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This thesis addresses the topic of fault-tolerant flight control system (FTFCS) design and 

focuses on its application to the Bell-205 helicopter. In this context, a fault detection, 

isolation, and accommodation (FDIA) system has been constructed using artificial neu

ral networks (ANNs) and real flight test data (FTD). The construction of the ANN-based 

FDIA system considers all the feedback sensors but does not use any of the sensor mea

surements in the input space of the ANNs. This latter feature increases the reliability of 

detection and isolation of faults. Desktop simulations of the FDIA system have shown 

highly acceptable performance. Robust controllers have been designed for the lateral and 

longitudinal dynamics using the Hoo mixed-sensitivity approach. The controllers were 

then integrated with the aforementioned FDIA systems and tested in simulation. The 

inspection of various uncertainties, including those due to the presence of the FDIA in 

the feedback loop, indicated that /u-synthesis may give better results than the Hoo design. 

Therefore, an improved FTFCS system was designed using //-synthesis. The functioning 

of the integrated systems is acceptable but their accuracy needs to be further verified on 

the nonlinear model. Use of //-synthesis helped to identify areas for further improvement.

In addition to the design work that was carried out in the thesis, a theoretical investiga

tion was conducted to study the impact of the faults on the Algebraic Riccati Equations 

(AREs) that are normally solved when finding stabilizing Hoo controllers. Accordingly, 

a new FTFCS scheme which is based on solving a new set of AREs is proposed. The 

solutions of the Riccati equations are corrected adaptively. The controller has a particu

lar structure and only certain parts of it need updating. The advantages of this approach 

include possible smooth transfer when updating and less computations when compared 

with switched controllers.
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Chapter 1 

Fault=Tolerant Flight Control System 

Overview

Fault-tolerant control has been motivated mainly by aerospace applications and been ap

plied to highly sensitive industrial applications such as chemical plants. With the in

creased interest in making safe flights, the reliability of vaiious components of the aircraft 

have been re-engineered with this reliability issue in mind. Various techniques have been 

applied ranging from physical redundancy to software-based methods. Though physical 

redundancy has been in use in the aerospace industry and petrochemical plants, such a 

solution is not of great appeal to some aerospace applications or in small chemical plants 

where the cost of physical redundancy is prohibitive. This gives more motivation to re

searchers to focus on software-based approaches that besides their relatively lower cost 

of development are functionally promising. In this chapter, we aim to cover the basic 

principles of FTFCS and its relationship to other disciplines such as robust control. The 

fundamental components will be explained and linlced to the appropriate chapter of the 

thesis.
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Faults that are likely to occur in an aircraft are either related to its sensors, actuators 

or the components of the aircraft itself (e.g. the airframe). Each has its impact on the 

performance and safety of the aircraft. It is expected that not all failures are of the same 

degree of urgency nor that they all lead to catastrophic events. Here below we will touch 

on the impact of failure on system reliability and operation.

o Sensor faults: Sensors are devices that convey extensive amounts of information 

to the panels of the pilot as well as to the flight computer system. The most critical 

pieces of information are those pertaining to the feedback loops. A flight control 

system, as a closed-loop, relies heavily on the measurements of the outputs. Based 

on these measurements the control signals are modified to cope with the pilot in- 

ceptors’ commands. Of course, the pilot uses his eyes to watch the impact of his 

commands but that can by no means be considered as a replacement of the measured 

signals. His observation may alert him of occurrence of a problem but his feelings 

can not be quantified and injected properly into the automatic control loop. In some 

cases, the malfunctioning of sensors can lead to catastrophic situations especially 

when flying under hard weather conditions and/or at high altitudes. Despite the 

fact that modem sensors are of high quality and their Mean Time Between Failure 

(MTBF) is high, still there is a possibility of sensor failure.

o Actuator faults: This is another source of prime reasons for aircraft crashes. If 

certain control services can not be controlled then certain manoeuvres can not be 

made. In a combat aircraft, if this happens the pilot will not only face the impact of 

being unable to perform aggressive maneuvering but also be unable to make right 

move at a specific and crucial point of time. One can imagine the end result which 

may be either a complete crash or becoming an easy target of attack. Another 

example, from the helicopter domain, is the failure of actuators responsible for 

controlling the rods of the blades of the main rotor. As an option, in this case, 

the pilot has to do autorotation; i.e. to switch off the power plant and bring the 

helicopter to a safe landing. Other option could be to switch to mechanical control
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if the helicopter actuators are equipped with dual control; i.e. electronically as well 

as mechanically. In the case of a fixed-wing aircraft, the existence of a solution 

to address the failure of control services actuators is of practical value. Such a 

solution relies on what is called the analytic redundancy of the aircraft. In the case 

of a helicopter, the presence of actuator failure detection system may not have so 

much practical appeal except alerting the pilot to switch to mechanical control, if 

ever possible.

o Airframe damage: There are various reasons for considering airframe damage. 

Not only fighters in the battle field do face the risk of partial damages (say, e.g. 

wing or tail partial damage) but also civil aircraft may face such Idnd of trouble. 

Solutions have been sought and promising results have been reported (see e.g. [27]).

Each aspect of the above is of prime importance and implementation of a solution for 

each depends on the type of aircraft under consideration. For fixed-wing aircraft, it is 

quite applicable and feasible to implement a system for each category. However, for 

helicopters, actuator faults may not be feasible to be recovered fully, as in the case for 

fixed-wing aircraft due to the limited mechanical architecture of the helicopter. Degraded 

operation of actuators may have to be considered.

The main objective of FTFCS is to enhance reliability of the system under the presence 

of faults. For that reason, the term FTFCS is used exchangeably with Reliable Control. 

Other terminology used are restructuring and reconfiguration. The terms have emerged 

as a result of the approach used in dealing with the faults which involves restmcturing or 

reconfiguration of the controller. This reconfiguration/restructuring may take place on

line or may be designed off-line and controllers are switched depending on the signature 

of faults.

In view of the above, the focus of our research will be on sensor faults especially for the 

Bell-205 Helicopter which is not equipped with any physical redundant sensors. As has 

been said above, this does not eliminate the need to consider the other two aspects. For 

example, the actuator degradation can be considered. Also, the airframe damage is of 

value especially for military helicopters. However, this option was eliminated at an early
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stage of the project as it was not clear that access to the nonlinear model (owned by Qine- 

tiQ) and also the modelling tools of the helicopter would be available. If airframe damage 

occurs, the nonlinear model no longer represents the aircraft as the stability derivatives 

and control derivatives no longer coincide with the operating condition of the aircraft. 

Some fast tools have to be used on-line to estimate these derivatives and to use the new 

estimates to generate a new model that will help to save the aircraft and the crew though 

the performance may be degraded. Either one of these two other aspects is worthy of 

further independent research effort.

1.2 Overview of FTFCS Subsystems
By now the objectives and functionality of the FTFCS are becoming clear. The FTFCS 

has to be able to deal with all or part of the above sources of failures or damages. Thus, a 

FTFCS can be represented by the following diagram (Figure 1.1):

Figure 1.1: Fault-Tolerant Control System Architecture

From the diagram, it is clear that for a flight control system or any control system in 

general to be fault-tolerant it needs to be able to detect faults, identify their sources and 

take remedial actions promptly. The fault detection and isolation is handled by a Fault 

Detection and Isolation (FDI) subsystem. The accommodation can either be handled in
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the FDI subsystem or be embedded in the controller. The FDIA can communicate with 

a system operator who is in our case the pilot and various alarms can be produced in 

the Head Up Display (HUD). In regard to the FDI system, the field is quite matured and 

various methods have been developed. The designer may choose either model-based or 

model-free techniques where under each category various methods are available. Most 

of the well developed methods in the FDI field are linear and use linear models. Other 

methods do not require a model and have been used widely in process control and in 

some aerospace applications such as large transport aircraft. The controller which is the 

second major component in the setup, can be designed using robust controller methods 

or using adaptive techniques. If robust control is used, the resultant controller is a fixed 

controller and, thus, the fault accommodation is handled by the FDI subsystem. In the 

case of adaptive control, the resultant controller is flexible as some of its parameters are 

updated depending on the fault signatures constructed by fault identification and isolation 

modules that are conveyed to the FTFCS decision logic.

1.3 FTFCS Methods and Tools
There are many approaches to remedy the faulty case and bring the flight control system 

to a level of fault-tolerance. The field itself is intra-control disciplinary. Many researchers 

with different backgrounds have participated in the effort to shape the field over the last 

three decades. In the survey paper on Fault Tolerant Control (FTC) [71], the author has 

divided the research areas in the various fields pertaining to FTC into six major areas. 

These are;

o F D I: where the approaches vary from physical redundancy with voting schemes to 

model-based techniques and all efforts in this field contribute indirectly to Fault Tol

erant Control (FTC). Currently, focus is on nonlinear FDI and modem techniques 

such as neural networks (see e.g. [13, 71]).

o Robust Control: Improvements in this field have contributed minimally to bringing 

in new design methods that produce reliable controllers in the presence of limited
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type and number of faults. Examples of the work in this field are the ones reported 

in [52, 53, 74, 79, 83]. The activities in this area try to extend the concept of 

controller robustness to coincide with the concept of reliability.

o Reconfiguration : Controller reconfiguration is dominated by adaptive techniques 

that use feedback linearization or model-following. Another alternative is to gain 

schedule several controllers that are based on fault analysis.

o Robustness: Robustness issues related to controller reconfiguration especially the 

time taken to reconfigure controllers on-line are of prime importance. Few studies 

have addressed the design of robust reconfigurable controllers.

o Integration: The integration of robust controller and robust estimation is consid

ered a vital area for future research where the fault-tolerance is dependent on the 

integration of both fields. An example of this approach is [65] plus some other 

examples cited in the references therein.

o Supervision: As indicated in the paper [71], very few researchers have shown in

terest in this area though it plays a central role in active' FTC.

1.3.1 Model-based vs. Model-free FDIA

Model-based techniques for FDIA systems are mainly based on linear or linearized mod

els. There exists considerable research on nonlinear FDI but the achievement in this arena 

is not as mature as the linear FDI tools and algorithms. On the other hand model-free FDI 

methods are those based on physical redundancy with voting schemes, system identifica

tion, or neural networks. The model-based techniques require a high fidelity mathematical 

model in order to build an effective FDIA system. Lack of a proper model results in a poor 

FDIA that may not detect faults or may treat false alarms as faults [35]. Model-fi-ee FDIA 

systems that are based on physical redundancy may not be applicable in all situations due

' FTC is divided into active where controller reconfiguration takes place and passive  where no controller 

reconfiguration is involved
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to cost or space limitations. Model-free approaches that are based on system identifica

tion or neural networks have the advantage that they do not require a mathematical model 

which may not exist anyway. However, they do require laboratory data for building the 

FDIA system. Examples of research in this category include [2, 10, 44, 54, 66].

1.3.2 Fixed Controller FTFCS vs. Adaptive FTFCS

The reported work in the recent literature can be categorized into two groups. The first 

group of work considers fixed controllers integrated with some version of FDIA system. 

In this category, depending on the nature of the FDIA system, the controller will be re

configured or left untouched. If the FDIA is used as an alarm system, the information 

conveyed by the FDIA is used to redesign the controller on line. If the FDIA is used to 

detect, isolate, and accommodate the faults then there is no reconfiguration/redesign of 

the controller as the faults are accommodated by the FDIA system.

The second category is totally different and in some cases the FDIA as classically de

scribed in the literature is not used at all. Instead, some model of the plant using system 

identification or neural networks are used to adjust the controller (see e.g. [9, 17, 85]). 

Other example of this type of FTFCS is what is proposed in Chapter 7, of the thesis where 

the fault characterization generated by the FDI system is used to adjust the adaptive con

troller.

1.4 AppMcation of FTFCS Concept
The approaches taken to implement FTC in the domain of Flight Control System (FTFCS) 

as reported in the literature varry depending on the aircraft under consideration.

o Fixed-wing Civil and Fighter Aircraft; Such type of aircraft are typical can

didates for FTFCS concept. The FTFCS can be designed to address sensor, 

actuator and airframe damage as well. However, due to the differences in the 

construction and mission of these aircraft different approaches aie taken. For
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example, in civil aircraft it is possible to duplicate, triplicate or even quadru

plicate the sensors. Of course there is an increase in the cost and space. It 

has been reported that there is an increase of 18% in the weight and 42% in 

the cost in the case of quadruplex redundancy of sensors [71]. This flexibil

ity does not exit in fighter aircraft as the weight and space are quite limited. 

Thus, an alternative to physical redundancy is sought. On the actuator level, 

both types of aircraft are possible targets for consideration. Airframe damage 

is of prime importance to fighter aircraft. So it is not surprising that a lot of 

what have been reported in the field of FTFCS is directed to these types of 

aircraft. Examples of recent work for civil and fighter aircraft are given in 

[11, 12, 26, 28, 32,48, 67].

o Rotary-wiiig Aircraft: Rotary-wing aircraft cany the characteristics of both 

fixed-wing and helicopters with the additional feature of high nonlinearity due 

to the switching of configurations from fixed-wing to helicopter or vice versa. 

Significant published work is available. An example of a paper dedicated to 

rotor-wing aircraft is [36].

o Helicopters: To the best of my Icnowledge, there is no published work on the 

application of FTFCS to helicopters. That may be due to the limitation of the 

configuration of the helicopter. However, it is possible to design an FTFCS 

for helicopters that addresses mainly the sensor failures and could extend that 

to include the degraded performance of the actuators and airframe damage 

for military helicopters. It is envisaged that the development of FTFCS for 

helicopters is no less important than others and the development of FTFCS for 

fixed-wing aircraft can benefit the FTFCS for helicopter. This can be observed 

via the growing interest in Unmanned Air Vehicles (UAV) that can be either 

fixed-wing or helicopter. Fault-tolerance for a UAV is of prime importance 

due to the absence of a human pilot.
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1.5 Robust Control vs Fault-Tolerant Control
Robust control theory is centred around the robustness of the controller in the face of 

model uncertainty and disturbances. Extensive work has been conducted in this regard 

but none of the researchers has claimed that the design method is robust against faults 

except very few publications that have been mentioned previously and those few cases 

are limited to certain types and number of faults. On the other hand, FTC is making use 

of the advancements in robust control theory and integrating it with FDIA to construct a 

FTC system. From the discussion above and the partitioning of the research areas into six 

major fields, the relationship between robust control and FTC is clear.

1.6 Contribution and Thesis Organization

1.6.1 Thesis Contribution

The thesis has attained the following objectives:

o We have investigated the applicability of an ANN-based technique to the develop

ment of an FDI system for a Bell-205 Helicopter. Based on the analysis and the 

flight test data available at the Engineering Department Control Systems Lab of Le

icester University, the design of an FDI system has been carried out and the results 

of desktop simulation are encouraging. The design is reported in Chapter 4.

o In order to design an FTFCS for the Bell-205, we have designed Hoo controllers for 

the lateral and longitudinal dynamics. The design was carried out using a DERA 

(now QinetiQ) Linear Model around 20 loiots. The time and frequency response 

analysis shows the fidelity of the design. The design was carried on using the Hoo 

S/ICS algorithm.

o We have integrated the above mentioned lateral and longitudinal controllers with 

the respective lateral and longitudinal FDIA systems and carried out various sim

ulations and tests to assess the first FTFCS scheme centred around the concept of
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a fixed structure FTFCS. Results with nonlinear FDI which were based on actual 

Flight Test Data (FTD) have highlighted the importance of accumulating rich FTD 

with sufficient documentation. To confirm the functionality of the FTFCS concept, 

an ANN-based FDI scheme using linear model data was developed and tested. The 

results were satisfactory and provided solid evidence of true functionality of the 

scheme though testing against the nonlinear model is still needed.

o Further, as per the recommendation of recent studies in the field of fault-tolerant 

control, the controller and the FDIA are better if designed together. Based on the 

various uncertainties concerning the presence of the FDIA in the feedback loop, /li- 

synthesis was used for the design of another FTFCS scheme that addresses the two 

systems together. Use of the //-synthesis tool, has assisted in identifying the area 

for improvement of the overall system in terms of robustness and stability. Desktop 

simulation has shown again the functionality of the system but the accuracy needs 

to be checked with the full nonlinear model in place. This is reported in Chapter 6.

o In addition to the practical design work that was carried out in the thesis, a theoret

ical investigation was completed to study the impact of the faults on the Algebraic 

Riccati Equations (AREs) that are normally to be solved in finding stabilizing Hoo 

controllers. Accordingly, a new FTFCS which is based on solving a new set of 

AREs is proposed. The solutions of the Riccati equations are used to update the 

controller that will compensate for single or multiple faults. The advantages of this 

approach have been highlighted.

1.6.2 Thesis Orgamzation

The thesis is organized into eight chapters including this chapter and four appendices. A 

summary of each is given below:

o Chapter 1: This is the current chapter in which introductory and relevant general 

material is presented about the concept of FTFCS and the difference between this
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approach and the robust control methodology. In addition, a literature survey is 

presented in respect of the different parts of the thesis. The scope of the thesis is 

outlined.

o Chapter 2: This chapter includes a detailed presentation of the Bell-205 Helicopter, 

the plant on which the concepts of FTFCS are applied. The mathematical models 

are described though the nonlinear model was not available and, thus, it will not be 

presented.

o Chapter 3: Neural Networks have been used to design FDIA systems for the Bell- 

205. Thus, it is appropriate to bring into context the main and most important 

features of ANN. The architectuie of ANN, its training, and its usage in control 

systems engineering is discussed. A detailed coverage of neuro modelling is given 

but neuro control is only considered briefly. However, the interested reader may 

consult some of the references in the literature survey or those cited in this chapter.

o Chapter 4: This chapter is about FDIA in general and later in the chapter details on 

ANN-based FDIA approaches are given. Based on the background given, the ANN- 

based FDIA for the Bell-205 Helicopter is presented with all of its fine details. The 

details in the chapter plus the supporting material in Appendix-A and Appendix-B 

give enough depth on the subject. The FDIA design basis, the ANN training, the 

design parameters, testing and validation of the neural networks used are presented. 

The pros and cons of using ANN are highlighted as well.

o Chapter 5: This chapter presents the concepts of the robust control paradigm and, 

then, uses it to design the lateral and longitudinal controllers. The fault-tolerance 

concept has been implemented in this chapter based on the integration of JToo con

trollers and the FDIA systems described in the previous chapter. The concept has 

been tested and the results are presented followed by some analysis of the robust

ness of the integrated system.

o Chapter 6: In the previous chapter, the Hoo mixed-sensitivity controllers were de

signed based on the nominal linearized model model of the Bell-205 helicopter

25



around a 20 Knots operating point. The design did not take into consideration the 

presence of the FDIA with its computational load and estimation discrepancies in 

case of failure occurrence. In this chapter, the design of the controller is based on 

the pi analysis and synthesis procedure. Additionally, the FDIA has been modelled 

and taken into consideration. The results and benefits of the approach have been 

analyzed in the framework of FTFCS.

o Chapter 7: In this chapter, analytic work is given which centres around the study 

of the impact of sensor faults on the AREs usually solved in finding a stabilizing 

controller. A new set of AREs are developed for the fault case and a new structured 

controller is designed. It is claimed, in view of its architecture, that it may be almost 

bumpless when a fault occurs. This constitutes a solid ground for further research.

o Chapter 8: This is a summary of the achieved results and some thoughts on future 

research.

o Appendix-A: This appendix describes the details of the architecture parameters of 

all ANNs designed for the FDIA system.

o Appendix-B: This appendix describes the simulation environment and the flight test 

data sets used in the project for the ANN training and validation.

o Appendix-C: This appendix gives a detailed overview of the flight test data struc

ture. Some comments on flight test data have been mentioned earlier in the section 

on ANN training and during the discussion of the simulation results of Chapters 5 

and 6.

o Appendix-D: This is a supplement to Chapter 7 where the ranlc of a solution to ARE 

is proved.
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Chapter 2

Bell=205 Helicoptei

The aim of this chapter is to give details on helicopter dynamics in general and the Bell- 

205 dynamics in particular. Nonlinear models, linear models, sensors, and actuators are 

covered.

2.1 Helicopter Dynamics
Helicopters are nonlinear, highly coupled, complex systems. The complexity of heli

copters is attributed to various interacting subsystems. These subsystems include: the 

main rotor, tail rotor, powerplant, airframe, fin assembly, and empennage. Producing a 

nonlinear model requires the engineer to be aware of the dynamics and aerodynamics 

of various components and to integrate them together under plausible assumptions. The 

modelling of each component aims at producing the governing equations that relate the 

force and moment components to the subsystem parameters. The integration of compo

nents produces the nonlinear model [61, 64, 70, 73].The overall system is described by 

nonlinear differential equations as described hereafter in Section 2.1.1. The figure below 

(Figure 2.1) shows the various subsystems and axes of motion.
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; '  Im a in r o t o r I

POWERPLANTTAILROTOR

EMPENNAGE

Figure 2.1 : Helicopter Subsystems with Forces and Moments 

Main Rotor (MR) Assembly [5, 80]

The MR has various structures. The most complicated one is the fu lly  articulated rotor 

in which blades are free to move up and down. This type of movement is called flapping. 

The blades can twist about the span-wise axis in what is known as feathering and they 

can move back and forth in what is called dragging. This type of rotor is usually fitted 

with three blades equally spaced. Another type of MR is the semi-rigid one which is 

fitted with two blades that are rigidly attached to the MR mast. This arrangements allows 

the two blades to flap together where one flaps up and the other flaps down. This type 

of MR system uses the see-saw principles where one blade flaps up the other flaps down 

around a gimbal hinge sometimes called a teetering hinge. A third type of MR is the rigid 

rotor where the blades are free only to feather. Stability of this type is hard to achieve 

and, thus, it is equipped with a computer control to overcome the stability issue. From the 

above discussion, it is clear that each blade is a rotating wing with each blade having its 

own degrees of freedom. The extra degrees of motion in addition to the 6DOF fuselage 

complicate the modelling of the helicopter.

MR Blades

The blades’ orientations are controlled via rods linked to the control system via mechan-
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ical linlcages. Various controls can be exerted on the blades to affect the desired motion. 

For example, when the lever is moved up or down the blades’ pitch angles are collec

tively increased or decreased accordingly which results in applying the MR thrust power 

to ascend or descend. If a combination of lever and longitudinal cyclic stick are applied, 

the extra lift power will be used to gain extra speed on descend or conserve the current 

speed and gain extra height by pitching up. In this combination, the pilot may need to 

increase or decrease the engine speed by manipulating the throttle to maintain constant 

revolutions per minute (RPM). Besides these basic motions, the helicopter can hover and 

move backward. Hovering, which is a fundamental feature of helicopter is a prerequisite 

for safe landing and aims at maintaining a given position to the ground at constant hight. 

It can take place at various flight conditions and the cushion it creates beneath the aircraft 

is influenced by the ground terrain. Under all these conditions there are various stability 

and performance issues that need to be analyzed carefully.

Tail Rotor (TR) Role

The MR normally moves left with respect to the fuselage and due to the asymmetry of the 

helicopter, the fuselage tends to move in the reverse direction. To overcome this problem, 

a single main rotor helicopter is fitted with a Tail Rotor (TR) to balance the MR torque by 

producing torque in the reverse direction and for that reason the TR is considered as an 

anti-torque system.

2.1.1

The nonlinear model normally covers all the helicopter subsystems which include air

frame, actuator dynamics, main rotor dynamics, empennage and tail rotor dynamics. In 

this section, we will derive the equations of motion in detail as we are going to use them 

later on when we come to linearization. However, the equations describing the dynamics 

of main rotor, tail rotor, and the empennage are only mentioned for completeness of the 

presentation without getting into the details of their derivation. Additionally, extra mod

elling features such as MR inflow will only be mentioned without getting into the details
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of deriving the governing equations.

The nonlinear differential equations that describe the model are of the form:

^  =  F (X ,U ,f)  (2.1)

Y  =  G (X ,U ) (2.2)

where X is the state vector, U  is the control input vector, F  is a nonlinear vector-valued 

function of both variables, Y  is the output vector while G is a vector-valued function 

mapping the states and control inputs to the outputs.

Equations o f  Motion

Under the following assumptions the nonlinear model is derived for the translational and 

rotational degrees of freedom;

•  Assumption 1 : The aircraft is assumed rigid while in reality it is not. This assump

tion implies that all points in the aircraft are assumed to maintain fixed relative 

positions in space at all time.

•  Assumption 2: The mass of the aircraft is assumed constant throughout its flight. 

Of course, the mass of the aircraft varies due to fuel consumption in real flight.

Without the assumptions above, additional degrees of freedom must be added to account

for flexible modes and variation of mass, which result in further complexity of the model.

