CONFIGURATION INTERACTION STUDIES OF

SMALL MOLECULES

by

ANDREW DUNCAN TAIT

A thesis submitted to the UNIVERSITY OF LEICESTER for the degree of DOCTOR OF PHILOSOPHY in the Faculty of Science

1972

+i

ProQuest Number: U384660

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest U384660

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

X753071810

THESIS 423565 141172

To Jennifer

•7.

ERRATA

The appropriate passage should read as follows:

CONTENTS

CHAP!	TER 4	4A.	Nat	tural	Spin-Orbital Analysis	23
APPEI	NDIX	IV	• • •	. Fof	R THE D _{wh} SYMMETRY GROUP	165
page	3	line	18	• • • •	of ambiguity. In	
page	5	line	13	• • • •	is S_z (when both	
page	6	line	19	• • • •	(HFR) self consistent	·
page	8	line	4	• • • •	as a "primitive function"	
page	24	γ	(r ₁ :3	Fi) =	$2\sum_{ij}\sum_{j}\varphi_{1}^{*}(\overline{r}_{1})\varphi_{1}(\overline{r}_{1})s_{jm} , ($	4.2)
page	24	line	7	γ($(l i) = \sum_{jm}^{m} f_{ij} s_{jm} f_{ml}$,	
page	24	line	8	• • • •	$f_{lm} = f_{ml}^{\bullet}$. In	
page	27	line	11	••••	matrix, $\underline{X}^{-1} = \underline{X}^+$, thus	Ĩ
page	27	2	<u>K_1</u> M	-¹ <u>F</u> ∆	$\underline{\mathbf{F}}^{+}(\underline{\mathbf{W}}^{-1})^{+}(\underline{\mathbf{X}}^{-1})^{+} . \qquad (4)$.13)
page	60	line	26	• • • • '	, their wave function	
page	ି 66	line	19	••••	consistent with the	
page	72	line	25	• • • •	origins at the nuclei	
page	82	۸	$= \sum_{i}$	^m i	• (7	.16)
page	83	line	5	• • • •	even number of ungerade	
page	95	line	18	••••	for which C _{L1} is non-zero	
page	96	line	13	• • • •	two centres various	
page	. 97	line	22	••••	integrals follows immediately	•
page	104	line	. 8	• • • •	step in evaluating	
page	106	line	7	••••	Kotani et alia ⁽⁴³⁾	
page	106	line	11	••••	which are listed	с 1 4
page	112	line	13	. • • • •	(Horner's method)	1 4
page	113	line	17	• • • •	for all $j \neq k$	
page	116	line	15	• • • •	(40,41,66)	
page	116	line	24	• • • •	the configurations are	
page	122	line	23	••••	"primitive functions"	
page	133	-	Ref	erence	e 56	
page	134	8	^a 5	3.940	09x10 ⁵ -8.1705x10 ⁵ -4.5959x1	04

CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

,

CHAPTER 1.	METHODS OF SOLVING THE STATIONARY STATE SCHRODINGER EQUATION	1
	PART I	
CHAPTER 2.	INTRODUCTION - A THREE-CENTRE TWO-ELECTRON PROBLEM	10
CHAPTER 3.	WAVE FUNCTIONS AND ENERGIES	15
CHAPTER 4.	ANALYSIS OF SYSTEMS	22
	 A. Natural Spin-Orbital Anayslis B. Electron Population Analysis C. Electron Density Contours D. Energy Analysis 	23 39 44 56
CHAPTER 5.	DISCUSSION OF RESULTS	57
CHAPTER 6.	CONCLUSION	69
	PART II	
CHAPTER 7.	INTRODUCTION - THE METHOD OF CONFIGURATION INTERACTION	72
CHAPTER 8.	COMPUTATIONAL METHODS	92
	A. Generation of Detors B. Evaluation of Integrals over the Atomic	93
	Orbital Basis Set	96
	Orthonormal Basis Set	98
	Equation	102
CHAPTER 9.	SPECTROSCOPIC CONSTANTS OF DIATOMIC MOLECULES	108
CHAPTER 10.	RESULTS AND DISCUSSION	116
CHAPTER 11.	CONCLUSION	147
APPENDIX I	ATOMIC UNITS AND CONVERSION FACTORS	151
APPENDIX II	MOLECULAR ORBITALS FOR THE GROUP $D_{\infty h}$	156
APPENDIX III	UTILITY ROUTINES	160

Page

APPENDIX	IV	GENDET: A PROGRAM FOR GENERATING DETORS OF A GIVEN ANGULAR MOMENTUM AND ELECTRON . SPIN FOR THE $D_{\color{red}{\infty}h}$	165
APPENDIX		ØNECEN. A PROGRAM FOR COMPUTING ONE-CENTRE ONE- AND TWO-ELECTRON INTEGRALS OVER COMPLEX SLATER-TYPE ORBITALS	185
APPENDIX	VI	INTRA. A PROGRAM FOR TRANSFORMING ONE- AND TWO-ELECTRON INTEGRALS OVER AN ATOMIC ORBITAL BASIS INTO INTEGRALS OVER AN ORTHONORMAL BASIS	198
APPENDIX '	VII	SECSØL. A PROGRAM FOR THE CONSTRUCTION AND SOLUTION OF THE SECULAR EQUATION IN THE METHOD OF CONFIGURATION INTERACTION	235
APPENDIX	VIII	SPECTRØ. A PROGRAM FOR COMPUTING THE SPECTROSCOPIC CONSTANTS OF DIATOMIC MOLECULES	275
APPENDIX :	IX	SPECIFICATION OF DETORS AND CODETORS FOR THE Σ_{g} , Σ_{g} , AND Δ_{g} STATES.	290
REFERENCES	S		304

•

page

ACKNOWLEDGEMENTS

The author would like to thank Professor E.A. Stewardson and Professor J.E. Enderby for the opportunity to work in the Department of Physics, University of Leicester.

Thanks are also due to Dr M. Dixon for his assistance with various aspects of computer programming, to Dr J.R. Thompson for his advice on problems in numerical analysis, to Mr P. Blanshard and Mr R. Brandwood of the SRC Atlas Computer Laboratory for their help in running computer programs, and to Miss J.M. Coleman for her careful typing of the manuscript.

The receipt of an SRC Research Studentship is gratefully acknowledged.

Above all, the author is indebted to Dr K.E. Banyard for his supervision throughout this research, and for many hours of helpful discussion and encouragement on every aspect of this work.

ABSTRACT

The method of Configuration Interaction (CI) has been used in a number of studies of small atomic and molecular systems.

In Part I, CI wave functions for a series of pseudomolecular ions ZHZ^{2Z-1} are reformulated in terms of natural orbitals. Changes in the electron density as a function of the nuclear charge Z and bond angle ZHZ are investigated by means of an electron population analysis based on the natural orbitals. Contour diagrams of the electron density in the plane of the molecule are obtained. The total energy for each system is analysed in terms of the kinetic energy, nuclear attraction energy, and the electron and nuclear repulsion energies.

In Part II, the CI method is examined in detail. Techniques for obtaining CI wave functions of atoms and molecules are discussed in detail. Computer programs based on these techniques are described, and listed in the Appendices. The Valence Configuration Interaction (VCI) method is also examined as a means of reducing the size of the secular equation, and results of VCI calculations are given for various states of atomic and diatomic oxygen and sulphur. Spectroscopic constants for the $X^3 \Sigma_g^{-1}I$ and $b^1 \Sigma_g^{+1}I$ states of 0_2 and for the $X^3 \Sigma_g^{-1}I$, $a^1 \Delta_g I$ and $b^1 \Sigma_g^{+1}I$ states of S_2 are given. The methods by which these results can be obtained are also discussed. Finally the results of the VCI calculations are compared with some recent SCF calculations on 0_2 and S_2 .

CHAPTER 1

METHODS OF SOLVING THE STATIONARY STATE

SCHRODINGER EQUATION

The mathematical basis of molecular quantum mechanics is the stationary state Schrödinger equation: in the Born-Oppenheimer $\begin{pmatrix} 1 \\ \end{pmatrix}$ approximation the separation of the electronic and nuclear motions leads to two equations, one describing the electronic, and the other describing the nuclear behaviour. For a system of n-electrons moving in the potential field of a fixed framework of nuclei the stationary state Schrödinger equation may be written as

$$\mathfrak{h}\Psi(\overline{\mathbf{x}}_1,\overline{\mathbf{x}}_2,\ldots,\overline{\mathbf{x}}_n) = \mathbb{E}_{\mathbb{E}}\Psi(\overline{\mathbf{x}}_1,\overline{\mathbf{x}}_2,\ldots,\overline{\mathbf{x}}_n) \quad . \quad (1.1)$$

In (1.1) \mathfrak{h} is the Hamiltonian operator, $\mathbf{E}_{\mathbf{E}}$ is an eigenvalue of \mathfrak{h} , interpreted physically as the energy of the stationary state, and Ψ is an eigenfunction of \mathfrak{h} corresponding to the eigenvalue $\mathbf{E}_{\mathbf{E}}$. The eigenfunction, or wave function, is a function of the space and spin co-ordinates of all of the electrons. The space-spin coordinates of electron μ are denoted by $\overline{\mathbf{x}}_{\mu}$. The Hamiltonian operator has the form

$$\mathfrak{h} = \sum_{\mu} h_{\mu} + \sum_{\mu < \nu} g_{\mu\nu} , \qquad (1.2)$$

where h_{μ} is the one-electron Hamiltonian operator for electron μ :

$$h_{\mu} = -1/2\nabla_{\mu}^{2} + \nabla_{\mu} \qquad (1.3a)$$

This operator, consisting of a sum of the kinetic and potential energy operators for electron μ , has dimensions and is written in terms of primary or atomic units described in Appendix I. The second summation

in (1.2) is the electrostatic repulsion of all pairs of the electrons

μ, ν,

$$g_{\mu\nu} = 1/r_{\mu\nu}$$
 (1.3b)

and $r_{\mu\nu}$ is the distance between electron μ and electron ν . An operator representing the electrostatic repulsion between the nuclei is sometimes included in (1.2). When this operator is omitted E_E is the electronic energy and when it is present E_E represents the total energy for the state. E_E is given by

$$E_{E} = \frac{\langle \Psi | | | \Psi \rangle}{\langle \Psi | \Psi \rangle} \qquad (1.4)$$

The operators \mathfrak{h} , h_{μ} and $g_{\mu\nu}$ are Hermitian.

Although it is not possible to obtain an exact solution of the stationary state Schrödinger equation for systems of more than oneelectron and two nuclei, it is possible to obtain approximate solutions which yield good energies when compared with experimental values, and which may be used to calculate molecular properties. This thesis deals with one of the methods of solving (1.1); the method of Configuration Interaction (CI). In the first part, the CI wave functions for a series of three-centre two-electron pseudomolecular ions are analysed in terms of natural spin orbitals. An electron population analysis is developed in terms of the natural spin orbitals and variations of the results of this analysis are coupled with an analysis of the various components of the total energy, in an attempt to explain the unusual behaviour of these systems. In the second part the CI method is discussed in detail and it is applied to homonuclear diatomic molecules. Computer programs, developed for the purpose of obtaining CI wave functions, spectroscopic constants and various properties, are described, and results obtained

for the molecules 0_2 and S_2 are presented. Whenever possible these results are given in the form of facsimiles of the computer output in order to remove the possibility of errors arising during transcription.

In this introductory chapter some of the current non-empirical methods for obtaining solutions of (1.1) are briefly reviewed. The most popular approach is that of molecular orbitals; the basis of which is the determination of approximate electronic wave functions for a molecule by assigning each electron to a one-electron wave function, which in general extends over the whole molecule and has symmetry properties corresponding to the nuclear framework of the molecule. One-electron wave functions which do not depend on the spin co-ordinate s_{μ} of electron μ will be denoted by $arphi_{\mathbf{i}}(\overline{\mathbf{r}}_{\mu})$, where $\overline{\mathbf{r}}_{\mu}$ represents the spatial co-ordinates and 1 identifies the one-electron wave function or orbital. One-electron wave functions which are dependent on the spin co-ordinates are denoted by $\Psi_i(\bar{x}_{\mu})$, these are called spin-orbitals. The symbols $\mathscr{P}_{i}(\mu)$ and $\psi_{i}(\mu)$ may also be used for indicating orbitals and spin-orbitals where there is no possibility of ambiguity. The spin-orbitals may be written as a product of an orbital and a spin function $\Theta_{\mathbf{i}}(\mathbf{s}_{\mu})$. There are only two linearly independent spin functions which are designated lpha and eta . Each orbital can be used to construct two spin-orbitals

$$\psi_{2i-1} = \varphi_i \varphi_i , \qquad (1.5)$$

$$\psi_{2i} = \varphi_i \beta .$$

Thus spin-orbitals with odd valued identifiers are associated with an

 σ spin, and those with even valued identifiers with a β spin. It is well known ⁽²⁾ that if the set of orbitals $\{\varphi_i\}$ is subject to a unitary transformation, then the resulting set $\{\varphi_i\}$ represents

- 3 -

the same physical situation. It is often convenient to chose the set

 $\{\varphi_i\}$ to be an orthonormal one,

$$\int \varphi_{i}^{*}(\mu) \varphi_{j}(\mu) dr_{\mu} = \delta_{ij} , \qquad (1.6a)$$

hence

$$\int \psi_{i}^{*}(\mu)\psi_{j}(\mu)dx = \delta_{ij}, \qquad (1.6b)$$

where dr_{μ} is the one-electron volume element without spin, dx_{μ} the one-electron volume element with spin, and δ_{ij} is the Krönecker delta. The n-electron wave function Ψ is then written as a linear combination of antisymmetrized products of spin-orbitals. The Pauli principle states that a spin-orbital may be occupied by only one electron, hence each orbital may be occupied by two electrons and the antisymmetrized product, usually written in the form of a determinant D_{χ} , satisfies this principle. Thus

$$D_{K} = (n!)^{-1/2} \begin{vmatrix} \psi_{k1}(1)\psi_{k2}(1) & \cdots & \psi_{kn}(1) \\ \psi_{k1}(2)\psi_{k2}(2) & \cdots & \psi_{kn}(2) \\ & \cdots & \cdots & \ddots \\ \psi_{k1}(n)\psi_{k2}(n) & \cdots & \psi_{kn}(n) \end{vmatrix}$$

and

$$\Psi = \sum_{K} D_{K} b_{KI} \qquad (1.7)$$

The coefficients b_{KI} in (1.7) are determined by a variation method which minimizes E_E . The subscript I is included in (1.7) because it is possible to construct more than one solution to (1.1) from a given set of determinants.

A reasonable approximation to a molecular orbital is a linear combination of atomic orbitals (ICAO) which are associated with the atoms

constituting the molecule:

$$\varphi_{i} = \sum_{k} \omega_{k} c_{ki} , \qquad (1.8)$$

where ω_k is a normalized atomic orbital. Hall $\begin{pmatrix} 3 \end{pmatrix}$ gives a list of the possible forms of ω_k . The coefficients c_{ki} are chosen so that the φ_i are at least normalized. Further restrictions may demand that (1.6a) is satisfied and that E_F is a minimum.

Before discussing methods of determining the coefficients $b_{\overline{KI}}$ in (1.7) and $c_{\underline{Ki}}$ in (1.8), it is necessary to examine the roles of electron spin and molecular symmetry. When spin-orbit effects are ignored the approximate or trial wave function must be an eigenfunction of the total spin operator \mathfrak{G}^2 , and the operator \mathfrak{G}_z associated with the z-component of the total electron spin. The eigenvalue of \mathfrak{G}^2 is S(S + 1) and that of \mathfrak{G}_z is S_z (when both are in primary units):

$$\mathfrak{S}^2 \Psi = S(S + 1) \Psi$$

 $\mathfrak{S}_z \Psi = S_z \Psi$.

A single determinant is an eigenfunction of \mathcal{B}_{Z} with an eigenvalue of $S_{Z} = 2^{-1}(n_{a} - n_{\beta})$, (4) where n_{a} is the number of spin-orbitals of \exists spin and n_{β} the number with β spin.

$$g'_{z}D_{K} = 2^{-1}(n_{s} - n_{\beta})D_{K}$$
 (1.9)

A single determinant is rarely an eigenfunction of \mathfrak{S}^2 , but this is achieved when $S = S_Z$. However, it is possible to construct linear combinations of determinants which are eigenfunctions of \mathfrak{S}^2 . Each determinant in such a linear combination corresponds to the same eigenvalue of $\mathfrak{B}_{\mathbb{Z}}$. Thus, if

$$\Psi_{\mathbf{L}} = \sum_{\mathbf{K}}^{\Sigma} D_{\mathbf{K}} \mathbf{t}_{\mathbf{K}\mathbf{L}} , \qquad (1.10)$$

and

$$g^2 \Psi_{\mathbf{L}} = S(S + 1) \Psi_{\mathbf{L}}$$

then it is possible to write the trial wave function as a linear combination of the functions Ψ_{T_i} :

$$\Psi = \Sigma \Psi_{L} a_{LI} \qquad (1.11)$$

In (1.11), as in (1.7), there are several sets of the coefficients $\{a_{LT}\}$ which will give an acceptable Ψ .

If the nuclei of the molecule are assumed to be fixed, i.e. the molecule is rigid, it is possible to assign the molecule to a specific symmetry group, and the wave function must be a basis for an irreducible representation of the symmetry group to which the molecule belongs. This requirement is most easily satisfied if the molecular orbitals (1.8) are themselves bases for the irreducible representations of the molecular symmetry group. Thus, the $\Psi_{\rm L}$ in (1.10) are also required to be eigenfunctions of the operators of the molecular symmetry group.

The simplest non-empirical form of trial wave function is a single determinant. This leads to the Hartree-Fock-Roothaan (HFR) self consistant field method (2,5) and the Unrestricted Hartree-Fock (UHF) method. The former assumes that the determinant is constructed from a set of doubly occupied molecular orbitals(2,5) and the energy is minimized with respect to the coefficients determining the molecular orbitals of (1.8). It is

a condition of the method that the resulting orbitals are orthonormal. The HFR method suffers from several disadvantages. Two important ones are that it is not always possible to represent a molecular spin state by a single determinant, and the method makes no allowance for correlation between electrons with different spins: the wave function does not vanish as the antisymmetry requirement implies when electrons of different spin have the same spatial co-ordinates $\binom{6}{}$. The UHF method is an attempt to overcome the shortcomings of the HFR method, whilst maintaining some of its simplicity $\binom{7}{}$. In the UHF theory the spatial orbitals associated with the $\overset{\mathfrak{C}}{}$ spins are different from those associated with

 β spins. A determinant of such orbitals is no longer an eigenfunction of \mathfrak{G}^2 , and it is necessary to operate on the determinant with a projection operator^(7,8) to obtain the required spin eigenfunction. The energy is then minimized with respect to the orbitals. The basis of both methods and their derivatives ⁽⁶⁾ is an iterative or self consistant field (SCF) procedure ^(2,5), in which a trial set of orbitals is used to obtain a better set; the process is terminated when the energies obtained using two successive sets of orbitals differs by an acceptably small amount. The problem with the SCF method is that the convergence of the iterative process cannot be guaranteed. Occasionally the HFR method predicts, as in the case of the fluorine molecule $F_2^{(9)}$, that the molecule is unstable relative to dissociation, contrary to experiment. Despite these drawbacks many of the most successful calculations of molecular structure have been based on the single determinant approach ⁽¹⁰⁾

The logical progression from the single determinant trial wave function is to use a linear combination of determinants grouped together as in (1.10). This is the basis of the CI method. Unfortunately, there is a great deal of ambiguity attached to the word 'configuration'; its usage is reviewed by McWeeny and Sutcliffe (11). If the wave function is written as a sum of determinants (1.7), then each term is defined by

- 7 -

specifying a 'configuration of occupied spin-orbitals', which is then antisymmetrized to form a determinant. Alternatively if (1.11) is used, each term is defined by specifying a 'configuration of occupied (spatial) orbitals'; often referred to as a 'primative function'. This is then multiplied by a total spin eigenfunction (12) and the whole may then be antisymmetrized. The unknown coefficients in the expansion of the trial wave function are determined by the requirement that the energy should be a minimum. The number of terms in the summation of (1.11) is much reduced by the fact that functions (1.10), belonging to different irreducible representations, are orthogonal; as are those corresponding to different eigenfunctions of \mathbf{S}^2 and \mathbf{S}_2 . Thus, for a given symmetry it is only necessary to include terms in the expansion which belong to the same irreducible representation and correspond to the same eigenvalues of \mathfrak{G}^2 and \mathfrak{G}_z . It must be emphasized that in the CI method it is the expansion coefficients b_{KI} of (1.7) or a_{LI} of (1.11) and not the C_{ki} of (1.8) that are varied to minimize the energy. The CI method is straightforward. Differentiation of the expression which results from substituting (1.11) in (1.4) with respect to the $a_{T,T}$ leads to a set of simultaneous linear equations which are equal to zero if E is a minimum. These equations are conveniently written in matrix form as

$$(\underline{H} - \underline{ES})\underline{A} = 0 \quad . \tag{1.12}$$

The elements of the real symmetric matrices \underline{H} and \underline{S} are

$$H_{IJ} = \langle \Psi_{I} | \hat{h} | \Psi_{J} \rangle , \qquad (1.13a)$$

and

$$S_{IJ} = \langle \Psi_{I} | \Psi_{J} \rangle \qquad (1.13b)$$

<u>A</u> is a column vector with elements a_{LI} . The matrix equation, called the secular equation, represents a pseudo-eigenvalue problem, which may be solved by well known methods ⁽¹³⁾. The solution of (1.12) produces several values of E, each an eigenvalue, or characteristic root, of <u>H</u> and its associated eigenvector <u>A</u>. Each value of E, and its corresponding eigenvector, represents a different energy level of a particular symmetry and spin state. The actual number of levels is equal to the number of eigenvalues of <u>H</u>, hence it is equal to the number of terms in (1.11).

While the CI method does attempt to include an allowance for electron correlation (14), it has disadvantages concerning the size of the expansion (1.11), and the slow rate of convergence, since many terms are required to produce a good energy. The matrix elements H_{IJ} and

 S_{IJ} may be obtained by calculating $\langle D_{K} | \hat{J} | D_{L} \rangle$ and $\langle D_{K} | D_{L} \rangle$ first, and then transforming into H_{IJ} and S_{IJ} by use of (1.10). The calculation of H_{IJ} and S_{IJ} is simplified if the determinants are constructed from an orthonormal set of molecular orbitals, when the matrix <u>S</u> becomes the identity matrix:

$$S_{IJ} = \delta_{IJ}$$

In this case it is also possible to obtain the H_{IJ} 's directly from integrals over the basis set of molecular orbitals using the formalism of Kotani et alia (12).

The extension of the SCF and CI methods leads to a combination called the Multi-configuration SCF (MC-SCF) method (15). While this approach has produced some interesting results, (10, 16, 17, 18) the problem of the non-convergence of the SCF process still lacks a satisfactory solution.

١

•--

1

.

,

- 10 -

CHAPTER 2

INTRODUCTION - A THREE-CENTRE TWO-ELECTRON PROBLEM

Many of the studies of electron bonds in molecules and molecular ions have concentrated on the "normal" two-electron bond, the prototype of which is the H₂ molecule. The very detailed computational studies of Kolos⁽¹⁹⁾ are examples of the considerable attention that this molecule has received. The subsequent analysis of this type of calculation by Shull^(0,21) has resulted in a considerable increase in our understanding of the nature of the two-electron bond.

It is significant that, until recently⁽¹⁰⁾, another type of chemical bond has received little or no attention from the theoreticians. This is the electron-deficient bond, the prototype of which is the hydrogen molecular ion (H_3^+) , consisting of three protons which are bound together by two electrons. A very detailed study of this system by Christoffersen⁽²²⁾ provided information about its structure and about the electron distribution within the bonds. More complex examples of electron-deficient bonds are to be found in the boron hydrides, in certain aluminium and beryllium hydrides, and in the trihalogens BF_3 , BCl_3 , and BBr_3 .

One of the smaller boron hydrides is diborance: (B_2H_6) . For many years the structure of diborane was thought to be the same as that of ethane (C_2H_6) shown in Fig. 1. The C-H bonds of this molecule have

FIG. 1. ETHANE C2 H6

the normal two-electron character and there is a three-fold axis of symmetry along a line joining the two carbon atoms. Careful analysis of the rotation-vibration spectrum of B_2H_6 by $Price^{(23)}$ showed that it has a two-fold axis of symmetry about a line joining the two boron atoms (the structure is shown in Fig. 2). The terminal BH_2 groups are coplanar and the central hydrogen atoms lie symmetrically above and

FIG. 2. DIBORANE B.H.

below this plane. These hydrogen atoms form "bridge structures" with the two BH_2 groups, and the bridge structures are characterized by their electron deficiency, since in the case of diborane only four electrons constitute the four B-H bonds⁽²⁴⁾.

Theoretical calculations of the structure and properties of molecules are relatively complex and the difficulties involved increase rapidly as the number of electrons and nuclei increase. It seems reasonable that a study of electron-deficient bonds should begin with a study of a relatively small molecular system. H_3^+ is the obvious molecular system to begin with, but is not sufficiently typical to provide much information about the electron-deficient bonds of diborane. However, its structure is an equilateral triangle⁽²²⁾ of side 1.66 bohr⁽²²⁾; a geometry very similar to that of one of the BHB bridge structures in diborane. This apparent similarity led to the proposal, by Banyard and Shull⁽²⁵⁾, of the ZHZ^{2Z-1} pseudomolecular ion as a model for the study of a bridge bond as found in B_2H_6 . The model (shown in Fig. 3.) consisted of an isoceles triangle BAC with a proton at A, and two nuclei B and C which

FIG. 3. THE PSEUDO MOLECULAR ION ZHZ^{2Z-1}

had equal but variable nuclear charges Z; two electrons were associated with this nuclear framework. The bond length $R_{AB} (= R_{AC})$ was fixed at the equilibrium bond length of H_3^+ so that when Z = 1.0 the ZHZ^{2Z-1} system became H_3^+ and comparisons with other calculations on this molecular ion were then possible. The variable nuclear charge provided some allowance for the nuclear shielding caused by the presence of other electrons which were otherwise unaccounted for in the calculation.

The variation of the molecular energy of the ZHZ^{2Z-1} ions, as a function of the variable nuclear charges and bond angle (Θ in Fig. 3.), was studied for Z in the range $0.8 \le Z \le 2.2$ and Θ in the range $30^{\circ} \le \Theta \le 180^{\circ}$; in addition, for Z = 1.8 the variation of energy, as a function of bond angle and bond length (R_{AB} in Fig. 3.), was computed. The angle BHB in the bridge structure of diborane is about 80° and it might reasonably be expected that as the nuclear charge Z is increased in the ZHZ^{2Z-1} model, the optimum bond angle, that is the angle corresponding to the minimum molecular energy, would increase from the 60° of H_3^{+} . However the computed results exhibit an initial decrease in the optimum bond angle. At Z = 1.8 a double minimum is observed and for Z > 1.8 the optimum bond angle is 180° and the system is linear. These results invited further investigation as it was felt that although the unusual behaviour of the ZHZ^{2Z-1} systems prevented them from being regarded as a representative fragment of B_2H_6 , a study of the quantum mechanical behaviour of such systems might nevertheless shed some light on the nature of electron-deficient bonds.

In order to understand and interpret the results for ZHZ^{2Z-1} it is necessary to examine them in detail and, where possible, to give a firm mathematical basis to tentative suggestions concerning the nature of the electron distribution in the ions. This is true for the suggested existence of two components of the electron density. The natural spin orbital (NSO) analysis of $L\overline{o}wdin^{(8)}$ provides an excellent means of examining these results, particularly as Shull (26) has shown that the results of such an analysis are not greatly affected by the method of calculation of the original wave function nor by the size of the basis set (this second point is illustrated in Chapter 4). By using an electron population analysis similar to that of Mulliken⁽²⁷⁾, but based on the natural spin orbital analysis, it has been possible to define the "shared" and "local" density components used in the tentative explanation of the behaviour of the ZHZ^{2Z-1} ions⁽²⁵⁾. A detailed analysis of the various components of the molecular energy of the ions is also included in this thesis and possible relations between variations in these components and the results of the population analysis are discussed. Thus an attempt has been made to examine nearly all of the aspects of the

behaviour of the ZHZ^{2Z-1} pseudomolecular ions and to provide a detailed account of the electron distribution in these ions. Finally, comparisons between the results presented here are made with those of other authors.

CHAPTER 3

WAVE FUNCTIONS AND ENERGIES

The wave functions and energies of the ZHZ^{2Z-1} pseudomolecular ions examined here were obtained by the configuration interaction (CI) method. The object of the CI method is to provide an approximation to the solution of the Schrödinger equation for the three-centre two-electron system under consideration. Ignoring relativistic effects, and working within the Born-Oppenheimer approximation⁽¹⁾ yields the Hamiltonian (in atomic units)

$$\mathfrak{h} = -\frac{1}{2} \sum_{t=1}^{2} \nabla_{t}^{2} - \sum_{t=1}^{2} \left(\frac{1}{r_{At}} + \frac{Z}{r_{Bt}} + \frac{Z}{r_{Ct}} \right) + \frac{1}{r_{12}} + \frac{Z}{R_{AB}} + \frac{Z}{R_{AC}} + \frac{Z^{2}}{R_{BC}} \,. \tag{3.1}$$

The first term in (3.1) is the kinetic energy operator and the others represent the electron-nuclear attraction, the electron-electron and nuclear-nuclear repulsion terms respectively.

The approximate total wave function for the k-th energy state of the system is expressed as

$$\Psi(\overline{x}_1, \overline{x}_2) = \sum_{i} c_i \Psi_i(\overline{x}_1, \overline{x}_2) , \qquad (3.2)$$

where the $\{c_i\}$ are coefficients to be determined and the $\{\Psi_i\}$ are linearly independent determinantal wave functions. The energy B, of this state, is defined by

$$E = \frac{\langle \Psi | \mathfrak{h} | \Psi \rangle}{\langle \Psi | \Psi \rangle} . \tag{3.3}$$

Application of the variation method, which demands that

$$\frac{\partial F_i}{\partial C_i} = 0$$

to (3.3) leads to a system of linear equations which may be written as

$$(\underline{H} - \underline{ES})C = 0,$$
 (3.4)

where H and S are matrices with elements:

$$H_{ij} = \langle \Psi_i | \mathfrak{h} | \Psi_j \rangle$$

and

$$S_{ij} = \langle \Psi_i | \Psi_j \rangle$$

respectively, and <u>C</u> is a column vector with elements $\{c_i\}$. Once the forms of the two-electron configurations $\{\psi_i\}$ are specified, the total electronic energy and corresponding wave function may be obtained by the solution of the pseudo-eigenvalue problem of (3.4). (A detailed account of the CI method is given in part 2.)

With two-electron systems, such as ZHZ^{2Z-1} , it is possible to factorize the configuration Ψ_{1} into a spatial part and a spin part. The spin factor, which is antisymmetric, because the ground state is a singlet, can be integrated out of the problem; thus:

$$\Psi_{i}(\overline{x}_{1},\overline{x}_{2}) = \frac{1}{J^{2}}(\alpha(s_{1})\beta(s_{2}) - \alpha(s_{2})\beta(s_{1}))\phi_{i}(\overline{r}_{1},\overline{r}_{2}),$$

so that we may write

$$\Phi(\overline{r}_1,\overline{r}_2) = \sum_{i} c_i \phi_i(\overline{r}_1,\overline{r}_2)$$
(3.5)

 Ψ and Φ are both normalized to unity. The functions $\{\Phi_i\}$ are formed from linear combinations of products of symmetry-adapted molecular orbitals which are constructed from a basis set of Slater-type atomic orbitals. The normalized form of these orbitals is

$$\varphi(n,l,m) = \left[\frac{(2l)^{2n+1}}{(2n)!}\right]^{1/2} r^{n-1} \exp(-lr) S_{lm}(\theta,\phi),$$

where i is a variational parameter and S_{lm} (θ , \emptyset) is a normalized surface harmonic.

In order to examine the ZHZ^{2Z-1} ions the basis set was limited to three 1s functions, one on each nucleus with the designations $1s_A$, $1s_B$, and $1s_C$ respectively. Inspection of the Hamiltonian shows it to be invariant under the symmetry-operations of the point group C_{2V} , consequently it is possible to generate three symmetry-adapted molecular orbitals from the limited basis set:

$$\phi_{1}(t) = 1s_{B}(t) + 1s_{C}(t) \qquad A_{1}$$

$$\phi_{2}(t) = 1s_{A}(t) \qquad A_{1}(3.6)$$

$$\phi_{3}(t) = 1s_{B}(t) - 1s_{C}(t) \qquad B_{1}$$

where $t = \bar{r_1}$ or $\bar{r_2}$. The irreducible representation to which each of the ϕ_1 (t) belongs is shown to the right of (3.6). From a similarity with H_3^+ only those configurations which transform according to the A_1

irreducible representation of C_{2V} , will contribute to the ground state wave function and energy of ZHZ^{2Z-1} . The fully symmetry-adapted space configurations are:

$$\Phi_{1}(\overline{r}_{1},\overline{r}_{2}) = 2\Phi_{1}(\overline{r}_{1})\Phi_{1}(\overline{r}_{2})$$

$$\Phi_{2}(\overline{r}_{1},\overline{r}_{2}) = 2\Phi_{2}(\overline{r}_{1})\Phi_{2}(\overline{r}_{2})$$

$$\Phi_{3}(\overline{r}_{1},\overline{r}_{2}) = 2\Phi_{3}(\overline{r}_{1})\Phi_{3}(\overline{r}_{2})$$

$$\Phi_{4}(\overline{r}_{1},\overline{r}_{2}) = \Phi_{1}(\overline{r}_{1})\Phi_{2}(\overline{r}_{2}) + \Phi_{2}(\overline{r}_{1})\Phi_{1}(\overline{r}_{2})$$

Thus each of the calculations on the $\text{ZHZ}^{2\mathbb{Z}-1}$ ions may be regarded as a complete CI treatment within the limited basis set. The symmetry of the system requires that the orbital exponents ℓ_{B} and ℓ_{C} of the atomic orbitals 1s_B and 1s_C are equal. The orbital exponents were optimized to give a minimum value to the electronic energy, E, for each of a pre-selected set of values of θ , Z and the internuclear distance Z-H.

Energies and wave functions were obtained for Z = 0.8 (0.2) 2.2for various values of θ in the range $30^{\circ} \leq \theta \leq 180^{\circ}$. For most values of Z the bond length R (= R_{AB}) was taken as 1.66 bohr. This was the optimum bond length obtained by Christoffersen⁽²²⁾ for the ground state of H_3^+ , consequently it was possible to compare the analysis of the results of the H_3^+ calculation obtained when Z = 1.0, with his results and so some knowledge of the effect of increasing the size of the basis set was obtained. For the case of Z = 1.8 two additional values of R were used and, consequently an indication of the dependence on the bond length of the observed effects was obtained. Preliminary results of the natural spin orbital analysis indicated that a large volume of results would be obtained, and that a correspondingly large amount of computing time would be required if each of the systems and geometries available were to be studied in detail. The natural spin orbital analysis, the concomitant electron population and energy analysis were restricted to the systems for which Z = 1.0 (0.4) 2.2for all bond angles. But the two additional values of R for Z = 1.8 were included. Details of wave functions, orbital exponents, and energies for all of the geometries of the systems examined are presented in Tables 1.1-1.6. TABLE 1.1. WAVE FUNCTION COEFFICIENTS, GRBITAL EXPONENTS, AND ENERGIES FOR Z=1.00A.U., R=1.66BOHR.

e	C1	C 2	C3	C4	۲ _A	۲, В	ENERGY
30.00	0.00036	0.00119	-0.04919	0.18247	1.4190	1.5760	-1.13865
40.00	0.07624	0.00081	-0.04413	0.19831	1.4150	1.5070	-1.25386
50.00	0.07231	0.01639	-0.04280	0.21172	1.4090	1.4470	-1.29044
60.00	0.06334	0.02553	-0.04278	0.22223	1.4000	1.4000	-1.29786
70.00	0.06417	0.03499	-0.04317	0,23005	1.3870	1.3670	-1.29417
80.00	0.03994 -	0.04472	-0.04376	0.23781	1.3710	1.3430	-1.28670
100.00	0.05121	0.06496	-0.04439	0.24668	1.3370	1.3200	-1.27099
120.00	0.04436	0.08595	-0.04557	0.24998	1.3000	1.3205	-1.25927
150.00	0.03657	0.11363	-0.04579	0.24774	1.2560	1.3420	-1.24996
180.00	0.03371	0.12653	-0.04555	0.24485	1.2370	1.3590	-1.24746

TABLE 1.2. WAVE FUNCTION COEFFICIENTS, ORBITAL EXPONENTS, AND ENERGIES FOR Z=1.40A.U., R=1.66BGHR.

e C1 C2 C3 C4 ζ_{A}	ζ _B	ENERGY
30.00 0.12612 -0.00602 -0.04750 0.09145 1.6680	1.9265	-1.53073
40.00 0.12510 -0.00421 -0.04339 0.11781 1.6370	1.8150	-1.67650
52.15 0.12167 0.00004 -0.05227 0.14604 1.6040	1.7130	-1.70761
60.00 0.11343 0.00416 -0.05509 0.16258 1.5800	1.6710	-1.70217
70.00 0.11372 0.01063 -0.05869 0.18079 1.5500	1.6360	-1.68797
30.00 0.10382 0.01766 -0.06218 0.19513 1.5220	1.6120	-1.67323
1 00.00 0.09939 0.03291 -0.06788 0.21525 1.4730	1.5970	-1.65113
120.00 0.09118 0.04755 -0.07165 0.22650 1.4300	1.6030	-1.63917
1 50.00 0.03233 0.06439 -0.07423 0.23357 1.3860	1.6230	-1.63239
1 80.00 0.07996 0.07099 -0.07481 0.23517 1.3700	1.6340	-1.63109

TABLE 1.3. WAVE FUNCTION COEFFICIENTS, ORBITAL EXPONENTS, AND ENERGIES FOR Z=1.30A.U., R=1.66BOHR.

θ	C1	C2	C3	C4	۲ _A	۲ _В	ENERGY
30.00	0.14907	-0.00329	-0.04412	0.04021	1.9380	2.2850	-1.97917
40.00	0.15437	-0.00370	-0.05128	0.05976	1.8720	2.1230	-2.16339
50.50	0.15775	-0.00316	-0.06102	0.08136	1.3080	2.0120	-2.19412
60.00	0.15791	-0.00154	-0.07070	0.10155	1.7540	1.9530	-2.18557
70.00	0.15623	0.00119	-0.03101	0.11957	1.7080	1.9130	-2.17196
30.00	0.15333	0.00462	-0.09060	0.13403	1.6660	1.9020	-2.16270
100.00	C.14644	0.01174	-0.10553	0.15218	1.5930	1.8990	-2.15953
120.00	0.14015	0.01781	-0.11449	0.16134	1.5580	1.9030	-2.16668
150.00	0.13474	0.02311	-0.12052	0.16766	1.5250	1.9190	-2.17318
180.00	0.13313	0.02463	-0.12205	0.16909	1.5160	1.9220	-2.18253

TABLE 1.4. WAVE FUNCTION COEFFICIENTS, CRBITAL EXPONENTS, AND ENERGIES FOR Z=2.20A.U., R=1.6GBOHR.

÷	C1	C 2	C3	C4	۲ _A	۲ _B	ENERGY
30.00	0.16201	-0.00144	-0.04223	0.01769	2.2300	2.6360	-2.39633
40.00	0.17235	-0.00201	-0.05450	0.02964	2.1040	2.4360	-2.66701
50.00	0.17941	-0.00217	-0.07033	0.04441	1.9390	2.3250	-2.73352
60.00	0.13253	-0.00169	-0.03852	0.05896	1.3960	2.2675	-2.76461
70.00	0.13205	-0.00057	-0.10666	0.07100	1.8220	2.2460	-2.78850
80.00	0.17963	0.00034	-0.12211	0.07901	1.7670	2.2410	-2.81845
100.00	0.17166	0.00330	-0.14159	0.03630	1.7080	2.2480	-2.88367
120.00	0.16657	0.00475	-0.15032	0.08873	1.6790	2.2540	-2.93646
150.00	-0.16304	-0.00572	0.15515	-0.09014	1.6650	2.2580	-2,98333
130.00	-0.16209	-0.00599	0.15624	-0.09058	1.6600	2.2590	-2.99775

TABLE 1.5. WAVE FUNCTION COEFFICIENTS, ORBITAL EXPONENTS, AND ENERGIES FOR Z=1.80A.U., R=1.50BOHR.

θ	C1	C2	C3	C4	I _A	$l_{\rm B}$	ENERGY
30.00	0.14344	-0.00417	-0.04174	0.04641	1.9575	2.3580	-1.75787
40.00	0.14750	-0.00468	-0.04694	0.06499	1.8970	2.1780	-2.03216
50.00	0.14396	-0.00408	-0.05363	0.08602	1.3410	2.0640	-2.10439
60.00	0.14816	-0.00229	-0.06112	0.10660	1.7880	1.9890	-2.11452
70.00	0.14530	0,00068	-0.06377	0.12532	1.7420	1.9440	-2.10797
80.00	0.14253	0.00437	-0.07616	0.14073	1.7030	1.9160	-2.09061
100.00	0.13487	0.01277	-0.03851	0.16246	1.6340	1.8950	-2.09189
120.00	0.12324	0.02046	-0.09700	0.17467	1.5900	1.9000	-2.09423
150.00	0.12203	0.02732	-0.10351	0.18242	1.5550	1.9080	-2.10221
130.00	-0.12012	-0.03019	0.10529	-0.13437	1.5440	1.9110	-2.10570

TABLE 1.6. WAVE FUNCTION COEFFICIENTS, ORBITAL EXPONENTS, AND ENERGIES FOR Z=1.30A.U., R=1.80B0HR.

				N			
9	C1.	C2	C3	C4	۲ _م	۲ _B	ENERGY
30.00	0.15363	-0.00263	-0.04638	0.03572	1.9200	2.2340	-2.12196
40.00	0.16039	-0.00303	-0.05570	0.05491	1.3495	2.0790	-2.24476
50.00	0.16490	-0.00256	-0.06746	0.07593	1.7840	1.9340	-2.24912
60.00	0.16592	-0.00099	-0.08039	0.09500	1.7270	1.9310	-2.23061
70.00	0.16456	0.00143	-0.09317	0.11270	1.6780	1.9050	-2.21513
30.00	0.16161	0.00431	-0.10450	0.12546	1.6340	1.8975	-2.20783
100.00	0.15454	0.01046	-0.12051	0.14022	1.5700	1.9045	-2.21076
120.00	0.14903	0.01476	-0.12887	0.14674	1.5330	1.9150	-2.22194
150.00	0.14431	0.01354	-0.13385	0.15143	1.5040	1.9280	-2.23548
130.00	0.14249	0.01965	-0.13461	0.15237	1.4950	1.9030	-2.24018

CHAPTER 4

ANALYSIS OF SYSTEMS

One of the difficulties encountered in the interpretation of a CI wave function arises from the arbitrary nature of the basis set. For the system under examination it was decided to construct the configurations from a set of symmetry-adapted molecular orbitals. Equally, it would have been feasible to orthonormalize this set, or merely to have used the atomic orbitals from which the molecular orbitals were constructed. In each case the energies obtained would have been the same, since each basis set is related to the others by a unitary transformation, but the coefficients in the series of configurations would differ, making it difficult to interpret wave functions presented in this way. In order to try to obviate this problem Löwdin⁽⁸⁾ has shown that it is possible to select a set of one-electron functions which have characteristic properties belonging to the system and state under consideration. The components of this set are called natural spin orbitals.

 $\{\chi_k\}$, are defined as forming the set which diagonalizes the generalized first order density matrix. For a two-electron system it is possible to introduce many simplifications into the general theory of the natural spin orbital analysis, even when the orbitals are not orthonormal. An important simplification is the removal of electron spin from the problem, this leads to the natural orbital analysis for two electron systems. Introduction of the natural spin orbitals for the interpretation of the wave functions, and also assists in the understanding of the behaviour of the electron density distribution.

Useful information about the behaviour of the electron density within a molecular system may often be gained by examining the behaviour of the individual terms which contribute to the one particle density function. Such an examination of the systems discussed here has shown that it is possible to divide the electron distribution into two components which may be associated with Banyard and Shull's "local" and "shared" densities. Further insight into the behaviour of the systems under consideration may be gained from electron density contours, and these also provide a link between the natural spin orbital analysis and the analysis of the components of the total energy.

A. Natural Spin Orbital Analysis

The orthonormal formulation of the natural spin orbital analysis (8,28) of two-electron systems has been discussed extensively in the literature and is a special case of the non-orthonormal formalism which will be developed in this section. In the two-electron case the wave function is equivalent to a real quadratic form (28) and the spatial part may be written as

$$\phi(\overline{r}_1,\overline{r}_2) = \sum_{ij} f_{ij} \varphi_i(\overline{r}_1) \varphi_j(\overline{r}_2) , \qquad (4.1)$$

in matrix notation this is

where ϕ is a raw vector with the basis orbitals $\{\varphi_i\}$ as its elements. The first order density matrix is defined by

$$\gamma(\overline{r}_1;\overline{r}_1') = 2 \int \phi^*(\overline{r}_1,\overline{r}_2) \phi(\overline{r}_1,\overline{r}_2) d\overline{r}_2$$

After substitution for ϕ from (4.1) and integration over \overline{r}_2 , this expression becomes

$$\gamma(\overline{r}_{1};\overline{r}_{1}') = 2\sum_{ij} f_{ij}^{*} \sum_{lm} f_{lm} \varphi_{i}(\overline{r}_{1}) \varphi_{l}(\overline{r}_{1}) s_{jm} , \qquad (4.2)$$

Ξ,

where $s_{jm} = \langle \varphi_j | \varphi_m \rangle$, and is, in general, non-zero. Using (4.2) it is possible to define $\gamma(1|i)$, the elements of the first order density matrix, as

$$\gamma(l|i) = \sum_{jm} f_{ij}^* s_{jm} f_{ml}$$
,

since $f_{ml} = f_{lm}^*$. In matrix notation this simply

$$\frac{\gamma}{2} = \underline{F} \Delta \underline{F}^{\dagger} , \qquad (4.3)$$

 Δ being the overlap matrix between the basis (spatial) orbitals, that is, its elements are s_{jm} , the first order density matrix is now given as

$$\gamma(\overline{r}_1:\overline{r}_1') = 2\Phi \gamma \Phi^+$$
.

The natural orbitals are defined as that set of orthonormal orbitals which diagonalizes the (spinless) first order density matrix. Thus if

~ 12

 $\frac{\chi}{2}$ represents the natural orbital basis, then since

$$\frac{\chi}{\Upsilon} = \frac{\phi}{\underline{A}} , \qquad (4.4)$$

$$\gamma(\overline{r}_{1}:\overline{r}_{1}^{\dagger}) = \underline{\chi} \underline{A}^{-1} \underline{\gamma} (\underline{A}^{-1})^{+} \underline{\chi}^{+} ,$$

and

$$\underline{A}^{-1} \underline{\gamma} (\underline{A}^{-1})^{+} = \operatorname{diag}(n_1, n_2, \dots) \qquad (4.5)$$

- 25 -

Since the $\{\chi_i\}$ must be orthonormal then

$$\underline{A}^{+} \underline{\Delta} \underline{A} = \underline{I}$$
 (4.6)

(I is the identity matrix). Equations (4.5) and (4.6) are the standard natural orbital equations, which define the matrix A. (In the N- electron case these equations become the natural spin orbital equations, as both $\underline{\gamma}$ and $\underline{\Delta}$ are formed from the basis spin orbitals. This form of $\underline{\gamma}$ is considerably more difficult to construct than in the two-electron case.) However, in the two electron problem it is possible to obtain the matrix A without constructing the first order density matrix; a tedious operation even for small basis sets. The procedure is as follows; let

$$\underline{\chi} = \underline{\Phi} \underline{B} , \qquad (4.7)$$

such that

$$\Phi = \underline{\chi} \operatorname{diag}(g_1, g_2, \ldots) \underline{\chi}^+,$$

and

$$<\chi_{i}|\chi_{j}> = \delta_{ij}$$

' C

It is easily seen that the transformation matrix \underline{B} is defined by the conditions

$$\underline{B}^{+} \underline{\Delta} \underline{B} = \underline{I} , \qquad (4.8)$$

and

$$\underline{B}^{-1} \underline{F} (\underline{B}^{-1})^{+} = diag(g_1, g_2, ...) .$$
 (4.9)

Equations (4.8) and (4.9) may be solved as follows: perform a unitary transformation on Δ so that

$$\underline{U}^{+} \underline{\Delta} \underline{U} = \operatorname{diag}(d_{1}, d_{2}, \dots)$$

where the eigenvectors of Δ are the columns of <u>U</u>. Now define a matrix <u>W</u> with elements

$$W_{ij} = U_{ij}(a_j)^{-1/2}$$

Hence

$$\underline{W}^{+} \underline{\Delta} \underline{W} = \underline{I} \quad . \tag{4.10}$$

,

A comparison of (4.8) and (4.10) leads to the erroneous conclusion that <u>B</u> and <u>W</u> are identical. That this is not so may be shown by writing <u>B</u> as the product of <u>W</u> and another matrix <u>X</u>, i.e.

1

$$\underline{B} = \underline{W} \underline{X} \quad \text{and} \quad \underline{B}^+ = \underline{X}^+ \underline{W}^+ \quad . \quad (4.11)$$
Substitution for <u>B</u> and <u>B</u>⁺ from (4.11) into (4.8) and use of (4.10) yields the result

$$\underline{X}^+ \underline{X} = \underline{I}$$

Thus <u>B</u> and <u>W</u> are related by the unitary matrix <u>X</u>. This matrix may be determined by substitution for <u>B</u> and <u>B</u>⁺ from (4.11) into (4.9), this gives

$$\underline{X}^{-1} \underline{M} (\underline{X}^{-1})^{+} = diag(g_{1}, g_{2}, \dots) , \qquad (4.12)$$

where

$$\underline{\mathbf{M}} = \underline{\mathbf{W}}^{-1} \underline{\mathbf{F}} (\underline{\mathbf{W}}^{-1})^+$$

Equation (4.12) may be written in a more convenient form using the knowledge that as <u>X</u> is a unitary matrix, $\underline{X}^{-1} = \underline{X}^{-1}$, thus

$$\underline{X}^+ \underline{M} \underline{X} = \text{diag}(g, g, \dots)$$

Therefore \underline{W} , \underline{X} , and hence the transformation matrix \underline{B} may be determined. Now consider the transformation

$$\underline{B}^{-1} \underline{\gamma} (\underline{B}^{-1})^+$$

Using (4.3) and (4.11) this becomes

$$\underline{\mathbf{X}}^{-1} \underline{\mathbf{W}} \underline{\mathbf{F}} \underline{\Delta} \underline{\mathbf{F}}^{+} (\underline{\mathbf{W}}^{-1})^{+} (\underline{\mathbf{X}}^{-1})^{+}$$
(4.13)

and a com

This equation may be greatly simplified by using (4.8), (4.10), and the fact that <u>X</u> is unitary. The steps involved are not obvious and are shown in full, thus (4.13) is firstly rewritten as

$$\underline{X}^{-1} \underline{W}^{-1} \underline{F} (\underline{W}^{-1})^+ (\underline{W}^+ \underline{\Delta} \underline{W}) \underline{W}^{-1} \underline{F}^+ (\underline{W}^{-1})^+ (\underline{X}^{-1})^+$$

$$= \underline{X}^{-1} \underline{M} \underline{I} \underline{M}^+ \underline{X}$$

$$= \underline{X}^+ \underline{M} \underline{M}^+ \underline{X} \qquad (4.14)$$

$$= \underline{X}^+ \underline{M} \underline{X} \underline{X}^+ \underline{M}^+ \underline{X}$$

$$= \operatorname{diag}(g_1, g_2, \dots) \operatorname{diag}(g_1, g_2, \dots)$$

$$= \operatorname{diag}(g_1^2, g_2^2, \dots) \qquad (4.15)$$

The conclusion is obvious; not only does the transformation matrix <u>B</u> give a diagonal form to the wave function (called the natural expansion wave function), but the first order density matrix corresponding to this form is also diagonal. The orbitals defined by (4.7) are the natural orbitals, <u>B</u> is the transformation matrix <u>A</u> of (4.4), the diagonal elements of diag (g_1 , g_2 , ...) are the natural expansion coefficients, and the occupation numbers of the natural orbitals are the diagonal elements of diag (g_1^2 , g_2^2 , ...).

In summary, if

$$\underline{X} = \underline{\Phi} \underline{B}$$

and <u>B</u> satisfies (4.8) and (4.9) then

$$\Phi(\overline{r}_1,\overline{r}_2) = \sum_k g_k \chi_k(\overline{r}_1) \chi_k(\overline{r}_2) , \qquad (4.16)$$

$$\gamma(\overline{r}_{1}:\overline{r}_{1}') = 2\sum_{k} \chi_{k}(\overline{r}_{1})\chi_{k}(\overline{r}_{1}) , \qquad (4.17)$$

and

$$n_k = g_k^2$$

Equation (4.16) represents the natural expansion wave function for a two-electron system. Introduction of the singlet spin function produces the natural expansion of the complete wave function:

$$\Psi(\overline{x}_1,\overline{x}_2) = 2^{-1/2} \left[\alpha(s_1)\beta(s_2) - \beta(s_1)\alpha(s_2) \right] \sum_{k} g_k \chi_k(\overline{r}_1) \chi_k(\overline{r}_2) \quad . \quad (4.18)$$

It is possible to derive a form similar to (4.18) for the triplet state. Integration of (4.17) over \bar{r}_1 gives the expected result,

$$\sum_{k} n_{k} = 1 \qquad (4.19)$$

If the basis orbitals were orthonormal then

.

$$\Delta = I$$

and from (4.3)

$$\frac{\gamma}{2} = \underline{F} \underline{F}^{+}$$

Ż

and the treatment is then analogous to that of Löwdin and Shull (28).

It is known that the approximate wave function for a two-electron system is equivalent to a real finite quadratic form. A quadratic form is characterized by its rank (r) and its signature (s), two integers which are invariant under non-singular linear transformations^(28, 29). The rank of the quadratic form is defined as the rank of the determinant of its coefficients⁽²⁹⁾, in this case the rank of the determinant with elements { f_{ij} } (see (4.1)), and the quadratic form is reducible by a non-singular linear transformation to a sum of "squares" which contains r terms. The number (p) of positive terms in this sum is the index of the quadratic form and if q is the number of negative terms, then

$$\mathbf{r} = \mathbf{p} + \mathbf{q}$$

and

$$\mathbf{s} = \mathbf{p} - \mathbf{q}$$

This implies that each approximate two-electron wave function of finite order has a rank and signature and that it may be reduced to a sum of "squares"; this explains the simple form of (4.16) and (4.18).

An important theorem due to Löwdin and Shull⁽²⁸⁾ states that if Ψ is an exact two-electron eigenfunction and Ψ_{Γ} an arbitrary twoelectron wave function of rank r, then

$$\int |\Psi(\overline{x}_1, \overline{x}_2) - \Psi_r(\overline{x}_1, \overline{x}_2)|^2 dx_1 dx_2 =$$

$$2(1 - \int \Psi^*(\overline{x}_1, \overline{x}_2) \Psi_r(\overline{x}_1, \overline{x}_2) dx_1 dx_2)$$

has a minimum value if the function Ψ_r is obtained by interrupting the natural expansion after the first r terms and renormalizing the finite series to unity. It is important to note that in the natural expansion $|g_1| > |g_2| > \dots > |g_r|$. The theorem is also true if Ψ is

not an exact eigenfunction but an approximation of rank greater than r.

Application of the natural orbital analysis to the ZHZ^{2Z-1} problem is straight forward. The elements $\{f_{ij}\}$ of the coefficient matrix <u>F</u> are simply

$$f_{11} = 2C_1 ,$$

$$f_{22} = 2C_2 ,$$

$$f_{33} = 2C_3 ,$$

$$f_{12} = f_{21} = C_4 ,$$

$$f_{13} = f_{31} = f_{23} = f_{32} = 0$$

The quantities $\{C_{j}\}$ are the coefficients in (3.2) and are given in Tables 1.1 to 1.6. The elements of the overlap matrix Δ , are easily seen to be

$$\Delta_{11} = 2(1 + \langle 1s_{B} | 1s_{C} \rangle) ,$$

$$\Delta_{22} = 1.0 ,$$

$$\Delta_{33} = 2(1 - \langle 1s_{B} | 1s_{C} \rangle) ,$$

$$\Delta_{12} = \Delta_{21} = 2\langle 1s_{A} | 1s_{B} \rangle ,$$

$$\Delta_{13} = \Delta_{31} = \Delta_{23} = \Delta_{32} = 0$$

Equation (4.19) has been evaluated for each system examined. In some instances it was found that the sum of the occupation numbers differed from unity by as much as $\pm 10^{-4}$; a significant difference. Examination of the original wave functions showed that if the normalization integral differed significantly from unity then a similar error appeared in (4.19).

TABLE 2.1. NATURAL EXPANSION COEFFICIENTS (FIRST ROW) AND TRANSFORMATION MATRICES FOR Z=1.00A.U. AND R=1.66BOHR.

0.99499	-0.08870	-0.04613	0.99421	-0.03988	-0.05895
0.42288	-0.44059	0.00000	0.41813	-0.43728	0.00000
0.33163	1.09361	0.00000	0.36076	1.11519	0.00000
0.00000	0.00000	1.46034	0.00000	0.00000	1.22370
	$\theta = 30.00$	С		$\theta = 40.00$	0
0.99347	-0.08831	-0.07220	0.99270	-0.08529	-0.08529
0.41335	-0.53328	0.00000	0.40793	-0.57826	0.00000
0.38540	1.13510	0.00000	0.40793	1.15652	0.00000
0.00000	0.00000	1.08886	0.00000	0.00000	1.00158
	$\Theta = 50.00$	D		$\Theta = 60.00$	C
0.99137	-0.09773	-0.08151	0.99100	-0.10925	-0.07731
0.40154	0.00000	-0.62243	0.39435	0.00000	-0.66539
0.42975	0.00000	1.17851	0.45038	0.00000	1.20144
0.00000	0.93991	0.00000	0.00000	0.89509	0.00000
	$\Theta = 70.00$)		$\theta = 80.00$)
0.98929	-0.12880	-0.06866	0.98787	-0.14300	-0.06051
0.37345	0.00000	-0.74456	0.36089	0.00000	-0.81242
0.48883	0.00000	1.24523	0.52426	0.00000	1,28309
0.00000	0.33437	0.00000	0.00000	0.79834	0.00000
	€ =100.00)		0 =120.00)
0.98664	-0.15473	-0.05105	0,98633	-0.15759	-0.04719
0.33793	0.00000	-0.87994	0.32756	0.00000	-0.90220
0.56569	0.00000	1.31632	0.58346	0.00000	1,32319
0.00000	0.76931	0.00000	0.00000	0.76029	0.00000
	e =150.00)		e =180.00)

. ...

TABLE 2.2. NATURAL EXPANSION COEFFICIENTS (FIRST ROW) AND TRANSFORMATION MATRICES FOR Z=1.40A.U. AND R=1.66BOHR.

0.99763 -0.06048	-0.03230	0.99567	-0.03322	-0.04134
0.50584 0.00000	-0.30423	0.50671	0.00000	-0.36269
0.16004 0.00000	1.07071	0.20124	0.00000	1.08573
0.00000 1.25334	0.00000	0.0000	1.07833	0.00000
· · · · · · · · · · · · · · · · · · ·	0		θ = 40.0	0.
• • •			•	•
0,99236 -0.11324	-0.04889	0.93972	-0.13317	-0.05219
0.50430 0.00000	-0,43002	0,50105	0.00000	-0.47170
0.24540 0.00000	1.10494	0.27240	0.00000	1.11697
0,00000 0,96079	0.0000	0.00000	0,90959	• 0.00000
θ = 52 . 1	5	,	0 = 60.0	D .
0.93590 -0.15821	-0.05457	0.98178	-0.18185	-0.05520
0.49572 0.00000	-0.52147	0.48963	0.00000	-0.56659
0,30403 0,00000	1.13159	0.33136	0.00000	1.14595
0.00000 0.86135	0.00000	0.00000	0.82694	0.00000
e = 70.0 0			0 = 80.00)
0,97355 -0,22213	-0.05350	0,96685	-0,25036	-0 .05026
0.47623 0.00000	-0.64156	0.46242	0.00000	-0.69639
0.37773 0.00000	1.16889	0.41.387	0.00000	1.18447
0.00000 0.78176	0.00000	0.00000	0.75654	0.00000
9 ≈100.00) ,		8 =120.00	
0.96112 -0.27227	-0,04600	0,95961	-0,27783	-0.04434
0.44597 0.00000	-0,74312	0.43948	0.00000	-0.75702
0.44970 0.00000	1,19401	0,46254	0.00000	1,19503
0.00000 0.73367	0.00000	0.00000	0.73384	0.00000
9 =150.00)	·. • · • . ·	0 =180.00) /

TABLE 2.3. NATURAL EXPANSION COEFFICIENTS (FIRST ROW) AND TRANSFORMATION MATRICES FOR Z=1.80A.U. AND R=1.66BOHR.

0.99740 -0.07124 -0.01050 0.99417 -0.10667 -0.01549 0.54714 0.00000 -0.20615 0.55913 0.00000 -0.26161 0.06955 0.00000 1.04242 0.09981 0.00000 1.05735 0.00000 1.11300 0.00000 0.00000 0.98057 0.00000 θ = 30.00 $\theta = 40.00$ 0.93324 -0.15147 -0.02077 0,98005 -0,19719 -0,02439 0.56693 0.00000 -0.31976 0.57073 0.00000 -0.37010 0.13340 0.00000 1.07286 0.16363 0.00000 1.08571 0.00000 0.89762 0.00000 0.00000 0.84681 0.00000 e = 50°.50 $\theta = 60.00$ 0.96847 -0.24758 -0.02788 0.95461 -0.29338 -0.02948 0.57249 0.00000 -0.41741 0,57249 0.00000 -0.45377 0.19263 0.00000 1.09714 0.00000 0.80894 0.00000 0.21795 0.00000 1.10681 0.00000 0.78191 0.00000 9 = 70.00 **e** = 80.00 0.92605 -0.37625 -0.02950 0.90400 -0.42659 -0.02837 0.57001 0.00000 -0.52079 0.56556 0.00000 -0.55868 0.25568 0.00000 1.12094 0.23160 0.00000 1.12742 0.00000 0.74398 0.00000 0,00000 0,73263 0,00000 0 =100.00 0 =120.00 0.88657 -0.46181 -0.02683 0.88181 -0.47087 -0.02635 0,56067 0,00000 -0,53628 0.55900 0.00000 -0.59373 0.30143 0.00000 1.13163 0.30709 0.00000 1.13264 0.00000 0.72245 0.00000 0.00000 0.72000 0.00000 0 =150.00 **e =180.00**

a - 5 a - 5

~

TABLE 2.4. NATURAL EXPANSION COEFFICIENTS (FIRST ROW) AND TRANSFORMATION MATRICES FOR Z=2.20A.U. AND R=1.66BOHR.

