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ABSTRACT

The method of Configuration Interaction (CI) has been used in a
number of studies of small atomic and molecular systems.

In Part I, CI wave functions for a series of pseudomolecular ions

L

ZHZ are reformulated in terms of natural orbitals. Changes in the
electron density as a function of the nuclear charge Z and bond angle

ZHZ are investigated by means of an electron population analysis based

on the natural orbitals. Contour diagrams of the electron density in

the plane of the molecule are obtained. Thettal energy for each system
is analysed in terms of the kinetic energy, nuclear attraction energy, and
the electron and nuclear repulsion energies.

In Part II, the CI method is examined in detail. Techniques for
obtaining CI wave functions of atoms and molecules are discussed in detail.
Computer programs based on these techniques are described, and listed in
the Appendices. The Valence Configuration Interaction (VCI) method is
also examined as a means of reducing the size of the secular equation,
and results of VCI calculations are given for various states of atomic
and diatomic oxygen and sulphur. Spectroscopic constants for the
X3 Z;I and b1 ):;I states of O, and for the

X3 Zél ’ a1 AgI and b1 zgl states of ‘S are given. The methods

2
by which these results can be obtained are also discussed. Finally the

results of the VCI calculations are compared with some recent SCF

calculations on O2 and 82.
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CHAPTER 1

METHODS OF SOLVING THE STATIONARY STATE -

SCHRODINGER EQUATION

The mathematical basis of molecular quantum mechanics is the
stationary state Schr8dinger equation: in the BornFOppenheimer( L )
approximation the separation of the electronic and nuclear motions
leads to two equations, one describing the electronic, and the other
describing the nuclear behaviour. For a system of n-electrons moving
in the éoteutial field of a fixed framework of nuclei the stationary

state Schrbdinger equation may be written as
DY Ry Fpreean®y) = B¥(R 1, Tp0ee0nX,) o (101)

In (1.1) b is the Hamiltonian operator, E; is an eigenvalue

of b » interpreted physically as the energy of the stationary state,
and Y is an eigenfunction of h corresponding to the eigenvalue
Eg . The eigenfunction, or vavelfunction, is a function of the space
and spin co—-ordinates of all of the electrons. The space~spin co-
ordinates of electron U are denoted by 3%1 o The Hamiltonian

operator has the form

b:Ehp +”Ev g“v ’ (1.2)

vhere lHu is the one-electron Hamiltonian operator for electron H

h

y o= =1/295 + Y (1.3a)

This operator, consisting of a sum of the kinetic and potential energy
operators for electron . U , has dimensions and is written in terms

of primary or atomic units described in Appendix I. The second summation
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in (1.2) is the electrostatic repulsion of all pairs of the electrons

By VYV

Euv = 1/Ihy (1.3b)

and guv is the distance between electron M and electron V .

An operator representing the electrostatic repulsion between the nuclei
is sometimes included in (1.2). When this operator is omitted Eg
is the electronic energy and when it is present EE repregents the

total energy for the state, EE is given by

e - whiw (1.4)

E- <Kyiw *

The operators h s h u and g‘w are Hermitiane

Although it is not possible to obtain an exact solution of the
stationary state Schrdinger equation for systems of more than one-
electron and two nuclei, it is possible to obtain approximate solutions
which yield good energies when compared with experimental values, and
which may be used to calculate molecular properties. This thesis deals
with one of the methods of solving (1.1); the method of Configuration
Interaction (CI). In the first part, the CI wave functions for a series
of three-centre two-electron pseudamole;ular ions are analysed in terms
of natural spin orbitals. An electron population analysis is developed
in terms of the natural spin otbitals and variations of the results of
this analysis are coupled with ;; ;ﬁalysis of the various components
of the total energy, in an attempt to explain the unusual behaviour of
these systems. In the second parf the CI method is discussed in detail
and it is applied to homonuclear diatomic molecules. Computer programs,
developed for the purpose of obtaining CI wave functions, spectroscopic

constants and various properties, are described, and results obtained
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for the molecules 02 and 82 are presented. Wherever possible
these results are given in the form of facsimiles of the computer output
in order to remove the possibility of errors arising during transcription.
In this introductory chapter some of the current non-empirical
methods for obtaining solutions of (1.1) are briefly reviewed. The most
popular approach is that of molecular orbitals; the basis of which is
the determination of approximate electronic wave functions for a molecule
by assigning each electron to a one-electron wave function, which in
general extends over the whole molecule and has symmetry properties
corresponding to the nuclear framework of the molecule. One-electron
wave functions which do not depend on the spin co-ordinate 8“ of
electron g will be denoted by 501 (;‘1) » where ;ﬂ represents
the spatial co-ordinates and 1 identifies the one-electron wave
function or orbital. One-electron wave functions which are dependent
on the spin co-ordinates are denoted by 1/’1 (E“) » these are
called spin-orbitals. The symbols 501(“‘) and 'l’i(ﬂ) may also
be used for indicating orbitals and spin-orbitals wheré there is no
possibility of ambiquity. The spin-orbitals may be written as a product
of an orbital and a spin function @i(su) o There are only two |
linearly independent spin functions which are desi@td ¢ and P .

Each orbital can be used to construct two spin-orbitals

Vo1-1 = P ’
(1.5)
Yoy =P .

Thus spin-orbitals with odd valued identifiers are associated with an
¢ spin, and those with even valued identifiers with a P spin. It
is well known (2) that if the set of orbitals {‘Pi} is subject to

.. ]
a unitary transformation, then the resulting set {"P 1] represents



-4 -

the same phy;ical situation. It is often convenient to chose the set

[Yi} to be an orthonormal one,

[l wan, = 5, (1.6)
hence

AT A LE S (1.6b)
where  dr, is the one-electron volume element without spin, dx,

the one-electron volume element with spin, and 151 j is the Kr®necker
delta. The n-electron wave function Y is then written as a linear
combination of antisymmetrized products of spin-orbitals. The Pauli
principle states that a spin-orbital may be occupied by only one electron,
hence each orbital may be occupied by two electrons and the anti-
symmetrized product, usually written in the form of a determinant DK’

satisfies this principle. Thus

Uiy (D (1) on ¥y (1)
D = @) V2| ¥ (@¥,(2) .. ¥ 2]

L [ * L] [ 4 L L ]

WM (n)#sz(n) oo kan(n)

Y =“§ Dgbpy . (1.7)

The coefficients bypy in (1.7) are determined by a variation method
which minimizes | E; ¢ The subscript I is included in (1+7) because
it is possible to construct more than one solution to (1.1) from a given
set of determinants.

A reasonable approximation to a molecular orbital is a linear

combination of atomic orbitals (LCAO) which are associated vith the atoms



constituting the molecule:

goi = E““kcki , (1.8)

where wk is a normalized atomic orbital. Hall (3) gives a list of
the possible forms of Wy + The coefficients €, 4 are chosen so
that the 901 are at least normalized. Further restrictions may demand
that (1.6a) is satisfied and that Ep is a minimum.

Before discussing methods of determining the coefficients be
in (1.7) and Cpy in (1.8), it is necessary to examine the roles of
electron spin and molecular symmetry. When spin-orbit effects are
ignored the approximate or trial wave function must be an eigenfunction
of the total spin operator 9 2 s and the operator gz associated with
the Z ~component of the total electron spin. The eigenvalue of 52'

is S(5 4+ 1) and that of 55 is SZ (vhen both are in primary units):

82y = s(s + 1)¥Y
8,¥=15,Y¥ .

A single determinant is an eigenfunction of Bz with an eigenvalue of
Sz = 2"1 (n, - nﬂ) .(4) vhere n, is the number of spin-orbitals

of ¢ spin and 'ng the number with B spin.

8,0 = 271 (n, - ng)Dy . (1.9)

A single determinant is rarely an eigenfunction of 52 » but this is
achieved when S = Sz' However, it is possible to construct linear
combinations of determinants which are eigenfunctions of 52 o« Each

determinant in such a linear combination corresponds to the same



eigenvalue of ﬁ% o Thus, if

Yo =Lty (1.10)

§7¥, = S(s + )Y,

then it is possible to write the trial wave function as a linear

combination of the functions 4&‘ :

\P = E:PIJaLI ° (1011)

In (1.11), as in (1.7), there are several sets of the coefficients
{aLI} which will give an acceptable ¥

If the nuclei of the molecule are assumed to be fixed, i.e. the
molecule is rigid, it is possible to assign the molecule to a specific
symmetry group, and the wave function must be a basis for an irreducible
representation of the symmetry group to which the molecule belongs. This
requirement is most easily satisfied if the molecular orbitals (1.8) are
themselves bases for the irreducible representations of the molecular
symmetry group. Thus, the tPL in (1.10) are also required to be
eigenfunctions of the operators of the molecular symmetry groupe.

The simplest non-empirica; form of trial wave function is a single

determinant. This leads to the Hartree-Fock-Roothaan (HFR) self consistant
field method ¢ 277 ) and the Unrestricted Hartree-Fock (UHF) method. The
former assumes that the determinant is constructed from a set of doubly

occupied molecular orbitals(2 '> ) and the energy is minimized with respect

to the coefficients determining the molecular orbitals of (1.8). It is



a condition of the method that the resulting orbitals are orthonormal.
The HFR method suffers from several disadvantages. Two important ones
are that it is not always possible to represent a molecular spin state
by a single determinant, and the method makes no allowance for correlation
between electrons with different spins: the wave function does not
vanish as the antisymmetry requirement implies when electrons of different
spin have the same spatial co—ordinates( 6 ). The UHF method is an
attempt to overcome the shortcomings of the HFR method, whilst maintaining
some of its simplicity (7 ). In the UHF theory the spatial orbitals
associated with the & spins are different from those associated with

P spins. A determinant of such orbitals is no longer an eigenfunction
of 5? » and it is necessary to operate on the determinant with a
projection operator( 74 8) to obtain the required spin eigenfunction.
The energy is then minimized with respect to the orbitals. The basis of
both methods and their derivatives (6) is an iterative or self consistant
field (SCF) procedure (2,5 ), in which a trial set of orbitals is used
to obtain a better set; the process is terminated when the energies
obtained using two successive sets of orbitals differs by an acceptably
small amount. The problem with the SCF method is that the convergence
of the iterative process cannot be guaranteed. Occasionally the HFR
method predicts, as iq the case of the fluorine molecule Fa( 9), that the
molecule is unstable relative to dissociation, contrary to experiment.
Degpite these drawbacks many of the most successful calculations of
molecular structure have been based on the single determinant approach( 10,2

The logical progression from the single determinant trial wave

function is to use a linear combination of determinants groupéd together-g;;
as in (1.10). This is the basis of the CI method. Unfortunately, there
is a great deal of ambiguity attached to the word ‘configuration'; its

usage is reviewed by McWeeny and Sutcliffe (11). If the vave function is

written as a sum of determinants (1.7), then each term is defined by



specifying a *'configuration of occupied spin-orbitals', which is then
antisymmetrized to form a determinant. Alternatively if (1.11) is used,
each term is defined by specifying a 'configuration of occupied (spatial)
orbitals?; oi‘ten referred to as a 'primative function'. This is then
multiplied by a total spin eigenfunction (12) and the whole may then be
antisymmetrizéd. The unknown coefficients in the expansion of the trial
wvave function are determined by the requirement that the energy should

be a minimume The number of terms in the summation of (1.11) is much
reduced by the fact that functions (1.10), belonging to different
irreducible representations, are orthogonal; as are those corresponding

to different eigenfunctions of 52 and ﬁz e Thus, for a given

symmetry it is only necessary to include terms in the expansion which
belong to the same irreducible representation and correspond to the same
eigenvalues of 52 and Sz e It must be emphasized that in the CI
method it is the expansion coefficients bKI of (1 .7) or aLI of
(1.11) and not the ¢, of (1.8) that are varied to minimize the energy.
The CI method is straightforward. Differentiation of the expression which
results from substituting (1.11) in (1.4) with respect to the apy leads
to a set of simultaneous linear equations which are equal to zero if E

E
is a minimum. These equations are conveniently written in matrix form as

(E-ES)A=0 (1.12)

The elements of the real symmetric matrices H and 8 are

Hpy = <Y 1D, (1.13a)

SIJ awIWJ) . (1.13b)



A is a column vector with elements ary The matrix equation,

called the secular equation, represents a pseudo-eigenvalue problem,
which may be solved by well known methods (13). The solution of (1.12)
produces several values of E, each an eigenvalue, or characteristic root,
of H and its associated eigenvector A. Each value of E, and its
corresponding eigenvector, represents a different energy level of a
particular symmetry and spin state. The actual number of levels is equal
to the number of eigenvalues of H, hence it is equal to the number of
terms in (1.11).

While the CI method does attempt to include an allowance for electron
correlation (14), it has disadvantages concerning the size of the
expansion (1.11). and the slow rate of convergence, since many terms are
required to pfoduce a good energy. The matrix elements HIJ and .

Spy may be obtained by calculating <Dl PiD>  am <D IDp>
first, and then transforming into Hy; and Syg by use of (1.10)¢ The
calculation of Hyy and Sy; 1is simplified if the determinants are

constructed from an orthonormal set of molecular orbitals, when the matrix

S becomes the identity matrix:

Sty = GI_J: .

In this case it is also possible to obtain the H 's directly from

IJ
integrals over the basis set of molecular orbitals using the formalism

of Xotani et alia (12 ).
The extension of the SCF and CI methods leads to a combination ca1led
the milti-configuration SCF (MC-SCF) method ('), Wnile this approach

(10, 1§f 174 18) the problem of

v ) - -

has produced some interesting results,

the non-convergence of the SCF process still lacks a satisfactory solution.



PART I
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CHAPTER 2

INTRODUCTION - A THREE-CENTRE TWO-ELECTRON PROBLEM

Many of the studies of electron bonds in molecules and molecular
ions have concentrated on the "normal" two-electron bond, the prototype
of which is the 32 molecules The very detailed computational studies
of Kolos(19) are examples of the considerable attention that this
molecule has received. The subsequent analysis of this type of
calculation by Shullepfm) has resulted in a considerable increase in
our understanding of the nature of the_tvo—electron bond.

It is significant that, until recently(1o ), another type of
chemical bond has received little or no attention from the theoreticianse
This is the electron-deficient bond! the prototype of which is the
hydrogen molecular ion (Ha+), consisting of three protons which are
bound together by two electronse. A very detailed study of this system
by Christoffersen(az) provided information about its structure and about
the electron distribution within the bonds. More complex examples of
electron-deficient bonds are to be found in the boron hydrides, in

certain aluminium and beryllium hydrides, and in the trihalogens BFS’

BCla. and BBr

3.
One of the smaller boron hydrides is diborane: (BZHG)° For many
years the structure of diborane was thought to be the same as that of

ethane (0286) shown in Fige 1e The C-H bonds of this molecule have

H H

FIG. 1. ETHANE C, Hg
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the normal two-electron character and there is a three-fold axis of
symmetry along a line joining the two carbon atoms. Careful analysis

of the rotation-vibration spectrum of BZHG by Price(23) showed that it
has a two-fold axis of symmetry about a line joining the two boron atoms-.

-\

(the structure is shown in Fige 2)e The terminal BH, groups are

2
coplanar and the central hydrogen atoms lie symmetrically above and

FIG. 2. DIBORANE BZHG

below this plane. These hydrogen atoms form "bridge structures™ with
the two BH2 groups, and the bridge structures are characterized by
their electron deficiency, since in the case of diborane only four
electrons constitute the four B-H bonds(24).

Theoretical calculations of the structure and properties of molecules
are relatively complex and the difficulties involved increase rapidly as
the number of electrons and nuclei increase. It seems reasonable that a
study of electron-deficient bonds should begin with a study of a
relatively small molecular systéﬁ. Ha+ is thé'obvious molecular system
to begin wvith, but is not sufficiently typical to provide much information
about the electron-deficient bonds of diborane. However, its structure

is an equilateral triangle(zz) of side 1.66 bohr(za); a geometry very
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similar to that of one of the BHB bridge structures in diborane. This

apparent similarity led to the proposal, by Banyard and Shull(zs), of

the zuz2%™ pseudomolecular ion as a model for the study of a bridge

bond as found in ByH e The model (shown in Fige 3.) consisted of an

isoceles triangle BAC with a proton at A, and two nuclei B and C which

FIG. 3. THE PSEUDO MOLECULAR ION zHzZ%™!

had equal but variable nuclear charges Z; two electrons wvere aé.sociated
with this nuclear framework. The bond length R, (= RAG) was fixed at
the equilibrium bond length of H," so that vhen Z = 1.0 the zuz2%1

system became H3+ and comparisons with other calculations on this
molecular ion were then possible., The variable nuclear charge provided
some allowance for the nuclear shielding caused by the presence of other
electrons which were otherwise unaccounted for in the calculation.

The variation of the molecular energy of the pa: vl ions, as a
function of the variable nuclear charges and bond angle ( © in Pig. 3.),
vas studied for Z in the range 0.8 € Z € 2,2 and © in the range
30° € © < 180°% in addition, for Z = 1.8 the variation of energy,
as a function of bond angle and bond length (RA'B in Fige 3.), was computed.

The angle BHB in the hridge structure of diborane is about 80° and it
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might reasonably be expected that as the nuclear charge Z is increased
in the znz2%™ model, the optimum bond angle, that is the angle
corresponding to the minimum molecular energy, would increase from the

60° of H,*. However the computed results exhibit an initial decrease

3.
in the optimum bond angles At Z = 1.8 a double minimum is observed and
for Z > 1.8 the optimum bond angle is 180° and the system is linear.
These results invited further investigation as it was felt that although

the unusual behaviour of the ZHZ2Z

systems prevented them from being
regarded as a representative fragment of Baﬂs. a study of the quantum
mechanical behaviour of such systems might nevertheless shed some light
on the nature of electron-deficient bonds.

In order to understand and interpret the results for z8z°%1 it is
necessary to examine them in detail and, where possible, to give a firm
mathematical basis to tentative suggestions concerning the nature of the
electron distribution in the ions. This is true for the suggested
existence of two components of the electrqn density. The natural spin
orbital (NSO) analysis of vadin(8 ) provides an excellent means of
examining these results, particularly as Shull( 26) has shown that the
results of such an analysis are not greatly affected by the method of
calculation of the original wave function nor by the size of the bagis
set (this second point is illustrated in Chapter 4). By using'an
electron population analysis similar to that of Mull;ken( 27), but based
on the natural spin orbital analysis. it has been possible to define the
“ghared" and "local"™ density components used in the tentative explanation
of the behaviour of the ZH22Z.1 igns(ZS). A detailed analysis of the
various components of the molecular energy of the ions is also included
in this thesis and possible relations between variations in these
components and the results of the population analysis are diﬁcussed.

Thus an attempt has been made to examine nearly all of the aspects of the
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behaviour of the ZHZ2Z2'

pseudomolecular ions and to provide a detailed
account of the electron distribution in these ions. Finally, comparisons

between the results presented here are made with those of other authors.
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CHAPTER 3

WAVE FUNCTIONS AND ENERGIES

The wave functions and energies of the 21z 21 pseudomolecular ions

examined here were obtained by the configuration interaction (CI) method.
The object of the CI method is to provide an approximation to the solution
of the Schr¥dinger equation for the three—centre two-electron system under
considerationes Ignoring relativistic effects, and working within the

Born-Oppenheimer approximation( 1) yields the Hamiltonian (in atomic

units)
1 2 52 1 2 2 1
h=-5LVi- F(—+2=+E) 4
t=1 t=1 TAt Bt Ct T12
/ . 2
Z z Z
+ + + . (3.1)
Rap o Rac o Rae

The first term in (3.1), is the kinetic energy operator and the others
represent the electron-nuclear attraction, the electron-electron and
nuclear-nuclear repulsion terms respectively.

The approximate total wave function for the k-th energy s_tate of

the system is expressed as

Y(x,,%,) =LY (%,,%,) , - (3.2)
1

where the { cil are coefficients to be determined and the {‘Vil

are linearly independent determinantal wave functionse. The energy E,
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of this state, is defined by

. <tiblv>

- . 3.3
<YIY> (3-3)

Application of the variation method, which demands that

(H - ES)C = O, (3.4)

where ): 4 and g are matrices with elements:

=<V >
Hy 5 W l)wj
and
S.. =< VY.I¥.>
1J 1 J
respectively, and C is a column vector with elements {Gi} e Once
the forms of the two-electron configurations {Wi} are specified,

the total electronic energy and corresponding wave function may be
obtained by the solution of the pseudo-eigenvalue problem of (3.4).
(A detailed account of the CI method is given in part 2.)

With two-electron systems, such as ZHZZZ-",' it is possible to
factorize the configuration Wi into a spatial part and a spin parte
The spin factor, which is antisymmetric, because the ground state is a

singlet, can be integrated out of the problem; thus:

¥i(%,%,) = 5-(a(s,)B(sy) - alsy)Bsg )P, (F4,F,),
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8o that we may write

5) (3.5)

¢ - — _ -— —-—
> (Ty,7,) = §0i¢i(r1’r
Y and & are both normalized to unity. The functions {&.}
are formed from linear combinations of products of symmetry-adapted
molecular orbitals which are constructed from a basis set of Slater-type

atomic orbitalse The normalized form of these orbitals is

2n+171/2
pntm =[G exp (s, 0,80,

where { is a variational parameter and § 1m € @ » g )isa
normalized surface harmonice.

In order to examine the ZHZzz-1 ions the basis set was limited to
three 1s functions, one on each nucleus with the designations 1sA, 1sB,
and 1sc respectively, Inspection of the Hamiltonian shows it to be

invariant under the symmetry-operations of the point group sz.
consequently it is possible to generate three symmetry-adapted molecular

orbitals from the limited basis set:

¢, (t) = 1s5(t) + 1s4(t) Ay
$,(t) = 15,(t) | "’A}’ (3.6)
b5 (t) = 1s5(t) - 1s5(t) . B,

1 2

where t = r, or r.e The irreducible representation to which each of the
¢i (t) belongs is shown to the right of (3.6)s From a similarity

with H; only those configurations which transform according to the A1
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irreducible representation of C2V’ will contribute to the ground state

wvave function and energy of ZHZZZ-1. The fully symmetry-adapted space

configurations are:

d)1 (;1 ’?2) = 2¢1 (;1 )d>1 (;2)
b (T,,T,) = 26,(F)5(T,)

Thus each of the calculations on the lelzaz-1

ions may be regarded as a
complete CI treatment within the limited bagsis set. The symmetry of
the system requires that the orbital exponents IB and ZC of the
atomic orbitals 1sy and 1s, are equale The orbital exponents were
optimized to give a minimum value to the electronic energy, E, for
each of a pre-selected set of values of O , Z and the internuclear
distance Z-H.

Energies and wave functions were obtained for Z = 0.8 (0.2) 2.2
for various values of O in the range 30° € 6 < 180°% For most
values of Z the bond length R (= RAB) vas taken as 1.66 bohr. This was
the optimum bond length obtained by Christoffersen’??) for the grownd
state of 33+. consequently it was possible to compare the analysis of
the results of the H; calculation obtained when Z = 1,0, with his
results and so some knowledge of the effect of increasing the size of
the basis set was obtaineds For the case of Z = 1.8 two additional

values of R vere used and, consequently an indication of the dependence

on the bond length of the observed effects was obtained,
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Preliminary results of the natural spin orbital analysis indicated
that a large volume of results would be obtained, and that a corres-
pondingly large amount of computing time would be required if each of
the systems and geometries available were to be studied in detaile. The
natural spin orbital analysis, the concomitant electron population and
energy analysis were restricted to the systems for which Z = 1.0 (0.4) 2.2
for all bond angles. But the two additional values of R for Z = 1.8 were
includeds Details of wave functions, orbital exponents, and energies for
all of the geometries of the systems examined are presented in Tables

Tel=1060
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,'/&1C FUIICTICN COCFFICIZITTS, GUDIT/il. IJXPONiilfTS, AliD
AKJXGIJS FOR Z=1.00A.U., R=1 .GCDGIIR.
cl c2 c3 c4 Ig ONOilGY
.0803G 0.00119 -0.04919 0.18247 1 .'1190 1.5760 -1.138G5
.07034 0.00C51 m0.04413 0.19381 1.4130 1.5070 -1.25386
.07331 0.01089 -0.04280 0.21172 1.40J0 1.4470 -1.23044
.03334 0.02553 ¢0.04278 0.22223 1.4000 1.4000 -1.29786
.0G417 0.03439 -C.04317 0,23095 1.3370 1.3670 -1.29417
.03334 0.04472 +0.0437G 0.23781 1.3710 1 .3430 -1.23670
.05181 {.0G40G +0.04489 0.24GG5 1 .3370 1.3200 -1.27099
.04433 0.03595 m0.04557 0.24993 1.3000 1.3205 -1.25927
.03057 0.11363 ¢0.04579 0.24774 1.2560 1.3420 -1.24996
.03371 0.12658 ¢0.04555 0.24485 1.2370 1.3590 -1.24746
T/J3LE 1.2. VrkAVG ITJTICTION CU2FFICI4HT3, ORBITAL BXPCNOIfrS, /ilD
2N2RGI3S FCR Z=1.40A.U., R=1 .GGBCLiR.
cl c2 03 c4 t Lg LN2RGY
.12012 -0.00602 -0.04750 0.09145 1.6650 1.9265 -1.53073
.12510 0.00421 -0.04339 0.11781 1.6370 1.3150 -1.67650
.121GY 0.00004 -0.05227 0.14604 1.6040 1.7130 -1.70761
.11643 0.0041G W0.05509 0.16253 1.5300 1 .6710 -1.70217
.11372 0.01063 -0.05369 0.18079 1.5500 1.6360 -1,63797
.10882 ©.C17GG -0.06213 0.19513 1.5220 1.6120 -1.67323
.09939 0.03291 <« .06788 0.21525 1.4730 1.5970 -1.65113
.09113 0.04755 -0.07165 0.22650 1.4300 1.6030 -1.63917
.03233  0.06439 ¢0.07423 0.23357 1.3560 1.6230 -1.63239
.07996 0.07099 m0.07481 0.23517 1.3700 1.6340 -1.63109
1.3. WAVE FUIICTION COEFFICIENTS, ORBIT/J. EXPQiENTS, AND
ENERGIES FOR Z=1.30A.U., R=1.66BGHR.
cl c2 c3 c4 1g ENERGY
.14907 -0.00329 -0.04412 C.04021 1.9380 2.2350 -1.97917
.15437 -0.30370 -0.05123 0.05976 1.8720 2.1230 -2,16339
.15775 -0.00316 -0.06102 0.03136 1.3080 2.0120 -2.19412
.15791 -0.00154 -0.07070 0.1C155 1.7540 1.9530 -2.13557
.15623 0.00119 -0.08101 0.11957 1.7030 1.9130 -2.17196
.15333 0.00462 -0,09060 0.13403 1.6660 1.9020 -2.16270
.14644 0.01174 -0.10553 0.15213 1.5930 1.8990 -2.15953
.14015 0.01731 -0.11449 0.1G184 1.5530 1.9030 -2.166GS
.13474 0.02311 -0.12052 0.16766 1.5250 1.9190 -2.17318
.13313 0.02463 -0.12205 0.16909 1.5160 1.9220 -2.18253

150,

00

Oo0OO0Oo0OomMONoo



10

4U.

50

70

1cC.
100.
120.
.00

150

1GU.

T/iBLE

60.
40.
50.
60.
70.
30.
100.

120

150.
130.

.00

o
(=]

.00
.00
.00

00
00
00

00

00
00
00
00
00
00
00

.00

00
00

TABI®

30.

40

50.
60.
70.

80

100.
120.
150.
130.

00
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1.4.

) é Noocoooo

1.5.

CoOoOO0OO0OOOOOOO

1.6. V/AVE FUNCTION COEFFICIENTS,
ENERGIES FOR Z=1.30A.U.,

O O0OO0OO0OO0OO0OO0OO0OOO

Cl

.15363
.16039
.16490
.16532
.16456
.16161
.15454
.14903
.14431
.14249

c2

-0.00263
-0.00303
-0.00256
-0.00099

0.00143
.00431
.01046
.01476
.01354
.01965

O OO oo

C3

.04633
.05570
.06746
.03039
.09317
.10450
.12051
.12387
.13335
.13461

R=1.80BONR.

c4
0.03572 1.9200
0.05491 1.3495
0.07593 1.7340
0.09599 1.7270
0.11270 1.6780
0.12546 1.6340
0.14022 1.5700
0.14674 1.5330
0,15143 1.5040
0.15237 1,4950

2.2340
2.0790
1.9340
1,9310
1.9050
1.8975
1.9045
1,9150
1,9280
1,9030

EN

-2.
-2.
-2.
-2.
-2.
-2
-2.
_2,
_2,
-2.

T.Vi\E I'UIICTICiN COEFFICIENTS, CUBITAL EXPCNiENTS, /4ID
EN FIGIE3 FOR 2=2.20A .U., R=1 .GGBOilR.

Cl c4 Ig ENERGY

.1G201 -0.00144 -0.04323 0.01769 2.2300 2.6360 -2.33633
.17235 .0.00201 -0.05450 0.02964 2.1040 2.4360 -2.66701
.17541 -0.00:17 -0.57033 0.04441 1.9390 2.3350 -2.73352
.1'9/1M -0.00163 -0.03352 0.05356 1.3960 2.2675 -2.76461
.13205 -0.00057 -0 .10666 0.07100 1.3220 2.2430 -2.73350
.17053 0.00034 -0.12211 0.07901 1.7570 2.2410 -2.81345
.171cC 0.00330 -0.14153 0.03630 1.7030 2.2430 -2.83367
.16G57 0.00475 -0.15032 0.08373 1.6790 2.2540 -2,93646
.10304 -0.00572 0.15515 0.09014 1.6650 2.2530 -2,93333
.10205 «0.00539 0.15624 -0.09058 1.6600 2.2590 -2,99775

'"7AE I'UNCTICN COEFFICIENTS, ORBITilL EJIPGNENTS, AIW
ENERGIES FGR Z=1.SOA.U., R=1.50BGHR.

Cl c2 C3 c4 ENERGY

.14344 -C.00417 -0.04174 0.04641 1.9575 2.3580 -1.75737
.14750 -0.00463 -0.04694 0.06499 1.8970 2.1730 +2.03216
.14596 -0.00408 -0.05363 0.03602 1.3410 2.0640 -2.10439
.14316 -0 .00229 -0.06112 0.10660 1 .7330 1.9890 2.11452
.14530 0.00060 -0.06377 0.12532 1 .7420 1.5440 +2.10737
.14353 0.00437 -0.07616 0.14073 1 .7030 1.9160 -2.09961
.13487 0.01277 -0.03551 0.16246 1.6340 1.5950 +2.05139
.12524 0.02046 -0.09700 0.17467 1.5900 1.9000 «2.09423
.12203 0.02732 -0.10351 0.13242 1 .5550 1.9030 .2.10221
.12012 -0.03019 0.10529 -0.13437 1.5440 1.9110 +2.10570

ORBITVAB EXPONENTS, AND

ERGY

12196
24476
24912
23061
21513

.20783

21076
22194
23543
24018
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CHAPTER 4

ANALYSIS OF SYSTEMS

One of the difficulties encountered in the interpretation of a
CI wave function arises from the arbitrary nature of the basis set, .
For the system under examination it was decided to comstruct the
configurations from a set of symmetry-adapted molecular orbitalse
Equally, it would have been feasible to orthonormalize this set, or
merely to have used the atomic orbitals from which the molecular
orbitals were ;onstructed. In each case the energies obtained would
have been the same, since each basis set is related to the others by
a unitary transformation, but the coefficients in the series of
configurations would differ, ﬁaking it difficult to interpret wave
functions presented in this way. In order to try to obviate this
problem LUVdin( 8) has shown that it is possible to select a set of
one-electron functions which have characteristic properties belonging
to the system and state under consideration. The components of this
set are called natural spin orbitals. The set of natural spin orbitals,

{xk} » are defined as forming the set which diagonalizes the

generalized first order density matrixe. For a two-electron system it
is possible to introduce many simplifications into the general theory
of the natural spin orbital amalysis, even when the orbitals are not
orthonormale An important simplification is the removal of electron
spin from the problem, this leads to the natural orbital analysis for
two electron systems. Introduction of the natural spin orbitals
facilitates the interpretation of the wave functions, and also assists
in the understanding of the behaviour of the electron density distribution.

Useful information about the behaviour of the electron density

within a molecular system may often be gained by examining the behaviowr
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of the individual terms which contribute to the one particle density
function. Such an examination of the systems discussed here has shown
that it is possible to divide the electron distribution into two
components which may be associated with Banyard and Shull's "local" and
"shared" densitiess Further insight into the behaviour of the systems
under consideration may be gained from electron density contours, and
these also provide a link between the natural spin orbital analysis and

the analysis of the components of the total energy.

A. Natural Spin Orbital Analysis

The orthonormal formulation of the natural spin orbital analysis ( )
8,28
of two-electron systems has been discussed extensively in the literature

and is a special case of the non-orthonormal formalism which will be
developed in this section. In the two-electron case the wave function
is equivalent to a real quadratic form(za) and the spatial part may be

written as
$ELT) = EL e EDE) L @)
in matrix notation this is
$rPES,

vhere @ is a rav vector vith the basis orbitals (@] as its

elements. The first order density matrix is defined by

WE,i5)) = 247 (T T (T, Fp)aT,
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After substitution for ¢ from (4.1) and integration over ;2, this

expression becomes

Y(r1:r ) = ZZinjlmf m‘Pi(;.‘)Pl(-I-'.‘)SJm ’ (402)

where sjm =<&Pj| \0m> y and is, in general, non-zero., Using
(4.2) it is possible to define Y(111) » the elements of the

first order density matrix, as

Y(111) = zfij jmTm1

»* .
since fi= f1n ¢ In matrix notation this simply

=RLAF, (4.3)

I

A Dbeing the overlap matrix between the basis (spatial) orbitals,

that is, its elements are s the first order density matrix is

84m

now given as

The natural orbitals are defined as that set of orthonormal orbitals
vhich diagonalizes the (spinless) first order density matrix., Thus if

X represents the natural orbital basis, then since

x=¢§. ’ (4'4)
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and
5‘\1 Y (4™N)7'= atag(ng,n,,...) . (4.5)
Since the (X i} must be orthonormal then
AToA=1 (4.6)

(I is the identity matrix). Equations (4.5) and (4.6) are the

standard natural orbital equations, which define the matrix A. (In

the N- electron case these equations become the natural spin orbital
equations, as both Y and A are formed from the basis spin orbitals.
This form of Y 1is considerably more difficult to construct than in
the two-electron case.) However, in the two electron problem it is
possible to obtain the matrix A without constructing the first order
density matrix; a tedious Opefation even for small basis setse The

procedure is as follows; let
X=%3 |, (4.7)

such that

Q =X diag(g.‘,gz....) &‘* ’

<Xi|)(j>= 613 .
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It is easily seen that the transformation matrix B is defined by

the conditions

(4.8)

o]
+
1>
I
"
I

and

7' B (B = dtag(gyi8pe.) . (409)

Equations (4.8) and (4.9) may be solved as follows: perform a unitary
transformation on & so that

g+ A U = diag(d1,d2,ooo) ’

vhere the eigenvectors of _A_ are the columns of Us Now define a matrix

! with elements

Hence

(4.10)

|=
+
1>
1=
n
=

A comparison of (4.8) and (4410) leads to the erromeous conclusion that
B and W are identicale. That this is not so may be shown by writing B as
the product of W and another matrix X, ie.ece

and Bt =xtw*t . (4.11)

lw
]

l=

1>
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Substitution for B and B* from (4.11) into (4.8) and use of (4.10) yields

the result

1>

>4
H

3]

Thus B and ¥ are related by the unitary matrix X This matrix may be

determined by substitution for B and _1_3_"' from (4.11) into (4.9), this

gives
T ht - diag(gys8pseee) (4+12)
where
w=w"E @

Equation (4.12) may be written in a more convenient form using the

-1

knowledge that as X is a wnitary matrix, X =X , thus

Xt M X = diag(g ,8 yee.) .

Therefére W, Xy and hence the transformation matrix B may be determined,

Now consider the transformation
Using (4.3) and (%+11) this becomes

Twrartrhrah?t (4413)
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This equation may be greatly simplified by using (4.8), (4.10), and
the fact that X is unitary. The steps involved are not obvious and

are shown in full, thus (4.13) is firstly rewritten as

]
1>

=xtmumtx (4.14)

diag(g1,gz,...)diag(g1,g2,...)

diag(g?,gg,...) (4015)

The conclusion is obvious; not only does the transformation matrix B

give a diagonal form to the wave function (called the natural expansion
vave function), but the first order density matrix corresponding to this
form is also diagonale. The orbitals defined by (4.7) are the natural
orbitals, B is the transformation matrix A of (4.4), the diagonal elements
of diag (91, 9p9 eee) are the natural expansion coefficients, and the
occupation numbers of the natural orbitals are the diagonal elements of
diag (9120 922, oee)e

In sumary, if

(Bl
]
e
I
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and B satisfies (4.8) and (4.9) then

¢ (r,,T,) = }It{gkxk(?1)xk('£2) , (4.16)
7('1?1:?;) = 2)l:cnkxk(51)xk('z'~1) , (4.17)
and
Ny = gﬁ

Equation (4.16) represents the natural expansion wave function for a
two-electron systeme Introduction of the singlet spin function produces

the natural expansion of the complete wave function:

q”(;hl iiz) = 2—1/2 @‘(31)3(32) - ﬁ(81)0(52)]igkxk(;1 )xk(;z) . (4-18)

It is possible to derive a form similar to (4.18) for the triplet state.

Integration of (4e17) over r, gives the expected result,

Zn =1 . .
% [k (4.19)

If the basis orbitals were orthonormal then

A =

=]

and from (4.3)

1<
"
Lo
b
+
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and the treatment is then analogous to that of LWwdin and Sl'mll(28 ).
It is known that the approximate wave function for a two-electron
system is equivalent to a real finite quadratic form. A quadratié form
is characterized by its rank (r) and its signature (s), two integers
which are invariant under non-singular linear transformations(zs’ 29).
The rank of the quadratic form is defined as the rank of the déterninant
of its coefficients(zg), in this case the rank of the determinant with
elements {fij} (see (441)), and the quadratic form is reducible by a
non-singular linear transformation to a sum of "squares" which contains

r terms. The number (p) of positive terms in this sum is the index of

the quadratic form and if q is the number of negative terms, then

r=p+aqaq

s=p-g4

This implies that each approximate two-electron wave function of finite
order has a rank and signature and that it may be reduced to a sum of

“gquares™; this explains the simple form of (4.16) and (4.18). “
An important theorem due to L8wdin and Shull( 28) states that if

Y is an exact two-electron eigenfunction and Yy an arbitrary two-

electron wave function of rank r, then

[1¥z,.%,) - ¥,(%,.%,) | 2ax,ax, =

¥ = - -
2(1 -IV (x1,x2)W}(x1,x2)dx1dx2)
has a minimum value if the function ‘ﬂr is obtained by interrupting the
natural expansion after the first r terms and renormalizing the finite

series to unitye. It is important to note that in the natural expansion

|g1| > |92| > ...>igrl « The theorem is also true if ¥ is
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not an exact eigenfunction but an approximation of rank greater than r.

Application of the natural orbital analysis to the ZHZaz'_1 problem

is straight forwards The elements { f i j‘( of the coefficient matrix F
are simply

f49 =204

Top =26,

I35 = 205

T2 = £29=C4

f13 = f31 = f23 = f32 =0 .

The quantities {Ci] are the coefficients in (3.2) and are given in
Tables 1¢1 to 1¢6e The elements of the overlap matrix & , are easily

seen to be
Byq =201 + <lsgl1s>)

Bop = 1.0

A33 = 2(1 "<1QB‘1SC>9 ,

1
)
7
@

>_

-—h
)

los}
Vv

Byp =8y =

Equation (4.19) has been evaluated for each system examined. In some
instances it was found that the sum of the occupation numbers differed
from unity by as much as it 10-4; a gignificant difference. Examination
of the original wave functions showed that if the normalization integral

differed significantly from unity then a similar error appeared in (4419).
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IIATUILU. EXP/iNSICN COEFFICIENTS (FIRST ROW) AND

TIlIANSFOIWIATIGIT MATRICES FOR Z=1.0QA.U. AND It=1.66BOIIR.

0.93490

0.42233
0.33163
0.00000

0.99347

0.41335
0.38540
0.00000

0,99137

0.40154
0.42975
0.00000

0.93929

0.37345
0.43033
0.00000

0.98664

0.33793
0.56569
0.00000

-0.08870
-0.44059
1.09361
0.00000

e = 30.00

-0.08331
-0.53323
1.13510
0.00000

0 = 50,00

-0.09773
0.00000
0.00000
0.93991

e = 70.00

-0.12380
0.00000
0.00000
0.33437

6 =100.00

-0.15473
0,00000
0.00000
0.76931

e =150.00

-0.04613

0.00000
0.00000
1.46034

-0.07220

0.00000
0.00000
1,08386

-0.03151

-0,62243
1.17851
0.00000

-0.06866

-0,74456
1.24523
0,00000

-0.05105

-0.87994
1.31632
0,00000

0.99421

0,41813
0,36076
0.00000

0.99270

0.40793
0.40793
0,00000

0.99100

0.39435
0.45033
0.00000

0.93707

0.36089
0.52426
0.00000

0.98633

0.32756
0.58346
0.00000

-0.03938 -0.05395
-0.43728 0.00000
1.11519 0.00000
0.00000 1.22370
e = 40.00
-0.03529 -0.08529
-0,57826 0.00000
1.15652 0.00000
0.00000 1.00158
6 = 60.00
-0.10925 -0.07731
0.00000 -0.66539
0.00000 1.20144
0,39509 0,00000
6 = 80.00
-0.14300 -0,06051
0.00000 -0.81242
0.00000 1.28309
0.79834 0.00000
6 =120,00
-0.15759 -0,04719
0.00000 -0.90220
0.00000 1.32319
0.76029 0.00000
0 =180.00



TABLE 2,2, NATURAL EXPANSION COSFFICIENTS (FIRST ROW) AND
TRANSFORIMATION MATRICES FOR Zs=d ,404,U. AND R=1,G6BOlR.,

0.997G63 =0,06043 -0,03230 0,99567 =0,03322 -0,04134

0.50534 0.00000 =0,30423 0.50671 0,00000 ~0.36269
0.16004 0,00000 1,07071 0.20124 0,00000 1.08573
.0,00000 1.25334  0.00000 .0,00000 -1,07833 - 0.00000
8 = 30,00 . ‘0 = 40,00
0.99236 =0.11324 -0,04839 0.93972 =0.13317 -0.05219
0.50430 0,00000 =0,43002 0.50105 0.00000 =0,47170
0.24540 0.00000 1.,10494 ©0,27240 0.00000 1,11697
.0,00000 0,96079 - 0,00000 . 0,00000 - 0,90959 - 0,00000
6 = 52,15 - 6 = 60,00
0,93590 =0,15821 =0,05457  0,93178 =0.18185 ~0.05520
0.49572 0.00000 «0.52147 -~ 0.43963 0,00000 =0.56659
0.30403 0.00000 1,13159 0.33136 0.,00000 1.14595
.0.00000 0,86135 0,00000 10.00000 0,82694 - 0,00000
0= 70,00 . 6 = 80,00 |
0.97355 =0.22213 =0.05350 0.9G685 =0.25038 =0.05026
0,47623 0.00000 =0.64156 0.46242 0,00000 =0.69639
0.37773 0.00000 1.16339 0.41337 0.00000 1,18447
.0,00000 0,78176 0,00000 0.00000 0,75654 0,00000
0 =100.00 . 0 »120,00
0.96112 =0,27227 =0,04600 0,95961 =0.27783 =0.04434
0,44597 0,00000 =0,74312 0.,43943 0.00000 =0.75702
0.,44970 0,00000 1,19401 © 0,46254 0,00000 1.,19503

0,00000 0,73367 0,00000 ~ 0,00000 0,73384 0,00000
0 =150.00 ' es180,00



TABLE 2,3, NATURAL EXPANSION COGBFFICIEZNTS (FIRST ROW) AND
TRANSFGRMATION MATRICES FOR Zs=l,80A.U, AND R=l1,6GBOHR,

0,99740

0,54714
0,0G6955
0.,00000

0,98324

0,56693
0,13340
0.00000

0.96347

0.57249
0,192G3
0,00000

0,92605

0,57001
0,25568
0.06000

0.88657

0.56067
0.30143
0,00000

=0,07124 ~-0,01050
0.00000 =0,20615
0,00000 1,.04242
1,11300 0,00000

e = 30,00

«0,15147 -0,02077
0,00000 =0,31976
0,00000 1,07236
0.89762 0,00000

¢ = 50,50

-0,24758 -0,02788
0,00000 =0,41741
0.00000 1.09714
0,30894 0,00000

9 = 70,00

=0,37625 -0,02950
0,000C60 =0,52079
0,00000 1,12094
0,74398 0,00000

0 =100,00

=0,46181 -0,02683
0,00000 =0,53828
0,00000 1.,13163
0.72245 0,00000

6 =150,00

0.,99417 =0,10667 ~0.01549
0.55513 0.,G0000 ~0,26161

0.,09981 0,00000 1,05735
0,00000 0,958057 0,00000

9 = 40,00

0,53005 =0,19719 ~0.02439
0.57073 0.00000 =0.37010
0.16363 0,00000 1.08571
0.00000 0,84681 0.00000

0 = 60.00

0.95461 =0,29338 =0.02943
0,57249 0,00000 ~0.45377
0,21795 0.00000 1.10681
0.00000 0.78181 0.00000

@ = 80,00

0,90400 =0,42659 -0,02337
0,56556 0,00000 -0,55868
0,23160 0,00000 1,12742
0,00000 0,73263 0,00000

© =120,00

0,33181 =0,47087 ~0,02635
0,55900 0,00000 ~0,59373
0,30709 0,00000 1,13204
0,00000 0,72000 0,00000

6 =180,00
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TABLE 2.4. NATURAL EXPANSIQN COSFFICIENTS (FIRST ROW) AND
TRANSFORMATION MATRICES FOR Z»=2,20A,U. AND R=1,G6BOHR,

0.99665 =0.03166 =0.00362 0,99132 =0,13137 =0,00594
0.57025 0,00000 =0,14201 0.58936 0,00000 =0.19101
0.03020 0,00000 1,02302 0,04568 0,00000 1,03538
0,00000 1,01697 0,00000 0.,00000 0.91087 0,00000
0= 50,00 | ' 0= 40,00
0.93033 =0.19716 -0.00343 0.96105 =0,27619 =0.01057
0.60542 0,00000 =0,24132 0.61715 . 0,00000 ~0,28805
0.07120 0,00000 1.04813 0.09397 0,00000 1,05970
0,00000 0,34463 0,00000 0.00000 0,80064 0,00000
@ = 50,00 | ' o= 60,00
0,93717 =0,35925 =0,01171 0,90103 =0,43361 ~0.01185
0.62573 0.00000 =0,32305 . 0.63173 0.00000 =-0,35933
0.11457 0,00000 1.06904 0,13076 0,00000 1,07607
0.00000 0,77057 0.00000 0,00000 0,75050 0,00000
@ = 70,00 ' o= 8.0
0.84570 =0.53355 =0.01083 0.81351 =0.58147 =0,00990
0.63373 0.00000 =0,39722 . 0.64158 0,00000 =0.41616
0.15113 0,00000 1,03362 0.16143 0.00000 1.08724
0,00000 0,72352 0,00000 0,00000 0.71904 0,00000
0 =100.00 | 8 =120,00
~0,79299 0.60916 0,00929 «0,73306 0.615652 0.00916
0.64293 0,00000 =0,42746 0,64306 0.00000 =0,43061
0.16832 0,00000 1,08395 0,17026 0,00000 1,08943

0,00000 0,71371 0,00000 0,00000 0,71250 0,00000
@ =150,00 « " es=180,00
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TABLE 2,5, NATURAL EXPANSION COEFFICIENTS (FIRST ROW) AND
TRANSFORMATION MATRICES FOR Za=l ,S80A.U. AND R=1,SOBOHR,.

0,99303

0.53634
0,02039
0,00000

0,99225

0.55059
0,14101
0,00000

0,97999

0,55146
0,202606
0,00000

0,95309

0,54264
0,27143
0,00000

0,92179

0,528
0,32616
0.00000

=0,06130 -0,01320
0.00000 =C,23367
€,00000 1,05364
1.16689 0,00000

o= 30.00

-0,12209 =0,02314
0.00000 ~0,35345
0,00000 1,09781
0.93729 0,00000

@ = 50,00

<0,19675 ~0,03023
0,00000 =0,46021
0,00000 1,13334
0.83607 0,00000

@ = 70,00

«0,30094 =0,03243
0.00000 =0.53008
0,00000 1.,17366
0.76695 0,00000

6 =100,00

-0,33857 -0,02955
0,00000 «0,66620
0,00000 1,19311
0,73181 0,00000

© =150,00

0,99584
0.,54575

0,10889
0.00000

0.93699
0,55214

0,17274
0,00000

0.97156
0.54938

0,22887
0,00000

0,93666

0.53577

0,30147.

0,.00000

-0,01734

0,582507
0,33358
0.00000

=0,08931 =0,01820
0.00000 ~0,29605
0,00000 1.,07859
1,02526 0,00000

6-- 40,00

=0,15846 ~-0,02731
0,00000 -0,40893

0,00000 1,11648
0.87828 0,00000

e = 60,00

~0,23463 =0,03196
0,00000 -0,50578
0,00000 1.,14854
0.80571 0.00000

© = 80,00

=0,343384 ~0,03133
0,00000 -0,62343
0,00000 1,18781
0.,74575 0,00000

6 =120,00

0.,39705 0,02891

0,00000 =0,87705
0.00000 1,20096
0.72827 0.00000

@ =180,00



TABLS 2,6, NATURAL ZEXPANSION COSFFICIENTS (FlRéT ROW) AND
TRANSFCRMATICGN MATRICSS I'OR Zm1 ,80A,U, AND Rl ,S80BQHR,.

0.99670 =-0.03079 «0,00849 0.99221 -0,12335 =0,01316

0.55543 0,00000 =0,13145 0.57012 0,00000 «0,23472
0.06165 ©0.00000 1,03186 0.09135 0,00000 1.04352
0.00000 1.07155 0,00000 0.00000 0.94341 0.00000
e = 30,00 0 = 40,00 |
0.53022 0,00000 -0,28312 0.53674 0.,00009 =0,33306
0.12337 0.00000 1.05524 0.15444 0.00000 1.06513
0.00000 0.87360 0.00000 0.00000 0,82370 0.00000
@ = 50,00 | o m 60,00
0.,95301 ~0.29907 =0.02435 0.93331 =0.35681 =0.02607
0.59062 0,00000 =0,33203 -~ 0.59249 0.00000 =0 441925
0.18195 0.00000 1.07327 0.205¢3 0.00000 1,079G7
0,00000 0.73935 0.00000 0.00000 0,76535 0,00000
@ = 70,00 0 = 80,00
0.89614 =0.44304 =0.02567 0.87100 =0,40068 =0.02437
0.59263 0,00000 =0,47143 0.59095 0,00000 =0,50070
0.23923 0.00000 1.08751 0.25922 0,00000 1.09105
0,00000 0,73756 0,00000 0.,00000 0.72477 0.00000
8 =100.00 o ‘=120 .00
0.85353 =0.52053 =0,02321 0.85076 =0.52507 =0.02258 .
0.58782 0,00000 =0.52141 0,58522 0,00000 =0.5321G
0.27548 0,00000 1.09236 0,27955 0,00000 1.,09742

0,00000 ©,71715 0,00000 0.00000 0,71607 0,00000

0 =150,00 - @ =180,00



30,00

40,00

G000
70.00
80.00
100,00
;20.00
150.00

180,00
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TABLZ 3, OCCUPATIQN NULBZERS,.

221,00
Ral ,CG

0.99001
0,00737
0.00213

0.93345
0.,00803
0,00347

0.93G99
0.00730
0.00521

0,93545
0.00727
0.00727

0,93331
0,00955
0.00G664

0,93209
0.01194
0,00593

0,97370
0.01659
0.,00471

0,97539
0,02045
0,003G3

0,97343
0.,023%4
0.00261

0,97294
0.02434
0.00223

Zal 40
R=1 ,G6

0,99527
0,003G6
0.00103

0,99137
0.00693
0,00171

*»
0,93479
0.01282
0,00239

0.97554
0.01773
0.00272

0,97199
0,02503
0.00293

0,96338
0.03307
0.00305

0,94730
0,04934
0.002386

0,93479
0,0G263
0.00253

0,92375
0,07413
0.00212

0,92034
0.,07719
0.00197

.. % Values for 6 =32,15
"' & Vagues for O =50,50

Z=1.30
R=1.GG

0,95432
0,00507
0,00011

0,935333
0,01138
0.00024

0.97663"
0,02294
0.00043

0,96050
0,03383
0.00062

0,93793
0.06120
0,00073

0.,91129
0,03734
0.,00057

0.,85757
0,14156
0.00087

0.81721
0.,13193
0.00031

0.73G01
0,21327
0,00072

0,77759
0.22172
0,000G69

Z=2.20
R=l .GG

0,93332
0.00667
0.00001

0.93271
0,01726
0.00004

0,9G105
0.03837
0.00007

0.923G1
0.,07G28
0.00011

0,37030
0.12900
0.00014

0.81185
0.15301
0.00014

0,71520
0,284G8
0,00012

0.66130
0.33311
0.00010

0.62833
0.37103
0.00009

0.62105
0,37837
0.00003

21,80
Ral,50

0,99607
0.,00376
0.00017

0.991G9
0.00793
0.00033

0,93456
0.01491
0.00054

0.97414
0.02511
0.00075

0,9G6037
0,03371
0.00022

0,54393
0.05505
0.00102

0,90333
0,09057
0.001056

0.37733
0.12169
0.00093

0,849G9
0.,149%43
0,.00037

0.,84151
0.,157656
0.,00084

2=1,30
Ral .80

0,99340
0,00G653
0,00007

0,93449
0,01534
0.,00017

0.93842
0.,03125
0.00033

0.94335
0.05615
0.00043

0,90994
0.03944
0.00062

0.87201
0,12731
0.000G63

0.80306
0,19628
0,000G6

0,75864
0.24077
0.00059

0,72351
0.27095
0.00054

0,72380
0.276G9
0.00051
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The explicit forms and symmetries of the natural orbitals obtained

in the zHz?%™' calcwlations are

X, (t) = [A4(1sg + 185) + Ayu1s, (£)] A,
X,(t) = [Ag,(185 = 185) (%)] , B,
X5 (t) = [A13(1SB +18g) + Ayzlsy t)] , A, (4.20)

where t is 51 or ;2. This order assumes that n, > n, > n,, but in
some cases X2 and X3 must be reversed to preserve this order.
The results of the analysis for each of the systems examined are shown

in Tables 2.1 to 2.6 and in Table 3.

B. Electron Population Analysis

Several approaches to this problem are possible(27’30), but all
depend on the expression for the one-particle density, and its division
into component quantities. The expression for the one-particle density

has the general form
Y(%, :SE;) = NII *P('i; ,'iz, .o .EN) | zdxzdx3. . .d:'cN ,

vhere the integration is over the space-spin co-ordinates of all the

particles except those of the primed quantity. The spinless one-particle
density Y(r, : 511) is obtained by integrating 7(:7:1 : i':) over the
remaining spin co-ordinate. The result may then be rearranged so that,

for example, all of the terms containing the orbital product 'PI A(E 1 ) Pj B('f- 1)
are grouped together. kpiA('f_l ) and lij('f1) are the i-th orbital

centred on nucleus A and the j-th orbital centred on nucleus B respectively.
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The expression for the one-particle density may thus be written as a sum
* - -

of terms, each of the form tijPiA(r1)¢jB(r1) , Where

ti j is a coefficient determined by the integrations indicated. The

electron distribution may then be broken down into parts, which are

associated with the various nuclei and overlap regions between each pair

of nuclei, by defining the atomic population associated with nucleus A as:
N(A) = j_):jtij< soiA‘ 'PjA> ’

and the overlap population of the region between nuclei A and B as:
S(AB) = ])g:ltkakAI ‘plB>’ (4021)

Equation (4.21) refers to pairs of nuclei so that <¢1Bl Prca>
is included in the sum and the quantity S(BA) does not arise.

Obviously

[vx,:%,)ax, = INa) + I s(am)

However, the appropriate integration of :W’lz to obtain the expression
for the one-particle density often presents difficulties. In the case of
a CI wave function the off-diagonal elements of the first order density
matrix are not necessarily zero, so that a very unwieldly expression results.
The difficulties that arise in the approach described can be circum-
vented by employing a method similar to the "Electronic Population Analysis"™
of Mulliken( 27 ). Direct application of Mulliken's theory is not possible
since it demands a knowledge of the nuﬁber of electrons occupying each of
the symmetry-adapted molecular orbitals. Specifically, in the case of the

782221 jons there are two electrons distributed between three molecular
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orbitals, and it is obvious from the results to be presented that the
occupation of each of the molecular orbitals changes significantly as

the nuclear charges and geometry vary. We are thus led to the choice

of using the natural orbitals since both their form and occupation
numbers are clearly defined for each of the systems under consideration.
As was shown in the previous section, the expression for the one-particle

density in terms of the natural orbitals is simply,
- - * - -
p(r) = y(T,:Ty) = 2§nkxk(r1)xk(r1) .
In general,
1a(T)ay J

X, (F,) = i?’

where Qﬂi A is the i-th orbital on centre A. The coefficients g 1Ak

may be obtained from the transformation matrix by inspection. The
following breakdown of the electron distribution may be made:

(1) partial atomic population N, (A) of nucleus A;

*

Nk(A) = 2nk§§<tpiijA>aiAkajAk ,
(ii) atomic population N (A) of nucleus A;
N(A) = fl:{Nk(A) ’

(iii) partial overlap population S, (AB) of the overlap region A-B;

*



- 42 -

(iv) overlap population S (AB) of the overlap region A-B;

S(AB) = }l:{Sk(AB) ’

(v) total atomic (or local) population N

Ny = ):AN(A) ’

(vi’) total overlap (or shared) population S o

S. = r S(AB)
S pairs(AB) ’
and obviously
NI‘-k SS = N ’

the number of electrons.

The natural orbitals of the ZHZ2Z | ions are few in number, and

of a relatively simple form. From (4.20) we have,

2
X% = A$1(1sB1sB + 2.18318, + 1sc1sc) + A21(1sA1sA)
+ 2A11A21(1SB1BA + 1sc1sA) ,
2 2
X2 = A32(1sB1sB - 2,188, + 150150) ,

X2 = Af3(1sB1sB + 2.1818, + 184184) + A§_3(15A15A)

W
|
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The atomic populations are:

N,(4) = 2n1A§1 ; Ny(B) = N,(C) = 2n1A$1 ;
Ny(4) = 0 ; Ny(B) = Ny(C) = 2n2A§2 ;

N3(A)\= on, A2

. _ 2
zAo% N3(B) N3(C) = 2n A

A8}

-

W
-e

N(A) = 2(n 21 + n3 23) 9

and

N(B) = N(C) = 2(n A%, + nyA5, + ngad5) .

The overlap populations are: ~

S,(AB) = 5,(AC) = 4n,A,,4,,S,5 ; S,(BC) = 4n,A 11 Spg 3

2 L]
S,(AB) = $,(4C) = 0 ; S,(BC) = =4n,A3,Sp0
S5(AB) = S5(AC) = 4nzh,5h,55,5 ; S5(BC) = 4ngA 3SBC :

S(AB) = S(AC) = 45,5(n A 45, + Dghizhyg)

and

L2 2 2
S(BC) = 48130(11,1‘A11 n2A32 + n3A13) .
S,p and Sy, are the overlap integrals < 1SA| 1BB> and < 1sB| 1sc>'

respectively. Aij are the elements of the transformation matrix.
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Variations of the atomic and overlap populations as functions of
z and € are shown in Figs. 4 to 7. Population analyses for optimized
wave functions with R = 1.5 whr and 1.8. ohr, were performed for Z = 1.8
and the results permitted the study of the variation of the electron

populations as a function of the Z-H bond length.

Ce. Electron Density Contours

The interpretation of the results of the natural orbital and eiectroﬁ
population analyseé proved difficult because of the large volume of
results. It was felt that a quantitative description of the behaviour
of the systems would greatly assist in the interpretation of the numerical
quantities, Such a description is provided by the electron density
contours.