The following equations are used to derive the nonlinear equations of motion (see e.g. 

[8,21,64]):

=  ^ (m V r)! ;  .... force summation (2.3)

y ^ M  =  .... moment summation (2.4)
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The first equation states that the summation of all forces (F) acting on the aircraft body 

equals the rate of change of the momentum of the body and the second equation states 

that the external momentum, M , of the aircraft equals the rate of change of moment of 

momentum (angular momentum), H.

The equations are re-written to indicate explicitly that the total forces and moments are 

those pertaining to steady-state and perturbations:

E f  =  E f .  +  E ^ F  (2.5)

In the last two equations, the first term is steady-state and the second is due to a pertur

bation. Initially the aircraft is assumed unaccelerated and the controls are locked which 

make the steady-state forces and moments equal to zero which lead to the following:

E ^ F  =  ^ImVr)  (2.7)

E A M  =  (2.8)

The rate of change of velocity vector, V t , can be expressed with respect to the earth using 

the following vector differential equation:

dkr I  ̂ dV r , , q.
— z -  g  — I v T —t t Ib  4 - w  X ( ^  " )

a t  a t
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Z.

Figure 2.2: Coordinate Systems

where the subscript E  indicates the Earth reference system and the subscript B  refers to 

the coordinate system fixed to the aircraft body (see Figure 2.2). The first term in this 

equation (eq- 2.9) is the linear velocity resulting from a change in the length of the posi

tion vector while the second term is the tangential velocity of the vector due to the aircraft 

angular velocity. Using the following relations:

V t

U)

V t

iu  4- j v  +  kw 

ip +  jq  + kr 

iii + j v  + kw

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

where u, v and w are velocity components along the x, y, and z-axes respectively and w 

is the angular velocity vector that has p, q, and r  as its components around the same axes. 

By expanding the vector cross product w x V t  in the last equation and collecting terms

A F =  iA F;

f i j k ^

ll> X V t = P q r

[ u V W y
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together, the following force equations are derived:

AFx = m{ii + wq — vr) (2.15)

AFy =  m{v + ur — pw) (2 .16)

AFx = m{w + pv — uq) (2.17)

Following the same procedure, the rotational equations of motion are derived. The mo

ment is equated to time rate of change of angular momentum, H:

(2.18,

where the moment of the partial mass dm  due to angular velocity w equals the tangential 

velocity times dm  where the tangential velocity is defined as:

Vt  = (jJ X r (2.19)

Thus, partial moment is defined as:

dM  =  (w  X r ) d m  (2.20)

The moment of momentum (angular momentum), H , equals the moment lever times the 

moment:

dH. =  rx(w X r)dm  (2.21)
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Recalling that the vector equations for the angular velocity and position vectors are given 

by:

w =  ip + jq  + kr 

r  =  ix  + jy  + kz

the vector multiplication r  x (w x r) yields:

r X ( w  X r) = i[(y^ +  z^)p -  xyq — xzr]

+ j[{z'^ + x^)q -  yzr -  xyp] (2.22)

+  k[{x'^ +  y^)r — xzp  -  yzq]

The angular momentum, H, is defined as:

H  =  y  r  X (w X r) dm  (2.23)

where the integration is performed over the entire mass of the aircraft. By using the vector 

cross product of r x (w x r) given above we get:

H  =  y r X (w X r)dm = J  i[(y^ +  z^)p — xyq — xzr] dm

+ y  j{{z^ +  x'^)q -  yzr -  xyp] dm  (2.24)

+  y  k[{x^ +  y^)r -  xzp  -  yzq] dm

and by decomposing it into the three components, we get:
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Hx — piXX qlxy vixz (2-25)

H y  =  p ly x  q lyy  ^ ly z  (2.26)

H z  — p ix z  q lzy  "1“ '^Izz (2.27)

where Ixx, lyy, and are moments of inertia while the rest are products of inertia. Due

to the symmetry of aircraft, products of inertia about the XZ-plane are zero which lead to 

the following simplified equations:

Hx = piXX flxz (2.28)

Ffy = 9^yy (2.29)

= rfzz -  p4z (2.30)

(H )|b = H-t-cj X H, then the equations for the moments

in decomposed form are:

A M x  =  IxxP -  Ix z (r  +  pq) + qr{Izz ~  lyy) (2 31)

AMy =  (2.32)

A M z  — I z z I  ~  IxzP  "f" Pq{Iyy ~  Ixx )  "f" Iz zq ^  (2.33)

To be in line with the notations conventionally used in many standard references, the fol

lowing symbols will be used instead:

Fy F  
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Fz ^  Z

M y )—» M

M z >—* N

The force equations (Equations 1.15 -1.17) and the moment equations (1.32 -1.34) consti

tute the rigid body dynamical equations. Of course, solving nonlinear differential equa

tions is quite complicated and in some cases may not be possible. On the other hand, 

unlike numerical solutions, analytical solutions help to gain insights into the plant physics.

The variables for the states, inputs and outputs are defined in Table- 2.1 below:

Table 2.1 : States, Input, and Output Symbols

Symbol Meaning

u Translational velocity along x-axis

P Roll Rate

V Translational velocity along y-axis

q Pitch Rate

w Translational velocity along z-axis

r Yaw Rate

X Gravity force along x-axis

L Rolling Moment

Y Gravity force along y-axis

M Pitching Moment

Z Gravity force along z-axis

N Yawing Moment

Main Rotor (MR) Modelling

Modelling of the MR is normally done on three levels of complexity. The Levels are 

differentiated by the degree of the physics considered which is represented by the in
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volvement of the aerodynamics and dynamics equations which vary from linear 2-D to 

nonlinear 3-D in terms of aerodynamics. On the level of dynamics, the mathematical 

representations vary from 3DOF/6DOF plus consideration of flapping and lag to consid

eration of elastic modes and detailed structural representations. The application of these 

levels is quite specific. Level-1 is targeted for low bandwidth control while Level-2 is for 

medium bandwidth and appropriate to high gain active flight control. Level-3 is the most 

complex one and is targeted for rotor design and analysis, vibration analysis and MR sta

bility analysis. With the aid of the definitions cited in the symbol table at the beginning 

of the thesis, the equations for forces with respect to hub-wind frame Yhw and 

and moments ( L h q , M h q  and N h )  are [70]:

f
/ {-(/z -  m<*z6):AcoaV'i -  (A -

Jù
+ maxbcosi/i} drb (2.34)

y;,. = /  { - ( / z  -  -  (A -  nwy,)iCos^i
Jo

+  maxbsintpi} d n  (2.35)
i-R

/  { - ( /z - m a z 6  4-mi6)i/%)(drb (2.36)
Jo

L hq = — ̂ -/5 ic (2.37)

MgQ =  (2.38)

Nh N d - Z ^ ) - H W }  (2.39)
Jo

rR 

' 0

Tail Rotor (TR) Modelling

The TR is modelled in the same way as the MR. However, the behaviour at low speed is 

different from high speed. The wake of the MR and the disturbed air from the MR hub 

creates local inflow that has to be taken care of especially for high fidelity models. The 

equations for forces and moments are:
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X t ~  Tt PicT (2.40a)

Yt = Tt (2.40b)

Zt — —Tt PisT (2.40c)

L t =  Ht Yt (2.40d)

M t — {It  + Xcg)ZT — Qt (2.40e)

N t = —{lT + Xcg)YT (2.40f)

where;
X t , Yt  and Zt  : Forces due to TR along x,y and z-directions.

L t , Mt , and N t  : Moments due to TR around x,y, and z-directions.

Ict : TR Lateral Cyclic 

Qt  : TR torque.

Tt  : TR Thrust.

Fin and Empennage

The flow around the fuselage and the empennage is quite complex and the forces and mo

ments due to surface pressure and skin friction are functions of speed and direction. The 

force and moment equations are [70]:

(2.41a)

Z f  = -pV fSpC zf{a f,P f) (2.41b)

M f = (2.41c)

= (2.41d)

(2.41e)

N f  = (2.4 If)
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where:
X f,Y f ,  and Z f  : Forces due to fin along the x,y, and z-directions.

M f,L f,  and N f  : Moments around x,y, and z-directions.

p: air density.

Ss and Sp: Side and Planner area of helicopter.

Cxx- are force and moments coefficients usually stored in look-up tables.

Actuators and Sensors

The Bell-205 helicopter is equipped with a set of sensors to measure the various readings 

as indicated in Appendix-A. Clearly, no redundancy in sensors is available. The available 

sensors measure various attitude and rate quantities that include for example the positions, 

velocities, accelerations, pressure, height, and actuator positions ...etc. As far as controller 

design is concerned, the sensors are considered linear. Regarding the actuators, they are 

the standard set available in most helicopter that are linlced to the coclqjit inceptors via 

mechanical linlcages. In control design they are treated as 2"̂  ̂order transfer functions.

The nonlinear model equations are obtained by grouping the force and momentum com

ponents contributed by the rigid body and the various components together.

2.1.2 Lmearization of Nonlinear Model

Physical systems are mostly nonlinear and are represented by nonlinear differential equa

tions and the resultant model is quite rich as it encapsulates most of the physical features 

of the plant. Despite the nonlinear model complexity, it may still fall short of the actual 

system. Solving nonlinear differential equations is usually not an easy task and may turn 

out to be impossible in some cases. Thus, in some engineering problems (e.g. controller 

design), nonlinear systems are approximated by linear models that are considered good 

enough to represent the system in the vicinity of some operating point. For that purpose, 

small perturbation theory and Taylor’s theorem for analytic functions are used to linearize 

nonlinear systems.

The small perturbation theory states that an object in disturbed motion can be described 

as a perturbation from its tiim. Mathematically, it is expressed as:
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X  =  Xe +  <îx (2.42)

Taylor’s theorem states that if a function and its derivatives are loiown at a ceitain point, 

then the behavior of the function can be estimated from an expansion of the function in 

a series about the Icnown points. In mathematical terms, the expansion for the function 

f( x )  around a; =  0 is given by:

/(a;) =  /(O) +  /'(0)(a;) +  +  ... +  +  .. (2.43)

As more terms are included, the estimation of the function will be more accurate. Ex

panding the function f{x )  using Taylor’s series (i.e. approximating it around æ =  0 and 

in the presence of a perturbation), we get:

/(æo +  A z) =  /(a;o) +  f(a;o)(Aa:) -H : ^ ( A z : » )  +  ... 4- Z ! ! ^ ( A z " )  4-... (2.44)

For example, the force along the x-axis is expressed as:

X  =  X , -b ( ^ f u  4- +  ... 4- ^ % )  +  ... (2.45)ou OW  OUo

Ignoring all but the first order terms of the series expansion will leave only the lineai- terms 

which are dominant around a trim point. Further set points as e are such that the function 

values are zero; i.e. Xe — 0. Similarly, the rest of the force and moment equations are 

linearized in the same manner. Defining the following:

40



ü" I f  ~

which lead to a set of linear equations as will be presented in the following section. The 

set points around which the nonlinear system is linearized, are normally the points o f  

equilibrium. Though it sounds simple and straightforward to linearize nonlinear models, 

it must be used with caution as a linear model is only good around the equilibrium points 

with a small perturbation. As the perturbation becomes bigger, the linear model fails to 

represent the system.

The Bell-205 Helicopter is an advanced experimental fly-by-wire 3.629 tons helicopter. 

It has two pilot seats; the evaluation pilot (EP) on the right side can fly the helicopter 

with the assistance of an experimental Full-authority Fly-By-Wire (FBW), simplex and 

fail-safe system while the Safety Pilot (SP) on the left seat can ovemde the control of 

EP through direct mechanical control of the helicopter. Further general detail (including 

main rotor, tail rotor, elevator, and vertical stabilizer) can be found in [14, 77]. The flight 

conditions cover many cases and are distinguished by the speed and trim parameters.

The helicopter has undergone some physical modification ’ which may indicate some dis

crepancy between the linear models available and the actual helicopter. This modification 

increased the usefulness of the Flight Test Data (FTD) as a reference of the available linear 

models [4, 76]. The models available for the unmodified helicopter are either produced 

by the Defence Research and Evaluation Agency (DERA, now QinetiQ) and it is called 

hereafter DERA Model or it is the general model produced by NASA, and hereafter will 

be referred to as NASA Model.These models will be described in succeeding section. 

The helicopter is controlled via a collective stick, a cyclic (2-axis) lever and foot pedals. 

The helicopter is highly coupled and a command in one channel affects other channels as 

well. However, with this in mind one can describe the input/output relationship as per the 

table below. Table- 2.2

' The stablizing bar has been removed
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Table 2.2: Input/Output Pairing Relationship

Pilot/Controller Command Helicopter Response

Main Rotor Collective via stick 

Longitudinal cyclic via stick 

Lateral Cyclic via stick 

Tail Rotor Collective via pedal

Heave velocity 

Pitch attitude 

Roll attitude 

Heading rate

The sensors’ minimum and maximum readings are as follows:

Table 2.3: Sensors’s Minimum and Maximum Values
Sensor Symbol min max

Pitch Rate Q -7.65386 8.123258

Pitch Attitude e -5.01567 16.9034

Roll Attitude <t> -14.6088 10.62586

Yaw Rate r -11.6803 6.993779

Roll Rate P -13.9777 15.53333

The state-space 

[76]:

model for the Bell-205 is represented by the following set of equations
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X  : û  =  XuU +  X ^ w  +  XgQ +  X yV  +  X p p  +

+  gcos{6o)sin{(f)o) (2.46a)

Y  : V = YuU +  Yu,w +  Ygq +  YyV + YpP +  F-r

+  gœs{4>o)sin{0o) (2.46b)

Z : w = ZuU +  ZyjW + Zgq +  ZyV + ZpP +

+  gcos{6o)cos{4>o) (2.46c)

M  : q = M yp  +  M^iW + +  MpP +  M^r (2.46d)

iV : f  = NuU +  NjuW +  Ngq +  N^v +  NpP + iV̂ r (2.46e)

L  : p = LuU + LwVJ +  Lgq +  LyV +  LpP +  L rr  (2.46f)

ê =  q (2 .46g)

^ =  p  (2.46h)

where the state vector (%), the input vector (u), and the output (y) are:

oc = [ u v w q r p q ( j ) ] ^

^ ~  [ îs 4c 4r

y=[ <^  9 r p q f

For the Bell-205 the model has been produced by incorporating flight test data into the 

HELISIM  ̂model.

2.2.1 NASA Model

The NASA Models are a collection of linear models obtained around several operating 

points in the flight envelope and documented in a contract report [38]. The trim angles 

are :

^HELISIM stands for Helicopter Simulation model built around Padfield flight mechanic model
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Table 2.4: The NASA Linear Model trim angles
The Roll attitude

The Pitch attitude

The Angle of Attack (AoA)

The Side Slip Angle

The Heading angle attitude

The trim velocities are:

Table 2.5: NASA Linear Model trim velocities
Uo

Vo

Wo

velocity x-direction 

velocity y-direction 

velocity z-direction

In these models, no engine dynamics modelling is considered. Rotor speed is assumed 

constant and any rotor torques are instantaneous. The models have been evaluated for 

control law analysis and design and the findings reflect some shortcomings when validated 

in time and frequency domain as shown in [14, 77]. These models can be described by 

the linear matrix equations:

x(k + l)  = Ax(k) + Bu(k) 

y(k) = Cx(k) +  Du(k)

(2.47a)

(2.47b)

where A, B, C, and D are the stability derivatives, control derivatives, and output matrices 

respectively which are very well defined for many operating points in the flight envelope.

The inputs are the lateral cyclic (FDA), longitudinal cyclic (FDE), and tail rotor collective 

(FDR). The Main Rotor (MR) collective is not part of the flight control system. The states 

are: the roll attitude (j>), pitch attitude (Û), roll rate (p), yaw rate (r), longitudinal velocity 

(u), lateral velocity (v), and vertical velocity (w). The outputs are: roll attitude (j>), pitch 

attitude (0), yaw rate (r), roll rate (p), and pitch rate (g).
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The set of linear models is documented in detail in [38]. There are sixty two flight con

ditions that cover the full flight envelope. The model is of 6*'* order and the trimming is 

done at sea level for all flight conditions except for two of them which are meant to cover 

operation at altitude.

2.2.2 DERA Model

DERA (now QinetiQ) has produced a nonlinear model which was originally implemented 

in the TSIM environment of the dynamic equations of motion using Padfield’s theoretical 

model of helicopter flight mechanics. The nonlinear model is built using the mathemat

ical formulation mentioned in Section 2.1.1 where all the subsystems are modelled and 

the equations are presented to SIMULINK as polynomials and a set of look-up tables. 

The forces and moments from all subsystems are accumulated and used to represent the 

total forces and moments acting on the helicopter. The data on which the DERA model 

was based was taken from a contractor report prepared for NASA [38].The stability and 

control derivatives were originally provided by the manufacturer.

Afterwards, the model is used to generate a set of linearized models which are used to 

develop linear controllers. Another usage of the nonlinear model is for testing controllers 

prior to piloted flight test.

The DERA nonlinear model considers the Main Rotor (MR), the Tail Rotor (TR), the 

fuselage, and the fin. The MR is modelled using centre- spring-disk approximation to the 

rotor states with quasi-steady flapping and inflow dynamics [70]. The fuselage is a one

dimensional look-up table and polynomial function where incidence on sideslip angle is 

an independent variable. The DERA nonlinear model is described by a set of nonlinear 

discrete time equations of the form:

x (t  4-1) =  (f){x{k),u{k)) (2.48a)

y{k  4-1) =  ip{x{k)) (2.48b)

where <p and ^  are nonlinear functions, x, u, and y  are the state, input and output vectors

of the helicopter.
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In addition to the nonlinear model, DERA has produced 8D0F and 12DOF linear mod

els. The states, inputs and outputs are as seen in Table- 2.6 and Table- 2.7. DERA linear 

models are available in two versions; i.e. coupled and decoupled forms The decoupled 

models can be used separately for the design and evaluation of lateral and longitudinal 

controllers and the coupled model is used for the testing and evaluation of the combined 

controllers as has been done, for example, in [76, 77]. We have followed almost the same 

approach in our design of a fault-tolerant flight control system for the Bell-205 helicopter. 

The states, inputs, and outputs are grouped into lateral and longitudinal. The input for the 

longitudinal channel is longitudinal cyclic {6u) while the states and outputs are given by 

Table 2.6:

Table 2.6: Longitudinal Sates, Outputs, and Inputs

Symbol Meaning

States e pitch attitude

Q pitch rate

u longitudinal velocity

w vertical velocity

Xsis Longitudinal cyclic actuator

Outputs e pitch attitude

Q pitch rate

Input longitudinal cyclic actuator input

The inputs for the lateral channel are: lateral cyclic (Sic), and tail rotor collective (Jtr) The 

states and outputs are as shown below:

^Dynamic motion equations are originally coupled which represent the actual interaction between the 

various axes. For the sake o f  the design, they can be decoupled; i.e. separated into lateral and longitudinal 

dynamics (see e.g. [64, 70])
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Table 2 . 1 : Lateral States, Outputs, and Inputs
Symbol Meaning

States <P roll attitude

P roll rate

r yaw rate

V lateral velocity

w lateral velocity z-direction

Lateral cyclic actuator

Tail rotor actuator

Outputs 4> roll attitude

p roll rate

r yaw rate

Inputs Îc lateral cyclic actuator input

Sir lateral tail rotor actuator input

As a result of a comparative evaluation with the above mentioned NASA models, it has 

been found that the DERA Models are of superior quality and the latter model(i.e. the 

12D0F) has been recommended for use in control law analysis and future control laws 

synthesis [14]. The model was analyzed extensively and certain improvements have been 

recommended as indicated in [14]. One of the main points that has been highlighted in 

[77] is pertaining to poor indication of off-axis coupling which is extremely important for 

helicopter controller design. More details are given in the next section.

2.3 Model Validation
DERA linear models (8D0F and 12D0F) and the NASA 6D0F models have been com

pared against Flight Test Data (FTD). The FTD has been preprocessed by cropping some 

records to isolate the short term response to the control input which is approximately (3-4 

seconds in the case of time-domain analysis and 20-40 seconds for frequency analysis). 

Also, the data was zero mean detrended to remove any trim offset and the inputs were
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lineal- detrended to remove the effects of drift caused by change of flight conditions. The 

comparisons were made in the time-domain and frequency domain. The flight data are 

used to excite both models and given below are the major conclusions [14]:

o The DERA 6D0F and NASA 6D0F models roughly capture the salient rigid body 

modes of the Bell-205 helicopter in the frequency range 1-10 rad/s. It is been 

suggested that additional engine modelling be made to improve the model fidelity.

o Fidelity of the DERA model can be further enhanced by considering the 12D0F 

model which incorporates conning and flapping dynamics and by including an in

flow con ection and tail fin blockage.

o With the improvements of the 12D0F model, there is still some uncertainty that 

shows significant discrepancy between the model and the aircraft. Uncertainty 

varies from one channel to another and can reach 70% to 80%.

o Predicting on-axis response was good overall with some minor exceptions.

o Though the pilot subjective assessments show that the 6D0F simulation was rep

resentative of the Bell-205 helicopter it has been recommended by Leicester Uni

versity to use the I2D0F model for analysis of existing control laws and for the 

synthesis of future control laws.

2.3.1 FMghl Test Data - FTD

Many controllers have been designed for the Bell-205 helicopter over the past five years. 

The controllers, after desktop simulation, have been coded and loaded into the Bell-205 

helicopter on-board simulator and flight tested. During flight test, various data entities 

have been recorded for later analysis. The data collected can be grouped into:

o Sensor Measurements
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o Actuator readings

o Dynamics related data: pressure, hight, true air speed etc. 

o Safety readings 

o Controller inputs

o Small perturbation readings for decoupling 

o Miscellaneous.

Two main comments need to be made on the FTD. These are:

o The FTD was collected solely for controller performance and stability analysis and, 

thus, the data was collected during certain manoeuvres.

o The on-board simulator has a limited storage and, thus, the FTD are limited in size 

and coverage is not wide.

The above comments are very important when thinldng about deploying an ANN-based 

FDI system into a real-time platform when the ANN-based FDI is designed using this 

FTD. Further details on the FTD are given in Appendix-A.

2.4 Conclusion

We have covered helicopter dynamics in general and the Bell-205 helicopter in particular. 

The background developed in this chapter will be used later on in Chapters 5 and 6 during 

the design of the controllers. The development of the nonlinear model is quite involved 

and the linear models are only approximations of the actual plant around specific operat

ing points. As will be seen in Chapters 3 and 4, developing nonlinear models using ANNs 

is less expensive and more attainable provided that the flight test data is rich enough.
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Chaptei

Artilieîal Neural Networks (ANNs)

In our research project we used ANNs to build FDIA systems for the Bell-205 helicopter. 

Thus, in this chapter, it is intended to give necessary details that cover the mathematical 

background of ANN and its application in control systems design. Due to its biological 

origin, terms such neuron and learning are used while the term synapse has been replaced 

by weight which reflects its realistic role but in a mathematical sense. The chapter will 

give details on these architectural aspects as well as on learning capability.

Basically, Artificial Neural Networks (ANNs) are either of feed-forward or of recurrent 

stmcture. Multi-layer Feed-forward ANN (MFNN), which is equivalently called Multi 

Layer Perception (MLP), is the most widely used ANN architecture in control systems 

applications. However, recurrent neural network (RNN) is claimed to be more superior to 

MFNN due to its inherent feedback property [57]. These two architectural schemes are 

the major ones. However, the field is expanding rapidly with other paradigms, which are 

variations of the two or have some new features, emerging.
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3.1.1 Structure of a Single Neuron

ANNs are flexible numerical structures; i.e. they have adjustable parameters. These 

parameters are the weights that interconnect two nodes (neurons)and the bias which is an 

additional variable to each neuron. The structure of the neuron is as seen in Figure 3.1 

while the function that governs the behaviour of a single neuron is represented by the 

following:

* lUi; 4- 6j)

/(%) (31)

Figure 3.1: A Single Neuron Diagram showing inputs, weights, bias and mapping func

tion

where Xi is the input, Wij is the weight, bj is the bias and /  is the mapping function that can 

be either linear or nonlinear.The mathematical foundations of ANNs and their connection 

to modelling will be further explored in the function approximation section later on in this 

chapter.

When an input is presented to a neuron, the output is produced pending on the current
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weight, bias, and mapping function.

3.1.2 MLP Structure

Multi Layer Perceptron (MLP) comes in a variety of structures and has the neuron as its 

basic building block. Mainly, it consists of an input layer, one or more hidden layers, and 

an output layer. The input and hidden layers have as many neurons as required by the 

application at hand. The number of neurons in the output layer is dictated by the actual 

number of the outputs of the physical system. The diagram below (Figure 3.2) depicts 

the overall structure of a fiilly coimected MLP of two inputs, three outputs and one hidden 

layer.

