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CHAPTER 1 .

GENERAL INTRODUCTION.



1.

I .  Some Aspects o f E lectron Spin Resonance Spectroscopy.

For a d e ta iled  ex p o sitio n  o f fundamental e . s . r .  theory, the

reader i s  referred  to  sev era l e x c e lle n t  comprehensive reviews roc-  
i —11e n tly  published. In th is  introductory s e c t io n  we sh a ll  b r ie f ly  

cover the methods involved in  the ex tra ctio n  o f s tru c tu ra l inform

a tio n  from the spin-resonance parameters o f  tr a n s it io n  metal complexes 

and simple inorganic rad icals*

a) g-V alues.

The a p p lica tio n  o f a magnetic f i e l d  to  the energy le v e ls  o f  the 

free  atom, formed by the su ccessiv e  operations o f  the e le c tr o n ic  rep

u ls io n  and sp in -o rb it Hamiltonians as perturbations on the Schrodinger 

equation , r e s u lt s  in  a s p l i t t in g  in to  2J + 1 su b le v e ls . For R u ssc ll-  

Saunders coupling J = L + S , where L and S are the o r b ita l and ang

u lar  momentum quantum numbers. Now, in  the free  atom a l l  d irec tio n s  

are eq u iv a len t, and by operating on the wave fu n ction  {l ,  S , 

w ith  the Zeeman operator pH(jh + 2^ ), where ^  i s  the Bohr magneton 

and H the magnetic f i e ld  operator, we obtain  fo r  the z -a x is  as f i e l d  

d irectio n ;

E =

where g = 1 + J(J+1) -  + S(S+1) .

2J(J+1)

The term g i s  commonly known as the Lande g - fa c t  or, and fo r  the case  

where the o r b ita l angular momentum i s  com pletely quenched ( i . e .  L = O) 

we obtain  the free  sp in  value o f  g = 2 , (a c tu a lly  2. 0023)*

In  an e lec tro n  sp in  resonance experim ent, the degeneracy o f  the 

ground s ta te  i s  removed by the a p p lica tio n  o f  a magnetic f ie ld ;  -cV,.



energy separation  being AE = g pH, T ransitions between these le v e ls  

are now induced by in ter a c tio n  w ith electrom agnetic ra d ia tio n  o f  fr e 

quency \) , such th at A e  = hv) , where h i s  Planck* s constant* We can 

thus describe the e lec tro n  sp in  resonance con d ition  as h\) = gpH  

(Figure 1*1)*

In tr a n s it io n  metal compounds, the values o f  the g -fa cto rs  o ften  

d if f e r  w idely from those p red icted  fo r  the free  atom or the free  sp in  

value* For f i r s t  row tr a n s it io n  m etals, however, g -valu es c lo se  to  free  

sp in  are o ften  obtained; d ev iation s being due to  sp in -o r b it  coupling*

In gen era l, there are competing e x c ited  s ta te s  th at can combine ?/ith 

the ground s ta te  o f  the m olecule. I f  there i s  mixing w ith an empty orb

i t a l ,  the o r b ita l motion o f  the e lec tro n  w i l l  be such that the induced 

magnetic f i e ld  w i l l  tend to  oppose the ap p lied  f i e l d ,  r e su lt in g  in  a 

negative g -sh ift*  I f  there i s  mixing w ith  a f i l l e d  o r b ita l  the r e s u lt 

in g  g - s h if t  w i l l  be p o s it iv e . Thus the g-values g ive valuable inform

a tio n  about the proxim ity o f  m agnetically  coupled e x c ite d  s ta te s .

In  the presence o f  a ligan d  f i e l d ,  the g-values are found to  be 

dependant upon the symmetry o f  the f i e l d .  The resonance con d ition  now 

becomes hv) = , where k represen ts an arb itrary  a x is .  For an

octahedral complex g^ = g^ = g^ , and the g-value i s  sa id  to  be is o 

tr o p ic , In  f ie ld s  w ith  non-cubio symmetry, however, anisotropy o f the 

g -fa c to r  i s  observed, e .g .  fo r  m olecules w ith  a x ia l symmetry two g- 

v a lu es , ĝ  ̂and ^ a r e  observed, whereas in  f ie ld s  o f  lower symmetry 

three d is t in c t  g-values are obtained. The general Hamiltonian fo r  the 

Zeeman in te r a c tio n  when the magnetic f i e l d ,  H, i s  app lied  in  an arb

itr a r y  d ir e c tio n  (whose d ir e c tio n  cosin es are 1 , m, n) i s ;

where fo r  convenience the x ,y ,z  axes are chosen to  be the p r in c ip a l 

axes o f  the g-tensor*
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When the e .s .r *  experiment i s  performed u sin g  a s in g le  c r y s ta l ,  

i t  i s  usual to  ro ta te  the c r y s ta l in  turn about three mutually per

pendicular axes. The pr in c ip a l values o f  both the g- and A -tensors and 

th e ir  d irectio n  cosin es r e la t iv e  to  the c r y s ta l axes can then be ded

uced from the observed angular v a r ia tio n s  o f  the g- and A- fa c to r s . 

D eta iled  d escr ip tion s o f the techniques in volved , and convenient meth

ods o f  processing the experim ental inform ation are given by Geusic and 

B r o w n ,P r y c e ,^ ^  Weil and A n d e r s o n ,a n d  Schonland.^^ The method used 

to  evaluate the spin-resonance data fo r  an irra d ia ted  s in g le  c r y s ta l o f  

sodium n itro p ru ssid e , included in  Chapter 5> fo llow s c lo s e ly  th a t o f  

Schonland and i s  fu l ly  described in  Appendix I .

In  f lu id  so lu tio n , where r o ta tio n  o f the paramagnetic compound 

i s  rapid compared to  the time required fo r  resonance, a l l  a n iso trop ic  

e f f e c t s  w i l l  be averaged out and an iso tr o p ic  spectrum w i l l  be obser

ved. The g-value w i l l  simply take the average o f the s in g le  c r y s ta l  

valu es :

i - e -  S iso  = + 8^).

In a frozen so lu tio n  or p o ly c r y s ta llin e  sample an average sp ect

rum i s  again observed, but th is  time i t  c o n s is ts  o f  a superim position  

o f  a l l  the l in e s  o f  the s in g le  c r y s ta l sp ectra . Powder spectra provide 

a u se fu l check on the d ia g o n a lisa tio n  r e s u lt s  from s in g le  c r y s ta l stu 

d ie s , and should always be obtained and compared w ith  the s in g le  

c r y s ta l spectra .

Several a u t h o r s h a v e  performed ca lcu la tio n s  on the l in e  sha

pes o f  p o ly c r y sta llin e  sp ectra  w ith d if fe r e n t  amounts o f  asymmetry. F ig

ure 1 .2  i l lu s t r a t e s  the changes observed w ith  varying degrees o f  asymm

etry  o f  the g -ten so r . Figure l * 2( i )  g ives an example o f  the spectrum  

obtained when there i s  a marked t r ia x ia l  an isotropy. The three
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p rin c ip a l g -va lu es are given by poin ts 1 ,3  and 3 . Figure 1 . 2 ( i i )  i l l u s 

tr a te s  a s im ila r  spectrum, but w ith values o f  ĝ  and g  ̂ much c lo se r  

togeth er . In Figure 1. 2( i i i )  the case fo r  a x ia l  symmetry i s  i l lu s t r a t e d ,
26and, in  th is  case according to  Korolkov and Potapovich, the f i e l d  

corresponding to ^  i . e .  occurs 2/3 of the way between points 2 

and 3* Small d ev iation s from a x ia l symmetry may be d etected  by a length

ening o f  the d istan ce 2 - 3  compared w ith  the d istan ce 1 - 2*

b) Nuclear Hyperfine Coupling.

The experim ental tensor A^^), representing the to ta l

hyperfine in te r a c tio n  between the unpaired e lec tr o n  and a g iven  nucleus 

may be reso lv ed  in to  iso tr o p ic  and a n iso tro p ic  components as fo llo w s:

é  ~ H so  ’ à  * à  ’

where E i s  the u n it m atrix, and B (B , B , B ) the a n iso tro p ic  comp- ■* XX yy z z
nuLtL.ou"

onent a r is e s  from a coupling between the e lec tr o n  and^magnetic d ip o les .

The iso tr o p ic  part o f  the hyperfine ten sor  stems s o le ly  from the 

presence o f  unpaired e lec tro n  sp in -d en sity  a t  the nucleus. This can 

a r ise  in  one o f  three ways:

( i )  from sp in -d en sity  d ir e c t ly  in  an n s -o r b ita l,

( i i )  from a configu ra tion a l in te r a c tio n  which admixes e x c ite d  

s ta te s  w ith appreciable s-ch aracter  in to  a ground-state  

which has no s -o r b ita l  co n tr ib u tion ,

or ( i i i )  from p o la r isa tio n  o f inner s -e le c tr o n s  by un p aired .electron  

. d en sity  in  outer s - ,p - ,d -  or f - o r b i t a ls .  .

The hyperfine coupling between an e lec tr o n  in  an n s -o r b ita l and 

the nucleus a t  the centre o f  th at o r b ita l i s  g iven  by:



s :

2A. = a ISO ns

where a ^  i s  the sp in-population  o f  the n s -o r b ita l and i s  the

value o f  the ns-wavefunction a t  the nucleus. Thus, we can estim ate the 

o r b ita l population o f  the n s -o r b ita l ( a ^ )  qu ite sim ply from a compari

son o f the experim ental (A. ) value w ith  the th e o r e tic a l value (a? )xso xso
ca lcu la ted  from an atomic wavefunction fo r  an e lec tro n  occupying the 

n s -o r b ita l . \

In tr a n s it io n  metal compounds there i s  u su a lly  no population o f  

8- le v e ls  by unpaired e lec tro n s so the mechanism o f  "core po larisa tion "  

mentioned in  ( i i i )  above, i s  an important fa c to r  in  p lacin g unpaired 

e lec tro n  d en sity  in  s -o r b ita ls .  An unpaired e lec tr o n  i s  able to  polar

i s e  e lec tro n s in  c lo sed  s h e l ls  so that the e lec tro n s  w ith cC^spin have 

s l ig h t ly  d if fe r e n t ra d ia l d is tr ib u tio n s  from e lec tro n s w ith  ^ -sp in . This 

core p o la r isa tio n  i s  most n o ticea b le  w ith *s -e le c tr o n s ' ,  s in ce  only a  

sm all degree o f  imbalance i s  required to  produce quite large  co n tr i

butions to  the hyperfine stru c tu re . The sp in -p o la r ised  Hartree-Fock
27wave fu nctions o f  Watson and Freeman fo r  fr e e  atoms have shown th a t, 

fo r  the f i r s t  row tr a n s it io n  elem ents, the con trib u tion s to  the hyper

f in e  f i e l d  are negative fo r  1s and 2s e lec tro n s  and p o s it iv e  fo r  3s and 

4 s e le c tr o n s . These ca lcu la tio n s  a lso  show th a t the 2s con trib u tion  i s  

d o m ir^ t, and thus the s ig n  o f  the iso tr o p ic  hyperfine coupling constant 

i s  n egative .

When a ligan d  has a magnetic nucleus, superhyperfine structure  

i s  o ften  observed. The two major e f fe c t s  which contribute to  th is  are;

( i )  d ip olar in ter a c tio n  between the unpaired e lec tro n  in  a 

metal o r b ita l and the ligan d  n u cleu s,

( i i )  r e a l  sp in -d en sity  on the ligands a r is in g  from the formation  

o f  m olecular o r b ita ls  between lig a n d  o r b ita ls  and the metal
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( i i ) ( continued)

o r b ita l contain ing the unpaired e le c tr o n .

Mechanism ( i )  produces a purely a n iso tro p ic  in te r a c tio n , whereas 

mechanism ( i i )  o ften  produces both iso tr o p ic  and a n iso trop ic  components 

o f  the to t a l  superhyperfine coupling constant*

In  the case o f  simple inorganic r a d ic a ls , i f  d -o rb ita ls  are ass

umed not to  contribute appreciably to  the m olecular o r b ita l conta in ing  

the unpaired e le c tr o n , then the an iso tro p ic  component o f the hyperfine  

ten sor may lead  d ir e c t ly  to  the n p -o rb ita l population .

The con trib u tion  o f unpaired sp in  in  a p -o r b ita l to  the an iso

trop ic  hyperfine tensor when the ex tern a l f i e l d  i s  applied  along the 

symmetry a x is  i s  given  by the expression:

where average value o f r"^, r  being the d istan ce  o f
2the nucleus from the e lec tro n  in  the n p -o r b ita l, and a^^ i s  the e le c t -

2
ronic population o f the o r b ita l . We can estim ate a^^ from a comparison 

o f  the experim ental 2B value w ith  the th e o r e t ic a l value ( 2B°) c a lc u l

ated  from the free-atom  value o f  < ^ r ^  and tak ing a^^ as u n ity .

A nisotropic couplings o f  an order o f  magnitude sm aller than those  

stemming d ir e c t ly  from n p -density  can a r ise  from the d ipolar coupling  

o f  a magnetic nucleus and an unpaired e lec tr o n  in  an o r b ita l on a neigh

bouring atom. When the d istan ce between the unpaired e lec tro n  and the 

in ter a c tin g  nucleus i s  greater than 1 .5  2  th ese in d ir e c t  couplings can 

be s a t is f a c t o r i ly  estim ated , to  f ir s t -o r d e r , by a simple p o in t-d ip o le  

approximation. However, when th is  sep aration  approaches 1 .5  2  i t  i s  

necessary to  use the more so p h is tic a te d  approach o f  McConnell and 

Strathdee.^^
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Thus, the iso tr o p ic  and a n iso trop ic  components o f the hyperfine 

ten sor , rep resen ting  the in ter a c tio n  o f  the unpaired e lec tro n  w ith a 

s in g le  magnetic n u cleus, can y ie ld  estim ates o f  both the s -  and p- 

characters o f the molecular o r b ita l o f  the e lec tro n  a t  th at nucleus 

(provided that d -o rb ita l contribu tions to  th is  molecular o r b ita l are 

n eg lec ted ). I t  i s  now p o ssib le  to  deduce the h yb rid isa tio n  r a tio  ^

.(where = a^/a^) which i s  r e la ted  to  the bond angles in  c er ta in
29ra d ica ls  by Coulson's orthogon ality  r e la t io n sh ip s . Values o f bond 

angles ca lcu la ted  from spin-resonance data gen era lly  agree w ell w ith  

those obtained by more conventional techn iq ues, which i s  indeed remark

able in  view o f the d ra stic  assumptions involved  in  the method o f  pop

u la tio n  an a ly sis  we have o u tlin ed .

I I .  Experimental Methods.

a ) C rystal Growing.

C rystals o f  a lk a l i  h a lid es doped w ith  complex ions were grown by 

slow evaporation o f aqueous so lu tio n s  contain ing 1 -  0.001^ o f the 

complex. This so lu tio n  method has the advantage o f  being r e la t iv e ly  

sim ple, but i t  i s  d i f f i c u l t  to  grow large  c r y s ta ls ,  and to  con tro l 

the amount o f im purity incorporated. In  some cases the im purities are 

incorporated more e a s i ly  than the required io n . In fra -red  spectra  

showed th at a l l  c r y s ta ls  grown by th is  method contained an appreciable  

amount o f water incorporated in to  the l a t t i c e .

b) C oprec ip i ta t io n .

Barium sulphate powders doped w ith required im purity ions were 

prepared by p r e c ip ita tio n  a t 370 K from.near saturated  aqueous so lu tio n s  

o f  barium ch loride contain ing approxim ately 10^ o f  the microcomponent
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s a l t  using pure sulphate s a lt s  and sometimes pure sulphuric a c id . The 

r e su lt in g  suspension, resembling a g e l ,  was allowed to  d ig e s t  a t 353 K 

overnight. In some cases the powders were annealed a t high temperatures 

(ca . 900 K) in  a furnace in  order to  d if fu se  the im purity ions through

out the l a t t i c e  and thus render the s o l id  phase homogeneous.

c) Pressed D iscs.

Samples su ita b le  fo r  i . r *  were conven iently  prepared by compress

ing  the f in e ly  powdered doped a lk a l i  h a lid es  in  a s t e e l  die a t about 20 

tons per square inch and about 2 mm o f Hg p r e s s u r e .T h e  preparation  

o f potassium ch loride and bromide d iscs  was straightforw ard , but sodium 

s a l t s ,  because o f  th e ir  higher m elting p o in t, did not form good d is c s .

In th is  case a d isc  was formed by adding potassium  ch loride to  the samp

l e ,  fo llow ed  by ca refu l mixing in  an agate b a l l  m il l .  The main advantage 

o f these pressed d iscs i s  th a t they can be irra d ia ted  e a s i ly  and a ser

ie s  o f  spectra  can be run o f  the same sample a f te r  d if fe r e n t ir r a d ia t

ion  tim es.

I I I .  Ins trum entation.

i )  E lectron Spin Resonance Spectrom eters.
c

Five e . s . r .  spectrom eters were used in  th is  study, three a t X-band, 

one a t Q-band and one a t 8-band freq u en cies. Measurements a t 9*3 GHz on
I

p o ly c r y sta llin e  samples were obtained using e ith e r  a commercial X-band

Varian V4302-03 or Varian E3 high r e so lu t io n  spectrom eter w ith 100 kHz

f i e l d  modulation. The method employed fo r  the c a lib r a tio n  o f the magnetic
51f i e l d  has been described in  d e ta il  elsew here, and the estim ated accur

acy o f  the g-values and hyperfine coupling constants measured in  th is  way 

are -  0.0004 ( in  2.0000) and -  O.O3 gauss r e sp e c t iv e ly . Measurements
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a t 77 & were made w ith the paramagnetic samples immersed in  l iq u id  

nitrogen in  a quartz Dewar which could be in se r ted  d ir e c t ly  in to  the 

spectrom eter c a v ity . Measurements a t temperatures between 77 and 295 K 

were made using a variable-tem perature accessory  designed and construc

ted  in  these laboratories;^ ^  the absolute temperature o f  the sample 

could be co n tro lled  w ith in  -  0 .5  K. Spectra a t  4 .2  K were obtained  

employing a Varian V4545B liq u id  helium accessory  and superheterodyne

d etec tio n . Spectra a t 19 K were obtained by passing  b o ilin g  helium  rap-
52id ly  through the variable-tem perature accessory  referred  to  above.

Powder sp ectra  were o cca sio n a lly  measured a t  34 .0  GHz on a Q-band

spectrom eter which employed superheterodyne d e t e c t i o n , w h i l s t  spectra

were measured a t  3«1 GHz using an S-band spectrom eter incorporating a

64 channel averaging c o m p u t e r . S i n g l e - c r y s t a l  spectra  a t  77 and

295 K were obtained using an X-band spectrom eter on which the magnetic

31f i e l d  was ca lib ra ted  again st a proton n .m .r. magnetometer.^ In  th is  

machine the sample ca v ity  i s  mounted in  an in su la t in g  bath so th a t , using  

l iq u id  n itrogen  as co o la n t, the sample could be kept a t a constant temp

erature o f 77 K. This instrument was id e a l fo r  s in g le  c r y s ta l sp ectra , 

and runs as long as 15 hours a t  77 K have been performed, the micro

wave frequency and the temperature remaining s ta b le . The Q-band ca v ity  

could be cooled  by p lacin g a copper ex ten sion  o f  the ca v ity  in  a bath 

o f co o la n t, and temperatures down to  about 100 K could be reached. A ll 

o f th ese  spectrom eters, except the f i r s t  two, were designed and const

ructed by Mr.J.A. B r iv a ti, and have been f u l ly  described elsew here.

i i )  In fra-red  Spectrom eter.

A ll the i . r .  spectra  were recorded on a Perkin Elmer 225 double 

beam instrum ent. A low tenq)erature attachment o f  the co ld  f in g e r  type^^ 

was used to  record spectra  o f  pressed  d iscs  down to  about 100 K. On slow
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and expanded scans the spectra  were reproducible to  1 cm

i i i )  Radiation Sources.

Irra d ia tio n s w ith ^^Co ^^rays were ca rr ied  out in  a * Gammacell- 

200’ supplied  by Atomic Energy o f  Canada L td ., which produced an e f f e c t 

iv e  dose ra te  o f  approximately 0.15 'hrads per hour. Irra d ia tio n s a t 77 

were accomplished w ith the samples immersed in  l iq u id  n itrogen  in  a  

Pyrex Dewar which was designed to  f i t  c lo se  to  the ra d ia tiô n  source.

V/hen samples were irra d ia ted  in  sea led  quartz tu b es, to  e lim in ate  rad

ic a ls  produced in  the quartz, one end o f the tube was annealed to  red 

heat using a b low -torch , keeping the other end immersed in  l iq u id  n it 

rogen where necessary. I f  th is  were not done, ra d ica ls  produced in  the 

radiation-damaged quartz would in ter fe r e  w ith the desired  sample 

spectrum.

Photolyses w ith 3^50 2  ra d ia tio n  were ca rr ied  out vd.th a h igh- 

pressure mercury arc lamp, and p h o to lysis  a t 77 K was accom plished  

by p lacin g  the sample in  a quartz ta i l -p ie c e  o f  a Dewar f i l l e d  w ith  

l iq u id  n itrogen .
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PART I

SPECTROSCOPIC STUDIES UPON 80Œ TRANSITION LSTAL 

NITROSYL C01ÎPLEXES.



INTRODUCTION TO PART I.

In part I  o f th is  th e s is  we report some in te r e s t in g  tran s

i t i o n  metal n itr o sy l complexes in  unusual valency s ta te s . E .s» r . 

and i . r .  sp ectroscop ic  s tu d ies  were used not only as an a id  to  

th e ir  id e n t if ic a t io n  but as a probe o f th e ir  m olecular stru cture  

and geometry as w e ll as th e ir  e lec tr o n ic  co n fig u ra tio n .

S everal reviews have been published on n itr o s y l  compounds 

and using the c la s s i f i c a t io n  o f  reference 1 , n itr o s y l  compounds 

may be d iv ided  in to  s ix  ca teg o r ie s :

( i )  simple n itr o s y l compounds o f  the type M^(NO)^.

( i i )  ; n itr o s y l carbonyls ; sev era l o f  th ese complexes have 

been reported , but to  date a l l  have been found to  be 

diam agnetic.

( i i i )  n itr o s y l halide complexes.

( iv )  complexes in vo lv in g  sulphur lig a n d s .

(v ) organom etallic n it r o s y l  complexes!

( v i )  n itr o s y l  cyanide complexes*

5 7We have e x c lu s iv e ly  stud ied  d and d pentacyanonitrosyls  

in  the present work. These complexes are p a r tic u la r ly  amenable to  

e . s . r .  study s in c e , being low -sp in  complexes, they have only one 

unpaired e lec tr o n  and any d e lo c a lisa t io n  o f the unpaired e lec tr o n  

onto the n itrogen  o f the n itr o s y l group i s  r e a d ily  observed as 

su p er lro er fin e  s p l i t t in g  C S j .  I  = ,1 ,  99.6j5 iso to p io  abundance). 

Furthermore, d e lo c a lisa t io n  onto the cyanide ligan d s can a lso  be 

observed O ^ C ;  I  = 1.1^ iso to p ic  abundance) a t high ga in , or
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more rea d ily  i f  the complex i s  syn th esised  using Na'̂ ^CN.

At th is  po in t i t  i s  in s tr u c tiv e  to  give a general in trod u ction

to  the bonding th at can occur in  n itr o sy l com plexes. On the b a s is  o f  

a wide range o f  in fra -red  measurements, ^^^ complexes w ith N-0 s t r e t 

ching frequencies in  the range 1940-1575 cm*"*̂  were assumed to  have NO'*'

co-ord in a tion , whereas those in  the range 1200-1040 cm  ̂ were assign ed

to  NO". This la t t e r  group has s in ce  been assign ed  to  compounds having a

8 9h yp on itr ite  stru c tu re . * The former group then comprises a l l  true n itro 

s y l  complexes w ith  the charge on the lig a n d  varying from NO'*’ to  NO” .

Using Valence Bond theory we can consider the n it r ic  oxide bon

ding to  a metal in  the fo llo w in g  ways;

(a ) Transfer o f  the unpaired e lec tro n  from NO to  the metal f o l 

lowed by lone pair  donation from NO*.

(b ) Transfer o f an e lec tro n  from the metal to  NO forming NO”.

(c )  Donation o f the lone p a ir  on the n itrogen  to the m etal, with

the unpaired e lec tro n  being reta in ed  by the n itr o sy l group.

(d) Donation o f the unpaired e lec tro n  from the NO to  the m etal,

fo llow ed  by back donation from the m etal to  the lig a n d  antibo

nding o r b ita ls .

(e )  Transfer o f three e lec tro n s to  the n itr o s y l  group^to.form 

NO , fo llow ed by strong e lec tro n  donation from the n itr o s y l  

group to  the m etal.

( f )  I t  i s  p o ss ib le  th a t the NO group could  bond in  a bridging  

p o s it io n  analogous to  the carbonyl group in  some polynuclear
: I . .  .

metal carbonyls.

Schemes (a ) and (d) both involve the i n i t i a l  form ation o f  the
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• n i  t r  OS onium io n  (NO*) which i s  not e n e r g e tic a lly  d i f f i c u l t ,  s in ce  the 

io n isa t io n  p o te n tia l fo r  n it r ic  oxide i s  only 9*5 eV (74,000 cm” ^).^^ 

This would r e s u lt  in  a considerable increase in  the stren gth  o f  the 

N-0 bond s in ce  we are removing an antibonding e lec tr o n , which i s  r e f 

le c te d  by the in fra -red  s tr e tc h in g  frequencies o f  n it r ic  oxide gas 

(1880 cm ^)^*^^ and nitresonium  s a lt s  (2200-2300 cm However,

s in ce  the n itr o s y l  group i s  now p o s it iv e ly  charged, i t  i s  very imp

robable th a t fu rther e lec tro n  donation ( i . e .  the lone p a ir ) can occ

ur w ithout some a d d ition a l mechanism tending to  n eu tra lise  the charge 

on the n it r o s y l  group. Thus a combination o f  schemes a) and d) could
13g ive  a bonding scheme compatible w ith Pau ling’s charge n e u tr a lity  r u le ,  

which, although em pirica l, seems to  have been j u s t i f ie d  by charge den

s i t y  ca lcu la tio n s.^ ^

Mechanism (b ) might be expected to operate i f  the metal has a 

high formal ox id ation  s ta te ,  although a sim ple donation w i l l  r e s u lt  in  

the presence o f  two unpaired e lec tro n s  on the n itr o s y l lig a n d  (v id e  

in f r a ) .  However, the presence o f  a d d itio n a l e lec tro n  d en sity  on the 

n itr o s y l  group would cause considerable weakening o f  the N-0 bond 

w ith  resp ect to  n it r ic  oxide gas. This i s  r e f le c te d  in  the i . r .  s t r 

e tch in g  frequencies o f a large  number o f n itr o s y l complexes.^ Bond

in g  scheme (e )  a lso  r e su lts  in  an increase in  the e lec tro n  d en sity  on 

the n itr o s y l  group, and on the b a s is  o f  i . r .  data, i t  i s  d i f f i c u l t  to  

d is t in g u ish  between these two ca se s .

A much more sa t is fa c to r y  d escr ip tio n  o f the bonding in  n it r o s y l

complexes may be obtained by using M.O. theory. The u n f i l le d  o r b ita ls
+ ^o f  NO w ith  low est energy are the doubly degenerate TT - o r b it a ls ,

which can mix w ith the metal d ^  and d^  ̂ o r b ita ls .  For a n itr o s y l

group on the z -a x is ,  the back donation from the metal in  scheme (d)

w i l l  come from th ese o r b ita ls .  In  f a c t ,  i f  the d and d o r b ita lsxy yz
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are f i l l e d ,  we can form molecular o r b ita ls  in  which the e lec tro n

d en sity  w i l l  be shared between the metal, and the n itr o sy l ligan d ; the

e lec tr o n  d en sity  on the la t t e r  depending upon the i n i t i a l  energy d i f f -

erence between the d o r b ita ls  and the TT (NO) o r b ita ls .xz ,yz
On the b a s is  o f  the above arguments we can draw up a m olecular 

o r b ita l scheme (Figure I . l )  in  which only the metal d -o rb ita ls  have 

been considered and any bonding between the metal and the other ligan d s  

(L) i s  assumed to  be com pletely io n ic .

The m olecular o r b ita ls  in vo lved  in  scheme (e )  are id e n t ic a l to

those described above except th a t the TT (̂NO) l e v e l  i s  form ally o f

lower .energy than the d l e v e l .x z ,y z
Bonding scheme (b) in v o lv es  the donation o f  an e lec tro n  from the 

metal to  the TT (̂NO) le v e l .  This w i l l  now conta in  two unpaired e lec tro n s  

( is o e le c tr o n ic  w ith  0^), which w i l l  remain unpaired u n less  there i s  a  

d is to r tio n  in  th e  molecule s u f f ic ie n t  to  separate the two TT**̂ (NO) 

o r b ita ls  by an amount greater than the p a ir in g  energy o f the e lec tr o n s .

Scheme (c )  i s  b e s t  in terp reted  in  the m olecular o r b ita l p ictu re  

as the case where there i s  ju s t  one e lec tro n  in  the 5o le v e l .

To summarise then: we can see th at the s ix  p ictu res o f  the bond

in g  using, the valence bond approach can be accommodated in  the molecu

la r  o r b ita l scheme shown in  Figure 1.1. w ith the appropriate number o f  

e lec tr o n s .
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CHAPTER 2,

PARAMAGJrETIC SPECIES OBTAINED FROM

ANHYDROUS SODIUM NITROPRÜSSIDE#



Introdu ction .

1 yP rior to  the commencement o f t h is  work Goodman et*  a l .  

irra d ia ted  anhydrous sodium n itro p ru ssid o ,  prepared by heating  

th e dihydrate in  vacuo,, at 77 ^ and a t room temperature and 

obtained a paramagnetic sp ecies  w ith  e .s* r*  parameters s im ila r  

to  those o f the ^ ir r a d ia t e d  dihydrate 1 The only p o in t o f  

d ifferen ce  between the two was th a t the former had a x ia lly  

symmetric g - and A- tensors whereas the la t t e r  d id  n ot.

One o f  the d i f f i c u l t i e s  in  low temperature work i s  the 

tr a n sfe r  o f  th e  sample a t  77 K to  the e*s#r* c a v ity  w ithout 

r a is in g  i t s  tecperature# I f  th is  happens, and i t  was suspected  

th a t t h i s  did  occur in  the above work, then any unstable ra d ica ls  

formed a t  77 ^ would decay on warming and would th erefore not 

be observed# I t  was decided to  t e s t  th is  theory by repeating  

th e experiment w ith  two m odifications* A more e f f ic ie n t  and 

r e l ia b le  method o f  dehydrating the sodium n itroprusside was used , 

togeth er  w ith a  rap id  tra n sfer  tochnique which minimised any 

chance o f  lo s in g  short l iv e d  ra d ica ls  by thermal decay*

The present work was a lso  undertaken in  order to  e lu c id a te  

in d ir e c t ly  the part played b y  water m olecules in  the ^ - r a y  

damage mechanièm* In p a rticu la r  to  obtain  new paramagnetic 

sp ec ie s  and hence prove th at a  d if fe r e n t  mechahism o f  ra d ia tion  

damage was employed in  the anhydrous m aterial from th at employed 

in  the hydrated compound*

Experim ental.

Sodium n itrop ru ssid e  was dehydrated by the fo llo w in g  method. 

Reagent grade sodium n itrop ru ssid e  was powdered and d isso lv ed  in



20.

pu re, dry dimethylformamide (D .M .F.). The anlydrous form was 

then p rec ip ita ted  out o f  so lu tio n  using sodium -dried ether*

A fter rapid f i l t r a t io n  and washing w ith  dry e th e r , the extremely  

hygroscopic m aterial was stored  over vacuo. A portion

o f the powder was tran sferred  in  a dry box to  a quartz tube which 

v/as then sea led  and ^  - ir r a d ia te d  a t 77 K for  approxim ately 12 

hours* A fter  annealing one end, the tube was then rap id ly  

tran sferred  to  a Dewar contain ing liq u id  n itro g en , designed to  

f i t  in to  the ca v ity  o f  an X-band e . s . r .  spectrom eter. A spectrum 

was f i r s t  obtained a t 77 N having ensured th at the sample did  

not warm up to  any exten t during the tra n sfer  procedure. The 

microwave power was varied  in  order to  obtain  tho h ig h est s ig n a l  

to  n o ise  r a tio  and a lso  as an a id  to  in terp re ta tio n  by Aerm ining  

which s e ts  o f  l in e s  had the same in te n s ity  versus power cliaracter

i s t i c s *  The sample was then removed from the c a v ity , allowed  

to  warm up fo r  approxim ately f i v e  second s, and then returned  

to  the ca v ity  and a new spectrum obtained. Since the spectrum  

o f the annealed sample in d icated  th a t one o f tho ra d ica ls  was 

d ecaying, the above procedure o f  warming and reco o lin g  the 

sample was repeated u n t i l  the spectrum showed no fu rth er  change.

To monitor the decay o f  longer l iv e d  r a d ic a ls , sp ectra  were a lso  

obtained a t  77 K a fte r  th e  sacq)le had been a t room temperature 

fo r  1i hour, 8 hours, 24 hours and one week*

S p ectra  o f  warmed samples were obtained a t  room temperature 

(298 K) as were samples ^  - ir r a d ia te d  a t  room temperature. A ll  

sp ectra  were ca lib ra ted  using a  proton resonance probe and the 

microwave frequency was checked u sin g  charred dextrose as a 

standard whose g-value i s  known a ccu ra te ly . To confirm  the
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in terp re ta tio n  o f  the X-band sp ectra , a spectrum o f the -  

ir ra d ia ted  powder was obtained a t S-band frequency a t  77 K.

R esu lts.

At 77 K the o r ig in a l X-band spectrum (Figure 2,1 ) showed 

the presence o f two predominant sp e c ie s , A and B, w ith some 

underlying weaker l in e s  o f  a th ird  sp e c ie s , C, in  considerab ly  

low er y ie ld .  The spectrum o f  sp ecies  A had a x ia l symmetry, w ith  

g^> and no observable hyperfine stzructure on e ith e r  the

perpendicular feature or on the very sharp p a r a lle l  l in e .  The 

spectrum o f  the oth er main paramagnetic centre (sp ec ie s  B) was 

in terp re ted  in  terms o f  a ra d ica l w ith  three g -va lu es and 

hyperfine coupling c h a r a c te r is t ic  o f  in te r a c tio n  o f  the unpaired 

e le c tr o n  w ith a. nucleus o f  sp in  1=1• The featu re having the 

low est g-value co n s isted  o f  a rather broad l in e  which could only  

ju s t  be reso lved  in to  three l in e s  under optimum con d itio n s. The 

h ig h est g-value featu re co n sisted  o f  a s in g le  l in e  whose hyperfine 

coupling constant was estim ated from the lin e -w id th . The remaining 

g-fea tu re  was a c le a r ly  defined  t r ip l e t .

On warming the sample fo r  f iv e  seconds and re c o o lin g  to  77 2  

there was a marked change in  the spectrum. (F igure 2 .2 )  The 

fe a tu re s  assigned to sp ec ie s  A disappeared com pletely , whereas 

sp ec ie s  B remained w ith approximately a twenty f iv e  per cent lo s s  

in  in t e n s i t y ,  measured from s ig n a l h e ig h t. The weak l in e s  o f  

sp ec ie s  C a lso  remained and th e ir  in te n s ity  Tfas estim ated  to have 

in creased  concom itantly by approximately twenty f iv e  per cent ,

The spectrum o f the sample a f te r  f iv e  minutes a t room temperature 

fo llow ed  by recoo lin g  to 77K showed a fu rther decrease in
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in te n s ity  o f  sp ecies  B \vith a concomitant increase in  in te n s ity  o f  

sp ec ie s  C. A sim ila r  r e s u lt  was obtained a fte r  e ig h t hours and 

twenty four hours a t room temperature. .After severa l days a t room 

temperature, the spectrum o f  the sample run a t 77K showed the
Q

presence o f sp ecies^ on ly .S p ectra  o f  samples run a t room temperature 

showed only the presence o f  sp ec ie s  C in  a l l  the above ca ses .

No new inform ation was obtained from the S-band spectrum run 

a t  77K (Figure 2*5) but i t  served to confirm the in ter p r e ta tio n  

o f  the X-band spectrum.

D iscu ssion .

Id e n tif ic a t io n  o f  Species A.

57Although in  the absence o f  Fe data th is  cannot be p o s it iv e ly  

id e n t i f ie d  as an iron  centre i t  i s  considered th at the sp ec ies  i s  

most probably the pentacyanonitrosyl f e r r a t e ( l l l )  anion fo r  the 

fo llo w in g  reasons•

The absence o f  s ig n if ic a n t  n itrogen  hyperfine coupling  precludes 

any form o f  iron  ( l )  pentacyanonitrosyl s in ce  an e lec tr o n  in  an 

iro n  d^2 o r b ita l or  in  an o r b ita l mainly ^  on n itrogen  would 

g iv e  a  very s ig n if ic a n t  hyperfine coupling to  n itro g en .

S im ila r  arguments would a lso  e lim in ate  o th er n itrogen  contain ing  

ra d ica ls  such as NO or CN which could  be derived from ra d ia tion  

damage o f  the sodium nitrop ru sside*

A ch oice  remains then between the fo llow in g  paramagnetic 

X 7iro n  sp e c ie s :  Fe (CN)^ , a d iro n  complex having com pletely  

l o s t  the n itr o s y l gpoup; or Fe^^(CN)^NO, a d  ̂ iro n  penta

cyan on itrosy l complex e ith e r  in ta c t_ o r  having l o s t  a cyanide or
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n itr o s y l ligan d .

The formation o f an ir o n ( l )  sp ec ie s  fo llo w in g  the lo s s  o f  

a n itr o s y l group i s  very u n lik e ly  indeed on m echanistic grouna^» 

An argument based on a con sid eration  o f  mechanism would s im ila r ly  

ru le  out the formation o f an i r o n ( l l l )  sp ecies  fo llo w in g  the lo s s  

o f a n itr o s y l or cyanide group. This w i l l  be d iscussed  in  more 

d e ta il  in  a la te r  s e c t io n . Furthermore i t  w i l l  be shown la te r  

th at sp ec ie s  B i s  an e lec tro n -ex cess  c e n tr e , from which i t  can , 

be in ferred  that sp ec ie s  A i s  an e lec tro n  d e f ic ie n t  centre*

We w i l l  now examine the g- and A- tensors o f  sp ec ie s  A and by 

comparison w ith the corresponding, spin-resonance parameters

o f  the w ell ch aracterised  d ions Cr (CN)^NO and^  ions Cr^(CN)^NO^

MnF^(CN)^0^ 2 ,7*8 , vtH I  show th at i t  i s  most probably

the is o e le c tr o n ic  Fe .(CIT)^O'’ io n .

The g- ten sor .

Table 2.1 l i s t s  the g - fa c to rs  fo r  the three pentacyano

n itr o s y ls  in  qu estion . We can exp la in  the v a r ia tio n  from the 

fr e e -sp in  value o f  th ese  g -fa cto r s  in  t e a ^  o f  a  mixing o f  the  

ground and ex c ited  s ta te s  v ia  sp in -o rb it  cou p lin g .

Figure. 2 .4  shows the relevan t m olecular o r b ita ls  in  a ty p ic a l  

m etal pentacyanonitrosyl^ (lîn(CN)^IîO^’’) where the ordering o f  

the e le c tr o n ic  le v e ls  i s :

6e ( x z ^ z )  <  abgCsy) <  7e (TI^NO) 4 .  3b,,(x^-7 ^) <  Sa^fz^) 

<  8e  (TTCN)

The ground s ta te  in  th ese  d complexes i s  designated  

With the f i e ld  along the z -a x is  (th e  M-K-O d irectio n ) the Zb,



T a b le  2 .1

Electron Spin Resonance Parameters fo r  some Metal Pentacyanonitrosyl

Complexes.

Complex gf-tensor % perflne tensor (gauss) Ref.

V  V /  \ v

Or(CN)jNO^ 1,9722 2.00^5 1.9937 2.89 7.10 5.70 4

Cr{CK)^0^ t.97V5 2.0052 1.9950 2.00 6.90 5.30 5

Cr(CM)gNO  ̂ 1.97lf5 2.00511 1.9949 2.00 7.00 5.30 3

Mn(ON)-NÔ ‘  1.9922 2.0311 2.0181 1.91 4.75 3.80 Tfi

Species A 2.0142 2.07l6 2.0535 < 1 ^  -<3^ < 2 ^  s

a = This work.

b = Estimated from the line-w idth.
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( d ^ )  o r b ita l i s  able to  couple w ith the empty 3b^(d^2^^2) 

o r b ita l  and w ith the f i l l e d  1b  ̂ o r b ita l . Y/ith the f i e l d  perpendicular 

to  the z -a x is  the d o r b ita l  can couple w ith  the f i l l e d  degenerate 

Gq (d^^ p a ir  and w ith the empty 7c (TT‘ NO) o r b ita ls .