From (4.17), values of the electron density were obtained for each
system in the plane of the nuclei, and contour maps were drawn for each
system. A selection of these maps is shown in Fig. 8. Each map is
symmetric about the line XX‘, which bisects the bond angle €@ (see
Fig. 3.). Changes in the contours, as 0 and Z vary, are clearly
illustrated. A general feature of all the contour diagrams is shown by
tracing the line of maximum density, i.e. minimun slope, between centres
B and C. This line is such that the density always decreases in magnitude,
when evaluated at adjacent spatial co-ordinates along its normal. These
curves, which are also symmetric about the line xx', are shown collectively
in Fig. 9. They indicate specifically whether or not centre A is contained
within the density contour of highest value which mutually embraces centres
B and C. In some instances, the line of minimum slope is seen to divide,
so that B is joined to A and C. The significance of this situation,

indicated in Fig. 9 by the dotted lines, will be discussed in Chapter 5 .
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FIG. 8.

(1s ]
P

Contour diagrams of the electron density in the plane of the
molecule for selected values of Z and 8. The diagrams are
symmetric about the line XX' which bisects the bond angle 0.
In (a) the density at D is less than 0.1764.
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FIG. 12 The electron repulsion energy as a function of the bond angle O.
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D. Enerqy Analysis

As stated in Chapter 2, the behaviour of the electron energy of

-

ystens was unexpected; and it was thought that an

ct
o
[p]

™~
o8]
N
%]

investigation of the individuwal components of the total energy might
provide an insignt into this behaviour. The results of this
investigation are displayed graphically in Figs. 11 to 14.
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CHAPTER 5

DISCUSSION OF RESULTS

Certain general trends are immediately observable from the tables
and diagrams presented. Inspection of the natural orbitals given in
(4+20) indicates that Xy and X3 are bonding-type orbitals vhereas

X2 is of an anti-bonding form. It is seen from the occupation
numbers presented in Table 3 that for all values of @ X4
predominates in the natural expansion of the wave function for Z & 1.4.
Although a large occupation number for a bonding orbital does not
necessarily guarantee the stability of the 282221 jon for any choice of
Zand 6 , it is of interest to note, from the work of Banyard and
Shull( 25), that for Z < 1.3 the ions are stable with respect to
dissociation. Another obvious trend is the increase in electron density
in the region of the nuclei B and C as the effective nuclear charge is
increased. The significance of the way in which this increase occurs
will be discussed in the following paragraphs.

2Z-1

For Z = 1.0, when ZHZ becomes H3+, n, and n, shown in Table 3

1
decrease and n, becomes larger as the bond angle increases from 30° to
1EO°. The results for H3+ may be placed in perspective by referring to
the occupation numbers of the natural orbitals of a:- and e;- type
symmetry determined by Christoffersen and Shull( 31) for the united

atom Li* and i:he dissociation products H + H + B*. For Lit they quote
total occupation numbers of 0.998121 and 0.001223 for the a:-— and e; -
type natural orbitals respectively. For the dissociation products of
H;. the total occupation numbers for the orbitals of a: - and e,: - type
synmetry are 0.666667 and 0.333333 respectively. When Z is large, the

dissociation products of minimum energy will have corresponding natural

oryitals with occupation numbers of 0.5. Thus, the united atom character
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is seen to feature strongly in the description of H3+ for all values of
6 . Table 3 shows that this conclusion is valid as far as 2 < 1.4,

When Z 2= 1.8 it is seen that, as 6 increases, the occupation number
associated with Xé increases greatly at the expense of n,. This would
seem to indicate that, when Z and 6 are large, the electron density
begins to concentrate predominately around the nuclei B and C at the
expense of the proton at A and the internuclear regions. This conclusion
is supported by noting that, as Z and 6 increase, the occupation numbers
for X4 and Xo are both approaching 0.5. Quantitative evidence
is also provﬁded by both the electron population analysis (Figs. 4 to 7)
and by the electron density contour maps (Fig. 8).

The results of the electron population analysis illustrated in
Pigs; 4 to 7 indicate that when the overlap population between centres
B and C is greater than that of the region A-B, the 202?21 ions may be
regarded as two-centre systems plus a strongly perturbing proton. However,
when S(BC) is less than S(AB) the ion may be thought of as forming a
three—centre system. Such an interpretation is strongiy supported by
the evidence shown in the diagreams of Fig. 9. The "divided" trace, i.e.
the dotted lines of Figs. 9a, 9b, and 9¢c, is particularly interesting
since it only occurs when S(AB) = S(BC). The depression in the
electron density surface of H3+ at its equilibrium bond angle (see Fig. 8a),
centred at the centroid of the triangle ABC, was not observed by either
Christoffersen and Shull(32) or by Schwartz and Schaad(32); this may
be a consequence of our minimal basis set,

For Z = 1.0, it is seen from Fig. 4 that, as 0 gets larger,
N(A) increases fairly sharply, but N(B) and N(C) become smaller;
correspondingly the overlap populations S(AB) and S(AC) shown in Fig. 6

increase but the value of S(BC) decreases considerably. This behaviour

is partly illustrated by the contowr maps a, d, and g of Fig. 8.
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A similar situation occurs for Z = 1.4, However, for Z = 1.8, Fig. 4
shows that the atomic population for each nuclear centre increases as
the bond angle is enlarged. The overlap population S(AB) also increases
as 0 increases, but the magnitude of S(BC) is seen to decrease
rapidly. Thus, as O varies from 30° to 180°, a value of 2 > 1.8
is capable of causing electron charge cloud to move from the internuclear
region B-C towards the centres B and C, whereas when Z = 1.0 the charge
cloud is moved from B and C towards centre A.

Fig. 7 reveals that, for any fixed bond angle, S(AB) decreases in
value as Z is increased, this indicates the diminishing influence of the
proton on the system. This conclusion is substantiated by the fact that
N(A) tends to zero for all angles as Z becomes large. Fig. 7 also shows
that when 6 < 100°, S(BC) increases initially and then decreases
as Z continues to increase. This effect is greatest for small angles.
For 0 > 100°%, S(BC) shows no initial increase as a function of Z.
Hence as Z is increased for a fixed bond angle, the charge cloud is
drawn away from A into the regions associated with B,C, and B-C. A
further increase in Z removes the charge cloud from the internuclear
region B-C and localizes it about the nuclei B and C.

For Z = 1.8, the electron population analysis was performed for
wvave functions corresponding to R = 1.50 a.u., 1.66 as.u., and 1.80 a.u.
The results are shown in Fig. 10. For constant O , as expected N(A)
decreases in value and N(B) increases as R becomes larger, both S(AB)
and S(BC) decrease.

Changes in the above results caused by extending the basis set may
be examined most readily by studying the H3+ molecular ion, this is made
possible by the analysis(31 ) of the configuration interaction wave
function of Christoffersen(zz) which involved a basis set of twelve real

Slater-type orbitals. The occupation number of 0,98487 which
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Christoffersen and Shull obtained for the first natural orbital X1
differs from the value obtained in this calculation by only 0.00059

(see Table 3, Z = 1.00, 6 = 600, R = 1.66). The virtual independence
of the occupation numbers with rgspect to the size and nature of the

basis set has been commented on by Shull<26 ). Due to its large occupation
number, the form of X4 for H3+ will govern the essential features of
the electron population analysis. Thus the evaluation of N(A) and

S(AB)* derived from X4 , taken in the first instance from the work
of Christoffersen and Shull, and secondly from Table 2.1 for 6 = 60°,
should indicate the géneral effect of an extended basis set. In both
cases we have in fact considered the "best" wave functions of rank 1.

For the minimal basis set N(A) and S(AB) were found to be 0.33282 and
0.33386 respectively, while the extended basis set gave values of 0.30113
and 0.36554. Thus, an extension of the basis set causes a lowering of
the atomic population of each nucleus wiéﬁ a corresponding increase in

the overlap populations. Such changes in the electron population analysis
are not too surprising since the 1s minimal basis set could only be
extended by the inclusion of higher orbitals which, by virtue of their
more diffuse nature, provide a greater two-centre overlap. It is
reasonable to expect that an exfension of the basis set for the remaining

222-4

ZH ions will have a similar effect, although this should become

less marked as Z is increased.

Hopton and Linnett(33 ) have discussed the structure of the linear
H3+ molecular ion in terms of various approximations to a simple CI wave
function obtained by Hirschfelder, Eyring and Rosen(34 ). As these latter

authors did not allow the orbital exponents to vary, their wave functions

For ," vith 0 = 60°, N(A) = N(B) = N(C) and

s(aB) = s(aC) = s(BC)
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was not the best obtainable with their limited basis set (three 1s
orbitals, one on each nucleus) and fixed geometry. The calculations
of Hopton and Linnett have been repeated using the wave function obtained

for Z = 1.0 at 0 = 180c> as the "best" wave function.

s

The approximations to the wave function ¢  (see(3.5)) are the
valence bond ( (PVB )+ the molecular orbital ( o ), and

three non-pairing of electrons forms ( ‘H\ y 4>B ’ and ‘PC ).

Using the notation of the ZI-IZzz"1 work, these functions may be defined thus:

¢ yp(T1rTo) = Nyp[(185(F,) + k.18,(F;)) (k. 185(T,) + 18,(F,))
+ (ka185(T) + 15, (F,)) (185(F,) + k.18,(T,))
+ (184(T;) + ku18,(T,)) (k. 184(T,) + 18,(T,))
+ (k. 185(T,) + 18,(F,)) (154(T,) + k.15, (F,))]
= Nyp[0.5kdy (F,,F,) + 2k, (TF,,F,) + 0.5k (T,,T,)
+(X% + 1)¢,(F,,T,)]
P uo(TqsTy) = NMO[(1SB('51) + k.18,(T,) + 18,(T,))
(185(T,) + kJsA('fa) + 1sc('52))]
= Ny [0.56,(F,,F,) + 0.5k%0,(F,,F,) + kP, (F,,T,)]

$4(T1,Tp) = Ny [(1s5(F)) + 18,(F)) (184(T,) + 15,(T,))

+ (186(T)) + 18,(F,)) (185(T,) + 18, (T,))]
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- NA£0.25¢1 (F1,T,) +§(T,,T,) - 0.25¢,(F,,7F,)
BASIE N
$5(T,,T,) = Ny [(185(F,) + k.18, (F,)) (184(F,) + k.15,(T,))
+ (185(T}) + ko158, (F,)) (185(T,) + k.15,(T,))]
= Ny [0.25¢,(F;,T,) + K°,(F;,T,) - 0.25¢5(F,,F,)
+ k$, (T,,7,) ]
q>c.(z~'1,'£2) = Ny [(1s5(T,) +.k.18,(F,))(18,(T,) + ko184(T,))
+ (18,(F)) + ko185(T,)) (185(F,) + k.18,(T,))

+ (k.1sB(§1) + 1sA(?1))(k.1sA(?2) + 1sc(¥2))

+ (ko18, (T,) + 185(F,)) (k. 185(%,) + 18,(T,))]

N [0.5k$, (F4,T,) + 2k$,(T,,T,) - 0.5kds(F,,T))

+ (k2 + NP (F,,5,)] .
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The parameter k was chosen so as to maximise the overlap between each

approximation $ app 2 $® . The general form of each
approximation is the same as that of ¢ , iee.
bapp(T10Tp) = Foy; (Fy,Tp) (5.1)

with the coefficients ai suitably calculated. Each approximation was
normalized to unity. Two further approximate wave functions were
introduced into the present work; these were the "best" rank 1 and 2

wave functions (PI and d>II , namely

471(-1-:1 ’52) = x~1 (;1 )x1 (3-:2)

0.5A2 ¢, (T,,F,) + 0.545,¢,(F,,T,)
+ Ayghy Py (THT)
drr(FiTp) = (g + 1) V2[00 (F)%, (F,) + €%, (F)%,(F,p)]
= (ny + 1,)"2[0,5¢,02,6,(F,,F,) + 0.5g,42,(F,,Tp)

2 - - - -
+ 0.58ph5pb5(T1)T5) + Erhqqhpiby (F10T)]

These are the natural expansions truncated after 1 and 2 terms and'
renormalized to unity. Since 4> is of rank 3 it is the "best"
rank 3 wave function. Obwiously dDI and ¢II are expressible

in the form of (5.1). The overlap between each approximation and ¢ )
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together with the overlap with the "best" wave function of the same
rank are shown in Table 4.

Hopton and Linnett conclude that the non-pairing forms are the best

because they have higher overlaps with <P than either 4>VB or

¢MO . If this were so the occupation numbers of linear H3+ would
be much closer to those of the dissociation products than to those of
the united atom, since the non-pairing form implies a degree of sgpatial
correlation. The atomic population N(A) for nucleus A is almost three
times that of centres B or C; this would seem unusual if there were a
high degree of spatial correlation between the electrons.

The key to the misleading high overlaps of the non-pairing
approximations with ¢ (a result preserved in this calculation) lies
in the fact that the five approximate forms are of different rank. The
theorem stated in Chapter 4 implies that there is an upper bound to the
overlap integral J¢*¢APPdr1 dr2 which is determined

by the rank of A comparison of greater validity than the

chPP )
straight forward comparison of values of this integral for different

approximations is to determine the rank of Lol and then compare

APP
the overlap integrals between ool PP and the "best™ function of
the same rank, since this then accounts for the mathematical limitation
of the approximation as well as the chemical limitation. It is seen

from Table 4 that ¢I and 4)MO are identical; a result

suspected by Shull(35 ). This evidence confirms thefconcluéion that

3
is the best approximation to¢ .

linear H,' may be regarded as a three centre system because ¢MO

As 2 increases the kinetic energy undergoes an initial decrease
for all values of Z (Fig. 11). The decrease becomes greater as Z is
increaseds When Z = 1.0, the kinetic energy becomes constant for

e > 90°, however, the curve for Z = 2.2 shows a pronounced
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minimun when 6 °=60°, and a constant value is attained only when

@ > 140°. Figs. 12, 13, and 14 show that, for Z = 1.0, the other
energy contributions are virtually constant when e >>90°. This lack
of angular dependence indicates that, when 6 > 90°, the proton at
centre A tends to dominate the H3+ systeme. |

Ruedenberg(36) has shown that a lowering of the kinetic energy may
be associated with an increased "smoothness" of the electron density
surface throughout the molecule. It is related in character to'the
lowering of the kinetic energy of potential free electrons when the
volume containing them is increased. Thus the kinetic energy curves
shown in Fige. 11 may be interpreted as a measure of the relative freedom
of the electrons within the ions as 2 is increased. For example,
when Z = 2.2 and 0 = 30°, the charge cloud is localized about the
B-C region of the ion; hence the valué of the kinetic energy is high.
As e is increased to a value of 600, the kinetic energy suffers a
decrease, suggesting that the larger value for the B-C separation
allows the charge cloud to become more diffuse. However, for a further
increase in 2 » the kinetic energy is seen to increase; this is
consistant with the observation that, for Z = 2.2 the charge cloud will
divide and become localized about the separate centres B and C, as
approaches 1800. For Z = 1.0, a similar situafion will occur, namely,
as B and C separate, the charge cloud will become more diffuse, and
the value of the kinetic energy will therefore decrease for an initial
increase in e . However, a continued increase of 0 causes
the charge cloud to contract towards centre A instead of dividing and
localizing it about each of the centres B and C, as was the case for

Z = 2,2 Thus, for H3+ it is not surprising that the kinetic energy

remains virtually constant for e > 900; The curves for Z = 1.4
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and 1.8 shown in Fige. 11 are clearly states of transition between the
two cases already discussed. Additional support for the above inter-
pretation is gained by noting that, for each value of Z, the
dependence of the electron density evaluated at centre B (or C) has
the same form as the corresponding curve for the kinetic emergy shown
in Fig. 11.
From Figs. 12, 13, and 14 we see that the electron repulsion energy,
nuclear attraction, and nuclear repulsion energies become slightly more
f-dependent as Z becomes larger. This is quite reasonable since
the foregoing analysis has shown that, as Z increases, the tendency for
the charge cloud to contract around the centres B and C will also increase
as @ approaches 180°. Hence when the division of the charge cloud
becomes more effective, the drop in electron repulsion energy will become
greater, as shown in Fig. 12. For a fixed value of Z, Fig. 13 shows that
the nuclear attraction energy will increase for an increase in ’
presumably related to the fact thét the charge cloud will be influenced
less by the combined effect of the nuclei at B and C. The nuclear
repulsion energy curves shown in Fig. 14 are simply dependent on Z and

the geometry of the zuz?%"1 system.

The comparison of the results of the analysis for the ZHZZZ"1 ions

with the H,' calculation of Christoffersen is very valuable. However it

3
is rather limited because H3+ is a member of the ZHz2Z! systems, and

the comparison does not indicate whether or not the wnexpected behaviour
(the initial decrease in the optimum bond angle as Z increases from 0,8),

is simply a feature of these systems. Recent work( 37) on a four-centre

2(z-1) shows that this behaviour is

2(2-1)

four-electron system of the form ZHZH
not confined to the ZHZZZ"1 pseudomolecular ions. In the ZHZH

system four electrons are associated with a planar nuclear framework of

four nuclei, and as the nuclear charge Z is increased from 0.8 to 2.4
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the optimum ZHZ bond angle decreases. As Z becomes very large this
angle goes through a minimum and approaches 180° asymptotically. This
seems to imply that the electron density of the four-centre system will
behave in a way similar to that of the three—centre system; for a given
ZHZ bond angle in the four-centre system, the increasing nuclear charges
will firstly draw the charge cloud away from the protons towards the
geometricacentre of the system, and then the charge cloud will divide
into two parts, each localized about the variable nuclear charges Z.

The detailed analysis of the wave functions for the four—centre four-

electron systems is awaited with interest.
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CHAPTER 6

CONCLUSION

The wave functions of a series of pseudomolecular ions of the form

ZHZ2Z-1

, Where Z = 1.0 (0.4) 2.2 were reformulated in terms of their
natural expansions. Consequently it was possible to investigate changes
in the one-particle density due to variations of Z and the bond angle
ZHZ (= @ ), by means of an electron population analysis similar to
that of Mulliken. Contour diagrams were constructed for the one-particle
density in the plane of the nuclei. In addition the behaviour of the
kinetic energy, the nuclear attraction energy, the electron and nuclear
repulsion energies as functions of Z and 6 were also examined.

For Z < 1.4, the first natural orbital in the natural expansion
of the wave function was found to have a large occupation number for all
values of 6 . Such a feature is essential, although by itself no guarantee,
for obtaining molecular stability with respect to dissociation; nevertheless
the results obtained here are in accord with the observation(as) that the
ions are energetically stable for 2 < 1.3.

The occupation numbers of the natural orbitals for H3+ were placed
in perspective by making a comparison with similar quantities for the
united atom Li' and the dissociation products H + H + H*. Such a
comparison clearly reveals that H3+ possesses a strong united atom
character. The contouwr diagrams also showed that, when € = 60°. the
"bonds" in H3+ were directed towards the centroid of the positive charges.
The elaborate wave function of Christoffersen(za), analysed by Christoffersen
and Shull(31 ), also revealed this "bonding" arrangement. For fixed bond
lengths BA and CA (Fige 3), as O was increased, the charge moved from

the centres B and C towards A, indicating that the proton dominates the

linear H3+ system. These results do not support the conclusion that a
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non-pairing description is applicable to the linear H3+ ion; Shull( 35)
has described it as "a relatively normal (albeit lengthened) single
bond in which is embedded an additional proton", a description supported
by the present analysis.

When Z is large, the dissociation products of minimum energy have
natural orbitals with occupation numbers of 0.5. This situation is
most closely represented when Z = 2.2 and 0 = 180°, The contour
diagrams and electron population analysis show that, at large values
of Z, the electron density in the region of centre A is small and, as

@ increases, the charge cloud flows from the internuclear region
B-C towards the "outer" nuclei. The diagrams and analysis also show
that, as 2 increases and ® decreases, the 202?21 jons change
from a three-centre system to what is essentially a two-centre system
plus a strongly perturbing proton.

Of the various components of the energy of the 7z 2% ions, the

@ dependence of the kinetic energy is most striking. As emphasised
by Ruedenberg, a decrease in magnitude of the kinetic energy may be
associated with an increase in the spatial freedom of the electrons.
This interpretation assisted not only with the understanding o£ the
kinetic energy curves but also permitted variations in the remaining
energy components to be understood.

The ZHZzz—1 calculation was originally conceived as a model of
one of the bridge bonds of diborane. The unusual behaviour of the system,
which precludes its use as such a model, is not, however, confined to

this system. The initial results of a calculation on ZHZHZ(Z-1) ( 37)

indicate that its behaviour is somewhat similar to that of ZHZ2Z™' but
further detailed analysis will be required to determine the extent of the
similarity. The results discussed here cast some doubt on the validity

of the molecular fragment model as an indicator of the nature of the bonds
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in a complete molecule; nevertheless, the analysis has afforded
considerable insight into the energy changes and accompanying changes
in electron density as Z and 6 vary within the simply ZHZZZ-1

pseudomolecular system,



PART II
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CHAPTER 7
INTRODUCTION -~ THE METHOD OF CONFIGURATION

INTERACTION

The theoretical methods for constructing a Configuration Interaction
(CI) wave function are reviewed in this chapter and their application to
homonuclear diatomic molecules is described. Because of the ambiguity
of the description of CI wave functions, the terminology used in Part II
of this thesis is now defined:

(i) DETERMINANT: An antisymmetrized product of occupied spin-orbitals.
It is an eigenfunction of the 5; operatore.

(ii) DETOR: A determinant constructed from a set of orthonormal spin-
orbitals(38) -

(iii) CONFIGURATION: A linear combination of determinants which is an
eigenfunction of the total spin operator 5? ; it is also a basis for an
irreducible representation of the molecular symmetry group.

(iv) CODETOR: A configuration in which the determinants are detors(38).
It must be emphasised that although these definitions are adhered to in
both Parts I and Part II of this thesis there is no generally acéepted
usage of the name configuration and some authors use it synonymously

with determinant.

The positions of the nuclei within a molecule are fixed with respect
to some co-ordinate system, referred to as the global co-ordinate system.
The origin of this set of co-ordinates is chosen to be at some convenient
point; for a homonuclear diatomic molecule the origin is at the mid-point
of a line joining the nuclei. The global co—ordinate system will be a
right-handed set of co-ordinates.

The atomic orbitals are defined with respect to local co-ordinate

systems which have their origins are the nuclei. The local co-ordinate
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systems are chosen to be parallel to the global co-ordinate system.
Both systems to be used for the homonuclear diatomic molecules are
shown in Fig. 15; the internuclear axis 0Z passes through the two nuclei

A and B whose co-ordinates with respect to the global co-~ordinate system

are ( 0,0,-R/2 ) and (0,0,R/2 ) respectively.

X
Xa XB
/ Zp / Z / 2g
YA v

FIG. 15. The co-ordinate systems for a honionuclear diatomic molecule,
0X, OY and 0Z define the global co—ordinate system.

The general form of the atomic orbitals will be a product of a
radial factor R(r) and an angular factor ©(6,p) , where the

co-ordinates (r,0, ¢ ) refer to a local co-ordinate system:

w; (r,0,9) = Ri(r)@i(9.¢) . (7.1)

It is usual to construct the molecular orbitals as linear combinations
of atomic orbitals which transform according to an irreducible
representation of the molecular symmetry group. This is achieved by use
of the projection operator (see, for example Hammersmesh( 39)). In

general, the projection operator may be written as

(p) _ Boc(u)*
P = g%x (R)O,. (7.2)
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In (7.2) the superscript g refers to a particular irreducible
*
representation. X(ﬁ‘) (R) is the character of the element R in the
4 irreducible representation, and UR. is the operator corresponding

to the element R. n is the degree of the irreducible representation

H
and g the order of the groupe. The usual technique for obtaining the
'symmetry adapted' molecular orbitals (SAMOs) is to apply the projection
operator for each irreducible representation to each of the members of
the chosen set of atomic orbitals. The result is a number of linear
combinations of atomic orbitals each of which transforms according to
one of the irreducible representations of the molecular symmetry group,
these combinations are the SAMOs.

Homonuclear diatomic molecules have an axis of symmetry of infinite
order (the axis of the molecule, 0Z in Fig. 15) and a centre ofvsymmetry.
Their symmetry group is I%°11 » generated by the operations:

(1) the rotations C, about the axis of symmetry by an angle 0 ,

(ii) the inversion i in the centre of symmetry,

(iii) a reflection O in the plane of symmetry containing the
internuclear axis.

Because the axis of symmetry is of infinite order it is necessary to replace

the summation in (7.2) by an integration with limits O and 27 , the

integrand being 7 « The projection operator for the group th has
the form

en
p(b) [J L CRT an +J x4)*(1e, )0, a1

0 n

on 27
+Jo x ¥ @, 8, a1 + | ¥ (100,)0,00 a1 ] L (7:3)
' n
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TABLE 5, THE CHARACTER TABLE OF Dmﬁ'
u E c, iC, oc,
Ly 1 1 1 1
Z{: 1 1 -1 1
% 1 1 1 -1
£ 1 1 -1 -1
rrg 2 2cos 2cos7 0
Tfu 2 2cosn  =2cosy 0
Ag 2 2cos27 2cos82y o}
A, 2 2cos2  ~-2cos2 0
Fg 2 2cosdn  2cosdy 0
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The character table for D is given in Table 5. . and the specific

®h
application of the operator to complex Slater-type orbitals is given
in Appendix II.

The construction of the secular equation is greatly simplified if
the basis set of molecular orbitals is orthonormal. This may be achieved
in two basic ways. The first method is to compute the overlap matrix

for the non-orthogonormal SAMOs. Let this matrix be S, The elements of

S are
y s Jeege (7

l{’_{ and ¢ 5 ~ are members of the set of non-orthogonormal SAMOs.
S has the property of being real symmetric positive definite matrix so
that it is possible to Choleski decompose it into the product of a lower

triangular matrix L and its transpose L._T:

s = LI, (7.5)
and’ .
st = | (7.6a)

where I is the identity matrix. The inverse of a lower triangular matrix

is also lower triangular and (_I_,.T)'1 will be upper triangular. Let

u = @™
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(7.6a) may be written

UTsy = I (7.6b)
The set {S”i} of orthonormal SAMOs is now defined by
R i
. t
Y3 351(‘03“:}1 ’ (7.7)
vhere Ug4 is an element of U. It is immediately obvious from (7.7)

that the orbital Sﬂi has the form produced by the technique known as
the Schmidt orthogonalization process(40) e It has been found that the
approach described leads to more stable numerical results than the
straightforward application of the Schmidt procedure(4o’ 41) * The second
method is that of simultaneous orthonormalization in which the eigenvectors
of S are divided by the square root of the corresponding eigenvalue; the
resulting matrix may then be used as in (7.7), but the summation runs

over all possible values of J . A set of orthonormal symmetry adapted
molecular spin orbitals may then be constructed according to (1.5).

A detor is defined as an antisymmetrized product of occupied spin-
orbitals. The antisymmetrizer (12) is a permutation operator which
commutes with the Hamiltonian I] , # , 8, , and the group
theoretical operators. Consequently a detor may be specified by defining
the appropriate product of occupied spin-orbitals. For this purpose an
Yordered product! PK of occupied spin orbitals is employed. If

wkﬁ wkz"""v ¢kn are members of the chosen set of

molecular spin-orbitals, then

Py = ¥ (¥, (200 ¥ (m)
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where the spin-orbital identifiers k1, K2 ,eeee, kn satisfy the

condition

k1 <k2 <k3< ,.. <kn ., (7.8)

The corresponding detor D, is then given by

K

DK =. aPK

Vo (¥ (1) ¥ (1)
= @)V ¥ W) LY@ - (.

Vi @¥o(m) o ¥y (n)

Obviously P_ represents the diagonal of D,, and the detor is an 'ordered

X K
detor'. The selection of the detors is equivalent to the choice of
the PKS' A basis set of N molecular spin-orbitals gives rise to
Nl /( (N=n)in}) different ordered products of molecular spin-orbitals
in an n -electron problem., For a sixteen electron system a minimal
basis set of twenty spin-orbitals produces 4845 ordered products of spin-
orbitals. This large number is drastically reduced by considerations of
electron spin and molecular symmetry. A further reduction in the number
of detors contributing to the wave function for a given state may be
achieved by an artifact, employed Mecklerc42), Kotami and his colleaguesé43);
Harris and Michels(44) call it the 'Valence Configuration Interaction' (VCI)
methode In the VCI method detors are constructed from valence shell
orbitals; Meckler's CI on Oxygen uses the detors derived from the
assignment of eight electrons to twelve SAMOs constructed from six p -type

Gaussian-type orbitals, three on each nucleus. Xotani et alia(43)

extended the approach to include the 2 8 orbitals. Thus in the former
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calculation each detor had a closed shell or 'frozen core! of electrons
occupying the 1s and 2s orbitals, and in the latter only the 1s shell
was frozen. The drastic freezing of the core by Meckler reduced the total
number of detors to 495, of which only 31 had the correct symmetry and
electron spin properties. The results of the calculations of Kotani et alia
are in good agreement with experimental resultg. It is concluded(44’45)
that to cause the orbitals, with principle quantum numbers less than that
of the valence shell, to be occupied in every detor is a restriction of
almost negligible effect. |

The selection of the PKS is a simple process. The frozen core is
assumed to consist of the first m orbitals in each detor, and the process
begins by selecting the first (n -1) spin-orbitals with the lowest
identifiers and allowing the nth spin-orbital to take the values of the
remaining (N-n ) identifiers. The identifier of spin-orbital (pn-1) is
increased by one and the process is repeated, working along the ordered
product until the m-th sg}n—orbital is reached. As an example consider

e

the basis set of ¢1 ' ‘4!2 ' 1/I3, ‘l,lf4, 1/)'5 » and IIIG for a four

electron system with two frozen orbitals; six PK are generated,

Py =¥, (1%, (20¥5(3)¥, (4)
B, =¥, (1)¥,(2)¥5(3)¥5(4)
Py =¥, ()W, (205 (3)¥,(4)
=¥, (1)¥,(2)¥, (3)¥5(4)
5 =¥y (1)¥,(2)¥, (3)¥(4)
SV (D, (0¥ (33, (4)
The ordered products P1, PB,P4, and P correspond to SZ = 0, while

P2 has S, = 1 and P5 has s& = -1, In the construction of codetors

with a total spin eigenvalue of O, P2 and P5 would be omitted because

2
s ¥ Iszl + The construction of the eigenfunctions of 3 is more
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s . 1 .
difficult and several approaches are poss:.ble( 1) « Because of its
computational simplicity, the method selected in the present work is
2
based on the diagonalization of the operator 5 over the chosen set
2
of detors. The matrix involved has (DK | 3 | DL> as its elements
. . . 2
and as the antisymmetrizer commutes with 5 s these elements may be
2
calculated as <P, 189 1 P> .
The total spin operator may be written

2 :
8= g 8 + 8- 8 , (7.10)

2

where 5.,. and 5_ are the 'step-up' and 'step-down' operators("). The
) .
effect of 52 and hence B, on a product of spin-orbitals is given

by (1.9)« 8, and §_ must be expanded as

n
8, = 35 Sy (7.11a)
and
n
8_ = 121 %3 (7.11D)

the operators S i+ and s j- are one-electron operators which act on

the spin orbitals, defined according to (1.5), as shown in (7.12)

0

Sy ¥aio1 = 5,1

s_¥oiq =5 o =PP=¥y

S+<Piﬁ = 50100 = IP'Zi"'"

+

N

[
[}

L")

<
N
[

]

S-“Oiﬁ =0 (7.12)
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Applying 82 to P.:

3.

2 2
822, = 82V 00,

8, 8_(¥¥¥s¥,) + 0.7,
= 8 (V¥ ¥:¥,) + (¥, 0,¥,%:))
= (¥, Y pbe) + (#r2w11#3¢6) + <¢2w2w3¢5)

+ (TP ¥,) + (WP, + (BE%) . (7.13)

There are six terms in (7.13); the first is P3, the second--P3 since

'¢‘1 and 1()'2 have to be interchanged to produce an ordered product,
the third and fourth terms are zero because of the double occupancy of
a spin-orbital which causes the corresponding detor to vanish ,v the' fifth

term is P3 and the last P4. Thus,

2

It is seen from (7.12) and (7.13) that (7.14) can be obtained simply by
applying the 52 operator to the unfrozen orbitals #’3 and w6 .
This is because the frozen core is an eigenfunction of 52 with S = O.

The final step of evaluating <PK | 52 ] PL) is achieved using the

knowledge that

(PIC | PL> = GKL,

where the integration is performed over the spin co-ordinates. Using the
approach described in the next chapter it is possible to ensure that the
resulting matrix is block diagonal, and it may be diagonalized by any

suitable method(13) . The foregoing remarks concerning the construction
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of spin eigenfunctions apply equally well to determinants.

The detors are constructed from an orthonormal set of symmetry
adapted molecular spin-orbitals. The most suitable atomic orbitals for
problems concerning diatomic molecules are complex Slater=type orbitals;

the normalized form of these is

w(n,l,m) = Rn(r)Ylm(9,¢) ' ’ (7.15a)
where
21 2n+1 1/2
R (r) =[L'('2Ln)—,] P lexp(~(r) , (7.150)
and
(=)™ r(2141) (1= m] )1 ]7/2
a6 = "I, [411 (1+lm|)£] sin ™6
q 1+ Im]
[dcose] sin219exp(jm¢9 . (7.15¢)

The orbital is defined with respect to a local co-ordinate system, Rn (1?)
is a normalized radial function, Y1y ( 6, ¢ ) is a spherical harmonic( 4)
and j = J:ﬁt The SAMOs for a diatomic molecule are characterized by
the component of the orbital angular momentum in the z-direction (the axial
angular momentum and equal to m in primary units) of their constituent
orbitals (see Appendix II). The axial angular momentum N\ of an orbital
product and its corresponding detor may be obtained simply by swmming the

values of the magnetic quantum number m (7.15) of the constituent molecular

spin orbitals, i.e.

A = L§1 m, (7.16)
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The corresponding irreducible representation is partly determined by the
value of A ; A= 0, 1, 2, eve gives rise tothe £ , T , A
«se States of diatomic molecules. Under the operation of inversion the
detor either remains unchanged (gerade or g) or changes sign (ungerade or
u). The orbital product is gerade if it contains an even number of gerade
spin orbitals, otherwise it is ungerade. Thus a.detor may be characterized
by the symbol /\i’ where i is replaced by g for gerade detors and u

for ungerade detors. The Y detors are also characterized by their
beﬂaviour under the reflection o in the plane containing the inter-
nuclear axis. The operation ¢ 1is most conveniently considered in one
of the co-ordinate planes of the global co-ordinate system (i.e. the xg-
or YiZ- planes(14 ’ 465. The result of such a reflection on each
individual spin-orbital may be easily obtained. The reflection operator
is applied simultaneously to each orbital in the ordered product; there

are four possible results, swmmarized in (7.17).

0P = Py , (7.17a)
Py = +Pp (7.17p)

If the wave function changes sign the superscript - is added to r and
if the sign is unchanged the superscript + is added. Thus, (7.17a)
produces either a + or - state, while (7.17b) gives both.

When the total spin eigenfunetions have been obtained it is a simple
matter to combine them to form codetors. In matrix notation the codetors

are defined as

YSO‘ = DT A4 (7018)
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¥

Yso is a row vector with elements that are simultaneously eigen-

functions of 52 and o . D is a row vector of detors, each

corresponding to the same values of S 2 and Ai + The matrix _‘l_‘So,

can be regarded as a projection matrix which projects “_}:So_ from D. The

elements of 230. are determined by the methods previously described.
Having obtained the codetors which transform according to the molecular

state being investigated, it is possible to proceed with the evaluation of

the matrix elements:

Hyy = <Wol Ly (1.132)
and
Sy = <Y I¥;2 . (1.13b)
From (7.18)
\PI = )F:{ Dbyt . (7+19)

Substitution of (7.19) into (1.13) gives

Hig = % % b1t <Dkl b1 (7.20a)
and -
Spg = L L tpybpg<hlDp (7.20b)
The problem reduces to the evaluation of <DK| bIDL> and
(DKIDL> » the elements of two matrices Hj and S. In matrix

notation (7.20) becomes

H.T (7¢21a)
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and
S = T: .7
8 = I5,8pls, (7.21p)
T . (8) X
( E—SO' is the transpose of ESO’ ). IBwdin has given general

formulae for evaluating the elements of % and §D in terms of integrals

over basis orbitals when determinants are used. Evaluation of these
formulae requires a considerable computational effort, and a simpler form
produced for detors will be employed. Before evaluating the elements of

E-D and §D each pair of detors must be brought into maximum coincidence,

this means that those spin-orbitals common to both detors must occupy the

same columns in both. For each pair of detors

<DK1 DL> =6KL . (7.22)

The evaluation of <DKI bIDL> is split into two parts as shown in

(7.23)

n
<pglhip > = <DKI#§1hI_‘ 1Dy >

+ (DKlpgvgt“”lDL> N (7.23)

There are four cases to be considered in the evaluation of the two terms
in (7.23):
(1) D, and Dy are identical,

(ii) Dy and D differ by one spin-orbital, 4’m entering D, where

7/-'-p enters DL;

(iii) Dy and D differ by two spin-orbitals, #"m and "ﬁn entering
DK where wp and wq enter DL’ and

(iv) Dy and D, differ by more than two spin-orbitals
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The following notation will be used:;
n =j1#;(1)h11#j(1)dx1 o (7.24)
[1j1x1] =JJ§UI(1)1#;(2)(1/1-12)1,(!3(1)1{)‘1(2)dx1dx2 ) (7425)

J (iil33] y (7.26)

ij

15 = (13134 . (7.27)

Thus,
= T h, for case (1)
i -’

n
<DKIp§1h/JIDL> A = hmp for case (ii)

= 0 for cases (iii) and (iv), (7.28)

and

[
=L Y(J,, - K,.) for case (i)
1313 T T
= L ([iilmp] - [ipimi]) for case (ii)
J i#m

Dy L g“leL>
u<v

[mpingl - [mqlnpl for case (iii)

0 for case (iv) . (7.29)
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In (7.28) the summation is over all the occupied orbitals in DK for case
(i) and in (7.29) the double summation for case (i) is over all the

occupied orbitals in D_; the single summation of case (ii) excludes the

K’
orbital #;m in D, and #&) in D;. The integrals of (7.24) to (7.27)
can be reduced to integrals over spatial orbitals using the relation of
(1.5) and the knowledge that the spin functions may be factored off and
integrated separately. The integrals are normally computed over the

basis atomic orbitals, and are then transformed directly into integrals

over the orthonormal SAMOs. For the diatomic molecules this procedure

is as follows:

kpt_ chl

je3y , (7.30a)

-
(

or in matrix form

n
&
Q

¢' =wC (7.300)

The #95' are non-orthonormal SAMOs, which are then orthonormalized by one

of the methods described, so that

Py = Eriuik ’ (7.31a)
or in matrix form
Y=9'U (7.31b)

Combining (7.30) with (7.31) gives

f=0C'U=0C . ~ (7.32)

Ie
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The integrals llij are the elements of the one-electron Hamiltonian
matrix N1, hence the transformation to integrals over the set [9?ﬂ

takes the form of a matrix product

h = QTE‘,,Q , (7.33)
where the elements of h, are the integrals Jcoi*(1)h1ooj(1)dr1
Because of the large number of two-electron integrals the transformation
of these integrals requires special consideration. The total number of
two—electron integrals is equal to the fourth power of the number of
basis atomic orbitals. For integrals yielding real results the following

relations hold

[13]k1) = [K1]43] = [5i]1k] = [1k|ji] (7.342)

[31]x1] = [k1]3i] = [43|1x] = [1k|i3] ,  (7.34D)

In (7.34) the integrals are over spatial orbitals, but the electron
ordering is as in (7.25);

For diatomic molecules integration over the azimuthal angle
gives a non-zero result only if the magnetic quantwn numbers of the

orbitals involved satisfy the condition
mj - mi = mk - ml | . (7.35)

The transformation of the two-electron integrals for a diatomic molecule
can be speeded up if the transformed orbitals have values of m in the same
order as the original atomic basis set, because (7.35) can be applied at
each stage of the transformation. The inference of (7.35) is that in

general either (7.34a) or (7.34b) is zero, or both are zero for one- and
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two-centre two-electron integrals.

It is possible to index the integx;als according to the scheme

1/2(max(i, j)(max(i,j) - 1)) + min(4,}j)

=]
i

o]
Il

1/2(max(k,1)(max(k,1) - 1)) +.min(k,1) . (7.36)

The two electron integrals are generated (see Chapter 8) according to the
rules that 1i>j , k=1 , and nr? n, . The actual transformation

proceeds in two stages. The first stage is
ko,w,14 €1 = LLc,epw,wlow] | (7.37a)

where 4 , v , kX , and 1 take all possible values, whilst A and ©O
are subject to the condition A>0 . The second stage is

414 8T = TTe, g0, 00,0088 (3m

Once the matrix elements between the detors have been computed, the
transformation of (7.21a) is performed to obtain the matrix elements H iy
(1.13a). As a consequence of (7.22), the matrix S of (7.21b) is the
identity matrix, since the columns of 28 o are of necessity orthonormal.
Kotani et alia( 12 have proposed an alternative method for computing
the matrix elements Hj_j e ‘Their method, based on the idea of represent=
ation matrices, appears to suffer from two disadvantages. Firstly it is
desirable to know the wave function ¥ (1.1) as a linear combination of
detors since the first order density matrix, used to compute molecular

properties, can most easily be computed from a wave function in the form

of (1.9). Extracting this form from the method described is almost a trival
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exercise; to obtain it from the method of Kotani, although feasible, is
_far from easy, as the actual detors are never defined. Secondly, once

the matrix elements between detors for a given Ai and Sz have been
evaluated, it is possible to set up matrix elements between codetors
belonging to several 'reflection' and total spin states merely by changing
the projection matrix 280’ « This in itself represents a considerable
saving in computer time as Kotani's method demands searches of the integral
files (see Chapter 8) for each molecular state.

The final step in the method of Configuration Interaction is the solution

of the secular equation which may be written as

(H-EI)A=0 . (7.38)

The energies EI are the eigenvalues of H, A is a column vector, an
eigenvector of H corresponding to a particular EI « Two possible
methods of solving (7.38) are the method of Jacobi and the QR-Algorithm,
both described by Wilkinson(13 17 49. The latter method is preferred,
since it is currently the fastest method available for finding the eigen-
values and eigenvectors of a real symmetric matrix.

At this p;int it is convenient to discuss the construction of the

first order density matrix, as all of the information required is available.

For the I-th energy of a given molecular staté the wave function ‘Pw is

¥ = ;%J“’La?m (1.11)

where the aLI are the elements of the eigenvector corresponding to the
energy EI of this level. The codetors ‘PL may be replaced by a sum of

detors according to (1.10), so

Y = T D, ¥ t _.a . 7.39)
7 x5 krtir (
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The coefficient of Dy may be simply written as bKI ’

bKI = % tKLaLI Y (7040)

According to vadin( 8) the elements ¥(1|X) of the first order density

for the I-th energy level are given by
y(llk) = i % bKIbLIDKL(kll) ’ (7.41)

where D, (k]1) is the cofactor of the term due to JTP';(‘l )1#1(1 )dx1
in the integral < DKl DL> « The summation over K is over those
determinants DK,which contain spin-orbital 'lp'k and that over L is over
those determinants Dy, which contain ]pl « If the determinants are in
fact detors (7.41) is easily evaluated, because there are only two
conditions under which Dy (x|1) is non-zero. The first is when K = L in
which case Dy (x|1) = 5kl - The second is when D and D; differ by

one spin-orbital, “’Uk appears in the i-th column of DK and '4‘1 appears

in the j-th column of DL’ in this case
Dpp(k[1) = (-1)* (7.42)

and all other cofactors are zero. The first order density matrix so
obtained is in terms of the orthonormal molecular spin-orbitals and may
be used in the calculation of molecular properties (see Chapter 11 ). The
first order density matrix may also be diagonalized to provide occupation
numbers and the transformation matrix which carries the set {'41'1] . into

the natural spin-orbitals {Xk§ (8),
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CHAPTER 8

COMPUTATIONAL METHODS

The philosophy behind the programming of the methods described in
the previous chapter has been to generalize wherever possible: a
program capable of computing one~ and two-centre integrals is not used
if only one-centre integrals are required because the more general
program is extremely inefficient if used in this way. Only one integral
transformation program is used because the process is the same for both
types of integrals. With one exception all subprograms are writtea in
the §0RTRAN v language(49) for the ICL Atlas Computer. The one exception
is a function subprogram, the bogy of which is written in Atlas Basic
Language (ABL)(SO). Several dis&inct programs were written because some
of the results produced at each stage may be used for other purposes;
the integrals may be used in both CI and SCF programs. A set of
subprograms used by more than one of the programs is listed in Appendix
lIII under the heading of 'Utility Routines'. Considerable use of facilities
not provided in other implementations of FORTRAN is made and, as a result,
easier checking and correction of programs and greater efficiency has been
achieved. The Atlas AMPEX one inch tape system uses pre-addressed tapes
with numbered blocks, each of which store 512 words of Atlas information(51).
The Atlas disc store is used in exactly the same way. The programs to be
described use thése tapes and disc areas in the variable length mode and
information from a particular run of a program constitutes a 'file' which
may be placed anywhere on the tape or disc area merely by positioning the
appropriate device at the block and word at which the file is to begin.
As a safeguard no two programs may write on the same tape or disc area.

The programming problem breaks down into four distinct parts:



- 93 =

(a) Generation of the codetors,
(b) Evaluation of the integrals over the atomic orbital basis set,
(c) Transformation of the integrals to an orthonormal basis set, and

(d) Construction and solution of the secular equation.

A. Generation Codetors

The program which generates the detors is called GENDET and is listed
in Appendix IV. This program generates the ordered spin orbital products
PK of (7.9). These products aré eigenfunctions of the operator 52
corresponding to an eigenvalue Sz , they possess a given axial angular
momentum A sy and are of either gerade or ungerade symmetry. The
required values of Sz and /\ together with the inversion symmetry
are specified in the data. Facilities are provided for freezing the
inner-shell electrons. The data also contains the total number of electrons,
the number in the frozen shell, and the number of spin-orbitals. The
magnetic quantum number, inversion symmetry and the identifier of the
orbital resulting from a reflection in the XZ-~-plane must be provided for
each spin-orbital. The spatial parts of the orbitals are identified by
use of (1.5). The calculation begins with the generation of all possible
ordered spin orbital products. This is essentially the selection of n
spin-orbitals from a total of N spin-orbitals where n is the number of
electrons outside the frozen shell, and N the number of unfrozen spin-
orbitals. This is accomp}ished by the subroutine qﬁMBIN. The parameter
1list of this subroutine coatains a logical variable which causes the first

spin~orbital product P, to be generated when set equal to TRUE,

1

P1=1, 2’ 3, ooo,n-1’n

= Yts .. ¥,
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and the logical variable is set equal to FALSE. The subprogram then

uses P1 to generate P2, P2

the last one is reached, this has the form

to generate P3, and the process continues until

PLAST = N-n,N—n+1, no-ooo'N-1,N

= Uy Pypeq ceeeeees By

On encountering the final ordered product C;?fMBIN will regenerate P1 s but
the logical variable is reset to TRUE, and if this value is returned from
the subprogram control passes to the next stage. As each PK is generated
it is tested in the subroutine SETUP to see if it has the correct values
of S, A , and the required inversion symmetry. If it satisfies
these requirements it is stored as a row of the two-~dimensional array Isﬁ.
The number of entries is ISf and the total number of P, generated is
counted.

The next step in the program is a call of the subroutine SPINIR which
checks the inversion symmetry of each PK and evaluates the matrix elements
<Py EZIPK> . For A=0, ice. ¥  products, SPINIR computes
the effect on PK of a reflection in the XZ-plane. Any one of these
operations must produce a linear combination of the entries in IS,Q'. In
general the process proceeds as follows: consider an operator 0 which
may be either O ,52 s or 1 , then

(8.1)

UPK = % P]'DCLK .

L}
In (8.1) PL is a spin-orbital product which may not be ordered; therefore

L}
the elements of PL are permuted by the subroutine PERMUT to produce an

ordered spin-orbital product PL' and the parity of the permutation is also

obtained. P, is then identified with an entry in 1s@ by the subroutine

CALATE. If P, caxnot be found in ISF an error message is printed and
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execution ceases. The evaluation‘ of < PLl 52 [PK> begins with

the application of the 5_ operator to the singly occupied orbitals of
PK' For the purpose of this operation the spins of the spin-orbitals in
P, are identified as o , if the entry in the rov of 1s@ corresponding
to Py is odd, and B if the entry is even (this is in accordance with
(1.5)). The result of this operation is similar to (8.1), and the products

]
P_ are entered in a two-dimensional array ISMZP. The 8 , operator is then

L
applied to the entries in ISM;D'P and the resulting spin-orbital products
are held as rows in the array ISPﬁP. By use of the subroutines PERMUT and
CALATE the values of Cx in (8.1) are determined. For each P, the values
of L for which CLK is non-zero after the operation (Eg - Ez ) are stored
in the array ICZL, and the non-zero value of Cpx is stored in the array
C@gE, since (PLIEQ JPK> = <DLl52 IDK> = Ciy+ As each Py
is processed the results are written onto a disc or tape file. The rows
of 1Sg are not processed sequentially. At the start of the process the
elements in a one-dimensional array INDEX are all zero, each element
corresponding to a row of Isyf. 52 is applied to 1-"1 first, and the next
product examined is the first one in (8.1), for which C]’:, is non-zero and
has a non-zero entry in INDEX. If there are no zero entries in INDEX and
A= 0, the next product processed is the one resulting from the application
of the reflection operator to the PK to which 52 was applied, provided
that the entry in INDEX is zero. However if a non-zero entry is encountered
or A £ 0 the array INDEX is searched from the beginning for the next
zero element, and the process is operated until all the PK have been examined.
This approach ensures that the matrix of the 52 operator is block
diagonal, and makes interpretation of the resﬁlts easier. The PK are
numbered according to the order in which g 2 is applied. The output from
| GENDET comprises:

(i) P, on cards,
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(ii) «x, 1P, OP (zero if A =0), L and Cry if non-zero.
(iii) Eigenvalues and eigenvectors of the blocks on the diagonal of the
2
3 matrix. The card output is used as data for the program SECSZL

(Appendix VII), which constructs and solves the secular equation.

Be. Evaluation of Integrals over the atomic orbital basis set

This is one of the more difficult aspects of quantum molecular
calculations. If the atomic orbitals are of the Slater-type, then the
two—-electron integrals may only be evaluated in ‘closed form' when the
constituent orbitals are on the same centre. These are the one-~centre
two—-electron integrals. Although closed form expressions exist fdi two-
centre two-electron integrals they are notoriously unstable and the
integrals are usually evaluated by numerical integration. For integrals
involving more than two centre various techniques are employed; the most
favoured being some form of expansion in terms of Gaussian-type orbitals(sz).
An alternative is to use the Gaussian orbitals by themselves (see for
example Clementi and Davis(53)), the disadvantage being the vast number of
integrals involved and the length of time required to transform to an
orthonormal SAMO basis.

The choice of complex Slater~type orbitalswas made early in the project
because of the availability of several diatomic integral programs based on
these orbitals. As it is inefficient to use such programs for atomic
calculations, a short program for evaluating all one-centre one- and two-
electron integrals over complex Slater-type orbitals was written. This has
been used both to check the transformation program and SECS@L. This
program called @NECEN is listed in Appendix V, and theron-zero Clebsch-

Gordon coefficients(41) C%¥f1?2 used in the expansion of a

172
product of spherical harmonics are also given. The method of indexing
C%%ﬁ’%? is easily determined by examination of the sub-
2

program INDEX 1 and the coefficients are limited to the range 0 g 1i < 3
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with 1 =1 or 2.

@NECEN uses the function subprogram IPAR listed in Appendix III. The
parameter list of IPAR consists of a single integer variable name. On being
called IPAR is set equal to zero if this integer is even, and equal to unity
if it is odd. The current method of representing decimal integers as
binary integers is such that, if the decimal integer is even, the contents
of the least significant bit of the word containing its binary equivalent
is zero, whereas if the decimal integer is odd this bit contains a one.

IPAR is set equal to the contents of the least significant bit of the word
containing thé variable in the parameter list. The subprogram is of
necessity written in ABL. An alternative to IPAR is the use of the intrinsic
function Mﬂb('4®. A call of MgD (N, 2) has the same effect as IPAR(N),

but has been shown to take 50% longer, even when used as a statement function.

The overlap and one-electron Hamiltonian integrals are stored in the
two—dimensional arrays S and H in ﬂNECEN. These arrays are written onto a
magnetic tape (or disc area) referred to as the Master Integral Tape. The
file begins at word zero of a block specified in the data. The two-electron
integrals are generated in accordance with the rules given in Chapter 7.

The storage of these integrals is such that the integral (AMAMIANAN|
(puz2vand A0, g>A and if 4 =A, v > o ) will be word
number fi, of record number n, where n, and n, ( s nr) are given by (7.36).
The first record containing two-electron integrals follow immediately after
S and H. ﬂNECEN computes all the integrals arising from a basis set of 1s,
2s, 2P, 2p_, and 2p+ complex Slater-type orbitals in less than two seconds.

The integrals required for the calculation of wave functions for diatomic
molecules are computed using a modified version of a program written by
Miller and Browne( 54). The modifications consist of the removal of the
vfacility by which the integrals over the complex Slater-type orbitals are

transformed to integrals over real Slater-type orbitals. As this program
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generates the integrals in a form incompatible with the input requirements
of the transformation program, an interface between the two programs was
written which produces a master integral tape of the same form as is
produced by @NECEN. The modifications to the Miller-Browne program and the
interface were implemented by Dr M. Dixon and the author gratefully

acknowledges his assistance in this respect.

C. Transformation of the integrals to an orthonormal basis set.

The transformation of the integrals over the atomic orbital basis
into integrals over an orthonormal basis is a relatively simple processe.

The integral transformation program is called INTRA and is listed in
Appendix VI. There are three essential parts to INTRA:

(i) the extension of the two-electron integral records to cover
all values of n, (7.36),

(ii) the computation of the Schmidt orthonormalization coefficients
(the elements of U in (7.7)) and transform the one-electron Hamiltonian
integrals,

(iii) the transformation of the two-electron integrals. As a preliminary
to the transformation the integrals generated by either @NECEN (for atomic
systems) or by the Miller-Browne program (for diatomic systems) are copied
from the Master Integral Tape onto a common disc area. This ensures that
the Master Integral Tape cannot be corrupted by the transformation, as
INTRA may only read this tape.

The two-electron integrals can be regarded as the elements of a real
symmetric matrix I with elemeats In n? vhere n, and n, are defined by (7.36).
Only the lower triangle of I is com;u:ed by the integral generation programs
and it is necessary to complete the upper triangle. This operation is the
first stage of INTRA. It is complicated by the fact that I is gemerally

too large for more than a few rows to be in the core store at any one time.
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This stage is contained within the subprogram called SETERI. The
algorithm begins by reading each row of I from the appropriate device
(the number of elements in each row beginning equal to the number of the
record). As each row is read it is packed out with zeros and the whole
row written onto another device. The resulting matrix J has a lower
triangle equal to that of I and an upper triangle of zeros. The matrix J
is then transposed by the subroutine BIGTRA. The lower triangle of I is
then merged with the transpose of J to give the complete matrix I.

The subprogram BIGTRA transposes a large matrix which is written on
a disc or tape, in this case, by rows. It makes optimal use of the
available core store by reading as many complete records (rows) as possible
into the available space. Let this number by NRZW. The process in the Nth
pass over the matrix to be transposed consists of the following sequence
of operations: read first NROW records into a two-dimensional array A,
transpose the NRZW % NRZW square matrix beginning at column (NRFW*(N-1)+1)
of A, and enter this into the first NRAW*NRZW block of the two—dimensional
array B. The next NRZW records are read into A, transposed as before and
entered into the second NRFW*NRZW block of B. This procedure is repeated
until B is full and it is then written onto a tape or disc by rows
representing columns (NRZW*(N-1)+1) to NRZW*N of the original matrix. The
sequence is repeated until the whole of the original matrix has been
transposed, taking into account the fact that the number of rows of the
original matrix may not‘be an integral multiple of NRﬁW. At the end of each
pass over the original matrix, the appropriate device is rewound and at the
end of the routine the original matrix is overwritten by its transpose.

For small basis sets the whole of this part of INTRA is performed in
core. |

The transformation of the one-electron integrals is performed by the

subroutines @RTHZN and TRANSH. Firstly the matrix C' of (7.30) is used to
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transform the overlap matrix of the atomic orbitals into integrals over a
SAMO basis. If the calculation is on an atomic system C' is the identity
matrix. The resulting overlap matrix $ overwrites the original one. The
subroutine PRTHEN obtains the matrix U of (7.7) by Choleski decomposition
of S. The matrix ;._T of (7.5) is held in the array QU, which is then
inverted to give the matrix U which is stored in the array QC. The one-
electron Hamiltonian matrix h, 1is transformed by the matrix produci:

h =gl

h
- =W

C (8.2)

where C = C'U. The transformed overlap matrix (i.e. I_J_T S U) is printed
as a check on the orthogonality of the final set of orbitals.

The approach just described for obtaining the Schmidt orthonormalization
coefficients was shown to produce better results in single precision
arithmetic than the recursive approach suggested by 'l‘odd( 49) and Harris( 41)
does in double precision arithmetic. It is also a much faster method.

The transformation of the two-electron integrals is carried out by
the subprogram TWZTRA and its control routine CZNTRA. If the i-th
transformed orbital has the same axial angular momentum as the i-th atomic
orbital, then the transformation of integrals not satisfying (7.35) is
suppressed. Use of this feature is optional (see Appendix VI), and it can
reduce the transformation time for the two-electron integrals by almost 50%.
This option will enable the program to be used for the transformation of
multi-centre integrals. The transformation proceeds in two stages. The
first stage sets up the partially transformed integrals [wﬂwJ‘pkga]El
according to (7.37a) and it is seen from (7.36) that for a given set of W
and V all the integrals over the atomic orbitals appear in the same record.
The partially transformed integrals are obtained for all possible values of

4 4, VYV, kX ,and 1 . Partially transformed integrals for which



my, -m, =, mk - ml (8.3)

are actually computed, the remainder one set equal to zero and the
transformation process suppressed. The partially transformed integrals
form the elements of a two dimemsional array, which is written onto a disc
area, with each row corresponding to a record, the number of the row being
given by

Pp=Hp (V=1 +u , (8.4a)

and the position of the element in the record by

Pe = kpay(1 = 1) + k. (8.4p)
(Obviously Frag = kmax = number of basis orbitals). Inspection of
(7.37b) shows that the fﬁﬁﬁovl¢%£V3_] appear as columns of

this matrix, which is not symmetric. To avoid unnecessary searching of
the disc £ile this matrix is transposed either in core or if it is too
large by the subprogram BIGTRA.

The second stage of the two-electron transformation proceeds with the
evaluation of (7.37b) using the condition of (7.35) wherever possible to
speed the process. The complete file of transformed integrals consists of

[gaisaj [ka’l] written in records with

Pe® dpy (G-1)+ 4 (8.4c)

identifying the record, and pé of (8.4b) identifying the element in the
record. The transformed two-electron integrals are followed by a single

record containing the transformedcone-electron Hamiltonian integrals. The

% FOOTNOTE: setting m = O for all the orbitals is equivalent to
suppressing this test (see Appendix VTI)
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complete file begins at word zero of a block on the Master Transformed
Integral Tape as specified in the data. Thus for a basis set of n orbitals
the output to this tape will consist of (n2 + 1) records, each containing

n2 elements. ‘ -

D. Construction and Solution of the Secular Equation

This is the final part of the CI method. The progranm SECSﬁL listed
in Appendix VII constructs and solves the secular equation for a CI
calculation on molecules of general geometry, the limit being twenty nuclei.
An option is provided to enable the user to compute the first order density
matrix, which is then diagonalized to give occupation numbers and natural
spin-orbitals. It is convenientto discuss SECSPL in terms of the functions
of the following three groups of subprogranms,

(i) compufation of the matrix elements (DLII]KDK>
between detors, |

(ii) construction and solution of (§ - EL) A = O,
and (iii) the optional natural spin-~orbital analysis in which the first
order density matrix over the orthonormal SAMO is computed.

