SMALL MOLECULES

by

ANDREW DUNCAN TAIT

A thesis submitted to the UNIVERSITY OF LEICESTER
for the degree of DOCTOR OF PHILOSOPHY
in the Faculty of Science

1972

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest U384660
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
x 753021810
$$

$$
\begin{aligned}
& \text { THESIS } \\
& 423565 \\
& 141172
\end{aligned}
$$

To Jennifer

[^0]
ERRATA

The appropriate passage should read as follows:

CONTENTS

CHAPTER 4A. Natural Spin-Orbital Analysis. 23
APPENDIX IV FOR THE D_{∞} SYMMETRY GROUP . 165
page 3 line $18 \ldots$ of ambiguity. In
page 5 line $13 \ldots$ is S_{z} (when both
page 6 line 19 (HFR) self consistent
page 8 line 4 as a "primitive function"
page $24 \quad \gamma\left(\bar{r}_{1}: \bar{r}_{1}^{i}\right)=2 \sum_{i j} f_{i j} \sum_{l m} f_{m} \varphi_{i}^{*}\left(\bar{r}_{1}\right) \varphi_{1}\left(\bar{r}_{1}\right)_{g_{j m}} \quad$, (4.2)
page 24 line $7 \quad \gamma(I \mid i)=\sum_{j m} f_{i j}{ }^{s}{ }_{j m} f_{m l} \quad$,
page 24 line $8 \ldots f_{l m}=f_{m l}$. In \ldots
page 27 line 11 matrix, $\underline{X}^{-1}=X^{+}$thus
page $27 \quad \underline{X}^{-1} \underline{W}^{-1} \underline{F} \underline{F^{+}}\left(\underline{W}^{-1}\right)^{+}\left(\underline{X}^{-1}\right)^{+}$. (4.13)
page 60 line 26, their wave function
page 66 line 19 consistent with the
page 72 line 25 origins at the nuclei
page $82 \quad \Lambda=\sum_{i} m_{i} \quad$ (7.16)
page 83 line $5 \ldots$ even number of ungerade
page 95 line $18 \ldots$ for which $C_{L 1}$ is non-zero
page 96 line 13 two centres various
page 97 line 22 integrals follows immediately
page 104 line 8 step in evaluating
page 106 line 7 Kotani et alia ${ }^{(43)}$....
page 106 line 11 which are listed
page 112 line 13 (Horner's method)
page 113 line 17 for all $j \neq k \ldots$
page 116 line 15
$(40,41,66)$
page 116 line 24 the configurations are
page 122 line 23 "primitive functions"
page $133 \quad{ }^{+}$Reference 56
page $134 \quad a_{5} \quad 3.9409 \times 10^{5} \quad-8.1705 \times 10^{5} \quad-4.5959 \times 10^{4}$
Page
ACKNOMLEDGEMENTS
ABSTRACT
CHAPTER 1. METHODS OF SOLVING THE STATIONARY STATE SCHRODINGER EQUATION 1
PART I
CHAPTER 2. INTRODUCTION - A THREE-CENTRE TWO-ELECTRON PROBLEM 10
CHAPTER 3. WAVE FUNCTIONS AND ENERGIES 15
CHAPTER 4. ANALYSIS OF SYSTEMS 22
A. Natural Spin-Orbital Anayslis 23
B. Electron Population Analysis 39
C. Electron Density Contours 44
D. Energy Analysis 56
CHAPTER 5. DISCUSSION OF RESULTS 57
CHAPTER 6. CONCLUSION 69
PART II
CHAPTER 7. INTRODUCTION - THE METHOD OF CONFIGURATION INTERACTION 72
CHAPTER 8. COMPUTATIONAL METHODS 92
A. Generation of Detors 93
B. Evaluation of Integrals over the Atomic Orbital Basis Set 96
C. Transformation of the Integrals to an Orthonormal Basis Set 98
D. Construction and Solution of the Secular Equation 102
CHAPTER 9. SPECTROSCOPIC CONSTANTS OF DIATOMIC MOLECULES 108
CHAPTER 10. RESULTS AND DISCUSSION 116
CHAPTER 11. CONCLUSION 147
APPENDIX I ATOMIC UNITS AND CONVERSION FACTORS 151
APPENDIX II MOLECULAR ORBITALS FOR THE GROUP $D_{\infty} h$ 156
APPENDIX III UTILITY ROUTINES 160

APPENDIX IV	GENDET: A PROGRAM FOR GENERATING DETORS Of A GIVEN ANGULAR MOMENTUM AND ELECTRON SPIN FOR THE $D_{\infty} h$	165
APPENDIX Y	diEECEN. A PROGRAM FOR COMPUTING ONE-CENTRE onem and tuo-etectron integrals over complex sLater-TYPE orbitals	185
APPENDIX VI	INTRA. A PROGRAM FOR TRATSFORMING ONE- AND TVO-ELECTRON INTEGRALS OVER AN ATOMIC ORBITAL BASIS INTO INTEGRALS OVER AN ORTHONORMAL BASIS	198
APPENDIX VII	SECS $\varnothing L$. A PROGRAM FOR THE CONSTRUCTION AND SOUUTION OF THE SECULAR EQUATION IN THE METHOD OF CONFIGURATION INTERACTION	235
APPENDIX VIII	SPECTR \varnothing. A PROGRAM FOR COMPUTING THE SPECTROSCOPIC CONSTANTS OF DIATOMIC yolecules	275
APPENDIX IX	SPECTFICATYON OF DETQRS AND CODETORS FOR THE ${ }^{3} \Sigma_{g}^{-},{ }^{\prime} \Sigma_{g}^{+}$, AND ${ }^{1} \Delta_{g}$ STATES.	290
REFERENCES		304

ACKNOWLEDGEMENTS

The author would like to thank Professor E.A. Stewardson and Professor J.E. Enderby for the opportunity to work in the Department of Physics, University of Leicester.

Thanks are also due to Dr M. Dixon for his assistance with various aspects of computer programming, to Dr J.R. Thompson for his advice on problems in numerical analysis, to Mr P. Blanshard and Mr R. Brandwood of the SRC Atlas Computer Laboratory for their help in running computer programs, and to Miss J.M. Coleman for her careful typing of the manuscript.

The receipt of an SRC Research Studentship is gratefully acknowledged.
Above all, the author is indebted to Dr K.E. Banyard for his supervision throughout this research, and for many hours of helpful discussion and encouragement on every aspect of this work.

The method of Configuration Interaction (CI) has been used in a number of studies of small atomic and molecular systems.

In Part I, CI wave functions for a series of pseudomolecular ions $Z H Z^{2 Z-1}$ are reformulated in terms of natural orbitals. Changes in the electron density as a function of the nuclear charge Z and bond angle ZHZ are investigated by means of an electron population analysis based on the natural orbitals. Contour diagrams of the electron density in the plane of the molecule are obtained. Thetotal energy for each system is analysed in terms of the kinetic energy, nuclear attraction energy, and the electron and nuclear repulsion energies.

In Part II, the CI method is examined in detail. Techniques for obtaining CI wave functions of atoms and molecules are discussed in detail. Computer programs based on these techniques are described, and listed in the Appendices. The Valence Configuration Interaction (VCI) method is also examined as a means of reducing the size of the secular equation, and results of VCI calculations are given for various states of atomic and diatomic oxygen and sulphur. Spectroscopic constants for the $\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{I} \quad$ and $\quad b^{1} \Sigma_{\mathrm{g}}^{+} \quad$ states of O_{2} and for the $X^{3} \Sigma g^{I}, a^{1} \Delta_{g} I$ and $b^{1} \Sigma_{g}^{+} I$ states of S_{2} are given. The methods by which these results can be obtained are also discussed. Finally the results of the VCI calculations are compared with some recent SCF calculations on O_{2} and S_{2}.

CHAPTER 1

METHODS OF SOLVING THE STATIONARY STATE

SCHRODINGER EQUATION

The mathematical basis of molecular quantum mechanics is the stationary state Schrødinger equation: in the Born-Oppenheimer (1) approximation the separation of the electronic and nuclear motions leads to two equations, one describing the electronic, and the other describing the nuclear behaviour. For a system of n-electrons moving in the potential field of a fixed framework of nuclei the stationary state Schrodinger equation may be written as

$$
\begin{equation*}
\mathfrak{j} \Psi\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)=E_{E} \Psi\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right) \tag{1.1}
\end{equation*}
$$

In (1.1) $I f$ is the Hamiltonian operator, E_{E} is an eigenvalue of (f) interpreted physically as the energy of the stationary state, and Ψ is an eigenfunction of \boldsymbol{J} corresponding to the eigenvalue E_{E} - The eigenfunction, or wave function, is a function of the space and spin co-ordinates of all of the electrons. The space-spin coordinates of electron μ are denoted by \bar{x}_{μ}. The Hamiltonian operator has the form

$$
\begin{equation*}
\mathbf{G}=\sum_{\mu} h_{\mu}+\sum_{\mu<v} g_{\mu \nu}, \tag{1.2}
\end{equation*}
$$

where h_{μ} is the one-electron Hamiltonian operator for electron μ :

$$
h_{\mu}=-1 / 2 \nabla_{\mu}^{2}+\nabla_{\mu}
$$

This operator, consisting of a swn of the kinetic and potential energy operators for electron μ, has dimensions and is written in terms of primary or atomic units described in Appendix I. The second sumation
in (1.2) is the electrostatic repulsion of all pains of the electrons $\boldsymbol{\mu}, \boldsymbol{v}$,

$$
\begin{equation*}
g_{\mu \nu}=1 / r_{\mu \nu} \tag{1.3b}
\end{equation*}
$$

and $r_{\mu \nu}$ is the distance between electron μ and electron v. An operator representing the electrostatic repulsion between the nuclei is sometimes included in (1.2). When this operator is amitted E_{E} is the electronic energy and when it is present E_{E} represents the total energy for the state. E_{E} is given by

$$
\begin{equation*}
\mathrm{E}_{\mathrm{E}}=\frac{\langle\Psi| \mathfrak{j}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \tag{1.4}
\end{equation*}
$$

The operators $\quad \mathfrak{j}, \mathrm{h}_{\mu}$ and $\mathrm{g}_{\mu \nu}$ are Rermitian.
Although it is not possible to obtain an exact solution of the stationary state Schridinger equation for systems of more than oneelectron and two nuclei, it is possible to obtain approximate solutions which yield good energies when compared with experimental values, and which may be used to calculate molecular properties. This thesis deals with one of the methods of solving (1.1); the method of Configuration Interaction (CI). In the first part, the CI wave functions for a series of three-centre twomelectron pseudomolecular ions are analysed in terms of natural spin orbitals. An electron population analysis is developed in terms of the natural spin orbitals and variations of the results of this analysis are coupled with an analysis of the various components of the total energy, in an attempt to explain the umusual behaviour of these systems. In the second part the CI method is discussed in detail and it is applied to homonuclear diatonic molecules. Computer programs, developed for the purpose of obtaining CI wave functions, spectroscopic constants and various properties, are described, and results obtained
for the molecules O_{2} and S_{2} are presented. Wherever possible these results are given in the form of facsimiles of the computer output in order to remove the possibility of errors arising during transcription.

In this introductory chapter some of the current non-empirical methods for obtaining solutions of (1.1) are briefly reviewed. The most popular approach is that of molecular orbitals; the basis of which is the determination of approximate electronic wave functions for a molecule by assigning each electron to a one-electron wave function, which in general extends over the whole molecule and has symmetry properties corresponding to the nuclear framework of the molecule. One-electron wave functions which do not depend on the spin co-ordinate s_{μ} of electron μ will be denoted by $\varphi_{i}\left(\bar{r}_{\mu}\right)$, where \bar{r}_{μ} represents the spatial co-ordinates and 1 identifies the one-electron wave function or orbital. One-electron wave functions which are dependent on the spin co-ordinates are denoted by $\psi_{i}\left(\bar{x}_{\mu}\right)$, these are called spin-orbitals. The symbols $\varphi_{i}(\mu)$ and $\psi_{i}(\mu)$ may also be used for indicating orbitals and spin-orbitals where there is no possibility of ambiquity. The spin-orbitals may be written as a product of an orbital and a spin function $\Theta_{i}\left(s_{\mu}\right)$ - There are only two linearly independent spin functions which are designated α and β. Each orbital can be used to construct two spin-orbitals

$$
\begin{align*}
& \psi_{2 i-1}=\varphi_{i} \tag{1.5}\\
& \psi_{2 i}=\varphi_{i} \beta
\end{align*}
$$

Thus spin-orbitals with odd valued identifiers are associated with an α spin, and those with even valued identifiers with a β spin. It is well known (2) that if the set of orbitals $\left\{\varphi_{i}\right\}$ is subject to a unitary transformation, then the resulting set $\left\{\varphi_{i}^{\prime}\right\}$ represents
the same physical situation. It is often convenient to chose the set $\left\{\varphi_{1}\right\}$ to be an orthonormal one,

$$
\begin{equation*}
\int \varphi_{i}^{*}(\mu) \varphi_{j}(\mu) d r_{\mu}=\delta_{i j} \tag{1.6a}
\end{equation*}
$$

hence

$$
\begin{equation*}
\int \psi_{i}^{*}(\mu) \psi_{j}(\mu) \mathrm{d} x=\delta_{i j} \tag{9.6b}
\end{equation*}
$$

where $d r_{\mu} \quad$ is the one-electron volume element without spin, $d x_{\mu}$ the one-electron volume element with spin, and $\delta_{i j}$ is the Xronecker delta. The n-electron wave function Ψ is then written as a linear combination of antisymuetrized products of spin-orbitals. The Pauli principle states that a spin-orbital may be occupied by only one electron, hence each orbital may be occupied by two electrons and the antisymmetrized product, usually written in the form of a determinant $D_{X^{\prime}}$. satisfies this principle. Thus

$$
D_{K}=(n!)^{-1 / 2}\left|\begin{array}{cccc}
\psi_{k 1}(1) \psi_{k 2}(1) & \ldots & \psi_{k n}(1) \\
\psi_{k 1}(2) \psi_{k 2}(2) & \ldots & \psi_{k n}(2) \\
\cdot & \cdot & \cdot & \cdot \\
\hline & \cdot & \cdot \\
\psi_{k 1}(n) \psi_{k 2}(n) & \ldots & \psi_{k n}(n)
\end{array}\right|
$$

and

$$
\begin{equation*}
\Psi=\sum_{\mathrm{K}} D_{\mathrm{K}} \mathrm{~b}_{\mathrm{KI}} \tag{1.7}
\end{equation*}
$$

The coefficients $b_{K I}$ in (1.7) are determined by a variation method which minimizes E_{E}. The subscript I is included in (1.7) because it is possible to construct more than one solution to (1.1) from a given set of determinants.

A reasonable approximation to a molecular orbital is a linear combination of atomic orbitals (LCAO) which are associated with the atoms

Constituting the molecule:

$$
\begin{equation*}
\varphi_{i}=\sum_{k} \omega_{k} c_{k i} \tag{1.8}
\end{equation*}
$$

where ω_{k} is a normalized atomic orbital. Hall (3) gives a list of the possible forms of ω_{k}. The coefficients $c_{k i}$ are chosen so that the φ_{1} are at least normalized. Further restrictions may demand that (1.6a) is satisfied and that E_{E} is a minimum. Before discussing methods of determining the coefficients bI in (1.7) and $c_{k i}$ in (1.8), it is necessary to examine the roles of electron spin and molecular symuetry. When spin-orbit effects are ignored the approximate or trial wave function must be an eigenfunction of the total spin operator \mathbb{G}^{2}, and the operator \boldsymbol{G}_{z} associated with the z-component of the total electron spin. The eigenvalue of \boldsymbol{b}^{2} is $S(S+1)$ and that of \mathscr{G}_{z} is S_{z} (when both are in primary units):

$$
\begin{aligned}
& \mathfrak{g}^{2} \Psi=S(S+1) \Psi \\
& \tilde{g}_{z} \Psi=S_{z} \Psi
\end{aligned}
$$

A single determinant is an eigenfunction of \boldsymbol{B}_{z} with an eigenvalue of $S_{z}=2^{-1}\left(n_{c}-n_{\beta}\right) \quad$ (4) where n_{c} is the number of spin-orbitals of α spin and n_{β} the number with β spin.

$$
\begin{equation*}
g_{Z} D_{K}=2^{-1}\left(n_{*}-n_{\beta}\right) D_{K} \tag{1.9}
\end{equation*}
$$

A single determinant is rarely an eigenfunction of \boldsymbol{g}^{2}, but this is achieved when $S=S_{z}$. However, it is possible to construct linear combinations of determinants which are eigenfunctions of $\boldsymbol{j g}^{2}$, Each determinant in such a linear combination corresponds to the same
eigenvalue of \tilde{G}_{z}. Thus, if

$$
\begin{equation*}
\psi_{L}=\sum_{K} D_{K} t_{K L} \tag{1.10}
\end{equation*}
$$

and

$$
S^{2} \psi_{I}=S(S+1) \psi_{I},
$$

then it is possible to write the trial wave function as a linear combination of the functions $\Psi_{I_{I}}$:

$$
\begin{equation*}
\Psi=\sum_{L} \psi_{L^{a}} a_{L I} \tag{1.11}
\end{equation*}
$$

In (1.11), as in (1.7), there are several sets of the coefficients \{a $\left.{ }_{\text {II }}\right\} \quad$ which will give an acceptable Ψ

If the nuclei of the molecule are assumed to be fixed, i.e. the molecule is rigid, it is possible to assign the molecule to a specific symmetry group, and the wave function must be a basis for an irreducible representation of the symmetry group to which the molecule belongs. This requirement is most easily satisfied if the molecular orbitals (1.8) are themselves bases for the irreducible representations of the molecular symmetry group. Thus, the $\Psi_{I} \quad$ in (1.10) are also required to be eigenfunctions of the operators of the molecular symuetry group.

The simplest non-empirical form of trial wave function is a single determinant. This leads to the Hartree-Fock-Roothaan (HFR) self consistant field method (2,5) and the Unrestricted Hartree-Fock (UHF) method. The former assumes that the determinant is constructed from a set of doubly occupied molecular orbitals $(2,5)$ and the energy is minimized with respect to the coefficients determining the molecular orbitals of (1.8). It is
a condition of the method that the resulting orbitals are orthonormal. The HFR method suffers from several disadvantages. Two important ones are that it is not always possible to represent a molecular spin state by a single determinant, and the method makes no allowance for correlation between electrons with different spins: the wave function does not vanish as the antisymmetry requirement implies when electrons of different spin have the same spatial comordinates (6). The UHF method is an attempt to overcome the shortcomings of the HFR method, whilst maintaining some of its simplicity (7). In the UHF theory the spatial orbitals associated with the d spins are different from those associated with β spins. A determinant of such orbitals is no longer an eigenfunction of g^{2}, and it is necessary to operate on the determinant with a projection operator $(7,8)$ to obtain the required spin eigenfunction. The energy is then minimized with respect to the orbitals. The basis of both methods and their derivatives (6) is an iterative or self consistant field (SCF) procedure (2,5), in which a trial set of orbitals is used to obtain a better set; the process is terminated when the energies obtained using two successive sets of orbitals differs by an acceptably small amount. The problem with the SCF method is that the convergence of the iterative process cannot be guaranteed. Occasionally the HFR method predicts, as in the case of the fluorine molecule $F_{2}(9)$, that the molecule is unstable relative to dissociation, contrary to experiment. Despite these drawbacks many of the most successful calculations of molecular structure have been based on the single determinant approach (10)

The logical progression from the single determinant trial wave function is to use a linear combination of determinants grouped together as in (1.10). This is the basis of the CI method. Unfortunately, there is a great deal of ambiguity attached to the word 'configuration'; its usage is reviewed by McWeeny and Sutcliffe (11). If the wave function is written as a sum of determinants (1.7), then each term is defined by
specifying a 'configuration of occupied spinmorbitals', which is then antisymetrized to form a determinant. Alternatively if (1.11) is used, each term is defined by specifying a 'configuration of occupied (spatial) orbitals'; often referred to as a 'primative function'. This is then multiplied by a total spin eigenfunction (12) and the whole may then be antisymmetrized. The unknown coefficients in the expansion of the trial wave function are determined by the requirement that the energy should be a minimum. The number of terms in the summation of (1.11) is much reduced by the fact that functions (1.10), belonging to different irreducible representations, are orthogonal; as are those corresponding to different eigenfunctions of \mathfrak{g}^{2} and \mathscr{g}_{Z}. Thus, for a given symmetry it is only necessary to include terms in the expansion which belong to the same irreducible representation and correspond to the same eigenvalues of \boldsymbol{G}^{2} and \boldsymbol{g}_{z}. It must be emphasized that in the CI method it is the expansion coefficients $b_{K I}$ of (1.7) or ${ }^{a}$ II of (1.11) and not the $c_{k i}$ of (1.8) that are varied to minimize the energy. The CI method is straightforward. Differentiation of the expression which results from substituting (1.11) in (1.4) with respect to the adI leads to a set of simultaneous linear equations which are equal to zero if E_{E} is a minimum. These equations are conveniently written in matrix form as

$$
(\underline{H}-E \underline{S}) \underline{A}=0
$$

The elements of the real symmetric matrices H and S are

$$
\begin{equation*}
H_{I J}=\left\langle\Psi_{I}\right| \mathfrak{b}_{!}\left|\Psi_{J}\right\rangle \tag{1.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{I J}=\left\langle\Psi_{I} \mid \Psi_{J}\right\rangle \tag{1.13b}
\end{equation*}
$$

A is a column vector with elements $a_{L I}$. The matrix equation, called the secular equation, represents a pseudo-eigenvalue problem, which may be solved by well known methods (13). The solution of (1.12) produces several values of E, each an eigenvalue, or characteristic root, of \underline{H} and its associated eigenvector A. Each value of E, and its corresponding eigenvector, represents a different energy level of a particular symmetry and spin state. The actual number of levels is equal to the number of eigenvalues of H , hence it is equal to the number of terms in (1.11).

While the CI method does attempt to include an allowance for electron correlation (14), it has disadvantages concerning the size of the expansion (1.11), and the slow rate of convergence, since many terms are required to produce a good energy. The matrix elements $H_{I J}$ and $S_{I J}$ may be obtained by calculating $\left\langle D_{K}\right| \mathfrak{f}\left|D_{I}\right\rangle \quad$ and $\quad\left\langle D_{K} \mid D_{I}\right\rangle$ first, and then transforming into $H_{I J}$ and $S_{I J}$ by use of (1.10). The calculation of $H_{I J}$ and $S_{I J}$ is simplified if the determinants are constructed from an orthonormal set of molecular orbitals, when the matrix S becomes the identity matrix:

$$
S_{I J}=\delta_{I J}
$$

In this case it is also possible to obtain the $H_{I J}$'s directly from integrals over the basis set of molecular orbitals using the formalism of Kotani et alia (12).

The extension of the SCF and CI methods leads to a combination called the multi-configuration SCF (MC-SCF) method (15). While this approach has produced some interesting results, $(10,16,17,18)$ the problem of the non-convergence of the SCF process still lacks a satisfactory solution.

CHAPTER 2

INTRODUCTION - A THREE-CENTRE TWO-ELECTRON PROBLEM

Many of the studies of electron bonds in molecules and molecular ions have concentrated on the "normal" two-electron bond, the prototype of which is the H_{2} molecule. The very detailed computational studies of Kolos (19) are examples of the considerable attention that this molecule has received. The subsequent analysis of this type of calculation by Shull $(\infty, 21)$ has resulted in a considerable increase in our understanding of the nature of the two-electron bond.

It is significant that, until recently (10), another type of Chemical bond has received little or no attention from the theoreticians. This is the electron-deficient bond, the prototype of which is the hydrogen molecular ion $\left(\mathrm{H}_{3}{ }^{+}\right)$, consisting of three protons which are bound together by two electrons. A very detailed study of this system by Christoffersen ${ }^{(22)}$ provided information about its structure and about the electron distribution within the bonds. More complex examples of electron-deficient bonds are to be found in the boron hydrides, in certain aluminium and beryllium hydrides, and in the trihalogens BF_{3}, BCl_{3}, and $\mathrm{BBr}_{3}{ }^{\circ}$

One of the smaller boron hydrides is diborane: $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ - For many years the structure of diborane was thought to be the same as that of cthane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ shown in Fige 1. The CmH bonds of this molecule have

FIG. 1. ETHANE $\mathrm{C}_{2} \mathrm{H}_{6}$
the normal two-electron character and there is a three-fold axis of symmetry along a line joining the two carbon atoms. Careful analysis of the rotation-vibration spectrum of $\mathrm{B}_{2} \mathrm{H}_{6}$ by Price ${ }^{(23)}$ showed that it has a two-fold axis of symmetry about a line joining the two boron atoms (the structure is shown in Fig. 2). The terminal BH_{2} groups are coplanar and the central hydrogen atoms lie symmetrically above and

FIG. 2. DIBORANE $\mathrm{B}_{2} \mathrm{H}_{6}$
below this plane. These hydrogen atoms form "bridge structures" with the two BH_{2} groups, and the bridge structures are characterized by their electron deficiency, since in the case of diborane only four electrons constitute the four B-H bonds ${ }^{(24)}$.

Theoretical calculations of the structure and properties of molecules are relatively complex and the difficulties involved increase rapidly as the number of electrons and nuclei increase. It seems reasonable that a study of electron-deficient bonds should begin with a study of a relatively small molecular system. $\mathrm{H}_{3}{ }^{+}$is the obvious molecular system to begin with, but is not sufficiently typical to provide much information about the electron-deficient bonds of diborane. However, its structure is an equilateral triangle ${ }^{(22)}$ of side 1.66 bohr (22); a geometry very
similar to that of one of the BHB bridge structures in diborane. This apparent similarity led to the proposal, by Banyard and Shull ${ }^{(25)}$, of the $Z H Z^{2 Z-1}$ pseudomolecular ion as a model for the study of a bridge bond as found in $\mathrm{B}_{2} \mathrm{H}_{6}$. The model (shown in Fig. 3.) consisted of an isoceles triangle BAC with a proton at A, and two nuclei B and C which

FIG. 3. THE PSEUDO MOLECULAR ION $\mathrm{ZHZ}^{2 Z-1}$
had equal but variable nuclear charges Z; two electrons were associated with this nuclear framework. The bond length $R_{A B}\left(=R_{A C}\right)$ was fixed at the equilibrim bond length of H_{3}^{+}so that when $\mathrm{Z}=1.0$ the $\mathrm{ZHZ}^{2 \mathrm{Z}-1}$ systen became $\mathrm{H}_{3}{ }^{+}$and comparisons with other calculations on this molecular ion were then possible. The variable nuclear charge provided some allowance for the nuclear shielding caused by the presence of other electrons which vere otherwise unaccounted for in the calculation.

The variation of the molecular energy of the $Z H Z^{2 Z-1}$ ions, as a function of the variable nuclear charges and bond angle (θ in Fig. 3.), was studied for Z in the range $0.8 \leqslant Z \leqslant 2.2$ and θ in the range $30^{\circ} \leqslant \theta \leqslant 180^{\circ}$; in addition, for $Z=1.8$ the variation of energy, as a function of bond angle and bond length ($R_{A B}$ in Fig. 30), was computed. The angle $B H B$ in the bridge structure of diborane is about 80° and it
might reasonably be expected that as the nuclear charge Z is increased in the $\mathrm{ZHZ}{ }^{2 \mathrm{Z}-1}$ model, the optimum bond angle, that is the angle corresponding to the minimum molecular energy, would increase from the 60° of $\mathrm{H}_{3}{ }^{+}$. However the computed results exhibit an initial decrease in the optimum bond angle. At $Z=1.8$ a double minimun is observed and for $Z>1.8$ the optimum bond angle is 180° and the system is linear. These results invited further investigation as it was felt that although the unusual behaviour of the $\mathrm{ZHZ}^{2 \mathrm{Z}} \mathrm{T}^{1}$ systems prevented them from being regarded as a representative fragment of $\mathrm{B}_{2} \mathrm{H}_{6}$, a study of the quantum mechanical behaviour of such systems might nevertheless shed some light on the nature of electron-deficient bonds.

In order to understand and interpret the results for $Z_{Z Z}^{2 Z-1}$ it is necessary to examine them in detail and, where possible, to give a firm mathematical basis to tentative suggestions concerning the nature of the electron distribution in the ions. This is true for the suggested existence of two components of the electron density. The natural spin orbital (NSO) analysis of Lowdin (8) provides an excellent means of examining these results, particularly as Shull (26) has shown that the results of such an analysis are not greatly affected by the method of calculation of the original wave function nor by the size of the basis set (this second point is illustrated in Chapter 4). By using an electron population analysis similar to that of Mulliken (27), but based on the natural spin orbital analysis, it has been possible to define the "shared" and "local" density components used in the tentative explanation of the behaviour of the $Z H Z^{2 Z-1}$ ions (25). A detailed analysis of the various components of the molecular energy of the ions is also included in this thesis and possible relations between variations in these components and the results of the population analysis are discussed. Thus an attempt has been made to examine nearly all of the aspects of the
behaviour of the $\mathrm{ZHZ}^{2 Z-1}$ pseudomolecular ions and to provide a detailed account of the electron distribution in these ions. Finally, comparisons between the results presented here are made with those of other authors.

CHAPTER 3

WAVE FUNCTIONS AND ENERGIES

The wave functions and energies of the $Z \mathrm{HZ}^{2 Z-1}$ pseudomolecular ions examined here were obtained by the configuration interaction (CI) method. The object of the CI method is to provide an approximation to the solution of the Schrydinger equation for the three-centre two-electron system under consideration. Ignoring relativistic effects, and working within the Born-Oppenheimer approximation (1) yields the Hamiltonian (in atomic units)

$$
\begin{gather*}
\mathfrak{h}=-\frac{1}{2} \sum_{t=1}^{2} \nabla_{t}^{2}-\sum_{t=1}\left(\frac{1}{r_{A t}}+\frac{Z}{r_{B t}}+\frac{Z}{r_{C t}}\right)+\frac{1}{r_{12}} \\
+\frac{Z}{R_{A B}}+\frac{Z}{R_{A C}}+\frac{Z^{2}}{R_{B C}} . \tag{3.1}
\end{gather*}
$$

The first term in (3.1); is the kinetic energy operator and the others represent the electron-nuclear attraction, the electron-electron and nuclear-nuclear repulsion terms respectively.

The approximate total vave function for the k-th energy state of the system is expressed as

$$
\begin{equation*}
\Psi\left(\bar{x}_{1}, \bar{x}_{2}\right)=\sum_{i} c_{i} \Psi_{i}\left(\bar{x}_{1}, \bar{x}_{2}\right) \tag{3.2}
\end{equation*}
$$

where the $\left\{c_{i}\right\}$ are coefficients to be determined and the $\left\{\Psi_{i}\right\}$ are linearly independent determinantal wave functions. The energy E ,
of this state, is defined by

$$
\begin{equation*}
\mathrm{E}=\frac{\langle\psi| \mathfrak{G}|\psi\rangle}{\langle\psi \mid \psi\rangle} \tag{3.3}
\end{equation*}
$$

Application of the variation method, which demands that

$$
\frac{\partial \vec{r}_{i}}{\partial c_{i}}=0
$$

to (3.3) leads to a systen of linear equations which may be written as

$$
\begin{equation*}
(\underline{H}-\underline{E} \underline{S}) \underline{C}=0 \tag{3.4}
\end{equation*}
$$

where \underline{H} and \underline{S} are matrices with elements:

$$
H_{i j}=\left\langle\Psi_{i}\right| \mathfrak{l}\left|\Psi_{j}\right\rangle
$$

and

$$
S_{i j}=<\Psi_{i}\left|\Psi_{j}\right\rangle
$$

respectively, and \underline{C} is a column vector with elements $\left\{\mathbb{C}_{i}\right\}$ - Once the forms of the two-electron configurations $\left\{\Psi_{i}\right\}$ are specified, the total electronic energy and corresponding wave function may be obtained by the solution of the pseudo-eigenvalue problem of (3.4). (A detailed account of the CI method is given in part 2.)

With two-electron systems, such as $Z H Z^{2 Z-1}$, it is possible to factorize the configuration $\Psi_{i} \quad$ into a spatial part and a spin part. The spin factor, which is antisymmetric, because the ground state is a singlet, can be integrated out of the problem; thus:

$$
\Psi_{i}\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{1}{\sqrt{2}}\left(\alpha\left(s_{1}\right) \beta\left(s_{2}\right)-\alpha\left(s_{2}\right) \beta\left(s_{1}\right)\right) \phi_{i}\left(\bar{r}_{1}, \bar{r}_{2}\right)
$$

so that we may write

$$
\begin{equation*}
\Phi\left(\bar{r}_{1}, \bar{r}_{2}\right)=\sum_{i} c_{i} \phi_{i}\left(\bar{r}_{1}, \bar{r}_{2}\right) \tag{3.5}
\end{equation*}
$$

Ψ and ϕ are both normalized to unity. The functions $\left\{\phi_{;}\right\}$ are formed from linear combinations of products of symmetry-adapted molecular orbitals which are constructed from a basis set of slater-type atomic orbitals. The normalized form of these orbitals is

$$
\varphi(n, 1, m)=\left[\frac{(2 \zeta)^{2 n+1}}{(2 n)!}\right]^{1 / 2} r^{n-1} \exp (-l r) S_{1 m}(\theta, \phi)
$$

where ζ is a variational parameter and $\operatorname{s}_{\mathrm{m}}(\theta, \varnothing)$ is a normalized surface harmonic.

In order to examine the $\mathrm{ZHz}{ }^{2 Z-1}$ ions the basis set was limited to three 1 s functions, one on each nucleus with the designations $1 s_{A}, 1 s_{B}$, and $1 s_{C}$ respectively. Inspection of the Hamiltonian shows it to be invariant under the symmetry-operations of the point group $C_{2 V}$ ' consequently it is possible to generate three symmetry-adapted molecular orbitals from the limited basis set:

$$
\begin{array}{ll}
\phi_{1}(t)=1 s_{B}(t)+1 s_{C}(t) & A_{1} \\
\phi_{2}(t)=1 s_{A}(t) & A_{1}(3.6) \tag{3.6}\\
\phi_{3}(t)=1 s_{B}(t)-1 s_{C}(t) & B_{1}
\end{array}
$$

where $t=\bar{r}_{1}$ or \bar{r}_{2}. The irreducible representation to which each of the
$\phi_{i}(t)$ belongs is shown to the right of (3.6). From a similarity with $\mathrm{H}_{3}{ }^{+}$only those configurations which transform according to the A_{1}
irreducible representation of $\mathrm{C}_{2 \mathrm{~V}}$, will contribute to the ground state wave function and energy of $Z H Z^{2 Z-1}$. The fully symmetry-adapted space configurations are:

$$
\begin{aligned}
& \phi_{1}\left(\bar{r}_{1}, \bar{r}_{2}\right)=2 \phi_{1}\left(\bar{r}_{1}\right) \phi_{1}\left(\bar{r}_{2}\right) \\
& \phi_{2}\left(\bar{r}_{1}, \bar{r}_{2}\right)=2 \phi_{2}\left(\bar{r}_{1}\right) \phi_{2}\left(\bar{r}_{2}\right) \\
& \phi_{3}\left(\bar{r}_{1}, \bar{r}_{2}\right)=2 \phi_{3}\left(\bar{r}_{1}\right) \phi_{3}\left(\bar{r}_{2}\right) \\
& \phi_{4}\left(\bar{r}_{1}, \bar{r}_{2}\right)=\phi_{1}\left(\bar{r}_{1}\right) \phi_{2}\left(\bar{r}_{2}\right)+\phi_{2}\left(\bar{r}_{1}\right) \phi_{1}\left(\bar{r}_{2}\right)
\end{aligned}
$$

Thus each of the calculations on the $Z H Z^{2 Z-1}$ ions may be regarded as a complete CI treatment within the limited basis set. The symmetry of the system requires that the orbital exponents l_{B} and l_{C} of the atomic orbitals $1 s_{B}$ and $1 s_{C}$ are equal. The orbital exponents were optimized to give a minimum value to the electronic energy, E , for each of a pre-selected set of values of $\boldsymbol{\theta}, \mathrm{Z}$ and the internuclear distance Z-H.

Energies and wave functions were obtained for $Z=0.8$ (0.2) 2.2 for various values of θ in the range $30^{\circ} \leqslant \theta \leqslant 180^{\circ}$. For most values of Z the bond length $R\left(=R_{A B}\right)$ was taken as 1.66 bohr. This was the optimun bond length obtained by Christoffersen (22) for the ground state of $\mathrm{H}_{3}{ }^{+}$. consequently it was possible to compare the analysis of the results of the $\mathrm{H}_{3}{ }^{+}$calculation obtained when $\mathrm{Z}=1.0$, with his results and so some knowledge of the effect of increasing the size of the basis set was obtained. For the case of $Z=1.8$ two additional values of R were used and, consequently an indication of the dependence on the bond length of the observed effects was obtained.

Preliminary results of the natural spin orbital analysis indicated that a large volume of results would be obtained, and that a correspondingly large amount of computing time would be required if each of the systems and geometries available were to be studied in detail. The natural spin orbital analysis, the concomitant electron population and energy analysis were restricted to the systems for which $Z=1.0$ (0.4) 2.2 for all bond angles. But the two additional values of R for $Z=1.8$ were included. Details of wave functions, orbital exponents, and energies for all of the geometries of the systems examined are presented in Tables 1.1-1.6.
'NABE 1.1. WAV: FUICTION COBPICIUTS, ORBITAL ZXPONENTS, AND MNARGI AS FOR $Z=1.00 A . U ., \lambda=1 . G C B O H R$.

e	C1	C2	C3	C4	$\zeta_{\text {A }}$	ζ_{B}	BNERGY
. 00	0.00036	0.00110	-0. 04010	0.10247	1. . 4190	1.5760	-1.13865
10.00	0.07604	0.00051	-0.04413	0.10331	1.4150	1.5070	-1.25386
50.00	0.07231	0.01630	-0.04980	0.21172	1.4030	1.4470	-1.23044
60.00	0.05331	0.02553	-0.0427	0.22223	1.4000	1.4000	-1.20786
70.00	0.00417	0.03490	-0.04317	0.23005	1.3870	1. 3670	-1.20<17
80.00	0.03004	0.04472	-0.04376	0.23781	1.3710	1.3430	-1.23670
100.00	$0.051<1$	0.06406	-0.04430	0.24668	1.3370	1.3200	-1.27093
120.00	0.04430	0.03505	-0.04557	0.24008	1.3000	1.3205	-1.25927
150.00	0.03057	0.11363	-0.04579	0.24774	1.2560	1.3420	-1.24996
130.00	0.03371	0.12653	-0.04555	0.24485	1.2370	1.3590	-1.24746

TABLA 1.2. OAVL FUNCTION COEFFICIDNTS, ORBITAL EXPGNENTS, AND UNERGISS FOR $Z=1.40 \mathrm{A.U.} R=,1.66 B C H R$.

θ	C1	C2	C3	C4.	$l_{\text {A }}$	$\zeta_{\text {B }}$	ENERGY
30.00	0.12612	-0.00602	-0.04750	0.09145	1.6530	1.9205	-1.53073
40.00	0.12510	-0.00421	-0.04339	0.11781	1.6370	1.8150	-1.67650
52.15	0.12167	0.00004	-0.05227	0.14604	1.6040	1.7130	-1.70761
60.00	0.11343	0.00416	-0.05509	0.16253	1.5800	1.6710	-1.70217
70.00	0.11372	0.01063	-0.05060	0.18079	1.5500	1. 6360	-1.68797
30.00	0.10882	0.01766	-0.06213	0.19513	1.5220	1.6120	-1.67323
100.00	0.09339	0.03291	-0.06788	0.21525	1.4730	1.5970	-1.65113
120.00	0.00113	0.04755	-0.07165	0.32650	1.4300	1.6030	-1.63917
150.00	0.03233	0.06439	-0.07423	0.23357	1.3860	1.6230	-1.63239
180.00	0.07906	0.07099	-0.07481	0.23517	1.3700	1.6340	-1.63109

TABL: 1.3. WAVE FUNCTION COJFFICIUNTS, GRBITAL EXPONENTS, AND ENERGIES FCR $Z=1.30 A . U ., R=1.66 B O H R$.

θ	C1	C2	C3	C4	$\zeta_{\text {A }}$	l_{B}	SNLPGY
30.00	0.14007	-0.00320	-0.04412	0.04021	1.9380	2.2850	-1.97917
40.00	0.15437	-0.00370	-0.05123	0.05376	1.8720	2.1230	-2.16329
50.50	0.15775	-0.00.316	-0.06102	0.08136	1.3080	2.0120	-2.19412
60.00	0.15751	-0.00154	-0.07070	0.10155	1.7540	1.0530	-2.18557
70.00	0.15023	0.00110	-0.03101	0.11957	1.7080	1.9130	-2.17196
30.00	0.15333	0.00462	-0.09060	0.13403	. 6660	1.9020	-2.16270
100.00	0.14644	0.01174	-0.10553	0.15218	1.5030	1.8990	-2.15953
120.00	0.14015	0.01781	-0.11449	0.16134	1.5580	1.9030	-2.16668
150.00	0.13474	0.02311	-0.12052	0.16766	1.5250	1.9190	-2.17318
180.00	0.13313	0.02463	-0.12205	0.16909	1.5160	1.9220	2.18

 INARGIES FGR $Z=2.20 A . U ., R=1 . G G B 2 I R$.

-	C1	C 2	C3	C_{4}	$\zeta_{\text {A }}$	ζ_{B}	LNERGY
n.	0.10 .201	-0.00144	-0.0.1223	0.01700	2.2300	2.6360	3
10.00	0.17235	-0.00201	-0.05450	0.02304	2.1040	2.4360	-2.66701
50.00	0.17941	-0.00217	-0.07033	0.04441	1.0300	2.3250	-2.73352
60.00	0.152 .53	-0.00160	-0.03852	0.05030	1.3960	2.2675	-2.76461
70.00	$0.13: 05$	-0.00057	-0.10066	0.07100	1.0230	2.2460	-2.78850
80.00	0.17003	0.00034	-0.12211	0.07901	1.7670	2.2410	-2.81345
100.00	0.17166	0.00330	-0.14159	0.03630	1.7080	2.2480	-2.85307
120.00	0.16657	0.00475	-0.15032	0.08873	1.6790	2.2540	-2.93646
150.00	-0.16304	-0.00572	0.15515	-0.09014	1.6650	2.2580	-2.93333
130.00	-0.16209	-0.00599	0.15624	-0.09058	1.6600	2.2590	.

TABIE 1.5. ZAVE FUNCTION CCZFPICIENTS, ORBITAL BXPONENTS, AND SNERGIST FOR $Z=1.80 \mathrm{~A} . \mathrm{U} ., \mathrm{R}=1.50 \mathrm{BOHR}$.

θ	C1	C2	C3	C4	$\zeta_{\text {A }}$	$l_{\text {B }}$	ENSRGY
30.00	0.143412	-0.00417	-0.04174	0.04641	1.9575	2.3580	-1.75787
≤ 0.00	0.14750	-0.00468	-0.04634	0.06499	1.3970	2.1720	-2.03216
50.00	0.14306	-0.00408	-0.05363	0.03602	1.0410	2.0640	-2.10439
60.00	0.14816	-0.00229	-0.06112	0.10660	1.7380	1.9890	-2.11452
70.00	0.14530	0.00068	-0.06377	0.12532	1. 7420	1.9440	-2.10737
80.00	0.14253	0.00437	-0.07616	0.14073	1.7030	1.0160	-2.09061
100.00	0.13437	0.01277	-0.03651	0.16246	1.6340	1.8950	-2.09189
120.00	0.12524	0.02046	-0.09700	0.17467	1.5900	1.9000	-2.09423
150.00	0.12203	0.02732	-0.10351	0.18242	1.5550	1.9080	-2.10221
130.00	-0.12012	-0.03019	0.10520	-0.13437	1.5440	1.9110	-2.10570

TABLE 1.6. WAVE FUNCTICN CEAFFICIEITS, ORBITAL EXPONENTS, AND

e	CI	C2	C3	C4	$\zeta^{\text {A }}$	ζ_{B}	ENERGY
30.00	0.15363	-0.00263	-0.04638	0.03572	1.9200	2.2340	-2.12196
40.00	0.16039	-0.00303	-0.05570	0.05491	1.8495	2.0790	-2.24476
50.00	0.16400	-0.00250	-0.06746	0.07503	1.7840	1.9340	-2.24012
60.00	0.16592	-0.00009	-0.08033	0.09530	1.7270	1.0310	-2.23061
70.00	0.16450	0.00143	-0.09317	0.11270	1.6780	. 9050	-2.21513
30.00	0.16101	0.00451	-0.10450	0.12546	1.6340	1.8975	-2.20783
100.00	0.15454	0.01046	-0.12051	0.14022	1.5700	1.5045	-2.21076
120.00	0.14002	0.01476	-0.12887	0.14674	1.5330	1.9150	-2.22194
150.00	0.14431	0.01354	-0.13335	0.15143	1.5040	1.9280	-2.23543
130.00	0.14240	0.01965	-0.13461	0.15237	1.4950	1.9030	-2.24018

ANALYSIS OF SYSTEMS

One of the difficulties encountered in the interpretation of a CI wave function arises from the arbitrary nature of the basis set. For the system under examination it was decided to construct the Configurations from a set of symmetry-adapted molecular orbitals. Equally, it would have been feasible to orthonormalize this set, or merely to have used the atomic orbitals from which the molecular orbitals were constructed. In each case the energies obtained would have been the same, since each basis set is related to the others by a unitary transformation, but the coefficients in the series of configurations would differ, making it difficult to interpret wave functions presented in this way. In order to try to obviate this problem Luwdin (8) has shown that it is possible to select a set of one-electron functions which have characteristic properties belonging to the system and state under consideration. The components of this set are called natural spin orbitals. The set of natural spin orbitals,
$\left\{X_{k}\right\}$, are defined as forming the set which diagonalizes the generalized first order density matrix. For a two-electron system it is possible to introduce many simplifications into the general theory of the natural spin orbital analysis, even when the orbitals are not orthonormal. An important simplification is the removal of electron spin from the problem, this leads to the natural orbital analysis for two electron systems. Introduction of the natural spin orbitals facilitates the interpretation of the wave functions, and also assists in the understanding of the behaviour of the electron density distribution.

Useful information about the behaviour of the electron density within a molecuiar system may often be gained by examining the behaviour
of the individual terms which contribute to the one particle density function. Such an examination of the systems discussed here has shown that it is possible to divide the electron distribution into two components which may be associated with Banyard and Shull's "local" and "shared" densities. Further insight into the behaviour of the systems under consideration may be gained from electron density contours, and these also provide a link between the natural spin orbital analysis and the analysis of the components of the total energy.

A. Natural Spin Orbital Analysis

The orthonormal formulation of the natural spin orbital analysis of two-electron systems has been discussed extensively in the literature and is a special case of the non-orthonormal formalism which will be developed in this section. In the two-electron case the wave function is equivalent to a real quadratic form (28) and the spatial part may be written as

$$
\phi\left(\bar{r}_{1}, \bar{r}_{2}\right)=\sum_{i j} f_{i j} \varphi_{i}\left(\bar{r}_{1}\right) \varphi_{j}\left(\bar{r}_{2}\right)
$$

in matrix notation this is

$$
\Phi=\Phi \underline{F} \underline{\underline{+}},
$$

Where Φ is a raw vector with the basis orbitals $\left\{\mathscr{\varphi}_{1}\right\}$ as its elements. The first order density matrix is defined by

$$
\gamma\left(\bar{r}_{1} ; \bar{r}_{1}^{\prime}\right)=2 \int \phi^{*}\left(\bar{r}_{1}, \bar{r}_{2}\right) \phi\left(\bar{r}_{1}, \bar{r}_{2}\right) d \bar{r}_{2}
$$

After substitution for ϕ from (4.1) and integration over $\overline{\boldsymbol{r}}_{2}$, this expression becomes

$$
\begin{equation*}
\gamma\left(\bar{r}_{1}: \bar{r}_{1}^{\prime}\right)=2 \sum_{i j} f_{i j}^{*} \sum_{l m} f_{l m} \varphi_{i}\left(\bar{r}_{1}\right) \varphi_{l}\left(\bar{r}_{1}\right) s_{j m} \tag{4.2}
\end{equation*}
$$

where $s_{j m}=\left\langle\varphi_{j} \mid \varphi_{m}\right\rangle \quad$, and is, in general, non-zero. Using (4.2) it is possible to define $\gamma(1 \mid i)$, the elements of the first order density matrix, as

$$
\gamma(I \mid i)=\sum_{j m} f_{i j}^{*} s_{j m} f_{m l}
$$

since $\quad f_{m l}=f_{l m}^{*} \quad \because$ In matrix notation this simply

$$
\underline{\gamma}=\underline{F} \underline{\Delta} \underline{F}^{+},
$$

Δ being the overlap matrix between the basis (spatial) orbitals, that is, its elements are $s_{j m}$, the first order density matrix is now given as

$$
\gamma\left(\bar{r}_{1}: \bar{r}_{1}^{\prime}\right)=2 \underline{\phi} \underline{\phi^{+}}
$$

The natural orbitals are defined as that set of orthonormal orbitals Which diagonalizes the (spinless) first order density matrix. Thus if
\underline{X} represents the natural orbital basis, then since

$$
\begin{gather*}
\underline{x}=\underline{\underline{A}}, \tag{4.4}\\
\gamma\left(\bar{r}_{1}: \bar{r}_{1}^{\prime}\right)=\underline{x} \underline{A}^{-1} \underline{y}\left(\underline{A}^{-1}\right)^{+} \underline{x}^{+},
\end{gather*}
$$

and

$$
\begin{equation*}
\underline{A}^{-1} \underline{\gamma}\left(\underline{A}^{-1}\right)^{+}=\operatorname{diag}\left(n_{1}, n_{2}, \ldots\right) \tag{4.5}
\end{equation*}
$$

Since the $\left\{\chi_{i}\right\}$ must be orthonormal then

$$
\begin{equation*}
\underline{A}^{+} \underline{\Delta} \underline{A}=\underline{I} \tag{4.6}
\end{equation*}
$$

(I is the identity matrix). Equations (4.5) and (4.6) are the standard natural orbital equations, which define the matrix A. (In the N - electron case these equations become the natural spin orbital equations, as both $\underline{\gamma}$ and $\underline{\Delta}$ are formed from the basis spin orbitals. This form of $\underline{\gamma}$ is considerably more difficult to construct than in the two-electron case.) However, in the two electron problem it is possible to obtain the matrix A without constructing the first order density matrix; a tedious operation even for small basis sets. The procedure is as follows; let

$$
\begin{equation*}
\underline{x}=\underline{\phi} \underline{B} \quad, \tag{4.7}
\end{equation*}
$$

such that

$$
\Phi=\underline{x} \operatorname{diag}\left(g_{1}, g_{2}, \ldots\right) \underline{x}^{+},
$$

and

$$
\left\langle x_{i} \mid x_{j}\right\rangle=\delta_{i j}
$$

It is easily seen that the transformation matrix B is defined by the conditions

$$
\begin{equation*}
\underline{B}^{+} \underline{\Delta} \underline{B}=\underline{I}, \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{B}^{-1} \underline{E}\left(\underline{B}^{-1}\right)^{+}=\operatorname{diag}\left(g_{1}, g_{2}, \ldots\right) \tag{4.9}
\end{equation*}
$$

Equations (4.8) and (4.9) may be solved as follows: perform a unitary transformation on Δ so that

$$
\underline{U}^{+} \underline{\Delta} \underline{U}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots\right),
$$

where the eigenvectors of $\underline{\Delta}$ are the columns of \underline{U}_{0} Now define a matrix W with elements

$$
w_{i j}=U_{i j}\left(d_{j}\right)^{-1 / 2}
$$

Hence

$$
\begin{equation*}
\underline{w}^{+} \underline{\Delta} \underline{w}=\underline{I} \quad \text {. } \tag{4.10}
\end{equation*}
$$

A comparison of (4.8) and (4.10) leads to the erroneous conclusion that \underline{B} and \underline{W} are identical. That this is not so may be shown by writing \underline{B} as the product of \underline{W} and another matrix \mathbb{X}, i.e.

$$
\begin{equation*}
\underline{B}=\underline{W} \underline{X} \quad \text { and } \quad \underline{B}^{+}=\underline{X}^{+} \underline{W}^{+} \tag{4.11}
\end{equation*}
$$

Substitution for \underline{B} and \underline{B}^{+}from (4.11) into (4.8) and use of (4.10) yields the result

$$
\underline{x}^{+} \underline{x}=\underline{I}
$$

Thus \underline{B} and \underline{W} are related by the unitary matrix \underline{X}. This matrix may be determined by substitution for \underline{B} and \underline{B}^{+}from (4.11) into (4.9), this gives

$$
\begin{equation*}
\underline{x}^{-1} \underline{M}\left(\underline{x}^{-1}\right)^{+}=\operatorname{diag}\left(g_{1}, g_{2}, \ldots\right) \tag{4.12}
\end{equation*}
$$

where

$$
\underline{M}=\underline{W}^{-1} \cdot \underline{F}\left(\underline{W}^{-1}\right)^{+}
$$

Equation (4.12) may be written in a more convenient form using the knowledge that as X is a unitary matrix, $\underline{X}^{-1}=\underline{X}$, thus

$$
\underline{X}^{+} \underline{M} \underline{X}=\operatorname{diag}(g, g, \ldots)
$$

Therefore W, X, and hence the transformation matrix B may be determined. Now consider the transformation

$$
\underline{B}^{-1} \underline{\gamma}\left(\underline{B}^{-1}\right)^{+}
$$

Using (4.3) and (3.11) this becomes

$$
\begin{equation*}
\underline{x}^{-1} \underline{W} \underline{F} \underline{\underline{F}^{+}}\left(\underline{W}^{-1}\right)^{+}\left(\underline{X}^{-1}\right)^{+} \tag{4.13}
\end{equation*}
$$

This equation may be greatly simplified by using (4.8), (4.10), and the fact that X is unitary. The steps involved are not obvious and are shown in full, thus (4.13) is firstly rewritten as

$$
\begin{gather*}
\underline{X}^{-1} \underline{W}^{-1} \underline{F}\left(\underline{W}^{-1}\right)^{+}\left(\underline{W}^{+} \underline{\underline{W}) \underline{W}^{-1} \underline{F}^{+}\left(\underline{W}^{-1}\right)^{+}\left(X^{-1}\right)^{+}} \begin{array}{c}
=\underline{X}^{-1} \underline{M} \underline{M^{+}} \underline{X} \\
=\underline{X}^{+} \underline{M} \underline{M}^{+} \underline{X} \\
=\underline{X}^{+} \underline{M} \underline{X} \underline{X}^{+} \underline{M}^{+} \underline{X} \\
=\operatorname{diag}\left(g_{1}, g_{2}, \ldots\right) \operatorname{diag}\left(g_{1}, g_{2}, \ldots\right) \\
=\operatorname{diag}\left(g_{1}^{2}, g_{2}^{2}, \ldots\right)
\end{array} .\right.
\end{gather*}
$$

The conclusion is obvious; not only does the transformation matrix B give a diagonal form to the wave function (called the natural expansion wave function), but the first order density matrix corresponding to this form is also diagonal. The orbitals defined by (4.7) are the natural orbitals, B is the transformation matrix A of (4.4), the diagonal elements of diag (g_{1}, g_{2}, \ldots) are the natural expansion coefficients, and the occupation numbers of the natural orbitals are the diagonal elements of $\operatorname{diag}\left(g_{1}{ }^{2}, g_{2}{ }^{2}, \ldots\right)$.

In sumary, if

$$
\underline{X}=\underline{\underline{B}}
$$

and B satisfies (4.8) and (4.9) then

$$
\begin{align*}
& \phi\left(\bar{r}_{1}, \bar{r}_{2}\right)=\sum_{k} g_{k} \chi_{k}\left(\bar{r}_{1}\right) x_{k}\left(\bar{r}_{2}\right) \tag{4.16}\\
& \gamma\left(\bar{r}_{1}: \bar{r}_{1}^{\prime}\right)=\underset{k}{2} n_{k} x_{k}\left(\bar{r}_{1}\right) x_{k}\left(\bar{r}_{1}\right), \tag{4.17}
\end{align*}
$$

and

$$
n_{k}=g_{k}^{2}
$$

Equation (4.16) represents the natural expansion wave function for a two-electron system. Introduction of the singlet spin function produces the natural expansion of the complete wave function:

$$
\begin{equation*}
\psi\left(\bar{x}_{1}, \bar{x}_{2}\right)=2^{-1 / 2}\left[\alpha\left(s_{1}\right) \beta\left(s_{2}\right)-\beta\left(s_{1}\right) \alpha\left(s_{2}\right)\right] \sum_{k} g_{k} \chi_{k}\left(\bar{r}_{1}\right) x_{k}\left(\bar{r}_{2}\right) \tag{4.18}
\end{equation*}
$$

It is possible to derive a form similar to (4.18) for the triplet state. Integration of (4.17) over \bar{r}_{1} gives the expected result,

$$
\begin{equation*}
\sum_{k} n_{k}=1 \tag{4.19}
\end{equation*}
$$

If the basis orbitals vere orthonormal then

$$
\underline{\Delta}=\underline{I}
$$

and from (4.3)

$$
\underline{\gamma}=\underline{F} \underline{F}^{+}
$$

and the treatment is then analogous to that of LOwdin and Shull (28).
It is known that the approximate wave function for a two-electron system is equivalent to a real finite quadratic form. A quadratic form is characterized by its rank (r) and its signature (s), two integers which are invariant under non-singular linear transformations (28, 29). The rank of the quadratic form is defined as the rank of the determinant of its coefficients ${ }^{(29)}$, in this case the rank of the determinant with elements $\left\{f_{i j}\right\} \quad(\operatorname{see}(4 \cdot 1))$, and the quadratic form is reducible by a non-singular linear transformation to a sum of "squares" which contains r terms. The number (p) of positive terms in this sum is the index of the quadratic form and if q is the number of negative terms, then

$$
r=p+q
$$

and

$$
s=p-q
$$

This implies that each approximate two-electron wave function of finite order has a rank and signature and that it may be reduced to a sum of "squares"; this explains the simple form of (4.16) and (4.18).

An important theorem due to LUwdin and Shull (28) states that if Ψ is an exact two-electron eigenfunction and Ψ_{I} an arbitrary twoelectron wave function of rank r, then

$$
\begin{aligned}
& \int\left|\Psi\left(\bar{x}_{1}, \bar{x}_{2}\right)-\Psi_{r}\left(\bar{x}_{1}, \bar{x}_{2}\right)\right|^{2} d x_{1} d x_{2}= \\
& 2\left(1-\int \Psi^{*}\left(\bar{x}_{1}, \bar{x}_{2}\right) \Psi_{r}\left(\bar{x}_{1}, \bar{x}_{2}\right) d x_{1} d x_{2}\right)
\end{aligned}
$$

has a minimum value if the function Ψ_{r} is obtained by interrupting the natural expansion after the first r terms and renormalizing the finite series to wity. It is important to note that in the natural expansion $\left|g_{1}\right|>\left|g_{2}\right|>\ldots>\left|g_{r}\right|$. The theorem is also true if Ψ is
not an exact eigenfunction but an approximation of rank greater than r. Application of the natural orbital analysis to the $2 H Z^{2 Z-1}$ problem is straight forward. The elements $\left\{f_{i j}\right\}$ of the coefficient matrix $\underset{F}{ }$ are simply

$$
\begin{aligned}
& f_{11}=2 C_{1} \\
& f_{22}=2 C_{2} \\
& f_{33}=2 C_{3} \\
& f_{12}=f_{21}=C_{4} \\
& f_{13}=f_{31}=f_{23}=f_{32}=0
\end{aligned}
$$

The quantities $\left\{C_{i}\right\}$ are the coefficients in (3.2) and are given in Tables 1.1 to 1.6. The elements of the overlap matrix Δ, are easily seen to be

$$
\begin{aligned}
& \Delta_{11}=2\left(1+\left\langle 1 s_{B} \mid 1 s_{C}\right\rangle\right) \\
& \Delta_{22}=1.0 \\
& \Delta_{33}=2\left(1-\left\langle 1 s_{B} \mid 1 s_{C}\right\rangle\right) \\
& \Delta_{12}=\Delta_{21}=2\left\langle 1 s_{A} \mid 1 s_{B}\right\rangle \\
& \Delta_{13}=\Delta_{31}=\Delta_{23}=\Delta_{32}=0 .
\end{aligned}
$$

Equation (4.19) has been evaluated for each system examined. In some instances it was found that the sum of the occupation numbers differed from unity by as much as $\pm 10^{-4}$; a significant difference. Examination of the original wave functions showed that if the normalization integral differed significantly from wity then a similar error appeared in (4.19).

TABLE 2.1. NATURAL EXPANSICN COEFFICIENTS (FIRST ROW) AND TRANSFORMATION MATRICAS FOR $Z=1.00 A . U$. AND $R=1.66 B O H R$.

0.99490	-0.08870	-0.04613	0.99421	-0.03988	-0.05895
0.42233	-0.44059	0.00000	0.41813	-0.43728	0.00000
0.33163	1.09361	0.00000	0.36076	1.11519	0.00000
0.00000	0.00000	1.46034	0.00000	0.00000	1.22370
$\theta=30.00$			$\theta=40.00$		
0.99347	-0.08331	-0.07220	0.99270	-0.08529	-0.08529
0.41335	-0.53328	0.00000	0.40793	-0.57826	0.00000
0.38540	1.13510	0.00000	0.40793	1.15652	0.00000
0.00000	0.00000	1.08836	0.00000	0.00000	1.00158
$\theta=50.00$			$\theta=60.00$		
0.99137	-0.00773	-0.08151	0.99100	-0.10925	-0.07731
0.40154	0.00000	-0.62243	0.39435	0.00000	-0.66539
0.42975	0.00000	1.17851	0.45038	0.00000	1.20144
0.00000	0.93991	0.00000	0.00000	0.39509	0.00000
$\theta=70.00$			$\theta=80.00$		
0.95929	-0.12880	-0.06866	0.98787	-0.14300	-0.06051
0.37345	0.00000	-0.74456	0.36089	0.00000	-0.81242
0.48833	0.00000	1.24523	0.52426	0.00000	1.28309
0.00000	0.33457	0.00000	0.00000	0.79834	0.00000
$\theta=100.00$			$\theta=120.00$		
0.98664	-0.15473	-0.05105	0.98633	-0.15759	-0.04719
0.33793	0.00000	-0.87094	0.32756	0.00000	-0.90220
0.56569	0.00000	1.31632	0.58346	0.00000	1.32319
0.00000	0.76031	0.00000	0.00000	0.76029	0.00000
$\theta=150.00$			$\theta=180.00$		

table 2.2. NATURAL EXPANSION COGFFICIENTS (FIRST ROVY) AND TRANSFORHATICN MATRICES FOR $2=1.40 A .0$. AND $R=1.66 B O I R$.

0.99763	-0.06048	-0.03230	0.99567	-0.03322	-0.04134
0.50584	0.00000	-0.30423	0.50671	0.00000	-0.36269
0.16004	0.00000	1.07071	0.20124	0.00000	1.03573
0.00000	1.25334	0.00000	0.00000	1.07833	0.00000
	$\theta=30.00$			$' \theta=40.00$	
0.99236	0.11324	-0.04889	0.98972	-0.13317	-0.05219
0.50430	0.00000	-0.43002	0.50105	0.00000	-0.47170
0.24540	0.00000	1.10494	0.27240	0.00000	1.11697
0,00000	0.96079	0.00000	0.00000	0.90959	0.00000
	$\theta=52.15$			$\theta=60.00$	
0.98590	-0.15321	-0,05457	0,98178	-0.18185	-0,05520
0.49572	0.00000	-0.52147	0.48963	0.00000	-0.56659
0.30403	0.00000	1.13159	0.33136	0.00000	1.14595
0.00000	0.86135	0.00000	0.00000	0.82694	0.00000
	$\theta=70.00$			$\theta=80.00$	
0.97355	-0.22213	-0.05350	0.96685	-0.25036	-0.05026
0.47623	0.00000	-0.64156	0.46242	0.00000	-0.69639
0.37773	0.00000	1.16839	0.41387	0.00000	1.18447
0.00000	0.78176	0.00000	0.00000	0.75654	0.00000
	$0=100.00$			$\theta=120.00$	
0.96112	-0.27227	-0.04600	0.95961	-0.27783	-0.04434
0.44597	0.00000	-0.74312	0.43948	0.00000	-0.75702
0.44970	0.00000	1.19401	0.46254	0.00000	1.19503
0.00000	0.73367	0,00000	0.00000	0.73384	0.00000
	0 -150.00			$\theta=180.00$	

TABLE 2.3. NATURAL EXPANSION COHFFICIENTS (FIRST ROFH AND TRANSFORULATION HATRICES FOR ZM1.80A.D. AND R=1.6GBOKR.

0.99740	-0.07124-0.01050	0.99417	0.10667	-0.01549
0.54714	$0.00000-0.20615$	0.55913	0.00000	-0.26161
0.06955	0.000001 .04242	0.09931	0.00000	1.05735
0.00000	1.113000 .00000	0.00000	0.98057	0,00000
	$\theta=30.00$		$\theta=40.00$	
0.98324	-0.15147-0.02077	0.98005	-0.19719	-0.02439
0.56693	$0.00000-0.31976$	0.57073	0.00000	-0.37010
0.13340	0.000001 .07236	0.16368	0.00000	1.08571
0.00000	0.897620 .00000	0.00000	0.84681	0.00000
	$\theta=50.50$		$\theta=60.00$	
0.96847	-0.24758-0.02788	0.05461	-0.29338	00.02948
0.57249	$0.00000=0.41741$	0.57249	0.00000	-0.45377
0.19263	0.000001 .09714	0.21795	0.00000	1.10681
0.00000	0.808940 .00000	0.00000	0.78191	0.00000
	$\theta=70.00$		$\theta=80.00$	
0.92605	-0.37625-0.02950	0.90400	-0.42659	-0.02337
0.57001	$0.00000-0.52079$	0.56556	0.00000	-0.55868
0.25568	0.000001 .12094	0.23160	0.00000	1.12742
0.00000	0.743980 .00000	0.00000	0.73263	0.00000
	$\theta=200.00$		- 120.00	
0.88657	-0.46181-0.02683	0.88181	-0.47087	-0.02635
0.56067	$0.00000-0.53628$	0.55900	0.00000	-0.59373
0.30148	0.000001 .13163	0.30708	0.00000	1.13204
0.00000	0.722450 .00000	0.00000	0.72000	0.00000
	$0-150.00$		$\theta=180.00$	

TABLE 2.4. NATURAL EXPANSICON COAFFICIMNTS (FIRST ROWD AND TRANSFORTMATION MATRICES FOR Z $2.20 A . U$. AND R=1.66BOHRR.

0.93033	-0.19716	-0.00343
0.60542	0.00000	-0.24132
0.07120	0.00000	1.04813
0.00000	0.84463	0.00000
	0	

$0.93327-0.35925-0.01171$

0.62573	0.00000	-0.32805
0.11457	0.00000	1.06904
0.00000	0.77057	0.00000
	$\theta=70.00$	

0.84570	-0.53355	-0.01083
0.63373	0.00000	-0.39722
0.15113	0.00000	1.03362
0.00000	0.72352	0.00000

$$
\theta=100.00
$$

$$
\begin{array}{ccc}
-0.79299 & 0.60916 & 0.00929 \\
0.64293 & 0.00000 & -0.42746 \\
0.16832 & 0.00000 & 1.08895 \\
0.00000 & 0.71371 & 0.00000 \\
& 0.150 .00
\end{array}
$$

0.99132	-0.13137	-0.00594
0.58936	0.00000	-0.19101
0.04368	0.00000	1.03536
0.00000	0.91087	0.00000
θ	$=40.00$	

$$
\begin{array}{ccc}
0.96105 & -0.27619 & -0.01057 \\
0.61715 & 0.00000 & -0.28805 \\
0.09397 & 0.00000 & 1.05970 \\
0.00000 & 0.80064 & 0.00000 \\
& 0 & =60.00
\end{array}
$$

$\begin{array}{ccc}0.00103 & -0.43361 & -0.01185 \\ 0.63173 & 0.00000 & -0.35933 \\ 0.13076 & 0.00000 & 1.07607 \\ 0.00000 & 0.75050 & 0.00000 \\ & \theta & =80.00\end{array}$

0.81351	-0.58147	-0.00990
0.64158	0.00000	-0.41616
0.16143	0.00000	1.08724
0.00000	0.71904	0.00000

$\theta=120.00$

TABLL 2.5. NATURAL EXPANSION COEFPICIENTS (FIRST ROWW) AND TRANSFORMATION MATRICES FOR Zma .80A.D. AND Rm1.50BCIIR.

TABL二 2.6. NATURAL EXPANSICN OOBFFICIENTS (FIRST BSTH) AND

tablia 3. occupation numbans.

θ	$\begin{aligned} & z=1.00 \\ & R=1.00 \end{aligned}$	$\begin{aligned} & Z=1.80 \\ & R=1.60 \end{aligned}$	$\begin{aligned} & Z=1.30 \\ & R=1 . G O \end{aligned}$	$\begin{aligned} & Z=2.20 \\ & R=1 . \operatorname{CO} \end{aligned}$	$\begin{aligned} & 2=1.80 \\ & R=1.50 \end{aligned}$	$\begin{aligned} & z=1.80 \\ & 8=1.80 \end{aligned}$
30.00	0.90001	0.99527	0.93432	0.99332	0.90607	0.99340
	0.00737	0.00363	0.00507	0.00667	0.00376	0.00653
	0.00213	0.00103	0.00011	0,00001	0.00017	0.00007
40.00	0.33845	0.99137	0.98333	0.33271	0.09169	0.93449
	0.00803	0.00693	0.01138	0.01720	0.00793	0.01534
	0.00347	0.00171	0.00024	0.00004	0.00033	0.00017
50.00	0.93693	0.93479^{*}	0.97663^{+}	0.96105	0.98450	0.03842
	0.00730	0.01282	0.02291	0.03837	0.01491	0.03125
	0.00521	0.00239	0.00043	0.00007	0,00054	0.00033
60.00	0.93545	0.97954	0.36050	0.92361	0.97414	0.94335
	0.00727	0.01773	0.03383	0.07628	0.02511	0.05615
	0.00727	0.00272	0.00062	0.00011	0.00075	0.00049
70.00	0.03331	0.97199	0.93793	0.37030	0.96037	0.90984
	0.00955	0.02503	0.06130	0.12903	0.03371	0.03944
	0.00664	0.00293	0.00073	0.00014	0.00092	0.00062
80.00	0.93209	0.06333	0.01129	0.31185	0.94393	0.87201
	0.01194	0.03307	0.03734	0.18801	0.05505	0.12731
	0.00598	0.00305	0.00037	0.00014	0.00102	0.00063
100.00	0.97370	0.94730	0.85757	0.71520	0.90338	0.80306
	0.01659	0.04934	0.14156	0.23463	0.09057	0.19628
	0.00471	0.00286	0.00037	0.00012	0.00105	0.00066
120.00	0.07539	0.93479	0.31721	0.06180	0.37733	0.75864
	0.02045	0.06265	0.13193	0.33311	0.12169	0.24077
	0.00360	0.00253	0.00081	0.00010	0.00098	0.00059
150.00	0.97345	0.32375	0.78601	0.62333	0.84969	0.72851
	0.02394	0.07413	0.21327	0.37103	0.14943	0.27035
	0,00261	0.00212	0.00072	0.00009	0.00037	0.00054
180.00	0.97294	0.92034	0.77759	0.02105	0.84151	0.72380
	0.02484	0.07719	0.22172	0.37837	0.15765	0.27569
	0.00223	0.00197	0.00069	0.00008	0,00084	0,00051

* Values for $\theta=52.15$
+ Valuar $\mathrm{Los} \theta=50.50$

The explicit forms and symmetries of the natural orbitals obtained in the $\mathrm{ZHZ}^{2 Z-1}$ calculations are

$$
\begin{aligned}
& x_{1}(t)=\left[A_{11}\left(1 s_{B}+1 s_{C}\right)+A_{21} 1 s_{A}(t)\right], \\
& x_{1}(t)=\left[A_{32}\left(1 s_{B}-1 s_{C}\right)(t)\right], B_{1} \\
& x_{3}(t)=\left[A_{13}\left(1 s_{B}+1 s_{C}\right)+A_{23} 1 s_{A}(t)\right], A_{1}(4.20)
\end{aligned}
$$

where t is \bar{r}_{1} or \bar{r}_{2}. This order assumes that $n_{1}>n_{2}>n_{3}$, but in some cases X_{2} and X_{3} must be reversed to preserve this order. The results of the analysis for each of the systems examined are shown in Tables 2.1 to 2.6 and in Table 3.

