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CHAPTER ONE: INTRODUCTION

In  this thesis we investigate the high tem perature behaviour of brittle 

materials with particular attention being paid to the transition from ductile to brittle 

behaviour.

The title of this thesis is ‘Failure of Creep Brittle M aterials’ and by using the 

word ‘materials’ it is intended to emphasise the generic nature of the research 

presented here. Whilst the emphasis in the main text is towards ceramic materials, 

culminating in a discussion of our experimental work on reaction bonded silicon 

nitride, it should be rem em bered that the models developed here are not intended 

to be applicable solely to ceramics but are equally applicable to brittle metals.

1.1 Failure of engineering materials at high temperatures.

In order to design with a  m aterial it is necessary first to understand the ways 

in which the m aterial is likely to fail in use; and materials fail at high tem peratures 

in a m anner which is quite different from their room tem perature behaviour.

At low temperatures crystalline materials fail either by cleavage (except for 

the more common f.c.c. metals), in which cracks propagate along preferentially 

oriented crystallographic planes, or by brittle intergranular fracture. A t higher 

tem peratures different failure mechanisms dominate.

Fracture mechanism maps provide a simple means of identifying the regions, 

in stress-temperature space, over which particular failure mechanisms dominate. 

They may be constructed either empirically, by collating failure data for the 

material in question or theoretically by modelling the individual failure mechanisms. 

A  num ber of these maps are presented in Figure 1.1.

At temperatures above the brittle-ductile transition, cleavage and brittle 

intergranular fracture are replaced as the dominant mechanisms by ductile
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transgranular fracture in which decohesion at second phase particles nucleates 

cavities which grow by plastic straining of the surrounding material. A  high load 

may result in almost instantaneous failure of the m aterial as the effective cross 

section is reduced by cavitation. If, however, the net section stress is maintained 

constant or the specimen is tested under displacement control then very large 

deformations are possible providing that the m aterial does not neck.

The behaviour described above is essentially time independent but at higher 

tem peratures the m aterial behaviour starts to become time dependent. This time 

dependent plasticity is called creep and it is this phenomenon, with particular 

reference to brittle materials, with which this thesis is concerned. The tem peratures 

required for creep vary from m aterial to material but generally a tem perature in 

excess of about 30% of the absolute melting point, T„„ is required for metals and 

one in excess of about 40% of T,„ for ceramics.

The scientific study of creep as a phenom enon started with Phillips’ work on 

m etal wires^^  ̂in the early 1900’s, and over the past 40 years a large am ount of data 

has been collected on the creep of metals. The development of research into the 

creep of ceramics took rather longer as the recurring problem  of their susceptibility 

to therm al shock lead engineers initially to believe that they would have no use in 

high tem perature applications.

W hen a solid is loaded at a high tem perature it deforms slowly with time.

If the strain, e, is plotted as a function of time then a creep curve of the type 

shown in Figure 1.2 may be obtained. This Figure defines the instantaneous elastic 

and /o r plastic strain and the regions of primary, steady state (or secondary) and 

tertiary creep.

The shape of the curve in the primary region, where the creep rate decreases



until it reaches its steady state value, is due to the effect of strain hardening as a 

dislocation structure develops within the material. In the steady state region the 

rate of strain hardening is balanced by the rate of creep recovery and the creep 

strain rate (the slope of the creep curve - commonly referred to as the creep rate) 

is therefore constant. Different materials may produce variations on this form of 

curve but as a schematic it is generally agreed that it represents the behaviour of 

by far the majority of materials. We say ‘generally agreed’, but the validity of the 

primary, secondary, tertiary curve is not universally accepted. There is an 

alternative view held by some workers^^^ that real materials do not in fact display 

a secondary creep phase and that there is a transition from primary to tertiary creep 

without a steady state. The so called ‘theta projection’ method (described more 

fully in Chapter 2) has been developed to describe creep behaviour in terms of the 

competition between primary and tertiary effects; without the need for secondary 

creep. However, as theta projection is complicated, and a consensus has yet to be 

reached as to its validity, or not, in this thesis we will assume that the materials we 

consider do display steady state behaviour.

Experimentation has shown that, for a wide range of materials and creep 

conditions, the steady state creep rate, ê, is proportional to the applied stress, a, 

raised to a power, n, known as the creep index or creep exponent.

è = A a" (1*1)

This form of relationship was first proposed by Nortofy^^ in 1929 and is loiown as 

Norton’s law. In a more general form this law may be written as

e = ' (1.2)
Or



The constant of proportionality in Norton’s Law, A, is of the form

Z>exp (1.3)
RT]

where R  is the universal gas constant; Q is the activation energy for the particular 

mechanism and D  is the diffusion coefficient. The constant of proportionality is 

mechanism dependent but in any case the diffusion coefficients are loiown so 

imprecisely that the expressions are best used qualitatively to describe the creep 

mechanism rather than to obtain numerical results.

1.2 Power law creep.

At high stresses the creep index, n, is commonly found to be in the range 2 

to 8. This is Icnown as power law creep and occurs as a result of the movement or 

‘glide’ of dislocations under the action of an applied stress.

W hen a crystalline m aterial deforms plastically the stress to cause yielding 

is that required for the dislocations to overcome the intrinsic lattice resistance plus 

any additional resistance which may be due, for example, to the effect of precipitate 

hardening. W hen the m aterial is stressed the dislocations glide along slip planes 

until they m eet an obstruction (a precipitate particle, for example). Dislocations 

so obstructed cannot glide around the obstruction. However, if the atoms in the 

material above the dislocation can diffuse away, the dislocation can pass around the 

obstruction. This mechanism is called ’dislocation climb’ and is the rate controlling 

stage of the process. The energy required for it to occur comes from variations on 

an atomic level in the therm al energy of the individual atoms within the material. 

The literature on power law creep has been reviewed by Cannon and Langdon '̂^^ 

who list 16 different possible mechanisms with stress exponents ranging from 3 to

6. Although there is no theoretical basis for supposing it to be so, 15 of these 16

Page 4



propose integer values for the creep exponent n.

1.3 Linear viscous creep.

A t lower stress levels n  often equals unity. This is referred to as linear viscous 

creep and also occurs as a result of diffusion.

Individual atoms diffusing through a crystalline m aterial may diffuse either 

through the bulk of the m aterial or along the grain boundaries. This leads to a 

redistribution of m aterial and hence to creep. In practice both paths are followed 

simultaneously by different atoms. However, if the m aterial comprises small grains 

and the tem perature is at the low end of the creep range then intergranular 

diffusion will be the dominant mechanism. Conversely coarse grained materials at 

higher tem peratures show predominantly transgranular diffusion.

In the early 1960’s Coble^^) established that for intergranular creep the strain 

rate, ê is given by

é .  (1.4)
k T P

W here I is the m ean grain size; Dyg,, is the boundary diffusion coefficient times the 

boundary thicloiess; T  is the absolute temperature; k is Boltzmann’s constant and 

a  is the m ean atomic volume. The exact value of the constant of proportionality 

is relatively unimportant as it depends to a large extent on the accuracy to which 

is loiown, however Coble predicted a value of 150 and, more recently, different 

values such as 36̂ ^̂  have been proposed. The significant result, however, is that ê 

is proportional to the stress as observed, and that it is inversely proportional to the 

cube of the grain size. Coble’s work was so well received that creep controlled by 

boundary diffusion is now better known as Coble creep. For the same reason creep 

arising from the diffusive flux of vacancies through the grains is better known as
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Nabarro-Herring creep^’’®̂. Nabarro and Herring’s result is similar to Coble’s except 

that they predict a creep rate inversely proportional to the square of the grain size; 

this weaker dependence on grain size agreeing with the observation that Nabarro- 

Herring creep is the dominant mechanism in large grained materials.

1.4 Nucléation of voids.

Materials may creep solely as the result of stress directed diffusion of m atter 

through virgin material, however, more often than not, microscopic examination of 

the m aterial reveals that creep is associated with the presence of voids and /o r 

microcracks, collectively referred to as creep damage. A t the microscopic level 

damage is considered to become a crack when its principle dimension exceeds some 

characteristic length for the damaging process, for example the grain size. The 

presence of this damage means that if the material is subjected to a constant load 

the stress on the undamaged ligaments of m aterial must increase, leading to more 

damage. It is as a direct consequence of the coupling of these two processes that 

the creep rate in the tertiary region of the creep curve increases up to fracture.

The nucléation process is of particular importance in metals which are, 

generally spealdng, fully dense in the first place, and less so in ceramic materials 

which nearly always contain pre-existing voids, usually introduced during fabrication. 

However as much of the theoretical work presented here is generic, a brief 

description of two of the more significant models of void nucléation will be given.

Classical nucléation theory models nucléation as the result of the 

condensation of vacancies on stressed grain boundaries. Raj and Ashby^^) have 

calculated a rate of nucléation, p ,
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p « e x p ( . : ^ )  (1.5)

and similar models have been put forward for nucléation in ceramic materials.

Argofy“  ̂ has shown that equation (1.5) indicates that stresses of the order 

of E / 100 would be required for significant nucléation. Clearly, stresses of this order 

are much too high to be produced solely as the result of the direct application of 

a load and so if this mechanism is correct some form of stress concentration must 

be present if voids are to nucleate.

The presence of grain boundary particles and triple points combined with 

grain boundary sliding have been suggested as possibly causing sufficiently large 

stress concentrations. Argon et. al.̂ ^̂  ̂ have demonstrated that by far the most 

significant stress concentrations are produced at grain boundary particles and 

experimental evidence in support of their result has been produced by G rant and 

Mullendore(^) who have dem onstrated that cavities will not nucleate solely as a 

result of grain boundary sliding without the presence of included particles.

A  second explanation of void nucléation, and one which appears to be more 

significant at lower temperatures, is the postulated requirem ent for a critical plastic 

strain for nucléation. Goods and Nix^^), and Dysofy '̂^  ̂have produced experimental 

evidence which supports this theory. Metallic specimens were pre-strained to 

nucleate voids and the times and strains to failure of these specimens, when creep 

tested, were compared with specimens which had not been pre-strained. They 

found that the presence of pre-existing voids reduced the failure time by an order 

of magnitude and the strain to failure by 2/3, the difference between the two strains 

representing that required to cause nucléation.

The fact that there is experimental evidence to show that 90% of the time
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taken for a specimen to fail as a result of creep cavitation may be that required to 

nucleate the cavities and that therefore only 10% of the failure time is required for 

them  to grow from nucléation to failure indicates the importance of void nucléation 

in the failure process.

1.5 Void growth.

A t much lower stresses than those required for growth due to plastic flow 

competition between two different rate controlling processes governs the diffusive 

growth of grain boundary voids. If diffusion of m aterial on the surface of the void 

is more rapid than in the grain boundary then atoms on the surface of the void have 

time to redistribute themselves by diffusion and the void will maintain its lenticular 

equilibrium shape. This mechanism is called boundary controlled diffusion and has 

been analysed in detail by, amongst others, Hull and Rimmer^“ \  Speight and 

Harris^“  ̂ and Raj and Ashby^®\

Raj and Ashby, by solving the governing equation for stress directed diffusion 

of m atter from a void have obtained an expression for its rate of change of volume, 

under the action of an applied stress, a. If the void is sufficiently large that 

sintering can be ignored then Raj and Ashby’s result can be approximated bŷ ^̂ ^

^   ̂ 2 T x £ )^ d ^ oQ (l-/)

*  '  t r t a U ]

where f  is the area fraction of a boundary occupied by a void, defined by the 

expression

/  = (1.7)

where, in turn, r  is the radius of a void in the plane of the grain boundary and \  is
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half the void spacing.

The other limiting condition occurs when diffusion in the grain boundary is 

faster than over the surface of the void. In this surface controlled diffusion limit, 

m atter is removed more rapidly from the edge of the void than it can redistribute 

over its surface and the void loses its equilibrium shape becoming flatter and more 

crack-like. This process has been studied by, for example, Chuang et ah“ \

Equations are presented for growth controlled by diffusion in the grain 

boundary and not for the other mechanisms mentioned because this mechanism is 

analysed in detail later in the text.

As well as growing by diffusion void growth may also occur as a result of 

power law creep of the surrounding materiab^’  ̂ or as a result of a combination of 

both power law creep and diffusion^^”’̂®’̂ ^̂

For completeness we should note that at very high tem peratures the rate of 

diffusion (which increases exponentially with tem perature) becomes so rapid that, 

for tensile specimens in particular, failure as a result of dynamic recrystallisation 

can occur. However this is a quite separate phenom enon from creep and so will 

not be discussed further.

1.6 Creep crack growth.

Dalgleish et. al.^^  ̂in their experimental work on the creep of polycrystalline 

alumina have shown that creeping ceramics may fail in two quite different ways. 

In  both instances the failure is associated with the presence of damage. A t low 

stresses there is sufficient time for any pre-existing cracks to blunt and failure 

eventually occurs as the result of a net section stress effect. This low stress 

behaviour is common to both metals and ceramics.

At high stresses metals fail plastically, whereas at high stresses for ceramics.
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and interm ediate stress levels for metals, failure occurs as the result of the creep 

growth and linkage of this damage with the crack tip, a process known as creep 

crack growth; failure finally occurs when one crack becomes so large that the 

critical stress intensity factor (defined below) is exceeded and the specimen fails in 

a brittle manner.

It would however be wrong to infer that creep crack growth is not a 

significant failure mechanism in metals; indeed it was first identified as a 

phenom enon in metallic components in power generating plant. Creep ductile 

metals are, by definition, not prone to failure as a result of creep crack growth. 

However high tem perature structural alloys, such as the nickel based alloy nimonic 

80A are, when compared with ductile metals, comparatively brittle and it is these 

creep brittle materials which are susceptible to failure as a result of creep crack 

growth.

The earliest reference in the literature to creep crack growth that the author 

could find is from 1970̂ ^®̂  Since then it has been the subject of extensive work by 

numerous authors and the area has been reviewed many times^'’®' and is 

reviewed again in Chapter two.

1.7 Fracture mechanics and crack tip stress fields.

A  crack in a solid can be stressed in any one, or a combination, of three 

orthogonal modes, see Figure 1.3. The stress distribution around the tip of a mode 

I crack can be written in the generalised form

(1.8)

W here the factor is known as the stress intensity factor and uniquely defines the 

state of stress at the crack tip; r and 6 are the polar coordinates of the point at
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which the stress ay is determined. IQ is given by

Kj = Gsfna f  (alw) (1-9)

where a specimen of width w, containing a crack of size a, is subjected to a  rem ote 

tensile stress a. For a crack in an infinite plate the function /  (a/w ) goes to unity.

Equation (1.9) is in fact an approximation to the complete solution, being the 

first term  in a series; further away from the tip the approximation becomes less 

accurate and additional terms have to be considered. Mode II and III cracks are 

similarly characterised by IQi and IQn respectively and also show an inverse square 

root dependence on the distance from the crack tip.

In 1921 Griffith^^^) postulated that crack propagation will occur if the elastic 

energy released when a crack grows is greater than or equal to that required for the 

growth to occur. Based upon the earlier work of Inglis^^’\  Griffith calculated the 

change in the elastic energy, dU, when an elliptical flaw of length 2a grows by an 

am ount da, as being

 ̂ 2na^a _ 2 0  (1.10)

where G  is the elastic energy release rate per crack tip. From  equations (1.9) and 

(1.10) we can see that for plane stress

^  = G (1.11)
E

while for plane strain the IQ term  must be replaced by K^(l-i/^).

The stress field equations presented above are elastic solutions and Griffith’s 

postulate is based on experimentation on glass, a very brittle material. In ductile 

materials like metals, yielding prohibits the singularity of stress predicted by the
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elastic equations. However, it is possible, within limits, to correct for the effects of 

plasticity and still make use of the linear elastic fracture mechanics (LEFM ) 

equations. Two such methods of correction are due to Irwin̂ ^®̂  and Dugdale^^®\ 

Dugdale’s m ethod will be briefly described as the models developed later in this 

thesis are of the Dugdale type.

Dugdale considered the crack to be of an effective length that is longer than 

its physical length, see Figure 1.4. The uncracked strip in front of the physical crack 

is assumed to support the yield stress (ie. the zone is plastic) which tends to close 

the crack, and is of a length, R, chosen so that the elastic stress singularity 

disappears. \

O ther corrections for the plastic zone have been proposed but provided that 

the plastic zone is small compared with the crack size then the LEFM  equations 

still apply. This criterion

R <c a (1.12)

is Icnown as the small scale yield criterion and is particularly significant as it will be 

modified and extended to creep damage later in this thesis. If this criterion is 

violated, and the plastic zone becomes too large, it may still be valid to correct for 

the size of the plastic zone but the linear elastic equations no longer hold as they 

are only valid close to the crack tip.

Thus by the early 1960s the elastic stress distribution ahead of a crack tip 

was known and problems involving limited plasticity could be solved approximately, 

but there was, as yet, no solution for problems involving large scale plasticity. An 

exact solution to such a problem  would require an analytic solution to the elastic- 

plastic crack tip stress field. Toward the end of the 1960s a method which
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circumvented the need for such a solution was developed.

In 1968 Rice(®°) proved the path independence of the integral, J, for an elastic 

/plastic solid, where J  is given by

J  = ir
W d x ^ - f ^ d s j  (1.13)

dx^

and where W = Jo. j  de.j (1-14)

See Figure 1.5 for definitions of the terms. For the elastic case J  can be evaluated 

using the known elastic stress field solution, and Rice has shown that this leads to 

the result

J  = G (1.15)

But the usefulness of J  is that the integral is also valid if there is appreciable 

plasticity at the crack tip and its path independence means that the stress field 

ahead of a crack in a plastic m aterial may be characterised in terms of the 

behaviour in the far field away from the plastic zone. However the path 

independence of J  strictly only holds for the deformation theory of plasticity which 

does not allow for the unloading which occurs during crack growth. J  as a means 

of characterising the stress field ahead of the crack tip is therefore restricted to 

crack initiation.

Previously in 1954 HofP®^\ had demonstrated that a problem  involving a 

creeping structure may be transformed to an equivalent problem  in elasticity or vice 

versa by replacing strains by strain rates and displacements by displacement rates 

in the relevant constitutive equations. This elastic-viscous analogy allowed Landes 

and Begley(^) and Nikbin et. al.̂ ®®̂ to produce an expression that is the rate 

equivalent of the J  integral, C* (pronounced "see-star"; some workers use J  but C*
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is the more common term  now).

For a two dimensional crack C* can be expressed as a contour integral 

analogous to that used to determine J

C  = 'r
„ dû. \ 

Wc. - r —Idk
dx.

(1.16)

where ^  ~ (1-17)

The slightly different terms in these expressions are also defined in Figure 1.5. The 

significance of this integral is the same as that of J in that its path independence 

provides a  means of relating the stresses in the far field of a time dependent 

cracked body to conditions at the crack tip.

In principle C* can be determined analytically by direct integration of 

equation (1.16). This obviously requires loiowledge of the complete stress field, Uy, 

and is usually done by computer using the finite element method.

In practice C* is determined by testing a pair of cracked specimens which are 

identical except that the crack in one of the specimens is longer, by an amount, da 

than the other. C* for the configuration is related to the rate of change of energy 

dissipation with respect to the change in crack length and is obtained by 

differentiating the area under the load displacement rate curve with respect to the 

crack length, see Figure 1.6.

da •'0

Also, simple approximate expressions for C* have been developed, such as 

that due to Answorth^®‘‘\  which will be described in Chapter two, which obviate the 

need for the complicated specimen testing described above.

Page 14



For the special case of linear viscous creep there is a direct relationship 

between C*,the elastic stress intensity factor K, and the material viscosity, 'n

^  = 3-qC* (1-19)

and it is the relationship, and competition, between elastic effects characterised by 

K  and creep effects, characterised by C*, which is the underlying them e of this 

thesis.

In Chapter two we present a more extensive review of the literature on creep 

crack growth in both metals and ceramics.

In Chapter three we determine criteria for the changeover from K to C* 

controlled creep crack growth. These criteria enable us to produce maps showing 

regions of C* and K  controlled creep. Real test data where C* or K  control are 

claimed are plotted on these maps where the validity of the claims can be 

established. It is also shown how the maps can also be used as design and 

assessment aids.

Simple equations for void growth rates such as the approximation to Raj and 

Ashby’s result, given in equation (1.6) are overly conservative in that they 

significantly underestimate the times to rupture of real components as a 

consequence of overestimating the void growth rates found in practice. In reality 

a growing void is constrained by the surrounding material and thus grows more 

slowly than it would without this constraint. In Chapter four we assume all the 

damage to be contained within a process zone or ‘damage zone’ (analogous to 

Dugdale’s plastic strip model already mentioned) ahead of the crack tip and 

examine the limiting cases of fully constrained crack growth (ie. the damaged 

m aterial is infinitely more compliant than the surrounding m aterial) and
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unconstrained crack growth (vice versa) and we determine the relationships between 

the crack growth rate and the size of the damage zone. A  new result based on an 

assumption of a prescribed variation of displacement rate within the damage zone 

is presented. These three idealised cases are combined to produce an overall 

relationship between the creep crack growth rate and the damage zone size for a 

real material. These results are compared, for linear creep, with those of another 

model due to Thouless et. a l / ^  in which the constraint in the damage zone is 

modelled nsing dislocation theory. In Thouless’ model an array of dislocations is 

considered to lie in the plane of the crack, ahead of the tip, modelling the 

displacements of each grain. The snm of the Burger’s vectors at each point 

corresponding to the displacement of that grain. The compressive stress at a given 

distance from the crack tip due to a particular dislocation is a standard result from 

dislocation theory and so the total stress field ahead of the crack can be found by 

superposition. Our results are shown to agree well with Thouless’ but our model 

has the advantage over his that it is not restricted to linear creep.

In Chapter four we also show how the maps developed in Chapter three may 

be used to determine the range of applicability of creep crack growth models. We 

also investigate the size of the damage zone, whether it is a m aterial property or 

whether it is dependent on other param eters and determine its magnitude using 

critical strain accumulation as a criterion for void nucléation.

Chapter five contains an account of our experimental work in which we 

investigate the competition between creep and elastic effects in reaction bonded 

silicon nitride (RBSN). In  this work notched RBSN specimens were creep tested 

at 1500°C. The notch geometries were designed to give loiown elastic stress 

concentrations and the behaviour of the specimens in 4-point bending was
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compared with plane specimens having a cross-section a known fraction of the 

section of the notched specimens at the notch root. We examine how, with 

increasing stress, the specimen behaviour changes from, being controlled by creep 

effects to elastic effects dominating.
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a/E

1-2  — DYNAMIC FRACTURE

UCTILE FRACTURE
1-3 - -

TRANSGRANULAR 
CREEP FRACTURE RUPTURE

1-5 _ _

0 0.2 0.4 0.6 0.8 T/T„ 1.0

Figure 1.1a. A fracture mechanism map for high purity aluminium (after 
Ashby et. al.̂ “ )̂.

a/E
DYNAMIC FRACTURE

DUCTILE FRACTURE
TRANSGRANULAR

:reep fracture

RUPTURE
INTERGRANULAR 
CREEP FRACTURE

0 0.2 0.4 0.6 0.8 T/Tm 1.0

Figure 1.1b. A fracture mechanism map for high purity silver (after Ashby 
et. al.̂ '̂ )).
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a/E DYNAMIC FRACTURE

1-2  - -

CLEAVAGE 2 or B.I.F. 2

1-3 - - CLEAVAGE 3 
or B.I.F. 3 •UCTILE FRACTURE

TRANSGRANULAR 
•CREEP FRACTURE

RUPTURE

CLEAVAGE 1
1 -5 --------

INTERGRANULAR 
.CREEP FRACTURE

0 0.2 0.4 0.6 0.8 T/Tm 1.0

Figure 1.1c. A fracture mechanism map for chromium (after Gandhi and 
A sh b y ^ ^^ ).

a/E DYNAMIC FRACTURE
TRANSGRANULAR 
CREEP FRACTURE1-2 _ _

CLEAVAGE 2 
or B.I.F. 2

1-3 - - BRITTLE 
INTERGRANULAR 
V FRACTURE 3

CLEAVAGE 1
1-5 - -

INTERGRANULAR 
CREEP FRACTURE

0 0.2 0.4 0.6 0.8 T/Tm 1.0

Figure l.ld  A  fracture mechanism map for alumina (after Gandhi and 
A sh b y ^^’^).
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a/E DYNAMIC FRACTURE

CLEAVAGE 3 
or B.I.F. 3

CLEAVAGE 1

INTERGRANULAR 
CREEP FRACTURE

0 0.2 0.4 0.8 T/Tm 1.00.6

Figure l.le . A fracture mechanism map for hot pressed silicon nitride (after 
Gandhi and Ashbŷ ^̂ .̂

Figures l.la-e. Fracture mechanism maps for a) high purity aluminium;
b) high purity silver; c) chromium; d) alumina - AljOj; e) hot pressed silicon 
nitride - SigN̂ . Note the similarity between the maps for aluminium and 
silver, two fee metals. Similar materials typically display qualitatively similar 
maps easily distinguishable from those of a different class of material. Maps 
for lead and copper are therefore of a similar type to maps a) and b). Map
c) is a quite different but typical map for a b.c.c. refractory metal. Map d) 
is typical for a refractory oxide and map e) is typical for a covalent ceramic. 
"Cleavage 1" is the propagation of pre-existing cracks. "Cleavage 2" is the 
propagation of slip or twin induced cracks. "Cleavage 3" is the propagation 
by cleavage of cracks after appreciable plastic deformation. Brittle 
intergranular fracture (B.I.F.) occurs when the failure plane follows the grain 
boundary.
As the atomic bonding changes from metallic to covalent in maps a) to e) 
there is a change in behaviour away from ductile fracture towards cleavage 
being the dominant mechanism. In other words, within the portion of stress- 
temperature space represented by these maps there is a general shift to the 
right of the fields of dominance as the materials change from metallic to 
covalent.
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Strain

f,

t, Time

Figure 1.2. A  schematic creep curve in which strain is plotted as a function 
of time. The curve shows the three regimes of primary, secondary and tertiary 
creep labelled a, b and c respectively. The instantaneous elastic strain, e^is 
shown, as are the strain and time to failure, Cf and tp The slope of the curve 
in the secondary region is the steady state creep rate.
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M ode I Mode II Mode III

Figure 1.3. The three principal inodes of notch loading; M ode I, in-plane 
tension; mode II, in-plane shear; mode III, anti-plane shear.

