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Kinetics and Thermodynamics of Chemical Re.a.g.ti.aiia
in Binary Aqueous Mixtures
Heather Jane Cowles
ABSTRACT

The kinetics of reaction and solvation 
properties of binary aqueous mixtures are discussed from 
different theoretical standpoints. Kinetic data are 
reported for reactions involving several Iron(II) complex 
cations in binary aqueous mixtures.

The Savage-Wood Additivity Group Scheme 
(SWAG) is applied to kinetic data for the aquation of 
[Fe (5-nitro-l,10-phenanthroline) 3]2+ in binary aqueous 
mixtures. Limitations of the theory are examined. The 
theory works well for reactions in alcohol-water and some 
carboxylic acid-water mixtures but not for reactions in 
urea-water and cyclic ether-water mixtures. The conclusion 
is reached that this theory can only be applied to 
relatively simple solutions. Otherwise, the assumptions 
made in the theory are not valid.

Attention is then turned to the Kirkwood- 
Buff theory which can be applied to reactions in mixtures 
containing significant amounts of the cosolvent. Few 
assumptions are made in its derivation. This theory is used 
to probe the properties of a wide range of binary aqueous 
mixtures.Kinetic data describing reactions in these binary 
mixtures are then examined, leading to a consideration of 
preferential solvation.

Finally, the possibility of monitoring 
chemical reactions under isochoric conditions is 
considered. A meaningful isochoric volume is defined. 
Kinetic and equilibrium reaction data are then analysed 
under these isochoric conditions.
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CHAPTER ONE

Introduction



The study of kinetic reactions in aqueous

mixtures has attracted interest for many years^”  ̂Much of

the more recent study has been directed towards binary 

aqueous mixtures^^^^ with a view to obtaining a deeper 

understanding of reaction mechanisms and the solvation 

properties of the mixture.

The dictionary^ defines kinetics as, "those 

aspects of a particular process that relate to the rate at
which it occurs; the details of the way a process occurs,
especially as regards its rate".

As stated above, many kinetic studies have 

been carried out in aqueous or binary aqueous solutions, a 
theme continued in this thesis. The study of water has 
always promoted a lot of interest^, chiefly because it is 

intrinsic to the vast majority of life forms. Figure 1.1 
shows a hydrological cycle showing the constant cycling and 

usage of water.
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Figure 1.1 - A hydrological cycle^

A knowledge of some of the properties of 
water is necessary to allow study of its role as a solvent. 
Important properties of water include an unusually high 

molar heat capacity and a decrease in the molar volume on 

melting with a maximum density at 277K. These properties 

can be explained by considering the strong intermolecular 

forces which operate in liquid water; namely hydrogen 
bonds. Many structures have been proposed®”^^ for liquid 

water but no one structure has been shown to be totally



correct. It is accepted that any model that will describe 

the structure of water adequately must consider water as a 

"structured" or associated liquid to take account of the 

extensive hydrogen bonding.

The aim of this thesis is to probe the role 

of the solvent in chemical kinetics and hence understand 

more about the structure of binary aqueous, mixtures and the 

reaction mechanisms. This is done using a number of 

different theories.

The Savage-Wood Additivity Group Scheme 
(SWAG)14 attempts to quantify solute-solute interactions 

and, if carefully applied, may lead to a situation whereby 

the effects of solute-solute interactions can be predicted. 

This study of solute-solute interactions is then extended 

to consider group pairwise interactions between molecules. 

This theory is studied in Chapter Two where the solutes 

under consideration are alcohols,carboxylic acids, ureas 

and cyclic ethers.



The SWAg 14 scheme describes the properties 

of dilute aqueous systems only. If more concentrated 

solutions are used, higher order interactions would become 

important making the theory too complex for ready analysis.

This concentration limitation led to a study 

of the Kirkwood-Buff1^ theory. This theory allows for the 

study of the microscopic structure of binary solutions over 
the entire mole fraction range. Ben-Naim^^ adapted this 

theory and his method is used here. Kirkwood-Buff integral 

functions are determined which provide information about 

the local composition of the medium surrounding the 

component which make up the binary liquid mixture. This 
theory is outlined in Chapter Three. In Chapter Four the 

theory is applied to a wide range of binary aqueous 

mixtures and in Chapter Five it is developed and applied to 

kinetic reactions in binary aqueous mixtures.

Finally, reaction conditions are compared in 

Chapters Six and Seven. Conventional reaction conditions 
are isobaric/isothermal, but it was p r o p o s e d ^ ^  by Evans and 

Polanyi that isochoric (constant volume) reaction 

conditions may be more fundamental. Which volume should be



held constant is considered in Chapter Six. Having 

determined the volume to be held constant, the treatment is 

applied to kinetic and equilibrium reactions in Chapter 

Seven.
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CHAPTER TWO

A Study of the Savage-Wood Additivity Group Scheme 

and its Application to an Inorganic Reaction



2.1 - INTRODUCTION

When considering both the thermodynamic 
properties of a dilute aqueous solution and the rate of a 
chemical reaction in such a solution, it is constructive 
to look at the types of interactions which are present in 
that solution.

In the case of a simple solution comprising 
a single solute and a single solvent we can consider three 
types of interactions, solvent-solvent interactions, 
solvent-solute interactions and solute-solute
interactions. For aqueous solutions where the added solute 
is a hydrocarbon, or contains a hydrocarbon-like group, an 
interaction of considerable interest is the solute-solute 
interaction known as the hydrophobic interaction^.

The Savage-Wood Additivity Group Scheme 
(SWAG) was proposed by Savage and Wood^ as a method by 
which these solute-solute interactions could be measured, 
perhaps leading to a situation whereby the information 
gained by this treatment could be used to predict solute- 
solute interactions. These ideas of Savage and Wood have 
been both developed and criticised by a number of 
workers^-^. This Savage-Wood treatment has been extended 
to consider kinetic data^” .̂



This chapter reviews the SWAG analysis with 
reference to an inorganic hydrolysis reaction. The aim was 
to extend the application of SWAG to include kinetic data 
for this class of reaction and hence to probe the 
limitations of the method.

2,2 - THEORETICAL BACKGROUND

2.2.1 - Savage-Wood Additivity Group Scheme (SWAG)

The Savage-Wood Additivity Group Scheme 
(SWAG) was developedZ to describe the role of pairwise 
solute-solute interactions which, by definition, are 
present in dilute, real solutions. Savage and Wood used 
enthalpy of dilution measurements to calculate pairwise 
enthalpic interaction parameters for organic solutes. They 
then attempted to take their calculations to the next 
level of detail by determining pairwise interaction 
parameters between the groups in solute molecules. To do 
this Savage and Wood developed a simple additivity 
principle in which each molecule is considered as a number 
of independent functional groups. The principle assumes 
that every functional group on one molecule interacts with 
every functional group on the other molecule and that each 
of these interactions has a characteristic effect on the 
particular thermodynamic parameter under consideration, 
this effect being independent of the positions of the



functional groups on the two molecules. The thermodynamic 
parameters which have been calculated are enthalpies and 
Gibbs energies. SWAG states that the total pairwise 
molecular interaction is equal to the sum of all the 
possible individual pairwise functional group 
interactions.

The experimental enthalpy of dilution data 
were fitted^ to a series of equations leading to a 
consideration of pairwise interactions. Equation (2.2,1) 
is used to determine the change in the enthalpy of 
dilution

AdiiH = - nHgoi®(mf)
(2.2.1)

= - Hgol®(i>f)]

where n is the total number of moles of solute, m̂  ̂ is the 
initial molality before dilution with water and m^ is the 
final molality. Hgol^(^) is the excess enthalpy of 
solution per mole of solute at molality m. can be
represented by,

Hsoi^(m) = h£m + hgm^ + h^m^ + .....  (2.2.2)

10



and substitution of (2.2.2) into (2.2.1) leads to,

AdiiH/n = h2(md-nif) + hgfmdZ-mgZ) + .... (2.2.3)

As we are only considering dilute solutions and therefore 
only concerned with pairwise interactions between solutes, 
we only need to look at coefficient Y12 in equation (2.2.3) 
and this provides information about pairwise interactions 
between the solute molecules A and B.

^2 ^AA^A^ + (2.2.4)

where x^ and Xg are the mole fractions of solutes A and B 
respectively. Applying SWAG leads to.

‘ab = S X v X j  (2.2.5)
i j

where n^i are the number of i-functional groups on
molecule A and j-functional groups on molecule B. is
the enthalpy of an i-j interaction and h^g represents the 
pairwise interaction of molecule A with molecule B.

A similar summation can be derived for the 
Gibbs energy of an i-j interaction. Calculations of such 
Gibbs energies of interaction have been made by Wood and 
coworkerslO using freezing temperature measurements. 
Conversion of equation (2.2.5) to yield the Gibbs energy

11



of the functional group interaction gives,

SAB = XX"XGij-MsRT/2 (2.2.6)
i j

where G - • is the Gibbs energy of an i-j interaction, M is  ̂J s
the molar mass of the solvent, R is the gas constant and T 
is the temperature.

Savage and Wood2 acknowledged from the 
outset that this additivity principle was only approximate 
in nature. Despite this they considered that the results 
were meaningful and of use. They realised that the 
requirement that each functional group should interact 
with all other functional groups independent of positions
was simplistic as steric effects and nearest-neighbour 
effects would also play an important role. The nature of 
the solvation shells around the functional groups might 
also present problems. Other authors3”6,ll have also 
highlighted these limitations. These problems are 
discussed further later in the light of the results 
presented here. Despite these problems the Savage-Wood 
Additivity Group Scheme provides a method by which the 
sign and magnitude of a variety of interactions can be 
predicted.

12



2.2.2 - Fe(5-nltro-l,10-phenanthroline)^2+ complexes

The Iron(II) complex used in this study 
of the Savage-Wood Additivity Group Scheme (SWAG) was
Fe(5-N02”phen)g2+, Unlike the majority of Iron(II) 
complexes, Fe(5-N02~phen)32+ is a low spin complex 
due to the large crystal field effect of the 
substituted phenanthroline ligands. These low spin 

di-imine complexes are relatively inert. In aqueous 
solution, Fe(5-N02“phen)32+ has an intense dark red 
colour due to the back-bonding between the filled ^2g 
orbitals of the Fe2+ and the TC* orbitals of the 
phenanthroline ligands; Figure 2.1.

a bond ,
4----------- ; I
( lone pair)

7T orbitals

t^ ^orbital2g [there are two more t2g orbitals in the 
other two planes]

Figim 2.1 - Back bending in a low spin îfe(n) oaipLex̂ ^
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2.2.3 - Kinetics

The aquation of Fe(5-N02~phen)^2+ ig a 
first order reaction of the type ,

> [TS]^ ---------- > PRODUCTS (2.2.7)

Transition State Theoryl^ states that the rate constant 
for a chemical reaction measures the difference between 
the chemical potentials of the initial state (IS) and the 
transition state (TS). The rate of formation of the 
products is given by,

-d[A]/dt = k^lA] (2.2.8)

2.2.4 - Application of SWAG to Kinetics

The original applications of the 
Savage-Wood Additivity Group Scheme (SWAG) used 
measurements of enthalpies of dilution and other related 
experimental data. More recently7-9,14 the SWAG procedure 
has been studied using kinetic data. These measurements 
have been used to probe the reaction mechanisms and also 
the SWAG procedure itself.

14



Consider an aqueous solution containing 
substrate S, and added solute A. We know that,

l̂s = Î S° + RTln (itigYg/m®) (2.2.9)

where Pg is the chemical potential of substrate S
undergoing chemical reaction, m^ and Ys are the molality
and activity coefficient of substrate S respectively, and 
mO = 1,0 mol kg“l . |ig° is the standard chemical
potential of substrate S in an ideal aqueous solution 
where mg = 1.0 mol kg”^ . p.g° is determined by substrate- 
water interactions. By definition,

lim (mg — > 0; m^ — > 0) Ts ^ 1 - 0 (2.2.10)

and this holds for all temperatures and pressures. In a
real aqueous solution, Ys + 1.0 as a result of S<->S, 
S<->A and A<->A interactions. In a very dilute solution, 
substrate S will only be present in trace amounts so we 
need only be concerned with S<->A interactions. A similar 
argument is valid for the situation where the substrate is 
the transition state TS.

15



Considering the reaction of substrate S in 
a real, dilute aqueous solution containing an added solute 
A, and applying Transition State Theoryl3, we have,

Ys ^  Jjs *  I ' O  ( 2 . 2 . 1 1 )

where Y s  is the activity coefficient of substrate S at the 
start of the reaction (initial state, IS) and Y-yg is the 
activity coefficient for the transition state (TS). This 
leads us to a rate equation,

ln[k(mA)/k(mA=0)] = (2.2.12)

where k(m^) is the observed rate constant for the reaction 
in the presence of added solute A, of molality m^, and 
k(m^=0) is the observed rate constant for the same
reaction in aqueous solution. is the molar mass of
water, 0  is the practical osmotic coefficient for the 
solution (lim(m->O)0 = 1.0 ) and n is the order of the 
reaction with respect to water.

16



For real, dilute solutions, the excess 
Gibbs energy G^, is determined by the pairwise 
interactions S<->S, S<->A and A<->A, giving us,

GE(aq;T;p) = gss(ms/mO)2 + 2g^smgm^/(m^» )2

gAA(niA/mo)2
(2.2.13)

where Saa» EAS 8SS represent the pairwise
interactions. At constant T, p, m^.

InYg = (1/RT) (0G^/3ms) (2.2,14)

thus, differentiating (2.2,13) gives,

RTlny^ = 2gggmg/ (m°) ̂ (m°) ̂  (2.2.15)

As substrate S is only present in trace amounts, we need 
only consider the cross-term g^g, simplifying equation
(2.2.15) to,

RTlnYg = 2ĝ gmĵ /(m°) 2 (2.2.16)

An analogous equation applies for the case where the 
substrate is the transition state.