Legend
1 weight ctKinecting neuron #2 in Layer #1 to neuron # II in Layer #2

Figure 3.2: MLP Architecture

The MLP is suitable for static modelling and with appropriate time-delay units it can 

handle complex dynamical systems. The governing mathematical equation for an MLP 

(without time-delay) is given by:

y =  +  &l) +  (3.2)

where :
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W ij represents the weight vector connecting neurons of two consecutive layers ,

bj Column vector of bias at zi/i layer,

/ ” Column of Mapping functions 

X is the input vector

y is the output vector

Conventionally, for the first and second (first hidden) layers, each has a nonlinear mapping 

function and the last layer has a linear mapping function. If MLP is to be nonlinear at least 

one of its layers must have a nonlinear mapping function.

3.1.3 Recurrent Neural Network (RNN)

The RNN is similar to the MLP but it has an extra feature due to its dynamic feedback 

where some or all of the outputs are fed back to other neurons in other preceeding layers. 

Accordingly, the MLP with Time-Delay units in its inputs or/and outputs may also be 

considered as an RNN.

The mathematical representation of a RNN is the same as for the MLP but with additional 

terms to account for the feedback which could vary from one RNN to another depending 

on the architecture chosen for the problem. The diagram in Figure 3.3 shows an example 

of a RNN. Recurrent neural networks can be fully connected which is loiown as FRNN. 

In contr ast to FRNN, partially connected RNN (PRNN) may have some of the feedback 

connections broken.

The mathematical equation of this RNN (Figure 3.3) is give by the following equation: 

2/ =  o (A) o %.(& -  1)] (3.3)

where:
il> is the nonlinear activation operator (function)

Xa{k) is the augmented nemal input vector

Ya{k — I) is the augmented forward synaptic weight

W l {k) is the feedback augmented weight matrix

o is the dot product
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Figure 3.3: RNN Architecture

3.2 ANN Training
As we have seen the ANNs are characterized by their architectural components; namely, 

the weights and biases which are flexible to have any value. In order for the network to 

produce certain outputs, it must learn the relationship between the patterns of inputs and 

of outputs. The learning process is also known as training which can be conducted in 

two forms. The first and the most popular one is oflF-line training while the other is on

line training. In off-line training, the designed network is presented with a data set that 

contains pairs of inputs and outputs. The whole set is processed by the neural network 

and at the end, the ANN weights and biases are updated. A certain error function is 

evaluated to check that the ANN outputs are close enough to the desired outputs. If  so, 

the training is stopped or else it continues till a better match is reached. The mechanism 

via which the training is controlled is known as the training algorithm. Back-propagation 

is the popular and de facto standard for ANN training. The mathematical basis of this 

algorithm will be explained later. In contrast to off-line training is on-line training which 

has fundamental differences. In on-line training, the weights and biases are updated upon 

processing of a single pair (alternatively called pattern) of data and, thus, it is sometimes 

called incremental training [15, 37, 56]. Normally, on-line training is used to improve the 

fidelity of previously produced ANN-based models or neuro controllers that were off-line 

trained. An example of this, is a research aircraft ANN-based model (or neural model)
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[20, 46, 47] which was trained during typical flights to fine tune the model. Similarly, an 

aircraft neuro controller can be fine tuned during typical flight conditions to enhance the 

performance of the controller.

Bachpropagation (BPTraining Algorithm)

The BP algorithm is so far the most popular algorithm which is based on the gradient 

descent method. It has many variations that aim to satisfy the conflicting requirements 

of boosting the speed of convergence while reducing the memory consumption as much 

as possible. Many references on this subject give enough details of this algorithm and its 

variations (e.g. [37, 41, 56, 57, 63]).

The algorithm is described in many references (e.g. [57]) and is given by the following 

equations;

Wk+\ =Wk + Atufe (3.4)

^wk =  ~V9k

where Wk is the weight in the iteration and is the change in the weight while 

Qk is the gradient and r] is the step size (sometimes called learning rate). The gradient 

is calculated by finding the partial derivative of the sum of the instantaneous errors at a 

specific neuron j.

The BP algorithm works in two phases or passes as follows:

Forward Phase; In this phase the input is presented to the input layer nodes and the 

result is calculated and propagated to the hidden layer nodes which in turn do the 

same and propagate the output to the next hidden layer or to the output layer. The 

output layer processes the results linearly and presents it. This process is described 

by the equations below.

Backward Phase: This starts at the output layer and moves backwards; i.e., back propa

gates in the layers successively to adjust the weights and biases accordingly.
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This two-phase processing is repeated until the cost function is minimized. The following 

diagram (Figure 3.4 taken from [57]) shows the dynamics of the BP algorithm where the 

solid line represents the forward pass and the dotted line represents the backward pass. 

Recalling the structure of the neuron (Figure 3.1), the internal activity of the neurons is

given by:

Figure 3.4: BP Algorithm Diagram

and the output o f the neuron is given by:

(3.6)

2/j(n) =  y)(t;j(»)) (3.7)

Now using the chain rule and applying it to the gradient introduced in Equation 3.5, we 

get:

dE{n) _  dE{n) dej{n)dyj{n) dvjjn) 
(n) (n) (n) ÔU; (n) (n)

(3 8)
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Now substituting the following relationship in Equation 3.8:

ss--> (3.9)

aej(n)  ̂
% (n )

(3.10)

Wr (3 11)

(3.12)

Equation 3.7 becomes:

(3.13)

Recalling the correction in the weight given by Equation 3.5 and substituting Equa

tion 3.13 in it gives us the equation for weight updating:

^wk =  -r]Sj{n)yi{n) (3.14)

where 5j is called the local gradient and for the hidden layer is given by:

i,(n ) =  (3.15)

For the output neuron, the local gradient is given by:

5j{n) =  ej(n)<pjej(n) (3.16)

3.3 Function Approximation
Physical systems are nonlinear and normally described by a set of nonlinear differential 

equations. Solving these equations may in some situations become veiy difficult and, 

thus, numerical approximation helps to solve them. Based on Approximation Theory, any 

smooth nonlinear function (i.e. a nonlinear function that is continuously differentiable 

everywhere) can be approximated by an MLP with a single hidden layer that has suffi

cient number of neurons. As shown in [54, 57], an ANN with a single hidden layer can
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approximate any nonlinear function provided it has a sufficient number of neurons in its 

hidden layer. The theorem below shows the structural linlcage between neural networks 

and function approximation.

Theorem 3.1 [57] Let y(.) be a nonconstant and continuous function, Let Ip denote the 

p-dimensional unit hypercube [0,1]^. The space o f continuous functions on Ip is denoted 

by C{Ip). Then, given any function f  6 C{Ip) and e > 0, there exist an integer M  and 

set o f real constants a^, 6i and Wij, where z =  1,..M  and j  = l...p such that fo r

M  p

F (xi, . . , X p )  = ^ (3. 17)
i=l j=l

as an approximate realization o f the function /{■) in the sense that,

\ F { x i , . . . , X p )  -  f { x i , . . . , X p ) \  <  e f o r a l l ' x i , . . , X p  €  I p

Here, the function p  can for example be the logistic function p— which is used 

to represent the nonlinearity in the neuron model. The function is a nonconstant and 

bounded function. Also the above equation (3.17) resembles the equation of an MLP 

where the network has p input nodes, a single hidden layer consisting of M neurons, a 

hidden layer with synaptic weights wi...Wp and biases 9, and the network output is a 

linear combination of the the outputs of the hidden neurons with a i , ..., cip defining the 

coefficients of this combination. A detailed proof of the above theorem can be found in 

many references (e.g. see [57]).

3o4 AppMcation of ANN m Control Systems
As we have seen, the ANN with its mathematical structure is very much suitable for func

tion approximation. Real systems are mostly nonlinear and are represented by vector

valued nonlinear functions. Though developing nonlinear models takes lots of effort and 

time, the resultant models either may not be accurate enough to capture all physical fea

tures of the nonlinear plant or may have equations which are too difficult to solve. In
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either case, the input/output recording of the system can help to build better and easier 

models. ANN is a mathematical tool that has a proven record in this regard. ANN can be 

used as a modelling tool and the models can be built without great involvement in the plant 

mathematics that describe the dynamics of the system. Additionally, ANN can be used 

to build controllers for complex systems. These controllers are Icnown in the literature as 

neurocontrollers. In this section we will give brief introduction to how ANNs are used in 

system modelling and later on in Chapter 4 we will describe in depth how ANNs are used 

in modelling, in general, and in building FDIA in particular. As we will not use ANN in 

building controllers in the thesis, no further details are presented on neurocontrollers.

3.4.1 Nemro Modelling

The basic background on which neuro modelling is based on is the ANN capability of ap

proximating nonlinear functions. In Section 3.3,we saw how ANN with a single hidden 

layer is capable of approximating a nonlinear function with high degree of accuracy. As 

we recall from Chapter 2, in order to build a nonlinear model for a helicopter, in general, 

we need to derive all force and moment equations for all the subsystems. An alternative 

to that is to build neural models for the helicopter based on Flight Test Data (FTD). Of 

course, neural models may not give physical insight of the plant unlike the mathematical 

model. An example of a generic model for a complex system is, for example, building a 

neural model of lateral dynamics of an aircraft. This model can be built by selecting all, 

or a subset of, plant inputs and outputs and limiting the output to the physical quantities 

(namely the roll attitude, (p, the roll rate, p, and yaw the rate r). Similar models can be 

built for the longitudinal dynamics. However, an alternative approach is to build a more 

comprehensive model that consists of several neural networks, each neural network mod

elling a subsystem with one ANN. At the end, we may use all the other networks outputs 

in addition to some other inputs to generate various outputs. The two approaches are de

scribed by the following diagrams. Figure 3.5 and Figure 3.6. The factors affecting the 

accuracy of approximation are:
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Figure 3.5: Generic Neural Model

•  Size of hidden layer: the number of neurons, especially of the hidden layer.

•  The number of hidden layers: Even though it has been stated that ANN with a single 

hidden layer can approximate any function with high level of accuracy, it has been 

found in some cases that adding more layers may improve the accuracy at the cost 

of computational overhead.

•  Richness of the training data: Failure to collect sufficient data results in poor models 

or even models that fail to represent the plan in some operating conditions.

3.4.2 Neuro Modelling Guideline
The following guidelines may be found useful:

ANN Architecture Beside the fact that one has to decide whether to use MLP or RNN, 

the designer has to decide on the number of layers, neurons per layer, and the activa

tion function for neurons at each layer. In regard to the size of the network, there are 

two approaches. Either to start with a small size of network and depending on per

formance, one increases the complexity of the network until optimal performance
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Figure 3.6; Comprehensive Neural Model

is reached. The other approach is technically more sound where one starts with a 

large size of network and by using either a genetic algorithm or pruning technique 

one gets rid of those nodes in the network that have minor contribution [57].

ANN input space One can blindly use the available data set and end up with either a 

poor performing network or an over-fitting network that results in poor performance 

once the network is used in real applications. Therefore, it is necessary to use some 

preprocessing techniques that normalize the training data or keep only the most 

contributive elements of the input vector [63]. Inputs in general can be chosen for 

a complex system such as the aircraft and its subsystems using physical insights.
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3.5 Why nse ANN m FDIA?
As has been reported widely in the literature, ANN can be used for either pattern classi

fication or function approximation. It’s been found that MFNN with single hidden layer 

of sufficient number of neurons can be used as a universal approximator for any smooth 

nonlinear function provided that it is trained using representative data sets. In some appli

cations, adding more hidden layers help to speed the convergence to capture the features 

of the model. As indicated in the literature, FDI can be and has been implemented using 

for example the Luemberger observer, the Kalman filter, etc. In all these cases, a good 

model is required to detect robustly and isolate faults. The available mathematical models 

for the Bell-205 helicopter, especially the NASA and DERA 6D0F models, have certain 

shortcomings. ANN can produce good models provided high quality FTD are available. 

The accommodation is an extra task that can be implemented via ANN, fuzzy logic, or 

simple decision logic testing of instantaneous values [13, 35].

More importantly, all FDI methods that have proven records in tackling linear or lin

earized systems cannot generally be applied to nonlinear systems especially if they are 

ill-defined, complex, and/or have high degree of uncertainty in their models [13]. ANN 

has shown capability in handling such nonlinear mappings and, thus, has been used for 

nonlinear FDI systems as indicated in [13]. The field of nonlinear FDI is, unlike the linear 

FDI system, still under development while the latter has been well established since the 

late 80’s and early 90’s. ANN with its powerful architectural mapping and learning ca

pabilities has shown strength to contribute to the development of nonlinear FDI. In some 

industrial applications, the powerful parallelism characteristic of ANN has been greatly 

utilized by using some neural chips or specialized processors that support parallelism such 

as the TRANSPUTER and its powerful language OCAM. This feature greatly enliances 

the ability of an ANN-based FTFCS.
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3.6 Comc!usîon
We have in this chapter given a detailed overview of ANN architecture and training leav

ing out all variations but focusing on the architectures that will be used in our work. Many 

details, especially on training, are not included as it is considered out of scope but impor

tant remarks have been mentioned. We must stress that ANN does have its pros and cons. 

In what has been presented, we have seen the major pros of ANN techniques. However, 

the major shortcoming is pertaining to processing time in case of large and complex ap

plications. However, it may not be a negative aspect of the ANN but rather, as recognized 

by many designers, that ANNs are parallel in nature which lends themselves to parallel 

machines. Thus, complex applications that result in large networks may take prolonged 

learning time. Learning time can be handled by special versions of the BP algorithm and 

use only off-line training. However, processing will be on-line and there may be some 

computational delay. One remedy is to use specialized hardware where there are varieties 

of specialized neural chips and boards that make the processing time well below normal 

expectation.
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Chapter 4

Fauit Detection, Isolation and 

Accommodation(FDIA)

Introduction
A system’s tolerance to faults and operator errors is becoming of prime importance to en

sure safety and reliability of plant operation. Faults can occur to plant sensors, actuators, 

and plant components. Occurr ence of faults whether they are incipient or abrupt may lead 

to catastrophic results if not attended to in good time. In other cases, faults may result 

in major degradation of stability and/or performance of the plant. Thus, building systems 

that are fault-tolerant is of prime appeal in sophisticated industrial processes. Fault detec

tion, isolation, and accommodation is the corner stone in the design of the fault-tolerant 

control systems.

At the beginning of the chapter we aim to give general coverage of the subject with em

phasis on the ANN-based technique. The rest of the chapter is devoted to details of the 

design of ANN-based FDIAs for the Bell-205 Helicopter. The design details cover all 

the sensors of the lateral and longitudinal dynamics. Desktop simulation results and their 

analysis are presented.
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4.1 FDIA Concepts
In the literature, the terminology in the FDI area is not fully unified. Thus, it is appropriate 

to start the chapter with definitions of the terms used in the thesis.

Fault Detection means the ability of the system to make a binary decision about the 

occurrence of a fault.

Fault Isolation means the ability of the system to identify the source and magnitude of 

the fault. Sometimes, determining the source of the fault is referred to as isolation while 

deteimining the magnitude of the fault is referred to as fault identification. In the thesis 

we used the former term for both cases.

Fault Accommodation means the system’s ability to replace the faulty signal with an 

acceptable estimate.

Residual means the difference between a signal and its estimation. Fora a healthy plant, 

the residual vector should be zero. Otherwise, it indicates a fault occurrence if its magni

tude diverges fi-om zero by a prescribed range.

4.2 FDIA Design
There are basically two major approaches to the design of FDIA systems. These are:

o Physical Redundancy 

o Analytic Redundancy *

In physical redundancy, the sensors, actuators, or plant components are duplicated or even 

triplicated. On the software level, a voting scheme is implemented to make decisions in 

cases of significant differences. For example, in an Airbus aircraft 300% redundancy is 

implemented in hardware. The same degree of redundancy is used in some parts of pro

cess control such as nuclear reactors. The benefits of such an approach can be justified in

' Analytic Redundancy (AR) exploits the implicit redundancy in the relationship between various mea

surements by using mathematical models
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terms of increased safety and reliability of the system at hand. Of course, there is a signif

icant increase in initial capital cost plus running cost for maintenance, and the extra space 

required to lay extra hardware. In some cases, such as with a combat aircraft where the 

space limitation is a major constraint or with plants with less hazards but where the cost 

minimization is a stringent requirement, other solutions have to be sought. Such plants 

can be diagnosed using analytic redundancy which use analytical or functional relation

ships among various plant variables to decide whether or not a fault has occurred. 

Analytic redundancy requires mathematical models to start with. Since plants are mostly 

nonlinear this means that the FDIA is designed based on either nonlinear models or lin

earized models. Nonlinear FDIA, unlike linear FDI, is still an immature field. As analytic 

redundancy relies on mathematical models, they are sometimes called model-based. As 

there are actually some FDIA which are analytic but on the other hand do not require 

a mathematical model, we may consider the following grouping of analytic redundancy 

FDIA:

o Model-based approaches which include all methods that require mathematical mod

els which are usually linear.

o Model-free approaches which include methods such as the ANN-based technique. 

Physical redundancy is model-free but is not analytic.

Model-based approaches have their own advantages but entail some cost. The cost is 

insignificant compared to the physical redundancy. Apart from development cost, model- 

based approaches require high fidelity mathematical models.

4.2.1 Model-based FDI

Model-based FDI requires a mathematical model for the system which is normally ob

tained by linearizing the nonlinear model around several operating points. As the model 

is going to be used for fault detection and isolation, the model has to be of high fidelity 

to avoid misleading detection and isolation information that may lead to wrong decisions.
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On the one hand, the FDI system should be good enough to detect all type of faults 

whether they are abmpt or incipient and whether they have big or small magnitudes. On 

the other hand, the FDI system has to be robust enough to avoid false alarms. These 

conflicting requirements are made worse by significant mismatch of the model and the 

real plant. Many model-based FDI methods have been developed during the last three 

decades. Some of the methods deal with deterministic plants. Examples of these methods 

dealing with this type of plant are [13]:

o Obseiwer-based FDI: The concept is to estimate the outputs of the system using an 

observer or a filter. A Luenberger observer is used for deterministic systems (see 

e.g. [13, 72]) while a Kalman filter is used for stochastic systems. For all dynamic 

systems there exists an observer-based residual generator because all inputs-outputs 

are observable [13].

o Parity Relation FDI: Here the idea is to check for consistency of system measure

ments .

o FDI via Parameter Estimation: The system parameters are estimated on-line using 

system identification techniques. The estimated parameters are compared against 

on-line measurements and once significant discrepancies talce place fault occur

rence is triggered.

o FDI using Statistical Techniques: The idea is based on statistical testing of resid

uals. Many methods have been reported such as Weighted Sum-Square Residual 

(WSSR) and Generalized Likelihood Ratio (GLR).

o Nonlinear Observer methods.

4.2.2 Model-free FDI

Model-free FDI requires no mathematical model. Examples of this type of FDI includes 

hardware redundancy (noting that they are not analytic) with voting scheme. Artificial

67



Neural Networks based technique is another Idnd of model-free FDI but with the follow

ing major advantages:

o ANN-based technique is actually a nonlinear modelling technique but does neither 

require a nonlinear model nor a set of linearized models to start with. All it requires 

are training data sets that are rich enough to represent the plant in its full set of 

operating conditions.

o If the training data is rich enough, then the ANN-based FDI built with it is more 

superior to FDI systems built using linear models. The first feature is pertaining to 

the fact that the FDI is based on the training data which is the closest representation 

of the actual physical plant. So discrepancies between the ANN model and the 

actual plant are less and subsequently false alarms are minimized. The second 

feature is pertaining to the fact that ANN-based FDI that ar e built with rich training 

data are actually nonlinear FDI systems. This means that switching between several 

FDI systems is not required.

o The cost of developing ANN-based redundancy and using it in fault detection and 

isolation is minimum compared to physical redundancy that requires initial invest

ment in hardware and subsequent running costs for maintenance.

o There are various approaches according to which ANN is deployed in the FDI sys

tem. One of them, which we have used and will be explained later on in this chapter 

(Section 4.5), does not require faults’ signatures to decide whether a fault has oc

curred or not. This is a usefiil feature as it does not require great amounts of Icnowl- 

edge of the system faults especially those faults which may not be anticipated but 

under certain conditions may occur.

4.3 Systems IiientiÊcaëoE Principles
As indicated in [29, 54], system identification of linear systems is very well established 

where several models are available for direct use. Fortunately, similar models can be ex
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tended to nonlinear systems. These nonlinear models can be grouped into the following 

four models [54];

Model I: which relates the output to the linear combination of the past outputs and non- 

linearly to the past inputs via the function /  which which is assumed to be differ

entiable of its argument as per the following equation:

yp{k +  1) =  aiVpik -  z) +  f[u{k), u{k -  1),..., u { k - m  + 1)] (4.1)
2=0

Model II: which clearly relates the output linearly to the past inputs and nonlinearly to 

the past outputs via the function /  which is assumed to be differentiable of its argu

ment as per the following equation:

yp{k 4-1) =  f[yp{k), yp{k -  1),..., yp{k -  « +  1)] +  ~  *) (42)
i=0

Model III: which relates the output nonlinearly to the past inputs and outputs via two 

separable functions /  and g which are also assumed to be differentiable of their 

argument as per the following equation

Vp{k 4-1) =  flVpik) , , yp{k 1),..., yp{k zz 4-1] 4-

g[u{k),u{k — 1), ...,u{k — m 4-1)] (4.3)

h which relates the output to the past inputs and outputs nonlinearly via one 

function / .

l/p(& 4-1) =  f [ y p { k ) , ,y p { k - l ) , . . . ,y p { k -n  + iy,u{k),

u{k — 1),..., u[k — Z7Z 4- 1)1 (4.4)

The last model is the most general one and the first three models are considered special 

cases of it. For a nonlinear system described by one of the above models, two approaches
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are generally used in the identification:

Parallel Identification Model: In this model (Figure 4.1), the input to the identifier is 

the plant input vector u{k) and past output vector of the identifier itself y{k). The 

stability of this architecture is quite questionable and conditions under which it is 

stable are not known. The governing equation is:

+  1) =  / (n ( t) ,  «(& -  1),..., -  n), ÿ(A;), ÿ(& -  1), ...,%/(& -  n)) (4.5)

Plant input Actual Plant outputNonlinear
Plant

Estimated plant

TD
TD

TD
MLPTD

TD
TD

TD
TD

System  Identification witti Parallel Configuration

Figure 4.1 : Parallel Identifier Model

Farallel-Series Model: Unlike the parallel model, the inputs to the identifier are the plant 

input vector u(k) and the plant output vector y{k). The model (Figure 4.2) is sta

ble provided the modelled plant is Boimded Input Bounded Output (BIBO) stable. 

Here, the plant measurements (not the estimates) are used as input to the model.
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The mathematical structure is described by the following equation; 

ÿ(&4-l) =  / («(A) , u(&- l ) , . . . , u(A: -n) , / , % / ( & ) , ( 4 . 6 )

where /s =  1 if the sensor is healthy.

Actual Plant outputPlant Input
Nonlinear Plant

TDTD

TDTD
MLP TDTD

TDTD

Estimated plant

System  Identification with Parallel-Serles Configuration

Figure 4.2: Parallel-Series Identifier Model

Both of the above models can be either handled by MLP or RNN where the mapping 

function /  that maps the input to the output can be implemented via a neural network 

which has proved to be a good candidate for function approximation.

4.4 ANN-Based FDI
There are various approaches to designing an ANN-based FDI. The approaches may look 

similar to those used in linear FDI as far as the structure is concerned. However, ANN- 

based FDI is actually a nonlinear FDI system provided that the training data is quite
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representative of the operating conditions. This is a major difiference. The structures we 

will discuss are:

o NN-based Residual Generator and Decision Logic.

o Two Stage NN-based FDI where one is used for FD and the other one for FI. 

o One large ANN that combines FD and FI functions, 

o Two Stage ANN-based FDI and a decision logic.

NN-based Residual Generator and Decision Logic: In this approach a neural network 

is constructed and trained to model the plant and generate estimates of all of its 

outputs or a subset of them depending on the scope of the diagnosis scope and gen

erated residuals. The residuals aie then processed by the decision logic to generate 

a fault indicating signal based on the residual values.

NN-based FD and NN-based FI This approach is similar to the previous one but rather 

than using a decision logic for the assessment of the fault, the output of the FD 

neural network is passed on to another neural network to act as a fault classifier. The 

neural classifier is trained to analyze the features of the incoming signals (outputs 

of the NN-based FD) and to make appropriate decisions.