Figure 1.4, Dugdale’s correction for limited plasticity ahead of the crack tip. A  
plastic zone of extent R  is assumed ahead of the crack tip. The size of R  is such 
that the elastic singularity vanishes at the crack tip and the crack behaves as though 
it is of length a+ R . The stress field ahead of this larger ‘crack’ may then be 
approximately described by the equations of linear elastic fracture mechanics 
provided that R  «  a.

Page 22



T

Figure 1.5. The magnitude of J (C*) is determined by integrating equation 
(1.13/1.16) around the contour r, of which ds is an element. T is the traction 
vector acting on ± e  contour and u (ù) is the displacement (displacement rate) in 
the direction of T. The body of the material is acted upon by a stress system Uy 
which results in a strain (strain rate) (êy).

P

a+da

Ûo Û

Figure 1.6. A schematic plot of load per unit thickness, P, as a function of 
displacement rate, ù, for two identical, non-linear, specimens containing cracks of 
length a and a+da. The area between the curves is the change in the energy 
release rate as the crack grows by an amount da.
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CHAPTER TWO: CREEP FAILURE OF ENGINEERING MATERIALS

In  this Chapter we present a review of the more significant work from the 

extensive body of literature on the creep failure of engineering materials, both by 

creep crack growth and as a result of continuum damage processes.

2.1 Failure by continuum processes.

At the turn of the century Phillips^^^ reported that m etal wires, glass and 

India rubber all developed a "slow stretch" over time when loaded at various 

temperatures. This work marked the beginning of the scientific interest in the 

phenom enon of creep. However, the first researcher to systematically study the 

creep of metals (and amongst other contributions introduce the terms ‘primary’, 

‘secondary’ and ‘tertiary’ creep) was Andrade c.l910̂ ^®̂  and it was A ndrade’s work 

rather than the earlier work of Phillips which was largely responsible for stimulating 

the enormous amount of research that has been done on the creep of metals.

In the period between the wars there was a dramatic increase in the use of 

superheated steam in power plant and in 1929 at M.I.T., Norton^^\ who was 

attempting to determine a threshold stress and tem perature below which creep 

would not occur, discovered that a constant uniaxial stress, a, will produce a 

constant secondary creep rate, ê, given by the rule

ê = A o'̂  (2-1)

where A  and n are material constants that depend on tem perature only; a rule that 

becam e known as Norton’s law.

Following N orton’s work the theoretical and empirical investigation of creep 

proceeded apace and it became clear that far from being a relatively restricted, if 

interesting, phenom enon creep occurs in most solids if the tem perature is

Page 24



sufficiently high and is, at least partially, responsible for such large scale phenom ena 

as the shape of the earths crust and glacial flow.

As a result of the extensive experimental work that was conducted on creep 

after the second world war, several empirical formulae were proposed to describe 

the creep behaviour of high tem perature materials.

The Larson-Miller parameter.

The earliest of the widely used empirical relationships is due to Larson and 

Miller^®’  ̂who, in 1952, proposed the following relationship between the absolute test 

tem perature, T, the stress, a, and the time to failure, tf.

jP(o) = C&2)
1000

W here P(ct) is the Larson-Miller param eter which is determined experimentally. 

The Sherby-Dorn parameter.

Shortly after Larson and Miller, in 1954, Sherby, Orr and Dorn^‘“’̂ assumed 

that t f , T, and o are related by

8(0) = CL3)

where R  is the universal gas constant, Q is an experimentally determ ined activation 

energy and 6 {a) is the Sherby-Dorn parameter, again to be determined 

experimentally.

The Monkman-Grant rule.

As a result of their work on aluminium alloys, titanium alloys, austenitic and 

ferritic stainless steels and nickel alloys, Monkman and Grant '̂^^  ̂ observed the 

unusual result that the product of the steady state strain rate and the time to failure 

is approximately constant and independent of the stress and tem perature
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0L4)

Cmg is the M onkman-Grant constant which typically lies in the range 0.03 to 0.3. 

This result is surprising, given the variety of possible high tem perature failure 

mechanisms, and the number of different materials tested, however its validity has 

been confirmed by numerous workers for a wide range of materials and test 

conditions; see for example the review by Evans^"^).

The continuum damage approach of Kachanov.

Kachanov '̂^^  ̂and Rabotnov '̂'^^  ̂consider the evolution of a damage param eter, 

w, which is in some way related to the degree of damage in the material, w varies 

from 0 for uncavitated m aterial to unity at rupture and is assumed to obey the 

Idnetic law

(2.5)
(1+4>)(1

The damage param eter, though often associated with the area fraction, is not m eant 

to be directly measurable in the way that /  is, but influences the stress and strain 

rate according to

ê = CL6)
( ! - « ) "

If the stress is constant then equation (2.5) can be integrated to give the time to 

failure

°  ï b

During steady state creep, which in classical theory is assumed to occur before 

cavitation has commenced, w = 0 and so equation (2.6) reduces to Norton’s law, of
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equation (2.1)

é = A a’' (2-8)

By multiplying equations (2.7) and (2.1) we can see that the M onlonan-Grant

product is given by

C«o -  ^  (2-S)D

and is therefore only strictly constant when n  = %. In general x < n but for most 

materials the difference is small, and allowing for experimental scatter C^g can 

sensibly be assumed constant over a reasonable stress range.

The 6 projection concept.

A  much more recent empirical relationship is the 6 projection concept of 

Evans, Parker and Wilshire^^\ The fundamental idea behind 6 projection is that the 

steady state creep behaviour commonly reported for many materials is not a real 

phenom enon but a consequence of poor experimental technique or insensitive 

measurement. The proponents of 6 projection argue, and there is some evidence 

to support this, that the more accurately measurements are made, the narrower the 

region is found to be over which the creep rate can sensibly be considered constant. 

9 projection assumes that nominally steady state behaviour is not steady at all but 

the result of competition between decaying primary and accelerating tertiary effects. 

The 6 projection technique allows for this by considering the creep strain to vary 

with time according to

e = + (2.10)

91 and 6; determine the extent of the primary and tertiary stages with respect to 

strain while 9̂  and 9  ̂ characterise the curvatures of the primary and tertiary
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elements respectively. The 6 param eters themselves vary with stress and 

tem perature according to

In 8. = a^+b.a+c.T+d^aT (2.11)

where a;, bj, ĉ  and dj are constants (for i = 1 to 4). In practice the constants in 

equation (2.11) are evaluated from precise short-term constant stress data.

With a knowledge of these 16 param eters (a further 4 are required to include 

the effects of rupture) deformation behaviour can be accurately described. M ore 

significantly the authors claim 6 projection allows results to be accurately predicted, 

including over very long times where data are scarce and expensive to obtain.

The creep behaviour of ceramic materials was not studied experimentally for 

the first half of this century as these materials’ inherent brittleness and susceptibility 

to therm al shock lead most engineers to doubt their usefulness in high tem perature 

applications. However while their resilience may be questionable the very high 

melting points of these materials caimot be denied, and as the need for alternative 

materials for high tem perature components became more obvious the creep of 

ceramics began to be studied in the 1950’s. However, unlike the study of metals, 

the beginning of the experimental work on ceramics is not marked by the work of 

one or two key individuals like Phillips or Andrade.

2.2 Failure by creep crack growth.

After several failures of power generating plant caused by the slow 

propagation and then catastrophic failure of creep cracks, the problem  began to be 

discussed in the literature in the early 1970’ŝ "®'

The earliest paper that the author could find on the subject is a paper by
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Siverns and Price^^^  ̂ from 1970 who describe tests on a 2l4CrlM o steel which 

displayed a power law relationship between crack growth rate, â, and the elastic 

stress intensity factor, K, of the form

d = jJC " 0^12)

W here A  and n were empirically determined constants. For this particular steel 

they reported a value of n « 5.5 which they describe as being similar to the Norton’s 

law stress exponent for this material.

Elastic fracture mechanics started with the pioneering work of Griffith^^®  ̂ in 

the 1920’s who, by proposing that the strain energy released when a crack grew was 

equal to that needed to create its new surfaces, introduced the concept of fracture 

toughness. Following on from this work it was later dem onstrated that in cracked 

brittle materials the asymptotic stress field at the crack tip is characterised by the 

elastic stress intensity factor K. In ductile materials this is not the case, the elastic 

stress, which is unbounded at the crack tip, exceeds the yield stress over a 

significant distance, the m aterial deforms plastically and the crack tip field is no 

longer characterised by K. This problem  had been recognised for some time and 

indeed plastic zone solutions (for example Dugdale’ŝ ’̂  ̂strip model) had been found 

for it, when, in 1969, Rice^^”̂ introduced his path independent integral J, described 

in Chapter one.

Soon after the publication of Rice’s work on the J integral came the 

armouncement of what is now considered a landmark result. Independently 

Hutchinson '̂*®’'*’̂  and Rice and Rosengren^'*^) (collectively loiown as H RR ) 

determined the asymptotic crack tip field for power law elastic materials which were 

characterised using the new J integral. For these materials, obeying the material
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law e = Boa", the stress field valid as the distance, r, from the crack tip approaches 

zero, is

/ J  \ I
(1 .(8 ) 0L13)

W here I„ is a function of n normalising the dimensionless function ây(0) such that 

the equivalent tensile stress,âg(g), has a maximum value of 1; is defined by

where Sy is the stress deviator such that

6y is the unit tensor such that 5y = 1 if i = j and 5y = 0 if i v*= j. For a graphical 

representation of how ây(g) varies with 6 see, for example, R iedel’s boold'^^^

In 1975, by studying the behaviour of a power law hardening centre cracked 

plate, Goldman and Hutchinson^^") dem onstrated a theoretical relationship between 

the crack tip singularity, characterised by J, and the crack tip opening displacement 

(CTOD). Although their model is explicitly plastic in its behaviour, they showed 

that their results are also valid for power law creep relaxation, provided that elastic, 

primary and tertiary effects are ignored and that the crack is stationary. A t the 

same time, Haigh^^^  ̂working on CrMoV steels demonstrated a relationship between 

the initiation of crack growth and the attainm ent of a critical CTOD.

A t about the same time Landes and Begley^^^ introduced a path independent 

integral for time dependent materials, the rate equivalent of the J  integral, C*. 

This allowed the H R R  fields, which were initially determined for elastic materials.
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to be extended to the time dependent regime; and in 1982 Ainsworth^^^ extended 

the work of Goldman and Hutchinson^^“\  this time using C* to characterise the 

material behaviour and neglecting elastic and plastic strains, to relate the initiation 

time to the CTOD, the results of his model comparing well with Haigh’s original 

experiments.

In 1979 Riedel and FUce^^ dem onstrated analytically that if elastic effects are 

ignored then the H R R  stress field is the asymptotic stress field at a crack whether 

it is growing or stationary; but if elastic effects are significant and consequently 

cannot be ignored then the H R R  field is an accurate description for a stationary 

crack only; a result that was to be verified numerically in 1981 by Bassani and 

McClintocld^'^^ who obtained plane strain numerical solutions for the power law 

relaxation of crack tip stresses around a stationary crack which agreed very well 

with the predicted H R R  field.

Later in 1979, Hui and Riedel^^^) demonstrated that for a m aterial with a 

creep exponent, n  > 3, there is a region ahead of a. growing crack where elastic and 

creep strains are equal. This results in a change in the nature of the asymptotic 

stress field ahead of the crack tip which has a singularity of the form o «

This asymptotic field, loiown as the H R  field (after Hui and Riedel), unlike the 

fields characterised by K or C* is specified uniquely by the current crack growth 

rate. However, this new H R  field was shown by Ainsworth^ '̂*  ̂ to only be valid over 

very small structural dimensions except when the growth rate is unrealistically high.

The groundwork for the next significant step in understanding creep crack 

growth was laid in the early 1960’s when Anderson et. ak^^ pointed out that what 

they called a "reference stress" could be defined to describe the creep of simple 

structures such as beams. At the same time, but independently, M arriott and
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Leclde^^’  ̂ defined a "skeletal stress" at a specific point within a  structure (the 

skeletal stress is in fact a reference stress but the term  "skeletal" is no longer used).

The idea behind the reference stress technique is that the creep behaviour 

of a structure can be predicted from a single uniaxial test obviating the need for 

numerous tests at different stress levels, to determine the exact form of the 

constitutive law.

The reference stress, Og, for the general case, was dem onstrated by Sim̂ ®̂̂  to 

be given by the expression

^0 = IT  (2.16)

W here P is the applied load; ? l is the plastic limit load for the configuration and 

CTy is the m aterial yield stress at the relevant temperature. Note that a test at a 

different load results in a different reference stress.

Towards the end of the 1960s Leckie and MartW^^) derived bounds to the 

displacement of an elastic-creeping body subjected to a constant load, bounds which 

were later extended by Leclde and Ponter^^”-̂ ^̂ to include the effects of plasticity; 

and which were further extended by Ponter^®^ to account for variable loading.

Goodall and CoclcrofF*̂ ^  ̂ in the early 1970’s dem onstrated that an upper 

bound to the lifetime of an undamaged creeping structure could be calculated using 

a limit load technique. This work was extended by Goodall and Chubb^^) who 

showed that these concepts, developed for uncracked components, could be applied 

to damaged components provided that in these materials the creep damage can 

spread into the m aterial without being dominated by crack tip behaviour. They 

further dem onstrated that if this condition, which they term ed "creep ductility" was 

fulfilled, the life of the component may then be determined using reference stress

Page 32



techniques provided that the presence of the crack is allowed for in determining the 

limit load. They conclude "... further studies of the interaction of creep ductile and 

creep brittle situations are required in order to establish a criterion of when creep 

ductile behaviour is to be expected."

In 1975 in an early review of the literature on creep crack growth in metals, 

Haigh^®^ concluded that correlation of the crack growth rate with the elastic stress 

concentration factor K "appears to have only limited application to creep crack 

growth". In 1977, Neate^“ \  working with specimens of a ViCxVtM oV N  steel 

dem onstrated that the crack growth rate could by correlated by the elastic stress 

intensity factor K, a result supporting the work, mentioned earlier, of Siverns and 

Price^^k This correlation held quite well for a quenched form of the steel whose 

fully bainitic structure failed without significant ductility, but for a m ore ductile 

normalised and tem pered steel of the same type this correlation did not hold. 

Neate however did find that the crack growth rates for this, and other^®’\  more 

ductile materials could be correlated by what he called an "equivalent stress". 

Although this equivalent stress is presented in a different way it is in fact identical 

to the reference stress defined in equation (2.16).

We can now see that by the end of the 1970s, we had progressed from 

Siverns and Price’ŝ ^̂  ̂ simple use of K  to characterise creep behaviour to the point 

where, as well as K, techniques based on crack tip opening displacement, J, C* and 

reference stresses had all been proposed to describe the creep behaviour of cracks, 

all with some empirical evidence to support their validity but with, as yet, no 

satisfactory limits to their range of applicability. Ainsworth^^^ took a big step 

towards establishing such limits when he dem onstrated a range of values of growth 

rate over which K and C* describe the steady state growth of a crack. H e showed
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that the applicability of K appears to be very limited, only applying for low values 

of n  (which is usually high) and rapid growth rates (again, not generally observed 

experimentally).

Provided that the creep displacement rate  exceeds the elastic displacement 

rate (due to the changing stiffness of the component as a  function of crack size) C* 

is shown to have wide applicability and a simple formula for estimating it is 

presented

W here again Oq is the reference stress given in equation (2.16); êg is related to the 

reference stress by equation (2.1) and x is a characteristic length for the specimen 

given by

«0

Note that as K  is proportional to Cg, this means that the characteristic length x is 

a function of specimen geometry only.

Ainsworth showed that in practice this means that C* is a valid characterising 

param eter provided that growth rates are sufficiently slow that crack growth may 

be assumed not to influence the stress fields.

Ainsworth also dem onstrated that reference stress techniques are appropriate 

for creep ductile materials when failure does not result from local damage at the 

crack tip but from general continuum damage. For such circumstances he derived 

a bound to the crack growth rate, above which a reference stress approach is 

inappropriate.

By the middle of the 1980’s a fairly complete picture had emerged of the
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behaviour of the asymptotic stress fields. The three discrete stress fields: the elastic 

(oc r'^); H R R  (« and the H R  (« n > 3) had all been shown to have

their specific regions of dominance, but the overall form of the transient field was 

as yet unknown.

In 1981, Bassani and McClintocld^^ had suggested a matching procedure by 

which the complete field could be approximated and the validity of this approach 

was verified in 1986 by Hawk and Bassani^^k They dem onstrated that the 

approximate solution obtained by the simple matching technique agreed very well 

with the results from a high resolution finite element model, the maximum error 

being about 13% for the worst case and usually significantly less than this.

Using this matching technique Hawk and Bassani were able to develop a 

picture of the complex evolution of the crack tip fields, which can be described as 

follows for constant crack values of growth rate  and K. A t tim e t  = 0 the solution 

is straightforward; the elastic param eter K  characterises the field everywhere in the 

body. A  small time later the H R  field has developed em bedded within the H R R  

field which is in turn surrounded by elastic material. As time increases the region 

of dominance of the H R  field "grows" into the material as does that of the H R R  

field. As a consequence of their relative singularities the zone of doininance of the 

H R  field grows more rapidly than that of the H R R  field until at the long time limit 

the H R R  field has disappeared and the asymptotic fields comprise the H R  field 

embedded directly in the K field. The relative singularities and regions of 

dominance of the various components of the full transient field are shown in Figure

2.1 for a m aterial with n=4 . In order to develop this model Hawk and Bassani 

chose suitable param eters to produce the limiting case of the H R  field growing 

faster than the H R R  field. This ensured that K would always characterise the
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stresses in the far field. If the opposite were the case, that the H R R  field grows 

faster than the H R  field, then the steady state would be the H R  field embedded in 

the H R R  field characterised by C*. This is the other limiting case considered by 

Ainsworth, mentioned earlier.

The effects of primary and tertiary creep continued to be ignored in the 

stress analysis of a cracked body until Riedeh™^ extended his earlier work on C* to 

include the effects of strain hardening. H e presented a generalised form of C*, 

which he called Q* (the subscript h signifying hardening), and used this to 

determine transition times for the changeover from small scale to extensive creep; 

from initial plasticity to extensive creep and from primary creep of the whole 

specimen to steady state creep of the whole specimen.

The creep growth of an isolated crack by direct diffusion of material from 

the crack tip has been analysed in detail by Chuang^’^̂ but this model is of limited 

relevance as examination of failure surfaces of numerous materials, both metallic 

and ceramic, indicates that crack growth in crystalline materials is due to the 

nucléation, growth and coalescence of damage ahead of the crack tip.

Creep crack growth where the mechanism causing growth is restricted to a 

process zone ahead of the crack tip began to be modelled by several authors in the 

early 1980’s. Nikbin and Webster^’̂  ̂ as well as otherŝ ®®' assumed that all the 

damage is contained within the process zone ahead of the crack tip which grows 

into the m aterial with a constant velocity. Failure of the undamaged ligament 

occurs at the crack tip and in this way the crack grows into the material.

From  a consideration of the increase in damage at a point as it effectively 

moves towards the crack tip the crack growth rate can be determined. A  model of 

this form originally due to Cocks and Ashby^”  ̂was extended by Nikbin, Smith and
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Webster^ '̂*  ̂ to predict the crack growth rate from uniaxial creep data and the grain 

size,

Wilkinson and Vitek^’̂  ̂ modelled crack growth under the influence of the 

asymptotic stress fields in 1982. They treated the stress fields and the damaging 

process as decoupled phenomena. This is obviously an approximation but their 

result does give an upper bound to the crack growth rate.

In most analyses the transitional phase of crack growth during which the 

steady state is achieved had been ignored, the steady state being assumed. In a 

further paper, Ainsworth^^*^ has dem onstrated that this is a valid assumption for 

creep ductile materials but that in creep brittle materials the additional strain 

accumulated during transition can be a significant proportion of, or even exceed, 

the m aterial’s creep ductility.

Riedel and Bdce^^ had earlier demonstrated that C* only characterises the 

stationary state fields which apply at long times after loading. They showed that the 

short to medium term  transient fields were still of the H R R  form but were 

characterised by a time dependent param eter greater than C*, C(t) and they 

established its short term  plane strain magnitude

(:(f) « (2L19)

W here the term  is deleted for plane stress. Ainsworth^’*̂̂ extended this work 

to describe a means of estimating C(t) during the transition

(2.20)
(l+EC*tlK^Y^'^ -  1

This result satisfies the short term  limit of equation (2.19) and we can see that in 

the long term  limit, a s  t
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C(f) -  C  (2.21)

This result is an approximation but still demonstrates that at short times C(t) > C*, 

which emphasises the importance of the transition phase of growth. In  the same 

paper Ainsworth goes on to present a simple reference stress technique for 

determining the creep strain during the transition. This is a significant result 

because Webster^’’̂  has argued that creep strains need only equal elastic strains for 

complete stress redistribution ahead of a crack, which would then be characterised 

by C*. In  this situation, he argues, even creep brittle materials may be expected to 

be characterised by C* unless creep strains less than the elastic strains are 

accumulated during the transition. Bearing in mind Ainsworth’s observation, noted 

above, that C(t) > C* during the transition, this would appear an unlikely situation.

In a more recent paper Ainsworth and Budden^™  ̂have developed a different 

procedure for estimating C(t). In this technique J  is used to correlate crack tip and 

far field behaviour and the validity of the m ethod is dem onstrated with a finite 

element model. In a companion paper^^^) the same authors dem onstrate that their 

new approximate technique for determining C(t) may be used to determine crack 

growth rates.

In all of the analyses described above the m aterial is assumed to deform by 

power law creep. However, it has been noted for some time that at high stresses 

"power law breakdown" occurs in some materials when Norton’s law no longer 

describes the m aterial behaviour. A  hyperbolic-sine law has been proposed^®®' 

which reduces to Norton’s law at low stresses and at high stresses to an exponential 

law which more accurately describes real behaviour at these stress levels.
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è oc [sm h(a/0o)]“ (2.22)

Bassanî ®^  ̂ has analysed the behaviour of an antiplane shear (mode III) stationary 

crack in a m aterial that behaves both elastically and according to equation (2.22). 

H e demonstrates that as a consequence of the hyperbolic behaviour the crack tip 

stress singularity is weaker than for a purely power law m aterial whereas the strain 

singularity is stronger. Bassani goes on to prove that the behaviour of these 

materials is similar to that of power law materials with a similar transition from 

elastic behaviour (this time characterised by Km) to C* control with extensive creep 

throughout the specimen. Although this work is of interest in that it helps to fill 

a gap in establishing a complete picture of material behaviour it is likely to be of 

limited practical use as components are not usually designed to operate in the 

"power law breakdown" regime. Having said that, in a cracked body the stresses 

close to the crack tip may be high enough for localised m aterial deformation to be 

governed by equation (2.22). The reference stress technique, however, can account 

for this because equation (2.17) is entirely general, the reference stress and strain 

rate may be related through any constitutive law or indeed be determ ined 

experimentally.

Creep crack growth in specifically ceramic materials has been modelled by 

Thouless et. In  this work the constraint on the damage zone exerted by the 

surrounding undamaged m aterial (which is assumed linear viscous) is modelled by 

positioning an imaginary array of dislocations ahead and in the plane of the crack. 

The individual displacement of each discrete grain in the damage zone is 

determ ined using a standard result from dislocation mechanics. This model predicts 

a crack growth rate that is proportional to the elastic stress concentration K  and
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inversely proportional to the material viscosity p.

Having established the constraint it is then shown to have negligible effect 

on the crack growth rate except for certain specific cases such as the process zone 

being confined to a very small region; the specific case of a damage zone of length 

one grain is considered.

Use of the elastic param eter K to characterise the behaviour would appear, 

based on what has been said above, to indicate a model with very limited 

applicability. However for the specific case of linear behaviour K and C* are 

related to each other through the m aterial viscosity, rj, as described in equation 

(1.19)

K^ = 3 q C '

so where Thouless et. al. use K to describe the behaviour they are in effect using 

C*.