B. Electron Population Analysis

Several approaches to this problem are possible ${ }^{(27,30)}$, but all depend on the expression for the one-particle density, and its division into component quantities. The expression for the one-particle density has the general form

$$
\gamma\left(\bar{x}_{1}: \bar{x}_{1}^{\prime}\right)=N \int\left|\psi\left(\bar{x}_{1}^{\prime}, \bar{x}_{2}, \ldots \bar{x}_{N}\right)\right|^{2} d x_{2} d x_{3} \ldots d x_{N}
$$

where the integration is over the space-spin co-ordinates of all the particles except those of the primed quantity. The spinless one-particle density $\quad \gamma\left(\bar{r}_{1}: \bar{r}_{1}\right)$ is obtained by integrating $\quad \gamma\left(\bar{x}_{1}: \bar{x}_{1}^{\prime}\right)$ over the remaining spin co-ordinate. The result may then be rearranged so that, for example, all of the terms containing the orbital product $\varphi_{i A}^{*}\left(\bar{r}_{1}\right) \varphi_{j B}\left(\bar{r}_{1}\right)$ are grouped together. $\varphi_{i A}\left(\bar{r}_{1}\right)$ and $\varphi_{j B}\left(\bar{r}_{1}\right)$ are the i-th orbital centred on nucleus A and the j-th orbital centred on nucleus B respectively.

The expression for the one-particle density may thus be written as a sum of terms, each of the form $\quad t_{i j} \varphi_{i A}^{*}\left(\bar{r}_{1}\right) \varphi_{j B}\left(\bar{r}_{1}\right) \quad$ where $t_{i j}$ is a coefficient determined by the integrations indicated. The electron distribution may then be broken down into parts, which are associated with the various nuclei and overlap regions between each pair of nuclei, by defining the atomic population associated with nucleus A as:

$$
N(A)=\sum_{i j} t_{i j}<\varphi_{i A} \mid \varphi_{j A}>
$$

and the overlap population of the region between nuclei A and B as:

$$
\begin{equation*}
S(A B)=\sum_{k I} t_{k I}<\varphi_{k A} \mid \varphi_{I B}> \tag{4.21}
\end{equation*}
$$

Equation (4.21) refers to pairs of nuclei so that $<\varphi_{1 B}\left|\varphi_{k A}\right\rangle$ is included in the sum and the quantity $S(B A)$ does not arise.

Obviously

$$
\int \gamma\left(\bar{x}_{1}: \bar{x}_{1}\right) d x_{1}=\sum_{A} N(A)+\sum_{(A B)} S(A B)
$$

However, the appropriate integration of $|\psi|^{2}$ to obtain the expression for the one-particle density often presents difficulties. In the case of a CI wave function the off-diagonal elements of the first order density matrix are not necessarily zero, so that a very unwieldly expression results.

The difficulties that arise in the approach described can be circumvented by employing a method similar to the "Electronic Population Analysis" of Mulliken (27). Direct application of Mulliken's theory is not possible since it demands a knowledge of the number of electrons occupying each of the symmetry-adapted molecular orbitals. Specifically, in the case of the $\mathrm{ZHZ}^{2 Z-1}$ ions there are two electrons distributed between three molecular
orbitals, and it is obvious from the results to be presented that the occupation of each of the molecular orbitals changes significantly as the nuclear charges and geometry vary. We are thus led to the choice of using the natural orbitals since both their form and occupation numbers are clearly defined for each of the systems under consideration. As was shown in the previous section, the expression for the one-particle density in terms of the natural orbitals is simply,

$$
\rho(r)=\gamma\left(\bar{r}_{1}: \bar{r}_{1}^{1}\right)=2 \sum_{k} n_{k} x_{k}^{*}\left(\bar{r}_{1}\right) \chi_{k}\left(\bar{r}_{1}\right)
$$

In general,

$$
\chi_{k}\left(\bar{r}_{1}\right)=\sum_{A i} \varphi_{i A}\left(\bar{r}_{1}\right) a_{i A k}
$$

where $\varphi_{1 A}$ is the i-th orbital on centre A. The coefficients $a_{i A k}$ may be obtained from the transformation matrix by inspection. The following breakdown of the electron distribution may be made:
(i) partial atomic population $N_{k}(A)$ of nucleus $A ;$

$$
N_{k}(A)=2 n_{k} \sum_{i j} \sum_{j} \varphi_{i A} \mid \varphi_{j A}>a_{i A k}^{*} a_{j A k}
$$

(ii) atomic population $N(A)$ of nucleus $A ;$

$$
N(A)=\sum_{\mathbf{k}} N_{k}(A)
$$

(iii) partial overlap population $S_{k}(A B)$ of the overlap region $A-B$;

$$
S_{k}(A B)=2 n_{k} \sum_{i j} \sum_{j} \varphi_{i A} \mid \varphi_{j B}>a_{i A k}^{*}{ }_{j B k}
$$

(iv) overlap population $S(A B)$ of the overlap region $A-B$;

$$
S(A B)=\sum_{k} S_{k}(A B)
$$

(v) total atomic (or local) population N_{L};

$$
N_{I}=\sum_{A} N(A)
$$

(vi) total overlap (or shared) population S_{s};

$$
S_{S}=\sum_{\operatorname{pairs}(A B)} S(A B)
$$

and obviously

$$
N_{I}+S_{S}=N
$$

the number of electrons.
The natural orbitals of the $2 H Z^{2 Z-1}$ ions are few in number, and of a relatively simple form. From (4.20) we have,

$$
\begin{aligned}
& X_{1}^{2}=A_{11}^{2}\left(1 s_{B} 1 s_{B}+2.1 s_{B} 1 s_{C}+1 s_{C} 1 s_{C}\right)+A_{21}^{2}\left(1 s_{A} 1 s_{A}\right) \\
& +2 A_{11} A_{21}\left(1 s_{B} 1 s_{A}+1 s_{C} 1 s_{A}\right) \text {, } \\
& \chi_{2}^{2}=A_{32}^{2}\left(1 s_{B} 1 s_{B}-2.1 s_{B} 1 s_{C}+1 s_{C} 1 s_{C}\right) \\
& X_{3}^{2}=A_{13}^{2}\left(1 s_{B} 1 s_{B}+2.1 s_{B} 1 s_{C}+1 s_{C} 1 s_{C}\right)+A_{23}^{2}\left(1 s_{A}^{1 s_{A}}\right) \\
& +2 A_{13} A_{23}\left(1 s_{B} 1 s_{A}+1 s_{C} 1 s_{A}\right) \quad .
\end{aligned}
$$

The atomic populations are:

$$
\begin{gathered}
N_{1}(A)=2 n_{1} A_{21}^{2} ; N_{1}(B)=N_{1}(C)=2 n_{1} A_{11}^{2} ; \\
N_{2}(A)=0 \quad ; N_{2}(B)=N_{2}(C)=2 n_{2} A_{32}^{2} ; \\
N_{3}(A)=2 n_{3} A_{23}^{2} ; N_{3}(B)=N_{3}(C)=2 n_{3} A_{13}^{2} ; \\
N(A)=2\left(n_{1} A_{21}^{2}+n_{3} A_{23}^{2}\right) ;
\end{gathered}
$$

and

$$
N(B)=N(C)=2\left(n_{1} A_{11}^{2}+n_{2} A_{32}^{2}+n_{3} A_{13}^{2}\right)
$$

The overlap populations are:

$$
\begin{aligned}
& S_{1}(A B)=S_{1}(A C)=4 n_{1} A_{11} A_{21} S_{A B} ; S_{1}(B C)=4 n_{1} A_{11}^{2} S_{B C} ; \\
& S_{2}(A B)=S_{2}(A C)=0 \quad S_{2}(B C)=-4 n_{2} A_{32}^{2} S_{B C} ; \\
& S_{3}(A B)=S_{3}(A C)=4 n_{3} A_{13} A_{23} S_{A B} ; S_{3}(B C)=4 n_{3} A_{13}^{2} S_{B C} ; \\
& S(A B)=S(A C)=4 S_{A B}\left(n_{1} A_{11} A_{21}+n_{3} A_{13} A_{23}\right)
\end{aligned}
$$

and

$$
S(B C)=4 S_{B C}\left(n_{14} A_{11}^{2}-n_{2} A_{32}^{2}+n_{3} A_{13}^{2}\right)
$$

$S_{A B}$ and $S_{B C}$ are the overlap integrals $<1 s_{A}\left|1 s_{B}\right\rangle$ and $<1 s_{B}\left|1 s_{C}\right\rangle$ respectively. $A_{i j}$ are the elements of the transformation matrix.

Variations of the atomic and overlap populations as functions of Z and θ are shown in Figs. 4 to 7. Population analyses for optimized wave functions with $R=1.5$ bahr and 1.8. wahr were permed for $Z=1.8$ and the results permitted the study of the variation of the electron populations as a function of the Z-H bond length.

C. Electron Density Contours

The interpretation of the results of the natural orbital and electron population analyses proved difficult because of the large volume of results. It was felt that a quantitative description of the behaviour of the systems would greatly assist in the interpretation of the numerical quantities. Such a description is provided by the electron density contours.

From (4.17), values of the electron density were obtained for each system in the plane of the nuclei, and contour maps were drawn for each system. A selection of these maps is shown in Fig. 8. Each map is symmetric about the line $X X$, which bisects the bond angle θ (see Fig. 3.). Changes in the contours, as θ and Z vary, are clearly illustrated. A general feature of all the contour diagrams is shown by tracing the line of maximum density, i.e. minimum slope, between centres B and C. This line is such that the density always decreases in magnitude, When evaluated at adjacent spatial co-ordinates along its normal. These curves, which are also symmetric about the line $X X^{\dagger}$, are shown collectively in Fig. 9. They indicate specifically whether or not centre A is contained within the density contour of highest value which mutually embraces centres B and C. In some instances, the line of minimum slope is seen to divide, so that B is joined to A and C. The significance of this situation, indicated in Fig. 9 by the dotted lines, will be discussed in Chapter 5 .

$Z=1 \cdot 8$

FIG.6. The overlap population for $A-B, A-C$, and $B-C$ as a function of the bond angle The dotted lines are for $B-C$ and the solid lines for $A-B$ or $A-C$.

$Z=1.0$
$z=1.8$
$Z=2.2$

FIG. 8. Contour diagrams of the electron density in the plane of the molecule for selected values of Z and θ. The diagrams are symmetric about the line $X X^{\prime}$ which bisects the bond angle θ. In (a) the density at D is less than $0.1764{ }^{\circ}$

FIG. 9. The trace of points, between the centres B and C, with minimum slope in the electron-
density surface when evaluated in the plane of the ZHZ^{22-1} ions for $Z=1.0,1.4$,
1.8 , and 2.2 , see diagrams a, b, c, and d respectively. For each value of Z, the
trace is shown for various values of the bond angle θ. The centre A is located at
the origin and centre B is indicated by - Each set of diagrams is symmetric
about XX' which bisects θ.

FIG. 11. The kinetic energy as a function of the bond angle θ.

FIG. 12. The electron repulsion energy as a function of the bond angle θ.

FIG. 13. The nuclear attraction energy as a function of the bond angle θ.

FIG. 14. The nuclear repulsion energy as a function of the bond angle θ.
D. Eneroy Analysis

As stated in Chapter 2, the behaviour of the electron energy of the $7 \mathrm{HZ}^{2 Z-1}$ systens was unexpected, and it was thought that an investigation of the indivicual components of the total energy might provide an insiont into this behaviour. The results of this investication are displayed graphically in Figs. 11 to 14.

CHAPTER 5

DISCUSSION OF RESULTS

Certain general trends are immediately observable from the tables and diagrams presented. Inspection of the natural orbitals given in (4.20) indicates that x_{1} and x_{3} are bonding-type orbitals whereas χ_{2} is of an anti-bonding form. It is seen from the occupation numbers presented in Table 3 that for all values of θ, X_{1} predominates in the natural expansion of the wave function for $Z \leqslant 1.4$. Although a large occupation number for a bonding orbital does not necessarily guarantee the stability of the $Z H Z^{2 Z-1}$ ion for any choice of Z and θ, it is of interest to note, from the work of Banyard and Shull ${ }^{(25)}$, that for $Z<1.3$ the ions are stable with respect to dissociation. Another obvious trend is the increase in electron density in the region of the nuclei B and C as the effective nuclear charge is increased. The significance of the way in which this increase occurs will be discussed in the following paragraphs.

For $Z=1.0$, when $Z H Z ~ Z Z-1$ becomes $H_{3}{ }^{+}, n_{1}$ and n_{3} shown in Table 3 decrease and n_{2} becomes larger as the bond angle increases from 30° to 180°. The results for $\mathrm{H}_{3}{ }^{+}$may be placed in perspective by referring to the occupation numbers of the natural orbitals of a_{1}^{p} - and $e_{1}^{\prime}-$ type symmetry determined by Christoffersen and $S_{h u l l}^{(31)}$ for the united atom Li^{+}and the dissociation products $\mathrm{H}+\mathrm{H}+\mathrm{H}^{+}$. For $\mathrm{Li}{ }^{+}$they quote total occupation numbers of 0.998121 and 0.001223 for the a_{1}^{\prime} - and e_{1}^{\prime} type natural orbitals respectively. For the dissociation products of $\mathrm{H}_{3}{ }^{+}$, the total occupation numbers for the orbitals of a_{1}^{1} - and $e_{1}^{\prime}-$ type symetry are 0.666667 and 0.333333 respectively. When Z is large, the dissociation products of minimum energy will have corresponding natural orsitals with occupation numbers of 0.5. Thus, the united atom character
is seen to feature strongly in the description of $\mathrm{H}_{3}{ }^{+}$for all values of θ - Table 3 shows that this conclusion is valid as far as $Z \leqslant \cdot 1.4$. When $Z \geqslant 1.8$ it is seen that, as θ increases, the occupation number associated with χ_{2} increases greatly at the expense of n_{1}. This would seem to indicate that, when Z and θ are large, the electron density begins to concentrate predominately around the nuclei B and C at the expense of the proton at A and the internuclear regions. This conclusion is supported by noting that, as Z and θ increase, the occupation numbers for χ_{1} and χ_{2} are both approaching 0.5. Quantitative evidence is also provided by both the electron population analysis (Figs. 4 to 7) and by the electron density contour maps (Fig. 8).

The results of the electron population analysis illustrated in Figs. 4 to 7 indicate that when the overlap population between centres B and C is greater than that of the region $A-B$, the $Z H Z^{2 Z-1}$ ions may be regarded as two-centre systens plus a strongly perturbing proton. However, when $S(B C)$ is less than $S(A B)$ the ion may be thought of as forming a three-centre system. Such an interpretation is strongly supported by the evidence shown in the diagrans of Fig. 9. The "divided" trace, i.e. the dotted lines of Figs. 9a, 9b, and 9c, is particularly interesting since it only occurs when $S(A B) \simeq S(B C)$. The depression in the electron density surface of $\mathrm{H}_{3}{ }^{+}$at its equilibriwn bond angle (see Fig. 8a), centred at the centroid of the triangle $A B C$, was not observed by either Christoffersen and Shull (32) or by Schwartz and Schaad (32); this may be a consequence of our minimal basis set.

For $Z=1.0$, it is seen from Fig. 4 that, as θ gets larger, $N(A)$ increases fairly sharply, but $N(B)$ and $N(C)$ become smaller; correspondingly the overlap populations $S(A B)$ and $S(A C)$ shown in Fig. 6 increase but the value of $S(B C)$ decreases considerably. This behaviour is partly illustrated by the contour maps a, d, and g of Fig. 8.

A similar situation occurs for $Z=1.4$. However, for $Z=1.8$, Fig. 4 shows that the atomic population for each nuclear centre increases as the bond angle is enlarged. The overlap population $S(A B)$ also increases as θ increases, but the magnitude of $S(B C)$ is seen to decrease rapidly. Thus, as θ varies from 30° to 180°, a value of $Z \geqslant 1.8$ is capable of causing electron charge cloud to move from the internuclear region $B-C$ towards the centres B and C, whereas when $Z=1.0$ the charge cloud is moved from B and C towards centre A.

Fig. 7 reveals that, for any fixed bond angle, $S(A B)$ decreases in value as Z is increased, this indicates the diminishing influence of the proton on the system. This conclusion is substantiated by the fact that $N(A)$ tends to zero for all angles as Z becomes large. Fig. 7 also shows that when $\theta<100^{\circ}, S(B C)$ increases initially and then decreases as Z continues to increase. This effect is greatest for small angles. For $\quad \theta \geqslant 100^{\circ}, S(B C)$ shows no initial increase as a function of Z. Hence as Z is increased for a fixed bond angle, the charge cloud is drawn away from A into the regions associated with B, C, and $B-C . A$ further increase in Z removes the charge cloud from the internuclear region $B-C$ and localizes it about the nuclei B and C.

For $Z=1.8$, the electron population analysis was performed for wave functions corresponding to $R=1.50$ a. u., 1.66 a. u., and 1.80 a.u. The results are shown in Fig. 10. For constant θ, as expected $N(A)$ decreases in value and $N(B)$ increases $a s R$ becomes larger, both $S(A B)$ and $S(B C)$ decrease.

Changes in the above results caused by extending the basis set may be examined most readily by studying the $\mathrm{H}_{3}{ }^{+}$molecular ion, this is made possible by the analysis (31) of the configuration interaction wave function of Christoffersen (22) which involved a basis set of twelve real slater-type orbitals. The occupation number of 0.98487 which

Christoffersen and Shull obtained for the first natural orbital X_{1} differs from the value obtained in this calculation by only 0.00059 (see Table $3, Z=1.00, \quad \theta=60^{\circ}, R=1.66$). The virtual independence of the occupation numbers with respect to the size and nature of the basis set has been commented on by Shull ${ }^{(26)}$. Due to its large occupation number, the form of χ_{1} for $\mathrm{H}_{3}{ }^{+}$will govern the essential features of the electron population analysis. Thus the evaluation of $N(A)$ and $S(A B)^{*}$ derived from χ_{1}, taken in the first instance from the work of Christoffersen and Shull, and secondly from Table 2.1 for $\theta=60^{\circ}$, should indicate the general effect of an extended basis set. In both cases we have in fact considered the "best" wave functions of rank 1. For the minimal basis set $N(A)$ and $S(A B)$ were found to be 0.33282 and 0.33386 respectively, while the extended basis set gave values of 0.30113 and 0.36554. Thus, an extension of the basis set causes a lowering of the atomic population of each nucleus with a corresponding increase in the overlap populations. Such changes in the electron population analysis are not too surprising since the 1 s minimal basis set could only be extended by the inclusion of higher orbitals which, by virtue of their more diffuse nature, provide a greater two-centre overlap. It is reasonable to expect that an extension of the basis set for the remaining $Z \mathrm{HZ}^{2 \mathrm{Z}-1}$ ions will have a similar effect, although this should become less marked as Z is increased.

Hopton and Linnett (33) have discussed the structure of the linear $\mathrm{H}_{3}{ }^{+}$molecular ion in terms of various approximations to a simple CI wave function obtained by Hirschfelder, Eyring and Rosen (34). As these latter authors did not allow the orbital exponents to vary, their wave functions

[^1]was not the best obtainable with their limited basis set (three is orbitals, one on each nucleus) and fixed geometry. The calculations of Hopton and Linnets have been repeated using the wave function obtained for $Z=1.0$ at $\theta=180^{\circ}$ as the "best" wave function.

The approximations to the wave function ϕ (see (3.5)) are the valence bond (ϕ_{VB}); the molecular orbital (Φ_{MO}), and three non-pairing of electrons forms (ϕ_{A}, ϕ_{B}, and $\left.\phi_{C}\right)$. Using the notation of the $\mathrm{ZHz}{ }^{2 Z-1}$ work, these functions may be defined thus:

$$
\begin{aligned}
& \phi_{\mathrm{VB}}\left(\bar{r}_{1}, \bar{r}_{2}\right)=N_{V B}\left[\left(1 s_{B}\left(\bar{r}_{1}\right)+k \cdot 1 s_{A}\left(\bar{r}_{1}\right)\right)\left(k \cdot 1 s_{B}\left(\bar{r}_{2}\right)+1 s_{A}\left(\bar{r}_{2}\right)\right)\right. \\
& \\
& \quad+\left(k \cdot 1 s_{B}\left(\bar{r}_{1}\right)+1 s_{A}\left(\bar{r}_{1}\right)\right)\left(1 s_{B}\left(\bar{r}_{2}\right)+k \cdot 1 s_{A}\left(\bar{r}_{2}\right)\right) \\
& \\
& \quad+\left(1 s_{C}\left(\bar{r}_{1}\right)+k \cdot 1 s_{A}\left(\bar{r}_{1}\right)\right)\left(k \cdot 1 s_{C}\left(\bar{r}_{2}\right)+1 s_{A}\left(\bar{r}_{2}\right)\right) \\
& \left.\quad+\left(k \cdot 1 s_{C}\left(\bar{r}_{1}\right)+1 s_{A}\left(\bar{r}_{1}\right)\right)\left(1 s_{C}\left(\bar{r}_{2}\right)+k \cdot 1 s_{A}\left(\bar{r}_{2}\right)\right)\right] \\
& =N_{V B}\left[0.5 k \phi_{1}\left(\bar{r}_{1}, \bar{r}_{2}\right)+2 k \phi_{2}\left(\bar{r}_{1}, \bar{r}_{2}\right)+0.5 k \phi_{3}\left(\bar{r}_{1}, \bar{r}_{2}\right)\right. \\
& \\
&
\end{aligned}
$$

$$
\phi_{M O}\left(\bar{r}_{1}, \bar{r}_{2}\right)=N_{M O}\left[\left(1 s_{B}\left(\bar{r}_{1}\right)+k \cdot 1 s_{A}\left(\bar{r}_{1}\right)+1 s_{C}\left(\bar{r}_{1}\right)\right)\right.
$$

$$
\left.\cdot\left(1 s_{B}\left(\bar{r}_{2}\right)+k \cdot 1 s_{A}\left(\bar{r}_{2}\right)+1 s_{C}\left(\bar{r}_{2}\right)\right)\right]
$$

$$
=N_{M O}\left[0.5 \phi_{1}\left(\bar{r}_{1}, \bar{r}_{2}\right)+0.5 k^{2} \phi_{2}\left(\bar{r}_{1}, \bar{r}_{2}\right)+k \phi_{4}\left(\bar{r}_{1}, \bar{r}_{2}\right)\right]
$$

$$
\phi_{A}\left(\bar{\Gamma}_{1}, \bar{r}_{2}\right)=N_{A}\left[\left(1 s_{B}\left(\bar{r}_{1}\right)+1 s_{A}\left(\bar{r}_{1}\right)\right)\left(1 s_{C}\left(\bar{I}_{2}\right)+1 s_{A}\left(r_{2}\right)\right)\right.
$$

$$
\left.+\left(1 s_{C}\left(\bar{r}_{1}\right)+1 s_{A}\left(\bar{r}_{1}\right)\right)\left(1 s_{B}\left(\bar{r}_{2}\right)+1 s_{A}\left(\bar{r}_{2}\right)\right)\right]
$$

$$
\begin{aligned}
& =N_{A}\left[0.25 \phi_{1}\left(\bar{r}_{1}, \bar{r}_{2}\right)+\phi_{2}\left(\bar{r}_{1}, \bar{r}_{2}\right)-0.25 \phi_{3}\left(\bar{r}_{1}, \bar{r}_{2}\right)\right. \\
& \left.+\phi_{4}\left(\bar{r}_{1}, \bar{r}_{2}\right)\right], \\
& \phi_{B}\left(\bar{r}_{1}, \bar{r}_{2}\right)=N_{B}\left[\left(1 s_{B}\left(\bar{r}_{1}\right)+k \cdot 1 s_{A}\left(\bar{r}_{1}\right)\right)\left(1 s_{C}\left(\bar{r}_{2}\right)+k \cdot 1 s_{A}\left(\bar{r}_{2}\right)\right)\right. \\
& \left.+\left(1 s_{C}\left(\bar{r}_{1}\right)+k \cdot 1 s_{A}\left(\bar{r}_{1}\right)\right)\left(1 s_{B}\left(\bar{r}_{2}\right)+k \cdot 1 s_{A}\left(\bar{r}_{2}\right)\right)\right] \\
& =N_{B}\left[0.25 \phi_{1}\left(\bar{r}_{1}, \bar{r}_{2}\right)+k^{2} \phi_{2}\left(\bar{r}_{1}, \bar{r}_{2}\right)-0.25 \phi_{3}\left(\bar{r}_{1}, \bar{r}_{2}\right)\right. \\
& \left.\quad+k \phi_{4}\left(\bar{r}_{1}, \bar{r}_{2}\right)\right] \quad, \\
& \phi_{C}\left(\bar{r}_{1}, \bar{r}_{2}\right)=N_{C}\left[\left(1 s_{B}\left(\bar{r}_{1}\right)+k_{0} 1 s_{A}\left(\bar{r}_{1}\right)\right)\left(1 s_{A}\left(\bar{r}_{2}\right)+k \cdot 1 s_{C}\left(\bar{r}_{2}\right)\right)\right. \\
& \quad+\left(s_{A}\left(\bar{r}_{1}\right)+k .1 s_{C}\left(\bar{r}_{1}\right)\right)\left(1 s_{B}\left(\bar{r}_{2}\right)+k .1 s_{A}\left(\bar{r}_{2}\right)\right)
\end{aligned}
$$

The parameter k was chosen so as to maximise the overlap between each approximation $\quad \phi_{A P P}$ and ϕ. The general form of each approximation is the same as that of ϕ, ie.

$$
\begin{equation*}
\phi_{A P P}\left(\bar{r}_{1}, \bar{r}_{2}\right)=\sum_{i} c_{i} \phi_{i}\left(\bar{r}_{1}, \bar{r}_{2}\right) \tag{5.1}
\end{equation*}
$$

with the coefficients \boldsymbol{d}_{i} suitably calculated. Each approximation was normalized to unity. Two further approximate wave functions were introduced into the present work; these were the "best" rank 1 and 2 wave functions ϕ_{I} and $\phi_{I I}$, namely

$$
\begin{gathered}
\phi_{I}\left(\bar{r}_{1}, \bar{r}_{2}\right)=x_{1}\left(\bar{r}_{1}\right) x_{1}\left(\bar{r}_{2}\right) \\
=0.5 A_{11}^{2} \phi_{1}\left(\bar{r}_{1}, \bar{r}_{2}\right)+0.5 A_{21}^{2} \phi_{2}\left(\bar{r}_{1}, \bar{r}_{2}\right) \\
\\
+A_{11} A_{21} \phi_{4}\left(\bar{r}_{1}, \bar{r}_{2}\right) \\
\phi_{I I}\left(\bar{r}_{1}, \bar{r}_{2}\right)=\left(n_{1}+n_{2}\right)^{-1 / 2\left[g_{1} x_{1}\left(\bar{r}_{1}\right) x_{1}\left(\bar{r}_{2}\right)+g_{2} x_{2}\left(\bar{r}_{1}\right) x_{2}\left(\bar{r}_{2}\right)\right]} \\
=\left(n_{1}+n_{2}\right)-1 / 2\left[0.5 g_{1} A_{11}^{2} \phi_{1}\left(\bar{r}_{1}, \bar{r}_{2}\right)+0.5 g_{1} A_{21}^{2} \phi_{2}\left(\bar{r}_{1}, \bar{r}_{2}\right)\right. \\
\end{gathered}
$$

These are the natural expansions truncated after 1 and 2 terms and renormalized to unity. Since $\phi \quad$ is of rank 3 it is the "best" rank 3 wave function. obviously ϕ_{I} and $\phi_{I I}$ are expressible in the form of (5.1). The overlap between each approximation and ϕ,

TABLE 4.	ROXII	STO 9	$\phi_{A P}=\sum_{c_{i}} \phi_{i}$				
ϕ	ϕ_{I}	$\phi_{\text {II }}$	$\phi_{\text {VB }}$	$\phi_{M O}$	$\phi_{\text {A }}$	Φ_{B}	ϕ_{C}
3	1	2	3	1	2	2	3
-	-	-	-0.02	1.781	-	0.93	2.55
0.03371	0.05365	0.05298	-0.00396	0.05365	0.04645	0.05035	0.03793
0.12658	0.17021	0.16808	-0.01583	0.17021	0.18582	0.17420	0.15173
-0.04555	0.00000	-0.04560	-0.00396	0.00000	-0.04645	-0.05035	-0.03793
0.24485	0.19111	0.18873	0.39600	0.19111	0.04645	0.18731	0.22327
1.00000	0.98638	0.99888	0.98010	0.98638	0.99835	0.99867	0.99936
1.00000	1.00000	1.00000	0.98010	1.00000	0.99948	0.99979	0.99936

$$
\begin{aligned}
& \text { RANK } \\
& \mathrm{k} \\
& \mathrm{C}_{1} \\
& \mathrm{C}_{2} \\
& \mathrm{C}_{3} \\
& \mathrm{C}_{4} \\
& \left\langle\Phi \mid \Phi_{A P}\right\rangle \\
& \text { OVERLAP } \\
& \text { WITH 'BEST' } \\
& \phi \quad \text { OF SAME } \\
& \text { RANK }
\end{aligned}
$$

together with the overlap with the "best" wave function of the same rank are shown in Table 4.

Hopton and Linnett conclude that the non-pairing forms are the best because they have higher overlaps with $\quad \phi \quad$ than either $\phi_{\text {VB }}$ or $\phi_{\text {MO }}$ - If this were so the occupation numbers of linear $\mathrm{H}_{3}{ }^{+}$would be much closer to those of the dissociation products than to those of the united atom, since the non-pairing form implies a degree of spatial correlation. The atomic population $N(A)$ for nucleus A is almost three times that of centres B or C; this would seem unusual if there were a high degree of spatial correlation between the electrons.

The key to the misleading high overlaps of the non-pairing approximations with $\phi \quad$ (a result preserved in this calculation) lies in the fact that the five approximate forms are of different rank. The theorem stated in Chapter 4 implies that there is an upper bound to the overlap integral $\quad \int \phi^{*} \phi_{A P P} d r_{1} d r_{2} \quad$ which is determined by the rank of $\phi_{\text {APP }}$ - A comparison of greater validity than the straight forward comparison of values of this integral for different approximations is to determine the rank of $\phi_{A P P}$ and then compare the overlap integrals between $\phi_{A P P}$ and the "best" function of the same rank, since this then accounts for the mathematical limitation of the approximation as well as the chemical limitation. It is seen from Table 4 that ϕ_{I} and $\phi_{M O}$ are identical; a result suspected by Shull (35). This evidence confirms the conclusion that linear $\mathrm{H}_{3}{ }^{+}$may be regarded as a three centre system because ϕ_{MO} is the best approximation to ϕ.

As θ increases the kinetic energy undergoes an initial decrease for all values of Z (Fig. 11). The decrease becomes greater as Z is increased. When $Z=1.0$, the kinetic energy becomes constant for
$\theta>90^{\circ}$, however, the curve for $Z=2.2$ shows a pronounced
minimum when $\quad \theta \simeq 60^{\circ}$, and a constant value is attained only when $\theta>140^{\circ}$. Figs. 12,13 , and 14 show that, for $Z=1.0$, the other energy contributions are virtually constant when $\theta>90^{\circ}$. This lack of angular dependence indicates that, when $\theta>90^{\circ}$, the proton at centre A tends to dominate the $\mathrm{H}_{3}{ }^{+}$system.

Ruedenberg (36) has shown that a lowering of the kinetic energy may be associated with an increased "smoothness" of the electron density surface throughout the molecule. It is related in character to the lowering of the kinetic energy of potential free electrons when the volume containing them is increased. Thus the kinetic energy curves shown in Fig. 11 may be interpreted as a measure of the relative freedom of the electrons within the ions as θ is increased. For example, when $Z=2.2$ and $\quad \theta=30^{\circ}$, the charge cloud is localized about the $B-C$ region of the ion; hence the value of the kinetic energy is high. As θ is increased to a value of 60°, the kinetic energy suffers a decrease, suggesting that the larger value for the $B-C$ separation allows the charge cloud to become more diffuse. However, for a further increase in θ, the kinetic energy is seen to increase; this is consistant with the observation that, for $Z=2.2$ the charge cloud will divide and become localized about the separate centres B and C, as approaches 180°. For $Z=1.0$, a similar situation will occur, namely, as B and C separate, the charge cloud will become more diffuse, and the value of the kinetic energy will therefore decrease for an initial increase in θ - However, a continued increase of θ causes the charge cloud to contract towards centre A instead of dividing and localizing it about each of the centres B and C, as was the case for $Z=2.2$. Thus, for $\mathrm{H}_{3}{ }^{+}$it is not surprising that the kinetic energy remains virtually constant for $\quad \theta>90^{\circ}$. The curves for $Z=1.4$
and 1.8 shown in Fig. 11 are clearly states of transition between the two cases already discussed. Additional support for the above interpretation is gained by noting that, for each value of Z, the dependence of the electron density evaluated at centre B (or C) has the same form as the corresponding curve for the kinetic energy shown in Fig. 11 .

From Figs. 12, 13, and 14 we see that the electron repulsion energy, nuclear attraction, and nuclear repulsion energies become slightly more
θ-dependent as Z becomes larger. This is quite reasonable since the foregoing analysis has shown that, as Z increases, the tendency for the charge cloud to contract around the centres B and C will also increase as θ approaches 180°. Hence when the division of the charge cloud becomes more effective, the drop in electron repulsion energy will become greater, as shown in Fig. 12. For a fixed value of Z, Fig. 13 shows that the nuclear attraction energy will increase for an increase in presumably related to the fact that the charge cloud will be influenced less by the combined effect of the nuclei at B and C. The nuclear repulsion energy curves shown in Fig. 14 are simply dependent on Z and the geometry of the $Z H Z^{2 Z-1}$ system.

The comparison of the results of the analysis for the $\mathrm{ZHZ}{ }^{2 \mathrm{Z}}$-1 ions with the $\mathrm{H}_{3}{ }^{+}$calculation of Christoffersen is very valuable. However it is rather limited because $\mathrm{H}_{3}{ }^{+}$is a member of the $\mathrm{ZHZ}{ }^{2 \mathrm{Z}-1}$ systems, and the comparison does not indicate whether or not the unexpected behaviour (the initial decrease in the optimum bond angle as 2 increases from 0,8), is simply a feature of these systems. Recent work (37) on a four-centre four-electron system of the form $Z \mathrm{HZH}^{2(Z-1)}$ shows that this behaviour is not confined to the $\mathrm{ZHZ}^{2 \mathrm{Z}-1}$ pseudomolecular ions. In the $\mathrm{ZHZH}{ }^{2(\mathrm{Z}-1)}$ system four electrons are associated with a planar nuclear framework of four nuclei, and as the nuclear charge Z is increased from 0.8 to 2.4
the optimum $Z H Z$ bond angle decreases. As Z becomes very large this angle goes through a minimum and approaches 180° asymptotically. This seems to imply that the electron density of the four-centre system will behave in a way similar to that of the three-centre system; for a given ZHZ bond angle in the four-centre system, the increasing nuclear charges will firstly draw the charge cloud away from the protons towards the geometric centre of the system, and then the charge cloud will divide into two parts, each localized about the variable nuclear charges Z. The detailed analysis of the wave functions for the four-centre fourelectron systems is awaited with interest.

The wave functions of a series of pseudomolecular ions of the form $Z \mathrm{~Hz}^{2 Z-1}$, where $Z=1.0$ (0.4) 2.2 were reformulated in terms of their natural expansions. Consequently it was possible to investigate changes in the one-particle density due to variations of Z and the bond angle ZHZ ($=\theta$), by means of an electron population analysis similar to that of Mulliken. Contour diagrams were constructed for the one-particle density in the plane of the nuclei. In addition the behaviour of the kinetic energy, the nuclear attraction energy, the electron and nuclear repulsion energies as functions of Z and θ were also examined. For $z \leqslant 1.4$, the first natural orbital in the natural expansion of the wave function was found to have a large occupation number for all values of θ. Such a feature is essential, although by itself no guarantee, for obtaining molecular stability with respect to dissociation; nevertheless the results obtained here are in accord with the observation ${ }^{(25)}$ that the ions are energetically stable for $\mathrm{Z}<1.3$.

The occupation numbers of the natural orbitals for $\mathrm{H}_{3}{ }^{+}$were placed in perspective by making a comparison with similar quantities for the united atom Li^{+}and the dissociation products $\mathrm{H}+\mathrm{H}+\mathrm{H}^{+}$. Such a comparison clearly reveals that $\mathrm{H}_{3}{ }^{+}$possesses a strong united atom character. The contour diagrams also showed that, when $\theta=60^{\circ}$, the "bonds" in $\mathrm{H}_{3}{ }^{+}$were directed towards the centroid of the positive charges. The elaborate wave function of Christoffersen (22), analysed by Christoffersen and Shull ${ }^{(31)}$, also revealed this "bonding" arrangement. For fixed bond lengths BA and CA (Fig. 3), as θ was increased, the charge moved from the centres B and C towards A, indicating that the proton dominates the linear $\mathrm{H}_{3}{ }^{+}$system. These results do not support the conclusion that a
non-pairing description is applicable to the linear $\mathrm{H}_{3}{ }^{+}$ion; Shull (35) has described it as "a relatively normal (albeit lengthened) single bond in which is embedded an additional proton", a description supported by the present analysis.

When Z is large, the dissociation products of minimum energy have natural orbitals with occupation numbers of 0.5 . This situation is most closely represented when $Z=2.2$ and $\theta=180^{\circ}$. The contour diagrams and electron population analysis show that, at large values of Z, the electron density in the region of centre A is small and, as
θ increases, the charge cloud flows from the internuclear region B-C towards the "outer" nuclei. The diagrams and analysis also show that, as Z increases and θ decreases, the $Z H Z^{2 Z-1}$ ions change from a three-centre system to what is essentially a two-centre system plus a strongly perturbing proton.

Of the various components of the energy of the $\mathrm{ZHZ}^{2 Z-1}$ ions, the θ dependence of the kinetic energy is most striking. As emphasised by Ruedenberg, a decrease in magnitude of the kinetic energy may be associated with an increase in the spatial freedom of the electrons. This interpretation assisted not only with the understanding of the kinetic energy curves but also permitted variations in the remaining energy components to be understood.

The $Z H Z^{2 Z-1}$ calculation was originally conceived as a model of one of the bridge bonds of diborane. The unusual behaviour of the system, which precludes its use as such a model, is not, however, confined to this system. The initial results of a calculation on $\mathrm{ZHZH}^{2(\mathrm{Z}-1)(37)}$ indicate that its behaviour is somewhat similar to that of $\mathrm{ZHZ}^{2 \mathrm{Z}-1}$ but further detailed analysis will be required to determine the extent of the similarity. The results discussed here cast some doubt on the validity of the molecular fragment model as an indicator of the nature of the bonds
in a complete molecule; nevertheless, the analysis has afforded considerable insight into the energy changes and accompanying changes in electron density as Z and θ vary within the simply $Z \mathrm{~Hz}^{2 Z-1}$ pseudomolecular system.

CHAPTER 7

INTRODUCTION - THE METHOD OF CONFIGURATION

INTERACTION

The theoretical methods for constructing a Configuration Interaction (CI) wave function are reviewed in this chapter and their application to homonuclear diatomic molecules is described. Because of the ambiguity of the description of CI wave functions, the terminology used in Part II of this thesis is now defined:
(i) DETERMINANT: An antisymmetrized product of occupied spin-orbitals. It is an eigenfunction of the \mathscr{G}_{Z} operator. (ii) DETOR: A determinant constructed from a set of orthonormal spinorbitals ${ }^{(38)}$.
(iii) CONFIGURATION: A linear combination of determinants which is an eigenfunction of the total spin operator \mathfrak{G}^{2}; it is also a basis for an irreducible representation of the molecular symmetry group. (iv) CODETOR: A configuration in which the determinants are detors (38). It must be emphasised that although these definitions are adhered to in both Parts I and Part II of this thesis there is no generally accepted usage of the name configuration and some authors use it synomymously with determinant.

The positions of the nuclei within a molecule are fixed with respect to some co-ordinate system, referred to as the global co-ordinate system. The origin of this set of comordinates is chosen to be at some convenient point; for a homonuclear diatomic molecule the origin is at the mid-point of a line joining the nuclei. The global comordinate system will be a right-handed set of comordinates.

The atomic orbitals are defined with respect to local co-ordinate systems which have their origins are the nuclei. The local co-ordinate
systems are chosen to be parallel to the global co-ordinate system. Both systems to be used for the homonuclear diatomic molecules are shown in Fig. 15; the internuclear axis $0 Z$ passes through the two nuclei A and B whose co-ordinates with respect to the global co-ordinate system are $(0,0,-R / 2)$ and ($0,0, R / 2$) respectively.

FIG. 15. The co-ordinate systems for a homonuclear diatomic molecule, $O X, O Y$ and $O Z$ define the global co-ordinate system.

The general form of the atomic orbitals will be a product of a radial factor $R(r)$ and an angular factor $\Theta(\theta, \phi)$, where the co-ordinates (r, θ, ϕ) refer to a local co-ordinate system:

$$
\omega_{i}(r, \theta, \phi)=R_{i}(r) \Theta_{i}(\theta, \phi)
$$

It is usual to construct the molecular orbitals as linear combinations of atomic orbitals which transform according to an irreducible representation of the molecular symmetry group. This is achieved by use of the projection operator (see, for example Hammersmesh ${ }^{(39)}$). In general, the projection operator may be written as,

$$
\begin{equation*}
P^{(\mu)}=\frac{n_{\mu}}{g} \sum_{R} \chi^{(\mu) *}(R) 0_{R} \tag{7.2}
\end{equation*}
$$

In (7.2) the superscript μ refers to a particular irreducible representation. $\quad \chi^{(\mu)^{*}}(R)$ is the character of the element R in the
μ irreducible representation, and $\mathfrak{0}_{R}$ is the operator corresponding to the element $R . \quad n_{\mu}$ is the degree of the irreducible representation and g the order of the group. The usual technique for obtaining the 'symmetry adapted' molecular orbitals (SAMOs) is to apply the projection operator for each irreducible representation to each of the members of the chosen set of atomic orbitals. The result is a number of linear combinations of atomic orbitals each of which transforms according to one of the irreducible representations of the molecular symmetry group, these combinations are the SAMOs.

Homonuclear diatomic molecüres have an axis of symmetry of infinite order (the axis of the molecule, $O Z$ in Fig. 15) and a centre of symmetry. Their symmetry group is $D_{\infty h}$, generated by the operations:
(i) the rotations C_{η} about the axis of symmetry by an angle η,
(ii) the inversion i in the centre of symmetry,
(iii) a reflection σ in the plane of symmetry containing the internuclear axis.

Because the axis of symmetry is of infinite order it is necessary to replace the summation in (7.2) by an integration with limits 0 and 2π, the integrand being η. The projection operator for the group $D_{\infty h}$ has the form

$$
{ }_{P}(\mu)=\frac{r}{8 \pi}\left[\int_{0}^{2 \pi} x^{(\mu) *}\left(C_{\eta}\right) \mathfrak{D}_{C_{\eta}} d \eta+\int_{0}^{2 \pi} x^{(\mu) *}\left(i C_{\eta}\right) \mathfrak{o}_{i C_{\eta}} d \eta\right.
$$

$$
\left.+\int_{0}^{2 \pi} \chi^{(\mu) *}\left(\sigma c_{\eta}\right) 0_{\sigma C_{\eta}} d \eta+\int_{0}^{2 \pi} \chi^{(\mu) *}\left(1 \sigma c_{\eta}\right) 0_{i \sigma C_{\eta}} d \eta\right]
$$

TABLE 5. THE CHARACTER TABLE OF $\mathrm{D}_{\infty} h^{\circ}$

μ	E	C^{\prime}	$i C_{\eta}$	σC_{η}	$i \sigma C_{\eta}$
Σ_{g}^{+}	1	1	1	1	1
Σ_{u}^{+}	1	1	-1	1	-1
Σ_{g}^{-}	1	1	1	-1	-1
Σ^{-}	1	1	-1	-1	1
Π_{g}	2	$2 \cos \eta$	$2 \cos \eta$	0	0
Π_{u}	2	$2 \cos \eta$	$-2 \cos \eta$	0	0
Δ_{g}	2	$2 \cos 2 \eta$	$2 \cos 2 \eta$	0	0
Δ_{u}	2	$2 \cos 2$	$-2 \cos 2$	0	0
Γ_{g}	2	$2 \cos 4 \eta$	$2 \cos 4 \eta$	0	0

The character table for $D_{\infty} h$ is given in Table 5. and the specific application of the operator to complex Slater-type orbitals is given in Appendix II.

The construction of the secular equation is greatly simplified if the basis set of molecular orbitals is orthonormal. This may be achieved in two basic ways. The first method is to compute the overlap matrix for the non-orthogonormal SAMOs. Let this matrix be S . The elements of \underline{S} are

$$
\begin{equation*}
s_{i j}=\int \varphi_{i}^{*} \varphi_{j}^{i} d r \tag{7.4}
\end{equation*}
$$

φ_{i}^{i} and φ_{j}^{i} are members of the set of non-orthogonormal SAMOs. S has the property of being real symmetric positive definite matrix so that it is possible to Choleski decompose it into the product of a lower triangular matrix \underline{L} and its transpose \underline{L}^{T} :

$$
\underline{S}=\underline{L} \underline{L}^{T},
$$

and.

$$
I^{-1} \underline{S}\left(\underline{I}^{T}\right)^{-1}=I
$$

where I is the identity matrix. The inverse of a lower triangular matrix is also lower triangular and $\left(\underline{L}^{T}\right)^{-1}$ will be upper triangular. Let

$$
\begin{aligned}
& \underline{U}=\left(\underline{L}^{T}\right)^{-1} \\
& \therefore \underline{U}^{T}=\underline{L}^{-1}
\end{aligned}
$$

(7.6a) may be written

$$
\begin{equation*}
\underline{\mathrm{U}}^{\mathrm{T}} \underline{S U}=\underline{I} \tag{7.6b}
\end{equation*}
$$

The set $\left\{\varphi_{i}\right\}$ of orthonormal SAMOs is now defined by

$$
\begin{equation*}
\varphi_{i}=\sum_{j=1}^{i} \varphi_{j}^{\prime} u_{j i} \tag{7.7}
\end{equation*}
$$

where $u_{j i} \quad$ is an element of \underline{U}. It is immediately obvious from (7.7) that the orbital φ_{i} has the form produced by the technique known as the schmidt orthogonalization process ${ }^{(40)}$. It has been found that the approach described leads to more stable numerical results than the straightforward application of the Schmidt procedure $(40,41)$. The second method is that of simultaneous orthonormalization in which the eigenvectors of \underline{S} are divided by the square root of the corresponding eigenvalue; the resulting matrix may then be used as in (7.7), but the summation runs over all possible values of j. A set of orthonormal symmetry adapted molecular spin orbitals may then be constructed according to (1.5).

A detor is defined as an antisymmetrized product of occupied spinorbitals. The antisymmetrizer $\mathfrak{a}(12)$ is a permutation operator which commutes with the Hamiltonian $\mathfrak{b}, \mathfrak{S}, \mathfrak{S}_{\mathrm{z}}$, and the group theoretical operators. Consequently a detor may be specified by defining the appropriate product of occupied spin-orbitals. For this purpose an 'ordered product' P_{K} of occupied spin orbitals is employed. If
$\psi_{k 1}, \quad \psi_{k 2}, \ldots \ldots, \psi_{k n} \quad$ are members of the chosen set of molecular spin-orbitals, then

$$
P_{K}=\psi_{k 1}(1) \psi_{k 2}(2) \ldots \psi_{k n}(n)
$$

where the spinmorbital identifiers $k 1, k 2, \ldots . \mathrm{k}^{2}$ n satisfy the condition

$$
\mathrm{k} 1<\mathrm{k} 2<\mathrm{k} 3<\ldots<\mathrm{kn}
$$

The corresponding detor D_{K} is then given by

$$
\begin{gather*}
D_{K}=\mathfrak{A P}_{K} \\
=(n!)-1 / 2\left|\begin{array}{ccc}
\psi_{k 1}(1) \psi_{k 2}(1) & \ldots & \psi_{k n}(1) \\
\psi_{k 1}(2) \psi_{k 2}(2) & \ldots & \psi_{k n}(2) \\
\bullet & \cdots & \cdots \\
\psi_{k 1}(n) \psi_{k 2}(n) & \ldots & \psi_{k n}(n)
\end{array}\right|
\end{gather*}
$$

Obviously P_{K} represents the diagonal of D_{K}, and the detor is an 'ordered detor'. The selection of the detors is equivalent to the choice of the $P_{K} S$. A basis set of N molecular spin-orbitals gives rise to N $1 /((N-n)$ ln $\ell)$ different ordered products of molecular spin-orbitals in an n-electron problem. For a sixteen electron system a minimal basis set of twenty spin-orbitals produces 4845 ordered products of spinorbitals. This large number is drastically reduced by considerations of electron spin and molecular symmetry. A further reduction in the number of detors contributing to the wave function for a given state may be achieved by an artifact, employed Meckler ${ }^{(42)}$, Kotami and his colleagues ${ }^{(43)}$; Harris and Michels ${ }^{(44)}$ call it the 'Valence Configuration Interaction' (VCI) method. In the VCI method detors are constructed from valence shell orbitals; Meckler's CI on Oxygen uses the detors derived from the assignment of eight electrons to twelve SAMOs constructed from six p-type Gaussian-type orbitals, three on each nucleus. Kotani et alia (43) extended the approach to include the 2 s orbitals. Thus in the former
calculation each detor had a closed shell or 'frozen core' of electrons occupying the 1 s and 2 s orbitals, and in the latter only the 1 s shell was frozen. The drastic freezing of the core by Meckler reduced the total number of detors to 495, of which only 31 had the correct symmetry and electron spin properties. The results of the calculations of Kotani et alia are in good agreement with experimental results. It is concluded $(44,45)$ that to cause the orbitals, with principle quantum numbers less than that of the valence shell, to be occupied in every detor is a restriction of almost negligible effect.

The selection of the $P_{K} s$ is a simple process. The frozen core is assumed to consist of the first m orbitals in each detor, and the process begins by selecting the first $(n-1)$ spin-orbitals with the lowest identifiers and allowing the $n^{\text {th }}$ spin-orbital to take the values of the remaining ($N-n$) identifiers. The identifier of spin-orbital ($n-1$) is increased by one and the process is repeated, working along the ordered product until the m-th spin-orbital is reached. As an example consider the basis set of $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}$, and ψ_{6} for a four electron system with two frozen orbitals; six P_{K} are generated, .

$$
\begin{aligned}
& P_{1}=\psi_{1}(1) \psi_{2}(2) \psi_{3}(3) \psi_{4}(4) \\
& P_{2}=\psi_{1}(1) \psi_{2}(2) \psi_{3}(3) \psi_{5}(4) \\
& P_{3}=\psi_{1}(1) \psi_{2}(2) \psi_{3}(3) \psi_{6}(4) \\
& P_{4}=\psi_{1}(1) \psi_{2}(2) \psi_{4}(3) \psi_{5}(4) \\
& P_{5}=\psi_{1}(1) \psi_{2}(2) \psi_{4}(3) \psi_{6}(4) \\
& P_{6}=\psi_{1}(1) \psi_{2}(2) \psi_{5}(3) \psi_{6}(4)
\end{aligned}
$$

The ordered products P_{1}, P_{3}, P_{4}, and P_{6} correspond to $S_{2}=0$, while P_{2} has $S_{z}=1$ and P_{5} has $S_{z}=-1$. In the construction of codetors with a total spin eigenvalue of $0, P_{2}$ and P_{5} would be omitted because $s \nleftarrow\left|s_{z}\right|$ - The construction of the eigenfunctions of \mathscr{g}^{2} is more
difficult and several approaches are possible ${ }^{(11)}$. Because of its computational simplicity, the method selected in the present work is based on the diagonalization of the operator \mathbb{g}^{2} over the chosen set of decors. The matrix involved has $\left\langle D_{K}\right| \mathbb{G}^{2}\left|D_{L}\right\rangle$ as its elements and as the antisymmetrizer commutes with \mathfrak{G}^{2}, these elements may be calculated as $\left\langle P_{K}\right| \mathscr{G}^{2}\left|P_{L}\right\rangle$

The total spin operator may be written

$$
\begin{equation*}
\mathfrak{S}^{2}=\mathfrak{S}_{+} \mathfrak{S}_{-}+\mathfrak{S}_{z}^{2}-\mathfrak{S}_{z} \tag{7.10}
\end{equation*}
$$

where \mathfrak{S}_{+}and \mathfrak{S}_{-}are the 'step-up' and 'step-down' operators ${ }^{(11)}$. The effect of \mathfrak{S}_{z} and hence \mathfrak{S}_{z}^{2} on a product of spin-orbitals is given by (1.9). \mathfrak{S}_{+}and \boldsymbol{S}_{-}must be expanded as

$$
\begin{equation*}
\mathfrak{s}_{+}=\sum_{i=1}^{n} s_{i+} \tag{7.11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{s}_{-}=\sum_{i=1}^{n} s_{i-} \tag{7.11b}
\end{equation*}
$$

the operators S_{i+} and S_{i-} are one-electron operators which act on the spin orbitals, defined according to (1.5), as shown in (7.12)

$$
\begin{align*}
& s_{+} \psi_{2 i-1}=s_{+} \varphi_{i} \alpha=0 \\
& s_{-} \psi_{2 i-1}=s_{-} \varphi_{i} \alpha=\varphi_{i} \beta=\psi_{2 i} \\
& s_{+} \psi_{2 i}=s_{+} \varphi_{i} \beta=\varphi_{i} \alpha=\psi_{2 i-1} \\
& s_{-} \psi_{2 i}=s_{-} \varphi_{i} \beta=0 \tag{7.12}
\end{align*}
$$

Applying \mathfrak{G}^{2} to P_{3} :

$$
\begin{align*}
\mathfrak{g}^{2} \mathrm{P}_{3} & =\mathfrak{G}^{2}\left(\psi_{1} \psi_{2} \psi_{3} \psi_{6}\right) \\
& =\mathfrak{G}_{+} \mathfrak{G}_{-}\left(\psi_{1} \psi_{2} \psi_{3} \psi_{6}\right)+0 . P_{3} \\
& =\mathfrak{G}_{+}\left(\left(\psi_{2} \psi_{2} \psi_{3} \psi_{6}\right)+\left(\psi_{1} \psi_{2} \psi_{4} \psi_{6}\right)\right) \\
& =\left(\psi_{1} \psi_{2} \psi_{3} \psi_{6}\right)+\left(\psi_{2} \psi_{1} \psi_{3} \psi_{6}\right)+\left(\psi_{2} \psi_{2} \psi_{3} \psi_{5}\right) \\
& +\left(\psi_{1} \psi_{1} \psi_{4} \psi_{6}\right)+\left(\psi_{1} \psi_{2} \psi_{3} \psi_{6}\right)+\left(\psi_{1} \psi_{2} \psi_{4} \psi_{5}\right) \tag{7.13}
\end{align*}
$$

There are six terms in (7.13); the first is P_{3}, the second $-P_{3}$ since ψ_{1} and ψ_{2} have to be interchanged to produce an ordered product, the third and fourth terms are zero because of the double occupancy of a spin-orbital which causes the corresponding detor to vanish, the fifth term is P_{3} and the last P_{4}. Thus,

$$
\begin{equation*}
\mathfrak{S}^{2} P_{3}=P_{3}+P_{4} \tag{7.14}
\end{equation*}
$$

It is seen from (7.12) and (7.13) that (7.14) can be obtained simply by applying the \mathfrak{S}^{2} operator to the unfrozen orbitals ψ_{3} and ψ_{6}. This is because the frozen core is an eigenfunction of \mathcal{S}^{2} with $S=0$. The final step of evaluating $\left\langle P_{K}\right| \mathfrak{G}^{2}\left|P_{L}\right\rangle$ is achieved using the knowledge that

$$
\left\langle P_{X} \mid P_{L}\right\rangle=\delta_{K L},
$$

where the integration is performed over the spin co-ordinates. Using the approach described in the next chapter it is possible to ensure that the resulting matrix is block diagonal, and it may be diagonalized by any suitable method (13). The foregoing remarks concerning the construction
of spin eigenfunctions apply equally well to determinants.

The detors are constructed from an orthonormal set of symmetry adapted molecular spin-orbitals. The most suitable atomic orbitals for problems concerning diatomic molecules are complex Slater-type orbitals; the normalized form of these is

$$
\begin{equation*}
\omega(n, I, m)=R_{n}(r) Y_{I m}(\theta, \phi) \tag{7.15a}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}^{-}(r)=\left[\frac{(2 l)^{2 n+1}}{(2 n)!}\right]^{1 / 2} r^{n-1} \exp (-l r), \tag{7.15b}
\end{equation*}
$$

and

$$
\begin{gather*}
Y_{1 m}(\theta, \phi)=\frac{(-1)^{1+m}}{2^{1} 1!}\left[\frac{(21+1)(1-|m|)!}{4 \pi(1+|m|)!}\right]^{1 / 2} \sin { }^{|m|} \theta \\
{\left[\frac{d}{\alpha \cos \theta}\right]^{1+|m|} \sin ^{21} \theta \exp (j m \phi)} \tag{7.15c}
\end{gather*}
$$

The orbital is defined with respect to a local comordinate system, $R_{n}(r)$ is a normalized radial function, $\mathrm{Y} \operatorname{lm}(\theta, \phi)$ is a spherical harmonic (4) and $j=\sqrt{-1}$. The SAMOs for a diatomic molecule are characterized by the component of the orbital angular momentum in the z-direction (the axial angular momentum and equal to m in primary units) of their constituent orbitals (see Appendix II). The axial angular momentum Λ of an orbital product and its corresponding detor may be obtained simply by summing the values of the magnetic quantum number m (7.15) of the constituent molecular spin orbitals, i.e.

$$
\begin{equation*}
\Lambda=\sum_{i=1} m_{i} \tag{7.16}
\end{equation*}
$$

The corresponding irreducible representation is partly determined by the value of $\Lambda ; \Lambda=0,1,2, \ldots$ gives rise to the Σ, Π, ... states of diatomic molecules. Under the operation of inversion the detor either remains unchanged (gerade or g) or changes sign (ungerade or u). The orbital product is gerade if it contains an even number of gerade spin orbitals, otherwise it is ungerade. Thus a detor may be characterized by the symbol $\quad \Lambda_{i}$, where i is replaced by g for gerade detors and u for ungerade detors. The Σ detors are also characterized by their behaviour under the reflection σ in the plane containing the internuclear axis. The operation σ is most conveniently considered in one of the co-ordinate planes of the global co-ordinate system (i.e. the $x z-$ or yz- planes $(14,4 \%$. The result of such a reflection on each individual spin-orbital may be easily obtained. The reflection operator is applied simultaneously to each orbital in the ordered product; there are four possible results, summarized in (7.17).

$$
\begin{align*}
& \sigma P_{I}= \pm P_{I} \\
& \sigma P_{I}= \pm P_{K} \tag{7.17b}
\end{align*}
$$

If the wave function changes sign the superscript - is added to Σ and if the sign is unchanged the superscript + is added. Thus, (7.17a) produces either $a+$ or - state, while (7.17b) gives both.

When the total spin eigenfunetions have been obtained it is a simple matter to combine them to form codetors. In matrix notation the codetors are defined as

$$
\begin{equation*}
\underline{\Psi}_{S \sigma}=\underline{D T}_{S \sigma} \tag{7.18}
\end{equation*}
$$

$\underline{U}_{S \sigma} \quad$ is a row vector with elements that are simultaneously eigenfunctions of \mathfrak{G}^{2} and σ. \underline{D} is a row vector of detors, each corresponding to the same values of S_{z} and Λ_{i}. The matrix $\underline{T}_{S} \sigma$ can be regarded as a projection matrix which projects $\underline{U}_{S} \sigma$ from \underline{D}. The elements of $\underline{T}_{S \sigma}$ are determined by the methods previously described.

Having obtained the codetors which transform according to the molecular state being investigated, it is possible to proceed with the evaluation of the matrix elements:

$$
\begin{equation*}
H_{I J}=\left\langle\Psi_{I}\right| \mathfrak{h}\left|\Psi_{J}\right\rangle \tag{1.13a}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{I J}=\left\langle\Psi_{I} \mid \psi_{J}\right\rangle \tag{1.13b}
\end{equation*}
$$

From (7.18)

$$
\begin{equation*}
\Psi_{I}=\sum_{K} D_{K} t_{K I} \tag{7.19}
\end{equation*}
$$

Substitution of (7.19) into (1.13) gives

$$
\begin{equation*}
H_{I J}=\sum_{K} \sum_{I} t_{I K} t_{I J}\left\langle D_{K}\right| \mathfrak{G}\left|D_{I}\right\rangle \tag{7.20a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{I J}=\sum_{K} \sum_{I} t_{I K} t_{I J}\left\langle D_{K} \mid D_{I}\right\rangle \tag{7.20b}
\end{equation*}
$$

The problem reduces to the evaluation of $\left\langle D_{K}\right| \mathfrak{l}\left|D_{L}\right\rangle$ and

$$
\begin{aligned}
& \left\langle D_{K} \mid D_{U}\right\rangle \text {, the elements of two matrices } H_{D} \text { and }{\underset{-}{S}}_{D} \text {. In matrix } \\
& \text { notation (7.20) becomes }
\end{aligned}
$$

$$
\begin{equation*}
\underline{H}=\underline{\underline{T}}_{\mathrm{S}_{\sigma}}^{\mathrm{T}} \underline{H}_{D} \underline{\underline{T}}_{S \sigma} \tag{7621a}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{S}=\underline{T}_{S_{\sigma}}^{T} \underline{S}_{D} \underline{T}_{S_{\sigma}} \tag{7.21b}
\end{equation*}
$$

($\underline{T}_{S}^{T} \sigma$ is the transpose of $\underline{T}_{S \sigma}$). LHwdin (8) has given general formulae for evaluating the elements of $\underset{D}{H}$ and S_{D} in terms of integrals over basis orbitals when determinants are used. Evaluation of these formulae requires a considerable computational effort, and a simpler form produced for detors will be employed. Before evaluating the elements of ${\underset{D}{D}}$ and ${\underset{\sim}{D}}$ each pair of detors must be brought into maximum coincidence, this means that those spin-orbitals common to both detors must occupy the same columns in both. For each pair of detors

$$
\begin{equation*}
\left\langle D_{K} \mid D_{I}\right\rangle=\delta_{K I} \tag{7.22}
\end{equation*}
$$

The evaluation of $\quad\left\langle D_{K}\right| \mathfrak{l}\left|D_{L}\right\rangle \quad$ is split into two parts as shown in (7.23)

$$
\begin{align*}
\left\langle D_{K}\right| \mathfrak{h}\left|D_{L}\right\rangle & =\left\langle D_{K}\right| \sum_{\mu=1}^{n} h_{\mu}\left|D_{L}\right\rangle \\
& +\left\langle D_{K}\right| \sum_{\mu<\nu} g_{\mu \nu}\left|D_{L}\right\rangle \tag{7.23}
\end{align*}
$$

There are four cases to be considered in the evaluation of the two terms in (7.23):
(i) D_{K} and D_{L} are identical,
(ii) D_{K} and D_{L} differ by one spin-orbital, ψ_{m} entering D_{K} where ψ_{p} enters D_{L};
(iii) D_{K} and D_{L} differ by two spin-orbitals, ψ_{m} and ψ_{n} entering D_{X} where ψ_{p} and ψ_{q} enter D_{L}, and
(iv) D_{K} and D_{L} differ by more than two spin-orbitals

The following notation will be used:

$$
\begin{array}{cc}
h_{i j}=\int \psi_{i}^{*}(1) h_{1} \psi_{j}(1) d x_{1} \\
{[i j \mid k l]=\iint \psi_{i}^{*}(1) \psi_{k}^{*}(2)\left(1 / r_{12}\right) \psi_{j}(1) \psi_{1}(2) d x_{1} d x_{2},} & (7.25) \\
J_{i j}=[i i \mid j j] \\
K_{i j}=[i j \mid j i]
\end{array}
$$

Thus,

$$
\left\langle D_{K}\right| \sum_{\mu=1}^{n} h_{\mu}\left|D_{\mathrm{I}}\right\rangle\left\{\begin{array}{l}
=\sum_{i} h_{i i} \text { for case (i) } \\
=h_{m p} \text { for case (ii) } \\
=0 \text { for cases (iii) and (iv), (7.28) }
\end{array}\right.
$$

and

$$
\left\langle D_{K}\right| \sum_{\mu<\nu} g_{\mu \nu}\left|D_{L}\right\rangle\left\{\begin{aligned}
= & \sum_{i} \sum_{j}\left(J_{i j}-K_{i j}\right) \text { for case (i) } \\
= & \sum_{i \neq m}([i i \mid m p]-[i p \mid m i]) \text { for case (ii) } \\
= & {[m p \mid n q]-[m q \mid n p] \text { for case (iii) } } \\
= & 0 \text { for case (iv) }
\end{aligned}\right.
$$

In (7.28) the summation is over all the occupied orbitals in D_{K} for case (i) and in (7.29) the double summation for case (i) is over all the occupied orbitals in D_{K}; the single summation of case (ii) excludes the orbital ψ_{m} in D_{K} and ψ_{p} in D_{L}. The integrals of (7.24) to (7.27) can be reduced to integrals over spatial orbitals using the relation of (1.5) and the knowledge that the spin functions may be factored off and integrated separately. The integrals are normally computed over the basis atomic orbitals, and are then transformed directly into integrals over the orthonormal SAMOS. For the diatomic molecules this procedure is as follows:

$$
\begin{equation*}
\varphi_{i}=\sum_{j} \omega_{j} c_{j i}^{\prime}, \tag{7.30a}
\end{equation*}
$$

or in matrix form

$$
\begin{equation*}
\varphi^{\prime}=\underline{\omega}^{\prime} \tag{7.30b}
\end{equation*}
$$

The φ_{i} are non-orthonormal SAMOs, which are then orthonormalized by one of the methods described, so that

$$
\begin{equation*}
\varphi_{k}=\sum_{i} \varphi_{i} u_{i k} \tag{7.31a}
\end{equation*}
$$

or in matrix form

$$
\begin{equation*}
\varphi=\varphi^{\prime} \underline{U} \tag{7.31b}
\end{equation*}
$$

Combining (7.30) with (7.31) gives

$$
\begin{equation*}
\varphi=\underline{\omega} \underline{C}^{\prime} \underline{U}=\underline{\omega} \underline{C} \tag{7.32}
\end{equation*}
$$

The integrals $h_{i j}$ are the elements of the one-electron Hamiltonian matrix \underline{h}, hence the transformation to integrals over the set $\left\{\varphi_{i}\right\}$ takes the form of a matrix product

$$
\begin{equation*}
\underline{h}=\underline{c}^{T_{n}} \underline{c} \tag{7.33}
\end{equation*}
$$

where the elements of \underline{h}_{ω} are the integrals $\int \omega_{i}^{*}(1) h_{1} \omega_{j}(1) d r_{1}$ Because of the large number of two-electron integrals the transformation of these integrals requires special consideration. The total number of two-electron integrals is equal to the fourth power of the number of basis atomic orbitals. For integrals yielding real results the following relations hold

$$
[i j \mid k l]=[k l \mid i j]=[j i \mid I k]=[1 k \mid j i](7.34 a)
$$

and

$$
[j i \mid k l]=[k l \mid j i]=\left[i j \mid I^{\prime} k\right]=[I k \mid i j], \quad \text { (7.34b) }
$$

In (7.34) the integrals are over spatial orbitals, but the electron ordering is as in (7.25);

For diatomic molecules integration over the azimuthal angle gives a non-zero result only if the magnetic quantum numbers of the orbitals involved satisfy the condition

$$
m_{j}-m_{i}=m_{k}-m_{1}
$$

The transformation of the two-electron integrals for a diatomic molecule can be speeded up if the transformed orbitals have values of m in the same order as the original atomic basis set, because (7.35) can be applied at each stage of the transformation. The inference of (7.35) is that in general either (7.34a) or (7.34b) is zero, or both are zero for one- and
two-centre two-electron integrals.
It is possible to index the integrals according to the scheme

$$
\begin{align*}
& n_{r}=1 / 2(\max (i, j)(\max (i, j)-1))+\min (i, j), \\
& n_{e}=1 / 2(\max (k, 1)(\max (k, 1)-1))+\min (k, 1) \tag{7.36}
\end{align*}
$$

The two electron integrals are generated (see Chapter 8) according to the rules that $i \geqslant j, k \geqslant 1$, and $n_{r} \geqslant n_{e}$. The actual transformation proceeds in two stages. The first stage is

$$
\begin{equation*}
\left[\omega_{\mu} \omega_{\nu} \mid \varphi_{k} \varphi_{1}\right]=\sum_{\lambda} \sum_{\sigma} c_{\lambda k} c_{\sigma}\left[\omega_{\mu} \omega_{\nu} \mid \omega_{\lambda} \omega_{\sigma}\right] \tag{7.37a}
\end{equation*}
$$

where μ, ν, k, and l take all possible values, whilst λ and σ are subject to the condition $\lambda \geqslant \sigma$. The second stage is

$$
\begin{equation*}
\left[\varphi_{i} \varphi_{j} \mid \varphi_{k} \varphi_{l}\right]=\sum_{\mu} \sum_{\nu} c_{\mu i} c_{\nu j}\left[\omega_{\mu} \omega_{\nu} \mid \varphi_{k} \varphi_{I}\right] ; \tag{7.37b}
\end{equation*}
$$

Once the matrix elements between the detors have been computed, the transformation of (7.21a) is performed to obtain the matrix elements $H_{i j}$, (1.13a). As a consequence of (7.22), the matrix S of (7.21b) is the identity matrix, since the columns of $\mathbb{T}_{S \sigma}$ are of necessity orthonormal.

Kotani et alia (12) have proposed an alternative method for computing the matrix elements $H_{i j}$. Their method, based on the idea of representation matrices, appears to suffer from two disadvantages. Firstly it is desirable to know the wave function $\psi(1.1)$ as a linear combination of detors since the first order density matrix, used to compute molecular properties, can most easily be computed from a wave function in the form of (1.7). Extracting this form from the method described is almost a trival
exercise; to obtain it from the method of Kotani, although feasible, is far from easy, as the actual detors are never defined. Secondly, once the matrix elements between detors for a given Λ_{i} and S_{z} have been evaluated, it is possible to set up matrix elements between codetors belonging to several 'reflection' and total spin states merely by changing the projection matrix ${ }^{T} S \sigma$. This in itself represents a considerable saving in computer time as Kotani's method demands searches of the integral files (see Chapter 8) for each molecular state.

The final step in the method of Configuration Interaction is the solution of the secular equation which may be written as

$$
(\underline{H}-E I) \underline{A}=0
$$

The energies E_{I} are the eigenvalues of \underline{H}, A is a column vector, an eigenvector of \underline{H} corresponding to a particular E_{I}. Two possible methods of solving (7.38) are the method of Jacobi and the QR-Algorithm, both described by Wilkinson $(13,47,48)$. The latter method is preferred, since it is currently the fastest method available for finding the eigenvalues and eigenvectors of a real symmetric matrix.