Computation of the <DiJI]lDK> requires the specification of
the ordered spin-orbital products, and for homonuclear diatomic molecules
the cards output by GENDET provide this information. As the matrix with
elements <DLI leK> is symmetric only the lower triangle is

evaluated and stored in a one-dimensional array G, where

G(XL) = (DLlthK> ., (K<L) (8.5)

&

(1*(L - 1))/2 + K . (8.6)
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Before evaluating G(KL) it is necessary to bring DL and DK into the
condition of maximum coincidence. The subroutine MAXC@N brings each pair
of off-diagonal detors (i.e. X < L) into maximum coincidence, by
permuting the elements of the ordered spin-orbital product defining one
of them. The parity of the permutation is determined. Those pairs in
which the detors differ by more than two spin-orbitals are ignored, because
the corresponding matrix element is zero. For each of the remaining pairs
the following information is entered as a row in the two-=dimensional
array IDIFF,
(i) the number of spin-orbitals by which the pair (K, L) differs,
(ii) the identifiers of the spin-orbitals not common to both,
(iii) the parity of the permutation required to satisfy the condition
of maximum coincidence,
(iv) the value of XL given by (8.6).
The number of entries in IDIFF are counted, and the array may be dumped
on a disc file if it is too small for the current problem.
The actual evaluation of G(XKL) is in two steps and the first involves
the computation of the two-electron contribution. The contribution of a
frozen shell of electrons represents a constant which may be computed
separately, and then added to the frozen shell-valence and valence-valence
electron interactions for the diagonal terms < D | b IDKZ> . This
constant is computed in the subprogram PASﬁNE. The remaining interaction
for the diagonal elements, and the values of the off-diagonal elements are
computed in the subroutine PASTWZ.
In PASTWZ the two electron integrals Deiggltgkq%? are
read into core for all values of k and 1, for a given pair of values of i
and j, according to (8.4b) and (8.4c). Each record is examined to determine
whether or not it contains integrals that will contribute to the diagonal

elements (see 7.29 ); integrals which make a contribution are added or
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subtracted, as appropriate, to the correct element of G. Next, by
searching the array IDIFF, those integrals which contribute to the off-
diagonal elements are found. As the detors are in terms of spin-orbitals
and the integrals over (spatial) orbitals, it is necessary to use (1.5)
to identify the correct integrals and to determine whether or not the
integration over the spin co-ordinates produces zero. PASTWO makes
considerable use of the function subprogram IPAR.

The final step is evaluating the matrix elements between the detors
is the evaluation of the one-electron contribution. The transformed one-
electron Hamiltonian matrix is read into core by the subprogram HPASS.

The contribution from the frozen shell is evaluated once and added to
the remaining contributions to the diagonal elements. For the off-
diagonal elements there will only be one non-zero contribution which is
added to G(XL); G(XL) is then multiplied by the appropriate parity
factor (+ 1).

Once the matrix elements between the detors have been evaluated the
program proceeds to compute the matrix elements of the secular equation
as indicated in (7.21). For homonuclear diatomic molecules the projection
matrix Tg, can be obtained by inspection of the output from GENDET.
The evaluation of (7.21a) is the basis of the subroutine SECSEL (not to be
confused with the program of the same name of which it is a part), its
eigenvalues and corresponding eigenvectors are determined by the QR-
Algorithm(13). The eigenvalues are the energies of the state projected
by 'EScr and each eigenvector defines a wave function for this state.

Finally the program SEcsﬁi will perform a natural spin orbital
analysis on the i-th level of the state given by T se ° The first order
density matrix is computed from a wave function expanded as a sum of detors
rather than as a sum of codetors. The coefficients b‘KI are obtained

using (7.46). The first order density matrix is computed by the method
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indicated at the end of Chapter 7. It is diagonalized by the QR-Algorithm,
and the subprograms NATZRB and F@DMA4 constitute this section of SECSZL.

By use of the projection matrix 4280' it is possible to construct
the secular equation for several molecular and spin states from a given
array G. This fact and the desire to preserve many of the results produced
by the program SECS@L led to the writing of subroutine TDFILE. This
subprogram handles all transfers of preserved information, whether the
transfers be between peripheral devices or between a peripheral device
and core store. All the results obtained for a particular molecule will
be held in a file which will also contain all of the transformed integrals
used in the calculations. This file is kept on a magnetic tape called the
Master Results Tape. TDFILE sets up a table of contents for this file.
The entries in this table define the position of a particular set of results,
the type of results, and the data required to enable information to be read
from the file. The user may identify each entry in the contents table by
providing a 32 character title in the data for SECSPL (see appendix VII).
A similar table is also kept for a private disc area on which all results
current}y being used, or generated, by the program is held. The master
results tape is updated from this disc area; this has advantages in that
the current set of results cannot be lost through machine faults, unless,
of course, the disc actually fails during a transfer. Both contents tables
are written on a small private disc area. TDFILE is written in such a way
that it is virtually impossible for the user to accidently corrupt or over-
write the master results tape or the master transformed integrals tape;
the program SECS@L can only assess these tapes by a call of TDFILE,

Each program described has a *‘multiple run' facility, which permits the
processing of several sets of data in any one run. In the case of SECSZL

both the specification of the detors and T may be read in the first set

So
of data and used in subsequeant runs. This substantially reduces the number
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of data cards required. SECSZL may also be re-entered at the start of
any sectione.

Once written each subprogram was thoroughly checked and rigourously
tested (all test runs were in the FORTRAN V test modeé49)). The final
test of the programs was their ability to reproduce published results.

The calculation chosen for this test was based on the CI calculations on
the diatomic oxygen molecule of Meckler('43, Kotari et alia643), and
Schaefer and Harris( 43.

Meckler's calculation is a CI in which the SAMOs arising from the 1s
and 2s atomic orbitals are frozen; the codetors arise from the 2p atomic
orbitals. There are 31 detors with A= 0 and S, = O which are tested
by Meckler. From these detors it is possible to project 9 3{"g‘ codetors
and 12 12; codetors;. the corresponding projection matrices T _ and
_20*_ are also given. The calculation of Xotani et alia is based on the
codetors arising from the 2s and 2p atomic orbitals, the 1s shell is
frozen. It is possible to determine the specification of the detors and

1

the projection matrix T ] that they used for their 3):; wave function.

The detors have Sz = 1. This particular paper also contains the elements
of the matrix U ((7.6) and (7.7)) which orthonormalizes the SAMOs. The
most stringent test of both the programs GENDET and INTRA is the successful
reproduction of the results published by Meckler and Kotani. Both programs

(45

performed satisfactorily. The paper by Schaefer and Harris contains

the energies for 62 low-lying states of O2 at nine internmuclear distances,

and also values for the 3P, 1D, and 1S states of the oxygen atom. Test
32— 1}:+ .

runs for the g and g states of the molecule, at the same inter-—

nuclear distances used by Schaefer and Harris, and for the three states of

the atom, produced results which are in agreement with the published values

to within machine accuracy. This final test also provided a check on the

program ﬂNECEN. This program also produced integrals which agree with
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those given in references (12) and 41 ). As a check on the accuracy of
the QR-Algorithm, the secular equation was also solved using a routine
based on the method of Jacobi( 13.

The natural spin-orbital analysis was checked against the results
obtained from a general program, which will produce natural spin-orbitals
from.a wave function expressed as a sun of determinants. This program

(20731 ’3)7.) Wherever possible test

has reproduced various published results
calculations were checked on a desk calculator.
The results of the test calculations on 02 are given in Chapter 10,

together with the spectroscopic constants and molecular properties computed

using the methods described in Chapter 9.
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CHAPTER 9

SPECTROSCOPIC CONSTANTS OF

DIATOMIC MOLECULES

In the Born-Oppenheimer approximation the separation of the electronic
and nuclear motions leads to two equations, one describing the electronic
behaviour and the other the nuclear motion. The solution of the first
of these equations has been the subject of the preceeding chapters and

the electronic energy E_ corresponding to this solution is a function of

E
the nuclear co-ordinates. The electronic energy and the energy VN ’
due to the electrostatic repulsion of the nuclei, together form the
potential function V wused in the second equation. For a diatomic
molecule this equation is similar to that of the rotating vibrator, and

it has been solved by Dunham(ss), who expanded the potential function

about the equilibrium nuclear separatiomRe in a power series:
V(R):V(R)+a52(1+a§'+af2+ ) (9.1)
e 0 1 2 ¢ '

where

f = (R - Re)/Re ’
8 = “2/4Be ’
and
B, = h/(8ﬂ2ch§) . (9.2)

In (9.2) W, is the classical frequency of small oscillations, assuming

the system is a harmonic oscillator, and K is the réduced mass of the
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diatomic molecule. Using the Wentzel-Kramers~Brillouin method Dunham

obtained the equation

E . =XTY. (v + 1/2)233(7 + 1)9 (9.3)
vd 14 1]
J

for the energy level of a rotating vibrator associated with a rotational
quantwn number J and a vibrational quantum number v. The coefficients

Ylj (9.3) may be expressed in terms of COe ’ Be and the coefficients aj
of (9.1). The appropriate formulae are to be found in Dunham's paper.

The connection between the Ylj of (9.3) and the observed spectroscopic

constants is easily determined. From (9.3) the energy of a vibrational

level is

_ 2
By = YOO + Y1O(v + 1/2) + Yzo(v + 1/2) (9-4)

Y3O(v + 1/2)3 + Y4o(v + 1/2)4 + eoe o

This leads to the following expressions for the separations between the

lowest vibrational levels,

10 = Bgo = Yig = 2¥po + 1350/ + SY,0 4+ wen

-
o
]

Yo = 4Y,55 + 49Y3O/4 + 34Y,0 + eee o (9.5) |

The energy levels of the anharmonic oscillator are given by the expression

_ 2
E,g = a%(v + 1/2) - a%xe(v + 1/2)

(9.6)
+ ‘”éye(v + 1/2)% + a%ze(v + 1/2)4 + ees .
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-
(9.6) is obtained (56) by solving the appropriate Schr#dinger equation

using a potential function of the form

V(R) = V(R)) + £€2 - gf>

with  g@<f  which is a simplified form of (9.1). The separations

between the lowest energy levels obtained from (9.6) are

<3
I
=

10 Oo= we" 2wexe+13weye/4+ Sweze'l‘ cee ’

00 = Byp = @ = 4w X, + 49 ooeye/4 + 34 W2, + eee o (9.7)
Comparison of (9.5) and (9.7) gives

Tig = @ ’

Yo = =0 ’

T30 ¥ ®e¥e ¢

Y

t
>
N

40 ~ Te%e ’ (9.8)

Y10 is not exactly equal to coe because it contains terms in Bg/'oog‘

which arise from the more general form of the potential function used
by Dunham. Similar corrections appear in the other YlO .

For the rotational motion of the molecule the experimental expression
for the difference in energy between rotational levels J and O in the same

(56)

vibrational state is

E

vy = Byg = BLI(T + 1) - Dsz(J +1)% 4 HVJ3(J + 12 4+ eue .

(9.9)
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The rotational constants B\H DV and HV_ in the vibrational state considered
are expressed in terms of Be’ De and He which are the rotational constants

at Re' The usual expressions are

B, = B, - de(v + 1/2) + ye(v + 1/2)2 + Ge(v + 1/2)3 + eee ’
:Dv = De + 'Be(v + 1/2) * eee 9
HV = He + oo . (9.10)

Expansion of (9.3) gives
Evg — Eyo =
+ Y11(v + 1/2) + Y21(v +'1/2)2 + ¢ )J(T + 1)

+ Y12(v + 1/2) + Y22(v + 1/2)2 + ..)JZ(J + 1)2

O
W
+

Yg(v + 1/2) + )32 + 1)

+ .03 s DY (5.11)

Comparison of (9.9), (9.10), and (9.11) yields the approximate relations

I

Y B

01 e ’
T F % ,
Y21 2'75 ’
Y31 ¥ Se ’
Y&Z = Do ’
YO3 = Hy . (9.12)
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Once again the {Yljl differs from the "classical" values by terms
in ( ng/'oos ), which are usually less than ‘IO'"6 (55).

The value of coe is in cm-1, and the reduced mass M4 , used to
calculate Be and hence ooe » 1s measured in atomic mass units on the

unified scale(57). The value of Re is in bohrs so that
_ 2
B, = 60.2014/(pR]) . (9.13)

8
The probable radius of convergence of (9.1) is 0 < R < 2Re(5 )
and because the series is truncated, the actual region where it may
. (59)
reasonably be applied is close to Re .
The computation of the spectroscopic constants is achieved by
expressing the potential curve V (R) as a power series in R. This series
is then transformed into the form of (9.1) by using the method of synethic

division(40)(ﬁornerﬂsnwthod) and the Y
(55)

13 are determined by using the
appropriate formulae
The coefficients of the power series in R are found by the method of

least squares(4o). suppose

W(Ry) = T RI™Tp (9-14a)

J

or in matrix notation
Ap=Y . (9.14b)

In (9.14b) the elements of the matrix A are Ajj = Rij-1, p isa

column vector of the unknown coefficients, V a column vector of the energies,
and Ri is the i-th value of the internuclear distance. A unique vector
which minimizes the Euclidean (or L2) norm of V¥ = A p , only exists when

the columns of A are linearly independent(so). By taking powers of Ri
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accuracy is reduced and the columns of A may be nearly linearly dependent(61){
These difficulties can be avoided if Ri' the independent variable, is

transformed into the normalized independent variable xi where

x, = 28 = (B + Rypq) (9.15)
(Ry = Rppq)
and
<
PRI

In (9.15) R, is the minimum value of R; and R, the maximum value. Aj;
is now XiJ-1 and the solution of the least squares problem results in the

coefficients qj of the polynomial

v(x) = £ xilq, . (.16)

Use of an algorithm by Mackinney(62) permits the direct transformation of
(9.16) into (9.1). This algorithm transforms a polynomial in X into one
in € whereX=af + b. In the present case a = X, + (R1 + Rn+1l/
(R1 - Rn+1) and b = X_. The minimum of V(X) occurs at X = X_; it may be
found by using the Newton procedure(4o) and the fact that (dV/hR)X _x =0
The Newton procedure is initiated with an approximation Xk to Xe whereexk
satisfies the condition V(X,) < v(xj) for all i # Xk, v(xk) is a data
point. The value of R, is simply %(Xe (R1.- Rn+1) + (R1 + Rn+1))' The
solution of the least squares problem is further assisted by initially
subtracting the mean value of V(Ri) from each value of V(Ri).

The foregoing analysis forms the basis of the program SPECTRﬁ which is
listed in Appendix VIII. The program is completely self contained and the
Dunham analysis is performed by the subroutine DUNHAM. The solution of the

least squares problem is performed by subroutine phLIN2 which is a

FORTRAN V translation of Bauer's algorithm(Go). The program is so written
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Theoretical and Experimental Spectroscopic

constants for H

2

McLlean

4399.33
574563

60.841
0.0465

10.75

4393.8

-5.42
0.056
60.798
—2.834
~0.032
-0.031
-0.0466
0.0022
7.9528 x 10%
-1.565
1.900
-2.478
2.391
~0.959

"1 '1 74442 QeUoe
1440127 aeue

Spectro

4399.45
574613.

60.843
0.0465

10.75

4394.0
-1 040 34

-5.42
0.056 °
60.800
—2.834
-0.032
~0.031
~0.0466
0.0022
7.9529 x 10*
~1.565
1.900
~2.478
2.391
~0.959

1.40127

Experimental

4395.2

60.800

4400.39
-120.82
-0.724

60.864
0.0601

-0.0466

0.0016
7.9566 x 107
~1.598

1.868
~2.072

2.261
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that several energy levels of the same symmetry, spin, and covering the
same range of R may be processed in each run.

The results of the Dunham analysis are invariably compared with
experimental values and it is for this reason that the values of V(R;)
are converted in the program from hartrees to cm-1 using the conversion
factor given in Appendix I. The value of V(Re} in both cm™! and hartrees
is given in the program output.

McLean(63) published a comprehensive set of results for the Dunham

analysis of a wave function for H, obtained by Xolos and Roothaan(19).

2
McLean's results, the experimental Values(56ﬁ64) and those obtained by
SPECTR are given in Table 6. As far as the a; s of (9.1) are concerned
the results given by SPECTRﬁ are in complete agreement with those of McLean.
Some discrepancies arise both in the classical and corrected spectroscopic
constants. This is due to the slight differences in the factors used to

convert primary units to secondary units ‘as McLean used an older set(63).
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CHAPTER 10

RESULTS AND DISCUSSION

The diatomic oxygen molecule has been thoroughly studied by spectro-

( 56 69 (49

scopists and the extensive theoretical study of Schaefer and Harris
is in excellent agreement with experimental results. The work of these
authors provided a valuable means of checking the accuracy of the programs
described in the previous chapters.

Schaefer and Harris examined 62 low-lying states of the oxygen molecule
at up to eight internuclear separations, and obtained values of the energies
at an infinite separation by the appropriate combinations of the energies

of the 3P, 1D and 18 states of the separated atoms. Their approach to the

programming problem is similar to the one used here(GQ, although there are
important differences in technique. The most significant of these
differences is the evaluation of the one- and two-electron integrals which
employs a method evolved by Harris(67). ‘Two other differences worth noting

3

are the use of the recursive form of the Schmidt orthonormalization process
(40,41,60) and the use of Givens' method for diagonalizing a real symmetric
matrix. Finally an important computer hardware aspect of the calculation
of Schaefer and Harris is the fact that the Univac 1108 computer, which
they used(45), gives only 8 decimal digits accuracy for real arithmetic,
consequently their results are probably only accurate to 5 or 6 decimal
digits although they quote 7. Atlas gives 11 decimal digits(49'50) so that
a 5 or 6 figure agreement between the present results and those given in
reference 45 is acceptaﬁle. The details of their calculation differ slightly
from that described here. The detors of Schaefer and Harris are chosen so
that SZ = S and the configuration are classified according to the value of

A and S. Thus, for example, the secular equation they solve contains

all variants of 3[: syrmetry, and the g, u, +, Or — subspecies is sorted

out by the diagonalization process. Naturally this leads to secular equations
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of large dimensions (110 x 110 for the 35: states). However, the present

programs are designed to avoid this situation (see chapters 7 and 8). The

program GENDET, apart from reproducing the results previously quoted(4z‘43,

also confirms the number of configurations given in Table I of Schaefer and

Harris(49.

Unlike diatomic oxygen, diatomic sulphur has not received much attention
from the spectroscopists. The lack of experimental data is due to the

difficulty in setting up long-path absorption experiments in S, vapour at

2
temperatures around 650°C. This, combined with the large number (32) of
electrons involved, and the fact that the ground state of the molecule is a
triplet, probably accounts for the non-existence of theoretical work(1c».
Oxygen and sulphur are both Group VI elements; oxygen being in the first
row of the periodic table and sulphur in the second rowe. So far as is known

the general pattern of the electronic statés of S, resembles that of 02(63t

2

The programs described in the preceding chapters have been used to obtain
VCI wave functions for the following atomfc and molecular systems:

(i) 3P, 1D, and 'S states of atomic oxygen and.sulphur.

(ii) 3 E:; and L E:; states of diatomic ox&gen at fifteen internuclear
distances.

(iii)3 Z; , 1A g and 1 Z; states of diatomic sulphur at seventeen
internuclear distances. The orbital occupancy of the electrons in atomic
oxygen is (15)2(2s)2(20)* and in sulphur it is (15)2(2s)%(2p)%(3s)%(3p)".

The valence shell for both atoms is of the form (ns)z(np)4 with n = 2 for

oxygen and n = 3 for sulphur. By arranging the six valence shell electrons

in the eight available spin-orbitals it is possible to obtain two P-~type, one

D-type, and four S-type detors, in which Sz = 0 and LZ = L, where Lz is the

Z component of the total orbital angular momentum L. From these detors it is

3

1
possible to obtain one “P codetor, one 1D codetor, and two S codetors. The

wvave functions for the 3P and 1D states are not really VCI wave functions at

all because they consist of a single term:and not a sum of terms. They are
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TABLE 7. ATOMIC DETORS AND CODETORS

P-type detors

b, = (1)(2)(3)(6)(7)(8)
D, = (1)(2)(4)(5)(7)(8)
D-type detor
D, = (1)(2)(3)(4)(7)(8)
S—-type detors
D, = (1)(2)(3)(4)(5)(8)
Dy = (1)(2)(3)(4)(8)(7)
D¢ = (1)(2)(5)(6)(7)(8)
D, = (3)(4)(5)(6)(7)(8)
3P codetor |
*P1 = : 2']2“ (D,l + Da)
1D codetor
Y2 = D3
1S codetors ‘
WB = 3"12 (D4 - Dy + D6)
Y D
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TABIE 8. ORBITAL EXPONENTS

orbital oxygen sulphur
1s 7.6568 15.5409
2s 2.2472 5.3144
2p 2.2262 5.9885
3s - 2.1223
3p - 1.8273

r

TABLE 9. ELECTRONIC ENERGIES OF

ATOMIC STATES (HARTREES)

State Oxygen Sulphur
Present work Ref. 45 Present work Ref. 73!
3p ~74.5404 ~74.5406 ~396.5936 -396.6276
» ~74.4464 —74.4469 | =396.5341 -
Ts ~74.3663 ~74.3665 ~396.5287 -
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TABLE 10. DISSOCIATION ENERGIES CAILCULATED FROM

ENERGIES OF ATOMIC STATES (HARTREES)

Atomic States Oxygen Sulphur
3 4 3p -149.0808 ~793.1872
3.+ ~148.9868 ~793.1277
347 ~148.9067 ~793.1223
>+ D -148.8928 ~793.0682
p+ls ~148.8127 ~793.0628
s+ s -148.7326 ~793.0574
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“single configaration® wave functions and, as the ofbitals from which they
are consiructcd are not optimized, the resulting energies will probably be
poorer than the corresponding SCF energies. The detors are specified in
Table 7 where only the identifiers of the valence shell spin-orbitals are

given, these conform to the rule:

ns ¢«=1, ns Bg= 2,
npye =3 , npyR= 4 ,
np_e= 5, np_p= 6,
np, =7, np_R=8 .

Tnhe orbital exponents used in all the oxygen calculations were those of
Schaefer and Harris('4$. For sulphur the atomic SCF exponents obtained by
Clementi and Raimondi< 73 vere used. All exponents are given in Table 8. The
electronic energies of the three states of each atom are given in Table 9. The
agreement between the present results for atomiq oxygen and those of reference 45
is excellent. The SCF energy for the 3P state of sulphur('lﬁ is much better than
that obtained by the VCI method. This result indicates a possible limitation
imposed on the wave function by.the VCI treatment. It was felt that a complete
CI within the minimal basis set employed would provide valuable results. The
energy of the 3P atomic ground state of sulphur given by this CI was found to be
~396.6277 hartrees~ which is slightly better than‘SCF value, As the wave function
only consists of four codetors (including that given in Table 7) it is not very
extensive. Each of the additional codetors is a result of an excitation of one
or more electrons from the 2p sheli into the 3p shell, the 3s shell alwvays
remaining doubly occupied. The value of the complete minimal basis set CI is
that it shows _that the interaction between the 2p and 3p shells cannot be
ignored in the sulphur atom.

The energies of the atomic states which represent the dissociation limits
of the low=lying molecular states are given in Table 10.

The minimal basis set of orbitals used for the atoms are utilized in the
construction of the molecular orbitals for the molecular studies. The

rules for forming the molecular orbitals are given in Appendix II. For
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oxygen the molecular orbitals are
(1SUg)(180ﬁ)(280g)(ZSUu)(Zpag)(2p0u)(2pﬂg)(2pﬂu) .

The 'ﬂg and 7ru orbitals may contain up to four electrons, and
each O-orbital a maximum of two. The molecular orbitals for sulphur

include the orbitals
(3s0,) (3s0,) (3p0,) (3poy) (3p7,) (3p7,,) ’

in addition to those given for diatomic oxygen. In the studies of oxygen,
the (1sc7g) and (180’u) orbitals were assumed to be always occupied by

a total of four electrons, and the detors were obtained by arranging the
remaining twelve electrons in the sixteen available molecular spin-~orbitals.

A set of 118 ):g detors was obtained with S, = 0, 30 3 Z'{; codetors

+
g

shell molecular orbitals for sulphur differs from that of oxygen only by

and 37 L r codetors were projected from‘this set. The set of valence
the value of the principle quantum oumber. In studies of 82 the whole of
the oxygen set of molecular orbitals was assumed to be occupied by 20
electrons and the detors were obtained by arranging the twelve remaining
electrons in the sixteen available molecular spin-orbitals. Obviously the
number of Zg detors is the same for oxygen and sulphur, the numbers of
codetors for the 3 Z; and 1 ):g states will also be the same. 1In
addition a set of 44 Ag detors was obtained with S, =0, 22 1A gcodetors
were projected from this set. The detors and codetors are listed in
Appendix IX, this appendix also contains a list of the "spatial orbital®
configurations or "primative functions".

The energies of the five lowest levels of each state investigated are

given in Tables 11 to 15 for each of the chosen internuclear separationse.

The corresponding potential curves are shown in Figs. 16 to 20. The results
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TABLE 16 Spectroscopic Constants

(Units are cn” ! unless explicitly given, and a
are dimensionless)

3 -
02X ):gI
calc Expr+
Re bohrs 2.4618 2.2817
V(Re) hartrees  =149.2156
)
s (Re) 0.0
DE hartrees 0.1348
DO hartrees 0.1312 0.1867
G(0) hartrees 0.0036 0.0036
YOO ~144979
Y1O 1607.56 1580.36
Yoo - =19.1019 -12.0730
Y30 0.1539 0.0546
Y4O 0.0066
Y01 1.2422 14457
Y -0.0129 -0,0158
1 -5
Y -709 X 10
Y 9.3 x 10
31 -
Y -3.0 x 10
02 -7
Y -1.1 x 10
12 8
Y22 <1O_9
YO3 <1O-8 #*
Y <10
13 -8
You <10 *
ao 502006 X 10
a1 -302487
a, 2.9408
a3 14.4668
a4 "54'2388
ag 68.5968
ag -29.7533

Absolute value

1

to ag

1+
02b ZgI

calc

2.5435
-8
10

0.0877
0.0849
0.0028

1.6769
1251.04
-6.8935
-0.2558
-0.0031
11636
-0.0016
0.0003

-4.0 x 10~
1.3 x 10~

3.3651
-3.4206
10.6683

-31.0388
20.5180
84.8957

-113.0302

5
6
7
8
*

*

*

x 10

+ Reference 28

Expr+

2.3183

0.1506
0.0033

1432,69

1.4004
-0.0182



i bohrs
e

VR ) hartrees

|z (Re)

Jphartrees
I hartrees
GO hartrees
i
1 ~00
i '10

~20

Bo

Bo

'03

~04

w w W w

TABLE 16

(Units are cm

S*Y?Z2
?

calc

3.9761

-793.2757
2 X 10"7

0.0885
0.0869
0.0016

-10.0430

703.4343
-61.1350
117.2205
110.0685

0.2371

0.0021
-0.0007
-0.0155

—6.9x10

-2.2 X 10"~
2.7 X ICT?
<10"9 *
<10-8 *

<10-8

4.0375x10%

18.1835
80.4469
-6369.01
5.2347x10%
3.9409x10%
5.5152x10%

* absolute value
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Spectroscopic Constants

unless explicitly given, and to a*
are dimensionless)
Expr % calc Expr * calc
3.5754 3.9962 3.5905 4.0243
-793.2565 -793.2472
3x 10 " 3.2 X 10
0.0693 0.0600
0.1610 0.0147 0.0588
0.0016 0.0546 0.0012
-44.5515 -36.3408
714.29 584.1429 689.87 591.0864
2.844 3581.93 3.02 123.0598
-387.0931 -164.2823
1667.08 1.5303
0.2945 0.2318 0.2922 0.2310
0.0016 0.0452 -0.0094
-0.0670 -0.0186
-0.0853 -0.0231
-7.7 X 10T? -2.4 X 10"?
1.9x 10 ° ~4.4 X 10~7
~1.0 X 10°~ 1.3 x 10 ¢
<10%8 * <1078 »
< 108 * <10-8 *
<10v8 * <10-8 =
5
2.0498x10 3.7238x10"
-34.63009 -22.2509
195.7953 -127.9481
1.0117x10~* 6036.38
4.2089x10% 8.2559x10*
-8.1705x10% -4.5959x19+
—7.4275x106 -6.6482x10*

+ Reference 68

Expr

693 2
3.4
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for oxygen are in good agreement with those of Schaefer and Harris(45),
and those for sulphur give the correct ordering of the lowest states;

namely X3 ):éI < a1 A gI < 'b1 Z‘é: . The separation
1

and 6000 cm-1 respectively, experimental

separations are 4500 cm"1 and 8000 cm-1. The prefix X, a, or b before

25+1 A (o)
i
state, first excited state, and second excited state respectively. The

of these states is 4500 cm

is the spectroscopic notation indicating the ground

suffix I, II, ... indicates the relative level of the symmetry species.

For example, 5 Zél is energetically lower than 3 E;II
Spectroscopic constants for the X3 }:;I (i.e. ground state)
and b1 }:;I states of diatomic oxygen were calculated using the

program listed in Appendix VIII.' Similar calculations were performed for
the X3 z;I ' a1 AgI , and b1 Z;I states of diatomic sulphur.
The results for both molecules are given in Table 16. The agreement between
the calculated values and the experimental wvalues of the spectroscopic
constants is not too good for the two states of oxygen. Nor do these
results agree with those of Schaefer and Harris(45 ). (The present results
were obtained by fitting a polynomial through the V(Ri) at the values of Ri
used by Schaefer and Harris.) The exact reason for the latter discrepancy
is difficult to determine with certainty but is probably an example of the
phenomenon noted by Beckel and Sattler( 49 . They found that the values of
the spectroscopic constants, determined from a gi\_ren set of values of the
total electronic energy, were very susceptible to changes in the number of
points to which the curve was fitted, to the degree of the polynomial
employed and to the accuracy of the actual energy values. Their criterion

for chosing the degree of the polynomial and radius of convergence was that

’R-Re

< lt/BAn-1l1/n+1
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All values of Ri must lie in the range prescribed, t is the estimated
machine error in each V(R;) and n is the degree of the fitted polynomial.
V(R) is expressed as a power series in (R-Re) rather than £  (see
Chapter 9) and Ay 4 (the coefficient of (R-Re)n+1) is the last significant
term in the power series. The choice of this criterion seems rather
arbitrary; Beckel and Sattler only managed to obtain two or three decimal
digit consistancy in the coefficients of the Dunham expansion. In the
present calculations the value of t is extremely difficult to estimate as
it depends on so many parameters. AsS Re for both of the oxygen states
considered here is about 2.5 bohr, it may well be argued that only energies
corresponding to values of R in the range 2.0 < R < 3.0 should be used.
In the case of Schaefer and Harris their published results only include
five energies which satisfy this condition. This means that if t is 10-6

and as n is at most 4 then A, = 2.7 x 10-7. Effectively this means that

2
the potential curve must be almost parabolic over a substantial part of its
range. It can be seen from Fig. 16 that the X3 i:;lﬁ state is certainly
not parabolic over the range 2.0 < R < 3.0. Obviously it is importaﬁt
when calculating spectroscopic constants to take great care over the
mathematical methods and numerical techniques involved.

In calculating the spectroscopic constants for diatomic sulphur
greater freedom was allowed in the choice of values of V(R) to which the
curves were fitted. This process used was in two stages. Firstly a
polynomial was fitted to all of the available points for each state. The
L2 norm of this solution for each problem was about 10-'4 and was rather
poor. The next step involved fitting a polynomial through those points which
were most accurately represented in the first stage. The accuracy with
which each point is represented may be obtained from SPECTgﬁ by setting the

variable NZ equal to 1 in the data (see Appendix VIII). The results of

this second stage are usually very good from the numerical analysis aspect,
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as the L2 norm rarely exceeds 10-11. The results obtained for sulphur

using this technique are quite good, although in every case the

vibrational constants wexe ’ weye y and weze are rather

large. This suggests that either the system may not be represented by a
simple rotating vibrator or that the VCI method givés a poor deséription
of the state. There are no experimentél results with which these values
may be compared.

The dissociation of diatomic oxygen into atomic states is clearly

defined and is amply discussed in the l:i.tera’(:ure(d‘s'56 ' 65). The X3 ZéI

ground state of O2 dissociates into the 3P + 3

1¢+
the D I:g state. The problem of the dissociation of S, has been

2
(56, 65, 69). Agreement has only recently been

P states of the atoms as does

discussed by many authors

reached on the value of the dissociation energy of the x> XZ;I state.

(65, 69)

The accepted value is 0.161 hartree and the dissociation products

are atoms in the 3P state. The dissociation energy Do is measured from

the lowest vibrational level and it is this value that is quoted
experimentally. The dissociation energy DE measured from the minimum of
the potential curve differs from Do by the zero-point energy G(O).

V(Ry) - V(=)

Dg

Do

D and G(0) are given by the program SPECTRZ (In the computer output the

+ G(0) .

symbol ZO is used for G(0)). G(0) is calculated by putting V = O in (9.4),

so that

¢(0) = Yoo * Y1O/2 + Y20/4 + Y30/8 + Y4O/16 .

The value of D £or the ground state of diatomic sulphur is 54% of the
experimental value and that of the ox&gen ground state 70% of the

experimental value.
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TABLE 17. VCI, 7 ~ORBITAL VCI, AND SCF ENERGIES

FOR THE LOWEST STATES OF O, (HARTREES)

30 TERM

-149.2031

~-149.2151

-149.1996

-149.1465

-149.1210

¥ Reference 71 .

x’L;1

9 TERM
-149.0598
-149.1411
=145.1702
-149.1674
-149.1514
-149.1311
-149.1112
~149.0961

-149.0826

SCF*

-149.0912

=-149.0743

-149.9679

.

-149.9024
"'1 4807744

-148.6413

b

37 TERM

-149.0712

-149.1680

-149.1637

-149.1307

-149.0883

r I

12 TERM

-148.9792

-149.1188

-145.1255

-149.1166

-149.0986

author is grateful to Dr M. Dixon for permission

to include these resultse.
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VCI, 7 -ORBITAL VCI, AND SCF ENERGIES

FOR LOW-LYING STATES OF S, (HARTREES)

30 TERM

~793.0255

”793-1473

-79302303

~793.2563

-79302732

~793.2756

-79302585

-79302458

~793.2341

X351
9 TERM
~792.9955
~793.1176
-793.2024
-793.2303
~793.2499
~793.2550
=793.2520
~793.2435
~793.2334

-793.2242

% See footnote to Table 17 -

SCF#*

-79300624

~793.1798

~793.2646

~793.2760

-793.2830

_79302750

-79302573

-793.2336

-79302073

~793.1802

b'EdI

37 TERM 12 TERM
-792.9770 ~792.9401
-793.1004 ~793.0645
-793.18%4 ~793.1562
-793.2193 ~793.1889
-793.2394 =793.2127
=793.2472 -=793.2244
=793.2456 =793.2266
-793.2397 =793.2245
-793.2326 -793.2208
-793.2250 ~793.2161
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The greatest contributory factor to the discrepancy between theory
and experiment for 82 lies in the use of the minimal basis set VCI method.
Since the complete minimal basis set CI on the sulphur atom lowers the
energy by 0.034 hartrees, it is reasonable to assume that the use of a
more extensive CI for 82 will lower the energy by almost twice this amount.
A VCI calculation in which the nsorg and nsa’u valence shell molecular
orbitals are full is conveniently called a 7 —-orbital VCI and in the
present work is easily obtained. In Appendix IX it is seen that the first
31 detors of Zg synmetry have the valence shell nsag and n.'30'u
orbitals doubly occupied. The 5 I:é and | I:; codetors arising from

these detors are components of the 7 -orbital VCI wave functions (see

g
codetors and 12 1 z:; codetors in the T -O0rbital VCI. The results of

Chapters 7 and 8, also Meckler(42)) for these states. There are 93 r

these investigations are summarized in Tables 17 and 18, where the S-term
VCI represents the  T-orbital VCI for the 3 E:; state, the 30-term
VCI is the current 3 E:; VCI result, the 12-term VCI is the 4 -orbital

VCI for the state and the 37-term VCI the current VCI result for

1z+
g
this state. The difference in energy between the f-orbital VCI energy
and the complete VCI energy decreases as the internuclear separation
increases. This result is expected as in the 3P ground state of the atoms
only the p-type orbitals of the valence shell contribute to the wave function,
and the s-type are always occupied. A similar effect should be seen in a
more exténsive CI on SZ’ which includes-detors corresponding to excitations
from the inner shell T=oOrbitals. The present result for R = 2.3 in the

(43),

ground state of 0, is in good agreement with that of Kotahi et alia

2
who give the energy of the 9-term VCI as =149.1332 and that of the complete
VCI as -149.1911 hartree. They used different values for the orbital

exponents to those used here.

An interesting feature of Figs. 16-20 is the existence of a number of
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avoided crossings of the potential curves. The wave functions of the two

energy levels 25+1 A _(/Ov')I and 25+1 A\ (0) II may be written
’ X 1
_ X
L")I = i wiciI ’ (10.1a)
and
Yir = T ¥ylurr o (10.10)
respectively. In (10.1) Wi and ‘Vk are codetors of 25+1 /\go)
symmetry. Let
Vi = <Yy bwk> ,
V,; 1is the total energy of the codetor Wi and the off-diagonal

elements Vik are very small. The energies corresponding to ‘VI and

WII are
v = Z C. (o] v
I ik il “kI "ik ’
and
v = LC,vxrC V. R
II ik iII"kII ik
The conventional notation implies that VI < VII" and as lvik l <<]Vi:.L l ,

both V_ and VI are dominated by the energy corresponding to the codetors

I I
with the absdlutely largest coefficient in WI and WII « As the inter-
nuclear distance varies vii will also vary and its value relative to other
diagonal terms will change. The '‘non-crossing" rule( 70) may be interpreted

as the statement that the potential energy curves of two electronic states

of the same symmetry species cannot cross. If VI is to remain below V]I ’
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the dominant codetor in “VI must always be that with the lowest energy.
If some of these energies are degenerate the coefficients of the appropriate
detors will be nearly equal. A rapid variation of the coefficients defining
a wave function with respect to the codetors is a consequence of the non-
crossing rule. 1In Table 19 the coefficients of the 3 ):-g-IV and.

E Z:;V’ states are seen to vary rapidly as ﬁ varies. The distortion
of the potential curves (fig. 16) in the region of R = 2.6 bohr indicétes
an avoided crossing. The distortion of the upper curve at about 2.5 bohr
indicates an avoided crossing with a higher level not shown in the diagram.
Several other examples are evident in Figs. 17 to 20.

The initial results from the natural spin-orbital analysis option of
SECSZL (Appendix VII) indicated that, for the atomic and molecular states
examined, the VCI wave functions produced a set of natural spin-orbitals
which was identical to the set of orthonormal symmetry adapted molecular
spin-orbitals. The occupation numbers of ‘the natural spin-orbitals forming
the frozen shell were unity, and the v&lues for the remaining natural spin-
orbitals could easily be estimated by inspection of the wave function. Only
with the complete CI atomic wave function was the natural spin-orbital
basis different from the orthonormal spin-orbital basis. Little use was
made of the natural spin-orbital analysis option because the time taken to
construct and diagonalize the first order density matrix for a given energy
level was almost as great as that taken to construct and solve the secular
equation for which the energy level was a solution. It was felt that use of
this option would add little to the present investigation of the VCI method.

A valuable indication of the merits of the VCI method can be made in
view of some recent work by Dixon( 70. Using the integrals output by the
program INTRA (Appendix VI) he calculated the open-shell SCF energies of
the 0, and S, molecules in their X3 Z;I ground state at a number of inter—

2 2

nuclear separations. The VCI method produces much better results than the
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SCF method for oxygen at each bond length (see Table 17) and also predicts
the dissociation products correctly, whereas the SCF energies indicate
dissociation products of atoms in the 1S state. This is yet another
example of the failure of the SCF method to predict correct dissociation
products. The electron correlation introduced by even the T -orbital

VCI is sufficient in the case of 02 to cause a significant drop in the total
energy at each bond length compared with the SCF value. Examination of the
results for S, given in Table 18 show that the SCF gives better results than
the VCI for bond lengths less than 4.0 bohr. The potential curve for the
SCF results is a little deeper and rather more steep than the VCI curve but,
as in the O2 calculation, the dissociation products are incorrect as, even
at R = 4.8 bohr, the energy of the X3 Z;I state is above that of the
3P + 3P energy of the separated atomse. A single configuration wave
function lacks electron correlation and in general this deficiency can be
partly remedied by using a CI. The CI will cause a lowering of the
electronic energy with respect to the single configuration value. In the
case of the VCI wave function the amount of electron correlation introduced
is restricted by excluding codetors which represent excitations from the
inner shell T —orbitals. As was mentioned earlier the VCI for the sulphur
atom produced an energy inferior to that of the SCF, but a complete minimal
basis set CI was slightly better. The improvement in the energy in the
atomic case is due entirely to the inclusion of excitations from the inner
shell p-orbitals in the wave function. It may be reasonably assumed that
the inclusion of excitations from the inner shell 7 -orbitals in 82 will
cause a substantial decrease in the total energy in the correct part of the
potential curve, this may also improve the values of the spectroscopic
constants. The inference is that whiist the VCI method is rather good at

describing states of the first row moleciiles, it may not be quite so good

for other diatomic molecules. An examination of the VCI method in greater
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detail for 5, must wait until SECSPL has been modified to handle a far

greater number of detors than the present limit of 120.
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CHAPTER 11

CONCILUSION

In the preceding chapters of Part II, the method of configuration
interaction has been examined in detail. Methods for calculating CI
wave functions and the less accurate valence configuration interaction
wave functions of atomic and molecular systems have been described. It
has been shown that the VCI method produces results which are in good
agreement with experimental values when small atoms and molecules sﬁch
as oxygen and O2 are examined. Whilst the absolute values of the energies
of the various states of 32 calculated by means of the VCI method are not
too good, the relative positions of the low-lying energy levels are in
good agreement with the experimental values(ée). A disappointing result
of the work on both atomic and diatomic sulphur is that the SCF energies
are slightly better than those for the VCI: The calculation of the VQI
and complete minimal basis set CI energies, for the 3P ground state of
the sulphur atom clearly indicate that the contributions from detors
corresponding to excitations from inner shell 2p-orbitals cannot be neglected.
This neglect may also explain why the 1D and 1S levels of the sulphur atom
are close together in comparison with experimental values(68). If the
detors which correspond to excitations from the inner shell T-orbitals
were to be included in the 82 wave functions a lowering of the energy of
at least twice the amount calculated in the atomic systém could be expected.
The poor agreement of the 52 spectroscopic constants can be attributed to
the VCI method, although difficulties can arise in the numerical analysis
involved in the calculation of these quantities.

A very favourable aspect of the CI method in general is the ease with

which it may be implemented on a digital computer, and the flexibility of
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the method which, by its very nature, permits the examination of various
low-lying efcited states in addition to the ground state. The present
implementation is designed to achieve flexibility with minimum effort.
Consequently, it is possible to perform complete minimal basis set CI
calculations. Having calculated the matrix elements between the
appropriate detors for the complete CI, the energies corresponding to
various gfoups of detors in the complete wave function can be obtained with
ease. Similarly it is possible to perform an extensive VCI calculation
and to then examine the effects of keeping certain of the valence shell
.molecular orbitals frozen. The 7 -orbital VCI calculations discussed
in Chapter 10 illustrate the use of this feature.

The SCF calculations of Dixon (71) took slightly longer than the
VCIs for both oxygen and sulphur, so that the return in information from
a VCI calculation is much greater. It is surprising that so few(10) large
VCI calculations have been attempted. Thgre are problems in performing
any type of CI calculation, but these problems are really no different from
those encountered in SCF calculations which employ large bases of
Gagssian-type orbitals.

The performance of the programs listed in the appendices is highly
satisfactory. In the light of experience minor improvements were introduced
into most of the programs during the production of the results quoted in
Chapter 10. These made the programs easier to use and some resulted in a
reduction of the amount of data supplied on punched cards.

The calculations on 82 were almost at the limit of the range of
SECSﬁL (Appendix VII) and certain major improvements, not apparent with
the smaller O2 molecule, have become obvious during the course of the 32
work. These improvements will necessitate some considerable rewritting of
the program. Perhaps the most pressing requirement is to make more

efficient use of the array IDIFF (see Chapter 8), which is used in the
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evaluation of the off-diagonal matrix elements between detors. In the
present program this array has to be constructed each time the bond length
of the molecule or the symmetry species of the detors is changed. This
process can occupy more than 50% of the total CPU time for a given problem,
which consists of the computation of the matrix elements between detors,
construction of the secular equation and its solution. The array IDIFF

does not depend on the bond length of a diatomic molecule. The present
version of the program only dumps IDIFF on disc if it is too big for the
available core store; it is overwritten later in the calculation. Without
substantial rewriting and increasing the current storage requirements it

is not possible to dump the array unconditionally and read it into core
wvhen required later. Naturally this improvement will speed the natural
spin-orbital analysis since the array IDIFF, in a shortened form may be

used there. This will then make the construction of the first order density
matrix less expensive in terms of CPU time. A result of this improvement
will be the relative ease of computation of molecular properties, such as
dipole moments, since <0> = Tr(Y P) , where [ 1is a one—electron
operator, Y , the first order density matrix and P the matrix of integrals
of the one-electron property over the same orbital basis as Y.

The ease with which the matrix elements between codétops of the same
symmetry species may be projected from the matrix elements over the
appropriate detors, compensates for the time required to evaluate the latter.
Certainly in O, this feature reduced the CPU time by about 3.

In order to increase the number of detors that can be included in a.

CI wave function, a scheme in which only the non-zero matrix elements are
stored is being investigated. At the same time, the possibility of only
storing a list of non-redundant non-zero integrals over the orthonormal

molecular orbitals is being considered. The integral generation programs

produce non-redundant lists of integrals over the atomic orbitals, but the
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lists contain zeros. However, the very rapid access to all of the
integrals required in the calculation, which is necessary in the SCF
procedure, is not so important in the CI process, since the list need
only be scanned once or twice.

Even without the improvements mentioned in the preceding paragraphs,
SECSﬂL may be used to provide many more useful results. In addition to the
work reported here, calculations on other excited states of 82 are in
progress. The triplet and singlet T&g states are of particular
interest, as the lowest levels of both states lie close to the:3P + 3F)
energies of the separated atoms. Since the relative positions of many of
the states of 32 are not known with any certainty this invites further
study. Calculations of the wave functions for the diatomic molecules F2
and 023_ are in progress, and a calculation on CN is being considered.
The possible use of Gaussian type orbitals, rather than the Slater-type
so far used, is being investigated in connection with work on polyatomic
molecules. The general theme of the proposed research is to evaluate the

VCI method. The full potential of both the VCI and CI methods remains

to be examined and exploited.
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APPENDIX I

ATOMIC UNITS AND CONVERSION FACTORS

For atoms and molecules the Hamiltonian is made up from terms which
represent the electrostatic interactions of the particles and the kinetic
energy of the electrons. Since the nuclear motion may often be regarded
as a quasi-static process as far as the electrons are concerned(72), it
is justifiable to disregard the kinetic energy of the nuclei, and hence
their Laplacian operators. The Schr#dinger equation for a system of N
electrons moving in the potential field of a fixed framework of M nuclei

may then be written

12
(ﬁ
2m_ .

e 1

N M=

1V§'*' (EE" E))W=O . (I.1)

In (I.1) Ve is the potential energy operator:

KN ZKe2
Vg =- L L%
k=1 i=1 Tik

N-1
+ L
i o

P
j=i+1T1j

The first term in VE represents the nuclear-electron attraction energy

and the second the electron-electron repulsion energy. In (1.1) EE is
the electronic energy and the first term is the kinetic energy operator
for all the electrons. Both the value of EE and its units will depend on,

(a) the units of & , Planck's constant divided by 27 » m,  the

electron rest mass, and € the electron charge, and

(b) the currently accepted values of these quantities.

(75)

Shull and Hall proposed the system of primary units in which m

e ?
e , and ¥ have the value unity. In the system of primary units the

unit of energy is the hartree:

4
mee

1 hartree =

h?
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and the unit of length is the bohr:

1 bohr =

Rewriting (I.1) in these units gives

N, M N Zy N-1 N
(3 £ VS 4+ (Bg+ T —=—- L L =—))y=0 .
i=1 * K=1 i=1TiK  i=1 j=i+1Tij

This form of Schr¥dinger's equation is used throughout this thesis, and

is independent of the vagaries in measurement of me , € ,and ® .,
For purposes of comparison with experimental results it is necessary

to convert from the system of primary units to some system of secondary

units, such as SI units. The values of the fundamental physical constants

used in the cogversion factors are given in Table I-1, and are taken from

a more complete table of fundamental constants compiled by Cohen and

.

I)JMOIMT(74). The conversion factors for various units of energy are given
in Table I-2. 11 masses are measured on the unified nuclidic mass scale(57),
in which the mass of the 120 nucleus is taken to be 12 atomic mass units

(sometimes abbreviated ami, but the symbol u is used to indicate values

on the unified muclidic mass scale).
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I-1. FUNDAMENTAL PHYSICAL CONSTANTS

Constant

Speed of light in

a vacuum

Elementary charge

Avagadro constant

Mass unit

Electron rest mass

Planck constant

h/2xw

Fine structure

constant

Rydberg constant

Bohr radius-

Symbol

Value

2.997925

1.60210

6.02252

1.66043

9.10908

6.62559

1.054494

7.29720

1.0973731

5.29167

ST unit

10 Kmole-i
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APPENDIX TII

MOLECULAR ORBITALS FOR THE GROUP D h

.
TqOLl~

The complex Slater-type orbitals defined in (7.16) are suitable
basis atomic obritals for the group D, because the factor exp(jmg)
is an eigenfunction of the rotation operator of the group(39). For the
purposes of this appendix the notation Sﬂc(n,l,m,Z) will be
used to denote a complex Slater-type orbital defined with respect to a
nucleus C in the co-ordinate system of Fig. 15. By consideration of
the effect of each of the four basic operations of the group (see Table 5)
on a point it is easily shown that

DC,] SOA(n,l,m,Z)

0 Cy Yy (n,1,m,{ )

¥ (a,1,m,{ )exp(jmy) ,
(-1)%(n,1,m,{Jexp(jm1)

O0yg, Yalmrlomd) % (n,%,m,0 Yexp(=jmn) ,

and Di O'C,’ (pA(n,l,m,[) (-1 )1;§(n’l’m’£ )exp(-jmﬂ)

A similar set of results is obtained for WB(n,l,m,Z) .
Using these relations and the projection operator defined in (7.4) the

following SAMOs are obtained:

WA(nilr-—-o,Z.') + (“1)1L/€B(n)l’ O)Z) ’

o,
oyt A(n,1, 0,6) = (=114 (n,1, 0,0)
7L gml) ¢ (1) G(@,1,000)
P g(n,1,11,0) - DY, L,1,0)

Yp(n,1,52,0) + (-1 % (n,1,32,0)

o>
oq |+
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0%+ ¥y (n,1,22,0) = (1) F(0,1,52,0)
ng‘- : WA(n,l,iB,[) + (_1)1¢B(n’1’13’[) ’

')I%:' - L/A(nylyiBy[) - ('1)13/3(11)19:!‘_3’[) .

The symbol to the left of each molecular orbital is the usual spectroscopic
notation: if the modulus of the angular momentum m is 0, 1, 2, 3, ees

then the orbital is designated O, 7, 0 s Y 5 oo and each orbital
transforms according to the Z; ’ Z; ’ Trg ’ Tru ? sceces
irreducible representation depending on the parity under the operation

of inversion. The symmetry species of a molecular orbital is defined by

m and the subspecies by the sign of m andhthe,inversion parity. Within

a given subspecies the molecular orbitals are not orthogonal, but orbitals
belonging to different subspecies are orthogonal. To identify specific

molecular orbitals an additional notation may be used and it is best

illustrated by some examples:

1s0, = ¥, (1,0, 0,{) + ¥3(1,0, 0,{) ,
1soy, = %(1,0, 0,{) - #4(1,0, 0,¢) ,
2po0, = A(2,1, 0,0) = (2,1, 0,0)
2p e = 4(2,1, 1,0) - 2,1, 1,0)

2p_77' = ﬁ(2v1"’1)[> + 5/3(2'1"'1,() .
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In calculations on the electronic structure of homonuclear diatomic
molecules it is asswmed that the basis atomic orbitals defined for one_
nucleus have a one to one correspondence with those on the other.

To determine the linear combinations of detors which are eigenfunctions
of the reflection operator (o}uz) s 1t 1s necessary to know the effect
of this operator on the SAMOs. VSince any plane of reflection containing
the internuclear axis is equally possible, choice of a particular plane
will not alter the final result; the xz-plane (Fig. 15) was chosen for
the present calculations. The properties of the SAMOs under reflection in

this plane are easily determined since this operation merely changes the

sign of m, for example

and . .

Q
=Y
e+
1
Y
£+

The symmetry properties of the molecular orbipals are invariant
under a unitary transformation so that the properties of an orthonormal
set of SAMOs may be obtained by inspechtion of the non-orthonormal sete.

As an example, consider the orbital
P = c1(1sag) + 02(2scrg) + c.'§'-(2poig) ,

reflection in the xz-plane leaves this orbital unchanged as each of the

o -molecular orbitals is invariant under sz however the orbital

()0+ =\C1(2p+ﬂg) + 02(3d+17g)
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is carried into
P = 01(2p_1rg) + 02(3d_frg) )

since the sign of m is changed by Oxge
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APPENDIX ITI

UTILITY ROUTINES

The subprograms listed in this appendix are used by several of the
programs listed in Appendices IV-VIII. The subroutines TQL2 and TRED2
constitute the QR-Algorithm(4jL 48) and are EﬂRTRAN V versions of routines
written, in FPRTRAN IV by the staff of the University of Leicester
Computer Laboratory. The author expresses his thanks to the Diréctor

for permission to include these routines.
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LID
3ULDCU7INL DH7R (PRNAI.Ic:,NO)
]P# e # « #V&Awfé{»f)?g ?7>*
TLXT PUM/uME
DAT/i TP/0/
IF(xr') 1,3,1
1 CAI.L. CNTA(I)
TAT :(UP,2) rANAIVID,I
T PGPJ.:AT(* NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM ', AG,
1" =, 15)
3 RETURN
END

»FCRTR/uT LIB
SUBROUTINE ERROR (A)
1AT/v LDNO02/0/
TEAT A
V/RITE (.TXNO2,1) A
1 FORI.IAT (1110,13A3)
C/ELL EEAIT
RETURN
ENT)

:f=FORTR3ET LIB
INTEGER FUNCTION IPi\R(N)

C.... IF N IS EVEN THEN IPAR = O,
C.... IF N IS ODD THEN IPi\R = 1.
C.... *** ATLAS BASIC LANGUAGE **x*

101.31, 1,-0.4
101.31.31.0.4
121.32.0.1
127.32.31, 0
113.82.0.1PARHO.4
121.32.0,*03000000
113.32.0.1PAR
RETURN

END

*FORTRiIN LIB
SUBROUTINE QUIT (PRITAME,NO)
c VERSION 2.
TEXT PRNi\ME
DATA LP/0/
IF(K0) 1,3,1
1 CALL CNTR(I)
WRITE (LP,2) PRNAME, !
2 FCRI.UT(* NUIiIBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM ', AG,
1" =',I5)
3 RETURN
END

*FORTRAN LIB
SUBROUTINE TQL2 (N ,EPS,NZ,Z,D ,E ,NN)
DIITGNSION Z (NZ,NZz) ,D(NZ),E(NZ)
c THIS SUBROUTINE GIVES ALL THE EIGENVALUES AND EIGENVECTORS OF A
c TRIDIAGONAL MATRIX
CLS/iR NN
IF (N ,LT.
DO 10 I =
10 E(I-1) =

) GoTo 1
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111
40

11)

53

2)
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F,U,B(N)
]JGLU L = 1,1'i
whiiiiw J

iT=ErC* (;i3C (D (L) ) b\I30 (3 (D))
IF (B .G3. II ) GrJTO 2

»>= il

DG Su ii= L,N

IF ( AB3(3(M)) .L3. B ) GOTO 3
IF ( IT .iQ. L ) GOTO 4

IF (J .FQ. 30U ) GoTo G

J = J:-1

F (r(Li-1) - D(L))/2*a(L)
U SQRT (P**2 1-1)

IF (P .LT. 0 ) GOTO 7
H=D(D - 3(L)/(P+R)

GOTO 111

ox= :(D - 3(L)/(P-R)

PO 40 I = L,N

1(1) = D(I) - H
F=F4&

P=3iM™

c=1

CL3/iR 3

IF (II .30. L ) GOTO 3
XK = -(13-1)

ITX = -L

DO 50 II = IK,IdaC
I = -II

G = C*3(I)

I = C*P

IF ( :\B3(P) .LT. ABS(S(I))) GOTO 9
C = 3(1)/P

R = OQRT (C**2+1)

3(1 11) = 5*P*R

s = C/R

c =1/R
GOTO 11U
C = P/E(I)

R = SQRT (C**2+1)
3(1-1) = S*3(I)»R

s = 1/R
Cc = C/R
P = C*D(I) - S*G

D(I+l) = H-rG*(CKG + S*D(I))
DO 50 K = 1,N
H= Z(K, I ;)

Z(K,I+1) = 3*Z(K,I) + C*H
Z(K,I) = C*Z(K,I) - S*H
COITT13113

3(L) = S*P

D(L) = C*P

IF ( AB3(3(L)) .GT. B ) GOTO 5
D(L) = D(L) =< F

CONTINUE

DO 70 I = 1,N

K=1I

P = D(I)

IF (I .30. N ) GOTO 11

II = Irl

po 30 J = II,N
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IF ( J(J) .03. P ) GOTO 30
K=2J
P =1

30 CONTINUE

11 IF (K .Xj. I ) GOTO 13
1(10 D(I)
3(1) =2
DO 30 J = 1,N

P = 6(J,I)
3(J,I) = 3(J,10
30 z(J,K) = P

13 CrNTIINJE
70 CINTINUO
GOO R3TULIN
1 T(1)=2(1,1)
Z(1,1)=1.0
GO TO GOO
6 NN=1
RETURN
3ND

*FORTR.1N LI3
SU3RCUTIN3 TROD2 (N ,TQL,NA,A,Z,D,E)
o] THIS SUBROUTINE TRIDIAGONALISES A SYMETRIC MATRIX
DII.3NSION A (NA,NA) ,2(NA,NA) ,D(NA),B(NA)
DO 10 I = 1,N
DO 20 J = 1,1
Z(I,J) = A(I,J)
20 CONTINUE
10 CONTINUE
IF (N .LT. 2 ) GOTO 1
M = -N
lai = -2
DO 30 II = 11 ,MM
I = -II
L =1-2
F = 2(I,I-1)
CLE/iR G
IF (I .EQ. 2 ) GOTO 2
DO 40 K = 1,L
40 G = G + Z(I,K)*Z(I,K)
2 H= G r F*F
IF (G .GT. TOL ) GOTO 3
3(1) = F
CLEAR H
GOTO 111
3 L=LM+
IF (F ,GE. 0 ) GOTO 4
3(1) = SORT(H)
G = 3(1)
GOTO 7
4 3(1) = -SQRT (H)
G = 3(1)
7 I = H-F*G
Z(I,I-1) = F-G
CLEAR F
DO 50 J = 1,L
CLEAR G
Z(J,I) = Z(I,J)/H
DO 60 K = 1,J
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G 6 =G *z(J1{) * 2(1,K)
o' (J .222. L") GOTO 5
JJ = F[H
e 76 L = JJ,L
7u G =G x Z(K,J) * 2(1,K)
5 2(J) = G/II
GO F=F £G6 & 2(J,I)
im = F/(II:-II)
FG SO J = 1,L
F = 2(1,J)
2(J) = 1(J) - ICI*?
G = 2(J)
FG 143 K = 1,J
2(J,K) = Z(J,K) - F*S(K)-G*Z (1,10
140 CGNTIinjo
00 CGimiruo
111 F(I) = 1
30 CGirniTUO
CLJ.ill D(1),2(1)
10 100 1 = 1,11
L = I-1
I? ( D(I) .2Q9. C ) Glzr0O 6
I? (I .20. 1 ) GOTO 6
FF 110 J = 1,L
CI2.\I1 G
DO 12C K = 1,L
120 G = G > Z(I,I0 * Z(K,J>
20 150 1r= 1,L
Z(i:,3) = Z(K,J> - G*Z(K,I)
150 CONTINU?
110 ccimiiu?
6 r.(i) = 2(1,1)
2(1,1) =1
IF (I .20. 1 ) GOTO 100
DO 130 J = 1,L
CIO/LI Z(J,I),Z(I,J>
130 CONTINU?
100 CONTINU?
1 R2TURN
2ND

*FuRTIUIN LIE
SU3RCUTI ir? VaiTIU{ (&, NRO//,NCOL ,nCI,'/MCCL , LP)
C.... OUTPUT OF R2AL I.IATRIX TO DEVICE NUMBER LP.
DIMENSION A(NROr.7,NCOL)
DO 4 I=1,IvICuL,5
il-I rd
IF(J-MCCilL) 2,2,1
1 J=MCGL
V7RIT? (LP,3) I,J
3 FCRMAT('0',52X, 'COLUMNS',b13,' TO ',13/)
DO 4 K=1,MRu.7
V/RIT2 (LP,5) (A(K,L) ,L=I,J)
4 CONTINUE
5 FGPJ,L\T(' ',1P5E24.10>
RETURN
END

N
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APPENDIX IV

GENDET. A PROGRAM FOR GENERATING DETORS

OF A GIVEN ANGULAR MOMENTUM AND ELECTRON

SPIN FOR THE D h SYMMETRY GROUP

GENDET is described in Chapters 7 and 8 and, although specifically
designed for the th symmetry group, can be easily adapted to work

for both D, and C_ As stated in Chapter 7 each detor is

v o
characterized by its axial angular momentum A and the value of the
Z—-component Sz of the electron spin. This program also computes the

effect of an inversion on each detor and, for L detors the effect

of a reflection in the xz-plane. The matrix elements (Dj! 52 ID.>

J
are computed (Di and DJ. are detors) and the corresponding matrix is
diagonalized to provide eigenfunctions of :gZ « The program outputs
the detors on cards in the form of spin—orl;ital identifiers for each detor.
The spin-orbitals are numbered from 1 to NKEEP, and an inversion or
reflection on each spin-orbital produces another spin-orbital with an
identifier in this range.