In developing this crack growth model it is assumed that both the sintering 

stress and the void's internal pressure are small compared with the stress acting on 

the damage zone, and may be neglected. Both these assumptions can be justified, 

or at least have limits prescribed to them  within which they are valid, in fact 

Thouless goes on to consider the effect of the sintering stress. However his initial 

statem ent that this model describes the behaviour of linearly viscous "i.e. ceramic" 

materials is somewhat misleading. In the first place ceramics generally do not 

display linear behaviour, Govilâ ®̂  ̂ for example, has tested hot pressed Si^N  ̂with 

a steady state strain rate proportional to stress to the power 5.25 and such values 

are not uncommon. Elsewhere^®®) Thouless states that for ceramics "the assumption 

of linear creep is generally a good one" without substantiating this claim. His
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argument would appear to be that if the two limiting cases for describing the 

m aterial behaviour are n = 1 (analogous to linear viscosity) and n = infinity 

(analogous to plasticity) then a  m aterial with n  = 4 (say) is obviously much closer 

to the linear limit than the plastic limit. However Goodall and Cockroft^^®  ̂ have 

demonstrated, by considering a variety of generalised problems, that m aterial 

behaviour in the creep range is better described by the values of 1 /n  rather than 

n itself. From  this we can easily see that a creep exponent of n = 2 falls halfway 

between the possible values for 1 /n  of zero and unity and that it is difficult, 

therefore, to justify modelling materials for which n is greater than 2 as linear.

Not withstanding this criticism, Thouless’ model does provide a full and 

detailed description of the specific case of linear creep and is used in Chapter four 

of this thesis as a reference model for comparison with a more general model which 

we derive there.

Many ceramics contain an amorphous phase, often deriving from sintering 

aids. The creep behaviour of this second phase, which normally exists on two grain 

boundaries and at triple points, usually controls the behaviour of the component as 

by definition sintering aids have lower melting points than the bulk material. Also 

cracks can initiate more easily in second phase material and at lower stresses than 

they can in the matrix material. Thouless^®^  ̂has also modelled crack growth in liquid 

phase sintered materials which he describes by two limiting solutions. In one the 

damage zone is small and behaviour is governed by the constraint of the matrix. 

In the other the growth rate is independent of the viscosity of the matrix depending 

only on the second phase behaviour.

This model is extended in a further paper^“  ̂in which Thouless suggests that 

the actual crack velocity in these materials is the lower of the two velocities derived
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by considering the limiting cases described above. Again no satisfactory attem pt is 

made to justify the assumption of linear behaviour in these materials.
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Figure 2.1. A schematic log-Iog plot of the effective stress, at time t̂  as a function 
of distance from the crack tip (after Hawk and Bassani^*’ )̂. The plot shows the 
elastic K field (dashed), the HRR field (chained), the HR field (short dashed) and 
the full transient field (thick solid). The material considered has a creep exponent, 
n = 4, and so the singularities of the fields are respectively -V'a, -1/5 and -Va. The 
transient HRR field is characterised by the time dependent parameter C(t) and as 
the time increases from t̂  the magnitude of the HRR field decreases until at time 
tr it disappears completely.
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CHAPTER THREE: CREEP CRACK GROWTH MAPS

3.1 Introduction.

In this Chapter we will consider the different conditions under which either 

the elastic stress intensity factor, K, or the rate equivalent of the path independent 

integral, C*, characterise the response of a cracked component. W e will present 

a series of simple maps, with axes of normalised stress and normalised crack growth 

rate on which the regions of dominance of K and C* can be clearly seen. M aterial 

test data can be plotted directly onto these maps; from which we can see whether, 

under the conditions used to produce the data, C* or K characterised the m aterial’s 

behaviour. Theoretical models can also be plotted on the maps to determine for 

example the crack growth rate below which a model predicting K control would be 

invalid.

Riedeh'^’  ̂ has developed an analogous series of maps, in stress-time space, 

which he refers to as load param eter maps, on which are plotted regions of 

dominance of the characterising param eters K, C*, J and C* (which was described 

in Chapter 2). A  typical Riedel type map is presented in Figure 3.1. R iedel’s maps 

were developed from a model in which the primary creep of a stationary crack is 

modelled as power law strain-hardening. In this model constitutive relations are 

developed for extensive primary creep, the growth of a  primary creep zone in an 

otherwise elastic body and the growth of a steady state creep zone within a zone of 

primary creep. The demarcation lines on the map are the characteristic times as 

a function of the applied stress for the transition from one dominant characterising 

param eter to another.

The advantage of the maps that will be presented here, compared with the 

Riedel type map, has already been alluded to; namely that R iedel’s work is based
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on a consideration of the development of the stress fields ahead of a stationary 

crack. The maps presented here are developed from a consideration of the fields 

ahead of a growing crack assuming steady state conditions. However, this is not to 

say that the Riedel type map is not useful; based as it is on a consideration of a 

stationary crack it is an appropriate device for determining the characterising 

param eter for the process of crack initiation.

3.2 Crack tip stress fields.

We will start by considering the stress fields which develop with time ahead 

of a growing crack in a m aterial which creeps according to the m aterial law

H ere, v is Poissons ratio, E  is Young’s modulus and the summation rule for 

repeated indices implies that cr̂ k = + + Sy is the stress deviator, defined

in equation (2.15) and a  superscripted dot denotes the first differential with respect 

to time; u, is the equivalent tensile stress which was defined in equation (2.14).

If an (initially) stationary crack within a creeping body is subject to rapid 

mode one loading the instantaneous response of the m aterial is elastic and the 

stress field ahead of the crack is characterised by the mode one stress intensity 

factor, Ki.

The stress at a point a distance r from the crack tip is then given by

^  f,m  (3.2)
\j2%r

where ^  (6) is a dimensionless function of the angle, 9, between the point under 

consideration and a line in the plane of the crack normal to the crack front. The 

stresses ahead of the crack will then redistribute with time until eventually creep
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effects dominate and a steady state is reached in which the stress state can be 

described entirely in terms of the creep response of the material.

Hutchinson '̂**^’'̂ ^̂ and Rice and Rosengren^"^^ have analysed the crack-tip fields 

in power law materials. Neglecting elastic effects they found that the stress field 

ahead of the crack tip varies with r  according to

(6)

where C* is given by equation (1.16), and Oq is the reference stress, defined in 

equation (2.16) and related to êg by equation (1.2). I„ is a dimensionless function 

of n  chosen so that ûy(g) has a maximum value of unity when 9 = 0 and is well 

approximated by

(3.4)

The stress field described by equation (3.3) is the well known H R R  field and 

provided that elastic effects are neglected it is valid whether the crack is growing 

or is stationary(^^\

For a growing crack, Hui and Riedeh^^^ have dem onstrated that if the creep 

exponent, n > 3, there will be a region ahead of the crack tip in which creep strains 

and elastic strains are of the same order. This causes a change in the nature of the 

crack tip fields within this region.

If we now consider a one-dimensional Dugdale type damage zone, the stress 

field within the zone is given approximately by

n - 1 ,
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(A proof of the validity of this approximation is given in Appendix 1). This stress 

field is loiown as the H R  field and has the property that, unlike the K and C* 

controlled fields, it and its associated strain rate field are completely independent 

of the applied loading or of the load history, being characterised solely by the 

current crack growth rate and m aterial properties.

Consider now a cracked creeping body, of a material with a stress exponent, 

n, greater than 3. If a mode one load is applied to the crack at time t = 0 then the 

initial stress field is purely elastic as there has been no time for creep to occur, 

therefore the stress field ahead of the crack is described by equation (3.2). A  short 

time later, when the specimen begins to creep, the stress field ahead of the crack 

has the singularity of the H R R  field, but is of a greater magnitude, and is 

characterised not by C* but by the time dependent param eter C(t). R iedel and 

Rice(^^\ by determining a characteristic time for the transition from small scale to 

extensive creep have dem onstrated that C(t) has the short term  plane strain value

C(0 = (3.6)
iS(M+l)f

while for plane stress the term  (l-i/^) should be deleted.

Assume now that the crack starts to grow. If the crack growth rate is slow 

at first it can be seen that the steady state comprises the H R  field close to the crack 

tip with creep effects dominant everywhere else in the specimen and a rem ote stress 

field of the H R R  form, this is illustrated in Figure 3.2a. The extent of the zone in 

which elastic effects are important, r ,̂ can be determined by equating equations 

(3.3) and (3.5) and substituting r  ̂ for r
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1
n-1

(3.7)

Recalling from Chapter two that Ainsworth^^^ has shown for the general case 

that C* may be well approximated by

C* = OoSoX (3.8)

and from equation (2.18) that K  = a^^fï 

we find that

(n+l)it °o à '
% (n+1) Tc n (n - l)  E  é(,%̂

(3.9)

(3.10)

If the crack grows more rapidly there may be insufficient time for the time 

dependent H R R  field to form and the steady state therefore comprises a small 

region where the stress field is of the H R  type, surrounded by non creeping elastic 

material. This is illustrated in Figure 3.2b. The extent of this H R  zone r  ̂can be 

obtained by equating equations (3.2) and (3.5)

Making the substitutions of equations (3.8) and (3.9) again, we find that

1 n - l  E  Go%)-
X 2 tz\2%  Oq à

(3.12)

This is effectively the size of the zone within which creep effects are im portant in 

an otherwise elastic m aterial and it can be seen from the above expression that the
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size of this zone decreases as the crack growth rate increases.

The transition from C* to K control in the far field can be determined by 

simply equating equations (3.10) and (3.12) ie.

f i n )  (3.13)

where f (n )  « (3.14)
n-1

for n > 3.

It is important to note that in the above expressions the load applied to the 

component is described in terms of the reference stress, CTq, and that all stresses are 

normalised with respect to this param eter. Likewise all rates are normalised by the 

reference strain rate, êg, and all terms with the dimension of length are normalised 

using the characteristic length for the specimen geometry, %.

The above results have been derived from a simplified model of the way in 

which real materials behave. The derivation of the H R R  field requires a 

mathematically sharp crack, whereas in reality before a crack can start to grow its 

tip will be blunted by creep flow of the surrounding material. Blunting attenuates 

the H R R  field over a distance which is proportional to the crack tip opening 

displacement, Outside this region the H R R  field is still an accurate

approximation. The H R R  field is therefore only valid outside a region which is 

itself large compared with the crack tip opening displacement; so at one extreme 

the validity of the H R R  field is limited by blunting and at the other extreme by 

specimen geometry. This means that the specimen must be of a sufficient size if 

a valid H R R  field is to be able to form. The accuracy of the K  field, on the other 

hand, is also affected by crack blunting at the small scale, but even in a perfect
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specimen equation (3.2), which is in fact the first term  in a series, is only valid close 

to the crack tip, with higher order terms becoming increasingly im portant with 

increasing r. Thus talk of C* or K  dominating in the far field is not strictly correct, 

though it is terminology that is often used.

So far the mechanism of crack growth has itself been ignored. Microscopic 

examination of creep crack failure surfaces often reveals that this process involves 

the formation, growth and linkage of damage, producing a single dominant crack 

which grows into the material. This damage ahead of the crack tip can affect both 

the short term  elastic and long term  creep behaviour of the m aterial within the 

damage zone. However if this zone is small we can characterise the crack growth 

process either in terms of C* or K depending on the relative size of the damage 

zone compared with either r  ̂ or r̂ . If the damage zone is larger than r  ̂ then the 

elastic effects, which are only important for r  < r, are swamped by the effects of the 

damage process and the growth process is therefore controlled by C*. If, however, 

the damage zone is larger than r  ̂then it is the creep effects which are swamped by 

the effects of the damaging process and the growth process is K controlled.

Obviously it is not possible, without either examining the component or 

additional modelling, to know the extent of the damage zone and thus whether the 

above requirem ents are met. It was mentioned in Chapter one, that in the linear 

elastic case, the equations of elastic fracture mechanics may still be used to describe 

the stress field ahead of a crack where limited plasticity is present provided that the 

small scale yielding criterion, R  «  a, is met. If R  no longer represents the extent 

of the plastic zone, but now is taken as the extent of the damage (or process) zone 

then R  c  a is the small scale damage criterion. Provided that this criterion is met, 

the elastic and creep effects in the H R  zone will not be swamped by the effects of
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the damaging process. Although the precise magnitude of the small scale damage 

criterion varies with geometry it can be taken as approximately*^®’^

Rja = 0.05 (3.15)

Now from a comparison of equations (1.9) and (3.9) we can see that the 

characteristic length, %, is approximately equal to Tra (the term  /  (a/w ) being 

approximately equal to unity if the specimen is large compared with the crack). 

Therefore if we make the approximation that 207t = 50, we see that the above 

requirem ents are met if x j x  < 0.02 for K controlled growth and if r ,/x  < 0.02 for 

C* controlled growth. This approximation is admittedly crude, however, it will be

seen that the results are relatively insensitive to the exact value, particularly for the

case of creep control.

From  equation (3.12) we can readily see that creep crack growth is K 

controlled if

^  (3.16)
éo X OqIE

where 50 ( TC ^

similarly from equation (3.10) it is apparent that creep crack growth is creep 

controlled if

(3.18)
éo X O g/E
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where % W  = (3.19)
5 0 ^   ̂ ^

If inequalities (3.16) and (3.18) are plotted on log-log axes the result is a map of 

the type shown in Figure 3.3 on which we can identify four separate regions, one 

representing C* controlled creep crack growth, another where creep crack growth 

is K controlled and a third region between the other two where growth is in 

transition and is neither controlled byC * or K.

3.3 Continuum failure.

We may also identify a fourth region on the map of Figure 3.3 where instead 

of failure by the growth of a dominant crack the component fails as a result of the 

accumulation of continuum damage.

Suppose we wish to determine a value, $, of à /  êgX on the boundary between 

failure as a result of the accumulation of continuum damage and failure as a result 

of C* controlled creep crack growth, ie.

«=0%

recalling that x r̂a, and integrating, we obtain

f ‘/ è d, .  iü ' î ï ' î i l  (3.21)
Jo It Ç

W here a  ̂is the maximum crack size that the component can withstand and â  is the 

initial crack size. Now, if the integral on the left hand side of equation (3.21) is less 

than the Monlcman G rant product*"* )̂, Cmg, described in Section 2.1, the failure will 

be, by definition, not a continuum failure as the Monlcman G rant relationship is 

specifically only valid for continuum failures. From  this it follows that for
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continuum failure

j f j W  (3.22)
^ ^ ’'C mo

Which, from the typical range of values of C^o given in Chapter 2 and from the 

insensitivity of the result to the ratio ac/a;, we can see would fall within the 

approximate range 1 < ^ < 100.

3.4 Presentation of material data.

M aterial data can easily be plotted on this map. Nikbin et. al.*’'*) have 

compiled creep data for a variety of low alloy steels, 304 stainless steel and the 

aluminium alloy RR58, data for nimonic 80A are given by Riedel*'*’), and data for 

alumina are given by Blumenthal and Evans*®®).

In order to use the map we need first to determine the characteristic length, 

X, for the specimen being tested. Equation (2.18) defined x as

Oq

and the reference stress, Oq, was defined in equation (2.16) as

where P is the applied load, P^ is the limit load for the specimen and is the yield 

stress of the m aterial at the test temperature. Note that, as K is proportional to P 

it follows that x is only a function of specimen geometry, ie. it is independent of P. 

Values of x and of the limit loads for common specimen types, and how they vary 

with geometry are presented in Appendix 2. By referring back to the original 

papers from which the above m entioned data were obtained, the type of specimens
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used and their dimensions, as well as the measured creep crack growth rates can 

be obtained. From  this, following the method described in Appendix 2, the 

characteristic length can be obtained. The positions of the test data are shown in 

Figures 3.4 to 3.9. The function gi(n) is very sensitive to the exact value of n, 

displaying a  variation of ~ 13 orders of magnitude with a variation of n from 8 ->■ 35, 

such that data from materials with different values on n should be plotted on 

separate maps.

304 stainless and 2ViCrMo steels.

The data for these steels, which have creep indices of 8 and 9 respectively, 

are shown in Figures 3.4 and 3.5. Both of these steels are very ductile with the 

stainless steel showing a strain at failure, of 0.4 and the 2VtCrMo having an 

value of 0.45. With materials as ductile as these one would require very large 

specimens to achieve plane strain conditions at the crack tip; indeed Nikbin et. al.*’'*) 

dem onstrate that conditions of plane stress prevailed in these tests. As expected 

therefore, from such creep ductile materials, creep crack growth was characterised 

by C* rather than by K, even for the highest crack growth rates. This conclusion 

is in agreement with the observations of Nikbin et. al. who show that there is 

indeed a good correlation between crack growth rate and C*. By plotting on the 

maps the boundary to the region of continuum damage, described by equation 

(3.22), we can see that if C^o is at the low end of its observed range though creep 

crack growth may still occur this will not be the life controlling factor. Failure will 

eventually result from continuum damage.

ICrMoV and ViCrVaMoViV steels.

D ata for these steels, which have creep indices of 14 and 17 respectively, are 

shown in Figure 3.6 and 3.7. These steels are less ductile than the previous two
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materials (much less so in the case of the VzCrl^MoVtV steel) but creep in the 

majority of the specimens is still characterised by C*, though a low value of C^g 

would lead one to expect some continuum damage. Nikbin et. al. dem onstrate that 

for these materials neither plane stress nor plane strain conditions prevailed at the 

crack tip. Now our analysis is essentially one dimensional and is therefore strictly 

applicable only in conditions of plane stress. However a plane strain crack grows 

m ore rapidly than a plane stress crack for the same value of C* so plotting data 

closer to the plane strain limit (data at the right of the boxes on Figures 3.6 and 

3.7) on our plane stress map is conservative with respect to determining the 

correlating parameter.

RR58.

D ata for this aluminium alloy, which has a creep exponent of 35, are plotted 

in Figure 3.8. This alloy is much less ductile than all of the materials discussed 

earlier, other than the 16Cr^MoVtV steel, showing a strain at failure of 0.05. 

Nikbin et. al. dem onstrate that conditions at the crack tip in the tests represented 

by Figure 3.8 were very close to plane strain for which our map, as mentioned 

above, is not strictly valid (in fact, as the same dimensional groups apply in both 

plane stress and plane strain analyses, and the map is plotted on log-log axes the 

boundaries are not likely to move by very much anyway). Plotting this plane strain 

data on our map (the broken box in Figure 3.8) shows that we would not expect a 

reasonable correlation between â and C* and yet Nikbin shows that such a 

correlation does exist. In the case of the ICrM oV and 16Crl6Mo&^V steels it was 

enough simply to note that the position of the plane strain data was conservative 

and that growth was definitely C* controlled, however in this instance this is not 

satisfactory.
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Recall that the characteristic length, %, was given by

% = (325)
On

where a  = 1 in plane stress and 0.75 in plane strain. This means that were the 

tests represented by the broken box on Figure 3.8 repeated under plane stress 

conditions at the same value of C*, then CTq is reduced by a factor of 0.75, for the 

same value of êg.

Nikbin et. al. dem onstrate that crack growth rates in plane strain are 

approximately 50 times greater than in plane stress for the same value of C*. 

Making these adjustments for â and Ug has the effect of shifting the data box down 

(due to the decrease in Ug) and to the left (due to the decrease in crack growth 

rate), ie. towards the C* controlled region. This allows us to plot the data as plane 

stress data (the solid box on Figure 3.8) from which we see that the reported 

correlation between â and C* should, after all, be expected.

Nimonic 80A.

D ata for this nickel alloy, which has a creep exponent of 13, are plotted on 

Figure 3.9. Riedel*'*’) demonstrates that this data shows a reasonable correlation 

between â and the elastic stress intensity factor K and the positions of the data on 

the map agree with K being the param eter controlling crack growth.

From  their positions on the maps we can readily see that in the majority of 

the materials considered above, creep rather than elasticity was dominant over the 

range of tem peratures and loads used for the tests. We can also see that the more 

creep ductile the material, the further to the left on the map it appears and the 

m ore likely it is to fail by continuum damage. In materials of interm ediate ductility
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crack growth is characterised by C*. The most creep brittle materials appear 

furthest to the right on the map. Nimonic 80A is a complex mixture of nickel, 

cobalt, tungsten, chromium, aluminium and many other elements in small amounts, 

the purpose of which is to form hard precipitate particles which obstruct dislocation 

movement. The result of this is a m aterial with very limited ductility.

Alumina.

It must be rem em bered that the analysis used to produce these maps is, 

strictly, only valid for materials with a creep exponent greater than 3. However 

some engineering ceramics have n values less than or equal to this (reaction bonded 

silicon nitride, for example, typically displays a value of n in the range 1.0 < n < 2.0 

(89,90) for alumina is often found to be « 1*'*)). Therefore for these materials 

a different criterion for the change over from creep effects being dominant to 

elastic effects dominating is required.

The elastic stress field ahead of the crack tip is of the form

„ .  r ' i

and the total strain rate ahead of the crack tip is the sum of the creep strain rate 

and the elastic strain rate, ie.

Now, from equation (1.2), for n = 1 we see that

= ' o '

(3.27)

(3.28)

and therefore, from equations (3.28) and (3.2), that
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The elastic strain rate is therefore given by

e, ̂ (329)
«0

ê = jdr (3 30)
® dr dt

where, of course ^  ~ (3.31)

Therefore

If we define the changeover point from creep dominance to elastic dominance, r*, 

as being the point at which the elastic strain rate and the creep strain rate are 

equal, we arrive at the following simple result for the case of linear viscosity.

I l  = 1  f o  _A_ (3.33)
% 2 2

If, as before, we set r* = x/50 at the change over point we find that the elastic 

zone is small and creep effects dominate if r* < x/50. Conversely if r* > x then 

elastic effects dominate.

A  creep crack growth map for alumina, based on the data of Blumenthal and 

Evans*®®) is given in Figure 3.10, using the above criterion for the change over from 

elastic to creep controlled growth. To determine the position of the boundary of 

continuum damage we turn to a later paper in which Dalgleish et. al.*“ ) further 

analyse BlumenthaFs results and dem onstrate that for these data C^g is 

approximately 10'\ Our analysis is only weakly dependent on the ratio of aya , so 

for the plot we have assigned this ratio a value of 10’.

In the tests used to produce these data it was observed that at high load
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levels or if the m aterial contained large pre-existing flaws failure was as the result 

of the growth of one of these flaws to a critical size, with damage restricted to the 

imm ediate vicinity of the crack tip, at which time the specimen failed in a brittle 

m anner with a typical failure strain < 1 % . These data are the top-right half of the 

box on Figure 3.10.

As the load was reduced (and consequently as is reduced) the crack 

growth rate dropped, and the data points move down and to the left ie. into the 

continuum damage region. Thus we would expect at a certain threshold load level 

the behaviour to change from brittle to ductile, and indeed this was the case. 

Below a certain load the pre-existing flaws were found to blunt and failure was the 

result of the growth and eventual coalescence of widespread damage, with typical 

failure strains of about 8%. Thus we can see that the position of the data on the 

map is consistent with experimental observation.

These data for alumina dem onstrate clearly the dichotomy of behaviour 

which is the central theme of this thesis, namely that under different loading 

conditions the same m aterial may either behave in a brittle or ductile manner.

W ith the possibilities of two such diverse modes of behaviour further 

investigation of this duality is of param ount importance. However it is clear that 

there are many separate factors which affect this phenomenon, such as the number 

and size of pre-existing flaws, the levels of impurity present in the m aterial and the 

inability of some cracks to induce a damage zone*” ). In Chapter four we 

concentrate our theoretical investigation on the creep crack growth regime and in 

Chapter five we describe our experimental investigation into the creep ductile /  

creep brittle transition in reaction bonded silicon nitride.
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3.5 Design and assessment.

We will now give a simple example to demonstrate how these maps can be 

used in design. Recall from equation (3.21) that for failure not to occur within the 

design lifetime, t ,̂ we require

(3.34)
Jo 0

Now, if the design strain limit, e^, is 1% (say) then the designer obviously requires 

that this is less than the accumulated strain at failure, ê , ie.

By combining equations (3.35) and (3.21) we can see that for a satisfactory design 

the designer requires

Ç (3,36)

This is represented by the ‘design box’ on Figure 3.11.

This type of map would be used in the initial stages of the design process to 

determine whether creep crack growth is likely to be a problem  in a specific 

component. D ata to the left of the design box (by a suitably chosen factor of 

safety) would indicate a possible growth rate below that necessary to achieve a 

critical flaw size within the design lifetime.

Current design codes for high tem perature components in both the nuclear 

and conventional power generating industries often start from the premise that the 

components are initially defect free when they enter service. This is unrealistic, not 

only because it is extremely difficult to manufacture a completely defect free 

component of any size or complexity, but also because of the limited resolution of
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testing equipment there will always be a minimum size below which defects will 

escape detection. However, with increasingly more sensitive non destructive testing 

(NDT) equipment being used, the likelihood of cracks being detected in such plant 

during routine inspection will increase. An engineer discovering such a flaw must 

determine whether the component can safely be left in service. It is im portant that 

such an assessment is realistic when one considers the high cost of replacem ent of 

this type of component (possibly involving partial or complete shutdown of the 

plant) or the possible of consequences of allowing failure within the design life. 

These maps may be used as a means of rapidly assessing whether such a cracked 

component has sufficient residual life or requires replacement.

Procedures for the high tem perature assessment of flawed metal components 

under steady loading conditions based on reference stress techniques have been 

developed at, for example, what used to be the Their R5 procedure

which is similar to the R6 procedure for low tem perature applications will now be 

briefly described.