At this point it is convenient to discuss the construction of the first order density matrix, as all of the information required is available. For the I-th energy of a given molecular state the wave function Ψ is

$$
\begin{equation*}
\psi=\sum_{I_{I}} \Psi_{I^{\prime}} a_{I I} \tag{1.11}
\end{equation*}
$$

where the $a^{a} I$ are the elements of the eigenvector corresponding to the energy E_{I} of this level. The codetors Ψ_{I} may be replaced by a sum of detors according to (1.10), so

$$
\psi=\sum_{K} D_{K} \sum_{I} t_{K I} a_{I I}
$$

The coefficient of D_{K} may be simply written as $b_{K I}$,

$$
\begin{equation*}
b_{K I}=\sum_{I} t_{K I}{ }^{a} I I \tag{7.40}
\end{equation*}
$$

'According to Lowdin (8) the elements $\gamma(I \mid K)$ of the first order density for the I-th energy level are given by

$$
\begin{equation*}
\gamma(I \mid k)=\sum_{K} \sum_{L} b_{K I} b_{I I} D_{K I}(k \mid I) \tag{7.41}
\end{equation*}
$$

where $D_{K L}(k \mid 1)$ is the cofactor of the term due to $\int \psi_{k}^{*}(1) \psi_{I}(1) d x_{1}$ in the integral $\left\langle D_{K} \mid D_{I}\right\rangle$. The summation over K is over those determinants D_{K}. which contain spin-orbital $\psi_{\mathbf{K}}$ and that over L is over those determinants D_{L} which contain ψ_{I}. If the determinants are in fact detors (7.41) is easily evaluated, because there are only two conditions under which $D_{K L}(k \mid I)$ is non-zero. The first is when $K=L$ in which case $D_{K K}(k \mid 1)=\delta_{k I}$. The second is when D_{K} and D_{L} differ by one spin-orbital, ψ_{k} appears in the i-th column of D_{K} and ψ_{I} appears in the j-th column of D_{L}, in this case

$$
\mathrm{D}_{\mathrm{KI}}(k \mid 1)=(-1)^{i+j}
$$

and all other cofactors are zero. The first order density matrix so obtained is in terms of the orthonormal molecular spin-orbitals and may be used in the calculation of molecular properties (see Chapter 11). The first order density matrix may also be diagonalized to provide occupation numbers and the transformation matrix which carries the set $\left\{\psi_{i}\right\}$ into the natural spin-orbitals $\left\{x_{k}\right\}(8)$.

CHAPTER 8

COMPUTATIONAL METHODS

The philosophy behind the programming of the methods described in the previous chapter has been to generalize wherever possible: a program capable of computing one- and two-centre integrals is not used if only one-centre integrals are required because the more general program is extremely inefficient if used in this way. Only one integral transformation program is used because the process is the same for both types of integrals. With one exception all subprograms are written in the FORTRAN V language ${ }^{(49)}$ for the ICL Atlas Computer. The one exception is a function subprogram, the body of which is written in Atlas Basic Language $(A B L)(50)$. Several distinct programs were written because some of the results produced at each stage may be used for other purposes; the integrals may be used in both CI and SCF programs. A set of subprograms used by more than one of the programs is listed in Appendix III under the heading of 'Utility Routines'. Considerable use of facilities not provided in other implementations of FORTRAN is made and, as a result, easier checking and correction of programs and greater efficiency has been achieved. The Atlas AMPEX one inch tape system uses pre-addressed tapes with numbered blocks, each of which store 512 words of Atlas information (51). The Atlas disc store is used in exactly the same way. The programs to be described use these tapes and disc areas in the variable length mode and information from a particular run of a program constitutes a 'file' which may be placed anywhere on the tape or disc area merely by positioning the appropriate device at the block and word at which the file is to begin. As a safeguard no two programs may write on the same tape or disc area. The programming problem breaks down into four distinct parts:
(a) Generation of the codetors,
(b) Evaluation of the integrals over the atomic orbital basis set,
(c) Transformation of the integrals to an orthonormal basis set, and
(d) Construction and solution of the secular equation.

A. Generation Codetors

The program which generates the detors is called GENDET and is listed in Appendix IV. This program generates the ordered spin orbital products P_{K} of (7.9). These products are eigenfunctions of the operator \tilde{E}_{Z} corresponding to an eigenvalue S_{z}, they possess a given axial angular momentum Λ, and are of either gerade or ungerade symmetry. The required values of S_{z} and Λ together with the inversion symmetry are specified in the data. Facilities are provided for freezing the inner-shell electrons. The data also contains the total number of electrons, the number in the frozen shell, and the number of spin-orbitals. The magnetic quantum number, inversion symmetry and the identifier of the orbital resulting from a reflection in the $X Z \sim$ plane must be provided for each spin-orbital. The spatial parts of the orbitals are identified by use of (1.5). The calculation begins with the generation of all possible ordered spin orbital products. This is essentially the selection of n spin-orbitals from a total of N spin-orbitals where n is the number of electrons outside the frozen shell, and N the number of unfrozen spinorbitals. This is accomplished by the subroutine C \varnothing MBIN. The parameter list of this subroutine contains a logical variable which causes the first spin-orbital product P_{f} to be generated when set equal to TRUE,

$$
\begin{aligned}
P_{1} & =1,2,3, \ldots, n-1, n \\
& \equiv \psi_{1} \psi_{2} \psi_{3} \ldots \psi_{n-1} \psi_{n}
\end{aligned}
$$

and the logical variable is set equal to FALSE. The subprogram then uses P_{1} to generate P_{2}, P_{2} to generate P_{3}, and the process continues until the last one is reached, this has the form

$$
\begin{aligned}
P_{\text {LAST }} & =N-n, N-n+1, \cdots \cdots, N-1, N \\
& \equiv \psi_{N-n} \psi_{N-n+1} \cdots \cdots \cdots \psi_{N-1} \psi_{N}
\end{aligned}
$$

On encountering the final ordered product $C \varnothing$ MBIN will regenerate P_{1}, but the logical variable is reset to TRUE, and if this value is returned from the subprogram control passes to the next stage. As each P_{K} is generated it is tested in the subroutine SETUP to see if it has the correct values of S_{z}, Λ, and the required inversion symmetry. If it satisfies these requirements it is stored as a row of the two-dimensional array IS \varnothing. The number of entries is IS \varnothing and the total number of P_{X} generated is counted.

The next step in the program is a call of the subroutine SPINIR which checks the inversion symmetry of each P_{X} and evaluates the matrix elements $\left\langle P_{I}\right| \mathfrak{G}^{2}\left|P_{K}\right\rangle \quad$ For $\Lambda=0$, i.e. $\Sigma \quad$ products, SPINIR computes the effect on P_{K} of a reflection in the $X Z-p l a n e . ~ A n y ~ o n e ~ o f ~ t h e s e ~$ operations must produce a linear combination of the entries in IS \varnothing. In general the process proceeds as follows: consider an operator $\mathfrak{0}$ which may be either σ, \mathfrak{j}^{2}, or i, then

$$
\begin{equation*}
0 P_{K}=\sum_{I} P_{I} C_{I K} \tag{8.1}
\end{equation*}
$$

In (8.1) P_{L}^{\prime} is a spin-orbital product which may not be ordered; therefore the elements of P_{L}^{\prime} are permuted by the subroutine PERMUT to produce an ordered spin-orbital product P_{L}, and the parity of the permutation is also obtained. P_{L} is then identified with an entry in IS \varnothing by the subroutine C \varnothing LATE. If P_{L} cannot be found in IS \varnothing an error message is printed and
execution ceases. The evaluation of $\left\langle P_{I}\right| G^{2}\left|P_{K}\right\rangle$ begins with the application of the $\mathscr{S}_{\text {_ }}$ operator to the singly occupied orbitals of P_{K}. For the purpose of this operation the spins of the spin-orbitals in P_{K} are identified as α, if the entry in the row of IS \varnothing corresponding to P_{K} is odd, and β if the entry is even (this is in accordance with (1.5)). The result of this operation is similar to (8.1), and the products P_{L}^{\prime} are entered in a two-dimensional array ISM ϕ. The \mathbb{S}_{+}operator is then applied to the entries in ISM $\varnothing \mathrm{P}$ and the resulting spin-orbital products are held as rows in the array ISPDP. By use of the subroutines PERMOT and CØLATE the values of $C_{L K}$ in (8.1) are determined. For each P_{X} the values of L for which $C_{L X}$ is non-zero after the operation $\left(\mathfrak{S}_{z}^{2}-\mathfrak{S}_{z}\right)$ are stored in the array IC $\varnothing \mathrm{L}$, and the non-zero value of $C_{L K}$ is stored in the array $\subset \varnothing E$, since $\left\langle P_{L}\right| S^{2}\left|P_{K}\right\rangle=\left\langle D_{I}\right| S^{2}\left|D_{K}\right\rangle \quad=C_{L K}$. As each P_{K} is processed the results are written onto a disc or tape file. The rows of IS \varnothing are not processed sequentially. At the start of the process the elements in a one-dimensional array INDEX are all zero, each element corresponding to a row of IS \varnothing. \mathfrak{S}^{2} is applied to P_{1} first, and the next product examined is the first one in (8.1), for which C_{L}^{\top}, is non-zero and has a non-zero entry in INDEX. If there are no zero entries in INDEX and
$\Lambda=0$, the next product processed is the one resulting from the application of the reflection operator to the P_{X} to which \mathfrak{G}^{2} was applied, provided that the entry in INDEX is zero. However if a non-zero entry is encountered or $\quad \wedge \neq 0$ the array INDEX is searched from the beginning for the next zero element, and the process is operated until all the P_{K} have been examined. This approach ensures that the matrix of the \mathfrak{G}^{2} operator is block diagonal, and makes interpretation of the results easier. The P_{X} are numbered according to the order in which \mathfrak{S}^{2} is applied. The output from GENDET comprises:
(i) P_{X} on cards,
(ii) K, i $P_{X}, \quad \sigma P_{K}$ (zero if $\quad \Lambda=0$), L and $C_{L K}$ if non-zero.
(iii) Eigenvalues and eigenvectors of the blocks on the diagonal of the matrix. The card output is used as data for the program SECS \varnothing L (Appendix VII), which constructs and solves the secular equation.

B. Evaluation of Integrals over the atomic orbital basis set

This is one of the more difficult aspects of quantum molecular calculations. If the atomic orbitals are of the slater-type, then the two-electron integrals may only be evaluated in 'closed form' when the constituent orbitals are on the same centre. These are the one-centre two-electron integrals. Although closed form expressions exist for two centre two-electron integrals they are notoriously unstable and the integrals are usually evaluated by numerical integration. For integrals involving more than two centre various techniques are employed; the most favoured being some form of expansion in terms of Gaussian-type orbitals (52). An alternative is to use the Gaussian orbitals by themselves (see for example Clementi and Davis ${ }^{(53)}$), the disadvantage being the vast number of integrals involved and the length of time required to transform to an orthonormal SAMO basis.

The choice of complex Slater-type orbitalswas made early in the project because of the availability of several diatomic integral programs based on these orbitals. As it is inefficient to use such programs for atomic calculations, a short program for evaluating all one-centre one- and twoelectron integrals over complex Slater-type orbitals was written. This has been used both to check the transformation program and sEcsøL. This program called $\not \subset$ NECEN is listed in Appendix V, and the non-zero ClebschGordon coefficients $(41) \quad C_{L_{1} I_{1} I_{2}}^{\mathrm{Mm}_{2}} \quad$ used in the expansion of a product of spherical harmonics are also given. The method of indexing $\mathrm{CMm}_{\mathrm{MI}_{1} \mathrm{I}_{2}}$ is easily determined by examination of the subprogram INDEX 1 and the coefficients are limited to the range $0 \leqslant I_{i} \leqslant$
with $i=1$ or 2 .
ØNECEN uses the function subprogram IPAR listed in Appendix III. The parameter list of IPAR consists of a single integer variable name. On being called IPAR is set equal to zero if this integer is even, and equal to unity if it is odd. The current method of representing decimal integers as binary integers is such that, if the decimal integer is even, the contents of the least significant bit of the word containing its binary equivalent is zero, whereas if the decimal integer is odd this bit contains a one. IPAR is set equal to the contents of the least significant bit of the word containing the variable in the parameter list. The subprogram is of necessity written in ABL. An alternative to IPAR is the use of the intrinsic function $M \phi D(49)$. A call of $M \phi D(N, 2)$ has the same effect as $\operatorname{IPAR}(N)$, but has been shown to take 50% longer, even when used as a statement function.

The overlap and one-electron Hamiltonian integrals are stored in the two-dimensional arrays S and H in \varnothing NECEN. These arrays are written onto a magnetic tape (or disc area) referred to as the Master Integral Tape. The file begins at word zero of a block specified in the data. The twomelectron integrals are generated in accordance with the rules given in Chapter 7. The storage of these integrals is such that the integral $\left[\omega_{\mu} \omega_{\nu} \mid \omega_{\lambda} \omega_{\sigma}\right]$ $(\mu \geqslant \nu$ and $\lambda \geqslant \sigma, \mu \geqslant \lambda$ and if $\mu=\lambda, \nu \geqslant \sigma$) will be word number n_{e} of record number n_{r} where n_{r} and $n_{e}\left(\leqslant n_{r}\right)$ are given by (7.36). The first record containing two-electron integrals follow immediately after S and H. \varnothing NECEN computes all the integrals arising from a basis set of 1 s , $2 s, 2 p_{0}, 2 p_{\ldots}$, and $2 p_{+}$complex slater-type orbitals in less than two seconds. The integrals required for the calculation of wave functions for diatomic molecules are computed using a modified version of a program written by Miller and Browne (54). The modifications consist of the removal of the facility by which the integrals over the complex Slater-type orbitals are transformed to integrals over real Slater-type orbitals. As this program
generates the integrals in a form incompatible with the input requirements of the transformation program, an interface between the two programs was written which produces a master integral tape of the same form as is produced by ØNECEN. The modifications to the Miller-Browne program and the interface were implemented by Dr M. Dixon and the author gratefully acknowledges his assistance in this respect.
C. Transformation of the integrals to an orthonormal basis set.

The transformation of the integrals over the atomic orbital basis into integrals over an orthonormal basis is a relatively simple process. The integral transformation program is called INTRA and is listed in Appendix VI. There are three essential parts to INTRA:
(i) the extension of the twomelectron integral records to cover all values of $n_{e}(7.36)$,
(ii) the computation of the Schmidt orthonormalization coefficients (the elements of \underline{U} in (7.7)) and transform the one-electron Hamiltonian integrals,
(iii) the transformation of the two-electron integrals. As a preliminary to the transformation the integrals generated by either ØNECEN (for atomic systems) or by the Miller-Browne program (for diatomic systems) are copied from the Master Integral Tape onto a common disc area. This ensures that the Master Integral Tape cannot be corrupted by the transformation, as INTRA may only read this tape.

The two-electron integrals can be regarded as the elements of a real symmetric matrix I with elements $I_{n_{r}} n_{e}$, where n_{r} and n_{e} are defined by (7.36). Only the lower triangle of I is computed by the integral generation programs and it is necessary to complete the upper triangle. This operation is the first stage of INTRA. It is complicated by the fact that I is generally too large for more than a few rows to be in the core store at any one time.

This stage is contained within the subprogram called SETERI. The algorithm begins by reading each row of I from the appropriate device (the number of elements in each row beginning equal to the number of the record). As each row is read it is packed out with zeros and the whole row written onto another device. The resulting matrix I has a lower triangle equal to that of I and an upper triangle of zeros. The matrix I is then transposed by the subroutine BIGTRA. The lower triangle of I is then merged with the transpose of I to give the complete matrix I. The subprogram BIGTRA transposes a large matrix which is written on a disc or tape, in this case, by rows. It makes optimal use of the available core store by reading as many complete records (rows) as possible into the available space. Let this number by NRøW. The process in the Nth pass over the matrix to be transposed consists of the following sequence of operations: read first NROW records into a two-dimensional array A, transpose the $N R \not \subset W$ * $N R \not \subset W$ square matrix beginning at column (NRøW* $(N-1)+1)$ of A, and enter this into the first $N R \not \subset W * N R \varnothing W$ block of the two-dimensional array B. The next NRøW records are read into A, transposed as before and entered into the second $N R \not \subset W * N R \not \subset W$ block of B. This procedure is repeated until B is full and it is then written onto a tape or disc by rows representing columns ($N R \varnothing W *(N-1)+1$) to $N R \phi W * N$ of the original matrix. The sequence is repeated until the whole of the original matrix has been transposed, taking into account the fact that the number of rows of the original matrix may not be an integral multiple of NRøW. At the end of each pass over the original matrix, the appropriate device is rewound and at the end of the routine the original matrix is overwritten by its transpose.

For small basis sets the whole of this part of INTRA is performed in core.

The transformation of the one-electron integrals is performed by the subroutines \varnothing RTH \varnothing N and TRANSH. Firstly the matrix \underline{C}^{\prime} of (7.30) is used to
transform the overlap matrix of the atomic orbitals into integrals over a SAMO basis. If the calculation is on an atomic system \underline{C}^{\prime} is the identity matrix. The resulting overlap matrix \underline{S} overwrites the original one. The subroutine \varnothing RTH $\varnothing \mathrm{N}$ obtains the matrix \mathbb{U} of (7.7) by Choleski decomposition of \underline{S}. The matrix \underline{E}^{T} of (7.5) is held in the array $Q U$, which is then inverted to give the matrix U which is stored in the array $Q C$. The oneelectron Hamiltonian matrix \underline{h}_{ω} is transformed by the matrix product

$$
\begin{equation*}
\underline{h}=\underline{C}^{T_{n}} \underline{C} \tag{8.2}
\end{equation*}
$$

where $\underline{C}=\underline{C} \underline{U}$. The transformed overlap matrix (i.e. $\underline{U}^{T} \underline{S} \underline{U}$) is printed as a check on the orthogonality of the final set of orbitals.

The approach just described for obtaining the Schmidt orthonormalization coefficients was shown to produce better results in single precision arithmetic than the recursive approach suggested by Todd (40) and Harris (41) does in double precision arithmetic. It is also a much faster method.

The transformation of the two-electron integrals is carried out by the subprogram TWめTRA and its control routine CøNTRA. If the i-th transformed orbital has the same axial angular momentum as the i-th atomic orbital, then the transformation of integrals not satisfying (7.35) is suppressed. Use of this feature is optional (see Appendix VI), and it can reduce the transformation time for the twomelectron integrals by almost 50%. This option will enable the program to be used for the transformation of multi-centre integrals. The transformation proceeds in two stages. The first stage sets up the partially transformed integrals $\left[\omega_{\mu} \omega_{\nu} \varphi_{k} \varphi_{1}\right]$ according to (7.37a) and it is seen from (7.36) that for a given set of μ and v all the integrals over the atomic orbitals appear in the same record. The partially transformed integrals are obtained for all possible values of μ, v, \bar{k}, and 1 . Partially transformed integrals for which

$$
\begin{equation*}
m_{\mu} \quad-m_{\nu}=m_{k}-m_{1} * \tag{8.3}
\end{equation*}
$$

are actually computed, the remainder one set equal to zero and the transformation process suppressed. The partially transformed integrals form the elements of a two dimensional array, which is written onto a disc area, with each row corresponding to a record, the number of the row being given by

$$
\begin{equation*}
p_{r}=\mu_{\max }(\nu-1)+\mu \tag{8.4a}
\end{equation*}
$$

and the position of the element in the record by

$$
\begin{equation*}
p_{e}=k_{\max }(1-1)+k \tag{8.4b}
\end{equation*}
$$

(Obviously $\mu_{\max }=k_{\max }=$ number of basis orbitals). Inspection of (7.37b) shows that the $\left[\omega_{\mu} \omega_{\nu} \mid \varphi_{k} \varphi_{I}\right] \quad$ appear as columns of this matrix, which is not symmetric. To avoid unnecessary searching of the disc file this matrix is transposed either in core or if it is too large by the subprogram BIGTRA.

The second stage of the two-electron transformation proceeds with the evaluation of (7.37b) using the condition of (7.35) wherever possible to speed the process. The complete file of transformed integrals consists of $\left[\varphi_{i} \varphi_{j} \mid \varphi_{k} \varphi_{1}\right] \quad$ written in records with

$$
\begin{equation*}
p_{c}=i_{\max }(j-1)+i \tag{8.4c}
\end{equation*}
$$

identifying the record, and p_{e} of (8.4b) identifying the element in the record. The transformed two-electron integrals are followed by a single record containing the transformedone-electron Hamiltonian integrals. The

[^2]complete file begins at word zero of a block on the Master Transformed Integral Tape as specified in the data. Thus for a basis set of n orbitals the output to this tape will consist of $\left(n^{2}+1\right)$ records, each containing n^{2} elements.
D. Construction and Solution of the Secular Equation

This is the final part of the CI method. The program SECSøL listed in Appendix VII constructs and solves the secular equation for a CI calculation on molecules of general geometry, the limit being twenty nuclei. An option is provided to enable the user to compute the first order density matrix, which is then diagonalized to give occupation numbers and natural spin-orbitals. It is convenient to discuss SECSøL in terms of the functions of the following three groups of subprograms,
(i) computation of the matrix elements $\left\langle D_{I}\right| f\left|D_{K}\right\rangle$ between detors,
(ii) construction and solution of (H $-E I$) $A=0$, and (iii) the optional natural spin-orbital analysis in which the first order density matrix over the orthonormal SAMO is computed.

Computation of the $\left\langle D_{I}\right| \mathfrak{l}\left|D_{K}\right\rangle \quad$ requires the specification of the ordered spin-orbital products, and for homonuclear diatomic molecules the cards output by GENDET provide this information. As the matrix with elements $\left\langle D_{\mathrm{I}}\right| \mathfrak{V}\left|D_{\mathrm{K}}\right\rangle \quad$ is symmetric only the lower triangle is evaluated and stored in a one-dimensional array G, where

$$
\begin{equation*}
G(K I)=\left\langle D_{I}\right| \mathfrak{f}\left|D_{K}\right\rangle, \quad(K \leqslant I) \tag{8.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K I=\left(I^{*}(I-1)\right) / 2+K \tag{8.6}
\end{equation*}
$$

Before evaluating $G(K L)$ it is necessary to bring D_{L} and D_{X} into the condition of maximum coincidence. The subroutine MAXC $\varnothing \mathrm{N}$ brings each pair of off-diagonal detors (i.e. $K<L$) into maximum coincidence, by permuting the elements of the ordered spin-orbital product defining one of them. The parity of the permutation is determined. Those pairs in which the detors differ by more than two spin-orbitals are ignored, because the corresponding matrix element is zero. For each of the remaining pairs the following information is entered as a row in the two-dimensional array IDIFF,
(i) the number of spin-orbitals by which the pair (K, L) differs,
(ii) the identifiers of the spin-orbitals not common to both,
(iii) the parity of the permutation required to satisfy the condition of maximum coincidence,
(iv) the value of KL given by (8.6).

The number of entries in IDIFF are counted, and the array may be dumped on a disc file if it is too small for the current problem.

The actual evaluation of $G(K L)$ is in two steps and the first involves the computation of the twomelectron contribution. The contribution of a frozen shell of electrons represents a constant which may be computed separately, and then added to the frozen shell-valence and valence-valence electron interactions for the diagonal terms $\left\langle D_{K}\right| \quad \mathbb{V}\left|D_{\mathbb{K}}\right\rangle$. This constant is computed in the subprogram PASøNE. The remaining interaction for the diagonal elements, and the values of the off-diagonal elements are computed in the subroutine PASTW \varnothing.

In PASTWø the two electron integrals $\quad\left[\varphi_{i} \varphi_{j} \mid \varphi_{k} \varphi_{l}\right] \quad$ are read into core for all values of k and 1 , for a given pair of values of i and j, according to (8.4b) and (8.4c). Each record is examined to determine whether or not it contains integrals that will contribute to the diagonal elements (see 7.29); integrals which make a contribution are added or
subtracted, as appropriate, to the correct element of G. Next, by searching the array IDIFF, those integrals which contribute to the offdiagonal elements are found. As the detors are in terms of spin-orbitals and the integrals over (spatial) orbitals, it is necessary to use (1.5) to identify the correct integrals and to determine whether or not the integration over the spin co-ordinates produces zero. PASTWO makes considerable use of the function subprogram IPAR.

The final step is evaluating the matrix elements between the detors is the evaluation of the one-electron contribution. The transformed oneelectron Hamiltonian matrix is read into core by the subprogram HPASS. The contribution from the frozen shell is evaluated once and added to the remaining contributions to the diagonal elements. For the offdiagonal elements there will only be one non-zero contribution which is added to $G(K L) ; G(K L)$ is then multiplied by the appropriate parity factor (± 1).

Once the matrix elements between the detors have been evaluated the program proceeds to compute the matrix elements of the secular equation as indicated in (7.21). For homonuclear diatomic molecules the projection matrix $\underline{T}_{S \sigma}$ can be obtained by inspection of the output from GENDET. The evaluation of (7.21a) is the basis of the subroutine SECS ϕ L (not to be confused with the program of the same name of which it is a part), its eigenvalues and corresponding eigenvectors are determined by the QRAlgorithm (13). The eigenvalues are the energies of the state projected by $\underline{T}_{S} \sigma$ and each eigenvector defines a wave function for this state.

Finally the program SECS $\varnothing \mathrm{L}$ will perform a natural spin orbital analysis on the i-th level of the state given by $\underline{T}_{S} \sigma$. The first order density matrix is computed from a wave function expanded as a sum of detors rather than as a sum of codetors. The coefficients $b_{\text {KI }}$ are obtained using (7.40). The first order density matrix is computed by the method
indicated at the end of Chapter 7. It is diagonalized by the QR-Algorithm, and the subprograms NAT $\varnothing R B$ and F $\not \subset D M A 4$ constitute this section of SECS \varnothing L.

By use of the projection matrix I $_{\text {S }} \sigma$ it is possible to construct the secular equation for several molecular and spin states from a given array G. This fact and the desire to preserve many of the results produced by the program SECSøL led to the writing of subroutine TDFILE. This subprogram handles all transfers of preserved information, whether the transfers be between peripheral devices or between a peripheral device and core store. All the results obtained for a particular molecule will be held in a file which will also contain all of the transformed integrals used in the calculations. This file is kept on a magnetic tape called the Master Results Tape. TDFILE sets up a table of contents for this file. The entries in this table define the position of a particular set of results, the type of results, and the data required to enable information to be read from the file. The user may identify each entry in the contents table by providing a 32 character title in the data for SECS \varnothing L (see Appendix VII). A similar table is also kept for a private disc area on which all results currently being used, or generated, by the program is held. The master results tape is updated from this disc area; this has advantages in that the current set of results cannot be lost through machine faults, unless, of course, the disc actually fails during a transfer. Both contents tables are written on a small private disc area. TDFILE is written in such a way that it is virtually impossible for the user to accidently corrupt or overwrite the master results tape or the master transformed integrals tape; the program SECSøL can only assess these tapes by a call of TDFILE:

Each program described has a 'multiple run' facility, which permits the processing of several sets of data in any one run. In the case of SECSøL both the specification of the detors and $\underline{T}_{S \sigma}$ may be read in the first set of data and used in subsequent runs. This substantially reduces the number
of data cards required. SECS $\varnothing \mathrm{L}$ may also be re-entered at the start of any section.

Once written each subprogram was thoroughly checked and rigourously tested (all test runs were in the FORTRAN V test mode ${ }^{(49)}$). The final test of the programs was their ability to reproduce published results. The calculation chosen for this test was based on the CI calculations on the diatomic oxygen molecule of Meckler ${ }^{(42)}$, Kotari et alia ${ }^{(43)}$, and Schaefer and Harris (45).

Meckler's calculation is a CI in which the SAMOs arising from the $1 s$ and $2 s$ atomic orbitals are frozen; the codetors arise from the 2 p atomic orbitals. There are 31 detors with $\quad \Lambda=0$ and $S_{z}=0$ which are tested by Meckler. From these detors it is possible to project $9{ }^{3} \Sigma_{g}^{-} \quad$ codetors and $12{ }^{1} \Sigma_{g}^{+} \quad$ codetors; the corresponding projection matrices \underline{T}_{1-} and \underline{I}_{0+} are also given. The calculation of Kotani et alia is based on the codetors arising from the 2 s and 2 p atomic orbitals, the 1 s shell is frozen. It is possible to determine the specification of the detors and the projection matrix \underline{T}_{1-} that they used for their ${ }^{3} \Sigma_{g}^{-}$wave function. The detors have $S_{z}=1$. This particular paper also contains the elements of the matrix $\underline{U}((7.6)$ and (7.7)) which orthonormalizes the SAMOs. The most stringent test of both the programs GENDET and INTRA is the successful reproduction of the results published by Meckler and Kotani. Both programs performed satisfactorily. The paper by Schaefer and Harris (45) contains the energies for 62 low-lying states of O_{2} at nine internuclear distances, and also values for the ${ }^{3} P,{ }^{1} D$, and ${ }^{1}$'s states of the oxygen atom. Test runs for the ${ }^{3} \Sigma_{g}^{-}$and ${ }^{1} \Sigma_{g}^{+}$states of the molecule, at the same internuclear distances used by Schaefer and Harris, and for the three states of the atom, produced results which are in agreement with the published values to within machine accuracy. This final test also provided a check on the program $\phi_{\text {NECEN. }}$ This program also produced integrals which agree with
those given in references (12) and (41). As a check on the accuracy of
 based on the method of Jacobi (13).

The natural spin-orbital analysis was checked against the results obtained from a general program, which will produce natural spin-orbitals from a wave function expressed as a sum of determinants. This program has reproduced various published results $(20,31,3 \eta)$. Wherever possible test calculations were checked on a desk calculator.

The results of the test calculations on O_{2} are given in Chapter 10 , together with the spectroscopic constants and molecular properties computed using the methods described in Chapter 9.

CHAPTER 9

SPECTROSCOPIC CONSTANTS OF

DIATOMIC MOLECULES

In the Born-Oppenheimer approximation the separation of the electronic and nuclear motions leads to two equations, one describing the electronic behaviour and the other the nuclear motion. The solution of the first of these equations has been the subject of the preceeding chapters and the electronic energy E_{E} corresponding to this solution is a function of the nuclear co-ordinates. The electronic energy and the energy V_{N}, due to the electrostatic repulsion of the nuclei, together form the potential function V used in the second equation. For a diatomic molecule this equation is similar to that of the rotating vibrator, and it has been solved by Dunham (55), who expanded the potential function about the equilibrium nuclear separation R_{e} in a power series:

$$
\begin{equation*}
V(R)=V\left(R_{e}\right)+a_{0} \xi^{2}\left(1+a_{1} \xi+a_{2} \xi^{2}+\ldots\right) \tag{9.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\xi & =\left(R-R_{e}\right) / R_{e} \\
a_{0} & =\omega_{e}^{2} / 4 B_{e}
\end{aligned}
$$

and

$$
\begin{equation*}
B_{e}=h /\left(8 \pi^{2} c \mu R_{e}^{2}\right) \tag{9.2}
\end{equation*}
$$

In (9.2) ω_{e} is the classical frequency of small oscillations, assuming the system is a harmonic oscillator, and μ is the reduced mass of the
diatomic molecule. Using the Wentzel-Kramers-Brillouin method Dunham obtained the equation

$$
\begin{equation*}
E_{v J}=\sum_{l j} Y_{l j}(v+1 / 2)^{l}{ }^{j}(J+1)^{j} \tag{9.3}
\end{equation*}
$$

for the energy level of a rotating vibrator associated with a rotational quantum number J and a vibrational quantum number v. The coefficients $Y_{i j}$ (9.3) may be expressed in terms of ω_{e}, B_{e} and the coefficients a_{j} of (9.1). The appropriate formulae are to be found in Dunham's paper. The connection between the $Y_{1 j}$ of (9.3) and the observed spectroscopic constants is easily determined. From (9.3) the energy of a vibrational level is

$$
\begin{align*}
& E_{V O}= Y_{00}+ \tag{9.4}\\
& Y_{10}(v+1 / 2)+Y_{20}(v+1 / 2)^{2} \\
& Y_{30}(v+1 / 2)^{3}+Y_{40}(v+1 / 2)^{4}+\ldots
\end{align*}
$$

This leads to the following expressions for the separations between the lowest vibrational levels,

$$
\begin{aligned}
& E_{10}-E_{00}=Y_{10}-2 Y_{20}+13 Y_{30} / 4+5 Y_{40}+\cdots, \\
& E_{20}-E_{10}=Y_{10}-4 Y_{20}+49 Y_{30} / 4+34 Y_{40}+\cdots,(9.5)
\end{aligned}
$$

The energy levels of the anharmonic oscillator are given by the expression

$$
\begin{align*}
& E_{v O}=\omega_{e}(v+1 / 2)-\omega_{e} x_{e}(v+1 / 2)^{2} \\
& +\omega_{e} y_{e}(v+1 / 2)^{3}+\omega_{e} z_{e}(v+1 / 2)^{4}+\ldots \tag{9.6}
\end{align*}
$$

(9.6) is obtained (56) by solving the appropriate Schr*dinger equation using a potential function of the form

$$
V(R)=V\left(R_{e}\right)+f \xi^{2}-g \xi^{3},
$$

with $g \ll f$ which is a simplified form of (9.1). The separations between the lowest energy levels obtained from (9.6) are

$$
\begin{align*}
& E_{10}-E_{00}=\omega_{e}-2 \omega_{e} x_{e}+13 \omega_{e} y_{e} / 4+5 \omega_{e} z_{e}+\ldots \\
& E_{20}-E_{10}=\omega_{e}-4 \omega_{e} x_{e}+49 \omega_{e} y_{e} / 4+34 \omega_{e} z_{e}+\ldots \tag{9.7}
\end{align*}
$$

Comparison of (9.5) and (9.7) gives

$$
\begin{align*}
& Y_{10} \simeq \omega_{e} \\
& Y_{20} \simeq-\omega_{e} x_{e} \\
& Y_{30} \simeq \omega_{e} y_{e} \\
& Y_{40} \simeq \omega_{e} z_{e} \tag{9.8}
\end{align*}
$$

Y_{10} is not exactly equal to ω_{e} because it contains terms in $B_{e}^{2} / \omega_{e}^{2}$ which arise from the more general form of the potential function used by Dunham. Similar corrections appear in the other Y_{10}.

For the rotational motion of the molecule the experimental expression for the difference in energy between rotational levels J and O in the same vibrational state is (56)
$E_{V J}-E_{V O}=B_{V} J(J+1)-D_{\nabla} J^{2}(J+1)^{2}+H_{v} J^{3}(J+1)^{3}+\ldots$. (9.9)

The rotational constants B_{v}, D_{v} and H_{v} in the vibrational state considered are expressed in terms of B_{e}, D_{e} and H_{e} which are the rotational constants at R_{e}. The usual expressions are
$B_{v}=B_{e}-o_{e}(v+1 / 2)+\gamma_{e}(v+1 / 2)^{2}+\delta_{e}(v+1 / 2)^{3}+\ldots$,
$D_{v}=D_{e}+\beta_{e}(v+1 / 2)+\ldots$,
$H_{v}=H_{e}+\ldots$.
Expansion of (9.3) gives
$E_{V J}-E_{V O}=$

$$
\begin{align*}
& \left(Y_{01}+Y_{11}(v+1 / 2)+Y_{21}(v+1 / 2)^{2}+\ldots\right) J(J+1) \\
+ & \left(Y_{02}+Y_{12}(v+1 / 2)+Y_{22}(v+1 / 2)^{2}+\ldots\right) J^{2}(J+1)^{2} \\
+ & \left(Y_{03}+Y_{13}(v+1 / 2)+\ldots\right) J^{3}(J+1)^{3} \\
+ & \left(Y_{04}+\ldots\right) J^{4}(J+1)^{4} \tag{9.11}
\end{align*}
$$

Comparison of (9.9), (9.10), and (9.11) yields the approximate relations

$$
\begin{align*}
& Y_{01} \simeq B_{e} \\
& Y_{11} \simeq-\alpha_{e} \\
& Y_{21} \simeq \gamma_{e} \\
& Y_{31} \simeq \delta_{e} \\
& Y_{02} \simeq D_{e} \\
& Y_{03} \simeq H_{e} \tag{9.12}
\end{align*}
$$

Once again the $\left\{Y_{I j}\right\}$ differs from the "classical" values by terms in $\left(\mathrm{B}_{\mathrm{e}}^{2} / \omega_{\mathrm{e}}^{2}\right)$, which are usually less than 10^{-6} (55).

The value of ω_{e} is in cm^{-1}, and the reduced mass μ, used to calculate B_{e} and hence ω_{e}, is measured in atomic mass units on the unified scale ${ }^{(57)}$. The value of R_{e} is in bohrs so that

$$
\begin{equation*}
B_{e}=60.2014 /\left(\mu R_{e}^{2}\right) \tag{9.13}
\end{equation*}
$$

The probable radius of convergence of (9.1) is $0 \leqslant R \leqslant 2 R_{e}^{\text {(58) }}$ and because the series is truncated, the actual region where it may reasonably be applied is close to $\mathrm{R}_{\mathrm{e}}{ }^{(59)}$.

The computation of the spectroscopic constants is achieved by expressing the potential curve $V(R)$ as a power series in R. This series is then transformed into the form of (9.1) by using the method of synethic division ${ }^{(40)}$ (fiorner*s method) and the $Y_{I_{i}}$ are determined by using the appropriate formulae ${ }^{(55)}$.

The coefficients of the power series in R are found by the method of least squares ${ }^{(40)}$. Suppose

$$
\begin{equation*}
V\left(R_{i}\right)=\sum_{j=1}^{n+1} R_{i}^{j-1} p_{j} \tag{9.14a}
\end{equation*}
$$

or in matrix notation

$$
\begin{equation*}
\mathrm{A} \underline{p}=\underline{V} \quad . \tag{9.14b}
\end{equation*}
$$

In (9.14b) the elements of the matrix \underline{A} are $A_{i j}=R_{i}^{j-1}, \underline{p}$ is a column vector of the unknown coefficients, \underline{v} a column vector of the energies, and R_{i} is the i-th value of the internuclear distance. A unique vector which minimizes the Euclidean (or L_{2}) norm of $V-A \underline{D}$, only exists when the columns of A are linearly independent ${ }^{(60)}$. By taking powers of R_{i}
accuracy is reduced and the columns of A may be nearly linearly dependent ${ }^{\text {(} 61 \text {). }}$ These difficulties can be avoided if R_{i}, the independent variable, is transformed into the normalized independent variable X_{i} where

$$
\begin{equation*}
x_{i}=\frac{2 R_{i}-\left(R_{1}+R_{n+1}\right)}{\left(R_{1}-R_{n+1}\right)} \tag{9.15}
\end{equation*}
$$

and

$$
\left|X_{i}\right| \leqslant 1
$$

In (9.15) R_{1} is the minimum value of R_{i} and R_{n+1} the maximum value. $A_{i j}$ is now X_{i}^{j-1} and the solution of the least squares problem results in the coefficients q_{j} of the polynomial

$$
\begin{equation*}
V\left(x_{i}\right)=\sum_{j=1}^{n+1} x_{i}^{j-1} q_{j} \tag{9.16}
\end{equation*}
$$

Use of an algorithm by Mackinney ${ }^{(62)}$ permits the direct transformation of (9.16) into (9.1). This algorithm transforms a polynomial in X into one in ξ where $X=a \xi+b$. In the present case $a=X_{e}+\left(R_{1}+R_{n+1}\right) /$ $\left(R_{1}-R_{n+1}\right)$ and $b=X_{e}$. The minimum of $V(X)$ occurs at $X=X_{e}$; it may be found by using the Newton procedure ${ }^{(40)}$ and the fact that $(d V / d R)_{X}=X_{e}=0$. The Newton procedure is initiated with an approximation X_{k} to X_{e} where X_{k} satisfies the condition $V\left(X_{k}\right)<V\left(X_{j}\right)$ for all $i \neq k, V\left(X_{k}\right)$ is a data point. The value of R_{e} is simply $\frac{1}{2}\left(x_{e}\left(R_{1}-R_{n+1}\right)+\left(R_{1}+R_{n+1}\right)\right.$. The solution of the least squares problem is further assisted by initially subtracting the mean value of $V\left(R_{i}\right)$ from each value of $V\left(R_{i}\right)$.

The foregoing analysis forms the basis of the program SPECTR \varnothing which is listed in Appendix VIII. The program is completely self contained and the Dunham analysis is performed by the subroutine DUNHAM. The solution of the least squares problem is performed by subroutine $\not \subset \mathrm{RLIN}$ which is a FORTRAN V translation of Bauer's algorithm (60). The program is so written

TABLE 6 Theoretical and Experimental Spectroscopic

Constants for H_{2}

	McLean	Spectro	Experimental
ω_{e}	4399.33	4399.45	4395.2
${ }^{\text {e }}$	574563.	574613.	
${ }^{B} e$	60.841	60.843	60.800
D_{e}	0.0465	0.0465	
Y_{00}	10.75	10.75	
Y_{10}	4393.8	4394.0	4400.39
Y_{20}	-104.34	-104.34	-120.82
Y_{30}	-5.42	-5.42	-0.724
Y_{40}	0.056	0.056	
Y_{01}	60.798	60.800	60.864
Y_{11}	-2.834	-2.834	-3.076
Y_{21}	-0.032	-0.032	0.0601
Y_{31}	-0.031	-0.031	
Y_{02}	-0.0466	-0.0466	-0.0466
Y_{12}	0.0022	0.0022	0.0016
a_{0}	7.9528×10^{4}	7.9529×10^{4}	7.9566×10^{4}
a_{1}	-1.565	-1.565	-1.598
a_{2}	1.900	1.900	1.868
a_{3}	-2.478	-2.478	-2.072
a_{4}	2.391	2.391	2.261
a_{5}	-0.959	-0.959	
a_{6}			
a_{7}			
$E_{\text {min }}$	-1.174442 a.u.	-1.174442	
$\mathrm{R}_{\text {min }}$	1.40127 a.u.	1.40127	

that several energy levels of the same symmetry, spin, and covering the same range of R may be processed in each run.

The results of the Dunham analysis are invariably compared with experimental values and it is for this reason that the values of $V\left(R_{i}\right)$ are converted in the program from hartrees to cm^{-1} using the conversion factor given in Appendix I. The value of $V\left(R_{e}\right)$ in both cm^{-1} and hartrees is given in the program output.

McLean (63) published a comprehensive set of results for the Dunham analysis of a wave function for H_{2} obtained by Kolos and Roothaan (19). McLean's results, the experimental values $(56,464)$ and those obtained by SPECTR \varnothing are given in Table 6. As far as the $a_{i} s$ of (9.1) are concerned the results given by SPECTR \varnothing are in complete agreement with those of McLean. Some discrepancies arise both in the classical and corrected spectroscopic constants. This is due to the slight differences in the factors used to convert primary units to secondary units as McLean used an older set ${ }^{(63)}$.

RESULTS AND DISCUSSION

The diatomic oxygen molecule has been thoroughly studied by spectroscopists (56,65) and the extensive theoretical study of Schaefer and Harris (45) is in excellent agreement with experimental results. The work of these authors provided a valuable means of checking the accuracy of the programs described in the previous chapters.

Schaefer and Harris examined 62 low-lying states of the oxygen molecule at up to eight internuclear separations, and obtained values of the energies at an infinite separation by the appropriate combinations of the energies of the ${ }^{3} P,{ }^{1} D$ and ${ }^{1} S$ states of the separated atoms. Their approach to the programming problem is similar to the one used here ${ }^{(66)}$, although there are important differences in technique. The most significant of these
differences is the evaluation of the one- and two-electron integrals which employs a method evolved by Harris (67). Two other differences worth noting are the use of the recursive form of the Schmidt orthonormalization process ($40,41,60$) and the use of Givens' method for diagonalizing a real symmetric matrix. Finally an important computer hardware aspect of the calculation of Schaefer and Harris is the fact that the Univac 1108 computer, which they used ${ }^{(45)}$, gives only 8 decimal digits accuracy for real arithmetic, consequently their results are probably only accurate to 5 or 6 decimal digits although they quote 7. Atlas gives 11 decimal digits $(49,50)$ so that a 5 or 6 figure agreement between the present results and those given in reference 45 is acceptable. The details of their calculation differ slightly from that described here. The detors of Schaefer and Harris are chosen so that $S_{z}=S$ and the configuration are classified according to the value of
\wedge and S. Thus, for example, the secular equation they solve contains all variants of ${ }^{3} \Sigma$ symmetry, and the $g, u,+$, or - subspecies is sorted out by the diagonalization process. Naturally this leads to secular equations
of large dimensions (110×110 for the ${ }^{3} \Sigma$ states). However, the present programs are designed to avoid this situation (see chapters 7 and 8). The program GENDET, apart from reproducing the results previously quoted $(42,43)$, also confirms the number of configurations given in Table I of Schaefer and Harris (45).

Unlike diatomic oxygen, diatomic sulphur has not received much attention from the spectroscopists. The lack of experimental data is due to the difficulty in setting up long-path absorption experiments in S_{2} vapour at temperatures around $650^{\circ} \mathrm{C}$. This, combined with the large number (32) of electrons involved, and the fact that the ground state of the molecule is a triplet, probably accounts for the non-existence of theoretical work (10).

Oxygen and sulphur are both Group VI elements; oxygen being in the first row of the periodic table and sulphur in the second row. So far as is known the general pattern of the electronic states of S_{2} resembles that of $\mathrm{O}_{2}{ }^{(68)}$.

The programs described in the preceding chapters have been used to obtain VCI wave functions for the following atomic and molecular systems:
(i) ${ }^{3} P,{ }^{1} D$, and ${ }^{1}$ s states of atomic oxygen and sulphur.
(ii) ${ }^{3} \Sigma_{g}^{-}$and ${ }^{1} \Sigma_{g}^{+}$states of diatomic oxygen at fifteen internuclear distances.
(iii) ${ }^{3} \Sigma_{g}^{-},{ }^{1} \Delta_{g}$, and ${ }^{1} \Sigma_{g}^{+}$states of diatomic sulphur at seventeen internuclear distances. The orbital occupancy of the electrons in atomic oxygen is $(1 s)^{2}(2 s)^{2}(2 p)^{4}$ and in sulphur it is $(1 s)^{2}(2 s)^{2}(2 p)^{6}(3 s)^{2}(3 p)^{4}$. The valence shell for both atoms is of the form $(n s)^{2}(n p)^{4}$ with $n=2$ for oxygen and $n=3$ for sulphur. By arranging the six valence shell electrons in the eight available spin-orbitals it is possible to obtain two P-type, one D-type, and four s-type detors, in which $S_{z}=0$ and $L_{z}=L$, where L_{z} is the Z component of the total orbital angular momentum L. From these detors it is possible to obtain one ${ }^{3} \mathrm{P}$ codetor, one ${ }^{1} \mathrm{D}$ codetor, and two ${ }^{1} \mathrm{~S}$ codetors. The wave functions for the ${ }^{3} \mathrm{P}$ and ${ }^{1} \mathrm{D}$ states are not really VCI wave functions at all because they consist of a single term and not a sum of terms. They are

P-type detors :

$$
\begin{array}{ll}
D_{1} & =(1)(2)(3)(6)(7)(8) \\
D_{2} & =(1)(2)(4)(5)(7)(8)
\end{array}
$$

D-type detor :

$$
D_{3}=(1)(2)(3)(4)(7)(8)
$$

S-type detors :

$$
\begin{array}{ll}
D_{4} & =(1)(2)(3)(4)(5)(8) \\
D_{5} & =(1)(2)(3)(4)(6)(7) \\
D_{6} & =(1)(2)(5)(6)(7)(8) \\
D_{7} & =(3)(4)(5)(6)(7)(8)
\end{array}
$$

${ }^{3} \mathrm{P}$ codetor :

$$
\psi_{1}=\quad 2^{-\frac{1}{2}}\left(D_{1}+D_{2}\right)
$$

${ }^{1}$ D codetor :

$$
\Psi_{2}=D_{3}
$$

${ }^{1} \mathrm{~S}$ codetors :

$$
\begin{aligned}
& \psi_{3}=3^{-\frac{1}{2}}\left(D_{4}-D_{5}+D_{6}\right) \\
& \psi_{4}=D_{7}
\end{aligned}
$$

TABTE 8. ORBITAL EXPONENTS

orbital	oxygen	sulphur
1 s	7.6568	15.5409
2 s	2.2472	5.3144
$2 p$	2.2262	5.9885
3 s	-	2.1223
$3 p$	-	1.8273

TABLE 9. ELECTRONIC ENERGIES OF

 ATOMIC STATES (HARTREES)| State | Oxygen | | Sulphur | |
| :--- | :---: | :---: | :---: | :---: |
| | Present work | Ref.45 | Present work | Ref.73 |
| 3_{P} | -74.5404 | -74.5406 | -396.5936 | -396.6276 |
| 1_{D} | -74.4464 | -74.4469 | -396.5341 | - |
| 1_{S} | -74.3663 | -74.3665 | -396.5287 | - |

Atomic States	Oxygen	Sulphur
$3_{P}+{ }^{3}{ }_{P}$	-149.0808	-793.1872
$3_{P}+{ }^{1} D$	-148.9868	-793.1277
${ }^{3}{ }_{P}+{ }^{1}{ }_{S}$	-148.9067	-793.1223
${ }^{1}{ }_{D}+{ }^{1} D$	-148.8928	-793.0682
${ }^{1} D+{ }^{1}{ }_{S}$	-148.8127	-793.0628
${ }^{1} S+{ }^{1} S$	-148.7326	-793.0574

"sinjle configuration" wave functions and, as the orbitals from which they are constructcu are not optimized, the resulting energies will probably be poorer than the corresponding SCF energies. The detors are specified in Taval 7 where only the identifiers of the valence shell spin-orbitals are given, these conform to the rule:

$$
\begin{aligned}
& \begin{array}{ll}
n s & \alpha=1 \\
n p_{0} \alpha=3 & n s \\
& n=2, \\
n p_{0} \beta=4,
\end{array} \\
& n p_{-} \alpha=5, n p_{-} \beta=6 \text {, } \\
& n p_{+} \alpha=7, n p_{+} \beta=8 \text { 。 }
\end{aligned}
$$

The orbital exponents used in all the oxygen calculations were those of Schaefer and Harris (45). For sulphur the atomic SCF exponents obtained by Clementi and Raimondi ${ }^{(73)}$ were used. All exponents are given in Table 8. The electronic energies of the three states of each atom are given in Table 9. The agreement between the present results for atomic oxygen and those of reference 45 is excellent. The SCF energy for the ${ }^{3}$ P state of sulphur ${ }^{(73)}$ is much better than that obtained by the VCI method. This result indicates a possible limitation imposed on the wave function by the VCI treatment. It was felt that a complete CI within the minimal basis set employed would provide valuable results. The energy of the ${ }^{3} \mathrm{P}$ atomic ground state of sulphur given by this $C I$ was found to be -396.6277 hartrees: which is slightly better than SCF value. As the wave function only consists of four codetors (including that given in Table 7) it is not very extensive. Each of the additional codetors is a result of an excitation of one or more electrons from the $2 p$ shell into the $3 p$ shell, the $3 s$ shell always remaining doubly occupied. The value of the complete minimal basis set CI is that it shows that the interaction between the $2 p$ and $3 p$ shells cannot be ignored in the sulphur atom.

The energies of the atomic states which represent the dissociation limits of the low-lying molecular states are given in Table 10.

The minimal basis set of orbitals used for the atoms are utilized in the construction of the molecular orbitals for the molecular studies. The rules for forming the molecular orbitals are given in Appendix II. For
oxygen the molecular orbitals are

$$
\left(1 s \sigma_{g}\right)\left(1 s \sigma_{u}\right)\left(2 s \sigma_{g}\right)\left(2 s \sigma_{u}\right)\left(2 p \sigma_{g}\right)\left(2 p \sigma_{u}\right)\left(2 p \pi_{g}\right)\left(2 p \pi_{u}\right)
$$

The π_{g} and π_{u} orbitals may contain up to four electrons, and each σ-orbital a maximum of two. The molecular orbitals for sulphur include the orbitals

$$
\left(3 s \sigma_{g}\right)\left(3 s \sigma_{u}\right)\left(3 p \sigma_{g}\right)\left(3 p \sigma_{u}\right)\left(3 p \pi_{g}\right)\left(3 p \pi_{u}\right)
$$

in addition to those given for diatomic oxygen. In the studies of oxygen, the $\left(1 s \sigma_{g}\right)$ and $\left(1 s \sigma_{u}\right)$ orbitals were assumed to be always occupied by a total of four electrons, and the detors were obtained by arranging the remaining twelve electrons in the sixteen available molecular spin-orbitals. A set of $118 \Sigma_{g}$ detors was obtained with $S_{z}=0,30{ }^{3} \Sigma_{g}^{-}$codetors and $37{ }^{1} \Sigma_{g}^{+}$codetors were projected from'this set. The set of valence shell molecular orbitals for sulphur differs from that of oxygen only by the value of the principle quantum mumber. In studies of S_{2} the whole of the oxygen set of molecular orbitals was assumed to be occupied by 20 electrons and the detors were obtained by arranging the twelve remaining electrons in the sixteen available molecular spin-orbitals. Obviously the number of Σ_{g} detors is the same for oxygen and sulphur, the numbers of codetors for the ${ }^{3} \Sigma_{g}^{-}$and ${ }^{1} \Sigma_{g}^{+}$states will also be the same. In addition a set of $44 \Delta_{g}$ detors was obtained with $S_{z}=0,22{ }^{1} \Delta_{g}$ codetors were projected from this set. The detors and codetors are listed in Appendix IX, this appendix also contains a list of the "spatial orbital" configurations or "primative functions".

The energies of the five lowest levels of each state investigated are given in Tables 11 to 15 for each of the chosen internuclear separations. The corresponding potential curves are shown in Figs. 16 to 20. The results

$$
\begin{array}{crcc}
{ }^{3} \Sigma_{g}^{-} \text {II } & { }^{3} \Sigma_{g}^{-} \text {III } & { }^{3} \Sigma_{g}^{-} \mathrm{IV} & { }^{3} \Sigma_{\mathrm{g}}^{-} V \\
-148.1717 & -147.7918 & -147.7264 & -147.6618 \\
-148.3509 & -148.0268 & -147.9082 & -147.8404 \\
-148.4932 & -148.2185 & -148.0506 & -147.9693 \\
-148.6059 & -148.3743 & -148.1626 & -148.0672 \\
-148.6941 & -148.4985 & -148.2511 & -148.1428 \\
-148.7645 & -148.6002 & -148.3212 & -148.2177 \\
-148.8205 & -148.6814 & -148.3762 & -148.3386 \\
-148.8640 & -148.7476 & -148.4459 & -148.4184 \\
-148.8980 & -148.8006 & -148.5324 & -148.4531 \\
-148.9244 & -148.8431 & -148.6039 & -148.4798 \\
-148.9455 & -148.8769 & -148.6630 & -148.5014 \\
-148.9600 & -148.9043 & -148.7105 & -148.5180 \\
-148.9807 & -148.9398 & -148.7818 & -148.5421 \\
-148.9910 & -148.9607 & -148.8286 & -148.5572 \\
-148.9923 & -148.9772 & -148.8846 & -148.5698 \\
-148.9868 & -148.9868 & - & -
\end{array}
$$

$X^{3} \Sigma_{g}^{-I} I$
-149.0731
－149．1407
LO8し・6カレー

もをして・6もレー
しくして・6tレー

9661•6ちレー
2881•6もレー

－149．1465
－149．1210

∞
$\stackrel{\infty}{\vdots}$
\vdots
\vdots

－149．0838
∞
0
0
0
$\dot{\circ}$
$\dot{\top}$

$\stackrel{\circ}{\text { ․ }}$ $\overline{\dot{\sim}} \underset{\sim}{\sim} \underset{\sim}{n}$ $\underset{\dot{\sim}}{\dot{\sim}} \stackrel{\text { n }}{\sim}$ 소 $\stackrel{0}{\dot{\sim}} \dot{\dot{m}}$ $\stackrel{-}{m}$ $\stackrel{m}{\dot{m}} \stackrel{n}{m} \stackrel{\circ}{\dot{+}}$ 8
${ }^{1} \Sigma_{\text {g }}^{+} V$
-147.6210
-147.8762
-148.0804
-148.2422
-148.3717
-148.4771
-148.5596
-148.6268
-148.6775
-148.7150
-148.7378
-148.7531
-148.7692
-148.8131
-148.8675

 \sim

TABLE 13. ENERGIES OF ${ }^{3} \Sigma_{\bar{g}}^{-}$STATES OF S (HARTREES)

R (Bohrs)	$X^{3} \Sigma_{g}^{-I}$	${ }^{3} \Sigma_{g}^{-} I I$	${ }^{3} \Sigma_{9}^{-} \text {III }$	${ }^{3} \Sigma_{9}^{-1 V}$
2.9	-792.9403	-792.3457	-792.1966	-792.1669
3.0	-793.0255	-792.4779	-792.3281	-792.2864
3.1	-793.0938	-792.5903	-792.4413	-792.3853
3.2	-793.1473	-792.6842	-792.5397	-792.4686
3.3	-793.1891	-792.7632	-792.6246	-792.5394
3.4	-793.2303	-792.8402	-792.6913	-792.5958
3.5	-793.2408	-792.8856	-792.7608	-792.6501
3.6	-793.2563	-792.9322	-792.8151	-792.6931
3.7	-793.2671	-792.9717	-792.8640	-792.7286
3.8	-793.2732	-793.0031	-792.9019	-792.7593
3.9	-793.2752	-792.0296	-792.9361	-792.7847
4.0	-793.2756	-793.0525	-792.9666	-792.8066
4.1	-793.2731	-793.0708	-792.9920	-792.8268
4.2	-793.2698	-793.0856	-793.0144	-792.8571
4.4	-793.2585	-793.1079	-793.0490	-792.9134
4.6	-793.2458	-793.1223	-793.0749	-792.9568
4.8	-793.2341	-793.1315	-793.0936	-792.9894
∞	-793.1872	-793.1277	-793.1223	-

$$
1
$$

\[

\] -792.5248 -792.6186 -792.6959 -792.7689 -792.8109 -792.8500 -792.8763 -792.9040 -792.9235 -792.9412 -792.9708 -792.9963 -793.0391 -793.0549

\qquad ∞
$\underset{\sim}{n}$
$\stackrel{\sim}{n}$
$\stackrel{\sim}{N}$
$\underset{\sim}{\circ}$
$\underset{\sim}{1}$ -792.6357 -792.7025 -792.7572 -792.8062 -792.8455 -792.9913 -793.0748 -792.8895
-792.9770
-793.0450

$$
\begin{aligned}
& \text { RTREES) } \\
& { }^{1} \Sigma_{\mathrm{S}}^{+} \mathrm{IV} \\
& -792.1671 \\
& -792.2993 \\
& -792.4101 \\
& -792.5065 \\
& -792.5904 \\
& -792.6494 \\
& -792.7257 \\
& -792.7813 \\
& -792.8285 \\
& -792.8712 \\
& -792.9087 \\
& -792.9399 \\
& -792.9538 \\
& -792.9668 \\
& -792.9896 \\
& -793.0113 \\
& -793.0292
\end{aligned}
$$七68L・と6L--793.2009 -793. 2311

$$
{ }^{1} \Sigma_{g}^{+} I I I
$$

$$
-792 \cdot 2849
$$

$$
-792.4155
$$

$$
\begin{gathered}
{ }^{1} \Sigma_{9}^{+} V \\
-792.1059 \\
-792.2397 \\
-792.3532 \\
-792.4524 \\
-792.5380 \\
-792.6055 \\
-792.6766 \\
-792.7326 \\
-792.7809 \\
-792.8209 \\
-792.8568 \\
-792.8872 \\
-792.9125 \\
-792.9335 \\
-792.9636 \\
-792.9803 \\
-792.9908
\end{gathered}
$$ N

∞
∞
\dot{N}
N
N 0
$\underset{\sim}{N}$
$\underset{\sim}{2}$
$\dot{\sim}$
$\underset{\sim}{1}$
 -792.9706

 N
N
N
N
N $\underset{N}{N}$
$\underset{\sim}{N}$
$\underset{\sim}{N}$ $b^{1} \Sigma_{S}^{+} I$ -793.1004 -793.1437 -793.2193 -793.2394 -793.2449 -793.2472 -793.2469 -793.2456
 -793. 2326

-793.1872

$$
\text { TABIE 15. ENERGIES OF }{ }^{1} \Delta_{g} \text { STATES OF } S_{2} \text { (HARTREES) }
$$

$$
\begin{aligned}
& \stackrel{o}{\grave{N}} \\
& \underset{\sim}{\dot{\alpha}} \\
& \stackrel{\sim}{\grave{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\sigma} \\
& \underset{\sim}{\alpha} \\
& \dot{\sim} \\
& \underset{i}{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\sim}{\overleftarrow{ }} \\
& \underset{\sim}{\sim} \\
& \dot{\sim}
\end{aligned}
$$

$$
1
$$

$$
{ }^{1} \Delta_{g} I
$$

-792. 3002 -792.4323 -792.5445
 -792.7185 -792.7954 -792.8413 -792.8880 -792.9257 -792.9581 -792.9846 -793.0068 -793.0248 -793.0389 -793.0597 -793.0728 -793.0804 -793.1223
$0^{1} \Delta_{g} I$
-792.9085

$$
-792.4582
$$

$$
\begin{aligned}
& -792.1257 \\
& -792.2521 \\
& -792.3617 \\
& -792.4582
\end{aligned}
$$

$$
-792.8915
$$

$$
\begin{aligned}
& -792.9183 \\
& -790.0110
\end{aligned}
$$

${ }^{1} \Delta_{g} V$
-791.8563
-791.9940
-792.1097
-792.2089
-792.2944
-792.3564
-792.4308
-792.4910
-792.5511
-792.6123
-792.6545
-792.6848
-792.7091
-792.7297
-792.7635
-792.7894
-792.8086 $\stackrel{\infty}{\stackrel{\infty}{\stackrel{ }{N}}}$
 -793.2035 -793. 2151 -793.2322 -793. 2512 -793.2556 -793.2565 -793.2563 -793.2542 -793. 2466 -793.2370 -793.2277
-793.1872
R (Bohrs)

$$
{ }^{1} \Delta_{g} \text { III }
$$

$$
-792.6103
$$

$$
-792.6807
$$

$$
-792.7356
$$

$$
-792.8250
$$

$$
-792.8604
$$

$$
-792.9412
$$

$$
-792.9780
$$

$$
-793.0047
$$

$$
\begin{gathered}
1 \Delta_{g} I V \\
-792.0438 \\
-792.1729 \\
-792.2768 \\
-792.3618 \\
-792.4316 \\
-792.4858 \\
-792.5382 \\
-792.5797 \\
-792.6160 \\
-792.6510 \\
-792.6887 \\
-792.7294 \\
-792.7679 \\
-792.8019 \\
-792.8584 \\
-792.9016 \\
-792.9344
\end{gathered}
$$ ∞

$\stackrel{+}{\sigma}$
$\dot{\sigma}$
$\dot{~}$
$\stackrel{1}{\top}$

FIG. 16. Potential curves for the five lowest ${ }^{3} \Sigma_{\bar{g}}$ levels of O_{2}.

FIG. 17. Potential curves for the five lowest ${ }^{1} \Sigma_{\mathrm{g}}^{+}$levels of O_{2}.

FIG. 18. Potential curves for the five lowest ${ }^{3} \Sigma_{\bar{g}}^{-}$levels of S_{2}

FIG. 19. Potential curves for the five lowest ${ }^{1} \Sigma_{\mathrm{g}}^{+}$levels of S_{2}.

FIG. 20. Potential curves for the five lowest ${ }^{1} \Delta_{\mathrm{g}}$ levels of S_{2}.

TABLE 16 Spectroscopic Constants

$$
\begin{aligned}
& \text { (Units are } \mathrm{cm}^{-1} \begin{array}{c}
\text { unless explicitly given, and } a_{1} \\
\text { are dimensionless) }
\end{array} \\
& \qquad \mathrm{O}_{6} \mathrm{X}^{3} \Sigma_{\mathrm{g}^{-}}^{-I} \\
& \text { calc } \quad \mathrm{O}_{2} \mathrm{~b}^{1} \Sigma_{g^{+}} \\
& \text {Expr }^{+}
\end{aligned}
$$

R_{e} bohrs	2.4618	2.2817	2.5435	2.3183
$V\left(R_{e}\right)$ hartrees	-149.2156		-149.1685	
$V^{\prime}\left(R_{e}\right)$	0.0		10^{-8}	
D_{E} hartrees	0.1348		0.0877	
D_{0} hartrees	0.1312	0.1867	0.0849	0.1506
G(0) hartrees	0.0036	0.0036	0.0028	0.0033
Y_{00}	-1.4979		1.6769	
Y_{10}	1607.56	1580.36	1251.04	1432,69
Y_{20}	-19.1019	-12.0730	-6.8935	-13.9500
Y_{30}	0.1539	0.0546	-0.2558	-0.0108
Y_{40}	0.0066		-0.0031	
Y_{01}	1.2422	1.4457	1.1636	1.4004
Y_{11}	-0.0129 -5	-0.0158	-0.0016	-0.0182
Y_{21}	-7.9×10^{-5}		0.0003	
Y_{31}	9.3×10^{-6}		-6.5×1	
Y_{02}	-3.0×10^{-6}		-4.0 $\times 1$	
Y_{12}	-1.1×10^{-7}		1.3×1	
y_{22}	$<10^{-8}{ }^{*}$		-2.3 $\times 1$	
Y_{03}	$<10^{-9}$ *		$<10^{-8}$	
Y_{13}	$<10^{-8}$ *		$<10^{-8}$	
Y_{04}	$<10^{-8}$ *		$<10^{-8}$	
a_{0}	5.2006×10^{5}		3.3651	
a_{1}	-3.2487		-3.4206	
a_{2}	2.9408		10.6683	
a_{3}	14.4668		-31.0388	
a_{4}	-54.2388		20.5180	
a_{5}	68.5968		84.8957	
a_{6}	-29.7533		-113.0302	

TABIE 16 Spectrosconic Constants are dimensionless)

$$
S_{2} X^{3} \Sigma g^{I} \quad S_{2} a^{1} \Delta_{g}^{I} \quad S_{2}^{b^{1}} \Sigma_{g}^{+} I
$$

Calc Expr ${ }^{+}$Ealc Expr ${ }^{+}$calc Expr ${ }^{+}$

for oxygen are in good agreement with those of Schaefer and Harris ${ }^{(45)}$, and those for sulphur give the correct ordering of the lowest states; namely

$$
X^{3} \Sigma_{g}^{-} I<a^{1} \Delta_{g}^{I}<b^{1} \Sigma_{g}^{+} I \quad \text {. The separation }
$$ of these states is $4500 \mathrm{~cm}^{-1}$ and $6000 \mathrm{~cm}^{-1}$ respectively, experimental separations are $4500 \mathrm{~cm}^{-1}$ and $8000 \mathrm{~cm}^{-1}$. The prefix X, a, or b before $2 S+1 \wedge_{i}^{(\sigma)}$ is the spectroscopic notation indicating the ground state, first excited state, and second excited state respectively. The suffix I, II, ... indicates the relative level of the symmetry species. For example, $\quad{ }^{3} \Sigma_{g} I$ is energetically lower than $\quad{ }^{3} \Sigma_{g} I I$ Spectroscopic constants for the $X^{3} \Sigma \frac{-I}{g} \quad$ (i.e. ground state) and $\quad b^{1} \sum_{g}^{+} I \quad$ states of diatomic oxygen were calculated using the program listed in Appendix VIII. Similar calculations were performed for the $X^{3} \Sigma \frac{-I}{g}, a^{1} \Delta_{g}^{I}$, and $b^{1} \Sigma_{g}^{+} I$ states of diatomic sulphur. The results for both molecules are given in Table 16. The agreement between the calculated values and the experimental values of the spectroscopic constants is not too good for the two states of oxygen. Nor do these results agree with those of Schaefer and Harris ${ }^{(45)}$. (The present results were obtained by fitting a polynomial through the $v\left(R_{i}\right)$ at the values of R_{i} used by Schaefer and Harris.) The exact reason for the latter discrepancy is difficult to determine with certainty but is probably an example of the phenomenon noted by Beckel and Sattler (49). They found that the values of the spectroscopic constants, determined from a given set of values of the total electronic energy, were very susceptible to changes in the number of points to which the curve was fitted, to the degree of the polynomial employed and to the accuracy of the actual energy values. Their criterion for chosing the degree of the polynomial and radius of convergence was that

$$
\left|R-R_{e}\right| \leqslant\left|t / 3 A_{n-1}\right|^{1 / n+1}
$$

All values of R_{i} must lie in the range prescribed, t is the estimated machine error in each $V\left(R_{i}\right)$ and n is the degree of the fitted polynomial. $V(R)$ is expressed as a power series in $\left(R-R_{e}\right)$ rather than ξ (see Chapter 9) and A_{n-1} (the coefficient of $\left(R-R_{e}\right)^{n+1}$) is the last significant term in the power series. The choice of this crixterion seems rather arbitrary; Beckel and Sattler only managed to obtain two or three decimal digit consistancy in the coefficients of the Dunham expansion. In the present calculations the value of t is extremely difficult to estimate as it depends on so many parameters. As R_{e} for both of the oxygen states considered here is about 2.5 bohr, it may well be argued that only energies corresponding to values of R in the range $2.0 \leqslant R \leqslant 3.0$ should be used. In the case of Schaefer and Harris their published results only include five energies which satisfy this condition. This means that if t is 10^{-6} and as n is at most 4 then $A_{2}=2.7 \times 10^{-7}$. Effectively this means that the potential curve must be almost parabolic over a substantial part of its range. It can be seen from Fig. 16 that the $X^{3} \Sigma g^{I}$ state is certainly not parabolic over the range $2.0 \leqslant R \leqslant 3.0$. Obviously it is important when calculating spectroscopic constants to take great care over the mathematical methods and numerical techniques involved.

In calculating the spectroscopic constants for diatomic sulphur greater freedom was allowed in the choice of values of $V(R)$ to which the curves were fitted. This process used was in two stages. Firstly a polynomial was fitted to all of the available points for each state. The L_{2} norm of this solution for each problem was about 10^{-4} and was rather poor. The next step involved fitting a polynomial through those points which were most accurately represented in the first stage. The accuracy with which each point is represented may be obtained from SPECTRø by setting the variable $N \varnothing$ equal to 1 in the data (see Appendix VIII). The results of this second stage are usually very good from the numerical analysis aspect,
as the L_{2} norm rarely exceeds 10^{-11}. The results obtained for sulphur using this technique are quite good, although in every case the vibrational constants $\omega_{e} x_{e}, \omega_{e} y_{e}$, and $\omega_{e} z_{e}$ are rather large. This suggests that either the system may not be represented by a simple rotating vibrator or that the VCI method gives a poor description of the state. There are no experimental results with which these values may be compared.