One-Stage; Combined NN-based FD and NN-based FI functions This approach is sim

ilar to the previous one but rather than using two neural networks, one NN is used; 

i.e the two ANNs are combined together using a larger NN. This approach has been 

exemplified in [13].

Two Stage ANN and Decision Logic FDI In this approach two stages of ANN are used 

to model the plant outputs collectively via a single MIMO ANN and a set of ANNs 

that are used to model the individual plant outputs. This approach has been used in 

[31]. The main feature of this architecture is the reduction of false alarms.

We have used the last approach with two fundamental features [2]. The details will 

be given in Section 4.5. The reasons for selecting this scheme are:
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o The architecture is excellent in minimizing false alaiins as it has two thresh

olds one for the MIMO ANN and one for each individual MISO ANN. If we 

use only one neural network and based on that ANN threshold we make de

cisions then we either have to relax the threshold at the cost of increasing the 

risk of neglecting some faults or to tighten the threshold at the cost of treating 

many false alarms as faults. Neither case is desirable in robust FDI.

o The second scheme uses two ANNs one for FD and one for FI which means 

it has the same computational burden as the one we have selected but without 

the feature of the last scheme of eliminating the false alarms.

o The third scheme uses a larger A N N  and normally when the A N N  gets larger 

it takes lots of time to train and may not be satisfactory for an industrial-scale 

problem.

4.4.1 Fanlt Accommodation

In the last section, we have focused mainly on FDI as most of the reported work is con

cerned with FDI. However, the ultimate goal of FDI is to maintain the safe operation of 

the plant despite the various faults that may occur. There are several approaches that can 

be taken which will be summarized here and details will be given later on in this chapter 

and when describing the fault-tolerance flight control system in Chapter 5 and Chapter 6. 

The approaches in general are:

o Using a Decision Logic Module (DLM) where the output of which will be either 

the original signal of the plant if the checked signals are healthy or a combination 

of healthy signals and estimated signals if there is a single or multiple faults. The 

output is fed to the controller as the best representation of the system.
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o Using Fuzzy Logic to decide on the feedback signals based on fault isolation results 

and some membership function. This is another format of the DLM but using the 

strict membership functions of fuzzy logic. Normally the human loiowledge is 

coded which makes decisions more solid, [10, 13].

o The fault detection signal is used directly in an adaptive scheme to compensate 

for the faults by restmcturing the controller on-line or by generating an adaptively 

compensating signal.

We have used the first scheme in our design of FTFCS as shown in Chapter 5 and Chapter 

6. Also, we have also highlighted the usage of the last scheme in in the adaptive schemes 

developed in Chapter 7.

4.4.2 Nenral Network Architecture for Fault Detection 

and Isolation (FDI)

The general Parallel-Series architecture is used to model the sensors and generate esti

mates of their outputs. The architecture of the neural network is not unique. That is to 

say; the topological features of the network in terms of the number of layers and number 

of neurons per layer could be different from one design to another. Optimum design of 

an ANN under the same circumstances can be obtained using the techniques mentioned 

in Chapter 2. Normally three layers are sufficient. However, it could be possible in some 

cases that an extra layer is needed as will be seen in the following section when designing 

e.g. the MIMO ANN (LANOF) for the lateral dynamics. It is necessary to mention that 

the extra layer was needed due to the nature of the flight test data used in the training. 

The flight test data (FTD) was recorded probably according to some practical characteris

tics. If the FTD was richer, the extra layer may not be needed. Consequently, the training 

would have been simpler. This conclusion is in line with the general theorem on ANN 

(shown in Chapter 2) where it has been that an ANN with a single hidden layer is suffi

cient to approximate any nonlinear function (plant). One may notice that the input for a 

MISO (say e.g. phiNN) is not a subset of its master ANN (MIMO ANN, LANOF). One
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may expect that the input to the former should be a subset of the later. This is not the case. 

The reason, in my opinion, is due to the nonlinear relationship and coupling of the vari

ous variables in the system. In addition, modelling the lateral channel collectively is more 

attainable with some subset of variables than for modelling a single sensor. This may 

be due to the fact that finding a nonlinear mapping of a single-output is harder than for 

the multi-output case. Empirical results confirm this phenomenon where training single 

output ANN sometimes talce a longer time compared to multi-output ANN.

Another point that we want to clarify, is the benefits of the 2-stages approach. Clearly, a 

2-stages scheme implies more computational cost which is justifiable in view of the ben

efits it possesses.

Before proceeding further, the term 2-stages as used in the literature will be first clarified. 

In some references (e.g. [13]), it is used to mean the presence of two ANNs where the 

first one is used to detect fault by comparing the plant output (y) and the ANN output (y); 

i.e. the first ANN is used to generate what is called residuals. The second ANN is trained 

on patterns of these residuals to learn fault signatures. The 2-stages have been merged 

together and tested as shown in the above reference. However, the resultant ANN is big

ger in size and there is no reporting on the comparison of performance during training 

and in operation. As a matter of fact, the problem exemplified by this approach has been 

illustrated by a simple dynamical system (the 3 tanlcs problem). It is anticipated that with 

a large dynamical nonlinear system, the two networks are relatively large in size and the 

effort paid to train them will be high. If the 2-stages are merged together,the size will be 

even bigger and consequently the training cost will be higher.

Another way of using 2-stages is as described in many references (e.g. [31]), where 

basically the first ANN is a MIMO ANN of the overall system and it does fault detection. 

The second ANN is a collection of MISO ANNs that each is producing estimates of the 

concerned variables for fault isolation. The isolation is handled by a decision logic. The 

fundamental feature of this hierarchial approach is reducing false alarms.
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4.4.3 NN ïnpnt Space

Basically, a neural network is a learning system that correlates certain variables in a data 

set to another set of variables in the same data set provided a relation does exist between 

the two. The ANN is capable, via proper training, of extracting the features of the pairs 

and adjust its weights and biases to model the nonlinear relationship. The first set of vari

ables need not be all the plant inputs and the other set need not to be all the plant outputs. 

To clarify, if we consider the ANN used for lateral dynamics (LANOF). In regard to its 

input space, we have selected the lateral cyclic (FDA), the pedal cyclic (FDR), the roll 

rate (PHIJDOT), acceleration in z-direction (AZ), the velocity component in x-direction 

(UDOT), and the velocity component in the z-direction (WDOT). The selection logic is 

a mix of prior loiowledge of the impact of the variables on the output variables and trial- 

and-error. The trial-and-eiTor has come into play when the ANN training started. By 

inspecting the learning performance curve, inclusion and/or exclusion of certain variables 

in addition to adding more layers or neui ons can be made. The final version of the ANN 

is satisfactory as will be seen in the test and validation section at the end of this chapter 

(Section 4.6). As we can see the selection of the variables for lateral dynamics does not 

necessarily have to be all of the variables pertaining to lateral dynamics nor do they have 

to exclude all variables from the longitudinal dynamics. This certifies that the approach of 

splitting the FDI and consequently the FTFCS into lateral and longitudinal is not affect

ing our ANNs and, thus, the coupling of the dynamics is made use of in the design and 

training of the neural networks. Further, one may notice that the input space for the MISO 

ANN is not a subset of the MIMO ANN though the MISO ANN models a subset of the 

MIMO ANN. Additionally, the input space for a MISO ANN is not necessarily a subset 

of the MIMO ANN. For example, the lateral dynamics MISO ANN (phiNN) models the 

roll attitude which is part of the MIMO ANN (LANOF) output.

To conclude, the system identification principles discussed earlier are still in effect and 

constitute the general theoretical framework. However, there is no guaranteed formula 

establishing inputs and topology [82]. Thus, the general approach to select the input space
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for the neural networks involves these guidelines plus some engineering understanding of 

the problem and several iterations of training. Many design works have confirmed this 

approach (see e.g. [24, 31,44]).

4.5 ANN-based FDI for BeH-205 Hebcopter
In Chapter 3, we gave details on the architecture of ANN and its training. As well, the 

capability of an ANN in dealing with plant nonlinearities has been highlighted. Here we 

will present a detailed design of an ANN-based FDIA for the Bell-205 Helicopter.

In early stage of the design, we have made the decision to split the fault-tolerant flight 

control system into lateral and longitudinal. For that reason, the FDIA has been split as 

well into lateral FDIA and longitudinal FDIA. Both will be presented in detail hereafter. 

The concept we have applied capitalizes on the strengths of the ANN architecture and 

learning capabilities to generate the predictions required on the detection level and on the 

isolation level as well.The following features have been considered;

o We have intentionally selected to split the problem into lateral and longitudinal in 

order to keep the work in-line with future research work where the FTFCS will be 

decoupled. The reason has been stated clearly in [77] where off-axis coupling is 

poorly predicted by the DERA model that will be used for controller design. It 

has been demonstrated that decoupling lateral and longitudinal dynamics helps to 

remedy the situation. However, in the design and training o f the lateral and longi

tudinal ANNs, there was no restriction in the selection o f the ANNs input variables.

o We have considered the modelling of all the Bell-205 sensors that are involved in 

the lateral and longitudinal feedback loops. The detection is done via two MIMO 

MLP with Time-Delays; LANOF for the lateral dynamics sensors prediction. The 

isolation is done via MISO MLP for each sensor; namely, phiNN, pNN, and rNN. 

Similarly, the longitudinal FDIA uses the same structure. In the framework of fault- 

tolerant flight control system, many researchers have used ANN in modelling and
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control extensively (see e.g. [16-18, 30, 36, 43, 44, 60]). In the majority of the 

reported work, focus is on the three sensors; namely the pitch attitude attitude (6), 

pitch rate q, and yaw rate (r). In our design, we have considered all the sensors in 

the feedback loops which makes the design of large-scale

o During the design, we have targeted the effort to maintain independence of the 

neural networks input space from other sensor readings to avoid faults in the other 

sensors impacting on the estimates generated by the neural network.

5.1 AKN-based FDIA for Bell-205 Helicopter - Lateral

As we have seen in Chapter 2, the lateral dynamics can be described by the following 

input/output relationships. The inputs are the: roll demand (DANET), yaw demand (DR- 

NET), and roll rate demand(DPNET). The outputs are: the roll magnitude (<f)), the yaw 

rate (r), and the roll rate (p). As we saw in the terminology section- 4.1, the faults are 

detected via residuals vector checking. The consistency check of the plant signals against 

the estimates reveals the presence or absence of faults. In order to generate such residuals, 

the designer has to make use of the available signals.

In our design, we used the two-stage approach where the first one models the plant healthy 

measurements collectively and second one acts as a classifier of faults for every single 

output. The two-stages approach has been merged together and the approach has been 

demonstrated with the classical two tanlcs problem [71].

In the thesis, the whole work is based on MLP with Time-Delays which may be considered 

equivalent to RNN. MLP has been used as on-line estimator that mimicked the physical 

sensor reading and that is why it is called virtual sensor in some references. Even though 

we used the two-stage approach, we have targeted the effort towards distinctive features 

mentioned above.

With the concept explained in Section 4.4.2, the ANNs have the following architectural 

properties:

78



Table 4.1 : Bell-205 Helicopter Lateral FDIA Design Parameters
ANN Architecture No. of 

Time Delays

Hidden Layer 

Activation function

LANOF 4-10-30-3 3 tangsig

phiNN 4-10-20-1 3 tangsig

pNN 7-35-1 2 tangsig

rNN 30-1 4 tangsig

Finally, as per the concepts in Section 4.4.3, the input variables for the various Neu

ral Networks (NN) are as shown in the following table where for the definitions of the 

variables, one may refer to the appendix at the end of the thesis (Appendix-C).

Table 4.2: Bell-205 Helicopter Lateral FDIA Neural Networks Input Space

ANN Input Space

LANOF

phiNN

pNN

rNN

FDA, FDR, PHI-DOT, AZ, UDOT, WDOT 

FDA, FDR, AY,VDOT,BETA 

FDA, FDR, PHI-DOT,AZ 

FDA, FDR ,AY, VDOT, BETA

The relationship between the estimation generated by the ANN and the model output is 

depicted in the diagram below (Figure 4.3) where:

Vk =  f i h , F )
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 1 ANN

Figure 4.3: Fault Representation

The simulation model for the lateral channel is depicted in the following diagram where 

the interaction between the neural networks and the decision logic module (DLM) is ap

parent:
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Figure 4.4: Lateral Dynamics FDIA Simulink Model
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4.5.2 The Lateral Decision Logic Module (DLM)

The fault detection is handled by the master ANN while the fault isolation is handled by 

the individual ANNs. The control of this process in addition to the accommodation is via 

the Decision Logic Module (DLM) which is represented by the following equation:

{ Ui if (e <  Cmax or FAULTi == 0) or if (e < or FLAG, < 32),
(4.7)

ÿi otherwise.

where:
VDLMi refers to the DLM output with respect to the channel 

where i =  1,2,3 

Ui refers to the channel output

Vi refers to the corresponding ANN estimate for the channel

FAULT; A flag used to mark a sensor faulty

FLAG; A counter used to count the number of consecutive samples during which the discrepancy

between the actual sensor output and the ANN estimate for the channel has exceeded 

the specified threshold 

The detailed of the DLM is depicted in the following diagram (Figure 4.5) for the lateral 

channel
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Figure 4.5: Decision Logic Module (DLM) Flowchart 

83



4.5.3 ANN-Based FDIA for BeII-205 Helicopter - Longi

tudinal Case

We have considered the modelling of all Bell-205 sensors that are involved in the lateral 

and longitudinal feedback loops. The detection is done via two MIMO MLPs with Time- 

Delays; LONOF for longitudinal dynamics sensors prediction. The isolation is done via 

MISO MLP for each sensor: thetaNN, and qNN. The architectural properties of the ANNs 

have been embarked on as per the concepts laid out in Section 4.4.2 :

Table 4.3: Bell-205 Helicopter Longitudinal FDIA Design Parameters
ANN Architecture No. of 

Time Delays

Hidden Layer 

Activation function

LONOF 7-30-2 4 tangsig

qNN 10-35-1 5 tangsig

thetaNN 7-30-1 4 tangsig

The input variables for the various neural networks are shown in the following table 

(Table- 4.4) where the guidelines of Section 4.4.3 are made. For the definitions of the 

variables, one may refer to the Appendix-C at the end of the thesis.

Table 4.4: Bell-205 Helicopter FDIA Neural Networks Input Space

ANN

LONOF

thetaNN

qNN

Input Space

FDE, FDA, BETA, UDOT, VDOT, WDOT 

FDE, FDA, BETA, UDOT,VDOT, WDOT, AZ, AX 

FDE, WDOT, AZ, AX, AZ./AX

The Simulinlc diagram for the longitudinal dynamics sensors FDIA is depicted in the fol

lowing diagram:
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Figure 4.6: Longitudinal Channel Simulink Model
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4.5.4 The Longitudinal Decision Logic Module (DLM)

The fault detection is handled by the master ANN while the fault isolation is handled by 

the individual ANNs in the same manner of the lateral dynamics. As we can see, once the 

master ANN threshold is exceeded a number of times, a fault is declared. At that point of 

time, it is deteraiined to identify which sensor is faulty. It could be a single or multiple 

faults but it is irrelevant to identify the magnitude of the fault though it is possible. The 

fault identification process is performed by checking the threshold of all MISO ANNs. In 

the end, the DLM takes the following actions:

o Healthy signal is passed on to the feedback loop.

o The faulty sensor (the one with the threshold is exceeded) is replaced by its estimate.

If the sensor is faulty, its flag is set on, which helps in successive check cycles by just 

replacing the signal with its estimate rather than checking it every time. With this ar

rangement, it is possible to continue the operation of the helicopter till the end of its 

journey without any safety problems though the performance may be lightly degraded. 

The control of this process in addition to the accommodation is via the Decision Logic 

Module (DLM), which is similar to the one used by lateral channel.

4.5.5 Threshold Selection

The threshold value selection is very much dependent on the perfoimance of the ANN 

estimator and the training data set. The selection of a threshold value is of prime impor

tance prior to the full deployment of the ANN-based FDIA in a real application. In other 

words, these thresholds must be revised to make sure that they are based on representative 

training data.

During training, the following equations have been obseiwed to judge the quality of the



estimates:

-  +  {Pi -  P i f  +  (n -  h)^) (4.8a)

- Ô ,) '+  (% -% )') fL8b)

(4.8c)

-A)" (4.8d)
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-g i)' (4.8f)
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L̂ANOF =

L̂ONOF = l/2((^i

p̂hiNN ~ l/2((i^i

^pNN — 1/2 (%

^rNN — l/2(^i

t̂hetaNN ~ l/2(^i

^qNN =  l/2(gi ■

The threshold values for MIMO ANNs (first stage ANNs) have minimum and maximum 

thresholds. The maximum threshold is selected by comparing the FTD against the MIMO 

ANN. Comparisons generate the minimum, mean and maximum. The maximum is used 

to indicate malfunctioning of the sensor. The minimum is used to indicate a possible fault 

and to put the sensors under monitoring for a number of samples. The threshold values 

for MISO ANNs are found in the same way. However, minimum values are considered 

adequate for fault isolation. If mean or maximum aie chosen, then some faults may not 

be isolated. Monitoring the sensors by the MIMO ANNs may end up with a conclusion 

that it was only a false alarm. However, if  the fault detection networks have decided that 

a fault has taken place, the MISO ANNs check which sensor is faulty. At the end it could 

be that one or more sensors are faulty.

Based on the FTD used for training, the threshold values considered in the Decision Logic 

Module are as follows:
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Table 4.5: Neural Networks Threshold Values
ANN Threshold Value

LONOF 1.405 (min)-2.855(max)

qNN 0.1032

thetaNN 0.82

LANOF 0.7974-2.19

pNN 0.0929

rNN 0.9879

phiNN 1.141

A final remark that we would like to emphasize, is about the DLM parameters. We have 

selected them to let the system take decisions after (32 samples) to avoid responding to 

false alarms and intermittent problems. Also, for the fault detection phase, the MIMO 

ANN is provided with two limits, an upper and lower one as explained above for this rea

son. It is worth mentioning that the decision logic may be further revised and undergo 

several improvement and alterations.

4.6 ANN Traming and Testing Results
The outputs of the neural networks that we have used for detection and isolation are 

shown in the following figures. One can notice from the figures below that an acceptable 

accuracy can be attained provided the neural networks are properly designed and trained. 

Normally, once an ANN is designed, its performance is checked against the data used 

for the training. This is not sufficient. An additional training data set that has not been 

used during the training but fall within the same operating point is presented to the trained 

ANN to validate the behavior of the ANN. Satisfactory results confirm that the ANN is 

capable to represent the physical system in the used FTD operating range. Here below, 

we will present the results of the comparisons of ANNs performance with the tr aining 

data and then with the validation data. All the comparisons are made against Flight Test 

Data (FTD).



The following set of plots show the outputs of the ANNs in the lateral channel compared 

to the FTD after being trained. Figure 4.7 shows the quality of the master ANN (LANOF) 

against FTD and as can be seen they are almost identical. Figure 4.8 shows the quality of 

phiNN compared to FTD where there is no significant discrepancy between the actual and 

estimate. However, there are some spikes at samples: 1000,2500, and 2750 due to noise. 

Figure 4.9 shows the quality of pNN after being trained against FTD where the overall 

shape of the signal is captured. There are minor discrepancies at some samples but this 

should not be of great concern as the DLM is flexible to avoid responding to mismatch 

unless it is persistent. Finally, Figure 4.10 shows the quality of rNN vs. FTD where we 

can see again the impact of noise at some samples (e.g. at sample: 1400 and 3500).

FTD —  phi FTD —  p

1

■2

'3

-4

-5
1000 2000  3000 4000 1000 2000 3000 4000  

After training B205LANNOF -  phi After trairting 620SLANNOF -  p

1000 2000 3000 4000  

After training B205LANNOF - 1

-4

1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

Figure 4.7: Master ANN for Lateral Dynamics Model (LANOF) - after training vs. FTD
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Figure 4.8: MISO ANN used to model Roll Attitude (j) to mimic phi-sensor output 

(phiNN) After training vs. FTD

F T D - p  output

500  1000 1500 2 0 0 0  2500

pNN output after training

3 000  3500  4000

500  1000 1500 2000  2 5 0 0  3000  3 5 0 0  4000

Figure 4.9: MISO ANN used to model Roll rate p to mimic p-sensor output (pNN) After 

training vs. FTD
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r-output from FTO
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r-output from rNN After to Trsining
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Figure 4.10; MISO ANN used to model Yaw Rate r  to mimic r-sensor output (rNN) After 

training vs. FTD

Having finished the training, the four ANNs have been validated with a different data set. 

Here, the results of validation of the ANNs is demonstrated by the following figures from 

Figure 4.11 to Figure 4.13:
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Figure 4.11: Master ANN for Lateral Dynamics Model (LANOF) - after validation vs. 

FTD
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Figure 4.12: MISO ANN used to model Roll Attiude (f> to mimic phi-sensor output 

(phiNN) after validation vs. FTD
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Figure 4.13; MISO ANN used to model Roll Rate p  to mimic p-sensor output (pNN) after 

validation vs. FTD

On the longitudinal channel, the following set o f plots demonstrate the quality of the 

ANNs after being trained against FTD.

-10
1000 2000 3000 4000 5000

After training B205LONNOF -  theta

-10
1000 2000 3000 4000  5000

FTD —  q

-10
1000 2000 3000 4000 5000

After training B205LONNOF -  q
20

-10
1000 2000 3000 4000 5000

Figure 4.14: Master ANN for Longitudinal Dynamics Model (LONOF) - after training 

vs. FTD
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Figure 4.15; MISO ANN used to model Pitch Rate q to mimic q-sensor output (qNN) 

after training vs. FTD

theta-output as recorded in FTD
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3500 4000 45002000 2500 3000500 1000 1500

theta-output from qNN after Training

- 5

-10
4000 45003000 35002000 2500500 1000 1500

Figure 4.16: MISO ANN used to model Pitch Attiude 6 to mimic 0-sensor output 

(thetaNN) after training vs. FTD

The following figures show the result of the validation:
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Figure 4.17; Master ANN for Longitudinal Dynamics Model (LONOF) - after validation 

vs. FTD

Before we leave this section, we want to point out that it has been stated in many refer

ences that ANN is noise-tolerant; i.e it can handle noise presence in the input data and still 

be able to produce highly acceptable results. The following figure (Figure 4.18) shows 

that though the ANN is able to capture the shape and magnitude of the signals, filtering 

the input data helps to improve the prediction quality by removing much of the spikes in 

the data caused by the noise.
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Figure 4.18: Effects of Noise on Quality of Prediction

4.7 Statistical Analysis
The results presented in previous sections have shown satisfactory performance of the 

various ANNs used in the lateral and longitudinal FDIA systems. This does not mean that 

the ANN-based FDIA system can be deployed prior to collecting rich FTD and retraining 

the ANNs. The quality of the designed ANNs has been judged on the basis of the shapes 

of the generated signals and some quantitative comparison. In order to accurately quantify 

the quality of these ANNs, the autocorrelation measure is used. The fundamental idea 

behind this statistical tool is that when the error is autocorrelated and plotted, the plot 

must show randomness between successive samples. This method is used in checking the 

quality of models against the actual plant. A typical shape for the error autocorrelation 

plot is depicted in Figure 4.19 below:
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Typical Error Autocorrelation

- 0.2 2000 4000 6000 8000 10000 12000

Figure 4.19: Typical Error Autocorrelation Plot

4.7.1 Lateral ANN-based FDIA
The statistical analysis is performed for the MIMO ANN (LANOF) on two levels. First, 

the individual output error is analyzed and, then, the collective error for the three signals 

is analyzed. In both cases, the reference is the flight test data. The error plot is shown on 

the upper pane of the diagram below (Figure 4.20) and the error autocorrelation is shown 

in the lower pane.

II I

Figure 4.20: LANOF Error and Error Autocorrelation Plot
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From the above figure (Figure 4.20), the following comments are drawn:

The errors for all channels are bounded as shown in the following table (Table 4.6). 

These errors are contained in the threshold selected.

Table 4.6: Error bound for LANOF ANN
Channel Absolute Error Bound

4> 0.3

r 0.4

P 0.9

# The autocorrelation plot is in line with the general shape of the typical plot shown 

in Figure 4.19. The negative values on the plot indicate a change of sign in the 

successive errors.

If LANOF outputs are compared collectively against the FTD, the following diagram 

(Figure 4.21) is obtained:

LAHOF mot -  cunutaive

A '

0 500 1000 1500 200 

LANW EimrAut

0 2500 3000 3500 4000 4500 

DcomtaOon ^umUMvc -

2000 3000 4000 5000 0000 0000 9000

Figure 4.21 : LANOF Error and Error Autocorrelation Plot - Collective’ 

From the above figure (Figure 4.21), the following remarks are drawn:

• The absolute error is bounded by an upper value of 0.4
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•  The autocorrelation plot is similar to the typical plot.