Savage and Wood% took these interactions

17



one step further to consider interactions between

functional groups X and Y on the solute molecules A and B, 
Returning to equation (2.2.12) and substituting equation
(2.2.16) leads to a rate equation which now includes 
Savage-Wood interaction parameters,

ln(k(m^)/k(m^=0)) = ̂ /R^Kl/mO)2[g^^-g^^]m^
(2,2,17)

For dilute solutions, the term nOm^M^ is negligibly small. 
Hence,

InCkCm^)/k(m^=0) ) = (2/RT)[g^g“g^^]m^/(m‘̂ )2 (2.2.18)

which is the working equation for SWAG kinetic analyses.

2.3 - RESULTS(I)

The Fe(5-nitro-l,10-phenanthroline)g2+
complex was prepared using stoichiometric quantities of 
Fe(ii) ammonium sulphate and (5-N02“phen) ligand.

18



For each kinetic run the cells contained 
3 c m 3  of an aqueous acidic solution of the appropriate

cosolvent, to which was added 2 x 10”5 crâ  of the stock 
solution (z 0.01 mol dm"3) of the Fe(5-N02-phen)3 complex, 
the solution was rendered acidic using sulphuric acid, the 
final concentration within the cell being 0.10 mol dm“3. 
Acid was required to scavenge the substituted 
phenanthroline ligand after being released from the 
Fe(II) centre, thus inhibiting the reverse reaction. The 
kinetic runs were carried out using Pye Unicam SP1800 and 
Hewlett-Packard HP8451A spectrophotometers, the results 
being analysed as described in Appendix 1. The aquation 
reaction was monitored by recording the decrease in 
absorbance of the band at ^max = 510 nm original to the 
complex. The initial absorbance reading was approximately
1.0 and the reaction was followed until the intense dark 
red colour had essentially completely disappeared, the 
time taken for the colour to disappear being equal to at 
least 2\ half lives. All reactions were carried out at
298.2 K and atmospheric pressure.

The kinetics of reaction for the Fe(II) 
complex under consideration have been extensively 
s t u d i e d l 5 - 1 8  both for the aquation reaction and attack by 
different nucleophiles, all in a range of different 
solvents. The reaction for the aquation of this complex

19



under acid conditions can be given by,

H2O
Fe(5-N02-phen)g2+(aq) + 3H+(aq) ----- >

Fe2+( aq >3 5W^phen. H+( aq )
(2.3.1)

The rate of reaction was known to be independent of the 
acid strength. In the activation step the Fe-N bonds
within the complex cation stretch, reaching a limit where 
one of the substituted phenanthroline ligands is released 
into the solvent surrounding the complex cation. This is 
shown in Figure 2,2. This scheme implies that the 
transition state will be more hydrophobic than the initial 
state.

The rate constant for the reaction with no 
added solute was measured.

^°obs = 5.57 X 10-4 s"l

The kinetic results for reactions in ^ series of aqueous 
solutions containing added alcohols and carboxylic acids
are shown in the Tables below.

20
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15-NOjphenljFe
NO,

2+

(5-N0jPhen),Fe

NO,

k i
TS

Eiaiice 2,2 - First step in the aquatim reaction of the complex.
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Table 2,1 - Alcohols

2,1.1 - METHANOL 

™A / kg'l In (kobs/k°ob8)

0 0
0.31 0.022
0.59 0.036
0.88 0.066
1.17 0.083
1.49 0.110

2.1.2 - ETHANOL

™A / mol kg  ̂ ^^obs^^°oba^

0 0
0.30 0.030
0.64 0.045
0.93 0.095
1.20 0.117
1.50 0.132

22



2.1.3 - i-PROPANOL

“a / In (kob3/k°obs)

0 0
0.33 0.037
0.66 0.080
1.07 0.110
1.40 0.136
1.70 0.179
2.15 0.253

2.1.4 - t-BUTANOL 

/ mol kg—1

0 0
0.32 0.039
0.62 0.079
0.74 0.103
1.11 0.134

23



Table 2.2 - Carboxylic Acids

2.2.1 - METHANOIC ACID

In (kobs/k°obs)

0 0
1.56 -0.086
2.06 -0.128
2.61 -0.173
3.15 -0.211

2.2.2 - ETHANOIC ACID

/ mol kg-1 In (kgbs/k^obs)

0 0
1.00 -0.052
1.48 -0.078
2.03 -0.104
2.56 -0.122

24



2.2.3 - PROPANOIC ACID

/ mol kg-1 In (k^bs/^^obs^

0 0
0.54 -0.080
1.08 -0.143
1.62 -0.175
2.16 -0.098
2.70 -0.118

2.2.4 - BUTANOIC ACID

m^ / mol kg-1 In (kobg/kOobs)

0 0
0.47 -0.110
0.92 -0.116
1.27 -0.075
1.69 -0.055
2.10 +0.081

These results are summarised in Figure 2 . 3 
and 2.4 where In (kgbs/k^obs^ Is plotted against the
molality of the added cosolvent, m^. The slopes obtained
from these graphs are substituted into equation (2.2.18) 
to give the Savage-Wood interaction parameters; Table 2.3.

25
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-1 2-0 3"0
m /mol kg

- 0*1 -

- 0'2

Figure 2.3 - Dependence on molarity of organic solute for
In describing rate^^^f aquation of iron (II)
complex [Fe(5 - NOg - phen)3]2+ in aqueous acidic
solutions at 2 98.2K. Solutions are ( <) MeOH;
EtOH; (— — ) i-PrOH; ( ) t-BuOH; ( ) ethanoic acid; and
(—  -) methanoic acid.
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- 0 . 0 8

- 0.12 -

- 0 . 1 6

VO-1m^/mol kg

Figure 2.4 - Dependence on molarity of organic solute for
In (k describing rate^of aquation of iron (II)
complex [Fe(5 - NO 2 - phen)]]^* in aqueous acidic 
solutions at 298.2K. Solutions are (— —) propanoic 
acid; and (— —) butanoic acid.
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Table 2.3 - Slopes and Savage-Wood Parameters

cosolvent slope/kg mol"^ [G(i<->IS)-G(i<->TS)]/J kg”^

methanol 0.073 90.5
ethanol 0.091 111.8
i-propanol 0.111 137.6
t-butanol 0,129 160.0

methanoic -0.064 -79.3
ethanoic -0.050 -62.0
(propanoic)
(butanoic) —  —

(Lines forced through origin)

2.4 - DISCUSSION(I)

Consider first the alcohols and the first 
two acids.The values for the Savage-Wood interaction 
parameters shown in Table 2.3 show a constant increment 
of +21 (i4) J kg-1. In each case the chain length of 
the added solute under consideration has been 
incremented by one -CH2" group. Applying the Savage-Wood 
Additivity Group Scheme, the calculated increment in the 
interaction parameters is close to the value of -34(15) J 
kg-1 obtained by WoodlO for the G(CH2<->CH2) pairwise
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group interaction parameter. From this we concluded that
as we move from the initial state (IS) to the transition
state (TS) for the aquation reaction of Fe( 5-N02~phen) 
under acidic conditions, there is an increase in
hydrophobicity (as indicated by the positive value 
obtained for G(CH2<“>CH2)) of slightly less than one
methylene group. From a mechanistic viewpoint we would 
expect that the increase in exposure of the substituted 
phenanthroline ring to the solvent medium as the Fe-N bond 
is stretched would lead to an increase in the hydrophobic 
character of the substrate during the activation process. 
These results showed that there was no change in the 
reaction mechanism as either the molality or composition 
of the added solute was changed.

We now turn our attention to propanoic and 
butanoic acid. According to Figure 2.4 the kinetic results 
produce a non-linear plot which means that Savage-Wood 
interaction parameters cannot be calculated from the 
slope. It would seem unlikely that this change in 
behaviour on moving down the homologous series from 
ethanoic acid to propanoic acid is caused by a change in 
the reaction mechanism. Therefore, we must look for other 
explanations.
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It is important to remember throughout this 
discussion that we are concerned with reactions in aqueous 
solution and that we must consider therefore the effects 
of solvation. In addition to the interactions of the acid 
molecules with each other, the acid molecules will 
hydrogen bond with the water cosolvent molecules. The 
level of this hydrogen bonding is not simply dependent on 
the molality of the added solute as is the case with the 
other cosolvents studied; here we must consider the 
decrease in acid strength as we move down the series. As 
with all acids, the carboxylic acids will be subject to 
ionisation and will be at least partially dissociated in 
these aqueous solutions. This means that the balance 
between solvated acid molecules and solvated acid ions 
should be allowed for. The SWAG procedure as it stands 
treats the acid molecules as undissociated molecules.

Wood and coworkersl9 have applied the SWAG 
treatment to the same carboxylic acid series using 
enthalpy of dilution measurements. They state that their 
results for the full series of aliphatic, straight-chain 
acids right through to butanoic acid, show good 
correlation with other results obtained using SWAG. This 
is in apparent contradiction to the results reported here. 
However, in applying the SWAG treatment they took into 
account ionisation of the acid molecules and also triplet 
interactions between acid molecules. They consider that
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clustering of acid molecules into trimers or even larger
species, particularly for propanoic and butanoic acids, is 
very important and increases with chain length as the
hydrophobic group on the acid exerts a greater effect. For 
propanoic and butanoic acids, trimers can have a 
significant effect on results, even when the acid molality 
is low. To allow for both triplet interactions and the 
dissociation of some of the acid molecules. Wood fitted 
the data to activity expansion equations which had been 
developed p r e v i o u s l y Z O .  This activity expansion theory 
uses the same equation for weak or strong electrolytes 
making no distinction between them. The theory represents 
the activity of the i-th component both as a function of 
the stoichiometric molality of each component (in the case 
of the acids there are two components, H+ and A”) and as 
"sociation" constants denoting the interactions of the 
component species.

It is clear therefore, that the higher- 
order carboxylic acids do not fit the Savage-Wood
Additivity Group Scheme in its original form, even at low 
molalities as the first two acids do. This is because the 
SWAG procedure does not allow for two very important 
properties of the acids, namely their tendency to cluster 
and their ability to dissociate. However, the SWAG method 
of analysis does work well for the homologous series of 
alcohols.
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2.5 - RESÜLTS(II)

The aquation reaction of Fe(5-N02”phen)3 
was studied in a variety of aqueous solutions where the 
added solute was one of a series of alkyl-substituted 
ureas or cyclic and related ethers. Reactions involving 
all of these solutes were carried out under acidic 
conditions as in Section 2.3. Measurements involving some 
of the ureas as added solutes were repeated using 0.01 
mol dm-3 EDTA (present as the disodium salt) instead of 
0.10 mol dm"3 sulphuric acid. All other reaction 
conditions remained unchanged. The EDTA scavenges the 
Fe(II) itself, instead of the substituted phenanthroline 
ligands as is the case with added acid. As with added 
sulphuric acid the purpose of the EDTA is to stop the 
reverse reaction.

The kinetic results for these solutes are 
given in the Tables below.

N.B. = 5.57 X 10“^
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Table 2,4 - Ureas (+ H"*")

m

2.4.1 - UREA

A / kg'l 1“ (koba/k°obs)

0 0
0.25 0.154
0.50 0.214
0.75 0.315
1.00 0.417
1.50 0.662

m

2.4.2 - METHYLOREA 

A / kg'l 1“ (kobs/k°obs)

0 0
0.10 0.059
0.30 0.191
0.50 0.276
0.80 0.471
1.00 0.529
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2.4.3 - ETHYLOREA

"«A / kg'l In (kobs/k°obs)

0 0
0.20 0.097
0.40 0.189
0.50 0.243
0.80 0.334
1.00 0.382

m

2.4.4 - 1,3-DIMETHYLUREA

/ mol kg—1 In (kgbs/k^Qbg)

0 0
0.20 0.127
0.40 0.217
0.60 0.300
0.75 0.365
1.00 0.468
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m

2.4.5 - 1,1,3,3-TETRAMETHYLÜREA

A / kg'l (kobg/kOobs)

0 0
0.20 0.080
0.40 0.129
0.60 0.160
0.80 0.214
1.00 0.250
1.20 0.307

Table 2.5 - Ethers (+ H"*")

2.5.1 - TETRAHYDROFÜRAN (THF)

/ mol kg-1 In (kobs/k°obs)

0 0
0.20 0.011
0.40 0.034
0.60 0.052
0.70 0.054
1.00 0.079
1.50 0.158
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2.5.2 - 1,4-DIOXANE

/ mol kg-1 In (kobs/k^obs)

0 0
0.20 0.025
0.40 0.054
0.80 0.081
1.00 0.098
1.50 0.157

2.5.3 - 1,2-DIMETHOXYETHANE (DME) 

m^ / mol kg~l In (k^bs/^^obs^

0 0
0.20 0.070
0.40 0.112
0.60 0.154
0.80 0.197
1.00 0.283
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Table 2.6 - Ureas (+ EDTA)

2.6.1 - UREA (+ EDTA)

“A / mol kg 1 In (kobs/k°ob8)

0 0
0.30 0.150
0.50 0.226
0.80 0.324
1.20 0.419

2.6.2 - METHYLÜREA (+ EDTA)

“A / mol kg 1 In (k^tg/kO^^g)

0 0
0.20 0.154
0.73 0.321
1.00 0.411
1.20 0.513
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2.6.3 - ETHYLÜREA (+ EDTA)

“A / “Ol ks'l 1“ (kob3/k°ob3)