This program uses two common disc areas, each of 200 blocks in length
and these are devices 58 and 59. The line printer is stream 0 and the card

punch stréam 5. GENDET requires the subprograms IPAR, TQL2, TRED2 and

WRITMX from Appendix III. The store requirements are standard.

Data Specification for GENDET

Card 1. NKEEP, NFULL, MKEEP, INVERS, MREQ, SREQ
FERMAT (515, F10.5)
a 0 to stop execution,

NKEEP
= number of spin-orbitals



Card 2 (I)

Card 3
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NFULL = number of spin orbitals frozen
(1ST. NFULL orbitals in each detor
will be the same).

MKEEP = number of electrons

= O if gerade detors are required

INVERS
= 1 if ungerade detors are required.
MREQ = required value of axial angular
momentum,/\
SREQ = required value of z=-component of

electron spin, sz.

IREF(I), INVR(I), MZM(I)

FARMAT (3I5)

IREF(I) = signed identifier of the spin-orbital
resulting from the reflection of the
I-th spin-orbital in the XZ-plane

INVR(I) = signed identifier of the spin-orbital
resulting from the inversion of the
I-th spin orbital
(1 s 1 ,§ NKEEP)

F

FZRMAT (9A8)

F is an array which defines the output format of the detors

on the lineprinter; it has the form

((*b*, 13, X, mI3, nX, I4, 6X, I4))

or ((1Hb. 13’ 1X. mI3' nx! I4l Gx' 14))
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b is a blank; 1, m and n have the following numerical

values:

m = NKEEP
n = 14+ 3

21 3 (21 = m)

Variations are possible

Restrictions

NKEEP < 30
0O <€ NFULL < 8
The program will stop if the number of detors generated for a given
set of N and Sz exceeds 200, At the end of a set of data the first

card of the next set is read,,execution ceases if NKEEP = O.
LY
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*FORTRAN LIB 4,142,168
Ce oo .DETERMINANT GENZRATOR, THIS PROGRAM GENERATES ALL POSSIBLE
CeeseM-ELECTRCN DETERMINANTS OBTAINABLE FROM N-SPIN CRBITALS.,
Ceeso THE AXIAL ANGULAR MOMENTUM AND Z-CCMPONZNT COF ELECTRCN SPIN ARE
Cuv.eo DETERMINZD AND ONLY THOSE DETERMINANTS WITH R2ZQUIRZD VALUZS ART
Ce e oo OUTPUT TOGETHER WITH INFORMATION ABOUT TH: BCHAVIOUR OF THG
C.eee DUTERMINANT UNDER THE OPERATIONS CF INVERSICN,RGFLICTICN AND S**2
COMMCN IC,INVERS,LP,M, MKEEP,MML ,MREQ,NC, NFULL, NK3iP, NP, SREQ,
1150(200,30) ,IFU(30),IGU(30),IREF(30),INVR(30),MM(30),F(5),LI (30)
TEXT F
PIMENSICN ICLEAR(6171)
LQUIVALENCE (IC,ICLEAR)
TEXT TEMP,SPIN
LOGICAL FIRST
DATA ICR/0/
C. .. .READ DATA,
Ceveo NKEZP=NUMBER OF SPIN-GRBITALS.
C.....NFULL=NUMBZR OF SPIN ORBITALS FROZEN.,
Ceeeo MEEEZP=NUMBER OF ELECTRONS.
Cueoos MREQ=REQUIRED VALUE OF AXIAL ANGULAR MCMENTUM(MZ) .
CueesSROQ=REQUIRED VALUE GF Z~-COMPONENT OF ELICTRCN SPIN(SZ).
C..ee.IGUCI)=0 IF ORBITAL I IS GERADS AND 1 IF ORBITAL I IS UNGERADZ,
Cuves JREF(I)=RCSULT OF AXIAL REFLECTION ON ORBITAL I.
Ceveos INVR(I)=RESULT OF INVERSICN CN ORBITAL I,
Cuwes IOM(I)=AXIAL ANGULAR MOMENTUM OF CRBITAL I.
Ceevo  INVERS=0 IOR GERADE DETERMINANTS AND 1 FOR UNGiZRADE DETERMINANTS.
1000 CLEAR ICLEAR
READ(ICR,1) NKZLP,NFULL,MKEZP,INVIRS,MREQ,SREQ
1 FORMAT(515,F10.5) .
IF (NKIZP,.2Q.0) GO TO 109
READ(ICR,2) (IRZF(I),INVR(I),MCM(I),I=1,NKLEP)
2 thduyr(315)
CeeesoF IS A VARIABLE FORMAT STATEMENT - SEZ SUBRCUTINE SPINIR(CSUTPUT GF
CevesRESULTS).
READ(ICR,999) F
999 FORMAT (9A3)
DO 997 I=1,NKiZP
IF(INVQ(I)) $93,997,997
998 IGU(I)=1
997 CONTINUZ
IF(INVERS) 3,4,3
3 TaMP="UNGEIRAD:®
GO TO 5
4 TaMP="  GIRADE’
5 WRITZ(LP,G) MKRLP,NKEEP,NFULL, TEMP,MREQ, SREQ
6 FORMAT( 1 / ,47Y 12, -ELECTRCN DETERYINANTS FROM®,13,° SPIN-CRB
1TALS(FIRST ,I3,” AR: FROZIN)‘/” 7,10%,Du STERMINANTS AR 7LA2, T VIT
2H 7,12, UNITS OF AXIAL ANGULAR MCIIENTUM AND.7,F4,1,” UNITS OF SPI
3N IN Z-DIRZCTICN’/)
WRITE(LP,7)
( 0%,34x, ﬁQBITALo HAVE FOLLOWING PROPERTISS"/ A
lL ,1 INVL“SION ,10%, RLrLEc”Iﬂn ,10:, “INVERSICH SYIRL RS
27 ‘JIN 10,;, ‘ AXIAL MOMNTUMT)
ID 15 I=1,NKZ:P
IF(IGU(I)) 9,8,9
8 Taup=" curaD:”
GO TO 10
9 TuMP="UHGERADZ®

L"S



10
11

12
13
14

15

16

17

138

108
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IF(MOD(I,2)) 12,11,12

SPIN=" BETA®

GO TO 13

SPIN="ALPHA"

WRITE(LP,14) I,INVR(I),IREF(I),TEMP,SPIN,MOM(I)

rorMAT(” °,18,13X,15,14X,15,20X,A3,14X,43,7X,1I7)

CONTINUE

WRITZ(LP,16)

FORMAT( 1%/ No. %, 26X, “DETERMINANT, 26X, “REFLECTION INVERSICN®,14X

1, sxx27/)

N=NKEEP-NFULL

M=MEEEP-NFULL

MM1=M-1

NP=NFULL+1

DISPLAY(LP,13) /N,M,NP
FIRST=.TRUZ. .

CLEAR IC

CALL COMBIN(IFU,N,M,FIRST)
IF(FIRST) GO TO 18

CALL SETUP

G3 TO 17

CALL SPINIR

WRITE(LP,108) NC,MKEEP,NFULL,IC
FORMAT( 0”, 4x,214, -CLECTRON DETERMINANTS WITH FIRST *,I4,° SPIN

10RBITALS FROZEN-",14,° HAVZ RIQUIRED SYMMETRY AND SPIN VALUZS")

109

GO TO 1000
STCP
LEND

*'ORTRAN LIB .

SUBRCUTINE COLATE (IMAST,IQ,M,MAX1,MAX2,1C,ID)

Cueevo  JMAST CONTAINS ORDERED SETS OF CONFIGURATIONS, IQ IS AN ORDERED
Cet et .CONFIGURATION TO 3E IDENTIFIED WITH ONE OF THE IMAST,

CCIMCN KC, INVERS,LP

DIMENSION IMAST(MAX1,MAX2),IQ(MAX2)
DO 4 Il=1,IC

14=0

Do 2 I2=1,M
IF(IMAST(I1,I2)~IABS(IQ(I2))) 1,2,1
I4=14+1

CCNTINUE

IF(I4) 4,3,4

ID=11

GO TO 7

CONTINUE

IF(14) 5,7,5

WRITE(LP,G)

FORMAT(1HO, 9X,100H****COLLATICN HAS NOT IDENTIFIED RESULT OF A REF

1LECTION CR INVERSION AS AN CRDERED CONFIGURATICN****/)

7

STOP
RETURN
END

*FORTRAN LIB

SUBROUTINE CCMBIN(J,N,K,FIRST)
DIMENSION J{30)

LCGICAL FIRST

IF(FIRST) GO TO 5
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NME=N-K
I=K+1
1 I=I-1
IF(I(I)-NMK-I) 2,4,4
2 M=J(I)
DO 3 L=1,K
M=M+1
J(L)=M
3 CCNTINUE
GO T2 7
IF(1-1) 5,5,1
FIRST=,NOT .FIRST
ro 6 I=1,K
J(1)=I
6 CONTINUE
7 RETURN
. END

[3: N

*FORTRAN LIB :
SUBROUTINE OUTDET(INDEX,COZ,ICOL,ID,F,1C,MKERP)
C...0CUTPUTS RESULTS,
CCMMON KC, INVERS
DIMENSICN INDEX(200),COE(252),IC0L(252),ID(30)
PIMENSION LIMSET(200,2),0P(20,20),Ev(20),WK(20)
DATA ICP,IDISC,JDISC,LP/5,58,59,0/
TEXT F(9) . .
TEXT TP/ “SINGLET /
WRITE(ICP,14) IC
14 FORMAT(® “,14)
CLEAR NBLOCK .
TOL=2%%* (~347)
WRITE(LP,141) (I,INDEX(I),I=1,IC) -
141 ForMAT((" 7,215)) ,
EPS=2,0%*(=35)
DO 21 NIM=1,IC
RIAD(IDISC) I, (ID(J),J=1,MREEP),IRE,IVR,K,IALPHA, (ICOL(J),COZ(J),
1J=1,IALPIIA)
IF(IRE) 12,13,12
12 IRE=ISIGN(INDZX(IABS(IRE)),IRE)
13 IVR=ISIGN(INDEX(IABS(IVR)),IVR)*(=1)**INVERS
X DISPLAY(LP,5) /I,INDEX(I),IALPHA,X,ICOL(1)
I=INDIZX(I)
WRITZ(LP,T) I,(ID(J),J=1,MKEEP),IRE,IVR
IF(K) 3,1,3
WRITE(LP,2) TEMP
FORMAT(” 7, 99X, A3)
GO TO 9
3 DO 4 J=1,IALPHA
I1COL(J)=INDEX(ICOL{J))
4 CONTINUZ
C.....RE-ORDZR ICOL SO THAT CONTENTS ARE IN ASCENDING CRDER.
IRE=IALPHA-1
IF(IRE) 71,71,41
41 TG 7 J=1,IR:
JMIN=ICOL(J)
IVR=J +1
DO 6 JJ=IVR,IALPHA
IF(IMIR-ICOL(JT)) 6,6,5
JMIN=ICCOL(JJ)

o

o=

(9]
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1COL(JJ)=1COoL(J)
ICOL(J)=IJMIN
CMIN=COLE(JJ)
CGE (JJ )=COL(J)
COE(J )=CMIN
6 CONTINUZ
7 CONTINUE .
71 WRITE(LP,8) (ICOL(J),COE(J),J=1,IALPHA)
-8 FoRMAT((® 7, 90X,110,4%,F7.3))
9 VRITE(ICP,10) (ID(J),J=1,MKEEP)
10 rormAT(” 7,3212)
TRACE MAX,MIN
WRITE(JDISC) K,IALPHA, (1COL(J),CCE(J),J=1l,IALPHA)
MIN=ICOL(1)
MAX=MIN
IF(K) 17,17,11
11 IF(IALPHA-1) 17,17,15
15 0 16 J=2,IALPHA
MIN=MINO(MIN,ICOL(J))
MAX=MAXO0 (MAX, ICOL(J))
16 CONTINUL
17 IF(NBLOCK) 19,18,19
18 NBLCCKX=NBLOCK+1
LIMSET(NBLQCK,1)=MIN
LIMSET(NBLOCK, 2) =MAX
GO TO 21
19 IF(MIN-LIMSET(NBLOCK,2)) 20,20,18
20 LIMSET(NBLOCK,1)=MINO(MIN,LIMSET(NBLOCK,1))
LIMSET (NBLCCK, 2)=MAXO0 (MAX , LIMSET(NBLOCK, 2) )
21 CONTINUZ
REWIND IDISC .
RCWIND JDISC
C.e.+o.DIAGONALIZATION CF SPIN OPERATOR MATRIX.,
- WRITZ(LP,22) NBLOCK
22 FORMAT( 07,36X, “SPIN OPERATCR MATRIX HAS®,I4,° BLOCKS ON DIAGONAL® .
1)
X WRITZ(LP,220)
X 220 FORMAT("0%,51X, “CONTENTS OF LIMSET "/’ )
X WRITE (LP,221) ((I,J,LIMSZT(I,J),J=1,2),I=1,NBLOCK)
X 221 ForMAT((" 7,40%,2( rImMsET(”,13,”,7,11,7)=",14,4%)))
DO 36 NLM=l,NBLOCK
MIN=LIMSET(NIM,1)
MAX=LIMSET (NN, 2)
IVR=MIN-1
IRE=MAX-IVR
CLEAR JMIN
CLIAR OP,ZEV,VK
DO 23 IVAL=MIN,MAX -
READ (JPISC) K,IALPHA,(ICOL(J),COE(J),J=1,IALPHA)
JMIN=JMIN+1
DO 23 JVAL=1,IALPHA
KVAL=ICCL(JVAL)-IVR
OP (JMIN,KVAL) =COL(JVAL)
23 CONTINUZ
X CALL WRITMX(OP,20,20,IRE,IRE,LP)
CALL TRED2(IRE,TOL,20,0P,0P,EV,WK)
CALL TQL2(IRE,ZPS,20,0P,EV,WK,NFAIL)
C.eesoOUTPUT RESULTS FCR CURRENT BLOCK.,
WRITE(LP,24) MIN,MAX

24 FORMAT("1°/707,27X, "DETZRMINANTS®,14,” TO ,14,” FORM TCTAL SPIN T
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1IGENFUNCTIONS AS FOLLOWS®)
IO 25 IVAL=1,IRE
EV(IVAL)=SQRT(l,0+4 ,0*EV(IVAL))
25 CONTINUE
DO 29 IVAL=1,IRE, 5
JVAL=IVAL+4
IF(JVAL,GT.IRE) JVAL=IRE
'RITZ(LP,26) IVAL,JVAL, (EV(KVAL),KVAL=IVAL,JVAL)
26 FORMAT( 0’ 4 33%, *MULTIPLICITIES (=2*S+1) FOR EIGLNFUNCTIONS®,I14,°
1c %,14/(° °,1P5E24,10))
JRI'IL(LP 27) IVAL JVAL
27 FORMAT("0”,48X, “EIGENVECTCRS”,14, " S VAN
IO 29 KVAL=1,IRE
WRITE(LP, 20) (CP(KVAL,JHIN) ,JMIN=IVAL,JVAL)
28 roemuat(” “,1P5:224.10)
29 CONTINUE
36 CONTINUZ
REVIND IDISC
REWIND JDISC
RETURN
END

*FORTRAN LIB
SUBRCUTINE PERMUT(IOTA,IZ,M,MMI,MAX)
Ce.o0PERMUTES ELEMENTS (KI) OF IOTA SO THAT RESULT IS AN CRDERED
C.eso.CONFIGURATION WITH K1.LZ,X2.LE.K3,..L35, KM,
CueveeoJE=PARITY OF PIRMUTATION,
DIMENSICN IOTAQHAX
I12=0
DO 3 I1=1,MM1
K1=I1+1
0 2 Ji=K1,M
IF(IABS(IOTA(J1))~IABS(IOTA(I1))) 1,2,2
1 I2=ICTA(I1)
IOTA(I1)=I0TA(J1)
IOTA(J1)=I2
IE=IE+1
CGNTINUE
CCNTINUE
E=(=1)**IG
RETURN
IND

w N

*FORTRAN LIB
SUBRCUTINE S&TUP
C..eesoCCMPUTES L2 AND SZ IFOR DETERMINANT NC+1 AND DETERMINSS SYIDISTRY.
CC&E&IIIC,INVuRS,LP,M,MKﬁmP,MMl,MRLQ,NC,NTUL.,NKJJP,HP,QRMW,
11s2(200,30),IFU(30),IGU(20),IRErF(30),INVR(30),LIi{30),7(9)
TEXT F
NC=NC+1
IC=IC+l
CLZAR ISZ,MZ,INVERT
Ic 4 1=1,M
J=IFU(I)-+NFULL
1S9(IC,I)=J
IFQion¢s,2)) 1,2,1
1 I5Z2=13Z+1
GO TO 3



- 173 -

2 152=1SZ~1
3 MZ=MZ+NCM(JT)
INVERT=INVERT+IGU(J)
4 CONTINUE
X VRITE(LP,100) (IFU(I),I=1,M),ISZ,NZ,INVERT
X 100 FomrmAT(® “,20X,1213,4X,°152=",12,° 1Z=" ,12,° INVERT=",12)
IF(MREQ-MZ) 7,5,7
IF(MOD (INVERT, 2) ~INVERS) 7,6,7
IF(SREQ-0.5*ISZ) 7,8,7
IC=IC-1
RETURN
IF(IC-200) 11,11,9
C...o.TCO MANY DETERMINANTS,
9 WRITZ(LP,10) (IFU(I),I=1,M) .
10 ForMAT( 0”,37X, “TCO MANY DETERMINANTS - LAST CONE GENERATED WAS®//
17 7,15%, 0013)
CALL ELXIT
11 RETURN
END

2]

[¢2]

*FORTRAN LIB
SUBRCUTINE SPINIR
C...+0 .DETERMINES RESULT OF INVERSION,REFLECTICN AMD TCTAL SPIN
C.vses(5%*%2) OPERATIONS,
COMMON IC, INVERS,LP,M,MKEEP,MM1,MREQ,NC,NFULL,NKEEP, NP, SREQ,
1150(200,30),1FU(30),IGU(30),IREF(30), INVR(ao),mcm(so) F(Q)
TEXT T
TEXT TEMP/” SINGLET/
DIMINSICN IUc(10,2),ISNMOP(10,10),ISPOP(252,10),ICCEF(252),ID(30),
11CcoL(252), ISGR(SO) 1001(30) cov(zso)
EQUIVALENCE (IFU, ID) (ICOET,COR)
DIMANSION INDEX(200)
DATA IDISC/58/
CLZAR INDEX,NCOUNT,IRE
IF(IC) 39,39,990
990 DC 33 NIM=1,IC
I=NLM
42 IF(INDZX(I)) 33,43,33
43 NCCUNT=NCOUNT+1
IND2X (I1)=NCOUNT
CLZAR ICOLT,COZ
DO 1 J=1,M
K=15C(1,J)
ISOR (J)=IREF(K)
ISCI(J)=INVR(K)
1 CONTINUZ
Ceees PERMUTE ELEMENTS (KI) OF RESULTING DETERMINANTS SC THAT TIICY FORM
C. oo oCRDERED DETERMINANTS WITH K1.LT.K2,LT....,LT. K8, DETZIRMINS IIICH
C..+eCRCERED DETERMINANTS THESE ARE,
IF(MRE0) 102,101,102
101 CALL P= RMUT(IoCQ,IR M,MM1, 30)
CALL CRLAT:Z(ISO,I50R,H,200,30,IC,IRE)
IRE—IQIGN(I“M,IR)
102 CALL PiRMUT(ISCI,IV,M,HM1,30)
CALL COLATZ(ISC, 1501 M,HOO,UU,IC,IVR)
IVR=ISIGN(IVR,IV)
CLZAR ISMOP,ISPCP,IUQ,K
C.eeso3TART CF TOTAL SPIN OPESRATOR SECTICH.
Cevos oDITERMINE WHICH SPATIAL CRBITALS ARS SINGLY OCCUPILD -~ GHLY
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Cue oo /THESE CONTRIBUTZ TO S¥*2,
~IFQ(Iso(1,1)+1)/2-(150(1,2)+1)/2) 2,3,2
2 K=K+l
1U0(K,1)=1s50(1,1)
1U0(K,2)=1
3 DO 6 J=2,MML
JORB=(Is0(I,J)+1)/2 ‘
IF((Isc(I,J-1)+1)/2-JORB) 4,6,4
4 IF((1so(1,J+1)+1)/2-JCRB) 5,6,5
5 K=K-1 ’
1U0(K,1)=150(I1,J)
1UO(K,2)=J
6 CONTINUZ
IF (JORB-(ISO(I,M)+1)/2) 7,8,7
7 K=K+1
IUC(X,1)=I50(I,M)
1Uo(K,2)=M
CeseosoIF K=0O THIS DETERMINANT CONSISTS OF DOUBLY OCCUPILD SPATIAL
Chuoes ORBITALS AND S**2 PRODUCES ZERO - THUS IT IS A SINGLET
38 1F(X-1) 29,29,9
Ce oo oS*%2 OPERATOR
9 CLEAR LSP,LSM
DO 15 IALPHA=1,K
IF(IPAR(IUO(IALPHA,1))) 10,15,10
Ceoeol OPERATE ON ALPHA SPIN WITH S-.
10 LSM=LSM-1
DO 11 J=1,K
1sMSP(LSH,J)=1U3(J,1)
11 CCNTINUZ
1SMOP(LSM, IALPHA)=IUC(IALPHA,1) +1
DO 14 IBITA=1,K .
IF(IPAR(CISMOP(LSM,IBETA))) 14,12,14
C.e. 0+ .OPERATE GN BETA SPINS WITH S+,
12 LSP=LSP+1
DO 13 J=1,K
I5PCP(LSP,J)=ISMOP(LSH,J)
13 CONTINUE
ISPCP(LSP, IBETA)=1SMOP(LSM, IBETA)~1
14 CONTINUZ
15 CONTINUZ
C.eee COMPARE DETERMINANTS RESULTING FROM APPLICATION S+5- WITH ORDZAED
Ceeeo DETERMINANTS TC IDENTIFY THEM AND DETERMINE COUFFICIONTS.
LC 16 IALPIIA=1,LSP
ICCETF (IALPHA)=1
16 CONTINUE
LSN=L3P-1
IF(LSM) 211,211,161
161 DC 21 ICQUTER=1,LSM
INLIM=IOUTER+
IC 20 INNER=INLIM,LSP
CLEAR IBAGTA
DO 13 J=1,K
IT(IS PQD(ICUT iR,J)-ISPOP(INNER,J)) 17,18,17
17 IBITA=1
S CONTINUZ
IF(IB3TA) 20,19,20
19 ICOIF(INNER)= ICOEF(INNER)+ICOEF(IUUTER)
CLZAR ICOEF(ISUTER)
20 CONTINUE
21 CCNTINUZ
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Cewos DETERMINE IDENTIFERS OF DETZRMINANTS THAT RESULT FROM S**2,
C.e+eREASSIGN OCCUPIED ORBITALS,
211 DO 23 IALPHA=1,LSP _
IF(ICORF(IALPHA)) 22,23,22
22 DO 23 J=1,M
ID(J)=150(1,J)
23 CCNTINUZ
Do 24 J=1,K
- INLIM=IUO(J,2)
ID(INLIM)=ISPOP(IALPHA,J)
24 CONTINUZ
C. s o+ RE-CRDZR ID AND COLLATE WITH 1SO,
CALL PERMUT(ID,IE,M,M1,20)
CALL COLATE(ISG,ID m,aoo 30,1IC, 1C0)
ICCL(IALPHA)=ICC
COL (TALPHA)=ICOZF(IALPHA)
CeoooOPERATE ON I-TH, DETERMINANT WITH SZ*(Sz-1).
IF(I-ICO) 26,25,26
25 COE(IALPHMA)=FLOAT (ICOEF(IALPHA))+SREQ*(SREQ-1.0)
26 COE(IALPHA)=5IGM(COZ(IALPHA),IE)
28 CONTINUS
C. e+« .OUTPUT RESULT,
C.....DETERMINANTS TO B CUTPUT WITIH FIRST NFULL CRBITALS.
29 IO 30 J=1,NFULL
ID(JI)=J
30 CONTINUE
PO 31 J=NP,MKEEP
ID(J)=15C(I,J-NFULL)
31 CONTINUS
CLEAR IALPHA
Ir(x-1) 32,311,33 *
311 ccz(l)=1,0+SREQ*(SREQ-1.0)
I1ccL(l)=I
GO TO 38
32 CLEAR C0:i3(1)
IALPHA=1
ICOL(1)=INDEX(I)
GO TG 36
33 D2 35 J=1,LSP
IP(COu(J)) 34,35,34
34 IALPHA=IALPHA®L
ICOL(IALPHA)=ICOL(J)
COZ(IALPHA)=CCE(J)
35 CONTINUZ
36 VWRITiE(IDISC) I,(ID(J),J=1,KK:EP),IRE,IVR,K,IALPHA, (ICOL(J),CCI(I),
1J=1,IALPHA)
p DISPLAY(LP,10) /K,IALPHA
X WRITI(LP,95) (J,Ic0oL(J),J,COE(T),J=1,IALPHA)
X 95 rorMaT((” 7,4("1con(’,13,7)=",13,7 coi(’,13,%)=",F7.3)))
IF(K) 361,371,361
361 DO 37 J=1,IALPHA
Ir(Ccas(J)) 362,37,362
362 1r(Ixpsi(Icends))) 37,3583,37
263 I=ICIL{J)
GO TO 43
37 CONTINUZ
371 IFQMRE]) 33,372,328
372 I“(TNPJi(IABb(I? 3))) 33,373,33
373 I=IAB3(IR:S
GO T3 43

J -

t
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33 CCNTINUE
ENDFILE IDISC
REWIND IDISC
42 FORMAT(® 7, 3212)
CALL OUTDET(INDEX,COE,ICCL,1D,F,IC,HKEEP)
39 RETURN
END
*INDLIB
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APPENDIX V

@NECEN. A PROGRAM FOR COMPUTING ONE-CENTRE

ONE—~ AND TWO-ELECTRON INTEGRALS OVER COMPLEX

SIATER-TYPE ORBITALS

Analytical expressions are used for the integrals. The indexing
scheme for the two-electron integrals is described in Chapter 7. This
program computes all the distinct one- and two-electron integrals which
arise from a basis set consisting of any combination of s, p, 4, or £
orbitals on a single centre.

ﬂNECEN uses ohe magnetic tape on which the integrals will be written.
This tape is device number 1 and the lineprinter is device number O. The
version of @NECEN listed in this appendix reads the Clebach-Gordon
coefficients from a private disc area which is device number 2. The non-
zero values of these coefficients are listed after the data specification.
In addition to the subprograms listed the subprogram IPAR (Appendix III)_

is also required. The storage requirements are standard.

Data Specification for @NECEN

Card 1 I
FZRMAT (I5)
= 0 to stop execution
' = 1 to continue execution
Card 2 NXBLZC
FORMAT (I5)
NXBLZC = number of block at which the integral

file is to begin on device number 1.
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Card 3, 4. TITLE
FERMAT (9A8/6A8)
TITLE is an array of 15 elements (120 characters) which

is used to identify the run.

Card 5 NBASIS, CH

BRMAT (I5, F10.5)

NBASIS = number of basis orbitals
CH = nuclear charge (a.u.)
Card 6(1) _ N(1), L(1), M(1), z(I)

FPRMAT (315, F10.5)

N(1) = principle quantum number (q.n.)
of orbital I.

L(1) = angular momentum q.n. of orbital I

M(1) = magnetic q.ﬁ. of orbital I

z(1) = exponent of orbital I

(1 € I < NBASIS)

Restrictions

1 < NBASIS < 30
1 < N(I) <€ 12
0 € L(I) < 3and L(I) < N(I)

iM(I)I < L(I)

At the end of a set of data the first card of the next set is always

read. The last card of the data check should have I = O.



en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en
en

- 187

NON-ZERO VALUES OF GLEBSCH-GORDON COEFFICIENTS C

1)z 0
18)= 0
4?)= 0.
50)= 0
65)=-1.
74)= 0.
89)= 0.

101)= n.
107)= O.
117)= O
122)= 0.
141)= O.
M7)r O.
159)=.0.
166)=.0.
178)= 0.
187)= O.
195)= 0.
203)= 0
217)= 0.
220= 0
235)= 0.
246)= 0.
250)= 0.
259)= 0.
263)=.0.
269)=.0.
274)= 0.
282)= 0.
285)= 0.
288)=-0.
299)= 0.
311)="0.
322)= 0
326)= 0.
333)= 0.
338)=.0.
347)= 0.
351)= O.
356)= 0.
359)=-0.
371)= 0.
383)=-0.
395)= 0.
403)= 0.
407)= 0.
419)=.0.
423)= 0.
430)= O
436)= 0.
439)= 0.

NIMBRR OF NON-ZERU COEH-JCIENTS r 152

.2ti20947918
.2%427182522

309019.3616

.2820947918

1261566261
1802237516
2185096861
2135096861
2207281154

.2820947918

2820947918
3090193616
1560783472
0901118758
1802237516
2477666951
1946639003
2396146972

.2143179006

2820947918

.2370879339

2384136135
2023006594
1261566261
2455320005
1694331773
0825888984
0294708039
2060129077
2820947915
1/78159504
2132436186
1066218093

.2102610435

16286/5040
1846743909
1880631945
0959547329
1450699201
2661305457
1795148675
16286/5040
0615581303
2196104975
3472346852
0239614697
1661984725
1884513543

.2102610435

3603424623
0769349432

en

CG
CG
CG
CG
jole]
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
ele
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
ole
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG
CG

CG
CG
CG
CG
CG
CG
CG
CG
CG
CG

9)= U
25)= 0
45)= ©
5/)= 0.
66)= 0.
75)= 0.
90)= 0.

102)=-0.
114)= 0.
118)= 0.
130)= 0.
142)=-0.
155)= 0.
163)= 0.
167)= 0.
179)= 0.
193)= 0.
201)=-0

210)=-0.
218)= 0.
226)= 0.
242)=-0.
24/)=-0.
251)= 0.
261)= 0.
266)=-0.
270)= 0.
275)= 0.
283)= 0.
286)= 0.
290)= 0.
307)= 0.
314)=-0.
323)= 0.
327)=-0.
334)=-0.
339)=-0.
348)= 0

352)=-0.
357)= 0.
360 )s .
379)= 0.
386)=-0.
398)= 0.
405)= 0.
411)=-0.
420)= 0.
424)=-0.
431)=-0.
437)= 0.
440)=-0.

.28245947918

.282094791.8
.2620947918

2523132522
2023006594
241/955358
2335966803
1430481681
220/281154
0901118758
1846743909
0825888984
2384136135
3371677657
0402992560
2462325212
247/666951

.1430481681

1880631945
1682088348
2820947918

0826888984
150/860088
2273184612
2335966803
1329807601
2060129077
0993225846
1621931015
1261566261
2820947918
2820947918
0000Q00000
2535843598
1173867486
1880631945
0444184102

.2304758133

1214714193
2820947918
0711263802
325/350079
2102610435
2102610435
3198654279
2035507269
171/865286
062/275712
1404633462
2820947918
0118543967

438

IS
[
N

—_—— — — — — — — —

L

0
0
-0
0
0
0
0
0
0

I112-

.2820947918
.2185096861
.1261566261

.2477666951

.2820947918

.2820947918

.2611690263
.0901118758
.2548748737

=-0,1611970239

0

.3198654279

=-0.1802237516
0.2207281154

0
0
-0
0
0
0
0

.2820947918

.2820947918

.1430481681

.1682088348
.0594706039

.1417579666
.1538698864

0.2335966803
0.2384136135

0
0
0
0
-0
0
i
0
0
0
0
0
0
0
0
0

0

--0

o N

i
0
0

-0

-0
0

=-0

0
0

.2023006594
.1628675040

.0594708039

.2004760390

.0928023732
.2217754548

.2429428385

.0256449811

.1846743909
.2611690283
.1901882698
.2611690283

.2689668306

.0535794751

.1774203638

.1628675040
.2145613054
.0000000000
2820947918

.3198654279
.1267921799

.0633960899

.1329807601
.1086473403

.1329807601
;2548005987

.0313637856

=-0.2102610435
0)= 0.000000Q000
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¢FCRTRAIT LIB 3,1,0
C....ILMN PROGR/iti FOR SINGLE CENTREINTEGRALPROGRAM.
C....VERSION 2. 12/05/71.

QxfflIN /TOALV CH,DEV,DIV,I,IA,IB,IC,ICR,ID,J,IC,IK,L? MTD25,NB,
1NBASIS,NI,NP,N2,T1,T2,ZIC,ANORMC30) ,CG(440) ,ERI (465) , FCTRL<25),
211(30,30) ,IN(4S5,2) ,L(30) ,M(30) ,N(30) ,S(30,30) ,TITLE (15) ,z(30)

....DEFINE DEVICE NUI.IEER3,
....ICR = CARD RE.ADER,
...LP =LINE PRINTER,
....NTD25= INTEGR.AL OUTPUT DEVICENUMBER (TAPE OR DISC),
.ID = DEVICE NUMBER FOR CEsSSTANTS TABIE.
CLEAR ICR,LP
MTD25=1
IB=2
RE/E) (ID) I,K
READ (ID) (CG(I),1=1,440)
UNLOAD ID
FCTRL(1)=1.0
DO 1 1=2,25
K=I-1
FCTRL (I)=IC*FCTRL (L)
1 CONTINUE
2 REiID(ICR,3) I
IF(I.E3.0) STOP
3 FORMAT (15)
C;VLL CUTBRIC (LP)
C/ilL, /ilICNE
GO TO 2
END

[eNeNeNeNe!

*FORTR/E\T LIB
SUBROUTINE /ilIONE
C....ONE-CENTRE ONE- AND T.7C- ELECTRON INTEGRj1LS.
C3.210N /TCAUV CM,DEV ,DIV,I,IA,IB,IC,ICR,I0 ,J,IC,IK,LP MTD25 6NB,
INB. 'V3IS,NI ,iNP,N2,T1,T2,ZIC,AIOU: (30) ,CG(440) ,ERI (465) ,FCTRL(25) ,
211 (30,30) ,IN(4G5,2) ,L(30),M(30) ,N (30),S(30,30) ,TITRE (15) ,Z (30)
READ (ICR, 33) NDC3LOC
C;111. SEARCH (MTD25 ,NXBLOC,0)
READ (ICR,1) TITLE
READ (ICR, 2) NBASIS,CH, (N(1) ,L(1) ,1.1Q) ,Z(I) ,1=1,NBASIS)
NRITE (LP,3) TITLE
Vv7TRITE (LP,35) CH
V/RITE (LP,4) (N(I),L(I),M(I),Z(I),1=1,NBASIS)
FORI,L1T (ORE/GA3)
FCRILiIAT(15,n0 . 5/(315,FI0.5))
FOiULVr (1H1/1H ,15A3)
FORILVTd1l ,43:C,23HN L M EXPONENT/ ( (IH ,44X, 315, F12 .5)))
NB= (NBASIS* (NB.1SIS+l) )/2
NI= (NB* (NBf-1))/2
WRITE (LP,33) NI
V/RITE (LIL 37) NXBLOC
DC IG 1=1,NBASIS
NI=2*N(I); 1
JNERL,1(I)=SQRT ( (2.0*Z(I) ) **NI/FCTRL(NI))
DG IS K=1,I
S(I,IC)=0.0
II(I,IC)=0.0
IF(L(I)-L(K)) 15,11,15
11 IF(M(I)-M(K)) 15,12,15
12 ZK=2.0*Z(IC)

S wphhH
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CLEAR T1
DIV=1.0/(Z(I)+2(IO)
DZV=1.0/SQRT (2.0*N (K) *<2.0*N(I0-1.0))
IF(N(K)-L(K)-1) 14,14,13
13 N2=N(I)+N(IO0-1
NP=2*N (K) -3
T1=ANORM (I) *FCTRL (N2) *DIV**N2*SQRT (ZK**NP/FCTRL (NP) ) *4.0* (N (K) +
1L (K) ) * (NCK) -L (10-1) *DEy/SQRT ( (2.0*N(K) -2.0) * (2.U*N(K) -3.0) )
14 N2=N(I)+N(K)
NP=2*N (K) -1
T2=ANCRK (I) *FCTRL (N2) *BIV**N2*SQRT (ZK**NP/FCTRL (NP) )
N2=N2+1
S (I ,K) =ANGRI.I(I)*2ANURJ1 (K) *DIV**N2*FCTRL (N2)
H(I,K)=Z(K)*(-0.5*Z(K)*(T1+S(I,K))+2.0*T2*DEV* (N (K)*Z (K)-CH))
15 S(K,I)=S(I,K)
II(K,I)=K(I,K)
16 CONTINUE
URITE (LP,17)
17 FORIVL'\T(1HL/1H ,43X,34HOVERLAP MATRIX FOR ATGTEIC ORBITALS/)
DO 21 I=1,NBASIS,5
K=I+4
IF (K-NBASIS) 19,19,18
IS K=NBASIS
19 V/RITE(LP,32) I,K
DO 21 J=1,N3ASIS
VmiTE (L?,20) (S (J,XX) ,XX=I,X)
20 FGRIVLIT((1H ,1P5E24.10))
21 CONTINUE
V/RITE (LP,22)
22 FGRI.IAT (1HO,34X,51HGNE-ELECTRON HAMILTONIAN MATRIX FOR AIGI*IIC ORBIT
1ALS/)
DO 25 I=1,NBASIS,5
X=I+4
IF (X-NBASIS) 24,24,23
23 X=NBASIS
24 VmiTE (L?,32) I,X
DO 25 J=1,NBASIS
Y/RITE (LP,20) (K (J ,KX) ,XX=I,X)
25 CONTINUE
1=100000
V/RITECMID25) I
\dTE (ived25) title ,j
DO 2C I=1,NBASIS
Y/RITE (MTD25) (S (I,J) ,J=1,NBASI3)
WBITE (MTD25) (H(I,J) ,J=1,NBASIS)
26 CONTINUE
V.BITE (LP,34)
IF (NBASIS.GT.5) Y/RITE (LP, 38)
DO 27 1=1,NBASIS
J=(I*(I-1))/2
DO 27 K=1,I
ICK-sT
IN(XX,1)=I
IN(KX,2)=K
27 CONTINUE
DO 31 I=1,NB
IC=IN(I,2)
IA=IN(I,1)
XX=IABS (M(IA)-M(IC))
DO 29 J=1,I
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IB=IN(J,1)
ID=IN(J,2)
CLEAR ERI(J)
IF(KK-IABS (M(IB)-M(ID))) 29,23,29
28 3IRI(J)=5C(IA,IC,IB,ID)
29 CONTINUE

WRITZ(MTD25) (ERI(J),J=1,I)

IF(NBASIS.GT.5) GO TO 31

WRITSZ(LP,30) I
30 FORMAT(1HO,49X,19HCONTENTS CF RECCRD ,12/)

WRITE(LP,20) (ERI(J),J=1,I)
31 CONTINUZ
32 FORMAT(1HO,52X,8HCOLUMNS ,I2,4H TO ,12/)
33 FORMAT(1HO,32X,51HNUMBER OF TWO-ELECTRON INTEGRALS TO BE CALCULATE

iD =,17/)
34 FORMAT(1H0,49X,22HTWO-ELECTRCN INTEGRALS)
35 FORMAT(1HO,45X,17HNUCLZAR CHARGE = ,T10.5/)

CALL YIITPS

REWIND MTD25
36 FORMAT (15)
'37 FORMAT( 07, 33X, INTEGRALS BEGIN AT BLOCK®,I4,” OF MASTER FILE”)
33 FORMAT( 07, 37X, “PRINTING OF TWO-ELECTRON INTEGRALS SUPPRESSED”)

RETURN :

END

*FORTRAN LIB
INTEGER FUNCTICN INDZEX1 (MM,M1,M2,LL,I1,L2)
C.....EVALUATION OF CLEBSCH-GORDON INDICES. VERSION 2. 09.04.69 ADT.
IML=IABS(M1)
IM2=IABS (112)
I1=(L1*(I1+1))/2+IML+1
I2=(L2*(L2+1))/2+IM2+1
I1Z=4*MAX0(I1,I2)*(MAXO(I1,I2)~1)+3*MINO(I1,I2)+LL/2
IF(IABS (M) -IML-IM2) 2,1,2
1 1=7
GC TO 3
2 I=3
3 INDEX1=1Z-I
RITURN
END

*FORTRAN LIB \
FUNCTION SC(IA,IC,IB,ID)
CCMMCH /TOALL/ KZgEP(22),ANORM(20),CG(440),ERI (465),FCTRL(25),
1H(30,30),IN{465,2),L(39),M(30),N(30),5(30,30),TITLs(15),Z(30)
CLEAR SC
LOWAC=IABS (L(IA)-L(IC))
LoWBD=IABS(L{IB)~-L(ID))
IF(IPAR(LOVAC) -IPAR(LCYBD)) 4,1,4
1 FCURPI=1,2566370614:2+01
LOW=MAXO (LOWAC, LOWBD) +1
IGE=MINO(L(IA)+L{IC),L(IB) +L{ID))+1
IF(IGH-LCW) 4,2,2
| 2 MM=M(IC)-M(IA)
| 21=2(14) +2(IC)
Z2=Z(IB)+Z(ID)
N1=H(IA)-+{IC)
N2=N(IB)-+N{ID)
L0 3 MUP=LCVY,ICH,2
1U=MUP-1
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JA=INi, EXI ( TZL,-1: (1A) MU ,L(IA),L(IC))
JE:=INDJ.a (-L.T0.1, -M (13) ,MU,L(IB),L(ID) )
3C=3C ;-FOUAP1/FLOAT (2 *RaJ:- ) * CG(J A) * CG(JD) *7/ (LIU,N1,N2,21,22)
3 CONTINUE
8C=7AICAl: (170 .U70ALI (IB)* AKUIILI(| C)* MGRLI(I D) *SC
4 IL.TUAN
AND

*FOATaul LID
FULCTICN U(IMU,III,IID,bZ1,22)
CAD.ICN /TOvILV K8DP(22) ,ANGRII(30) ,CG(440) ,DRI(4G5) ,FCTRL(DS5) ,
1H(:u,Uu) ,IN(4C3,2) ,L(30) ,K(30) ,N(30) ,S(30,30) ,TITL2(15) ,Z(30)
D1=21
XD=zZD
NU=IID-II.1U-1
[.IU=N1 :-ND
IF=-i.iU -l
CiAFiR JUMP
1 A=1.0-Aa/X2
MIN=LIU-NU
.a =FCTRL(MIN)/ A**MIN
I.IIN=MIN-a
CL3/U1 I
DO 2 I=IvliIN,MU
M=M-a
-ma=i.i*:a —+FCTRL (i)/A **i
2 CCIETINUD
IF(JUIP) 4,3,4
3 Jul,P=I
w'=AD**IP*XI
IUJ=N1-IMU-1
ra =22
X2=21
GG TO 1
4 '7=7/rX2**IP *ia
RDTURI'I
DNB



00

o"!

00



- 193 -

3714 YILSYH 30 0S  ¥0078 1v KIL3IE vyl

0zt @ WHLYINDTAVD (3¢ U1 SIVESTIANT NCYLOEN9=0ML 40 430N
oegecte T ¥ Z
pégedte Yo T 2
vegeee 0 ¥ ¢
oeLvete 0 0 ¢
06569, 0 0 1
LN=NOCYg h 4 A
000060"'8 = JuEVED ¥vanonN

'(SIN3NOJYE S STYYVH ANV Y¥343VHOS) N3DAXC O1h0IY Y04 SIVYNZINT < ¥ivd LS:HL HIDINO



- 194 -



,0004U00000F+UO
.mn ,817T7:, "01

0,90006E0000(15-00
0,000000000n5-U0
o 1vv 00000 Owv +00

- 411068 so5+01
-7,,03263%27 cvv +00
0.c00000000n5+00
Cc.00 000000 005 +00
0,00000000005+00

4,7855000002s+00

6,74254612705-01

1,11601720665+00

0,00000000005+00

0,00000000005+00

1,10579364555+00
a,7134859337E"01

0,000000 00005+0 O
0,00000000005+00

0c00000000005+00
0,00000000005700

0,00000000005+00
0,00000000005+00

1,10579384555+00
7,77430781565-01

0,00000000005+00
0,000000000 05+0 0
2,48758546655-02

CVi*RLAP yiAT-»:X FOR ATOMIC jRBI

P w09r:477653F'"01
9,99999999955 ..GI
0,00000000005+00
0,00000000005+00
0,00000000005+00

CG.UXNS 1 TO 5
G,0003000000 E+00
0,0000000000E-00

, 0000000000 E+00
0,0000000000 E.00
0,0000000000 E+00

ONE-ELECTRoN HAM] [LTOXIAX MATRIX FCR A i0

-7.03263427955-00
-3,17714869305-00
0,0000:G600005"00
0 ,00000000005+00

0,000000 00005+00

,1,71095720475-01

2,48665141815=01

0,00000000005+G0O

0,00000000005+00

2,46581626615=01:

0,00000000005+00
2,48778546655+02

0,00000000005+00
3,6251260 8455=0 2

0,00000000005+00
0,00000000005+00

2,46581626615=01
0,00000000005+00

0,00000000005+00
2,48758546655=02

CO..UMNS 1 TO 5
0:000300000nE+00
0,0000000000 E+00

=6 ,4268167801 E-00
" ,0000000000 E-00
0,00000000005+00

TX0-5 5::TRON I.\TSuRALS

CONTENTS OF RECORD 1:

CONTEXTS OF RECORD 2

CONTEXTS: OF RECORD 3
3,16 365025 01E=01

CONTEXTS OF RECORD 4
0,00000000005+00

CONTEXTS OF RECORD 5:
0,00000000005+00

CONTEXTS OF RECORD 6
8,12524215 97 5=01

CONTEXTS OF RECORD 7
0,00000000002+00

CONTEXTS OF RECORD B
0,00000000002+00
1,79576348745=01

CONTEXTS OF RECORD 9
0,0000000000 5+00
0,0000000000 5+00

CONTEXTS OF RECORD 1iQ
8,1252421597 2=01
0,00000000005+00

contexts 0F record 11.
0,00000000005+00
3,625126034502



lie O

UTG: . 'vOuOtuCE+no
U,0 vOCOCOOvE~ QO

0.000000 00NOE-0C
1 .0000000000E-0U0

0.CCOu0C0O000 h-00
I'ALN
U .GGOOuOOOOGE ' GO

C.00 000000005400
0.CCOO0O0O0OGOOF+00

:.3.42681673015 +00

0,0 000000000 5+00

2,48758546655-02

5.82512603455-02

0,00000000005+00

G.00000000005-00

0,00000000005+00
4,69589062552-"02

0,00000000'005+00
0.00000000005+00

0,00000003005+00
0,00000000005+00
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0.0000 00CO035+00
0.00 0000000 05+0 0

0.00d00G00 iiJF+00
0 .000000000UE":'00

1,000000000 35-00

o.'oocooocnoop+oo
0.'00030 3000 05+00
0;d000300G'0u5 +13
0,000Cco0o0005M00
-6.42661678015+00

1.79576348745:61

0 ;dOOOCCGCOwWE +CO

o;cgoooccco'oe+6o

0,’00000000665+0 0

0.00000000005+60

0.00000000005+0 O
8.24359657615-61

G. GOAOOO0O'd'"dE +dO
0.00000006665+0 0
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TAPE
NUMBER

TAPE
NUMBER

0.000GQO0ONn 005+00
0.000000n0c05+00
3,62512608455-02

0,000 000000 OE+00

0,00000000005+00
0, 00000000OCOE+00

0,00000000005+00
0,0000000n00E+iio
0, 00000CO000E+00

1,10579384555+00
7,7743078136E"'01
0,0000000 0002+0 O
POSITIONED AT
BLOCK WORD

50 214

POSITIONED AT

BLOCK WORD
6 0

0.U0Q00n0000E+0O0

3,82512608455=02
1,79576348745=01

0,00000000005+00
0.0000000000E+00
0,00000000005+00

0, U000000CO0OE+00
0, U0O0OO0O00OUOOE+00
0,U00000000U0E+00

2,46581626612=01:
0,00000000005+00
0.00000000002+00

CONTEXTS OF RECORD 12

CONTEXTS

0,G3000000n0E+00
1,79576343745=01

OF RECORD 13

0.0000000000E+00
0,000 0300000 2-00
4,69589062552=02

CONTEXTS PY¥ RECORD 14

CONTEXTS OF

0, 0000000000E+CO
0,00000000002-00
0,00000000002+03

RECORD o

8,12524215972=01
0,00000000002+00
0,00030000002+00
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C.00600C0000E+00
C.0060000000E+00

0,0000000000E+00
4.6958906255€-02

0.000G000000E+00
0,00006000G0E+00
9.3917812509E~02

0,0000000000E+00
0.0000000G00E+00
0.006G000030E+00

0,0000000000E+30
6,0000000303g+00

0,0006C00000E«00
0,0000000080g+00

0,0000000000E+00
0,0000000000g«00

0,0000000000(
8,243896876Lg=0
8.,2438968761g=¢

A
J
1
ala
i

7
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APPENDIX VI

INTRA. A PROGRAM FOR TRANSFORMING ONE- AND

TWO~ELECTRON INTEGRALS OVER AN ATCOMIC ORBITAL

BASIS INTO INTEGRALS OVER AN ORTHONORMAL BASIS

The methods and indexing schemes employed by INTRA are described in
chapters 7 and 8. The program is written so that it will be possible to
implement restart facilities should these prove necessary for large basis
sets. The program occupies about 1500 RﬁRTRAN V source cards and its
storage requireﬁents are standard. In addition to the subprograms listed
here, INTRA requires the routines ENTR, ERRZR, QUIT, and WRITMX from
Appendix III. |

INTRA uses five magnetic tapes or disc areas, the actual requirements
being dictated by the size of the basis set; for less than 24 basis

orbitals the following assignment is possible:

VARIABLE VALUE =

NAME DEVICE No.

LDNO3 3 A common disc area of 710 blocks.

1LDNO8 4 A common disc area of 555 blocks.

LDNO9 5 A common disc area of 555 blocks

LDN10 6 A private magnetic tape containing the file
of untransformed integrals, producel in the
same order as those of ﬂNECEN

LDN11 Defined in Master transformed integral tape which will

data contain the file of transformed integrals.



- 199 -

This program will process several sets of integrals in each run.
As a precaution against corruption of the tape on device LDN10 each set
of integrals should be transferred to the beginning of the common disc
area LDNO3 at the start of each run. The user must normally specify

seven of the eight possible sections of data.

Data specification for INTRA

Section 1 : Transfer untransformed integrals from device LDN10 to

device LDNO3

Card 1 NBASIS
FZRMAT (I5)
NBASIS = number of basis orbitals
Card 2 IWHERE, ISTART (15)
FZRMAT (2I5)
IWHERE = 1
= 0 to suppre;s timing information
ISTART(15)
= 1 to obtain timing information
Card 3 NEXTBL
FZRMAT (I5)
NEXTBL = nunber of block at which the untransformed

integral file begins on device LDN10

Section 2 : Read data required to start transformation

Card 1 IWHERE, ISTART(15)
FZRMAT (2I5)
IWHERE = 2

ISTART(15) : see section 1 card 2
Card 2 JSER, ISTZP

FZRMAT (2I5)



Card 3

Section 3

Card 1

Section 4

Card 1
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JSER

ISTEP
(M(I)ttl =1,

FERMAT (30I2)
.

M(1) ﬁ

\

serial number given to the untransformed
integral file by the integral generation
program. If the program @NECEN was used
then JSER = 100000

1

NBASIS)

=

0 if the magnetic quantum number of the
I-th atomic orbital and the I-th transformed
orbital are different.

magnetic quantum number of the I-th atomic
orbital if the magnetic quantum number of

the I-th transformed orbital is the same.

Complete the upper triangle of the distinct two-electron

integral matrix

LY

IWHERE, ISTART(15)

FPRMAT (2I5)

IWHERE

ISTART(15)

-

]

3

0 to suppress timing information and printing
of one-electron integrals (untransformed)

1 to obtain timing information and printing

of untransformed one-electron integrals

Compute Schmidt orthonormalization coefficients and transform

the one-electron integrals

IWHERE, ISTART(15)

FERMAT (215)
IWHERE

ISTART(15)

4

see section 1 card 2
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NgNO

FZRMAT (I5)

N@NO = number of non-zero elements in the
matrix which transforms fhe atomic
orbitals into non-orthonormal symmetry
adapted molecular orbitals (The 'Symmetry
Transformation Matrix!')

1, J, wsp2 (I, J)

FERMAT (2I3, F4.1)

wsP2(1, J) is the I, J-th element of the symmetry
transformation matrix and is written as

an integer in real form: e.g. 1.0.

) (1 < x < NgNO)
NIR
FZRMAT (I5) )
NIR = number of different irreducible representations

to which the transformed orbitals belong;
subspecies are counted as different.
(1r1(1), I = 1, NBASIS)
FERMAT (16I5)

IRI(I) a number which identifies the irreducible

hrepresentation to which the I-th orbital
belongs. As long as these are different for
different irreducible representations their
value is only restricted to the range

1 < AIRI(I) < 10000

(continue onto successive cards if

NBASIS > 16)
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Transformation of two-electron integrals

IWHERE, ISTART(15)

FERMAT (215)

IWHERE

ISTART(15)

ISER
FZRMAT (I10)

ISER

5

0 to suppress timing information and

the printing of the transformed two-
electron integrals

1 to obtain timing information and the
printing of the transformed two-electron

integrals

any integer > 0, it is a restart
parameter which is not used by the current

version of INTRA

(ISTART(I), I = 5, 12)

FZRMAT (8I5)
ISTART(5)
ISTART(6)
ISTART(7)
ISTART(8)
ISTART(9)
ISTART(10)
ISTART(11)

ISTART(12)

1
numerical value of NBASIS
1
numerical value of NBASIS
1
numerical value of NBASIS

1

numerical value of NBASIS

Transfer transformed integrals from device LDNO3 to

device LDN11
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IWHERE, ISTART(15)

FERMAT(215)

IWHERE = 6

ISTART(15) : see section 1 card 2
TITLE

FPRMAT (948/648)

TITLE is an array of 15 elements (120 characters)
used to identify the transformed integrals
output from this run.

IDN11, NEXTBL

FERMAT (215)

LDN11 = numerical value of the device number for
the final output to the Master Transformed
integral tape.

NEXTBL = number of block at which the transformed

integral file is to begin on device LDN11

End of program, this should not be used if section 8 is
required.

IWHERE, ISTART (15)

FERMAT (21I5)
IWHERE = 1
ISTART(15) = O

Re-entry of program clearing workspace in process. This
section should be used instead of section 7 if another set

of data is to be processed
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Card 1 IWHERE, ISTART(15)
FZRMAT (2I5)
IWHERE = 8
ISTART(15) = 0
Restrictions

1 < NBASIS < 30
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*FORTRAN LIB 8,5,325
Ce....MAIN ROUTINE FOR INTEGRAL TRANSFCRMATION PROGRAM.
COMMON /TOALL/ NBASIS,NB,ISTOP,ISTART(Z0),k(30),1DN0O1,LDNO2,LDNO3,
1LDNOS, LDNOS, LDN1C, LDN11
COMMON /TOSUM/ AREAL(34589)
CCMMON ARZA2(13530)
oo+ DEFINZ DEVICE NUMBERS, -
s+ LDNOL=CARD REZADIR,
oo LDNC2=LINZ PRINTIR,
e e esoLDNO3=INTEGRAL FILEZ,
esa.LDNO3=VORK FILZ 1,
oo+ LDNOS=WORK FILE 2,
«se0 . LDN1O=MASTER INTZGRAL FILE,
CLiZAR LDNO1,LDNO2
LDNO3=3
1DNU3=4
LDNO9=5
LDN10=6
11 CLEAR ISTART,M,AREALl,AREAZ2
CALL OUTBRK(LmNoz)
REWIND LDNO3
REWIND LDNO3
REWIND LDNO9
RIAD(LDNO1,1) NBASIS
NB=(NBASIS* (NBASIS+1))/2
1 I‘OMILAT(?IJ)
2 READ(LDNO1,1) IWHZRE,ISTART(15)
Go o (3,4,5,6,7,8,9,11) ,IWVHERE
Cevo..TRANSFCR INTEGRALS FRCHM IDN1O TC ILDNO3 IF NZCESSARY.
3 CALL MFILEZ
GO TO 2
C.vss .READ DATA AND CHECK INTuG?AL FILE SZRIAL NUMBER.
4 CALL RESSET
GO TO 2
Ceve. SET UP COMPLETZ MATRIX OF DISTINCT TWO-ELECTRON INTZGRALS.
5 CALL SETLRI
GO TO 2 ,
C.v...DIAGONALIZE OVERLAP MATRIX AND TRANSFCRM H-MATRIX.
6 CALL TRANSH
GO TO 2
C.v...TRANSFORM TWO-ELECTRON INTEGRALS.
7 CALL CCGNTRA
GO TO 2
C.....TRANSFER TRANSFORMED INTEGRALS FRCM LDNO3 TO IDN1O IF NICI3SARY.
8 CALL KFILE3
GO TO 2
C.eveJ0B COMPLETE,
9 CALL CNTR(NB)
”“(LDNO ,10) NB
10 FORhAT( D ,BGX,'**** JCB COMPLATE =-",I5, 7 INSTRUCTIGNS U3ZD ***xx”)
STCP
END

aOaoao0oaoaa

*TCRTRAN LIB
SUBRCUTINE BIGTRA(A,B,MTDO1,MTD0Z,NCOL,NRTY,NPAGS)
C.ev. .,TRANSPGSE O A LARGE MATRIX.
DIMENSION AQNRCY,NCCL) ,B(NRCIW,NCAL)
RAVIND MTDCL
R.]'.:'IND MTLCO2
NCCH=NCCL-NRCV
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DO 8 IPASS=1,NPASS
READ (MTDO1) ISE
JK=(IPASS=-1)*NRTV
JR=NROY
IF(JK-NCON) 2,2,1
1 JR=NCOL-JK
2 IO 6 IPART=1,NPASS
IK=(IFART-1)*NROW
IR=NRCY
IF(IK-NCON) 4,4,3
3 IR=NCCL-IK
4 D2 5 I=1,IR
READ (MTDOL) (A(I,J),J=1,NCCL)
5 CONTINUZ
LC 6 1=1,JR
JC=I+JK
DO 6 J=1,IR
IC=J+1K
B(1,1C)=A(J,JC)
6 CCNTINUZ
DG 7 I=1,JR
WRITE(MTDO2) (B(I,J),J=1,NCCL)
7 CCHTINUZ
RIWIND MTDO1
CCNTINUE
ENDTILZ MTCO2
REVIND MTDO2
WRITZ (MTDC1) ISER
LG 9 I=1,NCOL
READ iTpez) (A(L,J),J=1,NCOL)
WRITS(MTDO1) (A(:,J3),J=1,NCOL)
9 CONTINUZ >
ENDFILE MTDO1
REVIND MTDO1
RIVIND MTRO2
RETURN
ZND

(0]

*FORTRAN LIB
SUBROUTINE CONTRA
C.....CONTROL ROUTINZ FCR TWO-ZLECTRCN INTEGRAL TRANSFORMATICH.
TIXT TUMM
COMMON /TOALL/ NBASIS,NB,ISTGP,ISTART(20),1(30),LDNOL,LUNG2,LEN03,
11.5NOS, LONO 2, L.ON10, LDN11
COMMON G5{330,30),H(33,30),C(20,30),IDnUNM(4000) ,DUKY (2503)
BQUIVALGENCE (IDUKM(Z23),IBZR), (IPUM(24),I), (InUnN(25),J), (IDUM(2G),IP
1), (ITUNM(Z7),11), (IDUK(33),12)
EQUIVALENCS (LUMY(3),DUNL) , (CUMY(4), SHAT) , (CUMY (5) ,IRIAT) , (DUMY(G),
1ERIMAT)
CALI, ENTR(GHCCONTRA,ISTART(15))
CueesoSKIP TITLE AND SERIAL NUMBZR OF TAP: CN UNIT 03. SKIP UNTRANS-
C.....FORMED 5 AND H MATRICES.
‘REAC(LDNC3) ISER
READ(LDIO3) LUMM
D2 1 I=1,NBASIS
RIAD(LDNO3) SLIAT
RZAD(LDNO3) AT
1 CCNTINUS
C.....TAPS CN UNIT 03 CCRRECTLY PCSITICNID - SIRIALIZS TAV.S G UNIT C4,
READ(LDINOL,3) ISiR
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J FZ1LYTd10)
301) is OR
301 FCRI.LITdIIU, 37X, 00H5ERI, 1L ITUMBER CP TAPE GN UNIT 04 IS ,110/)
RG.7INO D JKOO
WRITE (LUNC5) I OcR

REA) : \LDNO1,4) (IST.'EIT (I) ,1=3,12)
4 I'GRILYT (EI5)
c., CNwCN:DATA. ISTG?=5G IF ISTART (L)
J=1
1.0 7 1=5,11,2
ir=IT M
IF (ISTART (I)-I STUITCIP)) 7,7,5
WRITE (LDNO2,3) I,IP
12RT.INT(GII ISTART(,I3,14H) .GT. I3T/ulT(,I3,1H))
J=0
7 CGNTINUE
Ip(J) 0,3,0
W il Al @
0 J=1
EG 13 1=6,0,2
IP (IST/EIT(I) -NB/iSIS) 10,13,11
10 IoTGP=GO
G: TO 13
11 WRITE (LDN02,12) I
12 FORIGVrCOK I3TART(,I3,13H) .GT. NBASIS)
J=C
13 CONTINUE
IF(J) 15,3,15
15 J=1
EO 17 1=10,12,2
IF (ISTABT (I)-NBASIS) 17,17,16
1C V.T1TE (IDNu2,12) I
J=G
17 CONTINUE
IF(J) 13,3,13
13 C/ilL TW'OTRY
c CHECK IF RE3T1RT NECESSARY.
11=5
12=7
13 IF(I3T7EIT(I2+1)-NBA3I3) 20,21,21
20 ISTART (I2)=ISTART (I2K1l)fl
GO TO 27
21 IF (ISTYRT (II-) -NBASIS) 22,23,23
22 ISTEIT (11)=ISTART (11+1)+1
ISTANT (I2)=1
GO TO 27
23 IF(I1-O) 24,29,24
24 11=0
12=11
GO TO 15
27 V,RITE(LDNO2, 23) (I,ISTulT(I) ,1=5,11,2)
23 FGRMAT (1HU,23X,74HA RESTART IS NECESSARY IN THE TWO-ELECTRON INTEG
1iVil. TR.ANSFOIULATIUN ROUTINE/IH ,22X,20HRE3TART VALUES .ARE -,4 (3H IS
2TART (,I2,2H)=,I2))
GO TO 33
23 WRITE (LDNO2, 3G)
30 FORMAT (IHO,35X,43HTR/iNSFORMATION OF TWO-ELECTRON INTEGRALS COMPLET
IE/)
C CHECK FOR HALT AT THIS POINT.