0,99665	-0.03166	-0.00362	0.99132	-0.13137	-0,00594
0.57025	0.00000	-0.14201	0.58936	0.00000	-0.19101
0.03020	0,00000	1.02302	0.04368	0.00000	1.03536
0.00000	1.01697	0.00000	0,0000	0.91087	0.00000
		-,		••••••	
	0 = 30.00	0		() = 40.0(0.
0.98033	-0.19716	-0.00343	0.96105	-0.27619	-0.01057
0 60542	0,0000	-0 241 32	0 61715	ດ່ດດດດດ	-0 28805
0.07120	0.00000	1 0/912	0.00207		1 05070
0.00000	0.94402	0.00000	0.09397	0.00000	1.03970
0,0000	0,04403	0,0000	0.00000	0,0004	0.0000
,	0 = 50.00	0	· · · ·	0 = 60,0	0
0.93317	-0.35925	-0.01171	0,90103	-0.43361	-0.01185
0 62573	ດ່າວວາວ	-0 22205	0 631 72	0,00000	-0 25022
0.11457	0.00000	1 06004	0.12076	0.00000	1 07007
0.11491	0,00000	1.00904	0.13076	0,00000	1.07007
0.00000	0.77057	0.00000	0,00000	0,75050	0.0000
	0 = 70.00)	·	0 = 80.00)
0.84570	-0.53355	-0.01083	0.81351	-0.58147	-0.00990
0.63373	0.00000	-0.39722	0.64158	0.00000	-0.41616
0.15113	0.00000	1.08362	0.16143	0.00000	1.08724
0.00000	0.72352	0.00000	0.00000	0.71904	0.00000
••••••	•,12002			•••••	
	0 =100.00	D		0 =120.00	D
-0 .79299	0.60916	0.00929	-0.78806	0,61552	0.00916
0.64293	0.00000	-0.42746	0.64306	0.00000	-0.43061
0.16832	0.00000	1.08895	0.17026	0.00000	1.08948
0.00000	0.71371	0.00000	0.00000	0.71250	0.00000
		~~~~~	v,vvvv	~ • • • • • • • • •	~,~~~~
	<b>θ =150.00</b>	<b>)</b>	•	9 =1.80.00	
				1	•

.

TABLE 2.5. NATURAL EXPANSION COEFFICIENTS (FIRST ROW) AND TRANSFORMATION MATRICES FOR Z=1.80A.U. AND R=1.50BOHR.

0.99803	-0.06130	-0.01320		0.99584	-0.08931	-0.01820
0.53634	0.00000	-0.23367		0.54575	0.00000	-0.29605
0.08039	0.00000	1.05864		0.10889	0.00000	1.07859
0.00000	1.16689	0,00000		0.00000	1.02526	0.00000
	9 = 30,0	J			e = 40.0	U
0.99225	-0.12209	-0.02314		0.93699	-0.15846	-0.02731
0.55059	0.00000	-0.35346		0.55214	0.00000	-0.40895
0.14101	0.00000	1.09781		0.17274	0.00000	1.11648
0.00000	0.93729	0.00000		0.00000	0.87828	0.00000
	9 = 50,00	0			<b>e =</b> 60,00	0
0.97999	-0.19675	-0,03028		0.97156	-0,23463	-0.03196
0.55146	0.00000	-0.46021	,-n	0.54938	0.0000	-0.50578
0.20266	0.00000	1.13334		0.22887	0.00000	1.14854
0,00000	0.83607	0.00000		0.00000	0.80571	0.00000
	9 = 70.00	<b>)</b>			9 = 80.00	)
0,95309	-0,30094	-0.03243		0.93666	-0.34884	-0.03133
0.54264	0.00000	-0.58008		0.53577	0,00000	-0.62848
0.27143	0.00000	1.17366		0.30147	0.00000	1 .18781
0.00000	0.76695	0.00000		0.00000	0.74575	0.00000
	<b>8 =1</b> 00.00	)		·	0 =120.00	
0,92179	-0,38657	-0,02955		-0.91734	0.39705	0.02891
0,52831	0.00000	-0,66620		0.52567	0,00000	-0,67705
0.32616	0.00000	1.19311		0.33358	0.00000	1.20096
0.00000	0.73181	0,00000		0.00000	0.72827	0.00000
	0 =1.50.00	)		· , · . ·	9 =180.00	

•

-

3

.

•--

i

TABLE 2.6. NATURAL EXPANSION COEFFICIENTS (FIRST ROW) AND TRANSFORMATION MATRICES FOR Z=1.80A.U. AND R=1.80BOHR.

0.99670	-0.08079	-0.00849		0.99221	-0.12335	-0,01316
0.55549	0.00000	-0.18145		0.57012	0.00000	-0.23472
0.06165	0.00000	1.03186		0.09136	0.00000	1.04382
0.00000	1.07155	0.00000		0.00000	0.94341	0.00000
0.00000	<b>X 101100</b>	0.00000		•••••••	0.04047	
	9 = 30.04	0			9 = 40.00	0
				·	·	
0,93409	-0.17678	-0.01805		0.97126	-0.23697	-0.02217
0.58022	0.00000	-0.23312		0.58674	0.00000	-0.33306
0.12337	0.00000	1.05524		0.15444	0.00000	1.06513
0.00000	0.87360	0.00000		0.00000	0.82370	0.00000
	<b>⊖</b> = 50.00	<b>0</b>			<del>0</del> = 60.00	<b>)</b>
0.95391	-0.29907	-0.02435		0.93331	-0.35681	-0.02607
	•					• • •
0.59062	0,00000	-0.33203		0.59249	0.00000	-0.41.925
0.18195	0.00000	1.07327		0.20543	0.00000	1.07967
0.00000	0.78935	0.00000		0.00000	0.76535	0.00000
0.0000	0.78935 0 = 70.00	00000 <b>.</b> 0		0.00000	0.76535 0 = 80.00	0.00000
0.89614	0.78935 0 = 70.00 -0.44304	0.00000 ) -0.02567		0.00000	0.76535 0 = 80.00 -0.49068	0.00000 -0.02437
0.89614 0.59263	0.78935 $\theta = 70.00$ -0.44304 0.00000	0.00000 -0.02567 -0.47143		0.00000 0.87100 0.59095	0.76535 0 = 80.00 -0.49068 0.00000	0.00000 -0.02437 -0.50070
0.89614 0.59263 0.23923	0.78935 $\theta = 70.00$ -0.44304 0.00000 0.00000	••••••••••••••••••••••••••••••••••••••		0.00000 0.87100 0.59095 0.25922	0.76535 0 = 80.00 -0.49068 0.00000 0.00000	0.00000 -0.02437 -0.50070 1.09105
0.89614 0.59263 0.23923 0.00000	0.78935 $\theta = 70.00$ -0.44304 0.00000 0.00000 0.73756	0.00000 -0.02567 -0.47143 1.08751 0.00000		0.00000 0.87100 0.59095 0.25922 0.00000	0.76535 0 = 80.00 -0.49068 0.00000 0.00000 0.72477	0.00000 -0.02437 -0.50070 1.09105 0.00000
0.89614 0.59263 0.23923 0.00000	0.78935 $\theta = 70.00$ -0.44304 0.00000 0.00000 0.73756 $\theta = 100.00$	0.00000 -0.02567 -0.47143 1.08751 0.00000		0.00000 0.87100 0.59095 0.25922 0.00000	0.76535 $\theta = 80.00$ -0.49063 0.00000 0.72477 $\theta = 120.00$	0.00000 -0.02437 -0.50070 1.09105 0.00000
0.89614 0.59263 0.23923 0.00000	0.78935 $\theta = 70.00$ -0.44304 0.00000 0.73756 $\theta = 100.00$ -0.52053	0.00000 -0.02567 -0.47143 1.08751 0.00000		0.00000 0.87100 0.59095 0.25922 0.00000	0.76535 $\theta = 80.00$ -0.49063 0.00000 0.72477 $\theta = 120.00$ -0.52507	0.00000 -0.02437 -0.50070 1.09105 0.00000
0.00000 0.89614 0.59263 0.23923 0.00000 0.85353 0.58782	0.78935 0 = 70.00 -0.44304 0.00000 0.00000 0.73756 0 =100.00 -0.52053 0.00000	0.00000 -0.02567 -0.47143 1.03751 0.00000 -0.02321 -0.52141		0.00000 0.87100 0.59095 0.25922 0.00000 0.85076 0.58522	0.76535 $\theta = 80.00$ -0.49063 0.00000 0.72477 $\theta = 120.00$ -0.52507 0.00000	0.00000 -0.02437 -0.50070 1.09105 0.00000 -0.02258 -0.53216
0.00000 0.89614 0.59263 0.23923 0.00000 0.85353 0.58782 0.27548	0.78935 $\theta = 70.00$ -0.44304 0.00000 0.73756 $\theta = 100.00$ -0.52053 0.00000 0.00000 0.00000	0.00000 -0.02567 -0.47143 1.08751 0.00000 -0.02321 -0.52141 1.09236		0.00000 0.87100 0.59095 0.25922 0.00000 0.85076 0.58522 0.27955	0.76535 $\theta = 80.00$ -0.49063 0.00000 0.72477 $\theta = 120.00$ -0.52507 0.00000 0.00000	0.00000 -0.02437 -0.50070 1.09105 0.00000 -0.02258 -0.53216 1.09742
0.00000 0.89614 0.59263 0.23923 0.00000 0.85353 0.58782 0.27548 0.00000	0.78935 $\theta = 70.00$ -0.44304 0.00000 0.73756 $\theta = 100.00$ -0.52053 0.00000 0.00000 0.71715	0.00000 -0.02567 -0.47143 1.03751 0.00000 -0.02321 -0.52141 1.09236 0.00000		0.00000 0.87100 0.59095 0.25922 0.00000 0.85076 0.58522 0.27955 0.00000	$0.76535$ $\theta = 80.00$ $-0.49063$ $0.00000$ $0.72477$ $\theta = 120.00$ $-0.52507$ $0.00000$ $0.00000$ $0.71607$	0.00000 -0.02437 -0.50070 1.09105 0.00000 -0.02258 -0.53216 1.09742 0.00000
0.00000 0.89614 0.59263 0.23923 0.00000 0.85353 0.58782 0.27548 0.00000	0.78935 $\theta = 70.00$ -0.44304 0.00000 0.73756 $\theta = 100.00$ -0.52053 0.00000 0.00000 0.71715 $\theta = 150.000$	0.00000 -0.02567 -0.47143 1.03751 0.00000 -0.02321 -0.52141 1.09236 0.00000	· · · · · · · · · · · · · · · · · · ·	0.00000 0.87100 0.59095 0.25922 0.00000 0.85076 0.58522 0.27955 0.00000	0.76535 $\theta = 80.00$ -0.49068 0.00000 0.72477 $\theta = 120.00$ -0.52507 0.00000 0.00000 0.71607 $\theta = 180.00$	0.00000 -0.02437 -0.50070 1.09105 0.00000 -0.02258 -0.53216 1.09742 0.00000

• .

0	Z=1.00	Z=1.40	Z=1.30	Z=2.20	Z <b>≕1 .</b> 80	Z=1.80
Ø	R=1.66	R=1.66	R=1.66	R=1.66	R=1.50	R=1.80
	0.99001	0.99527	0.99432	0.99332	0.99607	0.99340
30.00	0.00737	0.00366	0.00507	0.00667	0.00376	0.00653
	0.00213	0.00103	0.00011	0.00001	0.00017	0.00007
	0.93845	0.99137	0.93833	0.93271	0.99169	0.93449
40.00	0.00803	0.00693	0.01138	0.01726	0.00798	0.01534
	0.00347	0.00171	0.00024	0.00004	0.00033	0.00017
	0.93699	0.93479	0.97663	0.96105	0.93456	0.93842
50.00	0.00780	0.01282	0,02294	0.03837	0.01491	0.03125
	0.00521	0.00239	0.00043	0.00007	0.00054	0.00033
	0.93545	0.97954	0.96050	0.92361	0.97414	0.94335
60.00	0.00727	0.01773	0.03883	0.07628	0.02511	0.05615
	0.00727	0.00272	0.00062	0.00011	0.00075	0.00049
i.	0.93331	0.97199	0.93793	0.87080	0.96037	0,90994
70.00	0.00955	0.02503	0.06130	0.12906	0,03371	0.03944
	0.00664	0.00293	0.00073	0.00014	0.00092	0.00062
	0.93209	0.96338	0.91129	0.81185	0.94393	0.87201
80.00	0.01194	0.03307	0.03734	0.18801	0.05505	0,12731
	0.00598	0.00305	0.00037	0.00014	0.00102	0.00068
	0.97370	0.94780	0.85757	0.71520	0.90338	0.80306
100.00	0.01659	0.04934	0.14156	0.28468	0.09057	0.19628
	0.00471	0.00286	0.00087	0.00012	0.00105	0.00066
	0.97539	0.93479	0.81721	0.66180	0.87733	0.75864
120.00	0.02045	0.0626S	0.13193	0.33311	0.12169	0.24077
	0.00363	0.00253	0.00031	0.00010	0.00098	0.00059
	0.97345	0.92375	0.78601	0.62833	0.84969	0.72351
150.00	0.02394	0.07413	0.21327	0.37103	0.14943	0.27095
	0.00261	0.00212	0.00072	0.00009	0.00087	0.00054
	0.97294	0.92034	0.77759	0.62105	0.84151	0.72380
180.00	0.02484	0.07719	0.22172	0.37837	0.15765	0.27569
a.	0.00223	0.00197	0.00069	0.00003	0.00084	0.00051
				•		•

• .

.

• Values for  $\theta$  =52.15 + Values for  $\theta$  =50.50 •--

•

.

Ň

•

The explicit forms and symmetries of the natural orbitals obtained in the ZHZ^{2Z-1} calculations are

$$\chi_{1}(t) = \left[A_{11}(1s_{B} + 1s_{C}) + A_{21}1s_{A}(t)\right], \quad A_{1}$$
$$\chi_{2}(t) = \left[A_{32}(1s_{B} - 1s_{C})(t)\right], \quad B_{1}$$
$$\chi_{3}(t) = \left[A_{13}(1s_{B} + 1s_{C}) + A_{23}1s_{A}(t)\right], \quad A_{1}(4.20)$$

where t is  $\bar{r}_1$  or  $\bar{r}_2$ . This order assumes that  $n_1 > n_2 > n_3$ , but in some cases  $\chi_2$  and  $\chi_3$  must be reversed to preserve this order. The results of the analysis for each of the systems examined are shown in Tables 2.1 to 2.6 and in Table 3.

## B. Electron Population Analysis

Several approaches to this problem are  $possible^{(27,30)}$ , but all depend on the expression for the one-particle density, and its division into component quantities. The expression for the one-particle density has the general form

$$\gamma(\overline{x}_1:\overline{x}_1') = N \int |\Psi(\overline{x}_1',\overline{x}_2,\ldots,\overline{x}_N)|^2 dx_2 dx_3 \ldots dx_N$$

where the integration is over the space-spin co-ordinates of all the particles except those of the primed quantity. The spinless one-particle density  $\gamma(\bar{r}_1:\bar{r}_1)$  is obtained by integrating  $\gamma(\bar{x}_1:\bar{x}_1)$  over the remaining spin co-ordinate. The result may then be rearranged so that, for example, all of the terms containing the orbital product  $\varphi_{iA}^*(\bar{r}_1)\varphi_{jB}(\bar{r}_1)$ are grouped together.  $\varphi_{iA}(\bar{r}_1)$  and  $\varphi_{jB}(\bar{r}_1)$  are the i-th orbital centred on nucleus A and the j-th orbital centred on nucleus B respectively.

La Care Care A and

The expression for the one-particle density may thus be written as a sum of terms, each of the form  $t_{ij} \varphi_{iA}^*(\bar{r}_1) \varphi_{jB}(\bar{r}_1)$ , where  $t_{ij}$  is a coefficient determined by the integrations indicated. The electron distribution may then be broken down into parts, which are associated with the various nuclei and overlap regions between each pair of nuclei, by defining the atomic population associated with nucleus A as:

$$N(A) = \sum_{ij} t_{ij} \langle \varphi_{iA} | \varphi_{jA} \rangle,$$

and the overlap population of the region between nuclei A and B as:

$$S(AB) = \sum_{kl} t_{kl} \langle \varphi_{kA} | \varphi_{lB} \rangle, \qquad (4.21)$$

Equation (4.21) refers to pairs of nuclei so that  $< \varphi_{1B} | \varphi_{kA} >$  is included in the sum and the quantity S(BA) does not arise.

Obviously

$$\int \gamma(\overline{x}_1:\overline{x}_1) dx_1 = \sum_A N(A) + \sum_A S(AB)$$

However, the appropriate integration of  $|\Psi|^2$  to obtain the expression for the one-particle density often presents difficulties. In the case of a CI wave function the off-diagonal elements of the first order density matrix are not necessarily zero, so that a very unwieldly expression results.

The difficulties that arise in the approach described can be circumvented by employing a method similar to the "Electronic Population Analysis" of Mulliken⁽²⁷⁾. Direct application of Mulliken's theory is not possible since it demands a knowledge of the number of electrons occupying each of the symmetry-adapted molecular orbitals. Specifically, in the case of the  $ZHZ^{2Z-1}$  ions there are two electrons distributed between three molecular orbitals, and it is obvious from the results to be presented that the occupation of each of the molecular orbitals changes significantly as the nuclear charges and geometry vary. We are thus led to the choice of using the natural orbitals since both their form and occupation numbers are clearly defined for each of the systems under consideration. As was shown in the previous section, the expression for the one-particle density in terms of the natural orbitals is simply,

$$\rho(\mathbf{r}) = \gamma(\overline{\mathbf{r}}_1:\overline{\mathbf{r}}_1') = 2\sum_k \chi_k^*(\overline{\mathbf{r}}_1)\chi_k(\overline{\mathbf{r}}_1)$$

In general,

$$\chi_{k}(\bar{r}_{1}) = \sum_{Ai} \varphi_{iA}(\bar{r}_{1})a_{iAk}$$

where  $\varphi_{iA}$  is the i-th orbital on centre A. The coefficients  $a_{iAk}$ may be obtained from the transformation matrix by inspection. The following breakdown of the electron distribution may be made: (i) partial atomic population  $N_k$  (A) of nucleus A;

$$N_{k}(A) = 2n_{k_{ij}} \sum \langle \varphi_{iA} | \varphi_{jA} \rangle a_{iAk}^{*} a_{jAk}$$

(ii) atomic population N (A) of nucleus A;

$$N(A) = \sum_{k} N_{k}(A)$$

(iii) partial overlap population  $S_k$  (AB) of the overlap region A-B;

$$S_{k}(AB) = 2n_{k}\sum_{ij} \langle \varphi_{iA} | \varphi_{jB} \rangle a_{iAk}^{*}a_{jBk}$$

(iv) overlap population S (AB) of the overlap region A-B;

$$S(AB) = \sum_{k} S_{k}(AB)$$
,

(v) total atomic (or local) population  $N_L$ ;

$$N_{L} = \sum_{A} N(A) ,$$

(vi ) total overlap (or shared) population  $S_{g}$ ;

$$S_{S} = \sum S(AB)$$
  
pairs(AB)

and obviously

$$N_{L} + S_{S} = N$$
,

the number of electrons.

The natural orbitals of the  $ZHZ^{2Z-1}$  ions are few in number, and of a relatively simple form. From (4.20) we have,

$$\begin{aligned} \chi_{1}^{2} &= \Lambda_{11}^{2} (1s_{B}1s_{B} + 2.1s_{B}1s_{C} + 1s_{C}1s_{C}) + \Lambda_{21}^{2} (1s_{A}1s_{A}) \\ &+ 2\Lambda_{11}\Lambda_{21} (1s_{B}1s_{A} + 1s_{C}1s_{A}) , \\ \chi_{2}^{2} &= \Lambda_{32}^{2} (1s_{B}1s_{B} - 2.1s_{B}1s_{C} + 1s_{C}1s_{C}) , \\ \chi_{3}^{2} &= \Lambda_{13}^{2} (1s_{B}1s_{B} + 2.1s_{B}1s_{C} + 1s_{C}1s_{C}) + \Lambda_{23}^{2} (1s_{A}1s_{A}) \\ &+ 2\Lambda_{13}\Lambda_{23} (1s_{B}1s_{A} + 1s_{C}1s_{A}) . \end{aligned}$$

The atomic populations are:

$$N_{1}(A) = 2n_{1}A_{21}^{2} ; N_{1}(B) = N_{1}(C) = 2n_{1}A_{11}^{2} ;$$

$$N_{2}(A) = 0 ; N_{2}(B) = N_{2}(C) = 2n_{2}A_{32}^{2} ;$$

$$N_{3}(A) = 2n_{3}A_{23}^{2} ; N_{3}(B) = N_{3}(C) = 2n_{3}A_{13}^{2} ;$$

$$N(A) = 2(n_{1}A_{21}^{2} + n_{3}A_{23}^{2}) ,$$

and

$$N(B) = N(C) = 2(n_1A_{11}^2 + n_2A_{32}^2 + n_3A_{13}^2)$$

The overlap populations are:

$$S_{1}(AB) = S_{1}(AC) = 4n_{1}A_{11}A_{21}S_{AB} ; S_{1}(BC) = 4n_{1}A_{11}^{2}S_{BC} ;$$
  

$$S_{2}(AB) = S_{2}(AC) = 0 ; S_{2}(BC) = -4n_{2}A_{32}^{2}S_{BC} ;$$
  

$$S_{3}(AB) = S_{3}(AC) = 4n_{3}A_{13}A_{23}S_{AB} ; S_{3}(BC) = 4n_{3}A_{13}^{2}S_{BC} ;$$
  

$$S(AB) = S(AC) = 4S_{2}(n_{3}A_{23}S_{AB} ; S_{3}(BC) = 4n_{3}A_{13}^{2}S_{BC} ;$$

$$S(AB) = S(AC) = 4S_{AB}(n_1A_{11}A_{21} + n_3A_{13}A_{23})$$

and

$$S(BC) = 4S_{BC}(n_4A_{11}^2 - n_2A_{32}^2 + n_3A_{13}^2)$$
.

 $S_{AB}$  and  $S_{BC}$  are the overlap integrals  $< 1s_A | 1s_B >$  and  $< 1s_B | 1s_C >$ respectively.  $A_{ij}$  are the elements of the transformation matrix. Variations of the atomic and overlap populations as functions of Z and  $\theta$  are shown in Figs. 4 to 7. Population analyses for optimized wave functions with R = 1.5 bohr. and 1.8. bohr. were performed for Z = 1.8 and the results permitted the study of the variation of the electron populations as a function of the Z-H bond length.

#### C. Electron Density Contours

The interpretation of the results of the natural orbital and electron population analyses proved difficult because of the large volume of results. It was felt that a quantitative description of the behaviour of the systems would greatly assist in the interpretation of the numerical quantities. Such a description is provided by the electron density contours.

From (4.17), values of the electron density were obtained for each system in the plane of the nuclei, and contour maps were drawn for each system. A selection of these maps is shown in Fig. 8. Each map is symmetric about the line XX⁹, which bisects the bond angle  $\theta$  (see Fig. 3.). Changes in the contours, as  $\theta$  and Z vary, are clearly illustrated. A general feature of all the contour diagrams is shown by tracing the line of maximum density, i.e. minimum slope, between centres B and C. This line is such that the density always decreases in magnitude, when evaluated at adjacent spatial co-ordinates along its normal. These curves, which are also symmetric about the line XX⁹, are shown collectively in Fig. 9. They indicate specifically whether or not centre A is contained within the density contour of highest value which mutually embraces centres B and C. In some instances, the line of minimum slope is seen to divide, so that B is joined to A and C. The significance of this situation, indicated in Fig. 9 by the dotted lines, will be discussed in Chapter 5.





- 45 -





- 46 -





- 47 -





FIG. 8. Contour diagrams of the electron density in the plane of the molecule for selected values of Z and O. The diagrams are symmetric about the line XX' which bisects the bond angle O. In (a) the density at D is less than 0.1764.



The trace of points, between the centres B and C, with minimum slope in the electrontrace is shown for various values of the bond angle 0. The centre A is located at 1.8, and 2.2, see diagrams a, b, c, and d respectively. For each value of Z, the density surface when evaluated in the plane of the  $ZHZ^{2Z-1}$  ions for Z = 1.0, 1.4, the origin and centre B is indicated by • . Each set of diagrams is symmetric about XX' which bisects 0. FIG. 9.









- 52 -

1







FIG. 13. The nuclear attraction energy as a function of the bond angle  $\Theta$ .

- 54 -



FIG. 14. The nuclear repulsion energy as a function of the bond angle 9.

.

# D. Energy Analysis

As stated in Chapter 2, the behaviour of the electron energy of the  $ZHZ^{2Z-1}$  systems was unexpected, and it was thought that an investigation of the individual components of the total energy might provide an insight into this behaviour. The results of this investigation are displayed graphically in Figs. 11 to 14.

### - 57 -

# CHAPTER 5

#### DISCUSSION OF RESULTS

Certain general trends are immediately observable from the tables and diagrams presented. Inspection of the natural orbitals given in (4.20) indicates that  $\chi_1$  and  $\chi_3$  are bonding-type orbitals whereas

 $\chi_2$  is of an anti-bonding form. It is seen from the occupation numbers presented in Table 3 that for all values of  $\theta$ ,  $\chi_1$ predominates in the natural expansion of the wave function for Z  $\leq$  1.4. Although a large occupation number for a bonding orbital does not necessarily guarantee the stability of the  $\text{ZHZ}^{2Z-1}$  ion for any choice of Z and  $\theta$ , it is of interest to note, from the work of Banyard and Shull⁽²⁵⁾, that for Z  $\leq$  1.3 the ions are stable with respect to dissociation. Another obvious trend is the increase in electron density in the region of the nuclei B and C as the effective nuclear charge is increased. The significance of the way in which this increase occurs will be discussed in the following paragraphs.

For Z = 1.0, when  $ZHZ^{2Z-1}$  becomes  $H_3^+$ ,  $n_1$  and  $n_3$  shown in Table 3 decrease and  $n_2$  becomes larger as the bond angle increases from 30° to 180°. The results for  $H_3^+$  may be placed in perspective by referring to the occupation numbers of the natural orbitals of  $a_1^7$  - and  $e_1^*$  - type symmetry determined by Christoffersen and Shull⁽³¹⁾ for the united atom Li⁺ and the dissociation products  $H + H + H^+$ . For Li⁺ they quote total occupation numbers of 0.998121 and 0.001223 for the  $a_1^7$  - and  $e_1^*$  type natural orbitals respectively. For the dissociation products of  $H_3^+$ , the total occupation numbers for the orbitals of  $a_1^7$  - and  $e_1^*$  - type symmetry are 0.6666667 and 0.333333 respectively. When Z is large, the dissociation products of minimum energy will have corresponding natural orbitals with occupation numbers of 0.5. Thus, the united atom character is seen to feature strongly in the description of  $H_3^+$  for all values of

 $\theta$ . Table 3 shows that this conclusion is valid as far as  $Z \leq 1.4$ . When  $Z \geq 1.8$  it is seen that, as  $\theta$  increases, the occupation number associated with  $\chi_2$  increases greatly at the expense of  $n_1$ . This would seem to indicate that, when Z and  $\theta$  are large, the electron density begins to concentrate predominately around the nuclei B and C at the expense of the proton at A and the internuclear regions. This conclusion is supported by noting that, as Z and  $\theta$  increase, the occupation numbers for  $\chi_1$  and  $\chi_2$  are both approaching 0.5. Quantitative evidence is also provided by both the electron population analysis (Figs. 4 to 7) and by the electron density contour maps (Fig. 8).

The results of the electron population analysis illustrated in Figs. 4 to 7 indicate that when the overlap population between centres B and C is greater than that of the region A-B, the  $ZHZ^{2Z-1}$  ions may be regarded as two-centre systems plus a <u>strongly</u> perturbing proton. However, when S(BC) is less than S(AB) the ion may be thought of as forming a three-centre system. Such an interpretation is strongly supported by the evidence shown in the diagrams of Fig. 9. The "divided" trace, i.e. the dotted lines of Figs. 9a, 9b, and 9c, is particularly interesting since it only occurs when  $S(AB) \simeq S(BC)$ . The depression in the electron density surface of  $H_3^+$  at its equilibrium bond angle (see Fig. 8a), centred at the centroid of the triangle ABC, was not observed by either Christoffersen and Shull⁽³²⁾ or by Schwartz and Schaad⁽³²⁾; this may be a consequence of our minimal basis set.

For Z = 1.0, it is seen from Fig. 4 that, as  $\theta$  gets larger, N(A) increases fairly sharply, but N(B) and N(C) become smaller; correspondingly the overlap populations S(AB) and S(AC) shown in Fig. 6 increase but the value of S(BC) decreases considerably. This behaviour is partly illustrated by the contour maps a, d, and g of Fig. 8. A similar situation occurs for Z = 1.4. However, for Z = 1.8, Fig. 4 shows that the atomic population for each nuclear centre increases as the bond angle is enlarged. The overlap population S(AB) also increases as  $\theta$  increases, but the magnitude of S(BC) is seen to decrease rapidly. Thus, as  $\theta$  varies from 30° to 180°, a value of  $Z \ge 1.8$ is capable of causing electron charge cloud to move from the internuclear region B-C towards the centres B and C, whereas when Z = 1.0 the charge cloud is moved from B and C towards centre A.

Fig. 7 reveals that, for any fixed bond angle, S(AB) decreases in value as Z is increased, this indicates the diminishing influence of the proton on the system. This conclusion is substantiated by the fact that N(A) tends to zero for all angles as Z becomes large. Fig. 7 also shows that when  $\theta < 100^{\circ}$ , S(BC) increases initially and then decreases as Z continues to increase. This effect is greatest for small angles. For  $\theta \ge 100^{\circ}$ , S(BC) shows no initial increase as a function of Z. Hence as Z is increased for a fixed bond angle, the charge cloud is drawn away from A into the regions associated with B,C, and B-C. A further increase in Z removes the charge cloud from the internuclear region B-C and localizes it about the nuclei B and C.

For Z = 1.8, the electron population analysis was performed for wave functions corresponding to R = 1.50 a.u., 1.66 a.u., and 1.80 a.u. The results are shown in Fig. 10. For constant  $\theta$ , as expected N(A) decreases in value and N(B) increases as R becomes larger, both S(AB) and S(BC) decrease.

Changes in the above results caused by extending the basis set may be examined most readily by studying the  $H_3^+$  molecular ion, this is made possible by the analysis⁽³¹⁾ of the configuration interaction wave function of Christoffersen⁽²²⁾ which involved a basis set of twelve real slater-type orbitals. The occupation number of 0.98487 which

- 59 -

Christoffersen and Shull obtained for the first natural orbital  $\chi_1$ differs from the value obtained in this calculation by only 0.00059 (see Table 3, Z = 1.00,  $\theta = 60^{\circ}$ , R = 1.66). The virtual independence of the occupation numbers with respect to the size and nature of the basis set has been commented on by  $Shull^{(26)}$ . Due to its large occupation number, the form of  $\chi_1$  for  $H_3^+$  will govern the essential features of the electron population analysis. Thus the evaluation of N(A) and  $S(AB)^*$  derived from  $\chi_1$  , taken in the first instance from the work of Christoffersen and Shull, and secondly from Table 2.1 for  $\theta = 60^{\circ}$ . should indicate the general effect of an extended basis set. In both cases we have in fact considered the "best" wave functions of rank 1. For the minimal basis set N(A) and S(AB) were found to be 0.33282 and 0.33386 respectively, while the extended basis set gave values of 0.30113 and 0.36554. Thus, an extension of the basis set causes a lowering of the atomic population of each nucleus with a corresponding increase in the overlap populations. Such changes in the electron population analysis are not too surprising since the 1s minimal basis set could only be extended by the inclusion of higher orbitals which, by virtue of their more diffuse nature, provide a greater two-centre overlap. It is reasonable to expect that an extension of the basis set for the remaining ZHZ^{2Z-1} ions will have a similar effect, although this should become less marked as Z is increased.

Hopton and Linnett⁽³³⁾ have discussed the structure of the linear  $H_3^+$  molecular ion in terms of various approximations to a simple CI wave function obtained by Hirschfelder, Eyring and Rosen⁽³⁴⁾. As these latter authors did not allow the orbital exponents to vary, their wave functions

* For 
$$H_3^+$$
 with  $\theta = 60^\circ$ , N(A) = N(B) = N(C) and  
S(AB) = S(AC) = S(BC)

was not the best obtainable with their limited basis set (three 1s orbitals, one on each nucleus) and fixed geometry. The calculations of Hopton and Linnett have been repeated using the wave function obtained for Z = 1.0 at  $\theta$  = 180° as the "best" wave function.

The approximations to the wave function  $\Phi$ (see(3.5)) are the  $\Phi_{\rm VB}$  ), the molecular orbital (  $\Phi_{\rm MO}$  ), and valence bond ( three non-pairing of electrons forms (  $\phi_A$  ,  $\phi_B$  , and  $\phi_C$  ). Using the notation of the ZHZ^{2Z-1} work, these functions may be defined thus:  $\Phi_{VB}(\overline{r}_1,\overline{r}_2) = N_{VB}[(1s_B(\overline{r}_1) + k.1s_A(\overline{r}_1))(k.1s_B(\overline{r}_2) + 1s_A(\overline{r}_2))$ +  $(k_{\bullet} 1s_{B}(\overline{r}_{1}) + 1s_{A}(\overline{r}_{1}))(1s_{B}(\overline{r}_{2}) + k_{\bullet} 1s_{A}(\overline{r}_{2}))$ +  $(1s_{C}(\overline{r}_{1}) + k.1s_{A}(\overline{r}_{1}))(k.1s_{C}(\overline{r}_{2}) + 1s_{A}(\overline{r}_{2}))$ +  $(k.1s_{C}(\overline{r}_{1}) + 1s_{A}(\overline{r}_{1}))(1s_{C}(\overline{r}_{2}) + k.1s_{A}(\overline{r}_{2}))]$ =  $N_{VB}[0.5k\phi_1(\overline{r}_1,\overline{r}_2) + 2k\phi_2(\overline{r}_1,\overline{r}_2) + 0.5k\phi_3(\overline{r}_1,\overline{r}_2)]$  $+(k^{2} + 1)\phi_{4}(\bar{r}_{1},\bar{r}_{2})]$  $\Phi_{MO}(\overline{r}_1,\overline{r}_2) = N_{MO}[(1s_B(\overline{r}_1) + k.1s_A(\overline{r}_1) + 1s_C(\overline{r}_1))]$  $\left(1s_{B}(\overline{r}_{2}) + k.1s_{A}(\overline{r}_{2}) + 1s_{C}(\overline{r}_{2})\right)\right]$  $= N_{MO} [0.5\varphi_1(\overline{r}_1,\overline{r}_2) + 0.5k^2\varphi_2(\overline{r}_1,\overline{r}_2) + k\varphi_4(\overline{r}_1,\overline{r}_2)]$  $\phi_{A}(\overline{r}_{1},\overline{r}_{2}) = N_{A} \left[ (1s_{B}(\overline{r}_{1}) + 1s_{A}(\overline{r}_{1}))(1s_{C}(\overline{r}_{2}) + 1s_{A}(\overline{r}_{2})) \right]$ +  $(1s_{C}(\overline{r}_{1}) + 1s_{A}(\overline{r}_{1}))(1s_{B}(\overline{r}_{2}) + 1s_{A}(\overline{r}_{2}))]$ 

$$= \aleph_{A} [0.25\varphi_{1}(\overline{r}_{1},\overline{r}_{2}) + \varphi_{2}(\overline{r}_{1},\overline{r}_{2}) - 0.25\varphi_{3}(\overline{r}_{1},\overline{r}_{2}) \\ + \varphi_{4}(\overline{r}_{1},\overline{r}_{2})] ,$$

$$+ (\varphi_{B}(\overline{r}_{1},\overline{r}_{2}) = \aleph_{B} [(1s_{B}(\overline{r}_{1}) + k.1s_{A}(\overline{r}_{1}))(1s_{C}(\overline{r}_{2}) + k.1s_{A}(\overline{r}_{2})) \\ + (1s_{C}(\overline{r}_{1}) + k.1s_{A}(\overline{r}_{1}))(1s_{B}(\overline{r}_{2}) + k.1s_{A}(\overline{r}_{2}))] \\ = \aleph_{B} [0.25\varphi_{1}(\overline{r}_{1},\overline{r}_{2}) + k^{2}\varphi_{2}(\overline{r}_{1},\overline{r}_{2}) - 0.25\varphi_{3}(\overline{r}_{1},\overline{r}_{2}) \\ + k\varphi_{4}(\overline{r}_{1},\overline{r}_{2})] ,$$

$$+ (k\varphi_{4}(\overline{r}_{1},\overline{r}_{2})] ,$$

$$+ (1s_{A}(\overline{r}_{1}) + k.1s_{C}(\overline{r}_{1}))(1s_{B}(\overline{r}_{2}) + k.1s_{A}(\overline{r}_{2})) \\ + (1s_{A}(\overline{r}_{1}) + k.1s_{C}(\overline{r}_{1}))(1s_{B}(\overline{r}_{2}) + k.1s_{A}(\overline{r}_{2})) \\ + (k.1s_{B}(\overline{r}_{1}) + 1s_{A}(\overline{r}_{1}))(k.1s_{A}(\overline{r}_{2}) + 1s_{C}(\overline{r}_{2})) \\ + (k.1s_{A}(\overline{r}_{1}) + 1s_{C}(\overline{r}_{1}))(k.1s_{B}(\overline{r}_{2}) + 1s_{A}(\overline{r}_{2}))] \\ = \aleph_{C} [0.5k\varphi_{1}(\overline{r}_{1},\overline{r}_{2}) + 2k\varphi_{2}(\overline{r}_{1},\overline{r}_{2}) - 0.5k\varphi_{3}(\overline{r}_{1},\overline{r}_{2}) \\ + (k^{2} + 1)\varphi_{4}(\overline{r}_{1},\overline{r}_{2})] .$$

*,* '

.

.
The parameter k was chosen so as to maximise the overlap between each approximation  $\phi_{APP}$  and  $\phi$ . The general form of each approximation is the same as that of  $\phi$ , i.e.

$$\phi_{\text{APP}}(\overline{r}_1, \overline{r}_2) = \sum_{i} c_i \phi_i(\overline{r}_1, \overline{r}_2)$$
(5.1)

with the coefficients  $\sigma_i$  suitably calculated. Each approximation was normalized to unity. Two further approximate wave functions were introduced into the present work; these were the "best" rank 1 and 2 wave functions  $\phi_I$  and  $\phi_{II}$ , namely

$$\begin{split} \varphi_{I}(\overline{r}_{1},\overline{r}_{2}) &= \chi_{1}(\overline{r}_{1})\chi_{1}(\overline{r}_{2}) \\ &= 0.5A_{11}^{2}\varphi_{1}(\overline{r}_{1},\overline{r}_{2}) + 0.5A_{21}^{2}\varphi_{2}(\overline{r}_{1},\overline{r}_{2}) \\ &+ A_{11}A_{21}\varphi_{4}(\overline{r}_{1},\overline{r}_{2}) , \\ \varphi_{II}(\overline{r}_{1},\overline{r}_{2}) &= (n_{1} + n_{2})^{-1/2}[g_{1}\chi_{1}(\overline{r}_{1})\chi_{1}(\overline{r}_{2}) + g_{2}\chi_{2}(\overline{r}_{1})\chi_{2}(\overline{r}_{2})] \\ &= (n_{1} + n_{2})^{-1/2}[0.5g_{1}A_{11}^{2}\varphi_{1}(\overline{r}_{1},\overline{r}_{2}) + 0.5g_{1}A_{21}^{2}\varphi_{2}(\overline{r}_{1},\overline{r}_{2}) \\ &+ 0.5g_{2}A_{32}^{2}\varphi_{3}(\overline{r}_{1},\overline{r}_{2}) + g_{1}A_{11}A_{21}\varphi_{4}(\overline{r}_{1},\overline{r}_{2})] \end{split}$$

These are the natural expansions truncated after 1 and 2 terms and renormalized to unity. Since  $\phi$  is of rank 3 it is the "best" rank 3 wave function. Obviously  $\phi_{I}$  and  $\phi_{II}$  are expressible in the form of (5.1). The overlap between each approximation and  $\phi$ 

,

							·	
	Ð	Ιφ	IIφ	φ _{VB}	φ ^w o	$\phi_{A}$	ф В	φ
RANK	ſ	-	<b>N</b>	ę	-	5	α.	ε
k	I	ı	1	-0-02	1.781	ı	0.93	2.55
رم د	0.03371	0.05365	0.05298	-0-00396	0.05365	0.04645	0.05035	0.03793
о С	0.12658	0.17021	0.16808	-0.01583	0.17021	0.18582	0.17420	0.15173
с ³	<b>-0-</b> 04555	0•0000	-0.04560	-0-00396	0,00000	-0.04645	-0.05035	-0.03793
С. 4	0.24485	0.19111	0.18873	0•39600	0.19111	0.04645	0.18731	0.22327
<هاه¢	1.00000	0.98638	0.99888	0.98010	0.98638	0.99835	0.99867	0•99936
OVERLAP	1.00000	1.00000	1.00000	0.98010	1.00000	0.99948	61666.0	0•99936
VITH BEST	:							

φ ÓF SAME

RANK

TABLE 4. APPROXIMATIONS TO  $\Phi$  EACH WAVEFUNCTION EXPRESSED AS  $\Phi_{AP}$ = $\Sigma c_{i} \Phi_{i}$ 

together with the overlap with the "best" wave function of the same rank are shown in Table 4.

Hopton and Linnett conclude that the non-pairing forms are the best because they have higher overlaps with  $\phi$  than either  $\phi_{VB}$  or  $\phi_{MO}$ . If this were so the occupation numbers of linear  $H_3^+$  would be much closer to those of the dissociation products than to those of the united atom, since the non-pairing form implies a degree of spatial correlation. The atomic population N(A) for nucleus A is almost three times that of centres B or C; this would seem unusual if there were a high degree of spatial correlation between the electrons.

The key to the misleading high overlaps of the non-pairing approximations with  $\phi$  (a result preserved in this calculation) lies in the fact that the five approximate forms are of different rank. The theorem stated in Chapter 4 implies that there is an upper bound to the  $\int \phi^* \phi_{APP} dr_1 dr_2$ overlap integral which is determined  $\Phi_{\rm APP}$  . A comparison of greater validity than the by the rank of straight forward comparison of values of this integral for different approximations is to determine the rank of  $\Phi_{APP}$ and then compare  $\Phi_{APP}$  and the "best" function of the overlap integrals between the same rank, since this then accounts for the mathematical limitation of the approximation as well as the chemical limitation. It is seen  $\phi_{I}$ from Table 4 that Φ_{MO} are identical; a result and suspected by Shull⁽³⁵⁾. This evidence confirms the conclusion that linear H₃⁺ may be regarded as a three centre system because Φ_{MO} is the best approximation to  $\phi$ .

As  $\theta$  increases the kinetic energy undergoes an initial decrease for all values of Z (Fig. 11). The decrease becomes greater as Z is increased. When Z = 1.0, the kinetic energy becomes constant for  $\theta > 90^{\circ}$ , however, the curve for Z = 2.2 shows a pronounced

- 65 -

minimum when  $\theta \simeq 60^{\circ}$ , and a constant value is attained only when

 $\theta > 140^{\circ}$ . Figs. 12, 13, and 14 show that, for Z = 1.0, the other energy contributions are virtually constant when  $\theta > 90^{\circ}$ . This lack of angular dependence indicates that, when  $\theta > 90^{\circ}$ , the proton at centre A tends to dominate the H₃⁺ system.

Ruedenberg  $\binom{36}{100}$  has shown that a lowering of the kinetic energy may be associated with an increased "smoothness" of the electron density surface throughout the molecule. It is related in character to the lowering of the kinetic energy of potential free electrons when the volume containing them is increased. Thus the kinetic energy curves shown in Fig. 11 may be interpreted as a measure of the relative freedom of the electrons within the ions as  $\theta$  is increased. For example, when Z = 2.2 and  $\theta = 30^{\circ}$ , the charge cloud is localized about the B-C region of the ion; hence the value of the kinetic energy is high.  $\theta$  is increased to a value of 60°, the kinetic energy suffers a As decrease, suggesting that the larger value for the B-C separation allows the charge cloud to become more diffuse. However, for a further increase in heta , the kinetic energy is seen to increase; this is consistant with the observation that, for Z = 2.2 the charge cloud will divide and become localized about the separate centres B and C, as approaches  $180^{\circ}$ . For Z = 1.0, a similar situation will occur, namely, as B and C separate, the charge cloud will become more diffuse, and the value of the kinetic energy will therefore decrease for an initial increase in heta . However, a continued increase of heta causes the charge cloud to contract towards centre A instead of dividing and localizing it about each of the centres B and C, as was the case for Z = 2.2. Thus, for  $H_2^+$  it is not surprising that the kinetic energy remains virtually constant for  $\theta > 90^{\circ}$ . The curves for Z = 1.4

and 1.8 shown in Fig. 11 are clearly states of transition between the two cases already discussed. Additional support for the above interpretation is gained by noting that, for each value of Z, the dependence of the electron density evaluated at centre B (or C) has the same form as the corresponding curve for the kinetic energy shown in Fig. 11.

From Figs. 12, 13, and 14 we see that the electron repulsion energy, nuclear attraction, and nuclear repulsion energies become slightly more

 $\theta$ -dependent as Z becomes larger. This is quite reasonable since the foregoing analysis has shown that, as Z increases, the tendency for the charge cloud to contract around the centres B and C will also increase as  $\theta$  approaches 180°. Hence when the division of the charge cloud becomes more effective, the drop in electron repulsion energy will become greater, as shown in Fig. 12. For a fixed value of Z, Fig. 13 shows that the nuclear attraction energy will increase for an increase in , presumably related to the fact that the charge cloud will be influenced less by the combined effect of the nuclei at B and C. The nuclear repulsion energy curves shown in Fig. 14 are simply dependent on Z and the geometry of the ZHZ^{2Z-1} system.

The comparison of the results of the analysis for the  $ZHZ^{2Z-1}$  ions with the  $H_3^+$  calculation of Christoffersen is very valuable. However it is rather limited because  $H_3^+$  is a member of the  $ZHZ^{2Z-1}$  systems, and the comparison does not indicate whether or not the unexpected behaviour (the initial decrease in the optimum bond angle as Z increases from 0.8), is simply a feature of these systems. Recent work⁽³⁷⁾ on a four-centre four-electron system of the form  $ZHZH^{2(Z-1)}$  shows that this behaviour is not confined to the  $ZHZ^{2Z-1}$  pseudomolecular ions. In the  $ZHZH^{2(Z-1)}$ system four electrons are associated with a planar nuclear framework of four nuclei, and as the nuclear charge Z is increased from 0.8 to 2.4 the optimum ZHZ bond angle decreases. As Z becomes very large this angle goes through a minimum and approaches 180° asymptotically. This seems to imply that the electron density of the four-centre system will behave in a way similar to that of the three-centre system; for a given ZHZ bond angle in the four-centre system, the increasing nuclear charges will firstly draw the charge cloud away from the protons towards the geometric centre of the system, and then the charge cloud will divide into two parts, each localized about the variable nuclear charges Z. The detailed analysis of the wave functions for the four-centre fourelectron systems is awaited with interest.

## CHAPTER 6 CONCLUSION

The wave functions of a series of pseudomolecular ions of the form  $ZHZ^{2Z-1}$ , where Z = 1.0 (0.4) 2.2 were reformulated in terms of their natural expansions. Consequently it was possible to investigate changes in the one-particle density due to variations of Z and the bond angle ZHZ (=  $\theta$  ), by means of an electron population analysis similar to that of Mulliken. Contour diagrams were constructed for the one-particle density in the plane of the nuclei. In addition the behaviour of the kinetic energy, the nuclear attraction energy, the electron and nuclear repulsion energies as functions of Z and  $\theta$  were also examined.

For  $Z \leq 1.4$ , the first natural orbital in the natural expansion of the wave function was found to have a large occupation number for all values of  $\theta$ . Such a feature is essential, although by itself no guarantee, for obtaining molecular stability with respect to dissociation; nevertheless the results obtained here are in accord with the observation⁽²⁵⁾ that the ions are energetically stable for Z < 1.3.

The occupation numbers of the natural orbitals for  $H_3^+$  were placed in perspective by making a comparison with similar quantities for the united atom Li⁺ and the dissociation products  $H + H + H^+$ . Such a comparison clearly reveals that  $H_3^+$  possesses a strong united atom character. The contour diagrams also showed that, when  $\theta = 60^\circ$ , the "bonds" in  $H_3^+$  were directed towards the centroid of the positive charges. The elaborate wave function of Christoffersen⁽²²⁾, analysed by Christoffersen and Shull⁽³¹⁾, also revealed this "bonding" arrangement. For fixed bond lengths EA and CA (Fig. 3), as  $\theta$  was increased, the charge moved from the centres B and C towards A, indicating that the proton dominates the linear  $H_3^+$  system. These results do not support the conclusion that a non-pairing description is applicable to the linear  $H_3^+$  ion; Shull⁽³⁵⁾ has described it as "a relatively normal (albeit lengthened) single bond in which is embedded an additional proton", a description supported by the present analysis.

When Z is large, the dissociation products of minimum energy have natural orbitals with occupation numbers of 0.5. This situation is most closely represented when Z = 2.2 and  $\theta = 180^{\circ}$ . The contour diagrams and electron population analysis show that, at large values of Z, the electron density in the region of centre A is small and, as

 $\theta$  increases, the charge cloud flows from the internuclear region B-C towards the "outer" nuclei. The diagrams and analysis also show that, as Z increases and  $\theta$  decreases, the ZHZ^{2Z-1} ions change from a three-centre system to what is essentially a two-centre system plus a strongly perturbing proton.

Of the various components of the energy of the  $ZHZ^{2Z-1}$  ions, the  $\theta$  dependence of the kinetic energy is most striking. As emphasised by Ruedenberg, a decrease in magnitude of the kinetic energy may be associated with an increase in the spatial freedom of the electrons. This interpretation assisted not only with the understanding of the kinetic energy curves but also permitted variations in the remaining energy components to be understood.

The  $ZHZ^{2Z-1}$  calculation was originally conceived as a model of one of the bridge bonds of diborane. The unusual behaviour of the system, which precludes its use as such a model, is not, however, confined to this system. The initial results of a calculation on  $ZHZH^{2(Z-1)}$  (37) indicate that its behaviour is somewhat similar to that of  $ZHZ^{2Z-1}$  but further detailed analysis will be required to determine the extent of the similarity. The results discussed here cast some doubt on the validity of the molecular fragment model as an indicator of the nature of the bonds

- 70 -

.

in a complete molecule; nevertheless, the analysis has afforded considerable insight into the energy changes and accompanying changes in electron density as Z and  $\theta$  vary within the simply ZHZ^{2Z-1} pseudomolecular system.

# PART II

---

.

. *

-

•

### - 72 -

## CHAPTER 7

## INTRODUCTION - THE METHOD OF CONFIGURATION

## INTERACTION

The theoretical methods for constructing a Configuration Interaction (CI) wave function are reviewed in this chapter and their application to homonuclear diatomic molecules is described. Because of the ambiguity of the description of CI wave functions, the terminology used in Part II of this thesis is now defined:

(i) DETERMINANT: An antisymmetrized product of occupied spin-orbitals. It is an eigenfunction of the  $\mathfrak{S}_{z}$  operator.

(ii) DETOR: A determinant constructed from a set of orthonormal spinorbitals⁽³⁸⁾.

(iii) CONFIGURATION: A linear combination of determinants which is an eigenfunction of the total spin operator  $\mathfrak{S}^2$ ; it is also a basis for an irreducible representation of the molecular symmetry group.

(iv) CODETOR: A configuration in which the determinants are detors⁽³⁸⁾. It must be emphasised that although these definitions are adhered to in both Parts I and Part II of this thesis there is no generally accepted usage of the name configuration and some authors use it synonymously with determinant.

The positions of the nuclei within a molecule are fixed with respect to some co-ordinate system, referred to as the global co-ordinate system. The origin of this set of co-ordinates is chosen to be at some convenient point; for a homonuclear diatomic molecule the origin is at the mid-point of a line joining the nuclei. The global co-ordinate system will be a right-handed set of co-ordinates.

The atomic orbitals are defined with respect to local co-ordinate systems which have their origins are the nuclei. The local co-ordinate

systems are chosen to be parallel to the global co-ordinate system. Both systems to be used for the homonuclear diatomic molecules are shown in Fig. 15; the internuclear axis OZ passes through the two nuclei A and B whose co-ordinates with respect to the global co-ordinate system are (0,0,-R/2) and (0,0,R/2) respectively.



FIG. 15. The co-ordinate systems for a homonuclear diatomic molecule, OX, OY and OZ define the global co-ordinate system.

The general form of the atomic orbitals will be a product of a radial factor  $R(\mathbf{r})$  and an angular factor  $\Theta(\theta,\phi)$ , where the co-ordinates  $(\mathbf{r},\theta,\phi)$  refer to a local co-ordinate system:

$$\omega_{i}(r,\theta,\phi) = R_{i}(r)\Theta_{i}(\theta,\phi) \qquad (7.1)$$

It is usual to construct the molecular orbitals as linear combinations of atomic orbitals which transform according to an irreducible representation of the molecular symmetry group. This is achieved by use of the projection operator (see, for example Hammersmesh⁽³⁹⁾). In general, the projection operator may be written as</sup>

$$P^{(\mu)} = \frac{n_{\mu}}{g} \sum_{R} \chi^{(\mu)*}(R) \mathbf{0}_{R}$$
(7.2)

In (7.2) the superscript  $\mu$  refers to a particular irreducible representation.  $\chi^{(\mu)*}(R)$  is the character of the element R in the

 $\mu$  irreducible representation, and  $\hat{U}_R$  is the operator corresponding to the element R.  $n_{\mu}$  is the degree of the irreducible representation and g the order of the group. The usual technique for obtaining the 'symmetry adapted' molecular orbitals (SAMOs) is to apply the projection operator for each irreducible representation to each of the members of the chosen set of atomic orbitals. The result is a number of linear combinations of atomic orbitals each of which transforms according to one of the irreducible representations of the molecular symmetry group, these combinations are the SAMOs.

Homonuclear diatomic molecules have an axis of symmetry of infinite order (the axis of the molecule, OZ in Fig. 15) and a centre of symmetry. Their symmetry group is  $D_{\infty h}$ , generated by the operations: (i) the rotations  $C_{\eta}$  about the axis of symmetry by an angle  $\eta$ , (ii) the inversion i in the centre of symmetry, (iii) a reflection  $\sigma$  in the plane of symmetry containing the

internuclear axis.

Because the axis of symmetry is of infinite order it is necessary to replace the summation in (7.2) by an integration with limits 0 and  $2\pi$ , the integrand being  $\eta$ . The projection operator for the group  $D_{\infty h}$  has the form

$$P^{(\mu)} = \frac{r}{8\pi} \left[ \int_{0}^{2\pi} \chi^{(\mu)*}(C_{\eta}) \mathfrak{g}_{C_{\eta}}^{d\eta} + \int_{0}^{2\pi} \chi^{(\mu)*}(iC_{\eta}) \mathfrak{g}_{iC_{\eta}}^{d\eta} + \int_{0}^{2\pi} \chi^{(\mu)*}(iC_{\eta}) \mathfrak{g}_{iC_{\eta}}^{d\eta} + \int_{0}^{2\pi} \chi^{(\mu)*}(i\sigma C_{\eta}) \mathfrak{g}_{i\sigma C_{\eta}}^{d\eta} \right] \quad . (7.3)$$

μ	E	Cŋ	$iC_{\eta}$	σCη	$i\sigma C_{\eta}$
۲ _g	1	1	1	1	1
Σ <b>+</b> u	1	1	-1	1	-1
Σ <mark>-</mark> g	1	1	1	-1	-1
Σī	1	1	-1	-1	1
Πg	2	2cos ŋ	2008 J	0	0
Π _u	2	2cos1	-2cosŋ	0	0
$\Delta_{g}$	2	2cos2ŋ	2cos2ŋ	0	0
Δ _u	2	2cos2	-2cos2	0	0
٢g	2	2cos4ŋ	2cos4ŋ	0	0

TABLE 5. THE CHARACTER TABLE OF Don't.

•.

The character table for  $D_{\infty h}$  is given in Table 5 and the specific application of the operator to complex Slater-type orbitals is given in Appendix II.

The construction of the secular equation is greatly simplified if the basis set of molecular orbitals is orthonormal. This may be achieved in two basic ways. The first method is to compute the overlap matrix for the non-orthogonormal SAMOs. Let this matrix be  $\underline{S}$ . The elements of  $\underline{S}$  are

$$s_{ij} = \int \varphi_i^* \varphi_j^* dr$$
, (7.4)

 $\varphi'_{i}$  and  $\varphi'_{j}$  are members of the set of non-orthogonormal SAMOs. <u>S</u> has the property of being real symmetric positive definite matrix so that it is possible to Choleski decompose it into the product of a lower triangular matrix <u>L</u> and its transpose <u>L</u>^T:

$$\underline{S} = \underline{L} \underline{L}^{\mathrm{T}},$$
 (7.5)

and

$$\underline{\mathbf{L}}^{-1}\underline{\mathbf{S}}(\underline{\mathbf{L}}^{\mathrm{T}})^{-1} = \underline{\mathbf{I}}$$
(7.6a)

where <u>I</u> is the identity matrix. The inverse of a lower triangular matrix is also lower triangular and  $(\underline{L}^{T})^{-1}$  will be upper triangular. Let

$$\underline{\underline{U}} = (\underline{\underline{L}}^{\mathrm{T}})^{-1}$$
  
$$\cdot \underline{\underline{U}}^{\mathrm{T}} = \underline{\underline{L}}^{-1}$$

(7.6a) may be written

$$\underline{\mathbf{U}}^{\mathrm{T}}\underline{\mathbf{SU}} = \underline{\mathbf{I}} \tag{7.6b}$$

The set  $\{arphi_{\mathbf{i}}\}$  of orthonormal SAMOs is now defined by

$$\varphi_{i} = \sum_{j=1}^{i} \varphi_{j}^{i} u_{ji} , \qquad (7.7)$$

where  $u_{ji}$  is an element of <u>U</u>. It is immediately obvious from (7.7) that the orbital  $\varphi_i$  has the form produced by the technique known as the Schmidt orthogonalization process⁽⁴⁰⁾. It has been found that the approach described leads to more stable numerical results than the straightforward application of the Schmidt procedure^(40, 41). The second method is that of simultaneous orthonormalization in which the eigenvectors of <u>S</u> are divided by the square root of the corresponding eigenvalue; the resulting matrix may then be used as in (7.7), but the summation runs over all possible values of <u>j</u>. A set of orthonormal symmetry adapted molecular spin orbitals may then be constructed according to (1.5).

A detor is defined as an antisymmetrized product of occupied spinorbitals. The antisymmetrizer  $\mathfrak{A}$  ⁽¹²⁾ is a permutation operator which commutes with the Hamiltonian  $\mathfrak{h}$ ,  $\mathfrak{F}$ ,  $\mathfrak{S}_{Z}$ , and the group theoretical operators. Consequently a detor may be specified by defining the appropriate product of occupied spin-orbitals. For this purpose an 'ordered product'  $P_{K}$  of occupied spin orbitals is employed. If

 $\psi_{k1}, \psi_{k2}, \dots, \psi_{kn}$  are members of the chosen set of molecular spin-orbitals, then

$$P_{K} = \Psi_{k1}(1)\Psi_{k2}(2)...\Psi_{kn}(n)$$

where the spin-orbital identifiers k1, k2,..., kn satisfy the condition

$$k1 \le k2 \le k3 \le \dots \le kn$$
 . (7.8)

The corresponding detor  $\boldsymbol{D}_{\boldsymbol{Y}}$  is then given by

$$D_{K} = \mathfrak{A}P_{K}$$

$$= (n!)^{-1/2} \begin{vmatrix} \psi_{k1}(1)\psi_{k2}(1) & \cdots & \psi_{kn}(1) \\ \psi_{k1}(2)\psi_{k2}(2) & \cdots & \psi_{kn}(2) \\ \cdots & \cdots & \cdots \\ \psi_{k1}(n)\psi_{k2}(n) & \cdots & \psi_{kn}(n) \end{vmatrix}$$
(7.9)

Obviously  $P_{\gamma}$  represents the diagonal of  $D_{\gamma}$ , and the detor is an 'ordered detor'. The selection of the detors is equivalent to the choice of the  $P_{K}S$ . A basis set of N molecular spin-orbitals gives rise to N! /( (N-n)!n!) different ordered products of molecular spin-orbitals in an n-electron problem. For a sixteen electron system a minimal basis set of twenty spin-orbitals produces 4845 ordered products of spinorbitals. This large number is drastically reduced by considerations of electron spin and molecular symmetry. A further reduction in the number of detors contributing to the wave function for a given state may be achieved by an artifact, employed Meckler⁽⁴²⁾, Kotari and his colleagues⁽⁴³⁾; Harris and Michels⁽⁴⁴⁾ call it the 'Valence Configuration Interaction' (VCI) method. In the VCI method detors are constructed from valence shell orbitals; Meckler's CI on Oxygen uses the detors derived from the assignment of eight electrons to twelve SAMOs constructed from six p -type Gaussian-type orbitals, three on each nucleus. Kotani et alia⁽⁴³⁾ extended the approach to include the 2 S orbitals. Thus in the former

calculation each detor had a closed shell or 'frozen core' of electrons occupying the 1s and 2s orbitals, and in the latter only the 1s shell was frozen. The drastic freezing of the core by Meckler reduced the total number of detors to 495, of which only 31 had the correct symmetry and electron spin properties. The results of the calculations of Kotani et alia are in good agreement with experimental results. It is concluded ^(44,45) that to cause the orbitals, with principle quantum numbers less than that of the valence shell, to be occupied in every detor is a restriction of almost negligible effect.

The selection of the  $P_{K}$ s is a simple process. The frozen core is assumed to consist of the first m orbitals in each detor, and the process begins by selecting the first (n -1) spin-orbitals with the lowest identifiers and allowing the nth spin-orbital to take the values of the remaining (N-n) identifiers. The identifier of spin-orbital (n-1) is increased by one and the process is repeated, working along the ordered product until the m-th spin-orbital is reached. As an example consider the basis set of  $\psi_1$ ,  $\psi_2$ ,  $\psi_3$ ,  $\psi_4$ ,  $\psi_5$ , and  $\psi_6$  for a four electron system with two frozen orbitals; six  $P_{K}$  are generated,

$$P_{1} = \psi_{1}(1)\psi_{2}(2)\psi_{3}(3)\psi_{4}(4)$$

$$P_{2} = \psi_{1}(1)\psi_{2}(2)\psi_{3}(3)\psi_{5}(4)$$

$$P_{3} = \psi_{1}(1)\psi_{2}(2)\psi_{3}(3)\psi_{6}(4)$$

$$P_{4} = \psi_{1}(1)\psi_{2}(2)\psi_{4}(3)\psi_{5}(4)$$

$$P_{5} = \psi_{1}(1)\psi_{2}(2)\psi_{4}(3)\psi_{6}(4)$$

$$P_{6} = \psi_{1}(1)\psi_{2}(2)\psi_{5}(3)\psi_{6}(4)$$

The ordered products  $P_1$ ,  $P_3$ ,  $P_4$ , and  $P_6$  correspond to  $S_z = 0$ , while  $P_2$  has  $S_z = 1$  and  $P_5$  has  $S_z = -1$ . In the construction of codetors with a total spin eigenvalue of 0,  $P_2$  and  $P_5$  would be omitted because  $S \leq |S_z|$ . The construction of the eigenfunctions of  $\mathfrak{G}^2$  is more difficult and several approaches are possible⁽¹¹⁾. Because of its computational simplicity, the method selected in the present work is based on the diagonalization of the operator  $\mathfrak{S}^2$  over the chosen set of detors. The matrix involved has  $\langle D_K | \mathfrak{S}^2 | D_L \rangle$  as its elements and as the antisymmetrizer commutes with  $\mathfrak{S}^2$ , these elements may be calculated as  $\langle P_K | \mathfrak{S}^2 | P_L \rangle$ .

The total spin operator may be written

$$\mathfrak{S}^2 = \mathfrak{S}_+ \mathfrak{S}_- + \mathfrak{S}_z^2 - \mathfrak{S}_z , \qquad (7.10)$$

where  $\mathfrak{G}_+$  and  $\mathfrak{G}_-$  are the 'step-up' and 'step-down' operators⁽¹¹⁾. The effect of  $\mathfrak{G}_Z$  and hence  $\mathfrak{G}_Z^2$  on a product of spin-orbitals is given by (1.9).  $\mathfrak{G}_+$  and  $\mathfrak{G}_-$  must be expanded as

$$\mathfrak{S}_{+} = \overset{n}{\underset{i=1}{\Sigma}} s_{i+} \qquad (7.11a)$$

and

$$\mathbf{\tilde{s}}_{-} = \mathbf{i}_{=1}^{n} \mathbf{s}_{i-}$$
 (7.11b)

the operators  $s_{i+}$  and  $s_{i-}$  are one-electron operators which act on the spin orbitals, defined according to (1.5), as shown in (7.12)

 $s_{+} \psi_{2i-1} = s_{+} \varphi_{i} \sigma = 0$   $s_{-} \psi_{2i-1} = s_{-} \varphi_{i} \sigma = \varphi_{i} \beta = \psi_{2i}$   $s_{+} \psi_{2i} = s_{+} \varphi_{i} \beta = \varphi_{i} \sigma = \psi_{2i-1}$   $s_{-} \psi_{2i} = s_{-} \varphi_{i} \beta = 0$ (7.12)

Applying  $\mathfrak{S}^2$  to  $P_3$ :

$$\begin{split} \mathfrak{S}^{2} \mathfrak{P}_{3} &= \mathfrak{S}^{2} (\psi_{1} \psi_{2} \psi_{3} \psi_{6}) \\ &= \mathfrak{S}_{+} \mathfrak{S}_{-} (\psi_{1} \psi_{2} \psi_{3} \psi_{6}) + \mathfrak{O} \cdot \mathfrak{P}_{3} \\ &= \mathfrak{S}_{+} ((\psi_{2} \psi_{2} \psi_{3} \psi_{6}) + (\psi_{1} \psi_{2} \psi_{4} \psi_{6})) \\ &= (\psi_{1} \psi_{2} \psi_{3} \psi_{6}) + (\psi_{2} \psi_{1} \psi_{3} \psi_{6}) + (\psi_{2} \psi_{2} \psi_{3} \psi_{5}) \\ &+ (\psi_{1} \psi_{1} \psi_{4} \psi_{6}) + (\psi_{1} \psi_{2} \psi_{3} \psi_{6}) + (\psi_{1} \psi_{2} \psi_{4} \psi_{5}) \quad . \quad (7.13) \end{split}$$

There are six terms in (7.13); the first is  $P_3$ , the second- $P_3$  since  $\psi_1$  and  $\psi_2$  have to be interchanged to produce an ordered product, the third and fourth terms are zero because of the double occupancy of a spin-orbital which causes the corresponding detor to vanish, the fifth term is  $P_3$  and the last  $P_4$ . Thus,

$$S^2 P_3 = P_3 + P_4$$
 (7.14)

It is seen from (7.12) and (7.13) that (7.14) can be obtained simply by applying the  $\mathfrak{B}^2$  operator to the unfrozen orbitals  $\psi_3$  and  $\psi_6$ . This is because the frozen core is an eigenfunction of  $\mathfrak{B}^2$  with S = 0. The final step of evaluating  $\langle P_K | \mathfrak{B}^2 | P_L \rangle$  is achieved using the knowledge that

$$\langle P_{K} | P_{L} \rangle = \delta_{KL},$$

where the integration is performed over the spin co-ordinates. Using the approach described in the next chapter it is possible to ensure that the resulting matrix is block diagonal, and it may be diagonalized by any suitable method (13). The foregoing remarks concerning the construction

of spin eigenfunctions apply equally well to determinants.

The detors are constructed from an orthonormal set of symmetry adapted molecular spin-orbitals. The most suitable atomic orbitals for problems concerning diatomic molecules are complex Slater-type orbitals; the normalized form of these is

$$\omega(n,l,m) = R_n(r) \Upsilon_{lm}(\theta,\phi) , \qquad (7.15a)$$

where

$$R_{n}(r) = \left[\frac{(2l)^{2n+1}}{(2n)!}\right]^{1/2} r^{n-1} \exp(-lr) , \quad (7.15b)$$

and

$$\mathbf{Y}_{lm}(\theta,\phi) = \frac{(-1)^{l+m}}{2^{l}l!} \left[ \frac{(2l+1)(l-|m|)!}{4\pi (l+|m|)!} \right]^{1/2} \sin^{|m|}\theta$$
$$\left[ \frac{d}{d\cos\theta} \right]^{l+|m|} \sin^{2l}\theta \exp(jm\phi) \quad . \tag{7.15c}$$

The orbital is defined with respect to a local co-ordinate system,  $R_n(r)$  is a normalized radial function,  $Y_{lm}(\theta, \phi)$  is a spherical harmonic⁽⁴⁾ and  $j = \sqrt{-1}$ . The SAMOs for a diatomic molecule are characterized by the component of the orbital angular momentum in the z-direction (the axial angular momentum and equal to m in primary units) of their constituent orbitals (see Appendix II). The axial angular momentum  $\Lambda$  of an orbital product and its corresponding detor may be obtained simply by summing the values of the magnetic quantum number m (7.15) of the constituent molecular spin orbitals, i.e.

$$\Lambda = \sum_{i=1}^{\Sigma} m_i \qquad (7.16)$$

The corresponding irreducible representation is partly determined by the value of  $\Lambda$ ;  $\Lambda = 0, 1, 2, \dots$  gives rise to the  $\Sigma$ ,  $\Pi$ ,  $\Delta$ , ... states of diatomic molecules. Under the operation of inversion the detor either remains unchanged (gerade or g) or changes sign (ungerade or u). The orbital product is gerade if it contains an even number of gerade spin orbitals, otherwise it is ungerade. Thus a detor may be characterized  $\Lambda_i$ , where i is replaced by g for gerade detors and u by the symbol for ungerade detors. The  $\Sigma$  detors are also characterized by their behaviour under the reflection  $\sigma$  in the plane containing the internuclear axis. The operation  $\sigma$  is most conveniently considered in one of the co-ordinate planes of the global co-ordinate system (i.e. the  $x_{Z-}$  $y_z$ - planes (14,49). The result of such a reflection on each or individual spin-orbital may be easily obtained. The reflection operator is applied simultaneously to each orbital in the ordered product; there are four possible results, summarized in (7.17).

$$\sigma P_{L} = \pm P_{L} , \qquad (7.17a)$$

$$\sigma P_{L} = \pm P_{K} \qquad (7.17b)$$

If the wave function changes sign the superscript - is added to  $\Sigma$  and if the sign is unchanged the superscript + is added. Thus, (7.17a) produces either a + or - state, while (7.17b) gives both.

When the total spin eigenfunctions have been obtained it is a simple matter to combine them to form codetors. In matrix notation the codetors are defined as

$$\frac{\Psi}{S\sigma} = \underline{DT}_{S\sigma} \quad . \tag{7.18}$$

- 84 -

 $\underline{\Psi}_{S\sigma}$  is a row vector with elements that are simultaneously eigenfunctions of  $\underline{S}^2$  and  $\sigma$ . <u>D</u> is a row vector of detors, each corresponding to the same values of  $S_z$  and  $\Lambda_i$ . The matrix  $\underline{T}_{S\sigma}$ can be regarded as a projection matrix which projects  $\underline{\Psi}_{S\sigma}$  from <u>D</u>. The elements of  $\underline{T}_{S\sigma}$  are determined by the methods previously described.

Having obtained the codetors which transform according to the molecular state being investigated, it is possible to proceed with the evaluation of the matrix elements:

$$H_{IJ} = \langle \Psi_{I} | \mathfrak{h} | \Psi_{J} \rangle \qquad (1.13a)$$

and

$$S_{IJ} = \langle \Psi_{I} | \Psi_{J} \rangle \qquad (1.13b)$$

From (7.18)

$$\Psi_{I} = \sum_{K} D_{K} t_{KI} \quad . \tag{7.19}$$

Substitution of (7.19) into (1.13) gives

$$H_{IJ} = \sum_{K} \sum_{L} t_{IK} t_{LJ} \langle D_{K} | \hat{h} | D_{L} \rangle$$
 (7.20a)

and

$$S_{IJ} = \sum_{K} \sum_{L} t_{IK} t_{LJ} \langle D_{K} | D_{L} \rangle$$
 (7.20b)

The problem reduces to the evaluation of  $\langle D_{K} | \underset{D}{\mathfrak{h}} | D_{L} \rangle$  and  $\langle D_{K} | D_{L} \rangle$ , the elements of two matrices  $\underline{H}_{D}$  and  $\underline{S}_{D}$ . In matrix notation (7.20) becomes

$$\underline{H} = \underline{T}_{S\sigma}^{T} \underline{H}_{D} \underline{T}_{S\sigma}$$
(7721a)

and

$$\underline{S} = \underline{T}_{S\sigma}^{T} \underline{S}_{D} \underline{T}_{S\sigma}$$
(7.21b)

 $(\underline{T}_{S\sigma}^{T}$  is the transpose of  $\underline{T}_{S\sigma}$ ). L8wdin⁽⁸⁾ has given general formulae for evaluating the elements of  $\underline{H}_{D}$  and  $\underline{S}_{D}$  in terms of integrals over basis orbitals when determinants are used. Evaluation of these formulae requires a considerable computational effort, and a simpler form produced for detors will be employed. Before evaluating the elements of  $\underline{H}_{D}$  and  $\underline{S}_{D}$  each pair of detors must be brought into maximum coincidence, this means that those spin-orbitals common to both detors must occupy the same columns in both. For each pair of detors

$$\langle D_{\rm K} | D_{\rm L} \rangle = \delta_{\rm KL}$$
 (7.22)

The evaluation of  $\langle D_{K} | \mathfrak{h} | D_{L} \rangle$  is split into two parts as shown in (7.23)

There are four cases to be considered in the evaluation of the two terms in (7.23):

- (i)  $D_{\kappa}$  and  $D_{L}$  are identical,
- (ii)  $D_{K}$  and  $D_{L}$  differ by one spin-orbital,  $\Psi_{m}$  entering  $D_{K}$  where  $\Psi_{D}$  enters  $D_{L}$ ;
- (iii)  $D_{K}$  and  $D_{L}$  differ by two spin-orbitals,  $\Psi_{m}$  and  $\Psi_{n}$  entering  $D_{K}$  where  $\Psi_{p}$  and  $\Psi_{q}$  enter  $D_{L}$ , and
- (iv)  $D_{K}$  and  $D_{L}$  differ by more than two spin-orbitals

$$h_{ij} = \int \psi_i^*(1) h_1 \psi_j(1) dx_1$$
, (7.24)

•...

.

$$[ij|kl] = \iint \psi_{i}^{*}(1)\psi_{k}^{*}(2)(1/r_{12})\psi_{j}(1)\psi_{l}(2)dx_{1}dx_{2} , (7.25)$$

$$J_{ij} = [ii|jj]$$
 , (7.26)

$$K_{ij} = [ij|ji]$$
 . (7.27)

C7

Thus,

$$\langle D_{K} | \sum_{\mu=1}^{n} h_{\mu} | D_{L} \rangle \begin{cases} = \sum_{i=1}^{n} h_{ii} \text{ for case (i)} \\ = h_{mp} \text{ for case (ii)} \\ = 0 \text{ for cases (iii) and (iv), (7.28)} \end{cases}$$

and

$$\langle D_{K} | \sum_{\mu < \nu} g_{\mu\nu} | D_{L} \rangle$$

$$\left\{ \begin{array}{l} = \sum \sum (J_{ij} - K_{ij}) \text{ for case (i)} \\ = \sum ([ii|mp] - [ip|mi]) \text{ for case (ii)} \\ i \neq m \\ = [mp|nq] - [mq|np] \text{ for case (iii)} \\ = 0 \text{ for case (iv)} \quad . \qquad (7.29) \end{array} \right.$$

In (7.28) the summation is over all the occupied orbitals in  $D_K$  for case (i) and in (7.29) the double summation for case (i) is over all the occupied orbitals in  $D_K$ ; the single summation of case (ii) excludes the orbital  $\Psi_m$  in  $D_K$  and  $\Psi_p$  in  $D_L$ . The integrals of (7.24) to (7.27) can be reduced to integrals over spatial orbitals using the relation of (1.5) and the knowledge that the spin functions may be factored off and integrated separately. The integrals are normally computed over the basis atomic orbitals, and are then transformed directly into integrals over the orthonormal SAMOs. For the diatomic molecules this procedure is as follows:

$$\varphi_{i}^{i} = \sum_{j}^{L} \omega_{j} c_{ji}^{i} , \qquad (7.30a)$$

or in matrix form

$$\varphi^{\dagger} = \omega C^{\dagger} \qquad (7.30b)$$

The  $\varphi_{i}^{!}$  are non-orthonormal SAMOs, which are then orthonormalized by one of the methods described, so that

$$\varphi_{k} = \sum_{i} \varphi_{i} u_{ik} , \qquad (7.31a)$$

or in matrix form

$$\Psi = \Psi' \underline{U} \tag{7.31b}$$

Combining (7.30) with (7.31) gives

$$\mathcal{L} = \omega \underline{C} \cdot \underline{U} = \omega \underline{C} \quad . \tag{7.32}$$

The integrals  $h_{ij}$  are the elements of the one-electron Hamiltonian matrix  $\underline{h}$ , hence the transformation to integrals over the set  $\{\varphi_j\}$  takes the form of a matrix product

$$\underline{\mathbf{h}} = \underline{\mathbf{C}}^{\mathrm{T}} \underline{\mathbf{h}}_{\omega} \underline{\mathbf{C}} , \qquad (7.33)$$

where the elements of  $\underline{h}_{\omega}$  are the integrals  $\int \omega_{i}^{*}(1)h_{1}\omega_{j}(1)dr_{1}$ Because of the large number of two-electron integrals the transformation of these integrals requires special consideration. The total number of two-electron integrals is equal to the fourth power of the number of basis atomic orbitals. For integrals yielding real results the following relations hold

$$[ij|kl] = [kl|ij] = [ji|lk] = [lk|ji] (7.34a)$$

and

$$[ji|kl] = [kl|ji] = [ij|lk] = [lk|ij]$$
, (7.34b)

In (7.34) the integrals are over spatial orbitals, but the electron ordering is as in (7.25);

For diatomic molecules integration over the azimuthal angle gives a non-zero result only if the magnetic quantum numbers of the orbitals involved satisfy the condition

$$m_{j} - m_{i} = m_{k} - m_{l}$$
 (7.35)

The transformation of the two-electron integrals for a diatomic molecule can be speeded up if the transformed orbitals have values of m in the same order as the original atomic basis set, because (7.35) can be applied at each stage of the transformation. The inference of (7.35) is that in general either (7.34a) or (7.34b) is zero, or both are zero for one- and two-centre two-electron integrals.

It is possible to index the integrals according to the scheme

$$n_{r} = 1/2(\max(i,j)(\max(i,j) - 1)) + \min(i,j) ,$$
  

$$n_{e} = 1/2(\max(k,l)(\max(k,l) - 1)) + \min(k,l) . (7.36)$$

The two electron integrals are generated (see Chapter 8) according to the rules that  $i \ge j$ ,  $k \ge l$ , and  $n \ge n_e$ . The actual transformation proceeds in two stages. The first stage is

$$[\omega_{\mu}\omega_{\nu}|\mathscr{L}_{k}\mathscr{L}] = \sum_{\lambda}\sum_{\sigma}c_{\lambda k}c_{\sigma}[\omega_{\mu}\omega_{\nu}|\omega_{\lambda}\omega_{\sigma}], \qquad (7.37a)$$

where  $\mu$ ,  $\nu$ , k, and 1 take all possible values, whilst  $\lambda$  and  $\sigma$  are subject to the condition  $\lambda \ge \sigma$ . The second stage is

$$\begin{bmatrix} \varphi_{i} & \varphi_{j} & \varphi_{j} \end{bmatrix} = \sum_{\mu} \sum_{\nu} c_{\mu i} c_{\nu j} \begin{bmatrix} \omega_{\mu} & \omega_{\nu} & \varphi_{j} \end{bmatrix} ; \qquad (7.37b)$$

Once the matrix elements between the detors have been computed, the transformation of (7.21a) is performed to obtain the matrix elements  $H_{ij}$ , (1.13a). As a consequence of (7.22), the matrix <u>S</u> of (7.21b) is the identity matrix, since the columns of  $\underline{T}_{S\sigma}$  are of necessity orthonormal.

Kotani et alia⁽¹²⁾ have proposed an alternative method for computing the matrix elements  $H_{ij}$ . Their method, based on the idea of representation matrices, appears to suffer from two disadvantages. Firstly it is desirable to know the wave function  $\Psi$  (1.1) as a linear combination of detors since the first order density matrix, used to compute molecular properties, can most easily be computed from a wave function in the form of (1.7). Extracting this form from the method described is almost a trival exercise; to obtain it from the method of Kotani, although feasible, is far from easy, as the actual detors are never defined. Secondly, once the matrix elements between detors for a given  $\Lambda_i$  and  $S_z$  have been evaluated, it is possible to set up matrix elements between codetors belonging to several (reflection' and total spin states merely by changing the projection matrix  $\underline{T}_{S\sigma}$ . This in itself represents a considerable saving in computer time as Kotani's method demands searches of the integral files (see Chapter 8) for each molecular state.

The final step in the method of Configuration Interaction is the solution of the secular equation which may be written as

$$(\underline{H} - \underline{EI})\underline{A} = 0 \quad . \tag{7.38}$$

The energies  $E_I$  are the eigenvalues of <u>H</u>, <u>A</u> is a column vector, an eigenvector of <u>H</u> corresponding to a particular  $E_I$ . Two possible methods of solving (7.38) are the method of Jacobi and the QR-Algorithm, both described by Wilkinson^(13,47,48). The latter method is preferred, since it is currently the fastest method available for finding the eigenvalues and eigenvectors of a real symmetric matrix.

At this point it is convenient to discuss the construction of the first order density matrix, as all of the information required is available. For the I-th energy of a given molecular state the wave function  $\Psi$  is

$$\Psi = \sum_{L} \Psi_{L} a_{LI}$$
(1.11)

where the  $a_{LI}$  are the elements of the eigenvector corresponding to the energy  $E_I$  of this level. The codetors  $\Psi_L$  may be replaced by a sum of detors according to (1.10), so

$$\Psi = \sum_{K} D_{K} \sum_{L} t_{KL} a_{LI}$$
 (7.39)

The coefficient of  $D_{K}$  may be simply written as  $b_{KT}$  ,

$$\mathbf{b}_{\mathrm{KI}} = \sum_{\mathrm{L}} \mathbf{t}_{\mathrm{KL}} \mathbf{a}_{\mathrm{LI}} \quad . \tag{7.40}$$

According to Löwdin⁽⁸⁾ the elements  $\gamma(1|k)$  of the first order density for the I-th energy level are given by

$$\gamma(l|k) = \sum_{K L} \sum_{k L} b_{KI} b_{LI} D_{KL}(k|l) , \qquad (7.41)$$

where  $D_{KL}(k|1)$  is the cofactor of the term due to  $\int \Psi_{k}^{*}(1)\Psi_{1}(1)dx_{1}$ in the integral  $\langle D_{K}|D_{L}\rangle$ . The summation over K is over those determinants  $D_{k}$  which contain spin-orbital  $\Psi_{k}$  and that over L is over those determinants  $D_{L}$  which contain  $\Psi_{1}$ . If the determinants are in fact detors (7.41) is easily evaluated, because there are only two conditions under which  $D_{KL}(k|1)$  is non-zero. The first is when K = L in which case  $D_{KK}(k|1) = \delta_{k1}$ . The second is when  $D_{K}$  and  $D_{L}$  differ by one spin-orbital,  $\Psi_{k}$  appears in the i-th column of  $D_{K}$  and  $\Psi_{1}$  appears in the j-th column of  $D_{L}$ , in this case

$$D_{KL}(k|1) = (-1)^{1+j}$$
, (7.42)

and all other cofactors are zero. The first order density matrix so obtained is in terms of the orthonormal molecular spin-orbitals and may be used in the calculation of molecular properties (see Chapter 11). The first order density matrix may also be diagonalized to provide occupation numbers and the transformation matrix which carries the set  $\{\Psi_i\}$  into the natural spin-orbitals  $\{\chi_k\}$  (8).

## CHAPTER 8

#### COMPUTATIONAL METHODS

The philosophy behind the programming of the methods described in the previous chapter has been to generalize wherever possible: a program capable of computing one- and two-centre integrals is not used if only one-centre integrals are required because the more general program is extremely inefficient if used in this way. Only one integral transformation program is used because the process is the same for both types of integrals. With one exception all subprograms are written in the FORTRAN V language (49) for the ICL Atlas Computer. The one exception is a function subprogram, the body of which is written in Atlas Basic Language (ABL)⁽⁵⁰⁾. Several distinct programs were written because some of the results produced at each stage may be used for other purposes; the integrals may be used in both CI and SCF programs. A set of subprograms used by more than one of the programs is listed in Appendix III under the heading of 'Utility Routines'. Considerable use of facilities not provided in other implementations of FORTRAN is made and, as a result, easier checking and correction of programs and greater efficiency has been achieved. The Atlas AMPEX one inch tape system uses pre-addressed tapes with numbered blocks, each of which store 512 words of Atlas information⁽⁵¹⁾. The Atlas disc store is used in exactly the same way. The programs to be described use these tapes and disc areas in the variable length mode and information from a particular run of a program constitutes a 'file' which may be placed anywhere on the tape or disc area merely by positioning the appropriate device at the block and word at which the file is to begin. As a safeguard no two programs may write on the same tape or disc area. The programming problem breaks down into four distinct parts:

- (a) Generation of the codetors,
- (b) Evaluation of the integrals over the atomic orbital basis set,
- (c) Transformation of the integrals to an orthonormal basis set, and
- (d) Construction and solution of the secular equation.

## A. Generation Codetors

The program which generates the detors is called GENDET and is listed in Appendix IV. This program generates the ordered spin orbital products  $P_{\gamma}$  of (7.9). These products are eigenfunctions of the operator  $\mathfrak{B}_{\gamma}$ corresponding to an eigenvalue  $S_{\sigma}$  , they possess a given axial angular momentum  $\Lambda$  , and are of either gerade or ungerade symmetry. The required values of  $S_{\pi}$  and  $\Lambda$  together with the inversion symmetry are specified in the data. Facilities are provided for freezing the inner-shell electrons. The data also contains the total number of electrons, the number in the frozen shell, and the number of spin-orbitals. The magnetic quantum number, inversion symmetry and the identifier of the orbital resulting from a reflection in the XZ-plane must be provided for each spin-orbital. The spatial parts of the orbitals are identified by use of (1.5). The calculation begins with the generation of all possible ordered spin orbital products. This is essentially the selection of n spin-orbitals from a total of N spin-orbitals where n is the number of electrons outside the frozen shell, and N the number of unfrozen spinorbitals. This is accomplished by the subroutine CØMBIN. The parameter list of this subroutine contains a logical variable which causes the first spin-orbital product  $P_1$  to be generated when set equal to TRUE,

 $P_1 = 1, 2, 3, \dots, n - 1, n$ =  $\psi_1 \psi_2 \psi_3 \dots \psi_{n-1} \psi_n$ , and the logical variable is set equal to FALSE. The subprogram then uses  $P_1$  to generate  $P_2$ ,  $P_2$  to generate  $P_3$ , and the process continues until the last one is reached, this has the form

$$P_{\text{LAST}} = N - n, N - n + 1, \dots, N - 1, N$$
$$\equiv \psi_{N-n} \psi_{N-n+1} \dots \psi_{N-1} \psi_N$$

On encountering the final ordered product CØMBIN will regenerate  $P_1$ , but the logical variable is reset to TRUE, and if this value is returned from the subprogram control passes to the next stage. As each  $P_K$  is generated it is tested in the subroutine SETUP to see if it has the correct values of  $S_Z$ ,  $\Lambda$ , and the required inversion symmetry. If it satisfies these requirements it is stored as a row of the two-dimensional array ISØ. The number of entries is ISØ and the total number of  $P_K$  generated is counted.

The next step in the program is a call of the subroutine SPINIR which checks the inversion symmetry of each  $P_{\rm K}$  and evaluates the matrix elements  $\langle P_{\rm L} | \ {\cal S}^2 | P_{\rm K} \rangle$ . For  $\Lambda = 0$ , i.e.  $\Sigma$  products, SPINIR computes the effect on  $P_{\rm K}$  of a reflection in the XZ-plane. Any one of these operations must produce a linear combination of the entries in ISØ. In general the process proceeds as follows: consider an operator 0 which may be either  $\sigma$ ,  ${\cal S}^2$ , or i, then

$$\mathbf{0} \mathbf{P}_{\mathbf{K}} = \sum_{\mathbf{L}} \mathbf{P}_{\mathbf{L}}^{\mathbf{i}\mathbf{C}} \mathbf{L} \mathbf{K} \quad . \tag{8.1}$$

In (8.1)  $P_L$  is a spin-orbital product which may not be ordered; therefore the elements of  $P_L$  are permuted by the subroutine PERMUT to produce an ordered spin-orbital product  $P_L$ , and the parity of the permutation is also obtained.  $P_L$  is then identified with an entry in ISØ by the subroutine CØLATE. If  $P_L$  cannot be found in ISØ an error message is printed and

execution ceases. The evaluation of  $\langle P_{T_i} | \vec{S}^2 | P_K \rangle$  begins with the application of the  $\mathfrak{G}_{_}$  operator to the singly occupied orbitals of  $P_{v}$ . For the purpose of this operation the spins of the spin-orbitals in  $\boldsymbol{P}_{K}$  are identified as  $~\boldsymbol{\triangleleft}$  , if the entry in the row of ISØ corresponding to  $P_{\kappa}$  is odd, and  $\beta$  if the entry is even (this is in accordance with (1.5)). The result of this operation is similar to (8.1), and the products  $P_{I_{a}}$  are entered in a two-dimensional array ISM\$\$\vert\$P\$. The  $B_{+}$  operator is then applied to the entries in ISMØP and the resulting spin-orbital products are held as rows in the array ISPØP. By use of the subroutines PERMUT and CØLATE the values of  $C_{LK}$  in (8.1) are determined. For each  $P_{K}$  the values of L for which  $C_{LK}$  is non-zero after the operation ( $g_z^2 - g_z$  ) are stored in the array IC $\not o$ L, and the non-zero value of C_{LK} is stored in the array  $\langle P_{T_{L}}|\mathfrak{G}^{2}|P_{K}\rangle = \langle D_{T_{L}}|\mathfrak{G}^{2}|D_{K}\rangle = C_{LK}$ . As each  $P_{K}$ CØE, since is processed the results are written onto a disc or tape file. The rows of ISØ are not processed sequentially. At the start of the process the elements in a one-dimensional array INDEX are all zero, each element corresponding to a row of ISØ.  $\mathbf{S}^2$  is applied to P₁ first, and the next product examined is the first one in (8.1), for which  $C_{\mathbf{L}}^{\tau}$ , is non-zero and has a non-zero entry in INDEX. If there are no zero entries in INDEX and

 $\wedge = 0$ , the next product processed is the one resulting from the application of the reflection operator to the  $P_{K}$  to which  $\mathfrak{B}^{2}$  was applied, provided that the entry in INDEX is zero. However if a non-zero entry is encountered or  $\wedge \neq 0$  the array INDEX is searched from the beginning for the next zero element, and the process is operated until all the  $P_{K}$  have been examined. This approach ensures that the matrix of the  $\mathfrak{S}^{2}$  operator is block diagonal, and makes interpretation of the results easier. The  $P_{K}$  are numbered according to the order in which  $\mathfrak{S}^{2}$  is applied. The output from GENDET comprises:

(i) P_K on cards,

(ii) K,  $i P_{K}$ ,  $\sigma P_{K}$  (zero if  $\Lambda = 0$ ), L and C_{LK} if non-zero. (iii) Eigenvalues and eigenvectors of the blocks on the diagonal of the  $g^{2}$  matrix. The card output is used as data for the program SECS/L (Appendix VII), which constructs and solves the secular equation.

### B. Evaluation of Integrals over the atomic orbital basis set

This is one of the more difficult aspects of quantum molecular calculations. If the atomic orbitals are of the Slater-type, then the two-electron integrals may only be evaluated in 'closed form' when the constituent orbitals are on the same centre. These are the one-centre two-electron integrals. Although closed form expressions exist for twocentre two-electron integrals they are notoriously unstable and the integrals are usually evaluated by numerical integration. For integrals involving more than two centre various techniques are employed; the most favoured being some form of expansion in terms of Gaussian-type orbitals⁽⁵²⁾. An alternative is to use the Gaussian orbitals by themselves (see for example Clementi and Davis⁽⁵³⁾), the disadvantage being the vast number of integrals involved and the length of time required to transform to an orthonormal SAMO basis.

The choice of complex Slater-type orbitals was made early in the project because of the availability of several diatomic integral programs based on these orbitals. As it is inefficient to use such programs for atomic calculations, a short program for evaluating all one-centre one- and twoelectron integrals over complex Slater-type orbitals was written. This has been used both to check the transformation program and SECSØL. This program called ØNECEN is listed in Appendix V, and the mon-zero Clebsch-Gordon coefficients⁽⁴¹⁾  $C_{Ll_{1}l_{2}}^{Mm_{1}m_{2}}$  used in the expansion of a product of spherical harmonics are also given. The method of indexing  $C_{Ll_{1}l_{2}}^{Mm_{1}m_{2}}$  is easily determined by examination of the subprogram INDEX 1 and the coefficients are limited to the range  $0 \leq l_{1} \leq 3$  with i = 1 or 2.

ØNECEN uses the function subprogram IPAR listed in Appendix III. The parameter list of IPAR consists of a single integer variable name. On being called IPAR is set equal to zero if this integer is even, and equal to unity if it is odd. The current method of representing decimal integers as binary integers is such that, if the decimal integer is even, the contents of the least significant bit of the word containing its binary equivalent is zero, whereas if the decimal integer is odd this bit contains a one. IPAR is set equal to the contents of the least significant bit of the word containing the variable in the parameter list. The subprogram is of necessity written in ABL. An alternative to IPAR is the use of the intrinsic function MØD⁽⁴⁹⁾. A call of MØD (N, 2) has the same effect as IPAR(N), but has been shown to take 50% longer, even when used as a statement function.

The overlap and one-electron Hamiltonian integrals are stored in the two-dimensional arrays S and H in ØNECEN. These arrays are written onto a magnetic tape (or disc area) referred to as the Master Integral Tape. The file begins at word zero of a block specified in the data. The two-electron integrals are generated in accordance with the rules given in Chapter 7. The storage of these integrals is such that the integral  $[\omega_{\mu}\omega_{\nu}|\omega_{\lambda}\omega_{\sigma}]$  ( $\mu \ge \nu$  and  $\lambda \ge \sigma$ ,  $\mu \ge \lambda$  and if  $\mu = \lambda$ ,  $\nu \ge \sigma$ ) will be word number  $n_{\rm e}$  of record number  $n_{\rm p}$  where  $n_{\rm p}$  and  $n_{\rm e}$  ( $\le n_{\rm p}$ ) are given by (7.36). The first record containing two-electron integrals follow immediately after S and H. ØNECEN computes all the integrals arising from a basis set of 1s, 2s,  $2p_{\rm o}$ ,  $2p_{\rm p}$ , and  $2p_{\rm p}$  complex Slater-type orbitals in less than two seconds.

The integrals required for the calculation of wave functions for diatomic molecules are computed using a modified version of a program written by Miller and Browne⁽⁵⁴⁾. The modifications consist of the removal of the facility by which the integrals over the complex Slater-type orbitals are transformed to integrals over real Slater-type orbitals. As this program

ربابه المالي المالي المالي

- 97 -
### C. Transformation of the integrals to an orthonormal basis set.

The transformation of the integrals over the atomic orbital basis into integrals over an orthonormal basis is a relatively simple process. The integral transformation program is called INTRA and is listed in Appendix VI. There are three essential parts to INTRA:

(i) the extension of the two-electron integral records to cover all values of  $n_{a}$  (7.36),

(ii) the computation of the Schmidt orthonormalization coefficients (the elements of  $\underline{U}$  in (7.7)) and transform the one-electron Hamiltonian integrals,

(iii) the transformation of the two-electron integrals. As a preliminary to the transformation the integrals generated by either otin NECEN (for atomic systems) or by the Miller-Browne program (for diatomic systems) are copied from the Master Integral Tape onto a common disc area. This ensures that the Master Integral Tape cannot be corrupted by the transformation, as INTRA may only read this tape.

The two-electron integrals can be regarded as the elements of a real symmetric matrix  $\underline{I}$  with elements  $I_{n_r n_e}$ , where  $n_r$  and  $n_e$  are defined by (7.36). Only the lower triangle of  $\underline{I}$  is computed by the integral generation programs and it is necessary to complete the upper triangle. This operation is the first stage of INTRA. It is complicated by the fact that  $\underline{I}$  is generally too large for more than a few rows to be in the core store at any one time.

This stage is contained within the subprogram called SETERI. The algorithm begins by reading each row of  $\underline{I}$  from the appropriate device (the number of elements in each row beginning equal to the number of the record). As each row is read it is packed out with zeros and the whole row written onto another device. The resulting matrix  $\underline{J}$  has a lower triangle equal to that of  $\underline{I}$  and an upper triangle of zeros. The matrix  $\underline{J}$  is then transposed by the subroutine BIGTRA. The lower triangle of  $\underline{I}$  is then merged with the transpose of  $\underline{J}$  to give the complete matrix  $\underline{I}$ .

The subprogram BIGTRA transposes a large matrix which is written on a disc or tape, in this case, by rows. It makes optimal use of the available core store by reading as many complete records (rows) as possible into the available space. Let this number by NRØW. The process in the Nth pass over the matrix to be transposed consists of the following sequence of operations: read first NROW records into a two-dimensional array A, transpose the NRØW * NRØW square matrix beginning at column (NRØW*(N-1)+1) of A, and enter this into the first NRØW*NRØW block of the two-dimensional array B. The next NRØW records are read into A, transposed as before and entered into the second NRØW*NRØW block of B. This procedure is repeated until B is full and it is then written onto a tape or disc by rows representing columns (NRØW*(N-1)+1) to NRØW*N of the original matrix. The sequence is repeated until the whole of the original matrix has been transposed, taking into account the fact that the number of rows of the original matrix may not be an integral multiple of NRØW. At the end of each pass over the original matrix, the appropriate device is rewound and at the end of the routine the original matrix is overwritten by its transpose.

For small basis sets the whole of this part of INTRA is performed in core.

- 99 -

transform the overlap matrix of the atomic orbitals into integrals over a SAMO basis. If the calculation is on an atomic system C' is the identity matrix. The resulting overlap matrix S overwrites the original one. The subroutine  $\beta$ RTH $\beta$ N obtains the matrix U of (7.7) by Choleski decomposition of S. The matrix  $\underline{L}^{T}$  of (7.5) is held in the array QU, which is then inverted to give the matrix U which is stored in the array QC. The one-electron Hamiltonian matrix  $\underline{h}_{\omega}$  is transformed by the matrix product

$$\underline{\mathbf{h}} = \underline{\mathbf{C}}^{\mathrm{T}} \underline{\mathbf{h}}_{\omega} \underline{\mathbf{C}} \tag{8.2}$$

where  $\underline{C} = \underline{C}^{\dagger}\underline{U}$ . The transformed overlap matrix (i.e.  $\underline{U}^{T} \leq \underline{U}$ ) is printed as a check on the orthogonality of the final set of orbitals.

The approach just described for obtaining the Schmidt orthonormalization coefficients was shown to produce better results in single precision arithmetic than the recursive approach suggested by  $Todd^{(40)}$  and Harris⁽⁴¹⁾ does in double precision arithmetic. It is also a much faster method.

The transformation of the two-electron integrals is carried out by the subprogram TWØTRA and its control routine CØNTRA. If the i-th transformed orbital has the same axial angular momentum as the i-th atomic orbital, then the transformation of integrals not satisfying (7.35) is suppressed. Use of this feature is optional (see Appendix VI), and it can reduce the transformation time for the two-electron integrals by almost 50%. This option will enable the program to be used for the transformation of multi-centre integrals. The transformation proceeds in two stages. The first stage sets up the partially transformed integrals  $[\omega_{\mu}\omega_{\nu}\psi_{k}\phi_{l}]$ according to (7.37a) and it is seen from (7.36) that for a given set of  $\mu$ and  $\nu$  all the integrals over the atomic orbitals appear in the same record. The partially transformed integrals for which

$$m_{\mu} - m_{\nu} = m_{k} - m_{l}$$
 (8.3)

- 101 -

are actually computed, the remainder one set equal to zero and the transformation process suppressed. The partially transformed integrals form the elements of a two dimensional array, which is written onto a disc area, with each row corresponding to a record, the number of the row being given by

$$p_{r} = \mu_{max}(\nu - 1) + \mu$$
, (8.4a)

and the position of the element in the record by

$$p_e = k_{max}(1 - 1) + k$$
 . (8.4b)

(Obviously  $\mu_{\max} = k_{\max} =$  number of basis orbitals). Inspection of (7.37b) shows that the  $[\omega_{\mu}\omega_{\nu}|\varphi_{k}\varphi_{l}]$  appear as columns of this matrix, which is not symmetric. To avoid unnecessary searching of the disc file this matrix is transposed either in core or if it is too large by the subprogram BIGTRA.

The second stage of the two-electron transformation proceeds with the evaluation of (7.37b) using the condition of (7.35) wherever possible to speed the process. The complete file of transformed integrals consists of  $[\varphi_i \varphi_j | \varphi_k \varphi_1]$  written in records with

$$p_{c} = i_{max} (j - 1) + i$$
 (8.4c)

identifying the record, and  $p_e$  of (8.4b) identifying the element in the record. The transformed two-electron integrals are followed by a single record containing the transformedone-electron Hamiltonian integrals. The

* FOOTNOTE: setting m = 0 for all the orbitals is equivalent to suppressing this test (see Appendix VI) - 102 -

complete file begins at word zero of a block on the Master Transformed Integral Tape as specified in the data. Thus for a basis set of n orbitals the output to this tape will consist of  $(n^2 + 1)$  records, each containing  $n^2$  elements.

### D. Construction and Solution of the Secular Equation

This is the final part of the CI method. The program SECSØL listed in Appendix VII constructs and solves the secular equation for a CI calculation on molecules of general geometry, the limit being twenty nuclei. An option is provided to enable the user to compute the first order density matrix, which is then diagonalized to give occupation numbers and natural spin-orbitals. It is convenient to discuss SECSØL in terms of the functions of the following three groups of subprograms,

(i) computation of the matrix elements  $\langle D_L | \mathfrak{h} | D_K \rangle$  between detors,

(ii) construction and solution of  $(\underline{H} - \underline{EI}) \underline{A} = 0$ ,

and (iii) the optional natural spin-orbital analysis in which the first order density matrix over the orthonormal SAMO is computed.

Computation of the  $\langle D_L | \hat{\mathfrak{h}} | D_K \rangle$  requires the specification of the ordered spin-orbital products, and for homonuclear diatomic molecules the cards output by GENDET provide this information. As the matrix with elements  $\langle D_L | \hat{\mathfrak{h}} | D_K \rangle$  is symmetric only the lower triangle is evaluated and stored in a one-dimensional array G, where

$$G(KL) = \langle D_{L} | \mathfrak{h} | D_{K} \rangle, \quad (K \leq L)$$
(8.5)

and

$$KL = (L*(L - 1))/2 + K$$
 (8.6)

Before evaluating G(KL) it is necessary to bring  $D_L$  and  $D_K$  into the condition of maximum coincidence. The subroutine MAXCON brings each pair of off-diagonal detors (i.e. K < L) into maximum coincidence, by permuting the elements of the ordered spin-orbital product defining one of them. The parity of the permutation is determined. Those pairs in which the detors differ by more than two spin-orbitals are ignored, because the corresponding matrix element is zero. For each of the remaining pairs the following information is entered as a row in the two-dimensional array IDIFF,

(i) the number of spin-orbitals by which the pair (K, L) differs,

(ii) the identifiers of the spin-orbitals not common to both,

(iii) the parity of the permutation required to satisfy the condition of maximum coincidence,

(iv) the value of KL given by (8.6). The number of entries in IDIFF are counted, and the array may be dumped on a disc file if it is too small for the current problem.

The actual evaluation of G(KL) is in two steps and the first involves the computation of the two-electron contribution. The contribution of a frozen shell of electrons represents a constant which may be computed separately, and then added to the frozen shell-valence and valence-valence electron interactions for the diagonal terms  $\langle D_{\rm K} | | {\rm b} | D_{\rm K} \rangle$ . This constant is computed in the subprogram PASØNE. The remaining interaction for the diagonal elements, and the values of the off-diagonal elements are computed in the subroutine PASTWØ.

In PASTWØ the two electron integrals  $[\varphi_i \varphi_j | \varphi_k \varphi_l]$  are read into core for all values of k and l, for a given pair of values of i and j, according to (8.4b) and (8.4c). Each record is examined to determine whether or not it contains integrals that will contribute to the diagonal elements (see 7.29); integrals which make a contribution are added or subtracted, as appropriate, to the correct element of G. Next, by searching the array IDIFF, those integrals which contribute to the offdiagonal elements are found. As the detors are in terms of spin-orbitals and the integrals over (spatial) orbitals, it is necessary to use (1.5) to identify the correct integrals and to determine whether or not the integration over the spin co-ordinates produces zero. PASTWO makes considerable use of the function subprogram IPAR.

The final step is evaluating the matrix elements between the detors is the evaluation of the one-electron contribution. The transformed oneelectron Hamiltonian matrix is read into core by the subprogram HPASS. The contribution from the frozen shell is evaluated once and added to the remaining contributions to the diagonal elements. For the offdiagonal elements there will only be one non-zero contribution which is added to G(KL); G(KL) is then multiplied by the appropriate parity factor ( $\pm$  1).

Once the matrix elements between the detors have been evaluated the program proceeds to compute the matrix elements of the secular equation as indicated in (7.21). For homonuclear diatomic molecules the projection matrix  $\underline{T}_{S\sigma}$  can be obtained by inspection of the output from GENDET. The evaluation of (7.21a) is the basis of the subroutine SECSØL (not to be confused with the program of the same name of which it is a part), its eigenvalues and corresponding eigenvectors are determined by the QR-Algorithm⁽¹³⁾. The eigenvalues are the energies of the state projected by  $\underline{T}_{S\sigma}$  and each eigenvector defines a wave function for this state.

Finally the program SECS $\not oL$  will perform a natural spin orbital analysis on the i-th level of the state given by  $\underline{T}_{S\sigma}$ . The first order density matrix is computed from a wave function expanded as a sum of detors rather than as a sum of codetors. The coefficients  $b_{KI}$  are obtained using (7.40). The first order density matrix is computed by the method

- 104 -

indicated at the end of Chapter 7. It is diagonalized by the QR-Algorithm, and the subprograms NATØRB and FØDMA4 constitute this section of SECSØL.

By use of the projection matrix  $\underline{\mathbb{T}}_{S\sigma}$  it is possible to construct the secular equation for several molecular and spin states from a given array G. This fact and the desire to preserve many of the results produced by the program SECSØL led to the writing of subroutine TDFILE. This subprogram handles all transfers of preserved information, whether the transfers be between peripheral devices or between a peripheral device and core store. All the results obtained for a particular molecule will be held in a file which will also contain all of the transformed integrals used in the calculations. This file is kept on a magnetic tape called the Master Results Tape. TDFILE sets up a table of contents for this file. The entries in this table define the position of a particular set of results, the type of results, and the data required to enable information to be read from the file. The user may identify each entry in the contents table by providing a 32 character title in the data for SECSØL (see appendix VII). A similar table is also kept for a private disc area on which all results currently being used, or generated, by the program is held. The master results tape is updated from this disc area; this has advantages in that the current set of results cannot be lost through machine faults, unless, of course, the disc actually fails during a transfer. Both contents tables are written on a small private disc area. TDFILE is written in such a way that it is virtually impossible for the user to accidently corrupt or overwrite the master results tape or the master transformed integrals tape; the program SECSØL can only assess these tapes by a call of TDFILE.

Each program described has a 'multiple run' facility, which permits the processing of several sets of data in any one run. In the case of SECS $\not$ L both the specification of the detors and  $\underline{T}_{S\sigma}$  may be read in the first set of data and used in subsequent runs. This substantially reduces the number

- 105 -

of data cards required. SECS $\not oL$  may also be re-entered at the start of any section.

Once written each subprogram was thoroughly checked and rigourously tested (all test runs were in the FORTRAN V test mode⁽⁴⁹⁾). The final test of the programs was their ability to reproduce published results. The calculation chosen for this test was based on the CI calculations on the diatomic oxygen molecule of Meckler⁽⁴²⁾, Kotari et alia⁽⁴³⁾, and Schaefer and Harris⁽⁴⁵⁾.

Meckler's calculation is a CI in which the SAMOs arising from the 1s and 2s atomic orbitals are frozen; the codetors arise from the 2p atomic orbitals. There are 31 detors with  $\Lambda = 0$  and  $S_z = 0$  which are tested by Meckler. From these detors it is possible to project  $9\frac{3}{5}$  codetors and 12  $\Gamma_{g}^{+}$  codetors; the corresponding projection matrices  $\underline{T}_{1-}$  and  $\underline{T}_{O+}$  are also given. The calculation of Kotani et alia is based on the codetors arising from the 2s and 2p atomic orbitals, the 1s shell is frozen. It is possible to determine the specification of the detors and the projection matrix  $\underline{T}_{1-}$  that they used for their  $3\Sigma_{g}^{-}$  wave function. The detors have  $S_{\pi} = 1$ . This particular paper also contains the elements of the matrix U((7.6) and (7.7)) which orthonormalizes the SAMOs. The most stringent test of both the programs GENDET and INTRA is the successful reproduction of the results published by Meckler and Kotani. Both programs performed satisfactorily. The paper by Schaefer and Harris (45) contains the energies for 62 low-lying states of  $0_2$  at nine internuclear distances, and also values for the ³P, ¹D, and ¹S states of the oxygen atom. Test runs for the  ${}^{3}\Sigma_{g}^{-}$  and  ${}^{1}\Sigma_{g}^{+}$  states of the molecule, at the same internuclear distances used by Schaefer and Harris, and for the three states of the atom, produced results which are in agreement with the published values to within machine accuracy. This final test also provided a check on the program ØNECEN. This program also produced integrals which agree with

- 106 -

those given in references (12) and (41). As a check on the accuracy of the QR-Algorithm, the secular equation was also solved using a routine based on the method of  $Jacobi^{(13)}$ .

The natural spin-orbital analysis was checked against the results obtained from a general program, which will produce natural spin-orbitals from a wave function expressed as a sum of determinants. This program has reproduced various published results (20,31,37). Wherever possible test calculations were checked on a desk calculator.

The results of the test calculations on  $0_2$  are given in Chapter 10, together with the spectroscopic constants and molecular properties computed using the methods described in Chapter 9.

### - 108 -

#### CHAPTER 9

### SPECTROSCOPIC CONSTANTS OF

### DIATOMIC MOLECULES

In the Born-Oppenheimer approximation the separation of the electronic and nuclear motions leads to two equations, one describing the electronic behaviour and the other the nuclear motion. The solution of the first of these equations has been the subject of the preceeding chapters and the electronic energy  $E_E$  corresponding to this solution is a function of the nuclear co-ordinates. The electronic energy and the energy  $V_N$ , due to the electrostatic repulsion of the nuclei, together form the potential function V used in the second equation. For a diatomic molecule this equation is similar to that of the rotating vibrator, and it has been solved by Dunham⁽⁵⁵⁾, who expanded the potential function about the equilibrium nuclear separation  $R_E$  in a power series:

$$V(R) = V(R_e) + a_0 \xi^2 (1 + a_1 \xi + a_2 \xi^2 + \dots)$$
 (9.1)

where

$$\xi = (\mathbf{R} - \mathbf{R}_{e})/\mathbf{R}_{e} ,$$
$$\mathbf{a}_{0} = \omega_{e}^{2}/4\mathbf{B}_{e} ,$$

and

$$B_{e} = h/(8\pi^{2}c\mu R_{e}^{2}) . \qquad (9.2)$$

In (9.2)  $\omega_e$  is the classical frequency of small oscillations, assuming the system is a harmonic oscillator, and  $\mu$  is the reduced mass of the diatomic molecule. Using the Wentzel-Kramers-Brillouin method Dunham obtained the equation

$$E_{vJ} = \sum_{j} \sum_{j} (v + 1/2)^{j} J^{j} (J + 1)^{j}$$
(9.3)

for the energy level of a rotating vibrator associated with a rotational quantum number J and a vibrational quantum number v. The coefficients  $Y_{lj}$  (9.3) may be expressed in terms of  $\omega_e$ ,  $B_e$  and the coefficients  $a_j$  of (9.1). The appropriate formulae are to be found in Dunham's paper. The connection between the  $Y_{lj}$  of (9.3) and the observed spectroscopic constants is easily determined. From (9.3) the energy of a vibrational level is

$$E_{v0} = Y_{00} + Y_{10}(v + 1/2) + Y_{20}(v + 1/2)^2$$
(9.4)  
$$Y_{30}(v + 1/2)^3 + Y_{40}(v + 1/2)^4 + \dots$$

This leads to the following expressions for the separations between the lowest vibrational levels,

$$E_{10} - E_{00} = Y_{1.0} - 2Y_{20} + \frac{13Y_{30}}{4} + \frac{5Y_{40}}{4} + \cdots ,$$
  
$$E_{20} - E_{10} = Y_{10} - \frac{4Y_{20}}{4} + \frac{49Y_{30}}{4} + \frac{34Y_{40}}{40} + \cdots . (9.5)$$

The energy levels of the anharmonic oscillator are given by the expression

$$E_{v0} = \omega_e(v + 1/2) - \omega_e x_e(v + 1/2)^2 + \omega_e y_e(v + 1/2)^3 + \omega_e z_e(v + 1/2)^4 + \dots$$
(9.6)

(9.6) is obtained (56) by solving the appropriate Schrödinger equation using a potential function of the form

$$V(R) = V(R_{e}) + f\xi^{2} - g\xi^{3}$$

with  $g \ll f$  which is a simplified form of (9.1). The separations between the lowest energy levels obtained from (9.6) are

 $E_{10} - E_{00} = \omega_{e} - 2\omega_{e}x_{e} + 13\omega_{e}y_{e}/4 + 5\omega_{e}z_{e} + \cdots,$   $E_{20} - E_{10} = \omega_{e} - 4\omega_{e}x_{e} + 49\omega_{e}y_{e}/4 + 34\omega_{e}z_{e} + \cdots.$ (9.7)
Comparison of (9.5) and (9.7) gives

$$Y_{10} \simeq \omega_{e} ,$$

$$Y_{20} \simeq -\omega_{e} x_{e} ,$$

$$Y_{30} \simeq \omega_{e} y_{e} ,$$

$$Y_{40} \simeq \omega_{e} z_{e} ,$$
(9.8)

 $Y_{10}$  is not exactly equal to  $\omega_e$  because it contains terms in  $B_e^2/\omega_e^2$ , which arise from the more general form of the potential function used by Dunham. Similar corrections appear in the other  $Y_{10}$ .

For the rotational motion of the molecule the experimental expression for the difference in energy between rotational levels J and O in the same vibrational state is (56)

$$E_{vJ} - E_{vO} = B_v J(J + 1) - D_v J^2 (J + 1)^2 + H_v J^3 (J + 1)^3 + \dots$$
(9.9)

The rotational constants  $B_v$ ,  $D_v$  and  $H_v$  in the vibrational state considered are expressed in terms of  $B_e$ ,  $D_e$  and  $H_e$  which are the rotational constants at  $R_e$ . The usual expressions are

$$B_{v} = B_{e} - \sigma_{e}(v + 1/2) + \gamma_{e}(v + 1/2)^{2} + \delta_{e}(v + 1/2)^{3} + \cdots$$
$$D_{v} = D_{e} + \beta_{e}(v + 1/2) + \cdots,$$

$$h_v = h_e + \dots$$
 (9.10)

Expansion of (9.3) gives

$$E_{vJ} - E_{v0} = (Y_{01} + Y_{11}(v + 1/2) + Y_{21}(v + 1/2)^{2} + ...)J(J + 1) + (Y_{02} + Y_{12}(v + 1/2) + Y_{22}(v + 1/2)^{2} + ...)J^{2}(J + 1)^{2} + (Y_{03} + Y_{13}(v + 1/2) + ...)J^{3}(J + 1)^{3} + (Y_{04} + ...)J^{4}(J + 1)^{4} .$$
(9.11)

Comparison of (9.9), (9.10), and (9.11) yields the approximate relations

$$Y_{01} \simeq B_{e} ,$$

$$Y_{11} \simeq -\alpha_{e} ,$$

$$Y_{21} \simeq \gamma_{e} ,$$

$$Y_{31} \simeq \delta_{e} ,$$

$$Y_{02} \simeq D_{e} ,$$

$$Y_{03} \simeq H_{e} .$$

(9.12)

Once again the  $\{Y_{lj}\}$  differs from the "classical" values by terms in  $(B_e^2/\omega_e^2)$ , which are usually less than  $10^{-6}$  (55).

The value of  $\omega_e$  is in cm⁻¹, and the reduced mass  $\mu$ , used to calculate  $B_e$  and hence  $\omega_e$ , is measured in atomic mass units on the unified scale⁽⁵⁷⁾. The value of  $R_e$  is in bohrs so that

$$B_{e} = 60.2014/(\mu R_{e}^{2}) \qquad (9.13)$$

The probable radius of convergence of (9.1) is  $0 \leq R \leq 2R_e^{(58)}$ and because the series is truncated, the actual region where it may reasonably be applied is close to  $R_e^{(59)}$ .

The computation of the spectroscopic constants is achieved by expressing the potential curve V (R) as a power series in R. This series is then transformed into the form of (9.1) by using the method of synethic division⁽⁴⁰⁾ (horner*s method) and the Y₁ are determined by using the appropriate formulae⁽⁵⁵⁾.

The coefficients of the power series in R are found by the method of least squares (40). Suppose

$$V(R_{i}) = \sum_{j=1}^{n+1} R_{i}^{j-1} p_{j}, \qquad (9.14a)$$

or in matrix notation

$$\underline{A} \underline{p} = \underline{V} \quad . \tag{9.14b}$$

In (9.14b) the elements of the matrix <u>A</u> are  $A_{ij} = R_i^{j-1}$ , <u>p</u> is a column vector of the unknown coefficients, <u>V</u> a column vector of the energies, and  $R_i$  is the i-th value of the internuclear distance. A unique vector which minimizes the Euclidean (or  $L_2$ ) norm of <u>V</u> - <u>A</u> <u>p</u>, only exists when the columns of <u>A</u> are linearly independent ⁽⁶⁰⁾. By taking powers of  $R_i$ 

accuracy is reduced and the columns of <u>A</u> may be nearly linearly dependent⁽⁶¹⁾. These difficulties can be avoided if  $R_i$ , the independent variable, is transformed into the normalized independent variable  $X_i$  where

$$X_{i} = \frac{2R_{i} - (R_{1} + R_{n+1})}{(R_{1} - R_{n+1})} , \qquad (9.15)$$

and

In (9.15)  $R_1$  is the minimum value of  $R_i$  and  $R_{n+1}$  the maximum value.  $A_{ij}$  is now  $X_i^{j-1}$  and the solution of the least squares problem results in the coefficients  $q_j$  of the polynomial

$$V(X_{i}) = \sum_{j=1}^{n+1} X_{i}^{j-1} q_{j}$$
 (9.16)

Use of an algorithm by Mackinney⁽⁶²⁾ permits the direct transformation of (9.16) into (9.1). This algorithm transforms a polynomial in X into one in  $\xi$  where X = a $\xi$  + b. In the present case a = X_e + (R₁ + R_{n+1})/ (R₁ - R_{n+1}) and b = X_e. The minimum of V(X) occurs at X = X_e; it may be found by using the Newton procedure⁽⁴⁰⁾ and the fact that  $(dV/dR)_X = X_e = 0$ . The Newton procedure is initiated with an approximation X_k to X_e where X_k satisfies the condition V(X_k) < V(X_j) for all  $i \neq k$ , V(X_k) is a data point. The value of R_e is simply  $\frac{1}{2}(X_e (R_1 - R_{n+1}) + (R_1 + R_{n+1}))$ . The solution of the least squares problem is further assisted by initially subtracting the mean value of V(R_i) from each value of V(R_i).

The foregoing analysis forms the basis of the program SPECTRØ which is listed in Appendix VIII. The program is completely self contained and the Dunham analysis is performed by the subroutine DUNHAM. The solution of the least squares problem is performed by subroutine  $\emptyset$ RLIN2 which is a FORTRAN'V translation of Bauer's algorithm⁽⁶⁰⁾. The program is so written

# TABLE 6 Theoretical and Experimental Spectroscopic

constants for H₂

	McLean	Spectro	Experimental
പ്പ	4399•33	4399•45	4395•2
k	574563.	574613.	
B	60.841	60.843	60.800
De	0.0465	0.0465	
^Y 00	10.75	10.75	
^Y 10	4393.8	4394.0	4400.39
^Y 20	-104.34	-104.34	-120.82
Y ₃₀	-5.42	-5.42	-0.724
Y40	0.056	0.056 `	
Y ₀₁	60.798	60.800	60.864
Y ₁₁	-2.834	-2.834	-3.076
^Y 21	-0.032	-0.032	0.0601
Y ₃₁	-0.031	-0.031	
Y ₀₂	-0.0466	-0.0466	-0.0466
^Y 12	0.0022	0.0022	0.0016
a ₀	7.9528 × 10 ⁴	7.9529 x 10 ⁴	7.9566 x 10 ⁴
a ₁	-1.565	-1.565	-1.598
a ₂	1.900	1.900	1.868
a3	<del>-</del> 2•478	-2.478	-2.072
a ₄	2.391	2.391	2.261
а ₅	<b>-</b> 0.959	<b>-</b> 0.959	
a_6			
^a 7			
Emin	-1.174442 a.u.	-1.174442	
R min	1.40127 a.u.	1.40127	

.

,

•

that several energy levels of the same symmetry, spin, and covering the same range of R may be processed in each run.

The results of the Dunham analysis are invariably compared with experimental values and it is for this reason that the values of  $V(R_i)$  are converted in the program from hartrees to cm⁻¹ using the conversion factor given in Appendix I. The value of  $V(R_e)$  in both cm⁻¹ and hartrees is given in the program output.

McLean⁽⁶³⁾ published a comprehensive set of results for the Dunham analysis of a wave function for  $H_2$  obtained by Kolos and Roothaan⁽¹⁹⁾. McLean's results, the experimental values^(56,64) and those obtained by SPECTRØ are given in Table 6. As far as the  $a_i$  s of (9.1) are concerned the results given by SPECTRØ are in complete agreement with those of McLean. Some discrepancies arise both in the classical and corrected spectroscopic constants. This is due to the slight differences in the factors used to convert primary units to secondary units as McLean used an older set⁽⁶³⁾.

- 115 -

### ÷ 116 ÷

### CHAPTER 10

### RESULTS AND DISCUSSION

The diatomic oxygen molecule has been thoroughly studied by spectroscopists^(56,65) and the extensive theoretical study of Schaefer and Harris⁽⁴⁵⁾ is in excellent agreement with experimental results. The work of these authors provided a valuable means of checking the accuracy of the programs described in the previous chapters.

Schaefer and Harris examined 62 low-lying states of the oxygen molecule at up to eight internuclear separations, and obtained values of the energies at an infinite separation by the appropriate combinations of the energies of the ³P, ¹D and ¹S states of the separated atoms. Their approach to the programming problem is similar to the one used here (66), although there are important differences in technique. The most significant of these differences is the evaluation of the one- and two-electron integrals which employs a method evolved by Harris (67). Two other differences worth noting are the use of the recursive form of the Schmidt orthonormalization process (40,41,60) and the use of Givens' method for diagonalizing a real symmetric matrix. Finally an important computer hardware aspect of the calculation of Schaefer and Harris is the fact that the Univac 1108 computer, which they used ⁽⁴⁵⁾, gives only 8 decimal digits accuracy for real arithmetic, consequently their results are probably only accurate to 5 or 6 decimal digits although they quote 7. Atlas gives 11 decimal digits (49,50) so that a 5 or 6 figure agreement between the present results and those given in reference 45 is acceptable. The details of their calculation differ slightly from that described here. The detors of Schaefer and Harris are chosen so that S = S and the configuration are classified according to the value of

 $\wedge$  and S. Thus, for example, the secular equation they solve contains all variants of  ${}^{3}\Sigma$  symmetry, and the g, u, +, or - subspecies is sorted out by the diagonalization process. Naturally this leads to secular equations of large dimensions (110 x 110 for the  ${}^{3}\Sigma$  states). However, the present programs are designed to avoid this situation (see chapters 7 and 8). The program GENDET, apart from reproducing the results previously quoted (42, 43), also confirms the number of configurations given in Table I of Schaefer and Harris (45).

Unlike diatomic oxygen, diatomic sulphur has not received much attention from the spectroscopists. The lack of experimental data is due to the difficulty in setting up long-path absorption experiments in  $S_2$  vapour at temperatures around 650°C. This, combined with the large number (32) of electrons involved, and the fact that the ground state of the molecule is a triplet, probably accounts for the non-existence of theoretical work⁽¹⁰⁾.

Oxygen and sulphur are both Group VI elements; oxygen being in the first row of the periodic table and sulphur in the second row. So far as is known the general pattern of the electronic states of  $S_2$  resembles that of  $O_2^{(68)}$ .

The programs described in the preceding chapters have been used to obtain VCI wave functions for the following atomic and molecular systems:

(i)  ${}^{3}P$ ,  ${}^{1}D$ , and  ${}^{1}S$  states of atomic oxygen and sulphur.

(ii)  ${}^{3}\Sigma_{g}^{-}$  and  ${}^{1}\Sigma_{g}^{+}$  states of diatomic oxygen at fifteen internuclear distances.

 $(\text{iii})^3 \Sigma_g^-$ ,  $^1\Delta_g$ , and  $^1\Sigma_g^+$  states of diatomic sulphur at seventeen internuclear distances. The orbital occupancy of the electrons in atomic oxygen is  $(1s)^2(2s)^2(2p)^4$  and in sulphur it is  $(1s)^2(2s)^2(2p)^6(3s)^2(3p)^4$ . The valence shell for both atoms is of the form  $(ns)^2(np)^4$  with n = 2 for oxygen and n = 3 for sulphur. By arranging the six valence shell electrons in the eight available spin-orbitals it is possible to obtain two P-type, one D-type, and four S-type detors, in which  $S_z = 0$  and  $L_z = L$ , where  $L_z$  is the Z component of the total orbital angular momentum L. From these detors it is possible to obtain one  3P  codetor, one  1D  codetor, and two  1S  codetors. The wave functions for the  3P  and  1D  states are not really VCI wave functions at all because they consist of a single term and not a sum of terms. They are TABLE 7. ATOMIC DETORS AND CODETORS

P-type detors	:		
	D ₁	=	(1)(2)(3)(6)(7)(8)
	^D 2	=	(1)(2)(4)(5)(7)(8)
D-type detor	:		
	^D 3	=	(1)(2)(3)(4)(7)(8)
S-type detors	:		
	D ₄	=	(1)(2)(3)(4)(5)(8)
	^D 5	=	(1)(2)(3)(4)(6)(7)
	D ₆	=	(1)(2)(5)(6)(7)(8)
	D ₇	=	(3)(4)(5)(6)(7)(8)
³ P codetor	:		-
	Ψ ₁	= .	$2^{-\frac{1}{2}} (D_1 + D_2)$
¹ D codetor	:		
	Ψ2	=	D ₃
¹ S codetors	:		
	Ψ3	=	$3^{\frac{1}{2}} (D_4 - D_5 + D_6)$
	Ψ ₄	-	^D 7

.

*i* · ·

.

	TABLE 8.	ORBITAL E	EXPONENTS
-			
orbita	1	oxygen	sulphur
1s		7.6568	15.5409
2s		2.2472	5.3144
2p		2.2262	5.9885
3s		-	2.1223
Зp		-	1.8273
			,

# TABLE 9. ELECTRONIC ENERGIES OF

.

۰ **.** 

· .

ATOMIC STATES (HARTREES)

State	Oxyge	m	Sulph	ur
	Present work	Ref. 45	Present work	Ref. 73)
3 _P	<b>-</b> 74•5404	-74.5406	-396•5936	-396.6276
1 _D	-74.4464	-74.4469	-396.5341	-
1 _S	-74.3663	-74.3665	-396.5287	-
i				

- 119 -

TABLE 10. DISSOCIATION ENERGIES CALCULATED FROM

# ENERGIES OF ATOMIC STATES (HARTREES)

Atomic States	Oxygen	Sulphur
³ _P + ³ _P	<b>-1</b> 49 <b>.</b> 0808	-793.1872
${}^{3}P_{P} + {}^{1}D$	-148.9868	-793•1277
${}^{3}P + {}^{1}S$	-148.9067	-793.1223
${}^{1}D + {}^{1}D$	-148.8928	-793.0682
${}^{1}D + {}^{1}S$	<b>-1</b> 48.8127	-793.0628
${}^{1}s + {}^{1}s$	-148.7326	<b>-</b> 793.0574

-

٠.

.

"single configuration" wave functions and, as the orbitals from which they are constructed are not optimized, the resulting energies will probably be poorer than the corresponding SCF energies. The detors are specified in Table 7 where only the identifiers of the valence shell spin-orbitals are given, these conform to the rule:

ns 
$$\alpha = 1$$
, ns  $\beta = 2$ ,  
np₀  $\alpha = 3$ , np₀  $\beta = 4$ ,  
np₁  $\alpha = 5$ , np₁  $\beta = 6$ ,  
np₁  $\alpha = 7$ , np₁  $\beta = 8$ .

The orbital exponents used in all the oxygen calculations were those of Schaefer and Harris (45). For sulphur the atomic SCF exponents obtained by Clementi and Raimondi (73) were used. All exponents are given in Table 8. The electronic energies of the three states of each atom are given in Table 9. The agreement between the present results for atomic oxygen and those of reference 45 is excellent. The SCF energy for the  ${}^{3}P$  state of sulphur  $({}^{(73)}$  is much better than that obtained by the VCI method. This result indicates a possible limitation imposed on the wave function by the VCI treatment. It was felt that a complete CI within the minimal basis set employed would provide valuable results. The energy of the ³P atomic ground state of sulphur given by this CI was found to be -396.6277 hartrees: which is slightly better than SCF value. As the wave function only consists of four codetors (including that given in Table 7) it is not very extensive. Each of the additional codetors is a result of an excitation of one or more electrons from the 2p shell into the 3p shell, the 3s shell always remaining doubly occupied. The value of the complete minimal basis set CI is that it shows that the interaction between the 2p and 3p shells cannot be ignored in the sulphur atom.

The energies of the atomic states which represent the dissociation limits of the low-lying molecular states are given in Table 10.

The minimal basis set of orbitals used for the atoms are utilized in the construction of the molecular orbitals for the molecular studies. The rules for forming the molecular orbitals are given in Appendix II. For oxygen the molecular orbitals are

$$(1s\sigma_g)(1s\sigma_u)(2s\sigma_g)(2s\sigma_u)(2p\sigma_g)(2p\sigma_u)(2p\pi_g)(2p\pi_u)$$
.

The  $\pi_g$  and  $\pi_u$  orbitals may contain up to four electrons, and each  $\sigma$ -orbital a maximum of two. The molecular orbitals for sulphur include the orbitals

$$(3s\sigma_g)(3s\sigma_u)(3p\sigma_g)(3p\sigma_u)(3p\pi_g)(3p\pi_u)$$

in addition to those given for diatomic oxygen. In the studies of oxygen, the  $(1s\sigma_g)$  and  $(1s\sigma_u)$  orbitals were assumed to be always occupied by a total of four electrons, and the detors were obtained by arranging the remaining twelve electrons in the sixteen available molecular spin-orbitals. A set of 118  $\Sigma_g$  detors was obtained with  $S_z = 0,30$   $^3\Sigma_g^-$  codetors and 37  $1 \sum_{g}^{+}$  codetors were projected from this set. The set of valence shell molecular orbitals for sulphur differs from that of oxygen only by the value of the principle quantum number. In studies of  $S_2$  the whole of the oxygen set of molecular orbitals was assumed to be occupied by 20 electrons and the detors were obtained by arranging the twelve remaining electrons in the sixteen available molecular spin-orbitals. Obviously the number of  $\sum_{g}$  detors is the same for oxygen and sulphur, the numbers of codetors for the  ${}^{3}\Sigma_{g}^{-}$  and  ${}^{1}\Sigma_{g}^{+}$  states will also be the same. In addition a set of 44  $\Delta_g$  detors was obtained with  $S_z = 0, 22 \Delta_g$  codetors were projected from this set. The detors and codetors are listed in Appendix IX, this appendix also contains a list of the "spatial orbital" configurations or "primative functions".

The energies of the five lowest levels of each state investigated are given in Tables 11 to 15 for each of the chosen internuclear separations. The corresponding potential curves are shown in Figs. 16 to 20. The results

	(HARTREES)
	ဂိ
	Ы
	STATES
ーレン	2 d
	Ъ
	INERGIES
	11.
	TABLE

R (Bohrs)	X ³ Σ ₉ ⁻ Ι	$^{3}\Sigma_{g}^{-}\Pi$	³ Σ ₉ ⁻ III	$^{3}\Sigma_{g}^{-} V$	$^{3}\Sigma_{9}^{-}$
2•0	-149.0731	-148.1717	-147.7918	-147.7264	-147.6618
2.1	-149.1407	-148.3509	-148.0268	-147.9082	-147.8404
2.2	-149.1807	-148.4932	-148.2185	-148.0506	<b>-1</b> 47.9693
2•3	-149.2031	-148.6059	-148.3743	-148.1626	-148.0672
2.4	<b>-1</b> 49.2134	-148.6941	-148.4985	-148.2511	-148.1428
2.5	-149.2151	-148.7645	-148.6002	-148.3212	-148.2177
<b>2.</b> 6	-149.2103	-148.8205	-148.6814	-148.3762	-148.3386
2.7	<b>-1</b> 49.1996	-148.8640	-148.7476	-148.4459	-148.4184
2.8	-149.1882	-148.8980	-148.8006	-148.5324	-148-4531
2.9	-149-1741	-148.9244	<b>-148.</b> 8431	-148.6039	-148.4798
3•0	<b>-1</b> 49 <b>.</b> 1597	-148.9455	-148.8769	-148.6630	-148.5014
3.1	<b>-1</b> 49 <b>.</b> 1465	-148.9600	-148.9043	-148.7105	-148.5180
3•3	-149.1210	-148.9807	-148.9398	-148.7818	-148.5421
3•5	-149.1018	-148.9910	-148.9607	-148.8286	-148.5572
4•0	-149•0838	-148.9923	-148.9772	-148.8846	-148.5698
8	-149.0808	<b>-1</b> 48.9868	-148.9868	I	ı

•

- 123 -

(HARTREES)
STATES OF 02
$^{1}\Sigma_{9}^{+}$
Ч
IES
ENERG.
12. ENERG

R (Bohrs)	L ⁴ Σ ⁴ μ	$^{1}\Sigma_{9}^{+}\Pi$	$^{1}\Sigma_{g}^{+}III$	$^{1}\Sigma_{g}^{4}$ $ V $	$^{4}\Sigma_{9}^{4}$ $^{\prime}$
2.0	-149.0014	-148.2544	-148.0743	-147.7025	-147.6210
2.1	-149.0712	-148.3808	-148.2502	-147.9200	-147.8762
2•2	-149.1178	-148.4799	-148.3869	-148.1113	-148.0804
2•3	-149.1480	-148.5608	-148.4905	-148.2723	-148.2422
2.4	-149.1626	-148.6296	-148.5700	-148.4068	-148.3717
2•5	-149.1680	-148.6890	-148.6240	-148.5182	-148.4771
2.6	-149.1667	-148.7368	-148.6681	-148.6103	-148.5596
2.7	-148.1637	-148-7744	-148.7011	-148.6901	-148.6268
2.8	÷149.1562	<b>-1</b> 48.8055	-148.7551	-148.7275	-148.6775
2.9	-149.1487	-148.8283	-148.8116	-148.7545	-148.7150
3•0	-149.1391	-148.8581	-148.8455	-148.7823	-148.7378
3.1	-149.1307	-148.8987	-148.8594	-148.8039	-148.7531
3•3	-149.1156	-148.9584	-148.8747	-148.8407	-148.7692
3.5	-149.1032	-149.0011	-148.8827	-148.8629	-148.8131
4.0	-149.0883	<b>-1</b> 49 <b>.</b> 0569	-148.8891	-148.8824	-148.8675
8	-149.0808	-149.0808	-148.8928	-148.8928	-148.8928

.

(HARTREES)
ကို
Б
STATES
$^{3}\Sigma_{g}^{-}$
ОF
S
ENERGIE
÷
TABLE 1

R (Bohrs)	X ³ Σ ₉ Ι	³ Σ ₉ Π	³ Σ ⁻ ₉ Ш	³ $\Sigma_{9}^{-1}$ [V	$^{3}\Sigma_{9}^{-}V$
2.9	-792.9403	-792.3457	-792.1966	-792.1669	-792.1100
3•0	-793.0255	-792.4779	-792.3281	-792.2864	-792.2322
3.1	-793.0938	-792.5903	-792.4413	-792.3853	-792.3313
<b>3.</b> 2	-793.1473	-792.6842	<del>7</del> 792,5397	-792.4686	-792.4131
3.3	-793.1891	-792.7632	-792.6246	-792.5394	-792.4797
3.4	-793.2303	-792.8402	-792.6913	-792.5958	-792.5321
3•5	-793.2408	-792.8856	-792.7608	-792.6501	-792.5805
3.6	-793.2563	-792.9322	-792.8151	-792.6931	-792.6184
3.7	-793.2671	-792.9717	-792.8640	-792.7286	-792.6550
3.8	-793.2732	-793.0031	-792.9019	-792.7593	-792.6860
3.9	-793.2752	-792.0296	, -792.9361	-792.7847	-792.7353
4.0	-793.2756	-793.0525	-792.9666	-792.8066	-792.7809
4.1	-793.2731	-793.0708	-792.9920	-792.8268	-792.8189
4.2	-793.2698	-793.0856	-793.0144	-792.8571	-792.8383
4•4	-793.2585	-793.1079	-793.0490	-792.9134	-792.8624
4.6	-793.2458	-793.1223	-793.0749	-792.9568	-792.8790
4.8	-793.2341	-793.1315	-793.0936	-792.9894	-792.8913
8	-793.1872	-793.1277	-793.1223	I	ı

- 125 -

.

	ES OF S (HARTREES)	,
1~+	L9 STATE	
	ENERGIES OF	
	TABLE 14.	

-

R (Bohrs)	P ¹ Σ ⁴	Π ⁶ ₁ Σ ¹	¹ Σ ⁺ ₉ ΠΓ	$^{1}\Sigma_{9}^{+}$	$^{1}\Sigma_{g}^{+}$
2.9	-792.8896	-792•4562	-792.2849	-792.1671	-792.1059
3•0	-792.9770	-792.5538	-792.4155	-792.2993	-792.2397
3.1	-793.0460	-792.6357	-792.5248	-792.4101	-792.3532
3•2	-793.1004	-792.7025	-792.6186	-792.5065	-792.4524
3•3	-793.1437	-792.7572	-792.6959	-792.5904	-792.5380
3.4	793.1894	-792.8062	-792.7689	-792.6494	-792.6056
3•5	-793.2009	-792.8455	-792.8109	-792.7257	-792.6766
3.6	-793.2193	-792.8827	-792.8500	-792.7813	-792.7326
3.7	-793.2311	-792.9236	-792.8763	-792.8285	-792.7809
3.8	-793.2394	-792.9454	-792.9040	-792.8712	-792.8209
3.9	-793.2449	-792.9706	-792.9235	-792.9087	-792.8568
4.0	-793.2472	-792.9913	-792.9412	-792.9399	-792.8872
4.1	-793.2469	-793.0092	-792.9708	-792.9538	-792.9125
4.2	-793.2456	-793.0226	-792.9963	-792.9668	-792.9335
4•4	-793.2397	-793.0422	-793.0391	-792.9896	-792.9636
4.6	-793.2326	-793.0748	-793.0549	-793.0113	-792.9803
4.8	-793.2250	-793.1022	-793.0626	-793.0292	-792.9908
	103 1870	-702 1002	703 7628	-702 0571	ł
8	2101.021-	C771.CC1-	0700.0CV	1/20.02/1	I

.

.

- 126 -

	(HARTREES)	
	က်	
	Ы	
	STATES	
<	67	
	1	
	ð	
	ENERGIES OF	
	15. ENERGIES OF	

R (Bohrs)	o ¹ ∆ ₉ I	1 Д ₉ Л	¹ ∆ ₉ Ш	$^{1} \triangle_{9}   \vee$	$^{1} \triangle_{9} \lor$
2.9	-792.9085	-792.3002	-792.1257	-792.0438	-791.8553
3•0	-792.9948	-792.4323	-792.2521	-792.1729	-791.9940
3.1	-793.0638	-792.5445	-792.3617	-792.2768	-792.1097
3•2	-793.1178	-792.6392	-792.4582	-792.3618	-792.2089
3•3	-793.1596	-792.7185	-792.5430	-792.4316	-792.2944
3.4	-793.2035	-792.7954	-792.6103	-792.4858	-792.3564
3•5	-793.2151	-792.8413	-792.6807	-792.5382	-792.4308
3.6	-793.2322	-792.8880	-792.7356	-792.5797	-792.4910
3.7	-793.2436	-792.9257	-792.7914	-792.6160	-792.5511
3•8	-793.2512	-792.9581	-792.8250	-792.6510	-792.6123
<b>3.</b> 9	-793.2556	-792.9846	-792.8604	-792.6887	-792.6545
4•0	-793.2565	-793.0068	<b>-7</b> 92 <b>.</b> 8915	-792.7294	-792.6848
4.1	-793.2563	-793.0248	-792.9183	-792.7679	-792.7091
4.2	-793.2542	-793.0389	-792.9412	-792.8019	-792.7297
4.4	-793.2466	-793.0597	-792.9780	-792.8584	-792.7635
4.6	-793.2370	-793.0728	-793.0047	-792.9016	-792.7894
4.8	-793.2277	-793.0804	<b>-</b> 793.0245	-792.9344	-792.8086
8	-793.1872	-793.1223	ı	ı	

- 127 -



- 128 -

.



- 129 -



INTERNUCLEAR SEPARATION (BOHRS)

FIG. 18. Potential curves for the five lowest  ${}^{3}\Sigma_{g}^{-}$  levels of S₂



INTERNUCLEAR SEPARATION CBOHRSDERS

FIG. 19. Potential curves for the five lowest  ${}^{1}\Sigma_{g}^{+}$  levels of  $S_{2}^{-}$ .



INTERNUCLEAR SEPARATION (BOHRS)

FIG. 20. Potential curves for the five lowest  ${}^{1}\Delta_{g}$  levels of  $S_{2}$ .

TABLE 16 Spectroscopic Const	nstants	3
------------------------------	---------	---

(Units are  $cm^{-1}$  unless explicitly given, and  $a_1$  to  $a_6$  are dimensionless)

02x3	Σ_I	
------	-----	--

0₂b¹Σ⁺g¹

	calc	Expr ⁺	calc	Expr ⁺
R _e bohrs	2.4618	2.2817	2•5435	2.3183
$V(R_e)$ hartrees	-149.2156		-149.1685	
V'(R _e )	0.0		10-0	
$D_{E}$ hartrees	0.1348		0.0877	
D _O hartrees	0.1312	0.1867	0.0849	0.1506
G(0) hartrees	0.0036	0.0036	0.0028	0.0033
Y ₀₀	<b>-1</b> •4979		1.6769	
Y ₁₀	1607.56	1580.36	1251.04	1432,69
Y ₂₀	-19.1019	-12.0730	-6.8935	-13.9500
Y ₃₀	0.1539	0.0546	-0.2558	-0.0108
Y ₄₀	0.0066		-0.0031	
Y ₀₁	1.2422	1•4457	1.1636	1.4004
Y ₁₁	-0.0129	-0.0158	-0.0016	-0.0182
Y ₂₁	$-7.9 \times 10^{-5}$	,	0.0003	_
Y ₃₁	$9.3 \times 10^{-6}$		-6.5 x 1	0-5
Y _{O2}	$-3.0 \times 10^{-6}$		$-4.0 \times 10^{-10}$	0 ⁻⁶
Y ₁₂	$-1.1 \times 10^{-7}$		1.3 x 1	o ⁻⁷
Y22	<10 ⁻⁸ *	•	-2.3 × 1	0 ⁻⁸
Y ₀₃	<10 ⁻⁹ *		<10 ⁻⁸	*
Y ₁₃	<10 ⁻⁸ *		<10 ⁻⁸	*
Y ₀₄	<10 ⁻⁸ *		<10 ⁻⁸	*
an	5.2006 x 1	0 ⁵	3•3651	× 10 ⁵
a ₁	-3.2487		-3.4206	
a	2.9408		10.6683	
a	14.4668		-31.0388	
a _A	-54.2388		20.5180	
+ a _c	68.5968		84.8957	
a ₆	-29.7533		-113.0302	

* Absolute value

+ Reference 28
TABLE 16 Spectroscopic Constants

- 134 -

	s ₂ x ³ Σ	- _T	1			
		g	S ₂ a'	Δ _g I	S ₂ b ¹	Σ ⁺ I
	calc	Expr +	calc	Expr +	calc	Expr +
l bohrs	3.9761	3.5754	3.9962	3.5905	4.0243	
W(R) hartrees	-793-2757		-793.2565		-793.2472	
V'(R _e )	$2 \times 10^{-7}$		$3 \times 10^{-7}$		3.2 x 10	-6
hartrees	0.0885		0.0693		0.0600	
hartrees	0.0869	0.1610	0.0147		0.0588	
S(0) hartrees	0.0016	0.0016	0.0546		0.0012	
Y ₀₀	-10.0430		-44.5515		-36.3408	
Y10	703.4343	714.29	584.1429	689.87	591.0864	693 ?
Y20	-61.1350	2.844	3581.93	3.02	123.0598	3.4 ?
Y30	117.2205		-387.0931		-164.2823	
YAO	110.0685		1667.08	g atakes of	1.5303	
Y ₀₁	0.2371	0.2945	0.2318	0.2922	0.2310	
Y	0.0021	0.0016	0.0452	and another state of	-0.0094	
Y ₂₁	-0.0007		-0.0670		-0.0186	
Y ₂₁ const	-0.0155		-0.0853		-0.0231	
Y _{O2}	$-6.9 \times 10^{-8}$		$-7.7 \times 10^{-7}$		$-2.4 \times 10^{-7}$	t results
Y ₁₀	$-2.2 \times 10^{-7}$		$-1.9 \times 10^{-6}$		$-4.4 \times 10^{-7}$	/
Y22	$2.7 \times 10^{-7}$		$-1.0 \times 10^{-5}$		-1.3 x 10 ⁻⁶	5
Y ₀₂	<10 ⁻⁸ *		< 10 ⁻⁸ *		< 10 ⁻⁸ *	6
Y12	<10 ⁻⁸ *		< 10 ⁻⁸ *		< 10 ⁻⁸ +	the of the
Y ₀₄	<10 ⁻⁸ *		< 10 ⁻⁸ *	49) They Foll	< 10 ⁻⁸ *	traines of
an	4.0375x10 ⁵		2.0498x10 ⁵		3.7238x10 ⁵	
a,	18.1835		-34.6309		-22.2509	
a, tota	80.4469		195.7953		-127.9481	
a, -	-6369.01		1.0117x10 ⁴		6036.38	
a	5.2347×10 ⁴		4.2089x10 ⁴		8.2559x10 ⁴	
4 a _c	3.9409x10 ⁵		-8.1705x10 ⁵	-	4.5959x19 ⁴	
ac	5.5152x10 ⁶	Agental Milling	-7.4275x10 ⁶	I and redius of	6.6482x10 ⁶	

* absolute value + Reference 68

for oxygen are in good agreement with those of Schaefer and Harris⁽⁴⁵⁾, and those for sulphur give the correct ordering of the lowest states;  $X^{3}\Sigma_{g}^{-}I < a^{1}\Delta_{g}I < b^{1}\Sigma_{g}^{+}I$  The separation namely of these states is 4500 cm⁻¹ and 6000 cm⁻¹ respectively, experimental separations are 4500 cm⁻¹ and 8000 cm⁻¹. The prefix X, a, or b before  $^{2S+1} \Lambda_{:}^{(\sigma)}$ is the spectroscopic notation indicating the ground state, first excited state, and second excited state respectively. The suffix I, II, ... indicates the relative level of the symmetry species. For example,  ${}^{3}\Sigma_{\rho}^{-}I$  is energetically lower than ³Σ_{JII} Spectroscopic constants for the  $\chi^3 \Sigma_g^{-1}$  (i.e. ground state)  $b^{1} \Sigma_{z}^{+} I$  states of diatomic oxygen were calculated using the and program listed in Appendix VIII. Similar calculations were performed for  $x^3 \Sigma_g^{-1}$ ,  $a^1 \Delta_g^{-1}$ , and  $b^1 \Sigma_g^{+1}$  states of diatomic sulphur. The results for both molecules are given in Table 16. The agreement between the calculated values and the experimental values of the spectroscopic constants is not too good for the two states of oxygen. Nor do these results agree with those of Schaefer and Harris⁽⁴⁵⁾. (The present results were obtained by fitting a polynomial through the  $V(R_i)$  at the values of  $R_i$ used by Schaefer and Harris.) The exact reason for the latter discrepancy is difficult to determine with certainty but is probably an example of the phenomenon noted by Beckel and Sattler (49). They found that the values of the spectroscopic constants, determined from a given set of values of the total electronic energy, were very susceptible to changes in the number of points to which the curve was fitted, to the degree of the polynomial employed and to the accuracy of the actual energy values. Their criterion for chosing the degree of the polynomial and radius of convergence was that

$$\left| R - R_{e} \right| \leq \left| t/3A_{n-1} \right|^{1/n+1}$$

- 136 -

All values of  $R_i$  must lie in the range prescribed, t is the estimated machine error in each  $V(R_i)$  and n is the degree of the fitted polynomial. V(R) is expressed as a power series in  $(R-R_e)$  rather than  $\xi$ (see Chapter 9) and  $A_{n-1}$  (the coefficient of  $(R-R_{e})^{n+1}$ ) is the last significant term in the power series. The choice of this criterion seems rather arbitrary; Beckel and Sattler only managed to obtain two or three decimal digit consistancy in the coefficients of the Dunham expansion. In the present calculations the value of t is extremely difficult to estimate as it depends on so many parameters. As R for both of the oxygen states considered here is about 2.5 bohr, it may well be argued that only energies corresponding to values of R in the range 2.0  $\leq$  R  $\leq$  3.0 should be used. In the case of Schaefer and Harris their published results only include five energies which satisfy this condition. This means that if t is  $10^{-6}$ and as n is at most 4 then  $A_2 = 2.7 \times 10^{-7}$ . Effectively this means that the potential curve must be almost parabolic over a substantial part of its range. It can be seen from Fig. 16 that the  $X^3 \Sigma_g^{-1}$  state is certainly not parabolic over the range 2.0  $\leq$  R  $\leq$  3.0. Obviously it is important when calculating spectroscopic constants to take great care over the mathematical methods and numerical techniques involved.

In calculating the spectroscopic constants for diatomic sulphur greater freedom was allowed in the choice of values of V(R) to which the curves were fitted. This process used was in two stages. Firstly a polynomial was fitted to all of the available points for each state. The  $L_2$  norm of this solution for each problem was about 10⁻⁴ and was rather poor. The next step involved fitting a polynomial through those points which were most accurately represented in the first stage. The accuracy with which each point is represented may be obtained from SPECTRØ by setting the variable NØ equal to 1 in the data (see Appendix VIII). The results of this second stage are usually very good from the numerical analysis aspect,

as the L₂ norm rarely exceeds  $10^{-11}$ . The results obtained for sulphur using this technique are quite good, although in every case the vibrational constants  $\omega_e x_e$ ,  $\omega_e y_e$ , and  $\omega_e z_e$  are rather large. This suggests that either the system may not be represented by a simple rotating vibrator or that the VCI method gives a poor description of the state. There are no experimental results with which these values may be compared.

The dissociation of diatomic oxygen into atomic states is clearly defined and is amply discussed in the literature (45,56,65). The  $X^3 \sum_g I$ ground state of  $0_2$  dissociates into the  ${}^3P + {}^3P$  states of the atoms as does the  $b^1 \sum_g^+$  state. The problem of the dissociation of  $S_2$  has been discussed by many authors (56, 65, 69). Agreement has only recently been reached on the value of the dissociation energy of the  $X^3 \sum_g I$  state. The accepted value is 0.161 hartree (65, 69) and the dissociation products are atoms in the  3P  state. The dissociation energy  $D_0$  is measured from the lowest vibrational level and it is this value that is quoted experimentally. The dissociation energy  $D_E$  measured from the minimum of the potential curve differs from  $D_0$  by the zero-point energy G(0).

$$D_{E} = V(R_{e}) - V(\infty)$$
$$= D_{e} + G(0)$$

 $D_E$  and G(0) are given by the program SPECTRØ (In the computer output the symbol ZO is used for G(0)). G(0) is calculated by putting V = 0 in (9.4), so that

$$G(0) = Y_{00} + Y_{10}/2 + Y_{20}/4 + Y_{30}/8 + Y_{40}/16$$

The value of  $D_0$  for the ground state of diatomic sulphur is 54% of the experimental value and that of the oxygen ground state 70% of the experimental value.

TABLE	17.	VCI,	П	-ORBITAL	VCI,	AND	SCF	ENERGIES
and the second s		the second se	-					

FOR THE LOWEST STATES OF 02 (HARTREES)

		Χ ³ Σ _g Ι		ν ¹ Σ	gI				
R Bohrs	_30 TERM	9 TERM	SCF*	37 TERM	12 TERM				
2.1	-149.1407	-149.0598	-149.0521	-149.0712	<b>-1</b> 48.9792				
2•3	-149.2031	-149.1411	-149.0912	-149•1480	<b>-</b> 149•0797				
2.5	-149•2151	-149.1702	-149.0743	-149.1680	-149.1188				
2.7	-149.1996	-149•1674	-149.0281	-149•1637	-149•1295				
2.9	-149.1741	-149•1514	-149.9679	-149•1487	-149.1261				
3•1	-149•1465	-149•1311	-149.9024	-149•1307	-149.1166				
3•3	-149.1210	-149.1112	-148.8372	-149•1156	<b>-1</b> 49•1073				
3•5	-149.1018	-149.0961	-148•7744	-149•1032	<b>-1</b> 49 <b>.09</b> 86				
4.0	-149.0838	-149.0826	-148.6413	-149.0883	<b>-1</b> 49.0873				

* Reference 71 . The author is grateful to Dr M. Dixon for permission to include these results.

1

# TABLE 18. VCI, $\pi$ -ORBITAL VCI, AND SCF ENERGIES

FOR LOW-LYING STATES OF S2 (HARTREES)

		X ³ Σ _g I	ь	ь¹Σg⁺Ι							
R Bohrs	30 TERM	9 TERM	SCF*	37 TERM	12 TERM						
3.0	-793.0255	<b>-</b> 792•9955	-793.0624	-792.9770	<b>-</b> 792.9401						
3•2	-793.1473	<del>-</del> 793•1176	-793.1798	-793.1004	<b>-</b> 793•0645						
3.4	-793-2303	<b>-</b> 793.2024	<b>-</b> 793•2646	<b>-</b> 793.1894	<b>-</b> 793•1562						
3.6	<b>-</b> 793•2563	-793.2303	-793.2760	-793-2193	<b>-7</b> 93.1889						
3.8	-793.2732	-793.2499	-793.2830	-793•2394	-793-2127						
4.0	-793.2756	-793•2550	-793.2750	-793.2472	<b>-7</b> 93.2244						
4•2	-793.2698	-793.2520	-793•2573	-793.2456	-793.2266						
4•4	-793.2585	-793•2435	-793-2336	-793-2397	<b>-</b> 793•2245						
4.6	-793.2458	-793.2334	-793.2073	-793.2326	-793-2208						
4•8	-793-2341	-793.2242	-793.1802	-793.2250	-793-2161						
	l			ł							

* See footnote to Table 17

The greatest contributory factor to the discrepancy between theory and experiment for S2 lies in the use of the minimal basis set VCI method. Since the complete minimal basis set CI on the sulphur atom lowers the energy by 0.034 hartrees, it is reasonable to assume that the use of a more extensive CI for S₂ will lower the energy by almost twice this amount. A VCI calculation in which the  $ns\sigma_g$  and  $ns\sigma_u$  valence shell molecular orbitals are full is conveniently called a  $\pi$  -orbital VCI and in the present work is easily obtained. In Appendix IX it is seen that the first 31 detors of  $\Sigma_g$  symmetry have the valence shell  $ns\sigma_g$  and  $ns\sigma_u$ orbitals doubly occupied. The  ${}^{3}\Sigma_{g}^{-}$  and  ${}^{1}\Sigma_{g}^{+}$  codetors arising from these detors are components of the  $\pi$ -orbital VCI wave functions (see Chapters 7 and 8, also Meckler⁽⁴²⁾) for these states. There are  $9^3 \Sigma_{\sigma}^{-1}$ codetors and 12  ${}^{1}\Sigma_{\varphi}^{+}$  codetors in the  $\pi$ -orbital VCI. The results of these investigations are summarized in Tables 17 and 18, where the 9-term VCI represents the  $\pi$ -orbital VCI for the  $3\Sigma_g^-$  state, the 30-term VCI is the current  $3\Sigma_g^-$  VCI result, the 12-term VCI is the  $\pi$ -orbital VCI for the  $1 \sum_{g}^{+}$  state and the 37-term VCI the current VCI result for this state. The difference in energy between the  $\pi$ -orbital VCI energy and the complete VCI energy decreases as the internuclear separation increases. This result is expected as in the  3 P ground state of the atoms only the p-type orbitals of the valence shell contribute to the wave function, and the s-type are always occupied. A similar effect should be seen in a more extensive CI on So, which includes detors corresponding to excitations from the inner shell  $\pi$ -orbitals. The present result for R = 2.3 in the ground state of  $0_2$  is in good agreement with that of Kotani et alia⁽⁴³⁾, who give the energy of the 9-term VCI as -149.1332 and that of the complete

VCI as -149.1911 hartree. They used different values for the orbital exponents to those used here.

An interesting feature of Figs. 16-20 is the existence of a number of

avoided crossings of the potential curves. The wave functions of the two energy levels  $2S+1 \wedge {(\sigma) \atop i}$  I and  $2S+1 \wedge {(\sigma) \atop i}$  II may be written

$$\Psi_{I} = \stackrel{\Sigma}{i} \Psi_{i} c_{iI}, \qquad (10.1a)$$

and

$$\Psi_{II} = \sum_{k} \Psi_{k} c_{kII} , \qquad (10.1b)$$

respectively. In (10.1)  $\Psi_i$  and  $\Psi_k$  are codetors of  $\sum_{i=1}^{2S+1} \Lambda_i^{(\sigma)}$  symmetry. Let

$$V_{ik} = \langle \Psi_i | \mathfrak{h} | \Psi_k \rangle$$

 $V_{ii}$  is the total energy of the codetor  $\Psi_i$  and the off-diagonal elements  $V_{ik}$  are very small. The energies corresponding to  $\Psi_I$  and  $\Psi_{II}$  are

$$V_{I} = \sum_{ik} c_{iI} c_{kI} V_{ik}$$

and

$$V_{II} = \sum_{ik} c_{iII} c_{kII} V_{ik}$$

The conventional notation implies that  $V_{I} < V_{II}$ , and as  $|V_{ik}| \ll |V_{ii}|$ , both  $V_{I}$  and  $V_{II}$  are dominated by the energy corresponding to the codetors with the absolutely largest coefficient in  $\Psi_{I}$  and  $\Psi_{II}$ . As the internuclear distance varies  $V_{ii}$  will also vary and its value relative to other diagonal terms will change. The "non-crossing" rule⁽⁷⁰⁾ may be interpreted as the statement that the potential energy curves of two electronic states of the same symmetry species cannot cross. If  $V_{I}$  is to remain below  $V_{II}$ ,

	eigenvectors
	2
ι ι ε	79
	ыł
	Part
	19 Part

4.0		0.93762*	-0.01158	0.16493	0.12546	0.03267	0.10165	-0.16944	0.01834	0.11285	0.00315	-0.00665	-0.00657	0.00032	0.00216	0.01091	-0.01135	-0.07105	-0.02849	-0.00395	-0.00935	0.01114	-0.00405	0.00597	0.00297	0.00170	-0.00330	-0.06634	0.09599	-0.06142	-0.02646
3.1		0.98062*	-0.01397	0.09302	0.03404	0.02656	0.00603	-0.04820	-0.03932	0.03070	0.00953	-0.02117	-0.00459	-0.01326	0.00465	0.01841	-0.01868	-0.07268	-0.02191	-0.01114	-0.01815	0.03154	-0.01044	0.01255	0.00277	0.00156	-0.00737	-0.05826	0.08812	-0.04928	-0.01578
2.9		0.98217*	-0.01454	0.07454	0.02281	0.02052	-0.01272	-0.04043	-0.03906	0.01802	0.01134	-0.02904	-0.00439	-0.02513	0.00592	0.02205	-0.01920	-0.07443	-0.02339	-0.01452	÷0.02024	0.04329	-0.01235	0.01306	0.00223	0.00096	-0.00889	-0.05706	0.08865	-0.04646	-0.01376
2.7		0.96567*	-0.01679	0.05256	0.01031	0.00725	-0.11398	-0.09148	-0.03908	-0.00245	-0.00158	-0.05251	-0.04700	-0.07919	0.00716	0.04747	-0.00802	-0.07651	-0.02956	-0.02345	0.00252	0.08308	-0.02103	0.00699	-0.00376	-0.00473	-0.01129	-0.05155	0.09162	-0.04242	-0.00950
2•5		-0.04302	0.01794	0.02367	0.05455	0.06357	0.62340*	0.35884	0.03840	0.03098	0.07268	0.10552	0.51481	0.25133	0.00635	-0.17224	-0.08561	0.01298	-0.00119	0.03127	-0.21795	-0.17633	0.06053	0.03503	0.01425	0.04916	0.00174	-0.03191	-0.01717	-0.00411	-0.01366
2.3		-0.01029	0.01725	0.02600	0.08073	0.10293	0.51682	0.31317	0.02835	-0.01761	0.02290	0.09198	0.65843*	0.24529	0.00274	-0.16379	-0.07683	0.01539	-0.01986	0.02101	-0.21266	-0.16293	0.05292	0.02785	-0.01154	0.04570	-0.00470	-0.03354	-0.01307	-0.00524	-0.01089
2.1		0.00620	0.01694	-0.00590	0.12081	0.17624	0.38746	0.20499	0.03023	-0.05263	-0.02417	0.06835	0.80838*	0.13037	-0.00829	-0.13560	-0.05875	0.01873	-0.07670	-0.01132	-0.19044	-0.10738	0.04098	0.01696	-0.03655	0.04104	-0.01685	-0.03192	0.00201	-0.00585	-0.00533
Ч	´∋:-	1	~	ო	4	ഹ	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	<b>2</b> 6	27	<b>2</b> 8	<b>2</b> 9	30

* Absolutely largest value

•

- 142 -

$^{3}\Sigma_{g}^{-}$ V eigenvectors
II
Part
- 1
TABLE

4.0	0.01154	0.00048	-0.35295	-0.26789	-0.00119	• 0.61308 ×	0.23417	0.40174	0.43057	0.07244	0.02514	0.07335	0.03512	0.00235	-0.08220	0.00974	-0.00206	-0.00762	0.00482	-0.04519	-0.05003	0.02081	0.00359	0.02557	0.00551	0.00091	-0.01908	0.01357	-0.01028	
3•1	0.02279	0.00582	-0.12597	-0.03576	0.01769	0.77633*	0.31466	0.15001	0.27387	0.15416	0.07215	0.22071	0.15178	0.00155	-0.14993	-0.06137	-0.00191	-0.00805	0.02452	-0.17152	-0.12094	0.05271	0.03782	0.06363	0.03286	0.00430	-0.03264	0.00833	-0.00859	
2.9	0.03692	0.01166	-0.05414	0.00198	0.02746	0.75736*	0.34743	0.09526	0.18437	0.14507	0.08976	0.29767	0.18704	0.00447	-0.16133	-0.07881	-0.00123	-0.00398	0.02762	-0.19843	-0.14343	0.05911	0.04145	0.05510	0.04235	0.00441	-0.03483	0.00241	-0.00858	
2.7	0.17734	0.01311	0.00561	0.03289	0.04288	-0.69700*	0.35463	0.05363	0.10051	0.11812	0.09484	0.39495	0.21027	0.00814	-0.16376	-0.09007	-0.00908	<del>,</del> 0,00591	0.02680	-0.21772	-0.15120	0.05961	0.04198	0.03743	0.04849	0.00187	-0.04388	0.08730	-0.01427	0010
2•5	0.82322*	0.01227	-0.01417	0.05829	-0.01841	-0.02577	-0.12350	0.05114	-0.09927	-0.08002	-0.01395	0.35901	-0.29901	0.03140	0.00030	-0.01376	-0.05324	-0.11858	-0.04532	<del>0</del> 0.06452	0.13189	0.01961	-0.01554	-0.06036	0.05191	-0.02145	-0.05607	0.10560	-0.03924	
2•3	-0.11033	-0.03088	0.12900	-0.11699	0.09113	0.13443	0.29359	-0.10226	0.15059	0.15635	-0.00180	-0.52333	0.62575*	-0.03305	-0.01801	-0.02715	-0.01587	0.22469	0.04020	0.01374	-0.20634	-0.02314	0.04558	0.09636	-0.07264	0.02062	0.01397	-0.07477	0.00982	0 01 100
2.1	-0.06121	-0.01842	0.14482	-0.12672	0.20405	0.13786	0.34260	-0.06850	0.08865	0.09020	0.02507	-0.30428	0.72745*	-0.03350	-0.05902	-0.02897	<b>-0.0</b> 0996	0.24979	0.00411	-0.01918	-0.23702	-0.00147	0.03561	0.05486	-0.05371	0.00815	0.00605	-0.07603	0.00491	00110
۳ ج-		2	ო	4	ŝ	9	7	ω	δ	10	;-	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	00

Absolutely largest value

*

- 143 -

the dominant codetor in  $\Psi_{I}$  must always be that with the lowest energy. If some of these energies are degenerate the coefficients of the appropriate detors will be nearly equal. A rapid variation of the coefficients defining a wave function with respect to the codetors is a consequence of the noncrossing rule. In Table 19 the coefficients of the  ${}^{3}\Sigma_{g}^{-}IV$  and

 ${}^{3}\Sigma_{g}^{-}V$  states are seen to vary rapidly as R varies. The distortion of the potential curves (fig. 16) in the region of R = 2.6 bohr indicates an avoided crossing. The distortion of the upper curve at about 2.5 bohr indicates an avoided crossing with a higher level not shown in the diagram. Several other examples are evident in Figs. 17 to 20.

The initial results from the natural spin-orbital analysis option of SECSØL (Appendix VII) indicated that, for the atomic and molecular states examined, the VCI wave functions produced a set of natural spin-orbitals which was identical to the set of orthonormal symmetry adapted molecular spin-orbitals. The occupation numbers of the natural spin-orbitals forming the frozen shell were unity, and the values for the remaining natural spin-orbitals could easily be estimated by inspection of the wave function. Only with the complete CI atomic wave function was the natural spin-orbital basis different from the orthonormal spin-orbital basis. Little use was made of the natural spin-orbital analysis option because the time taken to construct and diagonalize the first order density matrix for a given energy level was almost as great as that taken to construct and solve the secular equation for which the energy level was a solution. It was felt that use of this option would add little to the present investigation of the VCI method.

A valuable indication of the merits of the VCI method can be made in view of some recent work by Dixon⁽⁷¹⁾. Using the integrals output by the program INTRA (Appendix VI) he calculated the open-shell SCF energies of the  $0_2$  and  $S_2$  molecules in their  $X^3 \Sigma_g^{-1}$  ground state at a number of internuclear separations. The VCI method produces much better results than the

- 144 -

SCF method for oxygen at each bond length (see Table 17) and also predicts the dissociation products correctly, whereas the SCF energies indicate dissociation products of atoms in the ¹S state. This is yet another example of the failure of the SCF method to predict correct dissociation products. The electron correlation introduced by even the  $\pi$  -orbital VCI is sufficient in the case of  $0_{0}$  to cause a significant drop in the total energy at each bond length compared with the SCF value. Examination of the results for  $S_{2}$  given in Table 18 show that the SCF gives better results than the VCI for bond lengths less than 4.0 bohr. The potential curve for the SCF results is a little deeper and rather more steep than the VCI curve but, as in the  $0_{0}$  calculation, the dissociation products are incorrect as, even at R = 4.8 bohr, the energy of the  $X^3 \Sigma_{\sigma} I$ state is above that of the  ${}^{3}P$  +  ${}^{3}P$  energy of the separated atoms. A single configuration wave function lacks electron correlation and in general this deficiency can be partly remedied by using a CI. The CI will cause a lowering of the electronic energy with respect to the single configuration value. In the case of the VCI wave function the amount of electron correlation introduced is restricted by excluding codetors which represent excitations from the inner shell  $\pi$  -orbitals. As was mentioned earlier the VCI for the sulphur atom produced an energy inferior to that of the SCF, but a complete minimal basis set CI was slightly better. The improvement in the energy in the atomic case is due entirely to the inclusion of excitations from the inner shell p-orbitals in the wave function. It may be reasonably assumed that the inclusion of excitations from the inner shell  $\pi$ -orbitals in S₂ will cause a substantial decrease in the total energy in the correct part of the potential curve, this may also improve the values of the spectroscopic constants. The inference is that whilst the VCI method is rather good at describing states of the first row molecules, it may not be quite so good for other diatomic molecules. An examination of the VCI method in greater

detail for  $S_2$  must wait until SECSØL has been modified to handle a far greater number of detors than the present limit of 120.

### CHAPTER 11

### CONCLUSION

In the preceding chapters of Part II, the method of configuration interaction has been examined in detail. Methods for calculating CI wave functions and the less accurate valence configuration interaction wave functions of atomic and molecular systems have been described. It has been shown that the VCI method produces results which are in good agreement with experimental values when small atoms and molecules such as oxygen and  $0_{2}$  are examined. Whilst the absolute values of the energies of the various states of S2 calculated by means of the VCI method are not too good, the relative positions of the low-lying energy levels are in good agreement with the experimental values (68). A disappointing result of the work on both atomic and diatomic sulphur is that the SCF energies are slightly better than those for the VCI. The calculation of the VCI and complete minimal basis set CI energies, for the ³P ground state of the sulphur atom clearly indicate that the contributions from detors corresponding to excitations from inner shell 2p-orbitals cannot be neglected. This neglect may also explain why the ¹D and ¹S levels of the sulphur atom are close together in comparison with experimental values (68). If the detors which correspond to excitations from the inner shell  $\pi$ -orbitals were to be included in the  $S_2$  wave functions a lowering of the energy of at least twice the amount calculated in the atomic system could be expected. The poor agreement of the S_o spectroscopic constants can be attributed to the VCI method, although difficulties can arise in the numerical analysis involved in the calculation of these quantities.

A very favourable aspect of the CI method in general is the ease with which it may be implemented on a digital computer, and the flexibility of the method which, by its very nature, permits the examination of various low-lying excited states in addition to the ground state. The present implementation is designed to achieve flexibility with minimum effort. Consequently, it is possible to perform complete minimal basis set CI calculations. Having calculated the matrix elements between the appropriate detors for the complete CI, the energies corresponding to various groups of detors in the complete wave function can be obtained with ease. Similarly it is possible to perform an extensive VCI calculation and to then examine the effects of keeping certain of the valence shell molecular orbitals frozen. The  $\pi$ -orbital VCI calculations discussed in Chapter 10 illustrate the use of this feature.

The SCF calculations of Dixon (71) took slightly longer than the VCIs for both oxygen and sulphur, so that the return in information from a VCI calculation is much greater. It is surprising that so few(10) large VCI calculations have been attempted. There are problems in performing any type of CI calculation, but these problems are really no different from those encountered in SCF calculations which employ large bases of Gaussian-type orbitals.

The performance of the programs listed in the appendices is highly satisfactory. In the light of experience minor improvements were introduced into most of the programs during the production of the results quoted in Chapter 10. These made the programs easier to use and some resulted in a reduction of the amount of data supplied on punched cards.

The calculations on  $S_2$  were almost at the limit of the range of SECS $\not$ L (Appendix VII) and certain major improvements, not apparent with the smaller  $O_2$  molecule, have become obvious during the course of the  $S_2$  work. These improvements will necessitate some considerable rewritting of the program. Perhaps the most pressing requirement is to make more efficient use of the array IDIFF (see Chapter 8), which is used in the

evaluation of the off-diagonal matrix elements between detors. In the present program this array has to be constructed each time the bond length of the molecule or the symmetry species of the detors is changed. This process can occupy more than 50% of the total CPU time for a given problem, which consists of the computation of the matrix elements between detors, construction of the secular equation and its solution. The array IDIFF does not depend on the bond length of a diatomic molecule. The present version of the program only dumps IDIFF on disc if it is too big for the available core store; it is overwritten later in the calculation. Without substantial rewriting and increasing the current storage requirements it is not possible to dump the array unconditionally and read it into core when required later. Naturally this improvement will speed the natural spin-orbital analysis since the array IDIFF, in a shortened form may be used there. This will then make the construction of the first order density matrix less expensive in terms of CPU time. A result of this improvement will be the relative ease of computation of molecular properties, such as  $\langle 0 \rangle = \operatorname{Tr}(\underline{\gamma} \underline{P})$ , where 0dipole moments, since is a one-electron  $\underline{\gamma}$  , the first order density matrix and  $\underline{P}$  the matrix of integrals operator, of the one-electron property over the same orbital basis as  $\chi$ .

The ease with which the matrix elements between codetors of the same symmetry species may be projected from the matrix elements over the appropriate detors, compensates for the time required to evaluate the latter. Certainly in  $0_2$  this feature reduced the CPU time by about  $\frac{1}{3}$ .

In order to increase the number of detors that can be included in a CI wave function, a scheme in which only the non-zero matrix elements are stored is being investigated. At the same time, the possibility of only storing a list of non-redundant non-zero integrals over the orthonormal molecular orbitals is being considered. The integral generation programs produce non-redundant lists of integrals over the atomic orbitals, but the

- 149 -

lists contain zeros. However, the very rapid access to all of the integrals required in the calculation, which is necessary in the SCF procedure, is not so important in the CI process, since the list need only be scanned once or twice.

Even without the improvements mentioned in the preceding paragraphs, SECSØL may be used to provide many more useful results. In addition to the work reported here, calculations on other excited states of  $S_2$  are in progress. The triplet and singlet  $\Pi_g$  states are of particular interest, as the lowest levels of both states lie close to the  ${}^{3}P + {}^{3}P$ energies of the separated atoms. Since the relative positions of many of the states of  $S_2$  are not known with any certainty this invites further study. Calculations of the wave functions for the diatomic molecules  $F_2$ and  $O_2^{3-}$  are in progress, and a calculation on CN is being considered. The possible use of Gaussian type orbitals, rather than the Slater-type so far used, is being investigated in connection with work on polyatomic molecules. The general theme of the proposed research is to evaluate the VCI method. The full potential of both the VCI and CI methods remains . to be examined and exploited.

·

· · ·

## APPENDICES

,

.

### - 151 -

### APPENDIX I

### ATOMIC UNITS AND CONVERSION FACTORS

For atoms and molecules the Hamiltonian is made up from terms which represent the electrostatic interactions of the particles and the kinetic energy of the electrons. Since the nuclear motion may often be regarded as a quasi-static process as far as the electrons are concerned⁽⁷²⁾, it is justifiable to disregard the kinetic energy of the nuclei, and hence their Laplacian operators. The Schrödinger equation for a system of N electrons moving in the potential field of a fixed framework of M nuclei may then be written

$$\left(\frac{\frac{h^{2}}{2m_{e}}}{\sum_{i=1}^{N}}\nabla_{i}^{2} + (E_{E} - V_{E})\right)\Psi = 0 \quad . \tag{I.1}$$

In (I.1)  $V_{\rm E}$  is the potential energy operator:

$$V_{E} = -\sum_{K=1}^{M} \sum_{i=1}^{N} \frac{Z_{K}e^{2}}{r_{ik}} + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{e^{2}}{r_{ij}}$$

The first term in  $V_E$  represents the nuclear-electron attraction energy and the second the electron-electron repulsion energy. In (I.1)  $E_E$  is the electronic energy and the first term is the kinetic energy operator for all the electrons. Both the value of  $E_E$  and its units will depend on, (a) the units of  $\frac{1}{2}$ , Planck's constant divided by  $2\pi$ ,  $m_e$  the electron rest mass, and e the electron charge, and

(b) the currently accepted values of these quantities.

Shull and Hall⁽⁷⁵⁾ proposed the system of primary units in which  $m_e$ , e, and  $\frac{1}{2}$  have the value unity. In the system of primary units the unit of energy is the hartree:

1 hartree =  $\frac{m_e e^4}{b^2}$ 

- 152 -

and the unit of length is the bohr:

1 bohr = 
$$\frac{h^2}{m_e e^2}$$

Rewriting (I.1) in these units gives

$$\left(\frac{1}{2}\sum_{i=1}^{N}\nabla_{i}^{2}+\left(E_{E}+\sum_{K=1}^{M}\sum_{i=1}^{N}\sum_{r=iK}^{Z_{K}}-\sum_{i=1}^{N-1}\sum_{j=i+1}^{N}\frac{1}{r_{ij}}\right)\right)\psi=0$$

This form of Schrödinger's equation is used throughout this thesis, and is independent of the vagaries in measurement of  $m_e$ , e, and  $\frac{h}{2}$ .

For purposes of comparison with experimental results it is necessary to convert from the system of primary units to some system of secondary units, such as SI units. The values of the fundamental physical constants used in the conversion factors are given in Table I-1, and are taken from a more complete table of fundamental constants compiled by Cohen and DuMond (74). The conversion factors for various units of energy are given in Table I-2. All masses are measured on the unified nuclidic mass scale (57), in which the mass of the ¹²C nucleus is taken to be 12 atomic mass units (sometimes abbreviated anu, but the symbol u is used to indicate values on the unified nuclidic mass scale).

	THE FAILS A REMARKED A T	TITICTCAT	0010041700
		PHYSICAL.	L'UNSTANTS
	TOTOTIONTUT	THIOTOND	OOUGTUUTO
And the second sec	and the second	and the second se	

Constant	Symbol	Value	SI unit
Speed of light in a vacuum	с	2.997925	× 10 ⁸ ms ⁻¹
Elementary charge	e	1.60210	× 10 ⁻¹⁹ c
Avagadro constant	NA	6.02252	x 10 ²⁶ Kmole ⁻¹
Mass unit	u	1.66043	x 10 ⁻²⁷ kg
Electron rest mass	^m e	9•10908	x 10 ⁻³¹ kg
Planck constant	h	6.62559	x 10 ⁻³⁴ Js
h/2π	ħ	1•054494	x 10 ⁻³⁴ Js
Fine structure constant	¢	7.29720	× 10 ⁻³
Rydberg constant	R _@	1.0973731	$\times 10^7 m^{-1}$
Bohr radius	ao	5.29167	$\times 10^{-11}$ m

.

		Hartrees	Joules	Electron Volts	cm -1
1 Hartree	11	-	4.35942 × 10 ⁻¹⁸	2.721070 × 10"	2.1947462 x 10 ⁵
1 Joule	n	2.29388 × 10 ¹⁷	-	6.24181 × 10 ¹⁸	$5.03447 \times 10^{22}$
1 Electron Volt	11	3.675025 × 10 ⁻²	1.60210 × 10 ⁻¹⁹	٦	8.06573 x 10 ³
1 cm ⁻¹	N	4.556335 × 10 ⁻⁶	1.98631 × 10 ⁻²³	1.23981 × 10 ⁻⁴	-
1 ⁰ K	11	3.16678 × 10 ⁻⁶	1.38054 × 10 ⁻²³	8.61705 x 10 ⁻⁵	6.95028 × 10 ⁻¹
1 kcal	II	9.6017 x 10 ²⁰	$4.1858 \times 10^3$	2.6127 x 10 ²²	2.1073 × 10 ²⁶
1 kcal mole ⁻¹	u	1.5936 x 10 ⁻³	6.9473 x 10 ⁻²¹	4.3363 x 10 ⁻²	3.4976 x 10 ²
1 kg.	11	2.06164 x 10 ³⁴	8.98755 × 10 ¹⁶	5.60985 × 10 ³⁵	4.52477 × 10 ³⁹

TABLE J-2 Conversion Factors for Energy units

-

2

- 154 -

/continued

,

.

l Factors for Energy units	
<u>E I-2 Conversion</u>	
TABL	

-

kg.	4.85052 . 10-35	1.11365 . 10	1.78258 ~ 10-36	2.21005 . 10	1 E2COE 2 10	01 X CUOSC 1	7 7200 : 10 - 38	1
kcal mole-1	6.2751 × 10 ²	$1.4394 \times 10^{20}$	2.3061 x 10 ¹	2.8591 x 10 ⁻³	1.9872 × 10 ⁻³	6.0251 × 10 ²³		1.2937 × 10 ³⁷
kcal	1.0415 × 10 ⁻²¹	2.3890 × 10 ⁻⁴	3.8275 × 10 ⁻²³	4.7454 × 10 ⁻²⁷	3.2982 × 10 ⁻²⁷	-	1.6597 × 10 ⁻²⁴	2.1472 × 10 ¹³
o ^K	3.15778 × 10 ⁵	7.24356 × 10 ²²	1.16049 × 10 ⁴	1.43879 x 10 ⁰	7	3.0320 × 10 ²⁶	5.0323 × 10 ²	6.51019 × 10 ³⁹
	u	H	n	11	11	IJ	11	11
	1 Hartree	1 Joule	1 Electron volt	1 cm	1 ^V K	1 kcal	1 kcal mole ⁻¹	1 kg.

.

ť

# - 156 -

### APPENDIX II

# MOLECULAR ORBITALS FOR THE GROUP D

The complex Slater-type orbitals defined in (7.16) are suitable basis atomic obritals for the group  $D_{\infty h}$  because the factor  $\exp(jm\phi)$ is an eigenfunction of the rotation operator of the group⁽³⁹⁾. For the purposes of this appendix the notation  $\mathscr{V}_{\mathbb{C}}(n,l,m,\ell)$  will be used to denote a complex Slater-type orbital defined with respect to a nucleus C in the co-ordinate system of Fig. 15. By consideration of the effect of each of the four basic operations of the group (see Table 5 ) on a point it is easily shown that

$$\begin{split} \mathbf{0}_{C_{\eta}} \quad \varphi_{A}(n,l,m,l) &= \qquad \varphi_{A}(n,l,m,l) \exp(jm\eta) \quad , \\ \mathbf{0}_{;C_{\eta}} \quad \varphi_{A}(n,l,m,l) &= (-1)^{l} \mathscr{G}_{B}(n,l,m,l) \exp(jm\eta) \quad , \\ \mathbf{0}_{\sigma C_{\eta}} \quad \varphi_{A}(n,l,m,l) &= \qquad \varphi_{A}(n,l,m,l) \exp(-jm\eta) \quad , \\ \mathbf{0}_{;\sigma C_{\eta}} \quad \varphi_{A}(n,l,m,l) &= (-1)^{l} \mathscr{G}_{B}(n,l,m,l) \exp(-jm\eta) \quad . \end{split}$$

and

A similar set of results is obtained for  $\varphi_B(n,l,m,l)$ . Using these relations and the projection operator defined in (7.4) the following SAMOs are obtained:

$$\begin{split} \sigma_{g} &: \varphi_{A}(n, 1, -0, \ell) + (-1)^{1} \varphi_{B}(n, 1, 0, \ell) , \\ \sigma_{u} &: \varphi_{A}(n, 1, 0, \ell) - (-1)^{1} \varphi_{B}(n, 1, 0, \ell) , \\ \pi & \frac{+}{g} &: \varphi_{A}(n, 1, \pm 1, \ell) + (-1)^{1} \varphi_{B}(n, 1, \pm 1, \ell) , \\ \pi & \frac{+}{u} &: \varphi_{A}(n, 1, \pm 1, \ell) - (-1)^{1} \varphi_{B}(n, 1, \pm 1, \ell) , \\ \delta & \frac{+}{g} &: \varphi_{A}(n, 1, \pm 2, \ell) + (-1)^{1} \varphi_{B}(n, 1, \pm 2, \ell) , \end{split}$$

$$\begin{split} \delta \frac{+}{u} &: \ \mathcal{P}_{A}(n, 1, \pm 2, \zeta) - (-1)^{1} \mathcal{P}_{B}(n, 1, \pm 2, \zeta) , \\ \gamma \frac{+}{g} &: \ \mathcal{P}_{A}(n, 1, \pm 3, \zeta) + (-1)^{1} \mathcal{P}_{B}(n, 1, \pm 3, \zeta) , \\ \gamma \frac{+}{u} &: \ \mathcal{P}_{A}(n, 1, \pm 3, \zeta) - (-1)^{1} \mathcal{P}_{B}(n, 1, \pm 3, \zeta) . \end{split}$$

The symbol to the left of each molecular orbital is the usual spectroscopic notation: if the modulus of the angular momentum m is 0, 1, 2, 3, ... then the orbital is designated  $\sigma$ ,  $\pi$ ,  $\delta$ ,  $\gamma$ , ... and each orbital transforms according to the  $\Sigma_g^+$ ,  $\Sigma_u^+$ ,  $\Pi_g$ ,  $\Pi_u$ , .... irreducible representation depending on the parity under the operation of inversion. The symmetry species of a molecular orbital is defined by m and the subspecies by the sign of m and the inversion parity. Within a given subspecies the molecular orbitals are not orthogonal, but orbitals belonging to different subspecies are orthogonal. To identify specific molecular orbitals an additional notation may be used and it is best illustrated by some examples:

$$1s\sigma_{g} = \mathcal{L}_{A}(1,0, 0,\ell) + \mathcal{L}_{B}(1,0, 0,\ell) ,$$

$$1s\sigma_{u} = \mathcal{L}_{A}(1,0, 0,\ell) - \mathcal{L}_{B}(1,0, 0,\ell) ,$$

$$2p_{0}\sigma_{g} = \mathcal{L}_{A}(2,1, 0,\ell) - \mathcal{L}_{B}(2,1, 0,\ell) ,$$

$$2p_{+}\pi_{g} = \mathcal{L}_{A}(2,1, 1,\ell) - \mathcal{L}_{B}(2,1, 1,\ell) ,$$

$$2p_{-}\pi_{u} = \mathcal{L}_{A}(2,1,-1,\ell) + \mathcal{L}_{B}(2,1,-1,\ell) .$$

In calculations on the electronic structure of homonuclear diatomic molecules it is assumed that the basis atomic orbitals defined for one nucleus have a one to one correspondence with those on the other.

To determine the linear combinations of detors which are eigenfunctions of the reflection operator  $(\sigma_{\chi Z})$ , it is necessary to know the effect of this operator on the SAMOs. Since any plane of reflection containing the internuclear axis is equally possible, choice of a particular plane will not alter the final result; the xz-plane (Fig. 15) was chosen for the present calculations. The properties of the SAMOs under reflection in this plane are easily determined since this operation merely changes the sign of m, for example

$$\sigma_{xz}\pi \frac{+}{g} = \pi_{g}^{+}$$

and

$$\sigma_{xz}\pi\frac{+}{u} = \pi\frac{+}{u}$$

The symmetry properties of the molecular orbitals are invariant under a unitary transformation so that the properties of an orthonormal set of SAMOs may be obtained by inspection of the non-orthonormal set. As an example, consider the orbital

$$\varphi = c_1(1s\sigma_g) + c_2(2s\sigma_g) + c_3(2p\sigma_g)$$

reflection in the xz-plane leaves this orbital unchanged as each of the  $\sigma$ -molecular orbitals is invariant under  $\sigma_{\rm XZ}$  however the orbital

`\

$$\varphi_{+} = c_{1}(2p_{+}\pi_{g}) + c_{2}(3d_{+}\pi_{g})$$

is carried into

$$\mathcal{P}_{-} = c_1(2p_{\pi_g}) + c_2(3d_{\pi_g})$$
,

since the sign of m is changed by  $\sigma_{_{\rm XZ}}$  .

# APPENDIX III

### UTILITY ROUTINES

The subprograms listed in this appendix are used by several of the programs listed in Appendices IV-VIII. The subroutines TQL2 and TRED2 constitute the QR-Algorithm^(47, 48) and are FØRTRAN V versions of routines written, in FØRTRAN IV by the staff of the University of Leicester Computer Laboratory. The author expresses his thanks to the Director for permission to include these routines.

*FORTRAN LIB SUBROUTINE ENTR (PRNAME, NO) C....VERSION 3. TEXT PRNAME DATA LP/0/ IF(NO) 1,3,1 1 CALL CNTR(I) WRITER(LP,2) PRNAME,I 2 FORMAT( NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM ',A6, 1' =',15) 3 RETURN END *FORTRAN LIB SUBROUTINE ERROR(A) DATA LDN02/0/ TEXT A WRITE(LDN02,1) A 1 FORMAT (1H0, 15A8) CALL EEXIT RETURN IND *FORTRAN LIB INTEGER FUNCTION IPAR(N) C....IF N IS EVEN THEN IPAR = 0, C....IF N IS ODD THEN IPAR = 1. C....*** ATLAS BASIC LANGUAGE *** 101,81, 1,-0.4 101,81,81,0.4 . 121,32,0,1 127,82,81, 0 113,82,0,IPAR+0.4 121,32,0,*03000000 113,82,0,IPAR RETURN END *FORTRAN LIB SUBROUTINE QUIT (PRNAME, NO) C....VERSION 2. TEXT PRNAME DATA LP/0/ IF(NO) 1,3,1 1 CALL CNTR(I) WRITE(LP,2) PRNAME,I 2 FORMAT( NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM ',A6, 1' =',15) 3 RETURN END *FORTRAN LIB SUBROUTINE TQL2(N, EPS, NZ, Z, D, E, NN) DIMENSION Z(NZ,NZ), D(NZ), E(NZ) С THIS SUBROUTINE GIVES ALL THE EIGENVALUES AND EIGENVECTORS OF A С TRIDIAGONAL MATRIX CLEAR NN IF ( N .LT. 2 ) GOTO 1 DO 10 I = 2, N10 E(I-1) = E(I)

.

CLEAR F, B, E(N) TO 20 L = 1,N CLEAR J H=EPS*(ABS(D(L))+ABS(E(L))) IF ( B .GE. H ) GOTO 2 B = H2 DO 30 M = L, N30 IF ( ABS(E(M)) .LE. B ) GOTO 3 3 IF ( M .EQ. L ) GOTO 4 5 IF ( J .EQ. 30 ) GOTO 6 J = J + 1P = (D(L+1) - D(L))/2*E(L)R = SQRT(P**2 + 1)IF ( P .LT. 0 ) GOTO 7 H = D(L) - E(L)/(P+R)GOTO 111  $7 H = \Gamma(L) - E(L)/(P-R)$ 111 DO 40 I = L,N 40 D(I) = D(I) - HF = F + HP = D(M)C = 1CLEAR S IF ( M .EQ. L ) GOTO 3 KK = - (M-1) KKK = -LDO 50 II = KK, KKK I = -IIG = C*E(I)H = C*PIF ( ABS(P) .LT. ABS(E(I))) GOTO 9 C = E(I)/PR = SQRT(C**2+1)E(I+1) = S*P*RS = C/RC = 1/RGOTO 110 9 C = P/E(I)R = SQRT(C**2+1) $\mathbb{E}(I+1) = S*\mathbb{E}(I)*R$ S = 1/RC = C/R110 P = C*D(I) - S*G D(I+1) = H+S*(C*G + S*D(I))DO 50 K = 1, NH = Z(K,I+1) Z(K,I+1) = S*Z(K,I) + C*HZ(K,I) = C*Z(K,I) - S*H5) CONTINUE 3 E(L) = S*PD(L) = C*PIF ( ABS(E(L)) .GT. B ) GOTO 5 4 D(L) = D(L) + F2) CONTINUE DO 70 I = 1, NK = IP = D(I)IF ( I .EQ. N ) GOTO 11 II = I+1DO 80 J = II,N