Initially it is necessary to determine the service load and tem perature of the 

component to be assessed. From  these the time to failure based on general rupture 

of the m aterial ahead of the largest Icnown flaw (or the smallest detectable flaw if 

none is detected) is determined. If this time is shorter than the desired lifetime 

then this lifetime will not be achieved if a flaw is present and is unlikely to be 

achieved if none is detected.

Next the incubation period of the crack is determined. This is the time 

during which the crack blunts due to localised creep at the tip without growing, and 

is determined using reference stress techniques (the appropriate characterising 

param eter could be determined using the Riedel type map m entioned earlier).
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Obviously if this time is shorter than the current age of the component then the 

crack must have started to grow. The crack size at the end of the service life is 

then determined by integrating up the crack growth rate over the lifetime less the 

incubation time. Some m ethod of characterising the crack growth rate is obviously 

required for this and the procedure defines conditions for which C* may be used.

The time to failure as a result of general rupture of the uncracked ligament 

will get shorter as the crack grows due to the reduction of the area of the ligament 

and the consequent increase in the stress that it carries. This revised time to failure 

should be calculated, using a new limit load based on the current crack length, to 

ensure that it exceeds the remaining design life.

Lastly the factor of safety for the crack size at the end of the design life 

should be determined for all possible load combinations. The acceptability or not 

of this factor would then be decided. To establish full confidence in the assessment 

an analysis should then be perform ed to demonstrate its sensitivity to the accuracy 

with which the input data are known.

Suppose for example that a component that has been in service for a length 

of time t, and has accumulated a creep strain ê , is found to contain a crack of size 

a^ For the component to be serviceable the requirem ent is that the strain that the 

component can still tolerate before failing is greater than the ‘unused’ portion of 

the design strain, ie.

ey -  e, ^ e j -  e, (3.37)

combining this requirem ent with equation (3.21) gives
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Ç .  (3.38)
ix(e^-e,)

This is represented by the ‘assessment box’ on Figure 3.11; in this example the 

reference stress is taken as being less than E/1000. The significance of this box is 

that if experimental data relating to growth of the crack in the component lie to the 

left of the box (again, a suitable safety factor would be applied here) then the 

component is safe. However if the data lie to the right of the box the component 

should be replaced or the loading reduced (which has the effect of reducing and 

moving the assessment box to the right, away from the m aterial data).

There is however a large ‘grey’ area in the use of these maps for both design 

and assessment, not only in the transitional region between C* and K controlled 

growth, but also in determining whether an implied factor of safety (due to the 

close proximity of data to a design/assessment box is sufficient. In these cases 

further analysis would be recommended. This notwithstanding, however, these 

maps represent a useful and easy to use design/assessment tool.

3.6 Models of creep crack growth.

Numerous models exist in the literature which attem pt to explain creep crack 

growth in engineering materials. One of the simplest of these is due to Cocks and 

Ashby^” \  and extended by Nikbin and Webster^’̂  ̂who analyse C* controlled growth 

by considering the strain accumulated in an element of m aterial ahead of a growing 

crack. They assumed that a critical strain, Cf, is achieved at the point where the 

elem ent fails and the crack advances into the material. Their basic model can be 

expressed in the form
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-T n+1
G.

 ̂R ^ — (3.39)

where a is the normalised crack growth rate = à/&u% and R  is the normalised 

damage zone size = R/%  For given values of these param eters equation (3.39) 

represents a vertical line on the map. It can be seen that the position of this line 

on the map is not particularly sensitive to the value of R  and becomes less so as 

n  increases. Equation (3.39) is plotted on Figure 3.11 for Cf in the range 0.01 to 

0.0001; R /I„ = 1 and n = 9. Note that as becomes very small the crack growth 

rate goes to infinity and as Cj becomes very large crack growth stops; this model is 

therefore inappropriate near these limits.

It is implicit in this model that the rate of damage accumulation is a function 

of the creep rate, therefore there can be only one characteristic rate for the crack 

growth process. The damage rate however need not be a function of the creep rate. 

If, for example, the deformation within the process zone results from the plating out 

of m aterial onto grain boundaries as it diffuses away from the voids then the 

deformation rate within the process zone will be quite different from that in the 

surrounding material, whether it deforms elastically or creeps.

Ainsworth^^^ has developed a model in which the effects of crack tip blunting 

are considered by assuming that the crack tip blunts into a semi-circular shape. H e 

arrives at the following expression for the crack growth rate in the C* controlled 

regime.

, v ! I é „ | - £ 1 5 E L l )
2 4»

(3.40)

Recalling equation (2.17) and that for an arbitrary geometry x » Tra, this expression
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becomes, after normalising,

2  ̂ 4M j

This equation, assuming n = 9, is represented by the solid vertical line on Figure 

3.12 from which we can see that this model lies in the region of the map where we 

would expect continuum damage rather than crack growth. This model is therefore 

likely to underestimate the crack growth rate.

Thouless and Evanŝ ®'̂  ̂ have developed a model of fully constrained crack 

growth in a linear viscous m aterial containing a second grain boundary phase, in 

which K is the characterising param eter. Their basic model is of the form

a = (3.42)
^6

where is aldn to the critical crack tip opening displacement and fg is the initial 

thiclcness of the second phase; 1 is the grain size and is the viscosity of the second 

phase material. = 2 2  and 1/ Sq = 1 0 0  are suggested as reasonable values, and 

n = U0/ 3 &0. The small scale damage limit of a > 20R, and the fact that the damage 

zone of size R  comprises z grains of size 1, leads to the result that

JL ^ 4%
20z

This equation is represented by the solid vertical line on Figure 3.13, for the 

limiting case of a damage zone of a single grain, from which we can see that it falls 

within the region of the map where creep effects dominate and that it is applicable 

at values of Ug/E < 1 0 ^.

A  model demonstrating a different feature of m aterial behaviour which may
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be plotted on a the map is due to Riedeb®’\  In this model R iedel develops the 

continuum damage equation of Kachanov (equation (2.5)) to arrive at the following 

expression for the crack growth rate (Kachanov uses x but to avoid confusion 

between this and the characteristic length we shall use ç)

n+1 aC * a = —
i »+l-(

D A a  (3.44)

D may be written as

Z) = # .45)

where Wg is a reference value of w and Aa is the amount of crack growth since the 

start of the test. Riedel demonstrates that taking a value of a  = 30 gives a lower 

bound to the crack growth rate. We may then re-write equation # .44) as

à = 30 «+1 (1.46)

For aluminium the appropriate values are n = 6.9; ç = 6.48. Thus the normalised 

growth rate depends on the ratio of two characteristic rates. Equation (#.46) is 

plotted on the map of Figure J>. 14.

3.7 Summary,

In this chapter we have presented a simple map which readily allows the 

perform ance of cracked components to be assessed by direct comparison of m aterial 

data with design and assessment criteria. The predictions of theoretical models of 

the creep crack growth process can be plotted directly onto these maps which then 

provide a means of assessing the range of validity of the model.
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Figure 3.1. A  Riedel type in stress-time space for a hypothetical material.
The different regions represent the different characterising param eters applicable 
at that point in the stress-time history of the material.
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Figures 3.2a and 3.2b. Schematic plots of effective stress as a function of 
distance from the tip of a growing crack in a material for which n > 3. Figure 3.2a 
shows the steady state situation ahead of a slowly growing crack where r, is the edge 
of the zone within which elastic effects are important in an otherwise largely 
creeping material (note that in large specimens there may still be an elastic region 
in the extreme far field, outside r̂ RR). Figure 3.2b shows the steady state ahead of 
a rapidly growing crack (note that the K and HRR fields are the same, but that the 
HR field, a function of crack growth rate, has increased in magnitude, and that 
therefore the region of dominance of the HRR field , r̂ RR - r, has disappeared); r̂  
is the limit of the region where creep effects are important in an otherwise elastic 
material.
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Figure 3.3. A  creep crack growth map for a material for which n = 9. The region 
to the left of the dashed line represents the conditions under which failure by 
continuum damage may be expected to occur if C^g = 0.07 and = 10̂ . The 
hatched region represents neither C* or K control.
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Figure 3.4. A creep crack growth map for 304 stainless steel, for which n = 8. 
This is a very ductile material with the specimens displaying a strain at failure of 
up to 0.4. The dashed vertical lines represent the boundary of the transition from 
C* controlled creep crack growth to continuum damage. We can see that if C^g 
were at the higher end of its experimentally observed range we might expect 
continuum failures rather than crack growth to be the dominant failure mechanism.
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Figure 3.5. A creep crack growth map for 2ViCrMo steel, for which n = 9. This 
steel is even more ductile than the 304 stainless steel described above with a failure 
strain of up to 0.45. As expected for a material as creep ductile as this all the data 
all lie comfortably within the region indicating that creep was C* controlled rather 
than K controlled.
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Figure 3.6. A creep crack growth map for a ICrMoV steel, for which n = 14. 
This steel is rather less creep ductile than the steels of the previous two Figures, 
demonstrating a failure strain of 0.2. However we can see that the data for this 
material also fall within the limit of C* control.
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Figure 3.7. A creep crack growth map for a &6Cr&6Mo&4V steel, for which n = 17. 
This steel is much less creep ductile than any of the previous materials displaying 
a strain at failure of < 0.05. We can see that again these data, even the data 
approaching plane strain at the right of the box, fall within the region of C* 
controlled creep crack growth.
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Figure 3.8. A creep crack growth map for the aluminium alloy RR58 
(2&iCulVzMg), for which n is reported as being 35. This alloy shows very little 
creep ductility and Nikbin et. aL^  ̂ demonstrate that conditions at the crack tip 
approach plane strain for these data (broken box). The position of this box on the 
map indicates that one would not expect a very good correlation between crack 
growth rate and C*, yet Nikbin et. al. do report such a correlation. However the 
broken box represents the plane strain data, for which the analysis used to derive 
the map is invalid. When the data are modified for plane stress (the solid box) we 
see that the reported correlation between C* and â is to be expected.
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Figure 3.9. A creep crack growth map for the nickel alloy Nimonic 80A, for which 
n = 13. Riedel̂ '*’  ̂reports a reasonable correlation between â and the elastic stress 
intensity factor K for these data and we can see that the position of the data on the 
map agrees with this.
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Figure 3.10. A creep crack growth map for alumina assuming n = 1. For n < 3 
the criteria for determining the positions of the demarcation lines on the boundaries 
between C* and K control, used to produce the previous maps are not valid so a 
different criterion based on an equivalence of creep and elastic strain rates is used 
to determine the boundary on this map. Note that if n = 1C* and K are related 
through equation (1.19) and so one can not distinguish between C* and K control 
but we can say whether creep or elastic effects dominate in the material. As in 
Figure 3.3 the dashed line represents the boundary between creep crack growth and 
continuum damage in which Cmg is taken as 10'̂  and a js ii is l(f. We can see 
that these data are a mixture of continuum damage and creep crack growth.
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Figure 3.11. A creep crack growth map for a material, assuming n = 9, showing 
the validity of a simple crack growth model and regions associated with the design 
and assessment of high temperature plant. In the Figure the failure strain, 6p varies 
from 0.01 to 0.0001.
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Figure 3.12. A creep crack growth map for a material, assuming n = 9, showing 
the prediction of a creep crack growth model due to Ainsworth^^̂ ) (equation (3.41)) 
as a solid vertical line. This model lies in the region of the map where we would 
expect continuum damage rather than crack growth and so we would expect this 
model to be unconservative and to underestimate crack growth rates observed in 
practice.
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Figure 3.13. A creep crack growth map for a linear viscous material, showing the 
range of applicability of a crack growth model due to Thouless and Evanŝ ^̂  
(equation (3.43)) as a solid vertical line. The model is valid for values of oJ'E  < 
I Q : .
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Figure 3.14. A creep crack growth map showing the validity of a model due to 
Riedel (equation 0.46)). Data for aluminium (n = 6.9; ç = 6.48; C^o = 0.33) 
are used to determine the positions of the boundaries between continuum damage, 
C* and K control; the model is represented for the case of Wo/êo = 10 .̂ As the 
model is based on failure due to continuum damage we can determine from the 
Figure that the model only falls within the region where this is dominant (for these 
specific values of n and ç) if Wq / cq < 0.27. We can also see from equation 0.46) 
that as the crack grows Aa increases and a moves to the right on the map.
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CHAPTER FOUR: C%VmYC«OWTHAHEM)OFACmOWTW}CRW^

4.1 Introduction.

In this chapter we consider mechanisms for the limiting cases of both 

constrained and unconstrained void growth. We then introduce an interm ediate 

case based on a prescribed displacement rate field ahead of the crack tip. In this 

third, ‘partially constrained’, case we use the path independence of the C* integral 

to relate the near and far fields and thus determine the form of the displacement 

rate  field. The validity of this partially constrained case is verified by comparison 

with results from a different model in the literature. By combining these three 

fields we dem onstrate how the m aterial behaviour changes with increasing crack 

velocity. We then demonstrate how the creep crack growth maps, developed in the 

previous chapter, may be used to determine the range of applicability of the crack 

growth model.

Initially we concentrate our attention on the region on the left of the creep 

crack growth map where C* dominates and because the presence of damage on 

either side of the crack plane is assumed not to influence the crack growth rate we 

consider the situation where the damage is restricted to a zone of a prescribed 

length, R, ahead of the crack tip.

We then go on to examine the situation where elastic effects dominate, on 

the right of the map, and we examine how, if at all, the size of the damage zone 

varies with the applied load and any other material parameters.

4.2 Mechanisms of cavity growth.

Creep cavities can grow by any combination of several different mechanisms. 

The mechanism that we will examine here is growth by the stress directed diffusion 

of m atter from the surface of the cavity into the grain boundary. As m atter leaves
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the surface of the void the void’s volume increases and as the m atter is deposited 

on the grain boundary the grains are ‘jacked’ apart. This jacking further increases 

the volume of the void and, as m atter is deposited on grain boundaries which are 

in tension, does work equal to the loss of potential of the deposited atom.

Rapid diffusion of m atter over the surface of the void means that its 

lenticular equilibrium shape is maintained. By assuming that growth by power law 

creep does not occur, ie. that the surrounding grains are rigid, that the lenticular 

shape and dihedral angle 2\j) (typically 15°^^̂ ) are maintained and that the supply of 

grain boundary vacancies is limitless, the equations governing boundary controlled 

diffusive growth can be solved. The early work in this area was done by Hull and 

Rimmer(^) in 1959 and by Speight and Harris^“  ̂in 1967. However Raj and Ashby^’  ̂

have pointed out that in solving the governing equation the earlier workers assumed 

incorrect boundary conditions. M ore recent analysis of boundary controlled 

diffusion^'’̂ -̂ ’̂”  ̂has progressed to the point where the mechanism is now quite well 

understood.

If diffusion through the grain boundary is rapid then diffusion over the void 

surface becomes the rate controlling mechanism. W hen m aterial diffuses out from 

the perim eter of the void faster than the remaining m atter can redistribute over the 

surface then instead of approximating a sphere the cavity can become penny-shaped 

or develop finger-like growths. The growth of these non-equilibrium cavities has 

been analysed by Chuang and Rice^^"), work which was later developed by Chuang 

et. aĥ ®\

4.3 Constrained cavity growth.

Although the basic mechanisms of boundary and surface controlled diffusion 

are well understood they do not accurately describe the behaviour of real materials
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as they greatly overestimate the void growth rates and consequently underestimate 

the rupture times that are found in practice. This occurs because for most of the 

tim e during creep, cavitation is limited to a few discrete grain boundaries, which are 

surrounded by uncavitated material. Dyson^^^) was the first to realise that if this 

undamaged material were rigid it would constrain the voids and no increase in their 

volume would be possible, and that therefore void growth could not occur without 

some deformation of the surrounding material. This phenom enon is called 

constrained cavity growth.

To illustrate the effect of this constraint consider a bar of material which is 

held between two rigid supports. Suppose that the specimen is now strained by an 

am ount e. The specimen is prevented from deforming by the rigid supports. If we 

heat the specimen into its creep range (which we will assume to be below that of 

the supports, which therefore do not creep) the elastic stress within the specimen 

reduces as the m aterial relaxes, and creep strains replace elastic strains.

Thus in the case of constrained void growth the stress within the damage 

zone (the bar) is low compared with that in the bulk of the material (the rigid 

supports). In the limiting case of fully constrained behaviour the stresses have 

completely relaxed and the behaviour is controlled by the displacement field, in the 

same way as the relaxation of the imaginary specimen is controlled by the amount 

by which it is initially strained.

4.4 Constrained cavity growth in a cracked geometiy.

In a cracked geometry the growth of damage ahead of the crack tip is 

similarly constrained by the deformation of the surrounding material. In the fully 

constrained case the stresses within the damage zone are assumed to be fully 

relaxed, with neither the crack or the damage zone carrying any load. In a manner
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analogous to Dugdale’s plastic zone correction^^’  ̂ discussed in Chapter one, the 

damage zone can then be considered an extension to the crack which behaves as 

though it were of length a+ R .

Consider an array of voids contained within a damage zone of length R  

ahead of a crack in a creeping material. We can model this situation as a series of 

uniaxial specimens, a distance 2 \  apart, each containing a single void; the 

specimens being strained at different rates depending on their positions in the 

damage zone. Consider now one of these unit cells (see Figure 4.1). The volume, 

V, of the unit cell is given by

V =  4 À ^ ô  ( 4 - 1 )

As A is a constant the increase in the volume of the cell, dv, is given by

dv  = (4.2)

If the crack only grows when voids coalesce, or the intervening ligament ruptures, 

then it must grow in increments of 2A, and so

from this it is apparent that

db = —  dt = —  —  = (4.4)
dt dt à à

and so therefore by combining equations (4.2) and (4.4) the change in volume of

the cell can be expressed as

dv  = M & I (4.5)
à

Obviously this change in volume represents the change in volume of the void, as the
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volume of the surrounding m aterial cannot change. If we then assume, to simplify 

the calculation, that in equilibrium the voids are spherical we can see that

dv  = (4.6)

where the subscripts 1 and 2 denote the radii of the void before and after the 

growth event respectively. If we now introduce a new term, the volume fraction of 

a  void, F, which is related to the area fraction, /  (defined by equation (1.7)), by

F  = /1-5 (4.7)

then from equations (4.2) and (4.6) we may write

From  equation (4.4) it is also obvious that

dS = CL9)
à

The displacement at the crack tip, 5,

'R Ô, = f *  CLIO)
' JO à

which is equal to d 5 in equation (4,8) if F^ and Fj are respectively the volume 

fractions of the void at the crack tip and at the far edge of the damage zone, and 

therefore

In order to proceed further it is apparent that the displacement rate as a 

function of position within the damage zone is required. In  the limiting case of
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fully constrained behaviour the stress within the damage zone has completely 

relaxed. Therefore from the point of view of the m aterial outside the zone it 

appears that the damage zone contains no m aterial and the crack is really of length 

a+ R . The analogous solution in plasticity for the deformed shape of a crack is 

given by Goldman and Hutchinson^^°\ Making use of the visco-plastic analogy we 

may then write

0 (%) = (4.12)

where

/c„ = — —  (4.13)

Therefore

(n+1) 3é(j

a =
(4.14)

For a  crack in an infinite plate the function is dependent solely on the creep 

exponent, n, and for the case of linear viscosity = i t W e can rewrite 

equation (4.14) in nondimensional form by recalling from equation (2.17) that

C" = OgégX (4.15)

As X has the dimension of length, therefore so does C * /cto£o, which means that 

C*/o"o is a velocity. We can now introduce the following nondimensional groups
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3 _ 4*0  _ à 
C'

(4.16)

R  = = A  (4.17)

_ A o p ^  ^ ^L18)
C  %

and therefore equation (4.14) can be written

J L  n+2

_  ̂ 3(M+l)Jà"" JR"̂  (419)

(n + 2 )itI(F 2 -F i)

4.5 Unconstrained cavity growth in a cracked geometry.

Fully constrained void growth models a small, compliant, damage zone 

contained within an elastic matrix. If this represents one limiting form of behaviour 

then unconstrained cavity growth represents the other limit.

In unconstrained growth the m aterial surrounding the damage zone is 

comparatively soft and void growth is controlled by the diffusive processes discussed 

in the introductory chapter which are in turn controlled by the stress acting on the 

damage zone. Riedel^'’®̂ has dem onstrated that the growth rate of the crack 

depends on the applied load level, characterised by C*; with diffusive void growth 

being the dominant mechanism at low crack growth rates.

If we assume that the damage zone associated with the crack is sufficiently 

small so as not to influence the stress field, then the field is of the H R R  form 

described earlier

Oj. = o„(8) H

Page 81

I 'iA  (4.20)



Recalling the approximation to Raj and Ashby’s expression for the volumetric flow 

rate of m atter from a void under the action of an applied stress^’^

Now it is apparent that

d t 1̂

{{f,

(4.21)

d F  _ ^  ^  d ^  
d t  d t  dv  dr

(4.22)

so if we again assume spherical voids, and combine equations (4.22) and (4.7) we 

see that

^  3D^0^0(1-F')o

If we now introduce a nondimensional term, ÿg, such that

2£1D^Ô^Oq

(4.23)

(4.24)

we obtain the result that

(4.25)

where 0o represents the ratio of creep due to diffusion in the damage zone to that 

due to power law creep of the undamaged matrix. If is large then diffusion 

within the damage zone is rapid compared with power law creep of the surrounding 

matrix. This leads to relaxation of the stresses within the damage zone. A  low
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value of 0 0  implies that power law creep of the matrix is faster than diffusion within 

the damage zone and plating onto the grain boundaries of m aterial which has 

diffused out of a void is easily accommodated by creep of the matrix; the stress field 

within the zone is not relaxed. This means that in effect 0 0  is a measure of the 

degree of constraint. However this does not m ean that for full constraint 0 0  -+ «>; 

it will be shown later that full constraint, in terms of an upper bound to the crack 

growth rate is reached at a finite value of 0 g.

Now, of course, dx/dt is the rate at which the element of material is moving 

towards the crack tip, ie.

dt

and so

i F  -
AonàXm-

(4.27)

Rearranging equation (4.27) and integrating gives the result

3 (n+1)
4n GO?)Oo

where G(F) is the following nondimensional function of F

(4.28)

G (F) = dF  (4.29)
(i-Fh

A  plot of how G(F) varies with Fj is shown in Figure 4.2 assuming a volume 

fraction, F ,̂ at nucléation of zero.

The growth of voids directly ahead of the crack tip is determined by the
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stress normal to the boundaries on which the voids are situated ie. O22 when d =

0. Therefore the crack growth rate is given by

3<|)q M+l
d —

4 G # 0  »

or, in nondimensional form

(4 30)

à = I  R -I 0 , 2 ( 0 ) (4.31)
4% GOD

where I„ is given by equation (3.4) and in plane stress 0 -22(0 ) = I. In plane strain 

the maximum value of 0 2 2 , when 0 = 0, is given by

Thouless et. al.(^) have developed a model in which the constraint in the 

crack tip damage zone is modelled using dislocation theory. Making use of H offs 

visco-elastic analogy^^^) a series of dislocations is placed in the plane of the crack, 

ahead of the tip, to model the displacement rates of each grain. The sum of the 

Burger’s vectors at each point corresponding to the displacement rate at that point. 

The compressive stress at a given distance from the crack tip due to a particular 

dislocation is a standard result from dislocation theory and so the total stress field 

ahead of the crack can be found by superposition. Thouless uses this model to 

produce curves of normalised crack velocity as a function of the number of grains 

in the damage zone, z, ie. as a function of its size.

The Thouless model is limited to the case of linear viscous creep and is a 

discrete model, that is results are obtained only at the centres of the ‘grains’ in the 

damage zone, while the model presented here is continuous and also valid for n >



1. However, it will be instructive to compare the results from our model with those 

due to his. The comparison is not straightforward as we have obtained the 

dimensionless crack growth rate as a function of the damage zone size, R, where 

Thouless plots rjk/KVl as a function of the number of grains in the damage zone. 

The conversion from one form to another is however possible (see Appendix 3) by 

recalling from equation (1.19) that K and C* are related through the material 

viscosity, ri

# 2  = 3%C*

This equation is derived from the behaviour of a creeping material under shear 

loading. Thouless, however, appears to have started from an equivalent expression 

for tensile loading as he uses the expression

= r\C* (4.34)

The factor of 3 difference is not significant in that it does not alter the underlying 

behaviour of the m aterial but to enable an accurate comparison of the two models 

we will use equation (4.34). It is shown in Appendix 3 that

4 = (f/Ayi tL35)
6 ti

and that equations (4.19) and (4.31) can be rewritten in the form used by Thouless 

et. al. allowing a direct comparison to be made between their results and ours. Our 

results and those due to Thouless et. al. are shown in Figure 4.3 for an 

unconstrained creep crack with an area fraction at failure, fg = 16 and a //A = 5. 

It can be seen that both results are of the same order and both predict a crack 

velocity proportional to Vz. However, these similarities apart, agreement between 

the results is not very close.
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The approximate void growth rate equation, equation (4.21), was used 

initially, in preference to the full equation used by Thouless, as it is a conveniently 

simple approximation; displaying the characteristics of the more accurate model but 

without possibly ‘uimecessary’ detail obscuring the physics underlying the result. 

However, it is clear that in this situation equation (4.21) does not work well. We 

can considerably improve the agreement by replacing equation (4.21) with the same 

form of growth law as the Thouless model uses and making the same approximation 

that the effects of sintering (which we shall investigate later), and any internal 

pressure are negligible. This results in a different expression for G(F).