Now in  an iso e le c tr o n ic  s e r ie s  such as t h is ,  the e f f e c t  o f

in crea s in g  the p o s it iv e  charge on the metal i s  to  s t a b i l i s e  the

m etal o r b ita ls  w ith resp ect to the lig a n d  o r b ita ls . The most

pronounced e f f e c t  w i l l  be on the mainly non-bonding metal d ^

o r b ita l in  question; the o r b ita l con ta in ing  the unpaired e lec tro n .

Thus on going from Cr^ to lîn^^ to the 2b  ̂ ( d ^ )  o r b ita l

w i l l  be lowered in  energy thereby moving c lo se r  to the 1b  ̂ and 6e

f i l l e d  o r b ita ls . (Figure 2 .5 )  The e f f e c t  o f th is  i s  to  make sp in -

o rb it coupling w ith these f i l l e d  l e v e l s  in crea sin g ly  more pronounced

and so we would expect both the gy  ̂-  and g_^- fa c to rs  to  s h i f t  to

more p o s it iv e  v a lu es , which i s  in  fa c t  the case . The rather large
TTT

p o s it iv e  perpendicular g r sh if t  fo r  Fe may be explained  by the 

the a d d ition a l e f f e c t  brought about by coupling o f  the 2b^ le v e l  

w ith the f i l l e d  5e le v e l  which i s  now c lo se  enough to  make an 

important contribu tion  to the o v era ll g -va lu e . That sp ec ie s  A i s  

an ir o n ( H l)  complex would seem to  be l ik e ly  in  view o f  th is  

experim ental trend in  g -v a lu es .

The A -tensor.

As seen  in  Table 2.1 the observed values fo r  A/^ \ decreaseCav)
in  the order Cr  ̂ ^  ^  Fe^^^. Again there appears to  be a

co n sista n t numerical trend in  a  spin-r^isonance parameter on 

in crea sin g  the charge on the m etal.



E r re  e t  o f  I n c r e a s i n g  P o s i t i v e  Charrie on th e  M eta l on the

M. O. ' s o r  some d P e n ta c y a n o n i t r o s y l  Com plexes.

Cr HLMn
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The mechanism fo r  p lacing sp in -d en sity  on the n itr o s y l

group i s  not knô vn fo r  cer ta in . However some mechanisms can he

discounted . For in sta n ce , d irec t overlap o f the d o r b ita l w ithxy

any NO o r b ita l i s  c le a r ly  im possible un less there was some 

considerab le bending o f the NO group# There i s  no evidence for  

more than very' s l ig h t  bending in  the case o f the chromium^ and
Q

manganese complexes, and so , i f  iron  fo llow s th is  trend we can 

elim in ate th is  p a r ticu la r  mechanism,
9

C alculations fo r  the chromium complex have shown that remote

d ip olar  in tera c tio n  makes only a very sm all con tr ib u tion  to  the

o v e ra ll coupling, so th is  can probably be discounted as a major
Ncon trib u tion  to the measured A fo r  the manganese and iron  complexes

also#  The mechanism o f  sp in -o rb it cou p lin g , however, i s  able to

account fo r  the experim ental trend. The 6e (d ) le v e l  containsx z ,y z '
8contribu tions from TV (NO) and ca lcu la tio n s  have shown th a t the

con trib u tion  decreases in  the order Cr  ̂ ^  Mn^ ^  F e^ ^ ,  ̂ Thus y

sp in -o rb it coupling in vo lv in g  the 6e o r b ita l would place sp in -

d en sity  on NO and account fo r  the decrease in  hyperfine coupling

constants in  the observed order,

A p o ss ib le  a lte r n a tiv e  mechanism i s  sp in  p o la r isa tio n . For

example, mixing configu rations ^BgCSe^Zbg^) and )

would a lso  place unpaired sp in -d en sity  on the n itrogen  o f  the

n itr o s y l group. For th is  p a r ticu la r  case M.O. c a lcu la tio n s  o f <

Manoharan and G-raŷ  lend support to  th is  mechanism by th eo re t-
■ Nic a l ly  p red ictin g  the observed decrease in  A on going from the 

chromium(l) to  the m anganese(ll) complex. This resu lt,w h ich  i s  

a ttr ib u ted  to  the increased  charge on the m etal, may then be 

extrapolated  tp include the i r o n ( l l l )  complex.
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So although we have not proved co n c lu s iv e ly  th at sp ec ie s  A i s  

Fe(CN)^NO” , the g- and A- values are very much c o n s is te n t w ith  th is  

assignment and i t  seems more than l ik e ly  th a t i t  i s  the th ird
5

member o f  an iso e le c tr o n ic  s e r ie s  o f  d pentacyan onitrosy ls.

Id e n tif ic a t io n  o f Species B«

Table 2 .2  l i s t s  the g- and A- ten so rs  fo r  n it r ic  oxide

trapped in  a v a r ie ty  o f  m atrices togeth er w ith those o f

sp ec ie s  B, The sp in  resonance parameters o f  the l a t t e r  are so

s tr ik in g ly  s im ila r  to  those o f  trapped n i t r i c  oxide th a t we are

le d  to  the conclusion  th at i t  too i s  n i t r ic  oxide trapped in  the
o.re

host l a t t i c e ,  e sp e c ia lly  s in ce  there^no other knov/n n itrogen -  

contain ing ra d ica ls  w ith  sim ila r  e .s .r #  parameters.

N itr ic  oxide contains an unpaired e lec tro n  in  a 2p 

o rb ita l., which i s  degenerate in  the free  m olecule. In order to  

obtain  an e . s . r .  spectrum such th at g ^  = , c lo se  to  free  sp in

and g^^ free  sp in , the n it r ic  oxide must be trapped a t a s i t e

w ith  a c r y s ta l f i e l d  strong enough to  l i f t  the degeneracy o f  the 

2p^^ o r b ita ls . From the e . s . r .  spectrum i t  i s  c le a r  th a t there  

i s  only  one trapping s i t e  fo r  the n i t r i c  oxide and th a t th is  s i t e  

e x er ts  a c r y s ta l f i e l d  o f  p recise  symmetiy on the r a d ic a l, so  

th at one o f  the 2 p o r b i t a l s  say) w i l l  have a lower

energy than the other. YTe may represent the e lec tr o n ic  con figu ration  

by the fo llow in g  diagram :

P.T.O.
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Fi-ju-fe. 2.. 6

2P ^+

4 k

4k 2p <7-

Thus we may say that the unpaired e lec tr o n  w i l l  be in  the  

l e v e l  in  the absence o f  any sp in -o rb it  in te r a c tio n . The low  

g-value w i l l  then a r ise  when the f i e l d  i s  along the z- d ir e c tio n  

(th e  N-0 a x is ) ,  where the ground s ta te  (2 p ^ ^  )  ̂ mixes w ith the 

e x c ited  s ta te  ...(2 ? ^ * ^  )  ̂ v ia  sp in -o rb it  coupling .

The iso tr o p ic  hyperfine coupling constant i s  ca lcu la ted  to- 

be 6 gauss, using the values A^= -1 0 0 .,  A^= - 30. and A^= +510. ,  

and the re la t io n sh ip  Aj^^= Â  + A  ̂ + . This value i s  in  good

3
agreement w ith the value o f  8 gauss ca lcu la ted  fo r  n it r ic  oxide 

15in  the gas phase .

However the an iso trop ic  hyperfine tensor (25  -9  - l 6 )  i s  

d iffe r e n t from the tensor expected fo r  an e lec tro n  in  a. p ^  -  

o r b ita l ,  which should be o f  the form (2B -B  -B ) . In p r in c ip le  

such a. discrepancy can be explained by a - l ib r a t io n a l movement o f  

the m olecule. In  g e n e r a l,i f  a molecule contain ing  ah unpaired  

e lec tro n  in  a p- "type o r b ita l having an an iso tro p ic  tensor o f  the  

form (a^ Ay A^) = (2B -B  -B ) i s  rap id ly  r o ta tin g  about one o f
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i t s  coordinate axes (y , say) then the p r in c ip a l values fo r  the 

other two directions; (x  and z) become com pletely averaged, and 

the tensor becomes + A^) ^(A^ + A^)) = (B /2 -B  B/2)^

I f  the molecule i s  l ib  ra tin g  about an a x is  (and not com pletely  

r o ta tin g ) then the hyperfine values in  tho oth er two d irec tio n s  

w i l l  not be com pletely  averaged but w i l l  tend to  move towards 

the average value# In the case o f NO in  question^ n e ith er  

l ib r a t io n  about the x  or y  a xes, nor a combination o f  the ti70 

w i l l  produce the values obtained experim entally* S ta rtin g  w ith  

the an iso trop ic  tensor predicted  fo r  NO in  the gas phase,

(28 -1 4  - 14), l ib r a t io n  about the y  -  a x is  could produce the

ten sor  (25 -1 4  - 1 t )  which i s  reasonably c lo se  to  the experim ental 

ten so r , but not c lo se  enough fo r  the conclusion  to  bo drâ vn 

th a t l ib r a t io n a l motion i s  the only cause o f the discrepancy*  ̂

N everth eless i t  could w e ll be a  major contribution* Any remaining 

discrepancy could be explained by some m od ifica tion  o f  the 

o r b ita ls  in  NO by the trapping s i t e  i t s e l f ,  v ia  some form o f  

bonding between the two*

In  common w ith  trapped NO in  other m atrices the p r in c ip a l 

g-values are in  agreement w ith  the expected g -ten so r  fo r  the NO 

molecule in  a strong c r y s ta ll in e  f i e l d  where the s p l i t t in g  o f  

the doublet TT-antibonding l e v e l  i s  la r g e , and the unpaired 

e lec tro n  i s  mainly confined to  one le v e l*

I d e n t if ic a t io n  o f Species C*

Comparison o f  the e*s*r* parameters o f  th is  sp ec ies  (Table 2*3) 

w ith th ose o f a sp ec ies  obtained by ir r a d ia tin g  hydrated sodium



2 Q

n itrop ru sside a t  room temperature leaves l i t t l e  doubt th at

th ey  are id e n t ic a l .  The l a t t e r  sp ec ies  has been in terp reted  as

the d^ pentacyanonitrosyl iron  ( l )  com plex, where the unpaired

e lec tro n  d en sity  was shOY/n to  be lo ca ted  mainly on iron  in  a 

1 2d^2 orb ita l**  There h as, however, been some controversy over

the exact nature o f  the sp e c ie s . The problem w i l l  be b r ie f ly

summarised here but w i l l  be d ea lt w ith again in  the next chapter*

The controversy r e a lly  cen tres on the stru cture o f an

analogous sp ecies  formed in  so lu tio n  by chem ical or polarographic

reduction  o f sodium nitroprusside* McNeil,Raynor and Symons used
2

the la t t e r  method o f  reduction in  dimethylformamide and assign ed  

the sp ecies  thus formed the structu re |^e(C N )^0^  ^ *  Van Voorst 

and Hemmsrich**  ̂ obtained ti70 sp ec ie s  by reducing sodium n itr o 

prusside YYith sodium d ith io n ite  a t d if fe r e n t  so lu t io n  pH values* ^

One o f which, formed a t pH 4 ,  was id e n t ic a l to  the above 

sp e c ie s , whereas the oth er had g-values le s s  than free  sp in  and 

was formed e x c lu s iv e ly  in  the pH range 7 - 1 0 *  The low g-value  

sp ec ie s  ( l )  could be converted in to  the high g-value sp ec ies  ( l l )  

by low ering the so lu tio n  pH and the reverse rea c tio n  occurred on 

r a is in g  the pH. They a lso  reduced a  so lu tio n  o f anhydrous sodium 

n itrop ru ssid e  in  dimethylformamide w ith  sodium m eta l, which 

e x c lu s iv e ly  produced sp ec ies  ( l )  which was converted in to  sp ec ies  ( H )  

by one equivalent o f  a c e t ic  acid* From th is  they concluded th at 

sp ec ie s  ( H )  was protonated and th a t sp ec ie s  ( l )  was in  fa c t

rFe(CH)jMoJ

17Raynor and Symons have p ostu lated  th a t the sp ec ie s  formed 

in  a lk a lin e  so lu tio n  was j^e(CN)^NOgJ ^  and th a t in stead  o f a 

protonation/deprotonation  rea ctio n  tak ing p lace on changing
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the pH o f the so lu tio n , the process was in  fa c t  the w e ll e sta b lish ed
20equilibrium  rea ctio n  :

+ OH" ^  |Fe(Cir)^0, * HgO

This would c e r ta in ly  exp la in  the r e su lts  o f  van V oorst’s work w ith  

aqueous so lu tio n s . However i f  sp ec ie s  ( l )  were indeed Q'e(CN)^NO^^ 

i t  i s  d i f f i c u l t  to  e:q)lairt how i t  could  be formed by the red uction  

o f  a so lu tio n  o f  anhydrous n itrop ru sside in  D.M.F. v/ith m eta llic  

sodium.

• The settlem en t o f the controversy i s  thus not aided by the 

ex isten ce  o f  c o n f lic t in g  experim ental r e s u lt s .  However as fa r  as 

the sp ecies  formed in  the s o l id  s ta te  i s  concerned, a l l  workers are 

agreed that the unpaired sp in  d en sity  i s  mainly concentrated on the 

iron  a t o i m T h e  s im ila r ity  o f  e .s .r *  parameters o f  th is  sp ec ie s  

to  those o f  the ’high g-value* sp ec ie s  formed in  so lu tio n  would 

suggest th a t th ese sp ecies  are id e n t ic a l .  However in  view  o f  the 

d iffe r e n t environments i t  would be su rp r isin g  i f  the two sp ec ies  

were a lik e  in; every resp ect. For example, the complex in  so lu tio n  

w i l l  be so lv a ted , thereby modifying the stru ctu re  somewhat. In  

the s o l id  s ta te  the structure w i l l  tend to  be m odified by the 

presence o f neighbouring io n s . We s h a ll  con sid er  the various  

p o s s ib i l i t i e s  fu rth er  in  the next section*

Mechanism o f R adiation Damage.

We s h a ll  f i r s t  o f  a l l  assume the tru th  o f  the above a ssig n 

ments, notwithstanding the controversy over sp e c ie s  C, and propose 

a mechanism to  accommodate the experim ental f a c t s ,  and then consider
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some p o ssib le  a lte r n a tiv e  mechanisms and show th a t these do not 

f i t  the eaperim ental fin d in g s.

The primary process may be envisaged as the removal o f  an 

e lec tr o n  from the n itrop ru sside anion by means o f  the high energy- 

rad iation

i . e .  Fe^^(CN)^NO ^  Fe™ "(CN)^0 “ + e

thus forming an e lec tro n  togeth er  w ith  i t s  corresponding hole  

cen tre , sp ecies  A. The e lec tro n  being m obile, migrates through
ion

the la t t ic e  and reduces a nitroprusside^as fo llo w s :

F e^ (C N )^ 0  + e , ---- ^  Fe^(CK)^ * . . . N0  (sp e c ie s  B)

The n itrop ru ssid e anion may be considered to  have a form al 

charge o f  +2 on the iro n  atom and a form al charge o f  +1 on the  

n it r o s y l  group. The ’free* e le c tr o n  may be thought o f  then , in  crude 

term s, as n e u tr a lis in g  the charge on the n it r o s y l  group and forming 

n it r ic  oxide as am uncharged lig a n d . An a lte r n a tiv e  and s t r i c t l y  

more accurate view point i s  th a t the e lec tro n  7r i.l l  go in to  the 

low est ly in g  u n f il le d  energy le v e l*  According to  Manoharan and
Q

Gray* s energy l e v e l  scheme th is  i s  the 7e l e v e l ,  which i s  mainly 

in  character. Thus the two vieTTpoints are e s s e n t ia l ly  

the same. The e f f e c t  o f  the a d d itio n a l e lec tro n  in  the 7e le v e l  

i s  to  lengthen and hence weaken the Fe-N bond* The NO lig a n d , 

being only weakly bonded to  iron  w i l l  bear considerable resemblance 

to  NO trapped in  other m atrices, where, fo r  example, in  alumina 

the trapping o f NO may be considered as a weak form o f  bonding 

a t  a surface s i t e :
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On warming the sample in  a c lo sed  tube the hole centre rap id ly  

disappears by means o f an ir r e v e r s ib le  process forming diamagnetic 

products. We may s a fe ly  assume t h is ,  s in ce  the disappearance. o f  

sp ec ie s  A i s  not accompanied by the form ation o f any d etectab le  

paramagnetic products. One common mechanism fo r  the form ation o f  

diamagnetic products from paramagnetic interm ediates i s  th a t o f  

d isproportion ation . For example, the w e ll e s t a b l i s h e d * * c a s e  

o f the ClgT ion  in  a KCl l a t t i c e  r

201^" — > Cl^" + Cl “

The analogous rea ctio n  in  the case in  qu estion  would be :

2Fe™- — > F e ^  + F e ^

However the formation o f an iron(lV ) complex does not seem very  

l ik e ly  s in c e  the pentacyanonitrosyl system would tend to  s t a b i l i s e  

low rath er  than high ox idation  s ta te s  o f the metal by back bonding 

in to  empty tT~antibonding o r b ita ls . Another p o s s ib i l i t y  i s  th a t  

the h o le  centre being m obile, migrates to  the surface and reacts  

w ith oxygen to  form diamagnetic products.

The e lec tro n  excess centre sp ecies  B, on the other hand 

i s  much more sta b le  and decays slow ly w ith  the form ation o f  

sp ec ie s  C. Now, s in ce  the l a t t e r  i s  normally formed in  the presence 

o f water (as a product o f  rad ia tion  .damaged Na2Fe(CN)^N0.2H^0 ) one 

p o s s ib i l i t y  i s  th a t traces o f water s t i l l  present in  the powder 

are involved  in  the decay o f sp ecies  B in to  sp ecies  0 . One p iece o f
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evidence in  support o f  th is  idea i s  th a t i f  the e . s . r .  tube i s  

opened to  the a ir  and water vapour allow ed in ,  the above change 

proceeds to  com pletion exceedingly  ra p id ly . The time taken fo r  

sp ec ie s  B to  com pletely decay in to  sp ec ie s  C i s  only a few minutes 

in  an open tube compared w ith  sev era l days when the process takes 

place in  a  c lo sed  tube*

Now, as. mentioned prev iou sly  the low est u n f il le d  l e v e l  in  

sodium n itrop ru ssid e  i s  the ?e le v e l  which i s  mainly "^*(N0) in  

ch aracter . The most sta b le  end-product o f ra d ia tio n , sp ec ie s  C, 

has i t s  unpaired e lec tro n  in  the â  (d^2) le v e l  on iron***^. The 

form ation o f sp ec ie s  C from sp ec ies  B must in volve  ’recombination* 

o f  NO w ith the Fe(CN)^ residue and subsequent e lec tro n  tra n sfer  

to  iron  which may be represented by the fo llow in g  s im p lif ie d  

diagram :

7e - 4 -

-%-----  — % -----  2bg

6e = & % =  6e

Thus i t  i s  c le a r  th a t in  order fo r  the e lec tro n  tra n sfer  to  iron  

to  take p la ce , there must be some s ig n if ic a n t  change in  the  

stereochem istry  o f  the oonplex to  bring the a  ̂ l e v e l  deeper than  

the 7e l e v e l .  The only conceivable way th is  could be done i s  by 

tetragon a l d is to r tio n  i . e .  by e lon gatin g  the Pe-CN bond trans to  

the n itr o s y l group. Experimental evidence suggests th at the process  

only takes p lace in  the presence o f  w ater, so we are led  to  the
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16con clu sion  th at w ater m olecules (or  protons, c f .  van Voorst ) are  

tend ing to  so lv a te  and p u ll o f f  the a x ia l,cy a n id e  group. This i s  

c e r ta in ly  p o ss ib le  in  a c id  so lu tio n  where protonation  o f  the a x ia l  

cyanide would tend to  remove i t  as KCN. Protonation o f  a cyanide  

ligan d  w i l l  weaken the cf-bond between the lig a n d  and the m etal, 

but w i l l  in crease  the degree o f  TT-bonding. K in etic  r e s u lt s  fo r  

[cr(C N )^oJ^  in d ica te  th at (T-bond weakening i s  d o m i n a n t T h u s  

van V oorst’ s theory could be c o rrec t, although we s t ip u la te  th at 

protonation w i l l  take place on the a x ia l  cyanide and n ot on the

n it r o s y l  group as van Voorst seems to  su ggest.

In the s o l id  state^^following ra d ia tio n  damage o f th e ’anhydrous* 

powder, protons could be formed fo llo w in g  the lo s s  o f  th e hole  

cen tre  on a n n ea ilin g  the sample a t room temperature :

i . e .  Fe™ - + Ĥ O (tr a c e )  ------->  Fe^^ + E'*' + OH’

The ^ r a y  damage mechanism p ostu la ted  above adequately exp la in s  

the form ation o f  the observed paramagnetic sp e c ie s , whereas the 

fo llo w in g  p o ss ib le  a lte r n a tiv e  mechanisms do n ot. These p o s s ib i l i t i e s  

in vo lve  homolytic bond f i s s io n  and may be represented  as fo llow s :

(i) Fe^(CN)^NO Fe^(CN)^NO + CN’

( i i )  F e^ (C N )^ 0  F e™ ’(CN)^ + NO

Both th ese  mechanisms r e s u lt  in  pairw ise trapping. However none 

o f  th e  sp ectra  obtained showed the presence o f  any w in g -lin es  

c h a r a c te r is t ic  o f  pairw ise trapping. Moreover n e ith er  o f  the above 

processes can e :^ la in  th e  observed sequence o f  ev en ts .
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The mechanism o f rad ia tion  damage in  hydrated sodium n itro 

prusside w i l l  he d iscu ssed  in  the next chapter so we cannot f u l ly  

compare mechanisms in  the anhydrous and hydrated systems hare. 

However, a t th is  poin t we can say th at the primary ra d ia tio n  

damage process in  the hydrated m ateria l i s  considered to  he 

damage o f  water m olecules, forming H* and OH* r a d ic a ls , whereas in  

the anhydrous m aterial the primary process i s  thought to  be the 

e je c t io n  o f  an e lec tro n  from t h e |P e ( C N ) ^ o J a n io n .
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CHAPTER 5 .

PARAMAGNETIC SPECIES OBTAINED FROM 

SODIUM NITROPRUSSIDE DIHYDRATE.
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Introduction»

Prior to  the oommencenient o f th is  work a s ta b le  paramagnetic

product derived from Na^Pe( CN)^N0. 2H^0 by ir ra d ia tio n  a t

room temperature has been reported . The controversy over the

structure o f th is  sp ecies  has been covered in  the preceeding

chapter. ^  analogy w ith the work in  chapter 2 , i t  was thought

th a t low-temperature ir ra d ia tio n  o f sodium n itrop ru ssid e  would

give r is e  to  therm ally unstable ra d ica ls  which would decay on

warming to  give the p a r tic u la r ly  s ta b le  sp ec ie s  reported. This

theory was te s te d  and found to  be co rrect. However fo llo w in g  the

com pletion o f the experim ental work described in  th is  chapter,
2

van Voorst and Hemmerich reported the p r in c ip a l values and 

d irectio n s o f  the g- and hyperfine tensors o f  one o f the  

low'-ten^erature irra d ia ted  sp ec ie s  stu d ied  h ere. There i s ,  

however, some doubt concerning the in ter p r e ta tio n  o f  some o f  

th e ir  r e su lts  and they have made no attempt to  exp la in  the 

unusual a n iso trop ic  A-tens o r , which w i l l  be d iscu ssed  in  some 

d e ta il  in  th is  chapter.

During the course o f  th is  work an a d d itio n a l sp ec ies  was 

found, which appears to  be the precursor o f  a l l  o th er  paramagnetic 

sp ec ies  obtained in  irra d ia ted  sodium n itrop ru ssid e  dihydrate.

This chapter a lso  deals w ith a con sid eration  o f  X'-ray damage 

mechanisms in  the hydrated system*

Experim ental.

Reagent grade sodium n itrop ru sside  was p u r if ie d  by r e -
I

c r y s ta l l i s a t io n  from w ater. The dihydrate was then powdered .



38,

and irra d ia ted  a t 77^ fo r  about tw elve hours. The sample 

was then tran sferred  to  an e . s . r .  Dewar v e s s e l  contain ing l iq u id  

n itrogen  ivithout allow ing i t  to  v/arm up. An e . s . r .  spectrum a t  

77K was then obtained on a Varian E-3 %-band spectrom eter. The 

sample v/as then warmed to  room temperature fo r  f iv e  seconds, 

recooled  to  77K and a new spectrum obtained. This process o f  

warming, recoo lin g  and re-running spectra  was repeated u n t i l  

there was no fu rth er change in  the spectrum; i . e .  u n t i l  l in e s  

o f a decaying ra d ica l were no lon ger  ab le  to  be d etected . This 

occurred a f t e r  about two hours a t room temperature.

, A p o ly c r y sta llin e  sample ?;as ir ra d ia ted  a t  room 

temperature fo r  approximately tv/enty-four hours and then  

immediately coo led  to  77N. The spectrum o f  th is  sample showed 

the presence o f two s p e c ie s , one o f which was found to  be decaying 

on warming. Appordingly the above annealing process was repeated  

u n t il  no fu rther change in  the spectrum was d e tec ted . E .s .r .  

spectra  o f m icrocrysta llin e  samples ir ra d ia te d  a t  77N and a t  

room tenperature were a lso  obtained a t 298K.

To a id  in  the in terp re ta tio n  o f  the low temperature powder 

sp ectra  and to  obtain  fu rther inform ation about the nature o f  

the ra d ica ls  in vo lved , an e . s . r .  study on a s in g le  c r y s ta l o f  

sodium n itrop ru ssid e  was performed. C rystals o f  sodium n itro 

prusside were grown from aqueous so lu tio n  by slow  evaporation  

over a period  o f seven to ten  days. A fter drying in  the a ir  they  

were checked fo r  flaw s or tw inning using a p o la r is in g  microscope 

and a su ita b le  s in g le  c r y s ta l chosen. The c r y s t a l  was then

-ir r a d ia te d  fo r  approximately twelve hours a t 77^, a f t e r  which
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i t  was quiclcly mounted on a goniometer and placed in  the e . s . r .  

c a v ity , which was surrounded by a co o lin g  bath contain ing liq u id  

n itrogen . The base o f  the goniometer co n sisted  o f  a perspex cube 

( i l lu s t r a t e d  in  Figure 5 .1) which was cut so th at the c r y s ta l  

could be mounted on i t  and could be rotated  about the a - ,  b - and 

c -  axes o f  the u n it c e l l  o f sodium n itro p ru ssid e . These d irectio n s  

( i l lu s tr a te d  in  Figure 3*2) were found in  an X-ray a n a ly s is  

performed by Manoharan and Hamilton^. The c r y s ta l was ro ta ted  

through 180^ a t 5^ in ter v a ls  fo r  each o f  the a - ,  b- and c -  axes 

and a ca lib ra ted  spectrum was obtained fo r  each o r ien ta tio n . The 

g-values were corrected  by c a lib r a t in g  a spectrum o f  charred  

dextrose (g  = 2*0023) a t the beginning and end o f  each experiment.

A c r y s ta l o f  sodium n itrop ru ssid e  was a lso  ^ - ir r a d ia te d  fo r  

a period  o f  tw elve hours a t 77K> but in stead  o f  being mounted on a. 

goniometer i t  was placed in  an e . s . r .  Dewar con ta in in g  l iq u id  

n itrogen . The time taken to  tr a n sfe r  the c r y s ta l to  the Dewar 

was very much le s s  than the corresponding time taken fo r  i t  to  

be mounted on the goniom eter, thus m inim ising the r is k  o f  lo s in g  

s h o r t- liv e d  ra d ica ls  by thermal decay. The c r y s ta l was a lig n ed  

so th a t the magnetic f i e l d  was approximately perpendicular to  

the needle a x is . Spectra were then obtained fo r  sev era l d if fe r e n t  

orien ta tio n s o f  the c r y s ta l .

Where app licab le  S- and Q- band sp ectra  were obtained to  

c la r i f y  the in terp re ta tio n  o f  the spectra  o f low-temperature 

ir ra d ia ted  p o ly c r y sta llin e  sam ples. A spectrum o f  a p o ly c r y s ta llin e  

sample irrad ia ted  a t  77% was a lso  obtained a t 19% using a 

Varian v a r ia b le  temperature assembly and liq u id  helium as co o la n t.
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^  means o f  a rapid tra n sfer  technique, i t  v/as ensured th a t the 

temperature o f  the sample did not r is e  above 77K during the tra n sfer  

procedure. I t  was intended to  obtain a spectrum a t 4*2 K using the 

Varian liq u id  helium accessory . However th is  was not performed as 

i t  would have e n ta ile d  warming the sample to  room temperature in  

order to  tra n sfer  i t  to  the apparatus. The temperature o f  was 

the low est th at could be obtained u sin g  the v a r iab le  temperature 

accessory*

R esu lts.

The e*s*r* parameters fo r  the low-temperature irra d ia ted  

p o ly c r y s ta llin e  samples o f Na^Fe(CN)^N0.2H^0 are s e t  out in  

Table $ .1 ,, together w ith  the r e su lts  o f other workers fo r  

comparison purposes*

When the p o ly c r y sta llin e  sample was irra d ia ted  fo r  twelve  

hours a t 77K, the e*s*r* spectrum ( i l lu s t r a t e d  in  figu re  3*3) 

mainly co n sisted  o f nine l in e s  ; a t r ip l e t  o f  t r ip l e t s .  A ll  these  

l in e s  had s im ila r  intensity-versus-m icrow ave power c h a r a c te r is t ic s  

so they may be in terp reted  as being a sso c ia te d  w ith  a s in g le  

paramagnetic sp e c ie s , which we s h a l l  c a l l  sp ec ie s  X. This has 

three g-values and hyperfine coupling l in e s  c h a r a c te r is t ic  o f  

in te r a c tio n  o f the unpaired e lec tro n  w ith a nucleus o f sp in  I  = 1* 

Since there are no other elements present w ith  a nuclear sp in  

o f  un ity  we may assume th at some o f  the unpaired sp in  d en sity  in  

th is  sp ec ies  i s  lo c a lis e d  on n itrogen . In ad d ition  to  th ese w e ll-  

d efin ed  tr ip le ts ^  the spectrum rev ea ls  the presence o f some weaker 

l in e s  a t a lower magnetic f i e l d  p o s it io n  than the main lin es*



TABLE 3 .1  E . s . r .  Data fo r  Sodium N i t r o p r u s s id e
X""irradiated a t  77 K

S p e c i e s  and D i r e c t i o n 9 A(^^N) (ga u ss ) R eferen ce
K 77 K 77 K iq K

S p e c ie s  X X 2-002. 1 .999 2 0 .4 17 S' This  work
y / • 9 6 S 1 .9 7 0 2 1 .4 2% S
z / • 9 S S 1 .9 5 6 1 2 .2

S p e c i e s  X X 2 .0 0 0 21 5
y 1 .969 20
z 1 .955 13

S p e c i e s  Y X 2 .0 0 2 5 - 2 This  work
y 1 .98 18 -  2 t
z 1 .9 5 1 0 - 2

S p e c ie s  Y X 1.999 2 5 .9 T his  work
y 1 .9 84 1 8 .2 t
z 1 .9 5 1 8 . 1

S p e c i e s  Y X 2 . 0 0 2 5 .9 2
y 1 .98 1 8 .3
z 1 .9 3 8 . 5

j" : p o l y c r y s t a l l i n e  sample measured at Q-band,

^  ; s i n g l e  c r y s t a l  measured at  X-band.
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These l in e s  can he a ttr ib u ted  to  a sp ec ie s  in  low abundance 

w ith  a x ia lly  symmetric g*- and A- ten so rs , where the unpaired 

e lec tro n  i s  i:;tenacting  w ith a n itrogen  nu cleus. This sp ec ie s  

w i l l  be referred  to  as sp ecies  Z, '
On warming the sample to  room temperature fo r  approximately 

f iv e  seconds and recoo lin g  i t  to  77%, there was a s ig n if ic a n t  

change in  the spectrum, ( i l lu s t r a t e d  in  Figure 3*A-)* The l in e s  

a ttr ib u ted  to  sp ec ie s  % com pletely d isapp eared ,w hilst those due 

to  sp ec ie s  Z increased  s l ig h t ly  in  in te n s ity .I n  p lace o f  the 

l in e s  a ttr ib u ted  to  sp ec ies  X, a new s e t  o f l in e s  appeared,These 

l in e s  were rather broad and some o f the lo w -f ie ld  fea tu res  

overlapped to  some extent w ith l in e s  a ttr ib u ted  to  sp ec ie s  Z,  

however a t r ip le t  a t h ig h -f ie ld  could  be discerned qu ite ea s ily *

A spectrum was obtained a t  Q-band frequency in  order to  c la r i fy  

the in terp re ta tio n  o f the X-band spectrum. This spectrum showed, 

in  ad d ition  to  the l in e s  due to  sp ec ie s  Z, the presence o f  nine 

l i n e s ,  comprising three t r ip l e t s .  Thus the spectrum i s  s im ila r  to  

th at o f sp ecies  X in  that i t  may be a ttr ib u ted  to  a sp ec ie s  w ith  

th ree  g- and A- values and hyperfine fea tu res c h a r a c te r is t ic  o f  

the unpaired e lec tro n  in ter a c tin g  w ith  a. n itrogen  n u cleu s, We sh a ll  

r e fe r  to  th is  paramagnetic centre as sp ec ie s  Y.

When the e*s*r* spectrum o f  a p o ly c r y sta llin e  sample o f  

sodium n itro p ru ss id e , vfhich had been irra d ia ted  a t  room temper

ature fo r  tw enty-four hours, was recorded a t 77% immediately 

a f t e r  removal from the rad ia tion  sou rce , i t  revealed  the presence 

o f sp ec ie s  Y togeth er  w ith  sp ecies  Z.A comparison showed th at 

th is  spectrum was almost id e n t ic a l  to  th at obtained a f t e r  warming
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the low-temperature irrad ia ted  sample fo r  a few minutes; the 

only d ifferen ce  being that the room-temperature irra d ia ted  

sample contained a la rg er  proportion o f  sp ec ie s  Z.

A variahle-tem perature study performed on the p o ly cry sta l

l in e  sample showed that the l in e s  a ttr ib u ted  to  sp ec ie s  Y 

broadened on warming and could not be detected  above 24-0%*

Spectra o f  powder samples irra d ia ted  a t room tem perature, 

which were recorded a t the ambient ten^erature^ showed only  

the presence o f sp ec ie s  Z (Figure 3*5)  ̂ as did spectra  o f  

sanp>les irra d ia ted  a t 77%̂  in  accordance w ith the fin d in gs o f  

the variable-tem perature study. In  ad d ition  to  the l in e -  

broadening e f f e c t  observed, sp ec ie s  Y was a lso  found to  be 

decaying on warming, w ith  a concomitant in crease  in  the concen

tr a t io n  o f  sp ecies  Z. A fter two hours a t room temperature sp ec ie s  

Y had disappeared com pletely and a comparison o f  the areas under 

th e  l in e s  o f  the e .s .r . .  spectra recorded a t  77K , showed th a t  

sp ec ie s  Y had com pletely  decayed in to  sp ec ie s  Z. The la t t e r  sp e c ie s  

i s  very sta b le  indeed a t  ordinary tem peratures.

The spectrum o f  the p o ly c r y s ta llin e  sample irra d ia ted  

a t  TJ^r  which was recorded a t  19K (Figure 3*6) without warming 

above 7 /ii , was s ig n if ic a n t ly  d if fe r e n t from the corresponding  

spectrum recorded a t  77K. Lines a ttr ib u ted  to  sp ec ie s  X togeth er  

w ith weaker l in e s  due to  sp e c ie s  Z were s t i l l  p resen t, however 

there was a sm all s h i f t  in  the g- and A- values o f  the former. 

Moreover, there were ad d itio n a l l in e s  in  the spectrum which were 

apparently not re la ted  to  any o f  the sp ec ie s  observed a t 77X. The 

most, pronounced o f  these a d d itio n a l fea tu res  observed was a t r ip l e t .



Flprure 3 .5

ESR Powder Spectrum of* Fe (CN NO. 2Hg 0 J^-Irradia ted  

a t  Room Tempera tu I'e .

2 0  Cr 9 r

Spectrum Measured a t  Room Temp. and X-Band Frequency.
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whose g-value was c lo se  to  the fr e e -sp in  value and whose hyperfine 

coupling constant was approximately $6 gauss. Less w e ll-d e fin ed  

fea tu res observed were a lin e  a t g = 2*003 w ith no d etectab le  

hyperfine s p l i t t in g ,,  a broad t r ip le t  o f  approximately 11 gauss- 

s p l i t t in g  a t g = 1*928 and a weak fea tu re  a t g = 1:*923 which 

could  ju st be reso lved  in to  a t r ip le t  o f  about 3 gauss s p l i t t in g .

R esu lts of S in g le  C rystal Study.

A fter the c r y s ta l had been irra d ia ted  fo r  twelve hours 

a t  77K i t  was removed from liq u id  n itrogen  fo r  a few seconds 

in  order to  mount i t  on the s p e c ia l ly  cut perspex cube referred  

to  in  the experim ental s e c t io n , before being placed in  the e .s .r *

' c a v ity  a t  77K. During th is  tim e, as in d ica ted  by the r e su lts  

obtained fo r  the p o ly c r y sta llin e  samples, sp ec ie s  X would have 

decayed in to  sp ec ies  Y., Therefore a l l  the o . s . r .  parameters 

obtained from th is  s in g le -c r y s ta l  study r e fe r  to  the la t t e r  

sp e c ie s . I t  was o r ig in a lly  intended to  study sp e c ie s  X in  the 

s in g le  c r y s ta l ,  however i t  was found to  be te c h n ic a lly  inq)Ossible 

to  mount a c r y s ta l w ith any p rec is io n  on a goniom eter, while 

keeping i t  a t

The e . s . r .  spectrum o f sp ec ie s  Y co n sisted  o f two eq u ally  

in ten se  t r ip le t s  which merged in to  a s in g le  t r ip le t  o f  tw ice  

the former in te n s ity  fo r  cer ta in  o r ien ta tio n s o f  the c r y s ta l .

When the c r y s ta l was mounted w ith  the orysta llograp h ic  a - or 

needle ax is  v e r t ic a l ,  ( i . e *  perpendicular to  the magnetic f i e ld )  

the maximum separation  o f the two t r ip le t s  was very sm all 

compared w ith the corresponding value fo r  the o th er two axes;
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TABLE 3 . 3  Computed P r i n c i p a l  g - v a lu o s  and 

D i r e c t i o n s  fo r  S p e c i e s  Y

1 s t  Set  :

P r i n c i p a l
A x is

P r i n c i p a l  
g - v a lu e

C r y s t a l
A x is

D i r e c t i o n
C os ine

Acute
Angle

1 .9 9 94

a

b

c

+0.1378

+0 .9787

+ 0 .1522

82°  5^ 

11°53^ 

81°15^

1 .9 8 4 3

a

b

c

- 0 .0 6 5 4

+0 .1624

- 0 . 9 8 4 6

86°15^  

80°39^  

10°  6^

1 .9506

a

b

c

- 0 .9 8 8 3

+0.1258

+0 .0863

8°44^  

82°44^  

85°  3^

2nd Set  :

X 1 .9 9 9 2

a

b

c

+ 0 .1226

+0 .9875

+0.0995

82°57^  

9°  5 I

84°18^

1.9846

a

b

c

+ 0 .1124

+0 .0859

- 0 .9 8 9 9

83°33^  

85°  4^ 

8 °  7 ^

1 .9505

a

b

c

- 0 . 9 8 6 1

+0 .1326

- 0 .1 0 0 4

9°30^

82°23^

84°14^



1 4TABLE 3 . 3  ( a ) Computed P r i n c i p a l  N H yperf ine  

Values and D i r e c t i o n s  fo r  S p e c i e s  Y

1 s t  S e t ;

14P r i n c i p a l  P r i n c i p a l  A( N) C r y s t a l  D i r e c t i o n  Acute
A x i s  Value (g au ss )  A x is  C os in e  Angle

25 .8 8

a

b

c

+0.0518

+0 .9828

+0 .1773

87°  2^ 

10°38^ 

79°47^

2nd Set  :

1 8 .2 4

a

b

c

- 0 . 2 1 3 0

+0 .1844

- 0 .9 5 9 5

77°42^

79°23^

16°22^

8 . 0 5

a

b

c

- 0 . 9 7 5 7

+0 .0119

+0 .2189

12°41^

89°18^

77°21^

2 5 .8 6

a

b

c

+0 .0169

+0 .9859

+0 .1663

89°  2^ 

9°38^  

80°26^

1 8 .32

a

b

c

+0 .2371

+0 .1577

- 0 .9 5 8 6

76°17^

80°56^

16°34^

7 .9 4

a

b

c

- 0 .9 7 1 3  

+ 0 ,05 5 7  

- 0 . 2 3 1 2

13°45^

86°48^

76°38^
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the ty/o o r ien ta tion s o f the parent n itrop ru ssid e  ion  (Figure 3*2) 

being m agnetically  equ ivalen t in  th is  s e t t in g .