For the roll attitude ANN (phiNN), the following figure shows the error plot in the upper 

pane and the error autocorrelation in the lower pane:

error = PHI -  PHIHAT
2

0

-2

60003000 4000 50000 1000 2000
Sam ple

Error Autocorrelation -  ptilNN (PHI)

0 2000 4000 6000 8000 10000 12000

Figure 4.22: phiNN Error and Error Autocorrelation Plot - Collective’ 

From the above figure (Figure 4.22), the following remarks are drawn:

•  The error plot shows that the absolute error is bounded by an upper value of 2.0. 

Actually, the error mostly within an upper bound of 1.0 and the spikes may be due 

to some outhers.

•  The error function is quite similar to the typical autocorrelation plot which indicates 

that the errors of the successive samples are quite random.

For the roll rate ANN (pNN), the error and the error autocorrelation plots are depicted in 

the following diagram:
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eiror = R - RHAT
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Figure 4.23; pNN Error and Error Autocorrelation Plot - Collective’

From the above figure (Figure 4.23), the following remarks are made:

•  The absolute error upper pound is hc 0.65 which is contained by the threshold value 

of the DLM.

•  The error autocorrelation plot indicates randomness of the errors.

Finally, the yaw rate ANN (rNN) error and error autocorrelation is depicted in the follow

ing figure:
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error = R -  RHAT
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Figure 4.24: rNN Error and Error Autocorrelation Plot - Collective’

From the above figure (Figure 4.24), the following remarks are drawn:

•  The absolute error is bounded by an upper value of 0.75 which is contained in the 

threshold value of the DLM.

•  The error autocorrelation is quite typical and confirms error randomness among 

successive samples

4.7.2 Longitudinal ANN-based FDIA

The error fimction plot for the MIMO ANN (LONOF) and the error autocorrelation plot 

are shown in Figure 4.25. The upper panes show the difference between the ANN and 

the flight test data. The first pane in the left shows the error size pertaining to the pitch 

attitude and the second pane shows the error size pertaining to pitch rate.
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Figure 4.25: LONOF Error and Error Autocorrelation Plot 

The following remarks are drawn from the figure:

•  The absolute error for both signals (6 and q) is bounded by an upper value <  1.

•  The error autocorrelation plots for both signals are similar to the typical error au

tocorrelation plot (Figure 4.19) which mean that errors between the successive 

samples are random. This indicates that the ANNs have extracted all the features in 

the training data.

•  There is some periodicity in the error autocorrelation plots which may be due to 

noise injected in the flight test data.

The MIMO ANN outputs are used collectively to check any fault in the longitudinal 

dynamics sensors. In other words, the outputs of the MIMO ANN (LONOF) are compared 

as a whole against the sensors as a whole. Thus, the following diagram (Figure 4.26) is 

obtained:
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LONOF Cumrmiiative Error

500 1000 1500

E n w  Autocorreiatitti for LONOF

0.5

0

-0.5
1000 1500 2000 2500 3000 3500 40005000

Figure 4.26: LONOF Error Plot and Error Autocorrelation Plot

The figure above confirms the conclusion regarding the bound of the error and the random

ness of the errors. The error bound for the neural network is contained by the threshold 

values selected for this ANN.

The plots of the errors and the errors autocorrelation of the MISO ANNs (thetaNN and 

qNN) are shown consecutively below. The diagram below (Figure 4.27) shows the error 

plot and the autocorrelation plot for thetaNN:
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error = theta -  theteHAT

2000 4000 6000 8000 10000 12000

Figure 4.27: Error Plot and Error Autocorrelation Plot for thetaNN 

From the figure, the following remarks are drawn on the quality of thetaNN output:

•  The absolute error for the output is bounded by an upper value o f 0.7.

•  There are some spikes in the error which may be due to outliers in the training data. 

In spite of these spikes, the error is still within the threshold values.

•  The error autocorrelation plot is similar to the typical error autocorrelation plot (Fig* 

ure 4.19) which means that the errors between the successive samples are random 

which indicates that the ANN has extracted all the features in the training data.

•  There is some periodicity in the error autocorrelation plots which may be due to 

noise injected in the flight test data.

For qNN, the diagram below (Figure 4.28) shows the error plot and the autocorrelation 

plot:
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Figure 4.28: Error Plot and Error Autocorrelation Plot for qNN 

From the figure, the following remarks are drawn on the quality o f thetaNN output:

•  The absolute error for the output is bounded by an upper value equal to 0.75.

•  The shape of the error autocorrelation plot is similar to the typical error autocorre

lation plot (Figure 4.19) which means that errors between the successive samples 

are random which in turn indicates that the ANN has extracted all the features in 

the training data.

•  Periodicity in the error autocorrelation plot is more apparent than before which may 

be due to noise injected in the flight test data.

4.8 FDIA Simulation Results
We have developed ANN models for all sensors in the lateral and longitudinal channels 

with a master ANN for each channel of the Bell-205 helicopter. The overall system has
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shown its capability to model the sensors with a satisfactory degree of accuracy which in 

turn helps to detect faults, isolate them and enables the decision logic to accommodate the 

faults. The faults considered are biases which are modelled by step function with various 

magnitudes being added to the original signal. It is quite possible to consider other types 

of faults such as a ramp type. However, as stated before the ANN-based FDI with the 

structure we developed does not require fault signature and, thus, any type of faults can 

be considered.

For the lateral channel, we have simulated a single fault (Figure 4.29) and two simulta

neous faults (Figure 4.30) both at time (t=2 seconds). The successful detection, isolation, 

and accommodation is shown in (Figure 4.31). The system continued the operation nor

mally till the end of the simulation.

Corrupted LAterW Signals

Figure 4.29: Lateral Sensors’ Measuremnts with one fault occurs at time t= 2 seconds
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C o rru p ts  LAteral Signais — SImWtaneouse Fautte

B # i FaWts occw @ # 2  sac

Figure 4.30: Lateral Sensors’ Measuremnts with two Simultaneous faults occurring at 

time t= 2 seconds

F ^ t e d t  Signals generated by Dedson Lo^c after sutxess^l R)IA of SImultanouse Faults

Figure 4.31: Successfull Fault Detection, Isolation, and Accommodation of Multiple Si

multaneous Faults

For the longitudinal channel, we have simulated multiple faults at time (t=l second) as
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LongitudinW S ^ a l  o j t  of Ckxâsw Logic after ̂ iccesstell FDIA -  Multiple Sim uttei^ouse Faults

Figure 4.33: Successfull Fault Detection, Isolation, and Accommodation of B signal

shown in (Figure 4.32) and the system has successfully detected them, isolated them and 

accommodated them as shown in (Figure 4.33).

Lw^tuiAiW  Signals imcorrupted wite twra strmdteneouse FaWte

Figure 4.32: Longitudinal Sensors’ Measuremnts with two Simultaneous Faults 

Prior to leaving this section on simulation results, it is worth mentioning that in order to
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bring the simulation results to real application, the training has to be revisited in order to 

cover the typical flight envelope.

4.9 Comciusiom
A number of lessons have been gained during the design and testing of the ANN-based 

FDIA systems for the Bell-205 helicopter. Here below a recording of the most important

o ANN Design: In the literature there are some conclusions about the size of the 

ANN that may be viewed as contradicting with each other. For example, Homik et. 

al. in [54], has proved mathematically that an MLP with as few as a single hidden 

layer is indeed capable of universal approximation of any function in a very precise 

and satisfactory sense. In our design we found this claim is generally tine where a 

single hidden layer is quite sufficient. In other situations, as indicated above, two 

hidden layers ANNs give more satisfactory results. This needs to be taken care of 

when designing ANNs. The need for more than a single hidden layer may arise 

from poor training data. It is worth mentioning that the theoretical basis for the 

number of layers is under investigation (see e.g. [40]).

o Number of Neurons in Hidden Layer: A similar discussion can also be extended 

to the number of neurons in the hidden layer. It is indicated that as the number of 

neurons in the hidden layer increases, the accuracy and convergence speed increase 

as well. In other references, the advice is to start with a small number of neurons. 

In [57], comparative analysis indicates a strong relationship between the number of 

neurons in a hidden layer and the number of training cycles^ and the training data 

set size which collectively affect the mean square error between the ANN output 

and the desired output and the degree of the ANN output quality.

o MIMO vs. MISO modelling: In [29], it is been stated that (...models for predic-

^In batch training a number o f  cycles is repeated where in each cycle the whole data set is presented to 

the ANN and after that the weights and biases are updated. In Matlab, the cycle is called epoch
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tion and control will be able to produce better results if  constructed for all outputs 

simultaneously). This means that building a MIMO Model for a group of sensors 

(such as the ones we did in LANNOF and LONOF) produces better results than 

those by models which are MISO for individual sensors (such as the one for pitch 

angle or its rate). By inspecting the mean square errors (MSB) for the MIMO and 

MISO models even when using the same data set, sometimes the MISO MSB is less 

accurate than that of MIMO.
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Chapter S 

IntegratiffiiH of ANN~Based FDI and H qo 
Controller

The basic theme of this chapter is to test the functionality of the proposed FTFCS scheme 

using the ANN-based FDI system developed in Chapter 4 with lateral and longitudinal 

controllers that were designed using the H^o optimization method. The controllers are 

then integrated with the aforementioned FDI system and the final system is then tested in 

simulation. Due to the problem of acquiring the nonlinear model, the DERA linear model 

has to be used in the test. A set of data has thus been generated by running the linear 

model and a scaled down version of the FDI system designed is based on the data.

Designing controllers for Bell-205 helicopter is not an objective by itself in this work. 

Rather, they are designed to be integrated with the FDIA system to test the functionality 

of the concept of the FTFCS. Various Hoo controllers for Bell-205 Helicopter have been 

designed and tested by the Leicester Engineering department not only in simulation but 

also in piloted flight tests [19, 23, 25, 76, 77, 81]. Previous design experience accumu

lated in the department has led to the conclusion that the available models for the Bell-205 

helicopter are incapable of predicting cross coupling accurately. This has motivated the 

decoupled design of the controllers for the lateral and longitudinal dynamics [14, 77]. 

This approach is followed in our design of the FTFCS. We use the S-over-KS algorithm 

to design the lateral and longitudinal controllers. In this chapter we first give a brief in-
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troduction on Hoo control theory in general and mixed-sensitivity design in particular (or 

equivalently called S-over-KS, S-over-T, or S-over-KS-over-T). Afterwards, the design of 

the lateral and longitudinal controllers for the Bell-205 helicopter is to be presented. The 

overall system structure is as shown in Figure 5.1 below.

LAFDIA
r — T— r

Tpnw Tpw

Helicopter 
Latsral Dynamics

LANOF

-OHLongitudinal
Contrôler

, 1 Helicopter 
I Loogitudlnai Dynamics

U  r i m  r i n  LJ

LONOF

A t
LOFDIA

Legend
LAFDIA: Lateral FDIA decision logic 

LOFDIA: Longitudinal FDIA decision logic 

phiNN, pNN, rNN; Individual lateral sen sors ANN 

thetaNN, qNN: Individual longitudinal sen sors ANN

Figure 5.1: Plant-Controller Architecture with Sensor FDIA in the loop

5.1 H o o  controller Design
Classical control methods which are mainly for single-input single-output (SISO) system 

are still popular in the industrial community in spite of the fact that modem techniques 

have proven successful and have overcome many of the shortcomings of the classical tech

niques [7]. Major shortcomings of the SISO design approach lie in the ignorance of the 

coupling in the multivariable system and the inability of dealing with the differences be

tween physical models and mathematical models. Both of these issues are of paramount 

importance. Control system design relies on mathematical models which are normally 

nonlinear. The model usually does not represent the complete physical system. Actual 

systems have various dynamic perturbations as well as dynamics which are difficult, if 

not totally impossible, to be included in a model. Further, a physical system may undergo 

ceratin variations due to changes in certain conditions under which the system operates.
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In addition, linear control design uses a linear model which is only an approximation of 

the nonlinear model around a certain operating point. All these problems affect the per

formance of a controller and if it is not robust enough, the plant may face instability or 

severe performance degradation. A robust controller is even more important in the pro

posed FTFCS because of the possible errors in estimation of the (healthy) system outputs 

generated by the ANNs. Hoo control algorithms provide a framework for designing robust 

controllers. Robustness means that a designed closed-loop system should maintain inter

nal stability and adequate performance in the presence of certain uncertainties. The design 

process is based on the idea of mapping the design objectives into a single matrix transfer 

function and minimizing its infinity norm. Design requirements could include disturbance 

rejection, noise attenuation, certain time response requirements (such as rising time), and 

frequency response requirements.

It is not intended to cover all the details of the theory of Hoo here but rather to give a brief 

coverage that is deemed necessary to bring the chapter into context. Details of the subject 

matter are covered in many references where the theoretical aspects of the subject may 

be consulted (see e.g. [49, 50, 84] and references therein) while design and analysis with 

mathematical coverage may be better formd in other references (see e.g. [51, 75, 83] and 

references therein).

Normally the performance and robustness requirements are conflicting and satisfying 

them all may not be possible. It is the major challenge for the designer to malce com

promises and to satisfy as many as possible of the requirements. An Hoo design is posed 

as a minimization of a cost function that reflects the conflicting requirements in a multi-r 

objective design problem. The cost function is normally written in terms of a linear frac

tional transformation (LFT) of the interconnected plant (P) and the controller (K) as seen 

in the diagram below (Figure 5.2).
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Figure 5.2: The Standard Hoo Configuration

In the above diagram, w  stands for the exogenous input, 2  stands for the signal to be 

penalized, u is the control input vector, and y  is the output measurements. The intercon

nected plant matrix P  can be written in a partition form as:

p J P n

From the above, one can write the transfer fimction from w to z as:

f i i  +  -  f t : # ) - '# !

(5.1)

where Ti{P, K ) is the lower LFT. The cost fimction to be minimized is \\Ti{P, K)\ 

over all the stabilizing controllers which can be re-written as:
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The relationship between the original plant transfer function G(s) and the interconnected 

plant P  depends on the actual design objectives. This will be seen later on in the S- 

over-KS procedure. Another major method used in the Hoo design is the loop shaping 

design procedure. The Hoo loop shaping design procedure (LSDP) combines the classical 

loop shaping procedure for SISO settings and Hoo robust stabilization technique. The 

design proceeds in two steps. In the first step, the plant is augmented with pre- and post

compensators to shape the singular values of the open loop system. In the second step, 

a stabilizing controller is found to maximize the stability margin of the system assumed 

to suffer uncertainties on normalized co-prime factors of the shaped plant. Controllers 

designed with this method possess strong robustness properties [6]. The procedure is de

tailed in many references (see e.g. [75]). As we are to use mixed-sensitivity, the approach 

is described in more detail in the following subsection.

5.1.1 Mixed-Sensitivity Design

As stated before, there are usually conflicting requirements in control system design. The 

mixed-sensitivity optimization helps to deal with these requirements. For example, the 

designer may wish to mirrimize the effect due to disturbance entering the system as well 

as the control signal to avoid actuator saturation. Minimization of the combination of 

the sensitivity transfer function S, which is the transfer function between the disturbance 

signal {d) and the output (y), and the transfer function K S , which denotes the control 

signal, will lead to the optimal or suboptimal controller satisfying both requirements. In 

matliematical terms, it is desirable to minimize the cost function:

S

Ffg

To meet actual design specifications, fiequency dependent weight matrices are incorpo

rated in the cost function which result in a minimization problem as follows:

W ig

WzFfg
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The weighting functions are the designer knobs via which certain adjustments can be 

made to attain certain design goals. The guidelines for selection of weighting functions 

can be found in [55, 58, 59] and the references therein. Wi is normally chosen to be a 

low pass filter with a bandwidth equal to that of the disturbance to be attenuated and Wz 

is chosen as a high pass filter with a comer frequency equal to the closed loop bandwidth 

[75]. Selecting Wj as a high pass filter helps to suppress unmodelled or poorly modelled 

dynamics in the high fi-equency range. In the fi-amework of the S/KS approach, the design 

problem can be formulated as a regulation or tracking problem. In the former, design 

objectives can include e.g. disturbance attenuation and actuator saturation. In the latter 

setting, the objectives can be e.g. forcing the output to track certain reference signal.

5.1.2 Bell-205 Helicopter Lateral Controller

The lateral model is previously described in Chapter 2. The input (pilot) commands are 

the lateral cyclic. Sic, and the pedal collective, Str- The outputs are the roll attitude, <f), 

the roll rate, p, and the yaw rate, r. The closed loop is given by the following diagram 

(Figure 5.3):

Figure 5.3: Mixed-sensitivity Hoo Controller

The linear model of the lateral dynamics is given by the following equations:
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A x  +  B u  

C x  +  Du

(5.2)

(5.3)

where:
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The objective of the design is to minimize the disturbance influence and limit control sig

nals which, in mathematical terms, is represented by:
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W ig
< 7

As mentioned before, S  = (I — GK)~^ is the sensitivity function and K  is the controller 

to be designed. Wi and W2 are two frequency dependent weighting functions and are in 

the form of:

0 0

Wi = 0 Wp 0

0 0 Wr

WpDA 0 

0  W f d r

The subscripts 4>, p, r refer to the output signals while F D A  and F D R  refer to the control 

signals ' . After several trials, the weighting functions are chosen as below:

0 5  ^ +  06
s + 0.005

0 5  ^ +  06
' a +  0.001

0.001

while

0.2

0.1

a +  0.005 
a + 20 

a +  0.005
a +  20

With those weighting functions, an Hoo controller is designed which gives the frequency 

and time responses of the closed-loop system as shown in Figure 5.4 and Figure 5.5.

' For definitions o f  symbols, refer to Appendix-C
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Figure 5.4: Lateral Frequency Response

Figure 5.5: Lateral Unit Step Response

The frequency response shows good robustness to unmodelled or poorly modelled dy

namics at high frequencies plus good disturbance rejection. The time response shows a
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well damped case and the rise time is about 3 seconds which is acceptable.

5.1.3 Bell-205 Longitudinal Controller

Similarly, the design for the longitudinal dynamics is carried out. The longitudinal dy

namics is a single input and multiple output system (SIMO).The input is the longitudinal 

cyclic, Sis. The outputs are the pitch attitude, 9, and pitch rate, q. The linear model is with 

the following parameters:
0 0^M 9 0 0 0

0 0.0018 -0.0038 5.0900

-0.0002 -2.5715 -0.0502 -0.0494 3^8%

0.0173 79.7602 -0.2338 -0.&G8 -6.9670

0 0 0 0 -12.5786

B =

0

0

0

0

-2.6498

c = I 1 ° ° ° ° I 
\  0 1 0 0 0 y

The weighting functions selection follows the same guidelines used in the lateral con

troller case. Again, after successive trials, the weighting functions used are given by the 

following:
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=  &5 

=

s +  0.001
s

s +  0.001
(5.4)

while

Wa =  40
s +  .OOl 

a +  5

The time response is as shown in the diagram below (Figure 5.7) and the frequency re

sponse is depicted in Figure 5.6.

f

Figure 5.6: Longitudinal Frequency Response
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Figure 5.7: Longitudinal Unit Step Response

5.2 Integrating Controllers with the FDI
The aforementioned controllers have been integrated with the respective FDIA subsys

tems that are discussed in Chapter 4. This results in two decoupled Fault-Tolerant Flight 

Control Systems (FTFCS). The integrated systems are first described and, in this section, 

the simulations results are reported afterwards.

5.2.1 Lateral Case

The lateral controller described in the previous section and the ANN-based FDI system 

described in Section 4.5.1 are integrated as shown in the Simulink diagram below (Fig

ure 5.8) which forms the lateral fault-tolerant flight control system. Partial details of the 

attained results were reported in [1].
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Figure 5.8: Lateral FTFCS for Bell-205 Helicopter

With reference to Figure 5.8, the helicopter’s measured outputs (i.e. the feedback signals) 

are replaced by the estimated outputs from the ANN FDI scheme once a decision is made 

that a failure has occurred at the corresponding sensor. Such failures could be a sensor 

stuck at a fixed level or a deviation from healthy output values, or other cases ([2, 3]).

In the simulation, the above system has been tested with two faults. The first one (roll 

rate) is a step of size=2 that happens at t=0.5 second while the second fault (yaw rate) is a 

step of size 1.5 that happens at t=l .0 second. Without the FDIA, the outputs are as shown 

in the right-hand-side part in Figure 5.9. However, with successful implementation of 

fault detection, isolation, and accommodation, the outputs of the system are shown in the 

left-hand-side part which are the same as in the fault-free case. We now further discuss a
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few issues concerning the closed-loop system with the FTFCS.

Actual HsHcc^Reaponw Sensore O u ^  -  2 Mauuremnttt FauNs

Figure 5.9: Successful FDIA with the Hoo Controller in the loop

In model-based techniques, it is necessary to anticipate all types of possible faults and 

include their signatures in the design. This is not the case with the ANN-based technique 

because it is a different kind of system identification approach. Any discrepancy between 

the neural model and the physical plant will be observed and appropriate actions are ini

tiated. Of course, not all discrepancies are signs of faults as there may be false alarms or 

intermittent problems. These will to be taken care of by the fault accommodation module. 

This is the fundamental feature of an ANN-based FDI that we demonstrated via various 

simulations in the previous chapter (Chapter 4). However, when an ANN-based FDI 

(originally designed based on real-time flight test data) is integrated with a linear model 

it has shown certain discrepancies between the actual outputs and the expected outputs. 

Tracing these discrepancies back to their possible roots show that they may be attributed 

to one or more of the following:

•  FDI system itself.

•  the controller.

•  the linear model.

Chapter 4 has proved that ANN-based FDI is accurate enough and the testing was made 

against Flight Test Data (FTD). The confroller was designed according to standard robust 

control methods and its resulting time and fi-equency responses are highly acceptable 

though they may be further improved by manipulating the design knobs (the weighting
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functions). What is remaining is the last factor; i.e. the linear model. The input that 

activates the FDI system and the linear model is actually a subset of the FTD. Activating 

the lineal' model with a subset of the FTD does not necessarily produce the outputs that 

are close to the output data collected during flight test. This conclusion is supported by 

evidence from comparative analysis conducted earlier that shows a certain discrepancy 

between the linear and nonlinear models on the one hand and the flight test data on the 

other hand. Discrepancy between the linear models (especially the NASA models) and 

the flight test data was much more. Details aie in [14].

The plots shown in (Figure 5.10) are produced to demonstrate some of the discrepancies 

between the linear model and the flight test data (FTD). An input signal has been selected 

from the FTD and used to excite the linear model and the outputs of the linear model are 

compared against the corresponding signals recorded earlier in the FTD. The first plot in 

the figure shows a sign convention difference between the two and a scaling as well. The 

second plot in the same figure shows a scaling difference plus the noise in the FTD.

With reference to [23] (particularly Figure 2), the diagram below (Figure 5.10) that has 

been explained above, and discussion in [78], the following observations are made on the 

causes of the discrepancies between the linear model and the FTD;

Sign Convention There is a sign convention in the longitudinal axis. This is not docu

mented and must be observed when comparing the outputs of the FTFCS and the 

FTD.

Zero-Line Flight Test Data sets are not necessarily recorded around the zero line. This 

does not create any problem as far as the ANN-based FDI training and testing is 

concerned. However, when the FDI and the model (whether it is linear or nonlinear) 

are excited with some inputs form FTD, the outputs of both systems will differ 

greatly due to this undocumented issue.

Potentiometers Prior to flight, the pilot adjusts a set of potentiometers according to his 

own preferences. This may also occur during flight when for example the pilot may
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desire to perform some aggressive manoeuvres and for that purpose he adjusts cer

tain potentiometers to respond for very small stick movements. These adjustments 

are not recorded in the FTD and do create different relationship between the inputs 

and the outputs. Sometimes, it is a pure gain and in some cases it is a gain and a 

shift and, moreover, these variations differ from one flight test to another.

The above points have highlighted that during forthcoming flight testing activities, the 

relevant documentation is extremely important to facilitate future fault-tolerance designs.

n g M  T W O # *  — TH6TA FWgN Tm ) D M  ~  CqMtdI WgnW FDE (Finml Ortra LongtudM »

(a) Linear Model output (Theta) vs. Flight Test (b) Linear Model Control Signal vs. Flight Test 

Data Data

Figure 5.10: Comparison of Linear Model and Flight Test Data

5.2.2 Longitudinal Case
The longitudinal mixed-sensitivity controller and FDI system are integrated as shown in 

the simulink diagram below (Figure 5.11):
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Figure 5.11: Longitudinal FTFCS for Bell-205 Helicopter

The intention was to test the longitudinal FTFCS in the same manner as the lateral FTFCS. 