```
- 163 -
      IF ( P(J) .GE. P ) GOTO 80
      K = J
      P = D(J)
   30 CONTINUE
   11 IF ( K .EQ. I ) GOTO 13
      D(K) = D(I)
      D(I) = P
      DO 00 J = 1,N
      P = Z(J,I)
      Z(J,I) = Z(J,K)
   SO Z(J,K) = P
  13 CONTINUE
  70 CONTINUE
 600 RETURN
    1 D(1)=Z(1,1)
      Z(1,1)=1.0
      GO TO 600
    6 NN=1
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE TRED2(N, TOL, NA, A, Z, D, E)
С
      THIS SUBROUTINE TRIDIAGONALISES A SYMETRIC MATRIX
      DIMENSION A (NA, NA), Z (NA, NA), D (NA), E (NA)
      DO 10 I = 1,N
      DO 20 J = 1,I
      Z(I,J) = A(I,J)
   20 CONTINUE
   10 CONTINUE
      IF ( N .LT. 2 ) GOTO 1
                                                  Υ.
      M = -N
      MM = -2
      DO 30 II = M ,MM
      I = -II
      L = I - 2
      F = Z(I, I-1)
      CLEAR G
      IF ( I .EQ. 2 ) GOTO 2
      DO 40 K = 1, L
   40 G = G + Z(I,K) * Z(I,K)
    2 H = G + F*F
      IF ( G .GT. TOL ) GOTO 3
      \mathbb{E}(I) = F
      CLEAR H
      GOTO 111
    3 L = L+1
      IF ( F .GE. 0 ) GOTO 4
      E(I) = SQRT(H)
      G = E(I)
      GOTO 7
    4 E(I) = -SQRT(H)
     G = E(I)
    7 H = H - F * G
      Z(I, I-1) = F-G
      CLEAR F
      DO 50 J = 1, L
      CLEAR G
      Z(J,I) = Z(I,J)/H
      DO 60 K = 1, J
```

.

60 G = G + Z(J,K) * Z(I,K)IF ( J .EQ. L ) GOTO 5 JJ = J+1DO 70 K = JJ,L70 G = G + Z(K,J) * Z(I,K) $5 \mathbb{E}(J) = G/H$ 50 F = F + G * Z(J,I)IIII = F/(II+II)DO 80 J = 1,L  $\mathbf{F} = \mathbf{Z}(\mathbf{I}, \mathbf{J})$  $\mathbb{B}(J) = \mathbb{B}(J) - \mathrm{HH}*\mathrm{F}$ G = E(J)DO 140 K = 1,J  $\mathbb{Z}(\mathbf{J},\mathbf{K}) = \mathbb{Z}(\mathbf{J},\mathbf{K}) - \mathbf{F} * \mathbb{E}(\mathbf{K}) - \mathbf{G} * \mathbb{Z}(\mathbf{I},\mathbf{K})$ 140 CONTINUE 30 CONTINUE 111 D(I) = H30 CONTINUE CLEAR D(1), E(1) 10100 I = 1,NL = I - 1IF ( D(I) .EQ. 0 ) GOTO 6 IF ( I .EQ. 1 ) GOTO 6 DO 110 J = 1,L CLEAR G DO 120 K = 1, L120 G = G + Z(I,K) * Z(K,J)DO 1.50 K = 1,L Z(K,J) = Z(K,J) - G*Z(K,I)150 CONTINUE 110 CONTINUE 6 D(I) = Z(I,I)Z(I,I) = 1IF ( I .EQ. 1 ) GOTO 100 DO 130 J = 1,LCLEAR Z(J,I),Z(I,J) 130 CONTINUE 100 CONTINUE 1 RETURN END *FORTRAN LIB SUBROUTINE WRITMX (A, NROW, NCOL, MROW, MCOL, LP) C....CUTPUT OF REAL MATRIX TO DEVICE NUMBER LP. DIMENSION A(NROW, NCOL) DO 4 I=1, MCOL, 5 J=I+4IF(J-MCOL) 2,2,1 1 J=MCOL 2 WRITE(LP,3) I,J 3 FORMAT('0',52X, COLUMNS',13, TO ',13/) DO 4 K=1, MROW WRITE(LP,5) (A(K,L),L=I,J) 4 CONTINUE 5 FORMAT( ,1P5E24.10) RETURN END

# - 165 -

### APPENDIX IV

# GENDET. A PROGRAM FOR GENERATING DETORS OF A GIVEN ANGULAR MOMENTUM AND ELECTRON

SPIN FOR THE D SYMMETRY GROUP

GENDET is described in Chapters 7 and 8 and, although specifically designed for the  $\mathbb{D}_{\infty h}$  symmetry group, can be easily adapted to work for both  $\mathbb{D}_{\infty h}$  and  $\mathbb{C}_{\infty V}$ . As stated in Chapter 7 each detor is characterized by its axial angular momentum  $\wedge$  and the value of the Z-component  $S_z$  of the electron spin. This program also computes the effect of an inversion on each detor and, for  $\Sigma$  detors the effect of a reflection in the xz-plane. The matrix elements  $\langle D_i | g^2 | D_j \rangle$ are computed ( $D_i$  and  $D_j$  are detors) and the corresponding matrix is diagonalized to provide eigenfunctions of  $g^2$ . The program outputs the detors on cards in the form of spin-orbital identifiers for each detor. The spin-orbitals are numbered from 1 to NKEEP, and an inversion or reflection on each spin-orbital produces another spin-orbital with an identifier in this range.

This program uses two common disc areas, each of 200 blocks in length and these are devices 58 and 59. The line printer is stream 0 and the card punch stream 5. GENDET requires the subprograms IPAR, TQL2, TRED2 and WRITMX from Appendix III. The store requirements are standard.

#### Data Specification for GENDET

Card 1. NKEEP, NFULL, MKEEP, INVERS, MREQ, SREQ FØRMAT (515, F10.5)

> NKEEP = 0 to stop execution, = number of spin-orbitals

- $\begin{bmatrix} = 1 & \text{if ungerade detors are required.} \\ \text{MREQ} & = \text{required value of axial angular} \\ \text{momentum,} \\ & \\ \end{bmatrix}$
- SREQ = required value of z-component of electron spin, S_z.

Card 2 (I) IREF(I), INVR(I), MØM(I)  
FØRMAT (315)  
IREF(I) = signed identifier of the spin-orbital  
resulting from the reflection of the  
I-th spin-orbital in the XZ-plane  
INVR(I) = signed identifier of the spin-orbital  
resulting from the inversion of the  
I-th spin orbital  
(1 
$$\leq$$
 I  $\leq$  NKEEP)

Card 3

FØRMAT (9A8)

F

F is an array which defines the output format of the detors on the lineprinter; it has the form

(('b', I3, 1X, mI3, nX, I4, 6X, I4)) or ((1Hb, I3, 1X, mI3, nX, I4, 6X, I4)) b is a blank; 1, m and n have the following numerical values:

m = NKEEP n = 1 + 321 = 3 (21 - m)

Variations are possible

# Restrictions

- NKEEP ≤ 30
- $0 \leq \text{NFULL} \leq 8$

The program will stop if the number of detors generated for a given set of  $\Lambda$  and S_z exceeds 200. At the end of a set of data the first card of the next set is read, execution ceases if NKEEP = 0.