A p lo t o f  the g- and A- values o f the t r ip le t s  aga in st the 

angle o f ro ta tio n  about the orysta llograp h ic  a ~ , b- and c -  axes 

i s  shown in  Figure 3*7* A comparison o f these p lo ts  shows th at 

the p r in c ip a l d irec tio n s  o f the g- and A- ten sors d if fe r  by no 

more than Thus y w ith in  the l im it  o f experim ental error , the 

p r in c ip a l axes may be sa id  to  be co -d irectio n a l*  The maximum and 

minimum g- and A- values fo r  each a x is  ( Table 3*2) were processed  

by the method o f Schonlano^ (see  Appendix), to  g ive the p r in c ip a l 

values o f the g- and A- tensors togeth er w ith th e ir  p r in c ip a l 

d ir e c t io n s . However, th is  method always g ives r is e  to  an ambiguity 

of s ig n  in  one o f the matrix elem ents in  the tensor to  be 

d iagon a lised . This leads to  the computation o f two a lte r n a tiv e  

s e t s  o f p r in c ip a l g- and A- tensors and d irectio n s  (Table 3*3)* 

There i s ,  however, a method o f deciding which o f the two s e t s  o f  

p r in c ip a l values i s  the correct one. This in v o lv es  making g- and 

A- value measurements in  a d ir e c tio n  not included in  the previous 

measurements and comparing these w ith  the r e s u lt s  pred icted  by 

the two p o ss ib le  s e ts  o f p r in c ip a l v a lu e s , (see  Appendix) 

A ccordingly,the c r y s ta l was ro ta ted  about a fou rth  a x is ,  the 

0 *- a x is ,  making an angle o f  13° w ith  the c -  a x is ,  and a p lo t  • 

o f g- and A- again st angle o f ro ta tio n  was drawn. The maximum 

and minimum g- and A- values were found fo r  the c*- ax is  and are 

included in  Table 3 .2 . B/ using these values in  the proceedure 

ou tlin ed  in  the Appendix, i t  was a scerta in ed  th a t the f i r s t  s e t  

o f p r in c ip a l values was the correct one.
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These values are very s im ila r  to  those reported "by van Voorst 
2

and Hemmerich in  th e ir  s in g le  c r y s ta l study o f sodium n itro 

prusside X -irrad ia ted  at. 77X. The e .s .r *  parameters o f  sp ec ie s  Y 

and van V oorst's sp ec ies  I  are compared in  Table 3*4.

Table 3 .4

Comparison o f e . s . r .  parameters o f  sp ec ie s  Y and spec ies  I .

g-tens or Hyperfine ten sor  (gauss)

Radical ^11 &22 ^33 4 i ^22 *33

Species Y 1.93 1.98 2.00 8.1 18.2 25.9

S p ecies  I 1 .93 1.98 2.00 8.5' 18.3 23.9

These values are in  very good agreement, except th at the low est 

g-value o f  van V oorst's sp ec ie s  I  d if fe r s  from the corresponding  

value fo r  sp ec ies  T by an amount la rg er  than experim ental error . 

There i s  a lso  a sm all discrepancy in  the low est A-values but th is  

i s  le s s  than *3 gauss and th erefore w ith in  the l im it  o f experim?- 

e n ta l  error . .

Our computed r e s u lt s  show the p r in c ip a l axes o f  the g- and

'‘S t ohyperfine tensors are c o -d ir e c t io n a l and in c lin e d  a t  8 to

the a -a x is , 12 to  the b -ax is  and 10° to the c -a x is .  This compares 

w ith the va lu es o f  10°, 10° and 0° r e sp e c t iv e ly , which van Voorst 

and Hemmerich obtained. I t  may be assumed th en , th at the two s e t s  

o f e . s . r .  data r e fer  e s s e n t ia l ly  to  the same s p e c ie s ,  however 

the d ifferen ce  in  d irectio n s  o f  the p rin cip a l, tensors im p lies  

th at the two sp ec ies  p ossess a s ig n if ic a n t ly  d if fe r e n t geometry. 

The discrepancy in  th e  g^^-values may imply a more fundamental
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d ifferen ce  in  the nature o f  the two sp e c ie s .

■In th e ir  paper, van Voorst and Hemmerich make no mention 

o f having allowed the c r y s ta l to  warm above 77%y but presumably 

they must have done s o ,  s in ce  they have not reported see in g  the 

paramagnetic centre referred  to  here as sp e c ie s  X, whose thermal 

decay g ives r is e  to  sp ec ie s  Y. Thus they are in correct in  th e ir  

assumption th at sp ec ie s  Y ( sp ecies  I  in  th e ir  nomenclature ) 

i s  the main product o f  ir ra d ia tio n  a t 77%̂ .

I f  we denote the reference axes fo r  the n itrop ru ssid e  

anion such th at the z -a x is  i s  the a x ia l  N-C-Fe d ir e c tio n  and the 

X -  and y -  axes pass through opposite p a irs o f eq u atoria l cyanide 

l ig a n d s , then the d irectio n s  o f the computed g -ten sor  do not 

co in cid e  w ith  th ese a t a l l .  This in d ica te s  th at the o r b ita l  

contain ing the unpaired e lec tro n  has a d if fe r e n t  d ir e c tio n  from 

any o f the parent n itrop ru sside o r b ita ls . A c a lcu la tio n  shows 

th a t the p r in c ip a l d ir e c tio n  corresponding to  the low est g-value  

(g^^ = 1- 93) makes an angle o f 28° w ith the z -a x is  (so  th a t we

may a lte r n a t iv e ly  r e fer  to  i t  as g ^ ,) and i t s  p ro jection  onto 

. the eq u atoria l xy plane makes an angle o f  40 ^  1:0° w ith  one o f  

the eq u atoria l cyanide lig a n d s, (se e  Appendix fo r  c a lc u la tio n )  

The im p lica tio n  o f th is  w i l l  be d iscussed  la t e r .

Now, as mentioned e a r l ie r ,  a c r y s ta l irra d ia ted  a t 77% 

was tran sferred  (w ithout r a is in g  i t s  temperature) to  an e . s . r .  

Dewar a t 77%̂  so that i t s  need le  a x is  was approximately v e r t ic a l .  

The c r y s ta l was rotated  about the Or-axis and e .s .r *  spectra  fo r  

sev e r a l o r ien ta tio n s were obtained. Two o f th ese  arc i l lu s t r a t e d  

in  Figure 3 -8 . For one o r ien ta tio n  o f the c r y s ta l  the e . s . r .



C r y s t a l  S p ectra  o f  N i t r o p r u s s id e  ^ - I r r a d i a t e d  a t  77K

F igure  3*8
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spectrum co n sisted  o f a v e r y  in ten se  t r ip l e t  a t  high f i e l d  plus 

two s in g le  l in e s  o f  equal in te n s ity  on the low f i e l d  s id e  o f the 

spectrum together w ith  a number o f le s s  in ten se lin e s*  V/lien the 

c r y s ta l  was ro ta ted  through 90^ the two s in g le  l in e s  merged in to  

a s in g le  l in e  whose in te n s ity  was tw ice th a t o f the former l in e s .  

This i s  c h a r a c te r is tic  of a paramagnetic sp ec ie s  which e x is t s  in  

two m agnetically inequ ivalent s i t e s  in  the l a t t i c e  /which become 

eq u ivalen t a t one p a r ticu la r  o r ien ta tio n  o f  the c r y s ta l .  I t  

should be noted th at the c r y s ta l used in  th is  (prelim inary) 

study was large  and thus perm itted r a d ic a ls  to  be seen  which 

would not normally show up c le a r ly  in  a powder spectrum. One 

such ra d ica l was the one g iv in g  the above s in g le t  whose fo r

r o ta tio n  about the a-axis' was approxim ately 2 .1 4 . This was only  

seen  as a very weak bump in  the e . s . r .  spectrum of the ir ra d ia ted  

p o ly c r y s ta llin e  sample. No hyperfine coupling  whatsoever could be 

d etected  fo r  th is  s in g le t .  The m^imum and minimum g- values o f  

the e . s . r .  t r ip l e t  ( fo r  ro ta tio n  about the a -a x is ) are 1 .99  and 

1 .9 7  r e sp e c tiv e ly . These values are compatible w ith the r e s u lt s  

obtained fo r  sp ec ies  X in  the corresponding powder spectrum.

Since y fo r  reasons p rev iou sly  mentioned, i t  was not fe a s ib le  to  

perform a f u l l  s in g le  c r y s ta l study on the low-temperature 

ir ra d ia ted  c r y s ta l ,  we cannot obtain the p r in c ip a l d irec tio n s  

o f the g- and A- axes fo r  sp ec ies  X. A ll we can say i s  th a t there  

appears to  be only one magnetic s i t e  fo r  the ra d ica l (or  two s i t e s  

which become eq u iv a len t) when the c r y s ta l i s  ro ta ted  about the 

needle a x is .

Since i t  has only been p o ss ib le  to  study sp ec ie s  X and Y



in  r ig id  media, no iso tr o p ic  hyperfine coupling constant has 

been experim entally determined for  e ith e r  sp e c ie s . This means 

th at there i s  some uncerta inty  in  the s ig n s o f the hyperfine  

ten so rs . There are e ig h t d if fe r e n t s ig n  combinations fo r  the 

A -tensors o f sp ecies  X and Y and hence e ig h t p o ss ib le  values  

fo r  each o f th e ir  iso tr o p ic  hyperfine coupling co n stan ts. These 

p o s s ib i l i t i e s  are i l lu s t r a t e d  in  Table 3*5 and w i l l  be d iscu ssed  

in  the next s e c t io n .

D iscu ssion .

( I t  w i l l  be borne in  mind th a t sp ecies  Z has been reported  

p reviou sly  and th at i t  i s  id e n t ic a l to  sp ec ie s  C referred  to  

in  Chapter 2 , where some aspects o f i t s  stru cture have been  

d isc u s se d .)

Id e n t if ic a t io n  of Species X and Snecies Y.

. In view o f the s im ila r ity  in  the form o f the g- and A- . 

tensors o f sp ecies  X and Y, they w i l l  be trea ted  togeth er . I t  

i s  proposed, f i r s t  o f a l l ,  to  demonstrate th at they are most 

probably pentacyanonitrosyl TT-com plexes, in  which the major 

p o rtio n  o f the sp in -d en sity  o f the unpaired e lec tr o n  i s  lo ca ted



TABLE 3 . 5

1 4 ,P o s s i b l e  Sign Combinations o f  N H yperf ine  

Tensor f o r  a) S p e c i e s  X and b) S p e c i e s  Y

E xp er im en ta l  A -ten sor

X

2 0 .4

+

+

+

&

2 1 .4  1 2 .2

+ +

+

-  +

+ +

A iso

+ 1 8 .0  

+ 9 .9  

+ 3 . 7  

+ 4 . 4

- 1 8 . 0

-  9 .9

-  3 . 7

-  4 . 4

A n is o t r o p ic  A -ten so r

B B B
X _z

2 . 4 3 . 4 - 5 . 8

10 .5 1 1 .5 - 2 2 . 1

1 6 .7 - 2 5 . 1 8 .5

•24.8 1 7 . 0 7 .8

' 2 . 4 -  3 . 4 5 .8

1 0 .5 — 1 1 .5 2 2 .1

1 6 .7 2 5 .1 -  8 .5

2 4 .8 - 1 7 . 0 -  7 .8

b) 2 5 .9

+

+

+

1 8 .2

+

8.1

+

+

+

+ 17 .4  

+ 12.0  

+ 5 . 2  

+ 0 . 4

8 . 5 0 . 8 -  9 . 3

1 3 .9 6 . 2 - 2 0 . 1

2 0 .7 - 2 3 . 4 2 .9

2 6 .3 1 7 .8 7 . 7

- 1 7 . 4

- 12.0

-  5 . 2

-  0 . 4

8 .5 -  0 . 8 9 .3

1 3 .9 -  6 . 2 2 0 .1

2 0 .7 2 3 .4 -  2 .9

2 6 .3 - 1 7 . 8 -  7 . 7
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on the nitrogen o f  the n itr o sy l group» The evidence fo r  th is  i s  

th ree fo ld  : i . r . ,  e . s . r .  and m echanistic ev idence.

( i )  In fra-red  Evidence

Danon e t .  a l .^  have performed some s o l id  s ta te  in fra -red  

stu d ies  on x -ir r a d ia te d  sodium n itrop ru ssid e*  They obtained  

three l in e s  in  the N-0 s tre tch in g  frequency region  corresponding  

to  th ree n itr o s y l sp e c ie s . One o f which^ w ith  v(NO) = 1940cm  ̂

was a ttr ib u ted  to  sodium n itrop ru ssid e  i t s e l f ,  w hile the other  

two lin e s  at l850cm  ̂ and 1720cm  ̂ were a ttr ib u ted  to  products 

o f rad ia tion  damage in  the n itrop ru ssid e  io n . The l in e  a t t720cm"^ 

decayed at the same rate as the e . s . r .  t r ip le t  which we have 

a ttr ib u ted  to  sp ec ie s  Y , w hile the iŜ Ocm***̂  l in e  increased  

sim ultaneously a t the same rate  as the increase o f the e .s .r *  

t r ip l e t  a ttr ib u ted  to  sp ecies  Z. They a lso  found th at samples 

examined a few days a f t e r  ir r a d ia tio n  gave only the l in e  a t  

1850cm ^,  which i s  in  accordance w ith  our e . s . r .  evidence th at  

o n ly  sp ecies  Z i s  observed on examining the sample a few days 

a f t e r  ir r a d ia t io n , (se e  a lso  r e f .  1) Species X was not observed 

in  the in fra -red  spectra  obtained by Danon e t ,  a l . , presumably 

on account o f  i t s  very short h a l f - l i f e .  This in fra -red  study 

confirms our e . s . r .  evidence th at sp ec ies  Y decays in to  sp ec ie s  Z.

The in fra -red  s h i f t s  to  lower energy o f  the v(NO) lin e s  

a ttr ib u ted  to  sp ec ie s  Y and Z show th a t the N-0 bond has been 

weakened. This in d icates, th at the n itrop ru ssid e io n  has been 

reduced in  both c a se s . Now in  the case o f sp ec ie s  Z, the unpaired 

e lec tro n  i s  known to  be mainly on iron  and th erefore  the e f f e c t  

o f the a d d ition a l e lec tro n  i s  to  reduce the iron  from the +2
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ox id ation  s ta te  to  the +1 ox id ation  s ta te .  On the other hand,

the N-0 s tr e tc h in g  frequency in  sp ec ie s  Y has been lov/ered by

a fu rth er  130cm ~\ This in d ica tes  th at the N-0 bond has been

weakened fu rth er , most probably by d irect reduction  p lacin g  the

unpaired e lec tro n  in to  an antibonding T T -orb ital on the n itr o s y l

group i t s e l f *  An a ltern a tiv e  exp lanation , that the iron  has been

fu rth er  reduced to  the zero ox id ation  s t a t e ,  may be discounted

sin ce  w ith e ig h t d -e le c tr o n s , i s  diam agnetic and our e . s . r .

evidence i s  that sp ec ie s  Y i s  d e f in it e ly  paramagnetic.

( i i )  E .s .r .  evidence.

The folloTfing e . s . r .  evidence fo r  sp ec ie s  Y shows th at the

unpaired e lec tro n  i s  mainly on the n itr o s y l group and not on the
2

iro n  atom nor on a cyanide lig a n d . Van Voorst and he sine r ich  have

su b stitu ted  ^^Ee ( l  = i )  fo r  ( l  = O) in  NagEe(CN)^N0.2E^0

and have found fo r  sp ec ies  Y (sp e c ie s  I  in  th e ir  nomenclature)

57only a sm all broadening o f  1*5 gauss due to  unresolved Ee 

hyperfine stru ctu re . However they obtained an iso tr o p ic  s p l i t t in g  

o f  7*2 gauss due to  ^Tpe in  sp ec ie s  Z (sp e c ie s  IX in  th e ir  

nom enclature). From these r e su lts  they ca lcu la ted  a sp in  d en sity  

o f about 80fo o f  the unpaired e lec tro n  on iron  in  sp ec ie s  Z, 

compared w ith  a value o f  le s s  than 8 ^  o f the unpaired e lec tro n  

on iron  in  sp ec ie s  Y.
3* 4 %Danon e t .  a l .  have prepared sodium n itrop ru ssid e  w ith  •'O 

12su b stitu ted  fo r  C in  the cyanide ligands and have observed, no
1 5hyperfine structure due to  C in  sp ec ies  Y. This proves th at  

there i s  no unpaired sp in  d en sity  on the cyanide lig a n d s . Danon 

e t .  a l .^  have, on the o th er  hand, reported hyperfine coupling
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to   ̂ o f  the cyanide ligands in  sp ecies  Z, however th e ir  report

o f see in g  an equal and iso tr o p ic  in te r a c tio n  w ith both eq u atoria l

and a x ia l cyanides i s  in  c o n f l ic t  w ith the r e su lts  o f other  
7 8workers * • This w i l l  be d iscussed  la t e r .

This i s  f a ir ly  conclusive evidence th a t sp ecies  Y has the  

major portion  o f  i t s  unpaired sp in  d en sity  on the n itrogen  o f  

the n itr o s y l group. A dditional but in d ir e c t  evidence fo r  th is  i s  

to  be found in  the r e su lts  o f  our s in g le -c r y s ta l  study. The fa c t  

th at the g- and A- tensors are coazcial, coupled w ith the fa c t  

that th e ir  mutual axes are quite a large ex ten t removed from the 

axes o f  the parent n itrop ru sside  ion  im p lies th at the unpaired  

e lec tro n  i s  not in  an ir o n  o r b ita l . I f  there were s ig n if ic a n t  

unpaired sp in  d en sity  on iro n  then the g- and A- tensors would 

not be coax ia lp  the g -ten sor  being determined by iron  o r b ita ls  

and the hyperfine ten sor  determined by o r b ita ls  on n itro g en . 

For example, the computed r e s u lt s  ' f o r  sp e c ie s  Z show th at the 

p r in c ip a l d irectio n s o f the g -ten so r  co in cid e  w ith the referen ce  

axes w hile the A -tensor i s  d irected  a t an angle o f 10^ to  the 

g -ten so r . This has been in terp reted  in  terms o f  a bending o f  

the Fe-N-0 bond by 10° from lin ea r ity ^  In  sp ec ie s  Y, however,, 

the g- and A- tensors are both determined by o r b ita ls  having the  

same axes i . e .  n itrogen  o r b ita ls .

( i i i )  M echanistic Evidence.

From our e . s . r .  r e s u lt s  we may deduce th a t the fo llo w in g  

sequence o f  events takes p lace fo llow in g  ir r a d ia tio n  o f  sodium 

n itro p ru ss id e . The paramagnetic centre i n i t i a l l y  formed, sp ec ie s  X, 

decays on warming in to  sp ec ies  Y which subsequently decays forming
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1
sp ec ie s  Z. Now sp ec ies  Z has been p rev iou sly  ch aracterised  and 

i s  known to  be a n itr o s y l  complex, th erefore  the in ference must 

p la in ly  be drawn th a t sp ecies  X and Y a r e ,a lso  n itr o s y l com plexes, 

p a r tic u la r ly  in  the l ig h t  o f the evidence mentioned in  ( i )  and ( i i ) .

Having e sta b lish ed  th at sp ec ie s  X and Y are most probably 

n it r o s y l  ra d ica ls  we can now look a t the nature o f th e ir  g- and 

A- tensors and consider the probable stru ctu re o f the s p e c ie s .

The g -ten sor .

There are cer ta in  s im ila r it ie s  between sp ec ies  X and Y and 

the trapped NO c en tr e , sp ecies  3 , described in  Chapter 2. In a 

n itr o s y l  ra d ica l the unpaired e lec tr o n  w i l l  be found in  the 

low est ly in g  empty molecular o r b ita l . In free  n it r ic  oxide th is  

l e v e l  comprises the degenerate 2?^*“ p a ir  o f o r b ita ls ,  (see  

Chapter 2) Now in  order to  observe an e . s . r .  spectrum , the NO 

must be trapped or bonded in  such a. way th at th is  degeneracy 

i s  l i f t e d .  A ccordingly, one o f the 2p_^* -o r b ita ls  w i l l  have a 

lower energy than the oth er, (see  Figure 2 . 6 The low est g-value  

( 1*956 fo r  sp ecies  X and 1*951 fo r  sp ec ie s  Y) w i l l  then a r ise  

from a mixing o f the 2p * - o r b it a l  contain ing the unpairedTVxr
e lec tro n  wit]) the oth er , empty 2p * - o r b it a l  v ia  sp in -o rb it  

cou p lin g . This w i l l  occur when the ap p lied  f i e l d  i s  along the  

N-0 bond d irectio n  (th e  z * -a x is ) .

The s in g le  c r y s ta l r e su lts  fo r  sp ec ie s  Y show th at the N-0 

bond (a c tu a lly  the p r in c ip a l d irec tio n  o f g ^ ,) i s  d irected  a t an 

angle o f  27° away from the* a x ia l  N-C-Fe d ir e c t io n  and points  

approximately midway between one p a ir  o f eq u a to r ia l cyanide lig a n d s .

^  fSAG Z7.
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Now in  the absence o f perturbations (such as bending the

N-0 group) which would tend to  lower the symmetry o f the M .0.*s

in v o lv in g  the N-0 group, the other two g-valu es (g.,, and ^ ,  )

would be expected to  be c lo se  to  the fr e e -sp in  v a lu e , s in ce  in

unperturbed NO there are no o r b ita ls  o f  the required symmetry

a v a ila b le  fo r  sp in -o rb it coupling ?d.th the 2p^ _ - o r b i t a l  when

the app lied  f i e ld  i s  along the perpendicular (x* and y ’ ) d ir e c t io n s .

In  sp ec ie s  X and T, hovæver, the g, , -  and g va lu es are bothX y
l e s s  than fr e e -sp in , although in  each case one o f the g-values  

i s  quite c lo se  to  fr e e -sp in  (t .9 9 9  and 2.000 r e sp e c tiv e ly )  w hile  

the oth er i s  appreciably  removed from the fr e e -s p in  value ( 1.969  

and 1.984 r e sp e c t iv e ly ) . I t  i s  d i f f i c u l t  to  envisage how bending 

o f  the N-0 group could in. fa c t  bring in to  ex isten ce  an empty 

o r b ita l w ith the symmetry required fo r  coupling w ith  the 2 p ^ * -  

o r b ita l under con sid eration . N eith er  can we exp la in  the g -ten so r  

in  terms o f  sp in -o rb it coupling on ir o n , s in ce  we have s tr e s se d  

th a t, because the g- and A- ten sors are c o a x ia l, the g -ten so r  i s  

n ot governed by o r b ita ls  on the cen tra l metal ion  even though 

there may be a sm all sp in -d en sity  on iro n . Therefore we must 

turn our a tten tio n  to  the theory, put forvmrd in  Chapter 2, th a t  

the N-0 group i s  lib r a t in g  or wagging. L ibration al n otion , i t  

should be noted, w i l l  tend to mix the g-valu es as w e ll as the 

A -values. I f  we make the assumption th at the g- ten so r  fo r  non- 

l ib r a  tin g  NO i s  o f  the form :

Ggg) =  (•-'f.s. ^ f . s .  < 3 C f . S * )

(where f . s .  stands fo r  fr e e -sp in )  

then we can exp la in  the form o f the measured g -ten sors ;
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Species X : ' (1 .999  1,969 1 .956) —  tensor 1

Species Y : (2 .000  1.984 1 .951) —  ten sor  2

by p ostu la tin g  l ib r a t io n  o f the N-0 group about the x and y  axes. 

Furthermore, i f  th is  hypothesis i s  co rrect then we can say th at  

the N-0 group in ,s p e c ie s  X i s  l ib r a t in g  more stron g ly  than in  

sp ec ie s  Y, s in ce  i t  would require more l ib r a t io n  o f  the N-0 to  

obtain  tensor 1: than i t  would to  obtain  ten sor  2. A fu rth er  

con sid eration  o f  the e f f e c t  o f  l ib r a t io n  vd.ll be given  below.

The A-tensor.

The d i f f ic u l t y  in  in terp re tin g  the hyperfine ten sor

i s  that A. i s  unknown, and hence the sign s of the tensor  %so ' °
components are unknown. Now as Table 3*5 shows there are e ig h t

computed values o f  fo r  sp ec ie s  X and Y; four p o s it iv e  and

four negative v a lu e s . A ll the experim ental evidence suggests

th at there i s  p o s it iv e  sp in -d en sity  on the n itrogen  atom

th erefore we can f a ir ly  co n fid en tly  elim in ate  the negative

values o f A.is o

Comparing the values o f A^^  ̂ fo r  sp ec ie s  X and Y w ith  the
Û

value o f  8G. ca lcu la ted  fo r  NO in  the gas phase , we fin d  th a t  

the value 9*9&. fo r  sp ecies  X taking the s ig n  combination ■

( + + -  ) i s  the c lo s e s t  to  th is  va lue; whereas fo r  sp ec ie s  Y,

two values o f A^^  ̂ 12*4 and 3*2 tak ing s ig n  combinations 

(  + + -  ) and ( + -  + ) r e sp e c t iv e ly , are almost eq u ally

as c lo s e . However none o f the an iso trop ic  A -tensors corresponding

to these values o f  A^^  ̂ i s  o f the form ( 2B -B  -B ) expected

^ r p. -4 CI  ̂ r 4  ̂ -
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fo r  an e lec tro n  in  a p ^ -o r b i ta l  so we must again consider the 

e f f e c t  o f l ib r a t in g  the N-0 group being the probable cause o f  

the discrepancy. Now the form o f the measured hyperfine  

tensors (and a lso  the g -ten sors -  v ide supra) suggests that 

sp ec ie s  X i s  lib r a t in g  more stron g ly  than sp ec ie s  Y, th erefore  

i f  the d ifferen ce  between them was purely a matter o f the degree 

o f l ib r a t io n , then by lib r a t in g  the N-0 group in  sp ecies  Y 

fu rther we ought to  be able to  transpose i t s  ten sor  in to  th at 

o f sp ecies  X . -
X y z

Species X : A. =9.9G- A = (1 0 .5  11. 5 - 2 2 , i )  G.jls o o

Species Y : A^^^=12.0G ( l5 ,9  6 .2  - 2 0 . l )  G.

\ s o =  5.2G (2 0 .7  - 2 3 .4  2 .9 )  C.

The e f f e c t  o f  l ib r a t io n  on the tensor (2 0 ,7  -2 5 ,4  2 ,9 )

cannot give ( l0 .5  11,5 -2 2 .1 )  under any circum stances, s in ce

lib r a t io n  can only have the e f f e c t  o f  s h if t in g  two tensor  

components towards th e ir  average v a lu e , the la t t e r  being the 

l im it  fo r  complete ro ta tio n . So we may te n ta t iv e ly  d iscard  the  

former ten so r . On the other hand,- the e f f e c t  o f l ib r a t in g  the  

N-0 group ( in  the xy plane) on the tensor (15*9 6 ,2  -2 0 ,1 )

w i l l  give the ten sor (lO.O 9 .2  - 2 0 . l ) ,  which i s  s t i l l  not

c lo se  enough to  ( l0 .5  11.5  -22*2) to  be r e a lly  s a t is fa c to r y .

Furthermore none o f these an iso tro p ic  ten sors can be derived  

(by lib r a t io n )  from the ten sor  (28 -14  - 14) ca lcu la ted  fo r

NO in  the gas-phase y so th is  fa c t  would tend to  e lim in ate  

them, notw ithstanding the agreement in  A^^^. I f  the N-0 group 

i s  bonded to  iro n , however, we would not r e a l ly  expect good
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agreement o f  the iso tro p ic  coupling constants o f sp ec ies  X and 

Y w ith fo r  free  NO. Spin p o la r isa tio n , fo r  example, would

tend to  in crease the value o f w hile having l i t t l e  e f f e c t

on the a n iso trop ic  hyperfine ten sor . I f  we now take an a l l 

p o s it iv e  s ig n  combination o f the measured A -tensors fo r  sp ec ie s  

X and Y we obtain  the values fo r  A. o f 18.4G-. and 17 .00 .ISO
r e sp e c t iv e ly , which are reasonable fo r  bonded N-0. I f  we consider  

the e f fe c t  o f l ib r a t in g  the N-0 group o f  sp ec ie s  Y on i t s  

an iso trop ic  ten sor we fin d  th at we can ex a c tly  transpose th is  

tensor  in to  that o f  sp ecies  X.

Ï  S (8 .5  0 .8  - 9 .3 )  (5 .9  3 .4  - 9 .3 )

( 2 ,4  3 .4  - 5 .8 )  5 X

This l ib r a t io n  in vo lves p a r t ia l  ro ta tio n  about the y -  and z- axes. 

Moreover both o f  these a n iso trop ic  tensors can be derived ( to  a  

good approximation) from the ten sor (28 -1 4  -1 4 ) fo r  n it r ic

oxide. However we should not look a t the analogy w ith trapped ,

n it r ic  oxide too c lo s e ly  as some measure o f  bonding w ith iron  

w i l l  modify the T T -orb ita ls on n itrogen  and hence modify the  

an iso trop ic  tensor somewhat, depending on the degree o f bonding 

invo lved .

I t  was hoped to  be able to  obtain  a spectrum o f  sp e c ie s  X 

a t  4.2K in  order to  t e s t  th e lib r a t io n  th eory , however fo r  reasons 

previou sly  mentioned, th is  was not p o ss ib le  and the low est 

temperature obtainable was 19K. We wculd expect that the l ib r a t io n  

o f  the N-0 group would be com pletely quenched a t 4.2X  and th at  

the g- and A- values m easured .at'th is temperature would be the
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* true' v a lu es . The r e su lts  a t 19K however are inconolusive and 

n e ith e r  prove nor disprove the l ib r a t io n  theory. There c e r ta in ly  

has been some s h i f t  in  g- and A- values but th ese s h if t s  are 

very sm all, (see  Table 3*1) This r e su lt  cou ld , however, in d ica te  

th at the N-0 group i s  l ib r a t in g  but th at the lib r a t io n  i s  only  

s l ig h t ly  quenched at 19K. I t  i s  encouraging though, that some 

dependence o f  g- and A- values on temperature has been observed.

A dditional l in e s  in  the 19N spectrum, not observed a t 77K, 

may be a ttr ib u ted  to  a sp ec ie s  in  low  abundance having the  

follovring g- and hyperfine tensors : (2 .0 0 0  2.003 1 .923)

and (36 5 3)&. r e sp e c tiv e ly . This could be due to  a sm all

percentage o f "free" NO which resu lted  from Fe-N-0 bond homolysis 

in  the n itrop ru ssid e  ion  on ir r a d ia tio n . S ince i t  i s  not observed  

a t liq u id  n itrogen  temperature, the free  NO must be s u f f ic ie n t ly  

mobile a t 77N th at i t  does not remain a t a s i t e  w ith a c r y s ta l  

f i e ld  ab le  to  l i f t  the degeneracy o f  the two TT*-orbitals fo r  long  

enough to  enable the e . s . r .  spectrum to  be recorded. Lowering the 

temperature must reduce the m ob ility  o f  the free  NO so th at a t  

I9K i t  does remain trapped a t such a s i t e .

I t  was a lso  intended to  study sp ec ie s  Y a t the lower 

tem perature, however the l iq u id  helium did not become a v a ila b le  

u n t il  the term ination o f experim ental work and did not l a s t  long  

enough fo r  a spectrum o f  the annealed sample to  be obtained. 

Therefore the e . s . r .  spectrum o f  sp ec ies  Y has not been observed  

a t I9K.

Thus, although we cannot place any emphasis on any o f the 

values computed fo r  A^^  ̂ fo r  sp ec ie s  X and Yy we can say th a t the
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a l l - p o s i t iv e  s ig n  combinations o f  the hyperfine ten so rs , g iv in g  

the h igh est values o f do g ive the most s a t is fa c to r y  r e su lts

compatible w ith th e  l ib r a t io n  theory.

At th is point i t  is  relevant to mention an iron n itrosy l

compound w ith a hyperfine ten sor  alm ost id e n t ic a l to  th at o f

sp ec ie s  Y. Chien^^ has reported s in g le -c r y s ta l  e . s . r .  r e s u lt s  fo r

nitrosylhaem oglobin (HbNO). The hyperfine ten sor  computed fo r

HbNO i s  ( 26 .4  19 .0  6 .5 )0  compared w ith (25 .9  18 .2  8.1 )G. fo r

sp ec ie s  Y. These tensors are remarkably s im ila r  and in d ica te  a

s im ila r  in tera c tio n  o f  the unpaired e lec tro n  w ith n itrogen  in  the

two ca se s . Furthermore, n itrosylhaem oglobin g ives an e . s . r .

11spectrum a t room temperature and the iso tr o p ic  hyperfine coupling

constant has been determined and found to  be 17 .5  gauss, showing

th at the a l l - p o s i t iv e  s ig n  combination i s  co rrect. However, th is

i s  where the s im ila r ity  ends. A large  Mossbauer hyperfine structure
12has been observed fo r  HbNO , which in d ic a te s  a s ig n if ic a n t  

unpaired e lec tro n  d en sity  on the iron  atom. The r e s u lt s  o f  th is  

study in d ica te  a sp in -d en s ity  o f  up to  50^ o f  the unpaired e lec tro n  

on the iron  atom, which i s  a t considerable variance v/ith the 

r e s u lt  found fo r  sp ec ie s  Y o f l e s s  than 8^ o f  the unpaired e lec tro n  

on iron^. Accordingly the g -ten sor  o f  HbNO (2 .082 2.0254 1 .991)

i s  quite d iffe re n t from th a t o f  sp ec ie s  Y (2 .000  1.984 1 .9 5 l)  .

Furthermore, the p r in c ip a l d irectio n s o f  the g- and A- tensors o f  

HbNO d if fe r  considerably; th is  r e s u lt  being in terp reted  in  terms 

o f  a bent Fe-N-0 bond angle o f  111,0°. Thus, w hile the A -tensor i s  

determined by m olecular .o rb ita ls  on n itrogen , the grten sor  i s  

mainly determined by the m etal, s in ce  sp in -o rb it  coupling on iron
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w i l l  be dominant ( in  view o f  i t s  h igher sp in -o rb it  coupling  

con sta n t). The la r g er  sp in -d en sity  on iron  in  nitrosylhaem oglobin  

could in d ica te  th at im HbNO the Fe-N bond d istan ce  i s  sh o r ter  than 

i t  i s  in  sp ec ie s  Y.

We can account fo r  the r e la t iv e ly  high values o f in

sp ec ies  X and Y (and nitrosylhaem oglobin) by an a lte r n a tiv e

mechanism, analogous to  th at used in  bent AB̂  triatom ic m olecules 

13such as NÔ  , contain ing a s in g le  e lec tr o n  in  aTT-type antibonding  

molecular o r b ita l , using the fa c t  th at they a l l  have bent Fe-N-0 

bonds. The mechanism whereby ligan ds acquire sp in -d en sity  ( the  

pseudo TT mechanism) has been d iscu ssed  by Walsh^^ and can be 

depicted  in  terms o f  atomic o r b ita ls  as shown in  Figure 3*9» The 

pseudo 71* o r b ita l shown stems' from the form ally  degenerate TT 

le v e l  o f the l in e a r  m olecule and tends towards an o r b ita l lo c a l 

is e d  e n t ir e ly  on A as the bending increases-. This i s  because the  

atomic s-ch aracter  on A in creases and a lso  because the e f f e c t iv e  

overlap w ith  the o r b ita ls  on B decreases as the ra d ica l bends.

This analogy i s  u se fu l in  exp la in in g  the com paratively high  

s-ch a ra cter  o f  the unpaired e lec tro n  and i t s  degree o f  lo c a l is a t io n  

on n itrogen , but in  view o f  the more complex nature o f  the system s 

stu d ied  here, i t  i s  probably not s t r i c t l y  accurate.

Chien has fo llow ed  the method o f  van Voorst and Hemmerich in  

in ter p r e tin g  the anisotropy o f  the hyperfine ten sor , where the 

unpaired e lec tro n  d en sity  on n itrogen  was, determined using the  

fo llow in g  expressions^'^

(se e  over)
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A ^  , A ^ , and A^^ are the measured hyper f in e  coupling constants

along the three p r in c ip a l axes* A and 2A are the couplings p

constants fo r  a pure s o r b ita l and fo r  a  pure p o r b ita l on a
1Ô 2 2 2 2n itrogen  atom, 55ÛG- and 3^G, resp ective ly*  Og ; and c^,

a re , r e sp e c tiv e ly , the c o e f f ic ie n ts  o f  the pure s ,  p^, , p^, and

p^, n itrogen  o r b ita ls  in  the M.O. o f  the unpaired e lec tr o n . Using

th is  method, taking the a l l - p o s i t iv e  s ig n  combination o f  the

hyperfine ten sor , they each fin d  a value fo r  c^^ o f  approxim ately
2 20*02, which we would not dispute* Hov;ever, the values o f  , Cy 

2
and c ^  cannot be so lved  sim ultaneously from th ese  equations, so

2
they have put the value o f  c^ , the p^. population in  the N-0 bond 

d ir e c t io n , equal to  zero on the grounds th a t the n itrogen  i s  

prim arily sp hybridised* They then c a lcu la te  an alm ost equal

p opulation  o f  the p^, and p^, le v e ls  on n itrogen ; e .g .  van Voorst
2 2 c a lcu la te s  a value o f  c^, = 0.324 and o^, = 0.202 fo r  sp ec ie s  Y,

r e su lt in g  in  a sp in  d en sity  on n itrogen  o f  about 30^. This method

has been c r i t ic i s e d  by Hayes**  ̂ who s ta te s  th at ” van V oorst’ s

r e s u lt s  p red ict a considerable o r b ita l angular momentum, which

im p lies a large o r b ita l hyperfine term, which means the ca lcu la ted

sp in  d is tr ib u tio n  no longer produces the observed coupling

co n sta n ts ."  Hayes has m odified van V oorst’s r e su lts  to  take o r b ita l
2momentum in to  account and, (u sin g  the same assumption th at = O) 

has arrived  a t a value fo r  the t o t a l  sp in -d en sity  in  n itr o s y l TT 

o r b ita ls  o f  27fo»
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However, we b e liev e  th is  in terp re ta tio n  i s  s t i l l  u n sa tisfa cto ry  

because i t  does not take in to  account the fa c t  th at the sp in -  

o rb it coupling required fo r  approxim ately equal population o f  

the two IT le v e ls  would bring down the low est g-value w ell

below the 1*93 observed by van Voorst and Hemmerich* A ccordingly, 

we h e s ita te  to  place any re lia n ce  on any numbers obtained in  such 

a spin-population  an a ly sis  o f the an iso trop ic  ten so rs.

We s tr e s s  th at the lib r a t io n  theory i s  the only one which 

can s a t is f a c t o r i ly  account fo r  the form o f  both the g- and A- 

ten so rs .

The Structure o f Species X and Y»

We have f a ir ly  co n c lu s iv e ly  e sta b lish ed  th at sp ecies  X and Y 

are pentacyanonitrosyl complexes w ith  the unpaired e lec tro n  mainly 

lo c a lis e d  on a l ib r a t in g  n itr o s y l  group. The r e su lt  computed fo r  

the Fe-N-0 bond angle o f 132^ in  sp ec ie s  Y must r e fer  to  the mean 

p o s it io n  o f  the l ib r a t in g  N-0 group (see  Figure 3*10)* The mean 

p o s itio n  o f  the n itr o s y l group a lso  corresponds to  i t s  p o in tin g  

midway between a pa ir  o f  adjacent cyanide ligan ds (v ide supra).

The s itu a t io n  in  r e a l i ty  could be explained in  terms o f the 

n itr o s y l  group lib r a t in g  in  the xz plane so th a t i t s  extreme 

p o sitio n s  coincided w ith i t s  being d ir e c t ly  over the two adjacent 

cyanide ligands (Figure 3*10).

The prelim inary s in g le -c r y s ta l  e . s . r .  r e s u lt s  fo r  sp ec ie s  X 

suggest th at the N-0 bond may be bent further away from the 

Fe(CN)^ pyramid than i t  i s  in  sp ec ie s  Y.. The fa c t  th at the 

hyperfine tensors o f sp ecies  X and Y can be in terconverted  by
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the e f f e c t  o f lib r a t in g  the N-0 group su ggests that there i s  

only a su b tle  d ifferen ce  between the stru ctu res o f the two 

s p e c ie s . One p o s s ib i l i t y  i s  th at the former has a longer Fe-N 

bond which could allow  a stron ger l ib r a t io n  o f the N-0 group.

The conversion o f  sp ecies  X in to  sp ec ie s  Y on warming w i l l  be 

d iscussed  in  the sec tio n  d ea lin g  ivith the mechanism o f X* damage.