@ u
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IF(ISTOP-5) 34,31,34
31 WRITE(LDNOZ2,32)
32 FCRMAT(LHO,21X,77HUSEZR RIQUEST =~ PROGRAM TO STCP AT END OF TWO-ELE
1CTRON INTEGRAL TRANSFCRMATION/)
33 RIWIND LDNO3
REWIND LDNOS
STOP
34 CALL QUIT{GHCONTRA,ISTART(15))
RITURN
END

*FCRTRAN LIB
SUBROUTINZ DUMPSH(S,H,NBASIS,NO)
C.eeos oOPTIONAL CUTPUT GF OVEIRLAP AND ONE=-CLICTRON HAMILTONIAN MATRICES
COMMON /TCALYL/ NWBASZS,NB,ISTCOP,ISTART(20),M(20),1DNO1 LDNOZ,LDNOS,
1LLNO3, LDNC Y, LDN10, LON11
DIMENSICN s(30,30),H(39,30)
IF(NO) 1,4,1
VRIT:(LDNO2,2)
2 rormaT( 1°/707,53X, “CVERLAP MATRIX)
CALL WRITMX(S, 30,SO,NBASIS,NBASIS,LDNOZ)
VWRITE (LDNG.:,, 3)

[

3 ForMAT( 07 » 44X, -ELECTRON HAMILTONIAN MATRIX')
CALL WRI u»L‘{(H 30 Sv ,NBAQIS,NBADIS, LING2)

4 RITURN
END

*FORTRAN LIB
SUBROUTINE MFILE2 ~
Cev.eo.TRANSFERS INTIGRALS IN MASTER FILZ TC LISC FILE FOR TRANSFORMATION
CCMMON /TNALL/ NBASIS;NB,ISTGP,ISTART(20),M(30),1DNOL,LDNG2,1L0N03,
1LDNOS, LDNOZ, LOH10, LDNL1
COMMCN S(SO,BO),H(SO,SO),ERI(SOO)
TEXT TITLE(LS)
EQUIVALINCE (Tvnho N=XTBL) , (ERI,TITLE)
CALL ZNTR(LFILI2 ,IoTAR”(lJ))
RIAD(LDNO1,1) NIXTBL
1 FCRMAT(IS)
CeseePOSITICN MASTER INTEGRAL FILT AT NiXTBL.
MTDRE=LDN10
MTD./R=LDLNO3
CALL SEARCH(LDNLO, NEXTBL,O)
thT;(Unzi,z NIXTBL
2 rForat(’17/7 7,21%, "INTEGRALS FOR THIS RUN ARC IN TILD MASTER INTIG
1RAL FILZ STARTING AT BL2CK,I5)
RIAD (LITDRE) ISER
WRITS(MTDIMR) IS8R
DAAD (Iul: ) TI LQ,IRUN
WRITZ (MTUVR) TITLE, IRUN
DISPLAY /TITLS
re 3 I=1,NBASIS
RIZAD (MTRR3) (2(J,I),J=1,NBASIZS)
VRITSMIDVR (S(J,I),J—l,l ASIS)
READ (MTPRD) (I, I),J=1,KBASIS)
WRITZ(HDIDWR (H(J,I),J=1,NEASIS)
3 CONTINUE
LC 4 I1=1,NB
RuAD (MTDRE) (BRI(I),JI=1,I)
WRITZ(MTTIR) (HA1<J),U_“,1)
4 CONTINUZ
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C.o.o.DITERMING POSITICNS OF ALL MAGNZTIC DIVICLS.
WRITE(LDNOZ,5)
5 FORMATC C”, 20X, “PCSITICNS OF MAGNATIC DEVICES /)
ALL WHTPS
ENDFILE MTDWR
REWIND MTDVR
CALL SEARCH(LDN10,NEXTBL,C)
CALL QUIT( MFILI2",ISTART(15))
RETURN
END

*FGRTRAN LIB
SUBROUTINZ MFILES
Cueeos TRANSFERS TRANSFCORMED INTEGRALS FRCM PISC (IDNO3) TC MASTER
Cuveos (TRANSFORMID) INTEGRAL FILZ (LDN11).
COMMON /TOALL/ NBASIS,NB,ISTGP,ISTART(20),M(3C),LDNOL,LDNG2,LDNO3,
1LDNOS, LDNOS, LDN1C, LDN11
CCMMON BRI (900),H(20,30)
TEXT TITLZ(15)
EQUIVALENCE (ZRI,TITLE)
C.veooTITLE IS 120 CHARACTZRS (15 ATLAS WORDS) USED TC IDENTIFY TiiE
Cuv.. .INFORMATION IN EACH MASTER FILZ,
READ (LDNO1,1) TITLE
1 FCORMAT(SA3/GA3) _
READ(LDNOL,12) LIN11,NZXTBL
12 FCRMAT(Z15)
13 WRITZ(LDNO2,2) TITLE,NZXTBL
2 FORMAT( 07,1543/7 7,21%, WILL BC FCUND IN TiZ MASTSR (TRANSFCRMED)
1 INTEGRAL FILE S3TARTING AT BLOCK ,I15)
CALL SCARCH(LDN11,NZXTBL,0)
MTDRIT=LDNO 3 ’
MTDWR=LDN11
CLEAR ERI
NSQRD=NBASIS*NBASIS
LC 3 I=1,NSQRD
REAL (MTDR3) (ZRI(J),J=1,NSGRD)
WRITE(MTDWR) (ERI(J),J=1,NSQRD)
3 CONTINUE
READ (MTRRE) ((H(I,J),I=1,NBASIS),J=1,NBASIS)
WRITZ(MTDWR) ((¥I(I,J),I=1,NBASI5),J=1,HNBASIS)
ENDFILE MTDVR
C.....DETZRMINSG POSITICNS SF ALL MAGNETIC DIVICES.
VRITZ(LINO2,5).
5 FORMAT(C”,20%, "POSITICNS CF MAGNEZTIC DIVICES”)
CALIL, WHTPS
REVIND MTDVWR
REWVIND MTDRI
RETURN
END

*FORTRAN LIB
SUBROUTINE MXPRCD(A,B,C,IA,IB)
C.....PRCCUCT OF TWC REAL SQUARE MATRICZIS - C=/i*B,
DIMENSION A(IA,IA),B(IA,IA),C(IA,IAN)
¢ 1 I=1,I3 »
I3 1 J=1,1B
€(1,J3)=0.0
DO 1 K=1,IB
C(X,J)=C(1,J)+A(I,K)*B(K,J
1 CONTINUZ
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R.JINRN

ui R
SUBRCUTIN ] MXTIUU'T(A,B,IA, IE)
TAWmP.-SJ OF REAL SQU/E;iS LLITRIX A STORED IN B.

DIM NEIOrl A(l.;,1A) ,B(IA,IA)
DC 1 1=1,IE

r- 1 J=1,IE

E(J,)=A(1,J)

cci:ni:uE

RITURN

AFORTRAN LIE

C....

-

10
11

EUERCUTINE CRTTICTx

C:RrZENDRIL'iLI3ATIUN OF BASIS ORBITALS.

CDMION /TOALV H N3,1STOP,ISTART (20) M (30) ,LDNO1,LDNO2, LDNO 3,
1LBNO3,LDNOC,LBN10,LDN11

C:LLEN 0(30,30),H(30,30),3(30,30)

DILENSIGN ;C(3ii,3i1),QS(3G,30),QU(3G,3{),Qv(30,30),0W(30,30) ,9X(3G)
CB-RT (-)=S:RT(Q)

CALL ENTR (GIIGRTHEN,ISTART (15))

. SET UP WERKSPACE.

DO : 1=1,N

rc 1 J=1,H

CtA'ai DC (I ,J) ,QU(T,J) ,QV(I ,J) ,QW(I,J)
QO (I,J)=S(T,J)

CONTINUE

CENTIiRJE

. CITI3LE3KY DECCLiPCSITIGN OF QS .

DO 11 1=1,N
QA=:;S(-,I)

INI=1-1

IF (nil) 5,5,3

DO 4 J=1,II.U
DA=QA-QV (I, J) *Q7(I,J)
CONTINUE

QV (I, I)=PSQRT (QA)
EU(I,I)=1V(I,I)
IF(N-I) 11,11,G
IP1=I-rl

DO 10 J=IP1,N
QV(J,I)=jsS(J,I)
IF(IT,EL) 9,3,7

Du 3 K=1,nH

PV (J,I)=qV(J,I)-QV(J,K)*QV (I,K)
CONTINUE
qv(J,I)=QvV(J,1)/QV(I,I)
QU(I,J)=QV(J,I)
CONTINUE

CONTINUE

QC = INVERSE GF QU.
IG 12 Iia=2,N
I-N-II,U-r2
gX(L)=1.0/QU(L,L)

QC (L, L)=QX (L)

n.H=L-1

DO 12 LI=1,UvIl
I=IM1-LL:-1
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IP1=11

CLEAR QA

o 111 J=iPi,E

CA=QA-*U(I,J)*.jX{J)
111 C:NEIIUE

X(H)=E1/5U (1,1)

:C(I,L)= X (I)

IE  DONTI Nil |
ce(i,i)=i.:/Q u (i,i)
c COLIPUVJ TRGISFCIBLED OVERLIP LIATRIX.

CALL I:TR/J\(:'jC/jy,30,N>
GILL MXPRuD(QV,Q5, ryw, 30, N)
CATJj IACPROL(QW,QC/ jS, 30, K)
WRIT.:(L"N02,20)
CALL iaiTi.LC( .3,30, 30,K,N,LDN02)

14 1=1,N

IA 14 J=11T
c(l,J)=Qc(I,J)

= 14 CONTINUE

20 I'CICHTdIO,55:", 10I-ICT*S*C = I/IH )

C.ILL LUIT<GI-rCRTKGI-;, 13TART(15))
RETURN
END

+FORTILIN LID
SUBROUTINE RES3ET
C RESTART AT BEGINNING OF TiLYNSFORMATIUN SECTION.
CCIEXN /TOIILV N3.1313,NS,I3TG?,I3TART(20) ,LI(30),LDNOI,LDNO2 ,LDNO3,
11DNu 3, LDNO9, LDNIO, LDNI1
TEAT TITLE(1G)
CALL ENTR<3HRES3ET,ISTART(15)>
READ(LDNOI,1) JSER,ISTOP
READ(LDNO3) ISER
1 FCRIIAT(110,15)
IF(JSER-ISER) 2,3,2
2 CALL IVRGNTP(J3ER,I3ER,3)
3 REID (LDNO3) TITLE, | RUN
WRITE(U'NOE,4) TITLE
4 F'PRIHT(INI/IHO, 33X, 42NDIATO.IIC CONFIGURATION INTERACTION PROGRAM/
IINC,44A,311Gia.lIONUCL3AR VERSION 1. 1/G9/G9 ,/INO ,5GN,SHA.D.TAIT/1HO,
244A, 32HQUAITTULl MOLECULAR PHYSICS GRGU?,/1H0,43X,22IIDEPARTIIENT OF P
3IIYEIC3,/invJ,43A,24HUNIVERSITY GF LEICE3TER,/1K0,4GX,2SHLEICESTER,
4ENGLYND. LEI 7RH,//1HG,15A3/)
o RE/E:. .YND CHECK DATA.
RCAT (LDNOI,5) (1.1(1),1=1,NBASIS)
5 PLRIVLVr(3CI2)
(o CHECK M-VALUES .
VIRITE (1ZN02,3) (1 ,M(1),1=1,NBASIS)
G FORMAT('(i',4 3 X ," MAGNETIC QU.YNTUM NUMBERS'//(* ', 56X, M("',12,")
112))
CLEAR J
DO 0 1=1,NBASIS
IF(IABS (M (1))-3) 2,3,7
7 LTUTE(LDKO02,.3) |
3 FORIIYK' '.45X,'u-VALUE TOO BIG IN ORBITAL ',12)
J=1
9 CONTINUE
IF(J) 10,11,10
10 C.ILL F.EKIT
11 CALL QUIT(RESSET'ISTART(15))



- 212 -

RETURN
END

*FORTRAN LIB
SUBROUTINZ SETERI
CeeesoSETS UP CCMPLETE MATRIX OF DISTINCT TWO-ELECTRCN INTIGRALS FROM
Cevss LOWER TRIANGLE. VERSION 3. 06/09/71.
COMICN /TOALL/ NBASIS,NB,ISTCP,ISTART(20),M(30),LDN01,LDNC2,LDNO3,
11.DNO8,LDNO9, LDN10, LDN11
CaMMON A(5000) ,B(5000)
CINENSICN C(GG,GG) »ERI(S500),H(30,30),5(30,30)
EOUIVALEN (A,BRI), (A(901),H1),(A(1801),8),(B,C)
N ERROR KB,X¥,NB,I,J
CALT ENTR( SETERI,ISTART(15))
C...eoSKIP GVER SERIAL NUMBER, TITLZ, AND CNE~ELECTRCON INTIGRALS.
REWIND LDNQ3
RIAD(IDNO3) I
READ(LDNO3) I
X CALL TPPOSH(LDNO3,KB,KW)
X DISPLAY(LP,5) /KB,KV
D0 1 I=1,NBASIS
READ(LDNO3) J
READ(LDNO3) J
1 CONTINUE
CALL TPPO3SN(LDNO3,KB,KV)
IF(NBASIS-11) 2,2,5
2 1:3 3 I=1,NB
X CALL TPPCSN(LDNO3,KB,KW)
X DISPLAY(LP,5) /I1,KB,KW
READ(IDNG3) (C(1,J),J=1,I)
DO 3 J=1,1 .
C(J,I)=c(1,J)
CONTINUS
CALL SITARCH(LDNO3,KB,KW
©Q 4 I=1,NB
WRIT:(* \103) (c(1,J3),7=1,NB)
4 CCNTIIV
GC TC 12
5 DO 6 I=1,NB
CLEAR ERI(I)
6 CCNTINUZ
DG 7 I=1,NB
RIAD (I.DNO3) (ERI(J),J=1,I)
WRITEZ(IDNGS) (ZRI1(J),J=1,NB)
7 CONTINUZ
REWIND 1DL02
NRC/=5000/13
NPASS=1
IF (UOD{NB,Nac7)) 9,3,9
CLEAR NPASS
NPASS=NPASS -N'P/I\';udu
CALL BIGT2A(A,3,LDN09,LINOS, NB, NRIV,NPASS)
CALL SEARCH(IDUIGS , XB,K. ')
0 10 1=1,HB
AD (LI 00) (3R1(J),5=1,NB)
R:AD (LoNe3) (BRrRI1(I),J=1,I)
WRITECIDNC3) (8BRI{J),J= 1,M)
10 CCHTINUZ
CALL SuARCE(LDNO3,KB,XV)
RSWIND LLNGS

W

O W



- 213 -

DO 11 I=1,NB
READ (LDNO3) (ERI(J),J=l,NB)
WRITE(LDNO3) (ERI(J),J=1,NB)

11 CONTINUZ

12 REWIND LDNO3
REVIND LDNOZ
REWVIND LDNOO

C..ee READ OVIRLAP AND ONZ-HAMILTCHIAN MATRICES,

RUAD(LDNG3) I
RIAD(LDNO3) I
D0 13 I=1,NBASIS
ZAD(IDNO3) (5(J,1),J=1,NBASIS)
PAT(LDN03) (1(J,I),J=1,NBASIG)

13 CONTINUZ
CALL SBARCH(LDNC3,KB,XV)

CoeesPRINT S AND H IF REQUIRED.

CALL DUMPSH(S,X,NBASIS,ISTART(15))
CALL QUIT( SZTERI”,ISTART(15))
RETURN
TND

*FORTRAN LIB
SUBROUTINE TRANSH
Cuves VERSION 5,26/03/71.,
Cyeeo . TRANSFORMS CWA-ZLECTRCON INTSGRALS GVER ATOMIC ORBITALS INTO
oo o JINTEGRALS OVIR A SIT OF CRTICNORMAL ATCMIC OR MCLECULAR CRBITALS
ees e AS REQUIRED, CTHTYROL IG5 IN ISTART(1S). TRANSFORMATICN MATRIN C IS
... OBTAINID BY TH: DIAGONALIZATICHN OF THE GVERLAP MATRIX 3.
CCGLEION /TDALL/ NBASIG,NB,ISTOR,ISTART(20),1(30),I 001, LENOSZ,LDNCS,
1LDNO3,LING D, LON10, LDN11
CIMON €(20,32),H(30,30),5(30,30),IRI(30),WsP1(30,32),WYsP2(30,30),
1W5P3(30,32)
CALL ENTR( TRANSH”, ISTART(15))
WRITE(LDNC2,1)

1 FORMAT(1lH1l/1H0,40X,40HTRANSFORMATICN CF ONE-ELECTRON INTEGRALS/)
Cueveo.TAPE N UNIT O3 IS POSITIONSD AT END OF PISTINCT LRI MATRIX.
C..o. READ NON-Z3ZRT SBLIMENTS GF SVIMISTRY TRANSFORMATION MATRIX. NONO =
Cewv.. NULIBER OF NON-ZEZRO ELAMANTS.

2 CLIAR WSP2
RIAD(IDNOL, 30) NONO

30 TFORMAT(1GIS5)
D3 32 K=1,NCNO
READ(LINO1,S31) 1,J,Wsp2(I,Jd)

31 FORMAT(ZI3,F4.1)

32 CONTINUZ
WRITE(LDNOZ,40)

4G FORMAT( 07, 45X, “SYMMETRY TRANSFCRMATION MATRIX /)
CALL WRITMI(WSPZ2,30,3C,NBASIS,NBASIS,LDNC2)

Ceees TRANSFCORM CVAERLAP MATRIX,

33 CALL MXIRAN(WSP2,7/8Pi, 30,NBA3IS)
CALL MIPRCD(WSPL,S,C,30,NBASIS)
CALT, MAPRCT(C, 75P2,8,30,NBASIS)

[ eI

X WRITI(LDNOZ, £40)
X CALL WRITMX(S,30,30,NBASIS,NBASIS,LDNO2)

43 PoRIAT(T 7,1P5224.10)

CALL ORTHIY

X WRITZ(LDNGZ2,43)
X CALL WRITHZ(C,3C,30,NBASIS,NBASIS, LDNO2)
X 46 FCRMAT( 0”,4Cy, "OVINLAP MATRIX TFOR NOW-2RTHCGONAL M.2.37)
X 48 FoRMAT( 07,43%, TUATRIL VITICH CRTHCGOWALIZES 14.C.37)
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49 TORMAT( 0”,40X, “TRANSFCRMED ONEZ-ELECTRON INTEGRAL MATRIX”)
READ(LDNO1,30) NIR
READ(LDNOL, 30) (IRI(I),I=1,NBASIS)
WRITZ(LDNO2,350) NIR,{I,IRI(I),I=i,NBASIS)
50 FORMAT( 07, 24X, 'TRANorC:rws CRBITALS BELONG T0",13,” LIFFERENT IRR
1EDUCIBLE REFRUSENTATICNS ‘7 7,432,  (SUBSPECIES CCUV”ED A3 DIFFZRIH
27) / , 35X, THANsuVAmsD ORBITALS ARE ASSIGNED AS roLisis /(¢ 7
346X, “CRBITAL",I3,  BiLcNGS TO IRT,13))
8 CALL mxpnon(wop ,C,WsSP1,30,NBASIS)
DO 9 I=1,NBASIS
DO 9 J=1,NBAS13
C(1,J)=sPr1(1,J)
9 CONTINUE
Cosee o OUTPUT TRANSFCRMATION MATRIX.
VIRI TE (T.DNO'Z- 3’ 90 )
90 FORMAT( 07,50%, “TRANSFORMATICN MATRIX /)
CALL VRITMX(C,30,30,NBASIS,NBASIS,LDNO2)
Ceees o lRITE TRANSFORMATICN MATRIX ONTOJ UNIT 03.
10 WRITE(IDNO3) ((c(I,J),I=1,NBASIS),J=1,NBASIS)
Cut.eo TRANSFCRM H-MATRIX.
CALL IMTITRAN(C,W3PL,30,NBASIS)
CALL KMXPRED(W5P1,H,S,30,NBASIS)
CALL MZPROD( S,C,H,30,NBASIS) ,
C.....IF CRBITAL I AND CRBITAL J BILONG TO DIFFERENT IRREDUCIBLE
C.eso RTPRESENTATIONS TIHDN H(I,JF)=H(J,I)=0. IN GINZRAL I(I,J)=I(J,I).
NONO=NBASI3-1
DD 15 I=1,NGNC
K=I+1
o 14 J=K,NBASIS3
IFCIRI(I)-IRICI)) 11,12,11
11 CLZAR H(I,J),H(J,I) .
GO TO 14
12 IF(l.C2-09-ABS(H(I,J)-H(J,I))) 13,14
13 WRIT:2(LRND2,16) I,J,J,I
14 CONTINU“
15 CONTIN
16 FoRAT(” ©,50%, "H(",12,7,7,12,") . E.5(”
WRITZ(LINGZ, 48)
ALL WRITIL{(H, 30, 30,NBASIS,NBASIS,LDNO2)
WRITI(LONO2) ((U(I,J),I=1,N3ASIS),J=1,NBASI3)
C.e...TAPS TN UNIT 03 CONTAINS - UNTRANSFORIED 5 AND H MATRICIS WRITTEN
Ce.e. ALTERNATILY BY COLULING, COIPLETE MATRIX CF DISTINCT 4RI,
Coues JTRANSFIRILITION AND szjﬂﬂann;a H IIATRICIS BY CCLUMNS.
RETING be“lJ )
caLL UIL( “TRANSHE T, ISTART(15))
LSTURN
xrn

e, 2 L

b ,Iz} ) )

*¥*FCRTRAN LIB
SUBRTH TINE TWOTRA
Covoo JTRANSTORNMS TW3I=-SLIOCTRIN INTEGRALS (311,
CoeesTARPE TN UNIT C3 WiD LT BIGINMITITG GF COIPLATS NATRI
Coee e oISTINCT BRI, UIMLISS WIS IS A RISTAND JH-MATRIX I3 TVl :TJ"‘""N IN
Ceee. . THIS EX BTRCG".AI;I.
TSZT ICD
CAIICH TATT BASIS,ND,I60C0,1IS STARD,, ISTARG, TSV u'l[‘m.S
C \B —1T/r1 A _4/ \‘ l I ,l ,Tr"\ )’I T(/s) I s - ’-[ 23] ‘/,.L ,
STAD STF RV PARZ,IS5CS) ,IJUIR,I12,100,1(30 SO0 E ) UGS
1T3TARD, TSTARD, I5TARL , ISTARS, 165 , TIUD, T13, 109 ,1(20) , Tetiol. , Lol 2
&L 03, L:IIV 4’..1_.1.1‘:'3,_44.,1 1\4‘ LoNLL
u]tﬂu N 'u(u),d\)),bUTu;(;dd\)), JUH,__J :)S:u
TIMINSICH W7321(S09),7arn(80C), {35, 30) ,A(01,54)

3 BPoLTTI

Fap e
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EQUIVALENCE (DUMA,A,WSP1),{DUMB,WsP2),(C,H)
X 103 FORMAT(4H MU=,I2,4H NU=,12,6H NGOT=,14,7H NWANT=,I14)
X 104 FORMAT( OINTEGRAL(”,413,°) IS COMPOSED CF =")
X 105 FORMAT(® c(“,213, ")*INTEGRAL(”,413,”). INTEGRAL INDEX IS °,I4)
X 106 FORMAT( OPARTIALLY TRANSFORMED INTEGRALS /(’ *,4(3X, ERI(’,14,°%)="
X 1,1PE17.10)))
X 107 FORMAT( 0%*%* TRANSFORMED INTEGRALS ****“/(” * 4(3x,“ERI(”,14,%)="
X 1,1PE17.,10)))
ON ERROR/NSQRD, 1JUMP, ISTAGE,NGOT,NWANT, /MU, NU,MAX,MIN, NMQVE, /KK, LL
CALL ENTR(GHTWOTRA,I15(3))
CALL WHTPS
NSQRD=NBASIS*NBASIS
CyeeeoTEST FOR RESTART AT THE END OF THIS STAGE,
- IF(LJUMP) 29,1,20
1 ISTAGE=1
CLEAR NGOT
Cees s «CRMMENCE TRANSFORMATION OF CHARGE DISTRIBUTION 2,
DO 22 MU=ISTAR5,ISTARG
DO 21 NU=ISTAR7,ISTARS
Ceves PICK UP REQUIRED BLOCK OF DISTINCT ERI,
MAX=MAXO (MU, NU)
NWANT=(MAX* (MAX-1) )/ 2+MINO (MU, NU)
X WRITE(LDNO2,103) MU,NU,NGOT,NWANT
NMOVE=NWANT-NGOT
IF(NMOVE) 2,2,4
2 NMOVE=1-NMOVE
DO 3 I=1,NMOVE
BACKSPACE LDNO3
3 CONTINUZ
READ(LCNO3) (WSP2(J),J=1,NB)
GO TO 6 ,
4 DO 5 I=1,NMOVE :
READ(LDNO3) (WSP2(J),J=1,NB) -
5 CONTINUE
6 NGOT=NWANT
IM=M(NU) -M(MU)
CLEAR WSP1
DO 13 LAMBDA=1,NBASIS
K1=NBASIS*(LAMBDA-1)
DO 12 LL=1,NBASIS
Ceveo CHECK PHI INTEGRATION GIVES NON-ZERO RESULT, THIS IS CHECK 1,
IF(IM~-M(LAMBDA)+M(LL)) 12,9,12 B
9 K2=K1+LL .
X WRITE(LDNO2,104) MU,NU,LAMBDA,LL
DO 11 IS=1,NBASIS
CuveooCHECK TRANSFORMATION COEFFICIENT IS NON-ZERO, THIS IS CHECK 2,
IF(c(1s,LL)) 10,11,10
10 MAX=MAXO(IS,LAMBDA)
J=(MAX* (MAX~1) )/ 2+MINQ (IS, LAMBDA)
X WRITE(LDN02,105) IS,LL,MU,NU,LAMBDA,IS,J
VISP1(K2)=WSP1 (K2) +C(I5, LL)*WSP2(J)
11 CONTINUZ
12 CONTINUE
13 CONTINUZ
Ce.oo sTRANSFORMATION OF 4TH, ORBITAL COMPLETE FOR THIS MU AND NU,
CLEAR WSP2
DO 19 KK=1,NBASIS
K1=NBASIS*(KK-1)
IO 18 LL=1,NBASIS
CuvesoCHECK 1,
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- IF(IM-M(EK) +M(LL)) 18,15,18
15 K2=K1+LL
X WRITE(LDNO2,104) MU, NU, KK, LL
DO 17 LAMBDA=1,NBASIS
Cee s oCHECK 2,
IF(C(LAMBDA,KK)) 16,17,16 ‘
16 J-NBASIS*(LAMBDA-1)+LL
X WRITE(LDNO2,105) LAMBDA,KK,MU,NU LAMBDA,LL,
WSP2(K2)-WSP2(K2)+C(1AMBDA,KK)*WSP1(J)
17 CONTINUZ
18 CONTINUE
19 CONTINUE
C....,TRANSFORMATION OF 3RD, ORBITAL COMPLETE FOR THIS MU AND NU,
WRITE(LDNO9) (WSP2(K),K=1,NSQRD)
X WRITE(LDNO2,106) (K,WsP2(K),EK=1,NSQRD)
21 CONTINUE
22 CONTINUE
ENDFILE LDNO9
CoeeesTHIS STAGE IS COMPLETE IF ISTAR6=ISTARS8=NBASIS,
- IF(ISTAR6+ISTAR8-NBASIS-NBASIS) 23,25,23
23 ICD=4H2ND,.
WRITE(LDNO2,24) ICD
24 FORMAT(1HO,31X,18HTRANSFORMATION OF ,A4,35HCHARGE DISTRIBUTION IS
1NOT COMPLETE/)
REWIND LDNO3
REWIND LDNO9
GO TO 27
25 WRITE(LDNOZ,26)
26 FORMAT(1HO, 34X,51HTRANSFORMATION OF 2ND, CHARGE DISTRIBUTION CCMPL
1ETE/) '
C..es.CHECK FOR HALT AT THIS, POINT.
- IF(ISTOP-50) 28 27,28 ,
27 RETURN , -
28 REWIND LDNO9
CevesoPOSITION UNIT 03 AT END OF TRANSFORMED H-MATRIX, IF THIS IS NOT A
C..+«+ RESTART AT THIS POINT, C AND H MATRICES MUST BE SKIPPZD, OTHZRWISE
C.ees TAPE IS AT END OF PREVIOUSLY TRANSFORMED ERI, SKIP SERIAL NUMBZR
C.....ON UNIT 04,
READ(LDNO3) CMAT
READ (LDNO3) HMAT
29 ISTAGE=
Ces++ . TRANSPOSE PARTIALL TRANSFORMED TWO-ELECTRON INTEGRALS ON DEVICE
C.eee¢,LDNO9, DEVICE LDNO8 IS USED AS TEMPORARY WORK SPACE,
IF(NBASIS-8) 300,300,290
290 NROW=5000/NSQRD
NPASS=1
IF(MOD{NSQRD,NROW) ) 292,291,292
291 CLEAR NPASS
292 NPASS=NPASS+NSQRD/NROW

X WRITL(LDNOZ 293) NSQRD, NSQRD, LDNO9, LDNO8, NROW, NPASS, LDNO9
X 293 FORMAT(” ,15x 14,”*7,14, -MATRIX ON DEVIcu ,13, TO BE TRANSPOSE
X 1, revice’,13,” 1Is USED AS TEMPORARY STORAGE ‘7% 7,23k 15, RICORDS
X 2RE READ EACH TIME AND PASSES ARE MADE OVLR DLVICu *,15/)
X CALL CNTR(INSTR)
CALL BIGTRA(DUMA,DUMB,LDNO9,LDNO3,NSQRD,NROW,NPASS)
X CALL CNTR(JNSTR)
X SEC=(IJNSTR-INSTR)/160,0
X WRITL(LDNOZ 294) SEC
X 294 FORMAT(® “,43%X, “TRANSPGSE TIME =°,F10,2,” SicanDs’/)

GO TO 303



gy

301

302

303

- 217

11.::AD(TDKOU3) IGEIL

ro 3J1 I=1,NSQUD

RXVDCTJDNCD) (A(I,J) ,J=1 ,NSQRD)
CONTINU3

REWIND LDNO9

miT3 (LDN3D) ISNR /
1:0 303 1=1 ,N3QRD

WRITE (LDNOO) (A(J,I),J=1 ,NSQRD)
CONTINUE

RSWIim LDNO9

RFA) (LDNO9) ISER

COLn.IENCE TRAINGFGRILITION OF 1ST.CHARGE DISTRIBUTION,
DO 44 KK=IS1W\R9,ISTARO

K1=NBAGIG* (KK-1)

CO 43 IJj=IGT/\RL,ISTAR2

NCOTAK1 i-IL

IM=M(LL) -M(KK)

REW\D (LONG9) (V/SPL (NROW) ,NRE7=1 ,NSQRD)
CL*AR V/SP2

DO 35 MU=1,NBASIS

K1=NBASIG* (MU-1)

DO 34 J=1,NBAGIS

.CHECK 1.

31

IF (IM-H (MU)+M(J)) 34,31,34
K2=ia-hJ

V/RITE (I1)N02,104) MU, J,KK,LL
DO 33 NU=1,NBA3IS

. Rj'ICX 2.

32

33
34
35

IF(C(NU,J)) 32,33,32

I=ia+NU

WRITE (LDNO2,105) NU,J ,MU,IRJ,1CK,IL, I
V/SP2 (K2) =WSP2 (K2) +C (NU ,J) *W3P1 (I)
CCNTIIRJE

CONTIinjE

CONTINUE

. TRANGFORI4ATICN OF 2ND. ORBITAL COMPLETE FOR THIS MU AND NU.

CLEAR V/GPL

DG 41 I=1,NBASIS
K1=NBAGIS* (I-1)
DO 40 J=1,NBASIG

. CHECK 1.

37

IF (IM-M(I)+M(J)) 40,37,40
K2=K1 hJ

Y/RITE (LDN02,104) I,J,KK,LL
ro 39 MU=1,NBASIS

. CHECK 2.

38

39
40
41

IF(C(MU,D) 33,39,33

II=NBASIS* (MU-1)+J

miTE (JJDNO2,105) MU,I,MU,J,KK,LL,II
W8P1 (K2)=WSP1l (K2) +C (MU, I)*WSP2 (II)
COITTINUE

CODT'TINUE

CONTINUE

. TALINSFORLIATION OF 1ST. ORBITAL COMPLETE FOR THIS KK AND LL,

43
44

V/RITE (LDNO3) (V/SPl (K) ,K=1 NSQRD)
V/RITE (LDNG2,107) (K,V/SP1 (K) ,K=1 ,NSQRD)
COITTINUE

CONTINUE

ENDFILE LDNO3

. T.\PE ON UNIT 03 CONTAINS UNTRANFORMED S AND H MATRICES, LOWER
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........... TUNI:3i-Orj.IED 1l IVINTRICES AND AlJ. OR PART OF THE TRANSFORMED ERI,
........... TII5 STAGE 13 CrillLETEIF ISTARO0=ISTAR2=NBASIS,
1"(ISTAIU) rI3TAR2-NBASIS-NBASIS) 45,451,45

45 ICL="13T1/
V/RITE (LUMO02,24) ICD
REWIND LDNO3
REWIND LDNO9
GG TQ 43
.......... r'VER V/RITE INT/:GRALS GN DEVICE LDNO3 WITH TRANSFORMED ERI AND
.......... TIIANSFORMED H-ILITRIX,
451 REWIND LDNO3
RL/IND LDNO9
READ(LDNO3) ISER
READ(LDNO3) ICD
DC 453 1=1,NBAS13
READ(LDN*03) SI'LIT
RE/tD(LDMO03) 13.L1T
453 CONTIFUE
MO 453 1=1,NB
RE.\D(LDNO03) ERILLAT
453 CONTINUE
READ(LTNO3) ((C (l,J),1=1,NBASIS),J=1,NBASIS)
CL'EIR H
READ(LLNU3) ((H (1,J),1=1,NBASIS) ,J=1,NBASIS)
CLEAR NRCT/
MTDRE=LDNO03
MTDV.R=LDN09
454 1/0 455 1=1,NSQRD
READ(LTI"RE) (WSPI(J) ,J=1,NSQRD)
VIRITE (MTDV.H) (WSPI(J),J=1,NSQRD)
455 CGNTINUB
IF(NRO,V) 457,456,457
456 NRCr./=l
NPA33=r,ITDRE
LITDRE=MT))VIR
KTDV/R=NPAS3
REWIND MTDRE
REWIND LITDVIR
GO TQ 454
457 WRITE (1aTD'nTv) ((H(1,J),1=1,NBASIS),J=1,NBASIS)
ENDFILE MTDWR
REWIND MTDV/R
IF (15(3)) 450,4535,458
453 CALL CUTBRK(LDNO02)
V/RITE (LDNO2,4536)
DO 4501 1=1,NSQRD
V/RITE (LDNO2,4532) |
REAIV (MTDV/R) (V/3P1(J) ,J=1,NSQRD)
V/RITJJ(LDNO02,4533) (V/SPI(J),J=1,NSQRD)
4531 CCNTIZIUE
4532 FQRRLAT("0",49X ,'CONTENTS GF RECORD',1 4 /)
4503 FORMAT((' ', 1P5E24.10))
REAP(LITDWTI) ((H (I,J),1=1 ,NBASIS) ,J=1 ,NBASIS)
WRITE(LCHO02,4534)
4534 FORI.IAT('0",33X,'TRANSFORMED ONE-ELECTRON HAMILTONIAN MATRIx'/)
CALL V/RITtIX (H, 30,30, NBASIS ,NBASIS , LDNO2)
4535 CALi* V/HTPS
REWIND MTDV/R
4586 FORI,IAT('1''0',43 X ,' TRANSFORMED TWO-ELECTRON INTEGRALS)
46 CVLT* QUIT('TWCTRA'15(3))
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'RETURN
END -
*FORTRAN LIB
SUBROQUTINE WRONTP(IWANT,IGOT,IUNIT)
CeveeoCALLED WHEN TEST OF MAGNETIC TAPE SERIAL NUMBER INDICATES THAT THE
Ceses YRONG TAPE HAS BEEN MOUNTED,
DATA LDNO2/0/ ' N
WRITE(LDNO2,1) IUNIT,IWANT,IGOT '
1 FORMAT(40HOTHE WRONG TAPE HAS BEEN MOUNTED ON UNIT ,12/
123H THE TAPE REQUIRED IS NUMBER,I10/28H THE TAPE MOUNTED IS NUMBEZ

2R,110/29H CONTINUATION IS NOT POSSIBLE/////)
CALL REXIT

RETURN
END



00

INOD

22(1



21

bn o

/X

> 5

'0

4

ri

kl

Vo

/d

o0 oo

INOO

IX



- 222 =~

*(SLINENCY

v
i

eee
Tee

135534 HvY9s0H4ENs

0 0¢e
qHOon A0078

Lv d3NOILISOd

0 T
ayoM %2078
1V U3NOILISOd

y12 0g
ayon %9018
LV 03NO1L1S0d

0 T
ayoM %0018
lv O03NO1L1SOd

0 T
qyoM %2078
1v U3NOIlIsod

yTe T
ayon %2018
Lv U3NOILISOd

S32IA30 DI1L3NDVH 40 SNOI1LISOd
SeSTHYvVI! ONY U373VHIS) Nuyaxo 3FIWOLY ¥04 SAVyDaLnl = VIVU LS31L N3D3INO

g ¥0071¢ Lv pNILUVAES 3014 OvHOI NT ¥3LSVH 3L NI 3¥V NNy S1Hk Y04 STAVHDILNI

0L A¥LNI NO 03Sn SNOILONYLISNI 40 ¥38WAN
237140 HVYDIYdENS HOY¥4 LIX3 NO 03Sn SNOILONYLSNI 40 ¥3ISHAN

]
438WAN

3dvli

L
H3GWNN

3dvl

9
438HNN
3dvl

s
CERDILY

advil

14
438HNN

3dvl

¢
d38WNN
advl



- 223 -

gbe = 1¥3L3s Wy¥DI¥dENS OL AMLNI NO 03Sn SNOILONULSNI 40 w3gHaN
ove = 13SSIY HY¥DIY4ANS WOY¥4 LIX3 NO 03Sn SNOILONYLSNI 30 y3GHAN
T =(é I
T-2(p IH
0 =2(¢ )W
0 =(z )M
0 =(f JH -
Sy3gNNN WALNYD OILINDVH

' (SINZNODX3 SiSIYYVH ONV YZJaVHOS) N3pAX0 HIWOLY ¥O4 SIVUDALNI = YLIVO 1S3L N3IDINO-

(HYZ T3 gnNVI9N3 »cmpmmowma
‘431530139 30 ALISY3IAINN .
‘SolsAyd 40 IN3WLYyd3Q
\ ‘dNOYD SOISAHd ¥VINIII0KN HNLNVND
Livisay
*69/60/T 't NOISH3A ¥VIIONNOAOH

KY¥oLUd NOILOVYIINI NOILVYNDIINOD DINMOLYICA



- 224 -

00+3T0G£5TG92y 19~
60:30000000000'0
qo.Loooooooooomo
€0+30060060¢00070
60+30000000000%0

C0<+20000L00000
CC«300GEL0C000
(o« ogmomﬁﬁooo.o
C0+3C0000CC0C00'0
C0<3C0600000060°0

00<300000000007%0
o04wﬁommoqmomv 9u
00<30000000000°0
00+3000000000070

00+30000600000070

coywocoooooooo‘
00+30000000000°T
00+4200000000007%0
00+3000000000070

00+30000000000°0

\
\

00%30005000000°0
00+«30000000000°0

00+3708/91892¢° 9~

00+30000000060°0
00+30000000003°0

¢ 0L T BNWNI0D
XT4LvH NvINOLTIHVH NO¥LDHT3-3NO

00+30000000000°0
00+30000000000*0
00+30000000000°T
00+30000000000°0
00+30000000000°0

¢ 0L T BNKHNI0D
XTyLvi dVIU3A0

00+30000000000°*0
00+30000000000°0
00+30000000000°0
00+300698YTLYT 8-
00+3g6Le2yc9e80° L~

00+30000000000*0C
00+30000000000°0
00+30000000000°0
T0-36666666666'6
T0-3859£Lv8600°¢2

00+30000000000°*9
00+30000000000°0C
00+30000000000°
00+3g6L2pe9220"
T0+308890TTV6T

(=]

M~

00+30000000000°
00+30000000000°*¢
00+30000000000°¢
T0-38694/4860¢"
00+30000000000°

(o]

1 (\ ¢



XTYLlyH NOT1VHYOASNYYL

b Y1 0l S9NOIF8 ¢  IvLIgN)
¢ Ul 0l soNOod8 ¢ vl18H)d
¢ Yl 0L soNO198 ¢ "vLIgY)
T 41 0l s9No948 2 HvLIBY)
T 41 0ol s9NOT38 T fvilgyd

SMO0T104 'Sv @3NDISsV 3y¥¥ SIVLIgHD U3NY04SNvYL :
(LN3¥34410 sv 03LRN0D S3123dS38NS) ,
SNOILVLIN3S3dd3y 30810N03uY¥1 IN3y¥3d41d v 0L 9HNOTI38 STV 18Y0 G3HY04SNVYL

0Zb £ NOHLYO WvdDIYdENS HO¥4 LIX3 NO a3sn SNOILONYLISNI 40

mmo.Loooooooooo T 00+30000000000°*0 00+30000000000*0 00+30000000000*0

00+30000000000°

L C0<Z006000006070 .oo+woaoooooooom 00%+30000000000°0 00+~30000000000*0 00+30000000000°0
(0+300006600000°0 00+30000000000°0 00+30000000000°T 00+30000000000°0 00+30000000000°0
<200060000000°%0 oa;mocooooccoc.c 00+30000000000°0 00+30000000000°T% 27-30£088/6489°S-
huocococcooc“o 00+30000000000%0 00+30000000000°0 Ci+30/088L6489" ¢~ 00+30000000000°T

g 01 T BNKNT0D

co
g
W,
N I = JuB=1D

L  £Gh £ NOHLY0 HVYDINLENS

Ol AULN3 NO U3Sn SNOILONWLISNI 4o
0%3060C. 000007 T 00+3000000000G*0

0+300GCL000000
¢+3006060C0G070
4300000000000
£+20L0060C000%0

N 4T Y ™y I'_ﬁ

00+300060000000°%T

00<30000000000°0
&
00+30000000000°0

'00+30000000000°0

00+300000000007%0

00+300000000060°*0
090+30000000000°T
ooawcoooooocog.o
00+30000000005

S oL ¥ wzzzgoo

00+30000000000°0U
00+30000000000°*0
00+30000000000°*0
00+30000000000°*7F
00+30000000000*0C

XTYLYH NOT L yHHO JENVYL AYLIHNAS

SIVEDILNT NoULD313=3N 40 NOILVHYIISNVUL

00+30000000000*0
00+30000000000*0
00+30000000000°*0
00+30000000000°*¢C
00+30000000000°*T




00«3T004G 16929~
00+30000000000'0
00+30000000000%0
00+300000060000°%0
00+300000006000%0

00+30000000000'%
00+30000000000'0
00+30000000000%0
00<30000000000°%0
00+300000600000°0

- 226 -

00<+50000000000°0

0043708297892y 9=

00+30000000000°0

00+3000000000070

00+30000000000°0

00+300000000060°*0
00+30000000000°0
00+3708,978926°9-
00+3000000000G°*0
00+30000000000°0

S 0L T BNKNI0D

00+300000000UQ"0
00+30000000000°0
00+30000000000°0
00+30T8£265VL6*9-
T0~-369928T/48VG*¢

XTYLYW VYO3LINT NOYLDY13-3NO Q3IHYIASNYUL

60+3000000000070

00+30000000000°T

00<30000000000°0
00+3000000000070
00+30000000600070

00+300000000006°0
00+30000000000°0
00+3000p00000006°T
00+30000000000°0
00+3000000000G°0

¢ 0L T HNWNT0D
XTYLVW NOTLVHYOISNYYL

00+30000000000*0
00+30000000009°0
00+30000000000°0
00+3869246£L26° 7T
T0~390028v0bLg 2~

00+20000000000*
00+30000000000°*°
00+30000000000*"
T10-3599¢81/8v5'S
T0+308890TTP6T 'S

L]

00+30000000000°
00+30000000000°
00+30000000000°
00+30000000000°
00+30000000000°

D (DD D

vi«



- 227 -

000002

3137dH0D NOILNBIYLSIg 394VAD °*ANZ 40 NIILVWYOJISNYYL

216 ¢
ST ¢+0 JINn NO

906
406

1.

vyLoHy Hvddo¥ydans
JdVl 40 ¥ABANN V1H3S

VYLNOD HvubIUdEans

s¥0018 ¢

0 02
ayoh %0018
lv d3N0llisod

0 T
gqHOM 300718

Lv d3NOlL1SOd

0 0g
g40H M20718
lv a3N0l1L1S0d

c T
quoH 310018
1v @3NOIi1s0d
0 T
ayoHM %0018
lv d3NOILISOd

6L T

ayoM 10018
lv U3Nollisod

1Ndin0 an3

8
d438UHNN

ELA N

4
d38HNN

3dvl

9
Y38HNN
3dvl

¢ ,
YagHNN
advi

14
438WNAN
advl

£
yagHnn
3dvi

0L AYINT NO 038N SNOILONYLISNI 40 y3BHAN

OL AYINT NO U350 SNOILONYLISNI 40 Y3IgHAN
Imz<mh z<:oumam3m HOYH4 hﬁxw NO mes.mzomwo:ﬁhmzm 40 ¥38HNN



e0=34TG
00+3¢NLDOO 0GO0°0
00+3¢Nu0en 000°R
00+3¢NLNG0 000" 0
00+3¢0L0G0 000°0

00*3C¢NL0GD 000°0
00*3¢NL0gn 060°0
Do+u@a_gca oLe*o
00+3¢NLNg0 050°0
00+3( N300 0C0°C

00+30NLN00 0G0°0
00+300t1 0o 000°0
Go+3¢nunge 000°Q
2n~ALe68LL8008° ¢
2n=3699v584648v°2

oo0x3¢nungo 0u0°o
00+3C0L950 0C0°0
00+3(NuYG0 000°0
60+30NIG0 000°0
00+3001L000 000°0

00-3/164979580°6~

00+3(9NG0 060°0
00+300U3G0 0060°0
00+3(NL0ye 0UD®O
00+3CNLNGG 000°0

00+36G806450T"T
60#3CaLug0 000°0
0n*3( 00000 0C0°*0
09+3(2¢200 00600
00+3(A:0¢0 000°0

L979580° 6~

00+30056000G09°0

Q0=ALTGL9T9683 6~

00¥30050000000%0
00+30020000000°0
00+30030000060°*0

00+30030000000°%0
00+3G030000030%0
00+73300G6306000%0
20~ . L0GQLLBNYE*S
e0=3g999v4846/.3p*¢e

00+300,0000000*0
00+30050000000°0
00+3005000C000°'0
00+300:0000000°%0
00+30050000000°%0

00+300:0000000°%0
00+30050000000°'0
00+30000000000%0
00+30000000000%0
00+30050000000°%0

00+30050000650°*0

£0~3£T5£9T9580%6~

00+300:0000000%0
00+30020000000°%0
00+300200060030%0

00+360,0000600040
00+36GH8E6LGUT T
00+30050000000°0
00+300C0C000000°%0
00+30050000000%0

00+20000000000°*0
00+=0000000000°0
£0-2£1¢/979680* 6~
00%#=0000000000"0
00+30000000000°0

9 d¥023Y4 40 SLA3LNOD

00+20000000000°0
oo+uoaoooooooo.o
06+20000000000°0
00+20000000000°0Q
00+20000000000°0
‘9 (40034 40" SINILNQD

00+*30000000000°0
00+30000000000°0
00+=0000000000°0
00+30000000000°0
00*30000000000°0
14 Q¥0034 40 SLIN3LNOD

00+30000000000*0
00*30000000000°'0
00+30000000000°0
20-3£2€9LL80p8 ¢
20-3699y685.8P "2
¢ a¥003¥ 40 SINILNOD

00+30000000000°*0
00+30000000000°*0
£0-~3£1¢€£979580°6-
00+30000000000°0
00+50000000000°0
[ ayoo3¥ 40 'SLA3LNOD

00+30000000000°0
00+50000000000°0
00+26G95956/50T° 1
00+30000000000*0
00+20000000000°*0
T Q¥003¥ 40 SIN3LINQD

00+30060000000"0
00+400u0000000"'0
00+3300u:0000000"0

20-360807%06p,* T~

20-30%T042TQ43'9

20-3£492468.700p0' 8
00+30000000000°'0
00+300u0000000°*0
00+300u0000000"'0
00+30000000000°0

00+300:0000000°0
20-348594430yv¢"' S
00+Jo0u0000000°0
00+30000000000°0
00+300u0000000°%0

00+3000000000¢0°*0
00+30000000000°0
20-3/94684L00p¢"¢
00+30000000000°0
00+30000000000°'0

00+30000000000°0
00+300u0000000°0
00+30030000000°0

20-46080T206p," T~

20-30910g2Tgsg*9

00+300u0000000°0
00+300u:0000000°0
00+300u0000000*0
00+348G4GLL496TT"T

T0-3600G69408y * ¥~

 SVHAIINT NOMINAAA-OMI A2NALCNYML

00+310009496Gud02
00:-300000CC00G0
00-3000000GL0G0
20-30y70621G¢8"
T0-35006549¢08%¢

20-3663v686/L8
oo;d_amccﬁco\
00+10000¢ru00
00+300G0u%u00
00+3500uU0060604

D L'_) \J’
-

D
-

00+31000006CG000"
20~1469v406L3
00+100000CuL000"
00+100000GU0O0D"
00+:100000C0000"

00+=3000000U0GO*®
00+30Quouno0oo’
2014969044864 3p "
00+30g000CU000"
00+3000000y0Q0"

00+30000000000"*
00+300000CU000"
0o+3000000u000"
20-30pT0527848"
T0-360056b£08p"

00+3000000u0Q0
00+30000000000°
00+30000060000°
T0-360056bL08%"
00+3200000668¢2°

4

4
L

\

4

..~




o'
LU

r-> cb CN T4

n-.NyD CD O
-+

LUUJ «TJLU I'J

"—T— Ul

DD o
r- C_

cD -D

G-r- C- (=

cD

in
CN
«0
-r:
CD

cb
CcD

CD ro
<— <D cr
cD

Cco

CcD
Ccb

CD
CD

CD
CD

CD
CD

CD T-;
CD CD

U7 UI
CD un
CD un

uJ
CD
CD

LU
CD
CcD CD
vO CD
cD
CcD
=D
CD

CD
cD
CcDh
uD
CcD
cD

CD
CcD
CD

CD

CD
cr-

Ccbh
CcD CD CD
cb *D cD
« f <T
CD D CD CD

ro

<D
CD

CD CD
Cz* CD

T-r
CD
rT in tn nt tn
CD €D in
cb ¢ in CD
cb co O CD
cb co O CD
CD CD +:CD
cb ¢ O CD
cb ¢b CD CD
cDh ¢ ro CD
cb ¢cb CD CD
cb ¢b CD CD
cD

CD CO CD

M "BECD cp ¢p
CD CD CD CD CD
rtor+ -+
IU UJ IU UJ U
G\ rr» CD CD CD
CD O CD CD CD
CO r~ CF cr cr
cDm CD
t-4 vO CD
ro CD CD
CD "C- CD

O o

‘0 CD

o Moo

CD CD CD

LU LU LU UJ 1U
O O CDCD
CDCD O CD
ro o o CD

CD CD CDCD

co

un
un

P
m CD CD cr- cr
ChnCn O CDCD

{P. CDCD CD

9mg og Eoo3e

=]
a

[oXNe}

: CO 1o

CD CD r~-
CD CD CD 'ID wD
¥ wi -
g fUJ LU 'T
f— r~

CD D CD DD D
D

Ch CDh CD CD

C* C* ¢cr < cr

CcD CD CD

CD CD
CD cr CD
Ch cpb CD CD

[®]
CcD

Cb o' (@]

CDh cb CD CD
CD CD CD CD
4

I'J UJ LU UJ T
CDh cb CD CD CD
CD CD:CD CD CD
C-k -

CD CD CD
cr- CD CD
CD CD CD
CD D -rr
CDh CD CD
CD CD cr- CD
CD CD CD CD
— » I -
CDh CD €D CD

CD
CD

CcD
CD
CD
CcD
CcD

CD
D-
CD
CD
CD
CcD

CcDh

tMw cb CD
Chcbo CD
f r

in in in in
rv o c¢b CD CD
ro co CD CD
(o cb cb - CD
co OJ cb CD CD
vO ¢D CD CD
CM cp CD CD
(b O CD
CD ¢D CD CD CD
M- CM ¢cp CD CD
10 D cp CD

CD
CD

in

r-s

ro T CD CD CD

cb co BLCD CD
Cb ¢b CD CD CD
4 I + v
UJ 1U IU UJ
CD <3 CD CD
CD rvCD CD
cr
CD
CD

10
Ccb
CD

oD -~
CDh CM CD
cb \0 CD
Ch (M CD CD
CD ro CD CD
o o T-o O
Cb CM CD CD
CcD CD CD
CcD

S-r CD CD

cb ¢b CM cb CD

U
cD
CcDh

UJ UJ UJ LU
CD r"T CD CD
CD ro CD CD

CD CD ro CD CD

O

cr

G

o—

co
E=

LU
+
ZT
o
o

88
86

CD CD

rr
O Cb
crcr
CD CD

CD CD
cr CD
CD CD

O CD

CD CD CD
Ch D CD
4 4 4
UJ UJ LU
CD CDb CD
Ch cb'CD
Cwm C -
CDh CD CD
CD cb CD
CDh CD CD
Ch CD CcD
CD CD CD
Ch % CD
CD CD CD
» »
cb O cD

CD CD
CD CD

L'JuJ
CD CD
CD CD
Cc C—
CD CD
CD CD
CD CD
O c¢p
CD CD
CD CD
CD CD

CD CD

CD CD
CD CD

in In

CD CD
CD CD
CD CD
CD CD
CD CD
CD CD
CD CD
CD CD
CD CD
CD CD

cb CD CD
CD CD CD
CD CD CD
CD CD CD

CD CD CD CD CD

CDh CD ¢D T CD
CD CD CD cD cD
+= + + 1 o+
IU LU IU LU WU
CD CD (D vc cD
CD CD CD r~ cD
cr o
CM cDb
\0 CD
CM CD
CO.cp
T O
CM cb
CD

CD cp O
CD cr- CD
CD CD cb
CD @ CD
O O ¢Db
CD CD CD
CD CD cb

CD CD CD -M CD

LU IU IU 1IU LU

CD CD O CO CD

CD CD CD ro CD

CD CD CD CD

a Dcp o
cr CD CD CD
O CDCDCDO
O CD CD CD
LU CD CD CD
nr CD CD CD

ix .