G ( f )  = (4.36)

Using this expression, which we evaluate numerically, instead of equation (4.29), we 

obtain much better agreement between the results of the two different models, as 

shown by the shorter dashed lines in Figure 4.3, for the same values of 4  and l f \  

as before.

4.6 Interm ediate behaviour.

Above we have developed models of fully constrained and unconstrained 

crack growth. These are limiting forms of behaviour, and obviously as a crack 

grows its behaviour will not instantaneously change from one limit to the other. In 

reality there will be a transitional ‘partially constrained’ phase. It is this form of 

behaviour and its range of validity that we will consider in this section.

Consider an array of voids ahead of a crack tip that is opening at a rate S  ̂

(see Figure 4.4). Assume that the displacement rate within this zone is some 

function of position and of the displacement rate at the crack tip. ie.



Ô = à^G(x/R) (4.37)

T his assumption will be justified later, but for now, if we consider an element of the 

damage zone of length dx and unit width, the rate of increase of volume of the 

elem ent is

0L38)
d t

If the voids are equilibrium shaped, which we again approximate as spherical, then 

the total volume of all the voids, V, is simply the volume of a single void multiplied 

by the total number of voids.

3 Tzl?-

If we apply equation (4.22) to this situation we find that

#  = _ A _ (4.40)

Now

and so it follows that

d r  (4.41)
d t  d f  d t  2 d t

^  ^ (4.42)
d t  4X

Of course we may also write

dF  _ d ^  ^  
d t  dx  d t

(4.43)

By comparing equations (4.42) and (4.43) and remembering equation (4.26) we
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obtain the result that

d f  36 (4.44)
d x  4Xà

If we consider void growth by boundary controlled diffusion alone, we have, from 

Cocks and Ashby^” ^

(4.45)
In i l lF )

Before the analysis can continue we must first specify the displacement rate 

function G (x/R ); we can then integrate equation (4.45) between the given boundary 

conditions that

Euxi (8 a  = 0 0L47)

Consider a displacement rate field of the form

6 = 6 / 1 -x/f)"» (4.48)

W here m i s a  suitably chosen constant. Consideration of the first boundary 

condition, equation (4.46), gives

F  = f  + — (1-J)"'"i (4.49)
1 4Ad&M+l)

where x = x/R , and consideration of equation (4.47) gives

F  - f  = — —  (4.50)

Combining equations (4.49) and (4.50) gives the volume fraction at the

dimensionless position, x, within the damage zone as



F  = f  1 + (F g-fi) (1 (4.51)

If we now combine equations (4.45), (4.48), and (4.51) we can determine the stress 

field around the damage zone which would result in a displacement rate field of the 

form of equation (4.48)

1 ' CL52)
m+l

Consider again the displacement rate field given by equation (4.48). If we 

assume that displacement only occurs in the direction perpendicular to the plane 

of the damage zone then it is apparent that

li = Ô/2 (4.53)

At this stage of the analysis we still have two unknowns (â and in what 

is essentially one equation. However, (as in all the work presented here) we are 

assuming small scale damage (we will determine the validity of this assumption 

later). This assumption implies that the remote field is not influenced by the 

damage zone, and so by using the path independence o fC *  we can relate the 

conditions at the crack tip to those in the far field and in this way obtain an 

expression for the crack tip opening displacement rate, It is im portant to 

rem em ber that when determining C* in a damaging/damaged material we must 

ensure that the integral is evaluated outside of the damage zone as the integral is 

not path independent if the contour of integration crosses damaged m aterial (this 

is proved in Appendix 4). C* was defined in equation (1.16) as
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c* = Wdx, -  T — 4 ds 
dx^

(4.54)

Now because we are implicitly assuming a Dugdale type strip model the term  in dxg 

is zero and so by combining equations (4.48) and (4.54) and integrating around the 

outside of the damage zone we find

Substituting for the stress a from equation (4.52) gives

(4.55)

C* 8, OpfnA^ 
3X<î>oéo

(4.56)

where

d f (4.57)

A  plot of how Aq varies with Fg assuming F^ = 0 is given in Figure 4.5.

Now by combining equations (4.56) and (4.50) we arrive at an expression for 

the crack growth rate resulting from the prescribed displacement rate field. If we 

assume a linear variation of displacement rate with position, ie. m = 1, then

3R 3CU4)oèo (4.58)

or, in nondimensional form.

a = 3\/3
mXA.

R (4.59)

It is significant to note that using different values of the param eter m  does not
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change the functional form of this expression, it only affects the preceding constant.

Equation (4.59) is quite sensitive to the term  Fj - F ,̂ this is understandable 

as it represents the void growth that is required before the crack can advance by an 

am ount 2\.  The area fraction at nucléation, Fj, is likely to be small, therefore Fj - 

Fi is approximately equal to F2. At first sight it might be assumed that a value of 

F2 = 1, representing failure by void coalescence, would be reasonable. However, 

the model presented above ignores the possibility of localised necking in the 

ligament of m aterial between the voids which would, in most practical cases, result 

in an F2 value significantly less than unity.

By comparing equations (4.19), (4.31) and (4.59) we can see the way that the 

dependence of the creep crack growth rate on the damage zone size varies as the 

m aterial evolves varies from being initially constrained, through interm ediate linear 

behaviour to unconstrained behaviour, ie. in each of these regimes

Constrained d « f
(4.60)

linear d « (4-61)

^  -1 :7  0*62)
and unconstrained d « i?

It is interesting to note that the strength of the power law dependence of the crack 

growth rate on R  decreases by l / ( n + 1) at each step from constrained to linear to 

unconstrained. The values of R  and over which the three models are valid may 

be seen from Figures 4.6a and c. In these Figures n is taken as 1.0, implying = 

7t/3, and the volume fraction at nucléation is taken as zero. A  volume fraction at 

failure, F2, of 0.3 is assumed, which from Figures 4.2 and 4.5 gives G(F) = 0.308 

and Aq = 1.1. If R  is assumed to be on the limit of small scale damage then R
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1/207T. The value of A is determined as follows

From  equation (A3.10)

A 9 « -^L. ^L63)
X n a

^ =  ---------  (4.64)

If the damage zone is of a fixed size, say 10 grains, then R / /  = 10 and therefore

200% y 6 %({)(,

which means that the constrained model is a function of and the linear model 

is a  function of 0o^. We can see from Figure 4.6a, for the case of Fg = 0.3, that 

very high values of 0o> which means many voids, are required for the crack growth 

rate to approach the full constrained value and that the full solution for all practical 

values of 0o is unconstrained behaviour at low values of 0 , and linear behaviour for 

higher values. By equating equations (4.19), (4.31) and (4.59) we find that the 

transition from unconstrained to interm ediate behaviour occurs at 0o = 70 and from 

interm ediate to constrained behaviour at 0o = 5160; which represent l / \  values of 

about 11 and 46 respectively. Voids in ceramic materials often only occur at triple 

grain junctions which means that the void spacing is of the order of the grain size, 

ie. l / \  «  2. In metals, however, cavitated grain boundaries usually contain 

numerous voids which would indicate that the unconstrained model would tend 

better to describe the behaviour of ceramics while the interm ediate model would 

be more appropriate for metals.

W hen the steady state crack growth rate is plotted as a function of R  
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(Figure 4.6c) we can see that the full solution tends towards the unconstrained 

result with increasing damage zone size, a result that is in agreement with 

Thouless’s observation, as is the general tendency for the crack growth rate to 

increase with increasing 0o-

We can also see that both Figures 4.6a and c indicate that the interm ediate 

linear model gives a better bound to the crack growth rate for the chosen 

combination of parameters, listed above.

4.7 Validity of the interm ediate model.

The assumption in the preceding section that the displacement rate displays 

some form of variation through the damage zone would seem a natural one, if only 

for the fact that a constant rate, implying a uniform stress state, would seem 

unphysical. We can test the validity of our assumption of a displacement rate field 

of the form given in equation (4.48) by comparing it with the displacement rate 

field in the model of Thouless et. al. In Thouless’ model the form of the 

displacement rate field is not given explicitly, it is, however implied and can be

determined by back-calculating from the stress field, which is given. This is done

in Appendix 5 and it can be seen from Figure 4.7a that the displacement rate 

implied by Thouless’ constrained model for the case of //A = 20 can be well 

approximated by

6 = 1.4(l-%")07 (4.66)

and Figure 4.7b shows that for the case of //A = 5 a good approximation to the 

field is

Ô = 0 .7 (1 -f)2 3  (4.67)

As has already been dem onstrated //A is directly related to 0 q and so is also
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a measure of the degree of constraint in the damage zone. W e can see from 

Figures 4.7a and 4.7b that a reduction in the constraint from l / \  = 20 to l / \  = 5 

results in a change in the implied displacement field from the ‘convex’ field of 

equation (4.66) to the ‘concave’ field of equation (4.67). The obvious implication 

being that at some interm ediate value of //A the behaviour will be approximately 

linear and that the crack growth rate will be approximated by equation (4.59) with 

m  = 1.

Thus we can see that we have developed a model that when coupled with the 

constrained solution has general applicability. The choice of an appropriate m 

value together with the ability to specify 0o means that the two models can be used 

to describe creep crack growth over a wide range of combinations of R , 0o and Fg. 

The model also has significant advantages over Thouless’ in that the use of R  

means that the damage zone size is not prescribed and the model is not restricted 

to linear viscous behaviour.

4.8 Comparison of intermediate model with experimental results.

We will now compare the predictions of the interm ediate model with some 

experimental data from the literature.

Thouless et. al(^\ present some unpublished data due to Blumenthal on 

crack growth in alumina; these data are reproduced in Figure 4.8. Using the 

m aterial properties specified by Thouless we can plot equation (4.59) on these data. 

From  this we can see that this equation is a good fit to the data, if we assume a 

damage zone size of 4.5xl0 '̂ m. This value of R  seems reasonable, though it would 

be unwise to read too much into this result as the exact value of R  is unknown. In 

section 4.12 we argue that the damage zone size is not a m aterial property like 

Young’s modulus, fixed and independent of loading and geometry, we believe it to
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be a variable param ter whose size is dictated by these very factors.

4.9 Presentation of crack growth models on creep crack growth map.

W e will now demonstrate how the creep crack growth maps developed in the 

previous chapter may be used to determine the range of validity of the creep crack 

growth models developed earlier. Initially we will consider growth within that 

region of the creep crack growth map where C* is the controlling param eter. We 

will then consider the K controlled limit and demonstrate that, even though they 

were derived explicitly using C*, the models presented earlier may be easily 

modified for the case of K control. It will then be dem onstrated that the map may 

be used to determine the range of applicability of the model in the K controlled 

limit.

C* controlled growth.

If we first consider growth entirely within the region of C* control and if we 

continue with our assumption of a displacement rate field of the form

Ô = 6 ,(1 -% /R r (4.68)

then it was shown in equation (4.55) that C* could be written in simplified form as

C* = m dx  (4.69)

Assuming for simplicity a linear variation of displacement rate through the damage 

zone, ie. m  = 1, we arrived at the result that

(4.70)
m - r , )  I / I . ,
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ie. d = Cl a  0* 71)

If we assume that = 6.28x10^ and R  = 1/207T we can plot equation (4.71) on the 

map of Figure 4.9. The above mentioned normalising values are entirely contrived 

and are not m eant to represent a specific real material, they have been chosen 

solely to dem onstrate how the model can be represented on the map. In this 

instance we see that the model is valid for normalised reference stresses less than 

about 7x10'^.

K  controlled growth.

If we now consider creep crack growth wholly within the region of K  control 

then by analogy to equation (4.69) we can see that J may be given by

J 6 ,f 'o  dx  (4.72)
VO

If we apply the same principle as used to determine the above result for the C* 

limit, ie. maldng use of the path independence of, in this instance, the J integral we 

can equate equation (4.72) which determines J at the crack to its far field plane 

strain value, given by

J  = E l A h f l  (4.73)
E

As usual the term  (1-v^) is deleted for plane stress.

Now it is clear from the derivations of equations (4.19), (4.31) and (4.59) that 

the stress field ahead of the crack is modified by the presence of damage, which is 

itself a  function of position within the damage zone. We may express this in a very 

general way as
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^  /(ô ) (4.74)

W here Ùq is a characteristic displacement rate. The displacement rate 

perpendicular to the damage zone, ù, on either side of the zone is, of course.

M = 6/2 = (4 75)

Combining equations (4.72), (4.74) and (4.75) we find

J  = E f ( b ) ( \ - x ) d x  (4.76)
2 tin .'O

The crack tip opening displacement rate, 6,, is not generally a known quantity or 

easily measured. It can however, be expressed in terms of the crack tip opening 

displacement, Ŝ , which can be measured. We can see from equation (4.75) that

= - i t  (4.77)
dx 2R

If the crack grows at a constant rate then the critical crack tip opening 

displacement, is simply

Ô, = r ^ 6 d f
' Jo

where t^ is the time for an element to traverse the damage zone. Recalling that

d t

we see that
8 = M  (4.80)

' 2d
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If we now combine equations (4.71) and (4.80) we find

J  = f ^ / ( ô ) ( l - x ) d x  (4.81)
UqR Jo

Equating this result with equation (4.73) we see that

d « (4 8G9

Recalling equation (2.18)

leads to the final result that

= a l x  (4.83)

*— f? —

d = 0^84)

If we assume this time that C; = 2.61, that R  = 1/20%; ù = 100 and 5̂  = 5x10'^ 

we can also plot equation (4.84) on the map of Figure 4.9. As before these figures 

are not representative of a  specific real material, they merely serve to illustrate the 

way in which the map may be used to determine the range of validity of equation 

(4.84), which we can see would be valid for normalised crack velocities greater than 

about 10’. Thus By comparing the positions of equations (4.71) and (4.84) on 

Figure 4.9 we can readily see the range of validity of each of the models. We can 

see that at high stresses the K controlled model of equation (4.84) is appropriate 

but at lower stresses the rate of creep is too high and equation (4.71) gives a  better 

description of component response.

We may extend this consideration of the K controlled regime by considering 

the unconstrained limit in which the stress field is given by the K field. The elastic 

stress field is given by
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K,
'22On. = (4.85)

\J l ‘KX

If we combine this stress field with equations (4.23) and (4.24) we obtain the result

_ ^ 3 * 0 # :  (4.86)

G(F)

which is the same as equation (4.31) for n =1 as the creep and elastic stress fields 

are identical for the linear viscous case.

4.10 Small scale damage.

We will now consider the range of validity of the assumption of small scale 

damage, an assumption implicit in all the work in this thesis.

From  a consideration of the change in the surface energy of a void with 

principal radii r  ̂ and r; one can determine that the excess chemical potential. A/i, 

of an atom of volume n, on the surface of the void, is given by

Ap = - y q [— + —] (4.87)

where 7  is the surface energy. W hen r̂  = r  ̂ 00, A/i = 0, therefore atoms on the

surface of a void are at a lower potential than an atom on a flat surface. M atter

always tends towards as low a potential as possible and so, if the tem perature is 

sufficiently high, atoms will diffuse from a flat surface, or other region of higher 

potential, down the potential gradient, into the void. This influx of m aterial into 

the void must result in a decrease in the volume of the void and therefore a 

reduction in r̂  and r .̂ This means that the potential of the void drops even further 

increasing the rate of diffusion which is proportional to the potential gradient. The 

end result of this is that eventually the void ‘fills up' and vanishes. This
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phenom enon is commonly called sintering. From  a consideration of this process it 

is easy to see that once nucleated, and provided that the tem perature is high 

enough, a void will begin immediately to sinter away. Thus void growth can only 

occur by diffusion if a tensile stress across the void (which for analytic tractability 

we will assume to be spherical with r i= r 2 =r) exceeds the capillarity (or sintering) 

stress, given by

(4.88)

causing the potential on the grain boundary to drop below -2yn/r. It also follows 

from this that for a given stress voids can only grow if their radius on nucléation 

(and therefore their area fraction) exceeds a critical value, ie. 2-y/a.

The H R R  stress field was defined in equation (3.3) as

8 4 ,(8 )

where, for a plane strain crack, the stress directly ahead of the crack is given by 

recalling equation (4.32)

n - l r  %
 ̂ /3  I » ;  yg

This means that equation (4.89) can be rewritten in the form

(4.90)

" 2 2

On
% \~l

lêoOoX
n - l \  % (4.91)

Now, of course, the product egOoX is approximately equal to C*, and if we recall 

equation (3.4)
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(4.92)

and that x is approximately equal to %a, we see that equation (4.91) reduces to

 ̂ n+1
(4.93)

^ 3  I M / v5.

Now at the far edge of the damage zone where r = R, Uz; is equal to the capillarity 

stress at nucléation, which is related to the area fraction of the nucleated void, 

/i> by

(4.94)

For the condition of small scale damage to be met we require R  < a. If we assume 

as before that the limit of small scale damage is given by a = 20R we can 

determine the reference stress, below which the damage will be small scale, as

G(») (4.95)

where G(n) is a dimensionless function of n given by

G( n )  = f—
(n+1 ; t/3

n - l Y  % (4.96)

This function G(n) is quite insensitive to the value of n, and y and I can be 

measured, the only term about which there is some uncertainty is and the result 

is not particularly sensitive to this term  either, by virtue of the V2 power in equation

(4.95). We can obtain a feel for the magnitude of this limiting stress below which 

damage is small scale by inserting the appropriate data for alumina in equation

(4.95). For this m aterial n is approximately and y = 2 N m '\ If we assume one
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void per grain then I is typically about 3xl0'*m^“ ;̂ taking = 1 0 '̂  gives a limiting 

stress of 77Nmm'^. Cannon and Langdon '̂*^ have reviewed the literature on the 

creep testing of alumina and this level of stress would appear to be, broadly 

speaking, in the middle of the range commonly used for this material.

This would indicate that over a practically useful range of stresses the 

assumption of small scale damage is reasonable.

4.11 The effect of the capillarity stress.

The approximate void growth law of equation (4.21),

^   ̂ 27t£>^ô^oü(l-/) 
d t

/cTlnli (4.97)

does not include the effect of the capillarity stress mentioned earlier. The full 

equation(^)

^  ^ 2% D ^5^Q (1-/) 
d t  ~ k T

Inl —
if)

(4.98)

does include this effect but its relative magnitude and hence its importance is not 

obvious.

The capillarity stress (ie. sintering) has been specifically neglected in the 

creep crack growth models developed so far in this thesis. In this section we will 

investigate the validity of this assumption by evaluating the change in the magnitude 

of C*, determined by integration around the outside of the damage zone, when the 

effect of the capillarity stress is first ignored and then included. Assuming again a 

displacement rate field of the form
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ô = 6,(1-%/#)'" (4.99)

we found that C* was given by equation (4.55) as

C  = M 6,j^'o (1 - f  (ff (4.100)

and a can be obtained from equation (4.52) as

,  = W h i r  ta f  1-------------- 1 (4.101)
3I1<I>0*0 ( f , + ( f 2 - f ; ) ( l - r ) " "

and therefore

C* = f ‘ ( l -J )2 - l  Inf----------- !----------- L f  (4.102)
31'-4'o^o fP ,+ (P j-F ,) ( l- r )" * ‘ j

If we now consider the effect of sintering we can see that as the capillarity stress 

tries to ‘close up’ the damage zone the stress required to produce the displacement 

rate field of equation (4.99) is simply the stress, given by equation (4.101), plus the 

capillarity stress, ie. o + 2y/x (assuming spherical voids). The void radius and the 

volume fraction are related by

r = (4.103)

and the volume fraction, which is itself, of course, a function of position, was given 

by equation (4.51) as

F  = Fj + (F^-F^) (1 -F)"'+^ (4.104)

To simplify the analysis we shall assume that the area fraction at nucléation, = 

0; that at failure F^ = 1 and that m =1. Therefore the capillarity stress as a 

function of position within the damage zone is given by
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and so C* is now equal to that given by equation (4.102) plus the additional term  

AC^ given by

AC- = .  î l i l  (4.106)
A Jo 7 A

Bearing in mind the simplifying assumptions made above, C* can now be written 

as

C- .  I nf — (4. 107)

Obviously AC* has a finite value and so (rigorously) cannot be neglected. However 

if AC*/C* is small then sintering may be neglected without significantly affecting 

the equivalence of the near and far field values of C*.

A C - 3 6 Y * / ,

Now from equation (4.80)

7B,«o

5 = 0L1O9)

Taking a limiting value of AC*/C* < 0.1 we find that the capillarity stress may be 

neglected provided that

^ - L  (4.110)
7 a,Go à 10

As in the previous section a feel for the size of this term, and hence whether it is 

reasonable to neglect sintering, can be obtained by inserting appropriate values in
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this expression. Considering alumina again, y -  2Nm'^ and a value of CTq of 10®Nm'  ̂

seems reasonable. If the m aterial is on the limit of small scale damage then R  = 

1/20% and we can see from the creep crack growth map of Figure 3.10 that a value 

of I  of 1 0 “ is reasonable for alumina. Thouless’ model^^) described earlier considers 

a degree of constraint represented by //A = 20, it can be seen from equation 

(A3.10) that this is equivalent to a 0 „ value of 424. This just leaves the crack tip 

opening displacement 6 ,̂ for which Blumenthal and Evanŝ ®®̂  indicate that a 

reasonable minimum value is of the order of 5pm. Inserting these values in 

equation (4.110) gives a value of 0.07 ie. ignoring the effect of sintering results in 

a difference between C* in the far field and C* determined at the crack tip of 7%. 

This is less than 10% which indicates that for this combination of properties the 

effect of sintering may reasonably be neglected. One can also see howeverYhat 

halving the stress may result in the effect of sintering becoming too large to ignore. 

This is what one would intuitively expect although the exact effect will of course 

depend on the relationship between CTo and the other terms.

4.12 Critical strain accumulation as a criterion for void nucléation.

As was mentioned in Chapter one there is experimental evidence^®’̂ '*) that 

up to 90% of the failure time of creep specimens is time required for voids to 

nucleate and that voids may only nucleate in an element of m aterial after that 

elem ent has undergone a critical plastic strain.

By considering a simple model of this process we can use this requirem ent 

for a critical plastic strain for void nucléation to determine the damage zone size. 

We can then combine this result with those of the void growth models, described 

earlier, to determine the relationship between the void growth rate and the loading 

param eter ie. C*.
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As a creep crack grows into a m aterial the stress system acting on any 

elem ent of that material, a distance x from the crack tip, changes. If we continue 

to take the crack tip as our reference point we can consider the element as moving 

towards the crack tip and if the damage zone is small we can reasonably assume 

steady state conditions and take both the crack velocity, â, and C* as being 

constant.

Cocks and Ashby^’®̂ have dem onstrated that the strain rate, ê, at distance x 

from a crack tip in a creeping solid is given by

e =
_L

I ^ J
è ( 8 ) (4.111)

Noting that for a plane stress crack è(6) has a maximum value of unity when 9 = 

0  we may write

é = (4.112)

If we denote the distance from the crack tip at which creep strains become 

appreciable, by then

X = R ^ - d t  (4.113)

where t is the time taken for the element of material to ‘move’ from R  ̂to the point 

X from the crack tip. Remembering that we are assuming C* and â to be constant 

we can see that

*  = B C - "  (R ,- d t y p ' d t  (4.114)

where the and e„ are the accumulated strains at R, and at nucléation 

respectively. Integrating, we find that
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-  - ■ /  (r : - r

W e are now left with the problem  of deciding at what distance from the crack tip 

the creep strain becomes appreciable. From  equation (4.112) ê = 0  at x = «3; 

however, integrating up from x = «> to a finite value gives an infinite strain at that 

point. Clearly this is not the case and in fact equation (4.112) is only an 

approximate solution and there will, in practice, be a finite value at which = 0 .

For larger values of n, becomes relatively insensitive to the precise

value of Rg. Therefore if we arbitrarily choose a value for R, (unity, say) we can 

obtain a result which, though not exact, displays the main features of the true 

solution. Of course, by definition, = 0, and so we may write

(4.116)

From  this we can see that if the nucléation strain is small then R  -*■ 1 (ie. R  -> R J  

and consequently cavitation is extensive, occurring over a much larger ‘area’ than 

strain accumulation leading to nucléation. Void growth is then the rate controlling 

mechanism. Conversely, if the nucléation strain is large then R  -+ 0 and there is 

only limited cavitation. Void growth therefore only occurs over a very small 

distance and consequently nucléation is the rate controlling mechanism.

For the case of nucléation controlling the crack growth we may rearrange 

equation (4.116) to find
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1
a  = M £ L ( i _ R Ï )  (4.117)

%

Now in the steady state this crack growth rate must be equal to that predicted by 

the void growth models, so if we equate this expression to that predicted by the 

model of equation (4.58) we find, in the linear viscous case

1
. ( l - # 2 )  = a RC*^ (4.118)

ie. + b x - b  = 0 (4.119)

where x -  R^ and ^ ~ (4.120)
Ae„

Solving equation (4.119) leads to the result that

(4.121)
4 2

from which we can see that if b is large, ie. if the nucléation strain is small then R  

-4- 1 (that is R  -> Rg) and consequently cavitation is extensive, taking place over a 

much larger ‘area’ than that taken for the strain to accumulate. Void growth is then 

the rate controlling mechanism. Conversely, if b is small then R  -»■ b and there is 

only limited cavitation. Void growth and coalescence takes place within a small 

region and nucléation is the rate controlling process. Now

B =
2 %  O q

and from equation (4.58), assuming is small
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therefore
sygiF e , |^3<|)oj

(4.123)

Consider the form of equation (4.124). As discussed earlier the volume 

fraction at failure, F2, is likely to have a rather small range in most practical 

materials. W hen this is combined with the fact that Aq increases as F 2 decreases 

(see Figure 4.5) it is apparent that the size of the void at failure has limited 

influence on the rate controlling mechanism.