I d e n tif ic a t io n  o f Species Z.

This sp ec ies  has been reported p rev iou sly  by workers in  

th is  laboratory**, where i t  was formed by the -r a d io ly s is  o f  

sodium n itrop ru ssid e a t room temperature. The controversy over  

the structure o f th is  sp ec ie s  has been d iscu ssed  in  Chapter 2, 

where i t  was shown that i t  was derived from a product o f  

radiation-damaged anhydrous n itrop ru ssid e (sp e c ie s  B) by the 

add ition  o f water. Early on , there was a lso  a controversy over 

the ordering o f the energy le v e ls  in  th is  sp e c ie s . This cont

roversy has been d iscu ssed  elsewhere^^*^^, but i t  w i l l  be 

b r ie f ly  summarised here in so fa r  as i t  i s  relevan t to  the 

understanding o f the present problem. For the purpose o f th is  

d iscu ssio n  we w i l l  assume that the sp ec ie s  formed by the 

e le c tr o ly t ic  reduction o f  sodium n itrop ru ssid e  in  D.M.F. i s  

id e n t ic a l  w ith sp ec ie s  Z. (see  Chapter 2 however) The e . s . r .  

r e s u lt s  obtained fo r  th is  sp ec ie s  by sev era l workers are 

i l lu s t r a t e d  in  Table 3 .6 .

20 21McNeil, Raynor and Symons ' p o larograp h ica lly  reduced 

sodium nitrop ru sside in  D.M.F. and deduced an energy le v e l  

scheme (Figure 3*11) from th e ir  e . s . r .  r e s u lt s  obtained a t room



TABLE 3 .6  E . s . r .  Data fo r  Room Temperature I r r a d ia t e d

Sodium N itr o p r u s s id e  and f o r  the  (Fe(CN) Ion

Sample and D ir e c t io n

(F e(C N )gN O )^ - .

S o lu t io n  

G lass —

n

2 .0231

2 .0 313

2 .0059

A(^^N) (g a u ss )

1 5 .5

1 4 .8

1 7 .1

R ef

21

S in g le  C r y s ta l

X

y
z

average

2 .0 4 2 2

2 ,0 3 7 0

2 .0 0 5 9

2 .0 2 8 4

1 4 .4

1 3 .4  

1 6 .2  

1 4 .6

Powder
J ,

/ /

( 2 .0 4 0 9  
(
( 2 .0 3 5 0  

2 .0 0 5 0

1 5 .5

1 4 .6  

1 6 .5

1, 20,21

Powder

/ /

2 .0 3 7 4

2 .0 069

1 4 .6

1 6 .3

Powder 

( S p e c ie s  2 )

JL

//

2 .0 3 6 0

2 .0 0 5 4

1 4 .4

1 7 .2

T h is  work
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temperature and a t  77K. A nalysis o f th e ir  **Sî hyperfine data 

gave a to t a l  unpaired sp in -d en sity  on n itrogen  o f  7.4^ and a 

p :s r a t io  o f  1 .6 . They concluded th at the unpaired e lec tro n  

was in  the 5a-|(d^2) o r b ita l since T T-interaction o f  the unpaired  

e lec tro n  w ith n itrogen  could not give r is e  to  such a low p:s 

r a t io .  Further, the large  coupling to  n itrogen  (Aj^^^=13.3G") 

made i t  u n lik e ly  that the e lec tro n  was in  the 3 b i l e v e l  

p a r tic u la r ly  in  view o f the sm all coupling to  n itrogen

=3*8G-) in  Mn^ (̂CN)^NO  ̂ where the e lec tro n  i s  known to  be in
. \  21 22 23the 2b p (d ^ ) o r b ita l . * * The most con clu sive  evidence was

th at the observed g -ten sor  was in  accord w ith  the r e s u lt  theor

e t i c a l ly  pred icted  fo r  an e lec tro n  in  a d^2 o r b ita l i . e .  g^  

c lo se  to  fr e e -sp in  s in ce  sp in -o rb it coupling i s  not p o ss ib le

in  th is  o r ien ta tio n  ; g , fr e e -sp in  by mixing d p w ith  d ̂ x z ,y z
v ia  sp in -o rb it coup ling . A ccordingly, these authors placed the 

3a-] l e v e l  below the 3b-i l e v e l  in  con trast to  other schemes (v id e  

in f r a ) .

Hockings and Bem al^^^^ examined the e . s . r .  sp ectra  o f

f lu id  so lu tio n s  o f  e le c t r o ly t ic a l ly  reduced sodium n itrop ru ssid e  
13enriched w ith C. They found th at each l in e  o f  the o r ig in a l  

n itrogen  t r ip le t  was s p l i t  in to  f iv e  super-hyperfine l in e s  

(Aiso("*^C)=4.6G) due to  four eq u iva len t cyanide lig a n d s. No 

a x ia l  component was observed in  any o f  th e ir  sp ectra . These 

r e s u lt s  suggested to  them th at the ground-state o r b ita l  was 

d^2_y2 and not d^2 ^ l e s s  the a x ia l cyanide ligan d  lea v es  the 

complex on red uction . Although adm itting th is  la s t  p o s s ib i l i t y ,  

they preferred to  conclude that the unpaired e lec tr o n  was in
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th e  d^2_y2 o r b ita l in  sp ite  o f the fa c t  th at the large coupling  

to  the n itrogen  o f the n itr o s y l  group suggested  othervd.se (v id e  

supra).

T here,has, however, been c o n f lic t in g  evidence reported fo r  

the magnitude o f  the hyperfine coup ling . Kuska and Rogers^ 

have reported a value o f  10.0  ^  0 .2  gauss fo r  biit they

do not s ta te  whether th is  in te r a c tio n  in v o lves a l l  f iv e  carbon 

atoms or  ju st the eq uatoria l lig a n d s . Danon e t  a l  ̂ have ir r a 

d iated  a s in g le  c r y s ta l o f  sodium n itrop ru ssid e  enriched to  20^ 

w ith CN and th e ir  spectra  in d ica te  that the unpaired e lec tr o n  

i s  in ter a c tin g  almost equally  w ith a l l  f iv e  carbon atoms ( a(^^C) 

v a ries between 9 .0  and 10.1 gauss) in  c o n f l ic t  w ith  Hockings and 

Bernal’s r e s u lt .

Leaving aside the question o f  the a c tu a l magnitude o f the
1i3 C coupling . Hockings and Bernal’s observation  that the unpaired 

e lec tro n  in ter a c ts  only w ith  the eq u atoria l cyanides i s  in  accord  

w ith our a sse r tio n  (Chapter 2) th at the process o f removing (or  

p a r t ia l ly  removing) the a x ia l  cyanide i s  the only conceivable  

means o f exp la in ing  why the le v e l  should be depressed

below the 7ej TT̂ NO) le v e l  (v id e  in fr a )  on red uction  o f the 

nitrop ru ssid e  io n . The r e s u lt s  o f Danon e t  a l  can then be recon

c i le d  w ith those o f Hoc kings and Be m a l ,  s in ce  they were studying  

reduced n itrop ru ssid e  in  d if fe r e n t media. Thus, in  so lu tio n  the 

a x ia l cyanide ligan d  could be com pletely removed in  the form o f  

HCN by scavenging protons, w hile  in  the s o l id  s ta te  the movement 

o f  the a x ia l  cyanide i s  lim ite d  by the co n stra in ts  o f the c r y s ta l

l a t t i c e .  Therefore,  in  the la t t e r  case the a x ia l  cyanide would
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move only a short d istan ce  from the iron  atom — long enough to

13depress below 7e but short enough fo r  C super-hyperfine  

s p l i t t in g s  to  be observed.

Manoharan and Cray^^'^^ stu d ied  the o p t ic a l spectra  o f  the  

diamagnetic d  ̂ io n  Fe(CN)^NO^ and, in  conjunction  w ith d e ta ile d  

SoC.C.C.-M.O. ( s e lf - c o n s is t e n t  charge and con figu râtion-m olecular  

o r b ita l)  ca lcu la tio n s  fo r  th is  io n , derived an energy le v e l  scheme
ic

which gave the fo llow in g  ordering o f  the e lec tr o n * le v e ls  :

<2e(T r^N 0) < J b i( d ^ 2 .y 2 )  <  iâ i ( a ^ 2 )

Their c a lc u la tio n  p red icted  a net a x ia l d e s ta b ilisa t io n  o f the  

3ai(d^2^ o r b ita l r e su lt in g  in  i t s  being higher in  energy than the 

3b1( d^9_^p) o r b ita l . However,they s tr e s s  th at the 5ai and 3b̂  le v e ls  

are not su b s ta n tia lly  d if fe r e n t in  energy. Manoharan and Gray 

a lso  corre la ted  the observed o p tic a l spectra  w ith  the p red icted  

energ ies o f the e lec tr o n ic  tr a n s it io n s  ( Table 3 .7 ) .  I t  w i l l  be 

noted th at th e ir  assignment o f  the energies o f  the tr a n s it io n s  

6e —̂  3a4 and 6 ^  —> Jb-j con trad icts  th e ir  energy le v e l  scheme 

and would put the Jb-j le v e l  below the l e v e l .  The new and most 

in te r e s t in g  r e s u lt  o f  th e ir  SCCC-MO ca lcu la tio n s  was the fa c t  th at  

the 2 ^  o r b ita l ,  derived mainly from TT̂ NO was s itu a ted  between the 

^ 2 ( c t ^ )  and 3b^(d^p_^p) o r b ita ls . The ground s t a t e ,  according to  

th is  scheme was .» .(6 e )^ (2bp)^ = ; the diamagnetic d  ̂ ion

form ally com prising F e ( l l )  and N0+. The ca lcu la ted  f in a l  charge 

d is tr ib u tio n  in  the molecule was in  fa c t  :

|^g^+0.3l66^2N) ■2*2000(2jjj-0..5809^jjqj+0.464^^
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Manoharan and Gray then went on to  extend th e ir  treatm ent 

o f  the diamagnetic Fe(CN)^^0^~ ion  to  cover the case o f the 

reduced n itrop ru ssid e  ion  Fe(CN)^NO^, According to  th e ir  energy 

l e v e l  scheme, the ground s ta te  o f the la t t e r  ion  was the con fig 

uration  • • • ( 6e )^ (2b2)^ (7e)**, p lacin g  the unpaired e lec tro n  in  

the (TT^NO) o r b ita l . Population a n a ly s is  showed th is  l e v e l  to  

be 72. 3^  TT̂ NO w ith  some d^ , C* CN, 77 CN and 77  ̂CN co n tr ib u tio n s. 

From in te r e le c tr o n ic -r e p u ls io n  con sid eration s they suggested  

th at a l l  metal n itr o sy ls  w ith one or more e lectron s in  m olecular 

o r b ita ls  w i l l  have a bent M-N-0 system . This l a s t  statem ent i s ,  

of co u rse , in  accord w ith  our r e su lts  fo r  sp ec ies  X and Y, which 

show th at the e lec tro n  ^  indeed in  the TT NO le v e l*  However, 

th ese authors were not aware a t the time th at there was any form 

o f  reduced n itrop ru ssid e other than sp ec ie s  Z. Their assignment 

o f a (tT^NO)** ground s ta te  fo r  sp ecies  Z was t o t a l ly  incom patible  

w ith the experim entally observed g -ten sor  and could not conceiv

ably account fo r  the p o s it iv e  ^ s h i f t  obtained. As strong  

evidence aga in st a (#^2 )  ̂ assignm ent, they quoted Hockings and 

Bernal’ s r e s u lt  o f see in g  only the eq u atoria l **̂ CN s p l i t t in g  and, 

w ithout g iv in g  any mention to  the p o s s ib i l i t y  o f lo s in g  the a x ia l  

cyanide lig a n d , dism issed the scheme o f McNeil, Raynor and Symons 

as * appearing to  be w ithout j u s t i f ic a t io n  * *

Undaunted by th is  scu rr ilo u s a ttack  on th e ir  reputation  by

th e Americans,the g a lla n t B r it ish  team comprising McNeil, Raynor
27 1

and Symons, la t e r  jo in ed  by Goodman, soon were able to  provide

fre sh  evidence which showed unequivocally th a t the unpaired

e lec tr o n  was lo ca ted  mainly on the iron  atom. They found th a t , on
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prolonged ir r a d ia tio n  o f sodium n itrop ru sside  a t room temperature, 

the concentration  o f ra d ica ls  was s u f f ic ie n t  to  cause an in te r 

a c tio n  between adjacent p a irs (pairw ise trap p in g). From the 

d irectio n s and magnitude o f  the sp in -sp in  in te r a c tio n  tensors  

the ra d ica l pairs were assigned  in  terms o f  th e ir  p o s it io n  in  

the host l a t t i c e .  The separations between magnetic centres and 

th e ir  d irec tio n s  deduced from the in ter a c tio n  tensors showed 

without doubt th at the in ter a c tin g  cen tres were the iron  atoms 

and not the n itr o s y l groups.

This r e s u lt  was la t e r  corroborated by van Voorst and 

Hemmerich's ^TPe iso to p ic  su b stitu tio n  experiment^ (vide supra) 

which showed the unpaired sp in -d en sity  on iro n  in  sp ecies  Z to  

be 8C^, thus confirm ing what McNeil, Raynor and Symons had 

p ostu la ted  r ig h t from the s ta r t  —  that the unpaired e lec tro n  

was in  the 5a i(d g2) o r b ita l .

We are indebted to  Manoharan and Gray, however, fo r  th e ir

S.G.C.C.-M.O. ca lcu la tio n s  which lend support to  our assignment 

o f  the ground s ta te  o f  sp ec ie s  X and Y being ...(T T  NO) .
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Mechanism o f R adiation Damage.

We p ostu la te  th at the ra d ia tio n  damage mechanism in  hydrated 

sodium n itroprusside in volves i n i t i a l  d is so c ia t iv e  e lec tro n  capture 

by water molecules*

i . e .  Ĥ O H’ + OH*

However, we do not have any d ir e c t evidence to  confirm th is ;

i . e .  we have not been able to  d etect any hydrogen or hydrosyl rad

ic a ls  formed on low-temperature ir r a d ia tio n . N everth eless, the fa c t  

th at com pletely d if fe r e n t products are formed on ir ra d ia tio n  o f the 

anhydrous m aterial (Chapter 2) stro n g ly  suggests th at water i s  inv

olved in  the ra d ia tio n  damage mechanism in  the dihydrate. E ither a 

hydrogen atom or a hydroxyl ra d ica l (or both) could attack  the n it 

roprusside anion to  g ive [Pe(GN)^(GNH)(NO)J^” and/or ■ 

|Ve(CN)^(GNOH)(NO)^^ r e sp e c tiv e ly . We would expect the equatoria l 

cyanides to  be attacked  p r e fe r e n t ia lly  because o f  the proxim ity o f  

the water m olecules in  the la t t ic e ^  (water m olecules occupy" bridg

ing p o s itio n s  between se ts  o f  two eq u atoria l cyanides belonging to  

two adjacent n itrop ru ssid e  anions)^ and the s t a t i s t i c a l  fa c to r  o f  

four.

Vie then envisage the unpaired e lec tr o n  going in to  the low est 

ly in g  u n f il le d  l e v e l ,  i . e .  %T (NO), w ith  a concomitant increase in  len gth  

o f the Fe-N bond, the N-0 bond sim ultaneously bending to r e lie v e  the

antibonding character o f the unpaired e lec tr o n  on the n itr o s y l  grou p .. 

The p o s s ib i l i t y  th at a hydrogen atom or a hydroxyl ra d ica l d ir e c t ly  

attacked the NO group can be discounted sin ce  there was no evidence 

fo r  any proton hyperfine s p l i t t in g  on the n itrogen  t r ip le t s  o f  

sp ec ies  X.
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The decay o f sp ecies  X in to  sp ec ies  Y i s  thought to  involve

a su b tle  change in  the d irec tio n  o f  the N-0 a x is  and i s  d e f in ite ly

not a true ’chem ical' change sin ce  the a c tiv a tio n  energy fo r  the
28process i s  rather low — only 5kcal/m ol, In con trast the a c t iv 

a tio n  energy fo r  the formation o f sp ec ies  Z from sp ec ies  Y i s  mark-
28ed ly  higher — 30kcal/m ol. This in d ica te s  th a t a more su b sta n tia l  

change has taken place and accords w ith  our su ggestion  th at the NO 

group ’recom bines’ w ith the ^Fe(CN)^-"] pyramid and th at the a x ia l  

cyanide may be concurrently pu lled  o f f  (or p a r t ia l ly  pu lled  o f f )  

by a proton (v id e supra). In view  o f  the la ck  o f  a x ia l symmetry o f  

sp ecies  Z (v id e  supra) we may b est regard i t  as having the structure  

^e(CN)^(CNR)(CNH)(NO)J^ , where R i s  H or OH, attached to  an equ

a to r ia l cyanide. The corresponding sp ecies  formed by ad d ition  o f  

water to the Y -ir r a d ia te d  anhydrous n itrop ru ssid e (see  Chapter 2) 

may then be form ulated |Fe(CN)^(CNH)(NO)J The protonation o f  the 

a x ia l cyanide on ly , accords w ith  our observation  th at th is  sp ec ie s  

does possess a x ia l symmetry un like sp ecies  Z.

Thus the protonation mechanism which we have proposed, appears 

to  be a tenab le theory s in ce  i t  i s  able to  accommodate a l l  the exp

erim ental f a c t s .



7 0 .

References fo r  Chapter 3»

1. B.A. Goodman, D.A.C. McNeil, J.B . Raynor and M.C.R. Symons,

J , Chem. Soc, ( a ) ,  1347, (1966).

2. J.D.Y/, van Voorst and P. Hemmerich, J . Chem. Phys*, ] ^ y  3194, 

(1966).

3. P.T. Manoharan and W.C. Hamilton, Inorg. Chem., _2, 1043, (19&3)

4 . D.S. Schonland, Proc. Phys. S o c ., _%3, 788, (1959).

3 . L. Tosi and J . Danon, Compt. Rend. Acad. S c i. P a r is , 263B, 970, 

(1966).

3* J . Danon, R.P.A. Muniz and A.O. Caride, unpublished r e s u lt ,

6. J . Danon, R.P.A. Muniz and A.O. Caride, J . Chem. Phys. ,  4 6 ♦

1210, ( 1967) .

7 . H.A. Kuska and M.T. Rogers, J . Chem. P h y s., 2^, 3034, ( 1963)*

8. E.F. Hockings and I .  Bernal, J . Chem. S o c ., 3029, ( 1964) .

9 . R.L. Brown and H.E. Radford, Phys. R ev ., 147, 6 , ( 1966) .

10. J.C.W. Chien, J . Chem. P h ys., 4220, ( 1969) .

11. J.C.W. C hien, J . Am. Chem. S o c ., 2166, ( 1969) .

12. G. Lang and W. M arshall, J . Mol. B io l . ,  _18 , 383, ( l9 6 6 ) .

13* P.W. Atkins and M.C.R. Symons, " The Structure o f  Inorganic

R adicals,"  E lse v ie r , ( 1967) .

14. A.D. Walsh, J . Chem. S o c ., 2266, (l953)*

13. W. M arshall and R. S tu a r t, Phys. R ev., 117. 1222, ( 1960).

16. M.C.R. Symons, Advan. Phys. Org. Chem., J[, 332, ( 1963) .

17. R.G. Hayes, J . Chem. P h y s., 48O6 , ( 1968) .

18. D.A.C. McNeil, Ph.D. T h esis , ( 1966) .

19. B.A. Goodman, Ph.D. T h esis , ( 1968) .



7 /

References (c o n t .)

20. D.A.C. McNeil, J .B . Raynor and M.C.R. Symons, Proc. Chem. S o c .,

364, ( 1964) .

21. D.A.C. M cNeil, J .B . Raynor and M.C.R. Symons, J . Chem, S o c .,

4 1 0 , (1965).
22. P .T . Manoharan and H.B. Gray, Chem. Comm., 324, ( 1963) .

23. P.T. Manoharan and H.B. Gray, Inorg. Chem., 823, (1966).

24.  I .  Be m a l and E .F. Hockings, Proc. .Chem. S o c ., 36I ,  ( 1962) .

23. SAP. Hockings and I .  Bernal, J .  Chem. S o c ., 3029, ( 1964) .

26. P.T. Manoharan and H.B. Gray, J . Am. Chem. S o c ., 82r 3340,

( 1963) .

27. D.A.C. McNeil, J .B . Raynor and M.C.R. Symons, Mol. P h y s.,

JO, 297, ( 1966) .

28. J . Danon, A.O. Caride and R.P.A. Muniz, unpublished r e s u lt .



CHAPTER 4

SPECTROSCOPIC STUDIES ON CHROI\ŒUîÆ AND ÎWC/'NESE

PENTA.CYANONITROSYLS IN ALKALI HALIDE LATTIC5S.
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Introdu ction .

In Chapter 2 we d iscu ssed  the trends in  the g- and 

hyperfine tensors fo r  the iso e le c tr o n ic  s e r ie s  o f  d^ pentacyano

n itr o s y l ions : chromium(l), m anganese(ll) and i r o n ( l l l ) .  Now, 

the only d^ pentacyanonitrosyl ion  which has been reported i s  

th at o f ir o n ( l ) .  (see  R efs, t  & 2 in  Chapter 2) Those o f  

chromium(-l) and manganese(O) have h ith er to  not been prepared, 

presumably because o f the d i f f ic u l t y  in  s t a b i l i s in g  the very low 

oxidation  s ta te s  required.

The work described in  th is  chapter was undertaken in  order  

to  prepare and study th ese unstable complexes by a method f i r s t  

o u tlin ed  by Root who used i t  in  the study o f  complex cyanides.

The technique co n s isted  o f  incorporating tr a n s it io n  metal hexa- 

cyanides in to  a lk a l i  h a lid e  l a t t i c e s ,  fo llow ed  by Y -ir r a d ia t io n . 

Subsequent in fra -red  and e . s . r .  measurements revea led  th a t the 

metal ion s were reduced to  a lower ox id ation  s ta te  by the actio n  

o f r a d io ly s is .  The,basic theory behind th is  method was th at 

M(CN)^  ̂ ions (n = 3 ,4 )  were incorporated in to  a potassium  

ch lorid e  l a t t i c e  by rep lacin g  a j^KCl^^~ u n it . E lectron ic  spectra  

showed th a t F-band form ation was depressed on ^ - ir r a d ia t io n ,  which 

in d ica ted  th a t the complex was a ctin g  as an e lec tro n  trap -  thus 

tending to  a tta in  charge balance w ith in  the l a t t i c e .

This method seemed id e a l ly  su ite d  fo r  the attempted prepar

a tio n  o f  the d^ pentacyanonitrosyl ion s o f  chromium and manganese

v ia  the dPand d  ̂ pentacyanonitrosyl ions Cr^(CN)j.NO^ and
j)

Mn^(CN)^NO^ r e sp e c t iv e ly , which could be r ea d ily  sy n th esised .
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The case o f  manganese seemed to  be the most prom ising, s in ce  only  

a on e-e lectron  reduction step  was required to  form the d  ̂ complex, 

whereas in  the case o f chromium a tw o-electron  step  in vo lv in g  a 

diamagnetic interm ediate would be required. However, i t  was thought 

th at some success in  the l a t t e r  case m i^ t  be m erited, s in c e  the 

desired  product would have a f iv e -n e g a tiv e  charge and would not 

th erefore  require charge compensation w ith in  the l a t t i c e .  This 

would serve to  make i t  very s ta b le  in  the a lk a l i  halide l a t t i c e .

Experimental.

Potassium pentacyanonitrosyl ch rom ate(l), K^Cr( CN)^N0. Ĥ O ,
2

was prepared by trea tin g  chromium tr io x id e  w ith  hydroxylamine in  

b a sic  so lu tio n  contain ing an excess o f  cyanide io n s . The complex 

was is o la te d  by p r e c ip ita tio n  w ith ethanol and p u r ified  by d isso lv 

in g  in  the minimum quantity o f water and re p r é c ip ita  t in g  w ith 93/  ̂

ethan ol.

Potassium pentacyanonitrosyl m anganate(l), K̂ Mn( CN)^NO. 2H^0 , 

was prepared by the method described by Cotton e t  a l .^  This method 

in vo lved  the i n i t i a l  preparation o f  ^Mn(CN)^ from MnCÔ  and KCN, 

which was o x id ised  in  s i t u  w ith  a. current o f  a ir  to  form Kÿ.In(CN)^. 

The hexacyanom anganate(lll) was trea ted  w ith  a  b a s ic  so lu tio n  o f  

hydroxylamine contain ing an excess o f cyanide io n s . The mixture 

was a c id if ie d  w ith g la c ia l  a c e t ic  ac id  and a saturated  so lu tio n  o f  

manganous aceta te  was added to  p r e c ip ita te  Mn ĵ {̂n( CN)^N(  ̂  ̂ . This 

was d igested  w ith  a so lu t io n  o f  potassium carbonate, whereupon the 

desired  product was formed according to  the equation :

ÿ 3MnC0j + 2E^m(CN)gK0
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The complex was is o la te d  by p r e c ip ita tio n  w ith ethanol and

p u r if ied  by d isso lv in g  in  water and r e p r e c ip ita t in g  w ith  ethan ol.

The anhydrous complex was made by le a v in g  the dihydrate overnight

in  a d es icca to r  over P.Or in  vacuo,
2 3 '

The chromium and manganese pentacyanonitrosyls were incor

porated in to  potassium ch lorid e  and potassium  bromide c r y s ta ls  by 

allovTing an aqueous so lu tio n  con ta in in g  le s s  than one per cen t o f  

the complex to  evaporate over a period o f  sev e r a l days. The so lu tio n s  

were not allow ed to  evaporate to  dryness but were f i l t e r e d  as soon 

as a reasonable crop o f c r y s ta ls  had grown. M icrocrysta llin e  samples 

o f  the! doped a lk a l i  h a lid es  were prepared by rapid evaporation o f  

aqueous so lu tio n s  under reduced pressure, and by p r e c ip ita tio n  from 

aqueous so lu tio n s  w ith ethanol. A fter drying over P̂ Ô  in  vacuo, 

the doped h a lid es were thoroughly ground and made in to  pressed  

d iscs o f varying th ickness (u su a lly  t  -  2mm,). Mixtures made by 

grinding the complexes w ith  dry KCl (o r  KBr) were a lso  made in to  

pressed d is c s . The in fra -re d  spectra  o f  a l l  the pressed d isc s  

were recorded on a Perkin Elmer 223 double beam instrum ent. Since  

i t  was known th a t K^Mh(CN)  ̂ was a common im purity in  Kÿ6i( CN)^N0 ,

the former complex was a ls o  incorporated in to  a KCl l a t t i c e  and

a"
disc

an i . r .  spectrum o f the sample in  the form o f  a  pressed,was

recorded.

In order to  check on the presence o f  any paramagnetic 

im p u r itie s , e . s . r ,  spectra  o f  the manganese-doped h a lid es were 

recorded a t  room temperature and a t 77N on a Varian E-3 spectrom eter.

The doped h a lid e s , in  the form o f pressed  d iscs,w ere exposed  

to  ^^Co ^^-irradiation  a t room temperature fo r  various periods o f  

time ranging from one hour to  sev e r a l days and th e ir  i . r ,  sp ectra
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recorded. A low temperature attachment o f  the co ld  f in g er  type^ 

was used to  record spectra  down to  about 100K, In most cases an 

e . s . r .  spectrum o f  the crushed d isc  was recorded a t  X-band frequency  

a t  room temperature and a t  77K. In a d d itio n , e . s . r .  sp ectra  were 

obtained fo r  - ir r a d ia te d  powders and s in g le  c ry s ta ls  con ta in in g  

various concentrations- o f incorporated pentacyanonitrosyl io n s .

S in g le  c r y s ta ls  o f  the doped h a lid es were a lso  ir ra d ia ted  a t  

l iq u id  n itrogen  temperature and tran sferred  w ithout warming to  

the e . s . r .  ca v ity  and th e ir  spectra  recorded a t  77K. They were 

then removed from the c a v ity , allow ed to  warm up fo r  a few seconds 

to  anneal the centre (Cl^**) and returned to  the ca v ity  fo r  a 

new spectrum to  be obtained. The c r y s ta ls  were not accu ra tely  

mounted on a goniometer but were placed in  an e . s . r .  Dewar 

contain ing l iq u id  n itrogen  so th at they could  be ro ta ted  approx

im ately  about one o f  the u n it  c e l l  axes ( v iz .  an a x is  p assin g  

through th e  cen tres o f  opp osite  faces o f  the KCl cube.) Tlie e . s . r .  

spectrum o f  the manganese-doped h a lid e  c r y s ta l  was o f  s u f f ic ie n t  

com plexity th a t a complete s in g le -cry sta l/jv a s  not performed.

However e . s . r .  spectra  were recorded fo r  a number o f  d if fe r e n t  

o r ien ta tio n s  o f  th e c r y s ta l .

Attempts were made to  dope sodium n itrop ru ssid e  ions in to  

various a lk a l i  h a lid e  la t t i c e s  ( v iz .  KCl, KBr, KI and NaCl) but 

i t  was found th a t the n itrop ru ssid e  io n , having only  a  2 -n egative  

charge, did  nôt incorporate very e a s i ly  in to  th ese  l a t t i c e s .  Very 

sm all amounts went in to  the potassium  h a lid e  l a t t i c e s ,  however a  

more appreciable amount did incorporate in to  a sodium ch lorid e  

l a t t i c e .  In order to  prepare a pressed d isc  o f  th is  m a te r ia l , i t  

v/as ground up w ith  an equal amount o f  potassium  ch lo r id e , s in ce
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d isc s  made from sodium ch loride alone tended to crumble. The i . r .  

spectrum o f  the pressed d isc  was obtained p r io r  to  and a f t e r  -  

ir r a d ia tio n .

The doped h a lid es  were a lso  exposed to  u .v . ra d ia tion  fo r  

various periods o f  time and th e ir  i . r .  and e . s . r .  spectra  recorded.

R esu lts.

a ) Before ^ - ir r a d ia t io n

( i )  I .R . R esu lts

Table 4*1 shows the main i . r .  bands in  the so lu tio n  grown 

doped h a lid es p r io r  to  '^ -ir r a d ia tio n . The i . r .  spectra  o f the  

samples produced by rapid evaporation from aqueous so lu tio n  are 

s im ila r  to  those o f  samples grown over a period o f  days by slow  

evaporation. However, the samples prepared by p r e c ip ita tio n  w ith  

ethanol and those obtained merely by grinding th e  complex w ith  

a lk a l i  h a lid e  p r io r  to  preparing the pressed d isc s  are d if fe r e n t .  

The former show m u ltip le t s p l i t t in g s  a t  the v(CN) and v(NO) 

str e tc h in g  freq u en cies, whereas the l a t t e r  e x h ib it  only s in ^ e  

broad lin e s  a t  th ese freq u en cies. A fter prolonged grinding, 

however, o th er peaks can be observed, which on fu rth er  grinding  

become w e ll-reso lv ed  and are v e iy  s im ila r  to  those obtained fo r  

the so lu tio n  grown samples.

Figures 4 * t — 4*3 show the i . r .  spectra  o f  so lu tio n  grown 

pressed  d iscs  con ta in in g  chromium, manganese and iron  pentacyano

n it r o s y ls .  The i . r .  spectra  o f KCl doped samples were b e tte r  

reso lved  than those o f  samples prepared u s in g  KBr.



T able 4 .1

I n fr a -r e d  A b so rp tio n s o f  Complex Io n s  in  KCl L a t t i c e s .

1755 s  
1736 m 
1730 sh

[Mn(CN)6NoR" [Cr(CN)5NoR' 2 ^[Pe(CN)5N0]^" [Mn(CN)6 R

2105 m 2120 sh 2170 8 2120 sh

2095 w 2111 s 2164 m 2111 s

2091 w 2107 sh 2154 m 2107 sh
2104 a 2141 s 2104 8

2087 8
2083 s 2085 w 2085 w

2075 s 2060 w 2060 w

2069 w 2035 w 2035 w
2067 w 2030 w 2030 w
2060 w

2033 w
2029 w

i i )  The N i t r o s y l  S tretch inpc R eg ion .

1830 w 1710 sh 1940 v s
1820 w 1690 8
1805 sh 1660 8
1795 sh • 1645 8

1776 v s 1640 sh '

A l l  f r e q u e n c ie s  in  cm"

^  I [Pe(CN)5N0]^" in  an NaCl l a t t i c e  w ith  added KCl,



Fi^r^re 4 . 1  1 . 5 .  Spectrum o f in  KCl



Fi fra re  4 . 2  I . R .  Spectrum o f  I" MnfCN )^N01 ~ i n  KCl.

o-<



PifTure 4 .3

I . R.  Spectrum o f  [Pe(CN/ = NOl^~ in  PaCl/KCl
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The sp ectra  o f pressed d iscs  containing- |l.In(CN)^NC  ̂  ̂ showed 

the presence o f sm all amounts o f jlin(CN)^] ^  as im purity. In  

ad d ition  the i . r .  sp ectra  o f a l l  the pressed d iscs  showed that 

water was present in  varying amounts in  the a lk a l i  ha lid e l a t t i c e s .

( i i )  E.S.R. R esu lts

The e . s . r .  sp ectra  o f  a s in g le  c r y s ta l  and a p o ly c r y s ta llin e  

sample o f  KCl doped w ith ^Cr(CN)^NoJ^ are i l lu s t r a t e d  in  Figure 

1 .# .  This ion  i s  w e ll  ch aracterised  and has been reported in  a
5

KCl l a t t i c e  by Kuska and Rogers.

The e . s . r .  sp ectra  o f  KCl samples doped w ith |̂ L!h(CN)̂ NoJ ^  

and {^(CN)^"]^ did not revea l the presence o f  any paramagnetic 

im p u rities a t  normal rece iv er  gain . At very h igh  r e c e iv e r  gain  

and u sin g  high modulation however, broad poorly reso lved  featu res  

were observed showing th a t very sm all amounts o f paramagnetic 

im purity were presen t. In view  o f  th e ir  exceed in gly  low concentration  

th ese were not in v e s t ig a te d  fu rth er . E .s .r .  examination o f  samples 

doped w ith  sodium n itrop ru ssid e  showed them to  be free  from 

paramagnetic im p u r itie s .

b) A fter Irra d ia tio n .

( i )  I .R . R esu lts

When the pressed  d isc s  were J^ -irrad ia ted  a t room temperature 

fo r  a few hours, new bands appeared in  th e ir  i . r .  sp ectra  on the 

low  energy s id e  o f  the main cyanide and n it r o s y l  s tr e tc h in g  bands, 

w ith  a  concomitant decrease in  in te n s ity  o f  th ese  o r ig in a l bands. 

Figures 4 .A- -  4 .6  show the i . r .  bands which appeared in  KCl and KBr



F ig u r e  4 . 4  I . R .  Suec t r u a  o f  'Mn(CN)<NOl /XCl 

A f t e r  12 h o u rs  / - I r r a d i a t i o n . .

0-'



r 'l  rrare



P i  RU r e  4 . D

I . R .  Spec trum o f  rMn(CN)^1^" i n  KCl.

0- -

cOi-O



Fifiupe 4 . 5 ' a )  I . R .  Spectrum o f  /KCl

A f t e r  12 h o u rs  ^ - I r r a d i a t i o n .

o-

gJ



Fi/-ure  4 . 6  I . R .  Soectrum o f  [Cr(CN).%NO|^ A C l  

A f t e r  12 h o u r s  ^ - I r r a d i a t i o n .
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d isc s  contain ing [kn(CN)^NoJ^ , and j[cr(CN)^No] ^

a f te r  approximately 12 hours ir r a d ia tio n . Figures 4*7 and 4 .8  show 

the low temperature i . r ,  spectra  (measured a t 100 K) o f KCl d isc s  

contain ing [?<In(CN)^NoJ ”̂ and [cr(CN)^NO^^ which were irra d ia ted  

a t room temperature fo r  14 hours. Figure 4 .9  shows the spectrum o f  

a d isc  contain ing sodium n itrop ru ssid e incorporated in to  NaCl, a fte r  

24 hours ir r a d ia tio n . The p o s it io n s  o f the rad iation-in duced  i . r .  

bands are g iven  in  Table 4 .2 .

In the case o f |^Gr(CN)^No] ^  in  KCl, the rad iation-in duced  

bands in  the cyanide and n itr o s y l s tre tch in g  region  were most in ten se;  

the new v(CN) band a f t e r  12 hours ir ra d ia tio n  being o f comparable 

in te n s ity  and sharpness to  the o r ig in a l v(CN) band, which only  

im perceptibly decreased in  in te n s ity . The o r ig in a l v ( K O )  band, 

however, overlapped w ith a broad, la tt ic e -w a te r  band and was hence 

broadened i t s e l f .  Because o f  th is  we cannot, th ere fo re , compare 

in t e n s i t ie s  o f  the o r ig in a l and new v(NO) bands. A fter 48 hours the 

new v(CN) band was s l ig h t ly  more in ten se  than the o r ig in a l band, 

which now showed d e f in ite  sign s o f weakening. The new v(KO) band 

was now of comparable in te n s ity  to  the o r ig in a l v(KO) plus <£(H-0-H) 

bands. The ra te  o f form ation o f  new cyanide and n itr o s y l bands 

" ta iled  off" a f t e r  about 48 hours ir ra d ia tio n  tim e.

In the case o f [l{n(CN)^No]^ in  KCl, the rad iation-induced  

bands were le s s  in ten se  than those produced in  the irra d ia ted  

chromium complex; the new v(CN) band never reaching the in te n s ity  

o f the o r ig in a l band even a f t e r  sev era l days ir r a d ia tio n . There i s  

some ambiguity over the assignment o f the rad iation-in duced  v(NO) 

band, s in ce  there happens to  be a broad, la tt ic e -w a te r  band in  the 

probable v ic in i t y  o f the expected v ( N O )  band (around l630cm”’'^).
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'6 4 . 8  I . R .  Spectrum o f  |"CrfCN

^ - I i - r a d i a t i o n  a t  Room Temp.
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Table 4 . 2

P o s i t io n s  o f  R a d ia tio n -In d u c ed  I n fr a -r e d  Bands 

f o r  Complex Io n s in  KCl L a t t i c e s .

[Mn(Crr)gNO]^" [Cr(CN)sHO]^“ [Pe(CK)5N0]^“ [Mn(CN)s ]^‘

2050 m 1920  m

1 9 6 3  m

2050  W 2083 m

2040  w
2036  m

2030  m

2 0 2 0  sh 2040  m

2017  s 2033  s

2023  8
1930  HL

2016  sh

1920  w 1963  w
1903  w

1893 w 1333  w

1883 w 1320  m

1492  s
1620  w 1470  m

1323  w 1434  m

1403  w 1403  w

1393  w 1393  w

1380 w 1383 w

1237  w

A f te r  i+8 h r s  - i r r a d i a t io n  a l l  com plexes y ie ld e d  p eaks a t  

2182 and 2170 cm’”̂  in  KCl l a t t i c e s .



79.

However, there i s  a lso  a hand a t approximately 1525cm \  which, 

although rather weak, could he a new v (NO) hand* The rate  o f  

form ation of new cyanide and n itr o s y l hands appeared to  t a i l  o f f  

a f te r  ah out 24- hours ir ra d ia tio n  tim e.

In the case o f j^Fe(CN)^NoJ in  NaCl, the i . r .  spectrum  

showed a sharp new hand in  the cyanide s tre tch in g  region  a f t e r  

tw enty-four hours ir r a d ia t io n , hut new hands in  the n itr o s y l  

s tr e tc h in g  region could not he d etected  even a f t e r  sev era l days 

ir r a d ia tio n .

A fter  prolonged irra d ia tio n  fu rth er l in e s  appeared in  the 

i . r .  spectrum o f the doped h a lid e s , notahly one a t 2182. cm in  

KOI d isc s  and at 2170 cm in  KBr d is c s . This s h i f t  i s  character^  

i s t i c  o f  an iso la te d  cyanate ion  in  a lk a l i  halide la t t i c e s  • In  

a d d itio n , a hroad peak centred around 1400 cm  ̂ appeared a f te r  

sev e r a l days ir r a d ia tio n  in  d iscs contain ing a l l  three penta- 

cyan on itrosy l an ion s. Figure 4 .1 0  shows the i . r .  spectra  o f d iscs  

which had heen irra d ia ted  fo r  approximately one week.