O CD CD CD
CO CD CD CD

&

oo~ &

CD CD CD CD CD
CD CcD CD CD CD

4 4 4 4
IU U IU IU WU

's'D CD&CD *r— CP

O D |
T
D
CT — cr
CD

— CD
CD
CD

CD cr- cr
cD

(@] CD

CM T-i CD CD CD
CD CDh CD CD CD
r C 4 L
UJ LU LU UJ UJ
Pv vO CD CD CD
o «CD CD CD
In C.- <-
co CM CD CD
[s* NO CD cD
PT CM CD CD
co ro C) cb CD
CDTO CD CD CD
TO CM CD O O
ro B+ C) CD CD
» » »
ro TH CD CD CD

CD
CcDh
CcD

cD
CD
v w
=

CD
CD
CD

Cho c¢b

un in in
cb CD CD

CD
CD
CD
CD
CD
CD

CD CD CD
o CDCD

CD

4
n

CD CD CD CD
CD CD CD_CD
+ £ £ 4
LU WU IU LU
O CD CD
0 CD CD

CD CD
CD CD CD
CDh CDh CD
CD CD CD 10
O CbO scr
CDO O C
Ch CD CD

Ccbh

28=28%°5+8

=

CD O CD CD T

IU IU LU LU LU

cp cp ¢cd ¢ in

CD CD CD CD ro

D ro

ooNEN

Ch CD O cb CD
CcD o ¢ D

4
I'JUJ 'U 'T W
-rr CcD-—

D ZbD ¢b zb D
n -0 O —
D o) D
cr cr cor- <o CT
D T+ -D D

D CD CD cD
CD C~ cr cr
cb O CDb cD

(5}
CcDh
Ccbh

ON CD

CD CD CD CD
cb O cD €D
4 4 4 4 4

IU III LU LU
CD CD CD CD
CD'CD CD CD
CD C. o

CD o* CD CD
CD CD CD CD
CD CD CD CD
cb ¢ O CD
CD CD CcD CD
CD CD CD CD
CD CD CD CD

m

CD CD CD CD

OJ CD
CD CD
t » <
un in in
in CD
o ro (D cp cD
VO in CD CD CD
CO CD cb cD

(D cp cp
t. CD cb ¢p
CO CD cb cD
CD CD cD ¢D
M" CD cD CD
ro CD cD CD

CD CD
CD CD
o

in ID
CD CD

in
in

co
M-
nJ

ro CD CD CD

CD CD CM CD CD
CD CD CD CD CD
+ I+ 4

IU IU LU I IU
CD CD r*. CD CD
Ch CD ro CD CD

m cr- C-

CD ro CD CD
Ch- Pv. O CD
CD pN CD CD
CD CD CC CD CD
CD CD CD CD CD
O O TP CD O

CD CD ro CD CD

CD
CD
Ccbh

CD CD ro CD CD

IU UU LU LU UU

D —'ro "I D
C un CD CD

CD
CD

@ Co cb
-D TP CD CD

Ly

OONY &

H5-~88
o o 5»08

w]

888
°0
6'0

CD
CcD

U
Cb
CD

CD
CcD
CD
Ccb
CD
CD
CcD

CD
CD
CD
CD
CD

CcD

Ccb

jnyj

CD
CD
CD

S

g*8

o
5% o0og

8 8

o

Q
w]
o

CD CD
cb O

10U 1IU
CD o
CD D
C- c.
CD o

D
cbh O
cD
cD
cD
CD D

CD o

CD T-r
CD CD
+ |
U U’
o VO
CD P*.

cb (M
CD NC
cD QM
cD ro
CD M-
o (M
o A

CD V-

CD CM

LU LU
CD CO

CDh CD
CD M-
CD ro

o

3
3 UanUU
O5Ig=88

o
oo
g =

cr cr
D CD

cD CD
D CD
4 4

LU IU
cb CD
cD CD

cD D
cD D
D CD

<> Cbh O

CcDh CD
cb CD
Ch CD

CD CD

CD CD
CD CD
4 4

in in

CD CD
@' CD
CD CD
CD CD
CD CD
CD CD
CD CD
CD CD
CD CD

CD CD

8 ©°3383370805+88
8 6°838680980E~08

Cl CD

LU LU

CD CD

CDh CD
Ch CD
-D CD



Ut tu Ul u Ul

<> V»
-J t'y
X}
. -~ eu
A c p
D
Kl
rr- NT
a<r > P
CDcCNoO CDP
. « . . »

CDh CD CP T-; CD
Ch CD CD CD CD

LU LLi LLI LU JJ
CD CD C,' VD CD
cp CcD CD ;0 C>

CD I'D CD CO CD
cD CD CD cp
CD CD €D CD CD
W'D CI> CD YO CD
CD CD CD vr CD
L.i C>crr c,

CD CD CD p. CD

CD CD CD P c)

cp cp T-r CD CD
cp cb CDO O

t;j i ni ilm

cp co P CD CD
cp ¢cb CO CD CD

cp ¢cb CN CD CD
cp cb un Cb CD
Jj ¢cp ¢cp CO CD CD
cp c¢bp Nj CD CD
cp cb ro CD CD
cp cp tH CD CD
cp cp P CD CD

CD CD CO CD CD

ro I cp cp o
CD CD CD o CD
1 4 + 4
LU LL 1 WU LW
un cp cr CD
ViIfNco co oo
n. o
p vO o c¢bp ¢D
Nad N-i CD cr- CD
T4 CN o o cCbD
NO CD CD CD CD
Ul r0 cp cD CD
COcb cp O c¢bp
CD CD cp cD cD

o- COCOCD
t

@D fo G O D
O O D D
4 1 4 4 4
1w i 1U LU
un P CD D D
tn O Cb
NT un C cr CD
mp DmD®
too MDecr- D
P Tt rr D
P No @ @D cr
in IO CO D CD
Ch cO CO b
TS CO D O D
. » - *
™H O O O CD
0

0F

00

ir
Ul

CD
CD

LLi
cp
cD
cD
cD
cp
LD
cp
c,
cp

CcD

CcD
cD

uJ
cp
cp
CD
CD
cD
cp
CD
CD
CD
CcDh

CcD

CD
CD

LU
cD

CD

CD
CD

CD
CcD

CD

88E-88

(2]
=

8.88868888

£~88
E=~88
8sE-88

°g 88

-8885088

1
uJ ul

tn
tn
uJ

oN

tn
CN

NT

CD
-D)
CD

ZD

CD

1V)

CD
CD
CD
CcD
CD

CD
CD
CcD
CD
CcD

CD
CD

LU
cD
cp

CD
CD
CD
CD

CD CD

CD

(0]

o
Nl

CD
CD

LU

CD
CD

CD
CD
CD
CD
CD
CD
CD

CD

(o]
CD

u)

CcDh

CD
CD

uJ
cD
cD

CD
CD
CD
CD
CD
CD
CD

CcD

CD
CcD

u)

md

Ln
CM
VO
CD
CN
co
un
Cn
SO

CD
CD

LU

CD
CcD

CD

CD

CD
CD

CD

Q
N

CD
CD
CD

cD
cD
CD
CD

CD

CD

CD
CcD

LU
co

cp
cD
cD
cb
cD

(D

CD

LU LU LU LU tu
e

Dy

zD
cr

CcD
cr

o

CD
CcD

Lu
CD
CcD

CD
CD
CD
CcD

CcD
CD

CD

CD
un CD

]

cD
CO CD
crCD
O c¢Dp
O cD

OC CD
CcD
CD
CD

or

00

CcD
CD

LU
cD
cD

ob D

C- J-
'D TD

(0]

CD CD o
*

«

o b

CD CM
Cr- CD

uJ L
CD un
CD un

*oc-CJ'.

CD O

CcD >

CD O
CD GO
CD LT\
CDh O
CD O

CD Tj-

CDh CD
CD CD

Ul tu
CDh CcD
CD CD
CD CD
CD CD
CD CD

CD CD
CDh cD
CD CD
CD CD

CD CD

cr c-
CD CD

LU wr
cD cD
cD CD

CD CD

oggoog

668-y88888E£~88

OA

CD CD
CcD CD
CD CD
c
cD O

(O 0]

$8888g=886
$8888E=88

888%
88w

cD

o

(0]

DD D
~

cr CD
D D

D- cp
CD CD

O o

clco
CD CD

cDOJ
CL- CD

Ui
CDun
CDun
cDCJ
OvOo

CD CD
CD On
cbco
CDun
CD o

CDNO

CDM-

cr- cr-
CD CD

4

LU LU
c>- O
cD CD

CD CD
co CD
[e2]e))
CD CD
CD CD
CD CD
o o

CD CD
CD CD

IU LU
CD CD
Ch b
D D
D b
cr- cr
D ZD

cr cr

D cr-
o

[o e/

CcM
CR

LU

TO

Cco

rp
Cco
M"

CM

CD
NO CD

Ui

CD
c D
cr Ch
O cp
O cD
LU cD
cr CD

cb
u_ cD
O c¢b

CO cop

00

CD
CD

LU
cD

CD
CD
CD
CcD
CD
CD

CD

8886:88888& 88
86868868888 =80°

o

[ele]
~.o C

-
c

5%ggs

B
o

CD
CcD

LU LU

CcD
CD

%

o

98588

8688886888E<88

o

LU

CcD

CD

CD

CcD

uJ
CcD

LU LU LU LU

D D) -D

D
CD c¢D CD
<r cr D

D — D

ZD ¢ D
cr cr- D
CD CD o

ZD Ccb

T4 cD CD
cp CD CD

LU LU

vO CD CD
,p cp o
c- C CL-
0J cD cD
O cD cD
0J cp cp

ZD CD
CD CD
CD CD

v T3

W CD CD

CD CD CD
CD CD CD

ul uJ w
CD CDh CD
CD CD CD

cr (>-cb CD CD

o CD

CDh CD CD

O cp CD CD CD

LU cp
cr CD
cD

00

CD
CD

LU
cp
cp
cp

CcD

CD
CD

-88868888888: 88

o

88880888885 ~88

CDh CD CD
CD CD cD
CD CD CD
CD CD cD
CD CD CD

CD CD CD

CD CD crT-J

CD CD CD
4 4 4

W LU LU

¢b CD CD
cp CD CD

¢ CD CD
Cb CD CD
co 0 O
C¢b CDh CD
CD CD CD
¢b ¢cb O

o OO0

.8688:5868868=<88
8886H889%88-88

o
o
o

<88°°8EETH~8R

2]
o

co

LU

00

CD ¢D
CD TD
cr CD

CD o

CD CD
CD CD

LU LU
CD CD
c +c-
CD CD
CD cr-
CD CD
CD CD

CD CD
CD CD

CD CD

CDh cb
CD CD

4
LU W

CD CD

cr
CcD

cb
cr-

oJ
cD

LU

un
un
(o]
\0

Cn
Cco

Cn

TT

CD
CD

LU
cD

CD
CD
CD
CD
CD
CD
CD
CD

CD

CcD
CcD

LU

CcD
2]

CD
CD

Lu

CcDh
u'
CcDh
CcD
CD

CD
C>
CD

CD
CD

IL1
CcD
@
cD
cp
cD

cb
CD

CD

CD

CD
CcD

LU

oJ
cD

uJ
m
un
oJ

CD
own

LU

cb
CcD
cr

CD CD O cp

CcDh CD

©8868888885-868

°g8°y8B8BBEE=88

cr-

CD

0882

888885+88
888688 88
©ggecEBe88:-88

Ccb
CcD
CcD

CD

CD
CcDh

CcDh
CD

CD

CcD

o
[e]
o
e}
[e]



Cn

x-t

C
nr

g
cr

en

pr
uJ

CD
CN
cD

CD

CD
CD

LJ

CD
CD
C>
CcD
CD
CD
CD
CD

CD

CD

CD
Ccbh
4
p o
CcDh
CD
CD
CcDh
CcDh
CcDh
CD
CD

. CD

CD

CD

CD

LJ
LO
tn

ro
CN

Cch
Bt

uJ Lu
CD ZD
CD a-
CD rD

o CD
CD C

CD CD

zD O

CD CD
CD cD

LJ LU
CD CN
CD CD

CD CD
CD CD
CD CD
CD CD
CD CD
CD CD
CD CD

Cbh O

CD t4
CDh CD
4 0
V]

CD ro
CD

<=> CO
CD P
CD CD
CD ro
CD Tf
CD P
CD P

CD p

Tt CD
CD CD

LU LL
m c:
m CD
o c.
ND CD
t4 O
Cn O
O CD
ro CD

o o

CO CD

ro CD
CD CD

LU ug
p CD

D
tn
P
NO CD
t<4 D
NO CL
m CD

CD cD

T1P =z

LU

CcD

CD
r-
cp

zD
CN

T4
cD

co
ro
TD
c™m

co

CcD
CcD

tu
CDh
CD
ZD
CD
CcD
CcDh
CD
CD
CD
CD

CD

CD
Ccbh

LU
CD
CD
Ccbh
CcDh
cL'

CL

Cb
CD
CD

Cco

ro
T.-

cJ

ro

Ccb
(D

LU
cb
Cbh

[e)e]

CD
‘D

CcD
CcD
cb

CcDh
CDh

LU
cD
cD
cD
cD
cD
cD
cD
cD
cD
(®

CD

CD
CcD

LU
cD

cr

cD
CD
cD
CcD

CD

cb

CcD
Ccbh

LU
CcDh
CcDh
cr-
CcDh
Ccbh

LD
CL-
Cbh
CD
CcD

cD
rr
Ccbh

CD
CD

LU
CcD
CD

CD
CD
Cch
CD
CD
CcD

CD

CD
CD CD
CM

tu

CcDh
O CD
cr CD
O cCD
CO CD
UJ cb
nr <>

CD
LI. CD
O CD

uJ

Lo

CD
CD

LU
CcDh
CcD

CcD

CDh
CcD
cD

CD

CD

CcDh

uJ
CcD
CD
cDh
CcD
CcD

CcDh
CD
CD
CcD

LU

zD

cD
zr

CD
CD

LJ
CD
CD

CD
CD
CD
CcDh
CDh
CD
CD

CD
CD

LU
CD
CD
CD
CcDh
CD
CD
CD
CD
CcDh
CD

CcD

OOFJ;UU

cD
CcD

CcD
CcD
CD
CcD

CcDh

CD
CcDh

jri)
CcDh
CcD
CcDh
CcD
CcDh

CL
Cb
CcD
CcD

r-i

LJ £U LY

CD CD
c~ r~

ZD ZD
cd cr
D 7D

CD CD
CD CD
4 4
LU LY
CD CD
CD CD
Zo

CD CD
Cz- CD
CDh CD
O CD
CD CD
cr-cr-
-D -D

CD CD

CD CD
CD CD

It Ly
CD CD
CD CD
CD CD
CD O

CD CD
CD CD
CD CD
CD CD
D D

CD D

CD CD

cD CD
cD ¢D
4 4

LU LU
cDb CD
cD CD
D cL
cDh CD
cL cu
D 2D
cL cL
CD CD
cD CD
ZD D

ri

D

<~

CcD
cr
CD

cm

"1
LU
CN
CD

c™
T-i

CD
CD

tu

CcD
CD
CD
CcD
CD

CD
CD
CcD
CD
CD

CcD

CcDh
CD

Lu
CcD
CD
CD

CcDh
uD
CL
CD
O
D

(—»

t J

0J CM ZD CD
r)ZD ZD ™

r

-

LU LU LU W

CD
-1 CD
CM A
LU

Q cD
rr CD-
O CD
CO CD
UU cD
or CD

CD
Lu CD
O CD

CD CD

LU

CcD
CcD

uJ
CcD
CcD
ZD
CD
CD
CcDh
CcD

CcD
CcD

CcDh

CcD
CcDh

U
CcD
CD
CD
Ccbh
cb

CD
CcD
CcD

<»

ro
LO
ro
P
P
Cco
ZD
*0
ro

ro

CD
CDh

Lu
CD
CcDh

Cb
CD
CD
CcDh
Cb
o

CD

CD

CD
CD

O Cb
Z-

'D'ZD

' CD
CD zD

CDh CD
ZZ- CD
Do

CDh CD

CDh CD
CD CD
4 4
LU LU
CD CD
'CD CD

'foer,-zm .

CD CD
CD CD
CD CD
CD CD
CD CD
CD CD
O CD

CD CD

CD ¢cD
CD CD

4
tuIT'Lu

CD
CcD
CcD
CcD
CD
CcD
CcD
CD
CcDh
CcD

CD

CD
CcD
CcD
CcD

CD

CcD
CcD

LU
CcD
CDh
cDh
CcD
cb

Ccbh

CD

CDh CD
CD zD
CD CD
CD CD
CD CD
CD CD
CD CD
cb CD
CDh CD
cDb CD

CD CD

CD co

CD NC
CD ro

CD ro

CcD
CcDh

LU
CcD
CD
CD
CcD
cr
cb

CD
CD
ZD

185s8 d855g-88

‘
o
Q
=

[
zD
D
4
Ly

cD
ZD
CD

C

ZD
CD

cb

CD
CcD

LU
CcD
CD

CcD
CD
CD
ZD
CD
CcDh
CD

Ccbh
CcD

Ul
CD
CcD
CcD
CD
CcD

CD
CcD
CD
Cb
CcD

CD

CcD
CD

LU

Ccbh
CL
CcDh
CcDh

CDh
CD
zD

CD

«D
CcD

LU
o
CcD

cD
CD
CD
CcD
CD
cDh
Ccbh

CD

-
L

CD
ZD

LU

CD
C-

CcD
CD
CDh
CcDh
Ccbh
CcD

CcD

cD
CD

uJ
CD
CD
CcD

CD
cr

CcD
CD
CD
CD

CcD

CD
CcD

LU
CcD
CcD

cD
CL-
Cbh
CD
Ccb

Cch

CD

CD
Ccbh

LU
CcDh
CcDh
CcD
Cb
CcD’

CcD
CD
CcD
Ccbh

CD

CD
(@]

CcD

CD
CD

LU
CcDh
CcD

CcDh
CD
CD
zD
Ccbh
CD
CD

CD

CD
CcD

tu
CD
CcD
CcD
CD
CcD

CcD
CcD
CcD
CcD

CcD

CD
CD

LU
Ccb
CD
zZL
CD
CD

CD
CcD

CD

CD

CL-

zD

CD
CcD

uJ
CcD
CD

Ccbh
CD

CD
CD
cDh
CD

CcD

LU
CcD
CD
CcD

CcD
CD
CcD
CD
CD

CcD

T-1

CD

IL*

o

C-
ZD

Ccb
cr
CcDh

CD
CD

LU
CcDh
CD

.
Ccbh
CcD
CD
CcDh
zD
CcDh

CD

Cch

CD
CD

LU
CD
CD
CcD
CD
CcD
CD
CcD
CD
CD
CD

CcD

CcD

1»

ZDZtD

LUl
ZD *M
o Zp

CD
CD

LU
Ccbh
Ccbh
CD

CD
CD
CcD

ZD

cp
ro CD
CM 4

i)

CD
Cr co
O CDb
U CD
UJ co
or (D

CD
Lu CD
O CD

Clo cD

CD
CcD

LU
CD

CD
cD

CD
CD
cD
CD

CcD

CcD

LU
CcD

CcDh
CD

Cch
CD
CD
CcDh

fT

ZD CM CD CD

D
4

zZl
3

Z' D?
4 4

LU LU. LU LU

z>
A

cr
cr
D

CD
CcD

LU
CD
cDh

CDh
CD

CcD
cr-
ZD

ZD

CD
CcD

uJ

cD
CD
CD
CD
CD
CD
CD
CD
CcD

CcD

CD
CcD

LU
CD
CD

CD
CD

CcD
CcD
CcD
CcD

CD

CD

uJ
CD
CcDh

CcD
CcD
CcD
(@]
CcD
CcDh
CD

tn
m

cM
3

cokgo

CcD
CD
-r

LU
CD
CD

cDh
CD
CD

CD
CD
CD

CD

CD
Ccbh

ul
CcD
CD
CD
CD
CcD
CcD
CD
CcD
CD
CD

CcD

CcD
CD

L
CD
CD

CcD
CL-
CD
CcD
CcD

Ccbh

CDh

CD
Ccbh

Lu
CcDh
CD
cL
CD
cr-

CD
CcD
ZD

*'0 rer
ZD ZD
D —
ZD CD
CD CD

CD T

CD CD
CDh CD
4 4
LU uJ
CD CD
CDh CD

CD CD
O CD
CD CD
CD zDb
CD CD
CDh CD
CD CD

CD CD

CDh CD
O CD
4 4

LU v
CDh CD
CD CD
d D

CDh CD
CD CD
CD CD
CD CD
CD CD
< O
CDh CD

Cbh CD

CDh CcD
Ch CD
4 4
LU LU
CD CD
CD CD
CL CD
CD CD
Cb CD
LD D
CL cr
CD CD
cr- CD
Ch zD

<s"'N

CD CD
CD CD
4 4
uu LU
CD CD
Ch CD

cr
ZD ZD
Ch O
CD CD
CD CD
CD CD
CD O
Ch O

O ZD

CD CD
CDh CD
4 4

CD
ZD

LU
cr-
CD

Cch
CD
Cb
Cch
CD
CD
zD

CD

cD
CD

tu

CD
CcD
CcD
CD
CD
CD
CD
CD
CD
CD

CD

CcDh
CcDh

LU LU LU

Cb CD
Ch CD

CD CD
CD @
CD CD
CD CD
CD CD
o O
CD CD

Ch CD

cD CD
cb cD
4 4
LU LU
cb cD
cb ¢D
cb oD
cD CD
cD CD
— D_
c c
cD CD
cD CD
cD CD

<D <T

Cb
CD

CcD
CL-

CD
CD

CD

Ccb

Lu
CD
CcDh
C-
CD
CcD

CcD
CD
c

D

CM Di
c- D

UU LU
o'cCDh
D D
IP»

CcM %
T-1'D
[@:9)pn}

T-t O
CNC!
ro o

ON CD

cD cD
cb zD
4 4
uJ U
CD CD
cb cD
.
CD CD
o CD
CD CD
00
CD CD
cb o
cD zD

CD CD

cD CD
CcD CD

U 1
cb CD
(b CD
cD CD
CD CD
cD CD
CD CcD
CD CD
CD CD
cp CD
cD cD

CD CD

CD CD
CD CD
4 4
UL LU
CD CD
CD ¢D

CD CD
CD CD
cb CD
CD CD
CDh CD

CD cp

CD CD

@ CD
CD ¢p

LU LU
CD CD

CDh CD
Ccb O

CD CD
CD CD
ZD CD

‘N1



0043708970920

:m{
on«
oox
00«

160

'JLJu

300yt 0Uo®
30000c0 ouotO
200060 060° 0
2e06000 0G0 C
dro/ltoseevre s
3L0udye ouoto
2000000 06G0°0
2e008ce 000°0
2C0L000 obote

00+360.6000030%0
00+3T08L91892V*9-
00+300.0000000°0
00+30030000000°
00+30050000000°0

00%30000000000°0
00¥20000000000°0
00%2T08/9T892k* 9~
00%30000000000°0
00+30000000000°0
i€, 0L:T

SNWN=QJ

00+300.0000000°0
00+300u0000000"0C
00+300:0000000"0
V0+3£TEL26GYL6" 9=

'70-369928TL8bg'E

XTYLYH NVINOLITIKVH NOYLO31Z<3NO .03WYO0 SNV YL

00+30056000000°0
T0-31948968¢p2'8
co+uooaooo 000%0
00«+3005000C00C*0
00+300.0000000°0

00%“Z000000000G*0
00%30000000000°0

T0~29CT0L080 2L L

00+30000000000°0
00+30000000000°0
Ge Q:003Y¥ 40 Sih3

INQD

00+36000000000°0
00+30000000000°0
00+300500060000°D
10-35569T60500"8

£0-3/4TGL2T9580" 6~

00+300000Cu00C"
00+300000660G¢"
00+300000C00CC"
T0-365928TL85¢"
T0+306890TTH6T"

00+30000006000C"
00+3000000000C"
00+300000G000C"
£0-3/7649T9G€EC"
00+3G6CHBLHLSET!




- 233

v

R
A
o0
=

8

Vu v~ Vv
pog t © o
I° B3

8

vV VvV Vv

f—c co

< crro
O T4

Q Dr

L'J

T

1
55 o
en o

o
Q. co

f—cp cp

f- NJ T4
u
eo O

a. ¢



o

CD

CL
CD

co

LU
LU

CL

.In\,
ogH

cr

o0

LU

co

OF

LU

o

LU CD

cr
cr £

Lu

CO LU
< 00
cr c

Dn

£ LU

co
LU
CD

LU
Cco

LU

Cco
)

< CCo
o -f o
LU

o
CcM

- LO

CO o 00 o

o _J o _t

CL CD Q CD
ro

LU LU

CL CD

234

s— CD CO
< DCro

CD CD

LU LU
CL CD
C :z
+ 2)

oD O

o J

CL CD

Dr cr
'U v

CQ

co

LU LU
CL 2

LU
Cco

or

LU

LU



- 235 =

APPENDIX VII

SECSZL. A PROGRAM FOR THE CONSTRUCTION AND

SOLUTION OF THE SECULAR EQUATION IN THE

METHOD OF CONFIGURATION INTERACTION

This program computes the matrix elements of the secular equation
using the methods described in chapters 7 and 8. The secular equation is
solved using the QR-Algorithm and facilities are provided for computing
and diagonalizing the first order density matrix if this is required. The
program.occupies about 1700 FZRTRAN V source cards and its storage
requirements are approximately 115 blocks of compilation store and 115
blocks of execution store. 1In addition to the subprograms listed here
SECSPL requires the routines ENTR, ERRZR, IPAR, QUIT, and WRITMX from
Appendix IIT.

SECSPL uses two magnetic tapes and three disc areas which are

assigned as follows:

VARIABLE VALUE =
NAME DEVICE No.
MTDO1 Defined in Private disc area of > 150 blocks.
data Contains results of current run.
MTDO2 Defined in Master results tape.
data
MTD 3 Private disc area of 30 blocks. Contains
specification of detors and projection matrix
Ise
IDISC 4 Private disc area of 3 blocks. Contains

contents tables of MIDO1, MIDO2.
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INTRA Defined in Master transformed integral tape-produced
data by the program INTRA.
MTD 7 Common disc area of 100 blocks

The line printer is device O.

The data provided by the user is divided into six sections. Once
the detors have been specified this information is written onto MID (= 3)
followed by the projection matrix, this data may be used in a later run

but only the last specifications read are available.

Data specification for SECSﬁi

Section 1 : Read data required to compute matrix elements between detors.

Card 1 IWHERE, N@
FERMAT (2I5)
IWHERE = 1

= O to suppress timing information
m1 = 1 to obtain timing information
Card 2, 3 TITLE
FZRMAT (9A8/648)

TITLE is an array of 15 elements (120 characters)

used to identify the run.

Card 4 MTDO1, MTDO2, NBASIS, NDET, NELEC, NFULL
FORMAT (615)
MTDO1 = Device number of private disc area
MTDO2 = Device number of master results tape
NBASIS = Number of basis orbitals
NDET = Number of detors
NELEC = Number of electrons

NFULL = Number of spin-orbitals frozen.



Card 5

Card 6
(omitted if

NgNO = 1)

Card 7(I)
(Omitted if

NZNO = 1)

Section 2
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N@NO
FPRMAT (I5)
( = 0 If the detors have to be specified
NgNO { = i If the detors were specified in the
L pPrevious run
F
FPRMAT (9A8)
F is an array which defines the lineprinter

format for the printing of the detor

specifications. It has the form:
((*b*, 18, mX, ni3))

or ((1Hpb, I8, mX, nI3)),

where b is a blank, n = numerical value

of NBASIS, and m = 3 (112 = 3 n)

Variations are possible

(1DET(I, J,)s J = 1, NELEC)

FZRMAT (1X, 32I2)

IDET(I, J) specifies the Jth spin-orbital of the Ith
detor. These cards, of which there are NDET,
will normally be these output by the program
GENDET.

(1 € I < NDET).

Computation of G(k) = <Dp| IJ le> s where
k= (u(p - 1))/2+ v and 4 > Vv o The

transformed integrals must be on MIDO1 at word O, block 1.
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Card 1 IWHERE, Ng
FZRMAT (215)
IWHERE = 2
Ng : see section 1 card 1

Section 3 : Compute H and solve (H-EI) C = O

Card 1 IWHERE, N¢
F@RMAT (215)
IWHERE = 3
Ng - : see section 1 card 1
Card 2 NCENF, NgNO
FZRMAT (21I5)
NCENF = number of codetors
NgNO = number of non-zero elements in the
‘projection matrix T co
Card 3 IFILE )
FPRYAT (I5)
= O If the projection matrix has to be defined
IFILE = 1 If the projection matrix was defined in .the
pPrevious run
Card 4(Kx) I, J, (I, J)

(omitted if  F@RMAT (2I5, F10.2)
IFILE = 1)
I, J) is the I, J=th element of the projection
matrix Tgo o+ It should be non-zero and
written as an integer in real form, e.g.
1.00¢ “:s The program normalizes the columns
of T

17
(1 € x < nfo)



Card 5

Card 6(I)
(Omitted if

NCEN = 1)

Section 4

Card 1

Card 2

Card 3

Card 4
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NCEN
FERMAT (I5)

NCEN = number of nuclei
CH(T), x(1), Y(1), z(T)

FZRMAT (1P4E 20.10)

cH(I) = Charge on nucleus I (a.u.)
x(1)
- The cartesian co-ordinates (x,y,z) of the
Y(I
I-th nucleuse.
z(1)

(2 £ I < KXEN)

Natural spin orbital analysis of a specified energy level.

IWHERE, NZ
FPRMAT (215)
IWHERE a 4 .
NO ¢ see section 1 card 1
ICAL
FERMAT (I5)
1CHL ' defines the energy level for which the
analysis is required
(1 < IChL < NCANF)
IFILE, JFILE
FARMAT (2I5)
IFILE = 3
JFILE = 4

(DN(NENTRY, J), J = 1, 4)

FERMAT (4A8)
This card contains 32 characters used to
identify thel)sf analysis,NENTRY is known

to the program. ,
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Section 5 Entries to the subprogram TDFILE: the data is divided into

five sectionse.

Card 1 IWHERE, NZ
FPRMAT (21I5)
IWHERE =5

NO : see section 1 card 1
This card precedes the cards from one of the following subsections

A : Copy transformed integrals onto MIDO1 and MTDO2 from INTRA

Card 2A IFILE, JFILE
FERMAT (215)
IFILE = 1-
JFILE = 1
Card 3A IENTRY, NXBLZC
FZRMAT (215)
IENTRY = 2
NXBLZC = number of block at which transformed integral
file will begin on MIDO2
Card 4A INTRA, IGF, NBLZC
FZRMAT (315)
INTRA = device number for Master transformed integral
tape-
P y
= O To initialize the contents dtdbles of MTDO1
and MTDO2
167 1
‘ a 1 If the contents table of MIDO2 contains
entries
.
NBIZC = number of block at which transformed integral

file begins on INTRA.
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Card 5A (oN(1, X), X = 1, 4)
F@RMAT (4A8)
This card contains 32 characters used to
identify the integrals.

B : Copy selected entries from MTD0O2 onto MTDO1

Card 2B IFILE, JFILE
FERMAT (215)
IFILE = 1
JFILE = 0'
Card 3B IENTRY, NXBLZC
FERMAT (2I5)
IENTRY = number of entries to be copied from MIDO2
onto MIDO1 and must always include the
last entry on MTDO2.
NXBLZC = 0 )
Card 4B (io(1), I = 1, IENTRY)

FZRMAT (1615)

ID(I) is the subscript of an entry in the contents
table of MTDO2. The records corresponding to
this entry are copied onto MTDO1.

Continue on successive cards if IENTRY > 16)

C : Read data into core from MIDO1
Card 2C IFILE, JFILE

FARMAT (21I5)

IFILE = 2

JFILE = 0
Card 3C IENTRY

FPRMAT (I5)
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IENTRY is the subscript of an entry in the contents
table of MIDO1. The records corresponding
to this entry will be read into the
appropriate area of core.

D : Write results onto MIDO1
Card 2D IFILE, JFILE
iyfmmr (215)
IFILE = 3
= 2 If matrix elements between detors are to
be transferred
= 3 If the solution of the secular equation
JFILE {

is to be transferred

= 4 If the first order density matrix is to

L -~ be transferred
Card 3D (DN(NENTRY, J), J = 1, 4)
FZRMAT (4A8)
This card contains 32 characters used to
identify the entry.
E : Update MIDO2 from MIDO1, entries on MTDO1 ,nc?t already on MTDO2 will be
added to MTDO2.
Card 2E IFILE, JFILE
FZRMAT (2I5)
IFILE = 4

JFILE = 0

Section 6 : End of job

Card 1 IWHERE, NZ
FARMAT (215)
1

IWHERE s 6



NO

Restrictions

1

1

N INOA N A

A
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NBASIS
NDET
NELEC
NFULL
NCENF

NCEN -

N N NN

IA

see section 1 card 1

30
120
32
8
78

20

The number of entries in the contents table of MTDO2 must not exceed

158, and the number in that of MIDO1 must not exceed 10.

Error Messages

Checks are made to see that the data does not violate the limits of

the program. Certain violations give rise to the message ERRﬂh n, where

n is a number in the list below:

ERRZR
1
2
3
4

5

n

.

CAUSE \
NBASIS > 30
NELEC > 32
NDET > 120
NFULL > 8
NCANF > 78

Several other error conditions can arise which will terminate

execution. 1In these circumstances the error messages are self-explanatorye.

The following actions may cause termination as the subroutine TDFILE

vill interpret them as errors:

(i) attempting to read integrals into core,

(ii) attempting to read the first order density matrix into core,

(iii) attempting to read the 'next new record! into core

(iv) requesting more records from MIDO2 than are actually present.
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*FORTRAN LIB 6,19,302
CoeeeMAIN PROGRAM FOR SECSOL = CONSTRUCTION AND SOLUTION OF THI SICULAR
CeeeeEQUATION WITH AN OPTIONAL NATURAL SPIN-ORBITAL ANALYSIS,
COMMON /SECEQN/ AA(33767),ICR,LP,NTD,NO,ANYO0,ANY1,ANY2,ANY3,ANY4,
1GF,ICOL,IDISC,IFILZ,JFILE,LINK,MTDO1,MTDO2,NBASI S , NCONF, NDET, NSLiC
2,NF,NFULL, NSQRD, NXBLOC
EQUIVALENC:E (NXBLOC,IWHERE)
C.....DEFINZ DIVICE NUMBZRS,
Ceess P LINE PRINTER,
Coese.ICR = CARD READER,
C.oeeMTD = WORKFILZ, -
Cesos.IDISC=CONTENTS TABLES FILE,
CLEAR ICR,LP
MTD=3
IDISC=4
1 READ(ICR,2) IWHERE,NO
2 FORMAT(Z2I5)
¢ T¢ (3,4,5,6,7,8),IWHERS
C.eesoREAD DATA FOR COMPUTING MATRIX ELEMENTS BETWEEN DETORS,
3 CALL SECDAT(1)
GO TO 1
Ceeos COMPUTE MATRIX ELEMENTS BETWEEN DETORS.
4 MTD=7
CALL PASONEZ
CALL MAXCCN
CALL PASTVO
CALL HPASS
MTD=3
GO TO 1
CueesoCCMPUTE H-MATRIX AND SOLVE (H-E*I)*C =0,
5 CALL SZCSOL
GO TO 1 *
Ceees .PERFORM NATURAL SPIN ORBITAL ANALYSIS,
6 CALL NATCRB
Ga TO 1
Ceeee CORS/PERIPHERAL TRANSFER - MAKZ SUR:Z DATA IS CORRICT.
7 CALL TDFILZ
GO TO 1
Ceees JOB CCMPLETE,
8 CALL TIMI(ANYO)
WRITE(LP,9) ANYO
9 FORMAT( 0”,33X, “**** JOB COMPLETZ - TIME USED =",F10,5,° SICONDS *
1wk’
STOP
END

*FORTRAN LIB
SUBROUTINE ADDNRE(H,N,M,ICR,LP)
CeveesADDS NUCLZAR REPULSION ENEZRGY TO SOLUTION OF Si&CULAR EQUATICN,
CeeeesVERSION 2, MALIMUM NUMBIR COF NUCL:I IS TWENTY.
DIM:NSICN H(N,N),X(20),Y(Z0),Z(20),CH(20)
SQRD(X,I,J)=(X(I)~-X(J))**2
READ(ICR,1) NCi2
1 FCRMAT(I5)
IF(20-NCoN) 10,2,2
2 IF(NCiN-1) 9,9,3
3 RIAD(ICR,4) (CH(I),X(1),Y(I),z(I),I=1,NCIN)
4 FCRMAT (1P4220,10)
WRITE(LP,5) NCEN,(I,CH(I),X(I),Y(I),z(I),I=1,NCiN)
5 FORMAT( 07,30, “GICMUTRY OF MOLiCULZL”,13,7 NUCLLI As Fontows™/” 7
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1,24X,“NUCLEUS  NUCLEAR CHARGE X CO-ORDINATE Y CO-ORDINATZ Z
2 CO-CRDINATE /(” *,27X,12,1P519,7,1P3516,6))
CLEAR ERN
MCEN=NCZN-1
DO 6 I=1,MCEN
K=I+1 .
D0 6 J=K,NCEN .
ERN=ERN+CH(I)*CH(J)/SQRT(SQRD(X,I,J) +SQRD(Y,I,J) +SQRD(Z,1,J))
6 CONTINUE
WRITZ(LP,7) ERN
7 FORMAT( 0”,38X, “NUCLEAR REPULSION ZNERGY =",1PE17.10)
DO 8 I=1,M
H(I,I)=H(I,I)+IRN
8 CONTINUEZ
9 RETURN
10 WRITZ(LP,11) NCEN
11 FCRMAT(0”,42X, “NCEN=",15,
CALL LZXIT
STOP
LND

'

. NCEN MUST NOT EXCEED 207)

*FORTRAN LIB
SUBROUTINE EAO3A(A,B,N,ND,EPS)
C.....REPLACES HARWSLI, LIBRARY VERSION OF JACOBI®S METHOD BY AN
Ceeos . INTERFACE WITH THE QR-ALGORITHM,
DIMENSICN A(ND,ND),B{(ND,ND),D(78),E(73)
ZPS=2 ,0%* (=35)
TOL=2 ,0%* (=349)
CLZAR LP
X DISPLAY(LP, 20)/EPS,TOL
CALL TRED2(N,TCL,ND,A,B,D,E)
CALL TQL2(N,Z:P5,ND,B,D,i,NN)
CeeeeolF NN,N&,0 TQL2 HAS FAILED TO CONVERGE,
IF(NN) 1,3,1
1 WRITE(LP,2)
2 FORMAT( 07,120(¢ *")/" *°,118X,“*/* *»”,47X, TQL2 FAILZD TO CONVERG
187,43x,7*7/7 *7,118X,"*"/" 7,120("*"))
Ceeso ENTSR EIGENVALUES IN DIAGGNAL OF A.
3 DO 4 I=1,N
A(I,1)=D(D)
4 CONTINUZ
RITURN
END

*FORTRAN LIB

SUBROUTINZ FODMA4
Ceve. .COMPUTES FIRST ORDER DINSITY MATRIX, VERSICN 4, 03/05/71.
Ceees ASSUMES BASIS SPIN ORBITALS ARZ ORTHCONORMAL,

COMMCN/ SECEQN/T(120,73) ,AA(60,60),C(120),ID(1182,2),C,GAMMA(GO,GO)
1,IDET(120,32), ID(843),KDET(32),EV(78,78),5P(3923),I1CR,LF,MTD,NC,
2ANYO , ANY1 , ANY2,ANY3,ANY4,GF,ICCL,IDISC,IFILI,JFILLE, LINK,MTDOL,
3MTDO2,NBASI S, NCONF, NDET, NELEC, NF, NFULL, NSQRD, NABLOC

BQUIVALENCE (S»,FACTCR), (SP(2),1), (SP(3),ICRB),(5P(4),IR), (5(5),
11s),(sr(6),11), (SP(7),12),(SP(3),J), (5P(2),JCB), (5P(1V),K),
2(sr(11),L)

CALL :2NTR( FCDMA4”,NQ) v

X WRITE(LP,28) ((IDET(I,J),J=1,NEL:iC),I=1,NDZT)
X DISPLAY(LP,4) /NF,NFULL,NIL3C,NDET
CLiAR LINK

NBASIS=NBASIS--NBASIS
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CeeessJF DETCRS K AND L DIFFER BY TWO OR MORZ SPIN-CRBITALS THEN
CeeeeoTHE COFACTOR COF EVERY ELEMENT IN THE INTLGRAL CF TH2IR PRCDUCT IS
CeoeeesZERO, CONSTRUCT A TABLE CONTAINING THE INDZX (IS) OF PAIRS THAT
Ce.ss DIFFER BY ONLY 1 SPIN-ORBITAL,
DO 12 K=2,NDuT
IR=K~-1
I1=(K*IR)/2
D0 11 1=1,IR
CLZAR I2
IS=I1+L
DO 1 I=NF,NiLEC
KDET(I)=IDAT(L,1)
1 CCONTINUE
DO 5 I=NF,NZLEC
IF(IDET(K,I)-KDET(L)) 2,5,2
DO 3 J=NF,NELEC
IF(IDST(K,I)-KDET(J)) 3,4,3
3 CONTINUZ
GO TO 5
4 IORB=KDET(I)
KDLET(I)=KDIT(J)
KDET(J)=ICRB
5 CCNTINUZ
DO 8 I=NF,NiLEC
IF(IDET(K,I)-KDST(I)) 6,8,6
6 I2=12+1
Ir(12-1) 7,7,11
7 IGRB=I
JORB=KDZT(I)
38 CONTINUE
DO 9 I=NF,NILEC
J=I '
IF(Ipasr(L,I)-JCRB) 9,10,9
9 CONTINUZ
10 LINK=LINK+l
ID(LINK)=IS
JD(LINK,1)=ICRB
JB(LINK,2)=J
11 CCNTINUL
12 CCNTINUE

N

X WRITZ(LP,13) (ID(I),I=1,LINX)

X 13 FORMAT( 0”,51X, DIFFERENCE TABLIS /(7 7,12110))

X WRITE(LP,14) ((ID(I1,J),J=1,2),I=1,LINK)

X 14 ForMAT(® /¢ 7,12¢" (7,12,7,7%,12,7) DH))
CLEAR GAMMA

Cues e CCUPUT: FIRST ORDER DENSITY MATRIX,

X WRITE(LP,23) ((IDST(I,J),J=l,NZLEC),I=1,NDIT)

DO 23 K=1,NDiT
CISPLAY(LP,5) K
IF(C(K)) 141,23,141
141 DO 22 L=1,NDaT
IF(C(L)) 142,22,142
142 12=K-L
IF(I2) 17,15,17
Ceese DITCRS K AND L ARZ IDZINTICAL,
15 FACTCR=C(X)*C(X)
D0 16 I=1,NJLic
I1=IDaT(K,I)
GAMMA(I1,I1)=GAMMA(I1,I1)+FACTOR
16 CCNTINUG
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GO TO 22
C.ee+ .TETORS K AND L ARE DIFFERENT - IF THEIR INDEX (IS) DO&s NOT
C.oeesAPPEAR IN ID THiY DIFFER BY 2 OR MORE SPIN-ORBITALS.
17 IF(LINK.EQ.0) GO TO 22
15=(MAXO0 (K, L) * (MAXO(K,L)=1) )/ 2+MINO (K, L)
DO 138 I=1,LINK
J=1
IF(Is-1D(I)) 18,19,18
18 CONTINUZ
GO TO 22
19 IORB=JD(J,1)
JCRB=JD(J,2)
IF(I2) 20,21,21
20 I1=IORB
10RB=JCORB
JORB=I1
21 I=IDET(K,ICRB)
J=IDET(L,JORB)
GAMMA(T , I )=GAIMA(J , 1) +C(X) *C(L)* (=1 ,0) ** (IORB-+JORB)
22 CONTINUE
23 CONTINUL
CeooesoCHICK SYMMETRY OF GAMMA
DO 27 I=1,NBASIS
I1=I+1
DO 26 J=I1,NBASIS
FACTOR=ABS (GAMA(CI,J ) ~GAMMA (T ,I))
IF(1,0E-10-FACTOR) 24,26,26
24 WRITZ(LP,23) I,J,J,I,FACTOR

25 ForMAT(® 7, 35X, “carnia(’,12,%,%,12,7%) N8, cAaMMAC ,12,7, 7,12, ) . DIFF

1:RENCE=",1P19,2)
26 CCNTINUEL
27 CCNTINUE
X 23 FORMAT((® 7,12X,3213))
CALL QUIT( FODMA4”,ND)
RETURN
END

A

*FORTRAN LIB
SUBROUTINE HPASS

CeeoeoCCUPUTES CNE-ELECTRON CONTRIBUTION TO MATRIX ELEMENTS.

Ce oo oREAD GNE-ELECTRCN HAMILTONIAN MATRIX.
COMNN /SECEQN/ G(7260),ERI(900),IDIT(120,32),IDIFF(3073,7),

1IDUM(261) ,ANY1,ANY2, ANY3,ANY4,GF,ICOL, IDISC,IFILI,JFILI, LINK,MTDC1

2,MTDO2,NBASIS,NCONF, NDaT, NELEC, NI, NFULL, N3QRD, NXBLGC
EQUIVALINC: (IDUM(149),I1),(IDUNM(150),J), (IDUNM(151) ,FSUN),
1(Iopun(152),L), (IDUM(L53),KL), (IDUM(154),L1), (IDUM(155),LLL),

2(1pmi(156) ,181) , (IDUM(L57) ,KP) , (ANY3,1NO) , (ANY4,LU), (IDUM(252) ,MTD)

DIMAENSICN H(30,30)
EQUIVALINCE (ZRI,H)
CALL ZNTR(” HPA33”,IDUM(2G0))
READ MTDO1) ((I(I,J),J=1,NBA3IS),I=1,NBASI3)
CLEAR FSUM
Ceeo..COMPUTZ FRCZEN COR: CONTRIBUTICN TQ DIAGCNAL ZLIMUNTS,

IF(NFULL) 3,3,1

1 NF=NFULL/2

X WRIT:S(IDUM(258),11)
oG 2 I=1,NF
X WRITE(IDUM(258),12) I,I,H(I,I)

FSUM=FSUM+H(I,I)
2 CONTINUZ



- 248 -

FSUM=2 ,0*FSUM
3 NF=NFULL+1l
Ces oo COMPUTE DIAGONAL ELEMENTS.
DO 5 L=1,NDZIT
KI=(I*(L+1))/2
D3 4 L1=NF,NELEC
LL1=CIDET(L,L1)+1)/2
- G(KL)=G(KL) +H(LL1,LL1)
4 CONTINUZ
G(KL)=G(KL) +FSUM+GF
5 CONTINUZ
Cueee CCMPUTE QFF~DIAGCHAL ELEMENTS - IF DETCRS L AND K DIFFER BY
C.e.. JCRC THAN CWE SPIN CRBITAL THE ONZ ELECTRON CONTRIBUTICN IS ZTRC.
IN23=23073
DO 13 LU=1,ICOL
IF(ICCL~-1) 51,53,51
51 READ(MTD) IDIFF
IF(LU-ICOL) 54,52,54
52 IF(LINK) 53,13,53
53 LNO=LINK
54 D0 9 L=1,LNO
KL=IDIFF(L,7)
IF(IDIFF(L,1)-1) 6,G6,8
Coees.DETORS L AND K DIFFRR BY IM IN L AND KP IN K,
G LM=IDIFF(L,3)
KP=IDIFF(L,4)
IF(IPAR(IM)-IPAR(KP)) 8,7,8
7 G(KL)=G(KL) +H((1M+1)/2, (KP+1)/2)
Cuoee MULTIPLY BY APPRCPRIATE PARITY FACTOR.
8 G(KL)=IDIFF(L,2)*G(KL)
9 CONTINUZ
DISPLAY(IDUM(258),12) /FSUM
WRITE(IDUNM(258),10) (KL,G(KL),KL=1, (NDET*(NDZT+1))/2)
10 FoORMAT((® &(’,14,7)=",1P317,10))
11 FCRMAT("0%,50X, “CONTRIBUTICNS TO FSUM’//)
12 roruar(” 7,47x,°1¢,12,7,7,12,7)=",1PE17.10)
13 CONTINUZ
REVIND MTD
cALL GUIT¢” HPA33”,IDUM(260))
RZTURN

1
'

MR MR

*FORTRAN LIB

SUBRCUTINE MAXCON
Cevs o BRINGS DSTCR3 INTC MAXIMUM COINCIDINCE , DETZRMINIS AND IDINTIFILS
C.eeeoTHE SPIN-ORBITALS BY WHICH ZACH PAIR CF DETCRS DIFFER,
C.veoe ONLY OFF-DIAGONAL ELEMENTS ARS TRSEATED AND RESULTS AR STORLSD CNLY
CieeesoIF TWO DSTORS DIFFSR BY NOT KORE THAN TWC SPIN-CRBITALS.

COMMCN /SECEON/ G(7260) ,3RI(900),10aT(120,32),IDIFF(3073,7),
1IDUM(26G1) ,ANY1l,ANY2,ANY3,ANV4,GF,ICOL,IDISC, IVILS,JFILS, LINIE,MTDO1
2,MTr02,NBASIS, NCONF, NDIT, N.2LEC, NTF, NFULL, N3QRD, ITKBLEC

DIlIZNSION KD3T(32)

LQUIVALENCE (IDUM(109),KDET), (IDUN(142),L), (IDUM(143) ,1M1),
1(Iruni(144),x5), (I1DUK(145) ,IPIRM) , (IDUM(14G), 1), (IDUM(L47) ,IT.MP),
2(IDUN(148),1IDC), (IDUK(175) ,LIN), (IDUM(L7G) ,JT), (IDUK(259) ,1ID)

IF(NDAT ,83,1) RIETURN

CALL ENTR( MAXCON®, IDUM(260))

CL:AR IDIFF,LINK,LIN

1CoL=1

DO 11 L=2,NDirT
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IM1=L~1
DO 10 K=1,IM1

CLZAR IPERM,IDC
LINK=(L*L}1)/2+K

DO 1 I=1,NuL:iC
KDET(I)=IDET(X,I)

CONTINUS

DO 5 I=NF,NELLC
IF(IDET(L,I)-KDET(I)) 2,5,2
LC 3 J=NF,NEL3C
IF(IDET(L,I)-KDET(I)) 3,4,3
CONTINUE

GC TO 5

ITEMP=KDET(I)
KDET(I)=KDET(J)
KDET(J)=ITIMP

IPERN=IPIRM+1

CONTINUZ

J=2

LIN=LIN+1

DO 3 I=NF,NELEC
IF(rpoT(L,I)~-XDIT(I)) 6,8,6
INC=IDC+1

IF(2-1CC) 9,7,7

J=J+1
IDIFF(LIN,J)=IDET(L,I)
J=J+1

IDIFF(LIN,J)=KDIZT(I)
CONTINUS
IDIFF(LIN,2)=(=1)** IPERM
IDIFF(LIN,1)=IDC
IDIFF(LIN,7)=LINK
IF(LIN-3073) 10,51,10
1COL=ICOL-+1

WRITZ @YTD) IDIFF

CLZAR LIN,IDIFF

GO TG 10

LIN=LIN-1

CONTINUZ

CGNTINUZ

Ir(IcoL-1) 12,14,12

IF(LIN) 13,14,13

VRITEZ(MTD) IDIFTF
ICCL=ICOL+L

REWINC MTD

LINK=LIN
WVRITE(IDUM(253),15) (1,(IDIFF(I,J),J=1,7),I=1,LINK)
FORMAT(® 7, 51X, "CONTENTS OF IDIFF /(7 7,45X,71=",14,3X,713))
1=3073*(ICOL-1) +LIN
WRITS(LP,16) I

FORMAT(® 7, 26X, "NUMBZR OF NON-ZZRC CFF-DIAGONAL MATRIX ZLIMUNTS B3

1TVSEN DITORS=",15)

CALL QUIT( MAZCON”, IDUM(260))
RETURN
END

*FFORTRAN LIB

SUBRCUTINE MMULT(A,B,C,IP,1Q,IR,IA,IB,IC)

C.....PRODUCT OF MATRICLES A AWD B STCRID IN C.

DIMENSION A(IA,IQ),B(IB,IR),C(IC,IR)



- 250 -

DO 1 1=1,IP

DO 1 J=1,IR

C(I,J)=C.U

DO 1 K=1,IQ
C(I,J)=C(I,J)+A(I,K)*B(K,J)
CONTINUE

RETURN

END

4FORTRvVU; LIB

c....

Q

1

11

2

SUBROUTINE NATORB
CONTROL ROUTINE FOR NATURAL SPINORBITIL MALYSIS.

Ca3ACN/SECEQN/T (120,73) ,Ai\(GO,G0) ,C (120> ,JD(11C2,2) ,0,G;\IEIA(GU,60)
1,1DET (120,32) , 10(343), I{DET(32) ,EV (78,73) ,SP (3923) ,ICR,LP,I.TID,NO,
2ANYO Aim,Mjv2,MY 3 ,ANY4 ,GF, ICOL, IDISC,IFILE JFILE,LINK, MTDOL,
.3MImij2, NBAS 13, NCONF ,NDET ,NEL3C ,NF ,NFULL ,NSQRD ,NX3LCC
EQUIVALENCE (SP(l),I), (SP(2),J),(SP(3),K), (SP(4),L)

CALL ENTR ("NATORB",NO)

.READ DATA FRCI.i DEVICE MTD.

READ (MTD) ((IDET(I J),J=1,NEL3C),b1=1,NDET)
RE.\D(MTD) ((T(I,J) ,J=1,NCONF) ,1=1,NDET)
RSV/IND MTD

..COMPUrE COEFFICIENTS OF INDIVIDU.ILDETERMIN.YNTS FOR LEVEL ICGL OF
.THIS STATE.

CIE}\R C

READ (ICR,12) ICCL

ATRITE (LP,13) ICCL

DC 11 1=1,NDET

DO 1 J=1,NCGNF

DI3PL/IY(LP,10) /I,J,T(I,J) ,ICCL,EV(J,ICOL)
C(I)=C(I)+T(I,J)*EV(J ~ICCL)

CONTINUE

DISPLAY (LP,10) /I,C(I)

CGNTIINUE

CO.IPUTE FIRST ORDER DENSITY MATRIX - GAIFIA-Tvi/iTRIX .
WRITE (LP,14)

WRITE (LP,15) (I,C(I),1=1,NDET)

CLE/iR G.ULUi

CALL FGDMA4

.WRITE FIRST ORDER DENSITY MATRIX ONTO MTDOl.

CALL TDFILE

..BEGIN /EUiLYSIS. SINCE TEE BASIS ORBI'TALS AREGRTHONGiULVL THE
..SOLUTION TO THE NSO EQUATIONS IS THE UNITARY MATRIX WHICH
. DIAGGILALIEES G/E.LIA.

C/ill, EAO 3A (G.AICIA,M1 ,NBASIS,GO,GF)

. THE OCCUPATION NUMBERS ARE THE DIAGONAL EIEI.IEICrS OF GM.1Ll, A IS

THE TILANSFCRIwW1ITICN MATRIX.
WRITE (LP, 2)

FCRIiTIAT ("G ", 40X, "RESU7.TS GF NATUR.AL SPIN CRBITEEL ANALYSIS")
CLEAR GF

DO 5 1=1,NBASIS,5

J=I;-4

IF (J-NBASIS) 4,4,3

J=NBASIS

WRITE (LP,6) I,J

WRITE (LP,7) (G;miA(K,K),K=I,J)
WRITE (LP, 3) I,J

DO 5 K=1,NBASIS

WRITE (LP,7) (Al(K,L),L=I,J)
CONTINUE
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6 FORMAT( 0”,40X, “OCCUPATION NUMBEIRS OF CRBITALS®,13,” To 7,12/7 %)
7 PORMAT(’ :,1psnz4.10) . i i ..
& FORMAT( 07,41X, “TRANSFORMATICN MATRIX corumws”,13,” to “,12/° %)
DO 9 I=1,NBASIS
GIF=GF+GAMMA(I,I)
9 CONTINUZ
WRITZ(LP,10) GF,NELEC .. i
10 FGRMAT( B, 33X, “SUM OF OCCUPATION NUMBZRS =",1P:17.10/° 7,44x, “Num
1BER OF ELLCTRONS =7,13)
12 FORMAT(I5) i
13 FORMAT( 1°/°07,39%, “NATURAL SPIN CRBITAL ANALYSIS CF LEviL®,13)
14 FORMAT(” “,40X, “COEFFICIENTS CF INDIVIDUAL DITIRMINANTS /% )

15

rorMAT((” “,4¢6x,7¢(”,13,7)=",1PE17.10)))
CALL QUIT( NATORB”,NC)

RETURN

END

*FORTRAN LIB

SUBRCUTINE PASCNE

Ceooo ,COMPUTES ELUCTRON-ELECTRCN INTERACTION BETWIEN FROZEN CORGS
CoooeLLECTRONS, THIS IS ZERQ IF NFULL IS Z:ERQ,

[\

COMMCN /SLCEQN/ G(7260),.2RI(S00),IDET(12C,32),IDIFF(3073,7),
11CUM(261),ANY1, ANY2, ANY3, ANY4,GFF, 1COL, IDISC, IFIL:3,JFIL:, LINK, MTDOL
2,MTCO2, NBASIS, NCONF, NDET , NELEC, NI, NFULL, NSQRD, NXBLOC

CIMUNSICN KiZP(42,3)

EQUIVALENCE (IDUM,KZEP), (IDUM(121),IC),(IDUN(122),L), (IDUM(123),K)
1, (Ipur(124) ,12M) , (ITULI(125) ,L2) , (CIDUR(12G6) ,X1), (IDUM(127),K2),
2(1DpUM(128) ,IREC), (IDUM(129),J), (IDUL(130) ,ICCUNT), (ICUR(131),11),
3(IDUM(132),1CC), (IDUM(25D) ,MTD)

CALL ENTR( PASCONI’, IDUM(ZGO))

CLZAR GF

IF(NFULL) 11,11,1

NSOQRD=NBASIS*NBASIS

CLEAR IC

DO 2 L=2,NFULL

IM1=L~-1

11=(L+1)/2

L2=(L1~-1)*NBASIS

I1C=IC+1

K2EP(IC,1)=L

KEZP(IC,2)=L

KiEP(IC, 3)=L1+L2

DO 2 K=1,1M1

K1=(X+1)/2

I1C=IC+1

£25r(IC,1)=L

X3:p(IC,2)=K

KBiP(IC,3)=L2+K1

WRITS(INUN(258),12) L,K

WVRITE(IDUM(258),13) ((x2EP(IR3C,J),J=1,3),IRIC=1,IC)

CONTINUL

K2=K:ZP(1,3)

rg 3 IRuc=2,IC

K2=MAXO0 (X2, KEEP(IREC, 3) )

3 CONTINUS

DISPLAY /K2
L0 10 IRiC=1,K2

RIADQITROL) (ERI(JT) ,T=1,NSQRD)
WRIT:(IDUM(258),14) IRZ
WRITE(IDUI(253),15) (IRI(JI),T=1,N3QRN)
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DO 0 ICC=1,IC

IF (IREC-K3EP(ICC,3)) 9,4,3

IF (I:EEP(ICC,1)-ICEEP(ICC,2)) 7,5,7
IM1=IISEP (ICC,1)-1

XWRITE (irUM(253) ,1G)

X
6
7
G
X
X
9
10
11
X 12
X 13
X 14
X 15
X 1IG
X 17
¢FORT
cC....
c....
X
X
X
c....
c.
1
C....

DC C I:=1,U.H

K1= (IChl)/2

GF=GF+ERI (ITBASI3* (la-1)-+IGL)

WRITE (irUI.I(253) ,17) NBASIS* (ICL-1) +K1,ERI (NBASIS* (K1-1)+X1)
COIETINUE

GO TO 9

IF (IPAR (KEEP (ICC,1))-IPAR(K33P(ICC,2))) 9,8,9

L1= (KEEP (ICC,1)-hl) /2

\'m TE (I0i.I(250) , IG)

Kl=(KEEP (ICC,2)+1)/2

GF=GF-ERI (NBASIS* (K1-1)+L1)

V/RITE (IDUI.I(25G) ,17) NBAS13* (K1-1)+L1,ERI (NBASI S* (IL-1) fL1)
CONTINUE

CCNTIINJE

REY/IND MTDO1

CALL QUIT ("PASONE ", IIUNI (2G0) )

FORMAT ("0",44X,"CONTENTS OF KEEP FOR L =",I2,",K =",I2/)
FO?J.I\T((" ",45X,3I10))

FCRI.IAT("O",40X,"CONTENTS OF RECORD",b14/)

FCPMAT ( (" ",1P5E24.10))

FCRMAT ("o" ,5LX, "CONTRIBUTIONS TO GF"/)

FORMAT (" ",47X,"ERI (",13,")=",1PE17.10)

RETURN

END

RAN LIB

SUBROUTINE PAST,70
CCMPUTES (IRL'l-VAIENC]'!': ATD VALENCE-VALENCE ELECTRON INTERDICTION
CONTRIBUTIONS TO MATRIX ELENEINTS .

COIMCN /SECEQN/ G(7260) ,ERI (900),IDET(120,32),IDIFF(3073,7),
11DUN (2G1) ,ilNY1,/0TY2,;\NY3,AT/4 ,GF,ICOL,IDISC ,IFILE ,JFILE,LINX MTDO1l
2,MTDO2, NBASIS NCGNF NDET NELEC NF NFULL,NSQRD NLOBLOC

EQUIVIILENCE (IDUI,1(1),I) , (IDmi(2) ,J) , (IDUI/(3) ,L) , (IDUM(4) ,XL) ,

1 (IDUM(5) ,L1) , (IDUI.IC5) ,L1M1) , (IDUI/ (V) ,L2) , (IDUM(0) ,LL2) ,
2(IDUI,: (9) ,LVAL) , (IDUI,1(10) ,UI) , (IDUL,1(11),KP) , (LEUM(1E) ,L1O,
3(IDUM(13) ,KQ) , (II;UM(179),LI) , (ANY3,LNO) ,(/im,LU) , (IDUI.I(259) ,I.TID)

EQUIV/ILDNCE (IDUL,I (250) ,LP)

CALL ENTR ("PASTWO", IDUM (2G0) )

IF (NELEC.EQ.NFULL) GO TO 331

CIE/IR G

NXBLCC=NF

IF(NF.EQ.1l) ILC3LGC=2

DG 37 1=1,NBASIG

DO 37 J=1,NBASIS
Y7RITE (LP,39) I,J

R1AO (MTDul) (ERI (L) ,L=1,NSQRD)

VIRITE (LP,40) (ERI (L) ,L=1,NS(:RD)
DIAGON/vL ELJMENTS .
IF(I-J) G,1,G

. (I1/ ) TATE INTEGILUvVS .