```
*FORTRAN LIB 4,142,168
C....DETERMINANT GENERATOR. THIS PROGRAM GENERATES ALL POSSIBLE
C.....M-ELECTRON DETERMINANTS OBTAINABLE FROM N-SPIN ORBITALS.
C....THE AXIAL ANGULAR MOMENTUM AND Z-COMPONENT OF ELECTRON SPIN ARE
C....DETERMINED AND ONLY THOSE DETERMINANTS WITH REQUIRED VALUES ARE
C....OUTPUT TOGETHER WITH INFORMATION ABOUT THE BEHAVIOUR OF THE
C....DETERMINANT UNDER THE OPERATIONS OF INVERSION, REFLECTION AND S**2
      COMMON IC, INVERS, LP, M, MKEEP, MMI, MREQ, NC, NFULL, NKEEP, NP, SREQ,
     11SO(200,30),IFU(30),IGU(30),IREF(30),INVR(30),MOM(30),F(9),LI(30)
      TEXT F
      DIMENSION ICLEAR(6171)
      EQUIVALENCE (IC, ICLEAR)
      TEXT TEMP.SPIN
      LOGICAL FIRST
      DATA ICR/0/
C....READ DATA.
C....NKEEP=NUMBER OF SPIN-ORBITALS.
C....NFULL=NUMBER OF SPIN ORBITALS FROZEN.
C....MKEEP=NUMBER OF ELECTRONS.
C.....MREQ=REQUIRED VALUE OF AXIAL ANGULAR MCMENTUM(MZ).
C.....SREQ=REQUIRED VALUE OF Z-COMPONENT OF ELECTRON SPIN(SZ).
C....IGU(I)=0 IF ORBITAL I IS GERADE AND 1 IF ORBITAL I IS UNGERADE.
C....IREF(I)=RESULT OF AXIAL REFLECTION ON ORBITAL 1.
C....INVR(I)=RESULT OF INVERSION ON ORBITAL I.
C....MOM(I)=AXIAL ANGULAR MOMENTUM OF ORBITAL I.
C.....INVERS=0 FOR GERADE DETERMINANTS AND 1 FOR UNGERADE DETERMINANTS.
1000 CLEAR ICLEAR
      READ(ICR,1) NKEEP, NFULL, MKEEP, INVERS, MREQ, SREQ
    1 FORMAT(515,F10.5)
      IF (NKEEP.EQ.0) GO TO 109
      READ(ICR,2) (IREF(I), INVR(I), MCM(I), I=1, NKEEP)
    2 FORMAT(315)
C....F IS A VARIABLE FORMAT STATEMENT - SEE SUBROUTINE SPINIR (CUTPUT OF
C....RESULTS).
     READ(ICR, 999) F
  999 FORMAT (9A3)
      DO 997 I=1,NKEEP
      IF(INVR(I)) 998,997,997
  998 IGU(I)=1
 997 CONTINUE
      IF(INVERS) 3,4,3
    3 TEMP= UNGERADE
   GO TO 5
4 TEMP= GERADE
   5 WRITE(LP, 6) MKEEP, NKEEP, NFULL, TEMP, MREQ, SREQ
   6 FORMAT(1/,27X,12, -ELECTRON DETERMINANTS FROM,13, SPIN-ORBI
1TALS(FIRST,13, ARE FROZEN)/,10X, DETERMINANTS ARE ,A3, WIT
    2H ,12, UNITS OF AXIAL ANGULAR MOMENTUM AND ,F4.1, UNITS OF SPI
    3N IN Z-DIRECTION /)
     WRITE(LP,7)
   7 FORMAT ( 0 , 34X, ORBITALS HAVE FOLLOWING PROPERTIES / , 4X, CRBITA
    1L',10%, INVERSION',10%, REFLECTION',10%, INVERSION SYMMETRY',10%,
    2 SPIN', 10X, AXIAL MCMENTUM')
     IO 15 I=1, NKEEP
   IF(IGU(I)) 9,8,9
8 TEMP= GERADE
     GO TO 10
    9 TEMP= UNGERADE
```
```
10 \text{ IF(MOD(I,2))} 12,11,12
   11 SPIN= BETA
      GO TO 13
   12 SPIN= ALPHA
   13 WRITE(LP,14) I, INVR(I), IREF(I), TEMP, SPIN, MOM(I)
14 FORMAT( ,18,13X,15,14X,15,20X,A3,14X,A8,7X,17
                ,18,13X,15,14X,15,20X,A3,14X,A8,7X,17)
   15 CONTINUE
   WRITE(LP,16)
16 FORMAT('1'/' NO.',26X, DETERMINANT',26X, REFLECTION INVERSION',14X
     1, S**2 /)
      N=NKEEP-NFULL
      M=MKEEP-NFULL
      MM1=M-1
      NP=NFULL+1
Х
      DISPLAY(LP,13) /N,M,NP
      FIRST=.TRUE.
      CLEAR IC
   17 CALL COMBIN(IFU, N, M, FIRST)
      IF(FIRST) GO TO 18
      CALL SETUP
      GO TO 17
   18 CALL SPINIR
      WRITE (LP, 108) NC, MKEEP, NFULL, IC
  108 FORMAT( 0, 4X, 214, -ELECTRON DETERMINANTS WITH FIRST ,14, SPIN
     10RBITALS FROZEN- ,14, HAVE REQUIRED SYMMETRY AND SPIN VALUES )
      GO TO 1000
  109 STOP
      END
*FORTRAN LIB
      SUBROUTINE COLATE (IMAST, IQ, M, MAX1, MAX2, IC, ID)
C....IMAST CONTAINS ORDERED SETS OF CONFIGURATIONS, IQ IS AN ORDERED
C....CONFIGURATION TO BE IDENTIFIED WITH ONE OF THE IMAST.
      COMMON KC, INVERS, LP
      DIMENSION IMAST(MAX1, MAX2), IQ(MAX2)
      DO 4 I1=1,IC
      I4=0
      DO 2 12=1,M
      IF(IMAST(I1,I2)-IABS(IQ(I2))) 1,2,1
    1 14=14+1
    2 CONTINUE
      IF(I4) 4,3,4
    3 ID=11
      GO TO 7
    4 CONTINUE
      IF(I4) 5,7,5
    5 WRITE(LP.G)
    6 FORMAT(1H0,9X,100H****COLLATION HAS NOT IDENTIFIED RESULT OF A REF
     1LECTION CR INVERSION AS AN CRDERED CONFIGURATION****/)
      STOP
    7 RETURN
      END
*FORTRAN LIB
      SUBROUTINE COMBIN(J,N,K,FIRST)
      DIMENSION J(30)
      LOGICAL FIRST
      IF(FIRST) GO TO 5
```

- 169 -

```
NMK=N-K
      I=K+1
    1 I=I-1
      IF(J(I)-NMK-I) 2,4,4
    2 M=J(I)
      DO 3 L=I,K
      M=M+1
      J(L)=M
    3 CONTINUE
      GO TO 7
    4 IF(I-1) 5,5,1
    5 FIRST=.NOT.FIRST
      LO 6 I=1,K
      J(I)=I
    6 CONTINUE
    7 RETURN
    END
*FORTRAN LIB
      SUBROUTINE OUTDET (INDEX, COE, ICOL, ID, F, IC, MKEEP)
C....OUTPUTS RESULTS.
      COMMON KC, INVERS
      DIMENSION INDEX(200), COE(252), ICOL(252), ID(30)
      DIMENSION LIMSET(200,2), OP(20,20), EV(20), WK(20)
      DATA ICP, IDISC, JDISC, LP/5, 58, 59,0/
      TEXT F(9)
      TEXT TEMP/ SINGLET /
   WRITE(ICP,14) IC
14 FORMAT( ,14)
      CLEAR NBLOCK
      TOL=2**(-347)
х
      WRITE(LP,141) (I,INDEX(I),I=1,IC)
X 141 FORMAT((
                  ,215))
      EPS=2.0**(-35)
      DO 21 NLM=1,IC
      READ(IDISC) I, (ID(J), J=1, MKEEP), IRE, IVR, K, IALPHA, (ICOL(J), COE(J),
     1J=1, IALPILA)
      IF(IRE) 12,13,12
   12 IRE=ISIGN(INDEX(IABS(IRE)), IRE)
   13 IVR=ISIGN(INDEX(IABS(IVR)), IVR)*(-1)**INVERS
х
      DISPLAY(LP,5) /I, INDEX(I), IALPHA, K, ICOL(1)
      I=INDEX(I)
      WRITE(LP,F) I, (ID(J), J=1, MKEEP), IRE, IVR
      IF(K) 3,1,3
    1 WRITE (LP,2) TEMP
2 FORMAT ( ,99X,AS
                 ,99X,A3)
      GO TO 9
    3 DO 4 J=1, IALPHA
      ICOL(J)=INDEX(ICOL(J))
    4 CONTINUE
C....RE-ORDER ICOL SO THAT CONTENTS ARE IN ASCENDING ORDER.
      IRE=IALPHA-1
      IF(IRE) 71,71,41
   41 DO 7 J=1, IRE
      JMIN=ICOL(J)
      IVR=J+1
      DO 6 JJ=IVR, IALPHA
```

IF(JMIN-ICOL(JJ)) 6,6,5

5 JMIN=ICCL(JJ)

- 170 -

```
ICOL(JJ)=ICOL(J)
       ICOL(J)=JMIN
       CMIN=COE(JJ)
       COE(JJ) = COE(J)
       COE(J)=CMIN
    6 CONTINUE
    7 CONTINUE
   71 WRITE(LP,8) (ICOL(J),COE(J),J=1,IALPHA)
8 FORMAT(( ,90X,I10,4X,F7.3))
    9 WRITE(ICP,10)(ID(J),J=1,MKEEP)
                 ,3212)
   10 FORMAT(
       TRACE MAX, MIN
      WRITE (JDISC) K, IALPHA, (ICOL(J), COE(J), J=1, IALPHA)
       MIN=ICOL(1)
      MAX=MIN
       IF(K) 17,17,11
   11 IF(IALPHA-1) 17,17,15
   15 EO 16 J=2, IALPHA
      MIN=MINO(MIN, ICOL(J))
      MAX=MAXO(MAX,ICOL(J))
   16 CONTINUE
   17 IF (NBLOCK) 19,13,19
   18 NBLCCK=NBLCCK+1
      LIMSET(NBLOCK, 1)=MIN
      LIMSET (NBLOCK, 2) = MAX
      GO TO 21
   19 IF(MIN-LIMSET(NBLOCK, 2)) 20,20,18
   20 LIMSET(NBLOCK, 1)=MINO(MIN, LIMSET(NBLOCK, 1))
      LIMSET (NBLOCK, 2)=MAXO (MAX, LIMSET (NBLOCK, 2))
   21 CONTINUE
      REWIND IDISC
      REWIND JDISC
C....DIAGONALIZATION OF SPIN OPERATOR MATRIX.
      WRITE(LP,22) NBLOCK
   22 FORMAT( 0, 36X, SPIN OPERATOR MATRIX HAS, 14, BLOCKS ON DIAGONAL .
     1)
х
      WRITE(LP,220)
X 220 FORMAT ( 0, 51X, CONTENTS OF LIMSET / ')
X WRITE(LP,221) ((I,J,LIMSET(I,J),J=1,2),I=1,NBLOCK)
X 221 FGRMAT(( ',40X,2('LIMSET(',I3,',',I1,')=',I4,4X)))
      DO 36 NLM=1,NBLOCK
      MIN=LIMSET(NLM,1)
      MAX=LIMSET(NLM, 2)
      IVR=MIN-1
      IRE=MAX-IVR
      CLEAR JMIN
      CLEAR OP, EV, WK
      DO 23 IVAL=MIN, MAX
      READ (JDISC) K, IALPHA, (ICOL(J), COE(J), J=1, IALPHA)
      JMIN=JMIN+1
      DO 23 JVAL=1, IALPHA
      KVAL=ICCL(JVAL)-IVR
      OP (JMIN, KVAL) = COE (JVAL)
   23 CONTINUE
х
      CALL WRITMX (OP, 20, 20, IRE, IRE, LP)
      CALL TRED2(IRE, TOL, 20, OP, OP, EV, WK)
      CALL TQL2(IRE, EPS, 20, OP, EV, WK, NFAIL)
C....OUTPUT RESULTS FOR CURRENT BLOCK.
      WRITE(LP,24) MIN, MAX
   24 FORMAT (1 / 0 ,27X, DETERMINANTS ,14, TO ,14, FORM TOTAL SPIN E
```

```
1IGENFUNCTIONS AS FOLLOWS')
      DO 25 IVAL=1,IRE
      EV(IVAL) = SQRT(1.0+4.0*EV(IVAL))
   25 CONTINUE
      DO 29 IVAL=1, IRE, 5
      JVAL=IVAL+4
      IF(JVAL.GT.IRE) JVAL=IRE
   26 FORMAT(0,33X, MULTIPLICITIES (=2*S+1) FOR EIGENFUNCTIONS,14, T
10,14/(,1P5E24.10))
      WRITE(LP,27) IVAL, JVAL
   27 FORMAT('0',43X, EIGENVECTORS',14, TO ',14/'')
      DO 29 KVAL=1, IRE
      WRITE(LP,23) (OP(KVAL,JMIN),JMIN=IVAL,JVAL)
   23 FORMAT (
                ,1P5E24.10)
   29 CONTINUE
   36 CONTINUE
      REWIND IDISC
      REWIND JDISC
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE PERMUT(IOTA, IE, M, MMI, MAX)
C....PERMUTES ELEMENTS (KI) OF IOTA SO THAT RESULT IS AN ORDERED
C....CONFIGURATION WITH K1.LE.K2.LE.K3...LE.KM.
C....IE=PARITY OF PERMUTATION.
      DIMENSION IOTA (MAX)
      IE=0
                             ٦
      DO 3 11=1,MM1
      K1=I1+1
      DO 2 J1=K1,M
      IF(IABS(IOTA(J1))-IABS(IOTA(I1))) 1,2,2
    1 I2=ICTA(I1)
      IGTA(I1)=IGTA(J1)
      IOTA(J1)=I2
      IE=IE:1
    2 CONTINUE
    3 CONTINUE
      IE=(-1)**IE
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE SETUP
C....CCMPUTES MZ AND SZ FOR DETERMINANT NC+1 AND DETERMINES SYMMETRY.
      CCMMCN IC, INVERS, LP, M, MKEEP, MML, MREQ, NC, NFULL, NKEEP, NP, SREQ,
    11SO(200,30), IFU(30), IGU(30), IREF(30), INVR(30), MOM(30), F(9)
      TEXT F
      NC=NC+1
      IC=IC+1
      CLEAR ISZ, MZ, INVERT
      IC 4 I=1,M
      J=IFU(I)+NFULL
      ISO(IC,I)=J
      IF(MOD(J,2)) 1,2,1
    1 ISZ=ISZ+1
      CO TO 3
```

```
2 ISZ=ISZ-1
    3 MZ=MZ+MCM(J)
       INVERT=INVERT+IGU(J)
    4 CONTINUE
X WRITE(LP,100) (IFU(I),I=1,M),ISZ,MZ,INVERT
X 100 FORMAT( ',20X,12I3,4X, 'ISZ=',I2, 'MZ=',I2,' INVERT=',I2)
       IF(MREQ-MZ) 7,5,7
    5 IF(MOD(INVERT, 2)-INVERS) 7,6,7
    6 IF(SREQ-0.5*ISZ) 7,8,7
    7 IC=IC-1
      RETURN
    8 IF(IC-200) 11,11,9
C....TOO MANY DETERMINANTS.
    9 WRITE(LP,10) (IFU(I), I=1, M)
   10 FORMAT ( 0 , 37X, TOO MANY DETERMINANTS - LAST ONE GENERATED WAS //
     1,15X,3013)
       CALL EEXIT
   11 RETURN
       END
*FORTRAN LIB
       SUBROUTINE SPINIR
C....DETERMINES RESULT OF INVERSION, REFLECTION AND TOTAL SPIN
C....(S**2) OPERATIONS.
       COMMON IC, INVERS, LP, M, MKEEP, MM1, MREQ, NC, NFULL, NKEEP, NP, SREQ,
     1ISO(200,30),IFU(30),IGU(30),IREF(30),INVR(30),MCM(30),F(9)
       TEXT F
      TEXT TEMP/ SINGLET /
      DIMENSION IUO(10,2), ISMOP(10,10), ISPOP(252,10), ICOEF(252), ID(30),
     11CGL(252), ISOR(30), ISOI(30), COE(252)
      EQUIVALENCE (IFU, ID), (ICOEF, COE)
      DIMENSION INDEX (200)
      DATA IDISC/58/
      CLEAR INDEX, NCOUNT, IRE
      IF(IC) 39,39,990
  990 DO 33 NLM=1,IC
      I=NLM
   42 IF(INDEX(I)) 33,43,33
   43 NCCUNT=NCOUNT+1
      INDEX(I)=NCOUNT
      CLEAR ICOEF, COE
      DO 1 J=1,M
      K=ISC(I,J)
      ISOR(J)=IREF(K)
      ISOI(J)=INVR(K)
    1 CONTINUE
C....PERMUTE ELEMENTS (KI) OF RESULTING DETERMINANTS SC THAT THEY FORM
C..... ORDERED DETERMINANTS WITH KI.LT.K2.LT.....LT.KM. DETERMINE WHICH
C.... GRDERED DETERMINANTS THESE ARE.
      IF (MREQ) 102,101,102
  101 CALL PERMUT(ISCR, IR, M, MM1, 30)
      CALL COLATE (ISO, ISOR, M, 200, 30, IC, IRE)
      IRE=ISIGN(IRE, IR)
  102 CALL PERMUT(ISOI, IV, M, MM1, 30)
      CALL COLATE(ISO, ISOI, M, 200, 30, IC, IVR)
      IVR=ISIGN(IVR,IV)
      CLEAR ISMOP, ISPOP, IUO, K
C....START OF TOTAL SPIN OPERATOR SECTION.
C....DETERMINE WHICH SPATIAL CRBITALS ARE SINGLY OCCUPIED - ONLY
```

```
C....THESE CONTRIBUTE TO S**2.
     IF((ISO(I,1)+1)/2-(ISO(I,2)+1)/2) 2,3,2
    2 K=K+1
      IUO(K,1)=ISO(I,1)
      IUO(K, 2) = 1
    3 DO 6 J=2,MM1
      JORB=(ISO(I,J)+1)/2
      IF((ISC(I,J-1)+1)/2-JORB) 4,6,4
    4 IF((ISO(I,J+1)+1)/2-JORB) 5,6,5
    5 K=K+1
      IUO(K,1)=ISO(I,J)
      IUO(K,2)=J
    6 CONTINUE
      IF(JORB-(ISO(I,M)+1)/2) 7,8,7
    7 K=K+1
     IUO(K,1)=ISO(I,M)
      IUO(K,2)=M
C....IF K=0 THIS DETERMINANT CONSISTS OF DOUBLY OCCUPIED SPATIAL
C.... ORBITALS AND S**2 PRODUCES ZERO - THUS IT IS A SINGLET.
    3 IF(K-1) 29,29,9
C.....S**2 OPERATOR
    9 CLEAR LSP, LSM
      DO 15 IALPHA=1,K
      IF(IPAR(IUO(IALPHA,1))) 10,15,10
C....OPERATE ON ALPHA SPIN WITH S-.
   10 LSM=LSM+1
      DO 11 J=1,K
      ISMOP(LSM,J)=IUO(J,1)
   11 CONTINUE
      ISMOP(LSM, IALPHA)=IUO(IALPHA,1)+1
      DO 14 IBETA=1.K
      IF(IPAR(ISMOP(LSM, IBETA))) 14,12,14
C....OPERATE ON BETA SPINS WITH S+.
  12 LSP=LSP+1
      DO 13 J=1,K
      ISPOP(LSP,J)=ISMOP(LSM,J)
  13 CONTINUE
      ISPCP(LSP, IBETA)=ISMOP(LSM, IBETA)-1
  14 CONTINUE
  15 CONTINUE
C....COMPARE DETERMINANTS RESULTING FROM APPLICATION S+S- WITH ORDERED
C....DETERMINANTS TO IDENTIFY THEM AND DETERMINE COEFFICIENTS.
      DO 16 IALPHA=1,LSP
      ICCEF(IALPHA)=1
  16 CONTINUE
     LSM=LSP-1
      IF(LSM) 211,211,161
 161 DO 21 IOUTER=1,LSM
      INLIM=IOUTER+1
     LC 20 INNER=INLIM, LSP
     CLEAR IBETA
     DO 13 J=1,K
     IF(ISPOP(IGUTER, J)-ISPOP(INNER, J)) 17,18,17
  17 IBETA=1
  18 CONTINUE
     IF(IBETA) 20,19,20
  19 ICOEF(INMER)=ICOEF(INMER)+ICOEF(IOUTER)
     CLEAR ICOEF (IOUTER)
  20 CONTINUE
  21 CONTINUE
```

```
C.....DETERMINE IDENTIFERS OF DETERMINANTS THAT RESULT FROM S**2.
C....REASSIGN OCCUPIED ORBITALS.
  211 DO 23 IALPHA=1,LSP
      IF(ICOEF(IALPHA)) 22,23,22
   22 DO 23 J=1,M
      ID(J)=ISO(I,J)
   23 CONTINUE
      DO 24 J=1,K
      INLIM=IUO(J,2)
      ID(INLIM)=ISPOP(IALPHA,J)
   24 CONTINUE
C....RE-CRDER ID AND COLLATE WITH ISO.
     CALL PERMUT(ID, IE, M, MML, 30)
      CALL COLATE (ISO, ID, M, 200, 30, IC, ICO)
      ICCL(IALPHA)=ICO
      COE(IALPHA)=ICOEF(IALPHA)
C....OPERATE ON I-TH. DETERMINANT WITH SZ*(SZ-1).
      IF(I-ICO) 26,25,26
   25 COE(IALPHA)=FLOAT(ICOEF(IALPHA))+SREQ*(SREQ-1.0)
   26 COE(IALPHA)=SIGN(COE(IALPHA),IE)
   23 CONTINUE
C....CUTPUT RESULT.
C....DETERMINANTS TO BE CUTPUT WITH FIRST NFULL ORBITALS.
   29 DO 30 J=1,NFULL
      ID(J)=J
   30 CONTINUE
      DO 31 J=NP, MKEEP
      ID(J)=ISG(I,J-NFULL)
   31 CONTINUE
      CLEAR IALPHA
      IF(K-1) 32,311,33
  311 COE(1)=1.0+SREQ*(SREQ-1.0)
      ICOL(1)=I
      GO TO 36
   32 CLEAR COE(1)
      IALPHA=1
      ICOL(1)=INDEX(I)
      GO TO 36
   33 DC 35 J=1,LSP
      IF(COE(J)) 34,35,34
   34 IALPHA=IALPHA+1
      ICOL(IALPHA)=ICOL(J)
      COE(IALPHA)=COE(J)
   35 CONTINUE
   36 WRITE(IDISC) I,(ID(J),J=1,MKEEP),IRE,IVR,K,IALPHA,(ICOL(J),COE(J),
     1J=1, IALPHA)
X
      DISPLAY(LP,10) /K, IALPHA
Х
      WRITE(LP,95) (J,ICOL(J),J,COE(J),J=1,IALPHA)
  95 FORMAT(( ',4( ICOL(',I3, )= ',I3, COL(',I3, )= ',F7.3)))
Х
      IF(K) 361,371,361
  361 DO 37 J=1, IALPHA
      IF(COE(J)) 362,37,362
  362 IF(INDEX(ICOL(J))) 37,363,37
  363 I=ICOL(J)
      GO TO 43
   37 CONTINUE
  371 IF (MREQ) 33, 372, 33
  372 IF(INDEX(IABS(IRE))) 33,373,33
  373 I=IABS(IRE)
       GO TO 43
```

33 CONTINUE ENDFILE IDISC REWIND IDISC 42 FORMAT( ', 3212) CALL OUTDET(INDEX,COE,ICOL,ID,F,IC,MKEEP) 39 RETURN END

.

٦

.

*ENDLIB

5		Fortran coding sheet	Title GENDGT TEST 2978 Sheet 1 & 2
			Programmer A. D. 77427 Date 21. 3. 72.
			( & Derlas) .
STATEMENT Z		FORTRAN STATEMENT	C L F D B L N B OI
1 2 3 4 5 6	7 8 9 1 0 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2	1[2223[24]2526[2728[29]3031]32]3334]3536[37]38[39]40[41]42[43]44[45]46[47]48[4950[51	32233154155561575815960611626364655666768697071172737475767777
1. 20	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
1			
~ · · ·			
51111			
11 1 1			177
5	· · · · · · · · · · · · · · · · · · ·		
9	111101119111		
21111			
8			
6			
011 1	111011101110111		
111			
2.1			
211			
811			
61	-1.5		
02	-1,6,1,		
	FORM 1/542(9.68)		International Computers Limited 1964 Printed in Great Bri

R		Fortren	Title GENDET TEST TAN	0
5		coding	Sheet 2 dr 2	
00		SHEEL FROM 20 SPIN-DOBITALS(FIRST 4 )	Programmer A. D. TRET	
		Haga Fottovins PropeRties	Date 21. 3.72	
TATES	ANVERSION REF	LECTION LAVERSION SYMILETRY	Sela Arial Yo	Set a line of the
C NUMBER	JNC.	FORTRAN STATEMENT	ALPSA BETA	DENTIFICAT C AND
1 2 3 4 5	6 7 8 9 1 0 1 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 7	2829303132333343434373834404142243444444444444	S CEALERS OF ON THE SEARCH SEARCH SEARCH STREAM OF OF OF STATES	EQUENCE No
13	1 2 1			
1. 1.4	18,			
1.5	-19	9. 		
91	-20.11	11. UNACENDE		-
, ', ', '))	Z.3., 9.X., 1.6.Z.3., 9.X., Z.4, 6.X., Z		AL PRA	178
0			AL, PRA	
1 1 1 1	111111111111111111111111111111111111111			
		14	N N N N N N N N N N N N N N N N N N N	
1 1 1				
1 1 1 1				
1111				
1111				
1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	FORM 1/542(9.68)		C International Computers Limited 1964 Prin	ted in Great Britt

0,0 UNITS OF SPIN IN 2-DIAECTION 4 ARE FROZEN)

16=ELECTRON DETERMINANTS FROM 20 SPIN-ORBITALS(FIRST GERADE WITH 3 UNITS OF AXIAL ANGULAR MOMENTUM AND

DETERHINANTS ARE

- 179 - 179 - - 179 न्न न्न . इ. १ <del>ہ</del>ے۔ تات े स्न : र AXIAU SPIN ALPHA BETA АЦРНА ВЕТА BE7A ALPHA 867A Асрна 867A 867A Асрна 867A ALPHA ALPHA BETA BETA ALPHA **ALPHA** BETA BETA ALPHA ORBĪTALS HĀVĒ FOLLOMING PROPĒRTIES Reflection Gerāde UNGERADE UNGERADE GERADE GERADE UNGERADE UNGERADE GERADE UNGERADE GERADE UNGERADE GERADE GERADE GERADE GERADE GERADE UNGERADE UNGERADE UNGERADE 13 ÷ T 15 N. ω 6 202 8 9 INVERSION m-4 ñoÿ 85 1010 1010 1010 1010 1010 1010 N Ģ 1 A T T A L 000000 M 4

179 -

1.0	10 10 1				180	1 1		20 1 <del>1</del>
S * * 2 ♪	ч 5	а р	4 N	4 ïU	<u>م</u> م	8	8	<b>.</b> ဆ
ON INVERSION 1	N	ю	4	ي ت	<b>9</b>	.7	Ð	
REFLECTIO	<u>.</u> 0	:0	<u>'</u> 0	:0	*0	:0	•0	
50	50	50' 50'	20	2 0 [°]	20.	20	20	
19	19	19	19	19	19	19	19	:
18	18	18	18	18	18	18	18	۱
17	17	17	17	17	17	17	17	
16	15.	4	13	16	15	44	13	· · ·
4	12	12	12	12	12	12	12	• 6
10	10	<del>د</del> ۲	1 1	11	11	4 1 1	т т	C I
лит 9	6	6	10	10	10	10	10	
M I N 8	8	8	လ	6	6	6	6	ſ
т Е R 7	2	~	2	2	8	8	8	
Q D	Ŷ	9	9	Ś	\$	2	1	
ŝ	ß	ŝ	ů.	ß	ß	ß	9	
4	4	4	4	4	4	4	4	
m	ы	n	ñ	M	r	ŝ	r	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	$\sim$	~	N	S	$\sim$	2	
~1	~1	⊷ 1			÷		ъ	

4 BLOCKS ON DIAGONAL SPIN OPERATOR MATRIX HAS

. 4 10

Ś

m

~

\$

S

4

ω

	DETERMINANTS	1 TO	2 F03M	TOTAL SPIN EIGENFUNCTIONS AS FOLLOWS
1.000000000000	MULTIPL 3,00000	ICÍTÏES 0000E÷00	(= 5 * 2 * 1)	FOR EIGENFUNCTIONS 1 TO 2

, ,

EIGENVECTORS 1 TO 2

-

7,0710678119E-01 7,0710678119E-01: -=7,0710678119E-01 7,0710678119E-01: ۰.

•

,

•

.

•

.

4 FORM TOTAL'SPIN EIGENFUNCTIONS AS FOLLOWS 3 TO DETERMINANTS

Ň 1 TO MULTIPLICITIES (=2*S*1) FOR EIGENFUNCTIONS 3,0000000000000 1,0000000006+00

EIGENVECTORS 1 TO

2

7.0710678119E~01 = 7.0710678119E~01

.

7,07106781196=01 7,07106781196=01 ,

.

•••••••

•

6 FORM TOTAL SPIN EIGENFUNCTIONS AS FOLLOWS N 1 10 MULTIPLICITIES (#2*S*1) FOR EIGENFUNCTIONS 3,0000000006+00 5 TO DEŤERMINANŤS 1,0000000000006+00

N 1 10 EIGENVECTORS

7,0710678119E-01 .=7,0710678119E-01

7,07106781196-01 7,07106781196-01

.

••• •••

٠

/

FORM TOTAL'SPIN EIGENFÜNCTIONS AS FOLLOWS S*1) FOR EIGEVFUNCTIONS 1 TO 2	VVECTORS 1 TO 2		PIN JRBÍŤAĽS FROZEŇ- 8 HAVE REQUÍRED SYNHETRY AND SPÍN VÁLŮE					
DEŤERMINANŤS 7 TO 8 Multīplicities (22* 3.0000000006+00	EÎGE	7,07106781195701 7,07106781195501	AMINANTS WITH FIRST 4 S					
1,0000000000000		7,0710678119E-01 -=7,0710678119E-01	1320 16 ⁻ ELECTRON DFTER				•	

v - 184 -

.

- 185 -

APPENDIX V

<u>ØNECEN. A PROGRAM FOR COMPUTING ONE-CENTRE</u> ONE- AND TWO-ELECTRON INTEGRALS OVER COMPLEX

SLATER-TYPE ORBITALS

Analytical expressions are used for the integrals. The indexing scheme for the two-electron integrals is described in Chapter 7. This program computes all the distinct one- and two-electron integrals which arise from a basis set consisting of any combination of s, p, d, or f orbitals on a single centre.

Data Specification for ØNECEN

Τ

Card 1

Card 3, 4. TITLE FØRMAT (9A8/6A8) TITLE is an array of 15 elements (120 characters) which is used to identify the run.

Card 5 NBASIS, CH FØRMAT (I5, F10.5) NBASIS = number of basis orbitals CH = nuclear charge (a.u.)

Card 6(I) [N(I), L(I), M(I), Z(I)]FØRMAT (315, F10.5) N(I) = principle quantum number (q.n.) of orbital I. L(I) = angular momentum q.n. of orbital I M(I) = magnetic q.n. of orbital I Z(I) = exponent of orbital I $(1 \le I \le NBASIS)$

Restrictions

 $1 \leq \text{NBASIS} \leq 30$ $1 \leq \text{N(I)} \leq 12$ $0 \leq \text{L(I)} \leq 3 \text{ and } \text{L(I)} < \text{N(I)}$ $i\text{M(I)}i \leq \text{L(I)}$

At the end of a set of data the first card of the next set is always read. The last card of the data check should have I = 0.

- 187 -

NON-ZERO VALUES OF CLEBSCH-GORDON COEFFICIENTS CL112.

NUMBER OF NON-ZERO COEFFICIENTS =: 152:

CG(1) = 0.2820947918	CG(9) = 0.2820947918	$C_G(17) = 0.2820947918$
CG(18) = 0.2523132522	CG(25) = 0.2820947918	$C_{G}(34) = 0.2185096861$
CG(42) = 0.3090193616	CG(45) = 0.2820947918	CG(46) = -0.1261566261
CG(50) = 0.2820947918	CG(57) = 0.2523132522	CG(58) = 0.2477666951
CG(65) = -0.1261566261	CG(66) = 0.2023006594	CG(73) = 0.2820947918
CG(74) = 0.1802237516	CG(75) = 0.241/955358	CG(82) = 0.2820947918
CG(89) = 0.2185096861	CG(90) = 0.2335966803	CG(98) = 0.2611690283
CG(101) = 0.2185096861	CG(102) = -0.1430481681	$C_{C}(106) = 0.0901118758$
CG(107) = 0.2207281154	CG(114) = 0.220/281154	$C_{C}(115) = 0.2548748737$
CG(117) = 0.2820947918	CG(118) = 0.0901118758	$C_{0}(119) = -0.1611970239$
CG(122) = 0.2820947918	CG(130) = 0.1846743909	$C_{C}(138) = 0.3198654279$
CG(141) = 0.3090193616	CG(142) = -0.0822888984	$C_{C}(146) = -0.1802237516$
CG(147) = 0.1560783472	CG(155) = 0.2384136135	$C_{C}(158) = 0.2207281154$
CG(159) = -0.0901118758	CG(163) = 0.3371677657	$C_{C}(165) = 0.2820947918$
CG(166) = -0.1802237516	CG(167) = 0.0402992560	$C_{C}(170) = 0.2820947918$
CG(178) = 0.2477666951	CG(179) = 0.2462325212	$C_{C}(186) = -0.1430481681$
CG(187) = 0.1946639003	CG(193) = 0.247/666951	$C_{0}(194) = 0.1682088348$
CG(195) = 0.2396146972	CG(201) = -0.1430481681	$C_{C}(2n2) = 0.0594708039$
CG(203) = 0.2143179006	CG(210) = -0.1880631945	$C_{C}(211) = 0.1417579666$
CG(217) = 0.2820947918	CG(218) = 0.1682088348	$C_{C}(219) = 0.1538698864$
CG(220) = 0.2370879339	CG(226) = 0.2820947918	$C_{G}(234) = 0.2335966803$
CG(235) = 0.2384136135	CG(242) = -0.0822888984	CG(243) = 0.2384136135
CG(246) = 0.2023006594	CG(247)=-0.150/860088	CG(249) = 0.2023006594
CG(250) = 0.1261566261	CG(251) = 0.2273184612	$C_{G}(258) = 0.1628675040$
CG(259) = 0.2455320005	CG(261) = 0.2335966803	CG(262) = 0.0594708039
CG(263) = -0.1694331773	CG(266)=-0.1329807601	CG(267) = 0.2004760390
CG(269) = -0.0825888984	CG(270) = 0.2060129077	CG(271) = -0.0928023732
CG(274) = 0.0594708039	CG(275)= 0.0993225846	CG(276) = 0.2217754548
CG(282) = 0.2060129077	CG(283)= 0.1621931015	$C_G(284) = 0.2429428385$
CG(285) = 0.2820947918	CG(286)= 0.1261566261	$C_G(287) = 0.0256449811$
CG(288) = -0.1778159504	CG(290) = 0.2820947918	$C_G(298) = 0.1846743909$
CG(299) = 0.2132436186	CG(307) = 0.2820947918	CG(310) = 0.2611690283
CG(311) = -0.1066218093	CG(314) = -0.0000000000	$C_G(315) = 0.1901882698$
CG(322) = 0.2102610435	CG(323)= 0.2535843598	CG(325) = 0.2611690283
CG(326) = 0.1628675040	CG(327)=-0.1173867486	CG(331) = 0.2689668306
CG(333) = 0.1846743909	CG(334)=-0.1880631945	CG(335) = 0.0535794751
CG(338) = -0.1880631945	CG(339) = -0.0444184102	CG(340) = 0.1774203638
CG(347) = 0.0959547329	CG(348) = 0.2304758133	CG(350) = 0.1628675040
CG(351) = 0.1450699201	CG(352) = -0.1214714193	CG(355) = 0.2145613054
CG(356) = 0.2661305457	CG(357) = 0.2820947918	CG(358) = -0.00000000000
CG(359) = -0.1795148675	CG(360) = 0.0711263802	CG(362) = 0.2820947918
CG(371) = 0.1628675040	CG(379) = 0.325/350079	CG(382) = 0.3198654279
CG(383) = -0.0615581303	CG(386) = -0.2102610435	CG(387) = 0.1267921799
CG(395) = 0.2196104975	CG(398) = 0.2102610435	CG(399) = -0.0633960899
CG(403) = 0.3472346852	CG(405)= 0.3198654279	CG(406) = -0.1329807601
CG(407) = 0.0239614697	CG(411)=-0.2035507269	CG(412) = 0.1086473403
CG(419) = -0.1661984725	CG(420) = 0.171/865286	CG(422) = -0.1329807601
CG(423) = 0.1884513543	CG(424)=-0.062/275712	CG(428) = 0,2548005987
CG(430) = 0.2102610435	CG(431) = -0.1404633462	CG(432) = 0.0313637856
CG(436) = 0.3603424623	CG(437) = 0.2820947918	CG(438) = -0.2102610435
CG(439) = 0.0769349432	CG(440) = -0.0118543967	CG(0) = 0.000000000000000000000000000000000