0 0
0.20 0.140
0.50 0.273
0.70 0.332
0.90 0.367
1.20 0.463

These results are shown in Figures 2 . 5 - 2.7 
where In (kobs/^^obg) plotted against the molality of 
the added solute, m^. The slopes obtained from these plots 
are substituted into equation (2.2,18) to give the 
interaction parameters; Tables 2.7 and 2.8,
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Figure 2.5 - Dependence on molarity of organic solute for
ln(k,/k° ) describing rate.olf aquation of iron(II)ebi / n
complex [Fe(5 - NO 2 - phen)]]^^ in aqueous acidic 
solutions at 298,2K. Solutions are (— ) urea; (-•-) 
methylurea; (••••) ethylurea; (— — ) 1, 3-dimethylurea; 
and (---) 1, 1, 3, 3-tetramethylurea .
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Figure 2.6 - Dependence on molarity of organic solute for
In describing rate^^oT^^aquation of iron (II)
complex [Fe(5 - NO 2 - phen)3]2+ in aqueous acidic
solutions at 298,2K. Solutions are (-- ) THF; (-- )
dioxane; and (.. ) DM E .
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Figure 2.1 - Dependence on molarity of organic solute for
ln(k /k° ^describing rate.of aquation of iron(II) oli «®i/ 1complex [Fe(5 - NO 2 - phen)]]^^ in aqueous solutions 
(EDTA) at 298.2K. Solutions are (-‘-) urea; (— •’•) 
methylurea; and (-— ) ethylurea.
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Table 2.7 - Interaction Parameters (UREAS)

cosolvent slope no.CH^ grps [G(i<->IS)-G(i<->TS)] 
kg mol“  ̂ J kg”^

urea(H^) 0.438 0 543.0
meth(H+) 0.559 1.5 692.9
eth(H+) 0.448 2.5 555.3
dime(H^) 0.495 3.0 613.6
tetra(H+) 0.271 6.0 335.9

ur(EDTA) 0.414 0 513.2
me(EDTA) 0.466 1.5 577.7
et(EDTA) 0.448 2.5 555.3

Table 2.8 - Interaction Parameters (ETHERS)

cosolvent slope 
kg mol~l

CH2 + 0 [G(i<->IS)-g(i<->TS)] 
J kg-1

THF(H+) 0.087 4 + 1 107.8
diox(H^) 0.104 4 + 2 128.9
DME(H+) 0.276 5 + 2 342.1
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2.6 - DISCÜSSION(II)

The results in Tables 2.7 and 2.8 and 
Figures 2.5 - 2.7 show that neither the ureas nor the
cyclic and related ethers fit the Savage-Wood Additivity 
Scheme^ in the expected way. The ureas follow no clear 
pattern based on the number of -CH^- groups (N.B. 1 x CH3 
= 1.5 X CH2) and for the ethers the value obtained for a 
CH2- group interaction parameter is unacceptably large. 
Obviously the chemical nature of these added solutes needs 
to be considered to explain these results.

Looking first at the ureas, we can see 
that there appears to be a complete change in the nature 
of the solute-water solvent medium between methylurea and 
ethylurea as we go through the series. There is another 
such change before 1,3-dimethylurea. Clearly the continued 
alkyl-substitution of urea leads to far more dramatic 
changes in the properties of the added solute than is the 
case for the alcohols.

Urea itself is a polyfunctional molecule 
and is very soluble in water. This high solubility is due 
to the formation of hydrogen bonds between water and urea 
via the -NH and -C=0 groups on the urea molecules. These 
hydrogen bonds are short-term interactions and do not form
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an extensive network. Urea is considered to be a 
"strncture-breaker" as it breaks up the hydrogen bonded 
network of water molecules when it forms an aqueous 
solution. Let us consider the equilibrium,

(HzO)^ <========> (HzO)^ (2.6.1)

where (H^O)^ is "bulk" water and is an extensively 
hydrogen bonded network, and (H^O)^ is "dense" water and 
is composed of non-bonded groups. Urea molecules do not 
have the correct geometry to bond well with "bulk" water 
but do bond well with "dense" water, thus lowering the 
chemical potential of This is turn moves the
equilibrium in favour of so "breaking" the water
structure.

As hydrophobic alkyl groups are added to 
the urea molecule we see a change in behaviour. This 
change has been observed by several authors^^”^^. As the 
alkyl-substituted molecules become more hydrophobic in 
nature they develop a "structure making" character and 
enhance the ordering of water molecules within the aqueous 
solution. Clearly the effect of the added hydrophobic 
groups outweighs the "structure breaking" effect of the 
-NH and -C=0 groups. Perron et al.^l split the effect of
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methyl-substitution into three groups; (i) an intrinsic 
hydrophobic contribution of the methyl group; (ii) a 
hindrance of hydrogen bonding ability of the amino group;
and (iii) a decrease in the level of hydrogen bonding of
the carbonyl group.

The results in Tables 2.7 - 2.8 show that
we must consider not only the change in character of the
alkyl-substituted ureas from "structure-breakers" to 
"structure-makers", but also we must look at where exactly 
the substitution takes place, i.e. whether the alkyl 
groups are positioned on one or both ends of the basic 
urea unit. Barone et al.%3 looked at this problem and 
concluded that the ordering for ethylurea and 1,3- 
dimethylurea may not be as expected. To study this we need 
to look at the hydrophobic interactions which are taking 
place within the aqueous solution. In the case of 
ethylurea there will be ethyl-ethyl interactions while for 
1,3-dimethylurea these interactions will only be between 
methyl groups although there will be many more of these. 
This means that the balance between quantity and strength 
of interactions must be carefully considered.

The results for the first three ureas were
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repeated using EDTA to inhibit the reverse reaction 
instead of sulphuric acid. The results in Table 2.7 and 
F i g u r e 2 . 7  show that the overall trend remained the same 
indicating that the presence of acid was not the cause of 
the unexpected pattern.

We now turn our attention to the ethers. 
Here the trend is essentially as expected but the values 
obtained for the Savage-Wood parameter for the interaction 
of one -CH2“ group with another werg extremely large.

An explanation for the ether results (and 
other results which do not appear to fit the theory) may 
lie within the "rules" of the Savage-Wood Additivity Group 
Scheme. These state that the interactions of the various 
groups within a molecule are independent of their position 
within that molecule. Clearly this is an 
oversimplification. In the case of the ethers studied, a 
cyclic ether is going to have tighter steric restrictions 
on its interactions with other similar molecules than will 
be the case for a straight-chain ether. Another limitation 
of SWAG relates to the nature of groups within the 
molecule other than the particular group under 
investigation; namely near-neighbour effects. If there is 
an electron-withdrawing or -donating group next to, or 
sufficiently close to, the group whose interaction is 
being monitored, then the presence of such a group will
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affect the results obtained. The SWAG theory does not 
allow for this although Savage and Wood did acknowledge 
these difficulties. The compatibility of the hydration 
spheres around the functional groups of the interacting 
molecules must also be considered, as, if these are 
incompatible then the interactions between molecules will 
be affected. These problems have been considered by a 
number of authors^^^,!!^

In conclusion we can say that the results 
in Section 2.5 highlight a number of the limitations of 
the Savage-Wood Additivity Group Scheme.

2.7 - CONCLUSIONS

The aim of this chapter has been to study 
the Savage-Wood Additivity Group Scheme (SWAG) and its 
application to an inorganic reaction. Four types of 
added solutes were studied; alcohols, carboxylic acids, 
alkyl-substituted ureas and cyclic and related ethers. 
The results obtained for the alcohols and the first two 
acids fitted the theory well and gave a value for the 
G(CH2<->CH2) interaction parameter of +21(t4) J kg”^ . This 
was in good agreement with values obtained elsewhere. 
However, the ureas and cyclic ethers gave results which 
were far from those expected, and these results led to a
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consideration of the limitations of the procedure. In the 
case of the ureas, although the solvent (water) is not 
considered in the SWAG procedure, clearly the solvent is 
of major importance due to the relatively dramatic changes 
which take place in its character as we see changes in the 
properties of the alkyl-substituted ureas.

The data reported in this chapter, in 
consideration alongside work reported elsewhere, could be 
said to show that the values obtained for the Savage-Wood 
interaction parameters (in this case G(CH2<->CH2)) will 
vary considerably with the particular solutes used. This 
may mean that it is not completely meaningful to give the 
parameters absolute numerical values.
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CHAPTER THREE

An Outline of the Development of the 

Kirkwood-Buff Theory of Solutions



3.1 - INTRODUCTION

In the previous chapter the Savage-Wood 
Additivity Group Scheme was described. This scheme allows the 
interactions between solute molecules to be studied by 
calculating the pairwise interaction parameters and the group 
pairwise interaction parameters. This theory is limited in 
application to dilute solutions where higher order interactions 
are unimportant. The equations which would be generated if 
concentrated solutions were studied would be extremely complex 
to take account of these higher order interactions. Therefore, 
if we wish to study the interactions of the different types of 
molecules within a binary mixture over the entire mole fraction 
range a new approach is required.

The solution theory devised by Kirkwood and 
Buffi and subsequently adapted by Ben-Naim^*”̂  and others^”  ̂

provides us with a procedure for examining the role of 
molecular interactions involving solutes in binary solvent 
systems over the complete mole fraction range.

The Kirkwood-Buff theory! uses several 
thermodynamic properties of a multicomponent liquid system 
obtain the corresponding radial distribution functions. These 
radial distribution functions provide information about the 
local composition of the medium surrounding the components 
which make up the liquid system. The Kirkwood-Buff theory can
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be said to relate macroscopic properties of the system to its 
microscopic, or molecular, structure. Taking this one step 
further, the Kirkwood-Buff theory enables us to monitor the 
relative attraction (or repulsion) that one component of the 
system may have for another component. This means that the 
local nature of the theory makes it ideal for monitoring 
preferential solvation.

The reason that this theory is so useful 
stems from the lack of restrictions placed on its application.

oBen-Naim^ listed three points emphasising this usefulness.

1) The theory is valid for any kind of particle, not 
necessarily spherical.

2) Only the spatial pair correlation functions appear in the 
relations, even when the particles are not spherical, (This is 
as opposed to angular-dependent pair correlation functions).

3) No assumption of additivity of the total potential energy 
is made. Often, expressions involving thermodynamic parameters 
assume that there is total pairwise additivity for the 
components within the system. This is clearly not valid for 
complex concentrated solutions.
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Considering the many advantages of the 
Kirkwood-Buff theory! is surprising perhaps that it took
twenty years for its potential to be realised^. One reason for 
this may be that as written by Kirkwood and Buff, the theory 
required the Kirkwood-Buff parameters G^j, and then used these 
parameters to calculate thermodynamic quantities. The radial 
distribution functions necessary for the calculation of G^j can 
only be determined readily for very simple systems. Ifhen 
B e n - N a i m ^ ~ 4  developed his inversion procedure, making it 
possible to calculate Gĵ j from thermodynamic data, he opened 
the way towards wider use of the Kirkwood-Buff theory of 
solutions.

3.2 - THEORETICAL OUTLINE

3.2.1 - The Kirkwood-Buff Theory of Solutions

The Kirkwood-Buff Theory! is a statistical 
mechanics theory which is applied to solutions. The theory 
shows that by using (a) derivatives of the chemical potential,
(b) partial molar volumes, and (c) compressibilities, 
parameters can be determined which involve integrals of radial 
distribution functions for the molecular pairs present in the 
solution under consideration. These parameters are known as 
Kirkwood-Buff integrals. This theory was seldom used to probe

53



the molecular structure of solvent mixtures until Ben-Naim^ 
showed its potential for just such an investigation. A summary 
of his work is given in Section 3.2.2.

Let us consider an assembly of molecules. 
The position of any such molecule can be given by the cartesian 
coordinates (x,y,z) or by vector R. The volume will be given by 
(dx,dy,dz) or by dR. This volume dR, for a shell surrounding 
the molecule could be expressed as,

dR = 47Cr̂ dr (3.1.1)

Returning to our assembly of molecules we identify two 
infinitesimal volume elements of configuration dX ' and dX", 
these being separated by a distance R. The probability of 
finding a molecule in dX' is p^^^(X').dX' and the probability 
of finding a molecule in dX" is p(i) (X").dX". The probability 
of finding a molecule in dX' and dX" simultaneously is given by 
p (^)(X',X")dX'.dX". i.e. we are considering an intersection of 

two events,

{molecule in dX'} f) {molecule in dX"} (3.1.2)

We can look at the two limiting cases. (1) The separation R is 
so small that putting a molecule in dX' will drastically reduce 
the probability of finding a molecule in dX". This probability 
can be adjudged to be negligibly small. (2) The separation R is
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so large that the probability of finding a molecule in dX' and 
a molecule in dX" simultaneously is given by the sum of the 
individual probabilities,

p(2)(x.^X”) = (X' ) dX' 'p(̂ ) (X") dX" (3.1.3)

giving us,

p(2) (X',X") = p(i)(X')'p(D(X") (3.1.4)

Equation (3.1.4) shows that the local densities at X' and X" 
are not correlated. Equation (3.1.4) is valid for a 
structureless continuum. If we wish to apply this theory to 
real solutions, then we must consider real molecules of real 
size and remember that these molecules will interact with one 
another. This means that for real systems the local densities 
will be correlated. This correlation, or deviation from the 
ideal case, is accounted for by introducing a pair correlation 
function into equation (3.1.4),

p'^’(x',x") = p ‘̂ ’(X')p'” (X")g(R) (3.1.5)

where g(R) is the pair correlation function. Considering the 
limiting system where we have an ideal gas, the particles will 
have zero size and will not interact. This means that equation 
(3.1.4) is valid and g(R)=1.0. Figure 3.1 shows the 
relationship between g(R) and R for a system composed of hard
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spheres at low density. For a simple liquid system (which is 
nearer to our real system under consideration) we observe 
deviations from the value of g(R)=1.0 found for ideal systems; 
Figure 3.2.

1-0

1-0 R-^

Figure 3.1 - Ihir correlation fLnction g(R) for a hard sphere i^tem at lew density.

91R)

•0

31 2 4
R /c

Figure 3.2 - Ihir correlation finction g(R) for a sinple pure liquid
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As R/o (where a is the molecular diameter) becomes larger the 
deviations decrease until we reach unity indicating that the 
molecules are no linger correlated. The deviations from 
ideality can be expressed in terms of the difference, g(R) - 1. 
The vital link between the molecular information given by g(R) 
and the thermodynamic properties of the system is given by the 
exact expression for the compressibility,

= [1/kTp] + (l/kT)J[g(R)-l]47CR^dR (3.1.6)
0

where is the isothermal compressibility. This is close to
the key Kirkwood-Buff equation^.