In the p a r tic u la r  case o f  j l̂lh(CN)^N(  ̂ in  KCl, some ad d ition a l 

unexplained l in e s  were observed in  the i . r .  spectrum o f the  

ir r a d ia te d  san gle . For example, a  l in e  a t 1950 cm"*̂  was qu ite  

in ten se  a f t e r  ahout 12 hours ir r a d ia tio n , hut on prolonged irrad

ia t io n  i t  gradually decayed u n t il  i t  could no longer he detected  

a f t e r  ahout 10 days ir r a d ia t io n . On the other hand, a hand a t  

1920 cm \  which was weak i n i t i a l l y ,  continued to  grow on prolonged  

irra d ia tio n ,- w hile the hand a t  2185 cm” , a ttr ib u ted  to  the cyanate 

ion  sim ultaneously  grew and reached a h igher in te n s ity  in  a shorter  

time than i t  did in  the other irrad ia ted  complexes. This in d ica tes  

th a t there may he a l in e  underneath the la t t e r  hand which could  

accompany the l in e  a t 1920 cm” .
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The spectrum o f  an irrad ia ted  ICBr d isc  contain ing [l>In(CN)^NoJ^

was qu ite d if fe r e n t from that obtained using KCl, There were no

new bands in  the cyanide or n itr o sy l s tre tch in g  region  even

a f t e r  sev era l days ir ra d ia tio n . The only new featu res observed

were a sharp peak a t 2170 cm”  ̂ a ttr ib u ted  to  CKO and a weak,
-1broad peak centred around 1390 cm •

The spectra o f  irrad ia ted  KBr d iscs contain ing j^r(CN)^N(^^ 

were s im ila r  to those obtained using KCl, although the l in e s  were 

s h if t e d  s l ig h t ly  due to  la t t ic e  e f f e c t s .  The fundamental d ifferen ce  

between, the spectra  in  KCl and KBr d iscs concerns a l in e  a t  

approxim ately I960 cm”*̂ . In KCl th is  l in e  is  at 1965 cm"”"* and i s  

seen as a weak featu re a f te r  about 12 hours ir ra d ia tio n  but grows 

on continued ir r a d ia tio n . In KBr, hovæver, th is  l in e  i s  at I961 cm”̂** 

and i s  quite in ten se  a f t e r  about 12 hours ir ra d ia tio n  and does not 

continue to  grow on prolonged ir r a d ia tio n .

U ltr a -v io le t  ir ra d ia tio n  o f KCl d isc s  produced sim ila r  

peaks to  those observed a f t e r  ir ra d ia tio n . However no'band a t  

2182 cm” '' appeared even a f te r  sev era l days o f ir ra d ia tio n . The 

e f f e c t  o f - ir r a d ia t io n  on the three pentacyanonitrosyl io n s , 

measured by the formation o f new i . r .  bands, increased in  the 

order Fe ^  Mn ^ C r. This i s  in  contrast w ith  the e f f e c t  o f u .v . 

ra d ia tio n  where the ra te  o f formation o f new i . r .  bands increased  

in  the converse order i . e .  Cr <  Mn'< Fe.

( i i )  E .S.R . R esu lts .

1 . Manganese ; Y/hen a p o ly c r y sta llin e  sample o f KCl contain ing  

0. 05^ [Mh(CN)^N(^^ was ^ -ir r a d ia te d  a t room temperature fo r  

24. hours the e . s . r .  spectrum recorded a t X-band frequency a t  

298 K showed the presence o f  two sp ecies  (A and B), both o f



which had iso tr o p ic  hyperfine l in e s  c h a r a c ter is tic  of the unpaired 

e lec tr o n  in ter a c tin g  w ith  a nucleus o f sp in  I  = 5 /2 . One s e t  o f  

s ix  l in e s  (corresponding to  sp ec ies  A) was broad and reached i t s  

maximum: in te n s ity  a f te r  approximately 4-8 hours ir r a d ia tio n ,  

w hereafter i t  s te a d ily  dim inished in  in te n s ity  on fu rther ir ra d ia tio n .  

The second s e t  o f s ix  l in e s  (corresponding to  sp ecies  B) was 

somewhat sharper and continued to  grow on prolonged ir r a d ia tio n  

at the expense o f the f i r s t  s e t .  The e . s . r .  parameters fo r  these  

two sp ec ie s  and other radiation-induced  paramagnetic cen tres are 

s e t  out in  Table 4-»5*

When a p o ly c r y sta llin e  sample o f KCl contain ing 0.01^  

[ïîn(CN)^No]^ w a s^ -irr a d ia ted  fo r  approximately 2 weeks the e . s . r .  

spectrum showed only the presence o f sp ec ie s  B.

In ad d ition  to  sp ec ie s  A and B, e . s . r .  sp ectra  o f the  

ir ra d ia ted  p o ly c r y sta llin e  samples showed the presence o f  two 

ra d ica ls  which did  not appear to  be in te r a c t in g  w ith a metal 

nucleus :

When a p o ly c r y s ta llin e  sample o f KCl contain ing approximately 

0.01^ dopant was irra d ia ted  fo r  one week, the e . s . r .  spectrum, 

recorded a t  room temperature, showed the presence o f  an iso tr o p ic  

t r ip l e t  o f  l in e s  (g  = 2 , A = 21G), a ttr ib u ted  to  a s p e c ie s , ( c ) ,  

where the unpaired e lec tro n  i s  in ter a c tin g  w ith  a s in ^ e  nucleus o f  

sp in  1 = 1 .

When a powder sample conta in in g  approximately 0.05^ dopant 

was ir ra d ia te d  fo r  a s im ila r  period  o f  tim e, the e . s . r .  spectrum  

showed, in  ad d ition  to  sp ec ie s  A and B, a qu in tet o f  l in e s  (g  = 2,

A = 12.5G) whose in t e n s i t ie s  were approxim ately in  the r a t io  

1 :2 :5 :2 : t .  This i s  c h a r a c te r is t ic  o f  an unpaired e lec tro n



Table 4 .5  ESR Param eters fo r  S p e c ie s Formed in Ir r a d ia te

M anganese-doped A lk a l i  H a lid e s , and the Mn̂ **” Io n .

R a d ica l (Io n ) ® iso  ■̂‘iso ^ ^ is o ( ^ '^ ) R e f.

S p e c ie s  A 2 .0 0 0  1 0 5 .5  G - a

S p e c ie s  B 2 .0 0 4  9 5 .5  G - a

[M n (% 0 )g f+ 2 .0 0 4  9 5 .2  G - a

Mn /iTaP 2 .0 0 2  9 5 .0  G - 2 0 -2 4

l!n /L iP 2 .0 0 0  9 0 .0  G - 2 0 -2 4

S p e c ie s  C 2 .0 0 6 2 1 .5  G a

S p e c ie s  D 2 .0 0 3 1 2 .5  G a

S p e c ie s  E g i = 2 .1 1 1 2  Aj, = (u n r e so lv e d )

Sa = 2 .0 1 0 6  Aa = 12 G b

ga = 2 .0 0 2 8  Aa = 12 G

a .  T h is work K- ir r a d ia t e d  [Mn(CN )5U0 f “A d

b . T h is work 'i( - lr r a d ia te d  [Mn(CN)g ] "/KCl
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in te r a c tin g  w ith two equivalent n u c le i o f  sp in  1 = 1 .  !Z:ese l in e s  

were sharp and appeared to  he the p a r a lle l featu res o f  a sp ec ies  

w ith a x ia l symmetry (sp e c ie s  D). However/ measurements on a s in g le  

c r y s ta l irra d ia ted  fo r  a few days a t  room temperature, showed that 

tlioso lin o s  worb com pletely is o tr o p ic . TIio

e . s . r .  spectra  o f O.OÎ 'j and 0 ,0 5 / doped p o ly c r y sta llin e  samples 

o f  [^(CN)^No2 ^  in  KCl, ’̂ ir r a d ia te d  fo r  one week a t  room temp

erature, are shown in  Figure 4.-11.

V/hen a s in g le  c r y s ta l o f  KCl doped w ith approximately

0 . 05/  Kn(CN)^NO was irra d ia ted  a t  room temperature fo r  twelve

hours, the e . s . r .  spectrum showed the presence o f  a sp ec ie s  w ith

a x ia l symmetry and hyperfine coupling c h a r a c te r is t ic  o f  an

unpaired e lec tro n  in ter a c tin g  w ith manganese, whose n u clear sp in

equals 5 /2 . The e . s . r .  parameters fo r  th is  sp ec ie s  are s im ila r  to

those reported^'^*^ fo r  the d  ̂ ion  ["Mh(CN)^K^^” , (see  Table 4-4-),
5

which we s h a ll  r e fe r  to  sim ply as 'th e  d ion* . On fu rth er ir r a d i

a tio n  the l in e s  due to  th is  sp e c ie s  decayed somewhat, w ith  the  

simultaneous appearance o f  the iso tr o p ic  l in e s  due to sp ec ie s  A 

and B, These iso tr o p ic  l in e s  com pletely dominated the spectrum,

recorded a t room temperature, a fte r  approxim ately four days irrad -
5

ia t io n . The spectrum o f  the d io n , although observed in  the 

c r y s ta l, was not observed in  the p o ly c r y s ta llin e  sample irra d ia ted  

a t room temperature sin ce  the concentration  o f  ra d ica ls  was too I 017. 

(whereas a low concentration  o f  ra d ica ls  may be rea d ily  seen in  the 

s in g le  c r y s ta l ,  the e f f e c t  o f  grinding i t  in to  a powder i s  to  smear 

out the spectrum so th a t the s ig n a l to  n o ise  r a tio  may be 

s u f f ic ie n t ly  reduced, as appears to  be the case here, th a t the 

spectrum cannot be detected  above the n o is e .)  The e . s . r .  spectra  o f
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a s in g le  c r y s ta l irra d ia ted  a t  room'temperature fo r  12 hours and

4  days are shown in  Figure 4 .1 2 ,

HThen a s in g le  c r y s ta l  o f  K31 con ta in in g  was

irra d ia ted  a t l iq u id  n itrogen  temperature fo r  approxim ately 48 hours,

the e . s . r ,  spectrum o f the unwarmed sample, measured a t 77K,

comprised a very large  number o f l in e s .  (Figure 4 .1 5 ) .  The sp ecies

resp on sib le  fo r  th ese l in e s  i s  the centre(C l^” ) which has been

reported p rev iou sly  in  a potassium ch lorid e  lattice*^

In view o f the d i f f ic u l t y  in  p r e c is e ly  mounting the cry sta l.

a t  77 K on a goniom eter, the experim ental ax is  o f r o ta tio n  did not

ex a ctly  co in cid e  w ith  the in ten d ed ^ 0^ - a x i s .  As a r e s u lt  o f  th is

approximate s e t t in g , the com plexity o f the spectrum increased

con sid erab ly , thus making i t  v ir tu a l ly  im possib le to  analyse the

spectrum fo r  the presence o f  any underlying fea tu res which might

have been a ttr ib u ted  to  a manganese io n  fo r  example. However the

e . s . r .  spectrum o f an unwarmed p o ly c r y s ta llin e  sanq)le, recorded a t

77 K, was g rea tly  s im p lif ie d  and th erefore  much e a s ie r  to  in ter p r e t.

This spectrum (Figure 4 .1 4 )  showed s e t s  o f  a x ia l ly  symmetric s e p te t s ,

the most prominent o f  which had hyperfine coupling parameters ( to  
35 \the Cl n u c leu s), which agreed w e ll w ith  the values o f = 101 C

10and A j^  = 12i5 & reported by Gastner and Kanzig fo r  the cen tre .

There did  not appear to  be any fea tu res which could be assign ed  to  

a manganese 'con çlex  in  th is  spectrum. However, s in ce  th is  spectrum  

was o f  a p o ly c r y sta llin e  sample, any l in e s  due to  a  paramagnetic 

manganese sp ec ie s  in  low concentration  may have been obscured by 

n o ise .

Y/hen the s in g le  c r y s ta l  was warmed to  room temperature fo r  a 

few second s,th e in ten se  v io le t  colour o f  the c r y s ta l was v is ib ly
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34.

seen  to  decay# Y/hen the sample was recooled  to  77 K the e#s#r . 

spectrum had changed com pletely. The l in e s  due to  the centre  

had disappeared, w hile sev era l fea tu res appeared, which were 

apparently not in  the spectrum o f the uhwarmed c r y s ta l . These
t 5

lin e s  appear to  he due to  the w e ll ch aracterised  d ion

in  sev era l d if fe r e n t o r ie n ta tio n s . The la r g e s t  

s p l i t t in g  corresponds w e ll w ith  the reported ”̂ value o f A ^  = 16A G-,

B j !  -  1 .987 fo r  the d  ̂ ion# These l in e s  a ls o  show the superhyperfine

n itrogen  s p l i t t in g  o f approximately 4  G- reported  hy Lîanoharan
8 9and Gray and hy Fortman and Hayes ♦ Figure 4 .1 3  shows the e .s#r#  •

spectrum o f an irra d ia ted  s in g le  c r y s ta l which had heen warmed

fo r  30 seconds and recooled  to  77 H. The corresponding spectrum

o f the poly c r y s ta ll in e  sample (F igure 4* i^ ) was much s im p lif ie d
I 5

and showed only the presence o f  th e a x ia l ly  symmetric d ion .

When a s in g le  c r y s ta l  o f  potassium hromide containing, approx

im ately  0.1^  [lîn(CN)^N^^ was irra d ia ted  a t  room temperature fo r  

tw enty-four hours, the e .s .r #  spectrum, recorded a t  298 K, showed 

only an iso tr o p ic  t r ip l e t  o f  l in e s  whose in t e n s i t ie s  wei*e roughly  

eq u al.(F igu re 4 . t 7 ) .  These l in e s  are thus c h a r a c te r is t ic  o f  an 

unpaired e lec tro n  in te r a c t in g  w ith a s in g le  nucleus o f  sp in  1 = 1 " . 

The experim ental e .s .r *  parameters fo r  th is  sp ec ie s  were as 

fo llo w s: g. = 2.0039 , A. = 21 .5  G. These parameters areILS O  ILS O

id e n t ic a l  to  those a ttr ib u ted  to  sp ec ie s  C, which was seen in  an 

ir ra d ia te d  potassium ch lorid e  sample in  a d d ition  to  the l in e s  due 

to  the (manganese) sp ec ie s  A and B. However, no l in e s  a ttr ih u ta h le  

to  manganese hyperfine coupling were seen  in  the spectrum o f  the 

potassium  hromide sample, except a t  very high r ec e iv er  gain and 

only a f t e r  sev era l days ir ra d ia tio n  a t  room temperature. These weak



Fipcure 4 .1 5

rMn(CN)* NO l^~/K Cl ^ - I r r a d i a t e d  f o r  U8 h r s  a t  77 K

rH

iH

cn

o-Û-rH



■p

rH

CO

H

iH

CO

-P



F ig u re  U .17

u
•

1 g
rn p

-p
o 0

P
10 d)

P
Iz; S
Ü 0

Eh

1 ! G
O
O

<H «
O

P
G CO
g
•P w
ü p
0 x:
P-
co x t

(M
K
co P
H O

<H

co 'Ü
-p 0
CQ P

d
P •fH
ü 'd

d
0 P
rH P
b: M
P 1
•H >o
CO

n r
/N

o

C D



ss.

l in e s  had s im ila r  e . s . r .  parameters to  those o f the second  

(manganese) sp ec ie s  observed in  an ir ra d ia te d  KCl sample, i . e .  

sp e c ie s  B.

\Vhen a p o ly c r y s ta llin e  sample o f  KCl doped vrith potassium  

hexacyanomanganate, | i l n ( O N t o g e t h e r  w ith  some fr e e  cyanide 

io n s , was irra d ia ted  a t room temperature fo r  one week, the e . s . r .  

spectrum comprised three very broad fea tu res  ( lin e -w id th  f 75 G). 

These l in e s  may be a ttr ib u ted  to a sp ec ie s  vm.th rhombic symmetry, 

( s p e c ie s  E). Superimposed on two o f  the fea tu res appeared to  be a 

q u in te t o f  l in e s  w ith  hyperfine coupling  s im ila r  to  sp ec ie s  D,

( a = 12.5  G) which was observed in  a  p o ly c r y sta llin e  sample o f  KCl 

containing: [^(CN)^NoJ ^ ,  ir ra d ia ted  fo r  a s im ila r  period o f tim e. 

No hyperfine stru ctu re could be reso lved  on the th ird  l in e .  The 

e . s . r .  spectrum o f  the hexacyanomanganate-doped potassium  ch loride  

sample i s  i l lu s t r a t e d  in  Figure 4*18. The e . s . r .  data fo r  a l l  the  

sp ec ie s  formed in  ^ - ir r a d ia te d  a lk a l i  h a lid es  doped w ith manganese 

complexes are summarised in  Table 4*5.

2. Chromium; The room temperature e . s . r .  sp ectra  o f  a s in g le  

c r y s ta l and a p o ly c r y sta llin e  sample o f  potassium  ch lor id e  co n ta i

n ing approximately 0.05^ [Cr(CN)^N^^ are shown in  Figure 4 .1 9 .

The only e f fe c t s  on the e . s . r .  spectrum when the sample was 

ir ra d ia te d , was a broadening o f  the l in e s  and a decrease in  th e ir  

in te n s ity .  There was no evidence fo r  the form ation o f any new 

paramagnetic sp e c ie s  even a f t e r  samples had been irra d ia ted  fo r  

se v e r a l weeks. Figure 4 .2 0  i l lu s t r a t e s  the e . s . r .  spectrum of a 

p o ly c r y sta llin e  sample o f  KCl contain ing [cr(CN)^NoJ^ a f t e r  4 

weeks ir r a d ia tio n .



ESR Powder S p ectru m  o f  TMnfCN) ^ ] A C l  

K - I r r a d ia t e d  f o r  7 d a y s a t  Room Temp.
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Figure  4 . 2 0

ESR Powder Spectrum  o f  [CrfCBlaNOl^^/KCl 

^ -I r r a d ia te d  fo r  h weeks a t  Room Temp.
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3. Iron: 7/hen a p o ly c r y s ta llin e  sample o f  KCl contain ing  le s s

than 0.01^ o f  sodium n itrop ru ssid e  was "^-irradiated a t room 

temperature fo r  periods o f  time ranging from one hour to  severa l 

days, the e*s»r,. spectrum co n sisted  only o f  broad, weak, poorly  

reso lved  l in e s .  However, when the sample was irra d ia ted  w ith  u ltra 

v io le t  l i ^ t  fo r  four- hours a much h igh er concentration  o f  rad ica ls  

was produced. The e*s.r .- spectrum, i l lu s t r a t e d  in  Figure 4 .2 1 , 

co n s isted  o f  broad fe a tu r e s , o f  which on ly  one could be reso lved  — 

in to  a t r ip l e t  o f l in e s .  The la t t e r  l in e s  appeared to  be the 

perpendicular fea tu res  o f an a x ia lly  symmetric sp e c ie s . The 

measured e .s .r *  parameters o f  th is  sp e c ie s  were g , = 2.031 and 

A  ̂ = 16 G , which corresponds w e ll ivith the perpendicular values  

reported fo r  the d^ ion  [Fe(CN)^o]^’’ (se e  R efs, in  Chapters 2 & 3 ). 

A s im ila r  r e s u lt  was obtained when the sample was ir ra d ia ted  a t  

l iq u id  n itrogen  temperature and the spectrum recorded a t 77 K.

D iscu ssion .

Incorporation o f Complex lonn in to  A lk a li HaliOo L nttlcer,.

1 11I t  was suggested  by Root and Symons * th at octahedral 

[_M(CN)^^ ions could be incorporated in to  an a lk a l i  h a lid e  la t t i c e  

by rep la c in g  a j^M(Hal)^^’” u n it . I f  the complex has f iv e  negative  

charges there w i l l  be complete charge b a lan ce , and the io n  should  

be e a s i ly  incorporated in to  the l a t t i c e .  The ease o f  incorporation  

in to  the l a t t i c e  was found to  be markedly dependant on the charge 

of the complex io n . I t  was found th at the g rea ter  the d ifferen ce  

in  charge on the ion  from fiv e ,-  the g rea ter  the d i f f ic u l t y  o f  

incorporation  in to  the la t t ic e *
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KG2 S^iectrum o f  a P o ly c r y s  t a l l i n e  Sample o f  [ F c  (GIT)kTTO ]

i n  N a C lA C l .  I r r a d i a t e d  w i t h  U l t r a - v i o l e t  Lip:ht

->  H
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A dditional weight may he le n t  to  th is  argument hy considering  

the dimensions o f the ions involved . I f  we include the van derYZaals 

r a d ii  o f the n itrogen  atoms, the l in e a r  d istance across an 

N-C-M-C-N group i s  ah out 9«7 A and th at across an N-C-II-ÎT-0 group 

ahout 9*5 A. (where M = Mn^,Cr^). Including the van dor Waals 

r a d ii  fo r  the Hal~ io n s , the distance across Cl-K-Cl i s  about 9*9 A 

and th a t across Ei>-K-Br about 10,2  A, C lea rly , the ions |cr(CN)^NC^^ 

and [LIn(GN)^NoJ^ are able to  replace an octahedral [j[(H al)^^~  

group w ithout d is to r tin g  the la t t i c e .  From a con sid eration  o f  

s iz e  a lo n e , potassium ch loride would seem to  he the most su ita b le  

host l a t t i c e  s in ce  the dimensions o f the []m(GN)^No' ]^  ions and the 

I^KGl^J  ̂ group are the most c o n s is ten t w ith  a p er fect f i t .  However, 

s in ce  we are incorporating ions w ith  only 3 negative charges in to  

the l a t t i c e ,  two neighbouring K"*” ions must he removed from the 

l a t t i c e  to  achieve e le c t r ic a l  n e u tr a lity . From a consid eration  

o f  the e le c r o s ta t ic  in tera c tio n s  in  the l a t t i c e  we would expect 

th ese c a tio n  vacancies to  he adjacent to  the ^  ion

fo r  minimum energy. Furthermore th ey  w i l l  have the h ig h est  

p ro b a b ility  o f being found in  the f i r s t  s h e l l  o f  ca tion s surr

ounding the incorporated complex ion  (th ose  marked l / i n  Figure 4 *22), 

Since the p ro b a b ility  o f  fin d in g  ca tio n  vacancies in  a given s h e l l  

surrounding the complex anion decreases as the square o f  the 

distance invo lved , the p ro b a b ility  o f  c a tio n  vacancies being  

found beyond the second s h e l l  o f  surrounding ca tion s should be 

very sm all indeed. Now th ese ca tio n  vacancies v r ill have a  profound 

e f f e c t  on the i , r ,  spectra  o f  the pentacyanonitrosyl complexes; the  

most n o ticea b le  and most e a s i ly  monitored e f f e c t  being on the N-0 • 

stre tch in g  band. I f  we' assume that a pentacyanonitrosyl complex
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P la n  View o f  Io n s in  the FlOOl P lane in  an A lk a l i  H alid e  L a t t i c e .

S t  _ ^ n d(1*^ and s h e l l s  o f  K**" io n s  surroun din g  th e  com plex are c i r c l e d ) .
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[ m(CN)^No3^” belongs to  the poin t group i t  could be shov/n**^
that, th is  symmetry demands three C=2I s tre tch in g  modes (Two and

one E ), and one NsO stre tch in g  fundamental which are a c tiv e  in  

the in fra -red . The actu a l frequency o f the la t t e r  7n . l l  depend on 

the lo c a l  environment o f the N-0 group, and i s  th erefore  a good 

m onitor o f the presence o f neighbouring ca tio n  vacan cies. Thus, 

in  an a lk a l i  halide l a t t i c e  the n itr o s y l group w i l l  have a d if f 

erent s tre tch in g  frequency depending on the con figu ration  o f  

neighbouring ca tio n  vacancies; the in te n s ity  and the degree that, 

the band has been s h if te d  (from that, in  the pure complex) w i l l  

depend on a s t a t i s t i c a l  fa c to r  and the proxim ity (and hence the 

stren gth  o f in te r a c tio n )  o f the ca tio n  vacancies to  the n itr o s y l  

group. For' example, i f  both ca tio n  vacancies were c lo se  to  the 

n it r o s y l  group, the stren gth  o f  in ter a c tio n  v;ould be high and 

hence the band would be s h if te d  to  a marked e x te n t. However, the 

s t a t i s t i c a l  p ro b a b ility  (and a lso  the e le c tr o s ta t ic  f e a s a b il i ty )  

o f th is  s itu a t io n  occuring i s  low , therefore the in te n s ity  o f the 

band caused by th is  con figu ration  would be low.

Me w i l l  now analyse the i . r .  spectra  fo r  tlie chromium and 

manganese complexes in  a potassium ch lorid e  l a t t i c e ,  vrith sp e c ia l  

referen ce to  the N-0 s tre tch in g  bands, in  terms o f the d if fe r e n t  

p o ss ib le  ’’hole" co n figu ra tion s. In a p e r fe c t ly  cubic environment 

the []m(CN)^NOj[  ̂ io n  w i l l  belong to  the p oin t group However,

the c lo s e  proxim ity o f  the two ca tio n  vacancies w i l l  lov/er th is  

symmetry. In f a c t ,  depending on the p o s it io n  o f the vacancies  

the complex ion  7d . l l  have C ^ , or symmetry. Figure

4 . 23(a ) shows the |^M(CN)^NoJ  ̂ ion  in  KCl. The numbered c ir c le s  

correspond to the f i r s t  s h e l l  o f potassium  ions surrounding the
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Showing the [M(CN)^NQ1^“ Ion in  a KCl L a tt ic e  

(N eighbouring K"̂  C ation  S i t e s  are Numbered).
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complex. Figure 4*23(b) i l lu s t r a t e s  the d if fe r e n t p o ss ib le  

configu rations i f  two cation s (K^) are removed from the second  

s h e l l  surrounding the complex. Now, in  p ra ctice  two cation s may 

be removed from, the f i r s t  s h e l l ,  the second s h e l l  or one from each, 

(o r  indeed from n e ith er  s h e l l ) .  The most symmetrical arrangement 

o f h o les surrounding the conçlex  w i l l  be most favoured on e le c tr o 

s t a t i c  grounds, p a r tic u la r ly  when the configuration  allow s the 

vacancies to  be s itu a te d  as fa r  apart from each other as p o ss ib le .  

R eferring to  Figure 4 .2 3 (a )  , th is  s itu a t io n  occurs when "trans" 

ca tio n s are removed from the l a t t i c e ,  e .g .  when p a irs  (1 & 3) ,

(2  & 4 ) ,  (3 & 7) ,  (6 & 8) ; (9 & 11 ) and (IO & 12) are removed.

Only the removal, o f  the f i r s t  four p a irs o f ca tion s w i l l  d ir e c t ly

a f f e c t  the N-0 str e tc h in g  frequency, s in ce  each o f  these configu r-
1 5a tio n s p laces a vacancy c lo se  to  the n itr o s y l b ^ u p . Jones has 

p o stu la ted  th at the above con figu ration s should be the most 

favourable on energy m inim isation grounds, when [c o (C N )^ ^  i s  

incorporated in to  KCl; th is  reduces the 0^ symmetry to  I f  we

con sid er the Go(CN)^ octahedron as in scr ib ed  in  a cube w ith  the 

s i x  CN groups a t  the cen tres o f the s ix  fa c e s , the model w i l l  

have ca tio n s  vacancies a t  the centre o f  two opposite edges o f the 

cube. The co rre la tio n  ru le s  show th a t reduction to  symmetry 

should r e s u lt  in  a s p l i t t in g  o f the t r ip ly  degenerate in fra -red  

a c tiv e  CN s tr e tc h in g  v ib ra tio n s  in to  three non-degenerate in fra 

red a c tiv e  v ib ra tio n s . Three in ten se  CNT str e tc h in g  peaks are in  

fa c t  observed^^ in  d ilu te  s o l id  so lu tio n s  o f[c o (C N )^ ^  in  KCl, 

thus giving, credence to  th is  argument.

Now the low temperature, high reso lu tio n  i . r .  spectrum o f



F igu re  U . 25 (b )

(D
x!
■P

eo
<H

'd
P>o
E #
(D %
« 0rHQ) PtJh eCO oüCO
dO 1•H
•PCO oü U3O

sEh ü
P s
U

<DXJ
0X:<DCO

cO bl
ü d•H
0 'dX: jH
-p P

Ofn
•H fn

dCO CO
do 0
•H d
-P o
cO MfH
S E

d
•H •H
«H 0d 0O COü •po
0 ArHX <H
♦H O
ra
0 iHo 1—1

0xl
p> COd
g "g0 o
<H ü

0•H COA

o O 'z -
O

O

r \ o

QZ-

O

oz-

o
oz- CsJ

o
(d OZ

O

H  î>5
co -P ü *H •H I—I -P -H CO /D •H CO
CO•p

ü
CQ

Ü
(0

CQ
Ü

>
C\Jü

c f

0)•p•H
en
«H
§
O

CO

r?-p
s  e

>A W



9a

in  KCl (Figure 4 * 7 ^ shows a t  l e a s t  e ig h t bands in  the 

N-0 s tr e tc h in g  region^ whose in t e n s i t ie s  are approximately in  the  

r a t io  1: 2: 4 :  1: 2: 4* 1  ̂» Table 4*6 i l lu s t r a t e s  the various

p o ss ib le  hole configu rations which are l ik e ly  to  in flu en ce  the 

N-0 stre tch in g  frequency. I t  can be seen th at there are around 

e ig h t s e t s  o f  equ iva len t hole configu rations which are most l ik e ly  

to  a f f e c t  the n itr o s y l  group. Thus we appear to  be able to  p red ict  

the number o f bands observed by th is  method. The most in ten se  band 

alm ost c e r ta in ly  corresponds, to  a s itu a t io n  (o f  h igh est s t a t i s t i c a l  

p ro b a b ility ) where there are no ca tion  vacancies c lo se  to  the  

n itr o s y l  group. I t  must be s tr e s se d  though, th at th is  i s  a non

rigorous treatm ent and we are not attem pting to  a ssign  a p a r ticu la r  

in fra -re d  band to  a p a rticu la r  hole con figu ration . Koreover, we 

would not expect a simple co rre la tio n  between the in te n s ity  o f a 

band and the s t a t i s t i c a l  p ro b a b ility  o f i t s  corresponding hole  

con figu ration . This i s  because those con figu ration s which may have 

a high s t a t i s t i c a l  p ro b a b ility , may a lso  have a high e le c tr o s ta t ic  

rep u lsion  energy, which would c le a r ly  make them improbable from 

the poin t o f view o f  energy m inim isation. So although we cannot 

a ssig n  each band to  a p a r ticu la r  environment o f the n itr o s y l  

group, we can a t  l e a s t  account fo r  the number o f bands observed in  

the N-0 s tre tch in g  region in  terms o f  the number o f p o ssib le  

con figu rations o f ca tio n  vacancies: c lo se  to  the n itr o s y l  group.

We would again p red ict about e ig h t bands in  the N-0 s tr e tc h in g  

reg io n  fo r  |cr(CN)^No]j^~ in  KCl, s in ce  th is  ion  a lso  has three  

n egative  charges and th erefore req u ires two charge compensating 

ca tio n  vacan cies . However, in  th is  case the N-0 band overlaps to



Table 4 . 6

P o s s i b l e  C o n f ig u r a t io n s  o f  C a tio n  V a ca n c ies  L ik e ly  to  

I n f lu e n c e  the N-0 S t r e t c h in g  Frequency .

C o n f im ir â t io n  No. o f  H oles - S t a t i s t i c a l  E l e c t r o s t a t i c
C lose  t o  NO P r o b a b i l i t y  S t a b i l i t y

1 .  ( 1 , 3 ) ; ( 2 , 4 ) ; ( 5 , 7 ) ; ( 6 , 8 ) 1 4 h ig h

2 .  ( 1 , 4 ) ; ( 2 , 3 ) ; ( 5 , 8 ) ; ( 6 , 7 ) 1 4 h ig h

3 .  ( 1 , 5 ) ; ( 1 , 6 ) ; ( 2 , 5 ) ; ( 2 , 6 ) 2 4 low

4 .  ( 1 3 ,1 4 ) 1 1 h ig h

5 . ( 1 , 2 ) ; ( 3 , 6 ) 2 2 low

6. ( 1 3 , 1 7 ) ; ( 1 6 ,1 8 ) 2 2 low

7 . ( 1 4 , - ) 1 > 4 -

8 .  ( - , - ) 0 > 4 —

w ith  r e fe r e n c e  t o  F igu re  4 . 2 3 ( a )
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some exten t w ith  a nearby w ater band and hence the N-0 band i s  

considerab ly  broadened. N ev erth e less , the i . r .  spectrum (Figure 4 .1  ) 

r ev e a ls  the presence o f  fou r c le a r ly  defined l in e s  o f  roughly equal 

in te n s ity  plus a number o f  non-re so lved  shoulders.

We may a lso  account fo r  the number o f bands in  the C-N 

str e tc h in g  region  u sin g  a s im ila r  argument to that o u tlin ed  above. 

However, the a c tu a l point group o f  the molecule plus immediate 

environment i s  now important in  determining how the CN bands, are 

s p l i t  out under d if fe r e n t s i t e  symmetries. Now the CN band i s  

spread over a narrower range o f  wave-numbers than the NO band, 

in d ic a tin g  th a t the stren gth  o f  in ter a c tio n  o f the ca tion  vacan cies  

w ith the cyanide lig a n d s i s  l e s s  than th a t v/ith the n it r o s y l  lig a n d . 

This in d ic a te s  th at any ad d itio n a l s p l i t t in g  o f  the band i s  due to  

a  s i t e  symmetry e f f e c t  rather than d irec t in te r a c tio n .

Now, under the o r ig in a l C^  ̂ symmetry o f  the pentacyanonitrosyl 

complexes we expect four C-N s tr e tc h in g  modes, two and one 2 , the 

l a t t e r  being s p l i t  out under high reso lu tio n  in to  tn o  equally  

in ten se  bands. When the s i t e  symmetry o f  the complex has been reduced 

to  low er symmetries such as Ĉ  and C^, v/e would e:q)ect to  see

se v e r a l a d d itio n a l bands. In experim ental r e a l i t y ,  hov/ever, there  

may be a s u f f ic ie n t ly  large  number o f  l in e s  which overlap to  make 

th e spectrum appear 'b lu rred '. For example, in  each spectrum o f  

[cr(CN)^N(^^ in  KCl, the o r ig in a l cyanide band appears as a s in g le ,  

broad, l in e  — however there are in d ica tio n s  o f an in d e f in ite  number 

o f  unresolved l in e s  w ith in  the main band. The i . r .  spectra o f  

|̂ Iûi(CN)^NoJ^ in  KCl are ra th er  b e tte r  reso lved  and show up to  ten  

l in e s  in. the cyanide s tre tch in g  reg ion , although some o f th ese may
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be due to the presence o f im p urities such as the |j>In(CN)g]]  ̂ ion  or 

to  free  cyanide io n s , which absorb in  th is  region .

I t  should be noted th a t a l l  the i . r .  spectra o f the penta

cyan on itrosy l complexes in  potassium bromide la t t i c e s  are poorly  

reso lved . This may be due to  the fa c t  th at the ^KBr^j^ u n it  i s  

la r g e r  than the u n it and th erefore the complexes only f i t

' lo o s e ly ' in  the l a t t i c e  o f  potassium bromide. Thus they w i l l  not be 

a ffe c te d  so stron g ly  by neighbouring ca tio n  vacancies nor w i l l  they  

have such a p rec ise  s i t e  symmetry in  a KBr la t t i c e .

To summarise then: the number o f c le a r ly  defined bands in  the  

n itr o s y l  s tr e tc h in g  reg io n  may be explained in  terms o f  the in te r 

a c tio n  o f  the n itr o s y l group v;ith one or both o f two neighbouring  

cation , vacan cies. Since only one N-0 s tr e tc h in g  band i s  observed  

in  the spectrum o f  the pure pentacyanonitrosyl complexes (o r  o f  

d isc s  prepared by grinding the pure complex w ith KCl), the presence 

o f th ese  extra  bands confirms th at the complex ion s have been 

incorporated in to  the a lk a l i  ha lid e l a t t i c e s  su b s t itu t io n a lly  and 

not in  c lu s te r s .

E ffe c t o f  ^ -Ir r a d ia t io n  on the In fra-red  Spectra.

In view o f  the w e ll known c o rre la tio n  between the wave number 

o f  an absorption band o f  a ligan d  in  a metal complex and the oxid

a tio n  s ta te  o f the m etal, the form ation o f  new bands on the low  

energy s id e  o f the o r ig in a l cyanide and n itr o s y l  bands in d ic a te s  

th a t the irra d ia ted  complexes have been reduced# The e f f e c t  o f  

adding an ex tra e lec tr o n  to  a metal complex i s  to  lower the charge 

on the m etal, which allow s the e lec tro n s to  be d e lo c a lised  onto the
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ligands* Thus, reduction  o f  the pentacyanonitrosyl complexes p laces  

a d d itio n a l e lec tro n  d en sity  in to  *fj-antibonding molecular o r b ita ls  

on the cyanide and n itr o s y l ligan d s and thereby wealæns the C-N 

and N-0 bands » w hile sim ultaneously strengthening the II-C and II-N 

bonds. This decreases the C-N and N-0 s tre tch in g  frequencies (and i s  

confirmed by ob serva tion ), and should in crea se  the K-C and M-N 

s tr e tc h in g  freq u en cies. However, no bands which could be a ttr ib u ted  

to  m etal-carbon or m etal-n itrogen  s tr e tc h in g  modes were observed in  

any o f the sp ectra .

Table 4 .7  g iv es  the cen tra l p o s itio n s  o f the o r ig in a l and 

rad iation-in duced  cyanide and n itr o s y l bands fo r  the '̂ Cr(CN)̂ No"j ^  

and [Mn(CN)^N0]^ ions in. KCl, and the [Pe(CN)^No] ion  in  NaCl. 

Included in  the Table are published i . r .  data fo r  pentacyanonitrosyl- 

and hexacyano- complexes o f  chromium, manganese and iron in  various  

oxidation  s t a t e s .  Prom the Table we obtain the fo llo w in g  "red sh ifts"  

fo r  the v(CN) and v(NO) bands in  the pentacyanonitrosyl- complexes.

Cyanide S h ift  N itro sy l S h ift

C r ( l) -^ C r (0 )  70 cm”**' 190 cm” ^
d  ̂ d^

Mn(l) —> îvîn(o) _ 50 cm  ̂ 155 cm” ^

d  ̂ d^ a n d /o r  250 cm*”*̂

P e ( l l ) - 4 P e ( l )  95 cm"'̂  90 cm” ''
220 cm 

(from R ef. 14)

d  ̂ d^ and 220 cm” ''

Table 4 .8

I t  can be seen from the magnitudes o f the i . r .  s h i f t s  th at the v ( N O )  

band i s  much more s e n s it iv e  to  the e f f e c t  o f the charge on the metal



T ab le  4 . 7 ( a ) C e n t r a l  P o s i t i o n s  o f  O r i g i n a l  and  R a d i a t i o n - 

In d u c e d  I . R .  Bands i n  C r. I,In and  Fe P e n t a c y a n o n i t r o s y l  

Com plexes i n  P o ta s s iu m  C h l o r i d e .

\ )  ( C N )

,7

Chromium

2105

2033

Manganese

2185

2080

2030

I r o n

2145

2050

\ )  ( N O )

d
,7

1675

1485

1920  

1775 

1620  

o r  1525

19 4 0

1850 

and  17 2 0

T ab le  4 . 7 ( b )  L i t e r a t u r e  V a lu e s  o f  I . R .  Bands i n  P e n t a 

c y a n o n i t r o s y l  and  H exacyano- Complexes o f  Cr. I,In and  F e .

Complex

K3 [Cr(CN)5N0] 

K i [ C p ( C N ) 5 N0 ] . 2H3 0  

K o  [ M n ( G N ) s N 0 ]

K a  [ l , t o ( C N ) s N 0 ]  

Z n [ l v I n ( C N ) s N O ]  

Z n [ î . I n ( G N ) s N O ]  

Nas [Pe(GN)sN0].2H20

^ (CN)

2125

2135
2100
2080

2093

2 1 9 3

2195
2 1 5 0

2173
2161
2 1 5 7
2143

\^ N 0 )

1640

1 5 1 5

1 7 1 3
1693

1 7 3 0

1900

1885

1939

R e fe re n c e

19

15

3

19

19

3

12



Table 4 . 7 ( b )  ( c e n t )

Complex 0 ( CN ) R e fe re n c e

Ko [Gr(GN)s] 2 1 3 2 a , b

IÎ3 [! 'n (C îî)o] 2120 a , b

IC4[l.In(CK)o] 2060 a ,b

Ko [Fe(CN)s] 2110 a , b

K^[Pe(CN)s] 2050 a , b

a .  A ,H id a lg o an d  J . P , M a th ie u , Compt. Rend. 249
b ,  V . C a g l i o t t i ,  G . S a r t o r i  and M .S crocco ,

• J .  I n o r g . N u c le a r Chem., 8 , 87 , (1958)

- 1
A l l  f r e q u e n c i e s  i n  cm
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than i s  the v(CN) band. Tliis i s  to  be expected , sin ce  the T f-acceptor  

p rop erties o f the n itr o s y l  group are greater  than those o f  the 

cyanide group,, i . e .  the n itr o s y l group w i l l  take a grea ter  share 

o f the extra  d e lo c a lised  e lec tro n  in to  i t s  "fy-antibonding M.O.*s 

than the cyanide group.