```
*FORTRAN LIB 3,1,0
C....MAIN PROGRAM FOR SINGLE CENTRE INTEGRAL PROGRAM.
C....VERSION 2. 12/05/71.
      COMMON / TOALL/ CH, DEV, DIV, I, IA, IB, IC, ICR, ID, J, K, KK, LP, MTD25, NB,
     1NBASIS, NI, NP, N2, T1, T2, ZK, ANORM(30), CG(440), ERI(465), FCTRL(25),
     2H(30,30),IN(465,2),L(30),M(30),N(30),S(30,30),TITLE(15),Z(30)
C....DEFINE DEVICE NUMBERS,
C....ICR = CARD READER,
C....LP =LINE PRINTER,
C....MTD25= INTEGRAL CUTPUT DEVICE NUMBER (TAPE OR DISC),
C....ID = DEVICE NUMBER FOR CONSTANTS TABLE.
      CLEAR ICR, LP
      MTD25=1
      ID=2
      READ(ID) I,K
      READ(ID) (CG(I), I=1, 440)
      UNLOAD ID
      FCTRL(1)=1.0
      DO 1 I=2,25
      K=T-1
      FCTRL(I)=K*FCTRL(K)
    1 CONTINUE
    2 READ(ICR, 3) I
      IF(I.EQ.0) STOP
    3 FORMAT(15)
      CALL OUTBRK(LP)
      CALL ALLONE
      GO TO 2
      END
*FORTRAN LIB
      SUBROUTINE ALLONE
C.... ONL-CENTRE ONE- AND TWO- ELECTRON INTEGRALS.
      COMMON /TOALL/ CH, DEV, DIV, I, IA, IB, IC, ICR, ID, J, K, KK, LP, MTD25, NB,
     1NBASIS, NI, NP, N2, T1, T2, ZK, ANORM (30), CG (440), ERI (465), FCTRL (25),
     2H(30,30), IN(465,2), L(30), M(30), N(30), S(30,30), TITLE(15), Z(30)
      READ(ICR, 36) NXBLOC
      CALL SEARCH (MTD25, NXBLOC, 0)
      READ(ICR,1) TITLE
      READ(ICR, 2) NBASIS, CH, (N(I), L(I), M(I), Z(I), I=1, NBASIS)
      WRITE(LP,3) TITLE
      WRITE(LP, 35) CH
      WRITE(LP,4) (N(I),L(I),M(I),Z(I),I=1,NBASIS)
    1 FORMAT (9A8/6A8)
    2 FORMAT(15,F10.5/(315,F10.5))
    3 FORMAT(1H1/1H ,15A3)
    4 FORMAT(1H ,48X,23HN
                                   Μ
                                         EXPONENT/((1H ,44X,315,F12.5)))
                             L
      NB=(NBASIS*(NBASIS+1))/2
      NI = (NB*(NB+1))/2
      WRITE(LP,33) NI
      WRITE(LP, 37) NXBLOC
      DC 16 I=1,NBASIS
      NI=2*N(I)+1
      ANORM(I)=SQRT((2.0*Z(I))**NI/FCTRL(NI))
      DO 16 K=1,I
      S(I,K)=0.0
      H(I,K)=0.0
      IF(L(I)-L(K)) 15,11,15
  11 IF(M(I)-M(K)) 15,12,15
   12 ZK=2.0*Z(K)
```

```
CLEAR T1
   DIV=1.0/(Z(I)+Z(K))
   DEV=1.0/SQRT(2.0*N(K)*(2.0*N(K)-1.0))
   IF(N(K)-L(K)-1) 14,14,13
13 N2=N(I)+N(K)-1
   NP=2*N(K)-3
   T1=ANORM(1)*FCTRL(N2)*DIV**N2*SQRT(ZK**NP/FCTRL(NP))*4.0*(N(K)+
  1L(K))*(N(K)-L(K)-1)*DEV/SQRT((2.0*N(K)-2.0)*(2.0*N(K)-3.0))
14 N2=N(I)+N(K)
   NP=2*N(K)-1
   T2=ANORM(I)*FCTRL(N2)*DIV**N2*SQRT(ZK**NP/FCTRL(NP))
   N2=N2+1
   S(I,K)=ANORM(I)*ANORM(K)*DIV**N2*FCTRL(N2)
   H(I,K)=Z(K)*(-0.5*Z(K)*(T1+S(I,K))+2.0*T2*DEV*(N(K)*Z(K)-CH))
15 S(K,I)=S(I,K)
   H(K,I)=H(I,K)
16 CONTINUE
   WRITE(LP,17)
17 FORMAT(1H1/1H ,43X,34HOVERLAP MATRIX FOR ATOMIC ORBITALS/)
   DO 21 I=1,NBASIS,5
   K=I+4
   IF(K-NBASIS) 19,19,18
18 K=NBASIS
19 WRITE(LP, 32) I,K
   DO 21 J=1,NBASIS
   WRITE(LP,20) (S(J,KK),KK=I,K)
20 FORMAT((1H ,1P5E24.10))
21 CONTINUE
   WRITE(LP,22)
22 FORMAT(1H0,34X,51HONE-ELECTRON HAMILTONIAN MATRIX FOR ATOMIC ORBIT
  1ALS/)
   DO 25 I=1,NBASIS,5
   K=I+4
   IF(K-NBASIS) 24,24,23
23 K=NBASIS
24 WRITE(LP, 32) I,K
   DO 25 J=1,NBASIS
   WRITE(LP,20) (H(J,KK),KK=I,K)
25 CONTINUE
   I=100000
   WRITE(MTD25) I
   WRITE (MTD25) TITLE, J
   DO 26 I=1,NBASIS
   WRITE(MTD25) (S(I,J),J=1,NBASIS)
   WRITE(MTD25) (H(I,J),J=1,NBASIS)
26 CONTINUE
  WRITE(LP, 34)
  IF(NBASIS.GT.5) WRITE(LP, 38)
  DO 27 I=1,NBASIS
   J=(I*(I-1))/2
  DO 27 K=1,I
  KK=K-J
   IN(KK,1)=I
  IN(KK,2)=K
27 CONTINUE
   DO 31 I=1,NB
   IC=IN(1,2)
  IA=IN(I,1)
  KK=IABS(M(IA)-M(IC))
  DO 29 J=1,I
```

IB=IN(J,1)ID=IN(J,2)CLEAR ERI(J) IF(KK-IABS(M(IB)-M(ID))) 29,28,29 28 ERI(J) = SC(IA, IC, IB, ID)29 CONTINUE WRITE(MTD25) (ERI(J), J=1, I) IF(NBASIS.GT.5) GO TO 31 WRITE(LP,30) I 30 FORMAT (1H0, 49X, 19HCONTENTS OF RECORD , 12/) WRITE(LP,20) (ERI(J),J=1,I) 31 CONTINUE 32 FORMAT (1H0, 52X, 8HCOLUMNS , 12, 4H TO , 12/) 33 FORMAT (1H0, 32X, 51 HNUMBER OF TWO-ELECTRON INTEGRALS TO BE CALCULATE 1D = , 17/)34 FORMAT(1H0,49X,22HTWO-ELECTRON INTEGRALS) 35 FORMAT(1H0,45X,17HNUCLEAR CHARGE = ,F10.5/) CALL WITTPS REWIND MTD25 36 FORMAT(15) 37 FORMAT('0',33X, INTEGRALS BEGIN AT BLOCK',14, 'OF MASTER FILE') 33 FORMAT('0',37X, 'PRINTING OF TWO-ELECTRON INTEGRALS SUPPRESSED') RETURN END *FORTRAN LIB INTEGER FUNCTION INDEX1 (MM, M1, M2, LL, L1, L2) C...., EVALUATION OF CLEBSCH-GORDON INDICES. VERSION 2. 09.04.69 ADT. IM1=IABS(M1) IM2=IABS(M2) I1=(I1*(I1+1))/2+IM1+1I2=(L2*(L2+1))/2+IM2+1IZ=4*MAX0(I1,I2)*(MAX0(I1,I2)-1)+8*MIN0(I1,I2)+LL/2 IF(IABS(MM)-IM1-IM2) 2,1,2 1 I = 7GO TO 3 2 I=3 3 INDEX1=IZ-I RETURN END *FORTRAN LIB FUNCTION SC(IA, IC, IB, ID) CCMMON / TOALL/ KEEP (22), ANORM (30), CG (440), ERI (465), FCTRL (25), 1H(30,30),IN(465,2),L(30),M(30),N(30),S(30,30),TITLE(15),Z(30) CLEAR SC LOWAC=IABS(L(IA)-L(IC)) LOWBD=IABS(L(IE)-L(ID)) IF(IPAR(LOWAC)-IPAR(LOWBD)) 4,1,4 1 FCURPI=1.2566370614E+01 LOW=MAX0 (LOWAC, LOWBD) +1 IGH=MINO(L(IA)+L(IC),L(IB)+L(ID))+1IF(IGH-LOW) 4.2.2 2 MM=M(IC)-M(IA)Z1=Z(IA)+Z(IC)Z2=Z(IB)+Z(ID) N1=N(IA)+N(IC)N2=N(IB)+N(ID) IO 3 MUP=LOW, IGH, 2 MU=MUP-1

```
- 191 -
```

```
JA=INDEX1( MM,-M(IA),M(IC),MU,L(IA),L(IC))
      JD=IND_X1(-MM,-M(IB),M(ID),MU,L(IB),L(ID))
      SC=SC+FOURPI/FLGAT(2*MU+1)*CG(JA)*CG(JD)*W(MU,N1,N2,Z1,Z2)
    3 CONTINUE
      SC=ANORM(IA)*ANORM(IB)*ANORM(IC)*ANORM(ID)*SC
    4 RITURN
      END
*FORTRAN LIB
      FUNCTION W(IMU, N1, N2, Z1, Z2)
      COLMON /TOALL/ KEEP(22), ANORM(30), CG(440), ERI(465), FCTRL(25),
     1H(00,30),IN(465,2),L(30),K(30),N(30),S(30,30),TITLE(15),Z(30)
      Z1=Z1
      X2=Z2
     NU=N2-IMU-1
      MU=N1+N2
      IP=-MU-1
      CLEAR JUMP
    1 A=1.0+X1/X2
      MIN=MU-NU
      X1=FCTRL(MIN)/A**MIN
     MIN=MIN+1
     CLEAR M
     DO 2 I=MIN,MU
     M=M+1
      X1=M*X1+FCTRL(I)/A**I
    2 CONTINUE
      IF(JUMP) 4,3,4
    3 JUMP=1
      W=X2**IP*X1
      NU=N1-IMU-1
                                                 ς.
      X1=Z2
      X2=Z1
      GO TO 1
    4 W=W+X2**IP*X1
      RETURN
      END
```

5	CO	Sheet	1 60 1	
		Programme	K.D. TAIT	
		Date	21.3.72.	
C STATEMENT	.1NO	FORTRAN STATEMENT		IDENTIFICAT CI- AND SECULES CO-
1 2 3 4 5 6	6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 9 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0	31]32]33]34 [35]36]37[38]39[40]112[43]44[15]4647[48[49]50]52[52]54[556[57]56[596	016263646566676569707172	statestates
/				-
150				
-	MLCKN TKS	T. DATA - INTEGRALS FOR ATONIC	&XYGEN (SCMA	
EF.ER.	AND MARRES'S, EXPONENTS).			-
5	1 8. 000000			19:
/	1. 0. 1. 0. 1. 7. 65680			
	110, 12, 12, 12, 10, 11, 10, 11			
2 1 1	1, 1, 1, 1, 2, 2, 2, 6, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	, , , , , , , , , , , , , , , , , , , ,		
~ ` ` `	1. 112. 22620			1
1 1 2	1, 1, 2, 2,2,6,2,0,			
0				-
				-
-				-
-				
1111				
1111	.			
	FORM 1/542(9.68)		ational Computers Limited 1964 Pr	rinted in Great Britte

~
S
-
2
<u> </u>
Ô
<u> </u>
\mathbf{x}
ĽU
0)
5
Ľ,
\propto
\simeq
\leq
I
~
Ę
÷
-
Ř
w
<u>نب</u>
щ
\leq
5
6
Ű
~
ш
G.
S.
ĉ
\mathbf{O}
7
C
-
-
\sim
~
C)
5
<u>.</u>
SFC
LS FC
RALS FC
iRALS FC
EGRALS FC
TEGRALS FC
NTEGRALS FC
INTEGRALS FC
INTEGRALS FC
- INTEGRALS FC
1 - INTEGRALS FC
TA - INTEGRALS FC
VTA - INTEGRALS FC
DATA - INTEGRALS FC
DATA - INTEGRALS FC
T DATA - INTEGRALS FC
ST DATA - INTEGRALS FC
EST DATA - INTEGRALS FC
TEST DATA - INTEGRALS FC
I TEST DATA - INTEGRALS FC
EN TEST DATA - INFEGRALS FC
CEN TEST DATA - INTEGRALS FC
ECEN TEST DATA - INTEGRALS FC
NECEN TEST DATA - INTEGRALS FC

8,00000	EXPONENT	7,65580	2,24720	2,22520	2,22520	2,22520
11						
1A 36E	¥	0	C	C	÷,	~ .'
C	<u>_</u> :	C	0	~- [:	- (? .:
NUCLEAR	7	⊶	ر ،	~	ί	Čī

12 Ú NUMBER OF TWORELECTRON INTEGRALS TO BELCALCULATED =

INTEGRALS BEGIN AT BLOCK 50 OF MASTER FILE

•

•

.

OVERLAP MATRIX FOR ATOMIC ORBI

1,0000000000000000000000000000000000000	COLUMNS 1070 5 2,0090477658E=01 0,0000000005+00 0,0000000005=01 0,000000005+00
0,000000000000000000000000000000000000	0.00000000000000000000000000000000000
	ONE-ELECTRON HAMILTONIAN MATRIX FOR ATC
-3,1941106830E+01 -7,0326342795E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00	COLUMNS 1 TO 5 -7.0326342795E*00 -8.1471486930E*00 0.000000000E*00 0.000000000E*00 0.000000000E*00 0.00000000E*00 0.00000000E*00 0.00000000E*00
	TWO-ELECTRON INTEGRALS
4,7855000002E+00	CONTENTS OF RECORD 1:
6,7428461270E-01	CONTENTS OF RECORD 2: 1,2109572047E=01
1,1160172066E+00	CONTENTS: OF RECORD 3 2,4866514181E=01: 8,1636562501E=01:
0,000000000E+00	CONTENTS OF RECORD 4 0,00000000000000000000000000000000000
0,000000000E+00	CONTENTS OF RECORD 5: 0,00000000000000000000000000000000000
1,1057938455E+00 8,7134859387E+01	CONTENTS OF RECORD 6 2,4658162661E=01: 8,1252421597E=01
0,0000000000E+00 0,0000000000E+00	CONTENTS OF RECORD 7 0,00000000000000000000000000000000000
0,00000000000000000000000000000000000	CONTENTS OF RECORD 8 0.00000000000000000000000000000000000
0.000000000000000000000000000000000000	CONTENTS OF RECORD 9 0.00000000000000000000000000000000000
1,1057938455E+00 7,7743078136E-01	CONTENTS OF RECORD 10 2.4658162661E=01: 8.1252421597E=01 0.000000000E+00 0.000000000E+00
0.00000000000000000 0.0000000000000000	CONTENTS OF RECORD 11 0,0000000000000000000000000000000000

12	Λ.	Ϋ́.	C
Ł	14	1	0

0.030000000000000000000000000000000000	0,00000000000000000000000000000000000
AIC ORBITALS	
0.000000000000000000000000000000000000	0.000000000000000 0.000000000000000000

2,48758546655+02	
3.8251260845E-02	1,7957634874E-01
0,000000000000000000000000000000000000	0,0000000000000000000000000000000000000
0,0000000000000000	0,000000000000000000000000000000000000
0.0000000000E+00	0.0000000000000000000000000000000000000
0.0000000000E+00 4.6958906255E+02	0.00000000000E*00
0,00000000000E+00 0,0000000000E+00	0.00000000000E*00 8.2438968761E=01
0,0000000000E+00 0,000000000E+00	0,00000000000000 0,00000000000000 0,000000

- 196 -

0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	CONTENTS OF RECORD 12 0,00000000000000000000000000000000000
0,000000000000000000000000000000000000	0,000000000000000000000000000000000000	CONTENTS OF RECORD 13 0:00000000000000000000000000000000000
0.000000000000000000000000000000000000	0,000000000000000000000000000000000000	CONTENTS OF RECORD 14. 0,00000000000000000000000000000000000
1,1057938455E+00 7,7743078136E-01 0,0000000000E+00	2,4658162661E=01: 0,0000000000E+00 0,0000000000E+00	CONTENTS OF RECORD 15 8.1252421597E=01 0.000000000000000000 - 0.00000000000000

.

	03	•	0 8	0 2	0 5	01	02	0 6	0	0 8	U 4	0 5	E	+ -	0	0 2	
	000	•	0 0 0	0000	0000	() () () ()	0000	00000	0 0 0	0 0 0	0 0 0	0 0 0		4 + 4	0000	0 0 0	
•	0 0 0	2 9 9	000	0000	0000	0 0 0	0 0 0	000	0000	0 0 0	0 0 0	000	E E E	+ + +	000	0 0 0	
TAPE NUMBER 1	170	9 9 9	1 7 0	070 P6	5400L	7 3 0 S 0	9 0 1 5	370760	8 8 0 I	4 1 0	530 N	560E	EEEDW	+ - + 02	0 0 0 A R 1	0 1 0 T D 4	
TAPE NUMBER 3				P B	0 L	S 0	I C	T K ó	I	0	V	E	D	0	A R	T D O	

•

0.000000000000000000000000000000000000	0.000000000000000 0.000000000000 0.000000
0.00000000000E+00 4.6958906255E-02	0,00000000000 0,0000000000 0,0000000000
0.000000000000000000000000000000000000	0,000000000000000000000000000000000000
0,0000000000000000 0.00000000000000 0.000000	0,000000000000 8.2438968761E=01 8.2438968761E=01

.

.

.

•

.

~

- 197 -

~~7

÷ .

•

- 198 -

APPENDIX VI

INTRA. A PROGRAM FOR TRANSFORMING ONE- AND TWO-ELECTRON INTEGRALS OVER AN ATOMIC ORBITAL BASIS INTO INTEGRALS OVER AN ORTHONORMAL BASIS

The methods and indexing schemes employed by INTRA are described in chapters 7 and 8. The program is written so that it will be possible to implement restart facilities should these prove necessary for large basis sets. The program occupies about 1500 FØRTRAN V source cards and its storage requirements are standard. In addition to the subprograms listed here, INTRA requires the routines ENTR, ERRØR, QUIT, and WRITMX from Appendix III.

INTRA uses five magnetic tapes or disc areas, the actual requirements being dictated by the size of the basis set; for less than 24 basis orbitals the following assignment is possible:

VARIABLE NAME	VALUE = DEVICE No.	
LDNO3	3	A common disc area of 710 blocks.
LDNO8	4	A common disc area of 555 blocks.
LDN09	5	A common disc area of 555 blocks
LDN10	6	A private magnetic tape containing the file
		of untransformed integrals, produced in the
		same order as those of $ otin extsf{MECEN}$
LDN11	Defined in	Master transformed integral tape which will
	data	contain the file of transformed integrals.

This program will process several sets of integrals in each run. As a precaution against corruption of the tape on device LDN10 each set of integrals should be transferred to the beginning of the common disc area LDN03 at the start of each run. The user must normally specify seven of the eight possible sections of data.

Data specification for INTRA

Section 1 :	Transfer untransformed integrals from device LDN10 to
	device LDN03
Card 1	NBASIS
	FØRMAT (15)
	NBASIS = number of basis orbitals
Card 2	IWHERE, ISTART (15)
	FØRMAT (215)
	IWHERE = 1
	$\int = 0 \text{ to suppress timing information}$
	1START(15) = 1 to obtain timing information
Card 3	NEXTBL
	FØRMAT (15)
	NEXTBL = number of block at which the untransformed
	integral file begins on device LDN10
Section 2 :	Read data required to start transformation
Card 1	IWHERE, ISTART(15)
	FØRMAT (215)
	IWHERE = 2
	ISTART(15) : see section 1 card 2
Card 2	JSER, ISTØP
	FØRMAT (215)

	JSER	=	serial number given to the untransformed
			integral file by the integral generation
			program. If the program $ otin NECEN $ was used
	-		then $JSER = 100000$
	ISTØP	=	1
Card 3	(M(I), I = 1,	NB.	ASIS)
	FØRMAT (3012)		
	ſ	=	O if the magnetic quantum number of the
			I-th atomic orbital and the I-th transformed
			orbital are different.
	M(I)	=	magnetic quantum number of the I-th atomic
			orbital if the magnetic quantum number of
			the I-th transformed orbital is the same.
Section 3 :	Complete the u	appe	er triangle of the distinct two-electron
	integral matr:	ix	`
Card 1	IWHERE, ISTAR	r(1:	5)
	FØRMAT (215)		
	IWHERE	=	3
	ſ	=	O to suppress timing information and printing
			of one-electron integrals (untransformed)
	ISTART(15)	=	1 to obtain timing information and printing
			of untransformed one-electron integrals
Section 4 :	Compute Schmid	it (orthonormalization coefficients and transform
	the one-election	ron	integrals
Card 1	IWHERE, ISTAR	r(1	5)
	FØRMAT (215)		
	IWHERE	=	4

ISTART(15) = see section 1 card 2

Card 2	nøno	
	FØRMAT (15)	
	NØNO =	number of non-zero elements in the
		matrix which transforms the atomic
		orbitals into non-orthonormal symmetry
		adapted molecular orbitals (The 'Symmetry
		Transformation Matrix")
Card 3 (K)	I, J, WSP2 (I, 3	τ)
	FØRMAT (213, F4.	.1)
	WSP2(1, J)	is the I, J-th element of the symmetry
		transformation matrix and is written as
		an integer in real form: e.g. 1.0.
	,	$(1 \leq K \leq N \not O NO)$
Card 4	NIR	
	FØRMAT (15)	
	NIR =	number of different irreducible representations
		to which the transformed orbitals belong;
		subspecies are counted as different.
Card 5	(IRI(I), I = 1,	NBASIS)
	FØRMAT (1615)	
	IRI(I) =	a number which identifies the irreducible
		representation to which the I-th orbital
		belongs. As long as these are different for
		different irreducible representations their
		value is only restricted to the range
		1 ≤ IRI(I) ≤ 10000
		(continue onto successive cards if
		NBASIS > 16)

.

Section 5 :	Transformation	of	two-electron integrals						
Card 1	IWHERE, ISTART(15)								
	FØRMAT (215)								
	IWHERE	=	5						
	(0 to suppress timing information and						
			the printing of the transformed two-						
			electron integrals						
	ISTART(15)		the obtain timing information and the						
		=	to obtain timing information and the						
			printing of the transformed two-electron						
	l	•	integrals						
Card 2	ISER								
	FØRMAT (I10)								
	ISER	=	any integer > 0, it is a restart						
		•	parameter which is not used by the current						
			version of INTRA						
Card 3	(ISTART(I), I =	= 5,	12)						
	FØRMAT (815)								
	ISTART(5)	=	1						
	ISTART(6)	=	numerical value of NBASIS						
	ISTART(7)	=	1						
	ISTART(8)	=	numerical value of NBASIS						
-	ISTART(9)	=	1						
	ISTART(10)	2	numerical value of NBASIS						
	ISTART(11)	=	1						
	ISTART(12)	H	numerical value of NBASIS						
Section 6 :	Transfer transf	forn	ned integrals from device LDN03 to						

device LDN11
Card 1 IWHERE, ISTART(15)

	FØRMAT(215)	
	IWHERE =	6
	ISTART(15) :	see section 1 card 2
Card 2, 3	TITLE	
	FØRMAT (9A8/6A8)	
	TITLE	is an array of 15 elements (120 characters)
		used to identify the transformed integrals
		output from this run.
Card 4	LDN11, NEXTBL	
	FØRMAT (215)	
	LDN11 =	numerical value of the device number for
		the final output to the Master Transformed
		integral tape.
	NEXTBL =	number of block at which the transformed
		integral file is to begin on device LDN11
Section 7 :	End of program,	this should not be used if section 8 is
	required.	х <u>.</u>
Card 1	IWHERE, ISTART (15)
	FØRMAT (215)	
	IWHERE =	1

Section 8 : Re-entry of program clearing workspace in process. This section should be used instead of section 7 if another set of data is to be processed

ISTART(15) = 0

- 204 -

.

,

.

Card 1 IWHERE, ISTART(15)

FØRMAT (215) IWHERE = 8ISTART(15) = 0

Restrictions

 $1 \leq \text{NBASIS} \leq 30$

```
*FORTRAN LIB 8,5,325
C....MAIN ROUTINE FOR INTEGRAL TRANSFORMATION PROGRAM.
      CCMMON /TOALL/ NEASIS, NB, ISTOP, ISTART (20), M(30), LDN01, LDN02, LDN03,
     1LDNO8, LDN09, LDN10, LDN11
      COMMON / TOSUM/ AREA1 (3469)
      COMMON AREA2(13530)
C....DEFINE DEVICE NUMBERS,
C....LDN01=CARD READER,
C....LDNO2=LINE PRINTER,
C....LDN03=INTEGRAL FILE,
C....LDN03=WORK FILE 1,
C....LDN09=WORK FILE 2.
C....LDN10=MASTER INTEGRAL FILE.
      CLEAR LDN01,LDN02
      LDN03=3
      LDNU3=4
      LDN09=5
      LDN10=6
   11 CLEAR ISTART, M, AREA1, AREA2
      CALL CUTBRK(LDNO2)
      REWIND LDN03
      REWIND LDN03
      REWIND LDN09
      READ(LDN01,1) NBASIS
      NB=(NBASIS*(NBASIS+1))/2
    1 FORMAT(215)
    2 READ(LDN01,1) IWHERE, ISTART(15)
      GO TO (3,4,5,6,7,8,9,11), IWHERE
C....TRANSFER INTEGRALS FROM LDN10 TO LDN03 IF NECESSARY.
    3 CALL MFILE2
      GO TO 2
C.....READ DATA AND CHECK INTEGRAL FILE SERIAL NUMBER.
    4 CALL RESSET
      GO TO 2
C.....SET UP COMPLETE MATRIX OF DISTINCT TWO-ELECTRON INTEGRALS.
    5 CALL SETERI
      GO TO 2
C....DIAGONALIZE OVERLAP MATRIX AND TRANSFORM H-MATRIX.
    6 CALL TRANSH
      GO TO 2
C....TRANSFORM TWO-ELECTRON INTEGRALS.
    7 CALL CONTRA
      GO TO 2
C....TRANSFER TRANSFORMED INTEGRALS FROM LDN03 TO LDN10 IF NECESSARY.
    8 CALL MFILE3
      GO TO 2
C....JOB COMPLETE.
    9 CALL CNTR(NB)
  WRITE(LDN02,10) NB
10 FORMAT('D',36X, **** JCB COMPLETE -',15, INSTRUCTIONS USED ****')
      STOP
      END
*FORTRAN LIB
      SUBROUTINE BIGTRA(A, B, MTD01, MTD02, NCOL, NROW, NPASS)
C....TRANSPOSE OF A LARGE MATRIX.
      DIMENSION A(NROW, NCOL), B(NRCW, NCOL)
      REWIND MTD01
      REWIND MTDO2
      NCCN=NCOL-NRC.V
```

DO 8 IPASS=1,NPASS READ (MTD01) ISER JK=(IPASS-1)*NROW JR=NROW IF(JK-NCON) 2,2,1 1 JR=NCOL-JK 2 DO 6 IPART=1,NPASS IK=(IPART-1)*NROW IR=NRCV IF(IK-NCON) 4,4,3 3 IR=NCCL-IK 4 DO 5 I=1,IR READ (MTDO1) (A(I,J),J=1,NCCL) 5 CONTINUE LC 6 I=1,JR JC=I+JK DO 6 J=1,IR IC=J+IK B(I,IC)=A(J,JC)6 CONTINUE DC 7 I=1,JR WRITE(MTD02) (B(I,J),J=1,NCOL) 7 CONTINUE REWIND MTDO1 8 CONTINUE ENDFILE MTD02 REWIND MTDU2 WRITE (MTDC1) ISER LG 9 I=1,NCOL READ (MTD02) (A(1,J),J=1,NCOL) WRITE(MTDO1) (A(1,J),J=1,NCOL)9 CONTINUE ENDFILE MTD01 REWIND MTD01 REWIND MTD02 RETURN END *FORTRAN LIB SUBROUTINE CONTRA C....CONTROL ROUTINE FOR TWO-ELECTRON INTEGRAL TRANSFORMATION. TEXT DUMM COMMON /TOALL/ NBASIS, NB, ISTOP, ISTART (20), M(30), LDN01, LDN02, LDN03, 1LDNOS, LDNOS, LDN10, LDN11 COMMON 5(30,30),H(30,30),C(30,30),IDUM(4000),DUMY(4000) EQUIVALENCE (IDUM(23), ISER), (IDUM(24), I), (IDUM(25), J), (IDUM(26), IP 1), (IDUM(27), I1), (IDUM(28), I2) EQUIVALENCE (DUMY (3), DUMM), (DUMY (4), SHAT), (DUMY (5), HEAT), (DUMY (6), 1ERIMAT) CALL ENTR(GHCONTRA, ISTART(15)) C....SKIP TITLE AND SERIAL NUMBER OF TAPE ON UNIT 03. SKIP UNTRANS-C....FORMED S AND H MATRICES. 'READ(LDNO3) ISER READ (LDNO3) JUMM DO 1 I=1,NBASIS READ(LDN03) SMAT READ(LDN03) HMAT 1 CONTINUE C.....TAPE ON UNIT 03 CORRECTLY POSITIONED - SERIALIZE TARE ON UNIT 04. READ(LDN01,3) ISER

```
3 FORMAT(I10)
      WRITE (LDNO2, 301) ISER
  301 FORMAT(1H0,37X,36HSERIAL NUMBER OF TAPE ON UNIT 04 IS ,110/)
      REWIND LDN09
      WRITE(LDN09) ISER
C....SET UP ISTART
      READ(LDN01,4) (ISTART(I), I=5,12)
    4 FORMAT(SI5)
C....CHJCK DATA. ISTOP=50 IF ISTART(L).NE.NBASIS.NE.ISTART(8).
      J=1
      DO 7 I=5,11,2
      IP=I+1
      IF(ISTART(I)-ISTART(IP)) 7,7,5
    5 WRITE (LDNO2,6) I, IP
    G FORMAT(SH ISTART(, I3, 14H) .GT. ISTART(, I3, 1H))
     J=0
    7 CONTINUE
      IF(J) 9,8,9
    3 CALL DEXIT
    9 J=1
      DO 13 I=6,8,2
      IF(ISTART(I)-NBASIS) 10,13,11
   10 ISTOP=50
      GO TO 13
   11 WRITE (LDN02,12) I
   12 FORMAT(3H ISTART(, I3, 13H) .GT. NBASIS)
      J=0
   13 CONTINUE
      IF(J) 15,8,15
   15 J=1
      DO 17 I=10,12.2
      IF(ISTART(I)-NBASIS) 17,17,16
   16 WRITE(LDN02,12) I
      J=0
   17 CONTINUE
      IF(J) 18,8,13
   18 CALL TWOTRA
C....CHECK IF RESTART NECESSARY.
      I1=5
      I2=7
   19 IF(ISTART(I2+1)-NBASIS) 20,21,21
   20 ISTART(12)=ISTART(12+1)+1
     GO TO 27
   21 IF(ISTART(I1+1) -NBASIS) 22,23,23
   22 ISTART(I1)=ISTART(I1+1)+1
      ISTART(12)=1
      GO TO 27
   23 IF(I1-9) 24,29,24
   24 I1=9
      12=11
      GO TO 19
   27 WRITE(LDN02,28) (I,ISTART(I),I=5,11,2)
   28 FORMAT(1H0,23X,74HA RESTART IS NECESSARY IN THE TWO-ELECTRON INTEG
     1RAL TRANSFORMATION ROUTINE/1H ,22X,20HRESTART VALUES ARE -,4(3H IS
     2TART(,12,2H)=,12))
      GO TO 33
   29 WRITE (LDN02, 30)
   30 FORMAT(1H0, 35X, 49HTRANSFORMATION OF TWO-ELECTRON INTEGRALS COMPLET
     1 \mathbb{Z}/)
C....CHECK FOR HALT AT THIS POINT.
```

- 207 -

IF(ISTOP-5) 34,31,34 31 WRITE (LDN02,32) 32 FORMAT (1H0, 21X, 77HUSER REQUEST - PROGRAM TO STOP AT END OF TWO-ELE 1CTRON INTEGRAL TRANSFORMATION/) 33 REWIND LDN03 REWIND LDN09 STOP 34 CALL QUIT(6HCONTRA, ISTART(15)) RETURN END *FORTRAN LIB SUBROUTINE DUMPSH(S,H,NBASIS,NO) C....OPTICNAL CUTPUT OF OVERLAP AND ONE-ELECTRON HAMILTONIAN MATRICES. CCAMON /TCALL/ NEASES, NB, ISTOP, ISTART (20), M(30), LDN01, LDN02, LDN03, 1LENO3, LDN09, LDN10, LDN11 DIMENSION S(30,30),H(30,30) IF(NO) 1,4,1 1 WRITE (LDN02,2) 2 FORMAT('1'/'0',53X, OVERLAP MATRIX') CALL WRITMX(S, 30, 30, NBASIS, NBASIS, LDN02) WRITE (LDN02, 3) 3 FORMAT(0,44%, ONE-ELECTRON HAMILTONIAN MATRIX) CALL WRITMX(H, 30, 30, NBASIS, NBASIS, LDNG2) 4 RETURN END *FORTRAN LIB SUBROUTINE MFILE2 C....TRANSFERS INTEGRALS IN MASTER FILE TO LISC FILE FOR TRANSFORMATION CCMMON /TOALL/ NBASIS; NB, ISTOP, ISTART(20), M(30), LDN01, LDN02, LDN03, 1LDNOS, LDNO9, LDN10, LDN11 COMMON S(30,30),H(30,30),ERI(900) TEXT TITLE(15) EQUIVALENCE (LDN20, NEXTBL), (ERI, TITLE) CALL ENTR(MFILE2, ISTART(15)) READ(LDN01,1) NEXTBL 1 FORMAT(15) C....POSITICN MASTER INTEGRAL FILE AT NEXTBL. MTDRE=LDN10 MTDWR=LDN03 CALL SEARCH (LDN10, NEXTBL, 0) WRITL(LDNO2,2) NEXTBL 2 FORMAT(1/ ,21X, INTEGRALS FOR THIS RUN ARE IN THE MASTER INTEG 1RAL FILE STARTING AT BLOCK, 15) READ (MTDRE) ISER WRITE (MTDWR) ISER RJAD (MTDRE) TITLE, IRUN WRITE (MTUWR) TITLE, IRUN DISPLAY /TITLE DC 3 I=1,NBASIS READ (MTDRE) (S(J,I),J=1,NBASIS) WRITE(MTDWR) (S(J,I),J=1,NBASIS) READ (MTDRE) (H(J,I),J=1,NBASIS) WRITE(MTEWR) (H(J,I),J=1,NEASIS) 3 CONTINUE DO 4 I=1,NB READ (MTDRE) (ERI(J),J=1,I) WRITE(MTUWR) (ERI(J), J=1, I) 4 CONTINUE

```
C....DETERMINE POSITIONS OF ALL MAGNETIC DEVICES.
      WRITE(LDN02,5)
    5 FORMAT('C', 20X, POSITIONS OF MAGNETIC DEVICES /)
      CALL WHTPS
      ENDFILE MTDWR
      REWIND MTDWR
      CALL SEARCH (LDN10, NEXTBL, 0)
      CALL QUIT('MFILE2', ISTART(15))
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE MFILE3
C.....TRANSFERS TRANSFORMED INTEGRALS FROM DISC (LDNO3) TO MASTER
C....(TRANSFORMED) INTEGRAL FILE (LDN11).
      COMMON /TOALL/ NBASIS, NB, ISTOP, ISTART (20), M(30), LDN01, LDN02, LDN03,
     1LDNOS, LDNO9, LDN10, LDN11
      CCMMGN ERI (900), H(30, 30)
      TEXT TITLE(15)
      EQUIVALENCE (ERI, TITLE)
C....TITLE IS 120 CHARACTERS (15 ATLAS WORDS) USED TO IDENTIFY THE
C....INFORMATION IN EACH MASTER FILE.
      READ (LDN01,1) TITLE
    1 FORMAT(9A3/6A3)
      READ(LDN01,12) LDN11,NEXTBL
   12 FCRMAT(215)
   13 WRITE (LDNO2, 2) TITLE, NEXTBL
    2 FORMAT( 0, 15A3/ , 21X, WILL BE FOUND IN THE MASTER (TRANSFORMED)
     1 INTEGRAL FILE STARTING AT BLOCK, 15)
      CALL SEARCH(LDN11,NEXTBL,0)
      MTDRE=LDN03
      MTDUR=LDN11
      CLEAR ERI
      NSQRD=NBASIS*NBASIS
      LO 3 I=1,NSQRD
      READ (MTDRE) (ERI(J), J=1, NSQRD)
      WRITE(MTDWR) (ERI(J),J=1,NSQRD)
    3 CONTINUE
      READ (MTDRE) ((H(I,J),I=1,NBASIS),J=1,NBASIS)
      WRITE(MTDWR) ((H(I,J), I=1, NBASIS), J=1, NBASIS)
      ENDFILE MTDWR
C....DETERMINE POSITIONS OF ALL MAGNETIC DEVICES.
      WRITE(LDN02,5)
    5 FORMAT('0', 20X, 'POSITIONS OF MAGNETIC DEVICES')
      CALL WHTPS
      REWIND MTDWR
      REWIND MTDRE
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE MXPROD(A, B, C, IA, IB)
C.... PRODUCT OF TWO REAL SQUARE MATRICES - C=A*B.
      DIMENSION A(IA, IA), B(IA, IA), C(IA, IA)
      DO 1 I=1.IB
      DO 1 J=1,IB
      C(I,J)=0.0
      DO 1 K=1,IB
      C(I,J)=C(I,J)+A(I,K)*B(K,J)
    1 CONTINUE
```

```
- 210 -
      RETURN
      IND
*FORTRAN LIB
      SUBROUTINE MXTRAN(A, B, IA, IB)
C....TRANSPOSE OF REAL SQUARE MATRIX A STORED IN B.
      DIMENSION A(IA, IA), B(IA, IA)
      DC 1 I=1,IB
      DO 1 J=1,IB
      B(J,I)=A(I,J)
    1 CONTINUE
     RETURN
      END
*FORTRAN LIB
      SUBROUTINE ORTHON
C....ORTHONORMALIZATION OF BASIS ORBITALS.
      COMMION /TOALL/ N,NB,ISTOP,ISTART(20),M(30),LDN01,LDN02,LDN03,
     1LDNOC, LDNO9, LDN10, LDN11
      COMMON C(30,30),H(30,30),S(30,30)
      DIMENSION QC(30,30),QS(30,30),QU(30,30),QV(30,30),QW(30,30),QX(30)
      GSORT())=SORT(Q)
      CALL ENTR(GHORTHON, ISTART(15))
C....SET UP WORKSPACE.
      DO 2 I=1,N
      TO 1 J=1,N
      CLEAR QC(I,J),QU(I,J),QV(I,J),QW(I,J)
      QS(I,J)=S(I,J)
    1 CONTINUE
    2 CONTINUE
C....CHOLESKY DECOMPOSITION OF QS.
      DO 11 I=1,N
     QA=QS(I,I)
      IM1=I-1
      IF(IM1) 5,5,3
    3 DO 4 J=1,IML
      QA=QA-QV(I,J)*QV(I,J)
```

```
4 CONTINUE
5 QV(I,I)=QSQRT(QA)
QU(I,I)=QV(I,I)
IF(N-I) 11,11,6
6 IP1=I+1
```

```
IO 10 J=IP1,N
QV(J,I)=QS(J,I)
IF(IM1) 9,9,7
7 DO 3 K=1,IM1
```

```
QV(J,I)=QV(J,I)-QV(J,K)*QV(I,K)
8 CONTINUE
```

```
9 QV(J,I)=QV(J,I)/QV(I,I)
QU(I,J)=QV(J,I)
```

```
10 CONTINUE
```

```
11 CONTINUE
```

```
C....QC = INVERSE GF QU.

DO 12 IM1=2,N

L=N-IM1+2

QX(L)=1.0/QU(L,L)

QC(L,L)=QX(L)

LM1=L-1

DO 12 LL=1,LM1

I=LM1-LL+1
```

```
- 211 -
```

IP1=I+1

```
CLEAR QA
      DO 111 J=IP1,L
      QA=QA-QU(I,J)*QX(J)
  111 CONTINUE
      NX(I)=QA/QU(I,I)
      QC(I,L)=QX(I)
  12 CONTINUE
      QC(1,1)=1.0/QU(1,1)
C....COMPUTE TRANSFORMED EVERLAP MATRIX.
     CALL METRAN(QC, QV, 30, N)
      CALL MXPROD(QV,QS,QW,30,N)
      CALL MERROD (QW, QC, QS, 30, N)
      WRITE (LENO2, 20)
      CALL WRITEK(35,30,30,N,N,LDNO2)
      NO 14 I=1,N
      DO 14 J=1,N
      C(I,J)=QC(I,J)
  14 CONTINUE
   20 FORMAT(1H0,55X,10HCT*S*C = I/1H )
      CALL QUIT (GHORTHON, ISTART (15))
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE RESSET
C....RESTART AT BEGINNING OF TRANSFORMATION SECTION.
      CCLLICN /TGALL/ NBASIS,NB,ISTOP,ISTART(20),M(30),LDN01,LDN02,LDN03,
     1LDN08, LDN09, LDN10, LDN11
      TEXT TITLE (15)
      CALL ENTR (GHRESSET, ISTART (15))
     READ(LDN01,1) JSER, ISTOP
     READ (LDN03) ISER
    1 FORMAT(110,15)
      IF(JSER-ISER) 2,3,2
    2 CALL WRONTP(JSER, ISER, 3)
    3 READ (LENO3) TITLE, IRUN
      WRITE(LDNO2,4) TITLE
    4 FORMAT(1H1/1H0, 39X, 42HDIATOMIC CONFIGURATION INTERACTION PROGRAM/
     11H0,44X,31HHCMONUCLEAR VERSION 1. 1/09/69./1H0,56X,8HA.D.TAIT/1H0,
     244K, 32HQUANTUM MOLECULAR PHYSICS GROUP,/1H0,49K,22HDEPARTMENT OF P
     SHYSICS,/1H0,48X,24HUNIVERSITY OF LEICESTER,/1H0,46X,28HLEICESTER,
     4ENGLAND. LE1 7RH.//1H0,15A8/)
C....READ AND CHECK DATA.
      REAL(LDN01,5) (M(I),I=1,NBASIS)
    5 FORMAT(3012)
C....CHECK M-VALUES.
    WRITE(LEN02,6) (I,M(I),I=1,NBASIS)
6 FORMAT('0',48X, 'MAGNETIC QUANTUM NUMBERS'//('',56X,'M(',I2,')=',
     112))
      CLEAR J
      DO 9 I=1,NBASIS
      IF(IABS(M(I))-3) 9,9,7
    7 WRITE(LDNO2,3) I
               ,45x, M-VALUE TOO BIG IN ORBITAL ,12)
    3 FORMAT(
      J=1
    9 CONTINUE
      IF(J) 10,11,10
  10 CALL BEXIT
  11 CALL QUIT( RESSET , ISTART(15))
```

RETURN END

*FORTRAN LIB SUBROUTINE SETERI C.....SETS UP COMPLETE MATRIX OF DISTINCT TWO-ELECTRON INTEGRALS FROM C....LOWER TRIANGLE. VERSION 3. 06/09/71. CCMMCN /TOALL/ NEASIS, NB, ISTOP, ISTART (20), M(30), LDN01, LDN02, LDN03. 1LDN08, LDN09, LDN10, LDN11 COMMON A(5000), B(5000) DIMENSION C(66,66), ERI (900), H(30,30), S(30,30) EQUIVALENCE (A, ERI), (A(901), H), (A(1801), S), (B, C) ON ERROR KB, KW, NB, I, J CALL ENTR('SETERI', ISTART(15)) C....SKIP OVER SERIAL NUMBER, TITLE, AND ONE-ELECTRON INTEGRALS. REWIND LDN03 READ(LDNO3) I READ(LDNO3) I CALL TPPOSN(LDNO3,KB,KW) Х Х DISPLAY(LP,5) /KB,KW DO 1 I=1,NBASIS READ(LDN03) J READ(LDN03) J 1 CONTINUE CALL TPPOSN(LDNO3,KB,KW) IF(NBASIS-11) 2,2,5 2 DO 3 I=1,NB CALL TPPOSN(LDNO3,KB,KW) Х х DISPLAY(LP,5) /I,KB,KW READ(LDN03) (C(1,J),J=1,I) DO 3 J=1,I C(J,I)=C(I,J)3 CONTINUE CALL SEARCH(LDN03,KB,KW) DO 4 I=1,NB WRITE(LDN03) (C(I,J),J=1,NB) 4 CONTINUE GO TO 12 5 DO 6 I=1.NB CLEAR ERI(I) 6 CONTINUE DO 7 I=1,NB READ (LDN03) (ERI(J), J=1, I) WRITE(LDNO9) (ERI(J),J=1,NB) 7 CONTINUE REWIND LDN09 NRG#=5000/102 NPASS=1 IF (MOD (NB, NROW)) 9,8,9 8 CLEAR NPASS 9 NPASS=NPASS -NB/NROW CALL BIGTRA(A, B, LDN09, LDN08, NB, NRUW, NPASS) CALL SEARCH(LDN03, KB, KJ) 10 10 I=1,ND READ (LDNO9) (ERI(J), J=1, NB) READ (LDN03) (ERI(J), J=1, I) WRITE(LDNO3) (ERI(J),J=1,NB) 10 CONTINUE CALL SMARCH(LDN03, KB, KW) REWIND LUNCS

```
DO 11 I=1,NB
      READ (LDNOG) (ERI(J), J=1, NB)
      WRITE(LDNO3) (ERI(J), J=1, NB)
   11 CONTINUE
   12 REWIND LDN03
      REWIND LDNOS
      REWIND LDN09
C.....READ OVERLAP AND ONE-HAMILTONIAN MATRICES.
      READ(LDNOS) I
      READ(LDN03) I
      DO 13 I=1,NBASIS
      READ(LDNO3) (S(J,I),J=1,NBASIS)
      READ(LDN03) (H(J,I),J=1,NBASIS)
   13 CONTINUE
      CALL SEARCH (LDN03, KB, KW)
C....PRINT S AND H IF REQUIRED.
      CALL DUMPSH(S, H, NBASIS, ISTART(15))
      CALL QUIT( SETERI , ISTART(15))
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE TRANSH
C....VERSION 5.26/03/71.
C....TRANSFORMS ONE-ELECTRON INTEGRALS OVER ATOMIC ORBITALS INTO
C....INTEGRALS OVER A SET OF ORTHONORMAL ATOMIC OR MOLECULAR ORBITALS
C....AS REQUIRED. CONTROL IS IN ISTART(19). TRANSFORMATION MATRIX C IS
C.... OBTAINED BY THE DIAGONALIZATION OF THE OVERLAP MATRIX S.
      CCAMON /TOALL/ NBASIS, NB, ISTOP, ISTART (20), M(30), LDH01, LDH02, LDN03,
     1LDNJ3.LDNU9.LDN10.LDN11
      CCMMON C(30,30),H(30,30),S(30,30),IRI(30),WSP1(30,30),WSP2(30,30),
     1W3P3(30,30)
      CALL ENTR( TRANSH, ISTART(15))
      WRITE(LDN02,1)
    1 FORMAT(1H1/1H0,40X,40HTRANSFORMATION OF ONE-ELECTRON INTEGRALS/)
C.....TAPE ON UNIT 03 IS POSITIONED AT END OF DISTINCT ERI MATRIX.
C.... READ NON-ZERO ELEMENTS OF SYMMETRY TRANSFORMATION MATRIX. NONO =
C....NUMBER OF NON-ZERO ELEMENTS.
    2 CLEAR WSP2
      READ(LDN01,30) NONO
   30 FORMAT(1615)
      DO 32 K=1,NONO
      READ(LDN01,31) I,J,WSP2(I,J)
   31 FORMAT(213, F4.1)
   32 CONTINUE
      WRITE(LDN02,40)
   40 FORMAT('0',45X, SYMMETRY TRANSFORMATION MATRIX'/)
      CALL WRITMK (WSP2, 30, 30, NBASIS, NBASIS, LDNC2)
C....TRANSFORM OVERLAP MATRIX.
   33 CALL MKTRAN(WSP2, WSP1, 30, NBASIS)
      CALL MAPROD (WSP1, S, C, 30, NBASIS)
      CALL MMPROD(C, MSP2, S, 30, NEASIS)
Х
      WRITE(LDN02,46)
Х
      CALL WRITMX(S, 30, 30, NBASIS, NBASIS, LDNO2)
   43 FORMAT( ',1P5224.10)
      CALL ORTHON
Х
      WRITE(LDN02,43)
      CALL WRITHX(C, 30, 30, NBASIS, NBASIS, LDNO2)
Х
   46 FORMAT( 0,40x, OVERLAP MATRIX FOR NON-ORTHOGONAL M.O.5)
43 FORMAT( 0,43x, MATRIX WHICH ORTHOGONALIZES M.C.S)
Χ
```

```
49 FORMAT( 0,40X, TRANSFORMED ONE-ELECTRON INTEGRAL MATRIX )
      READ(LDN01,30) NIR
      READ(LDN01,30) (IRI(I),I=1,NBASIS)
      WRITE(LDN02,50) NIR, (I, IRI(I), I=1, NBASIS)
   50 FORMAT('0',24X, TRANSFORMED ORBITALS BELONG TO',13, DIFFERENT IRR
1EDUCIBLE REFRESENTATIONS / ',43%, (SUBSPECIES COUNTED AS DIFFEREN
     2T) / , 36X, TRANSFORMED ORBITALS ARE ASSIGNED AS FOLLOWS / ( '346X, ORBITAL', 13, 'BELONGS TO IR', 13))
    8 CALL MXPROD(WSP2, C, WSP1, 30, NBASIS)
      DO 9 I=1,NBASIS
      DO 9 J=1,NBASIS
      C(I,J)=WSP1(I,J)
    9 CONTINUE
C....CUTPUT TRANSFORMATION MATRIX.
   WRITE(LDN02,90)
90 FORMAT('0',50X, TRANSFORMATION MATRIX'/)
      CALL WRITMX(C, 30, 30, NEASIS, NEASIS, LENO2)
C..... WRITE TRANSFORMATION MATRIX ONTO UNIT 03.
   10 WRITE(LDNG3) ((C(I,J),I=1,NBASIS),J=1,NBASIS)
C....TRANSFORM H-MATRIX.
      CALL MXTRAN(C, WSP1, 30, NBASIS)
      CALL MXPROD(WSP1, H, S, 30, NBASIS)
      CALL MXPROD( S,C,H, 30, NBASIS)
C....IF GRBITAL I AND CRBITAL J BELONG TO DIFFERENT IRREDUCIBLE
C.....REPRESENTATIONS THEN H(I,J)=H(J,I)=0. IN GENERAL H(I,J)=H(J,I).
      NONO=NBASIS-1
      DO 15 I=1,NGNO
      K=I+1
      DO 14 J=K,NBASIS
      IF(IRI(I)-IRI(J)) 11,12,11
   11 CLEAR H(I,J),H(J,I)
      GO TO 14
   12 IF(1.0E-09-ABS(H(I,J)-H(J,I))) 13,14,14
   13 WRITE (LDN02,16) I,J,J,I
   14 CONTINUE
   15 CONTINUE
   16 FORMAT( ',50X, 'H(',12,',',12,').NE.H(',12,',',12,')')
      WRITE(LUNO2,49)
      CALL WRITHER(H, 30, 30, NBASIS, NBASIS, LDNO2)
      WRITE(LDNO3) ((H(I,J), I=1, N3ASIS), J=1, NBASIS)
C....TAPE CN UNIT 03 CONTAINS - UNTRANSFORMED S AND H MATRICES WRITTEN
C....ALTERNATELY BY COLUMNS, COMPLETE MATRIX OF DISTINCT ERI,
C....TRANSFORMATION AND TRANSFORMED H MATRICES BY COLUMNS.
      REVIND LDN03
      CALL QUIT( TRANSH , ISTART(15))
      RJTURN
      END
*FCRTRAN LIB
      SUBROUTINE TWOTRA
C....TRANSFORMS TWO-SLECTRON INTEGRALS (DRI).
C....TAPE ON UNIT GS POSITIONED AT BEGINNING OF COMPLETE MATRIX
C....DISTINCT BRI, UNLESS THIS IS A RESTART .H-MATRIX IS OVER MUTTEN IN
C....THIS SUBPROGRAM.
      TEXT ICD
      COMMON /TCALL/ NBASIS, NB, ISTOP, IST(4), ISTARS, ISTARG, ISTARV, ISTARS,
     11STAR9,1STAR0,1STAR1,1STAR2,15(5),1JUAP,110,100,M(30),LDH01,LDH02,
     2LEN03, LDNOS, LEN03, LEN10, LEN11
      C'EAMEN C(30,30), DUMA (5000), DUNES (5008)
      DIMENSION WSP1(900), WSP2(900), H(30, 00), A(64, 64)
```

```
EQUIVALENCE (DUMA, A, WSP1), (DUMB, WSP2), (C, H)
X 103 FORMAT (4H MU=, 12, 4H NU=, 12, 6H NGOT=, 14, 7H NWANT=, 14)
X 104 FORMAT('OINTEGRAL(',413,') IS COMPOSED OF -')
X 105 FORMAT(' C(',213,')*INTEGRAL(',413,'). INTEGRAL INDEX IS ',14)
X 106 FORMAT('OPARTIALLY TRANSFORMED INTEGRALS'/('',4(3X, 'ERI(',14,')='
     1,1PE17.10)))
х
X 107 FORMAT( 0**** TRANSFORMED INTEGRALS **** / ( ,4(3X, ERI( ,14, )=
X
     1,1PE17.10)))
      ON ERROR/NSQRD, IJUMP, ISTAGE, NGOT, NVANT, /MU, NU, MAX, MIN, NMOVE, /KK, LL
      CALL ENTR(GHTWOTRA, 15(3))
      CALL WHTPS
      NSQRD=NBASIS*NBASIS
C....TEST FOR RESTART AT THE END OF THIS STAGE.
      IF(IJUMP) 29,1,29
    1 ISTAGE=1
      CLEAR NGOT
C....COMMENCE TRANSFORMATION OF CHARGE DISTRIBUTION 2.
      DO 22 MU=ISTAR5, ISTAR6
      DO 21 NU=ISTAR7, ISTAR8
C....PICK UP REQUIRED BLOCK OF DISTINCT ERI.
      MAX=MAXO (MU, NU)
      NWANT=(MAX*(MAX-1))/2+MINO(MU,NU)
      WRITE(LDNO2,103) MU, NU, NGOT, NWANT
х
      NMOVE=NWANT-NGOT
      IF(NMOVE) 2,2,4
    2 NMOVE=1-NMOVE
      DO 3 I=1, NMOVE
      BACKSPACE LDN03
    3 CONTINUE
      READ(LDNO3) (WSP2(J), J=1, NB)
      GO TO 6
    4 DO 5 I=1, NMOVE
      READ(LDNO3) (WSP2(J),J=1,NB)
    5 CONTINUE
    6 NGOT=NWANT
      IM=M(NU)-M(MU)
      CLEAR WSP1
      DO 13 LAMBDA=1, NBASIS
      K1=NBASIS*(LAMBDA-1)
      DO 12 LL=1,NBASIS
C.....CHECK PHI INTEGRATION GIVES NON-ZERO RESULT. THIS IS CHECK 1.
      IF(IM-M(LAMBDA)+M(LL)) 12,9,12
    9 K2=K1+LL
X
      WRITE(LDN02,104) MU, NU, LAMBDA, LL
      DO 11 IS=1,NBASIS
C....CHECK TRANSFORMATION COEFFICIENT IS NON-ZERO. THIS IS CHECK 2.
      IF(C(IS,LL)) 10,11,10
   10 MAX=MAXO(IS,LAMBDA)
      J=(MAX*(MAX-1))/2+MINO(IS,LAMBDA)
X
      WRITE(LDNO2,105) IS, LL, MU, NU, LAMBDA, IS, J
      WSP1(K2)=WSP1(K2)+C(IS,LL)*WSP2(J)
   11 CONTINUE
   12 CONTINUE
   13 CONTINUE
C....TRANSFORMATION OF 4TH. ORBITAL COMPLETE FOR THIS MU AND NU.
      CLEAR WSP2
      DO 19 KK=1,NBASIS
      K1=NBASIS*(KK-1)
      CO 18 LL=1,NBASIS
C....CHECK 1.
```

{

```
IF(IM-M(KK)+M(LL)) 18,15,18
   15 K2=K1+LL
      WRITE(LDN02,104) MU,NU,KK,LL
X
      DO 17 LAMBDA=1, NBASIS
C....CHECK 2.
      IF(C(LAMBDA,KK)) 16,17,16
   16 J=NBASIS*(LAMBDA-1)+LL
      WRITE(LDN02,105) LAMBDA, KK, MU, NU, LAMBDA, LL, J
х
      WSP2(K2)=WSP2(K2)+C(LAMBDA,KK)*WSP1(J)
   17 CONTINUE
   18 CONTINUE
   19 CONTINUE
C....TRANSFORMATION OF 3RD. ORBITAL COMPLETE FOR THIS MU AND NU.
      WRITE(LDNO9) (WSP2(K), K=1, NSQRD)
      WRITE(LDN02,106) (K,WSP2(K),K=1,NSQRD)
X
   21 CONTINUE
   22 CONTINUE
      ENDFILE LDN09
C....THIS STAGE IS COMPLETE IF ISTAR6=ISTAR8=NBASIS.
      IF(ISTAR6+ISTAR8-NBASIS-NBASIS) 23,25,23
   23 ICD=4H2ND.
      WRITE(LDN02,24) ICD
   24 FORMAT (1HO, 31X, 18HTRANSFORMATION OF , A4, 35HCHARGE DISTRIBUTION IS
     1NOT COMPLETE/)
      REWIND LDN03
      REWIND LDN09
      GO TO 27
   25 WRITE(LDN02,26)
   26 FORMAT (1H0, 34X, 51HTRANSFORMATION OF 2ND, CHARGE DISTRIBUTION COMPL
     1ETE/)
C....CHECK FOR HALT AT THIS POINT.
      IF(ISTOP-50) 28,27,28
   27 RETURN
   28 REWIND LDN09
C....POSITION UNIT 03 AT END OF TRANSFORMED H-MATRIX, IF THIS IS NOT A
C....RESTART AT THIS POINT, C AND H MATRICES MUST BE SKIPPED, OTHERWISE
C....TAPE IS AT END OF PREVIOUSLY TRANSFORMED ERI. SKIP SERIAL NUMBER
C....ON UNIT 04.
      READ(LDNO3) CMAT
      READ (LDNO3) HMAT
   29 ISTAGE=2
C....TRANSPOSE PARTIALL TRANSFORMED TWO-ELECTRON INTEGRALS ON DEVICE
C....LDN09, DEVICE LDN08 IS USED AS TEMPORARY WORK SPACE.
      IF(NBASIS-8) 300,300,290
  290 NROW=5000/NSQRD
      NPASS=1
      IF(MOD(NSQRD, NROW)) 292,291,292
  291 CLEAR NPASS
  292 NPASS=NPASS+NSQRD/NROW
      WRITE (LDN02, 293) NSQRD, NSQRD, LDN09, LDN08, NROW, NPASS, LDN09
х
     FORMAT( ,15X,14, * ,14, -MATRIX ON DEVICE ,13, TO BE TRANSPOSED
1, DEVICE ,13, IS USED AS TEMPORARY STORAGE / ,23X,15, RECORDS
X 293 FORMAT(
Х
     2RE READ EACH TIME AND ,15, PASSES ARE MADE OVER DEVICE ,15/)
х
х
      CALL CNTR(INSTR)
      CALL BIGTRA (DUMA, DUMB, LDN09, LDN08, NSQRD, NROW, NPASS)
Х
      CALL CNTR (JNSTR)
Х
      SEC=(JNSTR-INSTR)/160.0
Х
      WRITE(LDN02,294) SEC
X 294 FORMAT( ',43X, TRANSPOSE TIME = ,F10.2, SECONDS /)
      GO TO 303
```