Typical values for a ceramic m aterial may be F2 = 0.3, giving Aq »  1.0; 1 = 

10 ® and //A = 2 (.-. from equation (A3.10) 0o = 0.424). Inserting these values into 

equation (4.124) gives b = 0.0013/e„. A  nucléation strain of 0.1%, gives R  = 0.4, 

which means that void growth occurs over 40% of R, and nucléation over the 

remaining 60% and neither mechanism dominates.

Metals however usually have many cavities per grain boundary. If we 

therefore consider a m etal which has the same values as above, except that l / \  = 

20, say, we find R  = 0.002. This implies that growth occurs over a very small 

region and that nucléation is the rate controlling mechanism, a result in qualitative 

agreement with the experiments of Goods and and Dyson^^"  ̂mentioned above

and described in Chapter one.

In the limiting case of linear viscosity described above the damage zone size, 

R, is independent of the loading characterised by C*. However, it is clear that this 

is not the case for all values of n as the crack growth rate based on the nucléation 

criterion is itself a function of n  (through C* to a variable power of n) while the
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crack propagation rate based on void growth is independent of n (in the model 

considered here). Thus in order for ‘continuity’ of growth rate the damage zone is 

‘forced’ to a size that is a function of the loading, and is not therefore, as implied 

in some models, a material property that may be prescribed regardless of the 

loading conditions.

4.13 Summaiy.

In this Chapter we have developed models for the limiting cases of fully 

constrained and unconstrained crack growth. However as a crack grows it cannot 

instantaneously switch from one form of behaviour to the other. To model the 

behaviour during the transition we prescribe a displacement field ahead of the crack 

and from this determine the stress field and hence the crack growth rate. This 

model assumes conditions of small scale damage and neglects sintering: the validity 

of both these approximations is demonstrated. The partially constrained model is 

compared with a model due to Thouless et. al.(®®̂ and it is shown that if similar void 

growth laws are used the models give similar results. The model presented here has 

the advantage over Thouless’ model, however, that it is more general; not being 

limited solely to linear viscous materials.

The crack growth rate from the intermediate model is combined with that 

based on a criterion of a critical strain for void nucléation. From  this the regions 

of dominance of void growth and cavity nucléation are determined in a semi- 

quantitative manner. It is dem onstrated that the size of the damage zone is a 

function of the applied loading and not a m aterial property.
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Figure 4.1. A  damage zone of length R  containing an array of voids, an average 
distance 2 \  apart, is modeled by considering it to comprise several basic units of 
plan area 4Â . A t any instant in time the thickness perpendicular to the plane of 
the damage zone is <S. 5 is a function of position within the damage zone, x, and 
the increase in volume of the unit as it ‘moves’ towards the crack tip is entirely 
accommodated by an increase in volume of the void.
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Figure 4.2. A plot of how the function G(F) varies with the volume fraction at 
failure, Fj, assuming a volume fraction at nucléation, F̂  of 0.
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Figure 4.3a. Plots of normalised crack growth rate as a function of the damage 
zone size for two different values of the area fraction at failure, f̂  = 0.1 and 0.25 
(after Thouless et. al.̂ ^̂ ). In both plots l /X is taken as 20. The solid line is the 
result due to Thouless; the longer dashed line is equation (4.31) with G(F) given 
by equation (4.29); the short dashed line is with G(F) given by equation (4.36). In 
Thouless’ normalisation î  = pâ/Ky/
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Figure 4.3b. Plots of normalised crack growth rate as a function of the damage 
zone size for f̂  = 0.5 and 0.99. The longer dashed line is equation (4.31) with G(F) 
given by equation (4.29) and the shorter dashed line is with G(F) given by equation 
(4.36). By comparing this Figure with Figure 4.3a we can see that equation (4.29) 
is a reasonable approximation for small f̂  but as ^ increases it becomes less 
accurate until when f̂  = 0.99 equation (4.29) does not even appear on the graph. 
On the other hand, equation (4.36) remains a close fit for all values.
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dx

Figure 4.4, Void growth within a damage zone of length R  is considered to occur 
so as to result in a linear variation of displacement rate through the damage zone. 
This process is modelled by considering the behaviour of a thin slice through the 
zone of unit width containing an arbitrary number of voids of m ean separation 2A. 
A t any instant in time the thickness of this slice perpendicular to the plane of the 
damage zone is S. The increase in volume of the unit as it ‘moves’ towards the 
crack tip is entirely as a result of the increase in volume of the void.
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Figure 4.5. A plot of how the function Ag varies with the volume fraction at 
failure, Fj, assuming a volume fraction at nucléation, of zero.
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Figure 4.6a. Steady state crack growth rate as a function of 0 q assuming R = 
1/20# and F; = 0.3. Note that very high values of 0o are required for the crack 
growth rate to approach the full constrained value and that the full solution for all 
practical values is the unconstrained model at low 0„ and the linear model for 
higher values.
Figure4.6b. As Figure 4.6a but with F; = 0.8. Note that as the area fraction at 
failure, F;, increases the range of 0q over which the linear model is applicable 
decreases.
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Figure 4.6c. A plot of how the crack growth rate increases with increasing damage 
zone size for F; = 0.3. Note that as R increases the crack growth rate approaches 
the unconstrained limit, a result in agreement with Thouless’ model.
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Figure 4.7a. Displacement rate fields ahead of a growing crack. The solid line 
represents the displacement rate implied by Thouless’ model for the case of //X = 
20, a damage zone of 10 grains and an area fraction at failure of 0.5. This result 
is well approximated by the partially constrained model with the variables defined 
in equation (4.66).

0.7

s
0.6

-Thouless et. al.
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Equation (4.67)
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Figure 4.7b. The solid line is the displacement rate implied by Thouless’ model for 
//X = 5 , ie. a lesser degree of constrained. Again the damage zone is of 10 grains 
and the area fraction at failure is 0.5 This can also be well approximated by the 
partially constrained model, with the variables defined in equation (4.67).
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Figure 4.8 Crack growth data from Thouless et. at^t for alumina. The solid 
line represents equation (4.59), with the following parameters specified by Thouless: 
I = l.SxlO'^m, Fj = 0.125, l / \  = 5. The following values have been shown to be 
applicable earlier: m = 2.3 (equation 4.67)), Â , = 1.5 (Figure 4.5). We assume R 
= 4.5xl0"*m.

eqn, (4,84)

- 3

eqn, (4,71)

- 4

Figure 4.9. A creep crack growth map, assuming n = 9, showing the range of 
validity of crack growth models developed earlier for growth controlled by C* 
(equation (4.71)) and K (equation (4.84)).
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CHAPTER FIVE; EXPERIMENTAL WORK

5.1 Introduction.

Before one can safely design with a new material one requires a sufficiently 

large database of the m aterial’s behaviour to enable reliable predictions to be made 

about a components in-service behaviour. The two basic testing techniques for 

obtaining such data when the m aterial is tested within the creep range are flexural 

testing (whether 3-point or 4-point) and uniaxial tensile testing. Bi-axial, tri-axial, 

compression and pure shear tests are also carried out, but are less common.

Tensile testing can itself be subdivided into constant load testing which is the 

more common form and constant stress testing which typically assumes that the 

volume of the m aterial does not change as it creeps and uses profiled weight 

hangers so that as the specimen creeps the lever arm shortens, reducing the load 

in proportion to the reduced cross-section.

The relevant British Standard for the tensile testing of metals is BS3500 

(1969) "British Standard Methods for Creep and Rupture Testing of Metals"^®®\ In 

this Standard advice is given on the selection and preparation of test pieces, and 

amongst other things the dimensions of notched test pieces are prescribed as are 

parallelism and specimen and load train co-axiality tolerances. However, as is 

apparent from its title, this standard was written specifically with the testing of 

metals in mind and there is no comparable standard for the testing of ceramic 

materials.

The main problem  with tensile testing in the creep range is that the load 

train is also in tension and so the maximum operating tem perature of the test rig 

is usually restricted to that of the load train. As ceramic grips to hold the specimen 

are, at the present time an impractical proposition, high tem perature alloys are



generally used but this still means that maximum possible test tem peratures are 

inevitably lowered, sometimes quite significantly. One way around this problem, 

which makes use of the unusual property of ceramics that, unlike metals, their 

therm al conductivity drops as they get hotter, is to use long specimens thereby 

removing the grips and the load train from the hot zone. Unfortunately this 

inevitably results in a variation of tem perature along the specimen, and as, 

generally, the creep strain rate varies according to

è « (5-1)

the creep rate then varies over the specimen’s length which makes extracting the 

raw data difficult.

With flexural testing the whole of the specimen is at essentially the same 

tem perature and as the load train is in compression those particular problems 

associated with tensile testing are removed. Flexural testing does however have one 

major drawback; as materials creep at different rates in tension and compression 

the stress distribution in a flexural specimen is statically indeterminate. One 

possible way around this problem  would be to test an ‘I beam ’ type section. If the 

flanges were thin then the stress in them  could be assumed sensibly constant. 

However in order to limit the possibility of creep buckling the flanges would 

probably have to be sufficiently thick for the approximation of uniform stress to 

become unacceptably inaccurate.

A nother drawback with flexural testing is that in creep ductile materials the 

geometry of the test can change appreciably with time which means that the stress 

distribution has the added complication of being time dependent as well.

To overcome these drawbacks, methods of analyses^®®'have been developed
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which enable tensile behaviour to be determined from flexural test data. These 

techniques assume that for a given m aterial tested at the same stress in tension and 

compression that the ratio of tensile to compressive creep rate is constant. This 

assumption is also implied in the use of the reference stress technique and in this 

Chapter we extend the application of this technique to ceramic materials.

5.2 Definitions.

The Concise Oxford Dictionary^“ “̂ defines a ceramic as a substance "made of (esp.) 

clay and permanently hardened by heat" and the term itself comes from the G reek 

word Kepaixoç - Keramos, which means potter’s clay.

It is, however, difficult to give a precise definition which allows a distinction 

to be made between for example, porcelain and the engineering ceramics which are 

the subject of this work. Therefore, instead of saying what constitutes an 

engineering ceramic, we will say what it is not. An engineering ceramic does not 

derive from clay. Unfortunately this contradicts the definition of a ceramic given 

above. To get around this we will offer a second definition encompassing both clay 

based and engineering ceramics, viz: Ceramics are non metallic inorganic solids.

5.3 Early uses of ceramics.

The rheological properties of clay are well known; if a vessel is thrown and 

allowed to dry most of the water is lost and the clay hardens. Below about 400°C 

this process is reversible; place the vessel in water and it collapses back to its 

original fluid state. Above this tem perature the water that is lost from the clay 

cannot be replaced; immersing the article has no effect as the clay has permanently 

hardened to become an example of the earliest form of man m ade ceramic, pottery.

Ceramic materials, in the form of pottery, have been used by man for at least 

9000 years, originally and primarily for more robust solid objects like loom weights



and net sinlcers, and later and more commonly for drinldng and storage vessels; 

their disadvantage of being extremely brittle being outweighed by their ease of 

replaceability. About 6000 years ago, in what is now Iraq, sand and straw was first 

added to clay to produce building bricks, and even today in some countries with low 

humidity mudbrick (also known as adobe) is still a widely used building material.

5.4 Uses and properties of engineering ceramics.

Despite developments in their manufacturing processes and refinements to raw 

materials, the principal uses of ceramics ie. pottery in its widest sense, and as a 

building material, did not change until the end of the last century when in 1891 an 

American, Edward Acheson, in an attem pt to manufacture synthetic diamonds 

invented silicon carbide, the first of the so called engineering (or fine) ceramics.

Until the discovery of boron carbide in 1929 silicon carbide was, after 

diamond, the hardest m aterial known and was used mainly as an abrasive, being 

better Icnown by one of its trade names - Carborundum. Natural ceramics have also 

been widely used as abrasives for hundreds of years. Flint (a form of quartz) is the 

sand in sandpaper and emery (aluminium oxide in an iron oxide matrix) is so well 

loiown that its name has become synonymous with abrasives. Corundum 

(aluminium oxide) is used as a polish and diamonds are used in specialist grinding 

and polishing applications.

Typically, all ceramics demonstrate a combination of hardness, strength at 

high temperature, a high elastic modulus, chemical inertness and low density. 

Table 1.1 lists mechanical and therm al properties of some common engineering 

ceramics.
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5.5 Designing with room tem perature ceramics.

The typical properties of ceramics listed in section 5.4 would suggest 

numerous potential uses. Unfortunately, ceramics have two further characteristics 

which at present make them  difficult to design with. Firstly, as has already been 

mentioned, they are very brittle. This is not a particular drawback with traditional 

ceramics as these materials are relatively cheap and easy to replace; however this

Material
Hot

Pressed
Si,N,

Reaction
Bonded

SI3N4
Sintered

SiaN,

Hot
Pressed

Sic

Reaction
Bonded

Sic
Sintered

Sic

Density, kgm'^ 3300 2400 3200 3300 3100 3200

Young’s 
Modulus, GNm'^

290 200 290 430 413 390

Yield stress, 
MNm'^

8000 8000 8000 10,000 8000 8000

RT Flexural 
strength, MNm'^

830 295 800 550 390 490

600 °C Flexural 
strength, MNm'^

805 295 725 520 390 490

Thermal
expansion
coefficient,

lO-fiR-i

2.7 3.1 3.1 4.6 4.3 4.2

RT Thermal 
conductivity, 

Wm'hC‘

29 10 33 80 225 71

600 °C Thermal 
Conductivity, 

W m hU

22 10 18 51 70 48

Table 5.1. Typical mechanical and therm al properties for common engineering 
ceramics.

is not the case with engineering ceramics.

Even though they have m oderate to low coefficients of therm al expansion 

their extreme brittleness means that they are susceptible to failure due to therm al
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shock. This brittleness also manifests itself in a very low strain to failure which in 

turn means that their short term  stress strain relationship is linear from zero stress 

to failure. A t first glance this linearity may appear advantageous but in practice the 

lack of any appreciable plastic deformation means that a more complex design 

m ethod is required to avoid stress concentrations being built into the component.

Secondly the strength data of ceramics always exhibit a wide scatter resulting 

from the numerous random  flaws introduced into the m aterial of the test piece 

during fabrication. From  this combination of inherent brittleness and variability it 

is easy to see that the key to designing with ceramics is designing for reliability.

The reliability of a component is the likelihood that it will not fail within its 

design life when operating under its design loading. Reliability prediction for brittle 

materials was largely a mixture of empiricism and guesswork until 1939 when 

Weibulh“ ^̂ demonstrated that probability theory held the answer.

Weibull argued that just as a chain breaks when one link fails, a ceramic 

component will fail if one of its elements fails. He extrapolated this analogy to 

produce the elegant yet simple result that the reliability, R  (one minus the 

probability of failure), of a brittle component of unit volume is given by

R  = exp (5.2)

where is the maximum principal tensile stress acting on an element of m aterial 

of volume dV; Cq is a normalising stress; V is the total volume of m aterial and the 

W eibull modulus, m, is a m aterial property. Materials with a high modulus 

dem onstrate less scatter and are therefore more reliable. Though more

sophisticated expressions for reliability prediction have been developed, WeibulFs
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original equation is still widely used in practice.

5.6 Designing with High Tem perature Ceramics.

Despite their many useful low tem perature applications, it is to the designer of high 

tem perature components that engineering ceramics appeal the most.

The theoretical maximum efficiency, r) , of all high tem perature engines is 

limited by the ratio of the absolute ambient temperature, T^, to the tem perature at 

which their exhaust is discharged. Te, ie.

T) = 1 - ^ ^  (5-3)

The high tem perature components of modern gas turbines are traditionally 

made of nickel based alloys like Nimonic 80A and they have a maximum 

sustainable operating tem perature of the order of 1400°C. Assuming the ideal case 

that this engine operated adiabatically then it would have an efficiency of 82%. 

Engineering ceramics offer the possibility of higher operating tem peratures and 

therefore higher efficiencies. However it is easy to see that to achieve only a 

modest increase in efficiency say from 85% to 90% would require a large increase 

in Tg from 2000K to 3000K. Obviously engines do not operate adiabatically and 

these levels of efficiency are never achieved in practice. The point remains, 

however, that in terms of efficiency these engines are already operating well within 

the region of diminishing returns and there is not much to be gained by trying to 

increase their operating temperatures. The specific power output on the other 

hand, that is the power output per unit of consumed fuel, is proportional to T^ so 

from this point of view there is potentially much to be gained by running these 

engines at higher temperatures. However gas turbines already run at tem peratures 

at which the nickel alloys used for their blades have almost zero operating life, this
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only being possible by clever design in which air is forced out through holes at the 

root to flow over the blade and cool it. The obvious answer to this problem  is to 

change the material and use one with a higher sustainable operating temperature. 

Putting this into practice is proving rather difficult. However two classes of 

components that are beginning to be effected by developments in ceramic 

technology include gas turbines; the other being the diesel engine.

An uncooled adiabatic diesel engine is a real possibility due to the ability of 

ceramics to withstand high tem peratures without cooling. Such an engine has been 

produced and installed in a five ton truck which has done over 10,000 miles with 

a 50% increase in fuel efficiency^“ ^\

The four most critical components in a gas turbine are the stators, rotor, 

regenerator and the housing. The housing must operate uncooled at tem peratures 

greater than 1000°C; the chosen m aterial must have low coefficients of therm al 

expansion and conductivity.

A  regenerator uses energy from the exhaust gasses to increase fuel efficiency. 

It does this by heating and compressing the air which flows to the combustion 

chamber which then requires less fuel to raise the tem perature of the pre-heated 

air for expansion through the turbine. Suitable materials for a regenerator must 

also have a low coefficient of therm al expansion and must be resistant to chemical 

attack from the hot exhaust gasses.

Rotors and stators are the most complex components in  a turbine and they 

operate at the highest temperatures. As operating speeds of 80,000 r.p.m. are 

common they are also the most highly stressed components. As yet the reliability 

and durability problems associated with these components have not been solved. 

It is true that ceramic turbocharger rotors have been used for a number of years.
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however the operating speeds of these devices are nowhere near those commonly 

used in gas turbines, nor are the temperatures as high. Ceramic rotors are used in 

this situation to reduce turbocharger lag by virtue of the low density of these 

materials.

5.7 Experimental objective.

In high tem perature materials tests, specimens of known dimensions are 

subjected to either tensile or flexural loading over a range of different stresses and 

tem perature levels with the aim of determining particular m aterial properties such 

as the creep exponent or an activation energy for a particular mechanism.

However, high tem perature structural components are rarely as simple as 

plain tensile or flexural specimens and it was thus the aim of our experimental 

programme to develop an understanding of the way in which a component’s 

geometry affects its high tem perature behaviour. To that end we decided to 

investigate the behaviour of specimens containing two similar notches of known 

dimensions. The object was to compare the behaviour of these notched specimens 

with that of similar specimens without notches, with the aim of determining whether 

there was any evidence of a transition at any point from failure due to a net section 

stress effect characterised by widespread continuum damage to failure due to the 

growth of a dominant crack (creep crack growth). The reason for having two 

notches was so that after the specimen had failed, which it was assumed would not 

occur simultaneously at both notches, the failure surface and a section through the 

‘unfailed’ notch could both be examined.

5.8 Material selection and preparation.

As has already been mentioned creep crack growth occurs in an incremental 

m anner due to the growth and coalescence of microvoids ahead of a crack tip. In
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fully dense m aterial these voids may take a considerable proportion of the failure 

time to nucleate. Given that only one test rig (to be described later) was available 

and that creep tests, by their very nature take a long time, it was decided to test a 

material with pre-existing Voids’. There are many porous ceramics available and 

whilst connected porosity is usually on a larger scale than the voids we have been 

considering up to this point, there is no fundamental difference with regard to the 

applicability of the diffusive cavity growth models described earlier.

The decision of which particular material to use in the tests was effectively 

made for us when T&N Technology of Rugby, England offered to provide free 

reaction bonded silicon nitride (RBSN) specimens.

Silicon nitride exists in two crystallographic forms; alpha and beta, with alpha 

being the low tem perature form. Above approximately 1450°C the alpha phase 

transforms irreversibly to the beta phase.

A  number of different techniques exist for the preparation of silicon nitride. 

The most common being the direct nitridation of silicon according to the reaction

(54)

By nitriding below approximately 1450°C a coarse, grey, predominantly alpha phase 

powder is produced.

Alternatively fine silicon dioxide powder will react with carbon and nitrogen 

to produce silicon nitride according to

+ 3C  + 2^2 -  (5.5)

The excess carbon which inevitably remains is then removed by oxidising in air. 

Once produced the powders are milled to reduce them to the required particle size. 

A  reaction bonded silicon nitride component is produced by direct nitridation
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of a green compact of pure silicon, which produces a structure with a connected 

porosity of typically 20-25%, see Plates 5.1a and 5.1b.

G reen body preparation is usually by one of three methods. The simplest 

method of producing limited quantities of small components is die pressing in which 

the powders are pressed in steel dies at pressures of up to 30Mpa. The pressed 

component then has sufficient strength to be sealed in a rubber sleeve and cold 

isostatically pressed at up to 600Mpa after which careful machining, still in the 

green state, is possible.

Slip casting involves the preparation of an aqueous suspension (or slip) of 

the ceramic powder which is then poured into a plaster mould. The mould absorbs 

the liquid leaving a green body on the mould surface. By progressively adding more 

slip solid components can be formed, a technique known as solid casting. Hollow 

components are formed by draining off excess slip after a sufficient wall thickness 

has been deposited.

For producing large numbers of complicated components injection moulding 

is the preferred technique, in which the ceramic powders are mixed with a binder 

(of, for example, polystyrene or paraffin wax) and simply injected into the mould. 

The only significant drawback with this process is in the difficulty of removing the 

binder without causing internal cracking. For this reason injection moulding is 

particularly suited to the production of thin components.

The specimens used in the series of experiments reported here were 

prepared by die pressing.

The open structure of RBSN means that the finished component is 

significantly weaker at both room and elevated temperatures than hot pressed silicon 

nitride (HPSN), which is virtually fully dense (see Table 5.1). RBSN does however
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have two major advantages over the fully dense form. Full densification of silicon 

nitride is impossible without the addition of sintering aids, which by definition must 

have a lower melting point than the nitride. These aids therefore have a 

deleterious effect on the creep properties of the finished component. Secondly 

densification obviously results in a change in volume. In the nitriding process no 

dimensional changes occur and large complex shapes can therefore be produced 

from RBSN to very high dimensional tolerances.

Machining in the green state introduces surface damage but if the machining 

is done carefully this will heal during nitriding. After nitriding, fine grains of a 

SigN  ̂ exist on the surface of the component. These may be ground away but 

grinding would introduce more damage, in the form of microcracks, in the surface 

of the component. It was therefore decided to test the specimens in the as received 

condition.

5.9 Furnace redesign.

The rig used for the testing programme was based on a Severn Science 

model HTTF2 furnace (serial 870804). This furnace was originally designed to test 

small specimens in 4-point bending, the specimens resting on supports 50mm apart 

and loaded by rollers, centred over the supports, 25mm apart.

For component testing rather than material testing it was felt, for two 

reasons, that a nominal gauge length of 25mm was rather limiting.

Firstly, whilst being of a known concentration the notches needed to be as 

large as possible. This is because the specimens were to be tested ip the ‘as 

received’ state, and the geometry of a very small notch would be affected 

significantly by the surface finish of the specimen.

Secondly, structural components are likely to be larger than 25mm and a

Page 132



bigger component will have a more realistic distribution of flaws. Therefore, 

comparing one with another, larger components made from a brittle m aterial should 

show less statistical variation in their failure behaviour.

The total volume in  the as bought furnace was approximately 130mm (wide) 

by 100mm (high) by 110mm (deep), with the elements reducing the effective depth 

to approximately 80mm. The hot zone, which we arbitrarily defined as the zone 

over which the tem perature differed by no more than 1°C from that at the centre, 

was found by investigation to be sufficiently large to allow specimens in excess of 

100mm to be tested. To facilitate testing specimens of this size the as bought rig 

(a drawing of which is shown in Figure 5.1) was modified as follows.

The existing stainless steel top and bottom  plates, complete with cooling 

water jackets were swapped around so that the existing 60mm alumina tube, 

originally intended to support the specimens, now supported the loading platen. A  

stainless steel end cap was cemented to the ‘cold’ end of the tube to transfer the 

load uniformly to the alumina.

To ensure rotational alignment of the loading platen a system of bearings 

was designed that restrained the end cap from rotating about the axis of the 

alumina tube; vertical alignment was ensured using a linear bearing. The upper 

load train guide is shown in Figure 5.2 and Plate 5.2.

The bottom  cooling water jacket was then removed and two 25mm diameter 

holes, 100mm apart, centred directly below the loading tube were drilled through 

the jacket and stainless steel bottom plate. New brass sleeves and high tem perature 

bushes were fitted to the jacket in these holes. Two 190mm lengths were cut from 

a 25mm diameter alumina tube to use as the supports.