Now in  the case o f  the pentacyanonitrosyl-chrom ate(l) in  KCl, 

the p o s itio n s  o f the nev/ cyanide and n it r o s y l  bands compare favour

ably w ith  th ose reported*^ ̂  fo r  K^Cr(CN)^NO in  n u jo l, a llow ing fo r  

s h i f t s  due to  l a t t i c e  e f f e c t s .  Y7e s h a ll  now attempt to a ss ig n  the 

radiation-in duced  bands ( in  [cr(CN)^NC^ ^ /K C l) which have so fa r  

not been assign ed . A sharp band a t 2085 cm  ̂ i s  most probably free  

CN v/liich u su ally  absorbs at around 2080 cm in  a KCl l a t t i c e .

A band a t  cm and one a t  1295 cm  ̂ could p o ssib ly  correspond

w ith the v(CN) and v(NO) bands r e sp e c t iv e ly , o f  the further-reduced d^ 

chromium(-l) complex. Assuming that the reduction  Cr(0) —> C r(-I)  

does take p la ce , the corresponding i . r ,  s h i f t s  fo r  the v(GN) and 

v(NO) bands are 75 cm  ̂ and 190 cm  ̂ r e sp e c tiv e ly ;  these are o f  

the same order as the corresponding s h if t s  o f 70 cm ‘ and 195 cm” *' 

r e s p e c t iv e ly , fo r  the red uction  C r ( l) -^ C r (o ) . However, th is  i s  

only a te n ta tiv e  assignment and i s  by no means proven. A band a t  

2060 cm c lo s e  to  the C r(l) cyanide band could correspond to  the 

v(NC) band in  |^Cr(CN)^(NC)N(^^ , ?/here one (or  more) o f the cyanides 

has " flipped  round" on ir r a d ia tio n . This phenomenon has been prev

io u s ly  seen  in  Y -irra d ia ted  KCl la t t ic e s  contain ing [je(C N )^ ^ ” , 

where one cyanide ligan d  i s  postulated^ to  have f lip p e d

round; and a lso  in  high-energy e lec tr o n -irr a d ia ted  [c o (C N )^ ^  

in  KCl, where tv/o cyanides are p o s t u l a t e d * ' t o  have turned round. 

This phenomenon w i l l  be d iscu ssed  further in  the e . s . r .  s e c t io n .
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Now, in  the case o f the pentacyanonitrosyl-m angahate(l) ion  

in  KCl, although we can p o s it iv e ly  a ssig n  a  new v(CN) band co rres- ■ 

ponding to  the d^ nianganate(O) ion', there i s  some ambiguity 

concerning the new v(NO) band. This may absorb a t 1620 cm  ̂ (where 

i t  would be obscured by a la t t ic e -w a te r  band) or a t 1525 cm ^; the 

corresponding "red sh ifts"  being 155 cm and 250 cm from the 

o r ig in a l v(NO) band. I t  i s  p o ss ib le  that they might both correspond  

to  v(NO) bands in  two types o f reduced manganeso(O) complex. This i s  

q u ite  l ik e ly  s in c e , as we have seen  in  Chapter 5, there are a t  

le a s t  three types o f reduced ir o n -n itr o sy l sp ec ie s  in  irra d ia ted  

sodium n itro p ru ssid e . Two o f these reduced sp ec ie s  have been studied*'^ 

by i . r .  spectroscopy. These have v(NO) bands a t 1850 cm"*' and a t  

1 720 cm *', corresponding to  red s h if t s  o f 90 cm”*' and 220 cm”^
7

r e s p e c t iv e ly . The sp ec ies  resp on sib le  fo r  the"former band i s  a  d 

io n  vd.th the unpaired e lec tr o n  mainly in  a d^2 o r b ita l on iron ;  

w hile the la t t e r  band i s  a ttr ib u ted  to  a sp ec ie s  where the unpaired 

e lec tr o n  i s  mainly in  a TT-antibonding o rb ita l, on the n itr o s y l  

group, (see  Chapter 3)*

I t  i s  conceivable then , th at there couLd be two manganese- 

n itr o s y l  sp ec ies  s im ila r  to  the above ir o n -n itr o sy l sp e c ie s . However,
7

in  the case  o f  the manganese complex, the d ion  would have zero 

charge on the metal; such a low oxidation  s ta te  would n e c e ss ita te  

ex ten siv e  delo c a l is a t io n  onto the ligands w ith  probably le s s  than  

50^ o f the unpaired e lec tro n  d en sity  on the manganese, compared w ith  

about 8C^ on the m etal in  the corresponding iron  complex. These two 

cases are c e r ta in ly  comparable in  th at they each involve the ad d ition  

o f an e lec tro n  to  a d  ̂ ion  g iv in g  a d^ s p e c ie s . I f  wo represent the 

red uction  g iv in g .th e  'iron* v(NO) band s h if t e d  by 90 cm” ' by:
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^ d  ̂ ? e ( l ) ,  then the 'manganese' v(NO) hand sh ifte d  by
-1 ' 6 7155 cm could correspond to  the reduction: d iln (l)-—> d Hii(O);

the larger  s h i f t  being due to  the greater d e lo c a lisa t io n  in to

TT-antibonding n itr o s y l o r b ita ls  in  the la t t e r  ca se . S im ilar ly

we could represent the reduction  processes g iv in g  the 155 cm”^

and 250 cm” *' sh if te d  bands in  the iron  and manganese complexes

r e sp e c t iv e ly , by the fo llow in g:

d  ̂ ? e ( l l) -N O '^ -^  d  ̂ P e ( l l ) -k 0  

d̂  Mn(l)-NO’̂  d̂  Mn(l)-NO

where the unpaired e lec tro n  i s  la r g e ly  (i#e.>)>5C 0) on the n itr o s y l  

group, ( in  Tr-antibonding I ' .O .'s ) . We must s tr e s s  th at v;e can only  

make te n ta tiv e  assignments o f th is  so rt using i . r .  data a lo n e , and 

such arguments need to  be backed up by confirm atory e . s . r .  r e s u lt s  

before they can be se r io u s ly  considered as proven.

Now, two l in e s  which appear to  grow sim ultaneously in  

irra d ia ted  {^Mn(CN)^NC^^/KCl are a band a t 2185 cm  ̂ (overlapping  

v;ith the CNO” band) and one a t 1920 cm”*'. These l in e s  are in  the  

r ig h t region  to  correspond w ith  the v(CN) and v(NO) bands resp ec t

iv e ly ,  o f the d  ̂ io n , |^In(CN)^N0^ , which could be formed by the 

ox id ation  o f  th e d  ̂ io n . Their observed p o s it io n s  compare favour

ably w ith  the reported^ values o f 2193 cm”*' and 1950 cm”*' fo r  the 

d  ̂ ion  in  a Zn Ii2n(CN)^0 la t t i c e .

One l i n e ,  so fa r  unassigned in  irra d ia ted  -|Mn(CN)^N(^^/KCl, 

i s  a featu re a t 1950 cm *', which reaches i t s  maximum in te n s ity  

a f t e r  12 hours ir r a d ia tio n  and which decays on fu rther ir r a d ia tio n .

It. i s  not c le a r  what th is  band i s  due to ,  but i t  may w ell have some 

connection w ith  Species A, which was resp on sib le  fo r  an iso tr o p ic
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e . s . r .  s e x te t  o f l in e s  which decayed on prolonged ir r a d ia tio n .  

Another unexplained band which i s  observed in  a l l  three penta- 

cyan on itrosy ls i s  a t I4 OO cm ; th is  remains unassigned a t the 

present tim e.

In the i . r .  spectra  o f  "{^-irradiated |̂ Mn(CN)̂ Nx̂  ^  in  KBr, 

i t  i s  not immediately c le a r  why there are no new bands in  the 

cyanide and n itr o s y l s tre tch in g  regions — i . e .  why the complex 

in  XBr i s  not reduced on ir ra d ia tio n . One reason could be th a t ,  

due to  the increased  s iz e  o f the Br io n , the complex only f i t s  

"loosely" in  the l a t t i c e ,  and th erefore does not act as an 

e f f i c i e n t  e lec tro n  trap; the source o f  e lec tro n s  on ir r a d ia tio n  

being, the F -cen tre . '

I f  we compare the i . r .  spectra o f ^^ -irrad iated  [^Cr(CN)^NoJ^

and [^(CN)^No] ]^  in  KCl l a t t i c e s ,  i t  i s  apparent th at the d^

chromium(O) complex is: formed more r ea d ily  than the d"̂  manganese(O)

complex. This i s  not unexpected, s in ce  i t  i s  e a s ie r  to add an extra

e lec tr o n  to  a non-bonding 'tg^-type* m etal o r b ita l than ( i t  i^  to

an e s s e n t ia l ly  antibonding *e -type* m etal o r b ita l or YT-antibonding
ë

ligan d  o r b ita l.

Now, returning to  the theme of charge-compensating c a tio n  

vacan cies; when the C r(l) and Mn(l) pentacyanonitrosyl ions are 

reduced, the r e su lt in g  complexes w i l l  have four negative charges 

and th erefore w i l l  only require one c a tio n  vacancy fo r  charge 

compensation. This means th a t one neighbouring ca tio n  vacancy 

w i l l  be rendered.redundant and th erefore w i l l  migrate to  some 

other p o s it io n  in  the l a t t i c e .  This could ex p la in  why the ra d ia tio n -  

induced v(GN) and v(NO) bands comprise fewer l in e s  than the o r ig in a l  

v(CN) and v(NO) bands.
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/ - iEffect of irradiation on E.S.R. Spectra.

1 ) Mangnnese_. '

a) Species formed a f t e r  room-temnerature ir r a d ia tio n .

I d e n t if ic a t io n  o f Species A and B.

Now although the in fra -red  spectra  o f the room-temperature 

irra d ia ted  sanples suggested th a t the pentacyanonitrosyl manganate(l) 

complex had been reduced, none o f the e . s . r .  spectra  o f s im ila r  

samples appeared to  su b stan tia te  th is  hyp oth esis, (o f  course we 

do not a c tu a lly  know what the e . s . r .  spectrum of the reduced sp ec ies  

would look l ik e  ; the reduced complex could be l ik e  any o f the three  

reduced n itrop ru ssid e sp ec ies  -  see  Chapter 3 and below)

Of the three manganese sp ec ie s  seen by e . s . r .  in  room-temperature 

irra d ia ted  JÏ'in(CN)^NoJ^”/KCl, only one can be p o s it iv e ly  id e n t if ie d .  

This i s  the ox id ised  sp ec ie s  (th e d  ̂ io n ) which i s  formed before  

the o th er two sp ec ies  are c le a r ly  seen . The la t t e r  both give  

iso tr o p ic  l in e s  whose hyperfine coupling constants (A(^^Mh) = 95G- 

and 105& fo r  sp ecies  B and R, r e sp e c tiv e ly )  are o f  the same order 

as observed in  sev era l a lk a l i  ha lid e l a t t i c e s . T h u s

sp ec ie s  ^ and A would appear to  be two forms o f high sp in  d  ̂

m an ganese(ll), the former resem bling Qjn(HgO)^^'^ (g= 2.0038  

A = 95*2Gr) most c lo s e ly .  Furthermore the absence o f z e r o - f ie ld  

s p l i t t in g  l in e s  requires a h ig h ly  sym m etrical ligan d  environment 

and a weak ligan d  f i e l d .  So fa r  no good explanation  has been  

found fo r  the form ation o f such s p e c ie s .

We can say unequivocally  th at sp e c ie s  A and B are products
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o f  ir ra d ia tio n  damage sin ce  the e . s . r .  spectra  o f un irradiated  

samples showed l i t t l e  or no paramagnetic con ten t, th is  d iscounts  

the theory th at [Mn(CN)^No]J^ had hydrolysed and had been ox id ised  

by the a ir  g iv in g  during the process o f slow evaporation .

I t  i s  p o ss ib le  th at 'p a rtia l*  h y d ro lysis  had taken place g iv in g  

jlln(CN)^(HgO)^ example, but th is  would not produce

the h igh ly  sym m etrical environment required.
5

Although the d ion  i s  seen  before sp ecies  A and 3 ,an

examination o f the e . s . r .  spectra  does not in d ica te  th at the l in e s

due to  sp ecies  A and B grow a t the expense o f the l in e s  a ttr ib u ted  

5 5to  the d io n . So the d ion  does not appear to  be the precursor

o f  sp ec ies  A and B.

There appears to  be no s a t is fa c to r y  explanation  how

[lIn(CN)p.No) ^  could lo s e  a l l  i t s  ligan ds and end up in  a p e r fe c t ly

symmetrical environment purely by the a c tio n  o f  Y-^^^^^^-tion.

Ligand exchange i s  a p o s s ib i l i t y  (v id e  in fra ) but i t  would seem

h igh ly  improbable th at f iv e  cyanide ligands and the n itr o s y l  group

should a ll-  exchange w ith  Cl” in  the KCl la t t i c e  on ir r a d ia tio n .

There i s , in  f a c t ,  e . s . r .  evidence fo r  ligan d  exchange in  complex

25ions in  KCl fo llow in g  high-energy ir r a d ia tio n . Danon e t  a l  

irra d ia ted  the system {jRh(CI'l)g^^/KCl and found hyperfine in te r a c tio n  

w ith  two equivalent ch lorine atoms and concluded th at two (tra n s)  

cyanide ligands had exchanged w ith  two la t t i c e  ch loride io n s .

So a t the present moment in  time the nature o f  sp ec ie s  A and B, 

and the mechanism whereby ^Mn(CN)̂ WÔ '̂ ” appears to  be str ip p ed  o f i t s  

ligan d s on ^ - ir r a d ia t io n  must remain as unanswered q u estio n s.

I d e n t if ic a t io n  o f  S p ecies C and D.

S p ecies C. This sp e c ie s  was observed when[l,în(CN) cNo] ^  doped in to



KCl (and ICBr) was irra d ia ted  a t room’temperature and g ives an 

iso tr o p ic  t r ip le t  (a(**^) = 21G, g = 2 .005) even when cooled  to
2677 K. A very s im ila r  t r ip le t  i s  observed when KCl and KGÎT are 

fu sed  togeth er  in  a s i l i c a  cru cib le  fo r  10 m inutes, cooled  to  * 

room temperature and ^ -ir r a d ia te d  fo r  one hour. However i t  has 

not been assigned a stru c tu re . I t s  e . s . r .  parameters are unlilce 

th ose o f  any n itrogen  contain ing ra d ica ls  h ith erto  ch a ra cter ised .

The r a d ic a l probably contains carbon, but th is  has not been
1 5d ir e c t ly  v e r i f ie d ,  s in ce  i t  has proved im possible to  d etect  

s p l i t t in g s  due to  the presence o f oth er e . s . r .  l in e s  in  the fr e e -  

sp in  reg ion  o f  the spectrum. A u se fu l experiment would be, to  co o l  

the sample to  liq u id -h e liu m  temperature to  determine whether the 

iso tro p y  i s  due to  the ra d ica l tumbling rap id ly  in  an in t e r s t ic e  

in  the l a t t i c e .  Without fu rth er  inform ation i t  would be unwise to  

draw any conclusions concerning the nature o f th is  r a d ic a l.

Species D. This sp ec ie s  i s  produced in  room-temperature irra d ia ted

samples o f Q.In(CN)^No]]^ in  KCl,when in  h igher con cen tration . Like

sp ec ie s  (D, i t  too g ives an iso tr o p ic  spectrum even a t 77 K.

(a(*^^) = 12. 5G, g = 2 . 005) .  I t  i s  not ab so lu te ly  c e r ta in  th a t i t  •

i s  a 1 :2:5:2:1  q u in te t, since the l in e s  overlap w ith  a much broader

fea tu re . I f  i t  i s ,  then we may in terp re t i t  in  terms o f a sp ec ie s

w ith  two equivalent n itrogen  atoms. Again i t  i s  im possible to  

13d etect C hyperfine s p l i t t in g  due to  the presence o f other l in e s  

in  the spectrum. The ra d ica l (CN)^ has been observed'" in  ir ra d ia ted  

cyanide-doped potassium  ch lo r id e , but does not tumble in  the l a t t i c e .  

Moreover i t  has an value much lower (5*9&) than th a t o f

sp ec ie s  E.

An a ltern a tiv e  in terp re ta tio n  i s  th at sp ec ie s  D contains
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hydrogen so that, the quintet could be made up o f two t r ip le t s  in  

which the la s t  l in e  o f  one overlaps w ith the f i r s t  l in e  o f the 

other g iv in g  f iv e  l in e s  o f in te n s ity  r a tio  This would

leave the value o f  unaltered (12.5&) and would mean th at

the hyperfine s p l i t t in g  to  hydrogen v;ould be 25 gauss. A sim ila r  

* quintet* where a("'Si) = 17&; A(^H) = 5 4 - has been observed by 

Root in  KCl doped w ith  cyanide ions prepared from aqueous s o lu t io n s ,  

- ir r a d ia te d  a t room tem perature. Addition o f hydroxide ion  

im purity in to  the c r y s ta l l a t t i c e  increased  the y ie ld  o f th is  

s p e c ie s ,  vfhich has been te n ta t iv e ly  assigned  to  HON***. Species D 

may w e ll be a s im ila r  type o f r a d ic a l but i t  v:ould be unwise to  

draw a iy  d e f in ite  conclusions w ithout fu rther ev idence.

Species formed in  Y -ir r a d ia te d  fMnCCN) j

# •
This spectrum, which i s  i l lu s t r a t e d  in  Figure 4 .1 8 , may be 

in terp reted  in  terms o f three broad g -fea tu res w ith  h . f . s .  o f  

about 12G on two o f the l in e s ;  any h . f . s .  on the th ird  l in e  being  

unresolved . The in ter p r e ta tio n  o f th is  spectrum is  com plicated by 

the fa c t  th at tivo o f  the g -fea tu res  are c lo se  to g e th er , so that 

overlap makes i t  d i f f i c u l t  to  determine unambiguously whether there  

are f iv e  or s ix  hyperfine l in e s .  A spectrum obtained a t Q-band 

frequency should r eso lv e  th is  d i f f i c u l t y .  This spectrum could w e ll 

be due to  some im purity in  the la t t i c e  s in ce  i t  i s  qu ite unlike the 

spectrum expected fo r  the reduced complex jl<în(CN)^^"*. This d  ̂

s p e c ie s ,  i f  d is to r te d  from octahedral symmetry, should have a 

large  manganese h . f . s .  should be o f the order 70-80 gauss

fo r  an e lec tro n  in  a d ^  o r b ita l on manganese, c f . ”̂ ).

The sp ecies  resp on sib le  fo r  th is  spectrum w i l l  not be d iscu ssed  

fu rth er .
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At th is  poin t i t  i s  in s tr u c t iv e  to  mention the e . s . r .  r e su lts  

obtained fo r  some other ir ra d ia ted  hexacyano- complexes in  a lk a l i  

halid e l a t t i c e s .  When the d  ̂ ions {?e(CN)^''^ and [co(C N )^^  

incorporated in to  KCl la t t i c e s  were ^ - ir r a d ia te d , the e . s . r .  

spectra  showed hyperfine in ter a c tio n  w ith one and two n itrogen  

n u c le i ,  r e s p e c t i v e l y . ^ ^ T h e s e  spectra  have been in terp reted  

in  terms' of a f lip p in g  o f one cyanide or two a x ia l cyan id es, 

r e s p e c t iv e ly , forming isocyan ide bonds. Since the n itrogen  end 

o f the cyanide has a l ig a n d -f ie ld  strength  much lower than the 

carbon end,^^*^^ the e f f e c t  o f forming isocyan ide bonds i s  to  make 

the metal d^2 o r b ita l le s s  antibonding. Furthermore the number o f  

cyanides which f l i p  in  each complex accords w ith the number of 

ca tio n  vacancies required fo r  charge compensation in  each case; 

one in  the case o f the iro n  complex and two in  the cob a lt case . 

These vacancies may be involved  in  the mechanism o f f l ip p in g  the 

CN group and may be p a rtly  resp on sib le  fo r  the s t a b i l i s a t io n  o f  

the isocyanide bonds which are c lo s e s t  to  them.

b) Species formed a fte r  low-temperature ir r a d ia t io n .

When [^Mn(CN)^NoJ^/KCl i s  irra d ia ted  a t 77 K, the e . s . r .  

spectra  o f unwarmed samples apparently show only the presence o f  

the centre (Clg ) .  Now sin ce  th is  i s  a h o le-cen tre  one would 

expect to  see an excess centre a t the same tim e. The qu estion  i s :  

do th e'free*  e lectron s sta y  in  a conduction band (as the F -cen tre)  

or are they trapped a t some p o te n tia l w ell?  I f  some e lec tro n s are 

trapped then the most l ik e ly  p lace would be a t  a complex io n  s i t e .  

However, i f  a d^ manganese(o) sp ec ie s  i s  formed then i t  must be in  

a s u f f ic ie n t ly  low concentration  so as not to  be detected  in  the
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powder spectrum. Furthermore, due to  the com plexity o f the s in g le  

cry sta l, sp ectra , i t  has not proved p o ss ib le  to  a ssig n  lin e s  in  

the spectra unambiguously to  a manganese sp e c ie s . However, fu rther  

work on a c r y s ta l accu ra te ly  mounted a long a known ax is should  

reso lv e  the problem: su b tractin g  out the l in e s  due to  the cen tre  

should give the spectrum of any e lec tro n  excess centre presen t,

Y/hen the sample i s  warmed to room temperature the cen tre  

decays w hile the d  ̂ ion  [tIn(CN)^H(^  ̂ i s  formed sim ultaneously .

The most l ik e ly  mechanism fo r  th is  is a sim ple e lec tro n -tra n sfer '  

process:

i . e .  Gig" + |lîn (C ïï).N o]^  — ÿ 2C1" + ;^!n(CN) NCj^"

Some- o f the centres nay however, decay g iv in g  diamagnetic products: 

2CI2" ---- > Cl^” + Cl”

I t  should be noted th a t , unlike the case o f  sodium n itro p ru ss id e ,

- ir r a d ia t io n  o f the pure potassium pentacyanonitrosyl-m anganate(l)
6 5r e s u lt s  in  the ox id ation  o f the d complex ion  forming a d sp ec ies

ra th er  than reduction g iv in g  a d^ io n . I t  i s  c le a r  then th a t the d^

manganese(O) complex i s  not rea d ily  formed and must be a good deal

more unstable than the corresponding d^ ir o n ( l )  complex.

We s h a ll  conclude th is  section .b y . b r ie f ly  considering  fevv 

p o ss ib le , stru ctu res fo r  a pentacyanonitrosyl-m anganate(O) complex.

How according to  Manoharan and Gray*s M.O.. en erg y -lev e l scheme^?.

(see  a lso  Chapters 2 and 5) we \70uld expect the extra  electron , to  go 

i n i t i a l l y  in to  the 7e Tf^(HO) le v e l .  Due to  the lower o x id idation  

s ta te  on the m eta l, the a d d itio n a l e lec tro n  would have le s s  tendency;, 

to  go onto the m etal than in  th e  n itrop ru ssid e  c a se . Thus the r a d ic a l



could resemble a trapped NO sp ec ie s  (s im ila r  to  those found in  

lo7/-temperature irra d ia ted  n itrop ru ssid e) w ith 'very  l i t t l e  manganese 

hyperfine in te r a c t io n , depending on how c lo se  the NO was trapped , 

to  manganese.

Now i f  there were two c a tio n  v a ca n c ies , one s itu a ted  above

and the other below the a x ia l  lig a n d s ,th en  the la t t e r  could elongate

in to  the v a ca n c ies , thus low ering the energy o f  the d^2 o r b ita l on

manganese. In  th is  case the e lec tr o n  could be sa id  to  be form ally

in  an a. (d  2) metal o r b ita l ,  but w ith  ex ten siv e  d é lo c a lisa t io n  —1 z
11onto the lig a n d s. % analogy w ith  the hexacyano-complexes o f  iro n

and c o b a l t ] o n e  might expect the a x ia l cyanide to  form an

isocyan ide bond. This would a lso  tend to  lower the energy o f  the
28d^2 metal o r b ita l .  Hoccover, the very low ox id ation  s ta te  o f  the 

metal i t s e l f  would tend to  low er the ligan d  f i e l d  s p l i t t in g  energy  

and hence lower the energy o f  the antibonding d^2 and d^2_^2 

o r b ita ls .

F in a lly , we s h a ll  mention one manganese(O) complex which has 

been r e p o r t e d .T h i s  i s  the sp ec ie s  £(CO)^(SPh)Nn]^ , whose e . s . r .  

spectrum shows two equivalent manganese atoms w ith  the remarkably 

sm all h . f » s .  o f  gauss showing th a t the a d d itio n a l e lec tro n  i s  

de lo c a lis e d  v ery  con sid erab ly .

2) Chromium.

The e . s . r .  r e s u lt s  in d ica ted  th a t the d^, chromium(l) io n  

[cr(CN)^N(2 ^  i s  reduced to  the diamagnetic d^, chromium(O) io n  

[Cr(CN)^Nc3^ by the a ction  o f ir ra d ia tio n  on the I\C1, host 

l a t t i c e .  This i s  confirmed by th e .in fr a -r e d -r e s u its . There i s  no 

e . s . r .  evidence fo r  the form ation o f a d^ chromium(-l) ion . This i s
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not a lto g e th er  unexpected in  view o f the manganese r e s u lt s  and 

the fa c t  th at a  tw o-electron  red u c tio n .is  not p a r ticu la r ly  

favoured.

3) Iron .

Follow ing ^ T -irrad ia tion  the sp ec ie s  formed i s  id e n t ic a l  

to  th a t formed on ir r a d ia tin g  pure sodium nit^^oprusside a t  room 

tem perature. I t  i s  h igh ly  probable th at the n itrop ru ssid e io n  

was not incorporated in to  the a lk a l i  h a lid e  l a t t i c e  in  the same 

way as the chromium and manganese com plexes, but was incorporated  

in  c lu s te r s .  This being s o , no new inform ation has been obtained  

from th is  particular- stud y.

In  con clu sion , although we have not achieved cur o r ig in a l  

o b jectiv e  o f  preparing the Mn(0) and C r (- l)  complexes and co rre la tin g  

e . S ' . r *  data fo r  the iso e le c tr o n ic  s e r ie s  o f  d^ pentacyanonitrosyl 

io n s , (Fe^, VirP and Cr”^ ) ,  th is  study has not proved e n t ir e ly  

f r u i t l e s s .  The in fra -red  work has shown th a t the complexes have 

been reduced fo llow in g  Jjf-irrad iation  and i . r .  r e su lts  have 

furn ished  evidence o f in te r a c t io n  o f the NO group w ith  ca tio n  

v a ca n c ies . The e . s . r .  work on manganese complexes has posed many 

fa sc in a t in g  questions and i t  i s  to  be hoped th at fu rth er  work 

may soon uncover some o f  the answers.
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INTRODUCTION TO PART I I .

In Part I I  o f  th is  th e s is  v/e report the preparation o f some 

in te r e s t in g  inorganic ra d ica ls  by Y  - ir r a d ia t io n  o f  p o ly c r y sta llin e  

m atrices contain ing im purity io n s . These doped powders were produced 

^by co p rec ip ita tin g  the microcomponent w ith  a large excess o f a 

su ita b le  host m a ter ia l, p a r tic u la r ly  barium su lp h ate . An e . s . r .  

study o f  such ra d ica ls  was used both as an a id  to  th e ir  id e n t if ic a t io n  

and as a probe in to  th e ir  e lec tr o n ic  structure and geometry.

The i n i t i a l  s tep  in  the ra d ia tio n  damage o f inorganic  

diam agnetic so lid s  i s  commonly e lec tro n  e je c t io n . I f  the e jec ted  

'conduction* e lec tro n  i s  trapped in  some manner a t  a d istan ce  from 

the parent io n , and i f  the la t t e r  d is to r ts  to  in h ib it  hole m igration , 

then paramagnetic sp ec ie s  r e s u lt  and can o ften  be stu d ied  by e . s . r .

In  general these paramagnetic centres are s ta b le  only a t low  

tenqperatures and r ea d ily  decompose when the substrate  i s  annealed.

In the absence o f im purity or d efec t s i t e s  the e lec tro n  and the 

h o le-cen tre  may recombine to  form an e x c ited  parent molecule which 

o ften  decomposes before i t  has had time to  drop to the ground s ta te .

A su ita b le  im purity ion  a t  a l a t t i c e  s i t e  in  the s o l id  can a ct as 

a competing trapping s i t e  fo r  the e le c tr o n , and the r e su lt in g  

ra d ica l may have a high thermal s t a b i l i t y .  This s t a b i l i t y  w i l l  be 

enhanced i f  the con figu ration  and charge o f  the paramagnetic 

in ç u r ity  centre are com patible. For exanqple, as we s h a l l  see  la t e r ,  

the most s ta b le  oxyanion ra d ica ls  trapped in  an la t t i c e  are

almost c e r ta in  to  have the XO, ” s tru c tu re .

The co p rec ip ita tio n  technique has sev e r a l major advantages 

over conventional methods o f obtain ing d ilu te  s o l id  so lu tio n s  o f  

im purity ions in  io n ic  c r y s ta ls .  In p a r tic u la r , one can o ften
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co p rec ip ita te  e ith e r  s a l t s  th at do not form mixed c r y s ta ls  w ith  

the host when grown by slow evaporation from so lu t io n , or s a lt s  

th a t decompose at e lev a ted  temperatures thus precluding m elt- 

growth*techniques. A fundamental understanding o f the co p rec ip i

ta t io n  phenomenon i s  necessary before i t  i s  p o ssib le  to  a n tic ip a te  

which im purity ions w i l l  be incorporated in to  a p a r ticu la r  precip

ita t e d  m atrix. We b eg in , th er e fo re , w ith  a b r ie f  review  o f those  

fa c to rs  which in flu en ce  th is  process.

C oprec ip i ta t io n .

C oprecip ita tion  o f  an impurity w ith  the host m ater ia l prob

ably occurs e ith e r  by the adsorption o f the micro-component onto 

the host or by the form ation o f a s o l id  so lu tio n . The concentration  

o f  the microcomponent i s  determined by;

à) The r e la t iv e  s iz e s  and charges o f the cop rec ip ita n t  

and host l a t t i c e  io n s: A low concentration  o f coprecip

ita n t  ions w ill, occur i f  th e ir  in c lu s io n  in  the host 

l a t t i c e  n e c e ss ita te s  a s ig n if ic a n t  l a t t i c e  d is to r t io n .

This d is to r t io n  may be re liev e d  however, i f  the impurity  

io n s  aggregate to  form n eu tra l m olecules or c lu s te r s  

w ith in  the m atrix. .

b) The s tru c tu ra l r e la t io n sh ip  between the h ost la t t i c e  

and the cop rec ip ita n t s a l t :  The h igh est concentration  o f  

impurity ions are obtained' when the m aterials are i s o -  

morphous. This seems to  in d ica te  th at m olecular u n its  

ra th er  than in d iv id u a l ions are incorporated in to  the 

host l a t t i c e .
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The rapid d ir e c t  mixing o f reagents in  high concentration  

to  form p r e c ip ita te s  i s  the le a s t  reproducible method o f inducing  

c o p r ec ip ita tio n . However, th is  method does have the advantage th at  

i t  o ften  leads to  a lo s s  o f s e l e c t iv i t y  by the h o st , and a concom

ita n t  in crease in  concentration  o f impurity io n s . The s o l id  s ta te  

d if fu s io n  process may then be s u f f ic ie n t ly  rapid  to  render the 

s o l id  phase homogeneous; the rate o f d if fu s io n  increasin g  markedly 

when the p r e c ip ita te  i s  annealed c lo se  to  i t s  m elting p o in t. When 

the substrate forms as a c o l lo id a l  p r e c ip ita te , impurity ions in  

the so lu tio n  can be adsorbed onto the s o lid  su r fa c e . These fo re ig n  

ion s may then be incorporated in to  the su b stra te  l a t t i c e , ' mainly 

as the * inner* surface o f  each p re c ip ita te  p a r t ic le .  This mechanism, 

i s  p a r tic u la r ly  important s in ce  co p rec ip ita tio n  may occur w ith  the 

form ation o f an adsorption compound even though the microcomponent 

ions are s tr u c tu r a lly  incom patible w ith the host l a t t i c e .

There i s  no apparent reason why liq u id s  should not be copre

c ip ita te d  w ith  s o l id s ,  and indeed, so lv en t m olecules have been 

found in  c lo se  a sso c ia tio n  w ith  the host l a t t i c e  (a ) as part o f  

the so lv a tio n  structure in  the normal c r y s ta l l a t t i c e ,  (b ) as part

o f  the c r y s ta l  s tru c tu re , ( c )  incorporated w ith  the co p rec ip ita ted

fo re ig n  io n s ,  and (d) occluded and entrapped a t m icroscopic s i t e s .

We have used barium sulphate ex te n s iv e ly  as the host matrix  

fo r  the co p r ec ip ita tio n  o f  im purity ions fo r  the fo llow in g  reasons:

a) Barium sulphate forms as a c o l lo id a l  p r e c ip ita te  from 

aqueous media at temperatures c lo se  to  the b o ilin g  po in ts  

o f the so lu t io n s . Thus im purity ions whose stru cture may

not be compatible w ith  th is  l a t t i c e  may s t i l l  be coprecip

ita te d  as adsorption compounds. I f  the powders are then
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annealed a t high tem peratures, ion  d if fu s io n  occu rs, 

rendering the s o l id  phase homogeneous.

h) I t  does not con ta in  abundant magnetic n u c le i so th at 

there i s  no l in e  broadening in  the e . s . r .  Spectrum o f  

trapped ra d ica ls  through superlyperfine in tera c tio n s  w ith  

the m atrix.

c ) I t  i s  h igh ]y  in so lu b le  in  w ater.

d) The e . s . r .  sp ectra  o f  ra d ica ls  formed by the irrad

ia t io n  o f pure BaSO  ̂ are r e la t iv e ly  sim ple, c o n s is t in g  o f  

broad fe a tu r e le ss  absorptions centred  c lo se  to  the fr e e -sp in  

g -fa c to r . Consequently, they do not com plicate the a n a ly s is  

o f e . s . r .  sp ectra  a r is in g  from trapped r a d ic a ls .

Bibliography; A.G. Yfalton, "The Formation and Properties o f  Precip

i t a t e s ,"  In te r sc ie n c e , New York, ( 1967)*
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INTERACTION OF TRAPPED HYDROGEN ATOMS WITH ALKAL: 

METAL IONS IN BARIUM SULPHATE.
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Introduction»

Hydrogen atoms have •been e x te n s iv e ly  s tu d ied  by e .s .r »  in

.a wide v a r ie ty  o f s o l id  m atrices.^  In  sev era l in stan ces extra

fea tu res have been observed in  the v ic in i t y  o f  the expected

is o tr o p ic  low- and h ig h -f ie ld  l in e s .  Thus in  aqueous acid  media,

s a t e l l i t e s  were d etected  flan k in g  the main l in e s ,  whose r e la t iv e
2

in te n s ity  increased  as the microwave power was increased . These 

l in e s  are caused by nuclear tr a n s it io n s  o f neighbouring proton s, 

and are not normal hyperfine fe a tu r e s . Jen and co-workers^ 

detected  a hyperfine in te r a c tio n  to  neighbouring xenon n u c le i  

when lydrogen atoms were trapped in  a xenon m atrix, and strong  

coup ling  to  surrounding flu o r id e  ions was d etected  fo r  hydrogen 

atoms trapped i n t e r s t i t i a l l y  in  calcium  flu o r id e  c r y s ta ls .^

In the present work, the e:jq)0sure o f  p r e c ip ita ted  barium 

sulphate (a ls o  strontium  sulphate and barium phosphate) to  ^ -rays  

le d  to  the form ation o f  lydrogen atoms which were subsequently  

trapped a t a v a r ie ty  o f s i t e s  in  the host l a t t i c e . I n  each  

case  one such trapped hydrogen atom cen tre , s ta b le  a t  77 K, 

ex h ib ited  hyperfine coupling  to  a second n u cleu s.

Experim ental.

A ll reagents used were o f  AnalaR grade p u r if ied  fu rth er  

by r e c r y s ta l l is a t io n  from aqueous so lu tio n  p r io r  to  use. Barium 

sulphate was p rec ip ita ted  from aqueous so lu tio n s  o f barium ch lorid e  

contain ing approximately 10^ o f  required im purity ions by slow  

ad d ition  o f  aqueous sodium su lph ate a t  370 K. Strontium sulphate  

powders were prepared s im ila r ly  using  aqueous so lu tio n s  o f
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strontium  ch lo r id e , w hile barium phosphate powders were prepared 

usin g  aqueous so lu tio n s  o f barium ch lorid e  and tri-sod iu m  ortho

phosphate. Tlie r e s u lt in g  suspensions were d igested  a t about 34-0 K 

fo r  sev era l hours, f i l t e r e d  and dried a t about 350 K fo r  two hours 

p rior  to  exposure to  ^^Co ^ r s y s  a t 77 K or room temperature. 

R adiation  doses varied  from about 0 .3  to  30 Mrad. E .s .r .  sp ectra  

were measured a t  77 K or room temperature w ith  Varian E3 or V4302 

h ig h -reso lu tio n  spectrom eters, the la t t e r  being ca lib ra ted  w ith  

a proton resonance probe.

R e su lts .

When a sample o f barium su lp h a te , which had been p r e c ip ita ted  

e .s .r *  spectrum measured a t th is  temperature and a microwave power

from aqueous contain ing sodium io n s , was irra d ia ted  a t 77 K i t s

le v e l  o f  10 m7/ showed the presence o f three d isc re te  paramagnetic 

s p e c ie s .  (Figure 3*1)* The most abundant r a d ic a l, ch aracterised  

by an in ten se  s in g le  absorption l in e  centred c lo se  to  the fr e e -sp in  

g -fa c to r , a lso  r e su lte d  when fu sed  barium sulphate was irra d ia ted  

a t  77 K. This centre probably o r ig in a ted  from the ra d ia tio n  damage 

o f sulphate an ion s. However, we were unable to  d e tec t hyperfine  

in ter a c tio n s  in v o lv in g  ( l  = 3 /2 ,  0.74^ iso to p ic  abundance) 

and th er e fo re , could not unambiguously id e n t ify  th is  sp e c ie s . For 

the purposes o f the present account we s h a ll  la b e l th is  cen tre  

the "sulphate" r a d ic a l.

At 77 K and a microwave power le v e l  o f  100 mW, fea tu res  

from the "sulphate" r a d ic a l and the second paramagnetic c en tre , 

la b e lle d  Radical B in  Figure 3*1 , were almost com pletely satu rated
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w h ils t  th o se  o f  R ad ica l A, a p a ir  o f  a x ia l ly  sym im tric q u a rtets  

(F igure 5 .2 )  sep arated  by approxim ately 511 g a u ss , had in cr ea se d  

b oth  in  r e s o lu t io n  and in t e n s i t y .  When s in g ly  charged an ions such  

as n itr a te ^  c h lo r a te  o r  p erch lo r id e  were added as the sodium  

s a l t s  to  the s o lu t io n  p r io r  to  p r e c ip it a t io n ,  the q u artets  due 

to  R ad ica l A were g r e a t ly  enhanced r e la t iv e  to  the l in e s  due to  

R ad ica l B.

V/hen potassium  ions were incorporated in to  the barium 

sulphate l a t t i c e  an analogous sp ec ie s  to  R adical A was formed, 

but the hyperfine quartet fea'^ures from th is  centre were l e s s  

w e ll resolved  and i t  was only p o ss ib le  to  obtain  the perpendicular  

hyperfine s p l i t t in g  constants from the outermost featu res o f  the 

q u a rtets . (Figure 5 * 5 ) .

When a sample o f  barium su lp h a te , which had been p r e c ip ita te d  

u s in g  H^O-free reagen ts in  a s o lu t io n  o f  DgO, was ^ - ir r a d ia t e d  

a t  l iq u id -n itr o g e n  tem perature, i t s  e . s . r .  spectrum  a t  77 K and 

100 mW showed th a t the o r ig in a l  p r in c ip a l d ou b let s p l i t t i n g  o f  

511 gauss o f  R ad ica l A had c o lla p se d  to  a t r i p l e t  o f  approxim ately  

79 gauss se p a r a tio n . (F igure 5 .4 )*  These deuterium  h yp erfin e  

t r i p l e t s  s t i l l  showed the q u artet s p l i t t in g s  a s so c ia te d  w ith  

R ad ica l A.

Features from Radical A decayed ir r e v e r s ib ly  v/hen the sample 

was annealed to  about 220 K and there was a concomitant in crease  

in  in te n s ity  o f the e . s . r .  s ig n a l from Radical B.

F igures 5*5 and 5*6 show the e . s . r .  s p e c tr a , measured a t  

77 K and a microwave power l e v e l  o f  10 mW, o f  low -tem perature  

ir r a d ia te d  stron tiu m  su lp hate  doped w ith  sodium p erch lo ra te  and 

barium phosphate doped w ith  sodium s e le n a te ,  r e s p e c t iv e ly .  The

^ r C| (Q-0;
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m u lti- l in e  fea tu res  in  the ’ hydrogen atom* regions o f these spectra  

a lso  decay ir r e v e r s ib ly  on warming*

Discussion*

I d e n t if ic a t io n  o f Radical A.