```
300 READ(LDN09) ISER
      DO 301 I=1,NSQRD
      READ(LDN09) (A(I,J),J=1,NSQRD)
  301 CONTINUE
      REWIND LDN09
      WRITE(LDN09) ISER
      DO 302 I=1,NSQRD
      WRITE(LDNO9) (A(J,I),J=1,NSQRD)
  302 CONTINUE
      REWIND LDN09
  303 READ(LDN09) ISER
C....COMMENCE TRANSFORMATION OF 1ST.CHARGE DISTRIBUTION.
      DO 44 KK=ISTAR9, ISTAR0
      K1=NBASIS*(KK-1)
      DO 43 LL=ISTAR1, ISTAR2
      NCOL=K1+LL
      IM=M(LL)-M(KK)
      READ (LDNO 9) (WSP1 (NROW), NROW=1, NSQRD)
      CLEAR WSP2
      DO 35 MU=1,NBASIS
      K1=NBASIS*(MU-1)
      DO 34 J=1.NBASIS
C....CHECK 1.
      IF(IM-M(MU)+M(J)) 34,31,34
   31 K2=K1+J
      WRITE(LDN02,104) MU, J, KK, LL
Χ
      DO 33 NU=1,NBASIS
C....CHECK 2.
      IF(C(NU,J)) 32,33,32
  32 I=K1+NU
х
      WRITE(LDN02,105) NU, J, MU, NU, KK, LL, I
      WSP2(K2)=WSP2(K2)+C(NU,J)*WSP1(I)
   33 CONTINUE
   34 CONTINUE
   35 CONTINUE
C....TRANSFORMATION OF 2ND. ORBITAL COMPLETE FOR THIS MU AND NU.
      CLEAR WSP1
      DO 41 I=1,NBASIS
      K1=NBASIS*(I-1)
      DO 40 J=1,NBASIS
C....CHECK 1.
      IF(IM-M(I)+M(J)) 40,37,40
   37 K2=K1+J
Х
      WRITE(LDN02,104) I, J, KK, LL
      DO 39 MU=1,NBASIS
C....CHECK 2.
      IF(C(MU,I)) 33,39,33
   38 II=NBASIS*(MU-1)+J
х
     WRITE(LDNO2,105) MU,I,MU,J,KK,LL,II
      WSP1(K2)=WSP1(K2)+C(MU,I)*WSP2(II)
   39 CONTINUE
   40 CENTINUE
   41 CONTINUE
C....TRANSFORMATION OF 1ST. ORBITAL COMPLETE FOR THIS KK AND LL.
      WRITE(LDNO3) (WSP1(K), K=1, NSQRD)
      WRITE (LDN02,107) (K, WSP1(K), K=1, NSQRD)
Х
   43 CONTINUE
   44 CONTINUE
      ENDFILE LDN03
C....TAPE ON UNIT 03 CONTAINS UNTRANFORMED S AND H MATRICES, LOWER
```

	- 218 -
C	TRANSPORTED & MATRICES AND ALL OR DADT OF THE TRANSFORMED FOT
C	THAT STORAD IN FAILTINGS AND AND ON PART OF THE TRANSFORMED BAL.
····	TREASTINGS IS CONTRACTENDACTEN AS ASIA
46	T(T) 1 20
·±0	$\frac{100-101}{10000}$
	WRITE(LDNO2,24) ICD
	MANUA DINOS
~	
C	UVER WRITE INTEGRALS UN DEVICE LONUS WITH TRANSFORMED ERI AND
C	TRANSFORMED H-MATRIX.
451	REWIND LDNO3
	REALAD TOWAS
	DEAD(LDNO3) ISBK
	DO 452 I-1 NDACIC
	DU 404 I-I, MDADIS
	NEAD (LEDINOS) SINIAL
452	CONTAILS
104	DO 453 L=1 NB
	READ(IDNO3) ERIMAT
453	CONTINUE
100	READ(LDNO3) ((C(I J), I=1, NRASIS) J=1, NRASIS)
	CLEAR H
	READ(LDN03) ((H(I,J), I=1, NBASIS), J=1, NBASIS)
	CLEAR NROW
	MTDRE=LDN03
	MTD//R=LDN09
454	DO 455 I=1.NSQRD
	READ(MTDRE) (WSP1(J),J=1,NSQRD)
	WRITE (MTDWR) (WSP1(J), J=1, NSQRD)
455	CONTINUE
	IF (NROW) 457,456,457
456	NRC5/=1
	NPASS=MTDRE
	MTDRE=MTDWR
	MTDUR=NPASS
	REVIND MTDRE
	REVIND MTDWR
	GO TO 454
457	WRITE(MTDWR) ((H(I,J),I=1,NBASIS),J=1,NBASIS)
	ENDFILE MTDWR
	REWIND MTDWR
450	1F(15(3)) 458,4585,458
453	CALL OUTBRK (LDNO2)
	WRITE(LDN02,4536)
	DU 4561 I=1,N5QRD
	$\frac{WRTE(LDN02,4532)}{UCD1(I)} = \frac{1}{UCDD}$
	$\mathbf{KSAU}(\mathbf{MTDMR}) (\mathbf{WSP1}(\mathbf{J}), \mathbf{J=1}, \mathbf{MSQRD})$
45.21	CONTINUE
45001	ECHANNE CONTRACTOR DECORD TAIL
4004	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
2000	$\frac{1}{1} \frac{1}{1} \frac{1}$
	WRTTE(IDNO2 4584)
4594	EDRAR (0 22 TRANSFORMED ONE FIRCTION HANTITONIAN HATTY /
-1004	CALL WRITTMY (H 30 30 NRASIS NRASIS IDNO2)
4525	CALL WHEDS
-1000	REVIND MONR
4586	FORMAT(1/0,43X, TRANSFORMED TWO-ELECTRON INTEGRALS /)
46	CALL QUIT(TWOTRA . 15(3))

RETURN END

*FORTRAN LIB

SUBROUTINE WRONTP(IWANT, IGOT, IUNIT)

C....CALLED WHEN TEST OF MAGNETIC TAPE SERIAL NUMBER INDICATES THAT THE C..... WRONG TAPE HAS BEEN MOUNTED.

DATA LDN02/0/

WRITE(LDNO2,1) IUNIT, IWANT, IGOT

1 FORMAT (40HOTHE WRONG TAPE HAS BEEN MOUNTED ON UNIT ,12/

123H THE TAPE REQUIRED IS NUMBER, 110/28H THE TAPE MOUNTED IS NUMBE 2R, I10/29H CONTINUATION IS NOT POSSIBLE////)

CALL EEXIT RETURN

END

15	cocing	Sheet 1 d/c 3	
	sheet	Programmer A. D. T.F.E.F	
		Date 21. 3. 72.	
C STATEMENT 2 NUMBER 0	FORTRAN STATEMENT		ENTRICATION AND EQUENCE No
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 6	2 3]2 4]2 5]2 6]2 7]2 8]2 9]3 0]3 1]3 2]3 4]3 5]3 6]3 7]3 8]3 9[4 0]4 1]4 2]4 3]4 4]4 5]4 6]4 7]4 8]4 9[5 0]5	52535454545454545960461626364655665765697071727374	475767775-1
۲			-
	•		
			-
100000	м. Т т т т т т т т т т т т т т т т т т т т		220
0, 0, 0			- (
3 / / / /			-
· · · · · · · · · · · · · · · · · · ·			-
1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2			-
3.18.18.1.0.1.0.1.0.1			
<i>H</i> , <i>H</i> , <i>O</i> , <i>I</i> , <i>P</i>			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			1 1 1 1
· · · · · · · · · · · · · · · · · · ·	8 8 8		
3	, , , , , , , , , , , , , , , , , , ,		1 1 1 1
			-
FORM 1/542(9.68)		C International Computers Limited 1964 Printee	ted in Great Eritan

5	coding	Sheet D de D
)	Sheet	
		Programmer A. D. TRFT
		Date 21. 3. 72
C STATEMENT	FORTRAN STATEMEN	T AND
	לו היו היו היו היו היו היו היו היו היו הי	SEQUENCE No APPARATION
	ידן פן אורטו בוויבוע באירו באיר איר איר איר איר איר איר איר איר איר	油井刀生材中 /1日刻中 刈り刈り /10 刈り刈り刈り切り /10 刈り刈り /10 刈り /10 刈り /10 刈り /10 × 10 × 10 × 10 × 10 × 10 × 10 × 10
9		
1 1 1	ZNTRA TEST DATA - LNTEG	CALS FOR MTONEC OXYGEN (SCHAD
FER A	ND. HARRES'S. EXPENSENTS)	221
2	1.50	
-		
-		
1 1 1		
-		
1 1 1		
	FORM 1/542(9.68)	C International Computers Limited 1964 Printed in Great Britz

INTEGRALS FOR THIS RUN ARE IN THE MASTER INTEGRAL FILE STARTING AT BLOCK 50 ONECEN TEST DATA - INTEGRALS FOR ATOMIC OXYGEN (SCHAETER AND HARRIS'S EXPONENTS).

SUBPRCGRAM MFILE2 SUBPRCGRAM RESSET POSITIONS OF NAGNETIC DEVICES NUMBER OF INSTRUCTIONS USED ON EXIT FROM INSTRUCTIONS USED ON ENTRY TO NORD 0 40RD 214 WORD MORD WORD WORD POSITIONED AT POSITIONED AT 214 POSITIONED AT POSITIONED AT POSITIONED AT POSITIONED AT BLOCK 1 BLOCK 50 BLOCK 20 BLOCK BLOCK BLOCK NUMBER OF 8 ŝ Q 3 TAPE NUMBER TAPE NUMBER NUMBER NUMBER NUMBER NUMBER TAPE TAPE TAPÉ TAPE

331

n: n

DIATOMIC CONFIGURATION INTERACTION PROGRAM HOMONUCLEAR VERSION 1: 1/09/69. A.D.TAIT QUANTUM MOLECULAR PHYSICS GROUP. DEPARTHENT OF PHYSICS GROUP. DEPARTHENT OF PHYSICS. UNIVERSITY OF LEICESTER. LEICESTER. ENGLAND. LE1 7RH! ONECEN TEST DATA - INTEGRALS FOR ATOMIR OXOGEN (SCHAEFER AND HARRISIS EXPONENTD). MAGNETIC QUANTUH NUNBERS MAGNETIC QUANTUH NUNBERS	
--	--

.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		000000E*00 00000E*00 00000E*00 00000E*00 010000000000	- 224	↓	2	1 -		· · · · · · · · · · · · · · · · · · ·	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0,00000 0,00000 0,00000 0,00000 0,00000 0,00000							
U. UUUUUUU00E+00 D. Q00000000E+00 1. Q00000000E+00 D. Q00000000E+00 D. Q00000000E+00	GCTRON HAMILTONÌAN WATRÍX	COLUMNS 1 TO 5 0.000000000E+00 0.000000000E+00 16.4268167801E+00 0.000000000E+00 0.000000000E+00	•			- N -			
<pre>c. 00 00 00 00 00 00 00 00 00 00 00 00 00</pre>	ONETEL	-7.0326342795E+00 -8.1471486930E+00 0.0000000006+00 0.0000000006+00 0.0000000006+00	·						
$\begin{array}{c} 1,000000000000000000000000000000000000$		-3.1941106880E+01 -7.0326342795E+00 0.000000000E+00 0.00000000E+00 0.00000000E+00 0.000000000E+00							

•

OVERLAP MAIRIX

	0,000000000000000000000000000000000000	27)	0 200000000000000000000000000000000000	
	0 + 0000000000000000000000000000000000		01000000000000000000000000000000000000	ALE REPRESENTATIONS OLLOUS
RY TRANSFORMATION MATRIX	COLUMNS 1 TO 5 0.2000000000000000000 0.20000000000000	CT*\$*C = 1	COLUMNS 1 TO 5 0.00000000000000000 0.000000000000000	TO 4 DIFFERENT IRREDUCI IES COUNTED AS DIFFERENT) RBITALS ARE ASSIGNED AS F AL 1 BELONGS TO IR 1 AL 2 BELONGS TO IR 1 AL 3 BELONGS TO IR 1 AL 4 BELONGS TO IR 2 AL 5 BELONGS TO IR 3 AL 5 BELONGS TO IR 3 AL 5 BELONGS TO IR 4 AL 5 BELONGS TO IR 4
S 7 ИНЕ Т	0.000000000000000000000000000000000000		-3.6379788070E+12 1.0000000006+00 0.0000000006+00 0.0000000006+00 0.0000000006+00 0.0000000006+00 0.0000000000	ISFORMED ORBITALS BELONG SUBSPEC CRBIT CRBIT CRBIT CRBIT CRBIT CRBIT CRBIT CRBIT CRBIT
	1.000000000000000000000000000000000000		1.000000000000000000000000000000000000	TRAN

٢

•

•

`

-.

TRANSFCRMATION OF QNEFELECTRON INTEGRALS

- 226 -	0 000000000000000000000000000000000000	0 t00000000000000000000000000000000000	
	0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7RIX 0±00000000000000000000000000000000000	
•	RANSFORMATION MATRIX COLUMNS 1 T0 5 0.000000000E+00 1.0000000000E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00 0.0000000000	ONE-ELECTRON INTEGRAL MA COLUMNS 1 TO 5 0.000000000000000000 0.00000000000000	-
•	-2.3740482386E401 1.0277942658E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00	TRANSFCRMED 3.5487182665E-01 -6.9745927313E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00	
	<pre>+ 000000000000000000000000000000000000</pre>	3.1941106880E+01 3.5487182665E-01 0.000000000E+00 0.00000000E+00 0.000000000E+00	

VUMBER OF VUMBER OF	F INSTRUCTIONS USED ON EXIT FR F INSTRUCTIONS USED ON ENTRY T	ON SUBPRCGRAM TRANSH = 504 0 SUBPRCGRAM CONTRA = 506	,
NUMBER OF TAPE NUMBER 3	F INSTRUCTIONS USED ON ENTRY T POSITIONED AT BLOCK WORD 1 .79	ERIAL NUMBER OF TAPE ON UNIT 04 IS 200000 O Subprogram Twotra = 512	
TAPE Number 4	POSITIONED AT BLOCK WORD 1 0	·	
TAPE NUMBER 5	POSIFIONED AT BLOCK WORD 1 2		
TAPE Number 6	POSITIONED AT BLOCK WORD 50 0		i.
TAPE NUMBER 7	POSITIONED AT BLOCK WORD 1 0	·	
TAPE NUMBER 8	POSITIONED AT BLOCK MORD 20 0		
END OUTPU	UT 3 BLOCKS	ISFORMATICN OF 2ND. CHARGE DISTRIBUTION COMPLETE	

- 227 -

1

, ,

		- 2	28 –		
0.000 096467E+00 0.000 09640 7E+00 0.000 09640 1E+00 0.000 09646 1E+00 1.1057938455E+00	0.000 000100E+00 0.000 000100E+00 0.000 000100E+00 0.000 000101E+00 -0.0856167517E+03	0.000 0000000E+00 0.000 000005+00 0.000 000005+00 0.000 000005=+00 0.000 000005=+00	2,48758546656-02 3,34087785376-02 0,000 0000000056+00 0,000 00001006+00 0,000 0000006+00	0.000 0000005500 0.000 000005500 0.000 000005500 0.000 00005560 0.000 00005560	0.000 0000005<00 0.000 0000005<00 0.000 000005500 0.000 000005500
0,000000000000000000000000000000000000	0.000000000000000000000000000000000000	0,000000000000000000000000000000000000	0+000000000000000000000000000000000000	2,48758546656+02 3,3408778537-202 0,000000000000000000000000000000000	0,000000000000000000000000000000000000
CONTENTS OF RECORD 1 0.00000000000000000000000000000000000	CONTENTS. DF RECORD 2 0.00000000000000 0.000000000000000 -9.08561675176-03 0.0000000000000000000000000000000000	CONTEVTS OF RECORD 3 2.4875854665E-02 3.3408778537E-02 0.0000000000000000 0.000000000000000	CONTENTS OF RECORD 4 0.00000000000000000000000000000000000	CONTENTS., DF RECORD 5. 0.0000000000000000000000000000000000	CONTENTS OF RECORD 6 0.0000000000000000 0.0000000000000000
<pre>+ 4.4307495009E-01 1.1195775587E+00 0.0000000000E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00</pre>	6.85812501406-02 11.74903108096-02 0.0000000006+00 0.00000000006+00 0.0000000000	0,000000000000000000000000000000000000	0,000000000000000000000000000000000000	0.000000000000000000000000000000000000	<pre>6.8501250140E-02 1.7490310809E-02 0.0000000000E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00</pre>
<pre>4.785500002E+00 7.4307495009E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.00000000E+00 0.000000000E+00</pre>	4307495009E-01 85812501.40E-02 800000000E+00 00000000E+00	.000ru0000000400 .0000000000000000 .46758546556-02 .00000000000000000000000000000000000	.000000000000000000000000000000000000	.000000000000000000000000000000000000	.4307495009E-01 .8531250140E-02 .000000000E+00 .00000000E+00

INTERVIEW INVESTING AND INTERRALS

0,000 0000012*00 0,000 000001012*00 0,000 000101012*00 0,000 000101032*00 8,003 9169552<01	0.000 0904055400 0.000 0904055400 0.000 0904052400 0.000 0904052400 0.000 0991052400	3.3308770537E-02 1.7243262776E-02 0.000 0000052401 0.000 0000052400 0.000 0000052400	0,000 0000005×00 0,000 0001005×00 0,000 0001005×00 0,000 0001055×00 0,000 0001055×00	9.000 00000 je∻00 9.000 00000 je∻00 0.000 00000 je∻00 0.000 00000 je∻00 0.000 000 00 je∻00	0,000 000 100 00 0 0,000 000 000 0 0,000 000 000 0 0,000 000
0,000000000000000000000000000000000000	0, 00000000000000000000000000000000000	0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,34087785375402 1,72432620765~01 0,000000000058+00 0,000000000058+00 0,000000000000000000000000000000000	0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,000000000000000000000000000000000000
ONTENTS OF RECORD 7 0.000000000000000 0.000000000000000 8.0030916955=01 0.0000000000000000000000000000000000	ONTENTS OF RECORD 8 3.34037785373+02 1.72432620763-01 0.00000000003+00 0.00000000003+00 0.0000000000	ONTENTS OF RECORD 9 0.0000000000000000 0.0000000000000000	ONTENTS OF RECORD 10 0.00000000000000000 0.00000000000000	ONTENTS OF RECORD 11 2.48758545655=02 3.34087785372=02 0.0000000005÷00 0.0000000005÷00 0.0000000005÷00 0.0000000005÷00	ONTENTS OF RECORD 12 3.34087785375-02 1.72432620765=01 0.00000000005*00 0.00000000005*00 0.0000000000
-1.7490310809E-02 7.9444065797E-01 0.0000000000E+00 0.000000000E+00 0.000000000E+00	C 000000000000000000000000000000000000	C 000000000000000000000000000000000000	C 0,00000000000000000000000000000000000	C 000000000000000000000000000000000000	C 000000000000000000000000000000000000
L.1195775537E+00 L.7490310309E-02 J.00000000E+00 0.00000000E+00	0.000000000000000000000000000000000000	<pre>. 000000000000000000000000000000000000</pre>	0,000000000000000000000000000000000000	0.000000000000000000000000000000000000	<pre>C. 300 0 0 0 0 0 0 E + 00 C. 300 0 900 0 0 0 E + 00 C. 340 8778537E - 02 C. 300 0 900 0 0 E + 00 D. 300 0 9 0 0 0 0 0 E + 00 D. 300 0 1 0 0 0 0 0 E + 00</pre>

1.105/938425E+00 •9.0856167517E-03	-9.0856167517E-03 8.0030916955E-01	$0 \cdot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	0.000000000000000000000000000000000000	0.000 000105~ 0.000 000105~
0.000000000000000000000000000000000000	0.000000000E+00	8.7134859387Ev01.		J.000 000105
0.0000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	7,7743978136E~01 0.6660099000E~00	0.010 000115+ 7.77430781365+ 0
0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	CONTENTS OF RECORD 1.4 0.0000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.010 61010]E*
0.0000000000000000000000000000000000000		0.000000000000000000000000000000000000	U + U U + U + U + U + U + U + U + U + U	U.049 44040 4884 488 4.695894629584 0.000 1364 4
0 • 0 0 0 0 0 0 0 0 0 E + 0 0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000 030 107E+1
0.000000000000000000000000000000000000	0 • 00000000000E+00	CONTENTS OF RECORD 15	0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.090 3901015*.°
	0.4300000000000000000000000000000000000	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000000000000000000000000000000000	0.000 0101036*5 0.000 0101036*5
0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,040 01000 05400 0,030 09600 05400
0.0000000000000000000000000000000000000	0.00000000000000000000000	CONTENTS: OF RECORD 1.6 0.00000000005400	2,4875854665E-02	0.030 000000000000000000000000000000000
	0.000000000000000000000000000000000000	$0 \cdot 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	3,340078537E ⁶ 02 0,00000000000	0.000 0000005e000 0.000 000005e00
2.4875854655E-02	3,3408778537E-02	$0 \cdot 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0,000000000000000000000000000000000000	0.000 000103E*0 0.000 000103E*0
0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	CONTENTS OF RECORD 17 0.00000000000000000000000000000000000	3,3408778537E=02	0,000 0000000E*C
			1.7243262076E-01 0.000000000E+00	0.000 01000 E+C) 0.000 01000 E+C)
3.3408778537E-02	I.72432620766-01		0+000000000000000000000000000000000000	0,000 000101E*:0
0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	CONTENTS OF RECORD 18 0.000000000000000	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 00010jE*02
0.00000000E+00	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000.000005e+c 0.000.000005e+c
0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0,000000000000000000000000000000000000	0,000000000000000000000000000000000000	0,000 ปกตามวั⊑∻ะ© ∵0,000 ปกมามวั⊑∻ะ©

105703843555-00	-0 18554675175.03	CONTENTS OF RECORD 19		
2.000000000000000000000000000000000000	9,000000000000000000000000000000000000	0,00000000000000000 2,77430781365=01	U, UVUUUUUUUUUUUUU 0, 00000000000000000000000	0,000 646463400 0,000 646469 0,000 066465460
0.00000000E+00			8,2430968761E-01	0.000 000010 E*00
	0. •••••••••• ••••	0.00000000000000000	0,00000000000000000	8.2438968761E+01
0.000000000E+00	0.000000000E+00	CONTENTS OF RECORD 20 0.00000000000000000	0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030 0301035900
0.000000000000000000000000000000000000	0,0000000000E+00		0 • 0 0 0 0 0 0 0 0 0 E + 0 0	0,000 000103E*00
	0,000000000000000000000000000000000000	$0 \cdot 0000000000000000000000000000000000$	0,000000000000000000000000000000000000	0.000 01010052000 0.000 010005200
0.000000000E+00	0,00000000000000	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.39178125095-02	0,000 000101E*60
		CONTENTS OF RECORD 21		
0.00000000E+00	0.000000000E+00		0,000000000000000000000000000000000000	2,4375054665E≂U2 3,3408773537⊭⇒U2.
0.00000000000000000 2.48758546556-02	0.0000000000E+00 3.34087785372-02			0.000 00000 000 000
0.000000000000000000000000000000000000	0.000000000000000000000			0.000 00000000000000000000000000000000
		CONTENTS OF RECORD 22		-
3.00000000E+00	0,0000000000000000000000000000000000000		0.0000000000000000	3.3408773537E=02
0.000000000000000000000000000000000000	0.000000000000000000000000000000000000		0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.7245252175E=UI J.000 090103E=00
3.3408778537E-02	I.7243262076E-01	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000 000100E*00
	0. • • • • • • • • • • • • • • • • • • •	0 • 000000000000€≈00	0.000000000000000000000000000000000000	0.000 010∩03Ę∻00
		CONTENTS: OF RECORD 23		
0.000000000000000000000000000000000000	0.000000000000000000000000000000000000		0,000000000000000000000000000000000000	J.030 090)03E∻00 J.040 000005÷00
0.00000000E+00	0.000000000E+00	$0 \cdot 0 0 0 0 0 0 0 0 0 0 0 = + 0 0$	0.0000000000000000000000000000000000000	4.6958916255E+U2
	0.0000000000E+00	4.69589062555-02	0 • 00 0 0 0 0 0 0 0 0 E + 0 0	0.000 000000 E*00
		0.0400000000000000000000000000000000000	0,200000000000000	J.OJJ 090104E∻00
		CONTENTS OF RECORD 24		
2 • 0 0 0 0 0 0 0 0 E + 0 0	0.000000000000000000000000000000000000			0.000 00000000000000000000000000000000
3.3309390000E+00	0.0000000000E+00			0.000 000000 0000
0.0000000000000000000000000000000000000	0.000000000000000000000000000000000000		0+000000000000000000000000000000000000	9.000 000000 000 E*00

· ,	000 0003005*00 - 000 0000005*00 - 000 000000000000000000000000000000000		000 0009005*00 000 0009095*00 000 0001005*00 000 010105*00 000 010105500 42681678015*00		
			0 0 1		
	0,000000000000000000000000000000000000	TRIX	0.000000000000000000000000000000000000		
• 	NTENTS: OF RECORD 25 0.000000000000000000 0.00000000000000	NE-∃LECTRON HAMILTONIAN MA	COLUMNS 1 TO 51 0.00000000000000000 0.000000000000000		
	-9.0856167517E-03 8.0030916955E-01 0.000000000000000 0.0000000000000000	TRANSFORMED C	3.5487182665E-01 +6.9745927313E+00 0.000000000E+00 0.000000000E+00 0.000000000E+00		
	10579384556+00 10579384556+00 100000006+00 100000006+00		1941106890E+01 5487182655E-01 000000E+00 0000000E+00 0000000E+00	· ·	

÷

.

-

972 NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM THOTRA = TRÁNSFORMATION OF TAO-ELECTRON INTEGRALS COMPLETE NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM CONTRA = 974

INTRA TEST DATA . INTEGRALS FOR ATOMIC OXYGEN (SCHAEFER AND HARRIS'S EXPONENTS). Will be found in the master (transformed) integral file starting at block 50

OSITIONS OF MAGNETIC DEVICES:

100 201					
IOVED AT WORD 164	IOVED AT Nord 0	IONED AT WORD 138	IONED AT Word O	IONED AT Mord 0	IONED AT Nord
POSIT BLOCK 2	POSIT BLOCK 1	POSIT BLOCK 2	POSIT BLOCK 50	POSIT BLOCK 53	P3S:T BL00K 20
TAPE NUMBER 3	TAPE 40MBER 4	TAPE NUMBER 5	TAPE NUMBER 6	LAPE NUMBER	:∧PE Num∂Er <mark>3</mark>

**** JOB COMPLETE * 1007 INSTRUCTIONS USED ****

- 235 -

APPENDIX VII

SECSØL. A PROGRAM FOR THE CONSTRUCTION AND SOLUTION OF THE SECULAR EQUATION IN THE

METHOD OF CONFIGURATION INTERACTION

This program computes the matrix elements of the secular equation using the methods described in chapters 7 and 8. The secular equation is solved using the QR-Algorithm and facilities are provided for computing and diagonalizing the first order density matrix if this is required. The program occupies about 1700 FØRTRAN V source cards and its storage requirements are approximately 115 blocks of compilation store and 115 blocks of execution store. In addition to the subprograms listed here SECSØL requires the routines ENTR, ERRØR, IPAR, QUIT, and WRITMX from Appendix III.

SECSØL uses two magnetic tapes and three disc areas which are assigned as follows:

VARIABLE NAME	VALUE = DEVICE No.	
MTDO1	Defined in	Private disc area of > 150 blocks.
	data	Contains results of current run.
MTDO2	Defined in	Master results tape.
	data	
MTD	3	Private disc area of 30 blocks. Contains
		specification of detors and projection matrix
		$\frac{T}{S\sigma}$.
IDISC	4	Private disc area of 3 blocks. Contains
		contents tables of MTD01, MTD02.

INTRA	Defined in	Master transformed integral tape-produced
	data	by the program INTRA.
MTD	7	Common disc area of 100 blocks

The line printer is device 0.

The data provided by the user is divided into six sections. Once the detors have been specified this information is written onto MTD (= 3) followed by the projection matrix, this data may be used in a later run but only the last specifications read are available.

Data specification for SECSØL

Section 1 :	Read data require	ed to compute matrix elements between detors.
Card 1	IWHERE, NØ	
	FØRMAT (215)	
	IWHERE =	1
	NØ {=	0 to suppress timing information 1 to obtain timing information
Card 2, 3	TITLE	
	FØRMAT (9A8/6A8)	· ·
	TITLE	is an array of 15 elements (120 characters)
		used to identify the run.
Card 4	MTDO1, MTDO2, NB	ASIS, NDET, NELEC, NFULL
	FØRMAT (615)	
	MTDO1 =	Device number of private disc area
	MTDO2 =	Device number of master results tape
	NBASIS =	Number of basis orbitals
	NDET =	Number of detors
	NELEC =	Number of electrons
	NFULL =	Number of spin-orbitals frozen.

,

- 236 -

```
NØNO
Card 5
                 FØRMAT (15)
                              { = 0 If the detors have to be specified
 = 1 If the detors were specified in the
    previous run
                 NØNO
Card 6
                 F
                 FØRMAT (9A8)
(omitted if
N \not O N O = 1
                 F
                                     is an array which defines the lineprinter
                                     format for the printing of the detor
                                     specifications. It has the form:
                                        (('b', 18, mX, nI3))
                                    or ((1Hb, I8, mX, nI3)),
                                    where b is a blank, n = numerical value
                                    of NBASIS, and m = \frac{1}{2} (112 - 3 n)
                                    Variations are possible
               (IDET(I, J,), J = 1, NELEC)
Card 7(I)
              FØRMAT (1X, 3212)
(Omitted if
N \not O N O = 1)
                 IDET(I, J)
                                    specifies the Jth spin-orbital of the Ith
                                    detor. These cards, of which there are NDET,
                                    will normally be these output by the program
                                    GENDET.
                                           (1 \leq I \leq NDET).
           : Computation of G(k) = \langle D_{\mu} | \mathfrak{h} | D_{\nu} \rangle, where
Section 2
                 k = (\mu(\mu - 1))/2 + \nu
                                               and \mu \geqslant \nu . The
```

transformed integrals must be on MTDO1 at word 0, block 1.

Card 1	IWHERE, NØ	•	
	FØRMAT (215)		
	IWHERE =	2	
	NØ :	see section 1 card 1	
Section 3 :	Compute H and so	plve $(\underline{H}-\underline{EI}) \underline{C} = 0$	
Card 1	IWHERE, NØ		
	FØRMAT (215)		
	IWHERE =	3	
	NØ - :	see section 1 card 1	
Card 2	NCØNF, NØNO		
	FØRMAT (215)		
	NCØNF =	number of codetors	
	NØNO =	number of non-zero elements in the	
		projection matrix $\underline{T}_{S\sigma}$	
Card 3	IFILE	`	
	FØRHAT (15)		
	=	O If the projection matrix has to be defined	
	IFILE =	1 If the projection matrix was defined in the	
		previous run	
Card 4(K)	I, J, T(I, J)		
(Omitted if	FØRMAT (215, F10	•2)	
IFILE = 1)			
	T(I, J)	is the I, J-th element of the projection	
		matrix $\underline{T}_{S}\sigma$. It should be non-zero and	
		written as an integer in real form, e.g.	
		1.00 The program normalizes the columns	
		of $\frac{T}{s\sigma}$	
		$(1 \leq K \leq N \not O N O)$	

•

Card 5	NCEN		
·	FØRMAT (15)		
	NCEN	=	number of nuclei
Card 6(I)	CH(I), X(I),	Y(I), Z(I)
(Omitted if	FØRMAT (1P4E	20.	10)
NCEN = 1)			-
	СН(I)	a	Charge on nucleus I (a.u.)
	x(I)		
	Y(I)		The cartesian co-ordinates (x,y,z) of the
	Z(I)		I-th nucleus.
)		$(2 \leq I \leq NCEN)$
Section 4 ;	Natural spin o	orb:	ital analysis of a specified energy level.
Card 1	IWHERE, NØ		
	Førmat (215)	م.	
	IWHERE	=	4 `
	NO	:	see section 1 card 1
Card 2	ICØL		
	FØRMAT (15)		
	ICØL		defines the energy level for which the
			analysis is required
			(1 ≤ ICØL ≤ NCØNF)
Card 3	IFILE, JFILE		
	FØRMAT (215)		
	IFILE	=	3
	JFILE	=	4
Card 4	(DN(NENTRY, J)), :	J = 1, 4)
	FØRMAT (4A8)		ν.
			This card contains 32 characters used to
			identify the NSØ analysis, NENTRY is known
	,		to the program.

.

Section 5	Entries to th	e subprogram TDFILE: the data is divided into
	five sections	•
Card 1	IWHERE, NØ	
	FØRMAT (215)	
	IWHERE	= 5
	NO	: see section 1 card 1
This card prec	edes the cards	from one of the following subsections
A : Copy tra	nsformed integ	rals onto MTDO1 and MTDO2 from INTRA
Card 2A	IFILE, JFILE	
	FØRMAT (215)	
	IFILE	= 1,
	JFILE	= 1
Card 3A	IENTRY, NXBLØ	3
	FØRMAT (215)	
	IENTRY	= 2
	NXBLØC	= number of block at which transformed integral
		file will begin on MTDO2
Card 4A	INTRA, IGØ, N	BLØC
	FØRMAT (315)	
	INTRA	= device number for Master transformed integral
		tape.
	ſ	= 0 To initialize the contents tables of MTDO
	Tad	and MTDO2
	IGØ	= 1 If the contents table of MTDO2 contains
		entries
	NBLØC	= number of block at which transformed integral
		file begins on INTRA.
		· · · · · · · · · · · · · · · · · · ·

•

1

·

Card	5A	(DN(1, K), K	= 1	, 4)
		FØRMAT (4A8)		
				This card contains 32 characters used to
				identify the integrals.
в:	Copy sele	ected entries	fro	m MTDO2 onto MTDO1
Card	2 B	IFILE, JFILE		
		FØRMAT (215)		
		IFILE	=	1
		JFILE	=	0
Card	3B	IENTRY, NXBL	øс	
		FØRMAT (215)		
		IENTRY	=	number of entries to be copied from MTDO2
				onto MTDO1 and must <u>always</u> include the
			, e	last entry on MTD02.
		NXBLØC		0
Card	4 B	(LD(I), I =	1, II	ENTRY)
		FØRMAT (1615)	
		D(I)		is the subscript of an entry in the contents
				table of MTDO2. The records corresponding to
				this entry are copied onto MTD01.
				Continue on successive cards if IENTRY > 16)
с:	Read data	a into core f	rom 1	1TDO1
Card	20	IFILE, JFILE		
		FØRMAT (215)		
		IFILE	3	2
		JFILE	=	0
Card	3C	IENTRY		
		FØRMAT (15)		

.

```
IENTRY
                               is the subscript of an entry in the contents
                               table of MTDO1. The records corresponding
                               to this entry will be read into the
                               appropriate area of core.
D : Write results onto MTD01
              IFILE, JFILE
              FØRMAT (215)
              IFILE
                           = 3
                              2 If matrix elements between detors are to
                              be transferred
```

= 3 If the solution of the secular equation is to be transferred
= 4 If the first order density matrix is to JFILE be transferred

(DN(NENTRY, J), J = 1, 4)Card 3D

FØRMAT (4A8)

Card 2D

This card contains 32 characters used to identify the entry.

E : Update MTDO2 from MTDO1, entries on MTDO1, not already on MTDO2 will be added to MTDO2.

Card	2E		IFILE, JFILE	1	
			Førmat (215)	1	
			IFILE	#	4
			JFILE	=	0
Secti	ion 6	:	End of job		

Card 1 IWHERE, NØ FØRMAT (215) 1 **=** 6 IWHERE

- 243 -

NO

: see section 1 card 1

Restrictions

 $1 \leq$ NBASIS \leq 30 $1 \leq$ NDET \leq 1201 < NELEC \leq 32 $0 \leq$ NFULL \leq 8 $1 \leq$ NCØNF \leq 78 $1 \leq$ NCEN \leq 20

The number of entries in the contents table of MTDO2 must not exceed 158, and the number in that of MTDO1 must not exceed 10.

Error Messages

Checks are made to see that the data does not violate the limits of the program. Certain violations give rise to the message ERR $oldsymbol{R}$ n, where n is a number in the list below:

ERRØR n	CAUSE								
1	NBASIS > 30								
2	NELEC > 32								
3	NDET > 120								
4	NFULL > 8								
5	NCØNF > 78								

Several other error conditions can arise which will terminate execution. In these circumstances the error messages are self-explanatory.

The following actions may cause termination as the subroutine TDFILE vill interpret them as errors:

(i) attempting to read integrals into core,

- (ii) attempting to read the first order density matrix into core,
- (iii) attempting to read the 'next new record' into core

(iv) requesting more records from MTDO2 than are actually present.

```
*FORTRAN LIB 6,19,302
C....MAIN PROGRAM FOR SECSOL - CONSTRUCTION AND SOLUTION OF THE SECULAR
C.....EQUATION WITH AN OPTIONAL NATURAL SPIN-ORBITAL ANALYSIS.
      COMMON /SECEQN/ AA(33767), ICR, LP, MTD, NO, ANYO, ANY1, ANY2, ANY3, ANY4,
     1GF, ICOL, IDISC, IFILE, JFILE, LINK, MTD01, MTD02, NBASIS, NCONF, ND2T, NEL2C
     2, NF, NFULL, NSQRD, NXBLOC
      EQUIVALENCE (NXBLOC, IWHERE)
C....DEFINE DEVICE NUMBERS.
C....LP = LINE PRINTER,
C....ICR = CARD READER,
C....MTD = WORKFILE.
C....IDISC=CONTENTS TABLES FILE.
      CLEAR ICR, LP
     MTD=3
      IDISC=4
    1 READ(ICR, 2) IWHERE, NO
    2 FORMAT(215)
      GO TO (3,4,5,6,7,8), IWHERE
C.....READ DATA FOR COMPUTING MATRIX ELEMENTS BETWEEN DETORS.
    3 CALL SECDAT(1)
      GO TO 1
C....COMPUTE MATRIX ELEMENTS BETWEEN DETORS.
    4 MTD=7
      CALL PASONE
      CALL MAXCON
      CALL PASTWO
      CALL HPASS
      MTD=3
      GO TO 1
C....COMPUTE H-MATRIX AND SOLVE (H-E*I)*C =0.
    5 CALL SECSOL
      GO TO 1
C....PERFORM NATURAL SPIN ORBITAL ANALYSIS.
    6 CALL NATORB
      GO TO 1
C....CORE/PERIPHERAL TRANSFER - MAKE SURE DATA IS CORRECT.
    7 CALL TDFILE
      GO TO 1
C....JOB COMPLETE.
    8 CALL TIME (ANYO)
      WRITE (LP, 9) ANYO
    9 FORMAT('0',33X, **** JOB COMPLETE - TIME USED =',F10.5, SECONDS *
     1***')
      STOP
      END
*FORTRAN LIB
      SUBROUTINE ADDNRE(H,N,M,ICR,LP)
C....ADDS NUCLEAR REPULSION ENERGY TO SOLUTION OF SECULAR EQUATION.
C....VERSION 2. MAXIMUM NUMBER OF NUCLEI IS TWENTY.
      DIMENSION H(N,N),X(20),Y(20),Z(20),CH(20)
      SQRD(X,I,J)=(X(I)-X(J))**2
      READ(ICR,1) NCEN
    1 FORMAT(15)
      IF (20-NCLN) 10,2,2
    2 IF(NCLN-1) 9,9,3
    3 READ(ICR,4) (CH(I),X(I),Y(I),Z(I),I=1,NCEN)
    4 FCRMAT (1P4220.10)
      WRITE(LP,5) NCEN, (I, CH(I), X(I), Y(I), Z(I), I=1, NCEN)
    5 FORMAT ('0', 39X, 'GECMETRY OF MOLECULE.', 13, ' NUCLEI AS FOLLOWS'/' '
```

```
1,24X, NUCLEUS NUCLEAR CHARGE
                                         X CO-ORDINATE Y CO-ORDINATE
                                                                              7.
     2 CO-ORDINATE / ( ,27X,12,1PE19.7,1P3E16.6))
      CLEAR ERN
      MCEN=NCEN-1
      DO 6 I=1,MCEN
      K=I+1
      DO 6 J=K,NCEN
      ERN=ERN+CH(I)*CH(J)/SQRT(SQRD(X,I,J)+SQRD(Y,I,J)+SQRD(Z,I,J))
    6 CONTINUE
      WRITE(LP,7) ERN
    7 FORMAT('0', 38X, 'NUCLEAR REPULSION ENERGY ='.1PE17.10)
      DO 8 I=1,M
      H(I,I)=H(I,I)+ERN
    8 CONTINUE
    9 RETURN
   10 WRITE(LP,11) NCEN
   11 FORMAT ('0', 42X, 'NCEN=', 15, '. NCEN MUST NOT EXCEED 20')
      CALL BEXIT
      STOP
      END
*FORTRAN LIB
      SUBROUTINE EAO3A(A, B, N, ND, EPS)
C.....REPLACES HARWELL LIBRARY VERSION OF JACOBI'S METHOD BY AN
C....INTERFACE WITH THE QR-ALGORITHM.
      DIMENSION A(ND, ND), B(ND, ND), D(78), E(78)
      EPS=2.0**(-35)
      TOL=2.0**(-349)
      CLEAR LP
X
      DISPLAY(LP,20)/EPS,TOL
      CALL TRED2(N, TOL, ND, A, B, D, E)
      CALL TQL2(N, EPS, ND, B, D, E, NN)
C....IF NN, NE, O TQL2 HAS FAILED TO CONVERGE.
      IF(NN) 1,3,1
    1 WRITE(LP,2)
2 FORMAT(0',120('*')/' *',118X, **/' *',47X, TQL2 FAILED TO CONVERG
1E',48X, **/' *',118X, **/' ',120('*'))
C....ENTER EIGENVALUES IN DIAGONAL OF A.
    3 DO 4 I=1,N
      A(I,I)=D(I)
    4 CONTINUE
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE FODMA4
C....COMPUTES FIRST ORDER DENSITY MATRIX. VERSION 4. 03/05/71.
C....ASSUMES BASIS SPIN ORBITALS ARE ORTHONORMAL.
      COMMON/SECEON/T(120,73), AA(60,60), C(120), JD(1132,2), C, GAMMA(60,60)
     1, IDET(120, 32), ID(843), KDET(32), EV(78, 78), SP(3923), ICR, LF, NTD, NO,
     2ANYO, ANY1, ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTDO1,
     3MTD02, NBASIS, NCONF, NDET, NELEC, NF, NFULL, NSQRD, NXBLOC
      EQUIVALENCE (SP, FACTOR), (SP(2), I), (SP(3), IORE), (SP(4), IR), (SP(5),
     1IS), (SP(6), I1), (SP(7), I2), (SP(8), J), (SP(0), JORB), (SP(10), K),
     2(SP(11),L)
      CALL ENTR( FODMA4, NO)
х
      WRITE(LP,28) ((IDET(I,J),J=1,NELEC),I=1,NDET)
Х
      DISPLAY(LP,4) /NF,NFULL,NELSC,NDET
      CLEAR LINK
      NBASIS=NBASIS+NBASIS
```

```
C....IF DETCRS K AND L DIFFER BY TWO OR MORE SPIN-CRBITALS THEN
C....THE COFACTOR OF EVERY ELEMENT IN THE INTEGRAL OF THEIR PRODUCT IS
C....ZERO. CONSTRUCT A TABLE CONTAINING THE INDEX (IS) OF PAIRS THAT
C....DIFFER BY ONLY 1 SPIN-ORBITAL.
      DO 12 K=2,NDET
      IR=K-1
      I1=(K*IR)/2
      DO 11 L=1,IR
      CLEAR 12
      IS=I1+L
      DO 1 I=NF, NELEC
      KDET(I)=IDET(L,I)
    1 CONTINUE
      DO 5 I=NF, NELEC
      IF(IDET(K,I)-KDET(I)) 2,5,2
    2 DO 3 J=NF, NELEC
      IF(IDET(K,I)-KDET(J)) 3,4,3
    3 CONTINUE
      GO TO 5
    4 IORB=KDET(I)
      KDET(I)=KDET(J)
      KDET(J)=IORB
    5 CONTINUE
      DO 8 I=NF, NELEC
      IF(IDET(K,I)-KDET(I)) 6,8,6
    6 I2=I2+1
      IF(I2-1) 7,7,11
    7 ICRB=I
      JORB=KDET(I)
    3 CONTINUE
      DO 9 I=NF, NELEC
      J = I
      IF(IDET(L,I)-JCRB) 9,10,9
    9 CONTINUE
   10 LINK=LINK+1
      ID(LINK)=IS
      JD(LINK,1)=IORB
      JD(LINK,2)=J
   11 CONTINUE
   12 CONTINUE
X
      WRITE(LP,13) (ID(I),I=1,LINK)
  13 FORMAT('0',51X, DIFFERENCE TABLES'/(',12110))
х
      WRITE(LP,14) ((JD(I,J),J=1,2),I=1,LINK)
FORMAT( /( ,12( (,12, ,,12, )
х
  14 FORMAT(
Х
                                                \left( \right) \right) 
      CLEAR GAMMA
C....CCMPUTE FIRST ORDER DENSITY MATRIX.
Х
      WRITE(LP,23) ((IDET(I,J),J=1,NELEC),I=1,NDET)
      DO 23 K=1,NDET
      DISPLAY(LP,5) K
      IF(C(K)) 141,23,141
  141 DO 22 L=1,NDET
      IF(C(L)) 142,22,142
  142 I2=K-L
      IF(I2) 17,15,17
C....DETORS K AND L ARE IDENTICAL.
   15 FACTOR=C(K) * C(K)
      DO 16 I=1,NELEC
      I1=IDET(K,I)
      GAMMA(I1, I1)=GAMMA(I1, I1)+FACTOR
   16 CONTINUE
```

```
GO TO 22
C....DETORS K AND L ARE DIFFERENT - IF THEIR INDEX (IS) DOES NOT
C....APPEAR IN ID THEY DIFFER BY 2 OR MORE SPIN-ORBITALS.
   17 IF(LINK.EQ.0) GO TO 22
      IS=(MAXO(K,L)*(MAXO(K,L)-1))/2+MINO(K,L)
      DO 18 I=1, LINK
      J=I
      IF(IS-ID(I)) 18,19,18
   18 CONTINUE
      GO TO 22
   19 IORB=JD(J,1)
      JCRB=JD(J,2)
      IF(12) 20,21,21
   20 I1=IORB
      IORB=JORB
      JORB=11
   21 I=IDET(K, IORB)
      J=IDET(L,JORB)
      GAMMA(J,I)=GAMMA(J,I)+C(K)*C(L)*(-1.0)**(IORB+JORB)
   22 CONTINUE
   23 CONTINUE
C....CHECK SYMMETRY OF GAMMA
      DO 27 I=1,NBASIS
      I1 = I + 1
      DO 26 J=I1,NBASIS
      FACTOR=ABS (GAMMA(I,J)-GAMMA(J,I))
      IF(1.0E-10-FACTOR) 24,26,26
   24 WRITE(LP,25) I,J,J,I,FACTOR
                ,35X, GALMA(',12,',',12,').NE.GAMMA(',12,',',12,'). DIFF
   25 FORMAT(
     1ERENCE= ,1PE9.2)
   26 CONTINUE
   27 CONTINUE
X 23 FORMAT(( ',12X,32I3))
      CALL QUIT ( FODMA4 , NO)
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE HPASS
C....COMPUTES ONE-ELECTRON CONTRIBUTION TO MATRIX ELEMENTS.
C....READ GNE-ELECTRON HAMILTONIAN MATRIX.
      CCHAMON / SECEON/ G(7260), ERI(900), IDET(120, 32), IDIFF(3073, 7),
     11DUM(261), ANY1, ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTDC1
     2, MTDO2, NBASIS, NCONF, NDET, NELEC, NF, NFULL, NSQRD, NXBLOC
      EQUIVALENCE (IDUM(149), I), (IDUM(150), J), (IDUM(151), FSUM),
     1(IDUM(152),L),(IDUM(153),KL),(IDUM(154),L1),(IDUM(155),LL1),
     2(IDUM(156),LM),(IDUM(157),KP),(ANY3,LNO),(ANY4,LU),(IDUM(259),MTD)
      DIMENSION H(30,30)
      EQUIVALENCE (ERI,H)
      CALL ENTR( HPASS, IDUM(260))
      READ (MTDO1) ((H(I,J), J=1, NBASIS), I=1, NBASIS)
      CLEAR FSUM
C.....COMPUTE FROZEN CORE CONTRIBUTION TO DIAGONAL ELEMENTS.
      IF(NFULL) 3,3,1
    1 NF=NFULL/2
      WRITE (IDUM (258),11)
х
      DG 2 I=1,NF
      WRITE(IDUM(258),12) I,I,H(I,I)
Х
      FSUM=FSUM+H(I,I)
    2 CONTINUE
```

```
FSUM=2.0*FSUM
    3 NF=NFULL+1
C....COMPUTE DIAGONAL ELEMENTS.
      DO 5 L=1,NDET
       KL=(L*(L+1))/2
       DO 4 L1=NF.NELEC
       LL1=(IDET(L,L1)+1)/2
      G(KL)=G(KL)+H(LL1,LL1)
    4 CONTINUE
       G(KL)=G(KL)+FSUM+GF
    5 CONTINUE
C....COMPUTE OFF-DIAGONAL ELEMENTS - IF DETORS L AND K DIFFER BY
C....MORE THAN ONE SPIN ORBITAL THE ONE ELECTRON CONTRIBUTION IS ZERC.
       LNO=3073
       DO 13 LU=1,ICOL
       IF(ICOL-1) 51,53,51
   51 READ (MTD) IDIFF
      IF(LU-ICOL) 54,52,54
   52 IF(LINK) 53,13,53
   53 LNO=LINK
   54 DO 9 L=1,LNO
      KL=IDIFF(L,7)
       IF(IDIFF(L,1)-1) 6,6,8
C....DETORS L AND K DIFFER BY LM IN L AND KP IN K.
    6 LM=IDIFF(L,3)
      KP=IDIFF(L,4)
       IF(IPAR(LM)-IPAR(KP)) 8.7.8
    7 G(KL)=G(KL)+H((LM+1)/2,(KP+1)/2)
C.....NULTIPLY BY APPROPRIATE PARITY FACTOR.
    8 G(KL) = IDIFF(L, 2) * G(KL)
    9 CONTINUE
х
      DISPLAY(IDUM(258),12) /FSUM
х
      WRITE(IDUM(258),10) (KL,G(KL),KL=1,(NDET*(NDET+1))/2)
X 10 FORMAT(( G(,14, )= ,1PE17.10))
X 11 FORMAT( 0,50X, CONTRIBUTIONS TO FSUM //)
X 12 FORMAT( ,47X, H(,12., .12.)= .1PE17.
                 ,47X, H(,12,, ,12,)=,1PE17.10)
   13 CONTINUE
      REWIND MTD
       CALL QUIT( HPASS, IDUM(260))
      RETURN
      END
*FORTRAN LIB
      SUBROUTINE MAXCON
C....BRINGS DETCRS INTO MAXIMUM COINCIDENCE , DETERMINES AND IDENTIFIES
C....THE SPIN-ORBITALS BY WHICH EACH PAIR OF DETORS DIFFER,
C....ONLY OFF-DIAGONAL ELEMENTS ARE TREATED AND RESULTS AND STORED ONLY
C....IF TWO DETORS DIFFER BY NOT MORE THAN TWO SPIN-ORBITALS.
      COMMON /SECEON/ G(7260), ERI (900), IDET (120, 32), IDIFF (3073, 7),
     11DUM(261), ANY1, ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTDO1
     2, MTEO2, NBASIS, NCCNF, NDET, NELEC, NF, NFULL, NSQRD, IMBLCC
      DIMENSION KDET(32)
      EQUIVALENCE (IDUM(109), KDET), (IDUM(142), L), (IDUM(143), LM1),
     1(IDUM(144),K),(IDUM(145),IPERM),(IDUM(146),I),(IDUM(147),ITEMP),
     2(IDUM(148), IDC), (IDUM(175), LIN), (IDUM(176), J), (IDUM(259), MTD)
      IF (NDET.EQ.1) RETURN
CALL ENTR ( MAXCON , IDUM (260) )
      CLEAR IDIFF, LINK, LIN
      ICOL=1
      DO 11 L=2,NDET
```

IM1=L-1 DO 10 K=1,LM1 CLEAR IPERM, IDC LINK=(L*LM1)/2+KDO 1 I=1, NELEC KDET(I)=IDET(K,I) 1 CONTINUE DO 5 I=NF, NELEC IF(IDET(L, I)-KDET(I)) 2,5,2 2 DC 3 J=NF, NELLIC IF(IDET(L,I)-KDET(J)) 3,4,3 **3 CONTINUE** GC TO 5 4 ITEMP=KDET(I) KDET(I)=KDET(J) KDET(J)=ITEMP IPERM=IPERM+1 5 CONTINUE **J=**2 LIN=LIN+1 DO 3 I=NF, NELEC IF(IDET(L,I)-KDET(I)) 6,8,6 6 IDC=IDC+1 IF(2-IDC) 9,7,7 7 J=J+1 IDIFF(LIN,J)=IDET(L,I) J=J+1 IDIFF(LIN,J)=KDET(I) 8 CONTINUE IDIFF(LIN, 2)=(-1)**IPERM IDIFF(LIN,1)=IDC IDIFF(LIN,7)=LINK IF(LIN-3073) 10,81,10 81 ICOL=ICOL+1 WRITE (MTD) IDIFF CLEAR LIN, IDIFF GO TO 10 9 LIN=LIN-1 10 CONTINUE 11 CONTINUE IF(ICOL-1) 12,14,12 12 IF(LIN) 13,14,13 13 WRITE(MTD) IDIFF ICOL=ICOL+1 14 REVINC MTD LINK=LIN WRITE(IDUM(253),15) (I,(IDIFF(I,J),J=1,7),I=1,LINK) 15 FORMAT(',51K, CONTENTS OF IDIFF / (',45X, 'I=',14,3X,713)) Х X I=3073*(ICOL-1)+LIN WRITZ(LP,16) I 16 FORMAT(, 26X, NUMBER OF NON-ZERO OFF-DIAGONAL MATRIX ELEMENTS BE 1TWEEN DETORS=,15) CALL QUIT (MAXCON , IDUM (260)) RETURN END *FORTRAN LIB SUBROUTINE MEMULT(A, B, C, IP, IQ, IR, IA, IB, IC)

C....PRODUCT OF MATRICES A AND B STORED IN C. DIMENSION A(IA,IQ),B(IB,IR),C(IC,IR)

DO 1 I=1, IP DO 1 J=1,IR C(I,J)=0.0 DO 1 K=1,IQ C(I,J)=C(I,J)+A(I,K)*B(K,J)1 CONTINUE RETURN END *FORTRAN LIB SUBROUTINE NATORB C....CONTROL ROUTINE FOR NATURAL SPIN ORBITAL ANALYSIS. CCNMON/SECEQN/T(120,78), AA(60,60), C(120), JD(1182,2), D, GAMMA(60,60) 1, IDET (120, 32), ID (343), KDET (32), EV (78, 78), SP (3923), ICR, LP, MTD, NO, 2ANYO, ANY1, ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTDO1, 3MTD02, NBASIS, NCONF, NDET, NELEC, NF, NFULL, NSQRD, NXBLOC EQUIVALENCE (SP(1), I), (SP(2), J), (SP(3), K), (SP(4), L) CALL ENTR (NATORB , NO) C....READ DATA FROM DEVICE MTD. READ(MTD) ((IDET(I,J),J=1,NELEC),I=1,NDET) READ(MTD)((T(I,J),J=1,NCONF),I=1,NDET) REWIND MTD C....COMPUTE COEFFICIENTS OF INDIVIDUAL DETERMINANTS FOR LEVEL ICOL OF C....THIS STATE. CLEAR C READ(ICR,12) ICOL WRITE(LF,13) ICOL DO 11 I=1,NDET DO 1 J=1,NCONF X DISPLAY(LP,10) /I,J,T(I,J),ICOL,EV(J,ICOL) C(I)=C(I)+T(I,J)*EV(J,ICOL)1 CONTINUE X DISPLAY(LP,10) /I,C(I) 11 CONTINUE C....COMPUTE FIRST ORDER DENSITY MATRIX - GAMMA-MATRIX. WRITE(LP,14) WRITE(LP,15) (I,C(I),I=1,NDET) CLEAR GAMMA CALL FODMA4 C....WRITE FIRST ORDER DENSITY MATRIX ONTO MTDO1. CALL TDFILE C....BIGIN ANALYSIS. SINCE THE BASIS ORBITALS ARE ORTHONORMAL THE C SOLUTION TO THE NSO EQUATIONS IS THE UNITARY MATRIX WHICH C....DIAGONALIZES GAMMA. CALL EAO 3A (GAMMA, AA, NBASIS, 60, GF) C THE OCCUPATION NUMBERS ARE THE DIAGONAL ELEMENTS OF GAMMA, A IS C....THE TRANSFORMATION MATRIX. WRITE(LP,2) 2 FORMAT (0 , 40X, RESULTS OF NATURAL SPIN ORBITAL ANALYSIS) CLEAR GF DO 5 I=1,NBASIS,5 J=I+4IF(J-NBASIS) 4,4,3 3 J=NBASIS 4 WRITE(LP,6) I,J WRITE(LP,7) (GAMMA(K,K),K=I,J) WRITE(LF,8) I,J DO 5 K=1,NBASIS WRITE(LP,7) (AA(K,L),L=I,J) 5 CONTINUE

```
6 FORMAT('0',40X, OCCUPATION NUMBERS OF ORBITALS',13, TO ',12/'')
7 FORMAT('',1P5E24,10)
    7 FORMAT( ',1P5E24.10)
3 FORMAT( 0',41X, TRANSFORMATION MATRIX COLUMNS',13, TO ',12/ ')
       DO 9 I=1,NBASIS
      GF=GF+GAMLA(I,I)
    9 CONTINUE
      WRITZ(LP,10) GF,NELEC
   10 FORMAT ('B', 33X, SUM OF OCCUPATION NUMBERS = ,1PE17.10/ ,44X, NUM
     1BER OF ELECTRONS = ,13)
   12 FORMAT(15)
   14 FORMAT( ',40X, COEFFICIENTS CF INDIVIDUAL DETERMINANTS / ')
15 FORMAT(( ',4(6X, C( .13. )= 10E17 10))
       CALL QUIT ( NATORB , NO)
       RETURN
       END
*FORTRAN LIB
       SUBROUTINE PASONE
C....COMPUTES ELECTRON-ELECTRON INTERACTION BETWEEN FROZEN CORE
C....ELECTRONS. THIS IS ZERO IF NFULL IS ZERO.
       CCMMACN / SECEQN/ G(7260), ERI(900), IDET(120, 32), IDIFF(3073,7),
     11DUM(261), ANY1, ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTDO1
      2, MTD02, NBASIS, NCONF, NDET, NELEC, NF, NFULL, NSQRD, NXBLOC
      DIMENSION KEEP(40,3)
      EQUIVALENCE (IDUM, KEEP), (IDUM(121), IC), (IDUM(122), L), (IDUM(123), K)
     1,(IDUM(124),LM1),(IEUM(125),L2),(IDUM(126),K1),(IDUM(127),K2),
      2(IDUM(128), IREC), (IDUM(129), J), (IDUM(130), ICCUNT), (IDUM(131), L1),
      3(IDUM(132), ICC), (IDUM(259), MTD)
       CALL ENTR ( PASONE, IDUM (260))
       CLEAR GF
       IF(NFULL) 11,11,1
    1 NSORD=NBASIS*NBASIS
       CLEAR IC
      DO 2 L=2,NFULL
      LM1=L-1
      L1 = (L+1)/2
      L2=(L1-1)*NBASIS
      IC=IC+1
      KEEP(IC,1)=L
      KEEP(IC,2)=L
      KEEP(IC, 3) = L1 + L2
      DO 2 K=1,LM1
      K1=(K+1)/2
      IC=IC+1
      KLEP(IC,1)=L
      KEEP(IC,2)=K
      KEEP(IC, 3)=L2+K1
Х
      WRITE(IDUM(258),12) L,K
Х
      WRITE(IDUM(258),13) ((KEEP(IREC,J),J=1,3),IREC=1,IC)
    2 CONTINUE
      K2=KEEP(1,3)
      DO 3 IREC=2,IC
      K2=MANO(K2,KEEP(IREC,3))
    3 CONTINUE
х
      DISPLAY /K2
      DO 10 IREC=1,K2
      REAU(MTD01) (ERI(J),J=1,NSQRD)
Х
      WRITE(IDUM(258),14) IREC
Х
      WRITE (IDUM (253), 15) (ERI (J), J=1, NSQRD)
```

```
DO 9 ICC=1,IC
       IF(IREC-KEEP(ICC, 3)) 9,4,9
     4 IF(KEEP(ICC,1)-KEEP(ICC,2)) 7,5,7
     5 IM1=KEEP(ICC,1)-1
      WRITE(IDUM(258),16)
х
      DO 6 K=1, LMI
      K1 = (K+1)/2
      GF=GF+ERI(NBASIS*(K1-1)+K1)
Х
      WRITE(IDUM(258),17) NBASIS*(K1-1)+K1,ERI(NBASIS*(K1-1)+K1)
    6 CONTINUE
      GO TO 9
     7 IF(IPAR(KEEP(ICC,1))-IPAR(KEEP(ICC,2))) 9,8,9
    8 L1=(KEEP(ICC,1)+1)/2
х
      WRITE(IDUM(258),16)
      K1 = (KEEP(ICC, 2) + 1)/2
       GF=GF-ERI(NBASIS*(K1-1)+L1)
Х
      WRITE(IDUM(258),17) NBASIS*(K1-1)+L1,ERI(NBASIS*(K1-1)+L1)
    9 CONTINUE
   10 CONTINUE
      REWIND MTDO1
X 12 FORMAT(0,44X, CONTENTS OF KEEP FOR L = ,12, ,K = ,12/)
X 13 FORMAT(( ,45X,3110))
x 13 FORMAT(( ,45X,3110))
X 14 FORMAT(( ,45X, 3110))
X 15 FORMAT(( ,1P5E24.10))
X 16 POPULATION ( ,1P5E24.10))
X 15 FORMAT(( ,1P5E24.10))
X 16 FORMAT( 0 ,50X, CONTRIBUTIONS TO GF /)
X 17 FORMAT( ,47X, ERI( ,13, )= ,1PE17.10)
       RETURN
       END
*FORTRAN LIB
       SUBROUTINE PASTWO
C....COMPUTES CORE-VALENCE AND VALENCE-VALENCE ELECTRON INTERACTION
C....CONTRIBUTIONS TO MATRIX ELEMENTS.
       CORMON /SECEON/ G(7260), ERI(900), IDET(120, 32), IDIFF(3073,7),
      1IDUM (261), ANY1, ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTD01
      2,MTE02,NBASIS,NCONF,NDET,NELEC,NF,NFULL,NSQRD,NXBLOC
       EQUIVALENCE (IDUM(1), I), (IDUM(2), J), (IDUM(3), L), (IDUM(4), KL),
      1(IDUM(5),L1),(IDUM(6),L1M1),(IDUM(7),L2),(IDUM(3),LL2),
      2(IDUM(9),LVAL),(IDUM(10),LM),(IDUM(11),KP),(IDUM(12),LN),
      3(IDUM(13),KQ),(IDUM(179),LI),(ANY3,LNO),(ANY4,LU),(IDUM(259),MTD)
Х
      EQUIVALENCE (IDUM(258), LP)
       CALL ENTR( PASTWO , IDUM(260))
       IF (NELEC.EQ.NFULL) GO TO 331
       CLEAR G
      NXBLOC=NF
       IF(NF.EQ.1) NXBLOC=2
       DO 37 I=1,NBASIS
      DC 37 J=1,NBASIS
Х
      WRITE(LP, 30) I,J
      READ (MTEO1) (ERI(L), L=1, NSQRD)
Х
      WRITE(LP,40) (ERI(L), L=1, NSQRD)
C.... DIAGONAL ELEMENTS.
       IF(I-J) 6,1,6
C....(II/ ) TYPE INTEGRALS.
    1 DO 5 L=1,NDET
      KL=(L*(L+1))/2
C....SUM OVER VALENCE ELECTRONS.
      DO 4 L1=NXBLOC, NELEC
      IF(I-(IDET(L,L1)+1)/2) 4,2,4
```

```
2 L1M1=L1-1
C.....SUM OVER CORE AND VALENCE ELECTRONS.
      DO 3 L2=1,L1M1
      LL2=(IDET(L,L2)+1)/2
      G(KL)=G(KL)+ERI(NBASIS*(LL2-1)+LL2)
      WRITE(LP,42) NBASIS*(LL2-1)+LL2, ERI(NBASIS*(LL2-1)+LL2)
х
    3 CONTINUE
х
      WRITE(LP,43) KL,G(KL)
    4 CONTINUE
    5 CONTINUE
      GO TO 13
C....(I / I) TYPE INTEGRALS.
    6 DO 12 L=1,NDET
      KL=(L*(L+1))/2
C.....SUM OVER VALENCE ELECTRONS.
      DO 11 L1=NXBLOC, NELEC
      IF(I-(IDBT(L,L1)+1)/2) 11,7,11
    7 L1M1=L1-1
C....SUM CVER CORE AND VALENCE ELECTRONS.
      DO 10 L2=1,L1M1
      LL2=(IDET(L, L2)+1)/2
      IF(J-LL2) 10,8,10
    8 IF(IPAR(IDET(L,L1))-IPAR(IDET(L,L2))) 10,9,10
C.....SPINS ARE THE SAME FOR ORBITALS IDET(L,L1) AND IDET(L,L2).
    9 G(KL)=G(KL)-ERI(NBASIS*(LL2-1)+I)
Х
      WRITE(LP, 42) NBASIS*(LL2-1)+I ,-ERI(NBASIS*(LL2-1)+I )
   10 CONTINUE
х
      WRITE(LP,43) KL,G(KL)
   11 CONTINUE
   12 CONTINUE
C....OFF-DIAGONAL ELEMENTS'
   13 IF(NDET.EQ.1) GO TO 361
      LVAL=1
      LNO=3073
      DG 361 LU=1,ICGL
      IF(ICOL-1) 131,133,131
  131 READ(MTD) IDIFF
      IF(LU-ICOL) 134,132,134
  132 IF(LINK) 133,361,133
  133 LNC=LINK
  134 DO 36 L=1,LNO
C.....PICK UP INDEX OF NEXT PAIR OF DETORS THAT DIFFER BY NO MORE
C....THAN TWO SPIN ORBITALS.
      KL=IDIFF(L,7)
      IF(2-IDIFF(L,1)) 27,27,14
C....DETORS L AND K DIFFER BY ONE SPIN-ORBITAL - LM IN L AND KP
C....IN K. KL=(L*(L-1))/2+K - THE VALUE OF L IS REQUIRED.
   14 L1=(LVAL*(LVAL+1))/2
      IF(L1-KL) 15,15,16
   15 LVAL=LVAL+1
      GO TU 14
   16 IF(I-J) 21,17,21
C....(II/MP) TYPE INTEGRALS.
   17 \text{ IM}=\text{IDIFF}(L,3)
      KP = IDIFF(L, 4)
C....CHECK THAT SPINS DO NOT CAUSE THE INTEGRAL TO BE ZARO.
      IF(IPAR(LM)-IPAR(KP)) 36,13,33
   18 DO 20 LL=1, NELEC
      IF(I-(IDET(LVAL,L1)+1)/2) 20,19,20
   19 G(KL)=G(KL)+ERI(NBASIS*((LM+1)/2-1)+(KP+1)/2)
```

```
X
      IWSP=NBASIS*((IM+1)/2-1)+(KP+1)/2
х
      WRITE(LP,42) IWSP, ERI(IWSP)
   20 CONTINUE
Х
      WRITE(LP,43) KL,G(KL)
      GO TO 36
C....(IP/MI) TYPE INTEGRALS.
   21 KP=IDIFF(L,4)
      IF(J-(IP+1)/2) 36,22,36
   22 DO 26 L1=1,NELEC
      LI=IDET(LVAL,L1)
      IF(I-(LI+1)/2) 26,23,26
   23 IF(IPAR(KP)-IPAR(LI)) 26,24,26
C....SPINS OF SPIN ORBITALS LI AND KP ARE THE SAME.
   24 IM=IDIFF(L,3)
      IF(IPAR(LM)-IPAR(LI)) 23,25,26
C....SPINS OF SPIN ORBITALS LI AND LM ARE THE SAME.
   25 G(KL)=G(KL)-ERI(NBASIS*((LM+1)/2-1)+(LI+1)/2)
      IWSP=MBASIS*((IM+1)/2-1)+(LI+1)/2
х
х
      WRITE(LP,42) IWSP,-ERI(IWSP)
   26 CONTINUE
х
      WRITE(LP,43) KL,G(KL)
      GO TO 36
C....DETORS L AND K DIFFER BY TWO SPIN-ORBITALS - IM, IN IN L AND
C....KP,KQ IN K.
   27 \text{ LM}=\text{IDIFF}(L,3)
      IF(I-(LM+1)/2) 36,23,36
   28 KP=IDIFF(L,4)
      IF(J-(KP+1)/2) 32,29,32
C....(MP/NQ) TYPE INTEGRALS.
   29 IF(IPAR(LM)-IPAR(KP)) 36,30,36
C....SPINS OF SPIN ORBITALS IN AND KP ARE THE SAME.
   30 LN=IDIFF(L,5)
      KQ=IDIFF(L,C)
      IF(IPAR(LN)-IPAR(KQ)) 36,31,36
C....SPINS OF SPIN ORBITALS IN AND KQ ARE THE SAME.
   31 G(KL)=G(KL)+ERI(NBASIS*((LN+1)/2-1)+(KQ+1)/2)
х
      IWGP=NBASIS*((LN+1)/2-1)+(KQ+1)/2
х
      WRITE(LP, 42) IWSP, ERI(IWSP)
х
      WRITE(LP,43) KL,G(KL)
      GO TO SG
C....(MO/NP) TYPE INTEGRALS.
   32 KO=IDIFF(L.6)
      IF(J-(KQ+1)/2) 36,33,36
   33 IF(IPAR(LM)-IPAR(KQ)) 36,34,35
C....SPINS OF SPIN CRBITALS IM AND KQ ARE THE SAME.
   34 LN=IDIFF(L, 5)
      KP=IDIFF(L,4)
      IF(IPAR(LN)-IPAR(KP)) 33,35,36
C .... SPINS OF SPIN ORBITALS IN AND KP ARE THE SAME.
   35 G(KL)=G(KL)-ERI(MBASIS*((LN+1)/2-1)+(KP+1)/2)
X
      I_{3}P=NBASIS*((IN+1)/2-1)+(KP+1)/2
      WRITE(LP,42) IWSP,-ERI(IWSP)
х
х
      WRITE(LP,43) KL,G(KL)
   36 CONFINUE
  361 CONTINUE
      REVIND MTD
   37 CONTINUE
х
     WRITE(IDUM(253), 38) (KL,G(KL),KL=1,(HDET*(NDET+1))/2)
  38 FORMAT(( G( ,14, )= ,1PE17.10))
  381 CALL QUIT( PASTWG , IDUM (200))
```

```
39 FORMAT( 0, 40X, CONTENTS OF ERI RECORD FOR I = ,13, ,J = ,13)
Х
   40 FORMAT(( ',1P5E24.10))
42 FORMAT( ',47X, ERI(',13,')=',1PE17.10)
43 FORMAT( ',43K, G(',14,')=',1PE17.10)
Х
X
Х
        RETURN
        END
*FORTRAN LIB
        SUBROUTINE SECDAT (JUMP)
C....READS AND CHECKS DATA.
        CCMLICN / SECEQN/ TT(73,120), H(120,120), T(120,78), IDUM(652), ANY1,
       1ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTD01, MTD02, NBASIS,
       2NCONF, NDET, NELEC, NF, NFULL, NSQRD, NXBLCC
        TEXT TITLE
        TEXT LINE(9,5)/ ****
*****
                                                                          .
                                                                   ****
                                                                                              ****
                                        *
                                                                              *****
                                       * • * •
                                                                          *
                                                           ,
                                                                                          .
              *****
                                                             *
                          ·
·'·*
                                                    ж
      2****
       1
                                                 *
                                                                        , ,
                                                                                        ,
                                                           *
                                                                                               * *
                 ж
                                   ×
                                                     ж
                    *
                          • •*
                                                *
           110
                                                           •*
       3*
                                   *
               *
                                                ж
                                                      *
                                                                                              ****
                          . .
                                                           .
       4
               **** ***
                              ****
                                                                                              *
                          - " - *
           ~'~ <sub>** *</sub>
                                                                        <u>م ' م</u>
       5*
                                   *
                                                *
                                                    *
                                                            *
                                                                                 *
                                                                                               * *
                          ****
           ***
                                            ***
                                                                   ***
                                                                                              ×
                                                     *
       6
                          • * *
                                                                       ,
,
      7* '
                                            ***
             *****
                                    *
                                                    *
        DIMENSION G(7260), ERI (900), IDET (120, 32), IDIFF (3000, 7), TITLE (15),
      1F(9)
        EQUIVALENCE (TT,G,TITLE), (TT(6,94), ERI,F), (TT(49,105), IDET),
       1(H(1,23),IDIFF)
        EQUIVALENCE (IDUM(520), I), (IDUM(521), J), (IDUM(522), NONO),
       1(IDUM(523),K),(IDUM(524),L),(IDUM(643),ICR),(IDUM(649),LP),
       1(IDUM(G50),MTD)
        CALL ENTR( SECDAT, IDUM(651))
        GC TO (1,12), JUEP
C ..... READ DATA FOR MATRIX ELEMENTS BETWEEN DETORS.
     1 READ(ICR, 2) TITLE, MTEO1, MTD02, NBASIS, NDET, NELEC, NFULL
        NSORD=NBASIS*NEASIS
        NF=NFULL+1
     2 FORMAT(9AG/6A3/6I5)
        CALL CUTBRK(LP)
        WRITE(LF,66)
    WRITE(LP,77) LINE
66 FORMAT(F)
77 FORMAT(( ,27X,)
                       ,27X,9A3,21X))
        WRITE (LP, 3) TITLE, NDET, NELEC, NBASIS, NFULL, MTD01, MTD02
     3 FGEMAT(1/0,39X, GENERAL CONFIGURATION INTERACTION PROGRAM/
       1'0', 35%, CONSTRUCTION AND SOLUTION OF THE SECULAR EQUATION / 0',
      25GX, A.P.TAIT / O ,44X, QUANTUM MOLECULAR PHYSICS GROUP, / O ,40X,
3 DEPARTMENT OF PHYSICS, / O ,43X, UNIVERSITY OF LEICESTER, / O ,
44GX, LEICESTER, ENGLAND. LEI 7RH. // O ,15A3/ O ,30X, WAVE FUNCTIO
5N CONSTRUCTED FROM ,213, -DLECTRON DETORS / O ,30X, DETOES CONSTR
CUCKED FROM , 213, -DLECTRON DETORS / O ,30X, DETOES CONSTR
      5N CONSTRUCTED FROM ,213, -DLECTRON DETORS / 0, BOX, DETORS CONSTR
GUCTED FROM ,13, SPATIAL ORBITALS WITH FIRST ,12, SPIN-ORBITALS
7 FROZEN / 0,40%, PRIVATE WORKFILE IS DEVICE NUMBER ,17/0,40%, M
       SASTER RESULTS FILE IS FEVICE NUMBER, 14)
        IF(NBASIS-30) 4,4,21
     4 IF( NELEC-32) 5,5,22
     5 IF( NDET-120) 6,6,23
     G IF( NFULL-3) 7,7,24
     7 DO 71 I=1,NDET
        DC 71 J=1, MELEC
        CLEAR IDET(I,J)
    71 CONTINUE
        READ(ICR,13) HENO
```

IF(NCNO) 72,74,72 72 REWIND MTD READ(MTD) ((IDET(I,J),J=1,NELEC),I=1,NDET) WRITE(LP,73) 73 FORMAT('0', 39X, **** DETORS SPECIFIED IN A PREVIOUS RUN **** /'0') GO TO 201 74 WRITE(LP,S) READ(ICR,11) F 8 FORMAT (1/0,48X, SPECIFICATION OF DETORS / 0 NUMBER,55X, DE 1TOR) DO 10 I=1, NDET (IDET(I,J),J=1,NELEC) READ(ICR,9) WRITE(LP,F) I, (IDET(I,J), J=1, NELEC) 9 FORMAT(1X, 3212) 10 CONTINUE 11 FORMAT(9A3) WRITE(MTD) ((IDET(I,J),J=1,NELEC),I=1,NDET) GO TO 201 C....READ PROJECTION MATRIX FOR WAVE FUNCTION. 12 READ(ICR,13) NCONF, NONO READ(ICR,13) IFILE IF(IFILE) 121,130,121 121 READ(MTD) ((T(I,J),J=1,NCCNF),I=1,NDET) WRITE(LP,122) 122 FORMAT(0, 33X, **** PROJECTION MATRIX DEFINED IN A PREVIOUS RUN * 1*** / 0) REWIND MTD GO TO 201 13 FORMAT(215) 130 CLEAR T IF(NCONF-73) 131,131,25 131 READ(ICR,14) (I,J,T(I,J),K=1,NONO) 14 FORMAT(215,F10.2) DO 143 J=1,NCONF CLEAR ANY2 DO 141 I=1,NDET ANY2=ANY2+T(I,J)*T(I,J) 141 CONTINUE ANY2=1.0/SQRT(AHY2) DO 142 I=1,NDET T(I,J)=T(I,J)*ANY2 142 CONTINUE 143 CONTINUE C....CHECK ORTHONORMALITY OF CO-DETORS. CLEAR IFILE NCNO=NCONF-1 IO 143 I=1,NCNO J=I+1DO 147 K=J,NCONF CLEAR ANY2 DO 144 L=1,NDET ANY2=ANY2+T(L,I)*T(L,K)144 CONTINUE IF(ABS(ANY2)-1.0E-10) 147,147,145 145 WRITE(12,146) I,K 146 FERMAT(,40%, CC ,40x, CO-DETORS, 14, AND, 14, ARE NOT UNTICOUNT) IFILD=1 147 CONTINUE 143 CONTINUE IF(IFILE.EQ.0) GO TO 140

```
CALL EEXIT
  149 WRITE(MTD) ((T(I,J),J=1,NCONF),I=1,NDET)
      ENDFILE MTD
      REWIND MTD
      WRITE(LP,15) NCONF
   15 FORMAT (1'/'0', 34X, 12, CO-DETORS OF CORRECT SYMMETRY AND SPIN ARE
     1 FORMED )
      DO 20 K=1,NCONF
      WRITE(LP,16) K
   16 FORMAT('0',45X, 'CO-DETOR(',14,') =')
      DO 19 L=1,NDET
      IF(T(L,K)) 17,19,17
   17 WRITE(LP,13) T(L,K),L
   18 FORMAT(
                 ,45X,S+-,1PE17.10, *DETOR(',S -,14,')')
   19 CONTINUE
   20 CONTINUE
  201 CALL QUIT( SECDAT, IDUM(651))
      RETURN
   21 CALL ERROR ( ERROR 1')
   22 CALL ERROR ( ERROR
                          2)
   23 CALL ERROR ( ERROR
24 CALL ERROR ( ERROR
                           3)
                          4
                             )
   25 CALL ERROR ( ERROR 5
      STOP
      END
*FORTRAN LIB
      SUBROUTINE SECSOL
C.....FORMS H-MATRIX AND SOLVES SECULAR EQUATION FOR THIS CASE.
      CCMMON / SECEQN/ TT(73,120), H(120,120), T(120,78), IDUM(652), ANY1,
     1ANY2, ANY3, ANY4, GF, ICOL, IDISC, IFILE, JFILE, LINK, MTD01, MTD02, NBASIS,
     2NCONF, NDET, NELEC, NF, NFULL, NSQRD, NXBLOC
      DIMENSION G(7260), W(120,78), HM(78,78), EV(78,78)
      EQUIVALENCE (TT, W, G), (H, HM), (T, EV)
      EQUIVALENCE (IDUM(525),L), (IDUM(526),LK), (IDUM(527),K), (IDUM(528),
     1KL), (IDUM(529), NM1), (IDUM(530), AMIN), (IDUM(531), MIN)
Х
     2,(IDUM(649),LP)
      CALL ENTR( SECSOL, IDUM(651))
C....SET UP H-MATRIX.
      DO 1 L=1,NDET
      LK=(L*(L-1))/2
      DO 1 K=1,L
      KL=LK+K
      H(L,K),H(K,L)=G(KL)
    1 CONTINUE
X
      WRITE(LP,11)
X
      CALL WRITMX(H, 120, 120, NDET, NDET, LP)
      CALL SECDAT(2)
X
      WRITE(LP,12)
х
      CALL WRITMX(T, 120, 78, NDET, NCONF, LP)
      CALL MXMULT(H,T,W,NDET,NDET,NCONF,120,120,120)
      DO 2 L=1,NDET
      DO 2 K=1,NCONF
      H(L,K)=W(L,K)
    2 CONTINUE
х
      WRITE(LP,13)
X
      CALL WRITMX(H, 120, 120, NDET, NCONF, LP)
      CALL TRANS(T, TT, NDET, NCONF, 120, 73)
Х
      WRITE(LP,14)
Х
      CALL WRITMX(TT, 78, 120, NCONF, NDET, LP)
```

```
DO 3 L=1,NDET
        DO 3 K=1, NCONF
        T(L,K)=H(L,K)
     3 CONTINUE
        CALL MEMULT(TT, T, HM, NCONF, NDET, NCONF, 78, 120, 78)
X
        WRITE(LP,10)
Х
        CALL WRITHX (HM, 78, 78, NCONF, NCONF, LP)
C.... ENERGIES ARE THE EIGENVALUES OF HM.
    CALL EAO3A (HM, EV, NCONF, 78, AMIN)
C....ADD NUCLEAR REPULSION ENERGY TO EIGENVALUES IF SYSTEM IS NOT
C....SINGLE CENTRE.
        CALL ADDNRE(HM, 73, NCONF, IDUM(648), LP)
C....CUTPUT SOLUTION OF SECULAR EQUATION.
       WRITE(LP,4)
     4 FORMAT( 1 / 0, 46X, SOLUTION OF SECULAR EQUATION / )
       DO 9 I=1,NCONF,5
        J=I+4
        IF (J-NCONF) 6,6,5
     5 J=NCONF
     6 WRITE (LP,7) I,J, (HM(K,K),K=I,J)
7 FORMAT('0',46X, ENERGIES OF STATES',I3, TO ',I3/'0',1P5E24.10)
        WRITE(LP,8) I,J
     8 FORMAT ( 0,43%, EIGENVECTORS FOR STATES, 13, TO ,13/ )
       DO 9 K=1,NCCNF
        WRITE(LP,91) (EV(K,L),L=I,J)
     9 CONTINUE
X 10 FORMAT('0',38X, MATRIX ELEMENTS OF SECULAR EQUATION H-MATRIX')
X 11 FORMAT('0',42X, MATRIX ELEMENTS BETWEEN DETERMINANTS')
X 12 FORMAT('0',44X, SPACE-SPIN TRANSFORMATION MATTRIX')
X 13 FORMAT('0', 477
91 FORMAT( ,1P5E24.10)
X 10 FORMAT( 0 ,38X, MATRI
L_ FURMAT( 0 , 44X,
X 13 FORMAT( 0 , 45X.
X 14 FORMAT( 0 , 45X.
X 13 FORMAT('0',45X, PARTIALLY TRANSFORMED H-MATRIX')
X 14 FORMAT('0',37X, TRANSPOSE OF SPACE (TRANSFORMED H-MATRIX')
X 14 FORMAT('0',37X, TRANSPOSE OF SPACE-SPIN TRANSFORMATION MATRIX')
X 15 FORMAT('0',51X, EIGENVALUES OF HM')
CALL QUIT('SECSOL', IDUM(651))
        RETURN
        END
*FORTRAN LIB
        SUBROUTINE TDFILE
C....CONTROLS ALL TRANSFERS FROM CORE TO PERIPHERALS AND VICE VERSA.
        COMMON / SECEQN/ AA(33767), ICR, LP, MTD, NO, ANYO, ANYI, ANY2, ANY3, ANY4,
      1GF, ICOL, IDISC, IFILE, JFILE, LINK, MTDO1, MTDO2, NBASIS, NCONF, NDET, NELEC
      2, NF, NFULL, NSQRD, NXBLOC
       DIMENSION HM(73,78), EV(73,73), GA(60,60), A(60,60), ERI(900)
      1KT(153,4),LT(153),KD(10,4),LD(10)
       EQUIVALENCE (AA(7261), ERI), (AA(9361), HM, A), (AA(15446), GA), (AA(2376
      11),EV)
        TEXT TN(153,4), DN(10,4)
                                                                         1
                        **** , NEXT NEW , RECORD , ****
        TEXT V(4)/
        CALL ENTR( TDFILE, NO)
        READ(ICR, 2) IFILE, JFILE
       WRITE(LP, 44) IFILE, JFILE
       GO TO (1,13,25,32), IFILE
C....A DISC FILE IS TO BE CREATED.
     1 READ(ICR, 2) IENTRY, NXBLOC
     2 FORMAT(1615)
       REWIND MTDO1
       REWIND MTD02
        IF(NXBLOC) 2001,204,2001
C....COPY TRANSFORMED INTEGRALS INTO DISC AND MASTER RESULTS FILES.
```