If we now look at a system, which is made 
up of two components, component-1 and component-2, then we have 
a number of correlation functions which describe the 
correlation of position and mutual orientation for these 
component molecules. These correlation functions are angle- 
averaged, orientation-averaged pair correlation functions and 
are given by g]̂ ]̂ (R), g22(R) §12^^^ • This leads us to the
Kirkwood-Buff integral^, e.g. G^2>

Gj2 =  J[gi2(R)-l]47tR^dR (3.1.7)
0

Looking at this Kirkwood-Buff equation we would like to obtain 
information on the pair correlation function g^2(X'>^")> giving 
us details of the correlation between the positions and
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orientations of the molecules of the system. Currently this 
cannot be obtained. However, we can study the locational (or 
angle-averaged) correlation function is the
number density of component-1, then we can explain the physical 
model represented by equation (3.1.7). ^1̂ 12 47CR^dR is a
measure of the average number of molecules of component-1 in a 
spherical shell of thickness dR which are at a distance R from 
the centre of a molecule of component-2. p^47CR^dR provides a 
measure of the average number of molecules of component-1 in 
the same spherical shell, the origin of this shell being chosen 
at random. Thus the composite quantity P̂  [9i2  ̂47i:R̂ dR is a
measure of the excess (or deficiency) in the average number of 
molecules of component-1 in a spherical shell of thickness dR 
at a distance R from a component-2 molecule relative to the 
number obtained by eliminating the condition that a component-2 
molecule be at the origin. This gives us the condition that 
Pi^i2 Ts equal to the total average excess (or deficiency) of 
component-1 molecules in the complete surroundings of a 
component-2 molecule. This means that 0^2 is a measure of this 
excess (or deficiency) per unit density. This quantity is 
symmetrical, i.e. 0^2 = ^21*

Ben-Naim^”^ derived the Inverse Kirkwood- 
Buff treatment (IKB) to simplify the use of the Kirkwood-Buff 
theory and so obtain information on the microscopic behaviour 
of a solvent system. This IKB procedure is described in the 
next section.
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3.2.2 - Inverse Kirkwood-Buff Procedure (IKB)

This Inverse Kirkwood-Buff procedure 
developed^""^ by Ben-Naim gives us access to Kirkwood-Buff 
parameters for a mixed solvent system, and hence information on 
its microscopic properties,via calculations involving 
thermodynamic data on that system. The IKB procedure is 
explained in detail in Ref. 3; a brief outline is given below.

There are five important quantities in the
inversion procedure

(a) Pi + p2 + Pip2(Gii + - 2Ĝ )̂ (3.2.1)

(b) 1 + PiGji + PzG;; + Pip2(G^^-Gj2 - (3.2.2)

(c) (3.2.3)

where is the isothermal compressibility, kg is the Boltzmann 
constant, and T is the absolute temperature.

(d) [1 + P2 (G22 - Ĝ 2>]/ri (3.2.4)

V2 = [1 + Pi (Ĝ  ̂ - ] /T) (3.2.5)

= [Ç - r\Ĝ ]̂/T[̂  (3.2.6)
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pgRT/piTiV (3.2.7)

^22= PiRT/p^TlV (3.2.8)

^12= P'21 = -RT/riv (3.2.9)

The above equations are then used in conjunction with 
thermodynamic relations and data to obtain the Kirkwood-Buff 
integrals G22 and G^2* These calculations can be divided
into six stages.

STAGE 1 - Calculation of (dp2/d%2) ̂ ^ . This can be done using
vapour pressure or partial pressure data.
STAGE 2 - Analysis of the volumetric data to obtain the number 
densities P̂  and P2 .
STAGE 3 - Determination of the molar quantity T| using the 
quantities t ,p and p^ and p^ as determined in the
first two stages.
STAGE 4 - Compressibility data , and the quantity T) are
used to determine a dimensionless quantity Ç .
STAGE 5 - Quantities Tj and  ̂ are combined with the volumetric 
data to obtain G^2'
STAGE 6 -The volumetric data is combined with T\ and G^2 to 
obtain and G22'
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By combining all of the Kirkwood-Buff 
parameters we obtain,

1̂2 “ 1̂1 + '̂22 - 2Gi2 (3.2.10)

For a symmetrically ideal solution, =  0 . This means that
can be used to monitor deviations from ideality.

Returning to the Kirkwood-Buff equation^.

= J[gi2(R)-l]47cR̂ dR (3.2,11)

Ben-Naim split this into two regions,

Jl2 naj2
G J2 = |(-4jcR̂ dR) + j[g(R)-l]4j:R^dR (3.2.12)

0 <ĵ

where is the distance of closest approach between
molecule-1 and molecule-2. na^^ represents a number of 
molecular diameters such that g(R) —> 1.0. Equation (3.1.12) 
can be written as,

Gi2 = - Vi2 + Ii2 (3.2.13)

V^2 is a volume term and can be treated as being composition 
independent. The second term, I]̂ 2> could be considered to be an 
"interaction" term, as it provides a measure of the attraction
(or repulsion) between molecule-1 and molecule-:
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Thus it can be seen that by employing 
Ben-Naim’s Inverse Kirkwood-Buff Procedure^ we can analyse the 
microscopic behaviour of solvent systems as intended by 
Kirkwood and Buffi.

3.3 - DISCUSSION

In more recent years the Kirkwood-Buff 
theory of Solutions^ has been applied to a variety of systems 
by a number of workers^» *̂”1^. The theory has been applied to a 
number of important issues. Ben-Naim has applied the theory to 
the problem of preferential solvation^, monitoring this over 
the complete mole fraction range providing useful information 
on the limits of preferential solvation in binary mixtures. 
Ben-Naim also applied the IKB theory^ to hydrophobic 
interactions!^ by studying the G22 parameter in binary aqueous 
systems which contain an organic cosolvent as component-2.

As is often the case when applying theories 
to practical measurements, the limitations of the theory must 
be realised and allowed for. In the case of the Kirkwood-Buff 
theory there are few limitations to consider as very few 
assumptions are made in its derivation. Instead, the 
limitations may be in the data used. The measurements may have 
been made by a number of different research groups who may have 
all reported their results using different limits and symbols

oand may also have used different accuracy limits. Kato°
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suggested that the determination of the concentration 
derivative of the chemical potential using thermodynamic 
measurements may be the "weak link" in the accuracy of the 
Kirkwood-Buff parameters obtained. Kato used concentration 
fluctuation measurements determined via small-angle x-ray 
scattering data instead, maintaining that the accuracy was 
greater this way. Other authors!^ have also followed this 
approach.

In conclusion it can be said that this 
theory! appears valuable, especially for binary aqueous 
mixtures where it provides a measure of the probability of 
finding a cosolvent molecule in close proximity to either 
another cosolvent molecule or a water molecule over the entire 
mole fraction range. Taking the case of the water molecule, the 
Kirkwood-Buff Theory of Solutions provides vital clues as to 
the degree of solvation. This work is developed in the next two 
chapters. In Chapter 4 the theory is applied to a number of 
binary aqueous mixtures, and in chapter 5 the work is extended 
using kinetic measurements to consider added solutes in these 
binary mixtures.
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CHAPTER FOUR

Application of the Inverse Kirkwood-Buff Procedure 

to a Range of Binary Aqueous Mixtures



4.1 - INTRODUCTION

In Chapter Three an outline of the 
Kirkwood-Buff Theory of Solutions! was given, together 
with Ben-Naim's adaptation^»^ of this theory leading to 
the Inverse Kirkwood-Buff (IKB) Procedure. This procedure 
produces IKB integral functions, and these functions 
provide information about the three types of long-term, 
space-averaged interactions which occur between the 
molecules within an aqueous binary system over the entire 
mole fraction range. These interactions are water-water 
interactions, solute-solute interactions and solute-water 
interactions. In this chapter the IKB procedure will be 
applied to a range of binary aqueous mixtures and the 
integral functions obtained will be considered in terms of 
the properties of these mixtures. First mixtures which 
fall into the "typically aqueous"^»^ class will be 
considered. These can be split into two groups, (1) the 
alcohols, and (2) the ketones and cyclic ethers. Then, 
"typically non-aqueous" mixtures will be studied. These 
also can be split into two groups. The first group 
contains those mixtures for which is negative and the
examples used in this chapter are hydrogen peroxide-water 
mixtures and dimethyl sulphoxide-water mixtures. One 
example of the second group is the cyanoraethane-water
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system, this being a mixture for which is positive.
Finally, the complex behaviour displayed by the 
fluoroalcohol + water mixtures will be discussed.

4.2 - TYPICALLY AQUEOUS MIXTURES (TA)

Typically Aqueous (TA) mixtures^»^ compose 
a class of cosolvents who all display the following excess 
thermodynamic properties when added to water; G^^ > 0 and 
|T.S^E| > This class includes alcohols, ketones and
ethers. Figure 4.1 shows the excess thermodynamic 
functions of mixing for ethanol and 2-methyl propan-2-ol, 
both typically TA mixtures.

The S-shaped curve for 2-methyl propan-2-ol - water
mixtures marks a change from exothermic mixing in the 
water-rich regions to endothermie mixing in the cosolvent- 
rich regions. Many TA mixtures display this pattern, e.g. 
THF + water.

Before we move on to consider the 
individual TA mixtures, there are a number of general 
points which need to be considered.

As explained in Chapter Three, the IKB 
procedure requires thermodynamic data in order to 
calculate the integral functions. The data required are
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(1) excess molar Gibbs energies to yield derivativesm
of the chemical potential; (2) partial molar volumes; and 
(3) isothermal compressibilities. All data must be 
calculated as a function of X£. The starting data for any 
one binary aqueous mixture may come from several different 
research groups. In this chapter all the analyses and 
calculations were carried out using FORTRAN programs.

One of the most important steps in the IKB 
analysis is the determination of d|J.2/dx2 as a function of 
X2 from the G^^ data. The total free energy of solution is 
given by,

Ggol (4.2.1)

If we consider an ideal binary solution then,

)l2(mix/T;p) = 1̂2 * (i) + RTlnx2 (4.2,2)

where jj.2 is the chemical potential of component-2 in the 
solution, jU-2* is the chemical potential of pure liquid-2 
and X2 is the mole fraction of component-2. A similar 
equation applies for component-1. For a real binary 
solution (i.e. non-ideal), equation (4.2.2) becomes,

jj.2 (rnix; T;p) = |l2* (1) + RTln (X2f2) (4.2.3)
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where f 2 is the activity coefficient for component-2,
Again, a similar equation holds for component-1. Returning 
to equation (4.2.1), for an ideal solution we can write,

C^^t(id;mix;T;p) = n̂  (|ii* + RTlnxi) + n2(|l2*+ RTlnx^) (4.2.4)

where n^ is the number of moles of component-1 and n2 is 
the number of moles of component-2. For a non-ideal 
solution,

(mix; T; p) = (Pi* + RTlnxjf ̂)+n2 (|l2*+^Tlnx2f2) (4.2.5)

Given that,

G^(mix;T;p) = G^ot - Gtot(id;mix;T;p) (4.2.6)

it follows that,

(l/kT)G/(mix;T;p) = x^lnf^ + x^lnf^ (4.2.7)

as = n^/Cn^^ + 02) and X2 = n2/(n^ + n2). Using the form 
of the Gibbs-Duhem equation where,

x̂  (dlnfydXg) + Xg (dlnfg/dXg) = 0 (4.2.8)
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we differentiate equation (4.2.7) with respect to %2 to 
give,

(1/kT) (dG/Zdx^) = Inf; - Inf^ (4.2.9)

We wish to obtain an equation in terms of Inf2 » Therefore 
by rearranging equation (4.2.9) and substituting into 
(4.2.7) gives,

(l/kT)G/ = Inf; - (x/kT) (dG//dX;) (4.2.10)

and rearranging equation (4.2.10) gives.

Inf; = (1/kT) [G„î  + (1-X;) (dG//dX;) ] (4.2.11)

Our aim here is to obtain dp2/dx2 in terms of or its
derivatives. Therefore if we differentiate equation 
(4.2.3) with respect to %2 we obtain,

dp2/d%2 = RT[(1/x2) + (dlnf2/dx2) ] (4.2.12)

Now, if we differentiate (4.2.11) with respect to %2 we 
obtain.

dlnf;/dX; = [ (l-X;)/kT] [d^G//dX;^] (4.2.13)
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We can substitute equation (4.2.13) into equation (4.2.12) 
to produce an equation for dp2/d%2 in terms of the second 
derivative of

dp2/dx2 = RT{ (I/X2) + [ (I-X2) /RT] (d^G^^/dx2̂ ) } (4.2.14)

The units of dp2/d%2 are J mol”^.

The volumetric data required for the IKB 
analysis are partial molar volumes. However, the input 
data are usually either molar volumes or excess molar 
volumes. We know that,

V m = x^V^(sln) + X;V;(sln) (4.2.15)

where is the molar volume and and V2 are the partial 
molar volumes. The excess molar volume is given by.