Ü7e have assigned  R adical A the structure NaH'*' fo r  the 

fo llow in g  reasons;

a) The major doublet s p l i t t in g  o f 511 gauss must a r ise  from 

the in ter a c tio n  o f the unpaired e lec tr o n  w ith  a s in g le  proton 

( l  = ^ ) . Deuterium su b s titu tio n  re su lted  in  the expected  

major t r ip l e t  s p l i t t in g  o f  79 gauss a r is in g  from the coupling  

o f the unpaired e lec tr o n  w ith the nucleus ( l  = l)*^

b) Tlio secondary, a x ia l ly  symmetric quartet s p l i t t in g  

a r ise s  through ly p erfin e  coupling to  a sodium nucleus

( I  = 3/ 2) .  A marked reduction  in  th is  subsid iary  s p l i t t in g  

occured when potassium ions I  = 3/2> 9 3 * 0 ^  is o to p ic

abundance) rep laced sodium ions in  the sulphate l a t t i c e .

This i s  to  be expected in  view o f  the sm aller  magnetic
I

moment o f potassium  compared to  sodium. Y/e have ru led  out

the p o s s ib i l i t y  th a t th is  s p l i t t in g  a r ise s  through coupling

to  a ^^Cl nucleus ( l  = 3 /2 ; 74>*éJisotopic abundance) o f  a

ch lor id e  ion  fo r  trro reasons. F ir s t ly ,  we were unable to

37d etect fea tu res  a r is in g  from the corresponding Cl nucleus  

( l  = 3/ 2* 2Zf.6^ is o to p ic  abundance) and secon d ly , we obtained  

e x a c tly  the same e . s . r .  spectrum from an irra d ia ted  sample 

o f barium sulphate p rec ip ita ted  from a so lu tio n  o f barium
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n it r a t e ,  in  the complete absence o f ch lo r id e . The low 

natural abundance o f the magnetic and ^^^Ba n u c le i

( l  = 3 /2; 6 .6  and 1 1 .^  iso to p io  abundance, r e sp e c tiv e ly )  

makes i t  u n lik e ly  th a t these iso to p es  are resp on sib le  fo r  

th is  su b sid iary  in teraction *

c )  The' in te n s ity  o f the e .s .r *  s ig n a l fo r  th is  ra d ic a l

increased  markedly when the barium sulphate was p r e c ip ita te d

in  the presence o f s in g ly  charged anions such as , CIO^"

and CIO,” . The reason fo r  th is  i s  th a t in  order to  m aintain  4-
charge n e u tr a lity  in  the sulphate l a t t i c e ,  the in c lu s io n  

o f  s in g ly  charged anions requires a concomitant in crease  

in  the concentration  o f  im purity sodium io n s . Although we 

form ulate the sp ec ie s  as NaH'*’ (and KH’*’) ,  th is  i s  not meant 

to  im ply the complete absence o f  o th er atoms w ith  non-magnetic 

n u c le i in  the o v e r a ll  unit*

I d e n t if ic a t io n  o f  R adical B.

The e . s . r .  spectrum o f ra d ica l B i s  com pletely iso tr o p ic  

and i s  c h a r a c te r is t ic  o f  a sp ec ie s  contain ing a s in g le  magnetic 

nucleus o f  sp in ; I  = - .̂ We may c o n fid en tly  assume th at th is  sp ec ie s  

i s  a hydrogen atom trapped near a barium or sulphate ion  s i t e  in  

the l a t t i c e ,  s in ce  the spin-resonance parameters o f th is  cen tre  

are s im ila r  to  those reported fo r  hydrogen atoms trapped in  a 

wide v a r ie ty  o f  m atrices and a lso  to  hydrogen atoms stu d ied  in  

the gas p h a s e . ^ W h e n  the host l a t t i c e  was p r e c ip ita ted  from 

DgO, ra d ia tio n  damage r e su lted  in  the form ation o f the predicted^ 

corresponding deuterium atom cen tre .
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The e . s . r .  r e s u lt s  obtained fo r  R adicals A and B are 

included in  Table 5 .1*

Structure o f the A lk a li Metal Ion-Hydrogen Atom Centre.

Approximate sp in -d e n s it ie s  have been ca lcu la ted  as in d ica ted  

in  Table 5 .1 .  The a n iso trop ic  hyperfine tensor  rep resen ting  the 

in te r a c tio n  o f the unpaired e lec tro n  w ith  the sodium nucleus has 

the form (2B, -B , -B ) . This an iso tro p ic  coupling to  sodium can 

be e n t ir e ly  explained in  terms o f  an in d ir ec t d ip o lar  in ter a c tio n  

from sp in  on hydrogen, there being no need to  invoke 5p -o rb ita l 

p a r tic ip a tio n  in  the Na-H (T -bond. Using a sim ple p o in t-d ip o le
o

c a lc u la tio n  we obtain  a sodium-hydrogen bond len g th  o f  1 .5 A.
o

This can be compared w ith  the value o f 1.8A obtained fo r  sodium
Q

hydride in  the gas phase. A somewhat more refin ed  c a lc u la t io n ,

in  which the e lec tro n  in  the hydrogen Is o r b ita l  was trea ted  as

being d is tr ib u ted  octah ed rally  about the nucleus a t a distance

equal to  the Bohr radius (se e  Appendix I I ) ,  gave a value o f  the
o

sodium-hydrogen bond len g th  o f  1.8A.

Since the an iso tro p ic  coupling i s  n e c e ssa r ily  p o s it iv e ,  

the iso tr o p ic  coup ling  to  ^ ^ a  must a lso  be p o s it iv e  and almost 

c e r ta in ly  r e s u lt s  from the d ir e c t  d é lo c a lisa t io n  o f  the unpaired 

e lec tro n  in to  the sodium 5 s -o r b ita l ,  g iv in g  a sp in -d en s ity  o f  

0 , 054. Xn th at c a s e , t h e  proton coupling i s  unexpectedly la r g e , 

b ein g , in  f a c t ,  s l ig h t ly  g rea ter  than th at o f hydrogen atoms in  

the gas p h a s e . T h i s  in crea se  may be in terp reted  in  terms o f  

a s l ig h t  o r b ita l co n traction  fo r  the 1s o r b ita l on hydrogen, 

caused by a p a r t ia l  tr a n sfe r  o f p o s it iv e  charge (o r  in  other term s.
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a sm all increase in  the e f f e c t iv e  nuclear charge on hydrogen, 

induced "by the neighbouring ca tio n ) .^  Proton hyperfine coupling  

i s  p a r t ic u la r ly  s e n s it iv e  to  sm all changes in  th is  term, and a 

vei% sm all change would r ea d ily  accomodate the present data*^

However,an u n restr ic ted  Hartree-Fock (UHF) c a lc u la tio n  a c tu a lly
1 10 gave a H coupling s l ig h t ly  greater than th a t fo r  the free  atom,

so  th is  concept o f  o r b ita l con traction  i s  not n e c e ssa r ily  required

to  exp la in  th ese r e s u lt s .

An a lte r n a tiv e  mechanism to  exp la in  the increase in  the
11proton hyperfine coupling i s  the theory proposed by Adrian, and

12la t e r  developed by Jen and co-workers, to  account fo r  the e f fe c t  

o f  the matrix upon the w ave-functions o f trapped atoms. They 

su ggest th a t the perturbation  o f the trapped atom's w ave-function  

b y the matrix can be envisaged as the sum o f sev era l opposing 

e f f e c t s ,  p r in c ip a lly :

a) The van der Waal*s (d isp ers io n ) forces between two 

in te r a c tin g  p a r t ic le s ,  which w i l l  tend to  maximise the 

in ter a c tio n  energy by expanding the wave-f une t  ions o f  

the p a r t ic le s •

b) P au li ex clu sio n  fo r c e s ,  which operate when the 

p a r t ic le  sep aration  i s  sm a ll, and which e f f e c t iv e ly  

r e s u lt  in  a shrinking o f  the w ave-functions o f the 

in ter a c tin g  p a r t ic le s  away from each other. This 

in te r a c tio n  w i l l  a lso  admix some o f  the wave-functions 

o f the matrix p a r t ic le s  w ith those o f the trapped atom.

Hence, fo r  NaH"*", mechanism a) would lead  to  an o v era ll 

red uction  in  the proton hyperfine coupling from the free  atom va lu e ,
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w hilst, mechanism h) would give r is e  to  an increased  proton  

coupling and superhyperfine s p l i t t in g  from the 'm atrix' sodium 

io n . I f  th is  theory i s  co rrect then our experim ental r e su lts  

c le a r ly  in d ica te  th at the e f f e c t s  o f mechanism b) predominate 

over th ose o f  mechanism a ) .  The th e o r e t ic a l UHF ca lcu lation s^ ^  

a ls o  suggested th a t there was no bonding between the hydrogen 

atoms and sodium io n s , although the sp ec ie s  detected  i s  c le a r ly  

w e ll defin ed . I t  i s ,  o f co u rse , p o ssib le  th at the actu a l trapping  

does not in volve  sodium io n s , which Just happen to  be c lo se  to  

e f f e c t iv e  trapping s i t e s ;  th is  poin t i s  considered la t e r .

The Structure o f the "Lattice** Hydrogen Centre.

The NaH  ̂ centre was ir r e v e r s ib ly  converted to  " la ttic e"  

hydrogen when the barium sulphate h ost l a t t i c e  was annealed a t  

220 K , in d ic a tin g  the higher thermal s t a b i l i t y  o f  the l a t t e r  

cen tre . ly  analogy w ith the bonding scheme proposed fo r  hydrogen 

atoms trapped a t  b a sic  anion s i t e s  in  a v a r ie ty  o f  irra d ia ted  

p h o s p h a t e s , w e  suggest th at the proton o f  the " la ttic e"  

hydrogen centre forms a ^ -b o n d  to  a b asic  oxygen o f the sulphate  

anion. The extra  e lec tro n  i s  then accommodated in  the corresponding  

CT  ̂ - l e v e l .  Since the CT - l e v e l  i s  concentrated prim arily  on 

oxygen, the - l e v e l  i s  mainly on hydrogen and th ere fo re , the 

spin-resonance parameters fo r  th is  centre c lo s e ly  resemble those  

o f a free  hydrogen atom. , ,

Mechanism o f Formation and Trapping.

S ince there i s  no apparent reason why sodium ions should  

in t r in s ic a l ly  favour lydrogen atom trapping in  barium su lph ate .
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vre need to  fin d  some other explanation  fo r  the high percentage o f

the NaH"̂  sp ecies  in  m ateria l conta in ing  only trace q u a n tities  o f

sodium io n s . 17e propose the ‘ex isten ce  o f  two d is t in c t  and competing

trapping s i t e s  in  the sulphate l a t t i c e .  X-ray s tu d ies  o f barium

sulphate p rec ip ita ted  from aqueous so lu tio n  have suggested  th at

w ater co p rec ip ita te s  w ith  the s a l t  and e x is t s  as a s o l id  so lu tio n

in  the la t t i c e ;  a group o f three water m olecules rep lacin g  a BaSO^

15u n it .  In an analogous manner, a lk a l i  metal ions and so lv en t  

m olecules may be sim ultaneously co p rec ip ita ted  i f  the s iz e  o f the 

combined u n it i s  appropriate. The lith iu m  ion  i s  known to  carry one 

m olecule o f water in to  the p r e c ip ita ted  sulphate l a t t i c e .

I f  conduction e lec tro n s r e su lt in g  from the ra d ia tio n  damage 

o f the host l a t t i c e  are subsequently trapped a t d e fec t s i t e s  

con ta in in g  an a lk a l i  metal ion  and a water m olecule, then there  

i s  a high p ro b a b ility  th a t hydrogen atom s, formed by d is s o c ia t iv e  

e lec tro n  capture by H^O, w i l l  be trapped near an a lk a l i  metal s i t e  

(and remain trapped c lo se  to  sodium). A lte r n a tiv e ly , i f  these  

generated e lec tro n s are trapped a t d e fec t s i t e s  con ta in in g  only  

co p reo ip ita ted  so lv e n t , then the r e su lt in g  hydrogen atoms may be 

trapped a t a sulphate anion s it e *

R elated System s.

Of the range o f  other h ost la t t i c e s  and ad d itiv es  stu d ied , only  

a few gave any c le a r  in d ic a tio n  o f  comparable trapping s i t e s .  One o f  

the more in te r e s t in g  r e s u lt s  was obtained in  the case o f  barium phos

phate doped w ith sodium s e le n a te . "When the p o ly c r y sta llin e  sample was 

ir ra d ia ted  a t  77 K, the e . s . r .  spectrum measured a t 77 K (Figure 5*6) 

showed four broad l in e s  flan k in g  the normal " la ttic e"  hydrogen atom
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l i n e s ,  whose h yp erfin e  cou p lin g  co n sta n ts  were approxim ately 30 G- and 

503 G- r e s p e c t iv e ly .  In  a d d it io n , s e v e r a l o f  th ese  l in e s  showed an e x tr a  

* t r i p l e t ’ s p l i t t i n g  o f  about 3 The q u artet fe a tu r e s  su ggested  a  hyper

f in e  cou p lin g  to  ^ ^ a  (^30 &), and i f  th ese  l i n e s  c o n s is t  o f  p a r a l le l  and 

p erp en d icu lar fe a tu r e s  as fo r  the NaH* cen tre  in  barium su lp h ate  (F igure  

3 . 2 ) ,  then the e x tr a  cou p lin g  co u ld  be in te r p r e te d  in  terms o f  an i s o t r 

o p ic  doublet s p l i t t i n g  o f  3 G-. One p o s s ib le  source o f  th is  co u p lin g  i s  

in te r a c t io n  w ith  a nucleus in  the PO^ anion  (^^P; I  = 100^ i s o 

to p ic  abundance). I f  t h is  were c o r r e c t ,  i t  would support the su g g estio n  

o f  A tkins e t  th a t the major s t a b i l i s i n g  fo r c e  fo r  trap p in g  in  such

environm ents i s  weak bonding to  the a n io n s , s in c e  th ere seemed to  be 

some c o r r e la t io n  w ith  anion b a s i c i t y . T h i s  reason in g  has been extended  

to  s u c c e s s fu l ly  e x p la in  the u l t r a v io le t  a b sorp tion  a ssig n ed  to  hydrogen  

atoms in  aqueous s o l u t i o n . T o  su b s ta n t ia te  t h is  th eory , we have ir r a 

d ia te d  ’pure’ barium phosphate (c o n ta in in g  o n ly  tr a c e s  o f  w ater as 

im p u rily ) a t  77 K, and the e . s . r .  spectrum measured a t  77 K (F igure 3.&) ,  

shows two broad hydrogen atom l in e s  w ith  d e f in it e  s ig n s  o f  an u n reso lved  

d ou b let s p l i t t i n g  o f  about 3 G; thus g iv in g  fu rth er  support to  the view  

th a t a n io n  in te r a c t io n  i s  im portant in  th ese  c e n tr e s .

When a  sample o f  stron tiu m  su lp h ate  doped w ith  sodium p erch lo ra te  

was ir r a d ia te d  a t  77 K, the e . s . r .  spectrum  measured a t  77 K (F igure 3*3)  

showed, in  a d d itio n  to  the l a t t i c e  hydrogen atom l i n e s  (A = 303 &), a 

m u lt i l in e  p a ttern  w ith in  th ese  broad l a t t i c e  hydrogen l i n e s  and not 

f la n k in g  them. Thus, the spectrum  i s  q u ite  u n lik e  any o f  the o th er  

hydrogen atom cen tre s  p r e v io u s ly  se e n , and cou ld  c o n s is t  o f  a number o f  

overlap p in g  l i n e s  making in te r p r e ta t io n  d i f f i c u l t .  For te c h n ic a l reasons  

i t  was n o t p o s s ib le  to  o b ta in  a spectrum a t  Q-band freq u en cy , which 

cou ld  have r e so lv e d  th e d i f f i c u l t y .  However, w hatever the nature o f  t h is
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c e n tr e , th ere  does appear to  be a marked degree o f  d e lo c a l is a t io n  o f  

the hydrogen atom 's unpaired e le c tr o n  d e n s ity  onto some o th er  atom (s) in  

view  o f  the proton h yp erfin e  cou p lin g  co n sta n t b e in g  reduced from i t s  

fr e e  atom v a lu e  o f  507 & to  approxim ately 460 G-. I t  i s  p o s s ib le  th a t  

th ere  may be more than one hydrogen atom cen tre  producing t h is  spectrum , 

s in c e  th ere  i s  no c le a r  h yp erfin e  s p l i t t i n g  to  a s in g le  m agnetic n u cleu s;  

co u p lin g  to  b e in g  very  u n lik e ly  (®^Sr; I  = 9 /2 ,  7 .02^  is o to p ic  

abundance).

Other System s: Experimental Evidence fo r  the and R adical Ion s.

In trod u ction .

In  order to  e x p la in  th e  magnitude o f  th e  proton h y p erfin e  cou p lin g  

i n  NaH'*’ (511*5 O),  which i s  even g rea te r  than the gas-phase v a lu e , we 

invoked  the ex ce ss  charge th eory  (v id e  supra) f i r s t  proposed by Symons^ 

to  e x p la in  the e f f e c t  o f  e x c e ss  charge on the magnitude o f  proton  coup

l i n g  co n sta n ts  in  v a r io u s organ ic and in o rg a n ic  r a d ic a l io n s . The b a s ic  

con cep t i s  sim ply th a t  th e  e f f e c t iv e  ra d iu s o f  th e  lydrogen  I s  atom ic 

o r b it a l  should  be a llow ed  to  change s y s te m a tic a lly  w ith  the ex ce ss  

ch argey o r , in  o th er  term s, th a t the e f f e c t i v e  n u clear  charge on the  

proton  should  be thought o f  as d e v ia t in g  from u n ity . This e f f e c t  i s  not 

o f  g rea t im portance fo r  most atoms in  m o lec u les , s in c e  the f r a c t io n a l  

change in  n u c lea r  charge (z) i s  r e l a t iv e l y  sm all and the e f f e c t  i s  b u ff

ered  by the rem aining e le c tr o n s*  For protons^ however, a sm all change in  

the e f f e c t iv e  n u clear  charge (z^ ) can make a la r g e  d if fe r e n c e  to  the  

c o u p lin g  c o n s ta n t , which w i l l  bo p ro p o rtio n a l to  th eory  has boon

used  s u c c e s s fu l ly  to  e x p la in  the magnitude o f  the proton h yp erfin e  s p l i t -

19t in g  in  c a tio n s  and anions o f  arom atic hydrocarbons such as an thracene, 

and a ls o  in  th e s e r ie s  o f  i s o e le c t r o n ic  p lanar r a d ic a ls ,  BH " , CH_ and
j  j
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O ÿpical changes in  c a lc u la te d  from the observed co u p lin g  con

s ta n ts  are in c lu d ed  in  Table 5*2.  In  the ca se  o f  NaH^, the in c r e a se  in  

th e proton h yp erfin e  cou p lin g  co n sta n t over the exp ected  v a lu e  can be 

r e a d i ly  accommodated on t h is  th eory  i f  th ere  i s  a^sm all in cr ea se  in  the 

e f f e c t iv e  n u clear  charge on H (z^  = 1*024), induced by the neighbouring  

sodium io n . (T able 5*2 ) .

One p r e d ic t io n  th a t can be drawn from t h is  th eory  i s  th a t  th e  over

a l l  h yp erfin e co u p lin g  (2A) fo r  may be very  much l e s s  than the va lu e  

o f  about 500 G norm ally ex p ecte d , whereas th a t o f  cou ld  be q u ite  a 

la r g e  amount in  ex ce ss  o f  t h is  v a lu e . I t  was in  order to  t e s t  t h is  pre

d ic t io n  th a t attem pts were made t o  prepare th e io n s  and and to  

stud y  t h e ir  e . s . r »  spectra*

i ) The Radical-Ion Ĥ ".

Attempts were made to  produce th is  centre by irrad ia tin g  a 

number o f a lk a li  metal and a lk a lin e  earth hydrides a t 77 K; the idea 

being that hydrogen atoms might be trapped a t hydride ion s i t e s  forming 

the required centre:
I

i . e .  H* + iT -----^  Hg" .

However, i t  was o n ly  in  the ca se  o f  ir r a d ia te d  lith iu m  hydride th a t th ere  

was a iy  in d ic a t io n  o f  the form ation  o f  any o th er  hydrogen atom cen tre  

ap art from the 'normal* hydrogen atom cen tre  o f  s p l i t t i n g  -^ 500  G. The 

e . s . r .  spectrum o f  a p o ly c r y s ta l l in e  sample o f  LiH ^ ir r a d ia t e d  a t  77 K 

(F igure 5*7)  shows the presence o f  th ree param agnetic c e n tr e s;  one o f  

which g iv e s  a broad p a r a l le l  and p erp en d icu lar fe a tu r e  cen tred  around 

the fr e e  sp in  reg io n  o f  the spectrum , the second g iv e s  a doublet s p l i t 

t in g  o f  about 500 G corresponding to  a 'normal* trapped hydrogen atom 

c e n tr e , w h ils t  th e  th ir d  cen tre  ap p aren tly  c o n s is t s  o f  a broad doublet
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T a b le  5 .2  P r o to n  H y p e r f in e  P a ra m e te r s  f o r  V a r io u s  

R a d ic a l  C a t io n s  and  U n io n s .

R a d ic a l  Io n

A n th ra c e n e
(9H)

A n th ra c e n e
(9H)

BHo"

CHo 

NH3 +

NaH*

% "

%
+

%

( g a u s s )

6 .7

5 .6

1 6 .5

2 2 .5  

2 7 .0

5 1 1 .2

540

548

650

660

1 .0 5  

0 .9 7

0 .9 0

1.00

1 .0 6  

1 .0 2  

0 .8 7  

0 .8 7  

1 .0 8  

1 .0 9

R e fe re n c e

19

19

20 

21 

21

T h is  v/ork 

T h is  work

T h is  work

a .  v a l u e s  p r e d i c t e d  by  D r. T .A . G la x to n  

( N a tu r e ,  226 , 12 42 , (1 9 7 0 ) )
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• whose s p l i t t in g  i s  approxim ately 3^0 G, In view o f the excess charge 

e f f e c t  (v id e  supra), th ese  l in e s  could be the outermost fea tu res o f  

Hg" , the innermost fea tu res  not being d etected  due to  the in ten se , 

broad fea tu res in  the centre o f  the spectrum. Coupling to  two equiva

le n t  n u c le i o f  sp in , I  = -̂  i s  expected to  g ive three l in e s  o f  in ten s

i t y  r a t io  1 :2 :1 . However, the large  hyperfine s p l i t t in g  in  the present

case in d ica te s  a considerab le second order f i e l d  e f f e c t  o f  the B re it-  
22Rabi typ e, so th at the centre l in e  i s  s p l i t  out in to  two l in e s  g iv in g  

a four l in e  spectrum o v e r a ll .

The Hg" ion  could be trapped near a lith iu m  io n , and, i f  so , the 

broad outermost fea tu res could hide unresolved lith iu m  hyperfine s p l i t 

t in g  (^Li; I  = 3/ 2 ,  92. 37% iso to p ic  abundance).

A more s a t is fa c to r y  method o f  obtain ing th is  ra d ica l in  higher 

concentration  might be iydrogen atom bombardment o f  sa lin e  hydrides ; 

where hydrogen atoms formed from gaseous hydrogen by e le c t r ic a l  disch

arge are passed over the powdered hydride a t various temperatures and 

p ressu res. This method could  have a higher success rate  in  trapping hyd

rogen atoms a t hydride ion  s i t e s  in  the c r y s ta l  l a t t i c e .

\

i i )  The Radical Ion .

One l ik e ly  method o f  producing th is  ra d ica l seemed to  be the 

form ation o f  hydrogen atoms 5^ s i t u  in  a s tro n g ly  a c id ic  medium, where, 

under su ita b le  co n d itio n s , the hydrogen atoms could be trapped near 

protons, or in  e f f e c t  protonated:

i . e .  H' + H* — >

Now, hydrogen atoms have been formed in  frozen  acids,nam ely p erch lo r ic , 

phosphoric and sulphuric a c id s , which were Y ^irradiated  a t 77 

However, no evidence was found fo r  protonated hydrogen atoms (Hg*) in



these a c id s . In view o f  t h i s ,  we decided to  use one o f  the most stron g ly  

io n iz in g  and a c id ic  media known to  chem ists, namely the system  

FSO^H -  SbF^, which i s  sometimes termed "magic acid ."  This combination 

o f  f lu o r sulphonia ac id  and antimony pentafluoride i s  an exceedingly  

powerful protonating agent, and as such should be able to  protonate 

trapped hydrogen atoms more e a s i ly  than conventional a c id s .

A sample o f  FSÔ H -  SbP^ was prepared usin g  high vacuum techniques 

by Dr. T.P. S le ig h t , and was ^ ^ irr a d ia ted  a t  77 K in  a sea led  quartz 

tube. I t s  e . s . r .  spectrum, measured a t 77 K, showed the presence o f  a t  

l e a s t  three ra d ica ls  (Figure 5*8); the spectrum o f one was centred c lo se  

to  the fr e e  sp in  region and comprised three broad l in e s  ; the spectrum o f  

•normal* trapped hydrogen atoms was recognised  and id e n t if ie d  by i t s  

expected doublet s p l i t t in g  o f  approxim ately 500 G. The spectrum o f  the  

th ird  paramagnetic sp e c ie s  c o n s is ted , as fa r  as could be seen , o f  a 

doublet o f  l in e s  separated by approxim ately 63O G, whose in te n s ity  was 

about o n e - f i f t ie t h  o f  the in te n s ity  o f  th e normal hydrogen atom l in e s .

Now, s in ce  the magic acid*was ir ra d ia ted  in  the form o f  a frozen

g la ssy  m atrix, the quartz tube could  not be annealed in  the normal way

(see  Chapter 1 — Experimental S ection ) w ithout warming the a c id  to  above

i t s  m elting p o in t. This means th a t the observed hydrogen atoms may be

trapped in  the quartz ra ther  than in  the a c id  i t s e l f ;  hydrogen being a
25c h a r a c te r is t ic  im purity o f  most sy n th etic  quartz c r y s ta ls  and hydrogen 

atoms are known to  be formed in  quartz ir ra d ia te d  a t  77 The e . s . r .

s ig n a ls  from th ese  trapped atoms disappear a f t e r  a subsequent warmup to  

temperatures in  excess o f  100 Thus, i f  we assig n  the 500 G doublet

(Figure 5*8) to  hydrogen atoms trapped in  quartz, the 63O G doublet could  

be the outermost fea tu res o f  Hg , trapped on the surface o f  the quartz. 

Again the innermost l in e s  in  the spectrum (assuming our assignm ent i s  

co rrect) are not seen due to  the in te n se , broad fea tu res  in  the cen tra l
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portion  o f  the spectrum,

When the sample v/as warmed above 100 K fo r  a few seconds and then  

reoooled  to  77'K, the spectrum changed to  th a t shown in  Figure 5 .9 ,  

where the normal hydrogen atom l in e s  have decayed somewhat with the 

concomitant in crease  in  in te n s ity  o f  the 6^0 G- doublet. On fu rther ann

e a lin g  the normal hydrogen atoms decayed com pletely , whereas the l a t t e r  

• centre was r e la t iv e ly  s ta b le  a t  room temperature, tak ing severa l hours 

to  decay com pletely.

Now, in  order to  t e s t  whether th ese  ra d ica ls  were formed in  the 

*bulk acid* or on the surface o f  th e quarts, the experiment vras repeated  

u sin g  a quarts tube whose in n er  surface had ju s t  been moistened w ith  the  

'magic acid* p rior  to  ir r a d ia tio n . The e . s . r .  spectrum o f  th is  sample, 

measured a t  77 K (Figure 5 .1 0 ) ,  showed a much higher proportion o f the 

sp ec ie s  g iv in g  the 630 G doublet, compared to  the normal hydrogen atom 

sp e c ie s . This gave d e f in ite  in d ic a tio n  th a t i t  was c lo s e ly  connected  

w ith the quartz medium, and th e  quartz surface in  p a r ticu la r , s in ce  

\  ir r a d ia tio n  o f  a pure quartz sample gave normal trapped hydrogen atoms 

only. When th e  sample was warmed to  room temperature fo r  a  few seconds 

and recooled  to  77 K, the spectrum showed th a t the normal hydrogen atoms 

had decayed com pletely w h ils t  the cen tra l p ortion  o f  the spectrum had 

increased  in  com plexity qu ite markedly (Figure 5 .1 1 )•  There are severa l 

narrow l in e s  in  the spectrum o f  comparable in te n s ity  to  the 63O G 

doublet, two o f  which could be th e  expected innermost fea tu res  o f  

i f ,  indeed, th is  i s  formed. Some o f  th ese  l in e s  may be due to  m olecular  

oxygen, the presence o f  which was confirmed by measuring the spectrum  

at high f i e l d  (5000 -  7000 G), and comparing i t  w ith the known spectrum  

o f  m olecular o x y g e n t h e  l in e s  in  th is  region  o f  the spectrum  

b ein g  qu ite in ten se  and w e ll documented. The l in e s  in  the free  sp in
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reg io n , however, are much l e s s  in ten se  (th e  weakest observable l in e s

b ein g  over a thousandfold weaker than the stro n g est l in e s  o f  the spectrum  

28a t  77 K) and there i s  some u n certa in ty  in  th e ir  p o s it io n s . I t  was hoped 

th a t  the problem could be reso lved  by ob tain in g a  spectrum o f m olecular  

oxygen in  an uncontaminated quartz tube a t  77 K. U nfortunately however, 

reproducible sp ectra  o f  th is  type have not y e t  been obtained in  th is  

lab oratory , and consequently we are not able to  conclude anything about 

a p o ss ib le  r e la t io n sh ip  between the narrow fea tu res in  the free  sp in  

reg ion . So th e p o s s ib i l i t y  s t i l l  remains th a t the 630 0 fea tu res  are a 

property o f  but in  the absence o f  unambiguous experim ental evidence  

noth ing  fu rth er  can be concluded.
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CHAPTER 6

THE 33 VALENCE-ELECTRON CIO^^" ANION AND RELATED SPECIES.
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In trod u ction .

Morton ' has d etected  two paramagnetic cen tres in  potassium  

perch lorate c r y s ta ls  irra d ia ted  a t 77 K, which he suggested  

might he CIO  ̂ r a d ic a ls  trapped in  two m agnetically  d is t in c t  s i t e s *  

However, th e ir  magnetic p ro p er tie s , g iven  fo r  comparison purposes 

w ith  those assign ed  to  (re f*  2) and SO  ̂ (ref*  3) iri Table 6*1,

d id  not seem to  be very reasonable fo r  the ch lorine te tro x id e  ra d ica l  

with. 31 valence e lec tro n s  s in ce  both the to t a l  ch lorine 3s-character  

and the p /s  r a t io  are la rg er  than expected* In  ad d ition  the form o f  

the g -ten so r  i s  d if fe r e n t  from th a t o f  the other rad ica ls*  Further

more, we would not expect the same r a d ic a l occupying two d if fe r e n t  

l a t t i c e  s i t e s  to  have such d is s im ila r  hyperfine parameters.

A p o ss ib le  a lte r n a tiv e  th at has recen tly  been proposed^ fo r  

one o f  these ra d ica ls  ( la b e l le d  ( l )  in  Table 6*1) i s  the peroxy- 

ch lo r in e  sp ec ies  0^0100, and,, in  view o f  the r e s u lt s  reported fo r  

the e lec tro n -ex cess  sp ec ie s  CIO  ̂ " , we f e e l  th at the other r a d ic a l  

prepared by Morton i s  probably CIO^^". In view o f  the previous

su ccesses 5 6 7reported from th is  la b o ratory , * * in  s p e c i f ic a l ly

preparing e lec tro n -ex cess  sp ec ie s  by doping the parent io n  in to  

a su ita b le  host c r y s ta l ,  we attem pted to  form CIO^^" by ir r a d ia tio n  

o f  barium sulphate which contained a trace o f perchlorate inç)urity* 

In th is  chapter we compare and con trast the spin-resonance  

and molecular parameters obtained fo r  th is  cen tre w ith those o f  

Mortoni*s ra d ica l ( l l )  and the rec e n tly  reported iso str u c tu r a l
Q

te tro x id e  sp ec ie s  AsO  ̂ (or  As(OH)^), formed by the in te r a c tio n  

o f  y -r a y s  w ith  KĤ AsÔ  a t 77 K, and the iso s tr u c tu r a l h a lid es  

ana
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Experim ental.

A ll reagents used were AnalaR grade p u r ified  fu rth er  by 

r e c r y s ta l l is a t io n  from aqueous s o lu t io n . Sandies o f  barium sulphate  

doped w ith 010^" and NÔ " ions were prepared by co p rec ip ita tio n  

from aqueous so lu tio n s  o f  barium ch lor id e  which contained approx

im ately  10^ o f  the dopant io n s , a t temperatures c lo se  to  the b o ilin g  

p o in t o f  the s o lu t io n s . The samples were allowed to  d ig e s t  a t 340 K 

o vern igh t, washed fr e e  o f ch lo r id e  ions and dried  under vacuum fo r  

se v e r a l days p r ior  to  th e ir  ir r a d ia t io n . I f  the powders were annealed  

a t  temperatures above approxim ately 450 K some decom position o f the  

co p reo ip ita ted  CIO^" ions occurred. Powdered sanqples o f  the doped 

sulphate were exposed to  ^^Co Jf^-rays a t both 77 K and room te  lite r 

a tu re; doses ranging from 2 to  30 Mrads.

Annealing experiments were carr ied  out using a Varian v a r ia b le -  

te literatu re  accessory , w hile spectra  a t  4*2 K were obtained by 

employing a Varian V4545B liq u id  helium accessory  and superheter

odyne d e te c tio n .

To f a c i l i t a t e  the in terp re ta tio n  o f  the complex X-band e*s*r* 

sp ectra  o f  the ir ra d ia ted  doped powders, fu rth er  sp ectra  were meas

ured a t  both Q- and S-band frequencies*.

R e su lts*

Exposure o f barium sulphate doped w ith  perch lorate ions to  

^ -r a y s  a t  77 K r e su lted  in  the form ation o f  three r a d ic a ls :  the 

host "sulphate" r a d ic a l ,  to g eth er  w ith  two sp ec ie s  A and B which 

e x h ib ite d  hyperfine in ter a c tio n s  c h a r a c te r is t ic  o f  r a d ic a ls  cont

a in in g  a s in g le  ch lo r in e  atom (Figure 6 .1 ) .  In  both A and B fe a t

ures corresponding to  the two abundant iso to p es  ^^Cl and ^^Cl
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were d e tec ted , whose r e la t iv e  in t e n s i t ie s  were in  accord w ith  the 

n atu ra l abundance r a t io  o f  3 .0 7  and whose separation  was c o n s is t 

en t w ith  th e ir  magnetic moment r a t io  o f  1 .202 .

"When the sulphate was annealed to  300 K the spectrum changed 

markedly (Figure 6 .2 ) .  “W hilst the ch lor in e  ra d ica l A was s ta b le  a t  

th is  temperature, both ra d ica l B and the host sulphate r a d ic a l C 

decayed ir r e v e r s ib ly ;  the decom position o f  the la t t e r  g iv in g  r is e  

to  a new paramagnetic sp ec ie s  D# Irra d ia tio n  o f the doped sulphate  

a t  room temperature produced A and D d ir e c t ly . Only radical. D was 

formed when pure barium sulphate was irra d ia ted  a t 300 K.

Irra d ia tio n  a t  77 K o f  a sample o f  barium sulphate contain ing  

co p reo ip ita ted  perch lorate and n itr a te  anions resu lted  in  the form

a tio n  o f  ra d ica ls  B and C togeth er w ith  the w e ll-ch a ra cter ised  

N0^^~ r a d ic a l  ̂  ̂ r a d ic a l A not being formed in  the presence

o f  n itr a te  io n s . (F igure 6 . 3) .  “When the sample was annealed to  3OO K 

r a d ic a ls  B and C again decayed w h ils t  the n itra te  centre was s ta b le  

a t  th is  temperature. Irra d ia tio n  o f the sangle a t  room temperature 

le d  to  the formation o f  ra d ica l D and N0^^~ only; again r a d ic a l A 

n o t being formed due to  the presence o f  n itr a te  io n s .

The only e f f e c t  o f  warming the sample from 77 K to  room teiap- 

eratu re'on  the spectrum o f  r a d ic a l A was th a t the hyperfine coupling
, .  V.

decreased s l ig h t ly .  There was no change in  the spectrum when the 

sangle  was cooled  from 77 K to  i*..2 K,

D isc iiss io n .

I d e n t if ic a t io n  o f R adical A.

The e . s . r .  spectrum o f  th is  cen tre was in terp reted  in  terms 

o f a sp ec ie s  w ith  three g - and A -valu es.
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f a )  SSR Spectrum o f  BaSO^ Doped 

w i th  NOo" and CIO*" Ir ra d . a t  77 K

r a )

b) The NOq  ̂ Centre in  BaSO,
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We are le d  to  the conclus ion  th at r a d ic a l A i s  CIO, fo r4-
the fo llo w in g  reasons:

a) R adical A i s  an e lec tro n -ex cess  sp e c ie s . This i s  demon

stra ted  by the r e su lts  o f  the com petition rea ctio n  w ith  

n itr a te  io n s . The n itr a te  acts as a very e f f ic ie n t  e lec tro n  

trap in  the barium sulphate l a t t i c e  (as w e ll  as in  o th er  

l a t t i c e s ^ l e a d i n g  to  the form ation o f  the s ta b le  

cen tre . I t  i s ,  in  f a c t ,  such an e f f i c i e n t  e lec tro n  scavenger  

th a t i t  in h ib it s  the form ation o f  ra d ica l A, which suggests  

th at the la t t e r  i s  formed as a d ir e c t r e s u lt  o f  e lec tro n  

trapping a t a p erch lorate io n  s i t e .

b) The most s ta b le  im purity anion cen tres in  barium sulphate

are those which require no charge conqpensation w ith in  the

l a t t i c e .  The observed high thermal s t a b i l i t y  o f th is  centre

i s  in  accord w ith our su ggestion  th a t r a d ic a l A has the  

2-structure XO,
4-

c ) In  Table 6 .2 . the spin-resonance data fo r  the w e ll-  

ch aracterised  r a d ic a ls  ClOO, CIO^, CIO  ̂ and CIO^^” are 

c o lla te d  fo r  comparison w ith  those o f  r a d ic a l A. Also 

included are data fo r  the 01̂ "" which i s  iso e le c tr o n ic  w ith  

CIO  ̂ • None o f the l i s t e d  ra d ica ls  p ossesses  the combinat

io n  o f  a s ig n if ic a n t  ch lorin e  iso tr o p ic  hyperfine cou p lin g , 

a very sm all an iso tro p ic  l ^ e r f i n e  co u p lin g , and p o s it iv e  

g-value v a r ia tio n s  c h a r a c te r is t ic  o f ra d ica l A. The choice

o f  stru ctu re  fo r  th is  cen tre l i e s  th erefore between the
2— 2—sp ec ie s  CIO  ̂ , CIO^, and CIO  ̂ " whose form ation from a

perchlorate ion  seems most l ik e J y .
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The ra d ic a l would he a 21“v a len ce-e lec tro n

sp ecie s  and, from Walsh*s o r b ita l c o rr e la tio n  diagram fo r

ABg radicals,**^ (Figure 6 . 4 ) we would p red ict i t  to  be
2nearly  lin e a r  and to  approach a ground s t a t e .  The

g - fa c to r  fo r  such a lin e a r  r a d ic a l i s  l ik e ly  to  be c lo se  . 

to  the fr e e -sp in  value s in ce  the con figu ra tion  . . . .

TTĝ TT* ^ would be a h igh ly  ex c ited  s t a t e .

The s ig n if ic a n t  p o s it iv e  g - s h if t s  observed fo r  ra d ica l A 

would seem to  ru le  out th is  p o s s ib i l i t y .  Furthermore, the 

y -ir r a d ia t io n  o f  samples o f barium sulphate doped w ith  

c h lo r ite  ions produced a high con cen tration  o f ClOg, but 

no other ch lor in e-con ta in in g  r a d ic a l was d etected . This 

suggests th a t CIO  ̂ ” i s  unstable in  barium su lp h ate.

The observed iso tr o p ic  hyperfine coupling o f ?4#6 G- 

i s  consid erab ly  la rg er  than the value we would p red ict fo r  

CIO  ̂ by analogy w ith  iso e le c tr o n ic  sp ec ie s  such as  ̂ and

(Table 6 . 1 ) .  Further, the arguments expressed in  

a) and b) above, both m ilita te  a g a in st CIO^, s in ce  we have 

shown reasonably th a t the ra d ic a l must be an e lec tro n -ex cess  

cen tre .

We co n sid er  th ere fo re , th at the foregoin g  arguments v ir tu a l ly
2-  ■elim in ate  a l l  p o s s ib i l i t i e s  except CIO  ̂ fo r  the stru ctu re o f  

r a d ic a l A.