```
2001 READ(ICR, 2) INTRA, IGO, NBLOC
      CALL SEARCH(INTRA, NBLOC, 0)
      LD(1), LT(1), I, MENTRY=1
      LD(2), LT(2), J, NENTRY=2
      IF(IGO) 2002,2004,2002
C.... MASTER RESULTS FILE TABLE CONTAINS ENTRIES.
 2002 READ(IDISC) MENTRY, IENTRY, ((TN(K,L),L=1,4), (KT(K,L),L=1,4), LT(K),
     1K=1, MENTRY)
      REWIND IDISC
      I=MENTRY
      J=I+1
      LD(1)=LT(I)
      LD(2),LT(J)=LT(I)+1
      IF(NXBLOC-KT(I,1)) 2003,2003,2004
 2003 NXBLOC=KT(1,1)+1
 2004 CALL SEARCH(MTDO2, NXBLOC, 0)
      KT(I,1)=NXBLOC
      KD(1,1),KT(1,4),KD(1,4)=1
      KT(1,3),KD(1,3)=NSQRD
      KT(J,4), KD(2,4)=5
      CLEAR KD(1,2), KT(1,2), KD(2,3), KT(J,3)
      READ(ICR,26) (DN(1,K),K=1,4)
      LO 2005 K=1,4
      TN(I,K)=DN(1,K)
      TN(J,K), DN(2,K) = W(K)
 2005 CONTINUE
      I=NSQRD+1
      DO 2006 J=1,I
      READ(INTRA) (ERI(K), K=1, NSQRD)
      WRITE(MTDO1) (ERI(K),K=1,NSQRD)
      WRITE(MTDO2) (ERI(K), K=1, NSQRD)
 2006 CONTINUE
      MENTRY=MENTRY+1
      CALL TPPOSN(MTD01,KD(2,1),KD(2,2),MTD02,KT(MENTRY,1),KT(MENTRY,2))
      GO TO 17
C....MASTER CONTENTS TABLE PRESENT.
  204 READ (IDISC) MENTRY, NENTRY, ((TN(I,J), J=1,4), (KT(I,J), J=1,4), LT(I),
    11=1, MENTRY)
      REWIND IDISC
      IF(MENTRY-IENTRY) 3,5,5
    3 WRITE(LP,4) IENTRY, MENTRY
    4 FORMAT ( 0, 38X, WHY ASK FOR , 14, ENTRIES WHEN YOU ONLY GOT , 13)
      WRITE(LP,47) ((TN(I,J),J=1,4),(KT(I,J),J=1,4),LT(I),I=1,MENTRY)
      CALL EEXIT
    5 READ(ICR, 2) (LD(I), I=1, IENTRY)
C....CHECK ENTRIES IN-ASCENDING ORDER.
      DO 8 I=2, IENTRY
      IF(LD(I)-LD(I-1)) 6,6,8
    6 WRITE(LP,7)
    7 FORMAT ('0', 37X, DISC TABLE ENTRIES MUST BE IN ASCENDING ORDER')
      CALL EEXIT
    8 CONTINUE
      DO 16 I=1, IENTRY
      DO 9 J=1,4
      DN(I,J)=TN(LD(I),J)
    9 CONTINUE
     KD(1,3)=KT(LD(1),3)
      KD(1,4) = KT(LD(1),4)
      CALL SEARCH(MTDO2,KT(LD(I),1),KT(LD(I),2))
      GC TO (10,12,13,14,15), KD(1,4)
```

C....INTEGRALS. 10 L=KD(1,3)+1DO 11 K=1,L READ (MTDO2) (ERI(M), M=1, KD(I,3)) WRITE(MTDO1) (ERI(M), M=1, KD(I,3)) **11 CONTINUE** GO TO 15 C....G-VECTOR (MATRIX ELEMENTS BETWEEN DETERMINANTS). 12 READ (MTDO2) (AA(K), K=1, KD(I,3)) WRITE(MTDO1) (AA(K), K=1, KD(I,3)) GO TO 15 C....ENERGIES AND EIGENVECTORS. 13 READ (MTDO2) (HM(K,K), (EV(L,K),L=1,KD(I,3)),K=1,KD(I,3)) WRITE(MTD01) (HM(K,K), (EV(L,K), L=1, KD(I,3)), K=1, KD(I,3))GO TO 15 C....FIRST ORDER DENSITY MATRIX. 14 READ (MTDO2) ((GA(K,L),L=1,KD(I,3)),K=1,KD(I,3)) WRITE(MTDO1) ((GA(K,L),L=1,KD(I,3)),K=1,KD(I,3)) 15 CALL TPPOSN(MTDO1,KD(I+1,1),KD(I+1,2)) **16 CONTINUE** KD(1,1)=1 CLEAR KD(1,2) NENTRY=IENTRY 17 WRITE(IDISC) MENTRY, NENTRY, ((TN(I,J), J=1,4), (KT(I,J), J=1,4), LT(I), 11=1,MENTRY), ((DN(I,J),J=1,4), (KD(I,J),J=1,4), LD(I), I=1, NENTRY) REWIND IDISC REWIND MTD01 **REWIND MTDO2** CLEAR JUMP GO TO 45 C.....DATA TO BE READ INTO CORE FROM DISC. 18 READ (IDISC) MENTRY, NENTRY, ((TN(I,J), J=1,4), (KT(I,J), J=1,4), LT(I), 1I=1,MENTRY),((DN(I,J),J=1,4),(KD(I,J),J=1,4),LD(I),I=1,NENTRY) REVIND IDISC JUMP=1 . GO TO 45 C READ SUBSCRIPT VALUE FOR ENTRY TO DISC CONTENTS TABLE. 19 READ(ICR, 2) IENTRY WRITE(LP,20) 20 FORMAT(0,43X, THE FOLLOWING IS REQUIRED IN CORE /) WRITE(LP,47) (DN(IENTRY,J),J=1,4),(KD(IENTRY,J),J=1,4),LD(IENTRY) CALL SEARCH(MTDO1,KD(IENTRY,1),KD(IENTRY,2)) GO TO (21,23,24,21,21),KD(IENTRY,4) C....IMPROPER REQUEST. 21 WRITE (LP, 22) 22 FORMAT(0, 33X, IMPROPER REQUEST - CONTINUATION NOT POSSIBLE) CALL EEXIT C....G-VECTOR. 23 READ(MTDO1) (AA(I), I=1, KD(IENTRY, 3))GC TO 49 C....ENERGIES AND EIGENVECTORS. 24 READ(MTDO1) (HI(K,K), (EV(L,K), L=1, KD(IENTRY, 3)), K=1, KT(IENTRY, 3)) GO TO 49 C....RESULTS TO BE ADDED TO DISC AND DISC CONTENTS TABLE UPDATED. 25 READ (IDISC) MENTRY, NENTRY, ((TN(I,J), J=1,4), (KT(I,J), J=1,4), LT(I), 1I=1,MENTRY),((DN(I,J),J=1,4),(KD(I,J),J=1,4),LD(I),I=1,NENTRY) REWIND IDISC READ(ICR, 26) (DN(NENTRY, J), J=1, 4) 26 FORMAT(4A3)IENTRY=NENTRY-1

```
CALL SEARCH(MTDO1,KD(IENTRY,1),KD(IENTRY,2))
      IF(KD(IENTRY,4)-1) 263,261,263
  261 DO 262 I=1,KD(IENTRY, 3)
      READ (MTDO1) ANY3
  262 CONTINUE
  263 READ (MTDO1) ANY3
      CALL TPPOSN(MTDO1,KD(NENTRY,1),KD(NENTRY,2))
      LD(NENTRY)=MAXO(LD(NENTRY), LT(MENTRY))
      IF(JFILE-3) 27,28,29
C....G-VECTOR
   27 KD(NENTRY, 3)=(NDET*(NDET+1))/2
      KD(NENTRY, 4)=2
      WRITE(MTDO1) (AA(I), I=1, KD(MENTRY, 3))
      GO TO 30
C.... ENERGIES AND EIGENVECTORS.
   28 KD (NENTRY, 3)=NCONF
      KD(NENTRY,4)=3
      WRITE (MTDO1) (HM(K,K), (EV(L,K), L=1, NCONF), K=1, NCONF)
      GO TO 30
C....FIRST ORDER DENSITY MATRIX.
   29 KD (NENTRY, 3)=NBASIS
      KD(NENTRY, 4)=4
      WRITE(MTDO1) ((GA(K,L),L=1,NBASIS),K=1,NBASIS)
   30 NENTRY=NENTRY+1
      CALL TPPOSN(MTDO1,KD(NENTRY,1),KD(NENTRY,2))
      CLEAR KD(NENTRY, 3)
      KD(NENTRY, 4) = 5
      LD(NENTRY)=LD(NENTRY-1)+1
      DO 31 I=1,4
      DN(NENTRY,I)=V(I)
   31 CONTINUE
      WRITE(IDISC) MENTRY, NENTRY, ((TN(I,J), J=1,4), (KT(I,J), J=1,4), LT(I),
     1I=1,MEMTRY),((DN(I,J),J=1,4),(KD(I,J),J=1,4),LD(I),I=1,NENTRY)
      REWIND IDISC
      CLEAR JUMP
      GO TO 451
C.... UPDATE MASTER FILE AND CONTENTS TABLE.
   32 READ (IDISC) MENTRY, NENTRY, ((TN(I,J), J=1,4), (KT(I,J), J=1,4), LT(I),
     1I=1, MENTRY), ((DN(I,J), J=1,4), (KD(I,J), J=1,4), LD(I), I=1, NENTRY)
      REWIND IDISC
      IENTRY=MENTRY
      M=MEHTRY-1
      CALL SEARCH(MTDO2, KT(M,1), KT(M,2))
      IF(KT(M,4)-1) 323,321,323
  321 DO 322 I=1,KT(M,3)
      READ (MTDO2) ANYS
  322 CONTINUE
  323 READ(MTDO2) ANY3
      CALL TPPOSN(MTDO2, KT(IENTRY, 1), KT(IENTRY, 2))
      DO 42 I=1, NENTRY
Х
      DISPLAY(LP,5)/1/
      DO 33 J=1,M
      IF(LD(I)-LT(J)) 33,42,33
   33 CONTINUE
X
      DISPLAY(LP,5) I
      DO 34 K=1,4
      TN(IENTRY,K)=DN(I,K)
   34 CONTINUE
      LT(IENTRY)=LD(I)
      KT(IENTRY, 3)=KD(1,3)
```

```
KT(IENTRY, 4) = KD(I, 4)
      CALL SEARCH(MTDO1,KD(1,1),KD(1,2))
      GO TO (35, 37, 33, 39, 43), KD(1, 4)
C....TRANSFORMED INTEGRALS.
   35 IGO=NSQRD+1
      DO 36 K=1,IGO
      READ (MTDO1) (ERI(L), L=1, NSQRD)
      WRITE(MTDO2) (ERI(L), L=1, NSQRD)
   36 CONTINUE
      GO TC 40
C....G-VECTOR.
   37 READ (MTDO1) (AA(K), K=1, KD(I,3))
      WRITE(MTDO2) (AA(K), K=1, KD(I, 3))
      GO TO 40
C....ENERGIES AND EIGENVECTORS.
   38 READ (MTDC1) (HM(K,K), (EV(L,K), L=1, KD(I,3)), K=1, KD(I,3))
      WRITE(MTDO2) (HM(K,K), (EV(L,K), L=1,KD(I,3)), K=1,KD(I,3))
      GO TO 40
C....FIRST ORDER DENSITY MATRIX.
   39 READ (MTDO1) ((GA(K,L),L=1,KD(I,3)),K=1,KD(I,3))
      WRITE(MTDO2) ((GA(K,L),I=1,KD(I,3)),K=1,KD(I,3))
   40 IENTRY=IENTRY+1
      CALL TPPCSN(MTDO2, KT(IENTRY,1), KT(IENTRY,2))
   42 CONTINUE
   43 MENTRY=IENTRY
      WRITE(IDISC) MENTRY, NENTRY, ((TN(I,J), J=1,4), (KT(I,J), J=1,4), LT(I),
     11=1, MENTRY), ((DN(1,J), J=1,4), (KD(1,J), J=1,4), LD(1), I=1, NENTRY)
      REWIND IDISC
      CLEAR JUMP
C....PRINT CONTENTS TABLES.
   44 FORMAT ('D', 33X, TDFILE PARAMETER VALUES, IFILE =', 12, JFILE =', 12)
   45 WRITE(LP,46) KT(1,1)
      WRITE(LP,47) ((TN(I,J),J=1,4),(KT(I,J),J=1,4),LT(I),I=1,MENTRY)
  451 WRITE(LP,43) KD(1,1)
      WRITE(LP,47) ((DN(I,J),J=1,4),(KD(I,J),J=1,4),LD(I),I=1,NENTRY)
   46 FURMAT('B',40X, CONTENTS OF MASTER FILE FROM BLOCK',15//)
47 FORMAT(',4A3, FROM BLOCK',15, WORD',14, LOGP PARAMETER = ,15
     1, RECORD TYPE = ,12, SEQUENCE NUMBER = ,13)
   43 FORMAT( B, 40X, CONTENTS OF PRIVATE FILE FROM BLOCK, 15//)
      IF(JUMP) 50,49,19
   49 CALL QUIT ( TDFILE , NO)
      RETURN
   50 STOP
      END
*FORTRAN LIB
      SUBROUTINE TRANS(A, AT, N1, N2, M1, M2)
C....TRANSPOSE OF MATRIX A STORED IN MATRIX AT.
      DIMENSION A(M1, MC), AT(M2, M1)
      DO 1 I=1,N1
      DO 1 J=1,N2
      AT(J,I)=A(I,J)
    1 CONTINUE
      RETURN
      END
```

5	coding sheet	Sheet 1 & Z Programmer A. D. TRIT
		Date 21.3.72.
C STATEMENT TO NUMBER OO	FORTRAN STATEMENT	IDENTIFICAT C AND SEQUENCE A:
1 2 3 4 5 6 7 8 9 1 0 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2	5262728293031323334355637383940414243444546474884950515253545	<u>5657585960616263645566676869707172737475767775</u>
The second secon	TEST, DATA - TREPLET P. STATE DE	ATOMEC OXYGEN, CSC
HAEFER AND HARRIS'S EXPON	1	
1 /		
		263
C.C.L. 1, Z.E., d.d.X., 8.Z.3.)),		
1.2 3.4 5.8,910		
1.1.2 3.4.6.7.9.10		
1/00/1/2		
····2 ····0····20		
OXYERAN MITCH INTEGRALS.		
···· 2 ··· / ··· · · · · · · · · · · · ·		
&XXGEN ATON CI P DETER HI	J.T.R.Z.X	, , , , , , , , , , , , , , , , , , ,
FORM 1/542(9.68)		International Computers Limited 1964 Printed in Great Brit.

	coding	Cheet > Kry
	sheet	Programmer A. D. TAIT
125		Date 21. 3. 72
STATEMENT	FORTRAN STATEMENT	IDENTIFICAT ON AND
NUMBER		SEQUENCE A:
1 2 3 4 5	7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5	0.4555657585960616263645566657686970717273747576777878
8 1 1		
/		
0		
/		
7	1.	264
12		
<u></u>		
&X,YC-C	A.T. &. C.T. 3. P. Sole u.T. E. &	
* • •		
/		
	, , % , , , , , , , , , , , , , , , , , , ,	
\$XY GE	ALGN, CI, 3P, DENSILIY, MATRIX, IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
5		
# • • •		
9	· · · · · · · · · · · · · · · · · · ·	
	FORM 1/542(9.68)	C International Computers Limited 1964 Printed in Great Brits

ROGRAM	NOLTAUCA FY
ERAJTION	HE SECUL/
TUN INT	T JC NOI
ONF I G JRA	ND SOLUT
GENERAL JI	COLSTRUCTION AN

A.D.TAIT

QUANTUM MOLECULAR PHYSICS GROUP, '

DEPARIMENT OF PHYSICS,

UNIVERSITY OF LEIGESTER,

LEICESTER, ENGLAND, LEI 7RH,

SECSOL TEST DATA - TRIPLET P STATE OF ATOMIC OXYGEN (SCHAEFER AND HARRIS'S EXPONENTS).

WAVE FUNCTION CONSTRUCTED FROM 2 8-ELECTRON DETORS

2 SPIN-ORBITALS FROZEN 5 SPATIAL: ORBITALS WITH FIRST DETORS CONSTRUCTED FROM

PRIVATE WORKFILE IS DEVICE-NUMBER

+-1

MASTER RESULTS FILE IS DEVICE NUMBER 2

. .

- 266 -

SPECIFICATIO

NUMBER 1 2 NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM SECDAT = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM TDFILE = TDFILE PARAMETER VALUE CONTENTS OF MASTER F

OXYGEN ATOM INTEGRALS. **** NEXT NEW RECORD **** FROM BLOCK 101 WORD 164. L

CUNTENTS OF PRIVATE

OXYGEN ATOM INTEGRALS. FROM BLOCK 1: WORD 0. L FROM BLOCK **** NEXT NEW RECORD **** 2 WORD 164. L NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM TDFILE = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM PASONE = NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM PASONE = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM MAXCON = NUMBER OF NON-ZERO OFF-DIAGONAL MA NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM MAXCON = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM PASTHO = NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM PASTIO = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM HPASS = NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM HPASS = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM TOFILE =

TDFILE PARAMETER VALUE

CONTENTS OF PRIVATE

OXYGEN ATOM INTEGRALS. OXYGEN ATOM CI P DETOR MATRIX. **** NEXT NEW RECORD **** NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM TDFILE = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM SECOL = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM SECOL = Ì,

													- 2	267	-											
N I	0F		Dr	T	С	2	3																			
3 3 4	4 4 28 28	19	D F F Ĉ	T	С	9 9 7		9	1	. 0																
s,	I F	I	LE		=	:	1	J	F J	L	E	= 1														
IL	Ξ	F	20	۲		31	_ (C)	К		10	0														
000	þ	P P	A F A F	A A	4		T E T E	ER ER		:		25. ().	REC REC	ORD ORD	T Y T Y	PE	u u	1. 5.	SEC SEC	NUEN	ICE	NU NU	MBI	ER	H. H.	1 2
F I	LE		FF	20	М	ĺ	BL	.0	C×	<		1														
00 00 4 4	P 33 34 34	0. 0. 00 O N	A F A F	2 A ? A	УУ	E E	T E	R		:		25. 0.	REC REC	ORD ORD	ΤΥ ΤΥ	PE	-	1.5.	SEC	IUEN	CE	NUI	MB E	ER	11 11	1 2
4 TR 4 4 4 4 4	34X660 33640 400	3 7 8 0 1 4 6	ΕL	E	Ч	Er	N T	s	(1)	E	T w	EEN	DET	ORS	=-	:	L							•		
S,	IF	I	. E		=		3	JI	FI	L	E	= 2														
FI	Ę	•	F F	0	M	E	31.	.0	CK			1														
00F 00F 00F 44 44	42 42	PPP589	A F A F	2 A 2 A 2 A	Y Y Y		T E	RR	n n n	1		25. 3. 0.	REC REC REC	ORD ORD ORD	TY TY TY	PE PE PE		1.2.5.	SEQ SEQ	UEN UEN	CE CE		188 188 188	R	9 8 9	123

1. CO-DETORS OF CORRECT SYMMETRY AND SPIN ARE FORMED

6 6 7 CO-DETOR(1) =. +7.0710573119E=01*DETOR(+7.0710573119E=01*DETOR(+7.0710573119E=01*DETOR(NUMBER OF INSTRUCTIONS USED ON EXIT FPOM SUBPROGRAM SECDAT = 4447

SOLUTION OF S

ENERGIES OF S

-7.4540361952E+01

EIGENVECTORS FOR

١

TDFILE PARAMETER VALU

CONTENTS OF PRIVATE

OXYGEN ATUM INTEGRALS. OXYGEN ATUM CI P DETOR MATRIX. OXYGEN ATUM CI P DETOR MATRIX. **** NEXT NEW RECORD **** NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM TDFILE. NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM NATORB ECJLAR EQJATION TATES 1 TO 1 STATES 1 TO 1 = 4455 = 4457 ES,IFILE = 3 JFILE = 3 FILE FROM BLOCK 1 LOOP PARAMETER = 25. RECORD TYPE = 1. SEQUENCE NUMBER = 1 LOOP PARAMETER = 3. RECORD TYPE = 2. SEQUENCE NUMBER = 2 LOOP PARAMETER = 1. RECORD TYPE = 3. SEQUENCE NUMBER = 3 LOOP PARAMETER = 0. RECORD TYPE = 5. SEQUENCE NUMBER = 4 1. RECORD TYPE = 5. SEQUENCE NUMBER = 4 0. RECORD TYPE = 5. SEQUENCE NUMBER = 4

•

- 270 -

- 271 -

NATURAL SPIN ORBI COEFFICIENTS OF

C(-1) = 7.0710678119E-01C(2)= 7.0710678119 NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM FOOM NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM FORM NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM TOFI

TDFILE PARAMETER V

CONTENTS OF PRIV

OXYGEN ATOM INTEGRALS. FROM BLOCK 1 WORD OXYGEN ATON CI P DETOR MATRIX. FROM BLOCK 2 WORD 16 OXYGEN ATOM CI 3 P SOLUTION. FROM BLOCK 2 WORD 16 OXYGEN ATOM CI 3P DENSITY MATRIX FROM BLOCK 2 WORD 17 **** NEXT NEW RECORD **** FROM BLOCK 2 WORD 27 NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM TDFI

RESULTS OF NATUR

OCCUPATION NUMBE

1,00000000000E+00

TRANSFORMATION

1,0000000000E+00 0.0000000000E+00 1,0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0,0000000000E+00 0.0000000000E+00 0.0000000000E+00 0,0000000000E+00 0,0000000000E+00 0,0000000000E+00

OCCUPATION NUMBE

5,0000000000E-01

TRANSFORMATION

0.000000000E+00 0.0000000000F+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0,0000000000E+00 0,0000000000E+00

> SUM OF OCCUPATION NUMBER OF EL

NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM NATO

0.00000000000E+00 0.00000000000E+00 0.0000000000E+00 5.0000000000E-01

0.000000000E+00 0.00000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
TAL ANALYSIS OF LEVEL 1 Individual determinants	- 272 -	
E=01 C(A4 = 4486 K = A4 = 4491 _E = 4492	1 K =	2
ALUES, IFILE = 3 JFILE =	4	
ATE FILE FROM BLOCK	<u>1</u>	
0. LOOP PARAMETER = 25 4. LOOP PARAMETER = 3 5. LOOP PARAMETER = 1 1. LOOP PARAMETER = 1(3. LOOP PARAMETER = 1(2. = 4511	5. RECORD TYPE = 1. 5. RECORD TYPE = 2. 1. RECORD TYPE = 3. 1. RECORD TYPE = 4. 1. RECORD TYPE = 5.	SEQUENCE NUMBER = 1 SEQUENCE NUMBER = 2 SEQUENCE NUMBER = 3 SEQUENCE NUMBER = 4 SEQUENCE NUMBER = 5
AL SPIN ORBITAL ANALYSIS	5	
RS OF ORBITALS 1 TO 5		
1,000000000E+00	1,0000000000E+00	5,0000000000E=01
MATRIX COLUMNS 1 TO 5		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	C, COUDODODOCE+OD G, DODODODOCE+OD G, DOGDODODOCE+OD L, COUDODODOCE+OD C, DODODOCCOOE+OD C, DODODOCOOCE+OD C, DOCODOCOOE+OD C, DOCODODOCE+OD C, DOCODODOCE+OD C, DOCCOOCOOE+OD C, DOCCOOCOOE+OD C, DOCCOOCOOE+OD C, DOCCOOCOOE+OD	0,000000000000000000000 0,000000000000
RS OF ORBITALS: 6 TO 10	· · · · · · · · · · · · · · · · · · ·	
5.0000000000000000	1.000000000E+00	1.0000000000E*00
MATRIX COLUMNS: 6 TO 10		
$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	0,000000000000000000000000000000000000	0.000000000000000000000000000000000000
NUMBERS = 8.0000000001E+ ECTRONS = 8 RB = 4552	0 0	

NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM TDFI

.

TDFILE PARAMETER V

CONTENTS OF MAST

OXYGER	ATOM	INTEG	SRALS.	FROM	BL.OCK	100	WORD	
OXYGEN	MOTA I	CIP	DETOR MATRIX.	FROM	BLOCK	101	WORD	16
OXYGEN	ATOM	CI 3	P SOLUTION.	FROM	BL.OCK	1.01	WORD	16
OXYGE	ATOM	CI 3P	DENSITY MATRIX	FROM	BLOCK	101	WORD	17
***	* NEXT	NEW	RECORD ****	FROM	BL.OCK	101	WORD	27

.

CONTENTS OF PRIV

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

· · · ·

1 · · ·

OXYGEN	ATOM	INTEGRALS.	FROM	BLOCK	1	WORD	
OXYGEN	ATOM	CI P DETOR MATRIX.	FROM	RLOCK	2	WORD	16
OXYGEN	ATOM	CI 3 P SOLUTION.	FROM	BL.OCK	2	WORD	16
OXYGEN	ATOM	CI 3P DENSITY MATE	RIX FROM	BLOCK	2	WORD	17
****	NEX:	T NEW RECORD ****	FROM	BLOCK	2	WORD	27
NUMBER	OF I	NSTRUCTIONS USED ON	I EXIT FF	ON SUBPRC	GR	AM TD	FI

٠

.

**** JOB COMPLETE - TIM

• ° a tira si

.

.

					- 2	74 -								
_E	= 455	56												
ALI	JES.IF	FILE	= 4 (IFILI	E = 0									
											,			
ΞR	FILE	FROM	1 3100	K :	100									
С.	LOOP	PARA	METER		25.	RECORD	TYPE	-	1.	SEQUENCE	NUMBER		1	
4.	LOOP	PARA	METER	2 =	3.	RECORD	TYPE		2.	SEQUENCE	NUMBER	-	2	
8.	LOOP	PARA	(ME) ER (ME7FC	:=	1.	RECORD	TYPE		3.	SEQUENCE	NUMBER	1	3	
J.,	LOOP	PARA	METER		- U • 0 •	RECORD	TYPE		5.	SEQUENCE	NUMBER	1.1	5	
					•									
۵Ŷ۶	E F TI F		M RIC	CK	1									
	~ ' • • • •	- 1 110												
Ĵ.	LOOP	PARA	METER	=	25.	RECORD	TYPE	=	1.	SEQUENCE	NUMBER	=	1	
4 * 2	LOOP	PARA	A MEFER		3.	RECORD	TYPE		2.	SEQUENCE	NUMBER	1 1	2	
1.	LOOP	PARA	METER	2 =	10.	RECORD	TYPE	2	4	SEQUENCE	NUMBER	3	4	
3.	LOOP	PARA	METER	=	0.	RECORD	TYPE	=	5.	SEQUENCE	NUMBER	. N.	5	
E	= 459	92												

1

.

.

۰.

E USED = 28,71875 SECONDS ****

, -

- 275 -

APPENDIX VIII

SPECTRO. A PROGRAM FOR COMPUTING THE SPECTROSCOPIC CONSTANTS OF DIATOMIC MOLECULES

SPECTRØ is described in chapter 9 and requires only a card reader (stream 0) for input of data and a lineprinter (also stream 0) for output. The program is completely self contained. The storage requirements are standard.

5

Data specification for SPECTRØ

Card	1	NCØNF,	NDEG,	NR,	NØ
		FØRMAT	(415)		
		NCØNF		=	number of energy levels of the molecule to
				مىر. مىر	be investigated for the symmetry and spin
					defined by Card 4. If NCØNF = 0 execution
					ceases.
		NDEG		Ħ	degree of fitted polynomial
		NR		=	number of values of the bond length to which
					polynomial is to be fitted.
			ſ	=	O to suppress diagnostic output.
		NØ	4	¥	O to obtain diagnostic output, including
					residuals
Card	2	TITLE	•		
		FØRMAT	(9A8/6	5A8)	
		TITLE			is an array of 15 elements (120 characters)
					used to identify the run.
Card	3	RMASS			
		FØRMAT	(1PE20	0.10)

	RMASS =	reduced mass of the molecule on the unified
		mass scale (see Appendix I and reference (5))
Card 4	ISPIN, LAMBDA, I	NVERS, REFLEC
	Førmat (215, 244)
	ISPIN =	value of total spin eigenvalue for this state
	LAMBDA =	value of axial angular momentum for this state
	Gt	bb for gerade states
	INVERS UE	bb for ungerade states
	bt	bb for heteronuclear diatomic molecules
	(+t	bb for Σ^+ states
	REFLEC -t	bb for Σ^- states
	bb	bb for all other states
	(N	ote : b = blank)
Card 6	(R(I), I = 1, NR)	
	FØRMAT (1PE20.10) .
	R(I)	is the value of the I-th bond length in
		bohrs.
		$(1 \leq I \leq NR)$ Repeat, as required.
Card 7	((E(I,J), J = 1,	NR), $I = 1$, NCØNF)
	FØRMAT (1PE20.10)
	E(I,J)	is the energy at $R(I)$ of the J-th energy
		level. Repeat as required.
As the program	n is re-entered at	Card 1 after each run, it is necessary to
terminate exec	cution by setting	NC/NF = 0.
Restrictions		

 $1 \le NR \le 20$ $1 \le NDEG < NR$ $1 \le NC \not O NF < 5$ $0 \le LAMBDA \le 4$

•

*FORTRAN C....MAIN ROUTINE FOR SPECTROSCOPIC CONSTANTS PROGRAM. C....READS ALL DATA FOR EACH RUN. LOGICAL LOGIC COMMON / SPEC/ ICR, INVERS, ISPIN, LAMBDA, LOGIC, LP, NCONF, NDEG, NR, NO, 1REFLEC.RMASS.TITLE(15),F(20),P(20),R(20),BE(5),DE(5),D0(5),FC(5), 2MINR(5), RMIN(5), WE(5), X(20), XX(20, 20), A(5, 10), YIJ(5, 15), E(5, 20) DIMENSION ANGMOM(5) EATA ANGMOM/SH SIGMA , 3H PI , 8H DELTA , 8H PHI , 3H GAMMA 1/ CLEAR ICR.LP 12 READ(ICR, 3) NCONF, NDEG, NR, NO IF(NCONF.EQ.0) STOP READ(ICR,1) TITLE READ(ICR,2) RMASS READ(ICR, 4) ISPIN, LAMBDA, INVERS, REFLEC READ(ICR, 2) (R(I), I=1, NR) READ(ICR, 2) ((U(I,J), J=1, NR), I=1, NCONF) 1 FORMAT(9A8/6A3) 2 FORMAT(1PE20.10) 3 FORMAT(1615) 4 FORLAT (215, 2A4) C....PRINT DATA I=2*ISPIN+1 LAMBDA=LAMBDA+1 WRITE(LP,5) TITLE WRITE(LP,6) RMASS WRITE(LP,7) NCONF,NR WRITE(LP,13) NDEG WRITE(LP,3) I, ANGMOM(LAMBDA), INVERS, REFLEC, (I, I=1,5) 5 FORMAT (1H1/1H0,44x,31HSPECTROSCOPIC CONSTANTS PROGRAM/1H0,15A8) 6 FORMAT(1H3, 35%, 14HREDUCED MASS =, 1PE17.10, 19HAMU (UNIFIED SCALE)) 7 DE MAT(1H0, 32X, 25HNUMBER OF ENERGY LEVELS =, 12, 26H, NUMBER OF BOND 1 LENGTHS =, 13) 8 FORMAT(1H0,41X,26HTHE SPECTROSCOPIC STATE IS,I2,A6,1X,2A1/1H0,47X, 125HENERGIES AND BOND LENGTHS/1H0,5X,9HR (BOHRS),6X,5(9X,1HE,I1,9X) 2) DO 10 I=1,NR WRITE(LP,9) R(I), (E(J,I), J=1, NCONF) 9 FORMAT(1H0,F11.1,9X,1P5E20.10) **10** CONTINUE 13 FORMAT (1H0,44X,29HDEGREE OF FITTED POLYNOMIAL =, I3) CALL FINDRE CALL DUNHAM CALL RFILE GO TO 12 END *FORTRAN SUBROUTINE DUNHAM C.....COMPUTES DIATOMIC SPECTROSCOPIC CONSTANTS USING DUNHAM'S ANALYSIS. C....VERSION 5. LOGICAL LOGIC COMMON /SPEC/ ICR, INVERS, ISPIN, LAMBDA, LOGIC, LP, NCONF, NDEG, NR, NO, 1REFLEC,RMASS,TITLE(15),F(20),P(20),R(20),BE(5),DE(5),DO(5),FC(5), 2MINR(5), RMIN(5), WE(5), X(20), XX(20, 20), A(5, 10), YLJ(5, 15), E(5, 20) DIMENSION FL(20), FD(20) EQUIVALENCE (P(3), A0), (P(4), A1), (P(5), A2), (P(6), A3), (P(7), A4), 1(P(3),A5),(P(9),A6),(P(10),A7) DATA EPS/1.0E-10/

NTERM=NDEG+1 NM1=NDEG-1 NM2=NDEG-2 BPA=R(NR)+R(1) BMA=1.0/(R(NR)-R(1))C....COMPUTE VALUES OF NORMALIZED INDEPENDENT VARIABLE X AND SET UP XX. CO 1 I=1,NR X(I) = (2.0 * R(I) - BPA) * BMAXX(I,1)=1.0 DO 1 J=2, NTERM XX(I,J)=XX(I,J-1)*X(I) **1** CONTINUE LO 13 ICONF=1, NCONF C....COMPUTE MEAN ENERGY FOR THIS LEVEL. SUM=E(ICONF,1) DO 2 I=2, NRSUM=SUM+E(ICONF,I) 2 CONTINUE SUM=SUM/FLOAT (NR) IF(NO.NE.O) WRITE(LP,3) ICONF, SUM 3 FORMAT (1H0, 41X, 5HLEVEL, 12, 14H MEAN ENERGY =, 1PE17.10) C.....SUBTRACT MEAN FROM EACH ENERGY AND CONVERT TO CM**(-1). DO 4 I=1,NR F(I)=(E(ICONF,I)-SUM)*2.1947462E+05 **4** CONTINUE C....FIT POLYNOMIAL TO F(X). CALL CRLIN2 (XX, F, P, NR, NTERM, 20, 20, EPS, LOGIC) IF(LOGIC) WRITE(LP.5) 5 FORMAT(1H0,40X,40HITERATIVE IMPROVEMENT OF SOLUTION FAILED) C....COMPUTE L2 NORM OF SOLUTION. B=0.0 DO 6 I=1,NR L=POLYVA(X(I), P, NDEG) W=F(I)-D B=B+\7*\7 IF(NO.NE.O) WRITE(LP,7) X(I),F(I),D,W 6 CONTINUE 7 FCRMAT(1H ,13X,2HX=,1PE17.10,6H F(X)=,1PE17.10,6H D(X)=,1PE17.10, 111H F(X) - D(X) = ,1PE17.10)WRITE(LP,8) B 8 FORMAT (1H0,45X,21HL2 NORM OF SOLUTION =,1PE9.2) C....FIND MINIMUM OF F(X). DO 9 I=3,NTERM IM1 = I - 1IM2=I-2 FL(IM1)=IM1*P(I) FD(IM2)=IM2*FL(IM1) 9 CONTINUE FL(1)=P(2) I=MINR (ICCNF) RE=X(I) ITER=0 10 ITER=ITER+1 D=POLYVA(RE,FL,NM1)/POLYVA(RE,FD,NM2) IF(NC.NE.O) WRITE(LP,19) ITER, RE, D IF(ABS(D)-EPS) 15,11,11 11 IF(ITER-100) 12,13,13 12 RE=RE-D GO TO 10 13 WRITE(LP,14) ICONF,D

```
14 FORMAT (1H0, 39X, 5HLEVEL, 12, 26H NEWTON-RAPHSON FAILED, D=, 1PE9.2)
   15 D=POLYVA(RE, P, NDEG)
      IF(NO.NE.O) WRITE(LP,16) D,RE
   16 FORMAT(1H0,25X,34HMINIMUM OF NORMALIZED POLYNCMIAL =,1PE17.10,7H A
   1T X =, OPF13.10
C....TRANSFORM POLYNOMIAL TO DUNHAM FORM.
      D=RE+BPA*BMA
      CALL POLYX(D,RE,P,FL,NDEG)
      B=1.0/FL(3)
      DO 161 I=4,NTERM
      FL(I)=FL(I)*B
  161 CONTINUE
C....FL CONTAINS DUNHAM EXPANSION COEFFICIENTS.
      FL(1) = FL(1) + SUM * 2.1947462E + 05
      IM1=MINO(10,NTERM)
      DO 17 I=1,IM1
      A(ICONF,I)=FL(I)
      P(I)=FL(I)
   17 CONTINUE
      RE=0.5*(RE/BMA+BPA)
      RMIN(ICONF)=RE
C....COMPUTE SPECTROSCOPIC CONSTANTS AND YLJ.
      BE(ICONF)=60.2014/(RMASS*RE*RE)
      IF(BE(ICONF).LE.O.O.OR.AO.LE.O.O) GO TO 18
      WE(ICONF)=2.0*SQRT(AO*BE(ICONF))
      DE(ICONF)=4.0*(BE(ICONF)/WE(ICONF))**2*BE(ICONF)
      FC(ICONF)=5.891461E-02*RMASS*WE(ICONF)**2
C....DEFINE B, W AND BW FOR EASE OF WRITING FORMULAE.
      B=BE(ICONF)
      W=WE(ICONF)
      BW=(B/W)**2
      A1 SQ=A1 *A1
      A2SQ=A2*A2
      A3SQ=A3*A3
      YLJ (ICONF, 1)=0.125*B*(3*A2-1.75*A1SQ)
      YLJ(ICONF, 2)=W*(1+0.25*BW*(25*A4-16.75*A2SQ-0.5*A1*(95*A3-0.25*A1
     1
                    *(459*A2-144.375*A1SQ)))
      YLJ (ICONF, 3)=0.5*B*(3*(A2-1.25*A1SQ)+0.5*BW*(0.5*A1*(-1365*A5+
     1
                    3667.5*A2*A3+0.25*A1*(3535*A4-15503.25*A2SQ+0.5*A1*
     2
                    (-23865*A3+0.125*A1*(239985*A2-52263.75*A1SQ)))+
     3
                    245*A6-0.5*A2*(335*A4-426.75*A2SQ)-271.25*A3SQ))
      YLJ (ICONF, 4)=0.5*\/*BV*(10*A4-8.5*A2SQ-A1*(35*A3-0.25*A1*(225*A2-
     1
                    33.125*A1SQ))
      YLJ (ICONF, 5)=5*BW*B*(0.25*A1*(-63*A5+241.5*A2*A3+0.25*A1*(543*A4-
     1
                    1247.25*A2SQ+0.5*A1*(-1953*A3+0.125*A1*(23265*A2-
     2
                    5737.75*A1SQ)))-0.25*A2*(33*A4-18.75*A23Q)-3.5*(
     3
                    2.25*A3SQ-A6))
     YLJ (ICONF, 6)=B*(1+0.5*BW*(15*(1+A3)-9*A2+A1*(14-23*A2+10.5*A1*(1+
    1
                    A1))))
      YLJ (ICONF, 7)=W*BW*(6*(1+A1)+BW*(A1*(235-459*A2+356.25*A3-397.5*A4
     1
                    +534.625*A2SQ+0.25*A1*(1147.5-2409.75*A2+2572.5*A3+
     2
                    A1*(1155-3564.75*A2+974.53125*A1*(1+A1))))-0.5*A2*
     3
                    (335+715*A3-251.25*A2)+190*A3-112.5*A4+175*(1+A5)))
     YLJ (ICONF, 8)=6*B*B<sup>1</sup>/*(5*(1+A3)-3*A2+A1*(10-13*A2+7.5*/1*(1+A1)))
     YLJ(ICONF, 9)=20*BW*BW*W*(A1*(21-45*A2+26.25*A3-25.5*A4+51.375*
    1
                    A2SQ+0.25*A1*(112.5-236.25*A2+217.5*A3+A1*(141-
     2
                    377.25*A2+113.96375*A1 *(1+A1))))-0.5*A2*(17+45*A3-
     3
                    12.75*A2 + 14*A3-4.5*A4+7*(1+A5)
     YLJ (ICONF,10)=-4*B*B/*(1+0.5*B//*(A1*(190-207*A2+102.5*A3+A1*(-A2*
     1
                     166.5+173.25+126*A1*(1+0.5*A1)) - A2*(119-46*A2)+90*
```

```
A3-45*A4+163))
     2
      YLJ (ICONF,11)=-12*BW*BW*W*(9.5-4*A2+9*A1*(1+0.5*A1))
      YLJ (ICONF, 12) = -24*BW*BW*B*(A1*(125-117*A2+47.5*A3+A1*(123.75-103.5
                     *A2+90*A1*(1+0.5*A1)))-A2*(61-26*A2)+30*A3-15*A4+65)
     1
     YLJ(ICONF,13)=16*BW*BW*B*(3+A1)
      YLJ(ICONF,14)=12*BW**3*W*(233+A1*(279-S8*A2+A1*(139+63*A1))-120*A2
                     +80*A3/3)
     1
      YLJ(ICONF,15)=-64*B%**3*B*(13+9*A1*(1+0,25*A1)-A2)
      D0(ICONF)=YLJ(ICCNF,1)+0.5*(YLJ(ICONF,2)+0.5*(YLJ(ICONF,3)+0.5*
     1(YLJ (ICONF, 4)+0.5*YLJ (ICONF, 5))))
   13 CONTINUE
   19 FORMAT(1H ,21X,9HITERATION,14,19H CURRENT ESTIMATE =,1PE17.10,11HI
     1NCREMENT =, 1PE17.10)
      RETURN
      END
*FORTRAN
      SUBROUTINE FINDRE
C....DETERMINES WHICH LEVELS ARE BOUND.
      COMMON /SPEC/ ICR, INVERS, ISPIN, LAMBDA, LOGIC, LP, NCONF, NDEG, NR, NO,
     1REFLEC,RMASS,TITLE(15),F(20),P(20),R(20),BE(5),DE(5),D0(5),FC(5),
     2MINR(5),RMIN(5),WE(5),X(20),XX(20,20),A(5,10),YLJ(5,15),E(5,20)
      NRM1=NR-1
      DO 4 I=1,NCONF
      MINR(I)=NR
    1 EMIN=E(I,NR)
      DO 3 J=1,NRM1
      IF(EMIN-E(I,J)) 3,3,2
    2 EMIN=E(I,J)
      MINR(I)=J
      RE=R(J)
    3 CONTINUE
      RMIN(I)=RE
    4 CONTINUE
C....SET RESULTS VECTORS TO ZERO.
      DO 6 I=1,5
      BE(I)=0.0
      DE(I)=0.0
      WE(I)=0.0
      FC(I) = 0.0
      0.0=(1)=0.0
      DO 5 J=1,10
      A(I,J)=0.0
    5 CONTINUE
      DO 6 J=1,15
      YLJ(I,J)=0.0
    6 CONTINUE
      RETURN
      END
*FORTRAN
      SUBROUTINE ORLIN2(A, B, X, N, M, NROW, NCOL, EPS, ITFAIL)
C....ORLIN2 GIVES THE LEAST SQUARES SOLUTION FOR A SYSTEM OF N LINEAR
C....EQUATIONS IN M UNKNOWNS. A IS THE N*M-MATRIX OF THS SYSTEM, B THE
C....CONSTANT VECTOR ON THE RIGHT SIDE, EPS THE MAXIMAL RELATIVE
C....ROUNDING ERROR AND X THE SOLUTION VECTOR. ITFAIL IS SET EQUAL TO
C..... TRUE. IF THE ITERATIVE IMPROVEMENT IS INEFFECTIVE.
C....THE METHOD IS DESCRIBED BY F.L.BAUER IN NUM.MATH.7,333-352(1965).
      DIMENSION A(NRGW, NCCL), B(NRGW), X(NRGW), U(20, 20), P(20), Q(210),
     1PP(20)
```

LOGICAL ITFAIL ITFAIL=.FALSE. DO 1 I=1,N DO 1 J=1,M U(I,J)=A(I,J)**1** CONTINUE L=0 DO 51 I=1,M S=0.0 DO 2 J=1,N T=U(J,I)P(J)=T S=S+T*T 2 CONTINUE L=L+1Q(L)=S T = 0.0C....ELEMENT OF V STORED IN X. DO 3 J=1,N T=T+P(J)*B(J) 3 CONTINUE X(I)=T IF(I-M) 31,51,51 31 IP=I+1 DO 5 IH=IP,M T=0.0 DO 4 J=1,N T=T+P(J)*U(J,IH)4 CONTINUE C....ELEMENT OF THE I-TH. ROW OF R STORED IN Q. L=L+1 Q(L)=T T=T/S C....FORMATION OF A COLUMN OF THE I-TH. REMAINING MATRIX. DO 5 J=1,N U(J,IH)=U(J,IH)-P(J)*T**5** CONTINUE 51 CONTINUE C....END OF FORMATION OF THE MATRICES R AND U AND THE VECTOR V. C....BACK SUBSTITUTION. LL=L MM=M+2 MP=M+1DO 7 IS=1,M I=MP-IS IH=L-I T=Q(L) S=X(I) IF(I-M) 52,61,61 52 IP=I+1 10 6 J=IP,M S=S-Q(J+IH)*X(J) 6 CONTINUE 61 X(I)=S/T L=L+I -MM 7 CONTINUE C....END OF BACK SUBSTITUTION. C....INTERATIVE IMPROVEMENT OF THE SOLUTION. EPS2=3PS*EPS SO=0.0

8 L=LL S1=0.0 S2=0.0 C....RESIDUAL VECTOR STORED IN P DO 9 J=1,N P(J) = -SCPROD(-B(J), A, J, X, M, NROW, NCOL)9 CONTINUE C....VECTOR ON THE RIGHT SIDE STORED IN PP. DO 11 J=1,M S=0.0 DO 10 I=1,N S=S+U(I,J)*P(I) **10** CONTINUE PP(J)=S 11 CONFINUE C....BACK SUBSTITUTION. DO 13 IS =1,M J=MP-IS IH=L-J S=PP(J) IF(J-M) 111,121,121 111 IP=J+1 DO 12 I=IP,M S=S-Q(I+IH)*PP(I) 12 CONTINUE 121 S=S/Q(L) PP(J)=S S1=S1+S*S T=X(J) S2=S2+T*T X(J)=S+T• L=L+J-M .-' 13 CONTINUE C....END OF BACK SUBSTITUTION. IF(S1-0.25*S2) 14,16,16 14 IF(.NOT.(S1.GE.S2*EPS2.AND.(S0.EQ.0.OR.S1.LE.(S0*0.01)))GO TO 15 S0=S1 GO TO S 15 RETURN 16 ITFAIL=.TRUE. GO TO 15 END *FORTRAN FUNCTION POLYVA(X,P,K) C....COMPUTES THE VALUE OF A POLYNOMIAL OF DEGREE K. THE COEFFICIENTS C....ARE IN P WITH THE CONSTANT TERM IN P(1). (K<20). DIMENSION P(20) DOUBLE PRECISION FOFX KP=K+1FOFX=DBLE(P(KP)) DO 1 I=1,K FOFX=FOFX*DBLE(X)+DBLE(P(KP-I)) 1 CONTINUE POLYVA=FOFX RETURN END *FCRTRAN

SUBROUTINE POLYX(A,B,C,D,N)

C.....FORTRAN V VERSION OF ACM ALGORITHM 29 POLYNOMIAL TRANSFORMER . DIMENSION C(20), D(20), Z(20), W(20) C.....POLYX COMPUTES THE COEFFICIENTS DO, D1, ..., DN OF THE TRANSFORMED C....POLYNCMIAL P(T) GIVEN CO, C1,..., CN OF P(X) WHERE X=A*T+B. W(1)=1.0 Z(1)=V(1) D(1)=C(1)NP1=N+1 DO 1 I=2,NP1 W(I)=1.0 Z(I)=B*Z(I-1) D(1)=D(1)+C(I)*Z(I) **1** CONTINUE DO 2 J=2,NP1 W(1)=W(1)*A D(J) = C(J) * W(1)IF(J.EQ.NP1) RETURN K=2 JP1=J+1 DO 2 I=JP1,NP1 W(K) = A * W(K) + W(K-1)D(J)=D(J)+C(I)*W(K)*Z(K)K=K+12 CONTINUE RETURN END *FORTRAN SUBROUTINE RFILE C....OUTPUT CF RESULTS. LCGICAL LOGIC COMMON /SPEC/ ICR, INVERS, ISPIN, LAMBDA, LOGIC, LP, NCONF, NDEG, NR, NO, 1REFLEC, RMASS, TITLE(15), F(20), P(20), R(20), BE(5), DE(5), DO(5), FC(5), 2MINR(5),RMIN(5),WE(5),X(20),XX(20,20),A(5,10),YLJ(5,15),E(5,20) DIMENSION T(31,2) KE(DY,8H /8H BE (CM DATA T RE, SHE(RE) (H, SH WE(CM, 8H 1,3H DE(CM, 3H ¥40 YOO,SH Y20,8H Y30,8H Y10,3H 2,8H Y01,3H Y11,3H Y21,8H Y31,8H YO2,8H Y12 З,8Н YO3,SH Y13,8H Y04,3H E(R, 3H Y22,3H LIN 4,3H A1 ,8H AO ,3H A2 ,3H A3 ,8H A4 ,SH A5 AG ,SH A7 ,8H (BOHRS),3HARTREES),8H-1) ,SHNE.CM-1) 5, SH ,SH=WE ,8H=-WEX ,SH=WEY 6,8H-1) ,SH-1) ,SH ,SH=BE ,3H=-ALPHAE,3H=GAMMAE ,SH=DELTAE ,8H=-DE 7,8H=WEZ 8,3н=ветае, зн ,8H ,SH=FE ,SH=HE ,3HE) (CM-1) **,**7*8H 9, SHEAR TERM, SH(CM-1) / DATA T1, T2/8H ZO(CM,3H-1) DO 1 I=1,NCCNF X(I)=A(I,1)*4.5563354888E-06 **1** CONTINUE WRITE(LP,2) TITLE WRITE(LP,3) (I,I=1,NCONF) WRITE(LP,4) T(1,1),T(1,2),(RMIN(I),I=1,NCONF) WRITE(LP,4) T(2,1),T(2,2),(X(I),I=1,NCONF) WRITE(LP,5) WRITE(LP,4) T(3,1),T(3,2),(WE(I),I=1,NCONF) WRITE(LP,4) T(4,1),T(4,2),(FC(1), I=1, NCCNF)WRITE(LP,4) T(5,1),T(5,2),(BE(I), I=1, NCCNF) WRITE(LP,4) T(6,1),T(6,2),(DE(I),I=1,NCONF) WRITE(LP,4) T1,T2,(D0(I),I=1,NCONF) WRITZ(LP,6)