The dissociation of diatomic oxygen into atomic states is clearly defined and is amply discussed in the literature $(45,56,65)$. The $X^{3} \Sigma_{g^{I}}$ ground state of O_{2} dissociates into the ${ }^{3} \mathrm{P}+{ }^{3} \mathrm{P}$ states of the atoms as does the $b^{1} \Sigma_{g}^{+}$state. The problem of the dissociation of S_{2} has been discussed by many authors $(56,65,69)$. Agreement has only recently been reached on the value of the dissociation energy of the $X^{3} \Sigma g^{I}$ state. The accepted value is 0.161 hartree $(65,69)$ and the dissociation products are atoms in the ${ }^{3} \mathrm{p}$ state. The dissociation energy D_{0} is measured from the lowest vibrational level and it is this value that is quoted experimentally. The dissociation energy D_{E} measured from the minimum of the potential curve differs from D_{0} by the zero-point energy $G(0)$.

$$
\begin{aligned}
D_{E} & =V\left(R_{e}\right)-V(\infty) \\
& =D_{0}+G(0)
\end{aligned}
$$

D_{E} and $G(0)$ are given by the program SPECTR \varnothing (In the computer output the symbol $Z 0$ is used for $G(0)$). $G(0)$ is calculated by putting $V=0$ in (9.4), so that

$$
G(0)=Y_{00}+Y_{10} / 2+Y_{20} / 4+Y_{30} / 8+Y_{40} / 16
$$

The value of D_{0} for the ground state of diatomic sulphur is 54% of the experimental value and that of the oxygen ground state 70% of the experimental value.

TABLE 17. VCI, π-ORBITAL VCI, AND SCF ENERGIES

FOR THE LOWEST STATES OF O (HARTREES)

	$x^{3} \Sigma_{g}^{-} I$			$b^{1} \Sigma_{g}^{-} I$	
R Bohrs	30 TERM	9 TERM	SCF*	37 TERM	12 TERM
2.1	-149.1407	-149.0598	-149.0521	-149.0712	-148.9792
2.3	-149.2031	-149.1411	-149.0912	-149.1480	-149.0797
2.5	-149.2151	-149.1702	-149.0743	-149.1680	-149.1188
2.7	-149.1996	-149.1674	-149.0281	-149.1637	-149.1295
2.9	-149.1741	-149.1514	-149.9679	-149.1487	-149.1261
3.1	-149.1465	-149.1311	-149.9024	-149.1307	-149.1166
3.3	-149.1210	-149.1112	-148.8372	-149.1156	-149.1073
3.5	-149.1018	-149.0961	-148.7744	-149.1032	-149.0986
4.0	-149.0838	-149.0826	-148.6413	-149.0883	-149.0873

* Reference 71 - The author is grateful to Dr M. Dixon for permission to include these results.

TABIP 18. VCI, π-ORBITAL VCI, AND SCF ENERGIES
FOR LOW-LYING STATES OF S_{2} (H.ARTREES)

	$X^{3} \Sigma_{g}^{-} I$			$b^{1} \Sigma_{g}^{+} I$	
R Bohrs	30 TERM	9 TERM	SCF*	37 TERM	12 TERM
3.0	-793.0255	-792.9955	-793.0624	-792.9770	-792.9401
3.2	-793.1473	-793.1176	-793.1798	-793.1004	-793.0645
3.4	-793.2303	-793.2024	-793.2646	-793.1894	-793.1562
3.6	-793.2563	-793.2303	-793.2760	-793.2193	-793.1889
3.8	-793.2732	-793.2499	-793.2830	-793.2394	-793.2127
4.0	-793.2756	-793.2550	-793.2750	-793.2472	-793.2244
4.2	-793.2698	-793.2520	-793.2573	-793.2456	-793.2266
4.4	-793.2585	-793.2435	-793.2336	-793.2397	-793.2245
4.6	-793.2458	-793.2334	-793.2073	-793.2326	-793.2208
4.8	-793.2341	-793.2242	-793.1802	-793.2250	-793.2161

* See footnote to Table 17

The greatest contributory factor to the discrepancy between theory and experiment for S_{2} lies in the use of the minimal basis set VCI method. Since the complete minimal basis set CI on the sulphur atom lowers the energy by 0.034 hartrees, it is reasonable to assume that the use of a more extensive CI for S_{2} will lower the energy by almost twice this amount. A VCI calculation in which the $n s \sigma_{g}$ and $n s \sigma_{u}$ valence shell molecular orbitals are full is conveniently called a π-orbital VCI and in the present work is easily obtained. In Appendix IX it is seen that the first 31 detors of Σ_{g} symmetry have the valence shell $\mathrm{ns} \sigma_{g}$ and $n s \sigma_{u}$ orbitals doubly occupied. The ${ }^{3} \Sigma_{g}^{-}$and ${ }^{1} \Sigma_{g}^{+}$codetors arising from these detors are components of the π-orbital VCI wave functions (see Chapters 7 and 8, also Meckler (42) for these states. There are $9^{3} \Sigma \frac{-}{g}$ codetors and $12^{1} \Sigma \begin{aligned} & + \\ & g\end{aligned}$ codetors in the π-orbital VCI. The results of these investigations are summarized in Tables 17 and 18, where the 9-term VCI represents the π-orbital VCI for the ${ }^{3} \Sigma \frac{-}{g}$ state, the 30-term VCI is the current $\quad 3 \Sigma_{g}^{-}$VCI result, the 12 -term VCI is the π-orbital VCI for the ${ }^{1} \Sigma_{g}^{+}$state and the 37 -term VCI the current VCI result for this state. The difference in energy between the π-orbital VCI energy and the complete VCI energy decreases as the internuclear separation increases. This result is expected as in the ${ }^{3} \mathrm{P}$ ground state of the atoms only the p-type orbitals of the valence shell contribute to the wave function, and the s-type are always occupied. A similar effect should be seen in a more extensive CI on S_{2}, which includes detors corresponding to excitations from the inner shell π-orbitals. The present result for $R=2.3$ in the ground state of O_{2} is in good agreement with that of Kotani et alia (43), who give the energy of the 8 -term VCI as -149.1332 and that of the complete VCI as $\mathbf{- 1 4 9 . 1 9 1 1}$ hartree. They used different values for the orbital exponents to those used here.

An interesting feature of Figs. $16-20$ is the existence of a number of
avoided crossings of the potential curves. The wave functions of the two energy levels $2 S+1 \wedge_{i}^{(\sigma)} I$ and $2 S+1 \wedge_{i}^{(\sigma)} I I$ may be written

$$
\begin{equation*}
\psi_{I}=\sum_{i} \psi_{i} c_{i I}, \tag{10.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{I I}=\sum_{k} \psi_{k} c_{k I I} \tag{10.1b}
\end{equation*}
$$

respectively. In (10.1) Ψ_{i} and Ψ_{k} are codetors of $\quad 2 S+1 \wedge_{i}^{(\sigma)}$ symmetry. Let

$$
v_{i k}=\left\langle\Psi_{i}\right| \mathfrak{b}\left|\Psi_{k}\right\rangle
$$

$V_{i i}$ is the total energy of the codetor Ψ_{i} and the off-diagonal elements $V_{i k}$ are very small. The energies corresponding to Ψ_{I} and $\psi_{\text {II }}$ are

$$
\nabla_{I}=\sum_{i k} c_{i I} c_{k I} V_{i k},
$$

and

$$
V_{I I}=\sum_{i k} c_{i I I} c_{k I I} V_{i k}
$$

The conventional notation implies that $V_{I}<V_{I I}$, and as $\quad\left|V_{i k}\right| \ll\left|V_{i i}\right|$, both V_{I} and $V_{\text {II }}$ are dominated by the energy corresponding to the codetors with the absolutely largest coefficient in Ψ_{I} and $\Psi_{I I}$. As the internuclear distance varies $V_{i i}$ will also vary and its value relative to other diagonal terms will change. The "non-crossing" rule ${ }^{(70)}$ may be interpreted as the statement that the potential energy curves of two electronic states of the same symmetry species cannot cross. If V_{I} is to remain below $V_{\text {II }}$,

TABLE 19 Part I ${ }^{3} \Sigma \overline{9}$ IV eigenvectors
the dominant codetor in Ψ_{I} must always be that with the lowest energy. If some of these energies are degenerate the coefficients of the appropriate detors will be nearly equal. A rapid variation of the coefficients defining a wave function with respect to the codetors is a consequence of the noncrossing rule. In Table 19 the coefficients of the ${ }^{3} \sum_{g} I V$ and ${ }^{3} \sum_{g}^{-V}$ states are seen to vary rapidly as R varies. The distortion of the potential curves (fig. 16) in the region of $R=2.6$ bohr indicates an avoided crossing. The distortion of the upper curve at about 2.5 bohr indicates an avoided crossing with a higher level not shown in the diagram. Several other examples are evident in Figs. 17 to 20.

The initial results from the natural spin-orbital analysis option of SECS¢L (Appendix VII) indicated that, for the atomic and molecular states examined, the VCI wave functions produced a set of natural spin-orbitals which was identical to the set of orthonormal symmetry adapted molecular spin-orbitals. The occupation numbers of the natural spin-orbitals forming the frozen shell were unity, and the values for the remaining natural spinorbitals could easily be estimated by inspection of the wave function. Only with the complete CI atomic wave function was the natural spin-orbital basis different from the orthonormal spin-orbital basis. Little use was made of the natural spin-orbital analysis option because the time taken to construct and diagonalize the first order density matrix for a given energy level was almost as great as that taken to construct and solve the secular equation for which the energy level was a solution. It was felt that use of this option would add little to the present investigation of the VCI method. A valuable indication of the merits of the VCI method can be made in view of some recent work by Dixon (71). Using the integrals output by the program INTRA (Appendix VI) he calculated the open-shell SCF energies of the O_{2} and S_{2} molecules in their $X^{3} \Sigma_{g}^{-I}$ ground state at a number of internuclear separations. The VCI method produces much better results than the

SCF method for oxygen at each bond length (see Table 17) and also predicts the dissociation products correctly, whereas the SCF energies indicate dissociation products of atoms in the ${ }^{1} \mathrm{~S}$ state. This is yet another. example of the failure of the SCF method to predict correct dissociation products. The electron correlation introduced by even the π-orbital VCI is sufficient in the case of O_{2} to cause a significant drop in the total energy at each bond length compared with the SCF value. Examination of the results for S_{2} given in Table 18 show that the SCF gives better results than the VCI for bond lengths less than 4.0 bohr. The potential curve for the SCF results is a little deeper and rather more steep than the VCI curve but, as in the O_{2} calculation, the dissociation products are incorrect as, even at $R=4.8$ bohr, the energy of the $X^{3} \Sigma^{-} I \quad$ state is above that of the $3^{P}+3^{3}$ energy of the separated atoms. A single configuration wave function lacks electron correlation and in general this deficiency can be partly remedied by using a CI. The CI will cause a lowering of the electronic energy with respect to the single configuration value. In the case of the VCI wave function the amount of electron correlation introduced is restricted by excluding codetors which represent excitations from the inner shell π-orbitals. As was mentioned earlier the VCI for the sulphur atom produced an energy inferior to that of the SCF, but a complete minimal basis set CI was slightly better. The improvement in the energy in the atomic case is due entirely to the inclusion of excitations from the inner shell p-orbitals in the wave function. It may be reasonably assumed that the inclusion of excitations from the inner shell π-orbitals in S_{2} will cause a substantial decrease in the total energy in the correct part of the potential curve, this may also improve the values of the spectroscopic constants. The inference is that whilst the VCI method is rather good at describing states of the first row molecules, it may not be quite so good for other diatomic molecules. An examination of the VCI method in greater
detail for S_{2} must wait until SECS $\varnothing \mathrm{L}$ has been modified to handle a far greater number of detors than the present limit of 120.

CHAPTER 11

CONCLUSION

In the preceding chapters of Part II, the method of configuration interaction has been examined in detail. Methods for calculating CI wave functions and the less accurate valence configuration interaction wave functions of atomic and molecular systems have been described. It has been shown that the VCI method produces results which are in good agreement with experimental values when small atoms and molecules such as oxygen and O_{2} are examined. Whilst the absolute values of the energies of the various states of S_{2} calculated by means of the VCI method are not too good, the relative positions of the low-lying energy levels are in good agreement with the experimental values ${ }^{(68)}$. A disappointing result of the work on both atomic and diatomic sulphur is that the SCF energies are slightly better than those for the VCI. The calculation of the VCI and complete minimal basis set CI energies, for the ${ }^{3} \mathrm{P}$ ground state of the sulphur atom clearly indicate that the contributions from detors corresponding to excitations from inner shell 2p-orbitals cannot be neglected. This neglect may also explain why the ${ }^{1} D$ and ${ }^{1} S$ levels of the sulphur atom are close together in comparison with experimental values ${ }^{(68)}$. If the detors which correspond to excitations from the inner shell π-orbitals were to be included in the S_{2} wave functions a lowering of the energy of at least twice the amount calculated in the atomic system could be expected. The poor agreement of the S_{2} spectroscopic constants can be attributed to the VCI method, although difficulties can arise in the numerical analysis involved in the calculation of these quantities.

A very favourable aspect of the CI method in general is the ease with which it may be implemented on a digital computer, and the flexibility of
the method which, by its very nature, permits the examination of various low-lying excited states in addition to the ground state. The present implementation is designed to achieve flexibility with minimum effort. Consequently, it is possible to perform complete minimal basis set CI calculations. Having calculated the matrix elements between the appropriate detors for the complete CI, the energies corresponding to various groups of detors in the complete wave function can be obtained with ease. Similarly it is possible to perform an extensive VCI calculation and to then examine the effects of keeping certain of the valence shell molecular orbitals frozen. The π-orbital VCI calculations discussed in Chapter 10 illustrate the use of this feature.

The SCF calculations of Dixon (71) took slightly longer than the VCIs for both oxygen and sulphur, so that the return in information from a VCI calculation is much greater. It is surprising that so few ${ }^{(10)}$ large VCI calculations have been attempted. There are problems in performing any type of CI calculation, but these problems are really no different from those encountered in SCF calculations which employ large bases of Gaussian-type orbitals.

The performance of the programs listed in the appendices is highly satisfactory. In the light of experience minor improvements were introduced into most of the programs during the production of the results quoted in Chapter 10. These made the programs easier to use and some resulted in a reduction of the amount of data supplied on punched cards.

The calculations on S_{2} were almost at the limit of the range of SECS ϕ_{L} (Appendix VII) and certain major improvements, not apparent with the smaller O_{2} molecule, have become obvious during the course of the S_{2} work. These improvements will necessitate some considerable rewritting of the program. Perhaps the most pressing requirement is to make more efficient use of the array IDIFF (see Chapter 8), which is used in the
evaluation of the off-diagonal matrix elements between detors. In the present program this array has to be constructed each time the bond length of the molecule or the symmetry species of the detors is changed. This process can occupy more than 50% of the total CPU time for a given problem, which consists of the computation of the matrix elements between detors, construction of the secular equation and its solution. The array IDIFF does not depend on the bond length of a diatomic molecule. The present version of the program only dumps IDIFF on disc if it is too big for the available core store; it is overwritten later in the calculation. Without substantial rewriting and increasing the current storage requirements it is not possible to dump the array unconditionally and read it into core when required later. Naturally this improvement will speed the natural spin-orbital analysis since the array IDIFF, in a shortened form may be used there. This will then make the construction of the first order density matrix less expensive in terms of CPU time.' A result of this improvement will be the relative ease of computation of molecular properties, such as dipole moments, since $\langle\mathfrak{D}\rangle=\operatorname{Tr}(\underline{\gamma} \underline{p})$, where \mathfrak{D} is a one-electron operator, \underline{Y}, the first order density matrix and \underline{P} the matrix of integrals of the one-electron property over the same orbital basis as $\underline{\chi}$.

The ease with which the matrix elements between codetons of the same symmetry species may be projected from the matrix elements over the appropriate detors, compensates for the time required to evaluate the latter. Certainly in O_{2} this feature reduced the CPU time by about $\frac{1}{3}$.

In order to increase the number of detors that can be included in a CI wave function, a scheme in which only the non-zero matrix elements are stored is being investigated. At the same time, the possibility of only storing a list of non-redundant non-zero integrals over the orthonormal molecular orbitals is being considered. The integral generation programs produce non-redundant lists of integrals over the atomic orbitals, but the
lists contain zeros. However, the very rapid access to all of the integrals required in the calculation, which is necessary in the SCF procedure, is not so important in the CI process, since the list need only be scanned once or twice.

Even without the improvements mentioned in the preceding paragraphs, SECS \varnothing L may be used to provide many more useful results. In addition to the work reported here, calculations on other excited states of S_{2} are in progress. The triplet and singlet Π_{g} states are of particular interest, as the lowest levels of both states lie close to the ${ }^{3} P+{ }^{3} P$ energies of the separated atoms. Since the relative positions of many of the states of S_{2} are not known with any certainty this invites further study. Calculations of the wave functions for the diatomic molecules F_{2} and O_{2}^{3-} are in progress, and a calculation on CN is being considered. The possible use of Gaussian type orbitals, rather than the slater-type so far used, is being investigated in connéction with work on polyatomic molecules. The general theme of the proposed research is to evaluate the VCI method. The full potential of both the VCI and CI methods remains. to be examined and exploited.

APPENDIX I

ATOMIC UNITS AND CONVERSION FACTORS

For atoms and molecules the Hamiltonian is made up from terms which represent the electrostatic interactions of the particles and the kinetic energy of the electrons. Since the nuclear motion may often be regarded as a quasi-static process as far as the electrons are concerned ${ }^{(72)}$, it is justifiable to disregard the kinetic energy of the nuclei, and hence their Laplacian operators. The Schrodinger equation for a system of N electrons moving in the potential field of a fixed framework of M nuclei may then be written

$$
\begin{equation*}
\left(\frac{m^{2}}{2 m_{e}} \sum_{i=1}^{N} \nabla_{i}^{2}+\left(E_{E}-V_{E}\right)\right) \Psi=0 \tag{I.1}
\end{equation*}
$$

In (I.1) V_{E} is the potential energy operator:

$$
V_{E}=-\sum_{K=1}^{M} \sum_{i=1}^{N} \frac{Z_{K} e^{2}}{r_{i k}}+\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{e^{2}}{r_{i j}}
$$

The first term in V_{E} represents the nuclear-electron attraction energy and the second the electron-electron repulsion energy. In (I.1) E_{E} is the electronic energy and the first term is the kinetic energy operator for all the electrons. Both the value of E_{E} and its units will depend on, (a) the units of f, Planck's constant divided by 2π, me the electron rest mass, and e the electron charge, and
(b) the currently accepted values of these quantities.

Shull and Hall (75) proposed the system of primary units in which m_{e}, e, and have the value unity. In the system of primary units the unit of energy is the hartree:

1 hartree $=\frac{m_{e} e^{4}}{m^{2}}$
and the unit of length is the bohr:

$$
1 \text { bohr }=\frac{\operatorname{mr}^{2}}{\mathrm{~m}_{\mathrm{e}} \mathrm{e}^{2}}
$$

Rewriting (I.1) in these units gives

This form of Schr*dinger's equation is used throughout this thesis, and is independent of the vagaries in measurement of m_{e}, e, and \neq. For purposes of comparison with experimental results it is necessary to convert from the system of primary units to some system of secondary units, such as SI units. The values of the fundamental physical constants used in the conversion factors are given in Table I-1, and are taken from a more complete table of fundamental constants compiled by Cohen and DuMond (74). The conversion factors for various units of energy are given in Table I-2. All masses are measured on the unified nuclidic mass scale ${ }^{(57)}$, in which the mass of the ${ }^{12} \mathrm{C}$ nucleus is taken to be 12 atomic mass units (sometimes abbreviated am, but the symbol u is used to indicate values on the unified nuclidic mass scale).

TABLE I-1. FUNDAMENTAL PHYSICAL CONSTANTS

Constant Symbol Value SI unit

Speed of light in a vacuum	c	2.997925	$\times 10^{8} \mathrm{~ms}^{-1}$
Elementary charge	e	1.60210	$\times 10^{-19} \mathrm{C}$
Avagadro constant	N_{A}	6.02252	$\times 10^{26} \mathrm{Kmole}^{-1}$
Mass unit	u	1.66043	$\times 10^{-27} \mathrm{~kg}$
Electron rest mass	$m e$	9.10908	$\times 10^{-31} \mathrm{~kg}$
Planck constant	h	6.62559	$\times 10^{-34} \mathrm{Js}$
$h / 2 \pi$	\%	1.054494	$\times 10^{-34} \mathrm{Js}$
Fine structure constant	α	7.29720	$\times 10^{-3}$
Rydberg constant	$\mathrm{R}_{\boldsymbol{\infty}}$	1.0973731	$\times 10^{7} \mathrm{~m}^{-1}$
Bohr radius	a_{0}	5.29167	$\times 10^{-11} \mathrm{~m}$

TABLE -2 Conversion Factors for Energy units

Electron Volts
2.721070×10^{1}
6.24181×10^{18}
1
1.23981×10^{-4}
8.61705×10^{-5}
2.6127×10^{22}
4.3363×10^{-2}
5.60985×10^{35}

$\stackrel{\infty}{T_{0}}$		$\stackrel{\sigma}{1}_{0}^{\square}$		$\stackrel{\cong}{\underset{\sim}{N}}$	\cdots	No	$\stackrel{6}{0}$
\times		x	x	x	$\stackrel{\square}{*}$	-	x
$\stackrel{\sim}{\square}$		\bigcirc	$\stackrel{\square}{\square}$	+	∞	\cdots	\sim_{n}^{n}
\%		N	¢0	$\stackrel{ }{\circ}$	${ }_{\sim}^{\infty}$	$\stackrel{\text { ® }}{ }$	$\stackrel{\sim}{\sim}$
®		0	$\stackrel{\infty}{\circ}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\sim}$	す	∞
$\dot{+}$	\leftharpoondown	\checkmark	$\stackrel{-}{-}$	$\stackrel{-}{-}$	$\dot{\square}$	${ }^{\circ}$	-

$\stackrel{r}{0}_{0}$		$\stackrel{1}{\circ}$	$\begin{aligned} & \varphi_{0} \\ & i_{0} \\ & \times \\ & \times \end{aligned}$	$\stackrel{O}{\mathrm{O}}_{\mathrm{O}}$	$\tilde{1}_{0}$	Mo
\times		in		x	\times	
∞	N	$\stackrel{\sim}{m}$	$\stackrel{\infty}{\sim}$	$\stackrel{+}{*}$	-	¢
\%	$\stackrel{1}{\sim}$	in	6	O	n	6
N	$\hat{6}$	ก		\bigcirc	ก	O
$\dot{\sim}$	\dot{m}	$\dot{\text { d }}$	$\dot{\sim}$	\square°	-	$\dot{\sim}$

॥ ॥ \| \| \| \| \| ॥

$$
\begin{aligned}
& 1 \text { Hartree } \\
& 1 \text { Joule } \\
& 1 \text { Electron Volt } \\
& 1 \mathrm{~cm}^{-1} \\
& 1 \mathrm{o}_{\mathrm{K}} \\
& 1 \mathrm{kcal} \\
& 1 \mathrm{kcal} \text { mole } \\
& 1 \mathrm{~kg} .
\end{aligned}
$$

" " " " " " " "

$$
\begin{aligned}
& 1 \text { Hartree } \\
& 1 \text { Joule } \\
& 1 \text { Electron volt } \\
& 1 \mathrm{~cm}^{-1} \\
& 1{ }^{o_{\mathrm{K}}} \\
& 1 \mathrm{kcal} \\
& 1 \mathrm{kcal} \mathrm{~mole}^{-1} \\
& 1 \mathrm{~kg} .
\end{aligned}
$$

APPENDIX II

MOLECULAR ORBITALS FOR THE GROUP D_{∞} :

The complex Slater-type orbitals defined in (7.16) are suitable basis atomic obritals for the group $D_{\infty h}$ because the factor $\exp (j m \phi)$ is an eigenfunction of the rotation operator of the group (39). For the purposes of this appendix the notation $\varphi_{C}(n, I, m, \zeta) \quad$ will be used to denote a complex Slater-type orbital defined with respect to a nucleus C in the coordinate system of Fig. 15. By consideration of the effect of each of the four basic operations of the group (see Table 5.) on a point it is easily shown that

$$
\begin{aligned}
& \mathfrak{a}_{C_{\eta}} \varphi_{A}(n, 1, m, \zeta)=\varphi_{A}(n, 1, m, \zeta) \exp (j m \eta) \\
& \mathfrak{0}_{i C_{\eta}} \varphi_{A}(n, 1, m, \zeta)=(-1)^{I} \varphi_{B}(n, 1, m, \zeta) \exp (j m \eta), \\
& \mathfrak{a}_{\sigma C_{\eta}} \varphi_{A}(n, 1, m, \zeta)=
\end{aligned}
$$

and

$$
\mathfrak{D}_{i \sigma C_{\eta}} \varphi_{A}(n, 1, m, \zeta)=(-1) l_{B}(n, 1, m, \zeta) \exp (-j m \eta)
$$

A similar set of results is obtained for $\quad \varphi_{B}(n, l, m, \zeta) \quad$ Using these relations and the projection operator defined in (7.4) the following SAMOs are obtained:

$$
\begin{aligned}
& \sigma_{G}: \varphi_{A}(n, 1,-0, \zeta)+(-1)^{1} \varphi_{B}(n, 1,0, \zeta), \\
& \sigma_{u}: \varphi_{A}(n, 1,0, \zeta)-(-1)^{1} \varphi_{B}(n, 1,0, \zeta), \\
& \pi \frac{ \pm}{g}: \varphi_{A}(n, 1, \pm 1, \zeta)+(-1)^{1} \varphi_{B}(n, 1, \pm 1, \zeta), \\
& \pi \frac{ \pm}{u}: \varphi_{A}(n, 1, \pm 1, \zeta)-(-1)^{1} \varphi_{B}(n, 1, \pm 1, \zeta), \\
& \delta \frac{ \pm}{g}: \varphi_{A}(n, 1, \pm 2, \zeta)+(-1)^{1} \varphi_{B}(n, 1, \pm 2, \zeta),
\end{aligned}
$$

$$
\begin{aligned}
& \delta \frac{ \pm}{u}: \varphi_{A}(n, 1, \pm 2, \zeta)-(-1)^{1} \varphi_{B}(n, 1, \pm 2, \zeta) \\
& \gamma \frac{ \pm}{g}: \varphi_{A}(n, 1, \pm 3, \zeta)+(-1)^{1} \varphi_{B}(n, 1, \pm 3, \zeta) \\
& \gamma \frac{ \pm}{u}: \varphi_{A}(n, 1, \pm 3, \zeta)-(-1)^{1} \varphi_{B}(n, 1, \pm 3, \zeta)
\end{aligned}
$$

The symbol to the left of each molecular orbital is the usual spectroscopic notation: if the modulus of the angular momentum m is $0,1,2,3, \ldots$ then the orbital is designated $\sigma, \pi, \delta, \gamma, \ldots$ and each orbital transforms according to the $\Sigma_{g}^{+}, \Sigma_{u}^{+}, \Pi_{g}, \Pi_{u}, \ldots .$. irreducible representation depending on the parity under the operation of inversion. The symmetry species of a molecular orbital is defined by m and the subspecies by the sign of m and the inversion parity. Within a given subspecies the molecular orbitals are not orthogonal, but orbitals belonging to different subspecies are orthogonal. To identify specific molecular orbitals an additional notation may be used and it is best illustrated by some examples:

$$
\begin{aligned}
& 1 \mathrm{~s} \sigma_{g}=\varphi_{A}(1,0,0, \zeta)+\varphi_{B}(1,0,0, \zeta), \\
& 1 \mathrm{~s} \sigma_{u}=\varphi_{A}(1,0,0, \zeta)-\varphi_{B}(1,0,0, \zeta), \\
& 2 p_{0} \sigma_{g}=\varphi_{A}(2,1,0, \zeta)-\varphi_{B}(2,1,0, \zeta), \\
& 2 p_{+} \pi_{g}=\varphi_{A}(2,1,1, \zeta)-\varphi_{B}(2,1,1, \zeta), \\
& 2 p_{-} \pi_{u}=\varphi_{A}(2,1,-1, \zeta)+\varphi_{B}(2,1,-1, \zeta),
\end{aligned}
$$

In calculations on the electronic structure of homonuclear diatomic molecules it is assumed that the basis atomic orbitals defined for one nucleus have a one to one correspondence with those on the other.

To determine the linear combinations of detors which are eigenfunctions of the reflection operator $\left(\sigma_{\mathrm{XZ}}\right)$, it is necessary to know the effect of this operator on the SAMOs. Since any plane of reflection containing the internuclear axis is equally possible, choice of a particular plane will not alter the final result; the $x z$-plane (Fig. 15) was chosen for the present calculations. The properties of the SAMOs under reflection in this plane are easily determined since this operation merely changes the sign of m, for example

$$
\sigma_{x Z} \pi \frac{ \pm}{g}=\pi \underset{g}{\mp}
$$

and

$$
\sigma_{x z^{\pi}} \frac{ \pm}{u}=\pi \underset{u}{\bar{u}}
$$

The symmetry properties of the molecular orbitals are invariant under a unitary transformation so that the properties of an orthonormal set of SAMOs may be obtained by inspection of the non-orthonormal set. As an example, consider the orbital

$$
\varphi=c_{1}\left(1 s \sigma_{g}\right)+c_{2}\left(2 s \sigma_{g}\right)+c_{3}^{\prime \prime}\left(2 p \sigma_{g}^{\prime}\right)
$$

reflection in the $x z-$ plane leaves this orbital unchanged as each of the σ-molecular orbitals is invariant under $\sigma_{\mathbf{X Z}}$ however the orbital

$$
\varphi_{+}=c_{1}\left(2 p_{+} \pi_{g}\right)+c_{2}\left(3 d_{+} \pi_{g}\right)
$$

is carried into

$$
\varphi_{-}=c_{1}\left(2 p_{-} \pi_{g}\right)+c_{2}\left(3 d_{-} \pi_{g}\right)
$$

since the sign of m is changed by $\sigma_{x z}$ 。

APPENDIX III

UTILITY ROUTINES

The subprograms listed in this appendix are used by several of the programs listed in Appendices IV-VIII. The subroutines TQL2 and RED2 constitute the $Q R-A I g o r i t h m(47,48)$ and are $F \emptyset R T R A N V$ versions of routines written, in F \neq RTRAN IV by the staff of the University of Leicester Computer Laboratory. The author expresses his thanks to the Director for permission to include these routines.

```
*FORERAN LID
        GUBROUTINE LNTR(PRNAHIE,NO)
C.....VENBION 3.
        'RazM PMNMAL
        DATA TR/O/
        TN(N) 1,3,1
    I CAJT CITTR(I)
        WNIN:(TN,2) MRNAME,I
    z FONMAT" NUMBBR OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM ',AG,
        I'}=\mp@subsup{\prime}{}{\prime},I5
    3 RETURN
        IND
* foirtran lib
        SUBROUTINA LRROR(A)
        IATA IDNO2/0/
        THKT \
        WRITS(IDNO2,1) A
    1 FORNAL (1HO,15AB)
        CALT LEXIT
        RETURN
        ZIND
*FORTRAIT LIB
    INTJGLR FUNCTION IPAR(N)
C.....IF N IS EVEN THEN IPAR = 0,
C.....IF N IS ODD TILEN IPAR = 1.
C.....*** NTLLAS BASIC LANGUAGE ***
    101,81, 1,-0.4
    101,81,31,0.4
    121,32,0,1
    127,32,81, 0
    113,82,0, IPAR+0.4
    121,82,0,*03000000
    113,32,0,IPAR
    RITURN
    END
* Fortran Lis
        SUBRDUTINE QUIT(PRNAME,NO)
C.....VLRSION 2.
        TEXT PRNAME
        DATA LP/O/
        IF(NO) 1,3,1
    1 CALT CNTR(I)
        WRITE(IP,2) PRNAME,I
    2 FORMAT(` NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM `,A6,
        I' =',I5)
    3 RITURN
        END
*FORTRAN LIB
        SUBRCUTINE TQL2(N,EPS,NZ,Z,D,E,NN)
        DINLINSION Z(NZ,NZ),D(NZ),E(NZ)
C THIS SUBROUTINE GIVES ALL THE EIGENVALUES AND EIGENVECTORS OF A
C TRIDIAGONAL MATRIX
        Clear NN
        IF ( N .LT. 2 ) GOTO 1
        DO 10 I = 2,N
    10 E(I-1)=E(I)
```

```
    CThinR F,B, (N)
    10 20 L = 1,N
    Cligar J
    H=NI\mp@subsup{S}{}{*}(NBS}(D(L))+ABS (E(L))
    IF ( B .Gu. II ) GOTO 2
    D = II
    2 DO 30 in = L,N
30 IF ( NBS(I(II)) .IN: B ) Goro 3
    3IF ( in .NG. L ) GOTO 4
    5 IF (J ..NQ. 30 ) GOTO 6
        J = J:1
        P = ( D ( I T 1 ) - D ( I ) ) / 2 * E ( L )
        R=SqRT(p**2 +1)
        IF ( P .LT. O ) GOTO 7
        H}=D(T)-D(L)/(P+R
        goTO 111
    7 H = (L) - E(L)/(P-R)
111 DO 40 I = L,N
    40 I(I) = D(I) - H
    F= F%H
    P=(W)
    C = 1
    clejar is
    IF ( M . W?. L ) GOTO 3
    NK = - (II-1)
    MKIN = -T,
    DO 50 II = INK,KKK
    I = -II
    G=C*Z(I)
    H}=C*
    IF ( ABS(P) .LT. ABS(E(I))) GOTO 9
    C= L(I)/P
    R=SCRT(C**2+1)
    S(I+1)=S*P*R
    S = C/R
    C = 1/R
    GOTO 110
    9 C = P/E(I)
    R = SQRT(C**2+1)
    Z(I+I)=S*E(I)*R
    S = 1/R
    C=C/R
11) P=C*)(I) - S*G
    D(I+1) = H+S*(C*G + S*D(I))
    DO 50 K = 1,N
    H}=\textrm{Z}(\textrm{K},\textrm{I}:1
    Z}(\textrm{K},\textrm{I}+1)=S*Z(K,I)+C*
    Z(I,I) = C*Z(K,I) - S*H
5) CONIINU.
    3 L(L) = S*P
        D(L) = C*P
        IF ( ABS(D(L)) .GT. B ) GOTO 5
    & D(L) = D(L) + F
2) CONTIINUL
    DO 70 I = 1,N
    K=I
    P=I(I)
    IF ( I .EQ. N ) GOTO 11
    II = I %I
    DO SO J = II,N
```

```
            IF ( I (J) .GE. P ) GOTO }8
            K= J
            P= N(J)
CO CONTINUL
    11 IF ( K .NQ. I ) GOTO 13
        D (K) = D(I)
        I(I) = P
        DO OU J = 1,N
        P= Z(J,I)
        Z(J,I) = Z(J,K)
    20 Z(J,K) = P
    13 CONIINUS
    70 Coviminus
    COO RITURN
    1 }E(1)=Z(1,1
        Z(1,1)=1.0
        GO TO 600
    6 NN=1
        RUTURN
    IND
```

* Fortran lib
SUBROUTINA TRED2(N,TOL,NA,A,Z,D,E)
C THIS SUBRCUTINE TRIDIAGONALISES A SYMETRIC MATRIX
DILENSION $A(N A, N A), Z(N A, N A), D(N A), Z(N A)$
DO $10 \mathrm{I}=1, \mathrm{~N}$
DO $20 \mathrm{~J}=1, \mathrm{I}$
$Z(I, J)=A(I, J)$
20 CONTINUS
10 COMTINUE
IF (N .LT. 2) GOTO 1
$M=-N$
$M=-2$
DO 30 II $=M$, MM
$I=-I I$
$\mathrm{I}_{\mathrm{L}}=\mathrm{I}-2$
$F=Z(I, I-1)$
CLuAR G
IF (I . DQ. 2) GOTO 2
[10 $40 \mathrm{~K}=1, \mathrm{~L}$
$40 \mathrm{G}=\mathrm{G}+\mathrm{Z}(\mathrm{I}, \mathrm{K}) * \mathrm{Z}(\mathrm{I}, \mathrm{K})$
$2 H=G \div F * F$
IF (G .GT. TOL) GOTO 3
$Z(I)=F$
Cliear in
GoTO 111
$3 \mathrm{~L}=\mathrm{L} 1$
IF (F .GA. O) GOTO 4
$\mathrm{L}(\mathrm{I})=\operatorname{SQRT}(\mathrm{H})$
$G=E(I)$
GoTO 7
$4 \mathrm{~S}(\mathrm{I})=-\operatorname{SQRT}(\mathrm{H})$
$G=\mathbb{I}(I)$
$7 \mathrm{H}=\mathrm{H}-\mathrm{F} * \mathrm{G}$
$Z(I, I-1)=F-G$
Cluar r
DO $50 \mathrm{~J}=1$, I
clear G
$Z(J, I)=Z(I, J) / H$
DO $60 \mathrm{~K}=1, \mathrm{~J}$

```
    CO G=G + Z(J,K)* Z(I,K)
        IF ( J ..Ne. L) GOTO 5
        JJ = J.1
    DO 70 K = JJ,L
    70G=G + Z(K,J) * Z(I,K)
    5 E(J) =G/II
    GO F=F+G*Z(J,I)
    INH=F/(II:TI)
    IGSO J = 1,I
    F}=Z(I,J
    E(J) = S(J) - III*F
    G = E S J 
    La) 140 K = 1,J
    L(J,K) = Z(J,K) - F*Z(K) -G*Z(I,K)
    140 comilius
    3u comimus
    111 I(I) = H
    30 compinu,
        CLusl D(1), -(1)
            IO 100 I = 1,N
            L = T-1
            IF ( D(I) .DQ. O ) GOTO 6
            IT (I .El. I ) GOTO 6
            DO 110 J = 1,L
            Clichr G
            DO 120 K = 1,L
    120G=G + Z(I,K) * Z(K,J)
            LD 1.50 K=1,L
            Z(R,J) = Z(K,J) - G*Z(K,I)
    150 CONINUE
    110 comtinus
        6 I(I) = Z(I,I)
            Z(I,I) = 1
            IF ( I .EQ. 1 ) GOTO 100
            DO 130 J = 1,L
            CIEAR Z(J,I),Z(I,J)
    130 cominnus
    100 contlinue
    1 Return
            END
```


*FORTRAN LIb

SUBROUTINE WRITMX (A, NROW, NCOL, MROW, MCOL, LP)
c..... CUTPUT OF REAL MATRIX TO DEVICE NUMBER LP.

DIMUNSION A (NROW, NCOL)
DO $4 \mathrm{I}=1$, MCOL, 5
$\mathrm{J}=\mathrm{I}+4$
$\operatorname{IF}(J-\mathrm{MCOL}) 2,2,1$
$1 \mathrm{~J}=\mathrm{MCOL}$
WRITE(tp,3) I,J

DC $4 \mathrm{~K}=1$, Mianir
$\operatorname{mita}(L p, 5)(A(K, L), I=I, J)$
4 Continue
5 FORMAT(" "1P5E24.10)
RETURN
END

APPENDIX IV

GENDET. A PROGRAM FOR GENERATING DETORS

OF A GIVEN ANGULAR MOMENTUM AND ELECTRON
SPIN FOR THE D ${ }_{\text {© }}$ SYMMETRY GROUP

GENDET is described in Chapters 7 and 8 and, although specifically designed for the $D_{\infty h}$ symmetry group, can be easily adapted to work for both $D_{\infty h}$ and $C_{\infty v}$. As stated in Chapter 7 each detor is Characterized by its axial angular momentum \wedge and the value of the Z-component S_{z} of the electron spin. This program also computes the effect of an inversion on each detor and, for Σ detors the effect of a reflection in the $x z-$ plane. The matrix elements $\left\langle D_{i}\right| \mathfrak{G}^{2}\left|D_{j}\right\rangle$ are computed (D_{i} and D_{j} are detors) and the corresponding matrix is diagonalized to provide eigenfunctions of $:^{2}$. The program outputs the detors on cards in the form of spin-orbital identifiers for each detor. The spin-orbitals are numbered from 1 to NKEEP, and an inversion or reflection on each spin-orbital produces another spin-orbital with an identifier in this range.

This program uses two common disc areas, each of 200 blocks in length and these are devices 58 and 59. The line printer is stream 0 and the card punch stream 5. GENDET requires the subprograms IPAR, TQL2, TRED2 and WRITMX from Appendix III. The store requirements are standard.

Data Specification for GENDET

Card 1. NKEEP, NFULL, MKEEP, INVERS, MREQ, SREQ
FøRMAT (5I5, F10.5)
NKEEP $\quad\left\{\begin{array}{l}=0 \text { to stop execution, } \\ =\text { number of spin-orbitals }\end{array}\right.$

NFULL	$=$ number of spin orbitals frozen (1ST. NFULL orbitals in each detor will be the same).
MKEEP	$=$ number of electrons
INVERS	$\left\{\begin{array}{l}=0 \text { if gerade detors are required } \\ =1 \text { if ungerade detors are required. }\end{array}\right.$
MREQ	```= required value of axial angular momentum,^```
SREQ	```= required value of z-component of electron spin, S_```

Card 2(I) IREF(I), INVR(I), MøM(I)
$F \varnothing$ RMAT (3I5)

IREF $(I) \quad$	signed identifier of the spin-orbital
	resulting from the reflection of the
	I-th spin-orbital in the $X Z-$ plane
$=$	signed identifier of the spin-orbital
	resulting from the inversion of the
	I-th spin orbital
	$(1 \leqslant I \leqslant$ NKEEP $)$

Card 3 F
FØRMAT (9A8)
F is an array which defines the output format of the detors on the lineprinter; it has the form
(('b', I3, IX, mI3, nX, I4, 6X, I4))
or ($(1 \mathrm{Hb}, I 3,1 X, m I 3, n X, I 4,6 X, I 4))$

```
b is a blank; \(1, \mathrm{~m}\) and n have the following numerical values:
```

$$
\begin{aligned}
m & =\text { NKEEP } \\
n & =1+3 \\
21 & =3(21-m)
\end{aligned}
$$

Variations are possible

Restrictions

NKEEP $\leqslant 30$
$0 \leqslant$ NFULL $\leqslant 8$
The program will stop if the number of detors generated for a given set of Λ and S_{z} exceeds 200. At the end of a set of data the first card of the next set is read, execution ceases if NKEEP $=0$.

```
*FORTRAN LIB 4,142,16%
C.....DNTERMINANT GENIRRATOR. THIS PROGRAM GENERATES ALL POSSIBLE
C.....M-ELECTRON DETERMINANTS OBTAINABLE FROM N-SPIN ORBITALS.
C.....THE AXIAL ANGULAR MOMENTUM AND Z-CCMPONSNT OF ELECTRCN SPIN ARS
C.....DETERMINED AND ONLY THOSE DETERMINANTS WITH REQUIRED VALUES APE
C.....OUTPUT TOGNTHER WITH INFORMATION ABOUT TH: BGHAVIOUR OF THE
C.....DLTERMINANT UIDER THE OPERATIONS OF INVERSICN,REFLOCTICN AND S**2
        COMMON IC,INVSRS,LP,M,MLSNP,MMI,MREQ,NC,NFULL,INKHSP,NP,SREQ,
        1ISO(200,30),IFU(30),IGU(30),IRNF (30),INVR(30),MOM(30),F(9),II (30)
        TEXT F
        DINENGICN ICLEAR(6171)
        EQUIVALENC: (IC,ICLEAR)
        TEKT TEMP,SPIN
        LOGICAL FIRST
        DATA ICR/O/
C.....READ DATA.
C.....NINBSP=NUMBER OFF SPIN-GRBITALS.
C.....NFULL=NUMBER OF SPIN ORBITALS FROZEN.
C. ....MKEEP=NUMBER OF ELTCTRONS.
C.....MREQ=REQUIRED VALUE OF AKIAL ANGULAR MGTIENTUM(MZ).
C.....SREQ=PNEUURIDD VALUE GF Z-COMPONENT OF ELNCTRON SPIN(SZ).
C.....IGU(I)=0 IF ORBITAL I IS GERADIS AND 1 IF ORBITAL I IS UNGERADT.
C.....IRBF(I)=RESULT OF AXIAL REFLECTION ON ORBITAL I.
C.....INVR(I)=RESULT OF INVRRSION CN ORBITAL I.
C.....himi(I)=NIAL ANGULAR MONENTUM OF ORBITAL I.
C.....INVERG=0 mOR GRRADE DETEmMINANIS AND I FOR UNGRRADE DETERMINANTS.
    1000 CLIEAR ICIIEAR
        REAL(ICR, 1) NKSEP,NFULL,MKENP, INVERS,MREQ,SRNQ
    1 FORMAT(5I5,F10.5)
        IF(NKNOP.DO.0) GO TO 109
        MSAD(ICR,2) (IRNF (I),INVR(I),MCM(I),I=1,NKLEEP)
    2 FORMAT(3I5)
C.....F IS A VARIABLS FORMAT STATBMENT - SEE SUBRCUTINE SPINIR(OUTPUT OF
C.....RESULTS).
        READ(ICR,999) F
    999 FORMAT (OAS)
        DO }997\mathrm{ I=1,NKNEP
        IF(INVR(I)) 598,997,997
    998 IGU(I)=1
    997 CONTINUS
        IF(INVMRS) 3,4,3
            3 TMMP="UNGMRADE"
        GO TO 5
    4 TEMP= GBRADE'
    5 WRITM(LP, 6) MKMEP,NKTEP,NFULL,TIMP,MREQ, SRINQ
    6 FORHAT('1'/" ',27X,I2,"-ELECTRON DITERMINANTS FROM",I3," SFIM-ORBI
    1TALS(FIRST",I3," ARU FROZEN)"/",,1OX, "DNTERMINAN'S AR:',A0,' WIT
    2H`,I2," UNITS OF AXIAL ANGULAR MOMENTUM AND.",F4.1," UIITTS GF SPI
    3N IN Z-DIRECTION'/)
    MRITE(IP,7)
    7 FONSATC'0",34X, "ORBITALS HAVE FOLLOHING PRONERTILS"/" ",NX, "ORBITA
```



```
    2'SPIN",10K,"AMIAL MOMSTTUM")
    IO 15 I=1,INKESP
    IF(IGU(I)) 9,8,9
    8 TMP= G:RADE*
        GO TO 10
    9 TMMP='UNGORADE"
```

```
    10 IF(MOD(I,2)) 12,11,12
    11 SPIN=' BETA'
    GO TO 13
12 SPIN= 'NLPHA'
13WRITE(IP,14) I,INVR(I),IRGF(I),TGMP,SPIN,MOM (I)
14 FORMAT('` ,I8,13X,I5,14X,I5,20X,A3,14X,AB,7X,I'7)
15 CONTINUE
    WRITL(IP,16)
    16 FORMAT("1'/" NO.",26X, "DETERMINANT",26X, "REFLECTICN INVERGICN",14X
    1,'S**2'/)
        N=NKEEP-NFULL
        M=MKELEP-NFULL
        MM1=M-1
        NP=NTULL+1
        DISPLAY(IP,13)/N,M,NP
        FIRST=.TRUE.
        CLLAR IC
        17 CALL COMBIN(IFU,N,M,FIRST)
        IF(FIRST) GO TO 18
        CALU SETUP
        GO TO 17
    18 CALL SPINIR
        WRITE(LP,103) NC,MKEEP,NFULL,IC
    108 FORMAT('0", 4X,2I4,"-NLECTRON DETERMINANTS WITH FIRST ',I4," GPIN
        IORBITALS FROZRN-",I4," HAVN REQUIRED SYMMETRY AND SPIN VALUES")
        GO TO 1000
    109 STOP
    IND
* FORTRAN LIB
        SUBROUTINE COLATE(IMAST,IQ,M,MAXI,MAX2,IC,ID)
C.....IMAST CONTAINS ORDERED SETS OF CONFIGURATIONS, IQ IS AN ORDIRED
C.....CONFIGURATION TO BE IDENTIFIED WITH ONE OF TINE IMAST.
    CCIMON KC,INVERS,IP
    DIMENSION IMAST(MAX1,MAX2),IQ(MAX2)
    DO 4 I1=1,IC
        I4}=
        DO 2 I2=1,M
        IF(IMAST(I1,I2)-IABS(IQ(I2))) 1,2,1
    1 I 4 =14+1
    2 CONTINUE
        IF(I4) 4,3,4
    3 ID=I1
        GOTO }
        4. CONTINUL
        IF(I4) 5,7,5
    5 WRITM(LP,6)
    6 FORMAT(1HO,9X,100H****COLIATION HAS NOT IDENTIFIED RESULT OF A REF
        ILECTION OR INVIRRSION AS AN CRDERED CONFIGURATION****/)
        STOP
    7 RETURN
        IND
*FORTRAN LIB
    SUBROUTINE CCMBIN(J,N,R,FIRST)
    DIMENSION J(30)
    LCGICAL FIRST
    IF(FIRST) GO TO 5
```

$\mathrm{N} M \mathrm{KK}=\mathrm{N}-\mathrm{K}$
$I=\mathbb{R}+1$
$1 I=I-1$
$\operatorname{IF}(J(I)-N M K-I) 2,4,4$
$2 \mathrm{M}=\mathrm{J}(\mathrm{I})$
DO $3 \mathrm{~L}=\mathrm{I}, \mathrm{K}$
$\mathrm{M}=\mathrm{M}+1$
$J(L)=M$
3 CENTINUE
GO TD 7
$4 \operatorname{IF}(I-1)$ 5,5,1
5 FIRST=.NOT.FIRST
กO $6 I=1, K$
$J(I)=I$
6 CONTINUE
7 Raturn
END

```
* FORTRAN LIB
    SUBROUTINE OUTDET(INDEX,COE,ICOL,ID,F,IC,MKETP)
C.....OUTPUTS RESULTS.
    CCMMON KC,INVERS
    DIMONSICNN INDEX(200),COE (252),ICOL(252),ID(30)
    EIMENSION LIMSET(200,2),OP(20,20),EV(20),WK(20)
    DATA ICP,IDISC,JDISC,IP/5,58,59,0/
    TEXT F(9)
    TEXT TMMP/*SINGLET"/
    WRITR(ICP,14) IC
    14 FORMLAT(' ,I4)
    CLIEAR NBLOCK
    TOL=2**(-347)
X WRITE(IP,14I) (I,INDEX(I),I=1,IC)
X 141 FORMAT(('',2I5))
    EPS=2.0** (-35)
    DO 21 NLN=1,IC
    RIAD(IDISC) I,(ID(J) ,J=1,MKEEP),IRI,IVR,K,IAIPPHA,(ICOL(J),COE(J),
        1J=1, IALPILA)
            IF(IRE) 12,13,12
    12 IRE=ISIGN(INDIX(IABS(IRE)),IRE)
    13 IVR=ISIGN(INDEX(IABS (IVR)),IVR)*(-1)**INVERS
X DISPLAY(IP,5)/I,INDEX(I),IALPHHA,K,ICOL(1)
    I=INDEX(I)
    MRITE(IP,F) I,(ID(J),J=1,MKEEP),IRN,IVR
    IF(IK) 3,1,3
    1 WRITE(TP,2) TEMP
    2 FORMLAT("',99x,A3)
        GO TO }
    3 DO 4 J=1, IALPHA
        ICOL(J)=INDEX(ICOL(J))
    4 CONTINUS
C.....RE-ORDER ICOL SO THAT CONTENTS ARE IN ASCENDING CRDER.
    IRT=IALPHM-1
    IF(IRE) 71,71,41
    41 [O '7 J=1,IRN
        JLIN=ICOL(J)
        IVR=J +1
        DO 6 JJ=IVM,IATMPLA
        IF(JMIN-ICOL(JJ)) 6,6,5
    5 JMIN=ICCL(JJ)
```

```
            ICOL(JJ)=ICOL(J)
            ICOL(J)=JMIN
            CSIN=COE(JJ)
            COE (JJ)=COE(J)
            COE (J)=CMIIN
        6 CONTINUE
        7 CONTINUE
        71 WRITE(LP,8) (ICOL(J), COE (J),J=1,IALPHA)
        8 FORHAT((' ',90X,I10,4X,F7.3))
        9 VRITE(ICP,10)(ID(J),J=1,MKEEP)
    10 FORMAT:" ,32I2)
        TRACE MAX,MIN
        WRITM(JDISC) K,IALPHA,(ICOL(J),COE (J),J=1,IALPHA)
        MIN=ICOL(1)
        MAX=MIN
        IF(K) 17,17,11
    11 IF(IALPH}\=1) 17,17,1
    15 IO 16 J=2,IALPHA
        MIN=MINO(MIN,ICOL(J))
        MAX=MAYO (MAX,ICOL(J))
    16 COMTINU:
    17 IF(NBLOCK) 19,13,19
    13 NBLCCK=NBLCCK+1
        LIMSET(MBLOCK,1)=MIN
        LIMSET (NBLOCK,2) =MAX
        GO TO 21
    19 IF(MIN-LIMSET(NBLOCK,2)) 20,20,18
    20 LIMSET(NBLOCK,1)=MINO(MIN,LIMSET(NBLOCK,1))
        LIMSTT (NBLECK, 2)=MAKO (MAX,LIMSET(NBLOCK,2))
    21 CONTINUE
        RDIIND IDISC
        REMIND JDISC
C.....DIAGONALIZATION OF SPIN OPERATOR MATRIX.
        WITTE(LP,22) NBLOCK
    22 FORMLTT('0',36X,'SPIN OPRRATOR MATRIX HAS",I4," BLOCKS ON DIAGONAL".
        1)
X WRITE(IP,220)
X 220 FORHATT('O',51X, "CONTENTS OF LIMSET'/" ')
K FRITE(LP,221) ((I,J,LIMSET(I,J),J=1,2),I=1,NBLOCK)
X 221 Fcmant ((' ',40X,2(`LIMSET(',I3,',',II,')=',I4,4X)))
    DO 36 NLM=1,NBLOCK
    MIN=LIMSGT(NLM,1)
    MAX=JIMSET (NLM,2)
        IVR=MIN-1
        IRE=MAX-IVR
        CLEAR JMIN
        CLWAR DP,EV,WK
        DO 23 IVAL=MIN,MAX
        READ (JDISC) K,IATPHA,(ICOL(J),COE(J),J=1,IALPHA)
        JMIN=JMIN+1
        DO 23 JVAL=1,IALPILA
        IVAL=ICCL(JVAL)-IVR
        OP (JMIN,KVAL) =COC(JVAL)
        23 CONTINUE
            CALL MAITMK(OP,20,20,IRE,IRE,IP)
            CALL TRWED2(INE,TOL,20,OP,OP,EV,MK)
            CALL TQL2(IRP,EPS,20,OP,EV,TK,NFAIL)
C.....OUTPUT RESULTS FOR CURRENT BLOCK.
        MRITE(IP,24) MIN,MAX
```



```
    1IGENFUNCTIONS AS FOLLOWS*)
    IO 25 IVAL=1,IRE
    EV (IVAL)=SQRT(1.0+4.0*IV (IVAL))
25 CONTINUE
    DO 29 IVAL=1,IRE,5
    JVAL=IVAL+4
    IF(JVAL.GT.IRE) JVAL=IRE
    WRITH(LP,26) IVAL,JVAL, (EV(KVAL), KVAL=IVAL,JVAL)
26 FORMAT("0",33X, MULTIPLICITIEG ( }=2*\textrm{S}+1)\mathrm{ FOR EIGINNFUNCTIONS",IS,"T
    10',I4/(`, 1P5E24.10))
    MRITE(LP,27) IVAL,JVAL
27 FORMAT("O",43K, EIGNNVECTORS",I4," TO ",I4/" ')
    LO 29 IVNIL=1,IRE
    WRITE(IP,23) (OP(KVAL,JMIN),JMIN=IVAL,JVAL)
23 FORMMT(" ",1P5E24.10)
29 CONTINUE
3 6 ~ C O N T I N U E ~
    RW:IIND IDISC
    RWWIND JDISC
    RETURN
    END
```

*FORTRAN LIB
SUBROUTINE PERLUTT(IOTA, IX, M, LMI ,MAX)
C..... PENMUTES ELEMENTS (KI) OF IOTA SO THAT RPSULT IS AN ORDERED
C.....CONFIGURATION WITH K1.LR.K2.LE.K3...LE.KM.
C.....IE=PARITY OF PERMUTATION.
DIMENSION IOTA(MAK)
$I \mathrm{E}=0$
DO 3 II $=1$, MMI
$K 1=I 1+1$
DO $2 \mathrm{JI}=\mathrm{IM}, \mathrm{M}$
$\operatorname{IF}(\operatorname{IABS}(\operatorname{IOTA}(\mathrm{J} 1))-\operatorname{IABS}(\operatorname{IOTA}(I I))) 1,2,2$
1 I2=IOTA(II)
$\operatorname{IOTA}(I I)=\operatorname{IOTA}(J 1)$
$\operatorname{IOTA}(J 1)=I 2$
$I E=I E \cdot 1$
2 CONTINUE
3 CCNTINUL
$I \mathrm{~S}=(-1) * * \mathrm{IE}$
ROTURN
IND

* Fortran Lib
SUBRCUTINE SETUP
C..... CCMPUTES IE AND SZ FOR DETERMINANT NC+1 AND DETERMINES SMMETRY.

$\operatorname{IISO}(300,30), \operatorname{IFU}(30), \operatorname{IGU}(30), \operatorname{INBF}(30), \operatorname{INVR}(30), \min (30), \operatorname{In}(3)$
TETT F
$\mathrm{NC}=\mathrm{NC}+1$
$I C=I C+1$
CLEAR ISZ,MZ, INVERT
IC $4 \mathrm{I}=1$, H
$J=I F U(I)+N F U L U$
$\operatorname{ISO}(I C, I)=J$
$\operatorname{IF}(\operatorname{liod}(J, 2)) 1,2,1$
1 ISZ $=1 \approx Z+1$
GO TU 3

```
    2 ISZ=ISZ-1
    3MZ=MZ+MCM(J)
        INVERT=INVERT+IGU(J)
    4 CONIINUE
X HRITI(IP,100) (IFU(I),I=1,M),ISZ,MZ,INVERT
X 100 FORMAT("',20X,12I3,4X,'ISZ=',I2,'MZ=',I2,' INVIRT=',I2)
        IF(NRWQ-MZ) 7,5,7
    5 IF(MOD(INVERT,2)-INVERS) 7,6,7
    6 IF(SREQ-0.5*ISZ) 7,3,7
    7 IC=IC-1
        RETURN
        8 IF(IC-200) 11,11,9
C.....TCO MANY DETERMINANTS.
    9:RRITE(EP,IO) (IFU(I),I=1,M)
    10 FORMAT('0',37X, 'TOO MANY DETERMINANTS - LAST ONE GENERATED WAS'//
        1'`,15X,30I3)
        CALL EEXIT
    11 RETURN
        END
* portrain lib
        SUBROUTINE SPINIR
C.....DETERMINES RESULT OF INVERSION,REFLECTICN AND TOTAL SPIN
C.....(S**2) OPRRATIONS.
        COMMON IC,INVIRS,IP,M,MKSEP,MML,MREQ,NC,NFUL工,NKEEP,NP,SRNQ,
            IISO(200,30), IFU (30), IGU(30), IREF (30),INVR(30),MCMI (30),F(0)
                TEXT F
                TEIT TGMP/* SINGLET*/
                DIMSNSION IUO(10,2),ISMOP(10,10),ISPOP(252,10),ICOES(252),ID(30),
            1ICGL(252), ISOR(30), ISOI (30), COE (252)
                BQUIVALENCE (IFU,ID),(ICOEF,COS)
                DIMENSION INDEX(200)
                DATA IDISC/53/
                ClienR INDIEX,NCOUNT,IRE
                IF(IC) 39,39,990
        990 DO 33 NTM=1,IC
        I=NLM
    42 IF(INDEM(I)) 33,43,33
    43 NCCUNT=NCOUNT+1
        INDIX(I)=NCOUNT
        ClimAR ICOEF,COE
        DO 1 J=1,M
        K=ISC(I,J)
        ISOR (J)=IREF(K)
        ISOI (J)=INVR(K)
        1 CONTINUS
C..... PERMUTE EIBMHNTS (KI) OF RESULTING DETERMINANTS SC THAT TIEY FORM
C.....CRDERED DETERIINANES WITH KI.LT.K2.LT.....LT.IM. DETERMINS MIIICH
C.....GREERED DATERNINANTS THESE ARD.
        IN(MRNO) 102,101,102
    101 CALL PERMUT(ISCR,IR,M,MM1,30)
        CALL COIATLS(ISO,ISOR,M,200,30,IC,IRE)
        IRQ=ISIGN(INS,IR)
    102 CALL PBRNUT(ISOI,IV,M,MML,30)
        CALI COLATE(ISO,ISOI,M,200,30,IC,IVR)
        IVR=ISIGN(IVR,IV)
        CLZAR ISMOP,ISPCP,IUO,E
C.....start OF TCTAL SPIN GPGRATOR SECIICN.
C.....DETERMINE WHICII SPATIAL ORBITILG ARE SINGLY OCCURIGD - ONLY
```

```
C.....THESE CONTRIBUT:L TO S**2.
        IF((ISO(I,1)+1)/2-(ISO(I,2)+1)/2) 2,3,2
    2 K=K+1
        IUO(K,1)=ISO(I,1)
        IUO(K,2)=1
    3 DO G J=2,MML
        JORB=(ISO(I,J)+1)/2
        IF((ISC(I,J-1)+1)/2-JORB) 4,6,4
    4 IF((ISO(I,J+1)+1)/2-JORB) 5,6,5
    5 K=K*1
        IUO(K,1)=ISO(I,J)
        IUO(K,2)=J
    CONTINUS
        IF(JORB-(ISO(I,M)+1)/2) 7,8,7
    7 K=K+1
        IUO(K,1)=ISO(I,M)
        IUO(K,2)=N
    C.....IF K=0 THIS DETERMINANT CONSISTS OF DOUBLY OCCUPIRD SPATIAL
    C.....grbitalS and s**2 produces zero - thus it is a SINGLET.
    3 IF(K-1) 29,20,9
C.....S**2 OPERATOR
    9 CLEAR LSP,LSM
    DO 15 IALPHA=1,K
    IF(IPAR(IUO(IALPIIA,1))) 10,15,10
C.....operate on alpha SPIN WIth S-.
    10 LSM=LSM+1
        DO 11 J=1,K
        ISMOP(LSM,J)=IUO(J,1)
    1 1 \text { continus}
        ISNOP(LSM, IALPHA)=IUO(IALPHA,1) +1
        DO 14 IBETA=1,K
        IF(IPAR(ISMOP(LSM,IBETA))) 14,12,14
C.....GPERATE GN bETA SPINS WITH S+.
    12 LSP=LSP+1
        DO 13 J=1,K
        ISPGP(LSP,J)=ISMOP(LSM,J)
    13 CONTINUS
        ISPCP(LSP,IBETA)=ISMOP(LSM,IBETA)-1
    14 CONTINUS
    15 CCINTINUS
C.....ccmpari diterminants resulting from application S+S- with ordergd
C.....determinarts to idemtify thmm and demermine' coefriciznms.
    DO 1G IALPILA=1,LSD
    ICCEF(IALPHA)=1
    16 ConTINUE
        LSM=LSF-1
        IF(LSM) 211,211,161
    161 DC 21 IOUTER=1,LSM
    INLIM=IOUTER+1
    IC 20 IMNER=INLIM,LSP
    clear ibita
    DO 13 J=1,K
    IT(ISPOP(ICUTGR,J)-ISPOP(INNER,J)) 17,13,17
    17 IBE' }\A=
    18 CONTINUS
    IT(IBETA) 20,10,20
    10 ICOMT (INHER)=ICOEF(INNER) +ICOSF (IUUTNR)
    climar icdicf(IOUTer)
    20 conminue
    21 continue
```

C.....detenmine identifirs or determinants that result from s**2.
C.....REASSIGN OCCUPIED ORBITALS.

211 DO 23 IALPHA $=1$, LSP
If(ICOEF(IALPha)) 22,23,22
22 DO $23 \mathrm{~J}=1, \mathrm{M}$
ID (J) $=\operatorname{IsO}(\mathrm{I}, \mathrm{J})$
23 CONTINUS
Do $24 \mathrm{~J}=1, \mathrm{~K}$
INLIM=IUO(J, 2)
$\operatorname{ID}($ INLIIL $)=\operatorname{ISPOP}($ IALPHA, $J)$
24. CONTINUE
C......re-cider id and collate witi iso.

CALL PERMUT (ID,IE,M,MM,30)
CALL COIATE (ISD,ID,M,200,30,IC,ICO)
ICCL (IALPHA) $=1 C O$
$\operatorname{COE}($ IALPH $)=\operatorname{ICOEF}($ IALPHA $)$
C.....oprati dn i-the determinant with sz*(Sz-1). IF(I-ICO) 26,25,26
$25 \operatorname{COE}($ IALPIA $)=F I O A T(I C O E F(I A L P H A))+S R E Q *(S R E Q-1.0)$
$26 \operatorname{COE}($ IALPHA $)=$ SIGN (COE (IALPHA), IE)
23 continue
C...... CUTPUT RESULT.
C.....determinants to bie cutput with first nfull orbitals.
29. $\mathrm{SO} 30 \mathrm{~J}=1$, NFULL
$I D(J)=J$
30 CONTINUE
DO $31 \mathrm{~J}=\mathrm{NP}, \mathrm{MrCeP}$
$\operatorname{ID}(\mathrm{J})=\mathrm{ISC}(\mathrm{I}, \mathrm{J}-\mathrm{NFULL})$
31 CONTINUE
Clear ialpha
IF(K-1) 32,311,33
$311 \operatorname{COZ}(1)=1.0+\operatorname{SREQ}(S R E Q-1.0)$
$\operatorname{ICOL}(1)=I$
Go Tg 35
$32 \operatorname{clent} \cos (1)$
IALPMA=1
$\operatorname{ICOL}(1)=\operatorname{INDIX}(I)$
GO TO 36
$33 \mathrm{DC} 35 \mathrm{~J}=1, \mathrm{LSP}$
$\operatorname{IF}(\mathrm{COE}(\mathrm{J})$) 34,35,34
34 IALPHA=IALPHA 1
$\operatorname{ICOL}(\operatorname{IALPMA})=\operatorname{ICOL}(J)$
$\cos ($ IALPILA $)=\cos (J)$
35 Cominue
 $1 \mathrm{~J}=1$, IALPHA)
DISPLAY(IP, IO) /K,IALPHA
$\mathrm{MATE}(L \mathrm{LP}, 95)(\mathrm{J}, \mathrm{ICOL}(\mathrm{J}), \mathrm{J}, \operatorname{COB}(\mathrm{J}), \mathrm{J}=1, \operatorname{IALPIIA})$
 IF(K) 361,371,361
361 DO $37 \mathrm{~J}=1$, MiLPHA
If(CoE(J)) 362,37,362
$362 \operatorname{IF}(\operatorname{INDEX}(\operatorname{ICCL}(J))) 37,363,37$
363 I=ICOL (J)
Go TO 43
37 Cominus
371 If (imeg) 33,372,33
$372 \operatorname{IF}(\operatorname{Im} \max (\operatorname{IABS}(\operatorname{IRB}))) 33,373,33$
373 I=1abs(I2:
GO TO 43

33 CONTINUE
ENDEILE IDISC
REVIND IDISC
42 FORLAT(",32I2)
CALL OUTDET (INDEX,COE,ICCL,ID,F,IC, MKEEP)
39 RETURN END
*ENDLIB

N
n
in
みN HNMかMサino ino No No

1	2	3			${ }_{6}^{\text {DE }}$	TER	M 8	$\begin{gathered} \text { NANT } \\ 9 \end{gathered}$	10	11	16	17	18	19	20
1	2	3			6	7	8	9	10	12	15.	17	18	19	20
1	2	3			6	7	8	9	11	12	14.	17	18	19	20
1	2	3			6	7	8	10	11	12	13：	17		19	20
1	2	3			6	7	9	10	11	12	16.	17		19	20
1	2	3			6	8	9	10	11	12	1．5：	17	18	19	20
1	2	3			7	8	9	10	11	12	14.	17	18	19	20
1	2	3			7	8	9	10	11	12	13	17	18	19	20

[^3]F゙OLİOWS
N
0
2 FORM TOTALI SPIN EIGENFINCTIONS
$(\overline{2} * S \dot{S}$) FOR EIGENFUVCTIONS 1 TO
EIGENVECTORS 1 TO 2

TO

$\infty 0$

10
H
1

$-\frac{1}{0}$以
$\rightarrow \infty$ $1 P 1$.
$d \leq 17$
$S _N V N$
DETERMIN
롱
$7.0710078119 E 01:$
$7.0710678119 \mathrm{O}=1$
$1.0000000000 \mathrm{E} * 00$
$7.0710678119 E-01$
$=7.0710678119 E-01$
1.00000000 ÖOE*O
$7.0710678119 \mathrm{E}-01$
$\mathrm{E} 7.0710678119 \mathrm{E}-01$
DETERMINANT̈S 5 TO 6 FOZM TOTAL SPIN EIGENFINCTIONS AS GOLLONS
\sim
($\mathrm{a} 2 \times \mathrm{S} 1)$ FOR EIGEVFUVCIIIONS 1 TO
EIGENVECTORS 1 TO 2
EIGENV =CTORS 1 TO
MULTIPLICITIES
$7.0710678119 E=01:$
$7.0710678119 E=01:$
1,00000000 OOE*00
$7.0710678119 E=01$
$\equiv 7.0710678119 E=01$

APPENDIX V
 ØNECEN. A PROGRAM FOR COMPUTING ONE-CENTRE ONE- AND TWO-ELECTRON INTEGRALS OVER COMPLEX

SLATER-TYPE ORBITALS

Analytical expressions are used for the integrals. The indexing scheme for the two-electron integrals is described in Chapter 7. This program computes all the distinct one- and two-electron integrals which arise from a basis set consisting of any combination of s, p, d, or f orbitals on a single centre.

ØNECEN uses one magnetic tape on which the integrals will be written. This tape is device number 1 and the lineprinter is device number 0. The version of $\not \subset$ NECEN listed in this appendix reads the Clebsch-Gordon coefficients from a private disc area which is device number 2. The nonzero values of these coefficients are listed after the data specification. In addition to the subprograms listed the subprogram IPAR (APpendix III) is also required. The storage requirements are standard.

Data Specification for \emptyset NECEN

Card 1
I
FØRMAT (I5)
I $\left\{\begin{array}{l}=0 \text { to stop execution } \\ =1 \text { to continue execution }\end{array}\right.$
Card 2 NXBL $\not \subset C$

FØRMAT (I5)
NXBLØC $\quad=$ number of block at which the integral file is to begin on device number 1.

Card 3, 4. TITLE
F \varnothing RMAT (9A8/6A8)
TITLE is an array of 15 elements (120 characters) which is used to identify the run.

Card 5 NBASIS, CH
БøRMAT (I5, F10.5)

```
NBASIS = number of basis orbitals
CH = nuclear charge (a.u.)
```

$\operatorname{Card} 6(I) \quad \sim N(I), L(I), M(I), Z(I)$
FøRMAT (3I5, F10.5)
$N(I) \quad=$ principle quantum number (q.n.)
of orbital I.
$L(I) \quad=$ angular momentum $q \cdot n$. of orbital I
$M(I) \quad=$ magnetic q. \quad. of orbital I
$Z(I) \quad=$ exponent of orbital I
(1 $\leqslant I \leqslant$ NBASIS)

Restrictions

```
1 \leqslant NBASIS \leqslant 30
    1\leqslantN(I)}\leqslant1
    0\leqslantL(I)\leqslant \leqslant and L(I) < N(I)
    |M(I)|\leqslantL(I)
```

At the end of a set of data the first card of the next set is always read. The last card of the data check should have $I=0$.