DO 5 L=1,NDET
KL= (L* (L:-1)) /2

SUM OVER V/iLENCE ELECTRONS.
I'G 4 LI=NXBLCC,NELEC

IF (I- (1DET(L,L1)+1)/2) 4,2,4
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2 LiMi=Ii-1
CeeeeoSUK CVER CORE AND VALENCEZ ELZCTRONS.,
DO 3 L2=1,1iNM1
LL2=(IPZT(L,L2) +1)/2
G(KL)=G(KL) +3RI (NBASIS*(LL2-1) +LL2)
X WRITE(LD,42) NBASIS*(LL2-1)+LL2,<RI(NBASIS*(LL2~1)+LL2)
3 CONTINUS
X WRITE(LP,43) KL,G(KL)
4 CONTINUE
5 CONTINUZ
GO TO 13
Ceeses{I / I) TYPE INTEGRALS,
6 IO 12 L=1,NDET
KL=(L*(L+1))/2
CesesoSUM CVER VALENCE ELECTRONS,
DO 11 L1=NXBLOC,NELEC
IF(I-C(InaT(L,11)+1)/2) 11,7,11
7 LiMi=L1-1
CeseooSUM CVIR CORE AND VALENC:Z ELECTRONS,
TQ 10 L2=1,LiMt
15,2=(IDZT(L,L2)+1)/2
IF(J-LL2) 10,38,10 _
8 IF(IPAR(IDET(L,L1))-IPAR(IDZT(L,L2))) 10,9,10
Ceee..SPINS ARE THE SAME FOR CORBITALS IDET(L,L1) AND ID3T(L,L2).
9 G(KL)=G(KXL)=-ERI (NBASIS*(1LL2-1) +I)

X WRITA(LP,42) NBASI3*(LL2~1)+I ,=iRI(NBASIS*(LL2-1)+I )
10 CCHTIKNUE
X WRIT3(1>,43) KL,C(KL)

11 CONTINUS
12 CONTINUZ
Cu e oo OFF=-DIAGONAL DLEMENTS®
13 17 QM¥HET.I0,1) GO TO 351
LVAL=1
INO=3073
DG 361 LU=1,ICCL
IF(ICOL-1) 131,133,131
131 RiAD(MTD) IDIFF
IF(LU-1CoL) 134,132,134
132 1r(LINK) 133,361,133
133 LNG=LINK
134 ©C 36 L=1,LNO
CeeseoPICK UP INDIX OF NEXT PAIR OF DETORS THAT DIFFSR BY NO HMOR:
CueveoTHAN TV SPIN ORBITALS, '
KL=IDIFF(L,7)
I#(2-IDIFF(L,1)) 27,27,14
Covees DiTORS I, AVD X DIFFER BY ONE SPIN-ORBITAL - I IN L AND KP
CeveeoIN K, XI=(L*(1-1))/2+K - TIZ VALUZ CF L IS REJUIRED,
14 11=(LVAL*(LVAL+1))/2
IF(L1-XL) 15,15,16
15 LVAL=LVAL+1l
GO T2 14
16 IF(I-J) 21,17,21
Cuveoo(II/NP?) TYPZ INTUGRALS,
17 IM=IDIFF(L, 3)
KP=IDIFr(L,4)
ChueeooCHECK THAT SPINS IO NIT CAUS
IF(IPAR(III) -IPAR(KD)) 35,13
1§ DO 20 1i=1,iisn3C
IF(I-(IDET(VAL,L1)+1)/2) 20,19,2C
12 G(RL)=G(XL) +LRI(NBASIS*((T&+1)/2-1) +(IIP+1)/2)

3 THES INTSGRAL TG BI Z.30.
, 35
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X WSP=NBASIS*( (LM+1)/2-1) +(XP+1)/2
X VRITE(LP,42) IWSP,ZRI(IWSP)
20 CONTINUZ
£ WRITI(LP,43) KL,G(XL)
GO TO 36

Ceoeees{(IP/MI) TYPE INTLGRALS,
21 KP=IDIFF(L,4)
IF(JI-(IP+1)/2) 36,22,30
22 1O 25 L1=1,NJLEC
LI=IDET(LVAL,L1)
IF(I-(LI+1)/2) 26,23,26
23 IF(IPAR(KP)-IPAR(LI)) 26,24,26
CevesoBPINS OF SPIN ORBITALS LI AND KP ARS THE SAMS=,
24 1M=IDIFF(L,3)
IFCIPAR(CIZ) ~IPAR(LI)) 253,25,26
CevesoSPINS CF SPIN CRBITALS LI AND IM ARS THE SAME,
25 G{XL)=G(K%)-LERI(NBASIS* ((IM+1)/2-1)+(LI+1)/2)

X IVSP=NBASI S*((Id+1)/2-1) +(LI+1)/2
X VIRITZ(LP,42) IWSP,-8RI(IVSP)

26 CONTINUZ
X WRITZ(LDP,43) KL,G(KL)

G2 TO 36
Ceees DETORS L AND K DIFFER BY TW0D SPIN-CRBITALS - LI, LN IN L AND
CeeeeoP,K2 IN K.
27 L=IDIFr(L,3)
IF(I-(u1+1)/2) 35,23,36
28 KP=IDIFF(L,4)
IF(J-(EP+1)/2) 32,2¢,32
Ceveeo(FP/NQ) TYPE INTEGRALS.
2% IF(IPAR(LM)~IPAR(KP)) 3G,30,30
CeeesSPINS OF SPIN CRBITARS INM AND KP ARE THSI SAME.
30 IN=IDITFF(L,5)
KQ=IDIFF(L,C)
IF(IPAR(IN)-IPAR(KD)) 3G,31,36
C.veeo.SPINS GF SPIN GRBITALS LI AND KQ ARE THE SAME,
31 G(KL)=G(KL) +ERI (NBASIS*((LN+1)/2-1)+(KQ+1)/2)

X IsP=NBASIS* ((IN+1)/2-1) - (KQ+1)/2
X WRITI(LP,42) IWSDP,ZRI(IVSE)
X WRITE(LP,43) KL,G(XL)

GG TS 36

Ceoeso (MYNP) TYPZ INTIGRALS.
32 KQ=IDIFF(L,3)
IF(J-(KQ+1)/2) 33,33,35
33 IF(IPAR(IID) -IPAR(KS)) 33,34,35
CevesoSPINS CF SPIN CRBITALS IM AND KQ ARZ THI SAMI.
34 LN=IDIFTF(L,5)
KP=IDIFF(L,4)
IFCIrar(L) -IPAR(KP) ) 33,335,306
CeeesoSPINS OF SPIN CRBITALS IN AND KP ARE THI SANMS.
35 G(KL)=G(KL)=-:IRI(NBASIS*((LN+1)/2-1) +(K>+1)/2)

X IW3P=N3BASIS*((Li+1)/2-1) - (IP+1)/2
X VRITE(LY,42) ISP, -ERICIVSE)
X WRITZ(LP,45) KL,G{XL)

36 COUIINUA
361 CONTINU:Z
REVIND MTD
37 CONTIIUZS
e WRITE(IDUKCL53),35) (KL, G(KL) ,KL=1, (IMoT* (NDAT+1) )/2)
X 38 romnr((” 6(”,14,7)=",1r217,1C))
331 ZALL QUITC PASTWG , IDUM(LGD))
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X 39 FOM&AT('E}'zllOK,'CGNTENTS CF IRI RIZCORD FOR I =7,13,%,7 =7,13)
X 40 FORMAT((® *,1P5324,10)) :
X 42 “cmm'(‘ ©,47%, ’Em(',zg,’)=',11>s:17.10)
X 43 rouar(” 7,433, °6(%,14,7)=",1p:17.10)
RETURN
END
*FORTRAN LIB
SUBROUTINZE SECDAT{(JULP)
CesoeoREADS AND CHECKS5 DATA, .

COMUON /SECLG/ T7(73,120),1(120,120),7(120,73) , IDUII(C52) , ANYL,
1ANY2,ANY3, ANY4,GF, 1CJL, IDISC, IFILE,JFILE, LINK, MTDO1 ,MTDO2, NBASIS,
ZNCONTF, NDST, NELUC, NI, NFULL, NSQRD, NIBLCC

TEZD TITLE

EXT LIN:(Q 5)/ aerkk k7 Twx * 200 w0 mmkx 7T kkiok
L4 LA d L d L4 L e
17, Tk L T L ,0x o x k27 %
e LA I N , oo w7 %% RS T I A

3% ',' * R T e e I T e ik
R LI LI Mg T A A 0k x w77
LR T A IO T e R T MR
G :,:** :,:**** *',’** % :,: * ***:,' x 7,7 x
7% ol sk , Ok a7 Twae ok 77 % /

DINMGNGICH G(7260) ,3RI(CC), IDIT(120,32) , IDIFF(2000,7), TITLE(LS),
1r(9)

EGUIVALINCE (TT,G,TITLI),(TT(G,S4),2RI,F), (TT(49,105),IDuT),
1(H(1,23) ,I7IFF)

DQUIVALENCE (IDUM(520),1), (IDUR(521),J), (IDUL(522) ,NaI0),
1(ISU(523) ,K), (IDWN(524) ,1.) , (IDUL(G43) , ICR) , (ILULI(G49) ,LP),

1 (ITUM{G50) ,1TD)
CALL ENTR(SiCDAT , IDUN{G51))
GZ T (1,12),JUI.3T .
c...

G

7

7

.« READ TATA FCR MATRIX ZILIRISNTS BRTVSSN DETORS.
1 RCAR(ICR,Z) TIT L?,:\iTl‘Ol 11705 2, WBASI 8, 03T, NOLEC, HFULL
ISORC=NBASIS*NBASIS
NF=NFULL+1
el \;A.T( AJ/G XJ/OI:)
CALL CUTBRX(LP)
WRITECLF, GG)
VRITE(LR,77) LINZ
6 FORHAT( 1| )
7 I’O"{Iun(( ,.‘71{ 3A3,213))

\mx':.x »3) TITL:,NDET,NELEC,NBASIS,NFULL, MTDO1, T2
3 o e 1 ‘/°07,36%,” GINSRAL CCNFIGURATICN INTIRACTICN PROGRANM/
107 M., “cas PUCTIGN AND SCLUTICH OF THE GHCULAR aovaTicn’ /e
256X, “h W PALT / o I, (‘UA}'TUIu MZLICULAR Prmx R""P,’/’u',zio::,
onmmi“rr SICU,'/ c”,43%, UhIV“ 2GITY OF ﬁumwun, WAl
4433, Lxczs'r:n, gmm.z-m. Lzl TRH. /7707 ,15, -f:’,sec, AT TUNCIO
BN CCNSTRUCTED FROM 7,2I3,  =-ILICTRo reTons’/ 707,204, “oams CousTR
GUCT:D TFuTll ',13,' SPATIAL CRBITALS VITH TFIxsT 7,12,° SPIN-CRBITALS
7 FROZEN /707,401, TPRIVAT.S WORKFILED IS LiVICE mulm.nr”,17/707, <0k, 71t
SASTSR RISULTS FIL: I5 FavIcs wun.n’,I14)

IT(NBASIS=30) 4,4,21

I NILEC-32) 5,5,22

IF( NDIT-120) 6,6,23

IT( NFULL-3) 7,7,24

IO 71 I=1,NWD&iT

C 71 J=1,NELIC

CLLATR IDLT(I,J)
1 CONTINUZ

RSAG(ICR,13) IICHO

2]

L B & I &1
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IF(NONO) 72,74,72
72 REWIND MTD
RADQETD) ((ILET(I,J),J=1,NELEC),I=1,NDET)

mxm(m,7°)
73 TFORMAT("0%, 30X, “**%* DITCR3 SPLCII‘I ID IN A PRIVIOUS RUN **%x”/°07)
GO TO 201

74 WRIT:(LD,S)
RZAD(ICR,11) T
8 FORMAT( 1°/°0”,48%, “SPECIFICATICN OF DETORS®/ 0 NUM3iR”,55%, “DT
1TORY)
DO 10 I=1,NDET
READ(ICR,9)  (IDIT(I,J),J=1,NSL1C)
‘RI’I‘L(LP F) I,(InsT{I,J),J=1,NoL:C)
9 F ,ﬁfr(lﬂ,S?‘Iz)
10 cm\rrmuh
11 TORMAT(OA3)
WRITEQITD) ((IDEC(I,J),I=1,N:SLEC) ,I=1,NDaT)
GC TS 201
Cuoes READ PROJECTION MATRIX FCR WAVZ FUNCTICHN.
12 READ(ICR,13) NCONF,NONO
READ(ICR,13) IFILS
IF(IFILE) 121,130,121
121 RSADQUTD) ((7(I,J),J=1,NCCNF),I=1,NDLT)
VRITE(LP,122)
122 rmnm( 0”, 33X, “**** PROJECTICN MATRIX DEFINZD IN A PREVICUS RUN *
1axx’/%07%)
REVIND MTD
GO TC -0l
13 TFORMAT(2I5)
130 CLEAR T »
IF(NCONF-73) 131,131,25
131 RsAD(ICR,14) (I,J,T(I,J),K=1,NONC)
14 FORMAT(2I5,F10,2)
DO 143 J=1,NCONT
CLEAR ANY2
Do 11'1 I=1,NDaT
ANYZ NY2+TCI,J ) *T(I,T)
141 CONTINUZ
AN'f,,_l .0/ 3QRT(ANY2) .
IO 142 I=1,NDET
7(1,J3)=T(I1, J)*mwz
142 CONTINUS
143 CONTINUZ
Cu el CHLCK ORTIIONORMALITY OF CO-DETORS,
CLIAR IFILE
NCNO=NCONF-1
T} 143 I=1,NCKNC
J=I+1
DC 147 K=J,NCONF
CLEAR ANYZ
L 144 I=1,NDaT
ANY?‘=.sI"1: +T(TL, I)*T (L, K)
144 CCHTINUL
IT‘(ABQ(’L“’") -1,0:2-10) 147,147,145
145 YRITS(IE,140) I,K
146 FoRLTC” 2,408, "co-varons®, 14, AaNDT, 14,7 At NOT oRmcaoman’)
IFILS=1
147 CONTINU. .
143 CONTINUS
IF(IFILS,2),0) G3 TO 143
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CALL EEXIT
149 WRITE(MTD) ((T(I,J),J=1 NCONF) ,I=1,NDET)
ENDFILE MTD -
REWIND MTD
WRITE(LP,15) NCONF
15 FORMAT( 1°/°0%,34x,12,° CO-DETORS OF CORRECT SYMMETRY AND SPIN ARE
1 FORMZD”)
DO 20 K=1,NCONF
WRITE(LP,IG) K
16 FORMAT(’0%,45X,”CO~-DETOR(?,14,°) =)
DO 19 1=1,NDET .
IF(T(L,K)) 17,19,17
17 WRITZ(LP, 18) T(L,K),L
18 FoRMAT(® “,45X,S+-,1PE17,.10, “*DETOR(” ,s -,14,)%)
19 CONTINUE R M _
20 CONTINUL
201 CALL QUIT(’SECDAT”,IDUM(651))
RETURN
21 CALL ERROR(’ERROR 1
22 CALL ERROR(’ERROR 2
23 CALL ERROR(ERROR 3
24 CALL ERROR(’ERROR 4
25 CALL ERROR(”ERROR 5
STOP
END

*FORTRAN LIB
SUBROUTINE SECSOL
CussoFORMS H-MATRIX AND SOLVES SECULAR EQUATION FOR THIS CASE,
 CCMMON /SECEQN/ TT(73,120),H(120,120),T(120,73),1DUM(G52),ANY1,
1ANY2, ANY3,ANY4,GF,1COL,IDISC, IFILE,JFILE, LINK,MTDO1 ,MITDO2,NBASIS,
2NCONF, NDET, NELEC, NF , NPULL,, NSQRD, NXBLOC
DIMZNSION G(7260),W(120,78),HM(78,78),EV(78,78)
EQUIVALENCZ (TT,V,G), (H,HM),(T,LV)
EQUIVALENCZ (IDUM(525),L), (IDUNM(526),LK),(IDUM(527),K), (IDUM(528),
1KL) , (IDULI(529) ,NM1) , (IDUM(530) , AMIN) , (IDUM(531) ,MIN)
X 2, (1DUM(649) ,LP)
CALL ENTR(’SECSOL’, IDUM(851))
CeveesSET UP H-MATRIX.
DO 1 L=1,NDET
LK=(L*(L-1))/2
DO 1 K=1,L
KL=LK+K
H(L,K) ,H(K,L)=G(KL)
1 CONTINUE
WRITZ(LP,11)
CALL WRITMX(H,120,120,NDET, NDET LP)
CALL SECDAT(2)
WRITE(LP,12)
CALL WRITMX(T,120,78,NDET,NCONF,LP)
CALL MXMULT(H,T,V,NDET,NDET,NCONTF,120,120,120)
DO 2 L=1,NDiT .
D3 2 K=1,NCONF
H(L,K)=(L,K)
2 CONTINUE
WRITE(LP,13)
CALL WRITMX(H,120,120,NDET,NCONF,LP)
CALL TRANS(T,TT,NDET,NCONF,120,73)
WRITE(LP,14)
CALL WRITMX(TT,73,120,NCONF,NDLT,LP)

K M

M MR
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PO 3 L-<1,NDET

DO 3 R=1,NCONF

T(L,K)=H(L,K)

CONTINUE

CALL MIXMULT(TT,T,HM,NCONF ,NDET NCONF,78 120,78)
WRITE(LP,10)

CALL WRITMX(IM,78,78,NCONF,NCONF,LP)

.ENERGIES ARE THE EIGEN'VALULS OF I,

_CALI, EAO3A(HM,LV,NCONF,78,ANIN)

«.ADD NUCLEAR REPULSION ENERGY TO EIGENVALUES IF SYSTEM IS NOT

,SINGLE CENTRZ,

CALL ADDNRZ(HM,73,NCONF, IDUM(648) ,LP)

.CUTPUT SOLUTION OF SECULAR EQUATICN,

WRITZ(LP,4)

FORMAT( 1°/°07, 46X, “SOLUTION OF SECULAR EQUATION®/” *)
DO 9 I=1,NCONF,5

J=1+4

IF (J-NCONF) 6,6,5

J=NCONF

VRITE(LP,7) I,J,(HM(K,K),K=I,J) |
FORMAT(’0”,46X, “ENERGIES OF STATES”,I3,” ’,13/°0°,1P5E24,10)
VRITE(LP, 8) 1,7,

FORMAT(“0%,43%, “EIGENVECTORS FOR STATES®,I3,” 177 %)

DO 9 K=1,NCCNF

WRITE(LP,QI) (=v(K,L),L=I,J)

CONTINUE ,

romm( ,195 24,10)

FORMAT(® ‘0”,38%, MATRIX ELEMENTS OF SECULAR EQUATION H-MATRIX ‘N
rmm*r( o 142X, MATRIX ELIMENTS BETWEEN DETERMINANTS ‘N

FORMAT( o 44x, *SPACE~-SPIN TRANSFORMATICON MATRIX 2

FORMAT( o ,45%, PARTZ(ALLY TRANSFORMED H-MATRIX®/)

FORMAT(® ‘0%, 31%, 'm‘waposn CF SPACE-SPIN TRANSFORMATION MATRIX ‘N
FORMAT( 0° 51&, ZIGENVALUES OF I ‘N

CALL QUIT( SECSOL”,IDUM(G51))

RETURN

END

*FORTRAN LIB

c'...

c.l..

1

2

COC.’

SUBRCUTINE TDFILE
.CONTROLS ALL TRANSFERS FROM CORE TO PERIPHERALS AND VICEZ VERSA.
COTON /SECEQN/ AA(33767),ICR,LP,MTD,NO,ANYO,ANY1,ANY2,ANY3,ANY4,
lGF,ICOL,IDISC,IFILE,JFILE,LINK,MTDOI,MTDOZ,NBASIS,NCONF,NDET,NELGC
2, NF, NFULL, HSQRD, NXBLOC
DIM:NSION HM(73,73),EV(73,78),GA(60,60),A(G0,60),ERI (000)
1x7(153,4),LT(153),KD(10,4) ,LD(10)
EQUIVALENCE (A.\(7aGl),a..RI) (AA(93G61) ,HM, A), (AA(15443) ,GA), (AA(2376
11),LV)
TIXT TN(153,4),DN(10,4)
TELT W(4)/°  dexkxk ‘, NE2XT NEW’,” RECORD *, “#kkx ‘y
CALL ENTR(’TDFILZ®,N0)
READ(ICR,2) IFILI,JFILE
VRITZ(LP,44) IFILL,JFILE
Go T (1,13,25,32),IFILE
+A DISC FILZ I3 TO BZ CREATED,
RSADCICR,2) IENTRY,NXBLOC
FORMAT(1GI5)
REWIND MTDO1
REWIND MTDO2
IF(NXBL3C) 2001,204,2001
.COPY TRANSFORMZD INTSGRALS INTO DISC AND MASTCR RESULTS FILSS,



Q
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2001 READ(ICR 2) INTRA,I1GO,NBLOC

CALL SEARCH(INTRA,NBLOC,O)
p(1),rT(1),1 ,MENTRY=1
LD(Z),L'I‘(Z),J,NENTR =2
IF(IGO) 2002,2004,2002

e e0eoMASTER RESULTS FILE TABLE CONTAINS ENTRIES,
2002 READ(IDISC) MENTRY,IZNTRY, ((TN(K,L),l=1,4),(KT(K,L),L=1,4),LT(K),

1K=1 ,MiNTRY)

RENIND IDISC

I=MENTRY

J=I+1

LD()=LT(I)

LB(2),LT(J)=LT(I)+1

IF (NXBLOC-KT(I,1)) 2003,2003,2004

2003 NXBLOC=KT(I, 1)+1 .
2004 CALL SEARCH(MTDO2,NXBLOC, 0)

KT(I,1)=NXBLOC

KD(1,1) ,KT(I,4) ,KD(1,4)=1
KT(I,3),KD(1,3)=NSQRD

KT(J,4) ,XD(2,4)=5

CLEAR I»(1,2),KT(I,2),KD(2,3),KT(J, 3)
READ(ICR,2G) (DN(1, K),K—l 4)

LO 2005 K=1,4

TH(I,K)=LN (1 ,K)

TN(J,K) ,LN(2,K)=%(K)

2005 CCNTINUE

I=N5QRD+1
DG 2006 J=1,I

READ(INTRA) (ERI(K),K=1,NSQRD)
WRITZ(MTDO1) (ERI(K),K=1l,NSQRD)
WRITZ(MTDO2) (ERI(K),X=1,NSQRD)

2006 CONTINUZE

MENTRY=MENTRY-+1 ' ~
' CALL TPPOSN(MTDO1,KD(2,1),KD(2, z),mnoz,x'rcmmv,l) KT (MENTRY, 2) )
GO TO 17

Ceoee JIASTER CONTENTS TABLE PRESENT,

204 READ (IDISC) M:INTRY,NENTRY,((TN(I,J),J=1,4),(KT(1,J),J=1,4),LT(I),

11=1,1L3NTRY)
REWIND IDISC
IF(MENTRY~IENTRY) 3,5,5

3 \IRITU(LP 4) ILNTRY I[uNTRY .
4 FORMAT( 0’ » 38X, “WHY ASK FOR® »I4, ‘ ENTRIES WHEN YOU ONLY GOT’,13)

WRITZ(LP, 47) ((TN(I,J),J=1,4),(kT(1,J),J=1,4),LT(I),I=1,MENTRY)
CALYL, EZXIT

5 RZAD(ICR,2) (LD(I),I=1,IENTRY)

CeeeeoCHICK ENTRIES IN- ASCENDING ORDELR,

Lo 8 I=2,I:NTRY
IF(LD(I)-LD(I~-1)) 6,6,3

6 WRITE(LP,7) . ,
7 FCRMAT( 0%, 37X, DISC TABLZ ENTRIES MUST BE IN ASCENDING CRDER”)

CALL EEZXIT

8 CONTINUEZ

DO 16 I=1,I:NTRY
o 9 J=1,4
DN(I,J)=TN(LD(I),J)

9 CONTINUL

KD(I, 3)=KT(LD(I),3)
KD(I,4)=KT(LD(I),4)

CALL SZARCH(MTDO2,KT(LD(I),1),KT(LD(I),2))
GG T0 (10,12,13,14,15),KD(I,4)
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CeoaeINTEGRALS,
10 I=kD(I,3)+1
DO 11 K=1,L
READ (MTDO2) (ERI(M),M=1,KD(I,3))
WRITE(MTDO1) (ERI(M),M=1,KD(I,3))
11 CONTINUEZ
GJ TO 15
CeooeoG-VICTOR (MATRIX ELEMENTS BETWEEN DDTERMINANTS).
12 RIAD (MTDO2) (AA(K),K=1,KD(I,3))
WRITE(MTDO1) (AA(K),K=1 ,KD(I »3))
GO TO 15
Ceseos o ENERGIES AND EIGENVECTORS,
13 READ (MTDO2) (MM(K,K), (EV(L,K),L=1,KD(I,3)),K=1,KD(I,3))
WRITE(MTDOL) (HM(K,K), (EV(L,K),L=1,KD(I,3)),K=L,KD(I,3))
GO TO 15
CesesFIRST ORDER DENSITY MATRIX,
14 READ (MTDO2) ((GA(K,L),L=1,KD(I,3)),K=1,KD(I,3))
WRITE(MTDOL) ((GA(K,L),L=1l,kD(I,3)),Kk=1,KD(I,3))
15 CALL TPPOSN(MTDO1,KD(I+1,1),KD(I+1,2))
16 CONTINUZ
KD(1,1)=1
CLEZAR KD(1,2)
NENTRY=IEZNTRY
17 WRITE(IDISC) MENTRY,NENTRY, ((TN(I,J),J=1,4),(KT(1,7),J=1,4),LT(I),
1I=1,MENTRY), ((DN(1,J),J=1l,4),(KD(I J),J—l 4),LD(I) I—l,NENTRY)
REWIND IDISC
RTWIND MTDO1
REWIND MTDO2
CLZAR JUMP
GO TO 45
CeeeesDATA TO BE READ INTO'CORE FROM DISC,
18 READ (IDISC) MENTRY,NENTRY, ( (TN(I,J),J=1,4),(KT(1,J),J=1,4),LT(I),
11=1 ,MINTRY), ((DN(I,J),J=1,4), (kD(I,J),J=1,4),LD(I),I=1,NENTRY)
REVIND IDISC \
JUMP=1
GO TO 45 '
Ce oo REZAD SUBSCRIPT VALUE FOR ENTRY TO DISC CONTENTS TABLZ,
19 READ(ICR,2) IGNTRY
WRITH(IP 20)
20 FORMAT("07,43X, “THE FOLLOWING IS RuOUIRbD IN CORE’/)
WRITZ(LP,47) (DN(IENTRY,J),J=1,4),(KD(ICNTRY,J),J=1,4),LD(IENTRY)
CALL SHARCH(MTDOI,KD(IENTRY,I),KD(IENTRY,Z))
Go TO (21,23,24,21,21),KD(IENTRY,4)
Ce e o o IMPRCPIR REQULST,
21 WRITE(LP,22)
22 FORMAT( 07, 33X, IMPRCPER REQUIST - CONTINUATION NOT POS3IBLZ”)
CALL SIXIT
CheeosG=VICTCR,
23 READ(MTDO1) (AA(I),I=1,KD(IENTRY,3))
GG TO 49
Cueeo ENERGIES AND EIGZENVECTORS,
24 READ(MTDO1l) (II(K,K),(EV(L,K),L=1,KD(IENTRY,3)),K=l,K" (I:NTRY,3))
GO TO 49
Cueeos RESULTS TG BE ADDED TO DISC AND DISC CONTENTS TABLE UPDATAED,
25 READ (IDISC) MiNTRY,NENTRY,((TN(I,J),J=1,4),(xT(1,3),J=1,4),L1(I),
11=1,MiNTRY), ((DN(I,J),J=1,4), (KD(I J),J—l 4),LD(I) I=1,NENTRY)
REVIND IDISC
READ(ICR,26) (DN(NZNTRY,J),J=1,4)
26 FORMAT(4AZ)
IENTRY=NENTRY~1
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CALYL, SEARCH(MTDO1,KD(IENTRY,1),KD(IENTRY,2))
IF(KD(IENTRY,4)-1) 263,261,263

DO 262 I=1,KD(IENTRY,3)

READ(MTDO1) ANY3

CONTINUE

263 READ(MTDO1) ANY3

C....
27

c....
28

C.O..

CALL TPPOSN(MTNO1,KD(NENTRY,1),KD(NENTRY,2))
LD (NEZNTRY) =MAXO (LD (NENTRY) , LT (MENTRY) )
IF(JFILE-3) 27,28,29

«G=VECTOR

KD(NENTRY, 3)=(NDET*(NDET+1) )/ 2

KD(NENTRY, 4)=2

WRITE(MIDO1) (AA(I),I=1,KD(NENTRY,3))

GO TO 30

LENZRGIES AND ZIGENVECTCRS.,

KD (NZNTRY, 3)=NCONF

KD{NENTRY,4)=3

WRITL(MTDO1) (IM(K,K), (EV(L,K),L=1, NCUNF),K—I,NCONF)
GO TO 30

LJFIRST ORDER DENSITY MATRIX,

29 KD(NZNTRY, 3)=NBASIS

30

31

C....

KD(NENTRY, 4)=4

WRITEC(MTDOL) ((GA(K,L),L=1,NBASIS),K=L,NBASIS)

NENTRY=NENTRY+1 , _

CALL TPPOSN(MTDO1,KD(NENTRY,1),KD(NENTRY,2))

CLEAR KD(N:NTRY, 3)

KD(NZNTRY,4)=5

LD(NENTRY)=LD{NENTRY~1) +1

DO 31 I=1,4

DN(NENTRY, I)=W(I)

CONTINUZ .

WRITZ(IDISC) MENTRY,NINTRY, ((TN(I,J),J=1,4),(XT(1,J),J=1,4),L1(I),
11=1,MENTRY), ((DN(I,J),J=1,4), (KD(I,J),J=1,4),LD(I),1=1,NINTRY)
REWIND IDISC

CLIAR JUMP

GO TO 451

JUPDATE HASTER FILE AND CONTENTS TABLZ,

32 RZAD (IDISC) MENTRY,NENTRY, ((TN(I,J),J=1,4),(KT(I,J),J=1,4),LT(I),

322

1I=1,MENTRY), ((DN(I,J),J-I 4),(KD(I,J),J=1,4),LD(I),I=1,N:HTRY)
RIWIND IDISC
IENTRY=MiNTRY
M=MIlTRY~1
CALL SEARCH(MTDO2,KT(M,1),K1'(M,2))
IF (XT(M,4)-1) 323,321,323
DO 322 I=1,KT(l,3)
READ(MTIOZ2) ANYS3
CONTINUE

323 RSAD(MTTO2) ANY3

33

34

CALL TPPO3N(MTDO2,KT(IENTRY,1),KT(IENTRY,2))
DG 42 I=1,NGNTRY

DISPLAY(LP,5)/1/

DO 33 J=1,H
IF(LD(I)-LT(J)) 33,42,33
CCNTINUZ

DISPLAY(LP,5) I

IC 34 K=1,4

TN(IENTRY, K)=DN(I,K)
CON'PINUD

LT(IENTRY)=1LD(I)
KT(IENTRY, 3)=KD(I,3)
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KT(IENTRY,4)=KD(I,4)
CALL SZEARCH(MTDO1,KD(I,1),ED(I,2))
Go To (35,37,33,39,43),KD(I,4)
Ce oo+ «TRANSFORMED INTEGRALS,
35 IGO=NSQRD+1
DO 356 K=1,1GO0
READ (MTDOl) (ERI(L), L—l , NSQRD)
WRITE(MTDO2) (ERI(L),L=l,NSQRD)
36 CONTINUZ
G3 TC 40
CuseosG=VICTOR,
37 RIAD (MTDO1) (AA(K),K=1,KD(I,3))
WRITE(MTDO2) (AA(K),K=1,KD(I,3))
GO TO 40 _
C.eeoENERGIES AND EIGENVECTORS.,
38 READ (MIDCL) (EM(K,K),(EV(L,K),l=1,KD(I,3)),K=1,KD(I,3))
VRITE(MTDO2) (HM(X,K), (EV(L,K),L=1,KD(Y,3)),K=1,KD(I,3))
GO TC 40 _
Cveeos ,FIRST CRDER DEZNSITY MATRIX.
39 READ (MTDO1) ((GA(K,L),L=1,KD(I,3)),K=1,KD(I,3))
WRITEQMTNO2) ((CA(K,L),I=1,KD(I,3)),K=1,KD(I,23))
40 IENTRY=IENTRY+1 _
CALL TPPCSN{MTDO2,KT(IENTRY,1),KT(IENTRY,2))
42 CONTINUE
43 MENTRY=IENTRY
WRITE(IDISC) MINTRY,NENTRY, ((TH(I,J),J=1,4),(KT(I1,J),J=1,4),LT(I),
11=1,MENTRY), ((DN(I,J),J—I 4),(xkp(I J),J-l 4),LD(I), =1, N“NT’!Y)
REVIND IDISC
CLZAR JUMP -
Ceeeo PRINT CONTENTS TABLES,
44 FoRIAT( D, 33X, “TDFILE PARAMETER VALUES,IFILE =°,12,° JFILE =",12)
45 WRITE(LP,4G) KT(1,1) ’
WRITS(LP,47) ((TN(I,J),J=1,4),(XP(1,J),J=1,4),LT(I),I=1,LLENTRY)
451 VRITE(LP,43) KD(1,1)
WRITZ (LP, 47) ((Dxf(I ,3),J3=1,4),(kD(1,J),J=1, 4) ,LD(I), I=1,NENTRY)
46 FORMAT(’ B ,40X, “COITLNTS OF VASTIR FILL FROM BLOCK”,15//)
47 FomaT(® 7,4aA3,° FRCM BLOCK”,15,° WORD® »14,”. LOCP PARAILITMR =7,15
1,°. RECORD TYPE = ‘,12,°, S3QUINC: NUMBER =°,13)
438 FCRMAT( B, 40X, *CONTENTS OF PRIVATI FILE FRCM BLOCK® y15/7)
IF(JUMP) 50,49,19
49 CALL quiT(’ TDFILE ‘,N0)
ROTURN
30 STGP
END

*FORTRAN LIB
SUBROUTINE TRANS(A,AT,N1,N2,M1,M2)
C.e.o TRANSPOSE OF MATRIX A STORED IN MATRIX AT,
DIMENSICN A(M1,M3),AT(M2,ML)
ro 1 I=1,N1
DG 1 J=1,N2
AT(J,1)=A(1,3)
1 CONTINUZ
RETURN
END
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SPECIFICATIO

NUMBER
1 1 2
) : 1 2

NUMBER OF (NSTRUCTIONS USED ON EXI!T FrROM SUBPROGRAM SECDAT
NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUBPROGRAM TDTILE

TDFILE PARAMETEZR VALUE

CONTENTS OF MASTER
OXYGEN ATOM INTEGRALS. FROM RLOCK 10C WORD C.
wane NEXT NEW RZICQRD wsus FROM BLOCK 101 WORD 164,

CONTENTS GF PRIVATE

OXYGEN ATOM INTEGRALS. FROM BLOCK 1 WORD 0
##se NEXT NEW R=CORD #wux FROM BLOMCK 2 WORD 164,

NUMBER OF INSTRUCTIONS USED ON EXIT Frot SUBPROGRAM TD7ILE.
NUMBER OF INSTRUCTIONS USED OM ENTRY TO SUBPROGRAM PASOVE

NUMBER OF INSTRUCTIONS USED OM EXIT FROM SURPROGIAM PASONE
NUMBER OF INSTRUCTIONS USED ON ENTRY TO SURPROGIAM MAXCON

NUMRER OF NCN=ZEROQ QFF-DIAGONAL M

NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM MAXCON
NUMBER OF INSTRUCTIONS USED OM ENTRY To SURPROGIAM PASTAO
NUMBLER COF INSTRUCTIONS USED OM EXIT FROM SUBPROGRIAM PA3STAO
NUMBER OF INSTRUCTIONE USED ON ENTRY To -SUBPROGRAM H2ASS
NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM H2ASS
NUMBER OF INSTRUCTIONS USED ON ENTRY To SUBPROGIAM TD-ILE

F

L
L

Hu ' X2 annt

TDFILE PARAMETER VALUE

CONTENTS OF PRIVATE

OXYGEN ATOM INTEGRALS, FROM RLOCK 1 WORD 0.
OXYGEN ATOM cl P DZTOR MATRIX, FROM BLOCK 2 WORD 154,
sxun NEXT NEW RZCORD #wu# FROM RL.OCK 2 WORD 168.

NUMBER OF INSTRUCTIONS USED ON EXIT FRoM SUBPROGRAM TDTI_E
NUMBER OF INSTRUCTIONS USED ON ENTRY To SUBPROGRAM SEZSOL
NUMBER OF INSTRUCTIONS USED ON ENTRY TO SUHPROGIAM SRIDAT

" ounnrrr



nr:T3.4
J ° (/10
3 4 6 6 10
42(1/
4209
5,IFILH = 1 JFILE
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=1

ILE FRjM BLOCK 100

OOP PAPAMSTER
OOP PARAMETER

FILE FROM BLOCK

JJ= PAPAMETER
00F PARAMETER
4335

:1340

4342

4343

o

(6}

RECORD TYPE
0. RECORD TYPE

25. RECORD TYPE
0. RECORD TYPE

TRix Elements between detors=

4367
4363
4400
4401
44 04
440 6

Si IFILE = 3 JFILE

FILE FROM BLOCK

00P PARAMETER

OOP PARAMETER

OOP PARAMETER
4425

4425
4429

n
N

25. RECORD TYPE
3, RECORD TYPE
0. RECORD TYPE

1.

SEQUENCE
SEQUENCE

SEQUENCE

5. SEQUENCE

1,

5,

N

SEQUENCE NUMBER a

NUMBER
NUMBER

NUMBER
NUMBER

SEQUENCE NUMBER
SEQUENCE NUMBER

’

’

1
2
3
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-7.454(0361952E+01

1.0000000000E+00

NUMBER OF INSTRUCTIONS USED OM EXIT FROM
NUMBCR NF INSTRUCTIONS USED OM ENTRY TO

OXYGEN ATUM INTEGRALS, FROM
OXYGEN ATOM CI P DZTQR MATRIX. FROM
OXYGCGN ATOM C! 3 P SOLUTIOW. FROM

#ues NEXT NEW RZCORD w##se FROM

SO_LUTION OF. §

ENZRGIES OF S

EIGENVECTORS FOR

SUBPROGRAM SEISOL
SUBPROGRAM TDTILE

TDFILE PARAMETER VALY

CONTENTS
RLCCK 1
BLOCK a
BLOCK 2
RLOCK 2

OF PRIVATE

WORD Y
WORD Lé64,
NOPD 163,

NUMBER OF INSTRUCTIONS USED ON EXIT FroM SURPROGRAM TD ILE.

NUMBER 0OF INSTRUCTIONS USED ON ENTRY To

SUBPROGRIAM VATOR3



ECJLAR EOJATION

TATES

1 TO

STATES 1 TO

4455
4457

ESiIF

FILE

LOOP
LOOP
LOOP
LOOP

ILE = 3 JFILE

FROM BLOCK

PARAMETER
PARAMETER
PARAMETER
PARAMETER

= 4473
= 4475

U o

RECORD
RECORD
RECORD
RECORD

270 -

TYPE
TYPE
type
TYpE

(S N N

SEQUENCE NUMBER

SEQUENCE NUMBER a

SEQUENCE NUMBER=
Sequence nUmber

a

a

'3

1
2

A



- 271 -



NUrlG*R

MUhBLR
MUMBuR

OXYGEN
OXYGurj
OXYGEN
OXYGEN

* g
number

NUMBER OF

c( 1)=

OF INSTRUCTIONS

ATOM INTEGRALS.

ATUM Cl P DETQR MATRIX.

ATUM Cl1 3 P Sul.UTION.
Cl 3P DENSITY MATRIX

ATOM
uEXT NtW RrCORD
of instructions

1,0000uonoco00E+o00

1,0000 000000E+00
.000nu00000b*00
.0000 000000E+00
.0000000000E+00
.0000000000E+00
.000000 0000E+00
.000n00UO0O00E+00
0000000000E+00
.000000 0000E+00
.000000U000E+00

-

cooocoooo 0O

5.0000000000E-01

0000QUOOOOE+00
000000 0000E+UO
0000E+0G
0000E+00
onookE +oci
G000E+00

0000 (IE+00
0000OUOOOOOE+00

0000Q00000E+00
0000000000E+UO

Uuo
00
00
0
0

0000
0000
0000
0000
0000

7.n/1067ail9C-01
I"FINSTicUC TI OMS USFD OMENTRY TO
'IF IMS'~rUJCT 10MS USED OM EXIT FROM
USED ON ENTRY TO

r-AlURAL S3IN ORS5I
CUEiriCIENTS G’

C( 2)=

TDFILE

CONTENTS

FROM BLOCK

1
FRUM BLOCK 2
FROM BLOCK 2
FROM BLOCK 2
FROM BL OCK 2

RESULTS

7.0710678119

SUBPROGRAM FO],M
SUBPROGRAM ROOM

SUBPROGRAM TD'I

PARAMETER V

OF PRIV

WORD
WORD
WORD
WORD
WORD

16
16
17
27

used ON EXIT FrOM SUHPROGRAM TD-'I

of NaTJR

OCCUPATI3N NUMSE

1,00000 00ITOF +00

TRANSFORMATIOW

0,U0ao0CGOOOOF+00
1,U000C000U0E+00
0,000000U0000F+00
0,0000000UDOP+00
0,0000000000p+00
0,0000000000E+GO
0,0000 ODOOOOE +00
0 ,0000000000p1i +00
0 ,00000COO0OO0OE + 00
0,0000000000E +00

OCCUPATION NUM3E

5,0000000 000~-01

TRANSFORMATIOVJ

0,00000000007+00
0 ,00000GOOOOE +QO

0,000000000CF+00
0,0000000000F+00

0,0000000000%4,00
0,00000000002+00

1,0000000000E+1u0
0,0000000000E+00

0,0000000UOOE +00
0.0000000NnOOE 00

SUM OP OCCUPATinvj
NUMBER OF , EL

INSTRUCTIONS USED ON EXIT FrROM SUBPROGRAM NATQ
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Ji* LEVEL 1

IN')iVIDUAL JJzTERM INANTS

- c (
A4 = 44G6
A4 44091
4492

ALU12S, IFILE =

ATE *1UE
C, LOOP
4, LOOP
5, LOOP
1. LOOP
3, L0o"
£ = 4511

AL s=1i'j ORBITAL

RS 0= OR3ITA,S

1.000000000nE +0i

NATRIX COLUMNS
C.5000000C00E+CO
0.0000000H00E+0T
1.0000000000E+00
D,n000000000E+00
0,0000000@00E+00
0,0000000000E+00
5,0000000000E+00
D,0004000000E+00
0,00000000002+00
0,00000000002+00

RS OF ORBITALS

5.0000000000E=01

NATRIX columns

0,00000000005+00
3.00000000002+00
0,0

3.0
0,0
3,0
3,0
1,0
3.0
J,0

NUMBERS
ECTRONS
RB = 4552

:)ARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

3 JFILE =

BLOCK

ANALYSIS

1

1

TO 5

TO 5

6 TQ 10

6

TQ 10

?5
3.
1.

10
0

4

RECORD
RECORD
RECORD
RECORD
RECORD

!

TYPE
TYPE
TYPE
TYPE
TYPE

1. SEQUENCE NUMBER = 1
.. SEQUENCE NUMBER = 2
3, SEQUENCE NUMBER a 3
4. SEQUENCE NUMBER = 4
5, SEQUENCE NUMBER a 5

I1t00C0000C'O0E +00

0,00000000002+00
0.0000000GO0E+00
G.COGOO0O00O00E+00
1,0000000C00E+00
0,00000000 002+00
G.00000000002+00
0.CO0CO000G0E+00
0.0003000000E+00
G.00000000002+00
0.0000000000E+00

1.00C0000000E+00

0,0000000000E+00
0,00000000002+00
C.00000000002+00
0,0000000 000E+00

0.00000000002+0Q0
G .UOOUOOUOOOE+UO

C.00GO0O0O0O0O0O0OE+0Q0O
0,00000000002+00

1,00000000002+00
U.000000U0d0E+00

=0,00000000012+00
= 6

5,'0004000000E"T1

0.'000~000000 2+00
0, dno '00040 02+0 O
0 co0'00000GE+00
0,000''0000002+00
1,008 -000 0002+00
0 000 '0000002 +00
0.'000A0Q0000E +00
0 000 '0000002+00
0 00040000002+00
0,'000n000000E*00

1 d00AGO00Ode 00

%,d0040000002+00
0.0000000"'1002*00

oJooolooldiid2+o00
0,0002~000"')00£+00

0 000'00in0dpt00
0,000"0000GGE +00

0,7000' 0001002 400
0, 000-"000050E +00

0,'000100000 02 +00
1.000i0000Gd'F +GO
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NUrltU.K’ OF INST.MJCIIUNS USED ON ENTRY To SUBPROGRAM TD'I

TDFILE PARAMETER V

CnMTENTS OF MAST

OXYGuN ATOM 1IN 'EGR'iLsS. FROM FLOCK ion WORD
OXYGEN ATOM CI P DETOR MATRIX. FROM BLOCK lui WORD 16
OXYGEN ATOM CI 3 P SOLUTION. FROM RIL.OCK 101 WORo 16
UXYGLU ATOM CI 3p DENSITY MATRIX FROM BLOCK 101 worD 17
[ NEXT »LW R=CORU *u** FROM BLOCK 101 WORD 27

CONTENTS OF PRiV

OXYGEN ATOM INTEGRALS. FROM BLOCK 1 WORD
OXYGEN ATOM CI F DETOR MATRIX. FROM BLOCK 2 WORD 16
OXYGEN ATOM CI 3 p SOLUTION. FROM BLOCK 2 W'ORo 16
OXYGEN ATOM CI 3p DENSITY MATRIX FROM BLOCK 2 WORD 17
if* * NEXT NEW RECORD «**%* FROM BLOCK 2 WORD 27

NUMBER OF INSTRUCTIONS USED ON EXIT FROM SUBPROGRAM TOFl

JOB COMPLETE - TIM



ALUES,

LOOP
LDDP
LDD~
, LOOP
LOOP

~

~

U= Ul O

~

5

IFI*E =

6

FROM 3L0OC:<

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

4 JFILE

AT5 FIILiE FROM BLOCX

LOOP
LOOP
, LOOP
LOOP
LOOP

w Rk Wwd

H~

E USED

PARAMETER
PARAMETER
PAPAME“EP
PARAMETER
PARAMETER

= 4592

28,71875 SECONDS

N

- 274 -

= 0

100

25.
3<
1.

10 .
0.

25 .
3

iQ .

RECORD
RECORD
RECORD
RECORD
RECORD

RECORD
RECORD
RECORD
RECORD
RECORD

TYPE
TYPE
TYPE

TYPE
TYPE

TYPE
TYPE
TYPE
TYPE
TYPE

N Il NN
o oBRWNR

Nl
O s~ R

SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE

SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE
SEQUENCE

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

N N

w w |l

V]

o bW NDR

U b WN R
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APPENDIX VIII

SPECTRZ. A PROGRAM FOR COMPUTING THE

SPECTROSCOPIC CONSTANTS OF DIATOMIC MOLECULES

SPECTRZ is described in chapter 9 and requires only a card reader

(stream 0) for input of data and a lineprinter (also stream 0) for

outpute.

are standard.

Data specification for SPECTRZ

Card 1

Card 2

Card 3

NC@NF, NDEG, NR,
FERMAT (415)
NCENF =
NDEG -
NR =
ng /
TITLE

FERMAT (9A8/6A8)

TITLE

RMASS

The program is completely self contained. The storage requirements

4

number of energy levels of the molecule to
be investigated for the symmetry and spin
deFined by Card 4. If NCENF = O execution
ceases.

degree of fitted polynomial

number of values of the bond length to which
polynomial is to be fitted.

0 to suppress diagnostic output.

0 to obtain diagnostic output, including

residuals

is an array of 15 elements (120 characters)

used to identify the run.

FZRMAT (1PE20.10)



Card 4

Card 6

Card 7
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RMASS = reduced mass of the molecule on the unified
mass scale (see Appendix I and reference(s'?))

ISPIN, LAMBDA, INVERS, REFLEC

FERMAT (2I5, 2a4)

ISPIN = value of total spin eigenvalue for this state

LAMBDA = value of axial angular momentum for this state

Gbbb for gerade states

INVERS ¢ Ubbb for ungerade states

bbbb for heteronuclear diat;.omic molecules

+bbb for LT states

REFLEC -bbb for L~ states
| 1 bﬁbb for all other states
(Note : b = blank)
(R(T)y T = 1, NR)
FZRMAT (1PE20.10) .
R(1) is the value of the I-th bond length in
bohrs.
(1 € I <€ NR) Repeat,as required.
((E(1,5), T = 1, NR), I = 1, NCENF)
FZRMAT (1PE20.10)
E(1,J39) is the energy at R(I) of the J-th energy

level. Repeat as required.

As the program is re-entered at Card 1 after each run, it is necessary to

terminate execution by setting NCENF = O.

Restrictions

NR < 20

-
/A

1 £ NDEG « NR

1 < N <5

o
/N

LAMBDA < 4
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*FORTRAN
CueeeAIN ROUTINGE FOR SPACTROSCOPIC CONSTANTS PROGRAM.
CesesREADS ALL DATA FCR ZACIH RUN.
ICGICAL TLGIC
COMNON /3PiuC/ ICR,INVZIRS,ISPIN,LAMBDA,LOGIC,LP,NCONF,NDEG,NR,NO,
1RSFLIC, RMASS "‘ILLu(lS) F(20),pP(20), R(ZO),BE(.)) DE(5) D0(5),Fc(5),
2MINR (a), JIIN(o),n’..(S), 2(20), xx(zo zo),A(s 10),Y1J(5,15),8(5,20)
DIMENSION ANGMOM(S)
DATA ANGHOCM/ 311 SIGMA ,3H PI ,8H DE IPA ,8H PHI »3H GAMMA
1/
CLsAR ICR,LP
12 RIARD(ICR,3) NCONF,NDEG,NR,NG
IF(HCONTLED,0) STOP
READ(ICR,1) TITL:
READ(ICR,2) RMASS
RIAD(ICR,4) ISPIN,LAMBDA,INVERS,REFLEC
M‘\F(ICR z2) (R(D),1=1 NR)
READ(ICR, 2) ((E(I,J) ,J=1,NR) »I=1,NCONF)
FORMAT (9A3/GA3)
FORLAT(13E20,10)
FCRMAT(LGIS)
FCRIAT(215,2A4)
CeeeeoPRINT DATA
I=2%ISPIN+1
LANBDA=LANMBDA+1
WRITE(LP,5) TITLE
WRITE(LP,6) RMASS
WRITZ(LP,7) NCONF,NR
WVRITE(LP,13) NDiG
WRITEZ(LP,3) I,ANGLGI(LAMBDA),INVIRS,REFLEC,(I,I=1,5)

5 FORMAT (1H1/110,44X, 31HSPECTROSCOPIC CONSTANTS PROGRALY/1HO,15A8)

6 FORMAT(1:H0,35:,14IRCDUCED MASS =,1PZ17,10,19HANMU (UNIFIZD SCALE))

7 2iAT(LI0, 32X, 25HNUMBER CF ENERGY LEVELS =,I12,26H, NUMBER OF BOND

1 LENGTHS =,13)
8 FORMAT(1HO,41X,26HTHZ SPECTROSCOPIC STATE IS,I12,A6,1X,2A1/1HO,47X,
125HENZRGIES AND BOND LENGTHS/1HO,5X, 9HR (BOHRS) 6X,5(9X,1HE,I1, 9x)
2) '
Do 10 I=1,NR
WRITE(LP,9) R(1),(E(J,I),J=1,NCONF)

9 FORMAT(1HO,F11.1,9X,1P5E20,10)

10 CONTINUE

13 FORMAT(1HO, 44X, 29HDEGREE OF FITTED POLXNGMIAL =,13)
CALL FINDRE
CALL DUNHAM
CALL RFILE
GO TO 12
END

» W

*FORTRAN
SUBRCUTINE CUNHAM .
C.eso COMPUTES DIATCMIC SPECTROSCOPIC CONSTANTS USING DUNHAM S ANALYSIS,
Ce.es VERSION 5.,
LOGICAL LOGIC
CaMON /SPEC/ ICR,INVERS,ISPIN,LAMBDA,LOGIC,LP,NCONF,NDEG,NR NO,
1REFLEC,RIMASS TITLE(IS),F(ZO),P(ZO) R(ZO),Bu(s),DE(S),DO(o),FC(S),
2MINR(5),RMIN(0),WL(5) X(20) ,xx(20, 20),A(5 10),YLJ(5,15) ,5(5,20)
DIMENSICON FL(20),FD(20)
EQUIVALENCE (P(3),40), (P(4),A1),(P(5),A2),(P(6),A3), (P(7),A4),
1(pr(3),A5),(P(9),A6), (P(IO),A7)
. DATA EPS/1 ,0E-10/
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NTERM=NDEG+1
NM1=NDEG-1 .
NM2=NDEG-2
BPA=R(NR) +R(1)
BMA=1,0/ (R(NR) -R(1))
CeveoCOMPUTE VALUES OF. NORMALIZED INDEPENDENT VARIABLE X AND SET UP XX.
ro1 I=1,NR
X(1)=(2, O*R(I)-BPA)*BMA
xx(1,1)=1.0
DO 1 J=2,NTERM
XX(I,JT)=XX(1,T-1)*X(I)
1 CONTINUE
CO 13 ICONF=1,NCONF
Cuvo. COMPUTE MEAN EN“RGY TFOR THIS LEVEL,
SUM=E(ICONF,1)
DO 2 I=2,NR
SUM=SUM+E (ICONF, I)
2 CONTINUE ,
SUM=SUN/ FLOAT (NR)
IF(NO.NE.O0) WRITE(LP,3) ICONF,SUM
3 FORMAT(1HO,41X,5HLEVEL,12,14H MEAN ENERGY =,1PE17,10)
C.eoeSUBTRACT MIAN FROM EACH ENERGY AND CONVERT TO CM**(-1),
DO 4 I=1,NR
F(1)=(E(ICONF,1)~SUM)*2,1947462E+05
4 CONTINUZ ) .
Cesee FIT PCLYNCMIAL TO F(X).
CALL CRLIN2(XX,F,P,NR,NTERM,20,20,EPS,LOGIC)
IF(10GIC) HRITu(LP 5)
5 FORMAT(1HO,40X,40HITERATIVE 'IMPROVEMENT OF SOLUTION FAILED)
C.....CGMPUTD L2 NORM OF SOLUTION,
'B=0,0
DO 6 I=1,NR
=POLYVA(X(I),P,NDEG)
W=F(I)-D
B=B.il*W
IF(NO.NI:.0) WRITZ(LP,7) X(I),F(I),D,V
6 CONTINUE
7 FORMAT(1H ,13X,2HX=,1PE17.10,6H F(X)= ,19?17 10,6H D(X)—,1P~l7 10,
111H F(X)=-D(X)= 1PE17.10)
WRITE(LP,3) B :
8 FORMAT(1HO,45%,21HL2 NORM OF SOLUTION =,1PE9.2) _
C.o.o FIND MINIMUM OF F(X).
DQ 9 I=3,NTERM
IMm=1-1
IM2=1-2
FL(IM1)=IM1*P(I)
FD(IN2)=IM2*FL(IML)
9 CAQNTINUZ
TL(1)=P(2)
I=MINR (ICCNF)
Ru=X(I)
ITER=
10 ITER=ITER+1
D=POLYVA(RE, FL,Ni1)/POLYVA(RE, FD, N}M2)
IF(NC.NZ.0) WRITZ(LP,19) ITER,RE,D
IF(ABS(D)-LPS) 15,11,11
11 I1F(ITER-100) 12,13,13
12 RE=RE-D
GC TO 10
13 WRITE(LP,14) ICONF,D
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14 FORMAT(1HO,39X,5HLEVEL,I2,26H NEWTCN-RAPHSON FAILED, D=,1PE9,2)
15 D=POLYVA(RE P,NDZG)
IF(NO,NE,0) WRITE(LP,16) D
16 FORMAT(1HO,25X, 34HMINIMUM or NORMALIZED POLYNCMIAL =,1PE17.,10,7H A
1T X =,0PF13.10)
CeeesTRANSFORM POLYNOMIAL TO DUNHAM I'ORM,
- D=RE+BPA*BMA
CALL POLYX(D,RE,P,FL,NDEG)
B=1,0/FL(3)
DQ 161 I=4,NTEZRM
TFL(I)=FL(I)*B
161 CONTINUZ
C.4e0oFL CONTAINS DUNHAM EXPANSION COEFFICIENTS.
FL(1)=FL(1)--SUM*2,19474G2E+05
IM1=MINO (10,NTERM)
DO 17 1=1,IM1
A(ICONF,I)=FL(I)
P(I)=FL(X)
17 CONTINUE
. RE=0,5* (RE/BMA+BPA)
RMIN(ICONF)=RE
Ce oo CCUMPUTE SPECTROSCOPIC CONSTANTS AND YLJ,
BE(ICONF)=60,2014/ (RMASS*RE*RE)
1r(Bz (ICeNrF) .LE.0,0,0R,A0,LE,0,0) GO TO 18
WE(ICONF)=2,0*SQRT(A0*BE (ICONF) )
DE (ICCNF)=4 ,0*(BE (ICONF)/WE(ICONF) ) **2%BE (1CONF)
FC(ICONF)=5,8914615=-02*RMASS*WE (ICONF) **2
CesesDEFINE B,W AND BW FOR EASZ OF WRITING FORMULAE,
B=BE(ICCNF)
W=WE(ICONF)
Bu=(B/W)**2 .
A15Q=A1*A1
A25Q=A2%A2
A35Q=A3*A3 -
YLJ (ICONF, 1)=0,125*%B*(3*A2-1,75*%A15Q)
YLI(ICONF, 2)=W*x(14+0,25%BW*(25%A4-16,75%A25Q-0,5*A1*(95%A3-0,25%A1
1 . *(459%A2-144,375*%A15Q))))
YLJ (ICONF, 3)=0,5%B*(3*(A2-1,25%A15Q) +0,5*BWk(0,5%A1*(~1365%A5+
1 3667 .5%A2*A3+0 ,25%A1*(8535*%A4-15503,25% A25(Q+0 5S¢ AL*
2 (-23865*%A3+0,125*%A1*(239935%A2-52263,75*%A15Q) ))) +
3 245%A6-0 ,5%A2* (885*%A4-426,75%A25Q) =271 ,25%A35Q) )
YLJ (ICONF, 4)=0,5%/*Bi/*(10*%44-8,5%A25Q~A1*(35%A3-0,25%A1% (225%A2~

1 33 ,125*%A15Q)))

YLI (ICCNF, 5)=0%Bir*B*(0,25%A1*(-63*%A5+241 ,5%A2*A3+0 ,25%A1* (543%Ad~
1 1247,25%A25QH) ,5*A1*(=1953*A3+0 ,125*A1* (23265%A2=

2 5737 ,75*%A15Q))))=0,25*%A2* (33*%A4-18 ,75%A23Q) =3.,5%*(

3 2,25%A35Q-A8))

YLJ (ICONF, 6)=B*(1+0,5*B\*(15%(1+A3)=9*kA2+A1* (14-23%A2+10 ,5*%AL* (1 +
1 A1))))

YLY (ICONF, 7)=V*BvW*(6%(1+A1)+BW*(AL*(235-459%A2+-356 ,25%A3-3937.5*%A4
1 ' +534,625*%A25Q-+0 ,25%A1* (1147 ,5-2409,75* 422572 , 5% A3+
2 A1*(1155-3564,75%A2-+974 531L25*%A1* (1 +A1)) ) ) =0, D+ A2*
3 (335+715*A3=-251 ,25%A2) +1 O0*A3-112,5%A4+175% (1 +A5)))
YLI (ICONF, 8)=G*B*Bi/*(5%(1+A3)~3*A2+AL*(L0-13*A2+7 ,5* /1% (1+AL)))
YLY (ICONF, 9)=20*Bi*Bir*ij* (A1* (Z1-45%A2+26,25%A3-25 ,5%A4+-51,375%
ADSQH0,25%A1%(112,5~236G,25%A2 1217 ,5%A3+AL* (141~
377 .25%A2+41135,96375%A1  *(1+A1))))-0,5%A2* (L7 +45%A3~
12,75%A2) +14%A3-4 5% 4+ T+ (L +A5))

YLJ(ICONT 10)==4*Bx B (14C S5*Bik (AL # (LO0-20T* A2 1102 SXAD ALK (=A2%

1 166.5+173.25+126%A1% (1 +0 ,5*A1) ) ) -A2*(119-4G*A2) +-90*

(ST I o
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2 A3-45%A4+163))
YLJ (ICONF, 11 )=-12%Bi*BW* 1Pk (O ,5-4%A2+9% A1* (140 ,5%A1))
YLJ (ICONF,12) =-24*Bi*BW*B* (A1 * (125-117*A2+47 ,5*A3+A1*(123,75-103.5
1 *A24+90%A1* (140 ,5%A1)) ) ~A2%(61-26*A2) +30*A3-15%A4+65)
. YLY (ICONF,13)=16*BW*Bi*B* (3+A1)
YL (ICONF,14)=12%Bi** 3x\k (233 +A1 % (279-83*A2+A1 % (139+63*A1) ) -1 20%A2
1 ‘ +30%A3/3)
_ YLJ (ICONF, 15) ==64%Bl*% 3%B* (13+9%A1* (1+0 ,25%A1) =A2)
DO (ICONF)=YLJ (ICCNF,1) -0 ,5* (YLI (ICONF, 2) +0 , 5% (YLJ (ICONF, 3) +0 , 5%
1(YLJ (ICONF,4)+0 ,5*YLJ (ICONF,5))))
13 CONTINUE '
19 FORMAT(1H ,21X,9HITERATION,I4,19H CURRENT ESTIMATE =,1PE17,10,11HI
1NCREMENT =,1PE17,10)
RETURN
END

*FORTRAN

SUBROUTINE FINDRE

Cooo-uD‘TERLIINES ‘II'I‘IICH ILEVELS ARE BOUND.