The initial design of the plain specimens was simply for chamfered 10mm x
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10mm X 115mm rods. However during initial trials all of these specimens failed 

under one or other of the loading rollers, whereas ideally the failures would 

distribute themselves over the gauge length.

The reason for this was one of the major design faults with the as bought rig. 

Having two separate supports means that unless they are of exactly the same length 

the supports and loading platen will not be parallel. With a very stiff test material 

such as a ceramic this means that 4-point bending will probably never be achieved 

with the result that the specimen will fail at the location of maximum moment, ie. 

under one or other of the loading rollers. Obviously it is not possible to grind the 

support tubes to exactly the same length so to get around this problem  a rocker 

arrangement was designed by which the support tubes automatically adjust their 

positions to restore parallelism and hence true 4-point loading.

With quite long supports passing through quite thin bushes, as was the case 

in the as bought rig, play at the bushes and consequent lack of parallelism between 

the supports is an obvious possibility. To overcome this, spring loaded bearings 

were positioned to hold the tubes vertically while still permitting vertical movement, 

to ensure 4-point contact. The lower guide and rocker assembly is shown in Figure

5.3 and Plate 5.3.

The loading platen, loading and support rollers and support tube heads were 

manufactured, also by T&N Technology, from reaction bonded silicon carbide 

(RBSC). These components, particularly the rollers are very highly stressed, and 

RBSC is a stronger m aterial than RBSN. Details of the loading head and support 

tube geometries are shown in Figure 5.4 and the modified rig is shown in full in 

Figure 5.5.

It also became apparent during initial testing that the loading assembly was
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seizing in the bearings when the rig was at its working tem perature of 1500°C. This 

was caused by expansion of the upper bearing assembly due to the 60mm alumina 

tube acting as a chimney. To reduce this effect the tube was filled with insulating 

fibre and a housing containing two cooling fans was constructed to sit over the 

complete upper bearing assembly.

5.10 Specimen design.

Before designing any test component it is necessary to consider the 

procedures that will be adopted to analyse the results one is expecting to obtain 

and, most importantly, the way in which the component is expected to behave 

during the test.

On initial loading at high tem perature a body behaves elastically and the 

stress distribution may be determined by linear elastic analysis. For example when 

a rectangular beam  of width b and depth d is subjected to a  mom ent M the stress 

distribution, a distance y from the neutral axis, is

(5.6)

and the maximum stress, which occurs at y = Vxd, is

In the steady state these stresses are

6M

d

(5.7)

(5.8)

= (5.9)

Now, if a notch of stress concentration Iq is present in the specimen then on initial
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loading the peak stress is given by

(510)

which, with time will redistribute to the steady state value

(5.11)

where “ 1+ —(/c,-1 )  (5.12)
n

During this redistribution a crack may nucleate and begin to grow, stably at first, 

and then when it reaches a critical size, unstably. Alternatively a pre-existing flaw 

may grow in the same manner, leading to a brittle failure.

This type of catastrophic brittle failure is usually described using Weibull 

statistics where the reliability, R  (the probability of survival), of a brittle elastic 

component of unit volume was given by equation (5.2)

( O/Y"R  = exp f —  dV
J V I v  .

(5.13)

Generalising equation (5.13) to the creep regime is not easy as the stress 

distribution within a creeping body is both non-linear (if n > 1) and time 

dependent. In addition to this a large number of specimens need to be tested to 

provide valid data (at least 20 to roughly determine the W eibull param eters; 100 

for statistically valid results). As such a large number of specimens was not 

available (we had approximately 20 of each) the specimen design had to be such 

that brittle failure could be clearly identified.

Though no attem pt was made to use Weibull statistics directly, examination 

of the form of equation (5.13) can provide clues as to how to interpret the results
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of the tests. For an elastic failure, for both types of specimen, equation (5.13) must 

be integrated to determine the probability of failure. Now it is evident from 

equation (5.13) that the smaller the volume of material at a given stress, the less 

likely is the component to fail. Thus the notched components, by virtue of having 

most of the stress concentrated in a small area, will appear stronger (ie. less likely 

to fail) for a given maximum stress than the plain specimens. Therefore it is 

conservative (in terms of predicting the response of a notched component from the 

behaviour of a plain component) to use a failure criterion based on the peak stress.

As an alternative to brittle failure, general continuum damage in the form 

of voids or microcracks may develop during the redistribution process. This damage 

will grow most rapidly in regions of high stress leading to further stress 

redistribution.

If the components were to show extensive creep resulting from continuum 

damage it was anticipated that reference stress techniques might be useful for 

analysing the results.

As was mentioned earlier, materials generally creep at a higher rate in 

tension than in compression, and this effect must be taken into consideration when 

considering the definition of the reference stress. Consider a m aterial that yields 

in tension when

o = Oy (5.14)

and yields in compression when

o = aOy (5.15)

The limit moment for a rectangular beam  specimen made from this m aterial is
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M. = (5.16)
2 (1 +a)

Now, if this m aterial creeps in tension according to the law

. oe = e. (5.17)

and in compression according to

o
a Or

and if we assume a stress field of the form shown if Figure 5.6a then by analogy the 

moment, M, is given by

Af = (5.19)
2 U + a )

This is the flexural form of the reference stress for deformation given in equation 

(2.16).

As well as that for deformation, there is a different reference stress for 

failure. The definition of this reference stress is "that stress in a uniaxial tensile test 

that fails after the same time as the structural component". Consider a m aterial 

that does not fail in compression but fails in uniaxial tension according to

For such a material, the reference stress for failure is given by the expression'
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(5.22)

where de^ is the increment in plastic strain at collapse, see Figure 5.6b, {6(ay ) is 

the maximum principal tensile stress determined from the stress distribution 

obtained from a limit load (reference stress for deformation) calculation.

Now, in our specimen, in the tensile portion

4 f ( o : )  =  O q

and in the portion of the specimen in compression

f ( o J )  = 0

therefore

(5.23)

(5.24)

FOo = Or
f  d e P d V  J (5.25)

where is the volume of the beam  in tension. From Figure 5.6b we can easily see 

that for a rectangular specimen

(5.26)
1 + â

Now, under conditions of plane stress, the stress distribution and mechanism 

of collapse across the minimum section of the notched specimen would be the same 

as that for the plain specimen, ie.

2M (l + «)
a bd^

(5.27)
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ie., for both specimen types

(5.28)

Thus under conditions of continuum damage, specimens with the same depth 

and subject to the same bending m oment have the same reference stress for failure 

and will fail after the same time. Obviously with a variable m aterial like a ceramic 

individual tests may differ from this expectation but on average the failure times 

should be equal.

From  the above we can see that in conditions where failure is governed by 

the maximum elastic stress (brittle failures) we have the following situation 

Plain Notched

and in conditions where failure is governed by the reference stress (continuum 

damage) we have

d^ d^

The ratio of the failure times for the two specimens, t^, which we defined as the 

time to failure of a notched specimen divided by that of a profiled specimen, for the 

same applied bending moment may be expected to have a maximum value of unity 

when failure is as a result of continuum damage. W hen failure is the result of 

creep crack growth this ratio will be less than unity by a factor depending, through 

the constitutive law, on the magnitude of kt, see Figure 5.7.

In designing the notches it was decided that the ratio of the peak elastic 

stress at the notch root to that in a plain specimen for the same applied moment.
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k„ should be 2.0. This value was chosen somewhat arbitrarily but it was hoped that 

it was high enough for brittle failures of the two specimen geometries to be clearly 

differentiated, but low enough that failure of the plain specimens would occur 

within a reasonable length of time.

The section of the plain specimens had already been determ ined as 10mm 

by 10mm and so the stress in the outermost fibres (ie. not at the root) of the 

notched specimen would be (10/d)^ times that in the plain specimen; where d is the 

overall depth of the notched specimen. By an iterative process a notch with a depth 

of 3.0mm and a root radius of 2.0mm was decided upon, giving an overall depth of 

specimen of 13.0mm. A  notch with this geometry has an elastic stress concentration 

factor, kj of 3.32 which gives a ratio of peak stress at the notch to peak stress in a 

plain specimen under similar moments, k„ of 3.32 x (10/13)^ ie. 1.96. This was 

considered satisfactorily close to 2.0 and the specimens were ordered from T&N 

Technology on this basis. The dimensions of the notched specimens are given in 

Figure 5.8 and an untested specimen is shown in Plate 5.4.

Despite extensive efforts to ensure a reasonable distribution of failures along 

the gauge length, by far the majority of the first plain specimens tested continued 

to fail under one or other of the loading rollers. To try to eliminate this tendency 

the section of the plain specimens was reduced to 7.5mm by 10.0mm over a 47mm 

length by grinding off 2.5mm with a diamond wheel. Several of these new profiled 

specimens were tested, with the machined surface in compression, and the failures 

were found to be reasonably evenly distributed over the gauge length see Plate 5.5. 

The dimensions of the profiled specimens are shown in Figure 5.9. and an untested 

specimen is shown in Plate 5.4.

Our original aim was to test notched specimens with a cross-section at the
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root equal to that of the plain (ie. non-profiled 10mm xlOmm) specimens. 

However, the double notched specimens were machined in the green state by T&N 

Technology and were therefore supplied with the notches already present. The 

subsequent need to redesign the plain specimens meant that this initial aim was no 

longer possible.

U pon receipt from T&N Technology the plain specimens (the profile had yet 

to be ground) were measured for their dimensional accuracy, weighed to determine 

their porosity and numbered on one end with a diamond engraver.

The RBSN was found to have a m ean density of 2.500 gcm'^ which, indicates 

a porosity by volume of 24%, which is at the high end of the range. This value, 

though high, was fairly consistent displaying a variation about the m ean of -1.6% 

to +0.84%.

None of the principal dimensions of the specimens was found to vary by 

more than 0.04mm from its nominal value.

The notched specimens were also numbered and measured upon receipt. 

The notches were designed a root radius of 2.0mm and a depth of 3.0mm to give 

a Kt of 3.32. Using a shadowgraph both notches on five specimens (nos. 8 to 12 

inclusive) were accurately measured. The depths of the notches were found to be 

very close to the required 3.0mm having an average value of 3.01mm and displaying 

a variation range of -1.8% to +1.5%. The m ean root radius of 2.03mm was also 

close to the required value and displayed a similar range.

5.11 Design of the extensometiy.

In designing the extensometry it was a prime requirem ent to separate the 

deformation behaviour of the specimens from that of the load train or the supports. 

This was achieved in the as bought rig by using two alumina rods which were sprung
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against the underside of the specimen (see detail in Figure 5.1). There are two 

major problems with this arrangement. Firstly, as the rods were flat ended, the 

exact position at which the deformation is measured is unknown. Secondly, as 

creep in tension is more rapid than in compression, contact with the tensile surface 

of the specimen, with its attendant risk of contamination, should be avoided.

These problems were circumvented in the redesigned rig by drilling three 

holes through the stainless steel end cap of the 60mm alumina tube, in the plane 

of the axis of the specimen, one in the centre and the others 20mm on either side. 

Matching holes were then spark eroded in the silicon carbide loading platen and 

alumina guide tubes were inserted through the insulation in the 60mm diameter 

loading tube and held in place at the cool end by circlips. Solid alumina rods with 

their bottom  ends ground to a ‘blunt point’ were then lowered through the guides 

to rest on the specimen. The outer rods were fixed to each other by a clamp which 

also held the body of a displacement transducer over the central hole. The shuttle 

of the transducer rested on the top of a third shorter alumina rod so that strain in 

the specimen would be measurable as a displacement of the centre with respect to 

the outer points. Global translations however, due for example, to creep of the 

supports, would not register as all three rods would respond to the deformation. 

In this way the desired creep of the specimen was isolated from the inevitable creep 

of the load train. The output from the displacement transducer was recorded 

continuously by a chart recorder and every hour by an automatic data logger.

The prime function of the extensometry was to measure the deformation rate 

of the profiled specimens, as it was envisaged that any measurable deformation of 

the notched specimens would occur primarily at the notch roots. In testing the 

notched specimens the main function of the extensometry was, via the chart
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recorder, to measure the precise time to failure of the notch.

If we assume that the gauge length of a profiled specimen deforms to the arc 

of a circle (an accurate assumption for small deflections) then the strain can easily 

be found from the deformation.

If the mid point deflection of a rectangular four-point bend specimen relative 

to two outer reference points, 2D apart, is S, then from the theorem  of 

perpendicular chords the radius of curvature R, and S are related by

2 R ô - Ô ^  = ( 5 . 3 1 )

and as S is always small we can say

2Ô

In pure bending the strain, e, at a hypothetical fibre, a distance y from the neutral

axis of the section in question, is related to the radius of curvature of the neutral

axis at that section by

G = y /R  (5.33)

The largest value of D that could be accommodated in the redesigned 

loading head was 20mm, so for our profiled specimens, where the peak strain occurs 

at y = 3.75mm

8CW

5.12 Experimental procedure.

The numbered profiled (P type) and notched (N type) specimens are 

referred to as, say, NIC or P23. For the notched specimens the numbered end was 

considered to be the left end for the purpose of distinguishing between the notches
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and the specimens were placed in the rig accordingly. Precise, repeatable alignment 

was achieved using a small jig machined from a block of aluminium.

To get a feel for the level of bending moment at which to test, 6 notched 

specimens were heated to 1500°C and loaded rapidly to failure, the load being 

applied via a load cell. The peak moments and times to failure are listed in Table 

5.2, the notch which failed is also indicated. The mean maximum moment was 

found to be 16.11Nm and, given the low number of specimens tested, there was a 

reasonable distribution of failures between the left and right notches.

Specimen No. Maximum bending moment (Nm) Failed notch

N2 15.66 L

N3 14.89 L

N4 17.02 L

N13 16.25 R

N20 15.74 L

N21 17.10 R

Table 5.2. Peak elastic stresses at failure under rapid loading in six double­
notched specimens. The m ean maximum moment was 16.11 Nm.

The basic procedure for creep testing both the profiled and notched 

specimens was the same, namely:

1) The specimen was positioned using the jig.

2) The cooling fans were turned on.

3) The furnace tem perature was ramped up to 1500°C at 200°C per

hour. This ramp rate was fixed by the susceptibility of the heating 

elements and alumina tubes to thermal shock.
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4) The tem perature was held at 1500°C.

5) After soaldng for 2 hours to achieve thermal equilibrium within the 

specimen, the loading head and the supports, the weight hanger was 

slowly lowered until all the load was transferred to the specimen.

6) After failure the furnace was ramped down at a nominal 200°C per 

hour. As the furnace contained no cooling equipment other than the 

water jackets it was not possible, below about 500°C, to force the 

furnace to cool down at this rate.

Constant ramp rates during the ramp up phase were achieved using a 

Eurotherm  818P programmable tem perature controller (serial M00869.001) and 

after initial testing a microswitch was positioned under the loading arm so that 

when the specimen failed and the lever arm dropped the switch was depressed 

automatically toggling the controller to the ramp down phase of the program. 

Below about 500°C the controller effectively switched the furnace off and it cooled 

down at its own rate.

5.13 Results of the creep tests.

Over a period of approximately eighteen months twelve notched and eleven 

profiled specimens were tested, all at 1500°C, at bending moments ranging from 

S .llN m  to 12.76Nm. Full results for the profiled specimens, of creep strain as a 

function of time (as captured by the data logger), are listed in Appendix 6. These 

results are summarised below in Table 5.3. Specimen P23 is not included in Table

5.3 as when the test was abandoned after 594 hours it was discovered that one of 

the bearings in the guide system of the loading platen had seized and that therefore 

for an unlcnown proportion of the test the applied load was also unlcnown.

The failure times of the notched specimens are summarised in Table 5.4.
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Specimen No. Mp(Nm) M’ (Nm) Elastic strain {jj) Creep strain {ii) Time to 
failure (h)

P4 8.44 15.00 506 1088 44.75

P6 8.44 15.00 619 1284 55.7

P19 8.44 15.00 731 1116 17.6

P8 9.38 16.68 - - 46.5

PIO 9.38 16.68 750 - 5&1

PI 9.84 17.49 750 544 1.8

P17 9.84 17.49 750 900 31.75

P24 9.84 17.49 750 628 5.2

P7 10.31 1833 806 647 12.4

P14 11.25 20.00 - - 8 3

P18 11.25 20.00 844 609 11.2

Table 5.3, Bending moments and failure times for the eleven profiled specimens 
which were tested successfully. The elastic and creep strains of P8 and PIO were 
not recorded due a temporary failure of the pen recorder. M’ is defined later in 
equation (5.33).

Specimen No. M„ (Nm) Time to failure (h) Failed notch

N8 5.11 >400 -

N17 831 2.80 R

N5 10.21 0.55 R

N6 10.21 87 L

N19 10.21 1.3 L

N22 10.21 4.9 R

N24 10.21 2.25 R

N25 10.21 23.2 L

N9 12.76 0.08 L

NIO 12.76 2.23 L

N i l 12.76 0.08 R

N12 12.76 0.03 R

Table 5.4. Bending moments and failure times for the twelve notched specimens 
which were tested successfully. The test on specimen N8 was abandoned due to a 
short power failure over a weekend causing the tem perature controller to toggle to 
ramp down.
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5.14 Interpretation of the results.

W ere both the notched and profiled specimens of the same minimum depth, 

d, then we could simply compare failure times resulting from the application of 

similar bending moments; however, d is not the same in both specimens. Recall 

from equations (5.29) and (5.30) that and the reference stress for failure 

display the same dependence on bending moment and d  ̂for both specimen types. 

If we define an equivalent moment, M’, for the profiled specimens as

= Mpjc (10/7.5)^ (5.35)

we can evaluate M’ and compare the times to failure at this load level with the 

times to failure of the notched specimens under the applied moment M„.

If a failure criterion based on the reference stress holds, ie. if we have a 

ductile failure, then we would expect the times to failure to be equal for the case 

of M„ = M’. On the other hand if the failure criterion is based on the maximum 

elastic stress, ie. when the failure is more brittle, we would expect equal failure 

times when

^  = 2 (5.36)
n

Consider the data for the profiled specimens PI, P17 and P24 for which M 

= 9.84Nm and from equation (5.33) M’ = 17.49Nm. These specimens displayed 

failure times ranging from 1.8 to 31.75 hours. If the failure of these specimens was 

governed by a maximum elastic stress effect then the failure times of the notched 

specimens would be over the same range if M„ = 17.49Nm /  2 ie. if M„ = 8.75Nm. 

If failure was as a result of a reference stress effect then the failure times of the 

notched specimens would be over the same range if M„ = 17.49Nm.
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Notched specimens N5, N6, N19, N22, N24 and N25 when tested at M„ = 

10.21Nm displayed failure times of between 0.55 and 87 hours, a similar range to 

the above. In this instance M’ /  M„ = 1.71, Thus we can see that these results lie 

closer to the maximum elastic stress criterion than to the reference stress criterion 

of M’ /  M„ = 1.

Notched specimens N9, NIO, N i l  and N12 were subjected to a bending 

moment of 12.76Nm and three of the four tests lasted less than 5 minutes. All of 

the profiled specimens listed in Table 5.3 were tested at reference stresses higher 

than these specimens (note, though, that we do not determine this reference stress 

which would require an assumption to be made as to the value of a in equation 

(5.15)) and all displayed a longer failure time. This would indicate that failure was 

probably not the result of continuum damage. A  value of M ’ of 25.52Nm would 

produce equal failure times if failure was definitely the result of a maximum elastic 

stress effect. No profiled specimens were tested at a bending m oment as high as 

this, however we can see from the general trend of the results in Table 5.3 that an 

applied bending moment of this magnitude would result in a failure time 

significantly less than the 8.5 hours of P14.

The specimens listed in Table 5.2 were deliberately failed in a brittle m anner 

and the failed notch of one of these specimens is shown in Plates 5.6a and 5.6b. 

This type of failure surface is characteristic of a flexural failure in a brittle material. 

Failed notches from some of the long term  tests listed in Table 5.4 are shown in 

Plates 5.7, 5.8, and 5.9 and it can be seen that these failure surfaces, which are 

typical of all those examined, are similar in form to the short term  failure surface 

supporting the above conclusion that the notch failures were creep brittle.

In  all of the notched specimens tested there was no measurable creep
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deformation before failure. There was also little creep deformation in the profiled 

specimens; in only three of the nine specimens for which the initial elastic strain 

was measured did the accumulated creep strain exceed the elastic strain plus 20%. 

This would seem to rule out the presence of large scale continuum damage in either 

type of specimen as, typically, strains greater than 8% may be observed in 

conditions of continuum damage^^). The profiled specimens also displayed the same 

brittle type failure surface as the notched specimens, see Plate 5.10.

Examination by electron microscope, of both the failed and unfailed notches, 

was however, inconclusive.

A  porous m aterial was chosen to shorten the testing time by removing the 

need for void nucléation. This inevitably means that continuum damage even if it 

were present would be very difficult to recognise against the background of pre­

existing porosity. It is simply a case of not being able to see the wood for the trees. 

Similarly a  creep crack on the microscopic level would appear as connected 

porosity, and as the porosity in RBSN is not discrete, the crack would again be 

umecognisable. For a creep crack to be large enough to be recognisable as such 

on the macroscopic level it may well have to exceed its own critical size for the load 

level tested.

On a failed surface the evidence of void growth in the form of ‘half voids’ 

often reported in fully dense materials such as alumina would also be 

indistinguishable from the pre-existing porosity.

Electron micrographs of a section through an unfailed notch are shown in 

Plates 5.11a-d and electron micrographs of a failed surface are shown in Plate 5.12a 

and 5.12b. These micrographs, which are typical of all those obtained, clearly 

illustrate the problem; although we believe these failures to be as a result of creep
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crack growth there is no recognisable evidence from the micrographs, either for or 

against this conclusion.

5.15 Summary.

W e have conducted a series of 4-point bend tests on plain and notched 

reaction bonded silicon nitride specimens with the aim of investigating whether 

there is any evidence of a transition from failure due to the growth of continuum 

damage at low load levels to failure due to the growth of a dominant crack at 

higher load levels. To that end we have designed and manufactured a series of 

modifications to an ‘off the shelf furnace which we believe result in a significant 

improvement in the performance of the rig.

Through a careful consideration of the likely behaviour of the test m aterial 

we have designed two specimen geometries; one plain within the gauge length, and 

one notched. The notch geometry was chosen so that failure could be easily 

identified as either brittle or ductile.

Twenty three specimens were creep tested and are believed to have failed 

in a brittle manner as a result of creep crack growth. This belief is supported by 

the low levels of creep ductility observed. A  lack of time and being restricted to 

one test rig m eant that we were unable to test at load levels low enough for 

continuum damage possibly to develop. In the specimens tested there is no 

evidence of any failures as a result of continuum damage and consequently there 

is no evidence of a brittle/ductile transition.
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Figure 5.1. Part section through Severn Science four-point bend rig - as bought.
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Linear Bearing

E ccen tric  Bearings 
On Cans _

Cooling W ater  
J a c k e t V LVDT

AUG- E x te n so n e te r  Rods

60nn ALO-, Tube

Figure 5.2. U pper guide and extensometry assembly. The linear bearing ensures 
that the load train moves perpendicular to the specimen in both planes. The 
eccentric bearings, after being rotated into position on their cams and locked off 
ensure that the loading platen can not rotate about the linear bearing.
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25nn AlgOg
Support Tubes

Cooling W ater 
J a c k e t ^

High Temp. 
Bushes

Fixed Bearings 
At 120 To Spring 
Loaded Bearings

Spring Loaded 
Bearings

2 No. Ball 
Bearings

lA/WN

Section  A -  A

Figure 5,3. Lower guide assembly. The fixed bearings ensure that the support 
tubes are both initially parallel and constrained to displace along parallel axes. 
Friction at the sprung bearings prevents the support tubes from rotating about their 
own axes. The rocker assembly, which rests on ball bearings, ensures initial 
parallelism  between the specimen and the supports and thus ensures also that four- 
point rather than three-point contact is maintained.
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Figure 5.4. Loading head and support tube geometry.
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Figure 5.5. Part section through redesigned fonr-point bend rig, based on as 
bought Severn Science four-point bend rig shown in Figure 5.1. The rig is shown, 
for clarity, with the cooling fans removed.
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a e

(a) (b)

Figure 5.6a. The assumed stress distribution in a rectangular beam specimen 
subject to an applied bending moment M. Figure 5.6b. The strain increment at 
collapse.

CCG

M

CD

Figure 5.7. A Schematic representation of how the failure time ratio, t  ̂would be 
expected to vary with applied bending moment, M. At low moments the failure is 
by continuum damage (CD) and the failure time ratio is asymptotic to unity. At 
higher moments failure is by creep crack growth (CCG) until at the ultimate 
moment the specimen fails instantaneously upon loading.
The precise shape of the transition curve from CD to CCG would vary from one 
material and test configuration to another.
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PLAN

115,0

4 2 .5 30.0

ELEVATION

l.Onn

NOTCH DETAIL

Figure 5.8. Notched specimen (‘N type’ specimen) geometry. The specimen is 
shown in the orientation used in testing.

