical ribbon
3 conical
14 conical ribbon
14 conical ribbon (varied porosity)
0.6500 .5 .50
15 ribbon (hemisflo)
0.460 o. 300
16 rings lot
16 rings lot
$0.650 \quad 0.560$
17 ringsa11
$0.900 \quad 0.750$
18 disk-gap-band
0.5800 .520
ring
8001.500
balloon (ballute)
2000.510
$* 1$
$* 1$
$*$


```
this file contains drag coefflcient correction due to a cluster data
flle t10.001

```

100

```
〒.
fle tinnes.
this flle contains dwag coefficient corection for a cluster
for a ringsall parachute of a nominal djameter greater than
data.
\begin{tabular}{ll}
\(1 *\) & \\
1＊ & \\
2 & 1.000 \\
2 & 0.930
\end{tabular}
\%.
this flle contains drag coefficient correction for n cluster data,

ジー mーロ゚
ext
extended 2.01 .40
guide surf
5.01 .40
ross
0.66
02 cm
\(n .70\)
03 bl
0.70
\(n . \mathrm{tr}^{2}\)
70
extended sk! rt 10\% fiat
G8 extended skirt 14.3: full
9 rotaroll
0.66
22 le motgne
0.66
file tion01.
this file contains vales of the ratio of nominal to projected (in
flight) diameter for solid cloth circular parachutes.

\(\therefore\)
\[
\begin{aligned}
& \begin{array}{l}
\text { the th1001. } \\
\text { this file contains fabric material data }
\end{array}
\end{aligned}
\]

\title{
A Computer Solution to Parachute Design Problems
}
by P.J.Broadbent

\section*{Abstract}

In this thesis a Pascal computer program is presented which calculates a proposed design of parachute from some simple input parameters, of the type specified by a customer to a parachute company. The program reduces by a significant degree time spent by parachute engineers in the preliminary design stages.

Parachute design is a process which (in common with much engineering design) can be regarded as consisting of a number of separate calculations. The most suitable method (or methods) for each calculation were selected after a thorough investigation of parachute design techniques. The chosen methods must be sufficiently accurate and readily conform to a computer treatment. The data required by the program have been collected from various sources and are stored in a number of files on a floppy disk.

The program is applied to requirements received by a parachute company and results obtained compared with the actual parachutes designed. The program is highly interactive with the user who is able to dispute its selection of values for various parameters. Because the designer can make a rapid and objective choice between a number of methods for various calculations, the existence of this program contributes to his knowledge of the relevance of the parameters involved in, and his understanding of, parachute design. Examples of these techniques are given in the text.

Possibilities for expanding and improving the program exist in a number of areas. In some cases the data required for a particular parachute or particular design methods are not available or do not exist. Provision has been made for such data to be included in the program when they are received.```

[^0]: Table D. 4 Material Reliability Data

[^1]:

[^2]: if $t 2>=0.853$ ench and $(t 2>=0.636)$ then 1lincf $:=3.33^{*} \exp \left(-6.103^{*}(2)\right.$
 else if $(t 2<0.858)$ and $(t 2>=0.132)$ then lincf $:=0.657^{*} \exp \left(-3.523^{*}(2)\right.$
 else if $(t 2=0.636)$ and $(t 2)$
 e!se if $(t 2=0.132)$ and $(t 2>=0.0)$ then lincf $:=1.0^{*} \exp \left(-6.716^{*}+2\right)$
 else if $(t 2<0.0)$ and $(t 2>=-0.1)$ then lincf: $=1.0+t 2^{\prime} 0.1^{*}(1.0-0.7)$
 else if $(t 2<0.858)$ and $(t 2>=0.636)$ then lincf $:=3.38^{*} \exp \left(-6.10 \Omega^{*} t 2\right)$ else if $(t 2<0.0)$ and ($t 2>=-0.1$) then lincf: $=1.739+\mathrm{t} 2 / 0.1 *(1.739-0.82)$ end; end;

[^3]: $\begin{aligned} \text { run_values }[4,3]: & =\text { run_values }[3,2] ; \\ \text { run_values }[5,3]: & = \\ & \text { run_values }[1,2] * \cos (\text { run_values }[3,1])+\text { run_values }[2,2] *\end{aligned}$

[^4]: procedure wav23：
 var
 $\mathbf{x} \quad$ ：integer：