COMMON /SPEC/ ICR,INVERS,ISPIN,LAMBDA,LOGIC,LP,NCONI,NDEG,NR,NO,
1REFLEC, RMASS, TITLE(15) ,F(20),P(20),R(20) ,BE(5) ,DZ(5) ,D0(5) ,FC(5),
2MINR(5),RMIN(5) ,Wz(5),X(20),%XX(20,20),A(5,10),YLI(5,15),E(5,20)

NRM1=NR-1

LO 4 I=1,NCONF

MINR(I)=NR

1 EMIN=E(I,NR) .
DO 3 J=1,NRML
IF(EMIN-ECI,JT)) 3,3,2

2 EMIN=E(I,J)
MINR(I)=J
RE=R(J) .

3 CONTINUZ
RMIN(I)=RE

4 CONTINUZ

Ceeeso3ET RIESULTS VECTORS TO ZERO,

Do 6 I=1,5

BE(I)=0.,0

DE(I)=0,0

WE(I)=0,0"

FC(1)=0.0

£0(1)=0,0

Lo 5 J=1,10

A(1,J)=0.0

5 CONTINUEL
Do 6 J=1,15
Y1.J(1,J)=0,0
6 CONTINUTL
BTURN
END

* FORTRAN
SUBROUTINE CRLIN2(A,B,X,N,M,NRCVY,NCOL,EPS,ITFAIL)
Cuves ORLIN2 GIVES THE LEAST SQUARES SOLUTION FOR A SY3TiM OF N LINEAR
Cevee OQUATICNS IN M UNKNCWNS, A IS TIS IXM-MATRIX CF THS SYSTEM, B THS
Ceveo CONSTANT VLCTCOR CN THZ RIGHT SIDE, LPS TH:E MAXIMAL RULATIVI
Ceseos ROUNDING ERRIR AND X THEZ SOLUTION VECTOR. ITFAIL IS5 SuT EQUAL TO
Cevewes ~TRUE, IF THE ITURATIVE IMPRGVIMINT I3 INUFFICTIVAI,
Cevos THE MITHOD IS DIZSCRIBLD BY F,L,BAUSR IN NUMILATH.7,333-35
DIMENSION A(NRGHW,NCCL),B(NRCY),X(NRCW),U(20,20),0(20),3(21
1PpP(20)

2(19G5) .
6y,
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10GICAL ITFAIL
ITFAlL=,FALSE,
Do 1 I=1,N
DO 1 J=1,M
u(1,J)=A(1,J)
1 CONTINUZ
1=0
DO .51 I=1,M
5=0,0
DO 2 J=1,N
T=U(J,I)
P(J)=T
S=5+4T#T
2 CONTINUE
I=L+1
Q(L)=8
T=0,0
C. oo CLEMENT OF V STORED IN X,
Do 3 J=1,N
T=T+P(J)*B({J)
3 CONTINUZ
X(1)=T
IF(I-M) 31,51,51
31 IP=I+1 _
Lo 5 IB=IP,M
T=0.0
DO 4 J=1,N
T=T+P(J)*U(J,IH)
4 CONTINUZE ,
CeeesoSLEMENT OF THE I-TH, ROV OF R STORED IN Q.
I=L+1l oo
UL)=T
T=T/S :
Ceooe FCRMATION OF A COLUMN OF THE I-TH, REMAINING MATRIX,
- DO 5 J=1,N
U(J,IH)=U(J,IH)-P(J)*T
5 CONTINUEC
51 CONTINUE
Ceees.END OF FCRMATION OF THE MATRICES R AND U AND TH= ViCTOR V,
CeseesoBACK SUBSTITUTION,
LI=L
MM=M-+-2
MP=M+1
Lo 7 1s=1l,M
I=MP-IS
IH=L-I
T=Q(L)
5=X(1)
IF(I-M) 52,61,61
52 IP=I+1
10 6 J=IP,M
S=5-Q(J+IH) *X(J)
6 CCONTINUSZ
61 X(I)=S/T
I=1--I~I01
7 CONTINUE
C.eeeolHD CF BACK SUBSTITUTION,
Ceoes  INTERATIVE IMPROVEMENT OF THZ SOLUTICN,
EP32=3PS*EPS

50=0.,0
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8 1I=LL
$1=0,0
52=0,0
Ceees RESIDUAL VECTOR STCRED IN P
D0 9 J=1,N _
P(J)=-SCPROD(~B(J),A,J,X,M,NROW, NCOL)
9 CONTINUE o
C.ees.VECTOR ON THC RIGHT SIDE STORID IN PP,
o 11 J=1,M
§=0.,0
Lo 10 I=1,N
S=S+U(I,J)*P(I)
10 CONTINUE
PP(J)=S
11 CONTINUE
C...0+BACK SUBSTITUTION.
DO 13 IS =1,M
J=NP-IS
IH=L~J
5=PP(J)
IF(J-M) 111,121,121
111 IP=J+1
DO 12 I1=IP,M
S=S5-Q(I+IH)*PP(I)
12 CONTINUE
121 5=5/Q(L)
PP(J)=S
51=51+5*5
T=X(J)
52=52+T*T
X{J)=5+T *
L=L+J -}MM
13 CONTINUE -
C.ves END OF BACK SUBSTITUTICN,
IF(S1-0.25%S2) 14,16,16
14 IF{.NoT.(S1.GE,S2*EPS2,AND,(SO.EQ.0.0R.S1,LE,(S0*0,01))))C2 TO 15
50=51
GO TO 8
15 RiTURN
16 ITFAIlL=,TRUE,
GD TO 15
END

*FORTRAN
FUNCTICN POLYVA(X,P,K)
Ceeoe .COMPUTES THE VALUZ OF A POLYNCMIAL OF DEGRES K, THE COEFFICIENTS
CeeesoARE IN P WITH TH: CONSTANT TERM IN P(l). (K<20),
CIMENSION P(20)
DCUBLE PRECISICN FOFX
KP=K+1
FOFZ=LBLE (P(KP))
DO 1 I=1,!
FOFX=FOrX*DBLE (X) +DBLE(P(KP-I))
1 COHTINUZ
POLYVA=FOFX
RETURN
END

*FCRTRAN
SUBRGUTINC POLYX(A,B,C,D,N)
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CeeeeJFORTRAN V VERSION OF ACM ALGORITHM 29 ‘POLYNOMIAL TRANSFORM=R®,

~ DIMENSION €(20),D(20),2(20),%(20)
C.vve.POLYX COMPUTES THZ COEFFICIENTS.DO,D1,...,DN OF THE TRANSFORMED
C. v POLYNCMIAL P(T) GIVEN CO,Cl,...,CN CF P(X) WHERE X=A*T+3,

w(1)=1.,0

Z(1)=W ()

D(1)=C(1)

NP1=N-+1

DO 1 I=2,NP1
w(r)=1,0
Z(1)=B*Z(1-1)
D(1)=D(1)+C(I)*Z(I)
CONTINUZ

DO 2 J=2,NP1

W)= (1)*A
D(I)=C(I)*Ww(1)

IF(J .EQ,NP1) RETURN
K=2

JP1=J+1

DO 2 I=JP1,NP1
W(K)=A%W(K) +W(K=-1)
D(JI)=D(JT)+C(I)*W(K)*Z(K)
K=K+1

CONTINUE

RETURN

END

*FORTRAN

SUBROUTINE RFILE

C.+...0UTPUT CF RESULTS,

LCGICAL 1OGIC \

CCMMCN /SPEC/ 1CR,INVERS,ISPIN,LAMBDA,LOGIC,LP,NCONF,NDEG,NR,NO,
1REFLEC,RMASS, TITLE(15) ,F(20),P(20),R(20),B2(5),Di(5) ,00(5),rc(5),
2MINR(5),RMIN(5),WE(5),X(20),XX(20,20),A(5,10),YLI(5,15),i(5,20)

DIMINSION T(31,2)

CATA T /3H RE,8HEZ(RE) (H,8H Ww&(CM,3H K&(DY,8H B(CM
1,80 DE(CM,S8H Y00, 81 Y10,3H Y20, 84 Y30,8H Y40
2,8H Y01,3H Y11,3H Y21,8H Y31,84 Y02,3H Yi2
3,8H Y22,3H Y03,8H Y13,8H Y04,3H E(R,3H LIN
4,3H A0 231 Al ,3H A2 ,2H A3 ,3H A4 ,3H A5
5,8H A6 ,3H A7 ,8H (BOHRS),JHARTREES),8H-1) »SHNZ ,CM~1)
6,3H-1) ,SII-1) ,81 » SH=WE ,8U==WEX ,GH=WEY
7,3H=VEZ , SH=BE , 3H=-ALPHAT, SH=CGAMMAE ,3II=DELTAZ ,8lI=-DZ
3,3H=BLTAE ,38H ,SH=FE »8H , SH=HE »3HE) (CM~1)
9,3HEAR TERM,SH(CM-1) ,7*3H /

DATA T1,T2/8H  Z0(CM,3H-1) /

LO 1 I=1,NCCNF
X(1)=A(1,1)*4,5563354838E-06
CONTINUE

WRITE(LP,2) TITLE
WRITE(LP,3) (I,I=1,NCONF)

WRITE(LP,4) T(1,1),T(,2),(RMIN(I),I=1,NCONTF)
WRITZ(LP,4) T(2,1),T7(2,2),( X(I1),I=1,NCONF)

WRITE(LP,5)

WRITE(LP,4) T(3,1),T(3,2),( W=(I),I=1,NCCNF)
WRITE(LP,4) T(4,1),7(4,2),( Fc(I),I=1,NCCHT)
WRITE(LP,4) 7(5,1),7(5,2),( Bi(I),I=1,NCCNT)
WRITE(LP,4) T(G,1),7(G,2),( DE(I),I=1,NCONF)
WRITE(LP,4) T1,72,(S0(I),I=1,NCONF)

WRITZ(LP,6)
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FORMAT (1H1/1HO,15A8/1HO0, 43X, 23HSPECTROSCOPIC CONSTANTS)

FORMAT (LHO, 20X, 5 (6X, SHLEVEL, 13,6X))

FORMAT(LH  ,4X,2A8,1P5520,10)

FORMAT(1HO, 43X, 33HCLASSICAL SPECTROSCOPIC CONSTANTS/1H )
FORMAT (1HO, 40X, 40HCORRECTED SPICTROSCOPIC CONSTANTS (CM-1)/1H )
DO 7 11,15

- J=I+6

wrITE(L?,4) T(J,1),T(J,2),(YLI(K,I),K=1,NCONF)

CONTINUE

WRITE (LP, 8)

FORMAT(1HO, 41X, 33HDUNHAM ANALYSIS EXPANSION COEFFICIENTS/1H )
DO 9 I=1,10.

J=I+21 = .

WRITE(LP,4) T(J,1),T(J,2),(A(K,I),K=1,NCONF)

CONTINUE L o

RETURN

END

*FORTRAN

FUNCTION SCPROD(S,A,I,P,N,NROV,NCOL)
DIMENSICN A(NRCV,NCCL),PQIRCY) |
TCURLE PRECISICN T

T=S

o1l J=1,N
T=T+DBLE(A(I,J))*DBLE(P(J))
CONTINUE

SCPROD=T

RETURN

END
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APPENDIX IX

SPECIFICATION OF DETORS AND CODBETORS FOR

3¢=- 15+ 1
e 2L , 'ET A
& ot AND - STATES

The detors are specified by using the identifiers of the valence shell

molecular apin-orbitals according to the rules

ns 0o = 1, ns orgp =2,

nscrud~=3 ,nsa'uﬁ=4 ’

np, O o = 5, npoog B =:6 ,

-

npyoy* = 7 , npyo, B =8

np_ 7 s =9, np_ﬂgﬁ =10 ,

gG

np_7.o =11, np_ﬂuﬁ =12

np+ﬂgd~ =13 , np, 7, =14 ,

np 7, =15 , np+7fuB =16 .
In the oxygen molecule calculations n = 2, and for the sulphur molecule

n = 3. To obtain the data required for SECS@L the frozen inner shell spin
orbitals must be specified in addition to those given in this appendix. Each

codetor is written in the form

N I"'nIJJJI ’

where 1 JI 1s a non-zero element of the projection matrix T So (chapters
7 and 8), and nI is the normalization factor for ‘PI .. The value of

is calculated in the routine SECDAT (see Appendix Vi), and
s N : \

n1

np = (4§
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(In Tables IX.1 and IX.3, DI appears as D(I) because these tables are

computer output and subscripting variables is not possible.) Finally

the spatial orbital configurations are given in Table IX.5. A spatial
orbital configuration merely gives the total number of electrons

occupying each molecular orbital of a particular symmetry speciese.



D(
D(
D(
D(
D(
o(

- D(

D(
D(
r(
D(
D(
D(
(
(
D(
D(
(
D(
B(
D(
L(
D(
£(
D(
E(
D(
ol ¢
D(
D(
D(
D(
D(
D(
D(
o(
D(
D(
D(
(¢
D(
r(
D(
(

D( 4

(
D(
D(
D(

D( 3

D(
£(
D(
(
(
¢
D(
L(
¢

1)=(
2)=(
3)=(
4)=(
5)=(
6)=(
7)=(
3)=(
9)=(
10)=(
11)=(
12)=(
13)=(
14)=(
15)=(
16)=(
17)=(
18)=(
19)=( 1)(
20)=( 1)¢(
21)=( 1)(

1)¢(
1)¢(
1)(
1)¢(
1)(
1)(
1)(
1)(
0(
1)(
1)(
1)¢(
1)(
1)(
1<
)¢
1)(
1)¢(

22)=( 1)( 2
23)=(1)( 2

24)=( 1)(

25)=( 1) ( 2
26)=( 1)( 2
2T)=C 1)( :
28)=( 1)( -
29)=C L)( 2
30)=( 1)( -
31)=( 1)(

32)=( 1)(
33)=( 1)(
34)=( 1)(
35)=( 1)(
36)=( 1)(
371)=( 1)(
38)=( 1)(
39)=( 1)(
20)=( 1)(
41)=( 1)(

[S1 BN S1 00 4 I &1 ]

«

Ci
EE 2 I G Sy &)

N e S Yl el N al
Nl N N NN NN N N N N NN NS NSNS NNV
INNNINNNINSNSNSNNNSNSNNININN

[ o8

Wwnannunn
AAAA~NAA~AAAA~AAA

- 292 -
TABLE IX.1. '):g DETORS.,
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8)( 9)(12) (13)(16)
8) (10)(12)(13) (15)
8) ( 9)(12) (14) (15)
8) (10) (11)(14)(15)
8) (11) (12) (15) (16)
9) (10) (11) (13) (14) (16)
9)(10) (12)(13)(14) (15)
9) (11) (12)(14) (15) (13)
G)(10) (1) (12) (A3) (15)(10)
2) (L0) (12) (14) (15) (1)
2) (10) (11) (14) (15) (16)
9)(10) (11) (14) (15) (1G)
9) (10) (11) (13)(15) (16)
9) (10) (12) (13) (13) (16)
9)(10)(12) (13)(15) (16)
9) (11)(12)(13) (14) (16)
9)(11)(12) (13) (14) (16)
2) (11) (12) (12)(14) (15)
8)(10)(11) (12) (13)(14) (15)
7) (10)(11) (12) (13) (14) (15)
7Y (10) (11) (12) (13) (14) (16)
3)( 9)(10) (11)(13)(14)(10)
8)( 9)(10)(12) (13)(14)(15)
8)( 9) (1) (12)(14)(15) (13)
8)(10) (11) (12) (13)(15) (16)
9)(10) (11) (12) (13) (14) (15) (16)
8) (L0) (12)(13)(14) (16)
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8)( 9 (A1) (12)(13)(15)(13)
8)(10) (11) (12)(13) (15) (1C)
7Y(0)(11) (12) (13) (13) (1u)
$) (LO) (12) (14) (15) (16)
8) (10) (11) (1 4) (15) (13)
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€)(10Y (L) (13) (13) (10D
2) (10) (12) (13) (15) (1G)
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1, L _DETORS (Continued).
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TABLE IX.2

5 Z; Codetors constructed from detors in Table IX.1.

—1/2
2=V/2(p, - D)
2‘1/2(1)5 - Dg)
2-1/2(311 + Dy5)

~1/2
2715 (Dy3 + Dyy)

-1/2
87/ ¢( = Dyg = Dyq + Dyg + Dy,

+ Dpq + Dyp = Dyy = Dy5)
-1/2 T . - . -
247/ °( = 2D45 = Dyg + Dyq #72Dyg + Dyg = Dy
= Dpy + Dyp + 2Dy + Dpy = Dpg = 2Dp¢)

-1/2 \
127/°( = Dyg + Dyg = Dyq + Dyg = Dyg + Dpg

+ Dpq = Dpp + Dy5 = Dy + Dpg = Do)
271/2(Dyy + Dyg)
271/2(Dyq + D)
1271/2( < 2D,, = Dgg + Dy, + 2D55 + Dyg = Dyy)
61/2( - Dgp + D33 = Dgy + Dyg = D3g + Dgq)
1271/2( - 255 - Dyg + Dy + Wyq + Dyp = Dy3)
671/2( = Dyg + Dg = Dy + Dyq = Dyp + Dy3)

871/2( - Dy5 - Dyg + Dyg + Dag

+ Do + Dgy = Dgz = Dgy)
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TABLE IX.2 (continued)

~1/2 | '
24 (- 2Dyy = Dyg + Dyg + 2D47 + Dyg - D49
= Do + D5y + 2D5, + Dgg =~ Dgy = 2Dgp)
-1/2
1277050 = Dyy + Dyg = Dyg + Dyq = Dyg + Dyq

+ Dgp = Dgy + Dgp = Dy + Dgy = Dgg)
2'1/?rD58 + Dgg)
2-1/2(D60 + Dgq)
871/2( - gy 5 Dgg # Dyg + Dgg

- D

+ Dgg + Dgq = Dyz = Doy)

24=1/2( _ 2Dg, = Dgg + Dgg + 2Dgq + Dgg = Dgg
= Dy + Dgy + 2Dy + Dyg = Dy = 2Dyg)
127/2( = D, + Dgg = Dgg + Dy - Dgg + Deg
+ Dgg = Dgq + Dyp = D + Doy = Dag)

-1/2
12 ( - 2Dgg = Dy + Dgg + 2Dqg + Dgy = Dgy)
-1/2
12712 - 2

-1/2
6'/°( - Dgy + Dgz = Dgy + Dgg.— Dgg + Dgq)

-1/2
8 ( - D91 - D92 + D94 + D95

+ Dgg + Dgq = Dgg = Dyqq)
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Yogq
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TABLE IX.2 (continued)

= 247"/2( - 2p, - Dy, + Dy, + 2Dg5 + Dy, = Dy
- D96 + D97 + 2D98 + D99 - Dyoo - 2D101)
12712 = g + Dgy = Dy, + Dy3 - Do + Dy
+ D96 - D97 + 398 - D99 + Dyo0 - D101)
2-1/2(])110 + Dyqq)
= 272, + Dyq3)

15:; Codetors constructed from detors in Table IX.1.

10

D,

2"1/2(1)2 + Dy)

2~ 1( - Dy + Dg - Dg + Dg)

-1/2 :
12 ( 2D, = D5 = Dg + 2Dy = Dg = Dy)

Dio

-1/2
2 (D,

212,
-1/2
8 (- D16 + fD1
- D
-1/2

-1/2
2-1/2(p,,

= Dy5)

= Dyy)

21

= Dyg)

+ D

22

7

20
= Dyy + Dys)
= Dyq + 2D4g = D4g = Dpg
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TABLE IX.2 (continued)

~1

-1
27( - Dgs +

Dg1)

D3¢ + Dzq)
Dyo + Dy3)

D48 + D49

= Dyg + 2Dyq = Dyg = Dyq

- 2D52 + :D53 + D54 - 2D55)

- Deg *+ Dgg

= Dg3 + Do)

= Dgg + 2Dgq = Dgg = Dgg
= 2Dqp + Dggz + Dy = 2Dag)
Dgy + Dgq)

Dgg + Dg7)



]

(]

0

1}

i

- 298

TABLE IX.2 (continued)

-1/2
8" °( - D91 + D92

= Dgg + Dgq

24'1/2( 2D

90 = D

91

+ D96 + D97
271( - Dygs + Dygy
12=1/2( 2Dy5o = D
2= 1/2( Diog = D1og)
271/2( D110 = Dygy)

-1/2
27 °( Dyqp = Dyq3)

D114

Dyqs
-1/2
277 °( Dyqg = Dyqq)

D418

- D + D

94 95

= Dgg + Dyg0)
= Dgp + 2Dg3 - Dgy = Dgg
- 2Dgg + Dgg + Dygg ='2D444)

= D06 + Dy07)

105 ~ P104 * 2P105 = D106 " D407)
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TABLE IX.3. Ag DETORS.,

=( 1)(
2)=C 1)(
3)=( 1)(
4=( 1)(
5)=( 1)(
6)=( 1)(
7= 1)(
8)=( 1)(
9)=( 1)(
10)=( 1)(
11)=( 1)(
12)=( 1)(
13)=( 1)(
14)=( 1)(
15)=( 1)(
16)=( 1)(
17)=( 1)(
18)=( 1)(
19)=( 1)(
20)=C 1)(
21)=( 1)(
22)=( 1)(
23)=( 1)(
24)=( 1)(
25)=( 1)(
26)=C 1)(
27)=( 1)(
28)=( 2)(
20)=( 1)(
30)=( 2)(
31)=( 1)(
2)(

1)(

3)(
3)(
(
3¢
3A(
A
3)(
¢
3)(
3)(

5)C 6)Y¢ T C 3)( 9)(14)(15)(13)
5YC 6)( 7)( 8)(10) (13)(15)(1G)
5 6)( 7)( 8)(11)(13)(14)(1G)
5)¢ 6)C 7)( 8)(12) (13)(14)(15)
5)( 6)( 9)(10)(13)(14) (15)(13)
5)( 6)(11)(@2)(13)(14)(15)(106)
5) ( 7)(10) (12) (13) (14) (15) (10)
6)( 7)C 2)(12) (13)(14)(15) (1G)
5)( 3)( 9)(12)(13)(14)(15)(1G)
6)( 8)( 9)(11)(13)(14)(15)(13)
3)( 5)( 3)(10) (11)(13) (14) (15) (L&)
3)( G) ¢ 7)(10)(11)(13)(14)(15)(13)
3 ACTC8)( 2)(L0)(13)(14) (13) (10)
34T 3)(1)(L2)(13)(14) (15)(16)
3)( 5)C 6)( 3)( 9)(L0) (13)(14)(15) (L3G)
4)( 5)C 6)( 7)( 9)(10)(13)(14) (15) (1C)
3)( 5)C 6)( 8)(11) (12)(13) (14) (15) (13)
4)( 5)(C 6)( 7)(11)(12)(13)(L4) (15)(1G)
3)<( 7) ( 3)(10) (12) (13) (14) (15) (13)
7)C 3)( 9)(12)(13)(14) (15) (1G6)
7 3)( 9)(12)(13)(14)(15)(1G)
7 ¢ 3)( 9)(11) (13) (14) (15) (1¢)
7)C 8)(10)(11) (13)(14)(15) (16)
7) ( 3)(10)(11) (13)(14) (15)(1G)
7)( 3)( 9)(10) (13)(14) (15) (16)
7) ¢ 3)(11) (12)(13) (14) (15) (16)
6) € 7)(10)(12)(13) (14) (15)(13)
6)( 7)( 9)(12)(13)(14) (15)(1E)
6)( 3)( 9)(12)(13)(14)(15) (1G)
G)( 8)( 9)(11)(13)(14) (15)(16)
G)( 3)(10) (A1) (13)(14)(15) (1G)
6) ( 7)(10)(11)(13)(14) (15) (16)
7)C 8)( 9)(10)(13)(14)(15) (10)
7)¢ 3)( £)(L0)(L2) (14)(15) (13)
7)C 3) A1) (12) (13) (14) (13) (1)
7Y 3)(11)(12) (13) (1<) (15) (10)

R D D D S S D N B D
N S A R SR P R A
ANANANPANANANANAAANAA

32)=(
33)=(
24)=( 2)(
35)=( 1)(
36)=( 2)(

Nl N/ Nl N NN NN NN N NN NN NN N N N NI N NP N NI NN NI NN N NN NI N N N NN N NN N NS
ONNNNSNINNNNSNNNNINNSNSNNSNSNINSNSNTNVNONNNSNNNNSNSNSNNSNNSNSNN NN
(Y]
Nt
”~~

WO O D R W WWWWWWOLWLWWWWNMNDNDMNMANMNMDEDIIONRD NN N NWNDNMNDNDNLN

[~

~

~
oo uOouauauaaoaOouaadancu
N NN N A N N N N NS N N N N N N N N N N W N W N N
PNPNP NP NN NN NN NN

37)=( 1) ( 5)¢ 7)( 2) (L0) (12) (13) (14) (15) (10)
33)=( 2)( 5)¢ 7)C 8)C O (12) (13) (14) (15) (1Y)
39=( 1)( 3)( 7) ( 3)( 9)(12)(13) (14)(15) (16)
46)=( 2)( 5)( 7)( 3)( 9)(11)(135) (14) (135) (10)
£1)=( 1)( 5)( 7)( 3)(10) (A1) (123) (1£) (15) (13)
42)=( 2)( 5)( 7)( 3)(10) (11)(13)(14) (15) (1)
42)=( 3)( 5)( 7)( 3)( DA0)A3) (14)(15) (13)
44)=( 3)( 5)( 7)C 8)(11) (12) (13) (24) (15)(13)



- 300 -

TABLE IX.4

1Ag Codetors constructed from detors in Table IX.3.

{1

1

|1}

n

2'1/2(1)1 - 52)

2'1/2(D3 - D,)

D5

D¢

271 - pg + Dy = Dyq + Dyp)

1271/2( 2Dy = Dg = Dg + 2Dyg = Dyq = Dyp)
Dy3

D1y

27/2(p,5 2 Dy)

27/2(Dyq - Dyg)

2=1( = Dyg + Dpq = Doz + Dpy)

1271/2( 2D, = Dy = Dpy + 2Dy = Dpz = Dyy)
Das

D26

271( - Dyg + Dpg = Dgq + D3p)

1271/2( 2Dy = Dpg = Dpg + 2D59 = D3y - D32)
2="/2(ng5 - D)

~1/2
2775 (Dg5 = Ds¢)
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TABLE IX.4 (continued)

-1
277( = Dgg + Dgg = Dyyq + Dyp)

-1/2
12 ( 2D37 - D38 - D39

D43

Dya

+ 2D4o - D

41 = Dg2)



- 302 -

TABLE IX.5. PART 1’§:g SPATIAL ORBITAL CONFIGURATIONS.

Present Present. | Ref,|Ref.
ns0, nso, Npc, npm, np, VPO, 32; 12; 42 | 42
Codetors | Codetors 32; 1[;
11 2 2 2 - 4 2 1 d
21 2 2 2 2 2 2 2 e
31 2 2 2 2 2 2 1,2 3,4 a,b |a,b
41 2 2 2 4 - 2 5 c
51 2 2 2 2 4 - 3 6 d g .
6| 2 2 2 4 2 - 4 7 c by
712 2 1 3 3 1 5,6,7 8,9 g,h,i|(h,1i
8| 2 2 - 2 4 2 8 10 £ k
gl 2 2 - 4 2 2 9 11 e 3
10} 2 2 - 4 4 - 12 1
11| 2 1 2 2 4 1 10,11 13
12 2 1 2 4 2 1 12,13 14
131 2 1 1 3 3 2 14,15,16 | 15,16
14 ] 2 1 - 4 4 1 17
151 2 - 2 2 4 2 17 18
16| 2 - 2 4 2 2 18 | 19
1712 - 2 4 4 - 20
18| 2 - - 4 4 2 21
19| 1 2 2 3 3 1 19,20,21 | 22,23
20| 1 2 1 2 4 2 22,23 24
21 1 2 1 4 2 2 24,25 25
2211 2 1 4 4 - 26
23| 1 1 2 3 3 2 26,27,28 | 27,28
24 1 1 1 1 4 4 1 29,30
25 1.1 - 1 4 4 2 31
26 | - 2 2 2 4 2 29 32
27| - 2 2 4 2 2 30 33
28 | - 2 2 4 4 - 34
29 | - 2 - 4 4 2 35
30| = 1 2 4 4 1 36
31| - - 2 4 4 2 37
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TABLE IX.5. PART 2, Ag SPATIAL ORBITAL CONFIGURATIONS.

Present
nsog nso, npag npw, npfg npo, 1Ag
Codetors
11 2 2 2 2 2 2 1
2| 2 2 2 2 2 2 2
312 2 2 2 4 - 3
41 2 2 2 4 2 - 4
51 2 2 1 3 3 1 5,6
6| 2 2 - 2 4 2 7
71 2 2 - 4 2 2 8
81 2 1 2 2 4 1 9
9| 2 1 2 4 2 1 10
10 2 1 1 3 3 2 11,12
1112 % = 2 2.- 4 2 13
12| 2 - 2 4 2 2, 114
13 | 1 2 2 3 3 1 15,16
1401 2 1 2 4 2 |17
15 | 1 2 1 4 2 2 |18
16 | 1 1 2 3 3 2 19,20
17| - 2 2 2 4 2 21
18| - 2 2 4 2 2 22
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5.
6e
7e
8.
Se

10.

17

12.

13.

14.

15
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19.

20.
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22.

23.
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Quantum-Mechanical Study of Some Three-Center Two-Electron Systems.
II. A Natural-Orbital, Electron-Population, and Energy Analysis

K. E. BaNYARD AND A. D. TaIT
Department of Physics, University of Leicester, Leicester, England
(Received 6 May 1968)

Configuration-interaction wavefunctions for a series of pscudomolecular ions of the form ZEZ"~"
where 2=1.0 (0.4) 2.2, were reformulated in terms of natural orbitals. Consequently, changes in the
electron density could be investigated, as a function of 2 and the bond angle ZEZ, by means of the popula-
tion analysis of Muliiken. Contour diagrams were algo determined for the charge density evaluated in the
plane of the molecule. The total energy for each system was analyzed in terms of the kinetic energy, nuclear
attraction energy, and the electron and nuclear repulsion energies. The results are presented graphically
as a function of the bond angle 9 for each value of 2. For 2=1.0, i.e., the occupation numbers for the
natural orbitals revealed the united atom character of this system, and the contour diagrams indicated
that, in the equilibrium configuration, the "bonds” were directed from each nucleus towards the centroid
of the positive charges. As 9 was increased beyond 60®) it was found that the “central” proton within %+
began to dominate the system. For 2=2.2, the ions approach most closely to their separated systems of
minimum energy as 9 tends to 180® The contour diagrams and the electron-population analysis also show
that the ZnZ""~ ions change from a three-center to, basically, a two-center system and a strongly perturb-
ing proton as the values for 2 and 6 increase and decrease, respectively. The 0 dependence of the kinetic
energy is perhaps the most interesting of the energy curves. By associating a decrease in kinetic energy
with an increase in spatial freedom for the electrons, it was possible to understand the 9 variations of all
the energy components for each value of 2. The present examination has allowed us to observe, in detail,
changes which occur in the electron density and energy components for a series of three-center two-electron

systems when 9and 2 are allowed to vary.

I INTRODUCTION

In recent years considerable effort has been devoted
to the study of the ion This two-electron system
constitutes a simple molecule with electron-deficient
bonds. A similar kind of b6iiding among three attracting
centers of charge is thought to exist in diborane in the
form of a “bridge” or “banana” bond.” In an effort
to obtain some understanding of such bonds, energy
changes with respect to noninteger variations of the
nuclear charge were studied by extending the calcula-
tions for to a series of pscudomolecular ions of the
form The results were reported in Part I
of the present series.® Several interesting features
emerged from these calculations: first, we observed
an initial decrease in the optimum value of the bond
angle ZEZ as the effective nuclear charge Z was in-
creased and, second, it was found that a double minimum
occurred in the angular dependence of the molecular
energy when Further, when Z=0, the calcula-
tion predicted a pleasing degree of energy stability for
the hydride ion."* "o

In Part I it was tentatively suggested that the be-
havior of the energy of the ZHZ+"~" ions might be
explained by the existence of two variable components

*R. E. Christoffersen, J. Chem. Phys. 41, 960 (1964); H.
Conroy, ibid. 41, 603 (1964); 41, 1341 (1964); 1. R. Hoyland,
ibid. 41, 1370 (1964); W, A. Lester, Jr., and M. Krauss, ibid.
44, 207 (1966) ; B. D. Joshi, ibid. 44, 3627 (1966).

*H. C. Longuet-Higgins, Quart. Rev. (London) 11, 121 (1957).

*K. E. Banyard and H. SHull, J. Chem. Phys. 44, 384 (1966).

*E. E. Banyard, J, Chem, Phys. 44, 4645 (1966); see also
ibid. 48, 2121 (1968).

of the electron density. These components were referred
to as the “shared” density and the “local” density: the
former was associated with the internuclear regions
and the latter was situated, primarily, about each of
the Z nuclei. Clearly, such an interpretation called
for a more detailed investigation,

In the present article the electron density and molecu-
lar energy for the ZEZ+®"-* ions, when Z = 1.0 (0.4) 2.2,
are, analyzed for various values of the bond angle ZE Z
ranging from g=30°-180°. The wavefunction is re-
formulated in terms of natural spin orbitals and the
occupation numbers are examined as a function of Z
and 6. The NSO representation also permits us to per-
form an electron-population analysis in terms of defini-
tions for “shared” and “local” densities. Contour maps
of the total electron density for each ZEZ+"" con-
figuration were also obtained. For completeness, the
molecular energy E is analyzed in terms of its com-
ponents. Thus, the kinetic energy of the electrons, the
electron-nuclear.attraction energy, the electron-elec-
tron and nuclear-nuclear repulsion energies are pre-
sented as a function of d for each value of Z. By means
of the above techniques, it was hoped to obtain insight
into the behavior of the charge density within a three-
center electron-deficient system with respect to varia-
tions of nuclear charge and bond angle.

JI. ANALYSIS OF CALCULATIONS

At this point, it is appropriate to present a brief
description of the wavefunction used in Part I. The

ground-state wavefunction § for the ions,
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Tasre I Transformation matrices

THREE-CENTER TWO-ELECTRON SYSTEMS.

of the natural orbitals x* for selected Z:d values where XM-ZyjAjn.

9 1.0
60° 0.40793 0.00000 -0.57826 0.57073
0.40793 0.00000 1.15652 0.16368
0.00000 1.00158 0.00000 0.00000
120° 0.36089 0.00000 -0.81247 0.56556
0.52425 0.00000 1.28316 0.28160
0.00000 0.79834 0.00000 0.00000
180° 0.32756 0.00000 -0.90220 0.55900
0.58345 0.00000 1.32320 0.30709
0.00000 0.76029 0.00000 0.00000

11

z

1.8 2.2
0.00000 -0.37010 0.61715 0.00000 -0.28805
0.00000 1.08571 0.09.397 0.00000 1.0.5970
0.84681 0.00000 0.00000 0.80064 0.00000
0.00000 -0.55863 0.64158 0.00000 -0.41616
0.00000 1.12742 0.16143 0.00000 1.08724
0.73263 0.00000 0.00000 0.71904 0.00000
0.00000 -0.59373 0.64306 0.00000 -0.43061
0.00000 1.13264 0.17026 0.00000 1.08948
0.72000 0.00000 0.00000 0.71250 0.00000

where the bond length Z-H was denoted by i?2® con-
tained a noimalized antisymmetric spin part which
could be factorized out of the problem; therefore, the
normalized symmetric space part of the wavefunction
could be written as

)

where the coefficients a- were obtained by solving the
appropriate secular equations. Each space configuration
0,(1,2) was formed from a product of two one-electron
symmetry-adapted molecular orbitals constructed from
a minimal basis set of three If Slater-type atomic
orbitals, one centered on each nucleus.® Thus, we have

oi(l, 2) = 271(1)71(2),
02(1,2)=272(1)72(2),
03(1,2)y=273(1)73(2),

04(1,2) =[71(1)72(@2)4-71(2)73(1)1, )
where

71 (0 =[*(15n)+95 (15c) ] (0>
72 (0 =[v5(1-3A)1(/).

71 (0=[iP (W) -y (W] (O, 3

and /=1 or 2. The If orbital exponents were optimized
to give minimum energy E for each set of preselected
values of Z and 6.

A. Natural Spin Orbitals

Natural spin orbitals are defined’ as forming a basis
set which diagonalizes the generalized first-order density
matrix. Further, if a many-particle wavefunction

®Unless stated otherwise, the bond length Z-H was held fixed
throughout this work at a value of 1.66 a.u. All units in the present
article are Hartree atomic units, see H. Shull and G. 0. Hall,
Nature 184, 1559 (1959).

*The proton was located on center 4 and the nuclear charges
Z were located on centers B and C. The bond angle ] was defined
as BAC=ZHZ.

> P.-O, Lowdin ~d H. Shull, Phys. Rev. 101, 1730 (1956).

expressed as a superposition of configurations over some
arbitrary basis set, is reformulated in terms of con-
figurations built up from natural spin orbitals, then this
natural expansion of # is distinguished as the super-
position of configurations of most rapid convergence.®
For the special case of two-electron systems, Lowdin
and ShulF showed that the natural expansion for the
space part of the wavefunction could be expressed as

2) =2] ONBpICED), @

where the natural orbitals %t(f») are defined such that
the spinless first-order electron density matrix can be
written as

7(f/1 n) =2 «eXtc*(nO Xit(n) » %)

The occupation number of the feth natural orbital is
given by rik—ci? and satisfies the relation

2k «*=le ©)

For the simple basis set® employed in Part I, we
obtained natural orbitals of the following form and

symmetry
Xi(/) =[Aii(6-1-c)-f-A2ia](0> -4i,
X2 (0=C*32(i-c)] (/), Bi,
Xs(0 =[-413(6+"")+Z23®](0» 41 (7

The coefficients 4jk of the natural orbitals are given
in Table I, however, for reasons of space, results are
quoted only for selected values of Z and 4 The occupa-
tion numbers are given in Table II for all the Z:6
values.

®P. O. Lowdin, Advan. Phys. 5, 1 (1956).

» The letters o, 6, and c represent the appropriate Slater-type
orbital located on centers 4, B, and C, respectively; thus, the
symmetry-adapted molecular orbitals yj(z) of Eq. (3) may be
expressed in the abbreviated form used in Eq. (7).



k. E BANYARD AND A. D. TAIT

TABLE IL Occupation numbers of the natural orbitals xi,
and XI for various Z : 9 values.

4

4 1.0 1.4 1.8 2,2
30° 0.99000  0.99527 0.99482 0.99332
0.00213 0.00366 0.00507 0.00667
0.00787 0.00107 0.00011 0.00001
40 0.98845 0.99137 0.98838 0.98271
0.00347 0.00692 0.01138 0.01725
0.00808 0.00171 0.00024 0.00004
50 0.98699  0.98479»  0.97663» 0.96106
0.00521 0.01282 0.02294 0.03887
0.00780  0.00239 0.00043 0.00007
60 0.98546  0.97954 0.96050 0.92361
0.00727  0.01773 0.03888 0.07628
0,00727  0.00273 0.00062 0.00011
70 0.98378  0.97199 0.93792 0.87080
0.00956  0.02503 0.06130 0.12906
0.00666  0.00298 0.00078 0.00014
80 0.98208  0.96388 0.91129 0.81185
0.01194  0.03307 0.08784 0.18801
0,00598  0.00305 0.00087 0.00014
100 0.97874  0.94780 0.85754 0.71520
0.01657  0.04934 0.14158 0.28468
0.00469  0.00286 0.00088 0.00012
120 0.97589  0.93479 0.81721 0.66180
0.02045 0.06268 0.18198 0.33810
0.00366  0.00253 0.00081 0.00010
150 0.97345 0.92375 0.78601 0.62883
0.02394  0.07413 0.2132T 0.37108
0.00261 0.00212 0.00072 0.00009
180 ~0.97294  0.92084 0.77759 0.62105
~0,02483 0,07719 0.22172 0.37887
0.00223 0.00197 0.00069 0.00008

*The occupation numbers quoted here are for 4=52.15®, for Z = 1.4,
and 4-50.5®, for 2 = 1.8.

B. Electron-Population Analysis

Electron-population analysis will be particularly
useful in the present work since it will permit us to
observe changes in the amount of charge associated with
different regions of the molecule as Z and 6 are varied.

100-

2» 14

v — &21.

30@ 60® 90® 120"

©

150" 1S0®

Fig. 1. The total net atomic population for the centers 4, B,
and C expressed as a function of the bond angle 4. The dotted
lines are for center 4 and the solid lines for centers B or C.
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The definitions for overlap and atomic populations
have been taken from Muliikken.*® Clearly, the useful-
ness of such quantities would be questionable unless
they possessed the property of invariance with respect
to any orthogonal transformation of the orbitals from
which they arise.** The natural orbitals discussed above
possess such a property. Hence, by writing the wave-
function as a natural expansion, we can formulate a
population analysis for the electron density.

Inspection of Mulliken’s work*® revealed that the
“local” and “shared” densities suggested in Part I
could be likened to the total net atomic population
and the total overlap population, respectively. For
electron-deficient systems, information concerning the
overlap between any pair of centers is also of obvious
interest; hence, an examination was made of the sub-
total overlap population. These quantities may be
formulated as follows: from Eq. (5) the electron density
p(fi) can be written as

pin) =y(h 1n) =2 l?—l »kXkHn), @)

Fig, 2. The total net
atomic population for
the centers 4, B, and C

A 050 expressed as a function
of Z for4=30°, 60°, and
t 025 N 180 180°. The .dotted lines
are for center 4 and
000 the solid lines for centers
BorC.
where

Xi®= Mi*C&M20c-ht:®]-h2Aiii42iCo6-f-cc]-1-i42i1®M,

Xok= 2hc-\-i~,

and
X*=Ax* [hM\-Ze-\- & \A2RiA7 A0 C\-\ AL 3P\,

Following Muliiken, we integrate Eq, (s) over the
appropriate space coordinates and define the total net
atomic population N{4), associated with center 4, to
be

IV(B) =2 [«IZ21*+»37238] ;

similarly, we may write
N{B) =2[niv4u*+W2-"32’-Wjidi3®].

From considerations of geometrical symmetry we have
N{B) =N(C). The sum of these three terms gives the
total atomic population. The subtotal overlap popula-

“ R. S. Muliiken, J. Chem. Phys. 23, 1833 (1955).
*#*C. W. Scherr, J. Chem. Phys. 23, 569 (1955), see Appendix
1L
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tion S{BC) between the centers B and C is defined as
S{BC) =45be[«iylii* —»2"32®+ «3"13*];
similarly, we obtain
S(AB) =S(A C) =4Sab[niAiiAa-i-naAi3A23j,

where Sab-Sae and are overlap integrals. The total
overlap population is obtained by the addition of these
three components.

Variations of the total net atomic populations as a
function of o and Z are shown in Figs. 1 and 2, respec-
tively; similar graphs for the subtotal overlap popular
tions are shown in Figs. 3 and 4. For Z= 1.8, optimized
wavefunctions were available” which allowed us to study
changes in the 0 dependence of # (d ), N{B), S{AB),
and S(BC), with respect to variations of the bond
length R. These results, although not illustrated graphi-
cally, will be discussed below.

C. Charge-Density Contours

From Eq. (s) values of the density were obtained in
the plane of the molecule for each set oi Z:0. Contours
of constant charge density were then determined, see
Fig. 5. Each diagram is symmetric with respect to the
line X X' which bisects the bond angle BAC. For rea-
sons of space, the contour maps are shown for only
three groups oi Zi0 values, namely 0=60®, 120®, and
180° for Z=1.0, 1.8, and 2.2. Changes in the contours
as 0 or Z vary are clearly illustrated. A general feature
of all the contour diagrams is shown by tracing the
density line of maximum charge, i.e., minimum slope,
as we move between centers B and C. This line is such
that the density always decreases in magnitude when
evaluated at adjacent positional coordinates along, its
normal. These curves, which are symmetric about
XX', are shown collectively in Fig. s. They indicate,
specifically, whether or not center 4 is contained
within the density contour of highest value which

0*75 -

0—00 -

30° 60° 90° 120° 150= 180=

® .
F1c.3. The subtotal overlap population for 4-8, 4-C, and B~C
caressed as a function of the bond angle 0 for various values of Z.
The dotted lines are for B-C and the solid lines for 4-B or A™C.
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ri:c. 4. The subtotal overlap population for 4-B, 4-C, and
B-C expressed as a function of Z for 0=30°, 60°, 100°, and 180°.
The dotted lines are for 4-B or A-C and the solid lines for B-C.

mutually embraces B and C. In some instances, the
line of minimum slope, as we rtiove from B, is seen to
divide such that B is joined directly to both 4 and C.
The significance of this situation, indicated in Fig. ¢
by dotted curves, will be discussed later.

D. Energy Analysis

In Part L® Fig. s showed the o dependence of the
total molecular energy for Z=0.8 (0.2) 2.2. However,
for convenience, otir results for the'.ciiergy analysis
are presented only for Z.=1.0 (0.4) 2.2; in Fig. 7, the
kinetic .energy as”function of the bond angle o is shown
for different Z'values. Similarly, the 0 dependence of
the electron repulsion energy, the nucléar attraction,
and nuclear repulsion energies for various Z is shown
m Figs. 8-10, respectively.

in. DISCUSSION OF RESULTS

Inspection of the natural orbitals given in Eq. (7)
indicates that xi and Xs are bonding-typé orbitals,
whereas Xo possesses a form which is 'aiitfbonding.
Reference to the pcciipation numbers given in T'dble 11
reveals that, fof all values of o, xi predominates in the
natural expansion of the wavefunction when Z<1.4.
Although a large occupation number for a bonding
orbital does not necessarily guarantee the molecular
stability of ZZ7Z+®" for any choice of Z and o, it is of
interest to note, from Part I, that for Z<1.3 the ions
are stable with respect to dissociation.

For Z=1.0, i.e., Hs+, we observe from Table II that
«1 and <«3decrease and fh becomes larger as the bond
angle changes from 30°-180°. To place these results in
perspective we refer to the occupation numbers of the
natural orbitals of @i’ and e’ symmetry determined by
Christoffersen and ShulF for the united atom Li+

“ R. E. Christoffersen and H. Shull, J. Chem. Phys. 48, 1790

(1968). We are very grateful to'these authors for the opportunity
of reading a preprint of their work. -..
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£iG. 5, Contour diagrams of the electron density in the plane of the molecule for selected values of Z:8. The diagrams are sym-
metric about the line X.X'' which bisects the bond angle 9 In (a) the density at D is less than 0,1764.
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F1G. 6. The trace of points, between the centers B and C, with minimum slope in the electron-density surface when evaluated in

the plane of the

ions for Z=1.0, 1.4, 1.8, and 2.2, see diagrams a, b, ¢, and d, respectively. For each value of Z, the trace

is shown for various values of the bond angle d. The center A is located at the origin and center B is indicated by #. Each set of dia-

grams is symmetric about XX’ which bisects 9.

and the dissociation products For Li+t,
they quote total occupation numbers of 0.998121 and
0.001223 for the o/- and e'-type natural orbitals,
respectively. For the dissociation products of Hs+, the
total occupation numbers for orbitals of ai and e’
symmetry are 0.666667 and 0.333333, respectively.
When Z is large, the dissociation products of minimum
energy will have corresponding natural orbitals with
occupation numbers of 0.5. Thus, the united atom
character is seen to feature strongly in the description
of Hs+ for all values of B Table II shows that such a
conclusion is valid as far as Z~1.4. When Z> 1.8 it is
seen that, as Bincreases, the occupation number asso-
ciated with X increases greatly at the expense of «:.
This would seem to indicate that, when Z and B are
large, the charge density begins to concentrate pre-
dominantly around the “outer” nuclei at B and C at
the expense of the proton and the internuclear regions.
This conclusion is supported by noting that, as Z and
B increase, the occupation numbers for xi and X are
each approaching 0.5. Further support is obtained by
inspection of the -electron-population analysis, see
Figs. 1-4, and the contour diagrams shown in Fig. 5.

5-0

10
=0
G

7. The kinetic energy expressed as a function of the bond
angle 9 for various values of Z.

Fic.

The results of the electron-population analysis illus-
trated in Figs. 1-4 indicate that when the subtotal
overlap population between centers B and C is greater
than that for 4-B, the ions may be regarded,
essentially, as a two-center system plus a strongly
perturbing proton. However, when S(BC) <S(4B)
the ion is more ideally regarded as forming a three-
center system. Such an interpretation is strongly
supported by the evidence shown in the diagrams of
Fig. «. It is of interest to observe that a “divided”
trace of points possessing minimum slope in the density
surface as we pass from B to C (see the dashed curves
of Fig. ¢ ) occurs only when the bond angle is such that
S{AB)c"S{BC). Concomitant with this condition
is a small depression in the electron-density surface
located in the central region of the molecular plane:
see, for example, diagram (a) of Fig. 5. The results
of Christoffersen and ShulF for Hs+ did not reveal a
similar depression in the density surface’®; hence, the
effect may be due to our minimal basis set.

13
1-2

ii

0-8
0-7
0-6
w 0-5
0-4
0-3
120° 150° 180°

30 60°  90°

Fig. 8. The electron repulsion energy expressed as a function of
the bond angle 6 for various values of Z.

“ A private communication from R. E. Christoffersen for which
we are grateful.
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30 60° 90" 120 150° 180"

FiG. 9. The nuclear attraction ener” expressed as a function of
the bond angle 6 for various values of Z.

For Z=1.0, we see from Fig. 1 that, as Qbecomes
larger, N{A) increases fairly sharply but N(B} =
N{C) becomes smaller; correspondingly, the overlap
5(.4J5)=5(~C) shown in Fig. 3 increases but the
value of S(BC) falls considerably. This behavior is
illustrated in part by the contour diagrams (a), (d),
and (g) of Fig. 5. Similar comments hold for Z=1.4.
However, for Z= 1.8, we see from Fig. 1 that the total
net atomic population increases for each nuclear center
as the bond angle is enlarged. The overlap also
increases with increasing 6, but the magnitude of
S(BC) is seen to fall off rapidly. Thus, as § varies from
30®-180°, a value of Z> 1.8 is capable of causing charge
to move from the internuclear region B-C towards
the centers B and C, whereas when Z=1.0, charge is
moved from B and C towards center 4.

Figure 4 reveals that, for any fixed bond angle,
5(”5) decreases in value as Z is increased, this indi-
cates the diminishing influence of the proton on the
system. This conclusion is substantiated by the fact
that Z£(.4) tends to zero for all angles as Z becomes
large. Figure 4 also shows that when s<100° then
S{BC) increases initially and then decreases as Z
becomes larger. This effect is greatest for small angles.
For o> 100°, S{BC) shows no initial increase as a
function of Z. Hence, as Z is increased for a fixed bond
angle, charge is initially drawn away from A4 into the
regions associated with B, C, and B-C. A further
increase in Z removes charge from the internuclear
region B-C and localizes it about B and C as mentioned
previously.

For Z=1.8, the electron-population analysis was
performed for wavefunctions corresponding to 22=1.5,
1.66, and 1.8 a.u. For constant 6, as expected, A (.4)
decreases in value and N(B) increases as R becomes
larger, whereas S(4B) and S{BC) each become
smaller.

Changes in the above results caused by extending
the basis set may be examined most readily by studying
Hj+, this is made possible by the recent analysis® of
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the configuration-interaction wavefunction of Christof-
fersen® which involved a basis set of 12 STO’. The
occupation number of 0.98487 which Christoffersen
and Shulh* obtained for the first natural orbital xi
differs from our result, see Table II when Z= 1.0 and
0=60°, by only 0.00059. The virtual independence
of the occupation numbers in the natural expansion,
with respect to the size and nature of the basis set, has
been commented on by Shull.™ Due to the large occupa-
tion number, the form of xi for Hs+ will govern the
essential features of the population analysis. Thus,
the evaluation of N{4) and S(4B) derived from xi
taken, firstly, from the work of Christoffersen and
Shull and, secondly, from Table I for Hs+ (0= 60°)
should indicate the general effect of an extended basis
set. In both cases the occupation numbers for xi were
renormalized to unity, i.e., each natural expansion was
truncated after one term"® For the minimal basis
set, A(v4) and were found to be 0.33281
and 0.33386, respectively, while the extended basis
set gave values 0f 0.30113 and 0.36554. Thus, extending
the basis set causes a lowering of the total net atomic
population on each center with a corresponding increase
of the subtotal overlap populations. Such changes in
the electron population analysis are not too surprising
since the Is minimal basis set could only be extended
by the inclusion of higher orbitals which, by their more
diffuse nature, provide greater overlap. It is anticipated
that an extension of the basis set for the remaining
ZHZ+ "~ jons will have a similar effect, although this
should become less marked as Z is increased.

The kinetic energy undergoes an initial decrease for
all values of Z, see Fig. 7. The decrease becomes greater
as Z is increased. When Z=1.0, the kinetic energy
becomes constant for 0>90°, however, the curve for

a4

u?2

€

F1G. 10. The nuclear repulsion energy expressed as a function of
the bond angle 0 for various values of Z.

“ H. Shull, J. Chem. Phys. 30, 1405 (1959).

“ Throughout this work, this is the only instance when natural
expansions have been truncated.

» For H,+, with 0=60°, we have N(4) =N{B) =N(C) and
SidAB)=8iAC) =S(BC).
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Z=:.> shows a pronounced minimum when o~ sO°
and a constant value is attained only when 0>140°.
Figures 8-10 show that, for Z=1,0, the other energy
contributions are virtually constant when 0>90°. This
lack of angular dependence indicates that, when 0>90°,
the proton at center 4 tends to dominate the Hs+
system.

As pointed out by Ruedenberg,"" a lowering of the
kinetic energy may be associated with an increased
“smoothness” of the electron-density surface through-
out the molecule. It is related in character to the lower-
ing of the kinetic energy of potential-free electrons
when the volume containing them is increased. Thus,
the kinetic-energy curves shown in Fig. 7 may be
interpreted as a measure of the relative freedom of
movement of electrons within the ions as 0 is increased.
For example, when Z =2.2 and 0=30°, we have seen
that the charge density is localized essentially about
the B-C region of the ion, hence, the value of the
kinetic energy is high. As o is increased to a value of
about 60°, the kinetic energy suffers a decrease, sug-
gesting that the larger value for the B-C separation
allows the charge density to become more diffuse.
However, for a further increase in 0, the kinetic energy
is now seen to increase: this is in keeping with our
observations that, for Z=2.2, the charge cloud will
divide and become more localized about the separate
centers B and C as 0 approaches 180°. For Z=1.0, a
similar situation will occur, namely, as B and C sepa-
rate, the charge cloud will become more diffuse through-
out space and the value of the kinetic energy will
therefore decrease for an initial increase of 0. However, a
continued increase of o causes the electronic charge to
flow towards center A instead of dividing and localizing
the charge about each center B and C, as was the case
for Z=2.2. Thus, for H3t, it is not surprising that the
kinetic energy remains virtually constant for 0>90°.
The curves for Z=1.4 and 1.8 shown in Fig. 7 are
clearly states of transition between the two cases
already discussed. Additional support for the above
interpretation is gained by noting that, for each value
of Z, the 0 dependence of the electron density evaluated
at center B (or C) has the same form as the correspond-
ing curve for the kinetic energy shown in Fig. 7.

From Figs. 8-10, we see that the electron repulsion
energy, the nuclear attraction, and nuclear repulsion
energies each become slightly more 0 dependent as Z
becomes larger. This is quite reasonable since our
previous analysis has shown that, as Z increases, the
tendency for the charge to cluster around centers B
and C will also increase as o approaches 180°. Hence,
when the division of the charge cloud becomes more
effective, the drop in the electron repulsion energy will
become greater: see the curves in Fig. s. For a fixed
value of Z, Fig. 9 shows that the nuclear attraction

” K. Ruedenberg, Rev. Mod. Phys. 34, 326 (1962).
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energy will increase for an increase in o, presumably
related to the fact that the charge cloud will be in-
fluenced less by the combined effect of the nuclei at
B and C. The nuclear repulsion curves shown in Fig. 10
are simply dependent on Z and the geometry of the
ZHZ+:"-" system.

IV. CONCLUSION

The wavefunctions for a series of pseudomolecular
ions of the form Z27Z+"-\ where Z= 1.0 (0.4) 2.2,
have been reformulated in terms of natural orbitals.
Consequently, changes in the one-particle electron
density, due to variations of Z and the bond angle
ZHZ, were able to be investigated by means of the
population analysis suggested by Muliiken. Contour
diagrams were constructed for the charge density when
evaluated in the plane of the molecule. In addition, the
kinetic energy, the nuclear attraction energy, the
electron and nuclear repulsion energies are presented
graphically as a function of the bond angle o for each
value of Z.

For Z<1.4, the first natural orbital in the natural
expansion of the wavefunction was found to have a
large occupation number for all values of 0. Such a
feature is essential, although no guarantee, for obtaining
molecular stability with respect to dissociation; never-
theless, the present results are in accord with the
observation made in Part I that the ions are energeti-
cally stable for Z< 1.3.

The occupation numbers of the natural orbitals for
H3+were placed in perspective by making a comparison
with similar quantities for the united atom Li+ and the
dissociation products H4-H-FH. Such a comparison
clearly revealed the united atom character of 3+.
The contour diagrams also showed that, when o = 60°,
the “bonds” in H3t were directed from the nuclei
towards the centroid of the positive charges. The
elaborate wavefunction of Christoffersen, analyzed by
Christoffersen and Shull, also revealed this “bonding”
arrangement. For fixed bond lengths B4 and C4, as
o was increased, we found that charge moved from the
centers B and C towards 4, indicating that the proton
at 4 begins to dominate the Hst system.

When Z is large, the dissociation products of mini-
mum energy have natural orbitals with occupation
numbers of 0.5. This situation is most closely repre-
sented when Z = 2.2 and 0 approaches 180°. The contour
diagrams and the electron-population analysis show
that, at large values of Z, the electron density in the
region of center A4 is small and, as 0 increases, charge
flows from the internuclear region B-C towards the
“outer” nuclei. The diagrams and analysis also show
that, as Z increases and o decreases, the ZHZ M A
ions change from a three-center system to what is
essentially a two-center system plus a strongly perturb-
ing proton.
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Of the various components of the energy of the
ions, the 0 dependence of the kinetic energy
is perhaps most striking. As emphasized by Rueden-
berg, a decrease in magnitude of the kinetic energy
may be associated with an increase in the spatial
freedom of the electrons. Such an interpretation assisted
not only with our understanding of the kinetic-energy
curves but also permitted variations in the remaining
energy components to be understood.
The present examination has allowed us to observe, in
detail, the changes which occur in the electron density
throughout a series of three-center two-electron systems

AND A. D. TAIT 3058
as the bond angle ZEZ and the nuclear

charges Z are allowed to vary.
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ARSTRACT

The method of Configuration Interaction (CI) has been used in a
number of studies of smal} atomic and molecular systems.

In Part I, CI wave functions for a series of ?seudomolecular ions
ZH223_1 are reformulated in terms of natural orbitals. Changes in the
electron density as a function of the nuclear charge Z and bond angle
ZHZ are investigated by means of an electron population analysis based
on the natural orbitals.  Contowr diagrams of the electron density in
the plane of the molecule are obtained., Thetotal energy for éach system
is analysed in terms of the kinetic energy, nuclear attraction energy, and
the electron and nuclear repulsion energies.

In Part II, the CI method is examined in detail. Techniques for
obtaining CI wave functions of atoms and molecules are discussed in detail.
Computer programs based on these techniqugs are described, and listed in
the Appe?dices. The Valence Cbnfiguration Interaction (VCI) method is
also examined as a meéns of reducing the size of the secular equation,
and results of VCI calculations are given for various states of atomic
and diatomic oxygen and sulphur. Spectroscopic constants for the

X3 Z-g-l and b1 Z;I states of 0, and for the

2

X° ZéI , a! AgI and % ):;I states of S, are given, The methods

by which these results ban be obtained are also discussed. Finally the

results of the VCI calculations are compared with some recent SCF

calculations on O, and S,. )