NON-ZERO VALUES OF CLEBSCH-GORDON COEFFICIENTS $\mathrm{C}_{\mathrm{Mm}} \mathrm{m}_{2}$ $-\mathrm{Ll}_{1} \mathrm{I}_{2}-$

NLMBEF OF NON-ZERO COEFFICIENTS = 152

Cri(1) $=0.2820947918 C G(\quad 9)=0.2820947918 C G(17)=0.2820947918$ $\operatorname{Co}(13)=0.2523132522 \operatorname{CG}(25)=0.2820947918 \mathrm{CG}(34)=0.2185096861$ $\operatorname{CF}(4$? $)=0.3090193616 \mathrm{CG}(45)=0.2820947918 \mathrm{CG}(46)=-0.1261566261$ $\operatorname{Cr}(50)=0.2820947918 \mathrm{CG}(57)=0.2523132522 \mathrm{CG}(58)=0.2477666951$ $\operatorname{CO}(65)=-0.1261566261 \operatorname{CG}(66)=0.2025006504 \mathrm{CG}(73)=0.2820947918$ $\operatorname{CF}(74)=0.1872237516 \operatorname{CG}(75)=0.241 / 955358 \operatorname{CG}(82)=0.2820947918$ $\operatorname{CG}(89)=0.2185096861 \operatorname{CG}(90)=0.2332966803 \mathrm{CG}(98)=0.2611690283$ $C G(101)=0.2185096861 \quad C G(102)=-0.1430481681 \quad C G(106)=0.0901118758$ $\operatorname{Cr}(107)=0.2207281154 C G(114)=0.220 / 281154 \quad C G(115)=0.2548748737$ $C G(117)=0.2820947918 \quad C G(118)=0.0901118758 \quad \mathrm{CG}(119)=-0.1611970230$ $C G(122)=0.2820947918 \quad C G(130)=0.1840743909$ $C G(141)=0.3090193616$ $C G(147)=0.156078 .3472$ $C G(150)=-0.0901118758$ $C G(166)=-0.1872237516$ $\operatorname{Cr}(178)=0.2477666951$ $C G(187)=0.1946639003$ $C G(195)=0.2396146972$ $\operatorname{CC}(203)=0.2143179006$ $C G(217)=0.2820947918$ $C G(220)=0.2570879339$ $C G(235)=0.2384136135$ $C C_{1}(246)=0.2023006594$ $\operatorname{CG}(250)=0.1261566261$ $C G(259)=0.2455320005$ $C G(263)=-0.1694351773$ $\operatorname{CC}(269)=-0.0825888984$ $\operatorname{CG}(274)=0.0594708039$ $C G(282)=0.2060129077$ $\operatorname{CCO}(285)=0.282094791 .8$ $C G(288)=-0.1778159504$ $C G_{i}(299)=0.2132436186$ $C G(311)=-0.1066218093$ $\operatorname{CG}(322)=0.2102610435$ $\operatorname{CG}(326)=0.1678675040$ $\operatorname{CG}(333)=0.1846743909$ $\operatorname{CG}(338)=-10.1880631 .945$ $\operatorname{CG}(347)=0.0959547329$ $C G(351)=0.1450699201$ $C G(356)=0.2661305457$ $C G(359)=-0.1795148675$ $\operatorname{Co}(371)=0.1628675040$ $\operatorname{CG}(383)=-0.0615581303$ $C G(395)=0.2196104975$ $C G(403)=0.3472346852$ $C G(407)=0.0239614697$ $C G(419)=-0.1661984725$ $\operatorname{Co}(423)=0.1884513543$ $C G(430)=0.2102610435$ $C G(436)=0.3603424623$ $C G(439)=0.0769349432$

$$
C G(142)=-0.0825888984
$$

$$
C G(155)=0.2384136135
$$

$$
C G(163)=0.3371677657
$$

$$
\operatorname{CG}(167)=0.0402992 .560
$$

$$
C G(179)=0.2462325212
$$

$$
C G(193)=0.247 / 666951
$$

$$
C G(201)=-0.1430481681 \mathrm{CG}(202)=0.0594708039
$$ $C G(210)=-0.1880631945 \quad C G(211)=0.1417579666$ $C G(218)=0.1682088348 \quad C G(219)=0.1538698864$ $C G(226)=0.2820947918 \quad C G(234)=0.2335966803$ $C G(242)=-0.0825888984 C G(243)=0.2384136435$ $C G(247)=-0.150 / 840088 C G(249)=0.2023006594$ $C G(251)=0.227184612 \quad C G(258)=0.1628675040$ $C G(261)=0.2335966803 \quad C G(262)=0.0594708039$ $C G(266)=-0.1329807601 C G(267)=0.2004760390$ $C G(270)=0.2000129077 \quad C G(271)=-0.0928023732$ $C G(275)=0.0995225846 \quad C G(276)=0.2217754548$ $C G(283)=0.1621931015 \quad C G(284)=0.2429428385$ $C G(286)=0.1261566261 \quad C G(287)=0.0256449811$ $\operatorname{CG}(290)=0.2820947918 \quad \mathrm{CG}(298)=0.1846743909$ $C G(307)=0.2820947918 \quad C G(310)=0.2611690283$ $\operatorname{CG}(314)=-0.0000000000 \operatorname{CG}(31.5)=0.1901882698$ $C G(323)=0.2535843598 C G(375)=0.2611690283$ $\operatorname{CG}(327)=-0.1175867486 \quad C G(331)=0.2689668306$ $C G(334)=-0.1880631945 \quad C G(335)=0.0535794751$ $C G(339)=-0.0444184102 C G(340)=0.1774203638$ $C G(348)=0.2304758133 \quad C G(350)=0.1628675040$ $C G(352)=-0.1214714193 \quad C G(355)=0.2145613054$ $C G(357)=0.2820947918 \quad C G(358)=-0.0000000000$ $C G(360)=0.0711263802 \quad C G(362)=0.2820947918$ $C G(379)=0.325 / 350079 \mathrm{CG}(382)=0.3198654279$ $C G(386)=-0.2102610435 \quad C G(387)=0.1267921799$ $C G(398)=0.2102610435$ $C G(405)=0.3198654279$ $C G(411)=-0.2035507269$ $C G(420)=0.171 / 865286$ $C G(424)=-0.062 / 275712$ $C G(431)=-0.1404633462$ $C G(437)=0.2820947918$ $C G(440)=-0.0118543967$

$C G(138)=0.3198654279$
$\mathrm{CG}(146)=-0.1802237516$ $C G(158)=0.22072819154$ $C G(165)=0.2820947918$ $C G(170)=0.2820947918$ $C G(186)=-0.1430481681$ $C G(194)=0.1682088348$ $C G(234)=0.2335966803$
$C G(243)=0.2384136435$ $C G(267)=0.2004760390$
$C G(271)=-0.0928023732$ $G(284)=0.2429428385$
$G(287)=0.0256449811$ $C G(298)=0.1846743909$
$C G(310)=0.2611690283$ $C G(331)=0.2689668306$
$C G(335)=0.0535794751$ $C G(382)=0.3198654279$
$C G(387)=0.1267921799$ $C G(399)=-0.0633960899$ $C G(406)=-0.1329807601$ $C G(412)=0.1086473403$ $C G(422)=-0.1329807601$ $C G(428)=0,2548005987$ $C G(432)=0.0313637856$ $C G(438)=-0.2102610435$ $C G(0)=0.0000000000$

```
* Fortran lib 3,1,0
C.....MAIN PROGRAM FOR SINGLE CENTRIE INTEGRAL PROGRAM.
C.....VERSION 2. 12/05/71.
        COMMON /TOALTV CH,DIVV,DIV,I,IA,IB,IC,ICR,ID,J,K,IK,IP,MTD25,NB,
        INBASIS,NI,NP,N2,T1,T2,ZK,ANOMM(30),CG(440),SRI (465) ,FCTRL(25),
        2H(30,30),IN(465,2),L(30),M(30),N(30),S(30,30),TITLTS (15),Z(30)
C.....DEFINE DSVICE NUMBERS,
C.....ICR = CARD READER,
C.....IP =LINE PRINTSR,
C.....MTD25= INTEGRAL CUTPUT DEVICE NUMBER (TAPE OR DISC),
C....ID = DEVICE NUMBER FOR CONSTANTS TABLE.
    CLEAR ICR,LP
    MTD25=1
    ID=2
    READ(ID) I,K
    READ(ID) (CG(I),I=1,440)
    UNIOAD ID
    FCTRL(I)=1.0
    IO 1 I=2,25
    K=I-1
    FCTRL(I)=K*FCTRL(K)
    1 CONRINUE
    2 RCAD(ICR,3) I
        IF(I.EQ.0) STOP
    3 FOLMAT(I5)
    CALL OUTBRIK(LP)
    CALL ALLICNE
    GO TO 2
    END
* fortran lib
    SUBROUTINE ALIONE
C.....ONL-CENTRL ONE- AND TNO- ELSCTRON INTEGRALS.
        CGMMON/TOALT/ CH,DEV,DIV,I,IA,IB,IC,ICR,ID,J,K,KK,LP,MMD25,NB,
    1NBASIS,NI,NP,N2,T1,T2,ZK, ANORN(30) ,CG(440), SRI(465) ,FCTRL(25),
    2H(30,30),IN(465,2),工(30),M(30),N(30),S(30,30),TITJIS(15),Z(30)
    READ(ICR, 36) NKBLOC
    CALL SEAPCII(MTD25,NXBIOC,0)
    READ(ICR,1) TITLZ
    ROAD(ICR,2) NBASIS,CH,(N(I),I(I),M(I),Z(I),I=1,NBASIS)
    MRITL(IP,3) TITLO
    WRITE(IP,35) CH
    NRITM(ID,4) (IN(I),I(I),M(I),Z(I),I=1,NBASIS)
    1 FORMAT (913/6A3)
    2 FORMAT(I5,F10.5/(3I5,F10.5))
    3 FORNLAT(1H1/1H ,15A3)
    4 FORHAT(1II ,48X,23HN L M EXPONENT/((1H ,44X,3I5,F12.5)))
    NB=(NBASIS*(NBALIS+1))/2
    NI=(NB* (NB +1) )/2
    WRITE(TP,33) NI
    WRITS(TP,37) NKBLSC
    DC 16 I= ,NBASIS
    NI=2*N(I) +1
    FNORM(I)=SQRT((2.0*Z(I))**NI/TMCTRL(NI))
    DO 16 K=1,I
    S(I,K)=0.0
    H(I,K)=0.0
    IF(L(I)-L(K)) 15,11,15
    11 IF(M(I)-M(K)) 15,12,15
    12 ZI=2.0*Z(K)
```

CLiEAR T1
DIV $=1.0 /(Z(I)+Z(K))$
$\operatorname{DEV}=1.0 / \operatorname{SQRT}(2.0 * N(K) *(2.0 * N(K)-1.0))$
$\operatorname{IF}(N(K)-L(K)-1) 14,14,13$
$13 \mathrm{~N} 2=\mathrm{N}(\mathrm{I})+\mathrm{N}(\mathrm{K})-1$
$\mathrm{NP}=2 * \mathrm{~N}(\mathrm{~K})-3$
T1 =ANORM (I) *FCTRL(N2) *DIV**N2*SQRT (ZK**NP/FCTRL(NP))*4.0*(N(K) +
$1 \mathrm{~L}(\mathrm{~K})) *(\mathrm{~N}(\mathrm{~K})-\mathrm{L}(\mathrm{K})-1) * \operatorname{DEV} / \operatorname{SQRT}((2.0 * N(K)-2.0) *(2.0 * N(K)-3.0))$
$14 \mathrm{~N} 2=\mathrm{N}(\mathrm{I})+\mathrm{N}(\mathrm{K})$
$\mathrm{NP}=2 * \mathrm{~N}(\mathrm{~K})-1$
$\mathrm{T} 2=\operatorname{ANORM}(\mathrm{I}) * \operatorname{FCTRL}(\mathrm{~N} 2) * D I V * * N 2 * S Q R T(Z \mathrm{~K} * * N P /$ FCTRL(NP))
$\mathrm{N} 2=\mathrm{N} 2+1$
$\mathrm{S}(\mathrm{I}, \mathrm{K})=\operatorname{ANCRM}(\mathrm{I}) * \operatorname{ANORM}(\mathrm{~K}) * \operatorname{DIV} * * N 2 * F C T R L(N 2)$
$\mathrm{H}(\mathrm{I}, \mathrm{K})=\mathrm{Z}(\mathrm{K}) *(-0.5 * \mathrm{Z}(\mathrm{K}) *(\mathrm{TI}+\mathrm{S}(\mathrm{I}, \mathrm{K}))+2.0 * \mathrm{~T} 2 * D E V *(\mathrm{~N}(\mathrm{~K}) * \mathrm{Z}(\mathrm{K})-\mathrm{CH}))$
$15 \mathrm{~S}(\mathrm{~K}, \mathrm{I})=\mathrm{S}(\mathrm{I}, \mathrm{K})$
$H(K, I)=H(I, K)$
16 CONTINUE
TRITE (LP,17)
17 FORMAT(1H1/1H ,43X,34HOVERLAP MATRIX FOR ATOMIC ORBITALS/)
DC 21 I=1,NBASIS,5
$K=I+4$
IF(K-NBASIS) $19,19,18$
$18 \mathrm{~K}=$ NBASIS
19 WRITE (LP, 32) I,K
DO $21 \mathrm{~J}=1$,NBASIS
WRITE (LP, 20) (S (J, KIK) , KK=I, K$)$
20 FORMAT (1 H ,1P5324.10))
21 CONTINUE
WRITE (LP, 22)
22 FORTAT ($1 \mathrm{HO}, 34 \mathrm{X}, 51 \mathrm{HONE}-\mathrm{ELECTRON}$ HAMILTONIAN MATRIX FOR ATOMIC ORBIT
1ALS/)
DO $25 \mathrm{I}=1$,NBASIS,5
$\mathrm{K}=\mathrm{I}+4$
IF(K-NBASIS) $24,24,23$
$23 \mathrm{~K}=$ NBASIS
24 WRITE (LP,32) I,K
LO $25 \mathrm{~J}=1$,NBASIS
WRITE (LP , 20) ($\mathrm{IH}(\mathrm{J}, \mathrm{KK}$) , KK $=\mathrm{I}, \mathrm{K}$)
25 CONTINUE
$I=100000$
WRITE(MTD25) I
WRITE(MTD25) TITLE,J
DO $26 I=1$,NBASIS
WRITE (MTD25) (S (I, J) ,J=1,NBASIs)
MRITL゙ (MTD25) (H(I,J), J=1,NBASIS)
26 CONTINUE
WRITE (LP,34)
IF(NBASIS.GT.5) WRITE (LP, 38)
LO $27 \mathrm{I}=1$,NBASIS
$J=(I *(I-1)) / 2$
DO $27 \mathrm{~K}=1$, I
$\mathrm{KK}=\mathrm{K}+\mathrm{J}$
$\operatorname{IN}(\mathrm{KK}, 1)=I$
$\operatorname{IN}(\mathrm{KI}, 2)=\mathrm{K}$
27 CONTINUE
DO $31 \quad I=1$,NB
$I C=I N(I, 2)$
$I A=I N(I, 1)$
$\mathrm{KIK}=\mathrm{IABS}(\mathbb{K}(\mathrm{I} A)-M(I C))$
DO $29 \mathrm{~J}=1, \mathrm{I}$

```
    IB=IN(J,I)
        ID=IN(J,2)
        CLEAR ERI(J)
        IF(IKK-IABS(M(IB)-M(ID))) 29,23,20
    28 \operatorname{BrI}(J)=SC(IA,IC,IB,ID)
    29 CONTINUE
        WRIT2(MTD25) (IRI (J),J=1,I)
        IF(NBASIS.GT.5) GO TO 3I
        WRITE(LP,30) I
    30 FORMAT(1HO,49X,19HCONTENTS CF RECCORD,I2/)
        MRITiL(LP,20) (ERI(J),J=1,I)
    3 1 \text { CONTINUE}
    32 FORMAT(1HO,52X,8HCOLUNNS ,I2,4H TO ,I2/)
    33 FORMAT(1HO,32X,51HNUMBER OF THO-ELIECTRON INTEGRALS TO BE CALCULATE
    1D =,I7/)
    34 FORMAT(1HO,49X,22HTWO-ELECTRON INTEGRALS)
    35 FORMAT(1HO,45X,17HNUCLSAR CHARGE = ,F10.5/)
        CALL WITPS
        REWIND MTD25
    36 FORMAT (I5)
    37 FORMAT('0',33X, 'INTEGRALS BEGIN AT BLOCK`,I4," OF MASTER FILE')
    33 FERMAT('O",37X,"PRINTING OF THO-ELECTRON INTEGRALS SUPPPESSED")
        RMTURN
        END
```

* FORTRAN LIB
INTEGER FUNCTION INDAX1 (MM,M1,M2,LL,I1,L2)
C.....EVALUATION OF CLEBSCH-GORDON INDICES. VERSION 2. 09.04.69 ADT.
$I M I=I A B S(M 1)$
$\mathrm{IM} 2=\mathrm{IABS}(\mathrm{M} 2)$
$I 1=(I 1 *(L 1+1)) / 2+I M I+1$
$\mathrm{I} 2=(\mathrm{L} 2 *(\mathrm{~L} 2+1)) / 2+\mathrm{IM} 2+1$
$I Z=4 * \operatorname{MAXO}(I 1, I 2) *($ MAXO $(I 1, I 2)-1)+8 * M I N O(I 1, I 2)+L I / 2$
IF(IABS (Min)-IMI-IM2) 2,1,2
1 I=7
GOTO 3
$2 \mathrm{I}=3$
3 INDEXI=IZ-I
RITURN
END
*FORTRAN LIB
FUNCTION SC(IA,IC,IB,ID)
CCMMON /TOALI, KEEP (22), ANORM (30) , CG(440), BRI (465), FCTRL(25),
$\operatorname{IH}(30,30), \operatorname{IN}(465,2), L(30), M(30), N(30), S(30,30), T I T L U(15), Z(30)$
CLEAR SC
LONAC $=\operatorname{IABS}(L(I A)-L(I C))$
$L \mathcal{H B D}=I A B G(L(I B)-L(I D))$
IF (IPAR (LONAC)-IPAR (LCNBD)) 4,1,4
1 FCURPI $=1.25663706142+01$
LOY=MAXO (ICMAC, IOMBD) +1
$I G E=M I N O(L(I A)+L(I C), I(I B)+L(I D))+1$
IF(IGII-LCN) $4,2,2$
2 IM=M(IC)-M(IA)
$Z 1=Z(I A)+Z(I C)$
$22=Z(I B)+Z(I)$
$N I=N(I A)+N(I C)$
$N 2=N(I B)+N(I D)$
IO 3 MUP=ION,IGH,2
$I T U=N U P-1$

```
    JA=IMDSN1( MM, -M(IA),M(IC),MU,Z(IA),I(IC))
    JI=IMN-L1 (-1DN, -M(ID),M(ID),MU,I(IB),O(ID))
    SC=SC+FOURPI/FIOM (2*MUH1)*CG(JA)*CG(JD)*W(MU,NI,N2,Z1, Z2)
    3 CompInus
    SC=AIORM(IL)*aNOM(ID)*ANORM(IC)*ANORIS(ID)*SC
    4 RITUNT
    NND
* achrtany LIB
    FUNCIICN W(IMU,N1,IT2,Z1,Z2)
```



```
    III(00,30),IN(405,2),工(30),K(30),N(30),S(30,30),TITLS(15),Z(30)
    AI= =21
    x=}=2
    NU=NO-IMUS-1
    ITU=N1 :N 
    IP=-n., U-1
    Clidar jump
    1 A=1.0+KI/K2
    MIN=MU-NU
    XI=FCTRL(MIN)/A**MIN
    NIM=MIN+I
    CtLEAR M
    DO 2 I=MIN,MU
    I=M+1
    K1=M*XI FCTRL (I)/A**I
    2 CCNTINUS
    IF(JUNP) 4,3,4
    3 JUNP=1
    V=22**IP*X1
    NU=NI-IMU-1
    X1=Z2
    X2=Z1
    GO TO 1
    4 W=V+K2**IP*X1
        ROMURN
    IND
```


ONECEN TEST DATA = INTEGRAIS FOR ATOYIC OXYGEV (SCHAEFER AND HARRISIS EXPONENTS), 120

MHBER DF THOFEL.ECTRON IVTEGRAI.S TO BE CALCULATED :
integral.s begiy at block 50 of. master file

$-3.2041106850[+01$ $-7.0320 .342792-+00$ 0．000000000のEーロ0 $0.0000000000 E+00$ $0.0000000000 E+00$
$4.78550000025+00$
$6.7428461270 E-01$
1.1160172056 E＊00
$0,0000000000 \mathrm{E}+00$
$0.0000000000 E * 00$
1.105793845 万E +00 3，7134359337E－01
$0.0000000000 E+00$ $0.0000000000 \mathrm{E}+00$
$0.0000000000 \mathrm{E}+00$ $0.0000000000 \mathrm{E}+00$
$0.0000000000 \mathrm{E}+00$
$0.0000000000 \mathrm{E}+00$
1．1．05793845ク巨＋00
7．7743078136E－01
$0.0000000000 E \div 00$
$0.0000000000 \mathrm{E}+00$
2，4875854655E－02

2．00090477658E002 9，4090900005に－01 $0.0000000000 E+00$ $0,0000000000 \mathrm{E} \rightarrow 00$ $0.0000000000 \mathrm{E}+00$
conowivs 1.705 $0.0003000000 \equiv+00$ $0.0000000000 \equiv+00$ $1.0000000000 \equiv+00$ $0.0000000000 \equiv+00$ $0.0000000000 \equiv+00$

ONE－ELECTRON HAMILTOY：AN MATRIX fOZ ATC
$-7.0326342705=0.02$
-8.1471486930 E－00 0.0000000000 E－00 $0.0000000000 \mathrm{E}+00$ 0.0000000000 E～OO

1．2109572047E－01

$$
2,4366514131 E=01
$$

$0.0000000000 E=00$.
$0,00000000005+00$
CONTEVTS OF RECORD 5 $0,0000000000 \equiv+00$

CONTEVTS OF FECORA 6 8．1252421597ミニン 01

CONTEVTS OF RECORIT 7 $0.0000000000 \equiv+00$
2，4875854665E－02．
$0.0000000000=400$
$3.8251260845 E=02$
$0.0000000000 E+00$
$0.0000000000 E+00$
$2.4658162661 E=01$
$0.0000000000 \mathrm{~F}+00$
$0,0000000000 \mathrm{~F} \div 00$
2，4875854665F＝02
COLUWNS 1705
$0.0000000000 \equiv \pm 00$
0.0000000000 E＋00
$=5.4253157801 \Xi-00$
$0.0000000000 \equiv-00$
0.0000000000 E＋00

TWO－E＿EOTRON INTEGRALS
CONTEVTS OF RECORO ：

CONTEVTS OF RECORA 2

CONTEVTS：OF マミCORD 3 3：1635502501E＝01

CONTEVTS OF RECORD 4 $0.0000000000 \pm+00$
$2,4658102661 E=01$
$0,0000000000 E+00$

CONTEVTS OF RECORN 8 $0.00000000005+00$ さ，7957634574ミニ01

CONTEVTS OE RECORD ？ 0.0000000000 Eャ00 $0.0000000000 \Xi+00$ CONTEVTS OF RECORn 10 8．1252421597E～01 $0.0000000000 \equiv+00$

CONTEVTS OF RECORD 11 $0,0000000000 E+00$ 3．8251260845 ミこ02
ril.S
$0.03000000005+00$
0.0000000000 E-00
0.0006000000 E-00
1.0000000000E.000
0.0000000000 ErOO

IICORUIZALS
0.00000000005400
$0.0000000000 E * 00$
$0.0000000000 \mathrm{E}-00$

- $6.4206167301 E+00$
$0.0000000000 E+00$
- 195 -
$0.0000000000 E * 00$
0.0000000000 E®0 0
$0.0000000000 E * 00$
0.0000000000 E*0
1.0000000000 E-00
0.0000000000 E 00
D.0000000000E+00
$0.000 n 0000005000$
0.0000000000 E+00
$-6.4258167801 E+00$
2.4875854665E-02
$3.8251260845 E-02$
1.7957634874E-O゙
$0.0000000000 E+00$
$0.00000000005 \div 00$
$0.0000000000 E \times 00$
$0.0000000000 E \div 00$
$0.0000000000 E+00$
$0.0000000000 E \approx 00$
$0.0000000000 E+00$
4.6958906255E-02
$0.0000000000 E+00$
$0.0000000000 E+00$
$0.0000000000 E-00$
$0.0000000000 E * 00$
0.0000000005 E 00
$0.0000000000 E+00$
$0.0000000000 E * 00$
$0.0000000005 \mathrm{E}=00$
$0.0000000000 E \div 00$
$8.2438968761 E=U 1$

			CONTEVTS OF RECORD 12
	$0.000000000 C E+00$	$0.00000000006-00$	$0.0000000000 \equiv+00$
	O．0000000000E＋00	3．82512608458＝02	こ．7957634374ミニ01
	3．0251260845E－02	さ．7057634874E：01	
			CONTEVTS OF RECORO 13
	$0.0000000000 E+00$	$0.0000000000 F+00$	0.0000000000 －00
	$0.0000000000 E+00$	$0.0000000000 \mathrm{E}+00$	0．0000000000ミ－00
	$0.0000000000 E+00$	0．0000000000E－00	4.6958905255 ここ02
	$0.0000000000 E+00$	$0.00000000005+00$	CONTEVTS OF マECORN 14 $0.0000000000 E+00$
	$0.0000000000 E+00$	$0.0000000000 E+00$	0.0000000000 － 00
	$0.0000000000 E * 00$	O．0000000000E＊00	0.0000000000 －00
	$1.1057938455 \mathrm{E}+00$	2．4658162661E $=01:$	CONTEVTS OF RECORT 15 3．1252421597E．：01
	7．7743078136E－01	0，0000000000E＋00	$0.00000000005+00$
	$0.0000000000 E+00$	0，0000000000E－00	0.0000000000 － 00
TAPE	POSITIOVED AT		
NUMBER	BLOCK HORD		
1	$50 \quad 21.4$		
TAPE	POSITIOVED AT		
NUMEER	BLOCK WORD		
3	O O		

 $0.0000000000 E+00$
$0.0000000000 E+00$ 4.6956906255E-02
$0.0000000000 E+00$
$0.0000000000 E+00$
9.3917812509E-02
$0.00000000005 * 00$
$0.0000000000 E+00$
$0.0000000000 \mathrm{E}+00$

$0.0000000000 \mathrm{O}=00$

0.0000000000 E世00
$0.0000000000 E \div 00$
$0.000000000005+00$
$0.0000000000 E=00$
0.0000000000 EQ 00
0.00000000000000
8.2438968761E401
8.2438968761E-01

APPENDIX VI
INTRA. A PROGRAM FOR TRANSFORMING ONE- AND TWO-ELECTRON INTEGRALS OVER AN ATOMIC ORBITAL
BASIS INTO INTEGRALS OVER AN ORTHONORMAL BASIS

The methods and indexing schemes employed by INTRA are described in chapters 7 and 8. The program is written so that it will be possible to implement restart facilities should these prove necessary for large basis sets. The program occupies about 1500 FøRTRAN V source cards and its storage requirements are standard. In addition to the subprograms listed here, INTRA requires the routines ENTR, ERR \varnothing R, QUIT, and WRITMX from Appendix III.

INTRA uses five magnetic tapes or disc areas, the actual requirements being dictated by the size of the basis set; for less than 24 basis orbitals the following assignment is possible:

VARIABLE	VALUE $=$
NAME	DEVICE

LDNO3 3 A common disc area of 710 blocks.
LDNO8 4 A common disc area of 555 blocks.
LDNO9 5 A common disc area of 555 blocks
LDN10 6 A private magnetic tape containing the file of untransformed integrals, produced in the same order as those of \varnothing NECEN

LDN11 Defined in Master transformed integral tape which will data contain the file of transformed integrals.

This program will process several sets of integrals in each run. As a precaution against corruption of the tape on device LDN10 each set of integrals should be transferred to the beginning of the common disc area LDNO3 at the start of each run. The user must normally specify seven of the eight possible sections of data.

Data specification for INTRA
Section 1 : Transfer untransformed integrals from device IDN10 to device LDNO3

Card 1 NBASIS
førmat (I5)
NBASIS $\quad=\quad$ number of basis orbitals
Card 2
IWHERE, ISTART (15)
FØRMAT (2I5)
IWHERE $=1$
$\operatorname{ISTART}(15)\left\{\begin{array}{l}=0 \text { to suppress timing information } \\ =1 \text { to obtain timing information }\end{array}\right.$
Card 3
NEXTBL
FøRMAT (I5)
NEXTBL $\quad=$ number of block at which the untransformed integral file begins on device IDN10

Section 2 : Read data required to start transformation
Card 1
IWHERE, ISTART(15)
F \varnothing RMAT (2I5)
IWHERE $=2$
ISTART(15) : see section 1 card 2
Card 2
JSER, IST \varnothing P
FøRMAT (2I5)

JSER $=$	serial number given to the untransformed
	integral file by the integral generation
	program. If the program \varnothing NECEN was used
	then JSER $=100000$
IST $\varnothing \mathrm{P}=$	1

Card $3 \quad(M(I), I=1$, NBASIS $)$
FøRMAT (3012)
$M(I) \quad\left\{\begin{aligned} &= 0 \text { if the magnetic quantum number of the } \\ & \text { I-th atomic orbital and the I-th transformed } \\ & \text { orbital are different. } \\ &= \text { magnetic quantum number of the I-th atomic } \\ & \text { orbital if the magnetic quantum number of } \\ & \text { the I-th transformed orbital is the same. }\end{aligned}\right.$

Section 3 : Complete the upper triangle of the distinct twomelectron integral matrix

Card 1 IWHERE, ISTART(15)
FøRMAT (2I5)
IWHERE $=3$
$\operatorname{ISTART}(15)\left\{\begin{aligned}= & 0 \text { to suppress timing information and printing } \\ & \text { of one-electron integrals (untransformed) } \\ = & 1 \text { to obtain timing information and printing } \\ & \text { of untransformed one-electron integrals }\end{aligned}\right.$
Section 4 : Compute Schmidt orthonormalization coefficients and transform the one-electron integrals

Card 1 IWHERE, ISTART(15)
FøRMAT (2I5)
IWHERE $=4$
$\operatorname{ISTART}(15)=$ see section 1 card 2

Card 2
NøNO
FØRMAT (I5)
NøNO $\quad=$ number of non-zero elements in the matrix which transforms the atomic orbitals into non-orthonormal symmetry adapted molecular orbitals (The 'Symmetry Transformation Matrix')

Card 3 (K) I, J, WSP2 (I, J)
FØRMAT (2I3, F4.1)
WSP2 (I, J) is the I, J-th element of the symmetry
transformation matrix and is written as an integer in real form: e.g. 1.0.
$(1 \leqslant \mathrm{~K} \leqslant \mathrm{~N} \varnothing \mathrm{NO})$
Card 4
NIR
FøRMAT (I5)
NIR $\quad=$ number of different irreducible representations to which the transformed orbitals belong; subspecies are comted as different.

Card $5 \quad(\operatorname{IRI}(I), I=1$, NBASIS)
FØRMAT (16I5)
$\operatorname{IRI}(I)=a$ number which identifies the irreducible representation to which the I-th orbital belongs. As long as these are different for different irreducible representations their value is only restricted to the range
$1 \leqslant \operatorname{IRI}(I) \leqslant 10000$
(continue onto successive cards if
NBASIS >16)

Section 5 : Transformation of two-electron integrals
Card 1
IWHERE, ISTART(15)
FøRMAT (2I5)
IWHERE $=5$
$\operatorname{ISTART}(15)\left\{\begin{array}{l}=\begin{array}{l}0 \text { to suppress timing information and } \\ \text { the printing of the transformed two- } \\ \\ \text { electron integrals } \\ =1 \text { to obtain timing information and the } \\ \text { printing of the transformed two-electron } \\ \text { integrals }\end{array}\end{array}\right.$
Card 2
ISER
FDRMAT (I10)
ISER $\quad=$ any integer >0, it is a restart parameter which is not used by the current version of INTRA

Card 3 (ISTART(I), $I=5,12)$
F \emptyset RMAT (8I5)
$\operatorname{ISTART}(5)=1$
$\operatorname{ISTART}(6)=$ numerical value of NBASIS
$\operatorname{ISTART}(7)=1$
ISTART(8) $=$ numerical value of NBASIS
$\operatorname{ISTART}(9)=1$
ISTART(10) $=$ numerical value of NBASIS
$\operatorname{ISTART}(11)=1$
ISTART(12) $=$ numerical value of NBASIS

Section 6 : Transfer transformed integrals from device LDNO3 to device LDN11
C.ard 1 IWHERE, ISTART(15)

F \varnothing RMAT(215)
IWHERE $=6$
ISTART(15) : see section 1 card 2
Card 2, 3
TITLE
FøRMAT (9A8/6A8)
TITLE is an array of 15 elements (120 characters) used to identify the transformed integrals output from this run.

Card 4 LDN11, NEXTBL
FøRMAT (2I5)
LDN11 $=$ numerical value of the device number for the final output to the Master Transformed integral tape.

NEXTBL $\quad=$ number of block at which the transformed integral file is to begin on device LDN11

Section 7 : End of program, this should not be used if section 8 is required.

Card 1 IWHERE, ISTART (15)
FØRMAT (2I5)
IWHERE = 1
$\operatorname{ISTART}(15)=0$

Section 8 : Re-entry of program clearing workspace in process. This section should be used instead of section 7 if another set of data is to be processed

Card 1 IWHERE, ISTART(15)
FøRMAT (2I5)
IWHERE $=8$
$\operatorname{ISTART}(15)=0$

Restrictions
$1 \leqslant$ NBASIS $\leqslant 30$

* FORTRAN LIB 8,5,325
C.....MAIN ROUTINE FOR INTEGRAL TRANSFCRNATION PROGRAM. COMMON /TOALIV NBASIS,NB, ISTOP, ISTAPT (20), M (30), IDNO1, IDNO2,IDNO 3, ILDNOS, LONO 9, IDNIO, IDNII COMMON /TOSUM ARTAI (3459) CCIMION ARIA2 (13530)
C.DEFINE DEVICT NUNBERS,
C.....IDNO1=CARD RBADIR,
C.....LDNO2=LINE PRINTNR,
C.....IDNO $3=I N T E G R A L$ FILS
C.....IDNO3= YORK FILi 1 ,
C.....LDNO9= HORK FILE 2 ,
C. . . . LDNIO $=$ MASTER INTLGRAL FILT. CLIEAR LDNOI,IDNOC
LDNO $=3$
LDHO $=4$
LDNO $=5$
LDN10 $=6$
11 CLEAR ISTART,M,AREA1, AREAZ
CaLL CUTBRIK(LDNO2)
REMIND IDNO 3
REWIND LDNOS
RWWIND LDNO9
$\operatorname{READ}(L D N O 1,1)$ NBASIS
$\mathrm{NB}=($ NBASIS $*($ NBASIS +1$)) / 2$
1 Foriat (2I5)
$2 \operatorname{READ}(L N N O 1,1)$ IWHSRE, ISTART (15)
GO TO $(3,4,5,6,7,8,9,11)$, IWHERE
C.....TRANSFIR INTEGRALS FRCM LDN1O TC LDNO3 IF NECESSARY.

3 CALL MFILE2
GOTO 2
C.....READ DATA AND CHECK INTIGRAL FILE SERIAL NURBER.

4 CALL RESSET GO TO 2
C.....SET UP COMPLETG MATRIX OF DISTINCT TWO-ELECTRON INTLGRALS.

5 Caul Setirl GO TO 2
C..... IIAGONALIZE OVBRLAP MATRIX AND TRANSFCRM H-MATRIX.

6 CALL TRNNSH GO TO 2
C.....TRANSFORM TMO-ELECTRON INTEGRALS.

7 CALJ CCNTRA G) TO 2
C.....TRANSFER TRANSFORNED INTEGRALS FRGM LDNO 3 TO LDNIO IF NACDBSARY.

3 CALL WHILB3 GO TO 2
C.....JOB COMPLITID.

9 CALL CNTR(NB)
WRITE (LDNO2,10) NB
10 FORMAT (${ }^{\prime} D^{\prime}, 36 \pi,{ }^{\prime} * * * *$ JCB COMPLETE -', IS,' INGTRUCTIONS USOD ****') STOP
END
*Fortran lib
SUBROUTIME BIGTRA (A, B, MTDO1, MTDO2, NCOL, NROI,NPAG̃)
C.....transpons of a large matrix.

IIMENSION A (NACN, NCOL) , B (NRCH, NCOL)
REVIND NTLCL
RNWIND NTLDO2
NCCIT $=\mathrm{NCOL}-\mathrm{MRC} . \mathrm{H}$

DO 3 IPASS $=1$, NPASS
READ (MTDO1) ISER
JK=(IPASS-1) $*$ NROG
$J R=N R O N$
IF(JK-NCON) 2,2,1
1 JR=NCOL-JK
2 LO 6 IPART=1,NPASS
IK=(IPART-1) *NRAW
IR=NRO:T
$\operatorname{IF}(\operatorname{IK}-\mathrm{NCON})$ 1,4,3
3 IR=NCCL-IK
4 DO $5 \mathrm{I}=1, \mathrm{IR}$
$\operatorname{READ}(\mathrm{MTDO1)}$ ($A(I, J), J=1, N C O L)$
5 Continua
ic $G I=1, J R$
$\mathrm{JC}=\mathrm{I}+\mathrm{JK}$
DO $6 \mathrm{~J}=1$, IR
IC $=\mathrm{J}+\mathrm{IK}$
$B(I, I C)=A(J, J C)$
6 Continus
DC $7 \quad I=1, \mathrm{JR}$
WRITE(MTDO2) (B(I,J),J=1,NCOL)
7 CONTINUS
Meirind mTDOI
8 centinge
ENDILIE MTLO2
RSMIND MPDUZ
WRITE (MTNC1) ISER
IO $9 \mathrm{I}=1$, NCOL
ROAN (LITDO2) ($\mathrm{A}(1, \mathrm{~J}), \mathrm{J}=1, \mathrm{NCOL})$
MRITE(MTLOI) (A(1,J), J=1,NCOL)
9 continue
BNDFILE MidO1
Reitim MTDOI
REMIND MTDOZ
raturlin
Dind

* FORTRAN LIB

SUBZOUTINE CONIRA
C.....CONTROL ROUTINE FOR TMO-ELDCTRON INTEGRAL TRANSFORMATICN. TEXT IUMM
 1ILNOU, LDNO O, IDN10, LEN11 COMAN $5(30,30), \mathrm{H}(30,30), \mathrm{C}(30,30), \operatorname{InUR}(4000), \operatorname{DUNY}(3000)$ EOUIVALSNCS (IDUM(23),ISOR), (IDUM(24), I), (IOUM(25), J), (IDUM(26), IP 1), (ICUH (27), II) , (IDUN: (28), I2)

Liquivalanci (IERIMAT)
CALE ENTR(GHCONTRA, ISTART(15))
C.....GKIP TITLE AND GERIAL NUMBER OE TAFE GN UNIT 03. SKIP UNTRNNS-
C..... formed 5 And hemtricis.

- READ (LDNO 3) ISIR

READ (IDHO3) SURM
D 1 I=1, NBASIS
RUAD(LDNO3) SHAT
RAAD (IDNO3) HMLT
1 CCNTINU:
 READ (LDNO1, 3) ISNR

```
    3 FONMAT(I10)
        WRITS(IDNO2,301) ISER
    SO1 NONHNT(1HO,37X,3GHSERIAL NUMDER OF TAPE ON UNIT O4 IS ,I1O/)
        RL:IIND LuNTOS
        WRITS(JIHNOS) ISLR
C.....SET UP ISTALT
        N:AD(INNOL, 4) (ISTANT(I),I=5,12)
    4 NamLIT(UIS)
C.....CHUCK MATA. ISTOP=SO IF ISTART(L).NE.NBASIS.NE.ISTART(8).
        J=1
        10 7 I=5,11,2
        IN =I:1
        IF(IGNN~T(I)-ISTANT(IP)) 7,7,5
    5 WNITS(IDINO2,0) I,IP
    G FORLIT(SII ISTART(,I3,14H) .GT. ISTART(,I3,1H))
        J=0
    7 Comininue
        IF(J) 0,3,0
    3 CALL LUXIT
    9 J=1
        LC I3 I=0,8,2
        IF(ISTNART(I)-NBASIS) 10,13,11
    10 ISTOP=50
        GOTO}1
    II WRITL (IDNO2,12) I
    12 FORMAT(3H ISTART(,I3,13H) .GT. NBASIS)
        J=0
    13 CONTINUE
        IF(J) 15,3,15
    15 J=1
        DO 1.7 I=10,12,2
        IF(ISTARI(I)-NBASIS) 17,17,16
    16 WNITL(IDNO2,12) I
        J=0
    17 CCNMINUS
        IF(J) 18,8,13
    13 CNEL TWOTRA
C.....CHECK IF ROSTART NLCESSARY.
        II=5
        I2=7
    10 IT(ISTART(I2+1)-NBASIS) 20,21,21
    20 ISTART}(I2)=ISTART(I2+1)+
        GO TO 27
    21.IT(ISTART(I1+1) -NBASIS) 22,23,23
    22ISTANT(II)=ISNART(II+1)+I
        INTART(I2)=1
        GOTO 27
    23IF(I1-9) 24,20,24
    24 11=3
        I2=11
        GO TO 10
    27 WRITN(TNHO2,23) (I,ISTART(I),I=5,I1,2)
    23 FOMMAT(1HO,23K,74HA RESTART IS NECDSSARY IN THO TVO-RLSCTRON INTEG
        1RAL TRANSFORNATION ROUTINE/1H ,22X,2OIRESTART VALUES ARE -,4(3H IS
        2TARN(,I2,2II)=,I2))
        GO TO 33
    29 WRITL(IDNO2,30)
    3O FORMAT(IHO, 35K,49HTRANSFORMATION OF TWO-ELECTRON INTEGRALS COMPLITT
        12/)
C.....CHECK FOR HALT AT THIS POINT.
```

```
    IF(ISTOP-5) 34,31,34
31 WRITE(LDNO2,32)
32 FORMAT(1HO,21X,77HUSER REQUEST - PROGRAM TO STOP AT END OF THO-ELS
    ICTRON INTEGRAL TRANGFORLIATION/)
3 3 ~ R I N I N D ~ L D N O S ~
    FMWIND LDNOS
    STOP
34 CALL QUIT(6HCGNTRA,ISTART(15))
    RNTURN
    END
```

* FGRTRAN LIB
SUBROUTINE DUMPSH(S,H,NBASIS, NO)
C.....OPSIONAT OUTYUT OF OVERLAP AND DNA-DLUC'RRON HMMILTONLAN MATRICES.
COMMON /TOALT/ INBASIS,NB,ISTOP,ISTART(20),M(20),IDNO1,LDNO2,IDNO 3,
1LINO , IDNO 9, IDN10, IDN11
DIMENSICN $\mathrm{S}(30,30), \mathrm{H}(30,30)$
$\operatorname{IF}(\mathrm{NO}) 1,4,1$
1 WRITS (TDNO2,2)
2 FORMAT(1 ' $/{ }^{\prime} 0$ ', 53X, "OVRRLAP MATRIX')
CALL $\operatorname{WRITMX}(S, 30,30, N B A S I S, N B A S I S, I D N O 2)$
MRITR (TDNO2,3)

CALL WRITIUX (H, 30,30, NBASIS, NBASIS, LDNG2)
4 RiNURN
END
＊FORTRAN LIB
SUBROUTINE MFILJZ
C.....TRANGFBAS INTEGRALS IN MASTER FILA TC IISC FILE FOR TRANGFORLATICN
CCRIDIN /TOALI/ IBBASIG;NB,ISTOP,ISTART(20),M(30),IJNO1,LDNO2, בDNO3,
1LDNOS, LDNOS, LENL , LDN11
CCMMON $S(30,30), \mathrm{H}(30,30), \operatorname{BRI}(300)$
「EXT TITLE (I5)
DQUIVATENC: (LDN20, NEMTBL), (ERI,TITLJ)
CALL RNTR (‘ITFITH2", ISTART(15))
$\operatorname{RIAD}(L D N O 1,1)$ NSXTBJ,
1 FGMAT(I5)
C..... POSITICN MASTER INTEGRAL FILE AT NEXTBL.
MTDRE=LUN10
MTD: $=$ IUHO 3
CALT SDLRCH (LDNIO, NOMTBL, 0)
MaIT.(LNOO,2) NEXTBL

IRAL FIJI STAZTIITG AT BLDCK', I5)
RUAD (LITDRE) IGBE
MRITE (MTDMR) I万ル
RSAD (MIDRA) TITH,IRUN
WRITE (WNTR) 'aITLE, IRUH
IISPLIY /TITLZ
ro $3 \mathrm{I}=1$, NBABIS
$\operatorname{RJAD}(\operatorname{liTRA})(S(J, I), J=1, N B A M I \approx)$
TPITS(MNDR) ($\mathrm{S}(\mathrm{J}, \mathrm{I}), \mathrm{J}=1, \mathrm{NBASI} \mathrm{\Sigma})$
READ (MPNZ) ($\mathrm{E}(\mathrm{U}, \mathrm{I}), \mathrm{J}=1, \mathrm{NBAGIS})$
WRIME (MNEN) (I $(J, I), J=1, N D A C I S)$
3 CENTINUE
LO $4 \mathrm{I}=1$, NB
READ (MTDRE) (BRI (J), $\mathrm{J}=1, \mathrm{I}$)
MRIR (MTMR) (ERI (J) ,J=1,I)
4 CONTINUS

```
C.....DETERMINN POSITICNS OT ALT MAGNETIC DEVICLS.
        WRITM(LDNO2,5)
    5 FGRMAT("C',20X, 'PCSITIGNS OF MAGNOTIC DEVICES'/)
        CAUL WHTPS
        ENDFIME MRDHR
        REMIND ImDD'r
        CALL GEARCH(IDN10,NEXTBL,0)
        CALL GUIT('NIFITM2',ISTART(15))
        RBTURN
        EINL
* fortran lib
        SUBRNUTINE MFILE3
C.....TRANSFERS TRANSFORMED INNEGRAIS FROM DISC (LDNOS) TO MASTER
C.....(TRANGFCRMED) INTEGRAL FILL (IDN1I).
        COMMON/TOALT/ NBASIS,NB,ISTOP,ISTART(20),M(30),IDNO1,LDNO2,IDNO 3,
        ILDNOS,LDNOO,LDNIO,LDNII
            CMMON IRRI (900), H(30,30)
            TMMT TITLS(15)
            EQUIVALENCE (ERI,TITLE)
C.....TITLE IS 120 CHARACTSRS (I5 ATLAS WORDS) USED TO IDENTIFY THE
C.....information in EACH NASTER FILT.
            READ (IDNOI,1) TITIS
        1 FORNLAT(EA3/GAB)
        REAL(LDNO1,12) LNN11,NGXTBL
    12 PCRMAT(2I5)
    13 WEITL(LDNO2,2) TITLE,NEXTBL
    2 FORNAT('0",15AB/" ",21X,"WILL BE FOUND IN THE MASTER (TRANSFCRNED)
        1 INTEGRAL FILE STABTING AT BLOCK',I5)
            CAL: SEARCH(LDNII,NSXTBL,O)
            HTDRE=IDNO 3
            MTD:R=TDN11
            CLIEAP ERI
            NSORD=NBASIS*NBASIS
            LO 3 I=1,NSORD
            REAL (HTDRE) (INI(J),J=1,NGORD)
            MRITE(MTD:NR) (ERI(J),J=1,NSORD)
            3 CONTINUS
            RISAD (NTLRI) ((H(I,J),I=1,NBASIS),J=1,NBASIS)
            MRITE(MTDIN) ((HI(I,J),I=1,NBASIS),J=1,INBASIS)
            ENDFILE MTDFR
C.....DETERMINE POSITICNS OF ALL NAGNGTIC DEVICES.
            MPITm(INNO2,5)
    5 FORMAT('C',DOX,"POSI'IIGNS CT MAGHZTIC DNVICES")
            CALT METPS
            RiNINM MTDIR
            RE:NIND MTDRS
            miatunN
            END
*FCRTRiN LIB
            SUBROUTINE MKPROL(A,B,C,IA,IB)
C.....fPOLUCT Of THO mEAL SQUARD MATRICES - C=A*B.
    DIMENSION A (IA,IA , B(IA,IA),C(IA,IA)
    IO 1 I=1,IB
    IO 1 J=1,IB
    C(I,J)=0.0
    DO 1 IK=1,IB
    C(I,J)=C(I,J)+A(I,K)*B(K,J)
    1 OSNTINUS
```

nurund
Wij
*FOMTMALI TII3
SUBZOURTIN: MATRAN ($A, D, I A, I B$)
C.....manisons de rais soumaz mitrix a STORED in B.

DIMENGION $A(I A, I A), B(I A, I A)$
DC $1 I=1, I B$
ก0 $1 J=1, I B$
$\Sigma(J, I)=A(I, J)$
1 Cominliue
R.

DN:
*FORTRNT IIB
BU3NOUTINA GRTMON

ILDNOU, LDITU , LCNIO, LDNII
Comation $C(30,30), \mathrm{IH}(30,30), 3(30,30)$
EIIDNEION $C(30,30), \operatorname{OS}(30,30), \mathrm{QU}(30,30), Q V(30,30)$, OM $(30,30), Q X(30)$
G.SORT (3)=, $5 \operatorname{RaC}(0)$

CALE ANTR (GTORTHON, ISTART(15))
C.....ひA~ UP $\because \operatorname{ORTKBRACL}$.

20 : $I=1,1 \mathrm{~N}$
ए $1 \mathrm{~J}=1$, N
$\operatorname{CLinan} \operatorname{Cl}(I, J), \operatorname{QU}(I, J), \operatorname{OV}(I, J), \operatorname{QW}(I, J)$
OJ (I,J) $=S(I, J)$
1 CONTINUE
2 CONTINUE.
C.....CIDOLESTY DECOMPOSITION OF QS.

IO $11 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{Q}=\mathrm{O}(I, I)$
IMI=I-1
$\operatorname{IF}(\mathrm{IMI}) 5,5,3$
3 DU $4=1,1$ III
$\alpha=C A-2 V(I, J) * O V(I, J)$
4 COMPIIUE
$5 \operatorname{OV}(I, I)=\operatorname{agRr}(Q A)$ $\operatorname{CU}(I, I)=O V(I, I)$ IF(iN-I) 11,11,6
6 IP1 $=\mathrm{I}+1$
IO $10 \mathrm{~J}=I P 1, N$
$\operatorname{QV}(J, I)=2 S(J, I)$
IF (MM1) $9,0,7$
7 DO $3 \mathrm{~K}=1, \operatorname{THI}$
$\operatorname{CV}(J, I)=Q V(J, I)-Q V(J, K) * Q V(I, K)$
3 ConPInde
$9 \operatorname{QV}(J, I)=\operatorname{QV}(J, I) / Q V(I, I)$ $\operatorname{QU}(I, J)=\operatorname{OV}(J, I)$
10 CONTINUE
11 CONTINUS
C.....QC = INVENSE GF GU.

DO 12 IMI=2,N
$\mathrm{L}=\mathrm{N}-\mathrm{M} \mathrm{M}+2$
$Q K(L)=1.0 / Q U(I, L)$
QC(L,L) $=\mathrm{QX}(\mathrm{L})$
In $1=\mathrm{L}-1$
DO $12 \mathrm{LL}=1$, LH
$\mathrm{I}=\mathrm{LM} \mathrm{M}-\mathrm{LL}+1$

```
    IP1=I自
    Cyjar qa
    00 111 J=I21,
    OA=Q-UU(I,J)*_(J)
    111 CmamNUS
        II(I)=,V\U(I,I)
        C(I,T)=2.I(I)
    12 CONMINU
    C(1, 1)=1.0/UU(1,1)
C.....CGMUTL MRNLGCMRLD EVERTATP MARRIK.
    CAr, InmPNT(OC,OV,30,N)
    CMCT MKPROD(CV,2S,ON,30,N)
    Chy, MmSmOD(,N,QC,QS, 30,N)
    WMITこ(INNO2,20)
    CNLE IRIMLS( 35,30,30,N,N, LDNO2)
    "O 1& I=1,N
    12. 14, J=1,N
    C(I,J)=CC(I,J)
    14 COMTINUE
    20 FCNDAN(1HO,55X,10HCT*S*C = I/IN)
        CALI CUIT(GHORTHON,ISTART(I5))
    RDIURN
    2ND
* Formant Iib
    SUBROUTINE RESSUT
C.....RESNATM AT BEGINNING OF TRANSFORNLATION SECTION.
    CGILON /TGAIT/ MBASIS,NB,ISTOP,ISTART(20),M(30),IDNOL,IDNO2,IDNOS,
    1TLITOS,LDNOO,IDNN1O,LDN11
        TNG TITTD(15)
        CALT SMR(GHRLSSNT,ISTART(15))
        RLAD(LDNO1,1) JSER,ISNOP
        RLAL(LONO3) ISSR
    I FORMAT(IIO,I5)
        IT(JSNR-IS_R) 2,3,2
    2 CALG, NRENTP (JGUR,ISER,3)
    3 NGLD(LINOB) TITIS,IRUN
        VNITL(LWNO2,4) TITLL
    4 PO2mM(IM1/IFO,30%, G2IDDIATGIIC CONPIGURATION INTERACTION PROGRAM/
```



```
    244%, S2HOUANUM HOLICUIAR PHYSICS GROUP,/1HO,49K,22mDEPARTHNNT OT P
    BMNICS,/1HO,4BX,24HUNIVLRSITY OF I#ICESTER,/1H0,46K,28HLNICESTER,
    4WNGILIWD. ILI 7RH.//1HO,15AB/)
C.....RELIN AND CHECK DATA.
        RUAI (INNOL,5) (M(I),I=1,NBASIS)
    5 FOmMAT(3012)
C . . . .CINCOK N-VALULSS.
        W2ITZ(ILMTO2,6) (I,M(I),I=1,NBASIS)
    < IORMAT('0',40X, MAGNILTIC CUANNUM NUMBIRS'//('',56X,'M(',I2,')=`,
        1I2))
            CLEAZ J
            L3 }-I=1,NBASI
            IF(IABS (H(I))-3) 0,0,7
    7 WRITE(IDNO2,3) I
    O FORHLT'(', 45X, M-VALUE TCO BIG IN ORBITAL',I2)
        J=1
    9 CONTINUE
        IF(J) 10,11,10
    10 CALL EEXIT
    11 CALL QUIT('RLSSET',ISTART(15))
```


RETURN

END

* FORTRAN LIB

SUBROUTINE SITRRI
C.....SDTS UP CCNPLITTE MATRIX OF DISTINCT THO-BITCTRCN INTGGRALS FRCM
C.....LANER TRIANGLT VERSION 3. 06/09/71.

CCIMON /TOALI/ NBASIS,NB,ISTOP,ISTART (20),M(30), LDNO1, IDNO2, LDNO, 1IDNO , IDNO 9, LDN10, LDN11
COMMON A(5000), B(5000)
EIMONSION C(66,66$), \operatorname{BRI}(900), \mathrm{H}(30,30), \mathrm{S}(30,30)$
EQUIVALUNCT (A, EEI) $,(\mathrm{A}(901), \mathrm{H}),(\mathrm{A}(1801), \mathrm{S}),(\mathrm{B}, \mathrm{C})$
ON ERROR KB, Kit,IND, I, J
CALI ENTR('SETBRI', ISTART(15))
C.....SKIP GVER GDRIAL NUMBER, TITLB, AND GNE-TIICTRON INTEGRALS.

RDWIND LDNO 3
READ (IDNO3) I
RBAD (LDNO3) I
X CALL TPPOSiN(LNNO3, TB, KV)
$X \quad \operatorname{DISFLAY}(\mathrm{LP}, 5) / \mathrm{KS}, \mathrm{IK}$
LO $1 \mathrm{I}=1$, NB ASIS
READ (LDNO3) J
READ(LDINO3) J
1 CGNTINUE
CALT TPPOSN(LDNO 3, KB, K!V)
$\operatorname{IF}(N B A S I S-11) 2,2,5$
$2103 \mathrm{I}=1, \mathrm{NB}$
X CALL TPPOSN (IDNO3,KB, KN)
$\mathrm{X} \operatorname{DISPLAY}(L D, 5) / I, I T B, I K$
$\operatorname{minAD}(\operatorname{INNO} 3)(C(I, J), J=1, I)$
DO $3 \mathrm{~J}=1$, I
$C(J, I)=C(I, J)$
3 COn'infus
CAIL SINARCH(LDNO3,KB,KK)
上O $\leq I=1, N B$
WRITS(INNO) (C (I, J) , J=1, NB)
4 CCNTINO
GC TC I:
5 DO $6 \mathrm{I}=1, \mathrm{NB}$
CThar $\operatorname{ImI}(I)$
6 CCNTINUA
5O $7 \mathrm{I}=1$, NE
R:AD (IDNO3) (ERI (J), J=I,I)
WRITE (IDNOD) (ENI $(J), J=1, N B)$
7 CONTINU:
REIIND TDIOO
MRC:I=5000/2R
NPASS=1
IF (MOD (NB, M2NOT)) 0,3,0
8 chilar neass
9 NPASS $=$ NPASS $: N B /$ NaGil
CALL BIGTRA (A, B, IDNOQ, LUNOE,NB, NRCI, NPASS)
CALL SSARCH (LDIUO $3, \mathrm{~KB}, \mathrm{~K} H$)
$1010 \mathrm{I}=1$, il 3
RNAD (LNOS) (ERI (J), $, ~=1, N B$)
$\operatorname{RiNAD}(\operatorname{LDNO})(\operatorname{ERI}(J), J=1, I)$
$\operatorname{MRITE}(\operatorname{LDNO})(\operatorname{ing}(J), J=1, \mathrm{NB})$
10 Covilinus
CALL SAAPCF (LDNO 3,IIB,KW)
RWifind Lligos

DO $11 \mathrm{I}=1, \mathrm{NB}$
RDAD (IDNOS) ($\operatorname{ERI}(J), J=1, N B$)
WRITE (IDNO 3) (ERI (J), $J=1, N B$)
11 CONTINUE
± 2 REWIND LDNO 3
RUWIND IDIYOS
RENIND LDNOP
C.....READ OVERIAP AND ONE-HAMILTCNIAN MATRICUS.

INAD (LDNOB) I
RTAD (LDNO3) I
DO $13 \mathrm{I}=1$, ITBASIS
$\operatorname{READ}(I \operatorname{INO} 3)(S(J, I), J=1, N B A S I S)$
$\operatorname{PAM}(L D N O 3)(H(J, I), J=1, N B A S I ふ)$
13 CCNTINUE
CALE SEARCH (INNO3, TSB, THI)
C.....PRINT S AND II IF ROUURDD.

CALL IUUAFSH(S,IF,NBASIS,ISTART(15))
CALL QUIT('SUTGRI', IBTART(15))
RTHUN
END

* Formran mis

SUBROUTINE TRANGH
C. . . . VERSION 5.26/03/71.
C.....TRANSFIRNAO OHE-BIECTRON INTDGRALS OVER ATOMIC ORBITALS INTO
C.....INTGGRALS OVZR A SGT OF GRTIONORMAL ATCMIC OR MOLJCULAR ORBITALE

C.....OBTAINDE BY TFE DIAGONALIZATION OF THE GVERTAP MATRIK 3.
 1LDNOJ, LLNOO, JLNIO, LDN11
COMMON $C(30,30), \mathrm{H}(30,30), S(30,30), \operatorname{IRI}(30), \operatorname{WGPI}(30,30), \operatorname{MSP}(30,30)$, $1 \mathrm{WGP3}(30,30)$
CALL ENTR("TRANGH', ISTART(I5))
MRITE (IDNO2,1)

C.....TAPE ON UNIT 03 IS POSITIOTSD AT END CF OISTINOT DRI MATRIK.

C. NuAber of non-zimo inthemes.

2 CLEAR TSP2
nJan(IDNO1,30) NOHO
30 FORMAT (1GI5)
DO $32 \mathrm{I}=1$, NONO
R2AN(LNHOI,31) I,J, $\operatorname{TiSP} 2(I, J)$
31 FORHIAT(2I3,F4.1)
32 continue
MRITH(LOHO2,40)
 CALL WRITM (WSP2,30,30,NBASIS,NBASIS,LDNC2)
C.....trangruri ovgitap matrix.

33 CALI ILCNMN(WGP2,TSP1,30, NBATIS)
CALL MEPROD (MP1, $\mathrm{S}, \mathrm{C}, 30, \mathrm{NBASIS}$)
CATL MAPREC (C, ISP2, $\mathrm{s}, 30, \mathrm{NBASIS}$)

y CALL MRTMLS $5,30,30$, NBASIS, NBASIG, LDNO2)
43 Ponimis' , 1P6a24.1ú)
CALL ORTHEN
X WRITS (LDNO2, 43)
X CALL WRITMX (C, 30, 30, NBASIS, MBASIS, LINO2)

49 Format(${ }^{\circ} 0^{\prime}$, 40x, "transformed oni-hiectron integral matrix") READ(LDNO1,30) NIR
$\operatorname{READ}($ ILNO1, 30) (IRI(I), I=1, NBASIS)
VRITE(LOMO2,50) NIR, (I, IRI (I) , $I=I$, NBASIS)
50 format ($0^{\prime} 0$, 24x, "trangromed gabitals beloig to", is,' difmement irr 1educibie rafrisentations"/",43x," (subspecibs countid as difriran
 34GX,'GRBITAL", I3,' BiLLCNGS TO IR', I3))
8 CALL. RKXPROD(WSP2,C,WSP1,30,NBASIS)
DO 9 I=1,NBASIS
LO $9 \mathrm{~J}=1$, NBASÍs
$C(I, J)=W S P 1(I, J)$
9 CONTINUS
C...... Cutput trangrormaticn matrix. MRITH3 (IDNO2, 00)
90 format ("0", 50x, "transfornation matrix"')
CALL WRITTE ($C, 30,30$, NBASIS, NBASIS, LDNO2)
c.....initi transfordiation hatrix onto unit 03.

10 WRITE (LDNO 3) ($(C(I, J), I=1$, NBASIS $), J=1$, NBASIS $)$
c.....'TRANGECRM H-MATRIX.

CALL MCTRAH(C, IISP1, 30, NBAEIS)
CAIL ILXPROD (WSP1, H, $\mathrm{s}, 30$, NBASTG)
CALL iETPROD(S,C,H,30, NBASIS)

NONO $=$ NBASIIS-1
DO $15 \mathrm{I}=1$, NGNO
$\mathrm{K}=\mathrm{I}+1$
ro $14 \mathrm{~J}=\mathrm{K}$, NEASIs
$\operatorname{Ir}(\operatorname{IRI}(\mathrm{I})-\operatorname{IRI}(J)) 11,12,11$
$11 \mathrm{Clizar} \mathrm{H}(\mathrm{I}, \mathrm{J}), \mathrm{H}(J, I)$, Go ro 14
$12 \operatorname{IF}(1.0 \mathrm{O}-09-\mathrm{ABE}(\mathrm{H}(\mathrm{I}, \mathrm{J})-\mathrm{H}(\mathrm{J}, \mathrm{I}))) 13,14,14$
13 GRITA(LDNO2,16) I,J,J,I
14 Continus
15 comitinua
 WRITE (LENOE, 49) CALL MRITEL(H, 30, 30 , NBASIS, NBASIS, LDNO2)

C.....tapa gin umi 03 contains - unthangrcmed a am h mitaices matren

Remine ldifus
call gutt ('trange', is'tart(15)) RITURN BND

* fcrtrain lib SUbZOUTINE TMOMA

C.....timis subrrogran.

TEAT ICD

EQUIVALENCT (DUMA, A, WSP1), (DUMB, WSSP2), (C, H)
$X 103$ FORNAT (4 H MU=, $12,4 \mathrm{H} N \mathrm{~N}=, 12,6 \mathrm{H}$ NGOT=, $14,7 \mathrm{H}$ NWANT=, 14)
X 104 FORMAT(${ }^{\circ}$ OINTEGRAL(${ }^{\circ}, 4 I 3,{ }^{\circ}$) IS CCMPOSED CF -")
X 105 FORMAT(${ }^{\circ} \mathrm{C}\left({ }^{\circ}, 213,{ }^{\circ}\right) * \operatorname{INTEGRAL}\left({ }^{\prime}, 413,{ }^{\circ}\right)$. INTEGRAL INDEX IS ", I4)

X (10))
1,1PE17.10)))
ON ERROR/NSQRD, IJUMP, ISTAGE, NGOT, NTVANT, /MU,NU, MAX, MIN, NMONE,/KIK, IL CALL ENTR(GHTWOTRA, I5(3))
CALL WETTPS
NSQRD=NBASIS*NBASIS
C.....TEST FOR RESTART AT THE END OF THIS STAGE. IF(IJUMP) 29,1,29
1 ISTAGE=1 CLEAR NGOT
C......COMENCE TRANSFORMATION OF CHARGE DISTRIBUTION 2. DO 22 MU=ISTAR5,ISTAR6
DO 21 NU=ISTAR7, ISTAR8
C.....PICK UP REQUIRED BLOCK OF DISTINCT ERI. MAX $=$ MAXO (MU, NU)
NWANT=(MAX* (MAX-1)) $/ 2+$ MINO (MU,NU)
X WRITE (IDNO2,103) MU,NU,NGOT,NWANT
NMOVE=NHANT-NGOT
IF(NMOVE) 2,2,4
2 HMOVE=1-NMOVE
DO $3 \mathrm{I}=1$, NMOVE
BACKSPACE LDNO3
3 CONTINUE
$\operatorname{READ}(L D N O 3)$ (WSP2 (J$), \mathrm{J}=1, \mathrm{NB}$)
GO TO 6
4 DO $5 \mathrm{I}=1$, NMOVE
$\operatorname{READ}(L D N O 3)$ (WSP2(J) , $J=1, N B)$
5 CONTINUE
6 NGOT=NWANT
$I M=M(N U)-M(M U)$
CLEAR WSP1
DO 13 LAMBDA $=1$, NBASIS
K1=NBASIS* (LAMBDA-1)
DO $12 L L=1$,NBASIS
C..... CHECK PHI INTEGRATION GIVES NON-ZERO RESULT. THIS IS CHECK 1. $\operatorname{IF}(I M-M(L A M B D A)+M(L L)) 12,9,12$
$9 \mathrm{~K} 2=\mathrm{K} 1+\mathrm{LL}$
X WRITE(LDNO2,104) MU,NU,IAMBDA,LL
DO 11 IS $=1$, NBASIS
C.....CHECK TRANSFORMATION COEFFICIENT IS NON-ZERO. THIS IS CHECK 2. $\operatorname{IF}(C(I S, L L)) 10,11,10$
$10 \mathrm{MAX}=\mathrm{MLAXO}(\mathrm{IS}, \mathrm{LAMBDA})$
$J=($ MAX* $($ MAX -1$)) / 2+M I N O$ (IS , LAMBDA)
x WRITE(LDNO2,105) IS,LL,MU,NU,LAMBDA,IS,J WSP1 (K2) =WSP1 (K2) +C(IS,LL)*WSP2 (J)
11 CONTINUE
12 CONTINUE
13 CONTINUE
C.....TRANSFORMATION OF 4TH. ORBITAL COMPLETE FOR THIS MU AND NU. CLEAR WSP2
DO $19 \mathrm{KK}=1$, NBASIS
K1 =NBASIS* (KK-1)
IO 18 LL=1, NBASIS
C..... CHECK 1.

```
    IF(IM-M(KK)+M(LL)) 18,15,18
    15 K2=K1+LL
X MRITE(IDNO2,104) MO,NO,KK,LL
    DO 17 LAMBDA=1,NBASIS
C.....CHECK 2.
IF(C(LAMBDA,KIK)) 16,17,16
    16 J=NBASIS*(LAMBDA-1)+LL
X WRITE(LDNO2,105) LAMBDA,KK,MU,NU,LAMBDDA,LL,J
WSP2(K2)=WSS2 (K2) +C (IAMBDA, KKK)*WSP1 (J)
    17 CONTINUE
    18 CONTINUE
    19 CONTINUE
C.....TRANSFORMATION OF 3RD. ORBITAL COMIPLETE FOR THIS MU AND NU.
    WRITE(LDNO9) (WSP2(K),K=1,NSQRD)
X WRITE(LDNO2,106) (K,WSP2(K),K=1,NSQRD)
    21 CONTINUIS
    22 CONTINUE
ENDFILE LDNO9
C.....THIS STAGE IS COMPLETE IF ISTAR6=ISTAR8=NBASIS.
    IF(ISTAR6+ISTAR8-NBASIS-NBASIS) 23,25,23
    23 ICL=4H2ND.
    WRITR(LDNO2,24) ICD
    24 FORMAT(1HO,31X,18HTRANSFORMATION OF ,A4,35HCHARGE DISTRIBUTION IS
    1NOT COMPLETE/)
            RENIND LDNO3
            REWIND LDNO9
            GO TO 27
    25 WRITE(LDNO2,26)
    26 FORMAT(1HO,34X,51HTRANSFORMATION OF 2ND. CHARGE DISTRIBUTION CCMIPL
        1ET18/)
C.....CHECK FOR HALT AT THIS, POINT.
            IF(ISTOP-50) 28,27,28
    27 RETURN
    28 REIYIND LDNO9
C.....POSITION UNIT O3 AT END OF TRANSFORMED H-MATRIX, IF THIS IS NOT A
C.....RESTART AT THIS POINT, C AND H MATRICES MUST BE SKIPPED, OTHERVISE
C.....TAPE IS AT END OF PRIEVIOUSLY TRANSFORMED ERI. SKIP SERIAL NUMBIR
C.....ON UNIT 04.
            RJAD(IDNO3) CMAT
            READ(IDNO3) HMAT
    29 ISTAGE=2
C.....TRANSPOSE PARTIALL TRANSFORMED TWO-ELWCTRON INTLGGRALS ON DEVICE
C.....LDNO9, DEVICE LDNO8 IS USED AS TEMPORARY WORK SPACE.
            IF(NBASIS-3) 300,300,290
    290 NRON=5000/NSQRD
        NPASS=1
        IF(MOD(NS@RD,NRON)) 292,291,292
    291 CLIEAR NPASS
    292 NPASS=NPASS+NSQRD/NRON
WRITE(IDNO2, 293) NSQRD,NSQRD, LDNO9,IDNO8,NROH,NPASS,IDNO9
293 FORMAT(" ",15X,I4, **,I4,"-MATRIX ON DEVICE",I3," TO BE TRANSPOSED
X 1, IEVICE',I3,' IS USED AS TGMPORARY STORAGE'/' ',23X,I5,' RMCORDS
X 2RE READ EACH TIME AND`,I5,` PASSES ARE MADE OVER DEVICS",I5/)
X CALL CNTR(INSTR)
    CALL BIGTRA(DUMA,DUMB,IDNO9,LDNO3,NSQRD,INROM,NPASS)
    CALL CNTR(JNS'TR)
    SEC=(JNSTR-INSTR)/160.0
    WRITI(LDNO2,294) SLC
X 294 FORMAT(" ',43X,'TRANSPOSE TIME =',F10.2,' SECCONDS"/)
    GO TO 303
```

```
    300 READ(TDNOD) IGLIR
        IO 301 I=1,NSQRD
        READ(TDNOO) ( }A(I,J),J=1,NSQRD
    301 CON'INUS
        REWIND INNOS
        WRITE(LDNOS) ISER
        IO 302 I=1,NSQRD
        WRITE(LDNO9) (A(J,I),J=1,NSQRD)
    302 CONTIMUE
        RUWIND TDNO9
    303 REAJ (IDNO 3) IGUR
C.....CCIOIENC: TRANSFORMATION OF 1ST.CHARGE DISTRIBUTION.
    nC 44 KK=ISTAR9,ISTARO
    IK1=NBASIS* (KK-1)
    DO 4.3 T.T=ISTAR1,ISTAR2
    NCOT=TK1 +IL
    IM=M(JL)-M(KK)
    READ (LDNOD) (VSP1 (NROW), NROV=1 ,NSQRD)
    CLíAR WSP2
    DO 35 MU=1,NBASIS
    K1=NBASIS*(MU-1)
    DO 34 J=1,NBASIS
C.....CHECK 1.
    IF(IM-M(NUS)+M(J)) 34,31,34
    31 K2=K1+J
X WRITE(LDNO2,104) NU,J,KK,LL
    DO 33 NU=1,NBASIS
C.....CHECK 2.
        IF(C(NU,J)) 32,33,32
    32 I=K1+NU
X WRITE(LDNO2,105) NU,J,MU,NU,KK,LL,I
        WSP2 (K2) =VSP2(K2) +C(NU,J) *WSP1 (I)
    3 3 \text { CONTINUE}
    3 4 ~ C O N T I N U :
    35 CONTINUE
C.....TRANSFORMATION OF 2ND. ORBITAL COMPLETE FOR THIS MU AND NU.
        CLEAR WSP1
        DO 41 I=1,NBASIS
        K1=NBASIS*(I-1)
        LO 40 J=1,NBASIS
C.....CHECK 1.
        IF(IM-M(I)+M(J)) 40,37,40
    37 K2=K1+J
X WaITE(LDNO2,104) I,J,KK,LL
    IO 39 MU=1,NBASIS
C.....CHECK 2.
        IF(C(IMU,I)) 33,39,33
    38 II=NBASIS* (MU-1) +J
X WRITE(IDNO2,105) MU,I,MU,J,KK,LL,II
    WSP1 (K2) =WSP1 (K2) +C(MU,I)*WSP2(II)
    39 CONTINUE
    4 0 ~ C C N T I N U E : ~
    4 1 ~ C O N T I N U E ~
C.....TRANSFORMATION OF 1ST. ORBITAL COMPLIETE FOR THIS KK AND LL.
        WRITE(LDNO3) (WSP1(K),K=1,NSQRD)
X WRITL(IDNO2,107) (K,WSP1 (K),K=1,NSQRD)
    4 3 \text { CONTINUE}
    4 4 \text { CONTINUE}
        ENDFILE LDNO3
C.....TAPE ON UNIT 03 CONTAINS UNTRANFORMED S AND H MATRICES, LOWER
```


- 218 -

C.TRANSFORLLD II MATRICES AND ALL OR PART OF THE TRANSFORMED ERI.
C.....NIIS STAGE IS CRMPIETE IF ISTARO=ISTAR2=NBASIS.
$\operatorname{IF}($ IGTAZO ISTAR2-NBASIS-NBASIS) 45,451,45

```
\(45 \mathrm{ICL}={ }^{\circ} 1 \mathrm{ST}\), ,
WRITG(IDNO2,24) ICD
```

RJIIND LDNO3
REWIND LINO9
GDTO 46
C.....CVER MRITE INT GGRALS ON DEVICE LDNO3 WITH TRANSFORMED ERI AND
C. . . . TRANGPORMGD H-MATRIX.