V = X ,  [V, (sin) - V*(l)] + X [V (sin) - V (1)] (4.2.16)M i l  1  ̂  ̂ <

Using the Gibbs-Duhem equation (at fixed T and p),

Xi (dV^/dX;) + X;(dV;/dX;) = Û (4 .2 .17)
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we differentiate equation (4.2,15) with respect to X£ to 
obtain,

= V; (sin) - V^(sln) (4.2.18)

As with the Gibbs energies, we rearrange equation (4.2.18) 
and substitute back into equation (4.2.15) to produce an 
expression for the partial molar volume V2,

V (sin) = v + (1-x ) (dV/dX;) (4.2.19)

An analogous treatment can be applied to excess volumes to 
give,

V^(sln) = V (1) + V ̂ + (1-x ) (dV^/dx ) (4.2.20)

As stated earlier, a FORTRAN program 
converted the raw data to the required form and calculated 
the IKB functions. This program included a linear least 
squares routine to analyse the dependence of variables 
calculated from the input data on mole fraction. The
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equation used was the Redlich-Kister (Guggenheim- 
Scatchard) equation^,

Y = qx2(l-X2)^b.(l-2x2)^'*^ (4.2.21)
j=l

where Y is the particular variable under consideration, q 
is a constant peculiar to the particular variable, %2 is 
the mole fraction of component-2 and b j is the derived 
parameter. The number of parameters required was 
determined using a student-t test.

Now that some of the general points 
connected with the IKB procedure have been considered, we 
are in a position to study the TA mixtures in more detail.

4.2.1 - The Alcohols

The first class of TA cosolvents to be 
considered is the monohydric alcohol series. These 
alcohols have always been favoured as cosolvents for 
thermodynamic^»^ and kinetic^ studies and therefore not 
surprisingly these were the first solutes to be 
studied2*10;ll using the Inverse Kirkwood-Buff (IKB) 
procedure.
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4.2.1.1 - METHANOL

Methanol is the first of the monohydric 
alcohol series. It is only marginally hydrophobic and 
therefore does not always display typical alcohol 
behaviour. The IKB calculations for methanol are outlined 
below.

In the first step the IKB analysis requires 
data. These are then used to calculate the dependence 

of d]i2/dx2 on %2 as outlined in the previous section. 
Excess molar Gibbs energies of mixing reported by Simonson 
et al.12 were fitted to the Redlich-Kister equation^ 
where Y = G^^ and q = RT.

The next set of measurements used for the 
analysis was volumetric data, molar volumes V^, reported 
by Patel and Sandler^^, These results were analysed using 
the Redlich-Kis ter equation where Y = and q = 1.0. The 
results obtained were then converted to partial molar 
volumes using equation (4.2.19).

The final data required are isothermal 
compressibilities. Here, results published by Easteal and 
Woolfl^ were used.
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Once the above results had been obtained as 
functions of %2, they were substituted into Ben-Naim's^*^ 

IKB analysis to yield the IKB integral functions G22
and G]l2* These are shown in Figure 4.2.

Figure 4.2 shows that there are no real 
peaks present for methanol-water mixtures. G^2 remains 
relatively constant throughout and this, combined with the 
lack of peaks, implies that methanol has no strong 
affinity for water, but also does not reject water as a 
near neighbour. G^^ represents water-water interactions 
and this function steadily increases as the proportion of 
water within the solution decreases indicating a tendency 
for the water molecules to cluster together, but as this 
increase in Ĝ ^̂  is very gradual and does not reach a 
maximum, this tendency is very weak.

4.2.1.2 - ETHANOL

Figure 4.1(a) shows the excess 
thermodynamic functions for water-ethanol mixtures. 
Pemberton and Marsh^^ reported G^^ data as a function of 
X2 at four different temperatures and these data were used 
to calculatelG the dependence of G^^ on X2 at 298.15K. 
These data were fitted to the orthogonal equation^ (see 
Section 4.3).
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Partial molar volumes were calculated^^ 
from parameters reported by Benson and Kiyohara^^, The 
isothermal compressibilities were determined from 
compressions reported by Moriyoshi^^.

The IKB integral functions calculated from 
these data are shown in Figure 4.3.

Figure 4.3 shows a number of definite peaks
and shoulders. shows a broad peak at %2 — 0.4
indicating that at this point the water molecules are 
tending to cluster together. This gradually drops off as 
the mole fraction of water molecules decreases. G22 shows 
a distinct shoulder at %2 ~ 0.25 and then a definite peak
at %2 — 0.8. G^2 is the minor feature throughout the main
mole fraction range indicating that intracomponent bonding 
is preferred to intercomponent bonding.

4.2.1.3 - i - PROPANOL

The G^^ data used for the analysis were
those reported by Sada and Morisue^^. These results were
analysed using the orthogonal equation^. The volumetric 
data used were reported by Sakurai^® and the compressions 
used were reported by Moriyoshi^^.
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These data were analysed using the IKB 
procedure and the integral functions obtained are shown in 
Figure 4.4.

Figure 4.4 shows that the G22 integral 
function peaks quite sharply in the water-rich region 
indicating the formation of clusters of alcohol molecules. 
G^2 shows a minimum at approximately the same mole 
fraction signifying that the possibility of finding a 
molecule of water in close proximity to a molecule of 
alcohol is at its lowest. G^^ shows a broad peak over the 
range X2 = 0.2 to X2 = 0.4. G^^ is also the dominant term 
over the bulk of the mole fraction range. G^2 snd G22 both 
show shallow peaks at X2 —  0.7

4.2.1.4 - 2-METHYL PR0PAN-2-0L

The final alcohol-water system studied was 
2-methyl propan-2-ol-water. The G^^ data used were 
reported by Tommila and coworkers^^. Figure 4.1(b) shows 
the excess thermodynamic functions for this mixture. Near 
X2 = 0.5 G^^ is large and positive. In the analysis it 
proved necessary to use the orthogonal equation^ to 
analyse the G^^ data in order to obtain dp,2/dx2 (see 
Section 4.3). Volumetric data used were recorded by 
Sakurai^Z and compressions by Moriyoshi^®.
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The IKB integral functions were
 ̂ fr

Figure 4.5.
calculated^^ from these data and the results are shown in

Figure 4.5 shows the most striking features 
observed yet for an alcohol. shows a very sharp
maximum at %2 — 0.25. G22 shows a slightly less dramatic
maximum at the same mole fraction and G^2 shows a sharp 
minimum at this mole fraction. These results indicate that 
in the "x2 = 0.25" region the water molecules cluster
together and the alcohol molecules cluster together to 
form water-rich and alcohol-rich microdomains.

4.2.1.5 - DISCUSSION

As mentioned earlier a number of these 
alcohol-water mixtures were among the first mixtures to be 
analysed2»10*ll using the IKB procedure. Matteoli and 
Lepori^3 have also studied these alcohols using the same 
procedure.

Considering methanol first, Figure 4.2 
shows that no distinct features are observed for any of 
the integral functions. This was considered to be due 
mainly to the small hydrophobic character of these 
molecules. The general pattern observed here for methanol
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is similar to that shown by Donkersloot^^ and Matteoli^^ 
although Gii does not reach a maximum at very high mole 
fraction as observed by Donkersloot and Matteoli.

The next alcohol in the series is ethanol 
and the integral functions for ethanol-water are shown in 
Figure 4.3. Ethanol-water was the system used by Ben-Naim 
to explain his IKB procedure. Figure 4.3 shows definite 
features for all three integral functions although none 
are particularly sharp. Matteoli’s^^ results for ethanol- 
water are similar to those shown here for all three 
integral functions up to X2 = 0.6. Then, while Matteoli's 
results continue on smoothly, here we see a minimum in 
and for G22 observe a sharp peak at X2 = 0.8. Ben-
Naim's results are also similar. Variations in the 
different results could be due to the different method of 
analysis for the G^^ data. Here, the data was fitted to an 
orthogonal polynomial equation^ whilst other authors have 
used a Redlich-Kister type of analysis^. The advantage 
that the orthogonal equation has over the Redlich-Kister 
equation is that at X2 = 0.5 several parameters contribute 
to the analysis, whilst for the Redlich-Kister equation 
only the first parameter contributes. This can be very 
important in the analysis as for most of these mixtures 
the maximum in G^^ comes at x^ —  0,5. (For further
details on the orthogonal analysis see Section 4,3).
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Iso-propanol was the next alcohol studied. 
Figure 4.4 shows the results obtained here for this 
alcohol. It can be seen that the peaks in the integral 
functions for i-propanol are sharper than those obtained 
for ethanol and also that they occur at lower mole 
fractions of added alcohol.

The final alcohol studied was 2-methyl 
propan-2-ol. This alcohol has been studied using the IKB 
procedure by a number of authorsll'23,24 The results 
reported in Figure 4.5 are in broad agreement with those 
reported by Matteoli^^ except for G22, although the 
results reported here show much sharper features. The 
results reported by Patil^^ disagree strongly with these 
results and those reported by Matteoli. Nishikawa et 
al.24 obtain results which are in greater agreement with 
those reported here. Interestingly, they are concerned 
that the greatest error in the IKB functions derives from 
d|i2/dx2 . This opinion was also voiced here, and so the 
orthogonal equation was used for some systems in 
preference to the Redlich-Kister equation in an attempt to 
obtain more accurate values for d\i2/dx2 as a function of 
X2. Nishikawa approaches this problem in a totally 
different way and uses small-angle x-ray scattering 
results instead of derivatives of the chemical potentials, 
(See Chapter Three also).
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In summary it can be seen that as we move 
through the alcohol series the features in the integral 
functions become more and more pronounced. Gradually a 
situation is reached whereby at low mole fractions of 
added alcohol the hydrophobic groups on the alcohol 
molecules cluster together to form alcohol-rich 
microdomains; these microdomains being shown by G22' These 
hydrophobic groups also enhance the water structure and so 
G^2 shows that water-rich microdomains are also formed. 
G]̂ 2 tends to a minimum indicating that alcohol-water 
interactions are rare. A final point worthy of note is 
that these maxima and minima occur at lower mole fractions 
of added alcohol as we move down the alcohol series.

4.2.2 - The Ketones

Ketones form the second class of Typically 
Aqueous (TA) mixtures to be considered here. The example 
studied was propanone.

The first quantity necessary for the IKB 
analysis is dli2/'̂ 2̂ as a function of %2 . This was
calculated from equation (4.2.14) and requires G^^ data. 
The parametric equation reported by Villamanan and Van 
Ness^5 ^as used to determine the dependence of G^^ on X2. 
The G^^ data were fitted to the orthogonal polynomial 
equation^.
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The volumetric data used in the analysis 
were molar volumes measured by Boje and Hvidt^^. These 
were fitted to the Redlich-Kister equation^.

The compressions reported by Moriyoshi and 
Uosaki^? were used and from these was calculated as a
function of %2.

From the above results the IKB integral 
functions were determined; Figure 4.6.

Figure 4.6 shows that is the dominant
term throughout and shows a minor peak at X2 c: 0.65. G]̂ 2
shows a slight dip at X2 — 0.3 and G22 remains
essentially constant throughout. These results are very
similar to those obtained by Matteoli^^. Clearly, whilst 
there is a tendency for the alcohol molecules to repel the 
water molecules, this is not as strong as in the higher 
alcohols. 0^2 shows that the water structure is enhanced 
by the alkyl-groups on the ketone molecules.

4.2.3 - The Cyclic Ethers

The final group of TA mixtures to be 
studied here is the cyclic ether group. The example used 
here is 1,4 - dioxane.
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The data used here were reported by
Kortum et.al.^^. These data were reported at several 
temperatures and, from these, was calculated^^ at the
required temperature. The volumetric data were reported by 
G r i f f i t h s ^ O  and the compressibility data by Nakagawa 
et al.31.

The results were combined to obtain the IKB 
integral functions shown in Figure 4.7,

Figure 4.7 shows a major peak in ^n» a 
shallow minimum in G^2 and a very slight shoulder in G22' 
The ring oxygens on the dioxane molecules will hydrogen 
bond with the water molecules, thus reducing the magnitude 
of ^22* These results are in close agreement with
Matteoli^3,

4,2,4 - Summary

Essentially all of the TA mixtures display 
the same pattern. This pattern is typified by maxima in 
G^^ and G22, usually at fairly low mole fractions of added 
solute, and a minimum in G^2 at a similar mole fraction. 
These trends in the integral functions signify clustering 
of like-molecules. In addition, we are also observing 
enhancement of the water structure, explaining why G^^ is
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often the dominant term for these TA mixtures. By looking 
at the alcohols, it can be seen that the development of 
these features increases with the size of the hydrophobic 
group.

4.3 - TYPICALLY NON-AQUEOUS MIXTURES (TNA)

The class of cosolvents known as "typically 
non-aqueous"^>^ can be divided into two sub-classes. For
all TNA cosolvents the condition IH^^I > [T.S^^I applies, 
but can be greater than, or less than, zero. The first
class, where G^^ is negative (TNAN), includes hydrogen 
peroxide and dimethyl sulphoxide (DMSO) and plots of the 
excess thermodynamic functions of mixing for these two 
cosolvents are shown in Figure 4.8.

The second class of TNA mixtures, where G^^ 
is positive (TNAP) has cyanomethane as its most popular 
example; Figure 4.9.

In order to understand the nature of these 
TNA mixtures more clearly, especially with respect to the 
interactions between the water and cosolvent molecules, 
three such mixtures were chosen for study^®»32 xising the 
Inverse Kirkwood-Buff (IKB) P r o c e d u r e ^ * 3 , The first two 
mixtures belong to the TNAN class and are hydrogen 
peroxide + water and DMSO + water. The third mixture,
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cyanomethane + water, is a TNAP mixture. The IKB procedure 
was applied to these mixtures using a FORTRAN program (see 
Section 4.2 also).

4.3.1 - Hydrogen Peroxide

The data for hydrogen peroxide-water
mixtures were calculated from the parameters and equation 
reported by Scatchard^^. First was calculated as a
function of %2, then, the data were fitted to a linear 
least squares routine as explained in the previous 
section,

The volumetric data were based on densities 
reported by Wynne-Jones^^. Excess molar volumes were
determined as a function of mole fraction X2, and fitted 
to the Redlich-Kister equation^. These calculations led to 
the determination of the partial molar volumes as a 
function of X2.