I d e n t if ic a t io n  o f Radical B.

The fa c t  th a t the form ation o f th is  r a d ic a l i s  not in h ib ite d  

by the presence o f  the e lectron -trap p in g  n itr a te  ion  in  barium 

sulphate in d ic a te s  th a t i t  i s  not an e lec tr o n -ex c e ss  sp ec ie s  but
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l i k e l y  to  be a h o le -o e n tr e . A comparison o f  the sp in -reson ance  

param eters o f  r a d ic a l B w ith  th o se  rep orted  fo r  the CIO  ̂ r a d ic a l  

trapped in  a v a r ie ty  o f  m atrices (Table 6 .1 )  le a v e s  l i t t l e  doubt 

th a t  t h is  s p e c ie s  i s  c h lo r in e  t r io x id e • The mechanism o f  form ation  

o f  t h is  r a d ic a l  w i l l  be d iscu sse d  la t e r .

I d e n t i f i c a t io n  o f  R ad ica ls  C and D»

The id e n t i f i c a t io n  o f  th ese  r a d ic a ls  i s  again  based on a 

com parison o f  t h e ir  s p e c tr a l  p ro p er tie s  w ith  th o se  o f  a lread y  w e l l -  

c h a r a c te r ise d  param agnetic, su lp h u r-co n ta in in g  ox id es and oxyanions  

( Table 6 .3 )*  On t h is  b a s is  i t  i s  concluded th a t  r a d ic a ls  C and D are 

most probably and SOg" r e s p e c t iv e ly .  However, we were unable

to  d e te c t  h yp erfin e in te r a c t io n s  in v o lv in g  fo r  th ese  ce n tr e s  

(^^S; I  = 3/ 2» 0 . 724̂  is o to p io  abundance) and th e r e fo r e , cou ld  not 

confirm  th ese  assignm ents»

The S tru ctu re  o f  CIO,  ^ ----

The energy l e v e l  scheme fo r  te tr a h e d r a l XÔ  m olecules i s  

i l lu s t r a t e d  in  F igure 6 .5 .  The anion 010^^“ i s  a 33 v a le n e e -e le c tr o n  

s p e c ie s  and, s in c e  th ere  i s  some u n c e r ta in ly  concerning th e ground 

s t a t e  o f  such  a s p e c ie s ,  even  i f  the m olecule were p e r f e c t ly  t e t r a 

h e d r a l, the unpaired e le c tr o n  cou ld  be in  e i th e r  the 2a  ̂ or  th e 3tg

9 13m olecular o r b i t a l .  * The en erg ie s  o f  th e  m olecular o r b it a ls  (and  

hence th e  ground s t a t e )  are very  much dependent on the e le c tr o n e g 

a t i v i t y  (% ^ ) o f  the c e n tr a l  X atom. F igure 6 .6  i l l u s t r a t e s  th e  

V a r ia tio n  in  o r b ita l  en e r g ie s  fo r  te tr a h e d r a l XÔ  m olecules as the  

e le c t r o n e g a t iv i t y  o f  th e  c e n tr a l  atom changes; and fo r  CIO^, where
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The m o le c u la r  o r b i t a l  dia.rçram f o r  

t e t r a h e d r a l  XO  ̂ m o le c u le s

3 d (e  )

E (e v )

(2 p )

C h lo r in e  A tom ic  
O r b i t a l s

M o le c u la r
O r b i t a l s

O xygen A tom ic  

\ \  O r b i t a l s

F igure 6 . 5
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the 2 a ^ -lev e l has been c a lcu la ted  to  be approx-
IÔim a telx  2*5eV lower than the Jtg-level* . We would h e s ita te  to  

base an assignment on th is  c a lcu la tio n  s in ce  the energy d if f e r 

ence involved  i s  so  small* However, a sp in-population  a n a ly s is  o f  

the ly p er fin e  ten sor  o f th is  ra d ica l ( Table 6*1) in d ica tes  th at  

the con tr ib u tion  o f  the cen tr a l atom to  the M.O. o f the unpaired 

e lec tro n  i s  a t le a s t  30^ 3s in  character* In  the absence o f any 

d is to r t io n  from tetrah ed ra l symmetry, we would in fe r  th erefore  

th at the 2 a ^ -lev e l was lower in  energy than the j tg - le v e l*

The observed a n iso tro p ic  hyperfine co u p lin g , a lb e it  sm all, 

i s  a measure o f  the d is to r t io n  o f  th is  anion from a purely te tr a 

hedral stru ctu re  and r e f le c t s  the presence o f p- (o r  d -) character

in  the m olecular orb ita l*  An in tr in s ic  Jahn-T eller d is to r t io n  i s
2

not expected fo r  a r a d ic a l having a A^-ground s ta te  and th erefore  

the d estru c tio n  o f  te tra h ed ra l symmatiy may be environm entally in 

duced, perhaps through a non-spherical d is tr ib u tio n  o f adjacent 

barium cation s*  I f  th is  were s o ,  i t  would exp la in  why there i s  a 

d ifferen ce  between the a n iso tro p ic  parameters obtained fo r  CIO  ̂ " 

in  barium sulphate and those reported by Morton fo r  h is  ra d ica l ( H )  

in  KCIO ,̂  ̂ i f ,  as we su sp ect, the la t t e r  sp ec ie s  i s  a ls o  C10^^“ . 

A lso , a s l ig h t  temperature dependence o f the iso tr o p ic  coupling  

constant fo r  CIO^^” (Table 6*1i) i s  probably brought about by 

changes in  the environment* The sp in-populations fo r  the 3s- and 

3p- o r b ita ls  o f the ch lorin e  atom are c a lcu la ted  to  be approxim

a te ly  0*03 and 0.06 r e sp e c tiv e ly  a t 77 K* There s t i l l  remains the
. i. 1 .

p o s s ib i l i t y  th at the a n iso trop ic  hyperfine coupling could r e s u lt  

from 3d.- ra th er  than 3 p -o rb ita l character in  the molecular o r b ita l  

which contains the unpaired e lec tro n ; in  th is  case the sp in-popula- 

t io n  would s t i l l  remain small* However, s in c e  the energy o f the
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3d -o r b it a l  i s  a good d ea l h igh er than th a t o f  the 3 p -o r b ita l th is  

p o s s i b i l i t y  i s  remote* The most s ig n i f ic a n t  f a c t  to  emerge from  

the sp in -p o p u la tio n  a n a ly s is  i s  th a t  th e  major p o rtion  o f  the  

unpaired e le c tr o n  d e n s ity  r e s id e s  on the lig a n d  atom s.

The observed g -v a lu e  v a r ia t io n s  fo r  CIO^^" can be r e a d ily  

ex p la in ed  i f  we assume th a t  the en vironm en ta lly  or o therw ise ind

uced d is t o r t io n  o f  t h i s  an ion  reduces i t s  symmetry to  Then, 

w ith  re fe ren ce  to  F igure 6 * 7 , the d e v ia t io n s  o f  the a n iso tr o p ic  

g - fa c to r s  from th e f r e e - s p in  va lu e  would a r is e  through the f o l l 

owing e x c i ta t io n s  :

Sgg: ...(a2)^(b^)^(b2)^(a^)^;%

633: ...(a2)2(b^)2(b2)\a^ )2 ;%  ^  . . .(a2)2(b^ )2(b2)^(a^ )^ %

The e f f e c t  o f  d is t o r t in g  th e m olecule so  th a t  i t s  symmetry i s  reduc

ed to  i s  to  s p l i t  th e  non-bonding t ^ - le v e l  in to  o r b it a ls  which 

•transform: as a^, by and b ^ , and s in c e  g  ̂  ̂ «  g^^ <  g^^ we conclude  

th a t  th e  a g - le v e l  i s  th e  lo w e s t  in  energy as in d ic a te d  i n  F igure 6.7*  

A lthough the p o s it iv e  g - s h i f t s  observed  can be accommodated 

u sin g  an  energy l e v e l  scheme in v o lv in g  C^^symmetry, we would not 

co n s id e r  t h i s  as unequivoca l ev idence f o r  such an assignm ent; th e  

ex a c t c o n fig u r a tio n  adopted by a p en ta -a tom ic m olecule not b e in g  

e a s i l y  p r e d ic te d  from M*0. theory*

; I
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Comparison w ith I so e le c tro n ic  Species»

At room tenqperature the iso e le c tr o n ic  molecule prepared

by J^ -irrad ia tion  o f ammonium or potassium hexafluorophosphate,

g ives a com pletely iso tr o p ic  e . s . r .  spectrum in  which a l l  four f lu r
9 10orine atoms appear to  be m agnetically  eq u iv a len t. * When the in ~ -  

ad iated  samples are co o led , the e . s . r .  spectrum broadens markedly 

before g iv in g  a very complex and not f u l ly  in terp reted  envelope spe-
9

ctrum a t 200 This broadening i s  considered to  a r ise  through a

slow ing down o f  a rapid in v ersio n  process o f the type d iscu ssed  by 
i7. Ghantiy and Ewing fo r  sulphur te tr a f lu o r id e , in vo lv in g  two inequr 

iv a le n t  p a irs  o f flu o r in e  atoms. This proposal i s  supported by the  

observation  th a t EF  ̂ in  a sulphur hexafluoride matrix a t  low temp

eratures g ives an iso tr o p ic  spectrum ch aracter ised  by two pairs o f  

in eq u iv a len t f lu o r in e  atoms. ^̂  (Table 6 .4 )*  The analogous ch lor in e  

sp ec ie s  PCl^, prepared by u .v .-p h o to ly s is  o f  phosphorus tr ic h lo r id e ,
11i s  a lso  reported to  p ossess two pairs o f non-equivalent lig a n d  atoms,

A tr ig o n a l bipyramid s tr u c tu r e , where the unpaired e lec tro n  res id es
2

in  one o f  the eq u atoria l sp o r b it a l s ,  has been proposed fo r  th ese
1 f  12 +m olecu les.  ̂ In  c o n tra st, the is o e le c tr o n ic  ra d ica l in  s o l id

i2SFg has fou r  m agnetically  eq u iva len t f lu o r in e  atoms even a t 98 K.

I t  i s  not c e r ta in  whether the r a d ic a l undergoes rapid in v ersio n a l  

motion a t  98 K, or whether i t  p o ssesses  fou r  tr u ly  equivalent lig a n d s .

We have in d ica ted  th a t the stru ctu re  o f penta-atom ic r a d ic a ls  

i s  d i f f i c u l t  to  p red ict using M.O. th eory. However, a theory which, 

i s  a b le  to  p r e d ic t  the stru ctu re o f  such r a d ic a ls  i s  the Sidgwick- 

Pow ell theory o f  m olecular s t r u c t u r e l a t e r  developed in to  the  

Valence S h e l l  E lectron -P a ir  R epulsion t h e o r y . T h i s  theory assumes
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th a t i t  i s  the rep u lsive  fo rces  between the e lec tro n  pairs th a t  

co n tro l th e ir  o r ien ta tio n  and thus the shape o f the r e su lt in g  mol

e c u le . We s h a ll  show th a t the stru ctu res o f the above 55 va lenoe- 

e lec tr o n  ra d ica ls  are c o n s isten t w ith  th is  theory and th at the most 

probable con figu ration  o f the CIO^^ anion can be p red icted  using  

arguments based on the 8idgwick-Powe 11 th eory.

The most e n e r g e tic a lly  favoured con figu ration  fo r  an AB̂  mol

ecu le  having f iv e  e lec tro n  p airs i s  the s l ig h t ly  d is to r te d  tr ig o n a l 

bipyramid stru ctu re  shown in  Figure 6 .8 .  For example, the 34 va len ce-  

e le c tr o n  SF^ m olecule i s  known to  have th is  stru ctu re  a t low tenqpexv 

a tu re , where th e  a x ia l S-F* bonds are la rg er  and weaker than the 

eq u a to r ia l S-F bonds and the sulphur non-bonding (o r  s t r i c t l y  a n t i-  

bonding) e lec tro n s  are accommodated in  an eq u atoria l sp - lo n e  p a ir  

o r b ita l .  In c o n tr a s t , the 32 va len o e-e leo tro n  perchlorate anion  

CIO *̂", which does not p ossess any lone pairs o r  unpaired e le c tr o n s ,  

has the f u l ly  symmetrical te trah ed ra l s tru c tu re . The ra d ica ls  

PCl^, SF̂ "*" and C10^^~ a l l  have 33 v a le n c e -e le c tr o n s , so th a t we 

would expect them to  adopt con figu ration s between these two extrem es.

I t  should be noted th a t ,  w ith  referen ce to  Figure 6 .8 ,  the te tr a 

hedral structure can be achieved by moving the a x ia l (B'l) ligands  

in  the d ir e c tio n  shown by the arrows. The converse i s  a lso  tr u e , so  

th a t a tetrah ed ra l structure  may d is to r t  due to  lone pair-bonding  

p a ir  rep u lsion  to  g ive the tr ig o n a l bipyramid stru c tu re . The amount 

o f d is to r t io n  w i l l  depend on the a c tu a l e lec tro n  d en sity  on the c e n tr a i

atomes lo n e  p a ir  o r b it a l .  The t o t a l  antibonding e le c tr o n  d e n s ity  
2 2

(a  + a ) on the cen tra l atom in  a v a r ie ty  o f paramagnetic mole- s p
c u le s  and io n s has been  shown to  d ecrease as f a l l s ,  where

A i k '  = X l i g a m l - ^ e n t r a l  atom 6 .9 .)  For th e  s e r ie s  o f
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ra d ica ls  PP. , PCI, and SF, * A X  i s  la r g e , so th at the unpaired 
4 4- 4

e lec tro n s are expected to  he confined  la r g e ly  on the cen tra l atoms* 

In other words, s in ce  the h igh ly  e lec tro n eg a tiv e  ligan d  atoms take 

the grea ter  share o f  the bonding and nonr-bonding e le c tr o n s , the 

cen tra l atom w i l l  take a  correspondingly g rea ter  share o f  the a n t i

bonding e le c tr o n s . Consequently the most favoured con figu ration  fo r  

th ese  ra d ica ls  w i l l  be the tr ig o n a l bipyramidal structure where the 

angle Ô in  Figure 6 .8  has c lo sed  s l ig h t ly ,  s in ce  there i s  only one 

e lec tro n  in  the antibonding o r b ita l to  rep el the bonding e lec tro n s  

in  the A-B* bonds. The a n iso tro p ic  spin-resonance parameters have

n ot been obtained fo r  th ese s p e c ie s ,  but i f  as we su g g est, they do
2

have th e ir  unpaired e lec tro n  in  an e s s e n t ia l ly  sp - lo n e  p a ir  o r b ita l

on phosphorus or sulphur, then the observed iso tr o p ic  s-ch a ra cter  o f

the unpaired e lec tro n  (a  o f  about 0 .3  must correspond to  u n it8 ,

ocGiqpancy o f  the central-atom  o r b ita ls .

In the case o f  the iso e le c tr o n ic  te tro x id e  anion AsO^^, prep

ared by the a c tio n  o f  )^-rays on KH^AsO  ̂ a t  77 K, i s  again
2 8 large  and a^ on the cen tra l atom i s  c lo se  to  0 .3 .  However, the

d etec tio n  o f  hyperfine coupling to  fou r eq u iva len t protons fo r  c e r t

a in  o r ien ta tio n s  o f th is  r a d ic a l would suggest th a t i t  i s  b e st  cons

id ered  as As(OH)^, where the AsO^^” un it i s  r ig id ly  held  c lo se  to  

the te trah ed ra l con figu ration  through hydrogen bonding to  the prot

ons o f adjacent u n its  in  the EH^AsO  ̂ c r y s ta l .  Hence the unpaired

e lec tr o n  o f  AsO, ^ in  KĤ AsO, must be lo ca ted  in  an o r b ita l whicl 4  6 4  ,
i s  constructed  p r in c ip a lly  from the arsen ic  4 s - l e v e l .

In  c o n tr a s t , the value o f  A X  fo r  the anion CIÔ "̂* i s  sm all 

and probably n e g a tiv e , so  th a t we would exp ect the unpaired e le c tr o n  

to  be mainly confined  to  the ligan d  oxygen atoms. The observed spin?»



/ 4 / .

d en sity  on the cen tra l ch lorin e  atom i s  indeed sm all and bears out 

th is  p o s tu la te . There being n e g lig ib le  ‘ lone pair* e lec tr o n  d en sity  

on c h lo r in e , the *bonding pair* -  * bonding pair* rep u lsion s o f the 

ligan d  atoms now become im portant. Thus fo r  minimum energy we would 

expect th is  ra d ica l to  be only s l ig h t ly  d is to r te d  from the te tr a 

hedral stru ctu re  so  th at the unpaired e lec tr o n  occupies a molecular 

o r b ita l having s ig n if ic a n t  3s-ch aracter on ch lo r in e . This i s  in  acc- 

' ord w ith  the spin-resonance parameters o f  010^ included in  Table 6.11,

We conclude th e r e fo r e , th a t w h ils t  the ra d ica ls  PF^, PCl^ and 

may w e ll have tr ig o n a l bipyram idal s tr u c tu r es , the sp ec ie s  

CIO^^" in  BaSO  ̂ and AsO^^ in  KĤ AsOĵ  are d is to r te d  only m arginally  

from the te trah ed ra l configuration*

Mechanism o f  Formation.

R ad ia tio n  damage o f  p erch lora te-d op ed  barium su lp h ate  a t  77 K 

r e s u lt s  in  th e form ation  o f  th e r a d ic a ls  80^", CIO^^" and G10^.

The host la t t i c e  8 0 ^  centre i s  produced by the sim ple proc

e s s  o f  e lec tr o n  e je c t io n  from a sulphate an ion . The *conduction* 

e lec tr o n  i s  then probably trapped a t  an im purity CIO^" s i t e  prod

ucing the 010^^” paramagnetic cen tre .

E lectron s may a lso  be e je c te d  from a perchlorate io n  by in t 

era c tio n  w ith  the high energy ra d ia tio n  producing the perch lorate  

h o le -cen tre  CIO^. This i s  l ik e ly  to  be unstable in  the barium su l

phate l a t t i c e  and might undergo hom olytic bond f i s s io n  to  give  

ch lor in e  tr io x id e . However, we cannot ru le  out the p o s s ib i l i t y  th at 

CIO  ̂ i s  derived from ch lora te  io n  im p u rities concurrently cop reci

p ita te d  w ith  perch lorate ion s by the barium su lph ate.
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On annealing , the 80^" and CIO  ̂ cen tres decay, the former

g iv in g  r i s e  to  the 80^" r a d ic a l, ^ d  the la t t e r  decomposes in to  

products th a t are not d etectab le  by e . s . r .  spectroscopy. This i s  

unusual, s in ce  CIO  ̂ i s  known to  undergo therm ally in i t ia t e d  dec

om position in to  the r e la t iv e ly  s ta b le  paramagnetic ch lorin e  dio

x ide in  ch lorate  and perch lorate m atrices, where the process has

been monitored sp e c tr o sc o p ic a lly .^ ^ ^  Both the host r a d ic a l  
2-and CIO^ are  extrem ely  s ta b le  i n  BaSO^*
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C A L C U L A T I O N  O F  P R I N C I P A L  R -  A N D  A - V A L U E S  

P R O M  S I N G L E  C R Y S T A L  D A T A



Z45:

The g - f a c t o r  i n  a c r y s t a l  f o r  an a r b i t r a r y  o r i e n t 

a t i o n  i s  g iv e n  by ;

- i = i

where i.. and g . are  d i r e c t i o n  c o s in e s  and G. . i s  an 
1 J

e lem en t o f  a 3 X 3 m a tr ix .  Now, f o r  o r i e n t a t i o n  0  o f  the  

m agnetic  f i e l d  w ith  r e s p e c t  to  the  e x p e r im en ta l  a x i s  o f  

the c r y s t a l ,

g^ = a  + (3sin29 + }^cos29

v/here a ,  (3 and If are f u n c t io n s  o f  G. . .

I f  r e p r e s e n t s  the maximum g -v a lu e  o b ta in ed  in  one

r o t a t i o n  a t  0 and g the minimum a t  0 th en  we have  
+  — —

2 a +
2

2(3 = ( e /
- g _ b . C O S  2 0 ^

= ( g /
- g _ b . s i n  2 0 ^

I n  the c a se  where the axe s o f  r o t a t i o n are o r th o g o n a l,

(3 and ^ are r e l a t e d to  a new param eter <f by :

é  = : ( p  +  )
1 / 2

1 / 2  ( g /  -

and the m atr ix  e le m en ts  ;are g iv e n  by

G i i — (% + % - Ok )

^2 2 — ( O3 + Ok - «2 )

G3 3 — ( + Ok - « 3  )

and

0’12

0'2 3 
G3 1

=  (c fs

=  ( d i  

=  (62

+

+

O k

%

CCq

-  '

Ok )  W 3

%  ) ( J i  -

0^1 ) (<^2

\ l / 2
C k  + CCq J

^ 1 / 2  
%  +  (%3 V

\ l / 2
oq +  ;
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S u f f i x e s  1 ,  2 and 3 r e f e r  to  p la n e s  23 , 13 and 12 r e s p e c t i v e 

l y ,  The above method alw ays g iv e s  r i s e  to  an am bigu ity  o f  

s i g n .  In  the  s p e c i a l  case  o f  r o t a t i o n  about th r e e  m utually  

o r th o g o n a l  a x e s ,  one may ch o o se , say  and Gq  ̂ p o s i t i v e ,  

then  b o th  p o s s i b l e  s ig n s  f o r  G23 need to  be c o n s id e r e d .  The 

s i t u a t i o n  may be v i s u a l i s e d  by im ag in in g  the c o n s tr u c t io n  

o f  a t h r e e -d im e n s io n a l  model o f  the g - v a lu e  v a r ia t i o n  from 

p o la r  d iagram s o f  the  v a r ia t i o n s  in  each  o f  the p la n e s  o f  

measurement. Two o f  th e se  can be f i t t e d  to g e t h e r  a lo n g  the in 

l i n e  o f  i n t e r s e c t i o n ;  th e r e  are  th en  two ways o f  f i t t i n g  the  

t h i r d  p o la r  diagram i n t o  the  model.

In  order  t o  d e c id e  which o f  the two s e t s  o f  p r i n c ip a l  

g - v a lu e s  and p r i n c ip a l  a x e s  o b ta in ed  in  the  n i t r o p r u s s id e  

c r y s t a l  s tu d y  (Chapt e r  3 )  was c o r r e c t ,  the f o l lo w in g  proced

ure was a p p l ie d .

The r e s u l t s  o f  g -v a lu e  measurements i n  a d i r e c t i o n  n ot  

in c lu d e d  i n  the  p rev io u s!  measurements are  compared w ith  the  

r e s u l t s  p r e d ic t e d  by the  two p o s s i b l e  s e t s  o f  p r i n c ip a l  

v a l u e s .  I f  we denote  the  p r i n c ip a l  axes  by x ,y ,z .  v/ith  c o r r e s 

ponding g - v a lu e s  g ^ ,g y ,g 2 » th en  the  g -v a lu e  in  a d i r e c t i o n  

whose d i r e c t i o n  c o s in e s  w ith  r e s p e c t  to  x ,y , z .  are l ,m ,n  r e s p 

e c t i v e l y ,  i s  g iv e n  by,

2 2 . 2  2 2 2 2 
g  = g ^ ^  + g y i î l  + ^ 2 . ^

On th e  o th e r  hand, i f  the  g -v a lu e  v a r i a t i o n  i s  measured

i n  a p la n e  whose normal has  d i r e c t i o n  c o s in e s  l ,m ,n  w ith

r e s p e c t  to  th e  p r i n c ip a l  a x e s ,  the maximum and minimum 

g - v a lu e s  i n  t h i s  p la n e  v ; i l l  s a t i s f y  the r e l a t i o n s  .

g /  + s j ’ =  g / ( l  -  t ^ )  + s / i l  -  + g ^ ^ ( l  -   (l)
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ana

2 2 2  2 2 2  2 2 2  
^  + 4  S x  1 + S x  « z  “ ( 4g+ -e_ =

s im u lta n o u s ly .

The a x i s  chosen  (th e  c ' - a x i s ) made a n g le s  o f  9 0 ° ,  105° 

and 15° w ith  the  c r y s t a l lo g r a p h ic  a ,b  and c ax es  r e s p e c t i v e l y  

When the above procedure was a p p l ie d ,  on ly  the f i r s t  s e t  o f  

p r i n c ip a l  g - v a lu e s  and d i r e c t i o n s  s a t i s f i e d  both  r e l a t i o n 

s h ip s  ( l )  and (2 )  s im u lta n e o u s ly ,  ( s e e  Table 3 . 3 )

An i d e n t i c a l  procedure was employed to  o b ta in  the  

p r i n c ip a l  h y p e r f in e  v a lu e s  and d i r e c t i o n s .

The n e x t  s t e p  was to  r e l a t e  the  p r i n c ip a l  d i r e c t i o n s  

o f  the  g - t e n s o r  to  th r ee  bonds i n  the  m olecu le  o f  u n ir r a d i 

a te d  sodium n i t r o p r u s s i d e , com p ris in g  a s e t  o f  c o -o r d in a te  

ax es  o f  the m o le c u le ,  ( v i z .  the Pe-N, Pc-Cq and Pe-Co bon de)

o

Future. A

N,

S in ce  a l l  a n g le s  and d i r e c t i o n s  in v o lv e d  in  ex p e r im en ta l  

measurement are  r e l a t e d  to  the a xes  o f  the  u n i t  c e l l  o f  the  

c r y s t a l  (= r o t a t i o n  a x e s ) ,  i t  i s  f i r s t  n e c e s s a r y  to  c a l c u l a t e  

the  a n g le s  the  th r e e  bonds make w ith  th e s e  a x e s .
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The data  re q u ire  d~f*or th e s e  c a l c u l a t io n s  are to  be found  

in  Manoharan and H am ilton*s c r y s t a l  s t r u c tu r e  paper on

sodium n i t r o p r u s s id e (In o r g .  Chem. 2 , 1043 , 1 9 6 3 ) .

The r e l e v a n t  data  are as: f o l lo w s  :

c e l l  c o n s ta n t s  a = 6 ,1 7
b = 11 .84
c =13.43

bond lenp:ths

Pe-N 1 .6 3

Pe-Cg 1 .9 1

Pe-Cg 1 .9 3

Atomic param eters

Atom a - a x i s  (x ) b - a x i s  (y ) c - a x i s  (z.)

Pe .5003 .2797 ::./2

IT. .7 197 .3366 1 /2

Cg . 6038 .1799 .3884

Co .3 4 0 7 .3399 .4121

The method i n  p r i n c i p l e  i s  a s  f o l l o w s .

To f i n d  the  a n g le  the  ?e-H  bond makes w ith  the  a - a x i s ,  

sa y ,  l e t  Pe have c o o r d in a te s  (%i , y i  ) and N ,^2  yZg )

The p e r p e n d ic u la r  d i s ta n c e  Pe-N* a lo n g  the  x (o r  a )  a x i s  i s  

Xg -  Xj_ . In  p r a c t i c e  t h i s  d is ta n c e  i s  th e  d i f f e r e n c e  i n  the  

two a tom ic  p aram eters m u l t ip l i e d  by the c e l l  c o n s ta n t  f o r
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the  a - a x i s .

i . e .  Pe-N' = ( .7 1 9 7  -  .5 0 0 3 )  X 6 .1 7
-1  t

OL =  C O S  Pe-N
Pe-N

and the d i s ta n c e  Pe-N i s  known, th e r e fo r e  the a n g le  a can 

be computed.

The r e s u l t s  are as f o l l o w s .

Bond a - a x i s  b - a x i s  c - a x i s

Pe-N c o s in e  .8305  .5 586  0 .0

a n g le  33° 51' 56° 3 ' 90°

Pe-Cg c o s in e  .33 1̂-3 - .6 1 8 6  .7141

a n g le  70° 34 ' 51° 47 ' 47° l '

Pe-Cg c o s in e  - .5 1 2 9  .4946 - .7 0 6 4

a n g le  59° 8' 6o° 22' 45° 3'

As a r o u t in e  check , the a n g le s  between the  bonds 

N-Pe-Cg and Cg-Pe-Cg i n  P igu re  A . l  ( ta k en  from Manoharan 

and H am ilton’ s pap er) v/ere computed. The N-Pe-Cg bond 

a n g le  was found to  be 93°53* which ag reed  w ith  the r e s u l t  

o f  Manoharan and H am ilton. However, the -Pe-Cg bond 

a n g le  c a l c u l a t e d  from the above data  was found to  be c lo s e  

t o  1 8 0 ° .  I t  was thus u n fo r tu n a te  t h a t  the Cg and Cg atoms 

m entioned in  Table I I  o f  Manoharan and H am ilton’ s paper  

were on o p p o s i te  s i d e s  o f  the i r o n  atom. In  e f f e c t ,  on ly  

tv/o o f  the r e q u ir e d  bond d i r e c t io n s  have been found. A lso  

the th r ee  bonds r e q u ir e d  do n o t  form a p e r f e c t l y  or th og on a l
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co o r d in a te  sy stem , s in c e  the Pe-Cg bond i s  b en t dovm. from 

the e q u a t o r ia l  p lane by n e a r ly  fo u r  d egrees  (v id e  su p r a ) .

In  order t o  c a l c u l a t e  the d i r e c t i o n  o f  the P e-C g’ bond, 

Y/e must assume an or th ogo n a l s e t  o f  a x e s .

L et  the Pe-N bond have d ir e c t io n ,  c o s in e s  6,m,n and the  

Pe-Cg bond & \m ’ , n \  V/e s h a l l  assume th a t  th e se  bonds are  

p e r p e n d ic u la r .  I f  the Pe-Cg * bond has d i r e c t i o n  c o s in e s  

p , q , r ,  th en  by the  p e r p e n d ic u la r i t y  c o n d i t io n

^p + mq + nr  = 0

and &’p + m’ q + n ’ r  = 0

S o lv in g  f o r  p t q ! r  v/e have

p : q  : r  = m n*-m *n : n 0’ -  n ’ 6 : Cm’ -  -C'm

In  t h i s  p a r t i c u la r  c a se  n = 0 ,

i . e .  p Î q : r  = mn’ : - n ’ i  : Cm’-  ^ ’m

Thus v/e f i n d  the Pe-Cg ’ bond has d i r e c t i o n  c o s in e s

0 .3 9 8 9  ; - 0 .3 9 3 1  ; -0 .7 7 9 8  w ith  r e s p e c t  to  the C r y s t a l lo -  

g ra p h ic  a - ,  b -  and c -a x e s  r e s p e c t i v e l y .

Now, v/e are p r im a r i ly  i n t e r e s t e d  in  f i n d in g  the d i r e c t 

io n  o f  the  N-0 bond w ith  r e s p e c t  to  the  m olecu la r  a x es  o f  

the n i t r o p r u s s id e  io n .  A ccord in g  to  our nom enclature (Chap. 3 ) ,  

the  d i r e c t i o n  o f  g g iv e s  the d i r e c t i o n  a lo n g  the N-0 bond,

whereas the o th e r  two g - v a lu e s  (g  and g ) have p r in c ip a lX. y
d i r e c t i o n s  a t  r ig h t - a n g l e s  to  the N-0 bond d i r e c t i o n .

Thus, by the u s u a l  method o f  d eterm in in g  the an g le  

b etw een  tv/o l i n e s  ( i . e .  cos Q = + mm’ + n n ’ ) the Fe-N-0

bond a n g le  i s  c a l c u l a t e d  to  be 133° .

The n e x t  s te p  i s  t o  f i n d  the a n g le  made by the  p r o j e c t io n



p r o j e c t i o n  o f  t h e  N-0 bond o n to  t h e  e q u a t o r i a l  p l a n e ,  v / i th  

one o f  t h e  e q u a t o r i a l  Pe -ON b o n d s .  V/e must  a g a i n  make the  

a s s u m p t i o n  t h a t  t h e  Pe-N ,  Pe-Co a n d  Pe-Cg * bonds a r e  t r u l y  

o r t h o g o n a l .  The method i s  a s  f o l l o w s .

L e t  t h e  Pe-N a x i s  be c a l l e d  a ’

Pe-Cg " '' b ’

and the Pe-Cg ' " " c ’

( 1 )  V/e f i r s t  f i n d  th e  d i r e c t i o n  c o s i n e s  o f  th e  N-0 bond 

w i t h  r e s p e c t  t o  t h e  a ’ , b ’ , c ’ s e t  o f  a x e s ,  and  t h e n

( 2 )  p r o j e c t  t h e  N-0 bond o n to  th e  b ’ c '  p l a n e  t o  f i n d  th e  

r e q u i r e d  a n g l e  (j) ( v id e  i n f r a ) .

( 1 )  i ,  N-0 w i t h  a ’ - a x i s

co s  a = ( .9 8 8 3  x .8 3 0 3 )  + ( .1 2 3 8  x .3 3 8 6 )

= .8911  ( 27° )

i i  . N-0 v / i th  b ’ - a x i s

co s  p = ( .9 9 8 3  X .3 3 4 3 )  + ( .1 2 3 8  x - .6 1 8 6 )

+ ( .0 8 6 3  X . 7 1 4 1 )

= .3142  (7 1 °4 1 ’ )

i i i .  N-0 w i t h  c ’ - a x i s

cos  ^  = ( .9 8 8 3  X .3 9 8 9 )  + . ( .1 2 3 8  x - .3 9 3 1 )  

+ ( .0 8 6 3  X - .7 7 9 8 )

= .2 323  ( 7 3 ° 2 3 *)

So th e  new d i r e c t i o n  c o s in e s  o f  the N-0 bond are

( .8 9 1 1 ,  . 3 1 4 2 , . 2 5 2 3 ) .
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P r o .le c t io n  o f  N-0 Bond onto  b*c* P lan e

By sim ple  tr ig o n o m etry  v/e have the  fo l lo v / in g  r e l a t i o n s h i p s

a = r . s i n  a

s in Ç ) .=  I

y s - l  

?*-§

C O S

tan

= r . cos P

= r . co s

cos . 2 ^  =
s i n OL. .4540

cos p .5142
s i n a .4540 “

cos .2^2^
cos P “ .3142  -

.5 5 5 7

.6 9 2 1

.8050

(3 3 ° 4 6 ’ ) 

(46° 12 ' ) 

(38° 5 0 ' )

These r e s u l t s  f o r  w sh ou ld  be s e l f - c o n s i s t e n t ,  and would be 

i f  we had been  d e a l in g  w ith  a tru e  s e t  o f  or th o gon a l a x e s .  

N e v e r t h e le s s ,  the method does g iv e  a rough guide to  the  

re(%uired a n g le .  So we. conclude t h a t ,  w ith in  the l i m i t s  o f  

e x p e r im e n ta l  e r r o r  and com p u ta tion a l l i m i t a t i o n s ,  the  a n g le  

made by the N-O' p r o j e c t i o n  w ith  the Pe-Cg bond i s  40° -  10° .



APPENDIX I I

C a lc u la t io n  o f  the  D ip o la r  I n t e r a c t i o n  between an 

E le c tr o n  C onfined  to  a Hydrogen I s - o r b i t a l  and an

a d ja c e n t  Na N u c le u s .
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C a lc u la t io n  o f  the D ip o la r  I n t e r a c t io n  betw een an E le c t r o n  

C onfined  to  a Evdrop:en I s - o r b i t a l  and an Ad.jacent Sodium

N u c le u s .

1 ,  Assume t h a t  the  e l e c t r o n  i s  d i s t r i b u t e d  o c ta h e d r a l ly  

about the  hydrogen n u c le u s  a t  a d is ta n c e  a^ ( th e  Bohr 

r a d i u s ) .

N a . Z

- 8
P = ao = 0 .5 2 9 1 3  X 10 cm

2o The e x p e r im en ta l  a n i s o t r o p i c  h y p e r f in e  term, (B^) 

i s  g iv e n  by.

&  = = 3
3 c o s  6- -  1

:)
+ 1

(R + r ) 3

(R -  r )^

2 p
where co s  u = —

and g^ = Na n u c le a r  g - f a c t o r .

Term A a r i s e s  from f o u r  e s u iv a ie n t ,  ch a rg es  ( e / 6 )  at. a 

d is ta n c e  r ' from the Na n u c le u s .  Term B a r i s e s  from a
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charge ( e / 6 )  a t  a d is ta n c e  (R + r ) ,  and terra C from a charge’ 

( e / 6 )  a t  a d i s ta n c e  (R -  r ) ,  where 9 = 0 in  b o th  c a s e s .

o

3 .  A p l o t  o f  v e r su s  R, assum ing r = 0 .5 2 9 3  A, w i l l  

g iv e  the s e p a r a t io n  o f  the  sodium n u c le u s  and the  

p ro to n  which g i v e s  an e x p e r im en ta l  B o f  4 . 2  G- (se e  

Chapter 5 ) .

o

Thus,v/hen R = 1*8 A, 

r ” + R'
o o s ^ 6 = - ^ — g- = 0.9205

and v/e f i n d  B^ = 4 .1 2  G, which i s  comparable to  the e x p e r i 

m ental v a lu e  o f  4 . 2  G. So we con c lu d e , on the  b a s i s  o f  t h i s
o

c a l c u l a t i o n , t h a t  the  in t e r n u c le a r  distance R e q u a ls  1 ,8  A 

t o  a good ap p rox im atio n .
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P a rt I  d e a ls  w ith  th e stu d y  o f  v a r io u s  t r a n s it io n  m etal n i t r o s y l

com plexes. The products o f  radiation-dam age in  anhydrous sodium

n itr o p r u ss id e  a re  shown to .b e  n i t r i c  o x id e , trapped a t  s i t e s  w ith  a

s tr o n g  c r y s ta l  f i e l d ,  and th e  h ith e r to  unknown p en ta cy a n o n itro sy l-

f e r r a te  ( m )  an ion . The e . s . r .  param eters o f  th e  l a t t e r  a re  compared

w ith  th o se  o f  th e  i s o e le c t r o n ic  d  ̂ chromium ( l )  and manganese ( l l )

p en ta cy a n o n itro sy l io n s  and a  g en era l tren d  i s  deduced. I r r a d ia t io n  o f

hydrated  n itr o p r u ss id e  a t  77 K i s  shown to  produce two new reduced

s p e c ie s .  These a re  b oth  in te r p r e te d  as th e  io n  [P e(C N )^ o]J^  where th e
*

unpaired e le c tr o n  i s  lo c a te d  in  a  TT o r b ita l  on th e  n it r o s y l  group; 

th e  d if fe r e n c e  b e in g  o n ly  a s u b t le  one in v o lv in g  th e  geometry o f  th e  

m olecu le . The th eory  o f  a  l i b r s t i n g  n i t r o s y l  group i s  proposed to  

e x p la in  t h e ir  unusual h yp erfin e  param eters. P o s s ib le  mechanisms 

o f  radiation-dam age i n  th e  anhydrous and hydrated system s are  d iscu ssed *  

An in fr a -r e d  stud y  on th e  p en ta cy a n o n itro sy l chromâte ( l )  and 

manganatc ( l )  io n a , dopod in to  a lk a l i  h a lld o  I n t t io o a ,  showed a la r g e  

number o f  l i n e s  in  th e  n i t r o s y l  s tr e tc h in g  r e g io n  o f  th e  spectrum , which  

were in te r p r e te d  i n  term s o f  th e  N-0 group in te r a c t in g  w ith  two c a t io n  

v a c a n c ie s  in  th e  l a t t i c e .  In fr a -r e d  sp e c tr a  provide s tro n g  ev idence to  

show t h a t  both  com plexes are  reduced t o  th e  zero o x id a tio n  s t a t e  on 

ir r a d ia t io n  o f  th e  doped h a l id e s .  However, an e . s . r .  stud y  on 

ir r a d ia te d ,  manganese-doped h a lid e s  shows th e  form ation  o f  s e v e r a l  

new param agnetic s p e c ie s ;  th e  com p lex ity  o f  the s p e c tr a  b e in g  such  

th a t  th e  exp ected  manganese (O) complex co u ld  n o t be p o s i t iv e ly  

id e n t i f i e d .



P art H  d ea ls  w ith  th e s t a b i l i s a t io n  o f  in o rg a n ic  r a d ic a ls  in  

p r e c ip ita te d  powders, hydrogen atoms produced i n  ir r a d ia te d  barium  

su lp h ate  a re  shown to  in t e r a c t  w ith  n eigh b ou rin g , im purity  sodium io n s .  

% drogen atom s, formed in  o th er  s o l i d  m a tr ic e s , are  a ls o  shown to  be 

in t e r a c t in g  w ith  a  second m agnetic n u c leu s . There i s  a ls o  exp erim en ta l 

ev idence f o r  the form ation  o f  th e  r a d ic a l- io n s  Hg" and

F in a l ly ,  we rep ort th e form ation  o f  th e  33 v ^ e n c e -e le c t r o n  

CIO^^^ r a d ic a l  in  barium su lp h a te  and compare i t s  s p e c tr a l  param eters 

and geom etry w ith  th o se  o f  i s o e le c t r o n ic  s p e c ie s .