```
2 FORMAT (1H1/1H0,15A8/1H0,48X,23HSPECTROSCOPIC CONSTANTS)
    3 FORMAT (1H0, 20X, 5 (6X, 5HLEVEL, 13, 6X))
    4 FORMAT(1H, 4X, 2A8, 1P5E20.10)
    5 FORMAT(1H0,43X,33HCLASSICAL SPECTROSCOPIC CONSTANTS/1H )
    6 FORMAT(1H0, 40X, 40HCORRECTED SPECTROSCOPIC CONSTANTS (CM-1)/1H )
      DO 7 I=1,15
      J = I + 6
     WRITE(LP,4) T(J,1),T(J,2),(YLJ(K,I),K=1,NCONF)
    7 CONTINUE
    WRITE(LP,8)
    8 FORMAT (1H0, 41X, 33HDUNHAM ANALYSIS EXPANSION COEFFICIENTS/1H )
      DO 9 I=1,10
      J=I+21
     WRITE(LP,4) T(J,1),T(J,2),(A(K,I),K=1,NCONF)
    9 CONTINUE
                      . •
      RETURN
      END
*FORTRAN
      FUNCTION SCPROD(S,A,I,P,N,NROW,NCOL)
      DIMENSION A (NRCW, NCOL), P (NRCW)
      ICUBLE PRECISION T
```

T=S DO 1 J=1,N T=T+DBLE(A(I,J))*DBLE(P(J)) 1 CONTINUE

SCPROD=T RETURN END

717	IDENTIACATION AND SEQUENCEINE	869/70/71/72/737475747574774	1 200		- 2	85													ited 1964 Printed in Great Brit
Sheet / 66 2. Programmer A. D. 7. Date 21. 3. 72.		55565758596061626364656676	COME TANTS FROM																C International Computers Lim
	АТЕМЕИТ	41142434445464748495051525354	SPECTRS CORT																
coding sheet	FORTRAN ST	2 7282 93 03 13 23 33 43 5363 7383 940	6 TEST, 2950 -1	dN					~ • • • • • • • • • • • • • • • • • • •				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		1 1 2 3 4 5 6 7 8 92 0 2 1 2 2 2 3 2 4 2 5 2 6 X	11111111111111111111111111111111111111	N. H.Z. WAYE, FUNCIT	3,9,1,26,1,E,-,0,1, , , , , , , , , , , , , , , , , ,	6t	1 · · · · · · · · · · · · · · · · · · ·	110.5.4.0.0.	1, 2, 6, 1, 0, 0, 1, 1, 1,	1. 46,400.	1, 1, 6, E, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1,12,0,6,4,0,0,1,1	2.46,400,	2. 8. 61,00	0,2,0,1,7,5,6,0,0,1,1,1	12:151.7.6400.	1649306400	17444,2,E, +,0,0,	1/542(9.68)
19	C STATEMENT Z	1 2 3 4 5 6 7 8 9101 7 3		4SRODTHAR	2.0.3	00 1 0						1 1 1 1 1 1 1 1			ייווי-				FORM 1

	Codino	DIRLIKE ICOL DUIL	
		Sheet 2 pr 2	
	onect	Programmer A. D. THIT	
		Date 21. 3. 72	
C STATEMENT C NUIMBED		FORTRAN STATEMENT	TIPICAL C.S. AND
1 2 3 4 6	د محال مار	SEQUENCE און הרווידים היו יוביער ער ע	JENCE No
	-1, 168553867		
	-1.1339996400		
-	-1.1.1020,84E,400		
-	-1.0699566400		- 2
0			86.
			-
-			-
			-
			-
			1 1 1
			-
			1 1 1
1 1 1 1			
	FORM 1/542(9.68)	International Computers Limited 1964 Printed in Grea	in Great Britz

1
.~
g
ິ
ur.
с г .
_
-
5
~
ŝ
2
U
23
. 🖂
0
ö
5
õ
ö
· ~
· F
t)
ш
ā.
· 🖸

SPECTRO TEST DATA ~ SPECTROSCOPIC JONSTANTS FROM KOLOS-ROOTHAAN H2 WAVE FUNCTION.

REDUCED MASS = 5.0391261000E-01AMU (UNIFIED SCALE)

NUMBER OF ENFRGY LEVELS = 1, NUMBER OF BONN LENGTHS = 8

negr∈e of: fifted Polynomial = 7

THE SPECTROSCOPIC STATE IS 1 SIGMA G+

EVERGIES: AND BOND LENGTHS

(BOHRS) E1 0.8 -1.0201750000 1.0 -1.1245170000 1.2 -1.1245170000 1.4 -1.1249300000 1.6 -1.174420000 2.0 -1.1379990000 2.1 102001000000	E2 [.]	E÷00	E÷00	E.+00	E+00	E+00	E+00	5 ± 0 0
(BOHRS) 0.8 1.2 1.4 2.0 2.0	1	-1,0201750000	-1,1245170000	-1,164930000	-1,1744420000	-1,1685380000	-1.1379990000	-1,1020840000
	(BOHRS)	0 .8	1.0	1.2	1.4	1.6	2.0	2.4

-1,0699560000E+00

2.8

287 - ເມ

> Ш Ф

ະຍິ

233333267676777 54775676710 544775676710 54477567710 5447756710 5447756710 5447756710 5447756710 1000 1000 5447756710 1000 1000 1000 1000 1000 1000 1000	03 11 11		řĬOŇ.				
MEAN ENERGY = -1, 1203301250E+00 02E+04 $D(X) = 2.1981508002F+04 F(X) - D(X) = 1.78813$ 009E+02 $D(X) = -9.1891279920F+02 F(X) - D(X) = 9.68575$ 191E+03 $D(X) = -9.7885406191F+03 F(X) - D(X) = 9.68675$ 202E+04 $D(X) = -1.1876133202F+04 F(X) - D(X) = 0.0000$ 048E+04 $D(X) = -1.0530405048F+04 F(X) - D(X) = 7.96646$ 2080E+03 $D(X) = -3.8778596280F+03 F(X) - D(X) = 1.49011$ 225E+04 $D(X) = -4.0045513525F+03 F(X) - D(X) = 1.49011$ 225E+04 $D(X) = -4.0045513525F+03$	VORM 07 SOLUTION = 5.22E-14 ATE =-3.99999998E-011NCREMENT =-1.2643958335E ATE =-3.9873560415E-011NCREMENT =-2.6865127708E ATE =-3.9873560415E-011NCREMENT =-1.2119934818E	JLYNOMIAL' ≝41,1875248322E+04 AT X =-0.3987329176	COPIC: CONSTANTS FROM KOLOS-ROOTHAAN H2 WAVE FUNC	SPECTROSCOPIC CONSTANTS	ver	ÍCAL SªECTROSCOPIC CONSTANTS	
<pre>(X) = 2.1981508 (X) = 2.1981508 (X) = -9.18912799 (X) = -19.1875183 (X) = -1.0580405 (X) = -1.0580405 (X) = -1.0580405 (X) = 1.10580405 (X) = 1.10558413</pre>	CURRENT ESTIM CURRENT ESTIM CURRENT ESTIM	F NORMALIZED P	ATA - SPECTROS		24E+00 67E+00	Ci'ASS	196+03 846+05 896+01 926+01 926+02
00000000000000000000000000000000000000	ITERATION 1 ITERATION 2 ITERATION 3	MINIMUM 0	PECTRO TEST D		LEVEL 1 1,40126708 -1,17444229		4.39945268 5.74613116 6.08428465 4.65469536 2.18096598
X = +1.000 X = +7.9999 X = +7.9999 X = +2.000 X = +2.000 X = +2.000 X = +2.000 X = +1.000	,		S		RE (BOHRS) E(RE) (HÅRTREES)		WE(CM-1) KE(DYNE.CM-1) BE(CM-1) DE(CM-1) Z0(CM-1)

288 -----

۰.

•

.

.

CORRECTED SPECTROSCOPIC CONSTANTS (CM-1)

.

.

.

•

.

APPENDIX IX

SPECIFICATION OF DETORS AND CODETORS FOR
THE
$$3\Sigma^{-}$$
, $1\Sigma^{+}$, AND 1Δ STATES

The detors are specified by using the identifiers of the valence shell molecular apin-orbitals according to the rules

> ns $\sigma_g \sigma = 1$, ns $\sigma_g \beta = 2$, ns $\sigma_u \sigma = 3$, ns $\sigma_u \beta = 4$, np₀ $\sigma_g \sigma = 5$, np₀ $\sigma_g \beta = 6$, np₀ $\sigma_u \sigma = 7$, np₀ $\sigma_u \beta = 8$, np₋ $\pi_g \sigma = 9$, np₋ $\pi_g \beta = 10$, np₋ $\pi_u \sigma = 11$, np₋ $\pi_u \beta = 12$, np₊ $\pi_g \sigma = 13$, np₊ $\pi_g \beta = 14$, np₊ $\pi_u \sigma = 15$, np₊ $\pi_u \beta = 16$.

In the oxygen molecule calculations n = 2, and for the sulphur molecule n = 3. To obtain the data required for SECSØL the frozen inner shell spin orbitals must be specified in addition to those given in this appendix. Each codetor is written in the form

$$\Psi_{I} = n_{I} \sum_{J} D_{J} t_{JI}$$

where t_{JI} is a non-zero element of the projection matrix $\underline{T} \otimes \sigma$ (chapters 7 and 8), and \underline{n}_{I} is the normalization factor for Ψ_{I} . The value of \underline{n}_{I} is calculated in the routine SECDAT (see Appendix VII), and

$$n_{I} = \left(\begin{array}{c} \Sigma \\ J \end{array} \right)^{-\frac{1}{2}}$$

(In Tables IX.1 and IX.3, D_I appears as D(I) because these tables are computer output and subscripting variables is not possible.) Finally the spatial orbital configurations are given in Table IX.5. A spatial orbital configuration merely gives the total number of electrons occupying each molecular orbital of a particular symmetry species.

DC	1)=(1)(~2)(3)(4)(5)(6)(7)(- Ö)	(9)(10)	(13)	(14)
D	2) = (1)(2) (3)(4)(5)(6) (7) (8)	(9	(10)	(15)	(16)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2/-(		$\sim$	$\sim$				$\pi$	0	/1 -	/ (/ / / 1 0)	(1 2)	(1 )
DC	3)=(	T)(	2)(	3)(	4)(	5)(	0)(	$\alpha$	0)	(TT	)(12)	(13)	(14)
D(	4)=(	1)(	2)(	3) (	4)(	5)(	6)(	7)(	8)	( 9)	)(11)	(14)	(16)
D	5)=(	1)(	2) (	3)(	4)(	5)(	6)(	7)(	8)	(10	)(11)	(13)	(16)
2		-/ \		$\sim$				71	0	1 0	) (==) \ (1 0\	(1 - 2)	(10)
DU	6)=(	т)(	2)(2	3)(	4)(	570	0)(	17	3)	( 9	)(12)	(13)	(10)
D(	7)=(	1)(	2) (	3) (	4)(	5)(	6 <b>) (</b>	7) (	8)	(10	)(12)	(13)	(15)
D(	8)=(	1)(	2) (	3) (	4)(	5) (	6)(	7) (	8)	( 9	)(12)	(14)	(15)
2	() ()			$\sim$		e \ /		7	0	20	) ( <b></b> / ) /14 )	(1 4)	(15)
D(	9)=(	1)(	2)(	3)(	4)(	5)(	6)(	$\gamma \gamma \zeta$	0)	(10	)(11)	(14)	(12)
D(	10)=(	1)(	2)(	3) (	4)(	5)(	6)(	7)(	8)	(11)	)(12)	(15)	(16)
D(	(11) = (	1)(	2) (	3) (	4) (	5) (	6)(	9) (	10)	(11	)(13)	(14)	(16)
5				$\sim$	-/ \	5)(	c > c	$\sim$		11 0	/ (// \ /1 n\	(1 4)	(1 = )
DC	12)=(	T)(	2)(	3)(	4)(	5)(	6)(	2)(	TO	(14	)(13)	(14)	(12)
D(	13)=(	1)(	2) (	3) (	4)(	5)(	G)(	્ર) (	11)	(12	)(14)	(15)	(13)
D(	(14) = (	1)(	2)(	3)(	4)(	5)(	6) (1	LO) (	11)	(12	)(13)	(15)	(16)
~	1-1-1			$\sim$		5) (	7		101	110	) (= -) \ /1 /\	(16)	(1 /)
DC	10)=(	1)(	2)(	5)(	4)(	5)(	n	5)(	TO	(12	)(14)	(12)	(IC)
D(	16)=(	1)(	2)(	3) (	4)(	G <b>)(</b>	7)(	୍ର) (	10)	(11	)(14)	(15)	(16)
D(	17)=(	1)(	2)(	3) (	4)(	5)(	8)(	9)(	10)	(11	)(14)	(15)	(16)
- ``	10)-(	1)/	-7	2) (	-/ (	$\alpha$	011	$\overline{\alpha}$	101	/11	) (1 2)	(15)	(16)
D	10)=(	11	) (ت	37	4)(	0)(	0)(	5)(	10)	(11	)(13)	(13)	(10)
D(	19)=(	1)(	2)(	3) (	4)(	5)(	8)(	9) (	10)	(12	)(13)	(15)	(16)
DC	20)=(	1)(	2) (	3)(	4)(	6)(	7)(	9)(	10)	(12)	)(13)	(15)	(16)
- <b>v</b>	(21) = (	1)(	$\gamma$	-/ (		$G \setminus ($	711	$\overline{0}$	111	(10	$\sqrt{12}$	(1A)	(10)
- 24	217-(	1/	<i>2</i> /(	5)(	4/(	0/(		3)(	<u></u> )	(L.:		(14)	(10)
DC.	22)=(	1)(	2) (	3)(	4)(	5)(	8)(	9) (	,11)	(12	)(13)	(14)	(16)
D(	23)=(	1)(	2) (	3)(	4) (	6)(	8)(	9) (	11)	(12	)(13)	(14)	(15)
T(	24)-(	1)(	$2\dot{i}$	3)(	in	5) (	810	1050	111	112	(13)	(n A)	(15)
				37(	4/(					(42)	/ (± 0/ ) /1 o)	(	
DC	25)=(	1)(	2)(	3) (	4) (	6)(	- 7) (J	LO)(	11)	(12	)(13)	(14)	(12)
E(	26)=(	1)(	2)(	3) (	4)(	5)(	7)(1	LU)(	11)	(12	)(13)	(14)	(16)
DC	27)=(	1)(	2)(	3)	4)(	7)(	810	9)	10)	(11	(13)	(14)	(16)
2					-/ \		$\frac{1}{2}$	$\sim$		140	/ (= 0/ \ /= ^\		(10)
DA	28)=(	T)(	2)(	370	4)(	2)(	8)(	9)(	TO)	(12	)(13)	(14)	(12)
D(	29 <b>)=(</b>	1)(	2)(	3) (	4)(	7)(	8)(	9) (	11)	(12	)(14)	(15)	(16)
D(	30)=(	1)(	2)(	3) (	4)(	7)(	8) (1	10)(	11)	(12	)(13)	(15)	(16)
	21)-(	1 \ (	$\sim$	2		$\alpha$	101/1		101	(1)	) (= -) \ (1 A\	(16)	(16)
DC	51)=(	1)(	4)(	3)(	4)(	5)(.	10)(1		(ئىلە	(15	)(14)	(10)	(10)
D (	32)=(	1)(	2) (	3) (	5) (	6) (	7) (	છ)(	10)	(12	)(13)	(14)	(16)
D(	33)=(	1)(	2)(	4)(	5)(	6) (	7)(	9)(	10)	(11	) (13)	(14)	(16)
n(	31)-(	1)(	2)(	3)(	5)(	6) (	8)(	- 01 (	101	111	1 (1 3)	(14)	(16)
	54/-(	1/(	4/	57	57		0)(			(11		(+	
D(	35)=(	1)(	2)(	4)(	5)(	6)(	8)(	9)(	10)	(11	)(13)	(14)	(12)
D(	36)=(	1)(	2) (	3) (	5) (	G) (	S)(	్ల) (	10)	(12)	)(13)	(14)	(15)
DÍ	37)=(	1)(	2) (	4) (	5)(	6)(	7)	0) (	10)	02	(13)	(14)	(15)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				$\sim$						140	/ (= 0/ \ /= /\	()	
DC	38)=(1)(2)(3) (5)(6)(<i>(</i>) ()	LU)(11)	(12)(14)	(15)	(10)
D(39)=(1)(2) (4) (5)(6)(7)(9) (11)	(12)(14)	(15)	(16)
D(4(1) = (1)(2)(3)(5) (6) (8) (S) (11)	(12)(14)	(15)	(1G)
	41)-(1)/	-/ (5)((1)	/ \/ \ /1 -)\		(1.0)
DC	41)=(1)(2)(4)(5)(6)(ວງເ	~	TT	(14)	ノ(エンノ		
r(42)=(1)(2)(316	/							(12)	
D(-/ \	37	5)(6)(8)(1	LO)(11)	(12)(13)	(15) (15)	(10)
D.	43)=(1)($\overline{2}$	4)(5)(5)(6)(6)(8) (1 7) (1	LO)(LU)(11) 11)	(12 (12)(13))(13)	(15) (15) (15)	(10) (10)
128	43)=(1)(2) (2) (4) (3) (5) (5) (5) (6)(6)(7)(8) (1 7) (1 8) (LO)(LU)((11) (11) (10)	(12 (12)(13))(13))(14)	(15) (15) (15)	(10) (10)
~ ;	43)=(44)=(1)(1)(2) (2) (4) (3) (5) (5) (5) (6)(6)(7)(8) (1 7) (1 8) (LO) (LU) (S) (11) 11) 10)	(12 (12 (12) (13)) (13)) (14)	(15) (15) (15) (15)	(10) (10) (16)
D(43)=(44)=(45)=(1)(1)(1)(2)(2)(2)(4) (3) (4) (5)(5)(5)(5)(6)(6)(7)(7)(8) (1 7) (1 8) (8) (9) (10) (10) (9) (9) (11) 11) 10) 10)	(12 (12 (12) (12)) (13)) (13)) (14)) (14)	(15) (15) (15) (15) (15)	(10) (10) (16) (16)
D(43)=(44)=(45)=(46)=(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(4) (3) (4) (3) (5) (5) (5) (5) (6) (6)(6)(7)(7)(7)(8)(1 7)(1 8)(8)(8)(57 LO) (LO) (S) (S) (S) (11) 11) 10) 10) 10)	(12 (12 (12 (11 (11)(13))(13))(14))(14))(14)	(15) (15) (15) (15) (15) (15)	(10) (10) (16) (16) (16)
D(D(43)=(44)=(45)=(46)=(47)=(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(4) (3) (4) (3) (4) (5) (5) (5) (5) (6) (6) (6) (6) (7) (7) (7) (7) (8) (1 7) (1 8) (8) (8) (8) (5) (5) (5) (5) (5) (11) 11) 10) 10) 10)	(12 (12 (12 (11 (11)) (13)) (13)) (14)) (14)) (14)) (13)	(15) (15) (15) (15) (15) (15) (15)	(10) (10) (16) (16) (16)
D(D(D(43)=(44)=(45)=(46)=(47)=(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(4) (3) (4) (3) (4) (4) (5) (5) (5) (5) (6) (6) (<pre>G) (G) (7) (7) (7) (7) (7) (</pre>	8) (1 7) (1 8) (8) (8) (8) (LO) (LU) (S) (S) (S) (S) (11) 11) 10) 10) 10)	(12 (12 (12 (11 (11 (11) (13)) (13)) (14)) (14)) (14)) (13)	(15) (15) (15) (15) (15) (13) (15)	(10) (10) (16) (16) (16) (16)
D(D(D(43)=(44)=(45)=(46)=(47)=(43)=(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(4) (3) (4) (3) (4) (3) (3) (5) (5) (5) (5) (6) (6) (G) (G) (7) (7) (7) (7) (7) (8) (1 7) (1 8) (8) (8) (8) (3) (5) (5) (5) (5) (5) (5) (11) 11) 10) 10) 10) 10)	(12 (12 (12 (11 (11) (11) (12)) (13)) (13)) (14)) (14)) (14)) (13)) (13)	(15) (15) (15) (15) (13) (15) (15)	(10) (10) (16) (16) (16) (16) (16)
D(D(D(D($\begin{array}{l} 43) = (\\ 44) = (\\ 45) = (\\ 45) = (\\ 43) = (\\ 43) = (\\ 49) = (\end{array}$	1)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(<pre>4)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4</pre>	5) (5) (5) (5) (6) (6) (5) (6)(6)(7)(7)(7)(7)(7)(7)(8)(1 7)(1 8)(8)(8)(8)(3)(3)(5) (5) (5) (5) (5) (5) (5) (5) (11) 11) 10) 10) 10) 10) 10)	(12 (12 (12 (11 (11 (11 (12) (12)) (13)) (13)) (14)) (14)) (14)) (13)) (13)) (13)	(15) (15) (15) (15) (15) (15) (15) (15)	(10) (10) (16) (16) (16) (16) (16) (16)
D(D(D(D($\begin{array}{l} 43)=(\\ 44)=(\\ 45)=(\\ 45)=(\\ 46)=(\\ 47)=(\\ 43)=(\\ 49)=(\\ 50)=(\\ \end{array}$	1)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(3) (4) (3) (4) (3) (4) (3) (4) (4) (5)(5)(5)(5)(6)(6)(5)(5)(5)(6)(6)(7)(7)(7)(7)(7)(7)(7)(8) (1 7) (1 8) (8) (8) (8) (3) (8) (8) (5) (5) (11) 11) 10) 10) 10) 10) 10) 10)	(12 (12 (12 (11 (11 (11) (12) (12) (12)) (13)) (13)) (14)) (14)) (14)) (13)) (13)) (13)) (13)	(15) (15) (15) (15) (15) (15) (15) (15) (14)	(10) (10) (16) (16) (16) (16) (16) (16) (16)
D(D(D(D(D(43)=(44)=(45)=(46)=(47)=(43)=(49)=(50)=(1)(1)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(3) (3) (4) (3) (4) (3) (4) (4) (4) (2) (5)(5)(5)(5)(6)(5)(5)(5)(5)(6) (6) (7) (7) (7) (7) (7) (7) (7) (7	8) (1 7) (1 8) (8) (8) (8) (3) (3) (8) (9) (5) (5) (11) 11) 10) 10) 10) 10) 10) 10)	(12 (12 (11 (11) (11) (12) (12) (12)) (13)) (13)) (14)) (14)) (14)) (13)) (13)) (13)) (13)	(15) (15) (15) (15) (15) (15) (15) (15) (14)	(10) (10) (10) (10) (10) (10) (10) (10)
D(D(D(D(D(D(43)=(44)=(45)=(46)=(47)=(43)=(43)=(50)=(51)=(1)(1)(1)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (5) (5) (5) (5) (6) (5) (5) (5) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7	8) (1 7) (1 8) (8) (8) (8) (3) (8) (3) (8) (5) (5) (11) 11) 10) 10) 10) 10) 10) 10) 11)	(12 (12 (11 (11) (11) (12) (12) (12) (12) (13)) (13)) (14)) (14)) (14)) (13)) (13)) (13)) (13)) (13)	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14)	(10) (10) (10) (10) (10) (10) (10) (10)
D(D(D(D(D(D(D(43)=(44)=(45)=(46)=(47)=(43)=(43)=(50)=(51)=(52)=(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(3)(4)(3)(4)(3)(4)(3)(4)(3)(4)(3)(4)(3)(5)(5)(5)(5)(5)(6)(5)(5)(5)(6)(6)(6) (6) (7) (8)(1 7)(1 8)(8)(8)(8)(3)(8)(8)(8)(8)(5) (5) (11) 10) 10) 10) 10) 10) 10) 11) 11)	(12 (12 (11 (11 (11) (12) (12) (12) (12)) (13)) (14)) (14)) (14)) (13)) (13)) (13)) (13)) (13)) (13)) (13)	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14)	(10) (10) (16) (16) (16) (16) (16) (16) (16) (16
D(D(D(D(D(D(D($\begin{array}{l} 43) = (\\ 44) = (\\ 45) = (\\ 45) = (\\ 46) = (\\ 47) = (\\ 43) = (\\ 50) = (\\ 50) = (\\ 51) = (\\ 52) = (\\ 53) =$	1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(3)(4)(4)(4)(3)(4)(4)(4)(4)(4)(4)(4)(4	5)(5)(5)(5)(5)(6)(5)(5)(5)(6)(6)(6)(6)(6) (6) (7) (S) (1 S) (1 7) (1 S) (11) 10) 10) 10) 10) 10) 10) 11) 11) 11)	(12 (12 (11 (11) (11) (12) (12) (12) (12	(13) (13) (14) (14) (14) (13) (13) (13) (13) (13) (13) (13) (13	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14)	(10) (10) (16) (16) (16) (16) (16) (16) (16) (15) (15)
D(D(D(D(D(D(D($\begin{array}{l} 43) = (\\ 44) = (\\ 45) = (\\ 45) = (\\ 46) = (\\ 47) = (\\ 43) = (\\ 50) = (\\ 50) = (\\ 51) = (\\ 52) = (\\ 53) = (\\ 54) =$	1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)	3) (4) (3) (4) (4) (3) (4) (5)(5)(5)(5)(5)(6)(5)(5)(5)(5)(6)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5	G) (G) (7) (<t< td=""><td>8)(1 7)(1 5)(5)(5)(8)(3)(3)(3)(5)(3)(3)(5)(3)(5)(3)(5)(5)(5)(5)(5)(5)(5)(5</td><td></td><td>11) 10) 10) 10) 10) 10) 10) 11) 11) 11)</td><td>(12 (12 (11 (11 (11) (12) (12) (12) (12)</td><td>(13) (13) (14) (14) (14) (13) (13) (13) (13) (13) (13) (13) (13</td><td>(15) (15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14)</td><td>(10) (10) (16) (16) (16) (16) (16) (16) (16) (15) (15)</td></t<>	8)(1 7)(1 5)(5)(5)(8)(3)(3)(3)(5)(3)(3)(5)(3)(5)(3)(5)(5)(5)(5)(5)(5)(5)(5		11) 10) 10) 10) 10) 10) 10) 11) 11) 11)	(12 (12 (11 (11 (11) (12) (12) (12) (12)	(13) (13) (14) (14) (14) (13) (13) (13) (13) (13) (13) (13) (13	(15) (15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14)	(10) (10) (16) (16) (16) (16) (16) (16) (16) (15) (15)
D(D(D(D(D(D(D(D(D(D(43)=(44)=(45)=(45)=(43)=(43)=(43)=(50)=(51)=(52)=(53)=(54)=(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) 2) 2) 2)	3)(4)(3)(3)(4)(3)(4)(3)(4)(3)(4)(3)(4)(3)(4)(4)(3)(4)(4)(4)(4)(4)(4)(4)(4	5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(G) (G) (7) (<t< td=""><td>8) (1 7) (1 5) (5) (5) (2) (2) (3) (</td><td></td><td>11) 10) 10) 10) 10) 10) 10) 11) 11) 11)</td><td>(12 (12 (11 (11 (11 (12) (12) (12) (12)</td><td>) (13)) (13)) (14)) (14)) (13)) (13)) (13)) (13)) (13)) (13)) (13)) (13)</td><td>(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14)</td><td>(10) (10) (16) (16) (16) (16) (16) (16) (16) (15) (15) (15) (15)</td></t<>	8) (1 7) (1 5) (5) (5) (2) (2) (3) (11) 10) 10) 10) 10) 10) 10) 11) 11) 11)	(12 (12 (11 (11 (11 (12) (12) (12) (12)) (13)) (13)) (14)) (14)) (13)) (13)) (13)) (13)) (13)) (13)) (13)) (13)	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14)	(10) (10) (16) (16) (16) (16) (16) (16) (16) (15) (15) (15) (15)
D(D(D(D(D(D(D(D(D(D($\begin{array}{l} 43) = (\\ 44) = (\\ 45) = (\\ 45) = (\\ 45) = (\\ 43) = (\\ 43) = (\\ 50) = (\\ 50) = (\\ 51) = (\\ 52) = (\\ 53) = (\\ 54) = (\\ 55) = (\\ \end{array}$	1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(3)(4)(3)(3)(4)(3)(4)(3)(4)(3)(3)(3)(3)(3)(3)(3)(3	5) (() () () () () () () () ()	G)(G)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7	8) (1 8) (1 5) (1 5) (1 5) (2 8) (2 8) (1		11) 11) 10) 10) 10) 10) 10) 11) 11) 11)	(12 (12) (11) (11) (12) (12) (12) (12) ((13) (14) (14) (14) (14) (13) (13) (13) (13) (13) (13) (13) (13	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14) (14)	(10) (10) (16) (16) (16) (16) (16) (16) (16) (15) (15) (15) (15) (15)
	$\begin{array}{l} 43) = (\\ 44) = (\\ 45) = (\\ 45) = (\\ 45) = (\\ 43) = (\\ 43) = (\\ 50) = (\\ 50) = (\\ 51) = (\\ 52) = (\\ 53) = (\\ 54) = (\\ 55) = (\\ 56) =$	1)((1)(1)(1)(1)(1)(1)(1)(1)(1)(3)(4)(3)(3)(4)(3)(4)(3)(4)(3)(4)(3)(3)(3)(3)(3)(3)(3)(3	5) (() () () () () () () () ()	G) (G) (7) (<t< td=""><td>8)(1 7)(1 8)(8)(8)(8)(8)(8)(8)(8)(</td><td></td><td>11) 11) 10) 10) 10) 10) 10) 10) 10) 11) 11</td><td>(12 (12 (12 (11 (11 (11 (12) (12) (12) (</td><td>(13) (14) (14) (14) (14) (13) (13) (13) (13) (13) (13) (13) (13</td><td>(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14) (14) (14) (15)</td><td>(10) (10) (10) (10) (10) (10) (10) (10)</td></t<>	8)(1 7)(1 8)(8)(8)(8)(8)(8)(8)(8)(11) 11) 10) 10) 10) 10) 10) 10) 10) 11) 11	(12 (12 (12 (11 (11 (11 (12) (12) (12) ((13) (14) (14) (14) (14) (13) (13) (13) (13) (13) (13) (13) (13	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14) (14) (14) (15)	(10) (10) (10) (10) (10) (10) (10) (10)
	$\begin{array}{l} 43) = (\\ 44) = (\\ 45) = (\\ 45) = (\\ 45) = (\\ 45) = (\\ 50) = (\\ 50) = (\\ 51) = (\\ 52) = (\\ 53) = (\\ 54) = (\\ 55) = (\\ 56) =$	1)((1)(1)(1)(1)(1)(1)(1)(1)(1)(3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 5) 4) 5) 4) 5) 4) 5) 4) 5) 6) 5) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 7) 6)	5) (() () () () () () () () ()		8)(1 7)(1 5)(8)(8)(8)(8)(8)(3)(8)(3)(3)(3)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1	(10) ((10) (11) 11) 10) 10) 10) 10) 10) 10) 10) 11) 11	(12 (12 (12 (11 (11 (11 (12) (12) (12) ((13) (13) (14) (14) (14) (13) (13) (13) (13) (13) (13) (13) (13	(15) (15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14) (14) (14) (15) (14) (14) (14) (14) (14) (15)	(10) (10) (10) (10) (10) (10) (10) (10)
	43)=(44)=(45)=(45)=(43)=(43)=(50)=(51)=(52)=(53)=(55)=(56)=(57)=(1)((1)(1)(1)(1)(1)(1)(1)(1)(1)(3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 3) 4) 5) 4) 5) 4) 5) 4) 5) 4) 5) 4) 5) 4) 5) 6) 5) 6) 5) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6)	5) (() () () () () () () () ()	6) (6) (7) (7) (7) (7) (7) (7) (7) (7	8)(1 7)(1 5)(8)(8)(8)(8)(8)(8)(3)(3)(3)(3)(3)(10)(1 10)(1 10)(1	0) (0) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (11) (11)	11) 11) 10) 10) 10) 10) 10) 10) 10) 10)	(12 (12 (11 (11 (11 (12) (12) (12) (12)	<pre>)(13))(13))(14))(14))(14))(13))(13))(13))(13))(13))(13))(13))(13))(13))(13))(13))(14))(14))(14))(14))(14))(14)</pre>	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14) (14) (14) (15) (14) (14) (14) (14) (15) $(15)($	(10) (10) (10) (10) (10) (10) (10) (10)
D(D(D(D(D(D(D(D(D(C(C(C(L(43)=(44)=(45)=(45)=(45)=(43)=(50)=(51)=(52)=(53)=(55)=(55)=(56)=(53)=(53)=(1)((1) 1)((1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(3) 4) 4) (4) 3) 4) 4) (4) 3) (4) 4) (4) 3) (5)	5) (() () () () () () () () ()	G) (G) (7) (<t< td=""><td>8)(1 7)(1 8)(8)(8)(8)(8)(8)(3)(3)(3)(3)(3)(10)(1 8)(8)(</td><td>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)</td><td>11) 11) 10) 10) 10) 10) 10) 10) 10) 11) 11</td><td>(12 (12 (12 (11 (11 (11 (12) (12) (12) (</td><td>) (13)) (14)) (14)) (14)) (13)) (14)) (14)) (13)</td><td>(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14) (15) (14) (14) (14) (15) (14) (14) (14) (15) (14) (14) (14) (14) (15)</td><td>(10) (10) (10) (10) (10) (10) (10) (10)</td></t<>	8)(1 7)(1 8)(8)(8)(8)(8)(8)(3)(3)(3)(3)(3)(10)(1 8)(8)((1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	11) 11) 10) 10) 10) 10) 10) 10) 10) 11) 11	(12 (12 (12 (11 (11 (11 (12) (12) (12) () (13)) (14)) (14)) (14)) (13)) (14)) (14)) (13)	(15) (15) (15) (15) (15) (15) (15) (15) (14) (14) (14) (14) (14) (15) (14) (14) (14) (15) (14) (14) (14) (15) (14) (14) (14) (14) (15)	(10) (10) (10) (10) (10) (10) (10) (10)

- 293 -

TABLE IX.1. Σ_g DETORS (Continued).

D(60)=(1)(2)(5)(6)(7)(3)	(9)) (11	.) (12)	(14)	(15)	(16)
DĊ	61)=(1)(2)(5)(6)(7)(8)	(10)) (11	.) (12)	(13)	(15)	(16)
DC	62)=(1)($2\dot{)}$	5)	6)	9)(1	LO)	(11) (12	2) (13)	(14)	(15)	(16)
D	63)=(1)(2)(7)(8)(9)0	10)	(11) (12	\dot{z}	13)	(14)	(15)	(16)
D	64) = (1)(3)(4)(5)(c)(7)	(9	(1)		12)	(14)	(15)	(16)
D(65)-(210	3)(4)(5)(6)(7)	(6) (1)	57	11)	(14)	(15)	(16)
D(4/(2)(5)(2		/ (±) / / 1 (// \ \\ /	++/ 1 1 \	(14)	(15)	(10)
20	(0) = (2)(4)(0)	() / 0) (1)) /1/	// (\\ /	+ + / 1 4 \	(1 0)	(10)	(10)
DC	67)=(4)(3)(4)	5)(്) റ	(9		$\frac{1}{2}$	4 0)	(10)	(10)	(10)
DC	G8)=(1)(ິງ (ວັງ (4)(5)(0)((c)				14) 10)	(13)	(13)	(10)
DC	69)=(2)(3)(4)(5)(6)($\frac{\gamma}{\gamma}$	(9)(1())(12)	(13)	(15)	(10)
D(70)=(2) (3) (4)(5)(6)(7)	(9)(1]	.)(12)	(13)	(14)	(10)
D(71)=(1)(3) (<u>4</u>)(5) (6)(8)	(9) (1]	.)(12)	(13)	(14)	(16)
Ľ(72)=(2)(3)(4)(3) (6) (8)	(9) (11	.)(12)	(13)	(14)	(15)
D(73)=(1)(3) (4) (5)(3) (3)	(10) (11	.)(12)	(13)	(14)	(15)
L(74)=(2) (3)(4) (5) (6)(7)	(10)(11	.)(12)	(13)	(14)	(15)
D(75)=(1)(3)(4)(5) (6)(7)	(10)(11	.) (12)	(13)	(14)	(16)
D(76)=(1)(3)(4)(5) (7)(3)	(9) (1 ())(12)	(13)	(14)	(16)
D(77)=(2)(3)(4) (5)(7)(3)	(9) (1 0))(11)	(13)	(14)	(16)
D(78)=(1)(3) (4)(6)(7)(3)	(9)(10))(11)	(13)	(14)	(16)
DĊ	79)=(2)(3)(4) (6)(7)	S)	(9) (10))(11)	(13)	(14)	(15)
DC	30)=(1)(3) (4)((3)	7) (3)	C9	$\dot{\boldsymbol{b}}$	$\dot{\mathbf{x}}$	12)	(13)	(14)	(15)
D(81)=(250	$2\hat{)}$	4)(5)(7)(8)	$\dot{\boldsymbol{0}}$	$\dot{\mathbf{n}}$	$\tilde{\mathbf{x}}$	12)	(13)	(14)	(15)
D	82)=($\frac{1}{1}$	3)(4)(5) (7)(8)	ào	(11)	$\mathbf{\hat{b}}$	$\frac{12}{12}$	(14)	(15)	(16)
	83)-(2)(3) (5)(7)(8)	(9	/ (/ / 1 1	.,. 	121	(14)	(15)	(16)
D	24)-(1)(3)(6)(7)(8)	<u>,</u> a	/ (±= / /1 1	·/ 、 · \ /	19)	(14)	(15)	(16)
	05)-(277	2) (4)(6)(7) (0)	$\begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$	/ \ \ / 1 4	• / (1 91	(1 2)	(15)	(10)
	90) - (4)(2) (4)(7)(0)	(10) (+ 4	·/(\/	1-07	(1 2)	(15)	(10)
DC	(00) = (00)	7)(3)(4/(5)(5)/		0)	(10	/ (+	·/(1 0) 1 0)	(10)	(10)	(10)
DC	87)=(00) (2)(3)(4)(b)($\frac{7}{2}$	(8)(1]	-)(12)	(LJ)	(10)	(10)
D(ತಕ)=(1)(3)(4)(6)(9)(.	10))(1:	4) ()) /	13)	(14)	(15)	(10)
D(89)=(2)(3)(4)(5)(9)(2	r0)	(11		2) (13)	(14)	(15)	(16)
DC	90)=(1)(3)(5)(6)(7) (8)	(9)(1())(12)	(14)	(15)	(16)
D	91)=(2)(3) (5)(6)(7)(8)	(9))(11)	(14)	(15)	(10)
D	92)=(1)(4)(5)(6)(7)(8)	(9)(1())(11)	(14)	(15)	(16)
D(93)=(2) (4)(5) (6)(7)(8)	(9)(10))(11)	(13)	(15)	(16)
D(94)=(1)(4) (5) (6) (7)(8)	(9)(10))(12)	(13)	(15)	(16)
D(95)=(2) (3) (5)(6)(7)(8)	(9)(10))(12)	(13)	(15)	(10)
D (96)=(2)(3) (5)(6)(7)(3)	(9) (11	.)(12)	(13)	(14)	(16)
D(97)=(1)(4)(5)(6)(7)(8)	(9) (11	.)(12)	(13)	(14)	(16)
D(98)=(2) (4) (5) (6) (7) (8)	(9) (11	.)(12)	(13)	(14)	(15)
D(99)=(1)(4)(5) (6) (7)(3)	(1 0) (11	.)(12)	(13)	(14)	(15)
D()	LOO)=(2)(3)(5)(G)(7) (8)	(10) (1]	.)(12)	(13)	(14)	(15)
D(1	L01)=(1)(3) (5) (6) (7)(8)	(10) (11	.)(12)	(13)	(14)	(16)
D(1	L02)=(1)(3)(6) (3)(9)(:	10)	(11) (1:	2) (13)	(14)	(15)	(16)
D()	L03)=(2)(3) (5)(3)(9) (3	10)	(11)(1:	2)(13)	(14)	(15)	(16)
D(1	L04)=(1)(4)(5)(8)(9) (:	10)	(11)(12	2) (13)	(14)	(15)	(16)
D(105)=(2) (4)(5)(7)(9)(10)	(11) (12	2)(13)	(14)	(15)	(16)
D(1	106)=(1)(4) (6)(7)(9) (10)	(11) (12	2)(13)	(14)	(15)	(16)
D	L(07) = (2)(3) (6) (7)(9) (10)	(11)(1:	2)(13)	(14)	(15)	(16)
D(1	L03)=(1)(6)(7)	\dot{a}	9) (°	10)	(11)(1)	$\frac{1}{2}$	13)	(14)	(15)	(13)
D(1	109)=(250	5)(7)	8)(9) (10)	(11)(1:	$\frac{1}{2}$	13)	(14)	(15)	(16)
D(1	(10) = (3)(4)(5) (6)(7)(- 2)	(-))(1)	-/ \ 5) (11)	(13)	(1a)	(16)
D(1		314	41(514	6) (7)(2)	(0) (1(~~~ \\ (/ 1:21	(1 3)	(12)	(15)
- / · / ·		277	411	511	611	710	-31	τυ τ c.) (+() (+(// \ 	エムノ 1ッハ	(1/)	(15)	(10)
- L'(J - T) (1	1 21-1	377		511	617	777	- 07 - 01	(10)	/ / 1 4 / / 1 4	- / (/ (エムノ す (1)	<u>11</u> 01	(14)	(1/)
רו ע הויז	11/)-/		~/\ ∕\\	571	614	- 17 (- 17 (رن ۱۵۱	(1U)	/ (⊥」 / / 1 /	いく	エーノ 1つヽ	(12)	(10)	(10)
- L ()	L14/=(377	4/(- J (7 \ /	070	- 07 C. - 08 Z.	エリノ エピノ	<u>√</u> ⊥⊥ ∡11	/ (12 \ / 1 /	いく	10) 10\	(14) (1 A)	(10) (1e)	(10)
ע. העי	116)=(2)(-12/ (- 21/		0/(- 27 (. - 25 7	10 7 101	₹⊥⊥ /14	/(1) //-	いく	エゴノ ィット	(14)	(10)	(10)
	LIU)=(3)(4) /	5) (-> /) //			1) (± : \ /• -	5) (5) /	13)	(14)	(10)	(10)
D(]	117)=(4)(ə)(6)(7)(9) (:	LO)	(11)(1)	4) (T3)	(14)	(15)	(10)
D(1	L18)=(5) (6) (7)(ઠ) (9) (:	10)	(11)(1:	3)(13)	(14)	(15)	(10)

•

.

TABLE IX.2

$$\begin{array}{l} {}^{3} \Sigma_{g}^{-} \ \text{Codetors constructed from detors in Table IX.1.} \\ \Psi_{1} &= 2^{-1/2} (D_{4} - D_{7}) \\ \Psi_{2} &= 2^{-1/2} (D_{5} - D_{8}) \\ \Psi_{3} &= 2^{-1/2} (D_{11} + D_{12}) \\ \Psi_{4} &= 2^{-1/2} (D_{13} + D_{14}) \\ \Psi_{5} &= 8^{-1/2} (-D_{16} - D_{17} + D_{19} + D_{20} \\ &+ D_{21} + D_{22} - D_{24} - D_{25}) \\ \Psi_{6} &= 24^{-1/2} (-2D_{15} - D_{16} + D_{17} + D_{18} + D_{19} + D_{20} \\ &- D_{21} + D_{22} + 2D_{23} + D_{24} - D_{25} - 2D_{26}) \\ \Psi_{7} &= 12^{-1/2} (-D_{15} + D_{16} - D_{17} + D_{18} - D_{19} + D_{20} \\ &+ D_{21} - D_{22} + D_{23} - D_{24} + D_{25} - D_{26}) \\ \Psi_{8} &= 2^{-1/2} (D_{27} + D_{28}) \\ \Psi_{9} &= 2^{-1/2} (D_{29} + D_{30}) \\ \Psi_{10} &= 12^{-1/2} (-2D_{32} - D_{33} + D_{34} + 2D_{35} + D_{36} - D_{37}) \\ \Psi_{11} &= 6^{-1/2} (-D_{32} + D_{33} - D_{34} + D_{35} - D_{36} + D_{37}) \\ \Psi_{12} &= 12^{-1/2} (-2D_{38} - D_{39} + D_{40} + 2D_{41} + D_{42} - D_{43}) \\ \Psi_{13} &= 6^{-1/2} (-D_{45} - D_{46} + D_{48} + D_{49} \\ &+ D_{50} + D_{51} - D_{53} - D_{54}) \end{array}$$

TABLE IX.2 (continued) $\Psi_{15} = 24^{-1/2}(-2D_{44} - D_{45} + D_{46} + 2D_{47} + D_{48} - D_{49})$ $- D_{50} + D_{51} + 2D_{52} + D_{53} - D_{54} - 2D_{55}$ $= 12^{-1/2} (-D_{44} + D_{45} - D_{46} + D_{47} - D_{48} + D_{49}$ Ψ₁₆ + $D_{50} - D_{51} + D_{52} - D_{53} + D_{54} - D_{55}$) $\Psi_{17} = 2^{-1/2} (D_{58} + D_{59})$ $= 2^{-1/2} (D_{60} + D_{61})$ Ψ₁₈ $= 8^{-1/2} (-D_{65} \Rightarrow D_{66} \Rightarrow D_{68} + D_{69}$ Ψ₁₉ $+ D_{70} + D_{71} - D_{73} - D_{74})$ $= 24^{-1/2}(-2D_{64} - D_{65} + D_{66} + 2D_{67} + D_{68} - D_{69}$ Ψ₂₀ $- D_{70} + D_{71} + 2D_{72} + D_{73} - D_{74} - 2D_{75}$ $= 12^{-1/2} (-D_{64} + D_{65} - D_{66} + D_{67} - D_{68} + D_{69}$ Ψ21 $+ D_{70} - D_{71} + D_{72} - D_{73} + D_{74} - D_{75})$ $= 12^{-1/2}(-2D_{76} - D_{77} + D_{78} + 2D_{79} + D_{80} - D_{81})$ Ψ22 $= 6^{-1/2} (-D_{76} + D_{77} - D_{78} + D_{79} - D_{80} + D_{81})$ Ψ23 Ψ24 $= 12^{-1/2} (-2D_{82} - D_{83} + D_{84} + 2D_{85} + D_{86} - D_{87})$ $= 6^{-1/2} (-D_{82} + D_{83} - D_{84} + D_{85} - D_{86} + D_{87})$ Ψ25 $\Psi_{26} = 8^{-1/2} (-D_{91} - D_{92} + D_{94} + D_{95})$ $+ D_{96} + D_{97} - D_{99} - D_{100})$

TABLE IX.2 (continued) $\Psi_{27} = 24^{-1/2}(-2D_{90} - D_{91} + D_{92} + 2D_{93} + D_{94} - D_{95})$ $- D_{96} + D_{97} + 2D_{98} + D_{99} - D_{100} - 2D_{101}$ $\Psi_{28} = 12^{-1/2} (-D_{90} + D_{91} - D_{92} + D_{93} - D_{94} + D_{95}$ $+ D_{96} - D_{97} + D_{98} - D_{99} + D_{100} - D_{101})$ $\Psi_{29} = 2^{-1/2} (D_{110} + D_{111})$ $\Psi_{30} = 2^{-1/2} (D_{112} + D_{113})$ ¹ Σ_{σ}^+ Codetors constructed from detors in Table IX.1. $\Psi_1 = D_1$ $\Psi_2 = 2^{-1/2} (D_2 + D_3)$ $\Psi_3 = 2^{-1}(-D_5 + D_6 - D_8 + D_9)$ $\Psi_4 = 12^{-1/2}(2D_4 - D_5 - D_6 + 2D_7 - D_8 - D_9)$ = ^D10 Ψ₅ $\Psi_6 = 2^{-1/2} (D_{11} - D_{12})$ $\Psi_7 = 2^{-1/2} (D_{13} - D_{14})$ $= 8^{-1/2} (-D_{16} + D_{17} - D_{19} + D_{20})$ Ψ₈ $- D_{21} + D_{22} - D_{24} + D_{25})$ $= 24^{-1/2} (2D_{15} - D_{16} - D_{17} + 2D_{18} - D_{19} - D_{20}$ Ψ + D_{21} + D_{22} - $2D_{23}$ + D_{24} + D_{25} - $2D_{26}$) $\Psi_{10} = 2^{-1/2} (D_{27} - D_{28})$

TABLE IX.2 (continued) $\Psi_{11} = 2^{-1/2} (D_{29} - D_{30})$ $\Psi_{12} = D_{31}$ $\Psi_{13} = 2^{-1}(-D_{33} + D_{34} - D_{36} + D_{37})$ $\Psi_{14} = 2^{-1}(-D_{39} + D_{40} - D_{42} + D_{43})$ $\Psi_{15} = 8^{-1/2} (-D_{45} + D_{46} - D_{48} + D_{49})$ $- D_{50} + D_{51} - D_{53} + D_{54})$ $\Psi_{16} = 24^{-1/2} (2D_{44} - D_{45} - D_{46} + 2D_{47} - D_{48} - D_{49})$ $+ D_{50} + D_{51} - 2D_{52} + D_{53} + D_{54} - 2D_{55}$ $\Psi_{17} = 2^{-1/2} (D_{56} - D_{57})$ $\Psi_{18} = 2^{-1/2} (D_{58} - D_{59})$ $\Psi_{19} = 2^{-1/2} (D_{60} - D_{61})$ = ^D62 Ψ₂₀ = ^D63 Ψ21 $\Psi_{22} = 8^{-1/2} (-D_{65} + D_{66} - D_{68} + D_{69})$ $- D_{70} + D_{71} - D_{73} + D_{74})$ $\Psi_{23} = 24^{-1/2} (2D_{64} - D_{65} - D_{66} + 2D_{67} - D_{68} - D_{69})$ $+ D_{70} + D_{71} - 2D_{72} + D_{73} + D_{74} - 2D_{75}$ $\Psi_{24} = 2^{-1}(-D_{77} + D_{78} - D_{80} + D_{81})$ $\Psi_{25} = 2^{-1}(-D_{83} + D_{84} - D_{86} + D_{87})$

TABLE IX.2 (continued)

 $\Psi_{26} = 2^{-1/2} (D_{88} - D_{89})$ $\Psi_{27} = 8^{-1/2} (-D_{91} + D_{92} - D_{94} + D_{95})$ $- D_{96} + D_{97} - D_{99} + D_{100}$) $\Psi_{28} = 24^{-1/2} (2D_{90} - D_{91} - D_{92} + 2D_{93} - D_{94} - D_{95}$ + D_{96} + D_{97} - $2D_{98}$ + D_{99} + D_{100} - $2D_{101}$) $\Psi_{29} = 2^{-1}(-D_{103} + D_{104} - D_{106} + D_{107})$ $\Psi_{30} = 12^{-1/2} (2D_{102} - D_{103} - D_{104} + 2D_{105} - D_{106} - D_{107})$ $\Psi_{31} = 2^{-1/2} (D_{108} - D_{109})$ $\Psi_{32} = 2^{-1/2} (D_{110} - D_{111})$ $\Psi_{33} = 2^{-1/2} (D_{112} - D_{113})$ $\Psi_{34} = D_{114}$ $\Psi_{35} = D_{115}$ $\Psi_{36} = 2^{-1/2} (D_{116} - D_{117})$ $\Psi_{37} = D_{118}$

D(1)=(1)(2)(3) (4) (5) (6) (7) (8) (9) (14) (15) (16)
D	2)=(1)(2)(3) (4)(5)(6) (7) (8) (10) (13) (15) (16)
DČ	3)=(1)(2)(3) (4)(5) ((7)(3)(11)(13)(14)(16)
D(4)=(1)(2) (3)(4)(5)((6)(7)(8)(12)(13)(14)(15)
DC	5)=(1)(2)	3) (4)(5)((9)(10)(13)(14)(15)(16)
D(6) = ($\frac{1}{1}$	2)(3) (4)(5)	(11)(12)(13)(14)(15)(16)
DC	7)=(1)(2)(3)	4) (5)	(10)(12)(13)(14)(15)(16)
DC	(8) = (1)($\frac{-1}{2}$	3) (4)(6)(7) $(9)(12)(13)(14)(15)(16)$
DC	9) = (1)(2)(3)	4)	5)((9)(12)(13)(14)(15)(16)
D	10)=(1)(2)	3)(4)	6)((9)(11)(13)(14)(15)(16)
D	11)=(1)(2)	3)	4)	5)	(10)(11)(13)(14)(15)(16)
D((12) = (1)($\frac{2}{2}$	3)(4)	6)((10)(11)(13)(14)(15)(16)
	$1_{3} = ($	1)(2)(3)(4)(7)((10)(11)(13)(14)(15)(16)
	14) - (1)($\frac{2}{2}$	3)(4)(7)((11)(12)(13)(14)(15)(16)
	15)-(1)(2)(3)(5)(610	(11)(12)(13)(14)(15)(10)
D(10) - ($\frac{1}{1}$	2)(5)(7)(3)(10)(13)(14)(15)(16)
	17)-(1)(2)(2)/	5)(6)((11)(12)(13)(14)(15)(10)
	10) - (1)($\frac{2}{2}$		5)(7)(11)(12)(12)(13)(14)(15)(10)
	10) - (1)(2/(4/ (2) (5)(7)((10)(12)(13)(14)(15)(10)
	20)-(1)(2)(5)(7)(2) (10) (12) (13) (14) (15) (16)
50	207-(1)(2)(4/ 2)/		7)((12)(12)(12)(14)(15)(10)
	21)=(1)($\frac{2}{2}$	3)(η	(3)(3)(12)(13)(14)(15)(10)
	22)=(22)-(1)(4)(4/((3)(3)(11)(13)(14)(15)(10)
	23)=(2)(5)($\frac{1}{7}$	(10)(11)(13)(14)(15)(10)
50	24)=(4/	4)(5)((10)(11)(13)(14)(15)(10)
DC	25)=(4)(5)(η	(3)(3)(10)(13)(14)(15)(10)
	20)=(1)(2)(5)(6)(γ	(11)(12)(13)(14)(15)(10)
DC	27)=(3)(4)(5)(6)(7)(10)(12)(13)(14)(15)(16)
D	23)=(2)(3)(4)(5)(6)((12)(13)(14)(15)(16)
DC	20)=(1)(び)(かく	4)(5)(0)((12)(12)(12)(14)(15)(10)
D(30)=(2)(3)(4)(5)(6)(8)(-5)(11)(13)(14)(15)(16)
D(31)=(1)(3)(4)(5)(6)(
D(32)=(2)(3)(4)(5)(c)(6)((10)(11)(13)(14)(15)(10)
DC	33)=(1)(3)(4)(1)(6)(γ	(10)(13)(14)(15)(16)
D(34)=(2)(3)(4) (5)(γ	
D(35)=(1)(3)(4)(6)(7)(
E(36)=(2)(3) (4)(5) ($\frac{7}{2}$	
D	37)=(1)(3)(5)(6)(7)(
D(33)=(2)(3)(5)(6)(7)(8) (0) (12) (13) (14) (15) (16)
D(39)=(1)(4)(5)(G)(7) (8) (9) (12) (13) (14) (15) (16)
Γ(40)=(2)(4)(5) (5)(7)(3) (9) (11) (13) (14) (13) (16)
D(41)=(1)(4)(5) (6)(7)(3) (10) (11) (13) (14) (15) (13)
D(42)=(2)(3) (5)(G)(7)(3) (10) (11) (13) (14) (15) (16)
D(43)=(3) (4) (5)(G)(7) (8) (3) (10) (13) (14) (15) (13)
Ι(44)=(3) (4) (5)(G)(7)((11)(12)(13)(14)(15)(16)

- 299 -

TABLE IX.4

 $^{1}\Delta_{g}$ Codetors constructed from detors in Table IX.3. $\Psi_1 = 2^{-1/2} (D_1 - D_2)$ $\Psi_2 = 2^{-1/2} (D_3 - D_4)$ $\Psi_3 = D_5$ $\Psi_4 = D_6$ $\Psi_5 = 2^{-1}(-D_8 + D_9 - D_{11} + D_{12})$ $= 12^{-1/2} (2D_7 - D_8 - D_9 + 2D_{10} - D_{11} - D_{12})$ Ψ₆ $\Psi_7 = D_{13}$ $\Psi_8 = D_{14}$ $\Psi_9 = 2^{-1/2} (D_{15} \stackrel{\sim}{=} D_{16})$ $\Psi_{10} = 2^{-1/2} (D_{17} - D_{18})$ $\Psi_{11} = 2^{-1}(-D_{20} + D_{21} - D_{23} + D_{24})$ $\Psi_{12} = 12^{-1/2} (2D_{19} - D_{20} - D_{21} + 2D_{22} - D_{23} - D_{24})$ $\Psi_{13} = D_{25}$ $\Psi_{14} = D_{26}$ $\Psi_{15} = 2^{-1}(-D_{28} + D_{29} - D_{31} + D_{32})$ $\Psi_{16} = 12^{-1/2} (2D_{27} - D_{28} - D_{29} + 2D_{30} - D_{31} - D_{32})$ $\Psi_{17} = 2^{-1/2} (D_{33} - D_{34})$ $\Psi_{18} = 2^{-1/2} (D_{35} - D_{36})$

TABLE IX.4 (continued)

$$\Psi_{19} = 2^{-1}(-D_{38} + D_{39} - D_{41} + D_{42})$$

$$\Psi_{20} = 12^{-1/2}(2D_{37} - D_{38} - D_{39} + 2D_{40} - D_{41} - D_{42})$$

$$\Psi_{21} = D_{43}$$

$$\Psi_{22} = D_{44}$$

.

.

- 302 -

TABLE IX.5. PART 1, Σ_g SPATIAL ORBITAL CONFIGURATIONS.

							Present	Present	Ref.	Ref.
	$ns\sigma_{m}$	nso.	npc_	npπ.	npπ_	np <i>o</i>	. ³ Σ ⁻	¹ Σ+	42	42
	g	u	- g	- u	- g	- u	g	g	3	1-+
			·				Codetors	Codetors	⁻² g	g
1	2	2	2	-	4	2		1		đ
2	2	2	2	2	2	2		2		е
3	2	2	2	2	2	2	1,2	3,4	a,b	a,b
4	2	2	2	4	-	2		5		с
5	2	2	2	2	4	-	3	6	đ	g
6	2	2	2	4	2	-	4	7	с	ſ
7	2	2	1	3	3	1	5,6,7	8,9	g,h,i	h,i
8	2	2	-	2	4	2	8	10	f	k
9	2	2	-	4	2	2	9	11	е	j
10	2	2	-	4	4	1		12		l
11	2	.1	2	2	. 4	1	10,11	13		
12	2	1	2	4	2	1	12,13	14		
13	2	1	1	3	3	2	14,15,16	15,16		
14	2	1		4	4	1		17		- - -
15	2	-	2	2	4 /	~ 2	17	18		- -
16	2	-	2	4	2	2	18 、	19		
17	2	-	2	4	4	-		20		
18	2	-	- '	4	4	2		21		
19	1	2	2	3	3	1	19,20,21	22,23		
20	1	2	1	2	4	2	22,23	24		
21	1	2	1	4	2	2	24,25	25		
22	1	2	1	4	4	-		26		
23	1	1	2	3	3	2	26,27,28	27 ,2 8		
24	1	1	1	4	4	1		29,30		
25	. 1	-	1	4	4	2		31		
26	- .	2	2	2	4	2	29	32		
27	-	2	2	4	2	2	30	33		
28	-	2	2	4	4	-		34		
29	-	2	-	4	4	2		35		
30	-	1	2	4	4	1		36		
31		· 🕳	2	4	4	2		37		
	1									

TABLE IX.5. PART 2, Δ_g SPATIAL ORBITAL CONFIGURATIONS.

REFERENCES

1.	M. Born, and J.R. Oppenheimer, Ann. d. Phys. <u>84</u> , 457 (1927).
2.	C.C.J. Roothaan, Phys. Rev. <u>23</u> , 69 (1951).
3.	G.G. Hall, Rep. Progr. Phys. XXII, 1 (1959).
4.	H. Eyring, J. Walter, and G. Kimball, "Quantum Chemistry" (Wiley, New York 1944)
5.	G.G. Hall, Proc. Roy. Soc. <u>A208</u> , 328 (1951).
6.	R.K. Nesbet, Advan. Chem. Phys. <u>IX</u> , 321 (1965).
7.	A.T. Amos, and G.G. Hall, Proc. Roy. Soc. <u>A263</u> , 483 (1961).
8.	P-O. Lowdin, Phys. Rev. <u>97</u> 1474, 1490, 1509 (1955).
9•	A.C. Wahl, J. Chem. Phys. <u>41</u> , 2600 (1964).
10.	W.G. Richards, T.E.H. Walker, and R.K. Hinkley, "A Bibliography of Ab Initio Molecular Wave Functions" (Clarendon Press, Oxford 1977)
11.	R. McWeeny, and B.T. Sutcliffe, "Methods of Molecular Quantum Mechanics" (Academic Press, London 1969).
12.	M. Kotani, A. Ameiya, E. Ishiguro, and T. Kimura, "Tables of Molecular Integrals" (Maruzen Co. Ltd., Tokyo 1963).
13.	J.H. Wilkinson, "The Algebraic Eigenvalue Problem" (Clarendon Press, Oxford 1965).
14.	J.C. Slater, "Quantum Theory of Molecules and Solids", Vol. 1 (McGraw-Hill Book Co. Inc., New York 1963).
15.	J. Hinze, and C.C.J. Roothaan, Progr. Theor. Phys. Supplement No. 40, 37 (1967).
16.	G. Das, and A.C. Wahl, J. Chem. Phys. <u>47</u> , 2934 (1967).
17.	G. Das, and A.C. Wahl, J. Chem. Phys. <u>44</u> , 87 (1966).
18.	G. Das, and A.C. Wahl, Phys. Rev. Letters, <u>24</u> , 440 (1970).
19.	W. Kolos, and C.C.J. Roothaan, Rev. Mod. Phys. <u>32</u> , 219 (1960). See also reference 10.
20.	H. Shull, J. Chem. Phys. <u>30</u> , 1405 (1959).
21•	H. Shull, J. Am. Soc. <u>82</u> , 1287 (1960).
22.	R.E. Christoffersen, J. Chem. Phys, <u>41</u> , 960 (1964).

.

.

23. W.C. Price, J. Chem. Phys. <u>15</u>, 614 (1947).

..

- 24. J.N. Shoolery, Discussions Faraday Soc. 19, 215 (1955).
- 25. K.E. Banyard, and H. Shull, J. Chem. Phys. <u>44</u>, 384 (1966)
- 26. See reference 20.
- 27. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
- 28. P-O. Löwdin, and H. Shull, Phys. Rev. 101, 1730 (1956).
- 29. F. Ayres, "Matrices" (Schaum Pub. Co., New York 1962).
- 30. R. McWeeny, J. Chem. Phys. <u>19</u>, 1614 (1951); <u>20</u>, 920 (1952); Acta Crystallogr. <u>5</u> 463 (1952).
- 31. R.E. Christoffersen, and H. Shull, J. Chem. Phys. <u>48</u> 1790 (1968). The author wishes to acknowledge the receipt of a preprint of this paper.
- 32. R.E. Christoffersen, Private communication; M.E. Schwartz, and L.J. Schaad, J. Chem. Phys. <u>47</u>, 5325 (1967).
- 33. J.D. Hopton, and J.W. Linnett, J. Chem. Soc. 1553 (1962).
- 34. J.O. Hirschfelder, H. Eyring, and N. Rosen, J. Chem. Phys. <u>4</u> 130 (1936).
- 35. H. Shull, J. Am. Chem. Soc. 86, 469 (1964).
- 36. K. Ruedenberg, Rev. Mod. Phys. <u>34</u>, 326 (1962).
- 37. K.E. Banyard, and A. West, J. Chem. Phys. 54, 437 (1971).
- 38. S.F. Boys, Proc. Roy. Soc. A200, 542 (1950).
- 39. M. Hammermesh, "Group Theory and its Applications to Physical Problems" (Pergammon Press, London 1962).
- 40. J. Todd, "A Survey of Numerical Analysis" (McGraw-Hill Book Co. Inc., New York 1962).
- 41. F.E. Harris, "Computational Methods in Quantum Chemistry" (Quantum Chemistry Group, Uppsala University, TXVII, 1967).
- 42. A. Meckler, J. Chem. Phys. <u>21</u>, 1750 (1953).
- 43. M. Kotani, Y. Mizuno, K. Kayama, and E. Ishiguro, J. Phys. Soc. Jap. <u>12</u>, 707 (1957).
- 44. F.E. Harris, and H.H. Michels, Intern. J. Quantum Chem. 15 329 (1967).
- 45. H.F. Schaefer, and F.E. Harris, J. Chem. Phys. <u>48</u>, 4946 (1968).
- 46. E.P. Wigner, and E.E. Witmer, Z. Physik, <u>51</u> 859 (1928).
- 47. H. Bowlder, R.S. Martin, and J.H. Wilkinson, Num. Math. 11, 293 (1968).
- 48. R.S. Martin, C. Reinsch, and J.H. Wilkinson, Num. Math. 11, 181 (1968).

- 49. C.F. Schofield, "FORTRAN V" (ULACS:, 2nd Ed. 1969).
- 50. I.C.T. Atlas 1 Computer. Programming Manual for A.B.L. List CS 348A. (January 1965).
- 51. "Usage of Atlas Magnetic Tape in the Hartran System" (Atlas Computer Laboratory). This also applies to FORTRAN V.
- 52. S.F. Boys, Proc. Roy. Soc. <u>A201</u>, 125 (1950).
- 53. E. Clementi, and E.R. Davis, J. Comp. Phys. <u>1</u>, 223 (1966).
- 54. J. Miller, and J.C. Browne, Tech. Report. Molecular Physics Group. Univ. of Texas. Austin 12. Texas. U.S.A. (January 1962).
- 55. J.L. Dunham, Phys. Rev. <u>41</u>, 713, 721 (1932).
- 56. G. Herzberg, "Molecular Spectra and Molecular Structure" Vol. 1. "Spectra of Diatomic Molecules" (D. Van Norstrand Co. Inc., London 1967).
- 57. L.A. König, J.H.E. Mattauch, and A.H. Wapstra, Nucl. Phys. 31, 18 (1962).
- 58. C.L. Beckel, and R. Engelke, J. Chem. Phys. <u>49</u>, 5199 (1968).
- 59. C.L. Beckel, and J.R. Sattler, J. Mol. Spectry. 20, 153 (1966).
- 60. F.L. Bauer, Num. Math. 7 338 (1965).
- 61. G.T. Anthony. Private Communication.
- 62. G. Mackinney, ACM Algorithm 29; "Polynomial Transformer".
- 63. A.D. McLean, J. Chem. Phys. 40, 2774 (1964).
- 64. B.P. Stoicheff, Can. J. Phys. <u>35</u>, 730 (1957).
- 65. A.G. Gaydon, "Dissociation Energies of Diatomic Molecules" (Chapman and Hall, London 1968).
- 66. H.F. Schaefer, and F.E. Harris, Chem. Phys. Letters, 1, 407 (1967).
- 67. F.E. Harris, J. Chem. Phys. <u>46</u>, 2769 (1967).
- 68. R.F. Barrow, and R.P. Du Parcq, "Elemental Sulphur" p. 251. (Interscience 1965. Ed. B. Meyer).
- 69. P. Budininkas, R.K. Edwards, and P.G. Wahlbeck, J. Chem. Phys. <u>48</u>, 2859 (1968).
- 70. J. Von Neumann, and E.P. Wigner, Physik Z. <u>30</u>, 467 (1929).

71. M. Dixon, Unpublished work.

72. W. Kauzmann, "Quantum Chemistry" (Academic Press, New York 1964).
73. E. Clementi, and D.L. Raimondi, J. Chem. Phys. <u>38</u>, 2686 (1963).
74. E.R. Cohen, and J.W. Du Mond, Rev. Mod. Phys. <u>37</u>, 537 (1965).
75. H. Shull, and G.G. Hall, Nature <u>184</u>, 1559 (1959).

Reprinted from The JOURNAL OF CHEMICAL PHYSICS, Vol. 49, No. 7, 3050-3058, 1 October 1968 Printed in U. S. A.

Quantum-Mechanical Study of Some Three-Center Two-Electron Systems. II. A Natural-Orbital, Electron-Population, and Energy Analysis

K. E. BANYARD AND A. D. TAIT

Department of Physics, University of Leicester, Leicester, England

(Received 6 May 1968)

Configuration-interaction wavefunctions for a series of pseudomolecular ions of the form ZHZ+2Z-1, where Z=1.0 (0.4) 2.2, were reformulated in terms of natural orbitals. Consequently, changes in the electron density could be investigated, as a function of Z and the bond angle $Z\hat{H}Z$, by means of the population analysis of Mulliken. Contour diagrams were also determined for the charge density evaluated in the plane of the molecule. The total energy for each system was analyzed in terms of the kinetic energy, nuclear attraction energy, and the electron and nuclear repulsion energies. The results are presented graphically as a function of the bond angle θ for each value of Z. For Z=1.0, i.e., H₃⁺, the occupation numbers for the natural orbitals revealed the united atom character of this system, and the contour diagrams indicated that, in the equilibrium configuration, the "bonds" were directed from each nucleus towards the centroid of the positive charges. As θ was increased beyond 60°, it was found that the "central" proton within H₃+ began to dominate the system. For Z=2.2, the ions approach most closely to their separated systems of minimum energy as θ tends to 180°. The contour diagrams and the electron-population analysis also show that the ZHZ^{+iZ-} ions change from a three-center to, basically, a two-center system and a strongly perturbing proton as the values for Z and θ increase and decrease, respectively. The θ dependence of the kinetic energy is perhaps the most interesting of the energy curves. By associating a decrease in kinetic energy with an increase in spatial freedom for the electrons, it was possible to understand the θ variations of all the energy components for each value of Z. The present examination has allowed us to observe, in detail, changes which occur in the electron density and energy components for a series of three-center two-electron systems when θ and Z are allowed to vary.

I. INTRODUCTION

In recent years considerable effort has been devoted to the study of the H₃⁺ ion.¹ This two-electron system constitutes a simple molecule with electron-deficient bonds. A similar kind of bonding among three attracting centers of charge is thought to exist in diborane in the form of a "bridge" or "banana" bond.² In an effort to obtain some understanding of such bonds, energy changes with respect to noninteger variations of the nuclear charge were studied by extending the calculations for H_3^+ to a series of pseudomolecular ions of the form ZHZ^{+2Z-1} . The results were reported in Part I of the present series.3 Several interesting features emerged from these calculations: first, we observed an initial decrease in the optimum value of the bond angle $Z\hat{H}Z$ as the effective nuclear charge Z was increased and, second, it was found that a double minimum occurred in the angular dependence of the molecular energy when $Z \sim 1.8$. Further, when Z = 0, the calculation predicted a pleasing degree of energy stability for the hydride ion.4

In Part I it was tentatively suggested that the behavior of the energy of the ZHZ^{+2Z-1} ions might be explained by the existence of two variable components of the electron density. These components were referred to as the "shared" density and the "local" density: the former was associated with the internuclear regions and the latter was situated, primarily, about each of the Z nuclei. Clearly, such an interpretation called for a more detailed investigation.

In the present article the electron density and molecular energy for the ZHZ^{+2Z-1} ions, when Z = 1.0 (0.4) 2.2, are analyzed for various values of the bond angle ZHZranging from $\theta = 30^{\circ} - 180^{\circ}$. The wavefunction is reformulated in terms of natural spin orbitals and the occupation numbers are examined as a function of Zand θ . The NSO representation also permits us to perform an electron-population analysis in terms of definitions for "shared" and "local" densities. Contour maps of the total electron density for each ZHZ+2Z-1 configuration were also obtained. For completeness, the molecular energy E is analyzed in terms of its components. Thus, the kinetic energy of the electrons, the electron-nuclear attraction energy, the electron-electron and nuclear-nuclear repulsion energies are presented as a function of θ for each value of Z. By means of the above techniques, it was hoped to obtain insight into the behavior of the charge density within a threecenter electron-deficient system with respect to variations of nuclear charge and bond angle.

II. ANALYSIS OF CALCULATIONS

At this point, it is appropriate to present a brief description of the wavefunction used in Part I. The ground-state wavefunction Φ for the ZHZ^{+2Z-1} ions, 3050

¹ R. E. Christoffersen, J. Chem. Phys. **41**, 960 (1964); H. Conroy, *ibid.* **41**, 603 (1964); **41**, 1341 (1964); J. R. Hoyland, *ibid.* **41**, 1370 (1964); W. A. Lester, Jr., and M. Krauss, *ibid.* **44**, 207 (1966); B. D. Joshi, *ibid.* **44**, 3627 (1966). ^a H. C. Longuet-Higgins, Quart. Rev. (London) **11**, 121 (1957). ^a K. E. Banyard and H. Shull, J. Chem. Phys. **44**, 384 (1966). ⁴ K. E. Banyard, J. Chem. Phys. **44**, 4645 (1966); see also *ibid.* **48**, 2121 (1968).

	1. A Buttral-Orbital, Electrog-Population, and Enorgy Analysia										
θ		1.0		A. D. Sam.	1.8			2.2			
60°	0.40793 0.40793 0.00000	0.00000 0.00000 1.00158	-0.57826 1.15652 0.00000	0.57073 0.16368 0.00000	0.00000 0.00000 0.84681	-0.37010 1.08571 0.00000	0.61715 0.09397 0.00000	0.00000 0.00000 0.80064	-0.28805 1.05970 0.00000		
120°	0.36089 0.52425 0.00000	$\begin{array}{c} 0.00000 \\ 0.00000 \\ 0.79834 \end{array}$	-0.81247 1.28316 0.00000	0.56556 0.28160 0.00000	0.00000 0.00000 0.73263	-0.55863 1.12742 0.00000	0.64158 0.16143 0.00000	0.00000 0.00000 0.71904	-0.41616 1.08724 0.00000		
180°	$\begin{array}{c} 0.32756 \\ 0.58345 \\ 0.00000 \end{array}$	0.00000 0.00000 0.76029	-0.90220 1.32320 0.00000	0.55900 0.30709 0.00000	0.00000 0.00000 0.72000	-0.59373 1.13264 0.00000	0.64306 0.17026 0.00000	0.00000 0.00000 0.71250	-0.43061 1.08948 0.00000		

TABLE I. Transformation matrices $[A_{jk}]$ of the natural orbitals χ_k for selected Z: θ values where $\chi_k = \Sigma \gamma_j A_{jk}$.

where the bond length Z-H was denoted by R⁵ contained a normalized antisymmetric spin part which could be factorized out of the problem; therefore, the normalized symmetric space part of the wavefunction could be written as

$$\Psi(1,2) = \sum_{i} a_{i}\phi_{i}(1,2), \qquad (1)$$

where the coefficients a_i were obtained by solving the appropriate secular equations. Each space configuration $\phi_i(1, 2)$ was formed from a product of two one-electron symmetry-adapted molecular orbitals constructed from a minimal basis set of three 1s Slater-type atomic orbitals, one centered on each nucleus.⁶ Thus, we have

$$\begin{aligned}
\phi_{1}(1, 2) &= 2\gamma_{1}(1)\gamma_{1}(2), \\
\phi_{2}(1, 2) &= 2\gamma_{2}(1)\gamma_{2}(2), \\
\phi_{3}(1, 2) &= 2\gamma_{3}(1)\gamma_{3}(2), \\
\phi_{4}(1, 2) &= [\gamma_{1}(1)\gamma_{2}(2) + \gamma_{1}(2)\gamma_{2}(1)], \\
\gamma_{1}(t) &= [\varphi(1s_{B}) + \varphi(1s_{C})](t),
\end{aligned}$$
(2)

where

$$\gamma_{1}(t) = [\varphi(1s_{B}) + \varphi(1s_{C})](t),$$

$$\gamma_{2}(t) = [\varphi(1s_{A})](t),$$

$$\gamma_{3}(t) = [\varphi(1s_{B}) - \varphi(1s_{C})](t),$$
(3)

and t=1 or 2. The 1s orbital exponents were optimized to give minimum energy E for each set of preselected values of Z and θ .

A. Natural Spin Orbitals

Natural spin orbitals are defined⁷ as forming a basis set which diagonalizes the generalized first-order density matrix. Further, if a many-particle wavefunction Φ ,

expressed as a superposition of configurations over some arbitrary basis set, is reformulated in terms of configurations built up from natural spin orbitals, then this natural expansion of Φ is distinguished as the superposition of configurations of most rapid convergence.8 For the special case of two-electron systems, Löwdin and Shull⁷ showed that the natural expansion for the space part of the wavefunction could be expressed as

$$\Psi(1,2) = \sum_{k} c_k \chi_k(\bar{r}_1) \chi_k(\bar{r}_2), \qquad (4)$$

where the natural orbitals $\chi_k(\vec{r}_k)$ are defined such that the spinless first-order electron density matrix can be written as

$$\gamma(\bar{r}_{1}' \mid \bar{r}_{1}) = 2 \sum_{k} n_{k} \chi_{k}^{*}(\bar{r}_{1}') \chi_{k}(\bar{r}_{1}).$$
 (5)

The occupation number of the kth natural orbital is given by $n_k = c_k^2$ and satisfies the relation

$$\sum_{k} n_k = 1. \tag{6}$$

For the simple basis set⁹ employed in Part I, we obtained natural orbitals of the following form and symmetry

$$\chi_{1}(t) = [A_{11}(b+c) + A_{21}a](t), \qquad A_{1},$$

$$\chi_{2}(t) = [A_{32}(b-c)](t), \qquad B_{1},$$

$$\chi_{2}(t) = [A_{12}(b+c) + A_{22}a](t), \qquad A_{1}, \qquad (7)$$

The coefficients A_{jk} of the natural orbitals are given in Table I, however, for reasons of space, results are quoted only for selected values of Z and θ . The occupation numbers are given in Table II for all the $Z:\theta$ values.

3051

⁵ Unless stated otherwise, the bond length Z-H was held fixed throughout this work at a value of 1.66 a.u. All units in the present article are Hartree atomic units, see H. Shull and G. G. Hall, Nature 184, 1559 (1959).

⁶ The proton was located on center A and the nuclear charges Z were located on centers B and C. The bond angle θ was defined as $BAC \equiv ZHZ$.

⁷ P.-O. Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956).

⁸ P.-O. Löwdin, Advan. Phys. 5, 1 (1956). ⁹ The letters a, b, and c represent the appropriate Slater-type orbital located on centers A, B, and C, respectively; thus, the symmetry-adapted molecular orbitals $\gamma_j(t)$ of Eq. (3) may be expressed in the abbreviated form used in Eq. (7).

TABLE II. Occupation numbers of the natural orbitals χ_1 , χ_2 , and χ_2 for various $Z:\theta$ values.

	Z							
θ	1.0	1.4	1.8	2.2				
30°	0.99000	0.99527	0.99482	0.99332				
	0.00213	0.00366	0.00507	0.00667				
	0.00787	0.00107	0.00011	0.00001				
40°	0.98845	0.99137	0.98838	0.98271				
	0.00347	0.00692	0.01138	0.01725				
	0.00808	0.00171	0.00024	0.00004				
50°	0.98699	0.98479 ^a	0.97663*	0.96106				
	0.00521	0.01282	0.02294	0.03887				
	0.00780	0.00239	0.00043	0.00007				
60°	0.98546	0.97954	0.96050	0.92361				
	0.00727	0.01773	0.03888	0.07628				
	0.00727	0.00273	0.00062	0.00011				
70°	0.98378	0.97199	0.93792	0.87080				
	0.00956	0.02503	0.06130	0.12906				
	0.00666	0.00298	0.00078	0.00014				
80°	0.98208	0.96388	0.91129	0.81185				
	0.01194	0.03307	0.08784	0.18801				
	0.00598	0.00305	0.00087	0.00014				
100°	0.97874	0.94780	0.85754	0.71520				
	0.01657	0.04934	0.14158	0.28468				
	0.00469	0.00286	0.00088	0.00012				
120°	0.97589	0.93479	0.81721	0.66180				
	0.02045	0.06268	0.18198	0.33810				
	0.00366	0.00253	0.00081	0.00010				
150°	0.97345	0.92375	0.78601	0.62883				
	0.02394	0.07413	0.21327	0.37108				
	0.00261	0.00212	0.00072	0.00009				
180°	0.97294	0.92084	0.77759	0.62105				
	0.02483	0.07719	0.22172	0.37887				
	0.00223	0.00197	0.00069	0.00008				

The definitions for overlap and atomic populations have been taken from Mulliken.¹⁰ Clearly, the usefulness of such quantities would be questionable unless they possessed the property of invariance with respect to any orthogonal transformation of the orbitals from which they arise.¹¹ The natural orbitals discussed above possess such a property. Hence, by writing the wavefunction as a natural expansion, we can formulate a population analysis for the electron density.

Inspection of Mulliken's work¹⁰ revealed that the "local" and "shared" densities suggested in Part I could be likened to the total net atomic population and the total overlap population, respectively. For electron-deficient systems, information concerning the overlap between any pair of centers is also of obvious interest; hence, an examination was made of the subtotal overlap population. These quantities may be formulated as follows: from Eq. (5) the electron density $\rho(\bar{r}_1)$ can be written as

$$\rho(\vec{r}_1) = \gamma(\vec{r}_1 \mid \vec{r}_1) = 2 \sum_{k=1}^{\circ} n_k \chi_k^2(\vec{r}_1), \qquad (8)$$

Frc. 2. The total net atomic population for the centers A, B, and C expressed as a function of Z for $\theta = 30^\circ$, 60° , and 180° . The dotted lines are for center A and the solid lines for centers B or C.

* The occupation numbers quoted here are for $\theta = 52.15^{\circ}$, for Z = 1.4, and $\theta = 50.5^{\circ}$, for Z = 1.8.

B. Electron-Population Analysis

Electron-population analysis will be particularly useful in the present work since it will permit us to observe changes in the amount of charge associated with different regions of the molecule as Z and θ are varied.

Fig. 1. The total net atomic population for the centers A, B, and C expressed as a function of the bond angle θ . The dotted lines are for center A and the solid lines for centers B or C. $\chi_1^2 = A_{11}^2 [b^2 + 2bc + c^2] + 2A_{11}A_{21}[ab + ac] + A_{21}^2 [a^2],$ $\chi_2^2 = A_{32}^2 [b^2 - 2bc + c^2],$

and

where

$\chi_{3}^{2} = A_{13}^{2} [b^{2} + 2bc + c^{2}] + 2A_{13}A_{23} [ab + ac] + A_{23} [a^{2}].$

Following Mulliken, we integrate Eq. (8) over the appropriate space coordinates and define the total net atomic population N(A), associated with center A, to be

$$N(A) = 2[n_1A_{21}^2 + n_3A_{23}^2];$$

similarly, we may write

$$N(B) = 2[n_1A_{11}^2 + n_2A_{32}^2 + n_3A_{13}^2].$$

From considerations of geometrical symmetry we have N(B) = N(C). The sum of these three terms gives the total atomic population. The subtotal overlap popula-

 ¹⁰ R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
 ¹¹ C. W. Scherr, J. Chem. Phys. 23, 569 (1955), see Appendix II.

tion S(BC) between the centers B and C is defined as

$$S(BC) = 4S_{bc}[n_1A_{11}^2 - n_2A_{32}^2 + n_3A_{13}^2];$$

similarly, we obtain

$$S(AB) = S(AC) = 4S_{ab}[n_1A_{11}A_{21} + n_3A_{13}A_{23}],$$

where $S_{ab} = S_{ac}$ and S_{bc} are overlap integrals. The total overlap population is obtained by the addition of these three components.

Variations of the total net atomic populations as a function of θ and Z are shown in Figs. 1 and 2, respectively; similar graphs for the subtotal overlap populations are shown in Figs. 3 and 4. For Z=1.8, optimized wavefunctions were available³ which allowed us to study changes in the θ dependence of N(A), N(B), S(AB), and S(BC), with respect to variations of the bond length R. These results, although not illustrated graphically, will be discussed below.

C. Charge-Density Contours

From Eq. (8) values of the density were obtained in the plane of the molecule for each set of $Z:\theta$. Contours of constant charge density were then determined, see Fig. 5. Each diagram is symmetric with respect to the line XX' which bisects the bond angle BAC. For reasons of space, the contour maps are shown for only three groups of Z: θ values, namely $\theta = 60^{\circ}$, 120°, and 180° for Z=1.0, 1.8, and 2.2. Changes in the contours as θ or Z vary are clearly illustrated. A general feature of all the contour diagrams is shown by tracing the density line of maximum charge, i.e., minimum slope, as we move between centers B and C. This line is such that the density always decreases in magnitude when evaluated at adjacent positional coordinates along its normal. These curves, which are symmetric about XX', are shown collectively in Fig. 6. They indicate, specifically, whether or not center A is contained within the density contour of highest value which

FIG. 3. The subtotal overlap population for A-B, A-C, and B-C expressed as a function of the bond $angle \theta$ for various values of Z. The dotted lines are for B-C and the solid lines for A-B or A-C.

FIG. 4. The subtotal overlap population for A-B, A-C, and B-C expressed as a function of Z for $\theta = 30^{\circ}$, 60° , 100° , and 180° . The dotted lines are for A-B or A-C and the solid lines for B-C.

mutually embraces B and C. In some instances, the line of minimum slope, as we move from B, is seen to divide such that B is joined directly to both A and C. The significance of this situation, indicated in Fig. 6 by dotted curves, will be discussed later.

D. Energy Analysis

In Part I,⁸ Fig. 8 showed the θ dependence of the total molecular energy for Z=0.8 (0.2) 2.2. However, for convenience, our results for the energy analysis are presented only for Z=1.0 (0.4) 2.2. In Fig. 7, the kinetic energy as function of the bond angle θ is shown for different Z values. Similarly, the θ dependence of the electron repulsion energy, the nuclear attraction, and nuclear repulsion energies for various Z is shown in Figs. 8–10, respectively.

III. DISCUSSION OF RESULTS

Inspection of the natural orbitals given in Eq. (7) indicates that χ_1 and χ_3 are bonding-type orbitals, whereas χ_2 possesses a form which is antibonding. Reference to the occupation numbers given in Table II reveals that, for all values of θ , χ_1 predominates in the natural expansion of the wavefunction when $Z \leq 1.4$. Although a large occupation number for a bonding orbital does not necessarily guarantee the molecular stability of ZHZ^{+2Z-1} for any choice of Z and θ , it is of interest to note, from Part I, that for Z < 1.3 the ions are stable with respect to dissociation.

For Z=1.0, i.e., H_3^+ , we observe from Table II that n_1 and n_3 decrease and n_2 becomes larger as the bond angle changes from $30^\circ-180^\circ$. To place these results in perspective we refer to the occupation numbers of the natural orbitals of a_1' and e' symmetry determined by Christoffersen and Shull¹² for the united atom Li⁺

¹² R. E. Christoffersen and H. Shull, J. Chem. Phys. 48, 1790 (1968). We are very grateful to these authors for the opportunity of reading a preprint of their work.

K. E. BANYARD AND A. D. TAIT

3054

FIG. 6. The trace of points, between the centers B and C, with minimum slope in the electron-density surface when evaluated in the plane of the ZHZ^{+2Z-1} ions for Z=1.0, 1.4, 1.8, and 2.2, see diagrams a, b, c, and d, respectively. For each value of Z, the trace is shown for various values of the bond angle θ . The center A is located at the origin and center B is indicated by \bigcirc . Each set of diagrams is symmetric about XX' which bisects θ .

and the dissociation products H+H+H+. For Li+, they quote total occupation numbers of 0.998121 and 0.001223 for the a_1' - and e'-type natural orbitals, respectively. For the dissociation products of H₃+, the total occupation numbers for orbitals of a_1' and e'symmetry are 0.6666667 and 0.333333, respectively. When Z is large, the dissociation products of minimum energy will have corresponding natural orbitals with occupation numbers of 0.5. Thus, the united atom character is seen to feature strongly in the description of H_3^+ for all values of θ . Table II shows that such a conclusion is valid as far as $Z \sim 1.4$. When $Z \ge 1.8$ it is seen that, as θ increases, the occupation number associated with χ_2 increases greatly at the expense of n_1 . This would seem to indicate that, when Z and θ are large, the charge density begins to concentrate predominantly around the "outer" nuclei at B and \overline{C} at the expense of the proton and the internuclear regions. This conclusion is supported by noting that, as Z and θ increase, the occupation numbers for χ_1 and χ_2 are each approaching 0.5. Further support is obtained by inspection of the electron-population analysis, see Figs. 1-4, and the contour diagrams shown in Fig. 5.

The results of the electron-population analysis illustrated in Figs. 1-4 indicate that when the subtotal overlap population between centers B and C is greater than that for A-B, the ZHZ^{+2Z-1} ions may be regarded, essentially, as a two-center system plus a strongly perturbing proton. However, when S(BC) < S(AB)the ion is more ideally regarded as forming a threecenter system. Such an interpretation is strongly supported by the evidence shown in the diagrams of Fig. 6. It is of interest to observe that a "divided" trace of points possessing minimum slope in the density surface as we pass from B to C (see the dashed curves of Fig. 6) occurs only when the bond angle is such that $S(AB) \simeq S(BC)$. Concomitant with this condition is a small depression in the electron-density surface located in the central region of the molecular plane: see, for example, diagram (a) of Fig. 5. The results of Christoffersen and Shull¹² for H₃⁺ did not reveal a similar depression in the density surface¹³; hence, the effect may be due to our minimal basis set.

FIG. 7. The kinetic energy expressed as a function of the bond angle θ for various values of Z.

FIG. 8. The electron repulsion energy expressed as a function of the bond angle θ for various values of Z.

¹³ A private communication from R. E. Christoffersen for which we are grateful.

FIG. 9. The nuclear attraction energy expressed as a function of the bond angle θ for various values of Z.

For Z=1.0, we see from Fig. 1 that, as θ becomes larger, N(A) increases fairly sharply but N(B) =N(C) becomes smaller; correspondingly, the overlap S(AB) = S(AC) shown in Fig. 3 increases but the value of S(BC) falls considerably. This behavior is illustrated in part by the contour diagrams (a), (d), and (g) of Fig. 5. Similar comments hold for Z=1.4. However, for Z=1.8, we see from Fig. 1 that the total net atomic population increases for each nuclear center as the bond angle is enlarged. The overlap S(AB) also increases with increasing θ , but the magnitude of S(BC) is seen to fall off rapidly. Thus, as θ varies from 30°-180°, a value of $Z \ge 1.8$ is capable of causing charge to move from the internuclear region B-C towards the centers B and C, whereas when Z=1.0, charge is moved from B and C towards center A.

Figure 4 reveals that, for any fixed bond angle, S(AB) decreases in value as Z is increased, this indicates the diminishing influence of the proton on the system. This conclusion is substantiated by the fact that N(A) tends to zero for all angles as Z becomes large. Figure 4 also shows that when $\theta < 100^{\circ}$ then S(BC) increases initially and then decreases as Z becomes larger. This effect is greatest for small angles. For $\theta \ge 100^\circ$, S(BC) shows no initial increase as a function of Z. Hence, as Z is increased for a fixed bond angle, charge is initially drawn away from A into the regions associated with B, C, and B-C. A further increase in Z removes charge from the internuclear region B-C and localizes it about B and C as mentioned previously.

For Z=1.8, the electron-population analysis was performed for wavefunctions corresponding to R = 1.5, 1.66, and 1.8 a.u. For constant θ , as expected, N(A)decreases in value and N(B) increases as R becomes larger, whereas S(AB) and S(BC) each become smaller.

Changes in the above results caused by extending the basis set may be examined most readily by studying H_3^+ , this is made possible by the recent analysis¹² of

the configuration-interaction wavefunction of Christoffersen¹ which involved a basis set of 12 STO's. The occupation number of 0.98487 which Christoffersen and Shull¹² obtained for the first natural orbital χ_1 differs from our result, see Table II when Z = 1.0 and $\theta = 60^{\circ}$, by only 0.00059. The virtual independence of the occupation numbers in the natural expansion, with respect to the size and nature of the basis set, has been commented on by Shull.14 Due to the large occupation number, the form of χ_1 for H_3^+ will govern the essential features of the population analysis. Thus, the evaluation of N(A) and S(AB) derived from χ_1 taken, firstly, from the work of Christoffersen and Shull and, secondly, from Table I for H_3^+ ($\theta = 60^\circ$) should indicate the general effect of an extended basis set. In both cases the occupation numbers for χ_1 were renormalized to unity, i.e., each natural expansion was truncated after one term.¹⁵ For the minimal basis set, N(A) and S(AB)¹⁶ were found to be 0.33281 and 0.33386, respectively, while the extended basis set gave values of 0.30113 and 0.36554. Thus, extending the basis set causes a lowering of the total net atomic population on each center with a corresponding increase of the subtotal overlap populations. Such changes in the electron population analysis are not too surprising since the 1s minimal basis set could only be extended by the inclusion of higher orbitals which, by their more diffuse nature, provide greater overlap. It is anticipated that an extension of the basis set for the remaining ZHZ^{+2Z-1} ions will have a similar effect, although this should become less marked as Z is increased.

The kinetic energy undergoes an initial decrease for all values of Z, see Fig. 7. The decrease becomes greater as Z is increased. When Z=1.0, the kinetic energy becomes constant for $\theta > 90^\circ$, however, the curve for

FIG. 10. The nuclear repulsion energy expressed as a function of the bond angle θ for various values of Z.

 ¹⁴ H. Shull, J. Chem. Phys. 30, 1405 (1959).
 ¹⁵ Throughout this work, this is the only instance when natural

expansions have been truncated. ¹⁶ For H_{3^+} , with $\theta = 60^\circ$, we have N(A) = N(B) = N(C) and S(AB) = S(AC) = S(BC).

Z=2.2 shows a pronounced minimum when $\theta \sim 60^{\circ}$ and a constant value is attained only when $\theta > 140^{\circ}$. Figures 8-10 show that, for Z=1.0, the other energy contributions are virtually constant when $\theta > 90^{\circ}$. This lack of angular dependence indicates that, when $\theta > 90^{\circ}$, the proton at center A tends to dominate the H₃⁺ system.

As pointed out by Ruedenberg,¹⁷ a lowering of the kinetic energy may be associated with an increased "smoothness" of the electron-density surface throughout the molecule. It is related in character to the lowering of the kinetic energy of potential-free electrons when the volume containing them is increased. Thus, the kinetic-energy curves shown in Fig. 7 may be interpreted as a measure of the relative freedom of movement of electrons within the ions as θ is increased. For example, when Z=2.2 and $\theta=30^{\circ}$, we have seen that the charge density is localized essentially about the B-C region of the ion, hence, the value of the kinetic energy is high. As θ is increased to a value of about 60°, the kinetic energy suffers a decrease, suggesting that the larger value for the B-C separation allows the charge density to become more diffuse. However, for a further increase in θ , the kinetic energy is now seen to increase: this is in keeping with our observations that, for Z=2.2, the charge cloud will divide and become more localized about the separate centers B and C as θ approaches 180°. For Z=1.0, a similar situation will occur, namely, as B and C separate, the charge cloud will become more diffuse throughout space and the value of the kinetic energy will therefore decrease for an initial increase of θ . However, a continued increase of θ causes the electronic charge to flow towards center A instead of dividing and localizing the charge about each center B and C, as was the case for Z=2.2. Thus, for H_3^+ , it is not surprising that the kinetic energy remains virtually constant for $\theta > 90^{\circ}$. The curves for Z=1.4 and 1.8 shown in Fig. 7 are clearly states of transition between the two cases already discussed. Additional support for the above interpretation is gained by noting that, for each value of Z, the θ dependence of the electron density evaluated at center B (or C) has the same form as the corresponding curve for the kinetic energy shown in Fig. 7.

From Figs. 8-10, we see that the electron repulsion energy, the nuclear attraction, and nuclear repulsion energies each become slightly more θ dependent as Z becomes larger. This is quite reasonable since our previous analysis has shown that, as Z increases, the tendency for the charge to cluster around centers B and C will also increase as θ approaches 180°. Hence, when the division of the charge cloud becomes more effective, the drop in the electron repulsion energy will become greater: see the curves in Fig. 8. For a fixed value of Z, Fig. 9 shows that the nuclear attraction energy will increase for an increase in θ , presumably related to the fact that the charge cloud will be influenced less by the combined effect of the nuclei at *B* and *C*. The nuclear repulsion curves shown in Fig. 10 are simply dependent on *Z* and the geometry of the ZHZ^{+2Z-1} system.

IV. CONCLUSION

The wavefunctions for a series of pseudomolecular ions of the form ZHZ^{+2Z-1} , where Z=1.0 (0.4) 2.2, have been reformulated in terms of natural orbitals. Consequently, changes in the one-particle electron density, due to variations of Z and the bond angle $Z\hat{H}Z$, were able to be investigated by means of the population analysis suggested by Mulliken. Contour diagrams were constructed for the charge density when evaluated in the plane of the molecule. In addition, the kinetic energy, the nuclear attraction energy, the electron and nuclear repulsion energies are presented graphically as a function of the bond angle θ for each value of Z.

For $Z \leq 1.4$, the first natural orbital in the natural expansion of the wavefunction was found to have a large occupation number for all values of θ . Such a feature is essential, although no guarantee, for obtaining molecular stability with respect to dissociation; nevertheless, the present results are in accord with the observation made in Part I that the ions are energetically stable for Z < 1.3.

The occupation numbers of the natural orbitals for H_{3}^{+} were placed in perspective by making a comparison with similar quantities for the united atom Li⁺ and the dissociation products $H+H+H^+$. Such a comparison clearly revealed the united atom character of H_{3}^{+} . The contour diagrams also showed that, when $\theta = 60^{\circ}$, the "bonds" in H_{3}^{+} were directed from the nuclei towards the centroid of the positive charges. The elaborate wavefunction of Christoffersen, analyzed by Christoffersen and Shull, also revealed this "bonding" arrangement. For fixed bond lengths *BA* and *CA*, as θ was increased, we found that charge moved from the centers *B* and *C* towards *A*, indicating that the proton at *A* begins to dominate the H_{3}^{+} system.

When Z is large, the dissociation products of minimum energy have natural orbitals with occupation numbers of 0.5. This situation is most closely represented when Z=2.2 and θ approaches 180°. The contour diagrams and the electron-population analysis show that, at large values of Z, the electron density in the region of center A is small and, as θ increases, charge flows from the internuclear region B-C towards the "outer" nuclei. The diagrams and analysis also show that, as Z increases and θ decreases, the ZHZ^{+2Z-1} ions change from a three-center system to what is essentially a two-center system plus a strongly perturbing proton.

¹⁷ K. Ruedenberg, Rev. Mod. Phys. 34, 326 (1962).

Of the various components of the energy of the ZHZ^{+2Z-1} ions, the θ dependence of the kinetic energy is perhaps most striking. As emphasized by Ruedenberg, a decrease in magnitude of the kinetic energy may be associated with an increase in the spatial freedom of the electrons. Such an interpretation assisted not only with our understanding of the kinetic-energy curves but also permitted variations in the remaining energy components to be understood.

The present examination has allowed us to observe, in detail, the changes which occur in the electron density throughout a series of three-center two-electron systems ZHZ^{+2Z-1} as the bond angle $Z\hat{H}Z$ and the nuclear charges Z are allowed to vary.

ACKNOWLEDGMENTS

One of us (K. E. B.) wishes to express sincere and grateful thanks to Dr. R. E. Christoffersen for the many helpful and stimulating discussions which took place during the preliminary stages of this work. The authors also express appreciation of C. C. Baker for valuable comments concerning NSO theory. One of us (A. D. T.) wishes to thank Science Research Council for financial support.

ABSTRACT

The method of Configuration Interaction (CI) has been used in a number of studies of small atomic and molecular systems.

In Part I, CI wave functions for a series of pseudomolecular ions ZHZ^{2Z-1} are reformulated in terms of natural orbitals. Changes in the electron density as a function of the nuclear charge Z and bond angle ZHZ are investigated by means of an electron population analysis based on the natural orbitals. Contour diagrams of the electron density in the plane of the molecule are obtained. The total energy for each system is analysed in terms of the kinetic energy, nuclear attraction energy, and the electron and nuclear repulsion energies.

In Part II, the CI method is examined in detail. Techniques for obtaining CI wave functions of atoms and molecules are discussed in detail. Computer programs based on these techniques are described, and listed in the Appendices. The Valence Configuration Interaction (VCI) method is also examined as a means of reducing the size of the secular equation, and results of VCI calculations are given for various states of atomic and diatomic oxygen and sulphur. Spectroscopic constants for the $X^3 \sum_g I$ and $b^1 \sum_g^+ I$ states of 0_2 and for the $X^3 \sum_g I$, $a^1 \Delta_g I$ and $b^1 \sum_g^+ I$ states of S_2 are given. The methods by which these results can be obtained are also discussed. Finally the results of the VCI calculations are compared with some recent SCF calculations on 0_2 and S_2 .

.