PLAN

47.0

115.0

ELEVATION
R 5.0mn

Figure 5.9. Profiled specimen (‘P type’ specimen) geometry. The profile was 
achieved by diamond grinding 10mm x 10mm chamfered bars. The specimen is 
shown in the orientation used in testing. The machined surface is in compression 
so that the critical tensile surface is in the same as received state as the notched 
specimens.
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Plate 5.1a. An electron micrograph at 580x magnification of a typical fracture 
surface of a RBSN specimen (no. N2). This specimen was bent in 3-point bending 
at the notch at room temperature.
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Plate 5.1b. A close-up of the pre-existing cavity in the same specimen at 1770x 
magnification. Note the partially crystalline partially amorphous structure.
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Plate 5.2. The upper load train and guide, note the outer alumina extensometer 
rods just visible in the LVDT holder.

I

Plate 5.3. The lower rocker assembly.
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Plate 5.4. Untested profiled and notched specimens. The dimensions of these 
specimens are given in Figures 5.8 and 5.9.

Plate 5.5. From the top specimens P7, P24, PIO, PIS, and P19 showing a 
reasonably even distribution of failure location over the gauge length.
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Plate 5.6a. From the top specimens N21 and N20. These specimens were rapidly 
loaded to failure to determine the ULS capacity of a notched specimen.

Plate 5.6b. A close-up of the failure of N20 seen from behind, as viewed in the 
rig. This ‘tongue and groove' failure is typical of a brittle flexural failure.
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Plate 5.7. A close-up of the failure of N i l .  This specimen failed after 4.8 
minutes.

m

Plate 5.8. A close-up of the failure of N17 which failed after 2.80 hours.
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Plate 5.9. A close-up of the failure of N19 which failed after 1.3 hours. Plates 
5.7, 5.8 and 5.9 all represent different failure times but they are all similar to the 
instantaneous failure of Plate 5.6b.

Plate 5.10. A close-up of a typical failure in a profiled specimen (this one is of 
P7) also displaying the characteristic brittle failure.
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Plate 5.11a. An electron micrograph at 21x magnification of the unfailed notch of 
N8. The notch is clearly visible in the centre of the picture.

1 5KV 0 7 0 X 1 4 3 F  6 3 1 4

Plate 5.11b. The same notch at 70x magnification.
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Plate 5.11c. The same notch at 284x magnification.

m

15KV 1 . 0 6 KX 9 . 4 3 H 6 3 1 6

Plate 5.l id . The same notch at 1060x magnification. In an originally fully dense 
material the void in the centre of the picture would be proof of diffusive cavitation. 
However this void is similar to the pre-existing void shown in Plate 5.1b. There is 
no apparent difference between the porosity of this specimen which was tested for 
400 hours and the as received material.
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Plate 5.12a. An electron micrograph at 117x magnification of the failure surface 
at the top of the notch of N24. This specimen failed after 2.25 hours.

i f

Plate 5.12b. A close-up at 1760x magnification of the centre right of the previous 
Plate. The structure appears to be rather less crystalline than the as received 
material. This is probably due to the effect of sintering.
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In this Appendix we dem onstrate the validity of the approximation to the H R  

field given in equation (3.5).

Consider a bar of elastic/creeping material loaded in uniaxial tension to an 

initial stress and then rigidly restrained. The total strain in the bar at any time 

is the sum of the elastic and creep strains, ie.

Gy = e, + (A l.l)

Since the total strain is constant, by virtue of the rigid restraint, then

de,
d t  d t  d t

1 do
E d t dt

=  0 (A1.2)

and so
do (A1.3)

Integrating between a  = Oj at time t = 0, and ct = cr at t = t we find

(A1.4)

Now it is apparent from equation (A1.4) that a need be only slightly less than o, for 

the first term  in the square brackets to dominate, and so we may write

(A1.5)

Hui and Riedeh^^^ have dem onstrated that for a growing crack in a m aterial for 

which n > 3 the stress field ahead of the crack is of the form
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a = Br (A1.6)

now if we consider a distance 5 a from the crack tip, the stress is (assuming a 

coordinate system that moves with the crack tip)

a = B (àa) (ALT)

Initially the stress at 5 a increases above that predicted by equation (A1.7) due to 

elastic effects. The time taken for the stress to relax to this predicted value can be 

calculated from equation (A1.5) as

Ôf =
(« -l)é o E o " -i

If we now substitute for o from equation (A1.7) we see that B is given by

(A1.8)

B = da
(n-I)GQjE d t

1
n-l (A1.9)

so
« - 1

n-l —L
r (Al.lO)

This is the same expression as that derived by Hui and Riedel, except for the first 

term. They present a constant which they determine numerically; this takes the 

value 0.815 for n= 4  (compared with 0.693 for the above) and 1.064 for n = 6 

(compared with 0.725).
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APPENDIX 2



In this Appendix we determine the characteristic lengths, %, of four specimen 

geometries commonly used in creep testing: the compact tension specimen, double 

edge cracked plate, centre cracked plate and double cantilever beam.

A) The Compact Tension Specimen; (a /W  = Vz); specimen thickness = B.

p

c
w5

1 a

GP
P

The plane strain limit load, P^, is given by

Pj, = 0.129 PIPOy (A2.1)

From  equation (2.16) it is therefore apparent that the reference stress Uq is given 

by

(A22)
" 0.129 B W

The mode one stress intensity factor, K, is given bŷ *̂̂ ^

P
=

Therefore from equation (3.25)

29.61-P - 185.6 -  P + gfc. 9.61?
B / fV

X  = 2.31a

(A2.3)

(A2.4)



The Double Edge Cracked Plate; (a /W  = 14); plate thickness = B.

P

The plane strain limit load, P^, is given by

Therefore, from equation (2.16), the reference stress, is

=  ^

The mode one stress intensity factor, Ki is given by^“ '̂^

P /5X; = 2.0775
PR"

Therefore from equation (3.25)

% = 2.(r7a

(A2.5)

(A2.6)

(A2.7)

(A2.8)
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C) Centre Cracked Plate; (a /W  = 14); plate thickness = B.

P

The plane strain limit load, P^, is given by

Therefore, from equation (2.16), the reference stress, o^, is

.  Æ  (A2.10)
° PR"

The mode one stress intensity factor, Kj is given bŷ '̂̂ ^

Therefore from equation (3.25)

(A2.9)

X = 111a

(A2.11)
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The Double Cantilever Beam; specimen thickness = B. 

P

The plane strain limit load, P^, is given by

P , =
4 /3  (z

2

Therefore, from equation (2.16), the reference stress, o^, is

 ̂ _ 2 /3 P ( a /d )
° P d

The mode one stress intensity factor, Kj is given bŷ "̂*̂

I" -  + 0.7 ]
b S  I

Therefore from equation (3.25)

0J5 / (a/6f ) + 0.7
/ 5

( < « ) ■

(A2.13)

(A2.14)

(A2.15)
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In this Appendix we convert the results derived in Chapter four to a form for 

comparison with those of a model due to Thouless et. al.(^^\

A) Constrained Creep.

Recall equation (4.19), we have

à =

—

(A3.1)
(n + 2)nÂ (P ^-ff)

Thouless’ model is only valid for the case of linear viscosity, ie. n = 1. for which 

/ j  = and so in full form, noting the definitions of the nondimensional groups

given in equations (4.16), (4.17) and (4.18)

dOg

C*

7E rô  
3

3ît

(A3.2)

C*
(F2-Ft)

Remembering that the m aterial viscosity, rj = Oo/éo and also remembering that we 

are assuming Thouless’ form of the equation, K? = rjC*, we can see that

r\a K (A3.3)

and therefore n d  ^ 2(n /3 )   ̂ R ' (A3.4)

If we assume a constant grain size. I, then the damage zone size R  = zl, where z is 

the number of grains in the damage zone. If we further assume that the voids are 

very small at nucléation then
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n â  ^ 2 (;t/3 )  ̂ W/A) 2#

x /z  %
(A3.5)

B) Linear variation of diplacement rate  through the damage zone.

From  equation (4.51) we have

a = 3R

Recalling equation (4.24)

3CU(|)oèo (A3.6)

2Q D ^0^0q
(A3.7)

le.

Now it is loiown that^“ ^̂

(A3.8)

n =
12:1

(A3.9)

therefore . m l
6n

Maldng the same substitutions as before for the material viscosity and C*, and again 

assuming that at nucléation the voids are small, we find

Tld _ 3y9 ( /
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C) Unconstrained creep growth. 

F rom  equation (4.30) we have

a,,(0)P"^‘ (A3.12)
4G(F) n 

recall from equation (3.4) that

I  = (A3.13)
n

under both plane stress and plane strain. Combining equations (A3.12) and (A3.13) 

and maldng the usual substitutions for viscosity and C* we find that

=  i M l   o (8) (A3.14)
Kyfl 4 izs j2^G {F)

U nder plane stress conditions 0^(0) = 1 (A3.15)

whereas we can see from equation (4.32) that in plane strain, if n = 1, then

0 .(0 ) = 2 / ^  (A3.16)
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In this Appendix we prove that in a damaged m aterial C* is path dependent. 

Recall the definition given earlier of the nominally path independent integral C

iv%j% - 0A4.1)

where

W  = jo . j  dè.j (A4.2)

Consider a closed contour r  around a crack tip enclosing undamaged m aterial (see 

Figure A4.1). When evaluated around this contour, by definition, C* = 0. Along 

the surfaces of the crack (along a-b and c-d) the traction, normal to the surface, is 

zero ie. Tj = 0, dxj also equals zero. This means that the contribution to C* along 

these two elements of the contour is zero. Now consider two separate contours 

and F; which follow the same path as r  (see Figure A4.2). It follows from what has 

gone before that values of C* determined by integrating in the same direction 

around the two different contours will be equal. We will now show that this is not 

the case if the region enclosed by the contour r  contains damaged material.

If W is some function of the damage, F, as well as of strain rate, i.e.

W = W i F , t )  (A4.3)

then

(A4.4)
dF
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The difference in the values of C* evaluated on the two different contours is

Où \
c ;  -  c ;  = 4  ̂d f (A4.5)

Now, for a continuous function G(x), whose first and second derivatives are also 

continuous, Gauss’ theorem  states that

(A/L6)

Applying Gauss’ law to the first term  in equation (A4.5) yields the result

J r .- r . ^ JA Or 1 24 Ox,
(A4.7)

Consider the second term  in equation (A4.5) remembering that T; = Uy nj and 

remembering that

_ 3 m ,. 3  m,
f  f  _ _ i da = r  da a f  (/ULS)

From  similar triangles it is apparent that Uj ds = dx,. Applying Gauss’ law gives

. \

but from equilibrium

4  1 d X j  3 x j  ' 2  3 X j  d X j  j

^ - 0
dXj

dXj dXg (A4.9)

so we obtain

3
d x .

3 m /

dXj
dXj d%2 (VVLll)
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The term  in the square brackets in equation (A4.11) is effectively the strain rate 

tensor, so

^ ~ f  (A4.12)

Combining equations (A4.7) and (A4.12) with (A4.5) gives

(/uL13)

We can see from this that for an undamaged material where CTjj 3ê;j = 3W 

equation (A4.13) equals zero, as it should. However if equation (A4.4) holds then 

we obtain the result that

(A4.14)

and from this we can see that the C* integral is only path independent provided that 

the damage within the contour around which it is evaluated is constant ie.

= 0 (AA.15)
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Figure A4.1 A  closed contour r  around a crack tip (the distance from the 
crack of a-b and c-d is exaggerated for clarity) in a body subjected to a stress 
field CTjj. The contributions towards C* along a-b and c-d are both zero.

Figure A4.2 Two discrete contours and following the same path as b-d 
and a-c respectively. C* evaluated along both contours is the same provided 
that any damage enclosed by the contours is constant with x̂ .
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In this Appendix we determine the form of the displacement rate field which 

is implied in the model of Thouless et. al^^. Thouless derives an expression for the 

constraining stress on the m“’ grain in a damage zone of z grains, cXem as

2t] " ''
-  1 «=1

____________\/2 (k - 1 )  1 (A5.1)
2(7! -  1) -  (2m -  1) j

le.

Thouless presents plots of normalised stress, aVZ/K, as a function of position within 

the damage zone (which he arbitrarily assumes to be of 10 grains) for various values 

of l / \ .  This stress, a, is the applied elastic stress minus the constraint and is given 

by

(A53)

where = -   ^ ......  (A5.4)
y /n ( 2 ? n - l ) /

Now if we denote normalised stresses by the presence of a superscripted bar then 

obviously

(A5.5)

and if we define

B'  = B sJïiŸ i^  (A5.6)

then it follows from equation (A5.1) that

[d,] (A j? )

where [F] is the modified identity matrix thus
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[T ]

1 0 0

0 l/y/3 0

0 0 l/y/5

y/2fM-l

(A5.8)

and so

(A5.9)

In order to obtain the displacement rate field the z by z matrix [f„_„,r] must first be 

formed and then inverted. The normalised stress distribution within the damage 

zone can be read from the graph and by simple matrix multiplication the 

displacement rate distribution can be obtained. The values of [f„,mF] and [f„,mF]’̂  are 

given on the following pages.
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For l/\ = 20

(X574 1.366
0.303 1.264
0.224 1.161

0.179 1.0S3
(1148

B'Ûn =
0.940

0.124 o^ao
0.104 0.689
0.088 0^42
0.073 0.359
-0.417 0.027

and for //A = 5

0.414 0.613
0.141 0L473
0.034 0^46
-0.016 0L245
-0.037

B'Ùn =
0.171

-0.042 0.118

—0.044 0.080

-0.036 0.053
-0.024 0.031
-0.079 0.007

(A5.12)

(A5.13)

Plots of the displacement rate distribution described by equations (A5.12) and 

(A5.13) are given in Figures (4.5a) and (4.5b).

The accuracy with which these fields have been extracted can be determined 

by evaluating C* around the damage zone. In closed form

C* = dû (A5.14)

but as Thouless only presents discrete values of a and hence ù we must write
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c* = s a^dl = 2 (A5.15)

0 + 0 .
where

Thouless plots the stresses at the mid points of the grains and the displacements, 

for l / \  = 20 and Î/X = 5, are given in equations (A5.12) and (A5.13) respectively. 

Using linear interpolation to determine and summing over a damage zone of 

10 grains we obtain, for l/X  = 20,

(A5.18)

C  = 0.170— = 0.80—
2t] T|

If this procedure is repeated for the case where l/X  = 5 then we find

C  = 0.1342— = 0.63 —
2ti T)

Recall from equation (4.34) that for the purpose of comparing our results with 

Thouless’ we are assuming

jK* = qC *  (A5.19)

under plane strain conditions this becomes

d - v ’ )

which means that, as v = 0.5 for a linear viscous material.

(A5.20)

C  = O.IM IT (A5.21)

By comparing equations (A5.17), (A5.18) with (A5.21) we can see that the fields 

depicted in Figures (4.5a) and (4.5b) are quite accurate.
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Specimen no: PI Bending moment: 9.84Nm

Initial elastic strain = 750/x

timetime creep strain creep strain time creep strain

356

544*

Strain /  Time to failure
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specim en no: 

Initial elastic

P4

strain = 506ju

Bending moment: 8.44Nm

creep straintime time creep strain time creep strain

169 788

224 797

263 835

300 853

328 872

366 891

394 928

422 928

441 938

460 947

478 975

507 994

525 1013

535 1050

553 1069

572 44.75* 1088'

582

600

610

628

638

64722

666

685

703

713

732

750

760

Time /  Strain to failure
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specimen no: P6

Initial Strain = 619m

Bending moment: 8.44Nm

time creep strain time creep strain time creep strain

159 806

206 816

234 834

272 853

281 863

300 881

319 891

338 909

366 919

394 938

403 956

422 956

459 984

478 1003

497 1041

1059

497 1088

516 1116

534 1163

572 1181

591 1191

609 1209

628 1228

656 1238

713 1256

741 1275

759 1284*55.7*

778

797

* Strain /  Time to failure
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specimen no: P7 Bending moment: 10.3 INm

Initial elastic strain = 806^,

creep strain time creep strain timetime creep strain

122

206

272

345

384

413

441

525

572

600

638

12.4"' 647*

Strain /  Time to failure
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Specimen no: P17 Bending moment: 9.84Nm

Initial elastic strain = 750m

timetime creep strain creep strain time creep strain

188 872

272 881

309 31.75' 900*

347

366

384

413

441

422

431

459

450

478

506

544

553

572

591

609

628

647

656

722

74124

778

806

825

844

863

Strain /  Time to failure
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specimen no: P18 Bending moment: ll,25Nm

Initial elastic strain = 844/x

creep strain time creep strain timetime creep strain

197

244

309

356

384

422

469

506

534

572

609

60911. 1’

Strain /  Time to failure
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Specimen no: P19 Bending moment: 8.44Nm

Initial elastic strain = 731/r

time creep strain time creep strain time creep strain

347

450

525

582

638

741

732

788

807

882

919

1013

985

1022

1097

1144

1116'17.6*

Time /  Strain to failure
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Specimen no: P23 Bending moment: Unlcnown due to bearing seizure

Initial elastic strain unlcnown

time
(h)

creep strain
W

time
(k)

creep strain
w

time
(h)

creep strain
(m)

1 113 30 984 59 1275

2 225 31 1003 60 1294

3 319 32 1013 61 1303

4 394 33 1031 62 1313

5 450 34 1041 63 1322

6 544 35 1050 64 1331

7 544 36 1050 65 1341

8 563 37 1069 66 1350

9 600 38 1088 67 1359

10 619 39 1097 68 1369

11 656 40 1116 69 1378

12 713 41 1116 70 1397

13 731 42 1125 71 1397

14 806 43 1144 72 1406

15 713 44 1153 73 1425

16 825 45 1153 74 1434

17 788 46 1163 75 1444

18 825 47 1172 76 1453

19 844 48 1191 77 1453

20 881 49 1200 78 1463

21 891 50 1209 79 1463

22 919 51 1219 80 1463

23 928 52 1228 81 1472

24 928 53 1238 82 1481

25 938 54 1238 83 1491

26 947 55 1256 84 1491

27 966 56 1266 85 1500

28 975 57 1266 86 1509

29 984 58 1275 87 1519
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Specimen no: P23 Continued Bending moment: Unlcnown

time
(h)

creep strain
(m)

time
(h)

creep strain
(m)

time
(h)

creep strain
W

88 1556 117 1856 146 2063

89 1556 118 1875 147 2081

90 1575 119 1875 148 2081

91 1575 120 1884 149 2091

92 1594 121 1894 150 2119

93 1613 122 1894 151 2119

94 1622 123 1903 152 2119

95 1650 124 1913 153 2109

96 1650 125 1922 154 2119

97 1641 126 1922 155 2119

98 1641 127 1931 156 2119

99 1650 128 1931 157 2128

100 1669 129 1941 158 2138

101 1678 130 1941 159 2147

102 1688 131 1931 160 2166

103 1697 132 1931 161 2184

104 1688 133 1941 162 2203

105 1688 134 1950 163 2194

106 1697 135 1959 164 2213

107 1706 136 1988 165 2231

108 1706 137 1997 166 2231

109 1725 138 2006 167 2241

110 1725 139 2025 168 2241

111 1734 140 2025 169 2250

112 1763 141 2025 170 2250

113 1772 142 2044 171 2259

114 1791 143 2044 172 2269

115 1800 144 2053 173 2269

116 1819 145 2063 174 2278
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specimen no: P23 Continued Bending moment: Unknown

time
(h)

creep strain 
(m)

time
(h)

creep strain 
(m)

time
(h)

creep strain
w

175 2269 204 2484 233 2616

176 2278 205 2484 234 2616

177 2278 206 2494 235 2616

178 2288 207 2494 236 2616

179 2278 208 2503 237 2625

180 2288 209 2503 238 2644

181 2288 210 2513 239 2653

182 2306 211 2513 240 2653

183 2316 212 2522 241 2663

184 2325 213 2522 242 2653

185 2344 214 2531 243 2644

186 2363 215 2541 244 2644

187 2363 216 2550 245 2644

188 2372 217 2550 246 2644

189 2381 218 2550 247 2663

190 2400 219 2559 248 2663

191 2400 220 2550 249 2663

192 2400 221 2550 250 2672

193 2409 222 2569 251 2663

194 2419 223 2550 252 2681

195 2419 224 2559 253 2681

196 2438 225 2569 254 2681

197 2438 226 2588 255 2691

198 2456 227 2588 256 2691

199 2456 228 2588 257 2700

200 2466 229 2606 258 2709

201 2475 230 2606 259 2719

202 2475 231 2606 260 2719'

203 2475 232 2625 261 2719
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Specimen no: P23 Continued Bending moment: Unknown

time
(h)

creep strain
w

time
(h)

creep strain 
(/̂ )

time
(h)

creep strain
(m)

262 2738 291 2888 320 3019

263 2738 292 2897 321 3019

264 2738 293 2906 322 3028

265 2756 294 2906 323 3019

266 2766 295 2916 324 3019

267 2766 296 2925 325 3019

268 2775 297 2897 326 3028

269 2784 298 2897 327 3028

270 2794 299 2897 328 3038

271 2803 300 2897 329 3047

272 2813 301 2897 330 3047

273 2794 302 2916 331 3056

274 2784 303 2916 332 3056

275 2784 304 2934 333 3066

276 2784 305 2944 334 3075

277 2794 306 2944 335 3056

278 2794 307 2935 336 3056

279 2813 308 2963 337 3028

280 2831 309 2963 338 3019

281 2831 310 2972 339 3019

282 2841 311 2972 340 3009

283 2831 312 2981 341 3028

284 2841 313 3000 342 3028

285 2859 314 3000 343 3028

286 2859 315 3009 344 3028

287 2869 316 3000 345 3038

288 2869 317 3009 346 3056

289 2869 318 3009 347 3038

290 2878 319 3009 348 3047
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specimen no; P23 Continued Bending moment: Unknown

time
(h)

creep strain
(m)

time
(h)

creep strain
(m)

time
(h)

creep strain 
(M)

349 3047 378 3169 407 3263

350 3056 379 3178 408 3263

351 3075 380 3169 409 3244

352 3075 381 3188 410 3263

353 3084 382 3188 411 3263

354 3094 383 3178 412 3272

355 3094 384 3188 413 3272

356 3094 385 3169 414 3272

357 3094 386 3178 415 3281

358 3113 387 3178 416 3281

359 3113 388 3188 417 3291

360 3084 389 3178 418 3281

361 3094 390 3188 419 3281

362 3094 391 3188 420 3281

363 3113 392 3206 421 3291

364 3113 393 3197 422 3291

365 3113 394 3197 423 3300

366 3113 395 3206 424 3338

367 3113 396 3216 425 3338

368 3131 397 3206 426 3347

369 3131 398 3216 427 3375

370 3131 399 3225 428 3356

371 3141 400 3234 429 3375

372 3141 401 3234 430 3375

373 3150 402 3244 431 3413

374 3159 403 3244 432 3413

375 3169 404 3253 433 3394

376 3178 405 3244 434 3375

377 3188 406 3263 435 3366
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Specimen no: P23 Continued Bending moment: Unknown

time
(h)

creep strain
w

time
(h)

creep strain
w

time
(h)

creep strain
(m)

436 3384 465 3478 494 3591

437 3394 466 3478 495 3591

438 3375 467 3488 496 3619

439 3375 468 3488 497 3619

440 3384 469 3497 498 3609

441 3394 470 3488 499 3619

442 3394 471 3506 500 3628

443 3394 472 3544 501 3628

444 3413 473 3534 502 3638

445 3394 474 3544 503 3647

446 3394 475 3553 504 3666

447 3394 476 3572 505 3619

448 3450 477 3581 506 3619

449 3450 478 3600 507 3619

450 3469 479 3581 508 3581

451 3469 480 3572 509 3563

452 3469 481 3553 510 3563

453 3469 482 3563 511 3581

454 3478 483 3563 512 3572

455 3488 484 3563 513 3581

456 3488 485 3572 514 3581

457 3469 486 3581 515 3572

458 3459 487 3581 516 3581

459 3459 488 3581 517 3591

460 3459 489 3591 518 3591

461 3469 490 3581 519 3600

462 3469 491 3591 520 3628

463 3469 492 3591 521 3628

464 3469 493 3591 522 3638
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Specimen no: P23 Continued Bending moment: Unknown

time
(h)

creep strain 
(m)

time
(h)

creep strain 
(m)

time
(h)

creep strain
(m)

523 3628 552 3656 581 3722

524 3638 553 3656 582 3713

525 3638 554 3656 583 3731

526 3656 555 3675 584 3741

527 3638 556 3666 585 3731

528 3647 557 3656 586 3750

529 3628 558 3666 587 3750

530 3619 559 3675 588 3741

531 3638 560 3675 589 3769

532 3628 561 3675 590 3797

533 3638 562 3675 591 3778

534 3628 563 3675 592 3788

535 3638 564 3675 593 3788

536 3638 565 3684 594 3797

537 3638 566 3675

538 3638 567 3684

539 3638 568 3694

540 3638 569 3694

541 3638 570 3694

542 3647 571 3694

543 3638 572 3694

544 3638 573 3694

545 3647 574 3694

546 3647 575 3694

547 3647 576 3703

548 3647 577 3713

549 3647 578 3713

550 3647 579 3713

551 3656 580 3713
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Specimen no: P24 Bending moment: 9.84Nm

Initial elastic strain = 750jU

time creep strain time creep strain time creep strain

244

366

459

544

609

5.2* 628'

Time /  Strain to failure
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