Relevant isothermal compressibility data 
were not available and therefore an assumption was needed, 
namely that the isothermal compressibilities for the 
hydrogen peroxide-water mixtures equals the value for 
water at 298,2K. This assumption was made on the grounds 
that the formulae for the two liquids are similar. It 
should also be borne in mind here that the isothermal
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compressibility data play a very small role in the final 
Kirkwood-Buff integral functions as the magnitude of these

o ocompressibilities is so low. Matteoli and Lepori 
calculate that the term RTKy contributes 1 - 3  cm^ mol~^ 
to a G j function, this being small relative to the total 
value of a Gĵ j parameter which may be several hundred cm^ 
mol"l.

The thermodynamic data determined above 
yielded G^^, G22 and the cross-term G^2 for hydrogen
peroxide + water; Figure 4.10.

The two most outstanding features to be 
seen in Figure 4.10, especially when compared to the 
alcohols and other TA mixtures, are (1) the lack of any 
peaks or prominent features; and (2) the fact that G^2 is 
the most important of the integral functions over 
essentially the entire mole fraction range. Clearly 
hydrogen peroxide behaves in a very different fashion when 
added to water to that shown by the alcohols. The 
structure of hydrogen peroxide makes it ideal for 
involvement in hydrogen-bonded networks and the lack of 
any hydrophobic alkyl groups (as with the alcohols) 
facilitates the formation of an intercomponent hydrogen- 
bonded network between hydrop peroxide and water 
molecules. This is shown by th? inant G^2 term. The G^^
and G22 terms gradually decreas ' increase respectively
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as %2 increases consistent with the respective decrease 
and increase in the number of molecules of water and 
hydrogen peroxide present in the aqueous solution. The 
fact that these terms show such gradual changes with no 
peaks indicates that there is no clustering of like- 
molecules into local water-rich or cosolvent-rich domains. 
Clearly, in hydrogen peroxide-water mixtures the most 
important and overriding interaction is the intercomponent 
interaction characterised by the G^2 Kirkwood-Buff 
integral function,

4,3.2 - Dimethyl Sulphoxide (DMSO)

data reported by Kenttamaa and 

Lindberghs were fitted to the Redlich Kister equation^ 

where Y = G^^ and q = RT,

Several authors have reported volumetric 
data for DMSO-water mixtures. The data chosen here were 
the most recently recorded. Here, the authors had already 
fitted the data to the Redlich-Kister equation and so 
their reported parameters were used to determine for

the entire mole fraction range. Hence the partial molar
volumes were obtained.
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From above,dV^/dT was calculated using the 
molar volumes of water^? and DMSoh^ and then used to 
calculated the isothermal expansivity a for the DMSO-
water mixtures. Excess internal pressures Hi ,
calculated from reported data^^, were then fitted to the 
Redlich-Kister equation to yield I][ for the full mole 
fraction range. These estimates were combined with
isothermal expansivities cx to yield the isothermal 
compressibilities using equation (4.3.1),

K̂r = ocT/(n. + p) (4.3.1)

The pattern in j integral functions 
(Figure 4,11) for DMSO-water mixtures is essentially the 
same as that observed for hydrogen peroxide-water
mixtures. As with hydrogen peroxide, 0^2 is the dominant 
term for the bulk of the mole fraction range and there are 
no peaks or major features found in any of the integral 
functions. For DMSO + water mixtures, < 0 indicating
that the intercomponent interaction is important and this 
is borne out by the G^2 term which represents the affinity 
of water molecules for hydrogen peroxide molecules, DMSO 
as a pure liquid has an ordered structure^^ but when added 
to water this structure breaks down and, due to its strong 
hydrogen-acceptor properties, forms hydrogen bonds with 
water as shown in Figure 4.12,
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4.3.3 - Cyanomethane (MeCN)

Water + MeCN is a TNA mixture but differs 
from hydrogen peroxide and DMSO in that is positive.
Although MeCN is aprotic, the properties of an aqueous
solution of MeCN are very different from those for
hydrogen peroxide-water and DMSO-water mixtures.

Excess functions for MeCN-water mixtures as 
a function of X2 (Figure 4.9) show that G^^ is large and 
positive over the entire mole fraction range and is
parabolic in shape with the maximum value at X2 — 0,5,
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Thus, if we differentiate this curve to obtain dGjjj^/dx2 
we have a plot that is positive at low X2, passes through 
zero at the peak value and then becomes negative. If we 
then differentiate again to obtain we will have
a plot that is negative over the complete mole fraction 
range. In the IKB analysis used here to determine the G^j
integral functions, d^Gj„^/dx2  ̂ is used to obtain djl2/dx2 
as required for the analysis. Therefore if the term 
d^Gjyj^/dx2  ̂ is the dominant term in equation (4.2.14) used 
to determine dp2/d%2 then this will force dp2/^^2
negative. If dp2/dx2 is negative then this signifies a 
mixture which is only partially miscible^. Clearly this 
point must be considered when analysing mixtures for which 
G^^ is large and positive.

The problems outlined above can be further 
highlighted by considering the Redlich-Kister equation^,

Y = qx2(l-X2) (4.3.2)
j=l ^

If there is only one term in this equation, then,

g/  = RTXg (l-Xg)b^ (4.3.3)

where Y = G^^ and q = RT
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Differentiating twice with respect to mole fraction %2 
gives,

= -2RTb^ (4.3.4)

If we now consider the situation where Gjj® > RT/2 then 
> 2 and so substituting into equation (4.2.14) means 

that dp2/d%2 will be negative^O. Concern over the
magnitude of is very important when using the Redlich-
Kister equation to analyse data because at X2 = 0.5 only 
the first term (i.e. j = 1) is involved. Therefore if

Em > RT/2 at X2 = 0.5 then dp2/d 2̂ will be negative
indicating that the system is only partially miscible when 
in fact it is probably completely miscible throughout.

Returning to the case of MeCN, we can check 
G^^ to see whether it is greater than RT/2. At T = 298.2K, 
RT/2 = 1.240 kJ mol"l. Reported values^l for G^^ show that 
at X2 = 0.40096, G^^ = 1.308 (i.e. G^^ > RT/2) and at
X2 = 0.61102, G^^ = 1 .257 (i.e. G^^ > RT/2). Hence using 
the Redlich-Kister equation for MeCN-water mixtures will 
lead to negative values for dp2/d%2 even though the 
system is completely miscible.

The problems associated with applying the 
Redlich-Kister equation to MeCN-water mixtures were such 
that an alternative method of analysis was used to
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determine dju.2/dx2 as a function of %2. Analysis of the 
data used an orthogonal equation”,

N

i=2
ĵ P.CXj.Xj) (4.3.5)

where,

(4.3.6)

P3 = x^x^ (l-2Xg) (4.3.7)

= x^x^[l - (14X2/3) + (14x2^73)] (4.3.8)

5̂ = " 8X2 + 18X2̂ - 12x2̂ ] (4.3.9)

the general expression being,

= [ (2N-1) ( 1-2X2) ̂ N-i (f̂ "3) p^_2] / (N+2) (4.3.10)

(N.B. - the term orthogonal means that as more terms are 
added the previous terms do not change). If we now 
consider the situation where X2 = 0,5, we find that Pg, 
P5,.... are equal to zero but the even terms P2, P^,,,,. 
are non-zero meaning that more than one term can 
contribute to the analysis of for MeCN-water mixtures
at the critical point. The importance of this can be seen 
in Figures 4.13 and 4.14.
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Figure 4.13 shows how the Redlich-Kister 
equation gives negative values for d|j,2/dx2 over the
critical range while the orthogonal equation gives rise to 
positive djLi2/dx2 values over the entire mole fraction 
range. Figure 4.14 examines the results obtained from the 
orthogonal equation in more detail. If only two parameters 
are used in the equation then dp2/dx2 is negative over a 
very wide range. This is because with only two parameters 
the equation is identical to equation (4.3.3). If we add a 
third parameter, Figure 4.14 shows that dp2/dx2 is still
negative over a small range. When a further parameter is 
added to the orthogonal equation, dji2/dx2 becomes
positive throughout. It is clear from Figures 4.13 and
4.14 that the critical point for MeCN-water mixtures is at 
X2 ~  0.35. In all cases the analysis is finely balanced.

The data used in the orthogonal analysis to 
obtain dp.2/dx2 were dependences on X2 reported by
French^l,

The dependences of excess molar volumes 
on mole fraction X2 reported by Blandamer et al.̂  ̂ were 
used in this analysis. These data were analysed using the 
Redlich-Kister equation.
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The molar volume data calculated above were 
combined with sound velocity data^^ to give isentropic 
compressibilities. These results were analysed using the 
Redlich-Kister equation. The approximation Kg = K-p was 
used as the compressibility data only contribute a very 
small numerical value to the final IKB integral functions 
(see earlier).

The IKB integral functions calculated from 
the data outlined above are shown in Figure 4.15. These 
results are very different from those obtained for the
TNAN mixtures, hydrogen peroxide-water and DMSO-water. 
Figure 4.15 shows sharp maxima in and G22 at
X2 ^  0.35 and a sharp minimum in G^2 at the same mole
fraction. This mole fraction corresponds to the critical 
region observed for dp2/dx2

The Gpi, G22 and G^2 functions can be
interpreted as giving details on the long-term 
interactions within a liquid mixture. The sharp peaks in 
G^^ and G22 indicate that there is a strong tendency for 
like-molecules to gather together forming water-rich and 
MeGN-rich microdomains. This tendency towards 
microheterogeneity ties in exactly with the mole fraction 
at which dp2/bx2 tended towards a negative value. This is 
further emphasised by the sharp minimum in G-ĵ2 at the
same mole fraction, this minimum indicating that the
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probability of finding water and MeCN molecules in close 
proximity to one another is unlikely and at its lowest. 
From these results it can be seen that MeCN-water mixtures 
behave in a very different fashion from the TNAN mixtures 
studied.

From the Typically Non-Aqueous (TNA) 
mixtures studied here it can be seen that they fall into 
two very different and distinct groups. The TNAN mixtures 
show smooth curves throughout with no peaks. These curves 
indicate that the cosolvent molecules readily form 
hydrogen bonds with water molecules even in the highly 
water-rich regions. This is shown by the dominance of G-̂ 2 
for essentially the complete mole fraction range. On the 
other hand, the TNAP mixture studied shows sharp peaks 
with maxima in ^22 ^ sharp minimum in 0^2
indicating that this mixture tends towards 
microheterogeneity. The results obtained here show a
degree of agreement with Matteoli and Lepori^^ although 
the features they observed are less marked than those 
reported here.

In summary it can be said that unlike the 
bulk of the Typically Aqueous (TA) mixtures which all show 
similar behaviour, the TNA mixtures show very different 
behaviour depending on the sign of
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4.4 - COMPLEX MIXTURES

The final type of mixtures to be studied 
here using the Inverse Kirkwood-Buff^»^ (IKB) Procedure 
are those whose behaviour pattern changes as they move 
from a water-rich mixture to a cosolvent-rich mixture. The 
two systems which will be used as examples here are 2,2,2- 
trifluoroethanol and 1,1,1,3,3,3-hexafluoropropan-2-ol.

Before analysing the properties of these 
mixtures using the IKB procedure, some properties of 
fluoroalcohols relevant to this discussion should be 
outlined.

If we consider size only first, then as a 
CF^-group is larger than a CHg-group it would be expected 
that replacing a CHg-group with a CFg-group would increase 
the hydrophobic nature of the organic cosolvent. This 
however neglects possible changes in the water-cosolvent 
interactions. In fact, these water-cosolvent interactions 
become far more complex when the CHg-group on an alcohol 
molecule is replaced by a CF^-group^^. The fact that 
fluorine is far more electronegative than hydrogen plays a 
vital role in the fluoroalcohol-water interactions. 
Firstly, the electronegativity of fluorine will increase 
the strength of intercomponent hydrogen bonds of TYPE A 
(see Figure 4.16). This change will be counterbalanced, at
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least in part, by the fact that the strength of the 
alternative type of intercomponent hydrogen bonding, TYPE 
B, will probably be diminished. Secondly, by introducing 
fluorine atoms into the solvent mixture, an additional 
type of intercomponent hydrogen bonding is now possible; 
TYPE C. This third type of intercomponent hydrogen bonding 
is weak in nature, but evidence for its existence is shown 
by IR spectra of pure f l u o r o a l c o h o l s ^ ^ .

R-O-H- • • -OHg TYPE A

R— (H)O’•■•H~OH TYPE B

C-F•••-H-OH TYPE C

Figure 4.16 - The three major types of intercomponent h y d r q ^  bonds present in 
fluQroalcdhol'-\vQter mixtures.
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4.4.1 - 2,2,2-Trifluoroethanol (TFE)

Figure 4.17 shows the excess thermodynamic 
functions of mixing for TFE.

The excess molar Gibbs energies used in 
the IKB calculations are48,49 plotted in Figure 4.17. 
These data points were fitted to the orthogonal equation^. 
The volumetric data were reported by Rochester and 
Symonds^O. Isentropic compressibilities used were reported 
by Patil and Ali^l. These were all substituted into the 
IKB procedure using a FORTRAN program, the results being 
given in Figure 4.18.

Figure 4.18 shows that G^i and G22 have 
maxima in the water-rich region while G^2 bas a minimum in 
the same region. These peaks are not particularly sharp 
however. The presence of these peaks indicates that like- 
molecules tend to cluster together in this region.

4.4.2 - 1,1,1,3,3,3-Hexafluoropropan-2-ol (HFP)

Figure 4.19 shows the excess functions for 
this fluoroalcohol-water mixture.
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The results were calculated from
measured vapour pressure data^^ using the Barker^^ 
procedure. The dependence of on mole fraction was
fitted to the orthogonal equation^. Figure 4.19 shows that

Em has an S-shaped curve, positive at low X2> passing
through zero and negative at high %2 » The volumetric 
data50*53 ^̂ gre fitted to the Redlich-Kister equation^, 
Isentropic compressibilities were calculated from plots 
reported by Patil and Ali^l. These data were all 
substituted into a FORTRAN program to generate the IKB 
integral functions shown in Figure 4.20.