However, during the simulation it was noted that significant discrepancies exist between 

the feedback signals and the expected outputs. Investigation has taken place to identify 

the source of discrepancy. The subsystems have been tested separately and the results are 

as follow. The closed loop system with linear model (Figure 5.12) was tested against flight 

test data where pitch attitude demand (DENET) and pitch rate demand (zero value) were 

used as input and the outputs were compared against the flight test data (9 and q). The 

result of activating the linear model with inputs firom FTD shows that the linear model 

output (pitch attitude) differs firom the output recorded in the FTD although the linear 

model output shows that the output is tracking the input demand. From this observation 

it may be concluded that the discrepancy is mainly due to FTD where sign difference and 

scaling are the main issues. These discrepancies are clearly spotted fi’om the second and 

third plots in (Figure 5.13).
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Figure 5.12: Closed Loop System without ANN-based FDIA

Figure 5.13: Simulation Results of Closed loop without ANN-Based FDIA

The longitudinal ANN-based FDIA was previously tested in detail and results were sat

isfactory with respect to FTD. As the linear model is in disagreement with the FTD, the 

ANN-based FDI output will definitely disagree with linear model outputs. As documented 

in Chapter 4, the FDIA was designed using flight test data which is a true representation of 

the helicopter. Moreover, the ANN-based FDIA was validated with different data sets and 

tested with another flight data set and the results were quite acceptable with comments as 

indicated therein. This confirms that testing the integrated system with linear models in
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place (plus the comments on FTD mentioned before in last section) is the source of dis

crepancy. This is understood in the light of the clarifications given in the previous section 

on lateral FTFCS testing results. The FDIA uses various measurements as input and these 

measurements are collected from actual flight test data and the only way to get the same 

or similar values is either from flight test data or from the nonlinear model which is very 

much closer to flight test data. Thus, one has to replace the linear model with either the 

nonlinear model or use flight test data. We have used flight test data before to represent 

the helicopter outputs in testing the FDIA and simulating various faults and the results as 

shown in Chapter 4. Of course the controller was not used at that stage. This calls for 

testing the closed loop system with nonlinear model in place. Unfortunately, the nonlinear 

model is not available for this research.

To conclude this matter, we have tried another approach; i.e. to develop an ANN-based 

FDIA using linear models inputs and outputs of the system shown above in Figure 5.12. It 

must be understood that the Linear ANN-based FDI is not as capable as the one based on 

the flight test data or another one designed using nonlinear model. However, the ultimate 

goal was to demonstrate the functionality of the FTFCS concept.

5.3 ANN-based FDI using Linear Model Data
The data for this system has been generated by using flight test data input 6dem to generate 

the outputs 0, q and also the output of the controller was recorded during the process to 

generate another variable, for training purposes, Ksignal (which is equivalent to longi

tudinal cyclic FDE).

A two-stage ANN-based FDIA was designed for the longitudinal dynamics. The signals 

available for training are shown in Table 5.1:
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Table 5.1: Input Space for ANN-based FDIA using Linear Model Data

Variable Meaning

Ksignal

thetaDemand

qDemand

Longitudinal Controller output (dimension=l)

Pilot Demand on Pitch

Pilot Demand on Pitch Rate (it is a zero feedback signal)

The outputs for the MIMO ANN are the pitch attitude (ff) and pitch rate (g). For the 

MI SO ANNs, one of them has pitch attitude as an output and the other has pitch rate as an 

output. Both of the ANNs use the same input as the master ANN does which are shown 

in the table above (Table- 5.1). It is obvious that the input variables are limited in number 

and, thus, the networks are not guaranteed to perform well in all situations.

The results of the training of the MIMO ANN are shown in Figure 5.14 below. From 

the figures below, one can easily see that the master network is not predicting the pitch 

attitude accurately but this should not be a problem as the master neural network is used 

for fault detection. If the fault is not confirmed by the individual isolating networks then 

the fault alarm will be cleared. This, of course, is not the original intention but for the 

purpose of testing, it has been made like so.

‘ifiOOO

15000

Figure 5.14; Master ANN (LONOF) Outputs After Training vs FTD 

The pitch attitude neural network output is shown in Figure 5.15:
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theta-output u  recorded In FTD

-»

tw ta-output from frteWW elter Training

Figure 5.15: Pitch Attitude ANN (thetaANN) Output After Training vs. FTD 

and the pitch rate network output is shown in Figure 5.16 below:

q-output M  recorded h  FTD

Figure 5.16: Pitch Rate ANN (qNN) Output vs FTD

The isolating networks (thetaANN and qNN) have acceptable outputs which help to over

come the master neural networks capability. These networks have been integrated with the 

closed loop control system that uses the DERA linear model and the results are presented 

hereafter.
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5.3.1 Limited Version of FTFCS Simulation Results
As mentioned above, the limited version of the ANN-based FDIA have been integrated 

with the closed loop control system by breaking the feedback loop and connecting the 

output of the decision logic to the summing junction of the feedback loop. The main 

objective is to show that the proposed architecture is functioning as anticipated. The 

overall system is similar to the one shown in Figure 5.8. The first simulation result is 

shown in Figure 5.17 below (Note: the x-axis unit is sample where 1 sec=64 samples). A 

fault with random signal is injected in the pitch channel. The third pane of the plot shows 

this faulty signal. The linear model output which is the reference healthy signal (this is 

shown in the first pane of the figure). The sensor readings after accommodation (second 

pane of the figure) are compared against the linear model data and as shown in the figure 

they are almost identical. Though the values are so small to compare but the shape of the 

two signals and their range confirm the agreement between the two.

Linear Model -  Theta
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-0 .0 1 5
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Figure 5.17: Simulation Result of Fault at t=0 sec with Random Magnitude on pitch 

chaimel

In the following diagram (Figure 5.18), the simulation is carried out over a larger time 

span where the fault is simulated at time t=50 seconds. The fault was isolated but due to
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the accuracy of the isolating network, the sensor reading is different form the linear model 

data from the time t=80 seconds and onwards.

Figure 5.18: Simulation Result of Fault at t=50 sec with Magnitude=1.5 on Pitch Attitude 

Channel

With the simulation carried out with fault on pitch rate channel, the result is good enough 

as shown in the diagram below (Figures. 19) where the sensor reading (second pane of the 

figure) is in agreement with the linear model data (third pane).
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Figure 5.19: Simulation Result of Fault at t=50 sec with Magnitude=1.5 on Pitch Rate 

channel,

5.4 Performance and Robustness Analysis
As described earlier, the lateral channel FDIA is composed of four ANNs. Each ANN is of 

multilayer structure, and each layer is with several neurons. Furthermore, every ANN has 

a Time-Delay Line (TDL) between its inputs and outputs in order to properly match the 

system dynamics. All the above leads to some computational delays which happen in the 

implementation of the scheme. The delay is quite natural as ANNs in general are parallel 

in nature while the computation is carried out on sequential machines. To overcome the 

delay, it is recommended that computational machines with parallel processors which are 

suitable for neural networks computations are used. These are available nowadays and 

their cost is not high relative to their potential benefits in some applications.

For the original closed loop system, the plant (i.e. the Bell-205 Helicopter) is not stable 

but the closed loop is stabilized by the controller {K) which was designed using the 

mixed-sensitivity approach. After integrating the FDIA with the controller, the overall 

system is represented by Figure 5.20.
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Legend:
DLM: Decision Logic Module 
FDI ; Fault Detection and Isolation

Figure 5.20: Fault-Tolerant Control System - Fixed Controller Case

In Figure 5.20, the FDIA breaks the feedback loop and receives the plant measured out

puts (ym). The ANNs produce estimates for the three outputs and f). The ANN- 

based FDIA checks to find out if a single or multiple fault occurs. If that happens, the 

FDIA would replace the faulty value(s) by the estimate(s). In that case, a stability problem 

of the closed-loop system may arise, due to the discrepancy between the estimated out

puts and the (healthy) measured outputs. It could be argued that this discrepancy has been 

taken care of in the design of the controller since the sensitivity fimction minimization is 

included which may be interpreted as consideration on the output disturbance. However, 

since we have the estimation of error bounds for ANNs, we may analyze the stability 

more explicitly. Given the original closed loop system, the plant being stabilized using 

the Hoo mixed-sensitivity controller K , we need to show if the closed loop in Figure 5.21, 

which is a re-draw of Figure 5.20, is still stable with the same controller.
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FDIA

Bell-205
Helicopter

Figure 5.21: Closed-Loop with FDIA Model

In Figure 5.21, the FDIA subsystem is enclosed by a dashed box. The output of die FDIA 

subsystem is thus represented by:

where y/ is the FDIA output and ym is the sensor measurements (the roll attitude <f>, the 

roll rate p  and the yaw rate r). The transfer function 7% ,̂, from the output of A to its 

input, is:

=  (7  + (5.6)

where G represents the Bell-205 helicopter. The closed-loop system can be re-drawn as 

in Figure 5.22 for robust stability analysis. From the well-known Small Gain Theorem,
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the closed loop remains stable if the following holds for all possible A:

IÎ Aoi^̂ lloo < 1

A

(I+G K ) GK

Figure 5.22: Closed-Loop with FDIA Model - SGT view 

However, the norm calculation shows that

0.99827 <  IITÂ Iloo <  0.99927

While as the perturbation block A has a norm of 1.141, the above reveals clearly that 

this designed controller does not give robust stability of the closed-loop system. In re

ality, it means that for some sensor faults the closed-loop system may become unstable 

if the measured output is replaced by estimated signals from the ANNs. The above con

sideration is, however, under the assumption that the uncertainty A is unstructured. In 

our case, the uncertainty block actually represents the possible error at output channels 

between healthy sensor measurements and estimations generated by ANNs, and is thus 

highly structured. It is therefore much more appropriate to discuss robust stability of the 

system using /^-analysis. It turns out that the bound of /i value of the corresponding inter

connected system, over the frequency range of 10~^rad/s to lO^rad/s, is less than 0.61 

(see Figure 5.23). That result means the robust stability has been indeed attained. The 

highly structured uncertainty in this system leaves scope for further improvement of con

troller design. The /i-synthesis would be an obvious choice. The controller design using 

the /i-synthesis is the subject of next chapter.
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Figure 5.23: /i Analysis Robust Stability Output

Before leaving this chapter, we must point out that the estimation error is high in one of 

the channels. That is the result of the ANN being trained with the available, limited flight 

data set. Should a better flight data set be obtained and used for the training, the result 

could differ significantly.

5.5 Conclusion
We have in this chapter presented the design of robust controllers for the decoupled dy

namics and integrated them with the ANN-based FDIA. Due to inconsistency imposed by 

using Flight Test Data (FTD) with linear models, the lateral and longitudinal systems have 

shown great discrepancies. Analysis and discussion with participants in flight testing has 

led to the conclusion that linear model outputs are not in line with the FTD. As FTD is 

used to activate the predictions generated by the neural networks, the output of the linear 

model and FDI did not tally with each other. To confirm this analysis, a limited version of 

the ANN-based FDIA was designed and integrated in the closed loop control system that 

uses the DERA linear model. The outcome has confirmed that the proposed architecture 

is working. This calls for testing the original system with the DERA Nonlinear Model 

in place. This will help to fine tune the design parameters of the system and will high

light the enhancements required. In addition to the experience gained during the FTFCS 

design and simulation, certain remarks have been made about the FTD and the required 

preparations needed to carry forward further FTFCS research activities.
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Chapter 6

FauIt=ToleranÉ Controller using j i  
Analysis and Synthesis

We have in the previous chapter presented the design of H^o controllers for lateral and 

longitudinal dynamics and shown the simulation results of the integration of those con

trollers with the respective ANN-based FDIAs. The plan for this chapter is to look into 

what n  synthesis can contribute to Fault Tolerant Flight Control System (FTFCS). This 

is the main theme of this chapter. The chapter is organized as follows. First, a brief in

troduction to the subject of fj. analysis and synthesis is given. Afterwards, the design of 

a controller for Bell-205 is presented. Comparison of the controller against the Hoo 

controller is presented. Then the /t controller is integrated with the ANN-based FDI. As 

the goal of this chapter is to explore any additional benefits to be gained by using the fi 

approach and in view of the previous chapter results, the design and implementation will 

be limited to the lateral FTFCS.

6.1 Introduction
The stalling point in most control system designs is a mathematical model. However, 

models for plants are never perfect. There are always some dynamics neglected especially 

in the high frequency range or due to lack of loiowledge of the plant at those frequencies.
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Sometimes the lack of Icnowledge of plant nonlinearities or neglecting actuator dynamics 

lead to mismatches between the plant and the model. The basic theory of control 

is to design a stabilizing controller that is robust in the face of uncertainty in the model. 

The design of such a controller normally involves lumping together all the sources of the 

uncertainties into one block that is normally normalized so that the infinity norm of the 

uncertainty block satisfies the following relationship:

||A||oo < 1

For this normalized uncertainty to hold tme, weighting functions are used to quantify the 

discrepancy over the desired frequency range. In addition, the transfer function between 

the enor signal z and the exogenous inputs entering the plant (disturbances, noise, ...etc) 

is minimized to satisfy the following relationship:

llT^tolloo T

where 7  is a pre-defined number. In doing that the structure of the uncertainty is lost 

or assumed to be a full matrix. Additionally, Hoo controllers for plants that have highly 

structured uncertainty may result in a very conservative design. The reason for this con

servativeness is due to the fact that not all the uncertainties will occur at the same time and, 

thus, talcing them all into consideration amounts to assuming that they will all take place 

at the same time. If this assumption does not happen in reality, the designed controller 

will be conservative. The occurrence of such uncertainties is quite probabilistic.

On tire other hand, (i has a proven record in improving the robust stability, nominal per

formance, and robust performance significantly [42]; i.e. with less conservativeness. In 

our case, the problem setup includes an FDIA system in the feedback loop which imposes 

an additional stiuctured uncertainty due to time-delay and the inevitable discrepancy be

tween the actual sensor readings and the estimations generated by the FDIA. This has 

motivated the use of /i synthesis for the design of controllers.
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6.2 /i Synthesis
fx (which stands for structured singular value) was initially used for robustness analysis. 

Analytical solution for a fx controller does not yet exist. However, numerical procedures 

such as the D-K iteration have been used to synthesize an optimal controller. Here we will 

provide the definition of fx and describe how to use it in designing an optimal controller 

[69].

Consider a plant, P, imcertainty block. A, and controller, K , in the general control config

uration as depicted in die diagram below (Figure 6.1) which is redrawn in what is known 

as the M-A configuration as given in the diagram (Figure 6.2). From the diagram and 

using Linear Fractional Transformation (LFT),the interconnection matrix, M, is defined 

as:

M  =  F](f, A") =  f i i  -b f i 2 A-(; -

Figure 6.1 : General Control Configuration
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Figure 6.2: M-A Configuration 

The definition of n  is given by the mathematical formula:

=  min{d(A) : A € A, det(J -  MA) =  0} for structured A (6 .1)

which is read as the minimum perturbation that makes the determinant of (7 —MA) =  0 ;

i.e. makes it singular (thus, imstable). For unstructured (full matrix) perturbation, the 

smallest perturbation A has maximum singular value equal to l/d (M ). From the prop

erties of /i (see e.g. [75]), rescaling n  can be made without sacrificing stability. The 

rescaling can be done by pre and post multiplying M with a stable matrix D  (that com

mutes with A) and its inverse interchangeably with A respectively. Then it is required to 

find an optimal controller by solving the following problem:

D ^ (n ^  II DMD'^lloo)

The system interconnection is first formulated. The interconnection takes into consider

ation all of the imcertainties in the plant and the interconnection can either be manually 

done manually, by writing input/output equations, or using the Matlab sysic command, 

or using the Matlab linmod command with a Simulink model. All these approaches lead 

to the same output as explained in many references (see e.g. [51, 75, 83]). The design of
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the controller is then carried out by the D-K iteration procedure which involves four steps 

as follows [51, 75]:

Initialize D Start with an initial value for D  which is normally taken as the identity 

matrix.

K-Step During this step, an Hoo controller is designed for the intercoimected plant which 

is represented by:

F i{P ,K ) where P  — DMD~^

D-Step During this step fix K  and solve the convex optimization problem to find D{jw): 

D{jw) = arg inf^ â[DFi{P, K)D~^{jw)] over an intended frequency range

Curve Fitting Curve fit D{jw) in order to obtain stable D{jw) and D~^{jw).

The above steps are repeated till the procedure converges to an optimal controller or a 

given number of iterations is reached. It should be noted that the D-K iteration may not 

converge in some cases.

6.3 // ContmEer Design for BeH-205 Helicopter
As the uncertainty from the discrepancy shown in the ANN outputs is highly structured, 

the fj, tool is a natural choice. We will first present the uncertainties and their modelling 

and then provide the details of the weighting functions used. The overall design is repre

sented in the following diagram (Figure 6.3)
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control

B205

FDIA

Figure 6.3: Design Problem Formulation Diagram

6.3.1 Uncertainty Modelling

Modelling uncertainties in the controller design framework is very important. O f course 

including many sources of uncertainties more than necessary, may lead to a conservative 

design. Here we have considered the most important sources of uncertainties that may, if 

ignored, result in a controller that may not only lack robustness but also be unstable once 

put in real operation.

The sources of the uncertainties in the closed loop with FDIA in the feedback loop come 

from the following:

•  Presence of FDIA in the loop. As the FDIA is placed in the closed loop, two impli

cations can be drawn. First, there is some computational delay. Secondly, there is 

always a difference between the actual signal and the one estimated by the neural 

model. These differences may have maximum values (upper bounds) and as per the 

simulations for the lateral dynamics, this is found to be the case for (<j), p, r):

(  1.141 0.0929 0.9879 )  
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The time delay is modelled using a second order Fade’ approximation that is math

ematically represented as:

_ 5 ^ -1 2 5  +  48
+  12s +  48  ̂ ^

This may suggest that it can be modelled using parametric uncertainty. Note that 

the above parameters ai e the result of the current neural networks using the flight 

test data. The accuracy of the neural networks can, thus, be improved once the sets 

of neural networks are trained with flight test data sets collected for this purpose. 

Especially, the first parameter (1.141) and third parameter (0.9879) are relatively 

high. Also, the numbers indicate the peak (max) discrepancy that has occurred dur

ing the validation of the FDIA. This peak may have been much lower if the training 

data set was rich enough. Moreover, if the frequency of peak value occurrence is 

low, then the violation of lowering the limits on those two channels may not be 

harmful. This matter needs to be further checked once a set of rich training data 

files are obtained for re-training of the neural networks.

o The model used for the controller design is DBRA 6D0F linearized model at the op

erating condition of 20 Icnots. As per the comparative study [14], a certain amount 

of deviation exists between the nonlinear model and the flight test data on the one 

hand and the linearized DBRA model (6D0F and 12D0F) on the other hand. There 

are cases where the 12D0F model overcomes the deviations as it includes some de

tailed rotor modelling. The comparison takes place in the time-domain as well as in 

the frequency domain. As our design is based on frequency domain, the following 

comments are taken from the above mentioned reference and will be used in the 

selection of the weighting functions:

-  Yaw: There is an offset that reaches BdB at 10 rad/s which raises the uncer

tainty up to 50% at frequencies higher than 2 rad/s. The model is in error for
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lower frequency.

Roll; There is an offset across all frequencies (3 dB between 3 and 7 rad/s). 

The peak uncertainty is 30%.

Pitch: There is an offset from 3dB at 1 rad/s to approximately +10dB at 10 

rad/s. This raises the uncertainty level to 30% at low frequencies and to 50% 

at higher frequencies.

Due to the existence of the above uncertainties in the various axes, the 6D0F model is 

considered to be of low/medium fidelity. From the above, we have three perturbation 

blocks given by:

0 0 \
A =  0  A c 0

 ̂ 0  0  A p  j

where A c is an unstructured uncertainty block and has the same dimensions as the plant 

(i.e. 3X2), A f  is a structured uncertainty and has a dimension of 3X3 and A p  is a block 

structured uncertainty which is represented by:

Ap
A {7 0

0 A .

where A u  is fictitious unstructured uncertainty to penalize the control signal while Ap is 

another fictitious uncertainty to specify the performance requirements.

6.3.2 Weighting function Selection

Although, the information about model uncertainty looks complete, it really does not 

tell us a lot of the details required. For example, it does not tell us how the uncertainty 

is related to the input channels and, also, it does not compare the uncertainty magnitudes
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with the respect to the open loop. The latter is important to convey to the designer whether 

for example 3dB is a large or small quantity. To conclude, the model uncertainty will be 

treated as an unstructured uncertainty and die information above will be used to aid in 

constructing the weighting functions. Accordingly, and in line with the guidelines given 

in [75], the following weight functions have been selected.

Weights Selection for UnmodeUed Dynamics

The following first order transfer fonction is used [75]:

w{s) =
Ts +  rp 
'“̂ s  4" 1

(6j)

where tq is the relative uncertainty at steady state, t  is the frequency at which relative 

uncertainty reaches 100% and Tqo is the magnitude of the weight at high frequency. Ac

cordingly, foe respective weights have been chosen. The weighting function for the un

modelled dynamics Wo is given by:

0 0

0 Wp 0

0 0 1

(6.4)

where:

and.

0.33s 4- 0.3 
0.165s 4-1

(6 j)

0 .1s+  0.5 
0 W» +  1
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From our experience with the H^o design we have selected the weighting functions Wu 

to be equal to:

(6.7)

The other performance weighing function Wp has been selected as follows:

0.5 s+O.OOl

0

V 0

0.5S+0.3
s+0.001

0

0 

0
l_s±OJ_ 

s+0.001 /

# 8 )

The weighing function to account for the presence of the FDIA, Wp, has been selected as 

follows:

Wp =

1 1 ^ 1  s^-12s+ 48  
s^+12s+48

0

0

0.0929 s^-1 2 s+ 4 8
s^+12s+48 (6.9)

The overall block diagram is shown in Figure 6.4:
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Figure 6.4: General Block Diagram

6.3.3 Performance and Stability Analysis

The controller is designed using the D-K iteration and the following diagram (Figure 6.5) 

shows the n  values for the designed closed loop system:
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Figure 6.5; /% Controller with all uncertainties Performance and Robustness Analysis Re

sults

It can be seen that the controller attains the nominal performance but fails to satisfy the 

robust performance and robust stability requirements. As a matter of fact, our mixed- 

sensitivity H^o controller demonstrates lower capability as seen in Figure 6 .6 .

H-Mb% Contralw

Figure 6 .6 : Hoo Controller Performance and Robustness Analysis

From the two diagrams Figure 6.5 and Figure 6 . 6  we summarize the stability and perfor

mance values in the following table:
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Table 6.1: Hqq and /x Controllers Comparison

^ 0 0

NP 0.1269 0.0934

RP 3.3613 1.141

RS 4.0693 1.1412

where NP stands for nominal performance, RP stands for robust performance, and RS 

stands for robust stability. It has to be mentioned that the comparison is made with the 

same generalized interconnection plant constructed for the design of the controller. 

It is clear that a controller such as the one designed in this chapter using /r-synthesis 

outperforms the Hoo controller designed in Chapter 5 as the latter was designed without 

taking into consideration all the uncertainties which include the presence of the FDIA 

itself. It is to be noted that the /x controller requires further improvements by conducting 

more iterations and manipulating the design Icnobs (the weighting functions). Another 

avenue for the improvement of the overall performance of the system is to consider the 

improvement of the FDIA itself as discussed below.

Although the design of the Hoo controller can be further improved, /x Synthesis provides 

us with greater flexibility to fine tune the controller without actually manipulating the 

weighting functions. The designed controller was made for a plant that is augmented with 

uncertainties pertaining to model uncertainty and FDIA accuracy and delay. Assuming 

the model uncertainty is accurate enough and must be left intact, the FDIA uncertainty 

was derived under certain assumptions. This leaves us room to improve the robustness of 

the controller by improving certain aspects of the FDIA. For example, if the uncertainty in 

the FDIA is lowered by 50% which is quite possible if the ANN-based FDI is trained with 

richer data sets, the robustness and performance of the controller is given by Figure 6.7:
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Figure 6.7: Nominal and Robust Performance and Stability with 50% Improvement in 

FDI)

As we can see, the controller attains nominal performance and robust stability but lacks 

robust performance. If we leave this discrepancy and consider it unavoidable but consider 

removing the delay, the controller can attain only nominal performance (same as 

controller) as depicted in the following diagram (Figure 6 .8 ):

u ContrMw A n É ^  <M9tout (May

Figure 6 .8 : Nominal and Robust Performance and Stability with No Delay

If we leave the delay and only improve the discrepancy in the roll attitude channel by 

retraining the respective ANN, the controller performance is depicted in the following

152



diagram (Figure 6.9) where the robust nominal performance and robust stability is attained 

with robust performance improved:

Figure 6.9: Nominal and Robust Performance and Stability with 50% improvement in 

Roll Channel

To summarize, one can deduce easily that /x synthesis has an advantage over Hoo where 

more possibilities are identified to fine tune the controller without really sacrificing the 

design assumptions.