451 RUBIIND IDNO 3
RU:氵INI) LDNO9
READ(LDNO3) ISER
READ (LDNO3) ICD
DO $452 \mathrm{I}=1$, NBASIS
READ (TDINO3) SMAT
RWAD(TDNO3) IRLAT
452 CmNTNUE
$10453 \mathrm{I}=1$, NB
READ(LINO3) ERIMAT
453 CDININU.
$\operatorname{READ}(I N \mathrm{NO})((\mathrm{C}(I, J), I=1$, NBASIS $), \mathrm{J}=1$, NBASIS $)$
CLWAR H
READ(ILNO3) ((H(I, J), I=1,NBASIS) , $\mathrm{J}=\mathbf{1}, \mathrm{NBASIS})$
CLEAR MROT
MTDRE=LDNO3
MTD:R=TLNO 9
454 SO $455 \mathrm{I}=1$,NSQRD
READ (HTDRE) (WSP1 (J) , J=1,NSQRD)
WRITA (MTDWR) (VSP1 (J) , J=1,NSQRD)
455 CONTINUS
IF (NROV) $457,456,457$
456 NRC: $=1$
ITPASG=MTDRE
MTDRE=MTDIR
IITD: $/ R=$ NPASS
REIIIND MTDRE
RUIIND MFDWR
GO TO 454
457 WRIT (HTDWR) ($\mathrm{H}(\mathrm{I}, \mathrm{J}), \mathrm{I}=1$, NBASIS $), \mathrm{J}=1$,NBASIS $)$
RNDFILA MTDIVR
RUWIND MTDIVR
$\operatorname{IF}(\operatorname{I5}(3)) 453,4535,458$
453 CALI CUTBRK (IDNO2)
MRITC(LDHO2,4536)
DO $4501 \mathrm{I}=1$, NSQRD
WRITE (LDNO2, 4532) I
$\operatorname{READ}(M T D I R)(W S P 1(J), J=1, N S Q R D)$
WRITE (LDNO2, 4533) (WSP1 (J) ,J $=1$, NSQRD)
4531 CCNTINUE
4552 FORMAT (${ }^{\prime} 0$ ", 49 K, "CONTENTS OF RECORD', I4/)
4583 FORMAT((', 1P5E24.10))
$\operatorname{RLAL}(\operatorname{HDTR})((H(I, J), I=1, N B A S I S), J=1, N B A S I S)$
WRITE (LDNO2, 4534)
4534 FORAAT (${ }^{\circ} 0$ ', 33X, 'TRANSFORMED ONE-ELECTRON HAMILTONIAN MATRIX'/)
CALL WRITMX (H, 30,30 ,NBASIS,NBASIS ,LDNO2)
4535 CALL WHPPS
REWIND MTDIR
4536 FORMAT (${ }^{\prime} 1$ '/ $/{ }^{\prime} 0^{\prime}, 43 \mathrm{X}, \quad$ 'TRANSFORMED TWO-ELECTRON INTEGRALS"/)
46 CALT QUIT ('TVOTRA',I5(3))

RETURN

END

*FORTRAN LIB

SUBROUTINE WRONTP (IWANT,IGOT, IUNIT)
C..... CALLGD WHEN TEST OF MAGNETIC TAPE SERIAL NUMBER INDICATES THAT THE
C.....IIRONG TAPE HAS BEEN MOUNTED.

DATA LDNO2/O/
WRITE(IDNO2,1) IUNIT, IWANT, IGOT
1 FORMAT(4OHOTHE WRONG TAPE HAS BEEN MOUNTED ON UNIT ,I2/
123 H THE TAPE RJSQUIRED IS NUMBER,I10/28H THE TAPS MOUNTED IS NURBE
2R,I10/29H CONTINUATION IS NOT POSSIBLE/////)
CAL工 EEXIT
RETURN
END

POSITIONED AT
BLOCK NORD
NUMBER OF INSTRUGTIONS USED ON EXIT FROM SUBPRCGŔAM MFILE2 = 331
NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPRCGRAM RESSET $=333$
DIATOMIC CONFIGURATION INTERACYION PROGRA:

－9ロ0
00000 $\uparrow \&: \therefore$以山以比
 응요 응ㅇㅇㅇ 20
80
0 0080
0.6
0
0 응응응 8000 $000^{\circ} 00$

ㅇㅇㅇㅇㅇ $\dot{+}+\dot{4}$ 안 へ山゙ルヅル － 0 응 ㅇㅇㅇㅇㅇ $\stackrel{0}{\circ}$ 01 I 0.09
ㅇㅇㅇㅇㅇ 웅ㅇㅇㅇㅇ웅 zo o ${ }^{\circ} 0^{\circ}$ Wก703

00000 웅ㅇㅇ웅山山山山以 －OOHO

 응응ㅇㅇ 응응 －O 0 ㅇ
 00000

[^4]

275

transfcrilation of gneselegtron dntegrals

 $-3.6379788070 E-12$
SED ON ENTRŸ TO SUBPRCGRAM ORTHON：

$$
\text { COLUMNS } 1 \text { TO } 5
$$

Simmetry transformation matrix $00+300000000000$ +00
+00
+00
nam
3． $6379788070 E-12$

$00430000000000^{7} 0$ $00430000000000^{7} 7$ $00430000000000^{7} 0$ $00430000000000^{7} 0$ $004 \exists 0000000000^{7} 0$ o

0
 $d 805$
3000
3000
3000
3000
 ORTHON＝$\quad 470$

US
0
0
0
0
0
0
0
0
0
운웅
出岗山山゙
응ㅇㅇ
응응응 000 00 00 응ㅇㅇㅇㅇㅇㅇㅇㄹ －ㅇ․ 7000°

G TO 4 DIFFERENT IRREDUCIILLE REPRESENTATIONS
CIES COUNTED AS DIFFERENTI
ORBITALS ARE ASSIGNED AS FOLLOWS
TAL 1 BELONGS YOIR 1
TAL 2 BELONGS YO IR 1
TAL 3 BELONGS TOIR 2
TAL 4 BELONGS TOIR 3
TAL 5 BELONGS TOIR 4
TRANSFORMATION MATRIX

BITALS
TRANSFO

TRANSFORMED ORBITALS

> | \because |
| :--- |
| 0 |
| 1 |
| u |
| 0 |
| 0 |
| 0 |
| 0 |
| |
| |

운옹영山山山山し － 0 O앙 응ㅇㅇ 응응ㅁㅇㅇ 응으응
 응응 0 00^{-10}
200000
200000
04 IS
504°
506

UNI
512
n n: 気!
EXIT FROH SUBPRCGIRAM TRANSH
ENTRY TO SUBPRCGRAII CONTRA
TAPE
SUBPRCGRAII CONTR
TO
o subprcerah thotra
01
$\underset{\text { c }}{\substack{c \\ \hline}}$

ON
used
岩告
NUMBER
NUMBER

$00+\exists C O L O C O O 0^{\circ} 0$

$000 M$
000
0
4 $0_{0} 0$

00000 -100000

11 し＋＋＋＋ 11 山lll 1111 001000 $\square 0$
－OMOO NOOOOO

 00 － －00 000 aOcino 0 OOONOO ㄴㅇㅇㅇㅇㅇㅇ $\mathfrak{1} 0060$ | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | 000000 no 0000 CONTEVTS

∞
NNOOO

\cdots
00000 แ แル แ 山 い in 000 ámo 00 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ UnN0 $\begin{array}{cccc}\operatorname{cin}_{1} \infty & 0 & 0 & 0 \\ N & 0 & 0 & 0\end{array}$ 100
1000
0
0 へ NMM OO O 5
5
2
0
0

00000 I 0000080
 00000 900000 10000
000
0 00

OCNO	－006へ	NNOOO
00000	00000	00000
＋＋＋+	＋＋＋＋	$11+t+$
نٌ	山．山腙山	
－oono	OOCON	00000
O00120	O000M	10000
$=\sigma=1 \sim$	＝＝＝	－w＝ご
00000	$\bigcirc 00 \infty$	00000
cocno	OCGON	Ir -6 c
000 N0	O000	N以ーかっ
00000	00000	Foooo
00000	$\bigcirc 0000$	woooc
$\bigcirc 0050$	OOCOL	$\therefore 5000$
OOOMO	0000 M	ω Noo
$000 M 0$	0000 m	1.000

○OMOO
 － 0 엉ㅇ roo ino ㅇㅇON 000 uO 001000
00000 $\begin{array}{lll}100 & 0 & 0 \\ 0 & 0 & 0 \\ 0\end{array}$ CONTEVTS
$.7855000002 \mathrm{E}+00$
$.4307495009 \mathrm{E}-01$
$.0000900000 \mathrm{E}+00$
$.0000000000 \mathrm{E}+00$
$.0000000000 \mathrm{E}+00$
 $00 \div 300000<0000$

			－88080芯華芯 ㅇ․ 23 $\therefore 03=0$ $5=500$ 응ㄹㄹㄹ응 0000 		
	응ㅇㅇㅇㅇㅇㅇ芯岂岂 08080 00000 08803 88089 00 응 0000°		N1： 人ONO in 응 N～O응 へ心ロ。以た80 ウNOES ヴデo		응ㅇㅇㅇㅇ 08000 0000 응ㅇㅇ 으응 응응 $00^{\circ} 00^{\circ}$
		2응ㅇㅇㅇㅇㅇㅇ 20응ㅇ 0응ㅇㅇ 000000 U2응ㅇㅇ 응응ㅇㅇㅇ 능응응ㅇ n000000 	응응ㅇㅇㅇㅇ 山岗耑花 －0응 등응ㅇㅇㅇㅇㅇㅇㅇ访응ㅇㅇ崩응ㅇㅇㅇㅇㅇ ㄴㅇㅇㅇㅇㅇ n000000	Nㅡㅇ응 － 능ㅇㅇㅇㅇㅇㅇ天心的000胹事品응岂代成品品 nnimóo $\stackrel{\text { U }}{\stackrel{3}{2}}$	 的응ㄷㅇ वina응ㅇ 엇ㅇㅇㅇㅇㅇㅇ 언응응收はぺ응
 응응 H00응次응ㅇ の든응 $\because 2000$ Hir000	응뭉ㅇㅇ岂 ○。응 －N N 吅以品 응승응 웅ㅇ․ 00400°				

			NNOOO \because in 000 0 0 $\begin{array}{llll}0 & \omega & 0 & 0 \\ 0 & 0 & 0\end{array}$ け Nc， 00 HW 0000 $\omega 心 0,00$ NMOOO NMO 0	$\sim \rightarrow 000$ M2080 ${ }^{1020} 0$ NNOOO © MとO Nㅡㅇㅇㅇ Mrióo	OONOO 00 告 00 － 00 으으응 OOw응 0000 $00^{\circ} 0^{\circ}$
Mrigec 00000出拥岂出岂 Finooo へuOO HG응응 2000式MO응 $\therefore 000$ 0000°			응ㅇㅇ웅 岂出出出出 －000M 드응․ 응ㅇ －000． 응ㅇㅇㅇ안 －000m 0000 m		응ㅇㅇㅇ응 00000 등드응 응ㅇㅇ 응ㅇㅇ 응ㅇ 00000 0000°
OMOOO 葉 领 的访品品 心人00 in hin 등ㅇㅇ응 rióo ó			$\begin{aligned} & 00000 N \\ & 000000 \\ & t \end{aligned}$	응ㅇㅇN ㅇㅇㅇㅇㅢ 응은 －O은 응은 －OOO。 으으은 －000m	$\begin{array}{lllll} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 4 & t & 4 & \ddots & t \\ H & 1 & 4 & j & 山 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$

		응ㅇㅇㅇㅇ 응ㅇㅇ 00000 응ㅇㅇㅇ 28808 00000 $00^{\circ} 0^{\circ}$	응ㅇㅇㅇ戠尝芯芯 응ㅇㅇㅇ －0000 응ㅇㅇ 80890 －0．00 0000		응ㅇㅇㅇㅇ岦岀岂出岀 －0000 으응 88880 80090 00000 00000
응응응 응응 ～응응 응ㅅㅇㅇㅇ 祸응응응 u o oinco 忌			응ㅇㅇㅇㅇㅇㅇ べ 응ㅇㅇㅇ응 승응ㅇㅇㅇ 응응응응 씅ㅇㅇㅇㅇㅇㅇㅇㅇ 응응ㅇㅇㅇ 능응ㅇㅇㅇㅇㅇㅇ $\because 0^{\circ} 0^{\circ} 0^{\circ}$ 岂		＋응ㅇㅇㅇㅇㅇ $\stackrel{\rightharpoonup}{\sim}$ い1，tut ín －응ㅇㅇ 중ㅇㅇㅇㅇㅇㅇㅇㅇㅇ 능응ㅇㅇㅇㅇㅇ র으으응 능ㅇㅇㅇㅇㅇ n00000
 出岂じ山 小约品 슷드응 －능응 －120응 に M^{2} O응 00000 a mo 0	응ㅇㅇㅇ 岂岂莒出出 品品 2흐응 등응응 응응 응응ㅇㅇ 응ㅇㅇㅇ $00^{\circ} 00^{\circ}$	응ㅇㅇ商新岂妾 －－人比湤 응ㅇㅇ 응ㅇㅅㅇ －0000 ○○○心。 －00M0	응ㅇㅇㅇ －․ㅡ읃 으으응 응응 응Nㅇ －O응 응ㅇ 000%	응등ㅇㅇ －0응 0050 응응응 응ㅇㅇ 응ㅇㅇ 00000 00000°	00 0 0 0 0 0 + +
응ㅇㅇㅇ 啇 5 in o ： mi응응 人 जै口 in 승응 H000 ッウ்からか			응ㅇㅇㅇ 응ㅇㅇㅇ 으읃 응읏응 을불 응음웅 －00m0 ふらかから		

000	090\％U950091
9.000	9） 70.109600 N
19.001	1？0：103c\％onw
i）． 0010	10090 ic\％os

$0,0000000=00 E * 00$
$0,0000000000 \mathrm{O} * 00$
$0,0000000000 \mathrm{E} * 00$
$3,2438968761 E=01$
$0,0000000000 \mathrm{O}=00$

응응ㅇㅇㅇㅇ

 응흥ㅇㅇㅇ 은응ㅇㅇㅇㅇㅇ Fㅇㅇㅇㅇㅇㅇ一品品品吕

응ㅇㅇ m응ํㅇㅇㅇㅇ $\underset{\sum}{\sum 0000}$
 \cdots

0 응응ㄱㅇㅇㅇㅇ 000 응
 ＜4응ㅇㅇㅇ
아웅
 noono CONTEVTS

$0.0000000 \% 0 E+00$
1000
$1057938455 \mathrm{E}+00$
$3856167517 \mathrm{E}-03$
$3000100000 \mathrm{E}+00$
$3000000000 \mathrm{E}+00$
$3000000000 \mathrm{E}+00$

TAPE	POSITIOVED	
IUNBER	BLOCK	
3	2	
TAPE	POSIT	
	BLOCK	
4	1.	
: $\triangle P E$	POS:T	
VUMDER	BLOCK	
5	$?$	
- ARS	POSIT	
UHER	31-OCK	
6	$\zeta 0$	
	PJS.T	D
\because そこ	BLO	$H 0$
$\therefore \therefore=8$	PJS:T	D
	QLOOK	iv
3	2?	

NUHBER OF INSTRUCTIONS USED ON EKIT FROM SUBPROGZA：A TIMTRA $=972$ transformatioy of tio－Electron
Integrals complete
OXYGEN
EXPONENTS）
BLOCK 50
にな
の E STARTING

APPENDIX VII

SECS \varnothing L. A PROGRAM FOR THE CONSTRUCTION AND
SOLUTION OF THE SECULAR EQUATION IN THE
METHOD OF CONFIGURATION INTERACTION

This program computes the matrix elements of the secular equation using the methods described in chapters 7 and 8 . The secular equation is solved using the QR-Algorithm and facilities are provided for computing and diagonalizing the first order density matrix if this is required. The program occupies about 1700 F \varnothing RTRAN V source cards and its storage requirements are approximately 115 blocks of compilation store and 115 blocks of execution store. In addition to the subprograms listed here SECS $\varnothing \mathrm{L}$ requires the routines ENTR, ERR \varnothing R, IPAR, QUIT, and WRITMX from Appendix III.

SECS \varnothing L uses two magnetic tapes and three disc areas which are assigned as follows:

VARIABLE NAME	VALUE $=$ DEVICE No.	
MTD01	Defined in data	Private disc area of >150 blocks. Contains results of current run.
MTDO2	Defined in data	Master results tape.
MTD	3	Private disc area of 30 blocks. Contains specification of detors and projection matrix $\underline{T}_{S \sigma}$
IDISC	4	Private disc area of 3 blocks. Contains contents tables of MTDO1, MTDO2.

INTRA	Defined in	Master transformed integral tape-produced
	data	by the program INTRA.
MTD	7	Common disc area of 100 blocks

The line printer is device 0 .

The data provided by the user is divided into six sections. Once the detors have been specified this information is written onto MTD (=3) followed by the projection matrix, this data may be used in a later run but only the last specifications read are available.

Data specification for SECS \varnothing I

Section 1 : Read data required to compute matrix elements between detors.
Card 1 IWHERE, N \varnothing
F \varnothing RMAT (2I5)
IWHERE $=1$
$N \varnothing \quad\left\{\begin{array}{l}=0 \text { to suppress timing information } \\ =1 \text { to obtain timing information }\end{array}\right.$
Card 2, 3 TITLE
FøRMAT (9A8/6A8)
TITLE is an array of 15 elements (120 characters)
used to identify the run.
Card 4 MTDO1, MTDO2, NBASIS, NDET, NELEC, NFULL
FøRMAT (6I5)
MTD01 $=$ Device number of private disc area
MTD02 $=$ Device number of master results tape
NBASIS $\quad=$ Number of basis orbitals
NDET $\quad=$ Number of detors
NELEC $=$ Number of electrons
NFULL $\quad=$ Number of spin-orbitals frozen.

Card 5 NøNO
FøRMAT (I5)
$N \nsim N O \quad\left\{\begin{array}{l}=\begin{array}{l}0 \text { If the detors have to be specified } \\ = \\ 1 \text { If the detors were specified in the } \\ \text { previous run }\end{array}\end{array}\right.$
Card 6 F
(omitted if FøRMAT (9A8)
$N \nsim \mathrm{NO}=1$)
F is an array which defines the lineprinter format for the printing of the detor specifications. It has the form:
(($\left.\left.b^{\prime} \cdot, I 8, m X, n I 3\right)\right)$
or (($1 \mathrm{Hb}, \mathrm{I} 8, \mathrm{mX}, \mathrm{nI} 3)$),
where b is a blank, $n=$ numerical value
of NBASIS, and $m=\frac{1}{2}(112-3 n)$
Variations are possible
Card 7(I) (IDET(I, J,), J = 1, NELEC)
(Omitted if FøRMAT $(1 \mathrm{X}, 3212)$
$N \varnothing N O=1$)
$\operatorname{IDET}(I, J) \quad$ specifies the Jth spin-orbital of the Ith detor. These cards, of which there are NDET, will normally be these output by the program QENDET.

$$
(1 \leqslant I \leqslant N D E T)
$$

Section 2 : Computation of $G(k)=$ $\left\langle D_{\mu}\right| \mathfrak{G}\left|D_{\nu}\right\rangle \quad$, where $\mathrm{k}=(\mu(\mu-1)) / 2+\nu \quad$ and $\mu \geqslant \nu$. The transformed integrals must be on MTDO1 at word 0, block 1.

```
Card 1 IWHERE, N \(\varnothing\)
    FøRMAT (215)
    IWHERE \(=2\)
    N \(\varnothing\) : see section 1 card 1
```

Section 3 : Compute H and solve ($\underline{H-E I}$) $\mathrm{C}=0$
Card 1 IWHERE, N \varnothing
FøRMAT (215)
IWHERE $=3$
N \varnothing : see section 1 card 1
Card $2 \quad N C \not \varnothing_{\mathrm{NF}}$, Nø ${ }^{\text {NO }}$
FØRMAT (215)
NC $\varnothing \mathrm{NF} \quad=$ number of codetors
NøNO $=$ number of non-zero elements in the
projection matrix $\mathrm{T}_{\mathbf{s} \sigma}$
Card 3
IFILE
FøRMAT (I5)
IFILE $\left\{\begin{array}{l}=0 \text { If the projection matrix has to be defined } \\ =1 \text { If the projection matrix was defined in .the } \\ \text { previous run }\end{array}\right.$
Card 4(K) I, J, T(I, J)
(Omitted if FøRMAT (2I5, F10.2)
IFILE = 1)

$T(I, J)$	is the I, J-th element of the projection
	matrix $\mathrm{T}_{5} \sigma$. It should be non-zero and
	written as an integer in real form, e.g.
	1.00 : The program normalizes the columns
	of $\mathrm{T}_{\mathrm{S}} \boldsymbol{\sigma}$
	$(1 \leqslant x \leqslant N \nsim N O)$

Card 5 NCEN
F \varnothing RMAT (I5)
NCEN $\quad=$ number of nuclei
Card $6(\mathrm{I}) \quad \mathrm{CH}(\mathrm{I}), \mathrm{X}(\mathrm{I}), \mathrm{Y}(\mathrm{I}), \mathrm{Z}(\mathrm{I})$
(Omitted if FøRMAT (1P4E 20.10)
NCEN = 1)

$$
(2 \leqslant I \leqslant \text { NCEN })
$$

Section 4 ; Natural spin orbital analysis of a specified energy level. Card 1 IWHERE, N \varnothing

F \varnothing RMAT (215)
IWHERE $=4$ -
NO : see section 1 card 1
Card 2 IC \varnothing L
F \varnothing RMAT (I5)
IC $\varnothing \mathrm{L}$ defines the energy level for which the analysis is required $(1 \leqslant$ IC $\varnothing \mathrm{L} \leqslant \mathrm{NC} \varnothing \mathrm{NF})$

Card 3 IFILE, JFILE
FøRMAT (215)
IFILE $=3$
JFILE $=4$
Card 4 (DN(NENTRY, J), J = 1, 4)
FøRMAT (4A8)
This card contains 32 characters used to identify the $\operatorname{NS} \varnothing$ analysis, NENTRY is known to the program.

Section 5 Entries to the subprogram TDFILE: the data is divided into five sections.

Card 1
IWHERE, N \varnothing
FøRMAT (2I5)
IWHERE $=5$
NO : see section 1 card 1
This card precedes the cards from one of the following subsections
A : Copy transformed integrals onto MTD01 and MTD02 from INTRA
Card 2A IFILE, JFILE
FøRMAT (2I5)

IFILE $=1$.
JFILE $=1$
Card 3A IENTRY, NXBL\&CC
FøRMAT (2I5)
IENTRY $=2$
NXBLDCC $=$ number of block at which transformed integral file will begin on MTDO2

Card 4A
INTRA, IG \varnothing, NBI $\varnothing C$ FøRMAT (3I5)

INTRA $=$ device number for Master transformed integral tape.
IG $\varnothing\left\{\begin{array}{l}=0 \text { To initialize the contents tables of MTD01 } \\ \quad \text { and MTDO2 } \\ =1 \text { If the contents table of MTDO2 contains } \\ \text { entries }\end{array}\right.$

NBIDCC $\quad=$ number of block at which transformed integral file begins on INLRA.

Card 5A
($\operatorname{DN}(1, K), K=1,4)$
FøRMAT (4A8)
This card contains 32 characters used to identify the integrals.

B : Copy selected entries from MTDO2 onto MTD01
$\begin{aligned} \text { Card 2B } & \text { IFILE, JFILE } \\ & \text { FØRMAT (2I5) }\end{aligned}$
IFILE $=1$
JFILE $=0$
Card 3B IENTRY, NXBLØC
F \varnothing RMAT (2I5)
IENTRY $\quad=$ number of entries to be copied from MTDO2 onto MTDO1 and must always include the last entry on MTDO2.

NXBLøOC $=0$
Card 4B (LD (I), I = 1, IENTRY)
F \varnothing RMAT (16I5)
$\operatorname{ID}(I) \quad$ is the subscript of an entry in the contents table of MTDO2. The records corresponding to this entry are copied onto MTDO1. Continue on successive cards if IENTRY > 16)

C : Read data into core from MTD01
Card 2C IFILE, JFILE
FøRMAT (2I5)
IFILE $=2$
JFILE $=0$

Card 3C
IENTRY
FØRMAT (I5)

IENTRY is the subscript of an entry in the contents table of MTD01. The records corresponding to this entry will be read into the appropriate area of core.

D : Write results onto MTDO1
Card 2D
IFILE, JFILE
FøRMAT (2I5)
IFILE $=3$
JFILE $\quad\left\{\begin{aligned} &= 2 \text { If matrix elements between detors are to } \\ & \text { be transferred } \\ &= 3 \text { If the solution of the secular equation } \\ & \text { is to be transferred } \\ &= 4 \text { If the first order density matrix is to } \\ & \text { be transferred }\end{aligned}\right.$

Card 3D
(DN(NENTRY, J), J = 1, 4)
FøRMAT (4A8)
This card contains 32 characters used to identify the entry.

E : Update MTD02 from MTD01, entries on MTD01, not already on MTDO2 will be added to MTDO2.

Card 2E IFILE, JFILE
F \varnothing RMAT (2I5)
IFILE $=4$
JFILE $=0$

Section 6 : End of job
Card 1
IWHERE, N \varnothing
FØRMAT (2I5)

1
IWHERE
$=6$

Restrictions

$1 \leqslant$ NBASIS $\leqslant 30$
$1 \leqslant$ NDET $\leqslant 120$
$1<$ NELEC $\leqslant 32$
$0 \leqslant$ NFULL $\leqslant 8$
$1 \leqslant$ NCФNF $\leqslant 78$
$1 \leqslant$ NCEN $\leqslant 20$

The number of entries in the contents table of MTDO2 must not exceed 158, and the number in that of MTD01 must not exceed 10.

Error Messages

Checks are made to see that the data does not violate the limits of the program. Certain violations give rise to the message ERR $\boldsymbol{l}_{\mathrm{R}} \mathrm{n}$, where n is a number in the list below:

ERR $\phi \mathrm{R} \mathrm{n}$	CAUSE
1	NBASIS >30
2	NELEC >32
3	NDET >120
4	NFULL >88
5	NC \varnothing NF >78

Several other error conditions can arise which will terminate execution. In these circumstances the error messages are self-explanatory.

The following actions may cause termination as the subroutine TDFILE
vill interpret them as errors:
(i) attempting to read integrals into core,
(ii) attempting to read the first order density matrix into core,
(iii) attempting to read the 'next new record' into core
(iv) requesting more records from $M T D O 2$ than are actually present.

* Fortran LIB 6,19,302
C..... MAIN PROGRAM FOR SECSOL - CONSTRUCTION AND SOLUTION OF TIL SECULAR
C.....EQUATION WITH AN OPTIONAL NATURAL SPIN-ORBITAL ANALYSIS. COMMON /SECEQN/ AA(33767),ICR,LP, MTD,NO, ANYO, ANY1, ANY2, ANY3,ANY4,
 2, NF, NFULL, NSQRD, NXBLOC
EQUIVALENCE (NXBLCC,IMHERE)
C..... DEFINE DSVICE NUMBiRRS,
C.....IP = LINE PRINTLR,
C.....ICR = CARD READNR,
C.....MTD = WCRKFILE.
C.....IDISC=CONTENTS TABLES FILE. CLizar ICR,LP
MTD=3
IDISC=4
$1 \operatorname{READ}(I C R, 2)$ IWHERE,NO
2 FORMAT(2I5)
GO TO $(3,4,5,6,7,8)$, IMHERE
C.....read data for Computing matrix elements between detors.

3 CALL SECDAT(1)
GO TO 1
C..... CCMPUTE MATRIX ELEMENTS BETNGEN DETORS.
$4 \mathrm{MTD}=7$
CALL PASONE
CALL MAXCCN
CALL PAST:YO
CALL HPASS
MTD $=3$
GO TO 1
C..... CCMPUTs H-MATRIX AND SOLVE (H-E*I)*C $=0$.

5 CALL SECSOL
GO TO 1
C.....PERFORM NATURAL SPIN ORBITAL ANALYSIS.

6 CALL NATORB
GO TO 1
C.....COR $/$ PERIPIERAL TRANSFER - MARE SURI DATA IS CORRICT.

7 CALL TDFILI
GO TO 1
C.....JOB COMPLIETE.

8 CALL TIMC (ANYO)
iRITR(LP,9) ANYO
9 FORMAT(${ }^{\circ} 0^{\prime}, 33 \mathrm{X},{ }^{\circ} * * * *$ JOB COMPLETL $-\operatorname{TIME}$ USED $={ }^{\prime}, \mathrm{F} 10.5,^{\prime}$ SLCCNDS $*$ 1***')
STOP
END
*FORTRAN LIB
SUBROUTINE ADDNRT (H,N,M,ICR,LP)
C.....ADDS NUCLEAR REPULSION ENERGY TO SOLUTION OF SLEULAR iNGUATICN.
C.....VERSICN 2. MAKIMUR NUMBER CF NUCLLi I IS TVENTY.

DIMSNSICN $\mathrm{H}(\mathrm{N}, \mathrm{N}), \mathrm{X}(20), \mathrm{Y}(20), \mathrm{Z}(20)$, CHI (20)
$\operatorname{SQRD}(X, I, J)=(X(I)-X(J)) * * 2$
$\operatorname{READ}(I C R, 1) \operatorname{NCN}$
1 FORMAT (I5)
IF ($\mathrm{OO}-\mathrm{NC}$.ĩ) $10,2,2$
$2 \operatorname{IF}(N C N-1)$ 9,9,3
$3 \mathrm{RHAD}(I C R, 4)(C H(I), X(I), Y(I), Z(I), I=1, N C . N)$
4 FCRMAT (1P4こ20.10)


```
    1,24X,'NUCLEUS NUCLIEAR CHARGIS X CO-ORDINATE Y CO-ORDINATL Z
    2 CO-CRDINATE/(*',27X,I2,1PE19.7,1P3E16.6))
    ClLAR ERN
    MCIN=NCEN-1
    DO 6 I=1,MCNN
    K=I+1
    DO G J=K,NCEN
    IRN=NRN+CH(I)*CH(J)/SQRT(SQRD (X,I,J) +SQRD(Y,I ,J)+SQRD(Z,I,J))
    6 \text { CONTINUE}
    WRITE(IP,7) SRN
7 FORMAT( '0',38X, 'NUCLEAR RIEPULSION INERGY =',1PR17.10)
    DO 8 I=1,M
    H(I,I)=H(I,I)+SRN
8 CONTINUE
    9 RETURN
10 WRITE(LP,11) NCEN
11 FORMAT('0',42X,'NCEN=',I5,'. NCEN MUST NOT EXCEED 20')
    CALL BEXIT
    STOP
    END
```

*FORTRAN LIB
SUBROUTING EAOBA(A,B,N,ND,EPS)
C..... RUPLLACES HARWELL LIBRARY VERSION OF JACOBI'S METHOD BY AN
C.....INTERFACE WITH THE QR-ALGORITHM.
DIMENSION $A(N D, N D), B(N D, N D), D(78), B(78)$
IPS $=2.0 * *(-35)$
TOL=2.0** (-349)
CLidar Ip
$X \quad$ DISPLAY (LP, 20)/EPS,TOL
CALL TRED2 ($N, T O L, N D, A, B, D, E)$
CALL TQL2 ($N, E P S, N D, B, D, D, N N$)
C.....IF NN,NL,O TQL2 HAS FAILED TO CONVERGE.
IF (NN) 1,3,1
$1 \operatorname{VRITE}(I P, 2)$

C..... ENSTAR^{2} EIGENVALUES IN DIAGGNAL OF A.
3 DO $4 \mathrm{I}=1$, N
$A(I, I)=D(I)$
4 CONTINUS
RITHUN
END

* Fortran lib
SUBROUTINE FODMA4
C.....CCMPUTES FIRST ORDER DENSITY MATRIX. VERSION 4. 03/05/71.
C.....ASSUMES BASIS SPIN ORBITALS ARH ORTHONORMAL.
COMMCN/SECEQN/T $(120,73), A A(60,60), C(120), J D(1132,2), 0, G M M L A(60,60)$
$1, \operatorname{IDGT}(120,32), \operatorname{ID}(843), \operatorname{KDET}(32), \operatorname{IV}(78,78), S P(3923), I C R, L F, M T D, N O$,
2ANYO, ANY1, ANY2, ANY3, ANY4, GF, ICCL, IDISC, IFILE, JFILE, IIINK, MTDU1,
3MTNO2, NBASIS, NCONF, NDET, NELEC, NF, NFULL, NSORD, NKBLOC
BOUIVATENC: (SD,FACTCR), (SP(2), I) , (SP(3),ICRB), (SP(4),IR), (SP(5),
$1 I S),(\operatorname{SP}(6), I 1),(\operatorname{SP}(7), I 2),(S P(3), J),(S P(8), J O R B),(S P(10), K)$,
2(SP(11), L)
CALL ENTR("FCDMA4",NO)
$X \quad$ WRITE $(L P, 28)((\operatorname{IDET}(I, J), J=1, N G L i S), I=1, N D E T)$
$X \quad \operatorname{DISPLAY}(L P, 4) / N T, N F U L L, N L L A C, N D I T$
CLeSAR LINK
NBASIS $=$ NBASIS \leftarrow NBASIS
C.....IF DETCRS K AND L DIFFER BY TWO OR MORE SPIN-CRBITALS THEN
C.....THE COFACTOR OF EVERY DLEMENT IN THE INTLGRAL OF THEIR PRCDUCT IS
C......ZERO. CONSTRUCT A TABLI CONTAINING THE INDEX (IS) OF PAIRS THAT
C.....DIFFSR BY ONLY 1 SPIN-ORBITAL.

DO $12 \mathrm{~K}=2$, ND D T
$\mathrm{IR}=\mathrm{K}-1$
$I 1=(\mathrm{K} * \mathrm{IR}) / 2$
DO $11 \mathrm{I}=1$, IR
cluar iz
$I S=I I+L$
DO $1 I=N F, N B L E C$
$\operatorname{KDiN}(I)=\operatorname{IDGT}(L, I)$
1 CONTINUE
DO $5 I=N F, N G I E C$
$\operatorname{IF}(\operatorname{IDET}(K, I)-\operatorname{KDLT}(I)) 2,5,2$
2 DO $3 \mathrm{~J}=\mathrm{NF}, \mathrm{NLLEC}$
$\operatorname{IF}(\operatorname{IDNT}(K, I)-\operatorname{KDET}(J)) 3,4,3$
3 CONTINUR
GO TO 5
4 IORB=KDET (I)
$\operatorname{IOLT}(I)=\operatorname{KDIT}(J)$
$\operatorname{KDET}(J)=\operatorname{IORB}$
5 CONTINUS
DO $8 \mathrm{I}=\mathrm{NF}, \mathrm{NELEC}$
$\operatorname{IF}(\operatorname{IDCT}(K, I)-\operatorname{KDIT}(I)) 6,8,6$
6 I'2=12+1
$\operatorname{IF}(I 2-1) 7,7,11$
7 ICRB=I
JORB $=\mathrm{KDIST}(\mathrm{I})$
3 CONTINUE
DO 9 I=NF, NELLEC
$\mathrm{J}=\mathrm{I}$
$\operatorname{IF}(\operatorname{IDTr}(L, I)-J C R B) \quad 9,10,9$
9 CONTINUZ
10 LINK=TINK+1
ID (LINK) $=1 S$
$J D(L I N K, I)=I O R B$
JD(LINK,2) $=J$
11 CCNTINU:
12 CCNTINUE
$x \quad \operatorname{WRITI}(L P, 13)(I D(I), I=1, I I N K)$

$\mathrm{X} \quad \operatorname{HRITR}(L \mathrm{~L}, 14)((\mathrm{JD}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1,2), \mathrm{I}=1, \mathrm{IINK})$

cliear gamia
C.....CCIPUTS FIRST ORDER DENSITY MATRIX.
$X \quad \operatorname{WRITH}(L P, 28)((\operatorname{IDET}(I, J), J=1, N S L E C), I=1, N D A T)$
DO $23 \mathrm{~K}=1$, ND 3 T
EISPLAY (LP,5) K
IF (C(K)) 141,23,141
141 DO $2: \mathrm{L}=1$, NDi T
$\operatorname{IF}(C(L)) 142,22,142$
142 I2=K-L
IF(I2) 17,15,17
C..... DEMCRS K AND I ARA IDENTICAL.

15 FACTMCR $=C(K) * C(K)$
DO $16 \mathrm{I}=1, \mathrm{~N} \mathrm{NLEC}$
$\mathrm{II}=\mathrm{IDCT}(\mathrm{K}, \mathrm{I})$
$\operatorname{GADMA}(I 1, I I)=G A M I A(I I, I 1)+F A C T O R$
16 CCNTINU心

GOTO 22
C..... DETORS K AND L ARS DIFFERENT - IF THEIR INDEX (IS) DONS NOT
C.....APPEAR IN ID THLYY DIFFER BY 2 OR MORE SPIN-ORBITALS.

17 IF (LINK.EQ.0) GO TO 22
IS $=(\operatorname{MAXO}(K, L) *(\operatorname{MAXO}(K, L)-1)) / 2+\operatorname{MINO}(K, L)$
DO $16 \mathrm{I}=1$, LINK
$\mathrm{J}=\mathrm{I}$
IF(IS-ID(I)) 18,19,18
18 CONTINUS
GO TO 22
$19 \operatorname{IORB}=\operatorname{JD}(J, 1)$
$J C R B=J D(J, 2)$
IF(I2) 20,21,21
20 I1 =IORB IORB $=$ JORB JORB=I1
$21 \mathrm{I}=\mathrm{IDET}(\mathrm{K}, \mathrm{IORB})$
$\mathrm{J}=\mathrm{IDET}$ ($\mathrm{L}, \mathrm{JORB}$)
$\operatorname{GAMMA}(J, I)=\operatorname{GALMA}(J, I)+C(K) * C(L) *(-1.0) * *($ IORB $+J O R B)$
22 CONTINUE
23 CONTINUL
C.....CHSCK SYMMETRY OF GAMMA

DO $27 \mathrm{I}=1$, NBASIS
$\mathrm{I} 1=\mathrm{I}+1$
DO $26 \mathrm{~J}=\mathrm{II}$, NBASIS
FACTOR=ABS (GAMMA (I, J) -GAMMA (J ,I))
IF (1.02-10-FACTOR) 24,26,26
$24 \mathrm{WRITL}(L P, 2 \overline{)}) \mathrm{I}, \mathrm{J}, \mathrm{J}, \mathrm{I}, \mathrm{FACTOR}$
 $1 \mathrm{ER} \mathrm{NNCE}={ }^{\prime}, 1 \mathrm{PL} 9.2$)
26 CCNTINUD
27 CCNTINU:
X 23 FORMAT(($\cdot, 12 \mathrm{X}, 32 \mathrm{I} 3$))
CALU QUIT('FODMA4', ND)
RETURN
END
*FORTRAN LIB
SUBROUTINE HPASS
C..... CCMPUTES CNE-ELECTRON CONTRIBUTION TO MATRIX ELEMENTS.
C..... READ CNE-DLECTRON HAMILTONIAN MATRIX.

CGIMDN / SOCEON/ G(7260), $\operatorname{ERI}(900), \operatorname{IDNT}(120,32), \operatorname{IDIFF}(3073,7)$,
IIDUM (261), ANY1, ANY2, ANY3, ANY4, GF, ICOL, IDI SC, IFILL , JFILS, IIINK, MTDC1
2, MTDO 2, NBASI S, NCONF, ND:ST, NLLLEC, NT, NFULL, NSORD, NXBISC
ERUIVALSNCS (IDUM(149), I), (IDUM(150), J), (IDUM(151), FSURI),

2 (IDUI (156), LM) , (IDUH (157) , KP) , (ANY3, INO) , (ANY4, IUU), (IDUM (259) , MTD)
DIMLNSICN II(30,30)
EgUIVALSNC: (ERI, H)
CALL INTR(${ }^{(H P A S S}$ ', IDUM (260))
$\operatorname{RLAD}(I T T D 1)((I I(I, J), J=1, N B A S I S), I=1, N B A S I S)$
CLẢAR FSUM
C..... COMPUTE FROZAN COR: CONTRIBUTICN TO DIAGGNAL, ELEMLNTS. IF (NFULJ) $3,3,1$
$1 \mathrm{NF}=\mathrm{NFULI} / 2$
$\mathrm{X} \quad \mathrm{FRITi}(\operatorname{IDUM}(253), 11)$
LS $2 I=1$, NF
$X \quad \operatorname{WRITE}(\operatorname{IDUM}(253), 12) \mathrm{I}, \mathrm{I}, \mathrm{H}(\mathrm{I}, \mathrm{I})$
FSUM=FSUR $\mathrm{A}+\mathrm{H}$ (I, I)
2 CONTINU:

FSUM=2.0*FSUM
3 NF=NFULL +1
C.....CCMPUTE DIAGONAL BLIMMENTS.

DO $5 \mathrm{~L}=1$, NDET
$K J=\left(I^{*}(L+1)\right) / 2$
DO $4 \mathrm{LI}=\mathrm{NF}$, NBLLE
$\operatorname{LL1}=(\operatorname{ILIT}(L, L 1)+1) / 2$
$G\left(K I_{J}\right)=G(K L)+H(L[L I, I L I L)$
4 CONTINU:
$G(K L)=G(K L)+$ PSUMI-GF
5 CONTINUS
C.....CGMPUTE OFF-DIAGONAL BLEMENTS - IF DETCRS L AND K DIFFER BY
C.... MORL THAN GNE SPIN ORBITAL THE ONS ELECTRON CONTRIBUTICN IS ZERC. $1 N 3=3073$
DO $13 \mathrm{LU}=1$, ICOL
IF (ICOL-1) $51,53,51$
51 READ (MTD) IDIFF
IF(LU-ICOL) 54,52,54
52 IF (LINK) 53,13,53
53 LND=LINK
54. DO $9 \mathrm{~L}=1$, LNO
$\mathrm{KL}=\operatorname{IDIFF}(\mathrm{L}, 7)$
$\operatorname{IF}(\operatorname{IDIFF}(L, 1)-1) 6,6,3$
C.....DGTORS L AND K DIFFRR BY IM IN L AND KP IN K.
$G \operatorname{LM}=\operatorname{IDIFF}(L, 3)$
$\mathrm{KP}=\operatorname{IDIFF}(\mathrm{L}, 4)$
$\operatorname{IF}(\operatorname{IPAR}(I M)-\operatorname{IPAR}(K P)) 8,7,3$
$7 \mathrm{G}(\mathrm{KL})=\mathrm{G}(\mathrm{KL})+\mathrm{H}((\mathrm{LM}+1) / 2,(K \mathrm{P}+1) / 2)$
C..... MULTIPLY BY APPROPRIATE PARITY FACTOR.
$8 G(K L)=\operatorname{IDIFF}(L, 2) * G(I L L)$
9 CONTINU:
$X \quad \operatorname{DISPLAY}(\operatorname{IDUM}(253), 12) / F S U M$
$\mathrm{X} \quad \operatorname{VRITG}(\operatorname{IJUR}(258), 10)(K L, G(K L), K L=1,(\operatorname{NDET} *(\operatorname{NDET}+1)) / 2)$

X I1 FCRMAT (00 ", 50K, "CONTRIBUTICNS TO FSUM"//)

13 CONTINUS
REVIND MTD
CALL (iUIT (${ }^{\circ}$ HPASS ${ }^{\circ}$, IDUN(260))
RETURN
END

*Fortrail Lib

SUBRCUTINE MAXCCON
C.....BRINGS DETCRS INTO MAXIMUM COINCIDENCE , DETERMINES AND IDINTIFILS
C.....THE SPIN-ORBITALS BY 汭HCH LACH PAIR CF DETERS LIFFER,
C.....ONLY OFF-DIAGONAL ELEMENTS ARL TREATED AND RESULTS AZL STERLD ONLY
C.....IF TVO DATORS DIFFER BY NCT DURE THAN TKO SPIN-ORBITALS.

COMLION /SSCEON/ $G(7260), \operatorname{IRI}(900), \operatorname{IDST}(120,32), \operatorname{IDIER}(3073,7)$,
IIDUN (261), ANY1, ANY2, ANY 3 , ANY4, GF, ICSI, IDISC, IFILA , JFILA, IUINK, MTDO1

DIILNSION KDET(3こ)

$1(\operatorname{INU}(144), \mathrm{K}),(\operatorname{IDUR}(145), \operatorname{IPARA}),(\operatorname{IDUR}(146), I),(\operatorname{ICUM}(147), \operatorname{ITMP})$,
$\ddot{Z}(\operatorname{IDNA}(148), I D C),(\operatorname{IDUN}(175), \operatorname{LIN}),(\operatorname{IDUM}(170), J),(\operatorname{IDUE}(250), \operatorname{IN})$
IF (ND:M. $\mathrm{B}_{\mathrm{g}} .1$) RISTURN
CALL EINTR ('IUNXCDN", IIUM(260))
CLANR IDIFF,IIINK,LIN
ICOL=1
DO $11 \mathrm{~L}=2, \mathrm{NDOM}$

```
    IM1=L-1
    DO 10 K=1, LMI
    CLTAR IPERM,IDC
    LINK=(L*LMI)}/2+
    DO 1 I=1,NLLLSC
    KDDT(I)=IDET(K,I)
1 CONTINUS
DO 5 I=NF,NELNC
IF(IDET(L,I)-KDET(I)) 2,5,2
2 LC 3 J=NF,NELNC
    IF(IDET(L,I)-KDET(J)) 3,4,3
3 CONTINUE
    GO TO 5
4 ITMP=KDET(I)
    KDET(I)=KDET(J)
    KDET(J)=ITSMP
    IPERN=IPNRM+1
5 CONTINUS
    J=2
    LIN=LIN+1
    DO }3\textrm{I}=\textrm{NF},\textrm{NCLBC
    IF(IDET(L,I)-KDITT(I)) 6,8,6
6 IDC=IDC+1
    IF(2-ILC) 9,7,7
7 J=J +1
    IDIFF(LIN,J)=IDET(L,I)
    J=J `1
    IDIFF(LIN,J)=KDET(I)
8 CONTINUE
    IDIFF(LIN,2)=(-1)**IPERN
    IDIFF(IIN,1)=IDC
    IDIFF(LIN,7)=LINK
    IF(LIN-3073) 10,81,10
81 ICOL=ICOL+1
    WRITS(KTD) IDIFF
    CLOAR LIN,IDINT
    GO TO 10
    9 LIN=LIN-1
10 CONTINUS
11 CGNMINUT
    IF(ICOL-1) 12,14,12
    12 IF(LIN) 13,14,13
    13 MRIT:(MTD) IDIFF
    ICCIL=ICOL+1
14 RLIIND MTD
LINIS=IJIN
MRITE(INUM(253),15) (I,(IDIFF(I,J),J=1,7),I=1,IINK)
X 15 FORMAT("',5IK,'CONTENTS OF IDIFF'/('',45X,'I=',I4,3X,7I3))
    I=3073*(ICOL-1)+LIN
    MRITS(LP,1G) I
16 FORLLT(", ,26Ä, NUMBSR OF NON-ZORO OFF-DIAGOMNL MATRIK ILIMLINTS B.S
    1TWEEN wTTORS=',I5)
        CALL QUIT('MLECON',IDUN(260))
        RETURIN
        END
* fortran lib
    SUBROUTINE MANULT(A,B,C,IP,IO,IR,IA,IB,IC)
C.....product of matrices A AND B STCRSD IN C.
    DIMENSION A(IA,IQ),B(IB,IR),C(IC,IR)
```

```
    DO 1 I=1,IP
    DO 1 J=1,IR
    C(I,J)=0.0
    DO 1 K=1,IQ
    C(I,J)=C(I,J)+A(I,K)*B(K,J)
1 CONTINUS
    RETURN
    END
*FORTRAN LIB
    SUBROUTINE NATORB
C.....CONTROT, ROUTINE FOR NATURAL SPIN ORBITAL ANALYSIS.
        COMMON/SUCBQN/T(120,73),AA(60,60),C(120),JD (1182,2),0,GAMMA (60,60)
    1,IDET(120,32), ID(343),KDNT(32),SV (78,73),SP(3923),ICR,IP,MTP,NO,
    2ANYO, ANY1 , ANY2, ANY3, ANY4,GF,ICOL,IDISC,IFILI,JFITIE,LINK,MTDO1,
    MTDOL, NBASI S, NCONT, NDJT,NBLAC, NF, NEULL, NSQRD,NKBILC
    BQUIVALENC: (SP(1),I),(SP(2),J),(SP(3),K),(SP(4),L)
    CALL ENTR('NATORB',NO)
C.....READ DATA FROM LEVICE MTD.
    READ(MTD) ((IDET (I,J),J=1,NDTSC), I=1,NDET)
    READ(MTD)((T(I,J),J=1,NCONF),I=1,NDIT)
    REUTND MTD
C.....COMPUTS COGFFICIENTS OF INDIVIDUAL DETERMINANTS FOR LIVEL ICOL CF
C.....THIS STATE.
    clamar c
    READ(ICR,12) ICOL
    WRITE(If,13) ICOL
    DC 11 I=1,NDET
    LO 1 J=1,NCONF
X DISPLAY(IP,10)/I,J,T(I,J),ICOL,IVV(J,ICOL)
        C(I)=C(I)+T}(I,J)*\SigmaV(J,ICCL
        1 CONSINUE
X DISPIAY(IP,IO)/I,C(I)
    11 CONTINUS
C.....COMPUTL FIRST ORDILR DENSITY MATRIX - GANMA-MATRIX.
        WRIT:(IP,14)
        WRITIS(LP,I5) (I,C(I),I=1,NDET)
        ClimiR GAMMA
        CALE FCDMAS
C.....NRITN FIRST ORDER DENSITY MATRIX ONTO MTDOI.
        CALT FDFILE
C.....BJGIN ANALYSIS. SINCR THE BASIS ORBITALS ARS ORTHONORMAL THE
C.....SOLUTION TO THE NSO ENUATIONS IS THE UNITARY MATRIX WHICH
C.....DIAGJNATIZLS GANMA.
        CALL EAOBA(GANOM, AA,NBASIS,G0,GF)
C.....THE OCCUPATION NUNBERS ARE THE DIAGONAL DLLNENTS OF GNINA, A IS
C.....THE TRANGRORMMTICN INATRIX.
    WRIT:(LF,2)
    2 FORMAT("O",40K, RDSUTGTS OF NATURAL SPIN ORBITAL ANALYSIS")
    CLUAR GF
    DO }5\textrm{I}=1,\textrm{NFBASIS,5
    J=I`4
    IF(J-NBASIS) 4,4,3
    3 J=NBASIS
    4 \operatorname { I I R I T E ( L P , C ) ~ I , J }
        WRITI(TT,'%) (GAMMA(K,K),K=I,J)
        VRITj(Lf,8) I,J
        IO 5 K=1,NBAGIS
        WRITE (LP, 7) ( }~2(K,I),L=I,J
    5 CONTINUS
```

```
    6 FORMAT( "0",40X, "OCCUPATION NUMBERS CF ORBITALS',I3,' TO",I2/" ")
    7 FORMAT(`,,1P51224.10)
    O FORMAT("O", &1X,"TRANSFORMATICN MATRIX COLUNNS",I3,' TO ',I2/" ')
        DO }9\textrm{I}=1,NBASI
        Gr=GF:GNimA(I, I)
    9 CONTINUS
        WRITN(LP,10) GF,NELLC
    10 FORNAT('B', 33X,' SUA: OF OCCUPATION NUMBERS =',1PN17.10/' ',44X,'NUM
    1BER OF ELECTRONS =',I3)
    12 FORMAT(I5)
```



```
    14. FORMAT(','40X,'CODFPICIENTS CF INDIVIDUAL DETMRMINANTS'/'")
    15 FGRMAT((', ,4(GX,'C(',I3,')=',1PE17.10)))
        CALL QUIT('NATORS',NO)
        RGIURN
        END
*FORTRAN LIB
        SUBRCUTINE PASONIS
    C.....CGMPUTES EIECTRON-ELWCTRCN INTERACTION BETVENN FROZEN CORU
C.....ELECTRONS. THIS IS ZERO IF NFULL IS ZERO.
        CCMMMT/SLCEQN/G(7260),.3RI (000),IDET(12C,32),IDIFF(3073,7),
    IIDUM(2G1), ANY1,ANY2,ANY3,ANY4,GF,ICOL,IDISC,IFILM,JFILW,LINK,MTDO1
    2,MTLO2,NBASI S,NCONT,NDET,NELEC,NF,NFULL,NSQRD,NXBLOC
        LIMNSICN KSBP(40,3)
        EQUIVALENCE (IDUM,KGEP), (IDUM(121),IC),(IDUNE(122),I), (IDUM(123),K)
    1, (IDUM(124),IML), (IIUN(125),I2), (IDUN(12G),M1), (IDUN(127),K2),
    2(IDUM(128),IREC),(IDUM(123),J),(IDUM(130),ICCUNT),(ILUN(131),I1),
    3(IDUM(132),ICC),(IDUM(250),MTD)
        CALL ENTR('PASONS',IDUM(2GO))
        CLTAR GE
        IF(NTULL) 11,11,1
    1 NSORD=NBASIS*NBASIS
    CL心AR IC
    DO 2 I=`,NFULL
    LM1=L-1
    L1 = (L+1)/2
    La=(I工-1)*NBASIS
    IC=IC-1
    MOSP(IC,1)=L
    KOP(IC,2)=L
    KNEP(IC,3)=IT+L2
    DO 2 K=1,LM1
    K1=(K+1)/2
    IC=IC+I
    KNEP(IC,1)=L
    KE\sumP(IC,2)=K
    KESP}(IC,3)=L2+TK
    MRIT*(InURI(258),12) L,K
    MRITE(IDUH(253),13) ((KEEP(IRIC,J),J=1,3),IRNC=1,IC)
    2 CONTINUS
    K2=K\EP (1, 3)
    5O 3 IRNC=2,IC
    K2=MASO(K2,KERD(IRNC,3))
    3 CONTINU:
    ITSPIMAY /F2
    LO 10 IRSC=1,IN2
    RSAD (MTNOI) (ERI (J), J=1,NSORD)
X malT-(IDUM(250),14) Im:C
X VRITj(IDUN(253),15) (INI(J),J=1,NSQRD)
```

```
            DO 9 ICC=1,IC
            IF(IREC-KELEP(ICC,3)) 9,4,0
        &IF(NBMP(ICC,1)-KSiP(ICC,2)) 7,5,7
        5 LM1=K3EP(ICC,1)-1
            WRITE(INUM(258),16)
            DC 6 K=1, Min
            K1=(K+1)/2
            GF=GF+ERI (NBASIS*(KI-1)+KI)
X WRITE(IUUM(258),17) NBASIS*(K1-1)+K1, BRI (NBASIS*(K1-1)+K1)
        6 \text { Continue}
            GO TO 9
        7 IF(IPAR(KELP(ICC,1))-IPAR(KEEP(ICC,2))) 9,8,0
        3 IL=(KSEP (ICC,1)+1)/2
            MRITS(IDUM(258),16)
            I1 = (KEDP (ICC,2)+1)/2
            GF=GF-ERI(NBASIS*(KI-1)+I工)
x Matcs(IDUN(258),17) NBASIS*(K1-1)+L1,BRI(NBASIS*(II-1)+LI)
    9 ConTmNu
    10 convinus
        REMIND MTDO1
    11 CaLL QUITT("PasONE',IDUM(260))
    12 FOmmat('0',44X,' CONTBNTS OF KEEP FOR L =',I2,', K =',I2/)
    13 Fomar((`, ,45x,3I10))
    14 FOmat("0",40x, 'CONTGNTS OF RECORD',I4/)
    15 FORMAT((, ,1P512&.10))
    10 FOmmat( '0',50x, contribumions to GF'/)
    17 furmat(" ",47x,'mRI(',.3,')=',1PG17.10)
    RITUNN
    IND
*Fortran lib
            SubrcuTINE PAStio
C.....CCMPUTES CORS-VALLMCR AND VALENC:-VALMNCE BLECTRON INTERACTICN
C.....CONTRIBUTIONS TO MATRIX ELEMBNTS.
```



```
    1IDUN{(2G1), ANY1, NTY2, ANY3, ANY4, GF, ICOL, IDISC, IFILA, JFILL, IINK, MTDO1
    2,MTLO2,NBASIS, NCONF,NDIT, NEISC, NF, NNUTL, NSORD,NKBISC
```



```
    1(ILUN(5), I1 ), (IDUNY(0), I_m1),(IDUM(7), I2 ),(IDUN(3),IL2),
    a(IDUR(0),IVAI), (IUUM(10),III), (IDUM(11) ,KP), (IDUM(12),IN),
    3(IDUM(13), KO), (IIUM(I70), II), (ANT3, LNO) , (INV4, IU) , (IDUM(259),MTD)
x
    LQUIVALLACLL (IDUM(250), LP)
    CALL MMTR("PASTH', IDUM(260))
    IF(IRLLIC.DO.TNULL) GO TO 331
    cinar g
    N/SBLOC=NF
    IF(IN.D..1) NKBLOC=2
    DO 37 I=1,NBASIS
    LC 37 J=1,NBASIS
X WITm(IT,3.2) I,J
    RNO(MNU1) (CRI(L),L=1,NSQRD)
X VRITL(LD,40) (SII(L),I=1,NSGRD)
c.....diagmal elmbmes.
    IF(I-J) 6,1,6
C.....(II/ ) TYPA INTDGRAJS.
    1 100 5 L=1,NDST
        KT=(I** (L;1))/2
c.....sum cvir vathices binctrons.
    no 4 L1=NKbloc, NiLic
    IF(I-(IDNT(I,L1)+1)/2) 4,2,4
```

```
    2 INMI=L1-1
C.....SUM CVIR CORE AND VALENCS ELECTRONS.
        DO 3 L2=1,L1MI
        LL2=(IDITT(L,L2) +1)/2
        G(KL)=G(KL)+BRI (NBASIS*(LL2-1) +LI2)
X WRITE(IN,42) NBASIS*(LLL2-1)+LL2,GRI(NBASIS*(LLL2-1)+LLL2)
        3 CONTINUS
        WaITE(LP,43) KI,G(KL)
    4 CONTINUE
    5 CONTINU:
        GO TO 13
C.....(I / I) TYPE INTEGRALS.
    6 OO 12 L=1,NDNT
        KL=(L* (L*I))/2
C.....sum cVar vaicncia mlictrons.
        DO 11 LI=NXUSLOC,NELISC
        IF(I-(IJjT (I,I1)+1)/2) 11,7,11
        7 LIM1=LI-1
C.....SUM CVSR CORS AND VALENCE BLIECTRONTS.
        CO 10 L2=1,I1M1
        IL2=(IDET(L,L2) +1)/2
        IF(J-LT,2) 10,8,10
        8 IF(IPAR(IDNT(L,L1))-IPAR(IDFT(L,L2))) 10,0,10
C.....SPINS ARS THE SAME FOR ORBITALS IDPT(L,IL) AND IDST(L,L2).
    \varthetaG(KL)=G(ILL)-ERI (NBASIS* (IL2-I) +I)
X MRITR(LU,A2) NBAGIS*(IT2-1)\divI ,-GRI(INBASIS*(LI2-1)+I )
    10 CCimTLNUS
X NRITM(T5,43) KL,C(KL)
    11 CCNTINUS
    12 CONTINUS
C.....CFF-DIIGGNAL EJNMENTS`
    13 IN(NONT.BO.1) GO TO 301
        LVAI=1
        LNO=307%
        DC 301 LU=1,ICCOS
        IF(ICOL-1) 131,133,131
    131 RiAL(MTD) INITF
        IF(IUN-ICOL) 134,132,134
    132 IF(LINK) 133,301,133
    133 LNC=LIMK
    134 DO 36 L=1,LNO
C.....FICK UP INDIX OF NRXT PAIR OF DETORS THAT DIFFLR BY NO NORB
C.....TLLN TMO SPIN ORBITALS.
        KL=IDIFF(L,7)
        IP(2-IDIFF}(L,1)) 27,27,1
C.....DETORS L AND K DIFPRR BY ONE SPIN-ORBITAL - IN IN L AND MP
```



```
    14 LI=(LTAL* (LVALrI))/2
        IF(L1-IL) 15,15,16
    15 LVAL=LVAL\div1
        GT TO 14
    16 IF(I-J) 21,17,21
C.....(II/MP) TYPE INTNGRALS.
    17 IN:=INIFF(L, 3)
        KP=IDIFT(L,4)
```



```
        IF(IPAR(IM)-IPAR(KP)) 30,13,30
    18 LO 20 IN=1,NNINC
        IF(I-(IDET(IVNT,IL1)+I)/2) 20,10,20
```


$X \quad$ IWSP $=$ NBASIS* $((I M+1) / 2-1)+(K P+1) / 2$
$\mathrm{X} \quad \operatorname{MRITL}(L P, 42)$ IWSP, $2 R I(I N S P)$
20 CONTIINUS
$\operatorname{MRITL}(I D, 43) \mathrm{IL}, G(K L)$
GOTO 30
C......(IP/MI) TYPI INTHGRALS.
$21 \mathrm{KP}=\operatorname{IDIFF}(\mathrm{L}, 4)$ $\operatorname{IF}(J-(I P P+1) / 2) 36,22,36$
22 NO $23 \mathrm{~L}=1$, MILEC
$L I=I D E T(L V A L, I L)$
$\operatorname{IF}(I-(L I+I) / 2) \quad 26,23,26$
$23 \operatorname{IF}(\operatorname{IPAP}(I \mathrm{P})-\operatorname{IPAR}(I I)) 26,24,26$
C.....GPINS OF SPIN ORBITALS II AND KP ARE THE SAME.
$24 \operatorname{IM}=\operatorname{IDIFP}(L, 3)$
IF (IPAR (IM)-IPAR (II)) 23,25,26
C.....SPINS G SPIN GRBITALS LI AND LM ARE THE SANE.
$\left.25 \mathrm{G}\left(\mathrm{INL}^{2}\right)=\mathrm{G}(\mathrm{I}\lrcorner\right)-\operatorname{IRI}(\mathrm{NBASIS} *((I M+1) / 2-1)+(L I+1) / 2)$
IUSP=NSASIS* $((\operatorname{LI}+1) / 2-1)+(I I+1) / 2$
MRITR (IN, 43) IWSP, - Bil (IWSP)
20 COMTINUS
$\operatorname{MRITI}(N, 43) K J, G(K L)$
GO TO 30
C.....DCTORS L AND K DIFPER BY THO SPIN-GRBITALS - LM,IN IN L AND
C.....ITP, KT IN K.
$27 \operatorname{IM}=\operatorname{IDIFP}(L, 3)$
$\operatorname{IF}(I-(I M+1) / 2) 36,23,36$
$20 \mathrm{KP}=\operatorname{ITIPF}(\mathrm{L}, 4)$
$\operatorname{IF}(J-(\mathrm{IF}+1) / 2) 32,20,32$
C..... (IIP/NO) TYPG INTEGRNLIB.
$20 \operatorname{IF}(\operatorname{IPAR}(\operatorname{LN})-\operatorname{IPAR}(K P)) 35,30,36$
C..... SPINS OF SPIN CRBITALS IM AND IR ARE THE SANE.
$30 \operatorname{IN}=\operatorname{IDIFE}(L, 5)$
$\operatorname{HO}=\operatorname{IDIFP}(L, C)$
$\operatorname{IF}(\operatorname{IPAR}(\operatorname{LN})-\operatorname{IPAR}(K))$) $36,31,30$
C..... SPINS GF SPIN ORBITATS IN AND KQ ARD THE SALE.
$31 G(K L)=G(K L)+$ RRI $(N B A S I S *((L N+1) / E-1) \div(K O+1) / 2)$
I:TiSP=NBASI s* $((I N+1) / 2-1) \div(\mathrm{KP}+1) / 2$
MRITI(LP, 42) I:TSP, EnI (IUSF)
WRITE (ID,43) KL,G(KL)
GOTO SG
C..... (MO/IND) TYPI INTEGRALS.
$32 \operatorname{Mn}=\operatorname{TDIFP}(L, 6)$
$\operatorname{IF}(J-(\mathrm{KO}+1) / 2) 30,33,36$
$33 \operatorname{IT}(\operatorname{IPAR}(L I I)-I P A R(K Q)) 36,34,36$
C......SPINS CF SPIN ERBITALS IM AND KQ ARE THE SMLE.
$3 \therefore \operatorname{LIT}=\operatorname{IDIPF}(1,5)$
$\operatorname{Ki}=\operatorname{IDIPF}(L, 4)$
IF (IPAR(IN)-IPAR(KP)) 35,35,30
C.....SPINS NE SPIN GEBITALS IN ND KP ARE THIS GNLE.
$35 \mathrm{G}(\mathrm{KL})=\mathrm{G}(\mathrm{KL})-\operatorname{SI}\left(\mathrm{NBAEIS} *((\mathrm{LI}+I) / 2-1) \div(K P+1) / \sigma_{i}\right)$
$\mathrm{X} \quad \mathrm{I}$ ISP=NBASIG* $((I N+1) / 2-1) \div(5 P+1) / 2$
X WRITA(IN,42) IMGE,-MnI (IGSF)
$x \operatorname{inITg}(T P, 4 B) \operatorname{LL}, G(E I J)$
36 CCITINNU
361 COMTINU:
RZ:IID MTD
37 CCNTIIU.

X $38 \operatorname{FCRHAT}\left(\left(^{\prime} G\left({ }^{\prime}, I 4,^{\prime}\right)=^{\prime}, 1 P-17.1 C\right)\right)$
331 CALL OUIT('PASTMC', ILU: (:OO))

$x 40$ FORAAT ($\left({ }^{\circ},, 1\right.$ P5224.10))

is 43 rovint $\left({ }^{\prime}, 40 \pi,{ }^{\prime} G\left({ }^{\prime}, I 4,{ }^{\prime}\right)={ }^{\prime}, 1 p: 317.10\right)$
beturn
BND

* fortran lib

SUBridutins secmat (Jump)
C.....readis and checki cata.
 IANY2, ANY , ANY4, GF, ICOL, IDISC, IFILH, JFILE, LINIK, WTIDO1, MTPO2, NBASIG, 2NCONT, NDET, NELEC, NF, NFULJ, NSGRD, NGBLCC

 1F(0)

$1(\mathrm{H}(1,23), \mathrm{IOTFF})$

1 (ILUN(G50), litD)

Go To (1,12), JUT:
C.....rend inta fce matrix mimbits bathen detora.

hgord=nbasis*imasis
NT=NTULL 1
$2 \operatorname{TONLT}(013 / 6.13 / 015)$
Call Cutbine (D)
$\operatorname{minte}(E f, 00)$
iritestip, 7T) Lina
GG Fomint ("F")

WRTRE(ID, 3).TTTL, MDWT, NELEC, NBAEIS, ITUULL, MTDO1, MTDOS

 bastan rasuris rije is javica numme, is)
IT (NBALIE-30) $4,4,21$
4 IF (NETEC-32) 5,5,22
$5 \operatorname{IT}(\mathbb{N D S T}-120)$ 0,0,23
$6 \operatorname{IT}($ NFULI-3) 7,7,24
7 LO 71 I=1, NDer IC $71 \mathrm{~J}=1$, MELEC CLijLi $\operatorname{IDNH}(I, J)$
71 Comtinus $\operatorname{TAD}(I C R, 13)$ MONO

IF(NONO) 72,74,72
72 RUHIND MTD
$\operatorname{RNAD}(\operatorname{ITD})((I D E T(I, J), J=1, N E L N C), I=1, \operatorname{NDET})$
WRITE(LP,73)
73 FORISAT (${ }^{\prime} 0^{\prime}, 39 \pi, * * * *$ DITCRS SPECIFITD IN A PREVIUUS RUN $* * * * * /{ }^{\circ} 0^{\circ}$) GO TO 201
$74 \operatorname{VRITE}(I T, B)$
$\operatorname{RDAD}(I C R, 11) F$
 1TOR')
DO $10 \mathrm{I}=1$, NDET
$\operatorname{READ}(I C R, 9) \quad(\operatorname{IDET}(I, J), J=1, N D L D C)$
$\operatorname{MRITE}(I P, F) I,(I D E T(I, J), J=1, N G I E C)$
9 FONHM (1K,32I2)
10 CCNTINUS
11 FORMAT(DA3)
HRIME (MTD) ((IDET (I,$J), J=1, N S L E C), I=1, N D T T)$
GO TO 201
C..... PRAD DREJECTION MATRIX FCR VAVS FUNCTION.
$12 \mathrm{RJAD}(I C R, 13)$ NCONE, NOHO
$\operatorname{RGAD}(I C R, 1.3)$ IFILS
IF(IFILE) $121,130,121$
$121 \operatorname{RJAD}(\operatorname{ITPD})((T(I, J), J=1, N C C N F), I=1, N D C T)$
WRITE (ID,122)
122 FCRUMAP($0^{\prime}, 33 \mathrm{X},{ }^{\circ} * * * *$ PROJECTICN MATRIX DEFINSD IN A PREVICUS RUN *
$\left.1 * * *^{\prime} /{ }^{\circ} 0^{\prime}\right)$
RGMIND MTU
G1] TO ©01
13 MORHiAT(2I5)
130 CLEAR T
$\operatorname{IF}($ YCCNT-73) $131,131,25$
$131 \mathrm{~K} \mathrm{AD}(\mathrm{ICl}, 14)(\mathrm{I}, \mathrm{J}, \mathrm{T}(\mathrm{I}, \mathrm{J}), \mathrm{K}=1, \mathrm{NONO})$
14 FONAMT(2I5,F10.2)
DO $143 \mathrm{~J}=1$, NCONS
CJanar any2
DC $161 \mathrm{I}=1$, NDIT
$A N Y 2=\{N Y 2 \div T(I, J) * T(I, J)$
141 CONRINUS
ANT2=1.0/SQRT (AHY2)
I口 $142 \mathrm{I}=1$, IN I T
$T(I, J)=T(I, J) * A I T Y 2$
142 CDivitinui
143 CONTINUS
C.....CHLCK ORTIMNORMALITY OF CO-DETORS.