Figure 4.20 shows that Ĝ ]̂  and G22 have
sharp maxima in the highly water-rich region while G^2 has 
a sharp minimum in the same region. At high mole fractions 
of added cosolvent the peaks drop very rapidly and the 
mixture now resembles e.g. MeCN-water. This is in contrast 
to the behaviour of the comparable alcohol i-propanol,

4.4.3 - Discussion

The behaviour of the two fluoroalcohols
studied here can be compared to that observed for the 
corresponding alkyl-substituted alcohols (see Section
4.2). The behaviour of the typically non-aqueous mixture 
MeCN-water should also be considered here.
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Both of the fluoroalcohols behave as 
typically aqueous mixtures in the water-rich regions. The 
CF^-group is hydrophobic and thus enhances the water-water 
interactions around a fluoroalcohol molecule. This pattern 
of behaviour is identical to that of a CH^-group on an
alkyl-alcohol, This behaviour is clearly indicated by the
maxima in and G22 and the minimum in G^2' The maxima
are greater for the fluoroalcohols than for the alkyl-
alcohols as CFg-groups are larger than CHg-groups making 
them more hydrophobic.

As more cosolvent is added to the mixture 
and we move away from the water-rich mole fraction region,
we find that the behaviour of the fluoroalcohols,
especially HFP, changes. Figure 4.20 shows that the peaks 
in G^2 and G22 which indicate the water-rich and
fluoroalcohol-rich domains drop away sharply as X2
increases. The mixture can no longer be said to resemble a 
typically aqueous mixture, but is now more like the 
typically non-aqueous mixture MeCN-water (see Figure 
4.15), This rapid dropping off of the maxima is not shown 
by the comparable alkyl-alcohols, Clearly, in the
fluoroalcohol-rich regions we are seeing the effects of 
intercomponent hydrogen bonding involving both the -OH and 
the -CFj groups of the fluoroalcohol molecules. As stated 
earlier, the interactions of the -OH groups with water 
molecules are likely to be stronger than the comparable
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interactions in the alkyl-alcohols. The -CF^ group 
interactions with water molecules give rise to the 
observed negative in the fluoroalcohol-rich regions.

In conclusion, the CFg-groups on 
fluoroalcohols appear to behave in a hydrophobic fashion 
in water-rich regions and a hydrophilic fashion in 
fluoroalcohol regions. Clearly, the fluoroalcohols are far 
more complex in behaviour than either the TA mixtures or 
the TNA mixtures.

4.5 - CONCLUSIONS

In this chapter the Inverse Kirkwood- 
Buff2*3 (IKB) Procedure has been applied to Typically 
Aqueous (TA), Typically Non-Aqueous (TNA) and complex 
mixtures.

For the TA mixtures we saw maxima and 
minima in the integral functions which indicated that in 
water-rich mixtures the like-molecules tended to cluster 
together to exclude molecules of the other component. As 
would be expected for such systems, these effects were 
enhanced as the size of the alkyl-substituent on the 
solute molecules increased. There was also evidence of 
enhancement of the water structure when the mole fraction 
of added solute was low.
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The TNA mixtures need to be separated into 
those where is negative (TNAN) and those where G^^ is
positive (TNAP). The TNAN showed no major features in the 
integral functions but G^£ the dominant term over
essentially the entire mole fraction range showing that 
these solutes readily interact with water molecules. MeCN 
was the TNAP mixture studied and showed very different 
behaviour from the TNAN mixtures. The integral functions 
observed here were very similar to those seen for 2-methyl 
propan-2-ol + water, a TA mixture. The presence of the 
sharp maxima and minimum for MeCN-water add weight to the 
idea that this mixture tends towards microheterogeneity.

Finally the fluoroalcohols were analysed 
using the IKB procedure. These behaved like TA mixtures at 
low mole fractions of added cosolvent and like TNAP 
mixtures at high mole fractions.

Another major point discussed in this 
chapter was the relative merit of using the orthogonal 
equation^ instead of the Redlich-Kister equation^. In this 
chapter it has been shown that if the Redlich-Kister 
equation is used for mixtures where G^^ is large and 
positive, then results may be obtained which indicate that 
the mixtures are only partially miscible, even though this 
is not the case.
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The results in this chapter clearly show 
that the procedure is a powerful tool for probing
binary aqueous mixtures as long as the starting data are 
analysed carefully.
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CHAPTER FIVE

Application of the Inverse Kirkwood-Buff Procedure 

to Kinetic Reactions in Binary Aqueous Mixtures



5.1 - INTRODUCTION

The usefulness of the Inverse Kirkwood-Buff 
(IKB) Theoryl'2 in probing^”  ̂ the solvation properties of 
binary aqueous mixtures was discussed in the previous 
chapter. In this chapter the IKB analysis is extended to 
consider the preferential solvation of ions in binary 
aqueous m i x t u r e s ^ » T h e  method was developed by Hall® and 
by Newman^ and uses kinetic data to obtain information 
concerning the solvation of initial and transition
states^O,

Two classes of compounds which behave in 
totally different ways are discussed. First the properties 
of a low spin Iron(II) complex in methanol - water solvent 
mixtures are considered and then the behaviour of an 
organic solute in 2-methyl propan-2-ol - water is 
discussed.

5.2 - THEORETICAL OUTLINE

The theory proposed^! by Kirkwood and Buff 
and d e v e l o p e d ^ b y  Ben-Naim allows for the study of 
molecular interactions between the components in a mixed 
solvent system over the entire mole fraction range. Hall® 
and Newman^ extended this theory to consider the relative
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solvation of solute molecules by the solvent molecules in 
binary solvent mixtures. In most cases these mixtures are 
binary aqueous mixtures.

The Kirkwood-Buff integral functions G(%p 
(where a and j3 =1,2) are described by equation (5.2.1) 
below,

where is the angle-averaged, orientation-averaged
pair correlation function and R is the intermolecular 
separation. is a measure of the local arrangement of
a -molecules around p -molecules, thus showing the 

affinity of a -molecules for P-molecules. Chapters Three 
and Four show how these Inverse Kirkwood-Buff integral 
functions are determined for binary solvent mixtures. 
Here, the analysis is extended to consider the situation 
where a solute molecule-j is added to the binary solvent 
system. The method developed by Newman^ to explain such a 
situation is outlined below.

Consider a solute molecule-j in a binary 
solvent system; cosolvent-1 + cosolvent-2. The solute 
molecule-j will be surrounded by a solvation sphere 
composed of molecules of olvent-l and/or cosolvent-2.
The IKB theory is used to ant on the composition of
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this solvation sphere. A volume of solvent can be defined 
by a sphere of radius R centred on the solute molecule-j. 
If solute-j was not present in the solution then there
would be moles of cosolvent-1 in the defined volume 
sphere and N2 moles of cosolvent-2. If solute-j is now
added to the binary system we have N^j* and N2j ' moles in 
the sphere. Excess quantities are defined,

îj = ; N2j = Ngj' - Ng (5.2.2)

If n^ and n2 are the number densities of cosolvent-1 and
cosolvent-2, then.

N ĵ = n^J[g^j (R)-1 ] 47cR dR — n^G^  ̂ (5.2.3)

and similarly,

= nJ[g2.(R)-1147tR^dR = n̂ Ĝ . (5.2.A)
0

Hall® showed that,

dp°(mix) = dti, (mix)
i=l (5.2.5)

Therefore,

djij°(mix) = -N;̂  jdPi (mix) - Ng jdpg (mix) \ D e 6 # O /
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Substituting equations (5.2,3) and (5.2.4) into (5.2.6)
gives,

djij°(mix) = -n^GijdPi (mix) - n^Ggjdp^ (mix) (5.2.7)

Given the Gibbs-Duhem equation,

n̂ dp.̂  (mix) + n2djl2 (mix) = 0 (5.2.8)

then,

d[ij° (mix) = (Gi j-G2 j) n2dp.2 (5.2.9)

Differentiating equation (5.2.9) with respect to %2 yields 
equation (5.2.10),

[dp,j° (mix)/dx2] = (G^j-G2j) n2 (dpg/dxg) (5.2.10)

In Chapter Four it is shown that the derivative of the
chemical potential is one of the thermodynamic quantities 
necessary for the calculation of the IKB integral
functions. Thus, an equation for the derivative of the
chemical potential was obtained,

(d|l2/dx2) = RT{ (1/x2) + [(1-X2)/RT] (d̂ Gjn̂ /dXĵ ) } (5.2.11)
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substituting equation (5.2,11) into (5.2.10),

[d)ijO(mix)/dx2 ] = (Gij-G2 j)n2 RT{ (I/X2 )
(5.2.12)

+ [ (I-X2 ) /RT] (d^G//dX2^) }

given that,

H2 = N 2 /V = [N2/(Ni+N2)] [(Ni+N2)/V] = Xg/v^ (5.2.13)

where is the molar volume of the binary mixture. Using 
equation (5.2,13) and rearranging (5.2.12) leads to,

(Gij-Gzj) = { [d|Ij°(mix)/dX2 ]Vj„)RT-F (5.2.14)

where,

F = 1 + [x2(1-X2)/RT] (d^G^/dxj) (5.2.15)

The term (G^j - G 2  j ) measures the preference of solute-j 
for solvation by cosolvent-1 over cosolvent-2. If the 
separate terms G^j and G 2 j are required then the procedure 
described by Newman^ must be followed. Newman showed that,

Gij = X2 [V2 (mix)/V„^] (Gij-G2 j) + K^RT - Vj‘̂ (x2 ) (5.2.16)

where (Xg) is the limiting partial molar volume of
solute-j in the mixture, is the isothermal
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compressibility and V2(niix) is the partial molar volume of 
cosolvent-2.

In this chapter kinetic results and 
solubility measurements are used®*^ to determine the IKB 
integral functions for a solute in a binary aqueous 
system.

If solute-j is sparingly soluble in water 
and in a binary aqueous mixture, then the transfer 
parameter can be determined from solubility measurements,

A (aq->X2) |lj° = |Ij°(mix;x2) - |Ij°(aq) ( 5 . 2 . 1 7 )

5.2.1 - First-Order Reactions

Using the Transition State Theory^^, the 
Gibbs energy of activation for reaction in a binary 
aqueous mixture is related to the standard chemical 
potentials for the initial and transition states,

AG"̂ (xg) = p° (9̂;Xg) - (is; Xg) ( 5 . 2 . 1 8 )
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Therefore, it follows that the change in Gibbs energy of 
activation on going from an aqueous solution to a binary 
aqueous solution of mole fraction X£ is given by,

A (aq->X2) = A (aq->X2) |I° (vi:) - A (aq->X2) |i° (is)

(5.2.19)
r - RTln[k (X2 )/k(aq)]

Returning to equation (5.2.14) and considering equation 
(5.2.19) we have,

[Gi:,t-G2;£] - [Giis-G2is] = [G]̂ :̂ -G2ig] - [G2î -G2is] (5.2.20)

and.

[Gî t-Giig] - [G2;6-G2ig] = V^[dA (aq->Xz) AG^/Xg] /RTF (5.2.21) 

Here a term ĝ  ̂ can be introduced where,

9k = - [Ggq̂ -Ggig] (5.2.22)

g^ measures the changes in the relative affinities of the 
substrate for cosolvents-1 and -2 on passing from the 
initial state to the transition state.
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5.2.2 - Second-Order Reactions

The procedure for analysis of a second-
order reaction is essentially as described above. However, 
there are two initial states, isA and isB, which react to
form a single transition state ^  .

Equation (5.2.19) is rewritten as,

A(aq->Xg) AG^ = A  (aq->x2 ) |I° (9̂) -  A  (aq->X2) |i° (isA)

- A(aq->X 2 )|i°(isB) (5.2.23)

5- - RTln [k (X2 )/k (aq) ]

Here, In[k(x2)/k(aq)] is the ratio of second-order rate 
constants. Similarly,

[Gi:pt-G2:̂ ] - [GiisA“G2isA^ “ t igB“G2 isB ̂

= V^[dA(aq->X2) AG^/xg] /RTF
(5.2.24)

=  9 k

This time g^ measures the change in relative affinities 
for three solutes.
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Now that IKB integral functions have been 
derived for solute-j undergoing chemical reactions in 
binary solutions, this theory can be applied to some 
practical measurements.

5.3 - ANALYSIS OF AN IRON(II) COMPLEX

The alkaline hydrolysis of a low-spin 
Iron(II) complex in a binary aqueous mixture is studied
here; namely the alkaline hydrolysis of [Fe(phen)3] in 
methanol-water (where phen = 1 ,10-phenanthroline).

VJhen hydroxide ions are added to
[ Fe (phen) 3 ] ̂''' in a binary mixture of methanol + water, the 
methanol will stabilise both the initial state and the 
transition state^^. Figure 5.1 shows the structure of 
[Fe(phen)3]2+. The rate-determining step for this reaction 
is bimolecular with hydroxide attack on the complex.

(phen)jFe

Figure 5.1 - The structure of [Ph(l,10-phenanthroline)3]2+
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Determination of the IKB integral functions 
for methanol-water mixtures was discussed in detail in 
Chapter Four. The molar Gibbs energies^^, molar
volumes^^, and isothermal compressibilities^^, were
used. All parameters were calculated for solutions at 
298.2K using a FORTRAN program.

Transfer parameters for the [FeCphen)^] 2 +

were calculated using solubility data^^ for the 
thiocyanate salt using the TATB^^ assumption. From these 
results, transfer parameters for the initial state 
A  ( a q - > x 2 )  (cation+OH“) , were calculated^^ and these
data were combined with kinetic measurements for the 
alkaline hydrolysis to give the transfer parameters for 
the transition state, A (aq->%2) )i° (TS)^^. From these
transfer parameters the dependence of d|i°/d%2 on %2 was
determined. Partial molar volume data^^ were used to 
calculate estimates of v ( X 2) for the initial and 
transition states. These results were used to obtain G^j 
and G2j (where j = IS and TS). These calculations were 
carried out using a FORTRAN program. The results are shown 
in Figure 5.2.