6.4 Simulation Results
The overall system in Simulink is depicted in Figure 6.10. In the simulation, the same 

comments in the previous chapter about the discrepancy between the linear model on the 

one hand and the ANN-based FDI and FTD on the other hand are also valid here. For 

that reason, a set of an ANN-based FDI using data generated from linear model only has 

been developed for the purpose of checking the functionality of the system. The neural 

networks performance is depicted in the following diagrams:
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- 4 ^

Figure 6.10: Integration of ANN-based FDI with fi Controller - Lateral Case

jLJW w m w T '

4̂

Figure 6.11: Master ANN (LANOF) Performance vs Linear Model
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UnMrMoiM pN-owW

Figure 6.12: Roll Attitude ANN (phiNN) performance vs Linear Model

UnurMocM p-ou%)ul

Figure 6.13: Roll Rate ANN (pNN) performance vs Linear Model
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Figure 6.14: Yaw Rate ANN (rNN) performance vs Linear Model

The resultant system (/i-based FTFCS) has been tested and the simulations results are 

given in Figure 6.15, Figure 6.16 and Figure 6.17:
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Figure 6.15: Simulation Results of Aults occurred at t=9.985 sec with Magnitude=2.0

In the above diagram (Figure 6.15), a fault of magnitude equal to 2.0 at time=9.985 

(which is one sample less than t= 1 0  sec) on the roll attitude channel has been simulated 

and the fault has been cleared and the sensor reading is exactly the same as the FTD used 

in the linear model.
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Figure 6.16: Simulation Results of faults occurred at t=l sec with Magnitude=2.0

In the above diagram (Figure 6.16), a fault of magnitude equals 2.0 at time t=1.0 on roll 

attitude channel has been simulated and the and the fault has been cleared and the sensor 

reading is in general similar to the FTD used in the linear model. There are some spikes 

that make the estimated neural network estimate different from the original linear model 

FTD reading.

158



Linear Model -  Phi

Corrupted Sesnors

Figure 6.17: Simulation Results of faults occurred at t=10 sec with Magnitude=2.0

Again, the clearance of the fault in the above simulation (Figure 6.17) is quite acceptable 

with the same comment on the accuracy of the ANN estimate as before. Though, the 

original healthy signal is small in magnitude (—0.5 < (j) < 0.5), the signal has been 

constructed to recover the original signal.

6.5 Conclusion
In this chapter, we have presented the design of a // controller for the Bell-205 helicopter 

(lateral case). As well we have explored the benefit of n  over where the controller 

could be improved without relaxing the uncertainty assumptions. The /i controller with 

more uncertainty assumptions is better than the controller. Improving the FDIA de

sign, which is possible, the revised controller can outperform the controller signifi

cantly.

The n  controller has been integrated with the ANN-based FDI and the result has proved 

the fimctionality of the integrated system though the accuracy has been afiFected by the 

fact that the linear model rather than nonlinear model was used in the simulation.
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This chapter, and Chapter 5 as well, are mainly on FTFCS using fixed structure con

trollers. The next chapter, will be on an adaptive approach where the FDIA system will 

be used to alter the structur e of the controller to accommodate the faults.
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ARE-Based Adaptive FTFCS

The aim of this chapter is to explore the theoretical foundation of the application of an 

adaptive approach to controller reconfiguration in case of failures. The approach is based 

on updating Algebraic Riccati Equations (ARE) solutions where the impact of the faults 

on ARE are explored in some detail. The chapter is organized as follows. First, AREs 

are presented and their linlc to the synthesis of optimal control systems, in general, and 

Hoa in particular is described. Major methods used in solving ARE are outlined in the 

subsequent sections. Afterwards, a general faulty scenario is considered and the overall 

controller formulae are derived. Although the approach is applied for sensor faults, sim

ilar approaches may be developed for actuator faults or airframe damages. The AREs 

for the sensor faulty situation are derived and their solutions are outlined. This gives 

the structure and the governing equations for controller reconfiguration. In line with the 

research project objectives, the approach is applied to the Bell-205 helicopter with the 

ultimate goal of designing an adaptive FTFCS for it. At the end of the chapter, some 

concluding remarks are drawn.

7ol ARE and Tfoo cnntroE
Given a general interconnected plant P  as shown in Figure 7.1 (previously seen in Chapter 

5) where w stands for exogenous input, z stands for the signal to be penalized, u is the
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control input, and y  is the measurement output.

Figure 7.1: The Standard Hoo Configuration

In the framework of Hoo control, e.g. S-over-KS design (as discussed in Chapter 5), the 

controller can be synthesized with the ultimate goal of minimizing the transfer function 

fi-om to to 2  (given by the LFT below), or in the suboptimal case, finding a stabilizing 

controller K  such that ||7^,||oo < 7  where 7  is a small positive number:

(71)

where are the partitions of the general interconnected plant P. In the suboptimal case 

which we consider here, the controller K  is given by the following law which involves 

solutions to two AREs:

AqO -Zoo Poo Z00P 2

% = Foo 0 I

-C2 I 0

(7.2)
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where:

Zoo =  ( / - f y ; o % o o r \

P o o  =

=  - g f X o o ,

Aoo =  A +  7 ^BiBJXoo +  B2F00 +  Z00L00C21 

X oo > 0  is a solution for the following ARE:

+  C^Ci +  X «,(7-=BiBr -  BgBf )%«, =  0, 

>  0 is a solution for the following ARE:

+  yix,(7-'C'rCi -  =  o.

As we observe from the above, in the Hoo control system design, one has to deal with 

AREs. Our focus is on Hoo controller design especially for systems where faults are 

likely. In the following subsequent sections, we will discuss the details of solving AREs.

7.2 ARE Solutions
AREs as the one shown above, may have finite or infinite solutions which can be her- 

mitian, non-hermitian, sign-definite or indefinite. The solution procedures can be based 

on eigenvalue and invariant subspaces or generalized eigenvalues and deflated subspaces 

[34, 39, 45, 62]. In the control engineering community, symmetric solutions are of prime 

interest. Such a solution X  with reference to ARE (eq-7.3) below is called the stabilizing 

solution if A — R X  is stable. Major solution procedures are listed below.

7.2.1 Invariant Subspace Method

This method is used to handle AREs of the form:
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%A +  -  X R X  A Q =  0 (7.3)

The solution is obtained by forming the Hamiltonian matrix:

H  =

where Q and R  are Hermittian matrices (i.e. Q = Q* where the superscript * de

notes complex conjugate transpose). Our focus is on real coefficient matrices and, thus, 

Q =  Q^. The stabilizing solution of the ARE is found by constructing bases for the stable 

invariant subspace of H. Note that the subspace U is called A-invariant if  AU = U. The 

invariant subspaces can be formulated by using the eigenvalues and generalized eigenvec

tors of H  [85]. Assuming that A, are eigenvalues with multiplicity k and letting Vi be the 

corresponding eigenvectors which can be interrelated by:

( ^  -  \7)u< =  0

(H- Xil)vi+i =  Vi

(H- Xil)vi+k-i = Vi+k- 2  

the matrix H  is symmetric and has the property:

=  - .f fV

where J  is defined as:
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J

Having formed the Hamiltonian matrix, the solution, X ,  can be found according to the 

following steps:

0 A

Compute the matrix of eigenvectors, T:

/  Tn \  Y  A W
y  T à i  T 2 2  j  y  —Q  — A ^  j  y  T 2 1  T 2 2

where — A corresponds to left-half plane eigenvalues of H

The ARE solution, X , is computed by solving a system of linear equations:

7.2.2 Deflating Subspace Method

In this method, the counterpart to the Hamiltonian matrix is the symplectic matrix which 

uses the direct inverse of the A matrix. The method is good for AREs with extra matrices 

such as [39]:

+  f F X ^  -  +  Q _  =  g

Here A =  A — B R~^S^. As observed, there are some extra matrices which makes the 

approach of value when handling the AREs corresponding to some faulty scenarios.

The solution is obtained by following the steps below:

Compute a basis for n-dimensional deflating subspace

Form the matrix pencil: 
/ A  0  B \

—Q —A^ —S  

5^  B

B O O  

0 B^ 0 

0 0 0
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•  compute the solution by solving a system of linear equations.

7.2.3 Sign Matrix Method

Given a matrix M  the sign of this matrix (sgn) is given by:

,s„ (M ) =  r f  “ U
y 0  ... sgn{ReXg) J

where M has a Jordan decomposition M  =  T{D  +  N)T~'^ and D = diag{Xi, ..., A,) and 

N  is nilpotent and commutes with D.

Now if we consider the ARE:

A^X +  XA -  X GX  A Q =  0 

where G =  B R^^B '^  and the Hamiltonian matrix M  is given by:

M  =  ^  ^  1 G
y - Q  -A ^  ^

To solve the above ARE using sign-matrix method proceeds as follows:

f  ^  =  sgn{M)
y Z 21 Z 22 J

Then, the solution X for the ARE is given by solving the following [39]:

I ) x = - i ^ " + n

7.2.4 Iterative Method

The solution o f an ARE can be obtained analytically provided certain conditions are met. 

They may be solved by iterative, numerical approaches for instance the Newton’s method. 

Newton’s method is capable of producing highly accurate results but at the expense of
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computational cost. On the other hand, Schur’s method (used in the invariant subspace 

method) is one of the most reliable methods. Actually, the best way to solve an ARE 

is by implementing the generalized Schur method followed by Newton’s method. The 

sign-matrix method may have numerical instability. Details on comparisons of various 

methods can be found in [33].

7.3 ComtroHer ReconÊguration m FTFCS
The main theme of robust control is to design controllers that are robust enough in the 

face of uncertainties which could be due to modelling errors or lack of Icnowledge on 

plant dynamics especially at high frequencies. However, a robust controller designed via 

robust design approaches, may still not be able handle plant faults. For example, robust 

controllers may not handle large sensor faults, actuator faults, or most critical faults per

taining to plant components such as partial damage of an aircraft’s airframe. The failure 

pertaining to a plant’s components (e.g. airframe partial damage) affects the model ma

trices especially the stability derivative matiix, A. Despite this fact, robust control design 

tools are unable to treat these faults as model uncertainties and further to accommodate 

them. Thus, it is important to consider other approaches to handle failures when these 

faults are in the inputs, components, or outputs of the plant. This is the main theme of 

fault tolerance control (FCT).

Once a fault is persistent and the FDI system marks that sensor as faulty, the controller 

must be reconfigured to cope with the situation. There may be two approaches to talce, 

namely:

On-Line Design and Switching In this framework, eveiy time a fault occurs, a new con

troller is designed on-line which involves solving the two AREs mentioned earlier, 

if the ifoo design method is used, which at the end leads to the controller K f. The 

design should take minimal time. The switching between the current controller and 

the newly designed one should be smooth and take a small amount of time as well.
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Adaptive Compensation In this alternative framework, the original controller is left in 

action and is compensated for the fault by solving the AREs in terms talcing into 

consideration the difference A, between the normal and faulty signal, and generat

ing a compensating signal corresponding to the change.

7.3.1 On-Line Design and Switching

The Linear Time Invariant Finite Dimensional (LTIFD) system on which the controller is 

acting upon is given by the general equations:

X =  A x +  B u 

y = Cx + Du

In the above state space representation, all matrices are assumed constant and, further 

without loss of generality, D = 0. When a sensor fault occurs, the output changes from 

y Vf where y f = y + A y  and the output matrix may be considered to be perturbed by 

an amount AC. Thus, the new output matrix corresponding to the faulty case is given by:

C; =  (f  +  A)C

In this chapter, we consider the Hoo S/KS (sub)optimization design as an illustrative case. 

The configuration of this design is depicted in the following diagram (Figure 7.2).
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Figure 7.2: Hoo S/KS Mixed-sensitivity Problem Configuration 

The objective to be achieved is:

<  T

where 5  =  ( /  +  GK)~^. In order to show the idea more clearly, we assume without loss 

of generality that Wi = I  and W 2 =  I. If  the above plant is connected with the controller 

as in Figure 7.3, the general interconnected plant is given by:

A B i 8 2

f  = C l D l l D12

C2 D21 D22
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Figure 7.3: General Control Configuration

where:

B \ =  0 -B Cl

I 0
=  C  D n  = D u =

0 I
Do Doo =  0

As we have seen in Üie previous section, the Hoo controller is obtained by solving a set 

of two Algebraic Riccati Equations and those AREs are dependent on the plant matrices 

and among them the output matrix C which now has in the faulty case been replaced by 

Cf. Definitely, the solution obtained originally does not hold for the new matrices and, 

thus, the controller may not be able to control the plant properly. Indeed, in some fault 

situations, a plant may face severe performance degradation and stability problems if no 

action is taken on time. Thus, it is desirable to get a new controller that once the fault 

occurs, it takes over instantaneously. As there are various scenarios for the faulty situa

tions, various controllers may need to be designed correspondingly with some switching 

mechanism. This requires great amounts of knowledge about the faults which then needs 

to be translated into some mathematical formulation. This on-line approach requires the
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solution of the new AREs that con espond to the faulty situation. Given the general linear 

model, the Hoo controller is obtained by solving the two AREs given by:

+  CTCi +  =  0

AYoo +  =  0

In the S/KS case, the two AREs are:

+  %ooA +  (1 -  =  0 (7.4a)

AIlx, +  =  0 (7.4b)

where in case of sensor failure, the equations become:

+  (1 -  -y-^)-^C^C; -  =  0 (7.5a)

A ll,. +  =  0 (7.5b)

With the solution to the above new AREs, a new controller can be foraiulated to replace 

the original controller. Should another fault occur, another controller is formulated in view 

of the fault signature (single or multiple). As such, this approach involves on-line design 

of the controller and switching between the cuirent controller and the new controller

7.3.2 Aim Adapiüve Compeimsatioim

In the previous section we have derived the Hoo controller that replaces the normal con

troller. Of course, for the new controller to take over, a switching mechanism is required 

to smoothly handle the situation. The approach reported in this section is based on explor

ing the relationship between the formulas which construct the controllers in the normal 

and the faulty cases.

As discussed before, the controller in the nominal case is

Knormal = d (A ,B ,C ,D , Xoo, %»)
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where X^o and Yoo are the stabilizing solutions to the two algebraic Riccati equations 

(AREs), eq- 7.5a and eq- 7.5b, respectively.

On the other hand, in the case of sensor failure, the controller is

where C / =  ( /  +  A)C, and X^o and Ÿ^o are the solutions to the following AREs,

4- (1 -  -y -")- 'C ^(f +  A )^(f +  A)C -  =  0 (7.6a)

AŸix: +  +  A):^(f +  A ) %  =  0 (7.6b)

These two new AREs can be considered as slightly perturbed (in the output matiix C) 

from the original equations. Hence we may reasonably assume that the solutions are 

closely related by “small” pertuibations such as in the forms

%oo = ;̂ oo + Ax_ (7.7)

t o  = : ^  + Ay_ (7.8)

By substituting Ĵ oo and t o  into the new AREs we get

+  Axoo) +  {Xoo +  A  Xoo) A +  (1 — 7  ^C^{I  +  A)^C

-  (%«, +  A x_)B g:r(;^^  +  _  0

and

A(yjx) +  Ay^) +  (y ^  +  Ay^)A^

-()!»  + Ay„)C^(7 + A)^C(y:x, + Ay,.) =  0 
We will focus, for the time being, on the first equation. By expanding it, we get

(7.9)

(7.10)
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Xoo +  A ^ A x o o  +  X o q A  +  A x o o A  +  (1  — 7

(1 -  7-^)-^C^A^C +  2(1(1 -  7 “^)“ )̂C'  ̂+  (1 -  7-^)-^A^C^C  

-  -  XooBB^Ax.. -  A%_BB^X«, -  7 -2 A x _ j3 B ^ A x .. =  0

(7.11)

After re-arranging the terms, we get the following equation:

A^Xoo +  X ..A  +  ( 1  -  7 -^)-^)C ^C  -

+  A^Axoo +  AxooA +  ((1 -  j-^)-^C^A^C +  2(1(1 -  'y- )̂~ )̂C  ̂+  (1 -  7-^)-^A^C^C) 

-  -  X«,B.B^Ax.. -  A x_B B ^A x_ =  0

(7.12)

Clearly, in the above equation the first four terms yield zero and the rest form another 

ARE:

(A -  BB^X«,)^Axoo +  A x _ (A  -

-  AxooBB^Axoo +  ((1 -  'y~^)~^C ^A ^C  +  2(1(1 -  7 “2)-i)C'^ +  (1 -  7-^)-^A^C^C) =  0

(7.13)

Dually, the second ARE concerning t o  can be processed in a similar manner and will 

lead to the following ARE of Ay,. :

(A — Y ooC ^ {I  +  A)^C)Ay,. +  Ay,.(A — Y oqC ^ {I  +  A ) “̂ C )^  ^

-  A y,.(C ^(7 +  A)^C)Ay,. =  0 

Hence, we have the following lemma.

Lemma 7.1 In the case o f the sensor failures considered, the ARE solutions Xoo Yoo

may be calculated from

Ĵ oo = X«, + Ax_ (7.15)

t o  = };« + Ay,. (7.16)
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where Axoo A y . are stabilizing, but not necessarily positive definite, solutions to 

AREs (eg- 7.13 and eq- 7.14)

Notice that the Riccati equation concerning ( t o )  can be transformed into a Lyapunov 

equation, if Yoo ( t o )  is of foil rank. That may give numerical advantages in calculation 

in some cases. However, if the A  matrix has stable eigenvalues, the solution to the ARE 

equation will be rank deficient. A related result is presented in Appendix- D.

Now let us see how the ARE solutions in such a form can be used in the construction 

of the controller in foe sensor failure situation. Recall that foe central controller in foe 

present design problem has foe following state space realization (notation in the normal 

case).

Knormal

where

Define

and

B^Xoo 

a  =  (1  -

0
(7.17)

Ù =  ( 1  -  7 -:)-^/^C  =  aC  

and substitute fois into Equation 7.17 we get.

Knormal —
0

(7.18)

Such a controller can be decomposed into three, cascaded parts, by state similarity trans

formations and system state space model manipulations.

(7.19)
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where,

Al
A B

.  B^̂ Xoo 0  .

A ,
A

. B^Xo. 0  .

A ,
A-BB̂Xoo ZooX»̂  '

L (5 0 .

(7.20)

(7.21)

(7.22)

Similarly, the central controller for the faulty case has the same structure but with:

^  Cy =  ( /  +  A)Ù

Xoo Âoo =  Xoo +  A x  00

Yqo Yoo ~  ^oo 4" A y 00

The overall structure of the controller for the faulty case is, thus, depicted in the following 

diagram (Figure 7.4):

{ 3 3

Figure 7.4: Adaptive FTFCS Controller Overall Structure
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Using the relationships derived for K f  and Knormal, the adaptive compensator for the 

Bell-205 helicopter can be constructed in the form of the three controllers (K i ,K 2 , it's) 

with direct substitution of equations (7.20- 7.22) in the above figure. Explicitly, the three 

components of the controller in the sensor failure case can be depicted as in the following 

diagrams, Figure(7.5), Figure(7.6) and Figure(7.7), respectively.

- o o -

Figure 7.5: Adaptive FTFCS - First Controller (K i)

Figure 7.6: Adaptive FTFCS - Second Controller (Ffg)
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Figure 7.7: Adaptive FTFCS - Third Controller (K 3)

In the above three diagrams, it has to be noted that C = aC. Such a realization of 

the controller can be updated on line whenever A is obtained and A%^ and Ay^ are 

calculated. A prominent feature is that it may well provide a less bumpy transfer, since 

only scattered parts are affected and those changes are expected to be small.

O f course, when there is no fault, the controller K f is simply equivalent to K„romai, 

because A =  0, A%_ =  0 and Ay^ =  0. It should be mentioned that the description of a 

controller as in eq- 7.17 is by no means unique. Various structures are available. The key 

idea here is to make the updates small in number and to keep the unchanged parts in the 

controller as many as possible.

7.3.3 Adaptive Scheme Selection

The on-line design and switching scheme and the adaptive scheme are depicted in the 

following diagram (Figure 7.8).
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Figure 7.8: Adaptive Schemes

It is recommended that the adaptive compensation approach be used for the following 

reasons:

•  The stringent requirements in regard to minimal on-line design time and smooth 

switching among controllers may become difficult to adhere to and more difficult 

to guarantee.

•  The original controller which accounts for the healthy situation is intact. The addi

tional part may not have the same negative impact as switching among controllers. 

It is envisaged that additional compensational signal may not need to be generated 

for all faulty situations pending on the control logic module. However, this needs 

to be investigated.

•  The approach has potential for practical use. Further investigation may prove that 

it is not only theoretically appealing but also may lead to some advancement in the 

design of fault-tolerant flight control system.

•  In the adaptive framework, the false alarms and intermittent problems may be easily 

dealt with without major interruption or performance degradation in contrast to the
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case of switching between controllers. The reason is clearly due to the fact that 

the nominal controller is left intact and the compensating signal may be suppressed 

smoothly in subsequent cycles .

7.4 Conclusion

We have explored the feasibility of controller reconfiguration based on ARE and devel

oped the mathematical architecture and from that we have extracted the structure of the 

adaptive updating controller. What is required further is to test the scheme and run var

ious deslctop and if possible in-flight simulations to fine tune the system. Additionally, 

perfoimance and stability is another future opportunity. The pros and cons of the scheme 

has already compared against the on-line design and switching scheme. Based on the 

merits of the second approach, a new conceptual reconfigurable controller for Bell-205 

helicopter has been developed.
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Chapter 8 

Conclusion

8.1 Achievements
The theme of the thesis is to investigate the development and the application of the FTFCS 

concept, as articulated in Chapter 1, for helicopters. To the best of my Icnowledge this has 

never been reported in the literature. This may be due to the limited architectural features 

of helicopters in general. Based on the analysis conducted at the earliest stage of the 

project, fault-tolerance to sensors failures has been considered with application to the 

Bell-205 helicopter in this research.

The following achievements have been attained:

•based FDIA for Bell-205 Helicopter: This is a major achievement where two ANN- 

based FDIA systems have been designed using real flight test data where one of 

them is for the lateral dynamics and the other one for the longitudinal dynamics. 

Both systems have been tested in simulation and showed satisfactory performance 

in terms of the training goals and testing against other flight data. Major features of 

these two systems are:

o Input space independence among the neural networks.

o All the sensors feedback loops are considered which makes the system of
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large scale.

Hoo Controllers: Designing controllers was not an objective by itself in the project. 

However, longitudinal and lateral controllers have been designed for the purpose 

of being integrated with respective FDIA systems. The controllers have proved on 

desktop simulations very much satisfactorily in terms of frequency and time domain 

responses.

/i Controller: In the previous designs of Hoo controllers, the controllers have been de

signed separately without talcing into account the presence of the FDI in the feed

back loops. As we see in Chapter 1, the most appropriate design is the one that 

tackles them together. In Chapter 6  we have designed a controller for lateral dy

namics using n  analysis and synthesis where the presence of the FDIA in the feed

back loop, in addition to other uncertainties, is included to formulate the structured 

uncertainty block. The /j, tool has helped to identify possible improvements.

ARE-Based Adaptive FTFCS: We have considered in great detail the study of the im

pact of sensor faults on the Algebraic Riccati Equations (AREs) that are usually 

solved when designing robust controllers. We have derived in detail the formulae 

of a new adaptive controller in Chapter 7. The proposed scheme has been compared 

against on-line reconfiguration and based on the merits of the adaptive scheme, it 

is recommended as a viable solution. The study forms a solid ground for further 

research.