CLJAR IFILE
NCNO $=$ NCONTA -1
TO $14 \mathrm{~s} \quad \mathrm{I}=1$, NCNO
$\mathrm{J}=\mathrm{I}+1$
DC $1 \triangle 7 \mathrm{~K}=\mathrm{J}$, NCONF
CLEAR MEIE
[O $144 \mathrm{~L}=1$, NDEI
ArYc $=\operatorname{arIc}+\mathrm{F}(\mathrm{I}, \mathrm{I}) * T(\mathrm{~L}, \mathrm{~K})$
144 CCMIINU:
$\operatorname{IF}(A B S(N J Y S)-1,0: 10) 147,147,145$
$\left.145 \operatorname{TRIT}(I T, 14)^{2}\right) I, I$

IFII $u=1$
147 COMTIITUS .
143 CanBmus
$\operatorname{IF}(\operatorname{IFITAOB} .0) \mathrm{GD} 20140$

CALL EEXIT
149 WRITE (MTD) ($(T(I, J), J=1, N C O N F), I=1, N D E T)$
INDFILE MTD
REWIND MTD
WRITE(LP,15) NCONF
15 FORMAT (${ }^{\circ} 1{ }^{\prime} /{ }^{\circ} 0^{\circ}, 34 \mathrm{X}, 12,{ }^{\circ}$ CO-DETORS OF CORRECT SYMKETRY AND SPIN ARE
1 FORMED')
DO $20 \mathrm{~K}=1, \mathrm{NCONF}$
WRITE(IP,16) K
16 FORMAT (${ }^{\circ} 0^{\prime}, 45 \mathrm{X},{ }^{\circ} \mathrm{CO}-\operatorname{DETCR}\left({ }^{\prime}, I 4,^{\circ}\right)={ }^{\circ}$)
DO $19 \mathrm{~L}=1$, NDET
IF(T(L,K)) 17,19,17
17 WRITL(LP,13) T(L, K), L
13 FORMAT(", 45X,S+-,1PE17.10,**DRTOR(", S -, I4, ")")
19 CONTINUE
20 CONTINUE
201 CALL QUIT ('SECDAT', IDUM(651))
RETURN
21 CALL ERROR (${ }^{\circ}$ ERROR $1{ }^{\prime}$)
23 CALL ERROR ("ERROR 3")
24 CALL ERROR (${ }^{(E R R O R} 4^{\prime}$)
25 CALL ERROR(IRRRR 5")
STOP
END

* Fortran lis

SUBROUTINE SECSOL
C.....FORMS H-MATRIX AND SOLVES SECULAR EQUATICN FOR THIS CASE. CCMMON /SECEQN TT $(73,120), H(120,120), T(120,78), \operatorname{IDUM}(652), \operatorname{ANY1}$, 1 ANY2, ANY $3, A N Y 4, G F, I C O L, I D I S C, I F I L E, J F I L F, L I N K, K T D O 1, ~ M T T D O 2, ~ N B A S I S, ~$ 2NCONF, NDET, NELEC, NF, NFULL, NSQRD, NXBLOC
DIMENSION $G(7260), W(120,78), \operatorname{HM}(78,78), \operatorname{EV}(78,78)$
EQUIVALENCE (TT, W, G), (H, HM), (T,IV)
EQUIVALINC. $\operatorname{IDUM}(525), L),(\operatorname{IDUM}(526), I K),(\operatorname{IDURI}(527), K),(\operatorname{IDUM}(528)$,
1 KL), (IDUII (529), NMI) , (IDUM (530), AMIN), (IDUM (531), NIN)
X 2,(IDUM (649),LP)
CALL ENTR('SECSOL', IDUM(651))
C..... SET UP H-MATRIX.

DO $1 L=1$, NDET
$\mathrm{LK}=(\mathrm{L} *(\mathrm{~L}-1)) / 2$
DO $1 \mathrm{~K}=1, \mathrm{~L}$
$K L=L K+K$
$H(L, K), H(K, L)=G(K L)$
1 CONTINUS
WRITI (LP,11)
CALL WRITMX ($\mathrm{H}, 120,120, \mathrm{NDET}, \mathrm{NDET}, \mathrm{LP})$
CAL工 SECDAT(2)
WRITE(IP,12)
CALL TMITMEX (T,120,78,NDET,NCONF,LP)
CALI MXMULT (H, T, $\mathrm{H}, \mathrm{NDET}, \mathrm{NDET}, \mathrm{NCONF}, 120,120,120$)
DO $2 \mathrm{~L}=1$, NDST
DO $2 \mathrm{~K}=1$, NCONF
$H(L, K)=W(L, K)$
2 CONTINUE
HRITE $(L P, 13)$
X CALL $\operatorname{VRITMX}(H, 120,120, N D E T, N C O H F, L P)$
CALL TRANS ($\mathrm{T}, \mathrm{TT}, \mathrm{NDET}, \mathrm{NCONF}, 120,78$)
WRITE (LP,14)
X CALL VaITRX(TAT,78,120,NCONF, NDET, LP $)$

DO 3 L $=1$, NDET
DO $3 \mathrm{~K}=1$, NCONF
$T(L, K)=H(L, K)$
3 CONTINUE
CALJ MENUULT (TT, T, HM, NCONF, NDET, NCONF, 78, 120,78)
X WRITE $(I P, 10)$
X CALL VRITMLX (HM,78,78,NCONF,NCONF,LP)
C.....ENERGIES ARE THE EIGGNVALUES OF IMM.

CALJ, EAO 3A (HM, IV,NCONF,78,AMIN)
C.....ADD NUCTIEAR REPULSION ENERGY TO EIGENVALUES IF SYSTEM IS NOT
C......SINGLIM CENTRTE

CALL ADDNRE (FM, 73, NCONF, IDUM (648), LP)
C..... CUTPUT SOLUTION OF SECULAR EQUATIGN.

WRIT2(IP, 4)

DO 9 I=1,NCONF, 5
$\mathrm{J}=\mathrm{I}+4$
IF (J-NCONF) $6,6,5$
$5 \mathrm{~J}=\mathrm{NCONF}$
$6 \operatorname{MRITE}(L P, 7) I, J,(\operatorname{HM}(K, K), K=I, J)$
7 FORMAT (${ }^{\circ} 0^{\circ}$, 46X, "NNERGIES OF STATES", I3, " TO ${ }^{\circ}, I 3 /{ }^{\circ} 0^{\circ}, 1$,1P5E24.10) WMTH(LP, 8) I,J

DO $9 \mathrm{~K}=1$, NCCNF
WRITE (LP, 91) (EV (K, L) , $I=I, J)$
9 CONTINUE
91 FORSAT (" ",1P5B24.10)
X 10 Format (${ }^{\circ} 0^{\circ}$, 33x, "MATRIX ELEMENTS OF SECULAR EQUATIGN H-MATRIX"/)
X 11 FORALAT (${ }^{\circ} 0$ " $, 42 \mathrm{x},{ }^{\circ}$ MITRIX ELMMENTS BETVEEN DETERUINANTS"/)
X 12 FORMAT (${ }^{\circ} 0^{\circ}, 44 \mathrm{X}$, "SPACE-SPIN TRANSFORMATION MATRIX'/)
X 13 FORMAT (${ }^{\circ} 0^{\circ}$, 45X, "PARTTALLY TRANSFORNED H-KATRIX"/)
$X 14$ FORILAT(${ }^{\circ} 0$ ", 37X, "TRANSPOSE OF SPACIS-SPIIN TRANSFORMATION MATRIX"/)
X 15 FORMAT (${ }^{\circ} 0$ ", 51 X, "IIGNNVALUES OF IRH"/)
CALL QUIT('SECSOL" ,IDUM(651))
RETURI
END

* Fortran Lib

SUBROUTINE TDFILE
C.....CONTROLS ALL TRANSFERS FROM CORE TO PERIPHARALS AND VICR VERSA. CCMMON /SECEQN AA (33767), ICR,LP, MTD, NO, ANYO, ANY1, ANY2, ANY3, ANY4, 1GF, ICOL, IDISC, IFILN, JFILE, LINK, MTDO1, MTDO2, NBASIS, NCONF, NDET, NLLEC 2,NF,NTULL, $\mathrm{HSQRD}, \mathrm{NXBLOC}$
DIMSNSION $\operatorname{MM}(73,73), \operatorname{EV}(73,73), G \Lambda(60,60), A(60,60), \operatorname{ERI}(000)$
$1 \mathrm{KT}(153,4), \operatorname{LT}(153), \mathrm{KD}(10,4), \operatorname{LD}(10)$
ERUIVALENCE (AA 7261), ERI) , $(A 1(0301), \mathrm{IM}, \mathrm{A}),(A A(15440), G A),(A A(2376$
11), IV)
$\operatorname{TEXT} \operatorname{TN}(153,4)$, $\operatorname{DN}(10,4)$

CALL INTR ("TDFILE", NG)
$\operatorname{READ}(I C R, 2)$ IFILE,JFILE
MRITI (LP, 44) IFILE, JFILA
GOTO $(1,13,25,32)$, IFILE
C.....A DISC FIJS IS TO BE CREATED.

1 ROAD (ICR,2) IENTRY,INABLDC
2 FORIAT(16I5)
REviND MTDOI
RAWIND MTDO2
IF (NXBLAC) 2001,204,2001
C.....COPY TRNHEORNED INTIGRALS INTO DISC AND MASTER RESULTS FILIBS.

```
    2001 RKAD(ICR,2) INTRA,IGO,NBLOC
        CALL SEARCII(INTRA,NBLOC,0)
        LD(1),LT(1),I,MENTRY=1
        LD(2),LT(2),J ,NENTRY=2
        IF(IGO) 2002,2004,2002
C.....HIASTER RESULTS FILE TABLE CONTAINS ENTRIBS.
    2002 READ(IDISC) MENTRY, IMNTRY, ((TN (K,L),L=1,4), (KT(K,L),L=1,4),LT (K),
    1K=1, MENTRYY)
        RENIND IDISC
        I=NONTRY
        J=I+1
        LD(1)=LT(I)
        LD(2),LT(J)=LT(I)+1
        IF(NXBLOC-KT(I,1)) 2003,2003,2004
    2003 NXBLOC = KTT(I,1)+1
    2004 CALL SEARCH(MTDO2,NXBLOC,0)
        KT(I,1)=NXBLOC
        KD(1,1),KT(1,4),KD(1,4)=1
        KT(I, 3),KD(1,3)=NSQRD
        KT}(J,4),KN(2,4)=
        CLNAR ID (1, 2),ITT(I, 2), IND (2, 3), KTT(J , 3)
        READ(ICR,26) (DN(1,K),K=1,4)
        LO 2005 K=1,4
        TN(I,K)=\operatorname{DN}(1,K)
        TN(J,K),\operatorname{LN}(2,K)=W(K)
    2005 CCNTINUE
        I=NSQRD +1
        DO 2006 J=1,I
        READ(INTRA) (ERI (K),K=1,NSQRD)
        WRITN(MTDO1) (ERI (K),K=1,NSQRD)
        WRITZ(MTDO2) (ERI (K),K=1,NSQRD)
    2006 CaNTINUS
    MENTIY=MENTRY+1
    CALL TPPOSN(MTDO1,KD(2,1),KD(2,2),MTDO2,KTT(MONTRY,1),KT(MHNTRY,2))
    GO TO }1
C.....MLASTER CONTSENTS TABLT PRIESENT.
    204 READ (IDISC) MC:NTRY,NRNTRY, ((TN (I,J) ,J=1,4), (KT(I ,J),J=1,4),LT(I),
        1I=1,IENTRRY)
            REWIND IDISC
            IF(MENTRY-IBNTRY) 3,5,5
        3 WRIT:(LP, 4) IMNTRY,MENTRY
```



```
            VRITE(IP,47) ((TN (I,J),J=1,4), (KT(I,J),J=1,4),LT(I),I=1, MLNTRY)
            CALL ENXIT
        5 RTAD(ICR,2) (LD(I), I=1,IENTRY)
C.....CHECK ENTRIES IN-ASCENDING ORDER.
            LO }3\textrm{I}=2,\textrm{I}NNTR
            IF(LD(I) -ID(I-1)) 6,6,8
    6 VMITE(LP,7)
    7 FCRMAT ("O",37X,"JISC TABLIE ENTTRIES MUST BE IN ASCENDING ORDLR")
        CALL ETXIT
    8 CONTINUS
        DO 16 I=1, IENTRY
        IO 0 J=1,4
        DN(I,J)=TN(LD(I),J)
    9 CONTINUE
        KD(I, 3)=KT(LD(I),3)
        KD(I, 4) = KT(LD(I), 4)
        CALJ SLARCH(MTDON,ITT(ID(I),1),KT(ID(I),2))
            GG TO (10,12,13,14,15),KD(I,4)
```

```
C......INTEGRALS.
    10 L=KD(I, 3)+1
        DO 11 K=1,L
        READ (MTDO2) (ERI (M),M=1,KD(I, 3))
        VRITE(MTDO1) (ERI (M),M=1,KD(I,3))
    11 CONTIINUS
        GO TO 15
C.....G-VNCTOR (MATPIX ELTMENTS BETNEEN DETERMINANTS).
    12 RJAD (MTDO2) (AA (K),K=1,KD(I, 3))
        VRITE(MTD01) (AA(K),K=1,KD(I, 3))
        GO TO 15
C.....ENERGIES AND EIGENVECTORS.
    13 RMAD (MTDD2) (IMS(K,K),(EV(L,K),I=1,KD(I, 3)),K=1,KD(I, 3))
        VRITC(MTDO1) (MM(K,K),(EV (L,K),I=1,KD(I, 3)),K=1,KD(I, 3))
        GO TO }1
C.....FIRST ORDER DENSITY MATRIX.
    14 READ (MTDO2) ((GA (K,L),I=1,KD(I, 3)),K=1,KD(I, 3))
        MRITE(MTDO1) ((GA(K,L),I=1,KD(I, 3)),K=1,KD(I, 3))
    15 CALL TPPOSN(MTDO1,KD(I+1,1),KD(I+1,2))
    16 CONTINUS
        KD (1,1)=1
        CLEAR KD(1,2)
        NENTRY=I ENTRY
    17 WRITE(IDISC) MENTRY,NENTRY,((TN(I,J) ,J=1,4),(MT(I,J) ,J=1,4),LT(I),
        1I=1,MINTRY),((DN (I,J),J=1,4),(KD(I,J),J=1,4),LD(I),I=1,N:NNTRY)
            REWIND IDISC
            REVIND MTDO1
            REWIND MTDO2
            CLLAAR JUMP
            GO TO <5
C.....DATA TO BE READ INTO`CORE FTKM DISC.
    18 READ (IDISC) MINNTRY,NENTRY, ((TN (I,J) ,J=1,4), (KT(I,J) ,J=1,4),LT(I),
        II=1,MGNTRY),((DN(I,J),J=1,4),(KD(I,J),J=1,4),ID(I),I=1,NSNTTRY)
            RGIIIND IDISC
            JUMP=1
        GO TO 45
C.....RGAD SUBSCRIPT VALUE FOR ENTRY TO DISC CONTENTS TABLS.
    19 READ(ICR,2) INNTRY
        WRITS(LP, 20)
    20 FORNLAT( "0',43X, 'THE FOLLOWING IS RIZNUIRED IN CORI'/)
        WRITE(LP, 47) (DN(IENTRY,J) ,J=1,4),(KD(IENTRY,J) ,J=1,4),LD(IENTRY)
        CALL SEARCH(MTDO1,KD(ISNTRY,1),KD(IINTRY,2))
        GO TO (21, 23, 24, 21, 21),KD(IRNTMY , 4)
C.....IMPRGP:LR REQUEST.
    21 TRITE(IP,22)
    22 FORMAT( '0',33Z, 'IMPROPIGR REQUSST - CONTTINUATION NOT POSIIBLE')
        CALI EDMIT
C.....G-VECTGR.
    23 READ(MTDO1) ( }\LambdaA(I),I=1,KD(IENTTRY,3)
        GC TO 40
C.....ENIRGIES AND EIGMNVECTORS.
    24 READ(MTLO1) (IMI(K,K),(EV (L,K),L=1,KD(IENTRY, 3)), K=1,KT (INNTMRY, 3))
        GO TO 49
C......RISUTTS TO BE ADDED TO DISC AND DISC CONTENTS TABLE UPDATSD.
    25 RIEAD (IMISC) MLNTRY,NLNTRY, ((TN (I,J),J=1,4),(KT(I,J) ,J=1,4),ITT(I),
        II=1,MNNTRY),((DN(I,J),J=1,4),(ID (I,J),J=1,4),LD(I),I=1,NINNMY)
        REWIND IDISC
        READ(ICR, 26) (DN(NSNTRY,J),J=1, 4)
    26 FORMAT(4AS)
        INNTRY=NLNTRY-1
```

CALL SEARCH(MTDO1, KD(IENTRY,1),KD(IENTRY,2))
IF(KD(IENTRY,4)-1) 263,261,263
261 DO $262 \mathrm{I}=1$, $\mathrm{KD}($ IENTRY,3)
READ(MTDO1) ANY3
262 CONTINUE
263 READ(MTDO1) ANY3
CALL TPPOSN(MTDO1, KD(NLNTRY,1), KD(NENTRY, 2))
$L D$ (NEITTRY) $=\mathrm{LLAXO}$ (LD (NENTRY), LT (MENTRY))
IF(JFILE-3) 27,28,29
C. G-VIECTOR
$27 \mathrm{KD}(\operatorname{NCNTRY}, 3)=(\operatorname{NDET} *(\operatorname{NDET}+1)) / 2$
$\mathrm{KD}($ NENTRY, 4$)=2$
WRITE(MTDO1) (AA(I),I=1,KD(NENTRY,3))
GO TO 30
C..... EnNRGIES AND IIGMNECTCRS.
$28 \mathrm{KD}(\operatorname{NENTRY}, 3)=\mathrm{NCONF}$
$\operatorname{KD}(\operatorname{NLNTRY}, 4)=3$
WMITE (MTCO1) ($\operatorname{mM}(K, K),(E V(L, K), L=1, N C O N F), K=1, N C O N F)$
GO TO 30
C..... FIRST ORDER DENSITY MATRIX.

29 KD (NENTRY, 3)=NBASIS
$\mathrm{KD}(\operatorname{NENTRY}, 4)=4$
WRITE(MTDO1) ((GA (K, L) ,L=1, NBASIS) , $K=1$, NBASIS)
30 NENTRY=NENTRY +1
CALL TPPOSN(MTDO1, KD(NENTRY,1), KD(NENTRY, 2))
CLEAR KD (NENTRY,3)
$\operatorname{KD}(N: N T R Y, 4)=5$
$L D($ NETTRY $)=L D($ NENTRY-1 $)+1$
DO $31 \mathrm{I}=1,4$
DN(NENTRY,I) $=1 \%(1)$
31 CONTINU:
WRITE(IDISC) MENTRY, NSNTRY, ($(\operatorname{TN}(I, J), J=1,4),(\operatorname{KT}(I, J), J=1,4), \operatorname{LT}(I)$, $1 I=1, \operatorname{MENTRY}),((\operatorname{DN}(I, J), J=1,4),(K D(I, J), J=1,4), L D(I), I=1, N E N T R Y)$
RUTIND IDISC
CLITAR JUMP
GO TO 451
C..... UPDATE MASTER FILE AND CONTENTS TABLZ.

RBMIND IDISC
IENTRY=MENTRY
M=MEITTRY-1
CALL SBARCH(LTTDO2, $\operatorname{KT}(\mathrm{M}, 1), \mathrm{Ki}(\mathrm{M}, 2))$
$\operatorname{IF}(\operatorname{KT}(M, 4)-1) 323,321,323$
321 DO $322 \quad \mathrm{I}=1, \mathrm{KT}(\mathrm{M}, 3)$
READ(hTIC2) ANY3
322 contrinue
323 READ(MTDO2) ANY3
CALL TPPOSN(MTLD 2, $\operatorname{KT}(\operatorname{IENTRY}, 1)$, $\operatorname{KT}($ IENTRY,2))
DO $42 \mathrm{I}=1$, REMTRY
x display (LP,5)/I/
Do $33 \mathrm{~J}=1, \mathrm{M}$
$\operatorname{IF}(\operatorname{LD}(1)-\operatorname{LT}(J)) 33,42,33$
33 CCNTINU:
$X \operatorname{display}(L P, 5)$ I
TC $34 \mathrm{~K}=1,1$
$\operatorname{TM}(\operatorname{ICNPRY}, \mathrm{K})=\operatorname{mi}(\mathrm{I}, \mathrm{K})$
34 canifinue
$\operatorname{LT}(\operatorname{IENT} 2 \mathrm{Y})=\mathrm{LD}(\mathrm{I})$
$\operatorname{KT}(\operatorname{IZNTRY}, 3)=\operatorname{KD}(1,3)$

```
    KT(IINTRRY,4)=KD(I,4)
    CATL SEARCH(MTDO1,KD(I,1),KD(I,2))
    GO TO (35, 37,33,39,43),KD(I, 4)
C.....TRANSFCRNED INTEGRILS .
    35 IGO=NSQRD+1
        DO 36 K=1, IGO
        READ (MTDO1) (IRI (L), L=1 ,NSORD)
        WRITE(MTDO2) (ERI (L), I=1, NSQRD)
    3 6 ~ C O N T I N U S ~
    GO TC 40
C. . . .G-VECTOR.
    37.RBAD (MTNO1) (AA(K),K=1,KD(I , 3))
        WRITE(MTDO2) (AA(K),K=1,KD(I, 3))
        GO TO 40
C.....ENERGIES AND EIGRNVECTORS.
    38 READ (MrDC1) (EM(K,K), (EV (L,K),I=1,KD(I, 3)),K=1,KD(I, 3))
        MRITE(MTDO2) (HM(K,K),(NV (L,K),I=1,KD(I, 3)),K=1,KD(I, 3))
        GO TC 40
C.....FIRST ORDER DENSITY MATRIX.
    39 READ (MTDN1) ((GA (K,I),I=1,KD(I, 3)),K=1,KD(I, 3))
    :RITE(MTDO2) ((GA(K,L),I=1,KD(I, 3)),K=1,KD(I, 3))
    40 IENTRY=IENTRRY + }
        CAL工 TPPOSN(MTDO2,IKT(IENTRY,1),IKT(IENTRY,2))
    4 2 ~ C O N T I N U S ~
```



```
        WRITM(IDISC) MGINRY,NENTRY,((TNT (I,J) ,J=1,4),(KT(I,J) ,J=1,4),LT(I),
        1I=1,MENTRY),((DN(I,J),J=1,4),(KD(I,J) ,J=1,4),LD(I),I=1,N~NTRY)
            REWIND IDISC
            CLEAR JUMP
C.....PRINT CONTINNTS TABLES.
    44 FORLAT('I', 33X, "TDFILE PARAMETER VALUES,IFILN = ',I2,* JFILE = ',I2)
    45 MITM(LP,46) KT(1,1)
        MRITL(IP, 47) ((TN (I,J) ,J=1,4),(KT(I,J) ,J=1,4),LT(I),I=1,LLENTRY)
    451 जRITE(IP,43) KD (1,1)
        WRITG(LP,47) ((LIT(I,J),J=1,4),(KD(I,J),J=1,4),ID(I),I=1,NENTRY)
    46 FOMMAT('B',40K, 'CONMNTSS OF MASTER FILE FROA BLOCK',I5//)
    47 FCRILAT(" ",4A3,' FRMM BLOCK',I5,' VORD',I4,`. LOGP PARARHMTSR =', I5
        1,*. RSCORD TYPE =',I2,'. SIOUSNC: NUMBER ='`,I3)
    43 FCRMAT( 'B',40X, CONTENFTS OF PRIVATS FILN FROM BLOCK',I5//)
        IF(JUMP) 50,40,10
    40 CALJ OUIT("TDFILE",NO)
        ROTURN
    50 STOP
        END
* Fortraij LIb
            SUBROUTINS TRANS(A,AT,N1,N2,M1,M2)
C.....TraNGPOSE QF MATRIX A STORED IN mitRIX AT.
    EIMENSION A(MI ,MS),AT(M2,M1)
    LO 1 I=1,NI
    DO 1 J=1,N2
    AT}(J,I)=A(I,J
    1 CONTIINE
        RETURN
        END
```


GENFRAL こONFIGJRATIOY INTERAこTION PROGRAM
COI:StRIMCTION ANO SO-UTIOM JF THE SECULAZ EJUATION $A . D . T A I T$
QUANTUM YO-ESULA? PHYSICS GROUP,
DEPARTMEVT OF PHYSISS,
JNIVERSITY OF LEICESTER,
Leicester, england, lei 7RH,
SECSOL TEST DATA - TEIPLET P STATE OF ATOMIC OXYOEN (SChaEFER AND HARRIS'S EXPONENTS):
POM SPATIA. ORBITALS WITH FIRST 2 SPIN-ORBITAL.S FROZEN
PRIVATE WORKFI-E IS DEVICE-NUMBER
1
Master results file is device number 2

```
    AUMIBER
    1
    2
    1?
NIJMEER OF INSTIUUCTIUNS USED ON EXIT FROM SUBPROGRAM SEZDAT =
NUMEER OF INSTRUCTIONS USE:D ON ENTRY TO SUFPROOGRAM TDEILE =
```

tDFil.e parameter value

CONTENTS OF MASTER F
OXYGEN ATOM INTEGRALS. FROM RLOCK 100 WORD O. L **** NEXT NEW RECORD **** FROM BLOCK. 101 WORD 164. L
contents of private
OXYGEN ATOM INTEGRALS. FROM BLOCK 1.WORD G. L
\#\# NEXT NEW RECORD *\#** FROM BL.OCK 2 WORD 164. L
NUMBER OF INSTRUCTIONS USED ON EX! T FFOM SUAPRROGRAM TDFI.E = NUMBER OF INSTRUCTIINS USE:D ON ENTRY TO SUAPRROGRAM PASOYE = NUMBER OF INSTRUCTIONS USED OH EXIT FHOM SURPROGRAM PASOVE = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUHPROGZAM YAXCOV = NUMEER OF NON-ZERO OFF-DIAGOVA, MA
NUMBER OF INSTERICTIONS USED ON EXIT FPRM SUBPROGRAM MAXCJN = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUAPROGZAM PASTMD = NUMBLER OF INSTRUCTIONS USED ON EXIT FPOM SUBPROGPAM PASTNO = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUAPROGZAM HASS = NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUARPROGRAM H2ASS = NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGZAM TDFILE =

tdfile parameter value

CONTENTS OF PRIVATE.

OXYGEN ATOM INTEGRALS. FROM PLOCK 1 HOPRE O. L
OXYGEN ATOM CI F DETOR MATRIX. FROM BLOCK 2 WORD i64. L
**** NEXT NEW RECORD **** FROM BL.OCK 2 WORD 163. L
NUMBER OF INSTRUCTIONS USED ON EXIT FPOM SUBPPRORZAM TDFI_E = NUMBER OF INSTRUGTIONS USED ON ENTRY TO SUBPROGRAM SEJSJL = NUMBER OF INSTRUCTIIONS USED ON ENTKY TO SUHPROGRAM SFIDAT =

```
y OF DRTJaS
    DFTJP
3}44\quad5\quad3\quad9\quad1
3 4 6 7 9 10
    4?.3/
    4?89
S,IFILE= = JFILE=1
ILE FFOM 3LOCK 100
OJP PARAYETEF = 25. RECORD TYPE = 1. SEQUENCE NUMBER = 1
OOP PARAYETER = (1. RECORD TYPE = 5. SEQUENCE NUMBER = 2
FILE FROY ELOCK I
0习2 PARAYETER = 25. RECORD TYPE = 1: SEQUENCE NUMBER = 1
OOP FARAYETER = O. RECORD TYPE = 5. SEQUENCE NUMBER = 2
    4333
    4340
    4342
    4343
TRIX ELEYENTS BETNEEN DETORS= 1
    4367
    4363
    4400
    4401
    4404
    4405
S,IFILE = 3 JFILE = 2
FILE FROY BL.OCK I
JOP PARAYETER = 25. RECORD TYPE = 1: SEQUENCE NUMBER a 1
OOP PARAYETER = 3. RECORD TYPE = 2: SEQUENCE NUMBER = 2
OOP PARAMETER = 0. RECORD TYPE = 5. SEQUENCE NUMBER = 3
    4425
    4428
    4429
```

1．CO－DETORS OF COPR：ET SYYMETRY AVD SPIV ARE FORHED

－ひば心

－
～べい

든우울
㟔今心
○べ

number of instrugitinis used on exit from subpro

```
        1
                                    SO:UTION OF.S
                                    ENERGIES OFS
    -7.4540.361.952E+01
                                    EIGENVECTORS FOR
    1.0000000000E+00
NIJMBER OF INSTRUUCTIONS USED ON EXIT FROM SURPROGRAM SESSIL
NUMBER OF INSTIRUCTIONS USED ON ENTRY TO SUPPROGRAM TDFILE
tdfile parameter valu
CONTENTS OF PRIVATE
OXYGEN ATUM INTEGRAL.S. FROM FLOCK 1 WORD 0. OXYGEN ATUM CI P DETOR MATRIX. FROM PLOCK 2 WORD 164. OXYGEN ATUM CI 3 P SOLUTION. FROM BLOCK 2 WOPD 163. ****NEXT NEW RECORD **** FROM RLOCK 2 WORD 171, NUMBER DF INSTRUCTIONS USFD ON EXIT FPOM SURPROGZAM TDEILE NUMBER OF INSTRUCTIONS USED ON: ENTRY TO SUFPRROGZAM YATOZB
```

```
EGJLAR EOJATION
TATES 1 TJ 1
    STATES 1 TO 1
=4455
=4457
ES,IFILE = 3 JFILE= = 
    FILE FROY BLOCK 1
IOOP PARAYETER = 25. RECORD TYPE = 1: SEQUENCE NUMBER # 1
LOJP PARAYETER = 3. RECORD TYPE = 2: SEQUENCE NUMBER = 2
IODP PARAYETER = 1. RECORD TYPE = 3. SEOUENCE NUMBER = 3
LODP PAPAYETER = O. RECORD TYPE = 5. SEQUENCE NUMBER = 4
=4473
=4475
```

NIATIIRAL SPIN ORJI COEIFICIENTS OF

```
    C( &)=7.07106%8119E-01. C( 2)=7.0710678119
NUMELR OF INSTRUCTIONS USED ON ENTRY TO SUHFROGRAM =OJM
NUMELRR OF INSTRUNTIONS USED ON: EXIT FFON SUFFRROGRAM FODM
NUMBGR OF INSTRUCTIONS USED ON ENTRY TO SURPROGRAM TDEI
```

TDFIL.F. PARAMETER V

CONTENTS OF PRIV
OXYGEN ATDM INTEGRALS.
OXYGEN ATDM CI P DETOR MATRIX. FRUM RLOCK 2 WORD 16
OXYGEN ATJII CI 3 P SOLUTION. FROM ELOCK 2 WORD 16 OXYGLN ATOM CI 3P UENSITY MATRIX FROM BLOCK 2 WORO 17
\#** HEXT NE:W RECOPD $\% * * *$ FROM ELOCK 2 WORD 27 NUMBER OF INSTRUCTIONS USED ON EXIT FFOM SURPROGRAM TDEI

RESULTS JF NATJR
occupation numze
$1.0000000000 \mathrm{E}+00$
$1.0000000000 \mathrm{E}+00$
0.000 OUOODOOE +00
$0.0000000000 E+00$
$0.0000000000 \mathrm{E}+00$
$0.0000000000 E+00$
0.0000900000E+00
$0.0000000000 \mathrm{E}+00$
$0.0000000000 \mathrm{E}+00$
$0.0000000000 \mathrm{E}+00$
0.0000000000E+00
5.0000000000 E-01
$0.0000000000 E+00$
$0.0000000000 \mathrm{E}+00$
$0.0000000000 \mathrm{E}+00$
$0.0000000000 E+00$
$0.00000 \cap 0000 E+00$
$1.0000000000 E+00$
$0.0000000000 \mathrm{E}+00$
$0.0000000000 E+00$
$0.0000000000 E+00$
O.OOOOOOOOOOE+00
1.0000000000E+00

TRANSFORMATIQV
$0.0000000000 E+00$
1.0000000900E+00
$0.0000000000 \mathrm{~F}+00$
$0.0000000000 E+00$
$0.0000000000 \mathrm{~F}+00$
O.OOOOOCOOONE + OO
O. OOOOCOOUOOE+DO
$0,0000000000 \mathrm{~F}=+00$
$0.00000001000 E+00$
O. OOOOOCOOOOE + OO

OCCUPATIJN NUMBE
$5.0000000000 E-01$.
TRANSFORMATIOV
$0.00000001000 E+00$
0.0000000:100E+00
0.0000000900F+00
$0.0000000000 E+00$
$0.0000000000 E+00$
$0.0000000000 E+00$

1. $0000(1 \cap 0000 \mathrm{E}+00$
$0.0000000000 E+00$
2. $0000000000 E+00$
$0.0000000000 E+00$
```
                                    272
TAL AVAIYSIS OF L.EVEL }1
! vDIVIO(IAL IIETERAINANTS
\therefore-01 Cl
A4=40.36 K = 1 K = 2
4.4=4401
-F=4492
ALIES,IFILE = 3 JFILE = 4
ATE FILE =ROM BLOCK 1
0. LOJP PARAYETER = 2.5. RECORD TYPE = 1. SEOUENCE NUMSER = 1
4. LOOP PARAYETER = 3. RECORD TYPE = 2. SEQUENCE NUMBER = 2
3. LOOP JARAYETER = 1. RECORD TYPE = 3. SEQUENCE NUMBER = 3
1. LOJP PARAYETER = 1O. RECORD TYPE = 4. SEOUENCE NUMBER = 4
3. LJJO PARAYETER = O. RECORD TYPE = 5. SEQUENCE NUMBER a 5
_?=4511
AL SコIN ORBITAL ANALYSIS
RS OFORBITA.S 1 TO 5
1.0000000000E+00 1.0000000000E+00 5.0009000000E=01
YATRIX COLINMVS 1 TO 5
```

$0.0000000000 \equiv+00$
$0.0000000000 \equiv+00$
$1.0000000000 \equiv+00$
？．0000000000ミ＋00
0.0000000000 E． 00
$3.0000000000 \equiv+00$
j． 0000000000 E＋00
2． 0000000000 ＋00
$0.0000000000 \equiv+00$
0.0000000000 E＋00
$0.0000000000 E+00$
$0.0000000000 E+00$
C． $0000000000 \mathrm{E}+00$
$1.0000000000 \mathrm{E}+00$
$0.0000000900 E+00$
C． $0000000000 E+00$
$0.0000000000 E+00$
$0.0000000000 E+00$
$0.0000000000 E+00$
$0.0000000000 E+00$
$0.0009000000 \mathrm{E}=00$
$0.000 \div 0001100 \mathrm{E} * 00$

0．000：1000000E＊00
1．000．000000E＊00
$0.000: 000 \cap 0$ OE +00
0．000～000000E＊00
$0.000 \% 000000 \mathrm{E}$ \％ 00
$0.000: 000.000 \mathrm{E}=00$
O．OOONOOOTOOEWOO

```
RS OF DRBITALS 6 TO 10
う． 0000000000 ミ01．
\(1.0000000000 E+00\)
\(1.0000000000 E * 00\)
MATRIX COLUMVS 6 TO 10
3.0000000000 E＋00
\(2.0000000000+00\)
3.0000000000 E＋00
3.0000000000 E＋00
3． \(0000000000 \equiv 200\)
3.0000000000 E＋00
？． \(0000000000 \equiv+00\)
\(1.0000000000 \equiv+00\)
\(0.0000000000 \equiv+00\)
J． 0000000000 E＋00
\(0.0000000000 E+00\)
\(0.0000000000 E+00\)
\(0.0000000000 \mathrm{E}+00\)
\(0.0000000000 E+00\)
\(0.0000000000 E+00\)
\(0.0000000000 \mathrm{E}+00\)
\(0.0000000000 \mathrm{E}+00\)
\(0.0000000000 E+00\)
\(1.0000000000 E+00\)
\(0.0000000000 E+00\)
```

5．00001000000E＝01

```
NUMBLRR OF INSTGUOTIONS USED OH ENTRY TO SURPROGZAY YD=I
```

TDFILE PARGMETER V CONTEITS OF VIAST

CONTENTS OF PR:V
OXYGEN ATOM INTEGRALS.
FROM RLOCK 1 WORO
OXYGEN ATOH CI F DETOR MATRIX. FROM RLOCK 2 HORD 26 OXYGEN ATOM CI 3 P SOLUTION. FROM RLOCK 2. NORD 2G OXYGEN ATOM CI 3P DENSITY MATFIIY FROM BLOCK 2 WORD 17 **** NEXT NEW RECORD **** FROM RLOCK 2 WORD 27 NUMBER OF INSTRUCTIONS USED ON EXIT FROM SURPROGZAM TD::
**** JOB COMPLETE - TIM

```
-E=45:56
```

```
AL|ES.IFILG:= 4 JFILE=0
ZR FILE FROM 3LOCK 100
C. LOJP PARAYE#ER= 25. RECORD TYPE = 1. SEQUENCE NUMBER = 1
4.LJJP PAMAYETER = 3. RECORD TYPE = 2. SEQUENCE NUMBER = 2
3. LDJ P&RAYETER = 1. PECORD TYPE = 3. SEQUENCE NUMBER = 3
1. LOOP PARAYE-ER = 10. RECORD TYPE = 4. SEQUENCE NUMSER = 4
5. LJJP PARAYETER = 0. RECORD TYPE = 5. SEQUENCE NUMBEN = 5
ATE FILE FROY BLOCK I
O LDOP PARAYETER = 25. RECORD TYPE = 1. SEQUENCE NUMBER = I
4. LOOP PARAYETER = 3. RECORD TYPE = 2. SEQUENCE NUMBER = 2
3. LODP PARAYETER = 1. RECORD TYPE = 3. SEOUENCE NUMEER = 3
1. LOJP PARA YETER = 10. RECORD TYPE = 4. SEQUENCE NUMBER = 4
3. LJOP PARAYETER = O. RECORD TYPE = 5. SEQUENCE NUMBER = 5
E = 4592
# USEO = 28,71875 SECONDS
```


APPENDIX VIII

SPECTR \varnothing. A PROGRAM FOR COMPUTING THE

SPECTROSCOPIC CONSTANTS OF DIATOMIC MOLECULES

SPECTR \varnothing is described in chapter 9 and requires only a card reader (stream 0) for input of data and a lineprinter (also stream 0) for output. The program is completely self contained. The storage requirements are standard.

Data specification for SPECTR \varnothing
Card 9
NC $\varnothing N F, N D E G, N R, N \varnothing$
FøRMAT (4I5)
$\operatorname{NC} \mathrm{NFF}_{\mathrm{N}} \quad=$ number of energy levels of the molecule to be investigated for the symmetry and spin deEined by Card 4. If NCめNF = 0 execution ceases.

NDEG $\quad=$ degree of fitted polynomial
NR $\quad=$ number of values of the bond length to which polynomial is to be fitted.
$N \varnothing \quad\left\{\begin{array}{l}=0 \text { to suppress diagnostic output. } \\ \neq 0 \text { to obtain diagnostic output, including } \\ \text { residuals }\end{array}\right.$
Card 2 TITLE
FøRMAT (9A8/6A8)
TITLE is an array of 15 elements (120 characters) used to identify the run.

Card 3
RMASS
FøRMAT (1 PE20.10)

RMASS $=$ reduced mass of the molecule on the unified mass scale (see Appendix I and reference ${ }^{(57)}$)

Card 4 ISPIN, LAMBDA, INVERS, REFLEC
FØRMAT (2I5, 2A4)
ISPIN $\quad=\quad$ value of total spin eigenvalue for this state
LAMBDA $=$ value of axial angular momentum for this state
INVERS $\quad\left\{\begin{array}{l}\text { Gbbb for gerade states } \\ \text { Ubbb for ungerade states } \\ \text { bbbb for heteronuclear diatomic molecules }\end{array}\right.$
REFLEC $\quad\left\{\begin{array}{l}+b b b \text { for } \Sigma^{+} \text {states } \\ -b b b \text { for } \Sigma^{-} \text {states } \\ \text { bbbb for all other states }\end{array}\right.$
(Note : b = blank)
Card $6 \quad(R(I), I=1, N R)$
FøRMAT (1PE20.10)
$R(I) \quad$ is the value of the I-th bond length in bohrs.
(1 $\leqslant I \leqslant N R$) Repeat, as required.
Card $7 \quad((E(I, J), J=1, N R), I=1, N C \neq N F)$
FØRMAT (1 PE20.10)
$E(I, J) \quad$ is the energy at $R(I)$ of the J-th energy level. Repeat as required.

As the program is rementered at Card 1 after each run, it is necessary to terminate execution by setting NC $\varnothing N F=0$.

Restrictions

$$
\begin{aligned}
& 1 \leqslant N R \leqslant 20 \\
& 1 \leqslant \text { NDEG }<N R \\
& 1 \leqslant \text { NCळNF } \leqslant 5 \\
& 0 \leqslant \text { LAMBDA } \leqslant 4
\end{aligned}
$$

*Fortinn
C..... man routine for spictroscopic constants prggram.
C..... ReADS ALL DA'A FER EACI RUN.
ifgical tigaic
CGMiON /SREC/ ICR, INVERG,ISPIN, LAMBDA,LOGIC,LP, NCONF, NDEG,NR,NO, 1 RUITJiC, RMASS, TITLE (15) , $\mathrm{F}(20), \mathrm{P}(20), \mathrm{R}(20), \mathrm{BE}(5), \mathrm{DE}(5), \mathrm{DO}(5), \mathrm{FC}(5)$,

DILLUNSION MNGMOH(5)
 1/
CTuAli ICR, ip
$12 \operatorname{RiAD}(I C R, 3)$ NCOIF , $\mathrm{NDDG}, \mathrm{NR}, \mathrm{NO}$
If(nCONT.ED.0) STOP
$\operatorname{READ}(I C R, 1)$ TITLIS
READ (ICR,2) RIASS
READ(ICR,4) ISPIN, LMABDA, INVERS, REFLEC
$\mathrm{RAL}(I C R, 2)(\mathrm{R}(\mathrm{I}), \mathrm{I}=1, \mathrm{NR})$
$\operatorname{READ}(\mathrm{ICR}, 2)((\mathbb{Z}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{NR}), \mathrm{I}=1, \mathrm{NCONF})$
1 Formit (9nc/GA3)
2 Fomint(1Fig20.10)
3 Farmitit(1615)
4 FORNAT (215,2A4)
C......print mata
$\mathrm{I}=2 *$ ISPIN +1
$\operatorname{LATBDA}=\mathrm{LAMBDA}+1$
WRITE (LP,5) TITLE
MRITE (LP,6) RMASS
WRITE (LP, 7) NCONF, NR
VRITE (LP,13) NDEG

5 FORHINT (1II/1HO,44X,31HSPICTROSCOPIC COŅSTANTS PRDGRAN1HO,15A8)
6 FORNAT (1in , $35 x, 14$ IIREDUCED MASS $=, 1 \mathrm{PE} 17.10,19 \mathrm{HANU}$ (UNIFIED SCALE))
 1 Lengitis =,I3)
8 FORMAT(1HO, $41 \mathrm{X}, 26 \mathrm{HTHE}$ SPECTROSCOPIC STATE IS,I2,A6,1X,2A1/1HO,47X, $125 H \mathrm{HNERGIES}$ AND BOND LENGTHS/1HO,5X,9HR (BOHRS),6X,5(9X,1HE,I1,9X) 2)

DC $10 \mathrm{I}=1$, NR
$\operatorname{Vrite}(L P, 9) R(I),(E(J, I), J=1, N C O N F)$
9 FCRLAT (1HO,F11.1,9X,1P5E20.10)
10 continue
13 FORMAT (1HO,44X,29HDEGREE OF FITTED POLYNOMIAL $=$,I3)
CALL FINDRE
CALL DUNHAM
CALL RFILE
GO TO 12
END
*FORTRAN
SUBRCUTINE DUNHAM
C......CGIPUTES DIATCIIIC SPECTROSCOPIC CONSTANTS USING DUNHAM'S ANALYSIS.
c..... version 5.

LOGICAL LOGIC
CCIMMON /SPEC/ ICR,INVERS,ISPIN,LAMBDA,LOGIC,LP,NCONF,NDEG,NR,NO, $1 \mathrm{REFLEC}, \mathrm{AMASS}, \mathrm{TITLI}(15), F(20), \mathrm{P}(20), \mathrm{R}(20), \mathrm{BE}(5), \mathrm{DE}(5), \mathrm{DO}(5), \mathrm{FC}(5)$, $2 \operatorname{MINR}(5), \operatorname{RMIN}(5), \mathrm{We}(5), \mathrm{X}(20), \mathrm{XX}(20,20), A(5,10), \mathrm{Y} L J(5,15), \mathrm{E}(5,20)$
DIMENSION FL(20), FD(20)
EQUIVALENCE ($\mathrm{P}(3), \mathrm{AO}),(\mathrm{P}(4), \mathrm{A} 1),(\mathrm{P}(5), \mathrm{A} 2),(\mathrm{P}(6), \mathrm{A} 3),(\mathrm{P}(7), \mathrm{A} 4)$,
$1(P(3), A 5),(P(9), A 6),(P(10), A 7)$
DATA EPS/1.OE-10/

```
    NTERM=NDEG+1
    NMM =NDEG-1
    NM2=NDEG-2
    BPA=R(NR) +R(1)
    BMA=1.0/(R(INR)-R(1))
C.....CCMPUTE VALUES OF. NORMALIZED INDEPENDENT VARIABLLE X AND SET UP XX.
    IO }1\mathrm{ I=1,NR
    X(I)=(2.0*R(I) -BPA)*BMA
    XX(I,I)=1.0
    CO 1 J=2,NTERM
    XX(I,J)=XX(I,J-1)*X(I)
    1 CONTINUE
    LO 13 ICONF=1,NCONF
C.....COMPURE MEAN ENERGY FOR THIS LEVEL.
    SUM=E(ICONF,1)
    DO 2 I=2,NR
    SUM=SUM+E (ICONF,I)
    2 CCNTINUS
        SUM=SUR/ FLOAT (NR)
        IF(NO.NE.0) WRITE(IP,3) ICONF,SUM
    3 FORMAT(1HO, 41X,5HLEVEL,I2,14H MEAN ENERGY =,1PE17.10)
C.....SUBTRACT LISAN FROM EACH ENERGY AND CONVERT TO CM**(-1).
        DO 4 I=1,NR
        F(I)=(E(ICONF,I)-SUM)*2.1947462E+05
        4 CONTINUE
C.....FIT PGLYNCMIAL TO F(X).
    CALL CRLIN2(XX,F,P,NR,NTERM,20,20,EPS,LOGIC)
        IF(IOGIC) WRITE(LP,5)
        5 FORMAT (1HO,40X,40HITTERATIVE IMPROVEMENT OF SOLUTION FAIIED)
C.....CCMPUTE LL NORM OF SOLUTION.
        B=0.0
        DO 6 I=1,NR
        I=POLYVA(X(I),P,NDEG)
        W=F(I)-D
        B=B+W**:V
        IF(NO.NL.O) WRITN(IP,7) X(I),F(I),D,V
        6 CONTINUE
        7 FORMATP(1H ,13X,2HX=,1PE17.10,6H F(X)=,1PE17.10,6H D(X)=,1PE17.10,
        111H F(X)-D(X)=,1PE17.10)
            MRITE(LP,8) B
        8 FORMAT(1HO,45X,21IL2 NORM CF SOLUTION =,1PE9.2) -
C.....FINL MINIMUN OF F(X).
    DO 9 I=3,NTERM
        IM1=I-1
        IM2=I-2
        FL(IMN1) =IM1*P(I)
        FD(IM2) =IM2*FL(IML)
    9 CONTINUS
        PL(1)=P(2)
        I=MINR (ICCNF)
        Ri=X(I)
        ITER=C
    10 ITBR=ITMR+1
        D=POLYVA(FR,FL,NHI)/POLYVA(RE,FD,NNL2)
        IT(NO.NE.0) HRITI(IP,19) ITER,RIS,D
        IF(ABS(D)-12PS 15,11,11
    11 IT(ITER-100) 12,13,13
    12 RD=RM-D
        GO TO 10
    13 WRITE(LP,14) ICONF,D
```

```
    14 FORMAT (1HO,39X,5HLEVEL,I2,26H NEUTTCN-RAPHSON FAILED, D=,1PE9.2)
    15 D=POLYVA(RE,P,NDEG)
        IF(NO.NE.0) VRITE(LP,16) D,RE
    16 FORMAT(1HO,25X,34HMINIMUM OF NORMALIZED POLYNCMINL =,1PE17.10,7II A
    1T X =,OPF13.10)
C.....TRANSFORM POLYNOMIAL TO DUNHAM FORM.
        D=RE+BPA*BMA
        CALL POLYX(D,RE,P,FL,NDEG)
        B=1.0/FL(3)
        DC 161 I=4,NTERM
        FL(I)=FL(I)*B
    161 CONTINUS
C.....FL CONTTAINS DUNHAM EXPANSION COEFFICIENTS.
    FL(1)=FL(1)+SUM*2.1947462E+05
    IM1 =MINO (10, NTTERM)
    DO 17 I=1, IMI
    A(ICONF,I)=FL(I)
    P(I)=FL(I)
    17 CONNINUE
        RE=0.5* (RE/BMA +BPA)
        RMIN(ICONF)=RE
C.....CCMPUTE SPECTROSCOPIC CONSTANTS AND YIN.
    BE (ICONF)=60.2014/(RMASS*RE*RE)
    IF(BE (ICONF).LE.O.O.OR.AO .IE.O.0) GO TO 18
    WE (ICONF)=2.0*SQRT(AO*BE (ICONF))
    DE (ICCNF) =4.0*(BE (ICONF)/WE (ICCNF))**2*BRS (ICONF)
    FC(ICONF)=5.8914612-02*PMASS**TE (ICONF)**2
C.....DEFINE B,'V AND BVI FOR EASIS OF VRITING FORMULAE.
    B=BIL (ICCNF)
    W=VE(ICONF)
    B}:V=(B/W)**
    A1SQ=A1*A1
    A2SQ=A2*A2
    A3SQ=A3*A3
    YIJ (ICONF, 1)=0.125*B*(3*A2-1.75*A1SQ)
    YLJ (IC@NF, 2)=W*(1+0.25*BW*(25*A4-16.75*A2SQ-0.5*A1**(95*A3-0.25*A1 
    1
    YIJ (ICONF, 3)=0.5*B* (3* (A2-1.25*A1SQ) +0.5*BIY* (0.5*A1* (-1365*A5+
    1 3667.5*A2*A3-0.25*A1*(3535*A4-15503.25*A2SQ*0.5*A1*
    2 (-23865*A3+0.125*A1*(239935*A2-52263.75*A15@))))+
    3 245*A6-0.5*A2*(385*A4-426.75*A2S@)-271.25*A3SQ))
    YIN (ICONF, 4)=0.5*W*B:Y*(10*A4-8.5*A2SQ-A1*(35*A3-0.25*A1*(225*A2-
    1 83.125*A1SQ)))
    YIJ (ICCNF, 5) =5*B***B*(0.25*AI* (-63*A5+241.5*A2*A3+0.25*A1*(543*A4-
    1 1247.25*A2SQ+H.5*A1*(-1953*A3*0.125*A1*(23265*A3-
    2 5737.75*A1SQ))))-0.25*A2*(33*A4-18.75*A25\Omega)-3.5*(
    3 2.25*A3SQ-A6))
    YLJ (ICONF, 6) = B* (1+0.5*BY% (15* (1+A3)-9*A2+A1*(14-23*A2+10.5*A1* (1+
    1 A1))))
    YLJ (ICONF, 7) =V*BW* (6* (1+\Lambda1) +BV%* (A1* (235-459*A2*356.25*A3-307.5*A4
    1 +534.625*12SO+0.25*AI*(1147.5-.2400.75*A2*2572.5*A3+
    2 A1*(1155-3564.75*AS+074.53125*A1*(1+A1))))-0.5*A2*
    3 (335+715*A3-251.25*A2)+190*A3-112.5* A4*175*(1+15)))
    YLJ (ICONN, 8) =C * B*B:T* (5*(1+A3)-3*A2+A11*(10-13*A2+7.5*[1]* (1+A1)))
    YLJ (ICCNF, 9) =20*Bir*BIV*Y*(A1*(21-45*A2+26.25*A3-25.5*/.4*51.075*
    1
                                A2S!2*O.25*A1*(112.5-236.25*A3+217.5*A3+A1*(141-
                                377.25*A2+110.96375*A1 *(1+\Lambda1))))-0.5*A2*(17+45*A3-
                                12.75*\Omega2)+14*A3-4.5*A4*7*(1+45))
    YLJ (ICONF,10)=-4*B*B:I*(1*C. 5*BTV*(A1*(100-207*.2N.102.5*A工+A1*(-A2*
    1
        166.5+173.25+126*A1*(1+0.5*\Lambda1)))-A?*(119-40*A2)+90*
```

```
        2
                    A3-45*A4+163))
        YIJ (ICONF, 11) =-12*BWFBH**W*(9.5-4*A2 +9*A1*(1+0.5*A1))
        YLJ (ICONF,12) =-24*BW*BW*B*(Al*(125-117*A2+47.5*A3+A1*(123.75-103.5
        1
                            *A2+90*A1*(1+0.5*A1)))-A2*(61-26*A2) +30*A3-15*A4+65)
        YLJ (ICONF,13)=16*BiV*BIV*B* (3+A1)
        YIJ (ICONF,14)=12*B:%**3*V*(233+A1*(279-S8*A2+A1*(130*63*AI))-120*A2
        1
                +30*A3/3)
        YLJ (ICONF,15) =-64*B:%**3*B*(13+9*A1* (1+0.25*AI)-A2)
        DO (ICONF) =YTJ (ICCNF,1) +0.5* (YIJ (ICONF, 2) +0.5* (YLJ (ICCNF, 3) +0. 5*
    1(YIJ (ICONF, 4)+0.5*YLJ (ICONF,5))))
```

 13 CONTINUE
 19 FORNAT (\(1 \mathrm{H}, 21 \mathrm{X}, 9 \mathrm{HITERATION}, \mathrm{I} 4,19 \mathrm{H}\) CURRENT ESTIMATE \(=, 1 \mathrm{PE} 17.10,11 \mathrm{HI}\)
 1NCRLMENT =,1Psi17.10)
 RETURN
 IND
 *FORTRAN
SUBROUTIINE FINDRE
C.....DETARMINES HHICH LEVELS ARE BOUND.

CCAMION /SPEC/ ICR,INVERS,ISPIN,LAMBDA,LOGIC,IP,NCONF,NDEG,NR,NO,
1REFLEC, RMASS , TITLT (15) , F (20) , $\mathrm{P}(20), \mathrm{R}(20), \mathrm{BE}(5), \mathrm{DE}(5), \mathrm{DO}(5), \mathrm{FC}(5)$,
$2 M I N R(5), \operatorname{RMIN}(5), W C(5), X(20), X X(20,20), A(5,10), Y L J(5,15), E(5,20)$
NRM1 $=$ NR -1
DO 4 I $=1$, NCONF
$\operatorname{MINR}(I)=\mathrm{NR}$
$1 \operatorname{TMIN}=E(I, N R)$
DO $3 \mathrm{~J}=1$, NRaH
$\operatorname{IF}(\operatorname{MIN}-\mathrm{E}(\mathrm{I}, \mathrm{J})) 3,3,2$
2 THIN=E(I,J)
$M I \operatorname{NR}(I)=J$
$R E=R(J)$
3 CONTINUE
FMIN (I) $=\mathrm{RE}$
4 CONTINU:
C.....GET RUSULTS VECTORS TO ZERO.

D $6 \mathrm{I}=1,5$
$\mathrm{BE}(I)=0.0$
$D E(I)=0.0$
$W \mathrm{~L}(I)=0.0$
$F C(I)=0.0$
$\operatorname{LO}(I)=0.0$
DO $5 \mathrm{~J}=1,10$
$A(I, J)=0.0$
5 CONTINUS
DO $6 \mathrm{~J}=1,15$
$Y L J(I, J)=0.0$
6 CONTINUE RETURIV
EHD
*Fortran
SUBROUTINE ORLIN2 ($\mathrm{A}, \mathrm{B}, \mathrm{X}, \mathrm{N}, \mathrm{M}, \mathrm{NROV}, \mathrm{NCOL}, \mathrm{BPS}, \operatorname{ITFAIL}$)
C..... ORLIN2 GIVES THE LEAST SQUARES SOLUTION FOR A SYiJTM OF N LINEAR

C.....CCNSTANT VECTOR ON THE RIGFif SIDA, DPS THE MLYMML RLLATIVS
C.....RCUNDING ERROR AND X TLE SOLUTION VECTOR. ITEAIL IS SiTR BQUAL TO
C..... . TRUE. IF THE ITARATIVE IMPROVEMENT IS INLTPECTIVA.
C.....THE MLTHOD IS DESCRIBED BY F.I.BIUNR IN IUM, INATY.7,333-352(1065). CIMENSION Λ (NROH,NCCL) , $B(N R O: T), X(N R C T I), U(20,50), \Gamma(20), \therefore(210)$, 1PP(20)

LOGICAL ITFAIL
ITFAIL=.FALSE.
DO $1 \mathrm{I}=1$, N
DO $1 \mathrm{~J}=1, \mathrm{M}$
$U(I, J)=\Lambda(I, J)$
1 CONTINUS
$\mathrm{L}=0$
DO. $51 \mathrm{I}=1$, M
$\mathrm{S}=0.0$
DO $2 \mathrm{~J}=1, \mathrm{~N}$
$T=U(J, I)$
$\mathrm{P}(\mathrm{J})=\mathrm{T}$
$S=S+T * T$
2 CONTINUE
$\mathrm{L}=\mathrm{L}+1$
$Q(L)=S$
$\mathrm{T}=0.0$
C..... ELMMENT OF V STORED IN X.

DO $3 \mathrm{~J}=1, \mathrm{~N}$
$T=T+P(J) * B(J)$
3 CONTINUE
$X(I)=T$
$\operatorname{IF}(I-M) 31,51,51$
31 IP $=I+1$
IO $5 \mathrm{IH}=\mathrm{IP}, \mathrm{M}$
$\mathrm{T}=0.0$
DO $4 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{T}=\mathrm{T}+\mathrm{P}(\mathrm{J}) * \mathrm{U}(\mathrm{J}, \mathrm{IH})$
4 CONTINUS
C.ELEMENT OF THE I-TH. ROW OF R STORED IN Q.
$\mathrm{L}=\mathrm{L}+1$
$Q(L)=T$
$T=T / S$
C..... FORMATION OF A COLUMN OF THE I-TH. RMMINING MATRIX. DO $5 \mathrm{~J}=1, \mathrm{~N}$
$U(J, I H)=U(J, I H)-P(J) * T$
5 CONTINUE
51 CONTINUE
C.....END OF FORMATION OF THE MATRICES R AND U AND THE VECTOR V.
C.....BACK SUBSTITUTION.
$\mathrm{L}=\mathrm{L}$
$M=M+2$
$\mathrm{MP}=\mathrm{M}+1$
DO 7 IS=1, M
$I=M P-I S$
$\mathrm{IH}=\mathrm{L}-\mathrm{I}$
$\mathrm{T}=\mathrm{Q}(\mathrm{L})$
$S=x(I)$
IF(I-M) $52,61,61$
$52 I \mathrm{P}=\mathrm{I}+1$
10 $6 \mathrm{~J}=\mathrm{IP}, \mathrm{M}$
$S=5-Q(J+I H) * X(J)$
6 COITTINUS
$61 \mathrm{X}(\mathrm{I})=\mathrm{S} / \mathrm{T}$
$\mathrm{L}=\mathrm{I} \cdot \mathrm{I}-\mathrm{IM}$
7 CONTINUE
C..... CHD CACK SUBGTITUTION.
C.....INEERATVE IMPROVEMENT OF THE SOLU'IION.

EPS2=3PS*EPS
$\mathrm{SO}=0.0$

```
    8 I=LL
        S1=0.0
        S2=0.0
C.....RESIDUAL VECTOR STORED IN P
        DO }9\textrm{J}=1,
        P(J)=-SCPROD(-B (J),A,J,X,M,NRDW;NCOL)
        9 CONTINUE
C.....VECTOR ON THE RIGITN SIDE STORED IN PP.
        \GammaO 11 J=1,M
        S=0.0
        CO 10 I=1,N
        S=S+U(I,J)*P(I)
    10 CONTINUE
        PP(J)=S
        11 CONIINUE
C.....BACKK SUBSTITUTION.
            DO 13 IS =1,M
            J=MP-IS
            IH=L-J
            S=PP(J)
            IF(J-M) 111,121,121
    111 IP=J +1
            DO 12 I=IP,M
            S=S-Q(I+IH)*PP(I)
        12 CONTINUS
    121S=S/Q(L)
        PP(J)=S
        S1=S1+S*S
        T=K(J)
        S2=S2+T*T
        X(J)=S+T
        L=LrrJ-lim
    13 CONTINUE
C.....IND OF BACK SUBSTITUTION.
    IF(S1-0.25*S2) 14,16,16
    14 IF(.NOT.(S1.GE.S2*EPS2.AND.(SO.EQ.O.OR.S1.IF.(SO*O.01))))GO TO 15
        SO=S1
        GO TO 
    15 RU'TURN
    16 ITFAIL=.TRUE.
        GO TO 15
        END
*FORTRAN
    FUNCTICN POLYVA(X,P,K)
C.....COMPUTES THE VALUE OF A POLYNGMIAL OF DEGRES K. THE COEFFICIENTS
C.....ARE IN P WITH THE CONSTANT TERM IN P(1). (K<20).
    DILINNSION P(20)
    DCUBIE PRIPCISICN FOFX
    INP=IK+1
    FOF:= FBLE(P(KP))
    DO 1 I=1,K
    FOFX=FOFX*DBTIS(X)+DBLIT(P(KP-I))
    1 COINTINUS
        POLYVA=FOFX
        RETURN
        END
*FORTRAN
        SUBRCUTINL POLYX(A,B,C,D,N)
```

```
C.....FORTRAN V VERSION OF ACM ALGORITHM 29 "POLYNGMIIAL TRANSFORMER".
    DIMENSION \(C(20), D(20), Z(20), \mathrm{Y}(20)\)
C..... PCLYX CCIPPUTES THE COEFFICIENTS DO,D1,...,DN OF THE TPANSFORNED
C.....POLYMCMIAL \(P(T)\) GIVEN \(C O, C 1, \ldots, C N\) CF \(P(X)\) MHERE \(X=A * T+B\).
    \(W(1)=1.0\)
    \(Z(1)=\operatorname{iv}(1)\)
    \(D(1)=C(1)\)
    \(\mathrm{N} P 1=\mathrm{N}+1\)
    DO \(1 I=2, N P 1\)
    \(W(I)=1.0\)
    \(Z(I)=B * Z(I-1)\)
    \(D(1)=D(I)+C(I) * Z(I)\)
    1 CONTINU:
        DO \(2 \mathrm{~J}=2, \mathrm{NP} 1\)
        \(W(1)=W(1) * A\)
        \(D(J)=C(J) * i v(1)\)
        IF(J.IE.NP1) RETURN
        \(K=2\)
        \(\mathrm{JP1}=\mathrm{J}+1\)
        DO \(2 \mathrm{I}=\mathrm{JP} 1\),NP1
        \(W(K)=A * W(K)+W(K-1)\)
        \(D(J)=D(J)+C(I) * W(K) * Z(K)\)
        \(\mathrm{K}=\mathrm{K}+1\)
        2 CONTINUE
            RETURN
        and
```

* Fortran
SUBROUTINE RFILE
C..... OUTPUT CF RESULTS.
LCGICAL LOGIC
CCMAMCN /SPEC/ ICR,INVERS,ISPIN, IAMBDA,LOGIC,LP,NCONF,NDEG,NR,NO,
1REFLEC, RMASS, TITLE (15) ,F(20), $\mathrm{P}(20), \mathrm{R}(20), \mathrm{Bi}(5), \mathrm{DE}(5), \mathrm{DO}(5), \mathrm{FC}(5)$,
$\operatorname{MMINR}(5), \operatorname{RMIN}(5), \operatorname{TE}(5), X(20), X X(20,20), A(5,10), Y L J(5,15), 12(5,20)$
DIMENSION T $(31,2)$

$1,3 \mathrm{H} \quad \mathrm{DE}(\mathrm{CM}, 3 \mathrm{H} \quad \mathrm{YOO}, 8 \mathrm{H} \quad \mathrm{Y} 10,3 \mathrm{H} \quad \mathrm{Y} 20,8 \mathrm{H} \quad \mathrm{Y} 30,8 \mathrm{H} \quad \mathrm{Y} 40$
$2,3 \mathrm{H} \quad \mathrm{YO1,3H} \quad \mathrm{Y} 11,3 \mathrm{H} \quad \mathrm{Y} 21,8 \mathrm{H} \quad \mathrm{Y} 31,8 \mathrm{H} \quad \mathrm{YO2,8H} \quad \mathrm{Y} 12$
$\begin{array}{lllllll}3,6 H & Y 22,3 H & Y O 3, S H & Y 13,3 H & Y O 4,3 H & E(R, 6 H & L N\end{array}$
$\begin{array}{lllcccc}4,3 H & A 0, B H & A 1,3 H & A 2,3 H & A 3,3 H & A 4,3 H & A 5 \\ 5,8 H & A 6 & 3 H & A 7 & 8 H & \text { (BOHRS), } 3 H A R T R G E S), 8 H-1) & 3 H 2\end{array}$

$7,8 H=W E Z \quad, 3 H=B E \quad, 3 H=-A L P H A E, 3 H=G A M M A E, O H=D E L T A E, 3 I I=-D E$
$3,3 \mathrm{H}=\mathrm{BETAE}, 3 \mathrm{H} \quad, \mathrm{SH}=\mathrm{FE} \quad, 8 \mathrm{H} \quad, \mathrm{SH}=\mathrm{FE} \quad, 3 \mathrm{HE})(\mathrm{CM}-1)$
9,3HEAR TERM, BH (CM-1) ,7*8H /
DATA T1,T2/8H $\mathrm{ZO}(\mathrm{CM}, 3 \mathrm{H}-1)$ /
LO $1 \mathrm{I}=1$, NCCNF
$X(I)=A(I, I) * 4.5563354838 \mathrm{E}-06$
1 CONTINUE
MRIT (LP, 2) TITLE
WRITE (IP, 3) ($I, I=1, N C O N F)$
$\operatorname{WRITE}(L P, 4) T(1,1), T(1,2),(\operatorname{RMIN}(I), I=1, N C O N F)$
$\operatorname{MRITE}(L P, 4) T(2,1), T(2,2),(\quad X(I), I=1, N C O N F)$
$\operatorname{WRITL}(L P, 5)$
$\operatorname{WRITE}(L P, 4) T(3,1), T(3,2),(W E(I), I=1, N C O N F)$
$\operatorname{WRITE}(L P, 4) T(4,1), T(4,2),(\operatorname{FC}(I), I=1, N C C H P)$
$\operatorname{WRITE}(L P, 4) T(5,1), T(5,2),(\operatorname{Bi}(I), I=1, N C C I N)$
$\operatorname{MRITL}(L P, 4) T(G, 1), T(G, 2),(\quad \mathrm{DE}(I), I=1, \mathrm{NCONF})$
$\operatorname{MRITR}(L T, 4) \operatorname{M1}, \mathrm{TR},(\mathrm{LO}(I), I=1, \mathrm{NCONF})$
$\operatorname{VRIT}(L P, 6)$

2 FORMAT ($1 \mathrm{HI} / 1 \mathrm{HO}, 15 \mathrm{~A} / 1 \mathrm{HO}, 46 \mathrm{X}, 23 \mathrm{HSPECTROSCOPIC}$ CONSTANTS)
3 FORILAT (1 HO, 20X,5 (6X,5HT_EVEL, I3,6X))
4 FORMAT (1H, 4X, 2A8,1P5E20.10)
5 FORMAT ($1 \mathrm{HO}, 43 \mathrm{X}, 33 \mathrm{HCLASSICAL}$ SPECTROSCOPIC CONSTANTS/1H)
6 FORMAT ($1 \mathrm{HO}, 40 \mathrm{Z}, 40 \mathrm{HCORRECTLD}$ SPIETROSCOPIC CONSTANTS (CM-1)/1H) DO $7 \mathrm{I}=1,15$
$\mathrm{J}=\mathrm{I}+6$
WRITE $(L P, 4) T(J, 1), T(J, 2),(Y L J(K, I), K=1, N C O N F)$
7 CONTINUE
WRITE (LP, 3)
8 FORMAT ($1 \mathrm{HO}, 41 \mathrm{X}, 38 \mathrm{HDUNHAM}$ ANALYSIS EXPANSION COEFFICIENTS/1H) DO $9 I=1,10$ $\mathrm{J}=\mathrm{I}+21$
$\operatorname{VRITE}(L P, 4) T(J, 1), T(J, 2),(A(K, I), K=1, N C O N F)$
9 CONTINUE
RITURN END
*FORTRAN
FUNCTION $\operatorname{SCPROD}(S, A, I, P, N, N R O N, N C O L)$
DIMENSION A(NROT,NCOL), F (MUCN)
ICURIN PRECISION T
$\mathrm{T}=\mathrm{S}$
LO $1 \mathrm{~J}=1, \mathrm{~N}$
$T=T+D B L I S(A(I, J)) * D B L L(P(J))$
1 CONTINUE
SCPROD=T
RETURN
END

R (BOHRS)

dUNḢAM ÁNALÝSIS EXPANSION COEFFICIENTS
스ㅇㅜㅏㅇㅇㅇㅇㅇㅇㅇㅇ웅ㅇㅇㅇ

 め下心Nが以 へin人0人

APPENDIX IX

SPECIFICATION OF DETERS AND CODETORS FOR

The detors are specified by using the identifiers of the valence shell molecular apin-orbitals according to the rules

$$
\begin{aligned}
& \text { ns } \sigma_{g} \alpha=1 \text {, ns } \sigma_{g} \beta=2 \text {, } \\
& \mathrm{ns} \sigma_{u} \alpha=3 \text {, } \mathrm{ns} \sigma_{u} \beta=4 \text {, } \\
& n p_{0} \sigma_{g} \alpha=5, n p_{0} \sigma_{g} \beta=6, \\
& n p_{0} \sigma_{u} \alpha=7, n p_{0} \sigma_{u} \beta=8 \text {, } \\
& n p_{-} \pi_{g}=9, n p_{-} \pi_{g} \beta=10, \\
& n p_{-} \pi u^{\alpha}=11, n p_{-} \pi_{u} \beta=12 \text {, } \\
& n p_{+} \pi_{g} \alpha=13, n p_{+} \pi_{g} \beta=14 \text {, } \\
& n p_{+} \pi_{u}{ }^{\alpha}=15, n p_{+} \pi_{u} \beta=16 \text {. }
\end{aligned}
$$

In the oxygen molecule calculations $n=2$, and for the sulphur molecule $n=3$. To obtain the data required for SECS $\varnothing \mathrm{L}$ the frozen inner shell spin orbitals must be specified in addition to those given in this appendix. Each codetor is written in the form

$$
\psi_{I}=n_{I} \sum_{J} D_{J} t_{J I}
$$

where $t_{J I}$ is a non-zero element of the projection matrix $\mathrm{T}_{\mathrm{S} \sigma}$ (chapters 7 and 8), and n_{I} is the normalization factor for Ψ_{I}. The value of $n_{I} \quad$ is calculated in the routine SECDAT (see Appendix VII), and

$$
n_{I}=\left(\sum_{J} t_{J}^{2}\right)^{-\frac{1}{2}}
$$

(In Tables IX. 1 and IX.3; D_{I} appears as $D(I)$ because these tables are computer output and subscripting variables is not possible.) Finally the spatial orbital configurations are given in Table IX.5. A spatial orbital configuration merely gives the total number of electrons occupying each molecular orbital of a particular symmetry species.

Abstract

D(1) $=(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(13)(14)$ $D(2)=(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(15)(16)$ D(3$)=(1)(2)(3)(4)(5)(6)(7)(8)(11)(12)(13)(14)$ $D(4)=(1)(2)(3)(4)(5)(6)(7)(8)(9)(11)(14)(16)$ $D(5)=(1)(2)(3)(4)(5)(6)(7)(8)(10)(11)(13)(16)$ $D(6)=(1)(2)(3)(4)(5)(6)(7)(3)(9)(12)(13)(16)$ $D(7)=(1)(2)(3)(4)(5)(6)(7)(3)(10)(12)(13)(15)$ $D(3)=(1)(2)(3)(4)(5)(6)(7)(8)(9)(12)(14)(15)$ $D(9)=(1)(2)(3)(4)(5)(6)(7)(8)(10)(11)(14)(15)$ $D(10)=(1)(2)(3)(4)(5)(6)(7)(8)(11)(12)(15)(16)$ $D(11)=(1)(2)(3)(4)(5)(0)(9)(10)(11)(13)(14)(16)$ $D(12)=(1)(2)(3)(4)(5)(6)(9)(10)(12)(13)(14)(15)$ $D(13)=(1)(2)(3)(4)(5)(6)(9)(11)(12)(14)(15)(10)$ $D(14)=(1)(2)(3)(4)(5)(6)(10)(11)(12)(13)(15)(16)$ $D(15)=(1)(2)(3)(4)(5)(7)(2)(10)(12)(14)(15)(10)$ $D(16)=(1)(2)(3)(4)(6)(7)(3)(10)(11)(14)(15)(16)$ $D(17)=(1)(2)(3)(4)(5)(8)(9)(10)(11)(14)(15)(16)$ $D(18)=(1)(2)(3)(4)(6)(8)(9)(10)(11)(13)(15)(16)$ $D(19)=(1)(2)(3)(4)(5)(8)(9)(10)(12)(13)(15)(10)$ $D(20)=(1)(2)(3)(4)(6)(7)(9)(10)(12)(13)(15)(16)$ $D(21)=(1)(2)(3)(4)(6)(7)(9)(11)(12)(13)(14)(16)$ $\mathrm{L}(22)=(1)(2)(3)(4)(5)(8)(9)(11)(12)(13)(14)(16)$ $D(23)=(1)(2)(3)(4)(6)(3)(3)(11)(12)(12)(14)(15)$ $\mathrm{c}(24)=(1)(2)(3)(4)(5)(3)(10)(11)(12)(13)(14)(15)$ $D(25)=(1)(2)(3)(4)(6)(7)(10)(11)(12)(13)(14)(15)$ $\mathrm{L}(20)=(1)(2)(3)(4)(5)(7)(10)(11)(12)(13)(14)(16)$ $\mathrm{D}(27)=(1)(2)(3)(4)(7)(8)(9)(10)(11)(13)(14)(16)$ $D(28)=(1)(2)(3)(4)(7)(8)(9)(10)(12)(13)(14)(15)$ $D(29)=(1)(2)(3)(4)(7)(8)(9)(11)(12)(14)(15)(10)$ $D(30)=(1)(2)(3)(4)(7)(8)(10)(11)(12)(13)(15)(10)$ $D(31)=(1)(2)(3)(4)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(32)=(1)(2)(3)(5)(6)(7)(0)(10)(12)(13)(14)(16)$ $D(33)=(1)(2)(4)(5)(0)(7)(9)(10)(11)(13)(14)(16)$ $D(34)=(1)(2)(3)(5)(6)(8)(9)(10)(11)(13)(14)(16)$ $D(35)=(1)(2)(4)(5)(6)(8)(9)(10)(11)(13)(14)(15)$ $I(35)=(1)(2)(3)(5)(\mathrm{C})(\mathrm{i})(\mathrm{S})(10)(12)(13)(14)(15)$ $\mathrm{D}(\mathrm{37})=(1)(2)(4)(5)(6)(7)(5)(10)(12)(13)(14)(15)$ $D(38)=(1)(2)(3)(5)(6)(7)(10)(11)(12)(14)(15)(16)$ $D(39)=(1)(2)(4)(5)(6)(7)(9)(11)(12)(111)(15)(16)$ $\mathrm{D}(40)=(1)(2)(3)(5)(0)(8)(5)(11)(12)(114)(15)(10)$ $D(41)=(1)(2)(4)(5)(6)(8)(9)(11)(12)(13)(15)(10)$ $\mathrm{L}(42)=(1)(2)(3)(5)(6)(8)(10)(11)(12)(13)(15)(10)$ $\mathrm{D}(43)=(1)(5)(4)(5)(6)(7)(10)(11)(12)(13)(15)(16)$ $D(44)=(1)(2)(3)(5)(7)(8)(5)(10)(12)(14)(15)(16)$ $D(45)=(1)(2)(4)(5)(7)(5)(9)(10)(11)(111)(15)(10)$ $D(40)=(1)(2)(3)(0)(7)(8)(0)(10)(11)(14)(15)(10)$ $D(47)=(1)(2)(4)(6)(7)(8)(5)(10)(11)(13)(15)(10)$ $D(43)=(1)(2)(3)(6)(7)(3)(5)(10)(12)(13)(15)(10)$ $D(49)=(1)(2)(4)(5)(7)(3)(3)(10)(12)(13)(15)(16)$ $D(50)=(1)(2)(4)(5)(7)(8)(3)(11)(13)(13)(11)(13)$ $D(51)=(1)(2)(3)(6)(7)(3)(J)(11)(12)(13)(14)(16)$ $I(52)=(1)(4)(4)(0)(7)(0)(0)(11)(12)(13)(14)(1.5)$ $D(53)=(1)(2)(3)(6)(7)(3)(10)(11)(12)(13)(14)(15)$ $\mathrm{D}(\mathrm{j} 4)=(1)(\therefore)(14)(5)(7)(0)(10)(11)(12)(13)(14)(15)$ $D(55)=(1)(2)(j)(j)(7)(i)(10)(11)(1 i)(1 i j)(1: 1)(1 i j)$ $I(56)=(1)(2)(3)(3)(i)(10)(11)(1 i)(13)(14)(1 i j)(1 i)$ $\mathrm{D}(\mathrm{j} 7)=(1)(2)(4)(7)(i)(10)(11)(1 i j)(13)(1 \cdot i)(1 i)(1 i)$ $\mathrm{L}(\mathrm{ji})=(1)(2)(5)(\mathrm{c})(7)(\mathrm{E})(\mathrm{j})(10)(11)(10)(14)(10)$ $\mathrm{D}(5 \dot{i})=(1)(\mathrm{i})(\mathrm{j})(\mathrm{i})(7)(\mathrm{i})(\mathrm{i})(1 \dot{)})(1.1)(13)(11)(1 i)$

TABLE IX. 1. \sum_{g} DETORS (Continued).

$D(60)=(1)(2)(5)(6)(7)(3)(9)(11)(12)(14)(15)(16)$ $D(61)=(1)(2)(5)(6)(7)(3)(10)(11)(12)(13)(15)(16)$ $D(62)=(1)(2)(5)(6)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(63)=(1)(2)(7)(8)(0)(10)(11)(12)(13)(14)(15)(16)$ $D(64)=(1)(3)(4)(5)(\mathrm{C})(7)(9)(10)(12)(114)(15)(16)$ $D(65)=(2)(3)(4)(5)(6)(7)(5)(10)(11)(14)(15)(16)$ $D(65)=(1)(3)(4)(5)(6)(8)(9)(10)(11)(14)(15)(16)$ $D(67)=(2)(3)(4)(5)(0)(3)(9)(10)(11)(13)(15)(16)$ $D(68)=(1)(3)(4)(5)(6)(5)(4)(10)(12)(13)(15)(16)$ $D(69)=(2)(3)(4)(5)(6)(7)(0)(10)(12)(13)(15)(10)$ $D(70)=(2)(3)(4)(5)(6)(7)(9)(11)(12)(13)(14)(16)$ $D(71)=(1)(3)(6)(5)(0)(8)(0)(11)(12)(13)(14)(16)$ $\mathrm{L}(72)=(2)(3)(4)(5)(6)(8)(9)(11)(12)(13)(14)(15)$ $D(73)=(1)(3)(4)(5)(0)(3)(10)(11)(12)(13)(14)(15)$ $I(74)=(2)(3)(4)(5)(6)(7)(10)(11)(12)(13)(14)(15)$ $D(75)=(1)(3)(4)(5)(6)(7)(10)(11)(12)(13)(14)(16)$ $\mathrm{E}(76)=(1)(3)(4)(5)(7)(3)(5)(10)(12)(13)(14)(16)$ $D(77)=(2)(3)(4)(5)(7)(3)(0)(10)(11)(13)(14)(16)$ $D(73)=(1)(3)(4)(0)(7)(3)(9)(10)(11)(13)(14)(16)$ $D(75)=(2)(3)(4)(6)(7)(5)(0)(10)(11)(13)(14)(15)$ $D(30)=(1)(3)(4)(0)(7)(3)(9)(10)(12)(13)(14)(15)$ $\mathrm{L}(81)=(2)(2)(4)(5)(7)(8)(9)(10)(12)(13)(14)(15)$ $r(82)=(1)(3)(4)(5)(7)(8)(10)(11)(12)(14)(15)(16)$ $D(83)=(2)(3)(4)(5)(7)(8)(9)(11)(12)(14)(15)(16)$ $D(34)=(1)(3)(4)(6)(7)(8)(9)(11)(12)(14)(15)(16)$ D (85) $=(2)(3)(4)(6)(7)(8)(9)(11)(12)(13)(15)(16)$ $D(86)=(1)(3)(4)(6)(7)(8)(10)(11)(12)(13)(15)(16)$ $D(37)=(2)(3)(4)(5)(7)(8)(10)(11)(12)(13)(15)(16)$ $D(38)=(1)(3)(4)(6)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(89)=(2)(3)(4)(5)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(50)=(1)(3)(5)(6)(7)(5)(0)(10)(12)(14)(15)(16)$ $D(91)=(2)(3)(5)(6)(7)(8)(9)(10)(11)(14)(15)(16)$ $D(92)=(1)(4)(5)(6)(7)(8)(9)(10)(11)(14)(15)(16)$ $D(93)=(2)(4)(5)(6)(7)(8)(9)(10)(11)(13)(15)(10)$ $D(04)=(1)(4)(5)(6)(7)(8)(9)(10)(12)(13)(15)(16)$ $D(95)=(2)(3)(5)(6)(7)(8)(9)(10)(12)(13)(15)(16)$ $D(96)=(2)(3)(5)(6)(7)(3)(9)(11)(12)(13)(14)(16)$ $D(97)=(1)(4)(5)(6)(7)(8)(9)(11)(12)(13)(14)(16)$ $D(93)=(2)(4)(5)(6)(7)(8)(9)(11)(12)(13)(14)(15)$ $D(99)=(1)(4)(5)(6)(7)(3)(10)(11)(12)(13)(14)(15)$ $\mathrm{L}(100)=(2)(3)(5)(6)(7)(8)(10)(11)(12)(13)(14)(15)$ $D(101)=(1)(3)(5)(6)(7)(5)(10)(11)(12)(13)(14)(16)$ $\mathrm{L}(102)=(1)(2)(\mathrm{C})(3)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(103)=(2)(3)(5)(3)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(104)=(1)(4)(5)(8)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(105)=(2)(4)(5)(7)(5)(10)(11)(12)(13)(14)(15)(16)$ $\Gamma(106)=(1)(4)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(107)=(2)(3)(6)(7)(5)(10)(11)(12)(13)(14)(15)(16)$ $\mathrm{L}(103)=(1)(0)(7)(3)(9)(10)(11)(12)(13)(14)(15)(10)$ $D(109)=(2)(5)(7)(3)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(110)=(3)(4)(5)(6)(7)(3)(3)(10)(11)(13)(14)(10)$ $D(111)=(3)(4)(5)(6)(7)(3)(0)(10)(12)(13)(14)(15)$ $\mathrm{F}(112)=(3)(4)(5)(6)(7)(3)(5)(11)(1 \%)(14)(15)(16)$ $D(113)=(3)(4)(5)(6)(7)(2)(10)(11)(1 i 5)(13)(15)(10)$ $\mathrm{I}(114)=(3)(4)(5)(6)(0)(10)(11)(10)(13)(14)(15)(16)$ $D(115)=(3)(4)(7)(3)(9)(16)(11)(12)(13)(14)(15)(10)$ $D(116)=(3)(5)(G)(3)(0)(16)(11)(12)(13)(14)(15)(16)$ $D(117)=(4)(5)(6)(7)(9)(10)(11)(12)(13)(14)(15)(16)$ $D(113)=(5)(6)(7)(0)(0)(10)(11)(12)(13)(14)(13)(10)$

TABLE IX. 2
${ }^{3} \Sigma_{g}^{-}$Codetors constructed from detors in Table IX. 1.

$$
\begin{aligned}
\psi_{1}= & 2^{-1 / 2}\left(D_{4}-D_{7}\right) \\
\psi_{2}= & 2^{-1 / 2}\left(D_{5}-D_{8}\right) \\
\psi_{3}= & 2^{-1 / 2}\left(D_{11}+D_{12}\right) \\
\psi_{4}= & 2^{-1 / 2}\left(D_{13}+D_{14}\right) \\
\psi_{5}= & 8^{-1 / 2}\left(-D_{16}-D_{17}+D_{19}+D_{20}\right. \\
& \left.\quad+D_{21}+D_{22}-D_{24}-D_{25}\right) \\
\psi_{6}= & 24^{-1 / 2}\left(-2 D_{15}-D_{16}+D_{17} \mp 2 D_{18} \mp D_{19}=D_{20}\right. \\
& \left.-D_{21}+D_{22}+2 D_{23}+D_{24} \div D_{25}-2 D_{26}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\psi_{7}=12^{-1 / 2}\left(-D_{15}+D_{16}-D_{17}+D_{18}-D_{19}+D_{20}\right. \\
\left.+D_{21}-D_{22}+D_{23}-D_{24}+D_{25}-D_{26}\right)
\end{array}
$$

$$
\psi_{8}=2^{-1 / 2}\left(D_{27}+D_{28}\right)
$$

$$
\psi_{9}=2^{-1 / 2}\left(D_{29}+D_{30}\right)
$$

$$
\psi_{10}=12^{-1 / 2}\left(-2 D_{32}-D_{33}+D_{34}+2 D_{35}+D_{36}-D_{37}\right)
$$

$$
\psi_{11}=6^{-1 / 2}\left(-D_{32}+D_{33}-D_{34}+D_{35}-D_{36}+D_{37}\right)
$$

$$
\psi_{12}=12^{-1 / 2}\left(-2 D_{38}-D_{39}+D_{40}+2 D_{41}+D_{42}-D_{43}\right)
$$

$$
\Psi_{13}=6^{-1 / 2}\left(-D_{38}+D_{39}-D_{40}+D_{41}-D_{42}+D_{43}\right)
$$

$$
\psi_{14}=8^{-1 / 2}\left(-D_{45}-D_{46}+D_{48}+D_{49}\right.
$$

$$
\left.+D_{50}+D_{51}-D_{53}-D_{54}\right)
$$

TABLE IX. 2 (continued)

$$
\begin{aligned}
& \psi_{15}=24^{-1 / 2}\left(-2 D_{44}-D_{45}+D_{46}+2 D_{47}+D_{48}-D_{49}\right. \\
& \left.-D_{50}+D_{51}+2 D_{52}+D_{53}-D_{54}-2 D_{55}\right) \\
& \psi_{16}=12^{-1 / 2}\left(-D_{44}+D_{45}-D_{46}+D_{47}-D_{48}+D_{49}\right. \\
& \left.+D_{50}-D_{51}+D_{52}-D_{53}+D_{54}-D_{55}\right) \\
& \psi_{17}=2^{-1 / 2}\left(D_{58}+D_{59}\right) \\
& \psi_{18}=2^{-1 / 2}\left(D_{60}+D_{61}\right) \\
& \psi_{19}=8^{-1 / 2}\left(-D_{65} \ni D_{66}-D_{68}+D_{69}\right. \\
& \left.+D_{70}+D_{71}-D_{73}-D_{74}\right) \\
& \psi_{20}=24^{-1 / 2}\left(-2 D_{64}-D_{65}+D_{66}+2 D_{67}+D_{68}-D_{69}\right. \\
& \left.-D_{70}+D_{71}+2 D_{72}+D_{73}-D_{74}-2 D_{75}\right) \\
& \psi_{21}=12^{-1 / 2}\left(-D_{64}+D_{65}-D_{66}+D_{67}-D_{68}+D_{69}\right. \\
& \left.+D_{70}-D_{71}+D_{72}-D_{73}+D_{74}-D_{75}\right) \\
& \psi_{22}=12^{-1 / 2}\left(-2 D_{76}-D_{77}+D_{78}+2 D_{79}+D_{80}-D_{81}\right) \\
& \psi_{23}=6^{-1 / 2}\left(-D_{76}+D_{77}-D_{78}+D_{79}-D_{80}+D_{81}\right) \\
& \psi_{24}=12^{-1 / 2}\left(-2 D_{82}-D_{83}+D_{84}+2 D_{85}+D_{86}-D_{87}\right) \\
& \psi_{25}=6^{-1 / 2}\left(-D_{82}+D_{83}-D_{84}+D_{85}-D_{86}+D_{87}\right) \\
& \psi_{26}=8^{-1 / 2}\left(-D_{91}-D_{92}+D_{94}+D_{95}\right. \\
& \left.+D_{96}+D_{97}-D_{99}-D_{100}\right)
\end{aligned}
$$

TABLE IX. 2 (continued)

$$
\begin{aligned}
\Psi_{27}= & 24^{-1 / 2}\left(-2 D_{90}-D_{91}+D_{92}+2 D_{93}+D_{94}-D_{95}\right. \\
& \left.-D_{96}+D_{97}+2 D_{98}+D_{99}-D_{100}-2 D_{101}\right) \\
\Psi_{28}= & 12^{-1 / 2}\left(-D_{90}+D_{91}-D_{92}+D_{93}-D_{94}+D_{95}\right. \\
& \left.+D_{96}-D_{97}+D_{98}-D_{99}+D_{100}-D_{101}\right) \\
\Psi_{29}= & 2^{-1 / 2}\left(D_{110}+D_{111}\right) \\
\Psi_{30}= & 2^{-1 / 2}\left(D_{112}+D_{113}\right)
\end{aligned}
$$

$1 \Sigma_{\mathrm{g}}^{+}$Codetors constructed from detors in Table IX. 1.

$$
\begin{aligned}
& \psi_{1}=D_{1} \\
& \psi_{2}=2^{-1 / 2}\left(D_{2}+D_{3}\right) \\
& \psi_{3}=2^{-1}\left(-D_{5}+D_{6}-D_{8}+D_{9}\right) \\
& \psi_{4}=12^{-1 / 2}\left(2 D_{4}-D_{5}-D_{6}+2 D_{7}-D_{8}-D_{9}\right) \\
& \psi_{5}=D_{10} \\
& \psi_{6}=2^{-1 / 2}\left(D_{11}-D_{12}\right) \\
& \psi_{7}=2^{-1 / 2}\left(D_{13}-D_{14}\right) \\
& \psi_{8}=8^{-1 / 2}\left(-D_{16}+D_{17}-D_{19}+D_{20}\right. \\
& \\
& \psi_{9}=2^{-1 / 2}\left(2 D_{15}-D_{16}-D_{17}+2 D_{18}-D_{19}-D_{20}-D_{24}+D_{25}\right) \\
& \psi_{10}=2^{-1 / 2}\left(D_{27}-D_{28}\right)
\end{aligned}
$$

TABLE IX. 2 (continued)

$$
\begin{aligned}
& \psi_{11}=2^{-1 / 2}\left(D_{29}-D_{30}\right) \\
& \Psi_{12}=D_{31} \\
& \psi_{13}=2^{-1}\left(-D_{33}+D_{34}-D_{36}+D_{37}\right) \\
& \psi_{14}=2^{-1}\left(-D_{39}+D_{40}-D_{42}+D_{43}\right) \\
& \Psi_{15}=8^{-1 / 2}\left(-D_{45}+D_{46}-D_{48}+D_{49}\right. \\
& \left.-D_{50}+D_{51}-D_{53}+D_{54}\right) \\
& \Psi_{16}=24^{-1 / 2}\left(2 D_{44}-D_{45}-D_{46}+2 D_{47}-D_{48}-D_{49}\right. \\
& \left.+D_{50}+D_{51}-2 D_{52}+D_{53}+D_{54}-2 D_{55}\right) \\
& \psi_{17}=2^{-1 / 2}\left(D_{56}-D_{57}\right) \\
& \psi_{18}=2^{-1 / 2}\left(\mathrm{D}_{58}-\mathrm{D}_{59}\right) \\
& \psi_{19}=2^{-1 / 2}\left(D_{60}-D_{61}\right) \\
& \psi_{20}=D_{62} \\
& \Psi_{21}=D_{63} \\
& \Psi_{22}=8^{-1 / 2}\left(-D_{65}+D_{66}-D_{68}+D_{69}\right. \\
& \left.-D_{70}+D_{71}-D_{73}+D_{74}\right) \\
& \psi_{23}=24^{-1 / 2}\left(2 D_{64}-D_{65}-D_{66}+2 D_{67}-D_{68}-D_{69}\right. \\
& \left.+D_{70}+D_{71}-2 D_{72}+D_{73}+D_{74}-2 D_{7.5}\right) \\
& \psi_{24}=2^{-1}\left(-D_{77}+D_{78}-D_{80}+D_{81}\right) \\
& \psi_{25}=2^{-1}\left(-D_{83}+D_{84}-D_{86}+D_{87}\right)
\end{aligned}
$$

TABLE IX. 2 (continued)

$$
\begin{aligned}
\Psi_{26}= & 2^{-1 / 2}\left(D_{88}-D_{89}\right) \\
\Psi_{27}= & 8^{-1 / 2}\left(-D_{91}+D_{92}-D_{94}+D_{95}\right. \\
& \left.-D_{96}+D_{97}-D_{99}+D_{100}\right) \\
\Psi_{28}= & 24^{-1 / 2}\left(2 D_{90}-D_{91}-D_{92}+2 D_{93}-D_{94}-D_{95}\right. \\
& \left.+D_{96}+D_{97}-2 D_{98}+D_{99}+D_{100}-2 D_{101}\right) \\
\Psi_{29}= & 2^{-1}\left(-D_{103}+D_{104}-D_{106}+D_{107}\right) \\
\Psi_{30}= & 12^{-1 / 2}\left(2 D_{102}-D_{103}-D_{104}+2 D_{105}-D_{106}-D_{107}\right) \\
\Psi_{31}= & 2^{-1 / 2}\left(D_{108}-D_{109}\right) \\
\Psi_{32}= & 2^{-1 / 2}\left(D_{110}-D_{111}\right) \\
\Psi_{33}= & 2^{-1 / 2}\left(D_{112}-D_{113}\right) \\
\Psi_{34}= & D_{114} \\
\Psi_{35}= & D_{115} \\
\Psi_{36}= & 2^{-1 / 2}\left(D_{116}-D_{117}\right) \\
\Psi_{37}= & D_{118}
\end{aligned}
$$

TABLE IX.3. Δ DETORS.

- 300 -

TABLE IX. 4
${ }^{1} \Delta_{\mathrm{g}}$ Codetors constructed from deters in Table IX.3.

$$
\begin{aligned}
& \psi_{1}=2^{-1 / 2}\left(D_{1}-D_{2}\right) \\
& \psi_{2}=2^{-1 / 2}\left(D_{3}-D_{4}\right) \\
& \Psi_{3}=D_{5} \\
& \Psi_{4}=D_{6} \\
& \Psi_{5}=2^{-1}\left(-D_{8}+D_{9}-D_{11}+D_{12}\right) \\
& \Psi_{6}=12^{-1 / 2}\left(2 D_{7}-D_{8}-D_{9}+2 D_{10}-D_{11}-D_{12}\right) \\
& \psi_{7}=D_{13} \\
& \psi_{8}=D_{14} \\
& \psi_{9}=2^{-1 / 2}\left(D_{15}=D_{16}\right) \\
& \psi_{10}=2^{-1 / 2}\left(D_{17}-D_{18}\right) \\
& \psi_{11}=2^{-1}\left(-D_{20}+D_{21}-D_{23}+D_{24}\right) \\
& \psi_{12}=12^{-1 / 2}\left(2 D_{19}-D_{20}-D_{21}+2 D_{22}-D_{23}-D_{24}\right) \\
& \psi_{13}=D_{25} \\
& \psi_{14}=D_{26} \\
& \psi_{15}=2^{-1}\left(-D_{28}+D_{29}-D_{31}+D_{32}\right) \\
& \psi_{16}=12^{-1 / 2}\left(2 D_{27}-D_{28}-D_{29}+2 D_{30}-D_{31}-D_{32}\right) \\
& \psi_{17}=2^{-1 / 2}\left(D_{33}-D_{34}\right) \\
& \psi_{18}=2^{-1 / 2}\left(D_{35}-D_{36}\right)
\end{aligned}
$$

TABLE IX. 4 (continued)

$$
\begin{aligned}
& \psi_{19}=2^{-1}\left(-D_{38}+D_{39}-D_{41}+D_{42}\right) \\
& \psi_{20}=12^{-1 / 2}\left(2 D_{37}-D_{38}-D_{39}+2 D_{40}-D_{41}-D_{42}\right) \\
& \psi_{21}=D_{43} \\
& \psi_{22}=D_{44}
\end{aligned}
$$

TABLE IX.5. PART 1, Σg SPATIAL ORBITAL CONFIGURATIONS.

TABLE IX.5. PART 2, Δ_{g} SPATIAL ORBITAI CONFIGURATIONS.

							Present ${ }^{1} \Delta_{g}$ g
1	2	2	2	2	2	2	1
2	2	2	2	2	2	2	2
3							
3	2	2	2	2	4	-	3
4	2	2	2	4	2	-	4
5	2	2	1	3	3	1	5,6
6	2	2	-	2	4	2	7
7	2	2	-	4	2	2	8
8	2	1	2	2	4	1	9
9	2	1	2	4	2	1	10
10	2	1	1	3	3	2	11,12
11	2	-	2	2	4	2	13
12	2	-	2	4	2	2	14
13	1	2	2	3	3	1	15,16
14	1	2	1	2	4	2	17
15	1	2	1	4	2	2	$18: ;$
16	1	1	2	3	3	2	19,20
17	-	2	2	2	4	2	21
18	-	2	2	4	2	2	22

REFERENCES

1. M. Born, and J.R. Oppenheimer, Ann. d. Phys. 84, 457 (1927).
2. C.C.J. Roothaan, Phys. Rev. 23, 69 (1951).
3. G.G. Hall, Rep. Progr. Phys. XXII, 1 (1959).
4. H. Eyring, J. Walter, and G. Kimball, "Quantum Chemistry" (Viley, New York 1944)
5. G.G. Hall, Proc. Roy. Soc. A208, 328 (1951).
6. R.K. Nesbet, Advan. Chem. Phys. IX, 321 (1965).
7. A.T. Amos, and G.G. Hall, Proc. Roy. Soc. A263, 483 (1961).
8. P-0. Lowdin, Phys. Rev. 97 1474, 1490, 1509 (1955).
9. A.C. Wainl, J. Chem. Phys. 41, 2600 (1964).
10. W.G. Richards, T.E.H. Walker, and R.K. Hinkley, "A Bibliography of Ab Initio Molecular Wave Functions" (Clarendon Press, Oxford 197\%)
11. R. McWeeny, and B.T. Sutcliffe, "Methods of Molecular Quantum Mechanics" (Academic Press, London 1969).
12. M. Kotani, A. Ameiya, E. Ishiguro, and T. Kimura, "Tables of Molecular Integrals" (Maruzen Co. Ltd., Tokyo 1963).
13. J.H. Wilkinson, "The Algebraic Eigenvalue Problem" (Clarendon Press, Oxford 1965).
14. J.C. Slater, "Quantum Theory of Molecules and Solids", Vol. 1
(McGraw-Hill Book Co. Inc., New York 1963).
15. J. Hinze, and C.C.J. Roothaan, Progr. Theor. Phys. Supplement No. 40, 37 (1967).
16. G. Das, and A.C. Wahl, J. Chem. Phys. 47. 2934 (1967).
17. G. Das, and A.C. Wahl, J. Chem. Phys. 44, 87 (1966).
18. G. Das, and A.C. Wahl, Phys. Rev. Letters, 24, 440 (1970).
19. W. Kolos, and C.C.J. Roothaan, Rev. Mod. Phys. 32, 219 (1960). See also reference 10.
20. H. Shull, J. Chem. Phys. 30, 1405 (1959).
21. H. Shull, J. Am. Soc. 82, 1287 (1960).
22. R.E. Christoffersen, J. Chem. Phys, 41, 960 (1964).
23. W.C. Price, J. Chem. Phys. 15, 614 (1947).
24. J.N. Shoolery, Discussions Faraday Soc. 19, 215 (1955).
25. K.E. Banyard, and H. Shull, J. Chem. Phys. 44, 384 (1966)
26. See reference 20.
27. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
28. P-O. Lowdin, and H. Shull, Phys. Rev. 101, 1730 (1956).
29. F. Ayres, "Matrices" (Schaum Pub. Co., New York 1962).
30. R. MCWeeny, J. Chem. Phys. 19, 1614 (1951); 20, 920 (1952); Acta Crystallogr $546 \overline{3}$ (1952).
31. R.E. Christoffersen, and H. Shull, J. Chem. Phys. 481790 (1968). The author wishes to acknowledge the receipt of a preprint of this paper.
32. R.E. Christoffersen, Private communication; M.E. Schwartz, and L.J. Schaad, J. Chem. Phys. 47, 5325 (1967).
33. J.D. Hopton, and J.W. Linnett, J. Chem. Soc. 1553 (1962).
34. J.O. Hirschfelder, H. Eyring, and N. Rosen, J. Chem. Phys. 4130 (1936).
35. H. Shull, J. Am. Chem. Soc. 86, 469 (1964).
36. K. Ruedenberg, Rev. Mod. Phys. 34, 326 (1962).
37. K.E. Banyard, and A. West, J. Chem. Phys. 54, 437 (1971).
38. S.F. Boys, Proc. Roy. Soc. A200, 542 (1950).
39. M. Hammermesh, "Group Theory and its Applications to Physical Problems" (Pergammon Press, London 1962).
40. J. Todd, "A Survey of Numerical Analysis" (McGraw-Hill Book Co. Inc., New York 1962).
41. F.E. Rarris, "Computational Methods in Quantum Chemistry" (Quantum Chemistry Group, Uppsala University, TXVII, 1967).
42. A. Meckler, J. Chem. Phys. 21, 1750 (1953).
43. M. Kotani, Y. Mizuno, K. Kayama, and E. Ishiguro, J. Phys. Soc. Jap. 12, 707 (1957).
44. F.E. Harris, and H.H. Michels, Intern. J. Quantum Chem. 1S 329 (1967).
45. H.F. Schaefer, and F.E. Harris, J. Chem. Phys. 48, 4946 (1968).
46. E.P. Wigner, and E.E. Witmer, Z. Physik, 51859 (1928).
47. H. Bowlder, R.S. Martin, and J.H. Wilkinson, Num. Math. 11, 293 (1968).
48. R.S. Martin, C. Reinsch, and J.H. Wilkinson, Num. Math. 11, 181 (1968).
49. C.F. Schofield, "FORTRAN V" (ULACS:, 2nd Ed. 1969).
50. I.C.T. Λ tlas 1 Computer. Programming Manual for A.B.L. List CS 348A. (January 1965).
51. "Usage of Atlas Magnetic Tape in the Hartran System" (Atlas Computer Laboratory). This also applies to FORTRAN V.
52. S.F. Boys, Proc. Roy. Soc. A201, 125 (1950).
53. E. Clementi, and E.R. Davis, J. Comp. Phys. 1, 223 (1966).
54. J. Miller, and J.C. Browne, Tech. Report. Molecular Physics Group. Univ. of Texas. Austin 12. Texas. U.S.ム. (January 1962).
55. J.L. Dunham, Phys. Rev. 41, 713, 721 (1932).
56. G. Herzberg, Molecular Spectra and Molecular Structure" Vol. 1. "Spectra of Diatomic Molecules" (D. Van Norstrand Co. Inc., Lond on 1967).
57. L.A. K४nig, J.H.E. Mattauch, and A.H. Wapstra, Nucl. Phys. 31, 18 (1962).
58. C.L. Beckel, and R. Engelke, J. Chem. Phys. 49, 5199 (1968).
59. C.L. Beckel, and J.R. Sattler, J. Mol. Spectry. 20, 153 (1966).
60. F.L. Bauer, Num. Math. 7338 (1965).
61. G.T. Anthony. Private Communication.
62. G. Mackinney, ACM Algorithm 29;' "Polynomial Transformer".
63. A.D. McLean, J. Chem. Phys. 40, 2774 (1964).
64. B.P. Stoicheff, Can. J. Phys. 35, 730 (1957).
65. A.G. Gaydon, "Dissociation Energies of Diatomic Molecules" (Chapman and Hall, London 1968).
66. H.F. Schaefer, and F.E. Harris, Chem. Phys. Letters, 1, 407 (1967).
67. F.E. Harris, J. Chem. Phys. 46, 2769 (1967).
68. R.F. Barron, and R.P. Du Parcq, "Elemental Sulphur" p. 251. (Interscience 1965. Ed. B. Meyen).
69. P. Budininkas, R.K. Edwards, and P.G. Wahlbeck, J. Chem. Phys. 48, 2859 (1968).
70. J. Von Neumann, and E.P. Wigner, Physik Z. 30, 467 (1929).
71. M. Dixon, Unpublished work.
72. W. Kauzmann, "Quantum Chemistry" (Academic Press, New York 1964).
73. E. Clementi, and D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
74. E.R. Cohen, and J.W. Du Mond, Rev. Mod. Phys. 37, 537 (1965).
75. H. Shull, and G.G. Hall, Nature 184, 1559 (1959).

Quantum-Mechanical Study of Some Three-Center Two-Electron Systems. II. A Natural-Orbital, Electron-Population, and Energy Analysis

K. E. Banyard and A. D. Tart
Department of Physics, University of Leicester, Leicester, England

(Received 6 May 1968)

Abstract

Configuration-interaction wavefunctions for a series of pseudomolecular ions of the form $2 \mathrm{ZH} Z^{+2 Z-1}$, where $Z=1.0$ (0.4) 2.2 , were reformulated in terms of natural orbitals. Consequently, changes in the electron density could be investigated, as a function of Z and the bond angle $Z \hat{H} Z$, by means of the population analysis of Mulliken. Contour diagrams were also determined for the charge density evaluated in the plane of the molecule. The total energy for each system was analyzed in terms of the kinetic energy, nuclear attraction energy, and the electron and nuclear repulsion energies. The results are presented graphically as a function of the bond angle θ for each value of Z. For $Z=1.0$, i.e., $\mathrm{H}_{3}{ }^{+}$, the occupation numbers for the natural orbitals revealed the united atom character of this system, and the contour diagrams indicated that, in the equilibrium configuration, the "bonds" were directed from each nucleus towards the centroid of the positive charges. As θ was increased beyond 60°, it was found that the "central" proton within $\mathrm{H}_{3}{ }^{+}$ began to dominate the system. For $Z=2.2$, the ions approach most closely to their separated systems of minimum energy as θ tends to 180°. The contour diagrams and the electron-population analysis also show that the $Z H Z^{+2 Z-}$ ions change from a three-center to, basically, a two-center system and a strongly perturbing proton as the values for Z and θ increase and decrease, respectively. The θ dependence of the kinetic energy is perhaps the most interesting of the energy curves. By associating a decrease in kinetic energy with an increase in spatial freedom for the electrons, it was possible to understand the θ variations of all the energy components for each value of Z. The present examination has allowed us to observe, in detail, changes which occur in the electron density and energy components for a series of three-center two-electron systems when θ and Z are allowed to vary.

I. INTRODUCTION

In recent years considerable effort has been devoted to the study of the $\mathrm{H}_{3}{ }^{+}$ion. ${ }^{1}$ This two-electron system constitutes a simple molecule with electron-deficient bonds. A similar kind of bonding among three attracting centers of charge is thought to exist in diborane in the form of a "bridge" or "banana" bond. ${ }^{2}$ In an effort to obtain some understanding of such bonds, energy changes with respect to noninteger variations of the nuclear charge were studied by extending the calculations for $\mathrm{H}_{3}{ }^{+}$to a series of pseudomolecular ions of the form $Z H Z^{+2 Z-1}$. The results were reported in Part I of the present series. ${ }^{3}$ Several interesting features emerged from these calculations: first, we observed an initial decrease in the optimum value of the bond angle $Z \hat{H} Z$ as the effective nuclear charge Z was increased and, second, it was found that a double minimum occurred in the angular dependence of the molecular energy when $Z \sim 1.8$. Further, when $Z=0$, the calculation predicted a pleasing degree of energy stability for the hydride ion. ${ }^{4}$
In Part I it was tentatively suggested that the behavior of the energy of the $Z H Z^{+2 Z-1}$ ions might be explained by the existence of two variable components
${ }^{1}$ R. E. Christoffersen, J. Chem. Phys. 41, 960 (1964); H. Conroy, ibid. 41, 603 (1964); 41, 1341 (1964); J. R. Hoyland, ibid. 41, 1370 (1964) ; W. A. Lester, Jr., and M. Krauss, ibid. 44, 207 (1966) ; B. D. Joshi, ibid. 44, 3627 (1966).
${ }^{2}$ H. C. Longuet-Higgins, Quart. Rev. (London) 11, 121 (1957).
${ }^{8}$ K. E. Banyard and H. Shull, J. Chem. Phys. 44, 384 (1966).
${ }^{4}$ K. E. Banyard, J. Chem. Phys. 44, 4645 (1966) ; see also ibid. 48, 2121 (1968).
of the electron density. These components were referred to as the "shared" density and the "local" density: the former was associated with the internuclear regions and the latter was situated, primarily, about each of the Z nuclei. Clearly, such an interpretation called for a more detailed investigation.

In the present article the electron density and molecular energy for the $Z H Z^{+2 Z-1}$ ions, when $Z=1.0$ (0.4) 2.2 , are analyzed for various values of the bond angle $Z \hat{H} Z$ ranging from $\theta=30^{\circ}-180^{\circ}$. The wavefunction is reformulated in terms of natural spin orbitals and the occupation numbers are examined as a function of Z and θ. The NSO representation also permits us to perform an electron-population analysis in terms of definitions for "shared" and "local" densities. Contour maps of the total electron density for each $Z H Z^{+2 Z-1}$ configuration were also obtained. For completeness, the molecular energy E is analyzed in terms of its components. Thus, the kinetic energy of the electrons, the electron-nuclear attraction energy, the electron-electron and nuclear-nuclear repulsion energies are presented as a function of θ for each value of Z. By means of the above techniques, it was hoped to obtain insight into the behavior of the charge density within a threecenter electron-deficient system with respect to variations of nuclear charge and bond angle.

II. ANALYSIS OF CALCULATIONS

At this point, it is appropriate to present a brief description of the wavefunction used in Part I. The ground-state wavefunction Φ for the $Z H Z^{+2 Z-1}$ ions,

Table I. Transformation matrices $\left[A_{j k}\right]$ of the natural orbitals χ_{k} for selected $Z: \theta$ values where $\chi_{k}=\sum_{i} \gamma_{j} A_{j k}$.

θ	1.0			1.8			2.2		
60°	0.40793	0.00000	-0.57826	0.57073	0.00000	-0.37010	0.61715	0.00000	-0.28805
	0.40793	0.00000	1.15652	0.16368	0.00000	1.08571	0.09397	0.00000	1.05970
	0.00000	1.00158	0.00000	0.00000	0.84681	0.00000	0.00000	0.80064	0.00000
120°	0.36089	0.00000	-0.81247	0.56556	0.00000	-0.55863	0.64158	0.00000	-0.41616
	0.52425	0.00000	1.28316	0.28160	0.00000	1.12742	0.16143	0.00000	1.08724
	0.00000	0.79834	0.00000	0.00000	0.73263	0.00000	0.00000	0.71904	0.00000
180°	0.32756	0.00000	-0.90220	0.55900	0.00000	-0.59373	0.64306	0.00000	-0.43061
	0.58345	0.00000	1.32320	0.30709	0.00000	1.13264	0.17026	0.00000	1.08948
	0.00000	0.76029	0.00000	0.00000	0.72000	0.00000	0.00000	0.71250	0.00000

where the bond length $Z-H$ was denoted by $R,{ }^{5}$ contained a normalized antisymmetric spin part which could be factorized out of the problem; therefore, the normalized symmetric space part of the wavefunction could be written as

$$
\begin{equation*}
\Psi(1,2)=\sum_{i} a_{i} \phi_{i}(1,2) \tag{1}
\end{equation*}
$$

where the coefficients a_{i} were obtained by solving the appropriate secular equations. Each space configuration $\phi_{i}(1,2)$ was formed from a product of two one-electron symmetry-adapted molecular orbitals constructed from a minimal basis set of three $1 s$ Slater-type atomic orbitals, one centered on each nucleus. ${ }^{6}$ Thus, we have

$$
\begin{align*}
& \phi_{1}(1,2)=2 \gamma_{1}(1) \gamma_{1}(2), \\
& \phi_{2}(1,2)=2 \gamma_{2}(1) \gamma_{2}(2), \\
& \phi_{3}(1,2)=2 \gamma_{3}(1) \gamma_{3}(2), \\
& \phi_{4}(1,2)=\left[\gamma_{1}(1) \gamma_{2}(2)+\gamma_{1}(2) \gamma_{2}(1)\right], \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
& \gamma_{1}(t)=\left[\varphi\left(1 s_{B}\right)+\varphi\left(1 s_{C}\right)\right](t), \\
& \gamma_{2}(t)=\left[\varphi\left(1 s_{A}\right)\right](t), \\
& \gamma_{3}(t)=\left[\varphi\left(1 s_{B}\right)-\varphi\left(1 s_{C}\right)\right](t), \tag{3}
\end{align*}
$$

and $t=1$ or 2 . The $1 s$ orbital exponents were optimized to give minimum energy E for each set of preselected values of Z and θ.

A. Natural Spin Orbitals

Natural spin orbitals are defined ${ }^{7}$ as forming a basis set which diagonalizes the generalized first-order density matrix. Further, if a many-particle wavefunction Φ,

[^5]expressed as a superposition of configurations over some arbitrary basis set, is reformulated in terms of configurations built up from natural spin orbitals, then this natural expansion of Φ is distinguished as the superposition of configurations of most rapid convergence. ${ }^{8}$ For the special case of two-electron systems, Löwdin and Shull ${ }^{7}$ showed that the natural expansion for the space part of the wavefunction could be expressed as
\[

$$
\begin{equation*}
\Psi(1,2)=\sum_{k} c_{k} \chi_{k}\left(\bar{r}_{1}\right) \chi_{k}\left(\bar{r}_{2}\right), \tag{4}
\end{equation*}
$$

\]

where the natural orbitals $\chi_{k}\left(\bar{r}_{k}\right)$ are defined such that the spinless first-order electron density matrix can be written as

$$
\begin{equation*}
\gamma\left(\bar{r}_{1}^{\prime} \mid \bar{r}_{1}\right)=2 \sum_{k} n_{k} \chi_{k}^{*}\left(\bar{r}_{1}^{\prime}\right) \chi_{k}\left(\bar{r}_{1}\right) . \tag{5}
\end{equation*}
$$

The occupation number of the k th natural orbital is given by $n_{k}=c_{k}{ }^{2}$ and satisfies the relation

$$
\begin{equation*}
\sum_{k} n_{k}=1 \tag{6}
\end{equation*}
$$

For the simple basis set ${ }^{9}$ employed in Part I, we obtained natural orbitals of the following form and symmetry

$$
\begin{array}{ll}
\chi_{1}(t)=\left[A_{11}(b+c)+A_{21} a\right](t), & A_{1}, \\
\chi_{2}(t)=\left[A_{32}(b-c)\right](t), & B_{1}, \\
\chi_{3}(t)=\left[A_{13}(b+c)+A_{23} a\right](t), & A_{1} . \tag{7}
\end{array}
$$

The coefficients $A_{j k}$ of the natural orbitals are given in Table I, however, for reasons of space, results are quoted only for selected values of Z and θ. The occupation numbers are given in Table II for all the $Z: \theta$ values.

[^6] expressed in the abbreviated form used in Eq. (7).

Table II. Occupation numbers of the natural orbitals χ_{1}, χ_{2} and χ_{3} for various $Z: \theta$ values.

θ	2			
	1.0	1.4	1.8	2.2
30°	0.99000	0.99527	0.99482	0.99332
	0.00213	0.00366	0.00507	0.00667
	0.00787	0.00107	0.00011	0.00001
40°	0.98845	0.99137	0.98838	0.98271
	0.00347	0.00692	0.01138	0.01725
	0.00808	0.00171	0.00024	0.00004
50°	0.98699	0.98479 a	0.97663 a	0.96106
	0.00521	0.01282	0.02294	0.03887
	0.00780	0.00239	0.00043	0.00007
60°	0.98546	0.97954	0.96050	0.92361
	0.00727	0.01773	0.03888	0.07628
	0.00727	0.00273	0.00062	0.00011
70°	0.98378	0.97199	0.93792	0.87080
	0.00956	0.02503	0.06130	0.12906
	0.00666	0.00298	0.00078	0.00014
80°	0.98208	0.96388	0.91129	0.81185
	0.01194	0.03307	0.08784	0.18801
	0.00598	0.00305	0.00087	0.00014
100°	0.97874	0.94780	0.85754	0.71520
	0.01657	0.04934	0.14158	0.28468
	0.00469	0.00286	0.00088	0.00012
120°				
	0.02045	0.06268	0.18198	0.33810
	0.00366	0.00253	0.00081	0.00010
150°	0.97345	0.92375	0.78601	0.62883
	0.02394	0.07413	0.21327	0.37108
	0.00261	0.00212	0.00072	0.00009
180°				
	0.02483	0.07719	0.22172	0.37887
	0.00223	0.00197	0.00069	0.00008

*The occupation numbers quoted here are for $\theta=52.15^{\circ}$, for $Z=1.4$, and $\theta=50.5^{\circ}$, for $Z=1.8$.

B. Electron-Population Analysis

Electron-population analysis will be particularly useful in the present work since it will permit us to observe changes in the amount of charge associated with different regions of the molecule as Z and θ are varied.

FIG. 1. The total net atomic population for the centers A, B, and C expressed as a function of the bond angle θ. The dotted lines are for center A and the solid lines for centers B or C.

The definitions for overlap and atomic populations have been taken from Mulliken. ${ }^{10}$ Clearly, the usefulness of such quantities would be questionable unless they possessed the property of invariance with respect to any orthogonal transformation of the orbitals from which they arise. ${ }^{11}$ The natural orbitals discussed above possess such a property. Hence, by writing the wavefunction as a natural expansion, we can formulate a population analysis for the electron density.
Inspection of Mulliken's work ${ }^{10}$ revealed that the "local" and "shared" densities suggested in Part I could be likened to the total net atomic population and the total overlap population, respectively. For electron-deficient systems, information concerning the overlap between any pair of centers is also of obvious interest; hence, an examination was made of the subtotal overlap population. These quantities may be formulated as follows: from Eq. (5) the electron density $\rho\left(\bar{r}_{1}\right)$ can be written as

$$
\begin{equation*}
\rho\left(\bar{r}_{1}\right)=\gamma\left(\bar{r}_{1} \mid \bar{r}_{1}\right)=2 \sum_{k=1}^{3} n_{k} \chi_{k}^{2}\left(\bar{r}_{1}\right) \tag{8}
\end{equation*}
$$

Fig. 2. The total net atomic population for the centers A, B, and C expressed as a function of Z for $\theta=30^{\circ}, 60^{\circ}$, and 180°. The dotted lines are for center A and the solid lines for centers B or C.
where

$$
\begin{aligned}
& \chi_{1}^{2}=A_{11}{ }^{2}\left[b^{2}+2 b c+c^{2}\right]+2 A_{11} A_{21}[a b+a c]+A_{21}{ }^{2}\left[a^{2}\right] \\
& \chi_{2}^{2}=A_{32}^{2}\left[b^{2}-2 b c+c^{2}\right]
\end{aligned}
$$

and

$$
\chi_{3}^{2}=A_{13}{ }^{2}\left[b^{2}+2 b c+c^{2}\right]+2 A_{13} A_{23}[a b+a c]+A_{23}\left[a^{2}\right]
$$

Following Mulliken, we integrate Eq. (8) over the appropriate space coordinates and define the total net atomic population $N(A)$, associated with center A, to be

$$
N(A)=2\left[n_{1} A_{21}{ }^{2}+n_{3} A_{23}{ }^{2}\right] ;
$$

similarly, we may write

$$
N(B)=2\left[n_{1} A_{11}{ }^{2}+n_{2} A_{32}{ }^{2}+n_{3} A_{13}{ }^{2}\right] .
$$

From considerations of geometrical symmetry we have $N(B)=N(C)$. The sum of these three terms gives the total atomic population. The subtotal overlap popula-

[^7]tion $S(B C)$ between the centers B and C is defined as
$$
S(B C)=4 S_{b c}\left[n_{1} A_{11}{ }^{2}-n_{2} A_{32}{ }^{2}+n_{3} A_{13}{ }^{2}\right] ;
$$
similarly, we obtain
$$
S(A B)=S(A C)=4 S_{a b}\left[n_{1} A_{11} A_{21}+n_{3} A_{13} A_{23}\right]
$$
where $S_{a b}=S_{a c}$ and $S_{b c}$ are overlap integrals. The total overlap population is obtained by the addition of these three components.
Variations of the total net atomic populations as a function of θ and Z are shown in Figs. 1 and 2, respectively; similar graphs for the subtotal overlap populations are shown in Figs. 3 and 4. For $Z=1.8$, optimized wavefunctions were available ${ }^{3}$ which allowed us to study changes in the θ dependence of $N(A), N(B), S(A B)$, and $S(B C)$, with respect to variations of the bond length R. These results, although not illustrated graphically, will be discussed below.

C. Charge-Density Contours

From Eq. (8) values of the density were obtained in the plane of the molecule for each set of $Z: \theta$. Contours of constant charge density were then determined, see Fig. 5. Each diagram is symmetric with respect to the line $X X^{\prime}$ which bisects the bond angle $B \hat{A} C$. For reasons of space, the contour maps are shown for only three groups of $Z: \theta$ values, namely $\theta=60^{\circ}, 120^{\circ}$, and 180° for $Z=1.0,1.8$, and 2.2. Changes in the contours as θ or Z vary are clearly illustrated. A general feature of all the contour diagrams is shown by tracing the density line of maximum charge, i.e., minimum slope, as we move between centers B and C. This line is such that the density always decreases in magnitude when evaluated at adjacent positional coordinates along its normal. These curves, which are symmetric about $X X^{\prime}$, are shown collectively in Fig. 6. They indicate, specifically, whether or not center A is contained within the density contour of highest value which

Fig. 3. The subtotal overlap population for $A-B, A-C$, and $B-C$ expressed as a function of the bond angle θ for various values of Z. The dotted lines are for $B-C$ and the solid lines for $A-B$ or $A-C$.

Fig. 4. The subtotal overlap population for $A-B, A-C$, and $B-C$ expressed as a function of Z for $\theta=30^{\circ}, 60^{\circ}, 100^{\circ}$, and 180°. The dotted lines are for $A-B$ or $A-C$ and the solid lines for $B-C$.
mutually embraces B and C. In some instances, the line of minimum slope, as we move from B, is seen to divide such that B is joined directly to both A and C. The significance of this situation, indicated in Fig. 6 by dotted curves, will be discussed later.

D. Energy Analysis

In Part I, ${ }^{3}$ Fig. 8 showed the θ dependence of the total molecular energy for $Z=0.8(0.2)$ 2.2. However, for convenience, our results for the energy analysis are presented only for $Z=1.0$ (0.4) 2.2. In Fig. 7, the kinetic energy as function of the band angle θ is shown for different Z values. Similarly, the θ dependence of the electron repulsion energy, the nuclear attraction, and nuclear repulsion energies for various Z is shown in Figs. 8-10, respectively.

III. DISCUSSION OF RESULTS

Inspection of the natural orbitals given in Eq. (7) indicates that χ_{1} and χ_{3} are bonding-type orbitals, whereas χ_{2} possesses a form which is antibonding. Reference to the occupation numbers given in Table II reveals that, for all values of θ, χ_{1} predominates in the natural expansion of the wavefunction when $Z \leq 1.4$. Although a large occupation number for a bonding orbital does not necessarily guarantee the molecular stability of $Z H Z^{+2 Z-1}$ for any choice of Z and θ, it is of interest to note, from Part I, that for $Z<1.3$ the ions are stable with respect to dissociation.

For $Z=1.0$, i.e., $\mathrm{H}_{3}{ }^{+}$, we observe from Table II that n_{1} and n_{3} decrease and n_{2} becomes larger as the bond angle changes from $30^{\circ}-180^{\circ}$. To place these results in perspective we refer to the occupation numbers of the natural orbitals of $a_{1}{ }^{\prime}$ and e^{\prime} symmetry determined by Christoffersen and Shull ${ }^{12}$ for the united atom Li^{+}

[^8]

Fig. 5. Contour diagrams of the electron density in the plane of the molecule for selected values of $Z: \theta$. The diagrams are sym metric about the line $X X^{\prime}$ which bisects the bond angle θ. In (a) the density at D is less than 0.1764 .

Fig. 6. The trace of points, between the centers B and C, with minimum slope in the electron-density surface when evaluated in the plane of the $Z H Z^{+2 Z-1}$ ions for $Z=1.0,1.4,1.8$, and 2.2 , see diagrams a, b, c, and d, respectively. For each value of Z, the trace is shown for various values of the bond angle θ. The center A is located at the origin and center B is indicated by . Each set of diagrams is symmetric about $X X^{\prime}$ which bisects θ.
and the dissociation products $\mathrm{H}+\mathrm{H}+\mathrm{H}^{+}$. For Li^{+}, they quote total occupation numbers of 0.998121 and 0.001223 for the a_{1}^{\prime} - and e^{\prime}-type natural orbitals, respectively. For the dissociation products of $\mathrm{H}_{3}{ }^{+}$, the total occupation numbers for orbitals of $a_{1}{ }^{\prime}$ and e^{\prime} symmetry are 0.666667 and 0.333333 , respectively. When Z is large, the dissociation products of minimum energy will have corresponding natural orbitals with occupation numbers of 0.5 . Thus, the united atom character is seen to feature strongly in the description of $\mathrm{H}_{3}{ }^{+}$for all values of θ. Table II shows that such a conclusion is valid as far as $Z \sim 1.4$. When $Z \geq 1.8$ it is seen that, as θ increases, the occupation number associated with χ_{2} increases greatly at the expense of n_{1}. This would seem to indicate that, when Z and θ are large, the charge density begins to concentrate predominantly around the "outer" nuclei at B and C at the expense of the proton and the internuclear regions. This conclusion is supported by noting that, as Z and θ increase, the occupation numbers for χ_{1} and χ_{2} are each approaching 0.5 . Further support is obtained by inspection of the electron-population analysis, see Figs. 1-4, and the contour diagrams shown in Fig. 5.

Fig. 7. The kinetic energy expressed as a function of the bond angle θ for various values of Z.

The results of the electron-population analysis illustrated in Figs. 1-4 indicate that when the subtotal overlap population between centers B and C is greater than that for $A-B$, the $Z H Z^{+2 Z-1}$ ions may be regarded, essentially, as a two-center system plus a strongly perturbing proton. However, when $S(B C)<S(A B)$ the ion is more ideally regarded as forming a threecenter system. Such an interpretation is strongly supported by the evidence shown in the diagrams of Fig. 6. It is of interest to observe that a "divided" trace of points possessing minimum slope in the density surface as we pass from B to C (see the dashed curves of Fig. 6) occurs only when the bond angle is such that $S(A B) \simeq S(B C)$. Concomitant with this condition is a small depression in the electron-density surface located in the central region of the molecular plane: see, for example, diagram (a) of Fig. 5. The results of Christoffersen and Shull ${ }^{12}$ for $\mathrm{H}_{3}{ }^{+}$did not reveal a similar depression in the density surface ${ }^{13}$; hence, the effect may be due to our minimal basis set.

Fig. 8. The electron repulsion energy expressed as a function of the bond angle θ for various values of Z.

[^9]

Fig. 9. The nuclear attraction energy expressed as a function of the bond angle θ for various values of Z.

For $Z=1.0$, we see from Fig. 1 that, as θ becomes larger, $N(A)$ increases fairly sharply but $N(B)=$ $N(C)$ becomes smaller; correspondingly, the overlap $S(A B)=S(A C)$ shown in Fig. 3 increases but the value of $S(B C)$ falls considerably. This behavior is illustrated in part by the contour diagrams (a), (d), and (g) of Fig. 5. Similar comments hold for $Z=1.4$. However, for $Z=1.8$, we see from Fig. 1 that the total net atomic population increases for each nuclear center as the bond angle is enlarged. The overlap $S(A B)$ also increases with increasing θ, but the magnitude of $S(B C)$ is seen to fall off rapidly. Thus, as θ varies from $30^{\circ}-180^{\circ}$, a value of $Z \geq 1.8$ is capable of causing charge to move from the internuclear region $B-C$ towards the centers B and C, whereas when $Z=1.0$, charge is moved from B and C towards center A.

Figure 4 reveals that, for any fixed bond angle, $S(A B)$ decreases in value as Z is increased, this indicates the diminishing influence of the proton on the system. This conclusion is substantiated by the fact that $N(A)$ tends to zero for all angles as Z becomes large. Figure 4 also shows that when $\theta<100^{\circ}$ then $S(B C)$ increases initially and then decreases as Z becomes larger. This effect is greatest for small angles. For $\theta \geq 100^{\circ}, S(B C)$ shows no initial increase as a function of Z. Hence, as Z is increased for a fixed bond angle, charge is initially drawn away from A into the regions associated with B, C, and $B-C$. A further increase in Z removes charge from the internuclear region $B-C$ and localizes it about B and C as mentioned previously.

For $Z=1.8$, the electron-population analysis was performed for wavefunctions corresponding to $R=1.5$, 1.66 , and 1.8 a.u. For constant θ, as expected, $N(A)$ decreases in value and $N(B)$ increases as R becomes larger, whereas $S(A B)$ and $S(B C)$ each become smaller.

Changes in the above results caused by extending the basis set may be examined most readily by studying $\mathrm{H}_{3}{ }^{+}$, this is made possible by the recent analysis ${ }^{12}$ of
the configuration-interaction wavefunction of Christoffersen ${ }^{1}$ which involved a basis set of 12 STO's. The occupation number of 0.98487 which Christoffersen and Shull ${ }^{12}$ obtained for the first natural orbital χ_{1} differs from our result, see Table II when $Z=1.0$ and $\theta=60^{\circ}$, by only 0.00059 . The virtual independence of the occupation numbers in the natural expansion, with respect to the size and nature of the basis set, has been commented on by Shull. ${ }^{14}$ Due to the large occupation number, the form of χ_{1} for $\mathrm{H}_{3}{ }^{+}$will govern the essential features of the population analysis. Thus, the evaluation of $N(A)$ and $S(A B)$ derived from χ_{1} taken, firstly, from the work of Christoffersen and Shull and, secondly, from Table I for $\mathrm{H}_{3}{ }^{+}\left(\theta=60^{\circ}\right)$ should indicate the general effect of an extended basis set. In both cases the occupation numbers for χ_{1} were renormalized to unity, i.e., each natural expansion was truncated after one term. ${ }^{15}$ For the minimal basis set, $N(A)$ and $S(A B)^{16}$ were found to be 0.33281 and 0.33386 , respectively, while the extended basis set gave values of 0.30113 and 0.36554 . Thus, extending the basis set causes a lowering of the total net atomic population on each center with a corresponding increase of the subtotal overlap populations. Such changes in the electron population analysis are not too surprising since the $1 s$ minimal basis set could only be extended by the inclusion of higher orbitals which, by their more diffuse nature, provide greater overlap. It is anticipated that an extension of the basis set for the remaining $Z H Z^{+2 Z-1}$ ions will have a similar effect, although this should become less marked as Z is increased.

The kinetic energy undergoes an initial decrease for all values of Z, see Fig. 7. The decrease becomes greater as Z is increased. When $Z=1.0$, the kinetic energy becomes constant for $\theta>90^{\circ}$, however, the curve for

Fig. 10. The nuclear repulsion energy expressed as a function of the bond angle θ for various values of Z.

[^10]$Z=2.2$ shows a pronounced minimum when $\theta \sim 60^{\circ}$ and a constant value is attained only when $\theta>140^{\circ}$. Figures $8-10$ show that, for $Z=1.0$, the other energy contributions are virtually constant when $\theta>90^{\circ}$. This lack of angular dependence indicates that, when $\theta>90^{\circ}$, the proton at center A tends to dominate the $\mathrm{H}_{3}{ }^{+}$ system.

As pointed out by Ruedenberg, ${ }^{17}$ a lowering of the kinetic energy may be associated with an increased "smoothness" of the electron-density surface throughout the molecule. It is related in character to the lowering of the kinetic energy of potential-free electrons when the volume containing them is increased. Thus, the kinetic-energy curves shown in Fig. 7 may be interpreted as a measure of the relative freedom of movement of electrons within the ions as θ is increased. For example, when $Z=2.2$ and $\theta=30^{\circ}$, we have seen that the charge density is localized essentially about the $B-C$ region of the ion, hence, the value of the kinetic energy is high. As θ is increased to a value of about 60°, the kinetic energy suffers a decrease, suggesting that the larger value for the $B-C$ separation allows the charge density to become more diffuse. However, for a further increase in θ, the kinetic energy is now seen to increase: this is in keeping with our observations that, for $Z=2.2$, the charge cloud will divide and become more localized about the separate centers B and C as θ approaches 180°. For $Z=1.0$, a similar situation will occur, namely, as B and C separate, the charge cloud will become more diffuse throughout space and the value of the kinetic energy will therefore decrease for an initial increase of θ. However, a continued increase of θ causes the electronic charge to flow towards center A instead of dividing and localizing the charge about each center B and C, as was the case for $Z=2.2$. Thus, for $\mathrm{H}_{3}{ }^{+}$, it is not surprising that the kinetic energy remains virtually constant for $\theta>90^{\circ}$. The curves for $Z=1.4$ and 1.8 shown in Fig. 7 are clearly states of transition between the two cases already discussed. Additional support for the above interpretation is gained by noting that, for each value of Z, the θ dependence of the electron density evaluated at center B (or C) has the same form as the corresponding curve for the kinetic energy shown in Fig. 7.

From Figs. 8-10, we see that the electron repulsion energy, the nuclear attraction, and nuclear repulsion energies each become slightly more θ dependent as Z becomes larger. This is quite reasonable since our previous analysis has shown that, as Z increases, the tendency for the charge to cluster around centers B and C will also increase as θ approaches 180°. Hence, when the division of the charge cloud becomes more effective, the drop in the electron repulsion energy will become greater: see the curves in Fig. 8. For a fixed value of Z, Fig. 9 shows that the nuclear attraction

[^11]energy will increase for an increase in θ, presumably related to the fact that the charge cloud will be influenced less by the combined effect of the nuclei at B and C. The nuclear repulsion curves shown in Fig. 10 are simply dependent on Z and the geometry of the $Z H Z^{+2 Z-1}$ system.

IV. CONCLUSION

The wavefunctions for a series of pseudomolecular ions of the form $Z H Z^{+2 Z-1}$, where $Z=1.0$ (0.4) 2.2, have been reformulated in terms of natural orbitals. Consequently, changes in the one-particle electron density, due to variations of Z and the bond angle $Z \hat{H} Z$, were able to be investigated by means of the population analysis suggested by Mulliken. Contour diagrams were constructed for the charge density when evaluated in the plane of the molecule. In addition, the kinetic energy, the nuclear attraction energy, the electron and nuclear repulsion energies are presented graphically as a function of the bond angle θ for each value of Z.
For $Z \leq 1.4$, the first natural orbital in the natural expansion of the wavefunction was found to have a large occupation number for all values of θ. Such a feature is essential, although no guarantee, for obtaining molecular stability with respect to dissociation; nevertheless, the present results are in accord with the observation made in Part I that the ions are energetically stable for $Z<1.3$.
The occupation numbers of the natural orbitals for $\mathrm{H}_{3}{ }^{+}$were placed in perspective by making a comparison with similar quantities for the united atom Li^{+}and the dissociation products $\mathrm{H}+\mathrm{H}+\mathrm{H}^{+}$. Such a comparison clearly revealed the united atom character of $\mathrm{H}_{3}{ }^{+}$. The contour diagrams also showed that, when $\theta=60^{\circ}$, the "bonds" in $\mathrm{H}_{3}{ }^{+}$were directed from the nuclei towards the centroid of the positive charges. The elaborate wavefunction of Christoffersen, analyzed by Christoffersen and Shull, also revealed this "bonding" arrangement. For fixed bond lengths $B A$ and $C A$, as θ was increased, we found that charge moved from the centers B and C towards A, indicating that the proton at A begins to dominate the $\mathrm{H}_{3}{ }^{+}$system.
When Z is large, the dissociation products of minimum energy have natural orbitals with occupation numbers of 0.5 . This situation is most closely represented when $Z=2.2$ and θ approaches 180°. The contour diagrams and the electron-population analysis show that, at large values of Z, the electron density in the region of center A is small and, as θ increases, charge flows from the internuclear region $B-C$ towards the "outer" nuclei. The diagrams and analysis also show that, as Z increases and θ decreases, the $Z H Z^{+2 Z-1}$ ions change from a three-center system to what is essentially a two-center system plus a strongly perturbing proton.

Of the various components of the energy of the $Z H Z^{+2 Z-1}$ ions, the θ dependence of the kinetic energy is perhaps most striking. As emphasized by Ruedenberg, a decrease in magnitude of the kinetic energy may be associated with an increase in the spatial freedom of the electrons. Such an interpretation assisted not only with our understanding of the kinetic-energy curves but also permitted variations in the remaining energy components to be understood.

The present examination has allowed us to observe, in detail, the changes which occur in the electron density throughout a series of three-center two-electron systems
$Z H Z^{+2 Z-1}$ as the bond angle $Z \hat{H} Z$ and the nuclear charges Z are allowed to vary.

ACKNOWLEDGMENTS

One of us (K. E. B.) wishes to express sincere and grateful thanks to Dr. R. E. Christoffersen for the many helpful and stimulating discussions which took place during the preliminary stages of this work. The authors also express appreciation of C. C. Baker for valuable comments concerning NSO theory. One of us (A. D. T.) wishes to thank Science Research Council for financial support.

The method of Configuration Interaction (CI) has been used in a number of stuaties of small atomic and molecular systems.

In Part I, CI wave functions for a series of pseudomolecular ions $2 \mathrm{H}_{2}^{2 Z-1}$ are reformulated in terms of natural orbitals. Changes in the electron density as a function of the nuclear charge Z and bond angle $2 H Z$ are investigated by means of an electron population analysis based on tine natural orbitals. Contour diagrams of the electron density in the plane of the molecule are obtained. Thetotal energy for each system is analysed in terms of the kinetic energy, nuclear attraction energy, and the electron and nuclear repulsion energies.

In Part II, the CI method is examined in detail. Technigues for obtaining CI wave functions of atoms and molecules are discussed in detail. Computer programs based on these techniques are described, and listed in the Appendices. The Valence Configuration Interaction (VCI) method is also examined as a means of reducing the size of the secular equation, and results of VCI calculations are given for various states of atomic and diatomic oxygen and sulphur. Spectroscopic constants for the $\begin{array}{lll}X^{3} \Sigma_{g^{\prime}}^{-I} & \text { and } \quad b^{1} \Sigma_{g^{\prime}}^{+} & \text {states of } O_{2} \text { and for the } \\ X^{3} \Sigma_{g}^{-I}, a^{1} \Delta_{g} I \text { and } \quad b^{1} \Sigma_{g^{\prime}}^{+} I & \text { states of } S_{2} \text { are given. The methods }\end{array}$ by which these results can be obtained are also discussed. Finally the results of the VCI Calculations are compared with some recent SCF calculations on O_{2} and S_{2}.

[^0]: An
 5x
 +

[^1]: * For $\mathrm{H}_{3}{ }^{+}$with $\theta=60^{\circ}, \mathrm{N}(\mathrm{A})=\mathrm{N}(\mathrm{B})=\mathrm{N}(\mathrm{C})$ and $S(A B)=S(A C)=S(B C)$

[^2]: * FOOTNOTE: setting $m=0$ for all the orbitals is equivalent to suppressing this test (see Appendix VI)

[^3]:

[^4]: 08080
 1，片山ш世山
 응ㅇㅇ TO 0응ㅇ 응ㅇㅇㅇ 응ㅇㅇ隹00．000 $\sum_{3} 00000$
 ONE－ELECTRON HAMILTONIAN MATRix
 00
 $+4+4$
 +4山以心以山品
 NaOO $\cdots 0000$

 以テ
 へ～O

[^5]: ${ }^{5}$ Unless stated otherwise, the bond length $Z-H$ was held fixed throughout this work at a value of 1.66 a.u. All units in the present article are Hartree atomic units, see H. Shull and G. G. Hall, Nature 184, 1559 (1959).
 ${ }^{6}$ The proton was located on center A and the nuclear charges Z were located on centers B and C. The bond angle θ was defined as $B \hat{A} C \equiv Z \hat{H} Z$.
 ${ }^{7}$ P.-O, Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956).

[^6]: ${ }^{8}$ P.-O. Löwdin, Advan. Phys. 5, 1 (1956).

 - The letters a, b, and c represent the appropriate Slater-type orbital located on centers A, B, and C, respectively; thus, the symmetry-adapted molecular orbitals $\gamma_{j}(t)$ of Eq. (3) may be

[^7]: ${ }^{10}$ R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
 ${ }^{11}$ C. W. Scherr, J. Chem. Phys. 23, 569 (1955), see Appendix II.

[^8]: ${ }^{12}$ R. E. Christoffersen and H. Shull, J. Chem. Phys. 48, 1790 (1968). We are very grateful to these authors for the opportunity of reading a preprint of their work.

[^9]: ${ }^{13}$ A private communication from R. E. Christoffersen for which we are grateful.

[^10]: ${ }_{15}^{14}$ H. Shull, J. Chem. Phys. 30, 1405 (1959).
 ${ }^{15}$ Throughout this work, this is the only instance when natural expansions have been truncated.
 ${ }^{16}$ For $\mathrm{H}_{3}{ }^{+}$, with $\theta=60^{\circ}$, we have $N(A)=N(B)=N(C)$ and $S(A B)=S(A C)=S(B C)$.

[^11]: ${ }^{17}$ K. Ruedenberg, Rev. Mod. Phys. 34, 326 (1962).