8o2 Recommendations For Fntnre Research
The field of FTFCS is expanding rapidly and spreading in many directions. On the other 

hand most of the effort is on transport or fighter aircrafts but with less degree of concen

tration on rotory-wing aircraft and very little focus on helicopters. There is almost no 

reported work on FTFCS development for helicopters. At the same time, there is some 

effort to develop specifications for FTFCS to cope with military specifications MIL-F- 

9490D [22]. Thus, it is recommended, in view of intense involvement in helicopter flight
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control system in Leicester university, that the following activities are to be continued to 

improve the implementation of the concept of FTFCS for helicopters;

Further Veriflcation; The ANN-based systems have shown satisfactory results on desk

top simulation. It is urged that additional effort is paid to collect much richer flight 

test data for further training and validation of the various neural networks. So far, 

testing and validation are carried out against a limited flight test data. To prepare the 

system for real flight test, the ANN-based FDIA needs to be tuned by comparing 

its outputs against the DERA nonlinear model in various operating conditions. As 

we have seen, integrating ANN-based FDIA with the linear model did not produce 

acceptable results though the concept has been proved to be functioning with the 

limited version ANN-based FDI developed for that purpose. Having done that, the 

next step is to carry out flight test of the ANN-based FDIA by itself and based on 

these flight tests some modifications and improvements can be made and incorpo

rated into the system. And the integrated system (the FDIA with the Controllers) 

can be tested again.

Adaptive Scheme: The work we have carried out in Chapter 5 and 6  is based on fixed 

controllers integrated with the ANN-based FDIA. The theoretical study we have 

done in Chapter 7 has provided details on developing a new controller that can be 

implemented for Bell-205 helicopter. It is recommended that the adaptive approach 

detailed therein, to be fully tested to explore its features.

Fuzzy Logic: The accommodation in our design is coded directly using Matlab script. 

On the other hand, fuzzy logic with its structural logic may be a better platform to 

code the faults’ accommodation process [6 8 ]. This preference is based on the fact 

that fuzzy logic machinery is greatly geared to capture human Icnowledge usually 

expressed in natural language. Thus, it is recommended that this part be considered 

where instead of using threshold values to take remedial actions, more complex 

Icnowledge extracted from the pilot experience be coded for more appropriate deci

sion logic.
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Comprehensive Neural Model for Bell-205 helicopter: In line with this research, it is 

recommended to carry on detailed modelling of Bell-205 helicopter as indicated 

in Chapter 3 (Figure 3.6) where each subsystem of the helicopter is modelled by 

itself and the resultant subsystems are integrated together to produce an ANN-based 

model equivalent to the DERA nonlinear model. The neural models that have been 

developed for the FDI systems can be used for this purpose.

Other ANN Architectures: ANN has a proven record supported with formal mathemat

ical proofs in the modelling of nonlinear systems. We have used one type of neural 

networks; i.e. the de facto standard in control community, the MLR Other re

searchers claim that other architectures such as radial basis function (RBF) are very 

powerful. It is recommended that some comparative research be done in this regard.
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Appendix A 

ANN Details

A.1 IntmductioD
The aim of this appendix is to give sufficient details on the neural networks used in the 

design of the ANN-based FDIA system. There are two MIMO ANNs one is used in 

lateral dynamics and the other in longitudinal dynamics FDIA subsystems. Each one of 

these ANNs is used to perform the fault detection function by checking the health of 

the measurements of the feedback loop sensors. Also, there ar e five MISO ANNs where 

three of them are used in lateral dynamics and the other two in the longitudinal dynamics 

case. Each of these MISO ANN is used for fault isolation. The details of all of them as 

generated by Matlab are given next.

A.2 Lateral Dynamics FDIA Nenrai Netorics De

tails
Network Name: B205LANNOF 

B205LANNOF =
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Neural Network object:

architecture:

numlnputs: 1 

numLayers: 4 

biasConnect: [1; 1; 1; 1] 

inputConnect: [1; 0; 0; 0] 

layerConnect: [4x4 boolean] 

outputConnect: [0 0 0 1] 

targetConnect: [0 0 0 1]

numOutputs: 1 (read-only) 

numTargets: 1 (read-only) 

numlnputDelays: 3 (read-only) 

numLayerDelays: 0 (read-only)

subobject structures:

inputs: 1x 1 cell of inputs

layers: 4x1 cell of layers

outputs: 1x4 cell containing 1 output

targets: 1x4 cell containing 1 target

biases: 4x1 cell containing 4 biases

input Weights: 4x1 cell containing 1 input weight

layerWeights: 4x4 cell containing 3 layer weights

functions:

adaptFcn: ’trains’

185



initFcn: ’initlay’ 

performFcn: ’mse’ 

tiainFcn: ’traingdx’

parameters;

adaptParam: .passes 

initParam: (none) 

performParam: (none) 

trainParam: .epochs, .goal, .Ir, .Ir^ec,

.Iriuc, .m axfail, .maxperfiuc, .me,

.mirigrad, .show, .time

weightandbiasvalues :

IW  : Axlcellcontaininglinputweightmatrix 

L W  : 4xAcellcontaining3layerweightmatrices 

b : AxlcellcontainingAbiasvectors

other :

userdata : {u serstu ff)

N eura lN  etw orkN  ame = B 205P H IN N

B 205P H IN N  =

NeuralNetworkobject :
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architecture  :

num lnputs  : 1 

num Layers : 4 

biasConnect : [1; 1; 1; 1] 

inputConnect : [1;0;0;0] 

layerConnect : [ixiboolean] 

outputConnect : [0001] 

targetConnect : [0001]

num Outputs : l{read — only) 

num Targets : l{read — only) 

num lnputD elays : 3{read — only) 

num LayerDelays : 0(read — only)

subobjectstructures :

inputs : Ixlcello finputs

layers : 4xlcelloflayers

outputs : IxAcellcontainingloutput

targets : IxAcellcontainingltarget

biases : AxlcellcontainingAbiases

inpu tW eights : Axlcellcontaininglinputweight

layerW eights : AxAcellcontainingUayerweights

functions :

adaptFcn adaptwb' 

in itF cn initlay' 

perform F cn mse' 

trainFcn traingdx'
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parameters :

adaptParam : .passes 

in itP aram  : (none) 

perform P aram  : (none) 

trainP aram  : .epochs, .goal, .Ir, .Ir^ec,

.Ir^nc, .m axfail, .maXpCrfine, .me,

.mingrad, .show, .time

weightandbiasvalues :

IW  : Axlcellcontaininglinputweightmatrix 

L W  : 4xAcellcontaining3layerweightmatrices 

b : AxlcellcontainingAbiasvectors

other :

userdata: (user stuff)

Name of the Network = B205PNN

Neural Network object:

architecture:

numlnputs: 1 

numLayers: 3 

biasConnect: [1; 1; 1]
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inputConnect; [1; 0; 0] 

layerConnect: [0 0 0; 1 0 0; 0 1 0] 

outputConnect: [0 0 1] 

targetConnect: [0 0 1]

numOutputs: 1 (read-only) 

numTargets: 1 (read-only) 

numlnputDelays: 2 (read-only) 

numLayerDelays: 0 (read-only)

subobject structures:

inputs: 1x 1 cell of inputs

layers: 3x1 cell of layers

outputs: 1x3 cell containing 1 output

targets: 1x3 cell containing 1 target

biases: 3x1 cell containing 3 biases

inputWeights: 3x1 cell containing 1 input weight

layerWeights: 3x3 cell containing 2 layer weights

functions:

adaptFcn: ’adaptwb’ 

initFcn: ’initlay’ 

performFcn: ’mse’ 

trainFcn: ’traingdx’

parameters:

adaptParam: .passes
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initParam: (none) 

performParam: (none) 

trainParam: .epochs, .goal, .Ir, .Ir^ec,

.Iriuc, .m axfail, .maXperfine, .me,

.miugvad, .show, .time

weightandbiasvalues :

IW  : Sxlcellcontaininglinputweightmatrix 

L W  : 3x3cellcontaining2layerweightmatrices 

b : 3xlcellcontainingSbiasvectors

other :

userdata : {u sers tu ff)

N am eoftheN etw ork ~  B 205RN N

NeuralNetworkobject :

architecture :

num lnpu ts  : 1 

num Layers : 2 

biasConnect : [1; 1] 

inputConnect : [1;0] 

layerConnect : [00; 10] 

outputConnect : [01] 

targetConnect : [01]
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num Outputs : l{read — only) 

num Targets : l{read — only) 

num lnputD elays  : 3(read — only) 

num LayerDelays : 0{read — only)

subobjectstructures :

inputs : Ix lcello finputs

layers : 2xlcelloflayers

outputs : lx2cellcontainingloutput

targets : lx2cellcontainingltarget

biases : 2xlcellcontaining2biases

inputW eights : 2xlcellcontaininglinpwtweight

layerW eights : 2x2cellcontainingllayerweight

functions :

adaptFcn adaptwb' 

initF cn :' initlay' 

perform F cn msereg' 

trainFcn :' trainlm '

parameters :

adaptParam: .passes 

initParam: (none) 

performParam: .ratio

trainParam: .epochs, .goal, .maxfail, .memrcduc, 

.mingrad, .mu, .mu^ec, .muiuc,

.mumüx, .show, .time, .Ir,
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.me, .Iviuc, .Ir^ec

weightandbiasvalues :

I W  : 2xlcellcontaininglinputweightmatrix  

L W  : 2x2cellcontainingllayerweightmatrix 

b : 2xlcellcontaining2biasvectors

other :

userdata : {u sers tu ff)

A.3 Longitudinal Dynamics FD! Neural Networks 

Details
Name of the Network = B205LONNOF

Neural Network object:

architecture:

numlnputs: 1 

numLayers: 3 

biasConnect: [1; 1; 1] 

inputConnect: [1; 0; 0] 

layerConnect: [0 0 0; 1 0 0; 0 1 0] 

outputConnect: [0 0 1] 

targetConnect: [0 0 1]

192



numOutputs: 1 (read-only) 

numTargets: 1 (read-only) 

numlnputDelays: 4 (read-only) 

numLayerDelays: 0 (read-only)

subobject structures:

inputs: 1x 1 cell of inputs

layers: 3x1 cell of layers

outputs: 1x3 cell containing 1 output

targets: 1x3 cell containing I target

biases: 3x1 cell containing 3 biases

inputWeights: 3x1 cell containing 1 input weight

layerWeights: 3x3 cell containing 2 layer weights

functions:

adaptFcn: ’adaptwb’ 

initFcn: ’initlay’ 

performFcn: ’mse’ 

trainFcn: ’traingdx’

parameters:

adaptParam: .passes 

initParam: (none) 

performParam: (none) 

trainParam: .epochs, .goal, .Ir, .Ir^ec,

.IriUC, .m axfail, .maxperfine, .me.
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.mingrad, .show, .time 

weightandbiasvalues :

IW  : Sxlcellcontaininglinputweightmatrix  

LW  : 3x3cellcontaining2layerweightmatrices 

b : 3xlcellcontaining3biasvectors

other :

userdata : {u serstu ff)

N am eoftheN etw ork  =  B 205T H E T A N N

N  euralN  etworkobject ;

architecture :

num lnpu ts  : 1 

num Layers : 3 

biasConnect : [1; 1; 1] 

inputConnect : [1;0;0] 

layerConnect : [000; 100; 010] 

outputConnect : [001] 

targetConnect : [001]

num O utputs : l{read — only) 

num Targets : l{read — only) 

num lnputD elays : 4{read — only) 

numLayerDelays : 0{read — only)

194



subobjectstructures :

inputs : Ix lce llo finputs

layers ; Sxlcelloflayers

outputs : lx3cellcontainingloutput

targets : IxScellœ ntainingltarget

biases : 3xlcellcontaining3biases

inputW eights : 3xlcellcontaininglinputweight

layerW eights : 3x3cellcontaining2layerweights

functions : 

adaptFcn adaptwU 

in itF cn initlay' 

perform F cn mse' 

trainFcn traingdx'

parameters :

adaptParam  : .passes 

initP aram  ; {none) 

per form P aram  : (none) 

trainParam  : .epochs., .goal, .Ir, .Ir^ec,

.Wine, .m axfail, .maxperfinc, .me,

.mingrad, .show, .time

weightandbiasvalues :

IW  : 3xleellcontaininglinputweightmatrix 

L W  ; 3x3celleontaining2layerweightmatrices
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b : 3xlcellcontaining3biasvectors 

other :

userdata; (user stuff)

Name of Network = B205QNN

Neural Network object:

architecture:

numlnputs: 1 

numLayers: 3 

biasCoimect: [1; 1; 1] 

inputConnect: [1; 0; 0] 

layerConnect: [0 0 0; 1 0 0; 0 1 0] 

outputConnect: [0 0 1] 

targetConnect: [0 0 1]

numOutputs: 1 (read-only) 

numTargets: 1 (read-only) 

numlnputDelays: 5 (read-only) 

numLayerDelays: 0 (read-only)

subobject structures:

inputs: 1 x 1 cell of inputs 

layers: 3x1 cell of layers
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outputs: 1x3 cell containing 1 output

targets: 1x3 cell containing 1 target

biases: 3x1 cell containing 3 biases

input Weights: 3x1 cell containing 1 input weight

layerWeights: 3x3 cell containing 2 layer weights

functions:

adaptFcn: ’adaptwb’ 

initFcn: ’initlay’ 

performFcn: ’mse’ 

trainFcn: ’traingdx’

parameters:

adaptParam: .passes 

initParam: (none) 

performParam: (none) 

trainParam: .epochs, .goal, .Ir, .Ir^ec,

.Ivinc, .m axfail, .max^erfine, .me,

.mingrad, .show, .time

weightandbiasvalues :

IW  : 3xleelleontaininglinputweightmatrix  

L W  : 3x3eelleontaining2layerweightmatriees 

b : 3xleelleontaining3biasveetors

other :
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userdata: (user stuff)
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Appendix B 

Simulation Environmenit

B.l Computing Facility
The development and simulation of the ANN-based FDIA and the various controller were 

developed on a typical desktop machine with the following characteristics for both ma

chines used:

First Machine 

Intel Pentium III

Second Machine 

Pentium IV Machine

RAM is 512 MB RAM is 256 MB

The most critical part is the ANN training as its time and resource consuming especially 

with time-delay neural networks. Though, it was expected that the activity could have 

been performed with even less powerful machines. Of course, if the target machine on 

which the code will be run is a land of parallel architecture such as the neural chips 

nowadays available in the market, the execution time will be enhanced. This stage of 

sophistication may need to be dealt with in case it is decided to deploy an ANN-based 

solution in a real flight testing mission. ANNs as it is well know are inherently parallel in 

architecture and more suitable to be used on parallel machines.

199



B.2 Testing and Validation Files
As indicated earlier in the thesis, in order to build a neural model certain precautions 

have to be observed. First, the neural networks must be trained with representative data. 

From our analysis, we gathered that the flight test data was short data sets and collected 

on different piloted simulations for the purpose of controller assessment analysis. From 

the analysis and in order to have a coherent design of the ANN-based FDIA and the con

trollers, we have selected data sets that are closely around the operating point 2 0 Anots 

as we have initially decided to pick the DERA model around the same operating point. 

Another important point is that the validation data set should be different from the train

ing data set in order to ensure that the neural network is capable to generalize. These 

constraints have been considered during our work. Below is a summary of the data sets 

used for each activity:

Table B.l: Training and Validation Flight Test Data Sets
ANN

Name

Training

FTD

# o f

Records

Validation

FTD

# of Records Remarks

LANOF Y099021.el5 4095 Y99021.el5 4087 The data file has 8192 records 

and is split into two haves one 

for training and one for 

validation

PhiNN Y01339.el4 5006 Y01347.el5 30413

pNN Y01339.el4 5006 Y01339.el2 5006

rNN Y01339.el4 5006 Y01339.el2 14867

LONOF Y01339.el4 5006 Y99021.el5 4087

thetaNN Y01339.el4 5006 Y99021.el5 4087

qNN Y01339.el4 5006 Y99021.el5 4087

After designing the controllers, they have been integrated as shown in Chapter 5. Again,
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testing has taken place for the lateral and longitudinal FTFCS. The following data sets 

have been used:

For Lateral FTFCS: Y01347.e23 (2571 records).

For Longitudinal FTFCS: Y01347.e23 (2571 records).

As we note the data set used during FTFCS testing was different from those used during 

training or validation.
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Appendix C

Flight Test Data (FTD) Details

I n t m d n G t i o B

Leicester University has conducted a lot of research on the Bell-205 helicopter. As a 

result many flight test data sets were collected during the flight test of various controllers 

that were built in the frameworks of the PhD research projects carried over in [76, 77] 

and other departmental activities on the said vehicle. The data sets were recorded by 

the in-flight computer which is limited in storage. Additionally, the test flight data were 

collected for controller performance analysis. These two facts are very much important 

to highlight when one intends to use them for ANN training. During the constmction 

and training of ANN for FDIA system, it happened that a certain architecture does not 

converge. Thus, another architecture and/or input space has been tried. This should not 

be interpreted as the architecture that failed to converge is not suitable. It could very 

well converge with another flight data set. This is the first implication of the flight data 

on the design of ANN-based FDIA. The other implication is less severe. That is to say, 

with better flight data the performance of the ANN during training and afterward would 

have been better. It could be possible that with better flight data, the training itself should 

not take that much of time. Not only this but also the resultant ANN would have been 

much better in terms of generalization. These comments are necessaiy to mention should 

there be any future work to be carried out in this direction. The flight data to be collected
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must be sufficient enough and cover the typical flight envelope in order to train the ANN 

properly to capture the nonlinear features of the nonlinear dynamics. The table below 

highlights the description of each variable as has been conveyed to us by NRC Canada.
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Variable Description

FSW Function switches

SACLA Pilot input from side arm controller latitude input

SACLE Pilot input from side arm controller long input

SACR Pilot input from side arm controller pedal input

SACP Pilot input from side aim controller collective input

PHI Euler angle - Deg

THETA Euler angle - Deg

P Angular velocity - Deg/sec

Q Angular velocity - Deg/sec

R Angular velocity - Deg/sec

P-MIX Mixed rates to provide lead on rate measurement.

Q-MIX Mixed rates to provide lead on rate measurement.

R-MIX Mixed rates to provide lead on rate measurement.

FDA final drives to actuators in inches of Safety Piolt - latitude

FDE final drives to actuators in inches of Safety Piolt - longitude

FDR final drives to actuators in inches of Safety Piolt - pedal

FDP final drives to actuators - collective

TAS True Air Speed

CFA Cockpit pot A used by pilot to linearly vary any parameter he 

wants like control system gain or stick sensitivity

CPB Cockpit pot B - ditto

CPC Cockpit pot C - ditto

CPE Cockpit pot E - ditto

CPF Cockpit potF-ditto

DIFF-THE Safety system stuff

DIFF-PHI Safety system stuff

TRIP-SIG Safety system stuff

CONS-ERR Safety system stuff
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Table C.l: FTP Variables - Continued
DANET Evaluation Pilot input that has been filtered, scaled and 

dead banded and used as direct input to the control position. It is 

created from either DELA or SACLA depending on what input device is 

selected- latitude demand

DENET Evaluation Pilot input that has been filtered, scaled and dead 

banded and used as direct input to the control position.

It is created from either DELA or SACLA depending on what input 

device is selected- long demand

DRNET Evaluation Pilot input that has been filtered, scaled and 

dead banded and used as direct input to the control position. It is 

created from either DELA or SACLA depending on what input device is 

selected- pedal demand

DPNET Evaluation Pilot input that has been filtered, scaled and dead 

banded and used as direct input to the control position. It is created 

firom either DELA or SACLA depending on what input device is selected- 

collective demand

CPD Cockpit pot A used by pilot to linearly vary any parameter he wants 

like control system gain or stick sensitivity

W-MDC Airmass velocity mixed with accelerometer info. Not a good 

signal in the hover.

U-MIX Ditto

V-MIX Ditto

AMOD-L Actuator Model (safety)

AMOD-R ditto

AMOD-TR ditto

AERR-TR Actuator Error (safety)

AERR-COL ditto

AMOD-COL ditto

AERR-L ditto

AERR-R ACT-ERR ditto
205



Table C.2: FTD Variables - Continued
UDOT Rate of a velocity - X direction

VDOT Rate of a velocity - Y direction

WDOT Rate of a velocity - Z direction

HT-THETA N/A

PSIl N/A

LH-ACT Aircraft Actuator position - Left Hand

RH-ACT Aircraft Actuator position - Right Hand

TR-ACT Aircraft Actuator position - Tail Rotor

COL-ACT Aircraft Actuator position - Collective

H-MIX mixed baro hight

DELA Latitude stick input DELE Long stick input

DELR Pedal stick input

DEL? Collective stick input

PSI Euler angle

TP-THETA N/A

TP-PHI N/A

TP-PSI Not defined

RADALT Raw Adalt signal

AY Not defined

P-DYN Dynamic Pressure

P-STAT Not defined

AX Acceleration

AX2 Not defined

AZ2 Not defined
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Table C.3: FTD Variables - Continued
ALPHA Angle of Attack

BETA Angle of sideslip

T-TOT Total Temperature

HTPSI Head Tracker - Psi

HTTHETA Head Tracker - Theta

HTPHI Head Tracker - Phi

HRA Radalt Hight

UD-MIX Doppler velocity mixed with acceleration to a high frequency component 

This is the signal that is used in the hover as opposed to U-MIX - (u component)

VD-MIX Same Doppler velocity - (v component)

WD-MIX Same Doppler velocity - (w component)

HDOT-MIX Rate of change of hight, based on doppler and radalt

HI-MIX Not defined

AX Acceleration fore/aft

AZ Acceleration normal

HT-THETA N/A

HT-PSIW N/A

PSIW Heading info

T-PSI N/A

T-PHI N/A

T-THETA N/A

PHI-T Not defined

THETA-T Not defined

PSI-T Not defined

ROLL-LIM N/A

MODP On-board aircraft model Roll Rate

MODQ On-board aircraft model Pitch Rate

MODTHETA On-board aircraft model angle -theta

MODPHI On-board aircraft model angle -roll

MODR On-board aircraft model angle -rate yaw
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Appendix D 

A Result ora the Rank of Solutions to 

Kind of Algebraic Riccatl Equation

Please note that the notation used in this appendix has no bearing on those used in the rest 

of the thesis.

Consider the following algebraic Riccati equation (ARE) o fV :

A Y  +  Y Â ^  -  YC '^C Y = 0.

Such AREs are met in the S-over-KS (mixed sensitivity) Hoo design.

Without loss of generality, we may assume that the matrix A  has been transformed, by 

appropriate orthonormal transformations, into its Schur form as

■Aus -^1 2  

0  A,

where A^s : rii x ni, is the anti-stable part and A, : ng x %, is the stable part. The 

stabilizing solution Y  of the above ARE is such that Y >  0 and A —Y C ^C  is stable. We 

may have the following result.

Lemma D.l The rank o f the stabilizing solution Y  equals to ni, the number o f unstable
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eigenvalues o f  A. And, Y  is o f the form

Y  =

where Yu  : n i x ni and Yu > 0  .

Yii 0  

0 0

Proof -. The matrix C  can be partitioned accordingly as C =  Cgj, and similarly for

y .

y  =
yii } i2

The Riccati equation is thus

A«s Ai2 3̂12 Yu Y i 2 ■^us 0 3̂11 3̂ 2 ' c f
\C i C2I

3̂ 1 3̂ 2
+

0 As Y22 Ŷ 2 Y22 -̂ 12 < _3^ 3̂ 2 L J 3̂22
0 =

Consider the (2-2)block of the above equation:

'c f r 1 3̂ 12\Ci C2C[_ L J
3^2

' c f r 1 Yi2
[C l C 2\

Y 22

It can be re-written as

From the property of a Lyapunov equation and from the assumption that As is stable, we 

have —Y22> 0. However, on the other hand, T22 >  0 from the requirement that Y >  0. 

Hence, we have

Y22 =  0 .

Consequently,

^ 2]
C Ï

=  0
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A„s A i2 Yii Yi2 'c f
0 A, 3̂ C f

Aus A i2 3 i iC f +  3^2Cf

0 A, 0

r  1 3l i

C l  C 2
L ^ J

_3^ _

And, the following matrix must be stable,

[Ci C2]

[Cx C2 ]

A,,., — {Y iiC f + Yi2C2)Ci Ai2 — (Y iiC f + 3^2C'^)C2

0 As

Now, consider the (2-1) block of the equation which is

0 =  A s 3 ^ 4 - ( 3 ^ A ^ - l - 3 ^ A ^ ) - [ } ^

= AsYî E + -  3^Cr(Ciyii +
= AsYg + }^(A«s -  (FiiCT + y(2Cf )Ci):̂

The matrix coefficient (A„s — (Y uCf + 3 ^2 C^)Ci)^ is stable from the above deduction. 

Because Ag is stable as well, this Sylvester equation of Yi2 has a unique solution. Since 

zero is a solution, Yi2 =  0. Thus

y  =

where Yu is the stabilizing solution of

A„s31i +  YuAfg — Y iiC f CiYii = 0 .

Obviously, if A is stable, the stabilizing solution is Y — 0, and when A is anti-stable, we 

can have a stabilizing solution Y > 0.

3ii 3̂ 2 3ii 0

_3^ 322 0 0
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