As stated earlier, for this reaction, added 
methanol stabilises both the initial state and the 
transition state. This trend is attributed to the large 
hydrophobic phen ligands. In the transition state, the
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Figure 5.2 -  Dependence of Inverse Ktri<ï̂ X)d-Buff inbegtal fincticns on for ^\ater(l) 
+ nethaml(2) at 298.2K. G ^ é & d G ^ a œ Ü B  integral flnctions for the in itia l state 

( [Eb(pto)3] ’̂̂  + o r )  and and are the corresponding fonctions for the
transition state^.

hydroxide ions attack the Fe^^ centre and so force the 
phen ligands out into the surrounding solvent medium. The 
resultant stretching of the Fe-N bonds means that the 
transition state is more hydrophobic than the initial 
state. Therefore added methanol stabilises the transition 
state more than the initial state^^.
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Looking at Figure 5.2, and considering the 
composite term (0^2 ^il^» it can be seen that this term
remains positive throughout but decreases as the mole 
fraction of added methanol, %2* increases. This positive 
term indicates preferential solvation of the initial state 
by methanol. At high %2 the magnitude of (0^2 ~ G ^ )  
becomes less due to the strong preferential solvation of 
the hydroxide ions by water. However, the fact that this 
term remains positive for the entire mole fraction range 
shows that hydrophobic solvation is a major consideration 
for the initial state.

For the transition state, is
also positive and is greater in magnitude than (G^2 " 
G^^). Also, the tapering off of (Gj 2̂ “ ^il^ at high mole 
fractions of added alcohol is less apparent for the 
transition state term. Two factors lead to this increase 
in magnitude. Firstly, as the Fe-N bonds stretch, the phen 
groups are pushed further out into the surrounding solvent 
medium making the transition state more hydrophobic than 
the initial state. This means that the hydrophobic 
stabilisation by the methanol is greater for the 
transition state than for the initial state. Secondly, the 
hydroxide ions attacking the complex cation centres become 
buried in these cations and so become less susceptible to
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preferential solvation by water. This feature also 
contributes to the increase in magnitude of 

over (G^2 ” G^^)•

For this low-spin Iron(II) complex, the IKB 

integral functions bear out previously reported^^ 
conclusions which state that the transition state for this 
reaction is stabilised by the added alcohol to a greater 
extent than the initial state is,

5,4 - ANALYSIS OF AN ORGANIC COMPOUND

The organic reaction under consideration 
here is the spontaneous hydrolysis of 4-methoxyphenyl 2,2- 
dichloropropionate in 2-methyl propan-2-ol - water 
mixtures. The hydrolysis reaction is carried out in mildly 
acidic solutions and is first-order with respect to the 
ester^B. The reaction involves water-catalysed 
nucleophilic attack by water on the ester. Figure 5.3 
shows the reaction scheme.

The IKB integral functions for 2-methyl 
propan-2-ol - water were determined in Chapter Four. The 
data used were excess molar Gibbs energies^^, volumetric 
data^O and isothermal compressibilities^^. All results 
were calculated at 298.2K.
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RCCl2C02C6|H40Me-p HoO

O

RCCI2C  OC^H^OMe-p

O.

-► RCCI2CO 2H + p-MeOC^H^OH

0 -*-Hv

Hv

(R = Me)

Figure 5.3 - Reacticn lædianlan for the \«3Qter-catalysed h3drolysis of 4-flEthcDQpheryl 
2,2-dichlorqpcopionatê .

For some kinetic reactions in binary 
aqueous mixtures, volumes of activation are measured. 
These measurements can be used in the IKB analysis of 
these systems.

For a first-order reaction, equation 
(5.2.16) leads to,

Glis = Xg (Vg/V̂ ) [Giis-Gzig] + K^RT - Vig""(x2) (5.4.1)
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and for the transition state,

Gl# = Xg (Vg/V^) [G :̂ -̂G2: ]̂ + K?RT - V:jt‘"(X2) (5.4.2)

Considering equations (5.2.21) and (5.2.22) a new quantity 
can be defined,

[Gi#-Giis] = [dA (aq->X2) AC^/x2] /RTF
(5.4.3)

= 9kl

Here, g^^ monitors the change in affinity of the substrate 
for cosolvent-1 on activation. The corresponding quantity 
g^2 can also be determined. A similar principle holds for 
second-order reactions.

Returning to the spontaneous hydrolysis of 
the acyl ester, the first-order rate constant decreases 
dramatically as the mole fraction of added alcohol 
increasesl8*22»23. The volume of activation also decreases 
as alcohol is added^^»^^. From these results and those for 
the alcohol-water mixtures, ĝ ,̂ g^^ and g^2 were
determined. The results are shown in Figure 5.4.
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Eĵ qure 5.4 -  Eependenœ on mole fi:action %2 of Inverse Kiitovood-Baff parameters
and for the spontaneous hydrolysis of A-nethoxypheryi 2,2-ÆcMaroprq5iGnata in
m ter(l)-2-me(±ÿl prq]an-2-ol(2) at 298.2K.
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According to Figure 5.3 the transition 
state is more hydrophilic than the initial state. Figure
5.4 bears this out in that increases sharply with %2 
indicating that the solvent cosphere is very different 
from the bulk solvent. However, g^ is a composite term and 
so, to gain insight into the preferential solvation by the 
two individual cosolvents, gĵ .̂ 8k2 ^ust be studied.
The magnitude of g^2 is approximately twice that of g^^ 
indicating that preferential solvation by 2-methyl 
propan-2-ol dominates over solvation by water. This shows 
that despite the increase in hydrophilic character on 
activation, hydrophobic bonding of the initial state is 
still the major feature.

5.5 - SUMMARY

The two substrates studied here behave very 
differently on activation for their reactions in alcohol- 
water mixtures. The alkaline hydrolysis of [Fe(phen) 3] 
shows an increase in hydrophobicity on going from the 
initial state to the transition state. For the spontaneous 
hydrolysis of 4-methoxyphenyl 2,2-dichloropropionate, the 
substrate becomes more hydrophilic on activation. Applying 
the Kirkwood-Buff theory to these reactions gives another
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valuable method for probing preferential solvation of 
substrates in binary aqueous mixtures. A major advantage 
of this method is that it enables study of the microscopic 
structure of the local solvent cosphere over a wide range 
of mole fractions.
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CHAPTER SIX

A Theoretical Outline of Isochoric Thermodynamic 

Parameters for Reactions in Aqueous Solutions



6.1 - INTRODUCTION

In 1935, in a paper concerning the 
applications of the transition state theory to kinetics, 
Evans and Polanyi^ made the suggestion that kinetic data 
obtained for reactions carried out at constant volume may 
be more readily interpreted than those obtained at 
constant pressure. They reasoned that at constant 
pressure, the separation between solvent molecules changes 
when the pressure is changed. Similarly at constant 
temperature, these distances change when the pressure 
changes. So, they reasoned that the analysis would be much 
simpler if the solvent-solvent distance remained constant.

o__oThis original idea has been taken up by many authors^ 
but, despite over 50 years of debate, the precise volume 
to be held constant remains undefined.

The term "isochoric" has more recently been 
used to define reaction conditions of constant volume and 
the associated thermodynamic parameters. The dictionary 
definition of the term "isochoric" is unhelpful, simply 
listing isochoric as meaning, "taking place without change 
in volume; under conditions of constant volume". In much 
of the early work in this field it was not made totally 
clear what volume was being held constant^'^, although
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many different constant volume thermodynamic parameters 
were determined. Whalley^ acknowledged that there was 
controversy over what volume should be held constant, 
stating that "the volume that is kept constant is the 
volume of an equilibrium mixture of initial and transition 
states". Williams^, however, claimed that the volume to be 
held constant was that of the activated complex rather 
than the volume of the reacting system. More recently, the 
debate has been rekindled by the suggestion made by 
Blandamer et al.^ that the only meaningful isochoric 
volume must be the molar volume of the pure solvent. 
Albuquerque and Reis® counter-claimed this maintaining 
that a constant concentration of solvent was necessary.

The following work aims to clarify the 
issue, and show that the isochoric volume must be the 
molar volume of the pure solvent. In Chapter Seven the 
theory is applied to experimental data, and activation 
parameters are calculated describing processes under 
clearly defined isochoric and isobaric/isothermal 
conditions^®.

6,2 - CONVENTIONAL ISOBARIC/ISOTHERMAL CONDITIONS

The bulk of thermodynamic parameters 
reported in the literature involve practical measurements
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made under isobaric/isothermal conditions. Before 
considering isochoric thermodynamic parameters, a few 
basic equations used for calculating isobaric/isothermal 
parameters are reported. Throughout this discussion of 
thermodynamic parameters we are concerned with the 
behaviour of solute-j in an aqueous solution. The chemical 
potential of such a solute is given by,

}Ij(mix;T;p) = }lj#(mix;T;p) + RTln (mjYj/m°) (6.2.1)

where m^ is the molality of solute-j, m° = 1.0 mol kg”  ̂

and |ij^(mix;T;p) is the chemical potential of solute-j 
for the ideal solution where mj = 1.0 mol kg~^ and Yj = 1.0 
at the same T and p. We can now consider an equation for 
the chemical equilibrium for a system containing 
i-solutes,

# #A^G (mix;T;p) = -RTlnK (mix;T;p)

/ vDjdj (mix;T;p)
j=i

(6.2.2)

where lnK^(mix;T;p) is the equilibrium constant for the 
reaction, A^C^Cmix;T;p) is the Gibbs energy of reaction 
and Dj is the stoichiometric quantity. Similarly, this
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leads us to equations for partial molar quantities,

A^X (mix/T/p) = / (mix;T;p) (6,2,3)
j=i

where Xj°° is the limiting partial molar quantity where 
X = H, V, Cp. Similar equations can be obtained where the 
equilibrium constant K, is replaced by the rate constant 
k. This leads to the determination of activation 
quantities. Again, we are concerned with parameters 
determined "at the same T and p". One final important 
equation to be mentioned here is the Van't Hoff equation 
which measures the temperature dependence of equilibrium 
constants under isobaric conditions,

[01nK#(mix;T;p)/3T]p = [ArH®®(mix;T;p) ]/RT^ (6.2.4)

This is an important equation and several authors^»^ have 
considered this equation under isochoric conditions,

6.3 - INTENSIVE AND EXTENSIVE VARIABLES

Thermodynamic parameters such as enthalpy 
H, and volume V, are defined by a number of different 
variables including temperature T, and pressure p. The 
precise definition of these variables is very important, 
especially when considering the nature of isochoric
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reaction conditions. The importance of these variables can 
be shown by considering the Ideal Gas Equation,

pv = nRT (6,3.1)

This equation describes the relationship between four 
thermodynamic variables. These variables, or properties, 
can be either intensive or extensive.

Extensive variables are additive^^; the 
total value for an extensive variable being equal to the 
sum of all the values of that property within the entire 
system under consideration, regardless of the way in which 
it has been subdivided. This means that if the amount of 
substance within the total system is changed, then the 
extensive properties of the system will be changed 
proportionally^^. Examples of extensive variables are mass 
and volume.

Intensive variables are not additive, 
meaning that the value of any intensive variable can be 
measured at any point of a system that has attained 
equilibrium. Examples of such variables are temperature 
and pressure.
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Returning to the Ideal Gas Equation we can 
define an equation for the molar volume-^-',

v„* = v/n = RT/p (6.3.2)

and we now find that is an intensive variable as the
ratio between any two extensive variables leads to an 
intensive variable.

6.4 - SOME APPROACHES TO CONSTANT VOLUME PARAMETERS

6.4.1 - Early Work

The suggestion made by Evans and Polanyi^ 
that constant volume parameters were worthy of 
consideration were not immediately taken up. The first 
serious work in this area was carried out by Whalley and 
coworkers2*9*14-16^ Whalley^ derived a number of equations 
for reactions involving the formation of a transition 
state at constant volume rather than at constant pressure.

Transition State Theory^? yields an 
equation for the rate constant k, of a one-step chemical
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reaction at constant pressure in an ideal solution,

k = K(kj^T/h) exp (-A’̂ QO/RT) p (6.4,1)

where k: is the transmission coefficient, is
Boltzmann's constant, h is Planck's constant and A^QO is 
the standard Gibbs energy of activation. For constant 
volume systems, equation (6.4.1) becomes,

k = K(k^T/h) exp ( - A ^ F ° / R T ) (6.4.2)

where A^F° is the standard Helmholtz energy of
activation. As the transition state will only be present 
in very low concentrations, Whalley states that,

A’̂ G° = A*F° (6.4.3)

In other words, the constant pressure and constant volume 
conditions are essentially the same. Equations (6.4.1) and 
(6.4.2) can be differentiated with respect to temperature 
at constant pressure or volume. An equally valid approach 
would be to differentiate these equations with respect to 
pressure or volume at constant temperature. Given that
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(3G/3p)^ = V and (3r/3p) ̂  = -p , Whalley finds that,

(9lnk/9p) = -A^V®®/RT (6.4.4)

where A^v^ is the volume of activation. Differentiating 
with respect to volume gives,

(9lnk/9v) = -A^p/RT (6.4.5)

where A ^  is the pressure of activation.

Whalley takes equation (6.4.4) as his 
starting equation as derived by Evans and Polanyi^ for a 
one-step chemical reaction showing the effect of pressure 
on the rate constant k. Similarly for equilibrium 
constants K,

(9lnK/9p) ̂  = -ArV°°/RT (6.4.6)

where Â v°° is the standard volume of reaction. He then 
uses an operational equation to show relationships between
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a number of activation parameters at constant pressure or 
volume,

0/3t )̂  = 0/3T)p + (a/K)0/ap)j (6.4.7)

where a is the isobaric thermal expansivity and K is the 
isothermal compressibility. Any property that is pressure 
and temperature dependent only can be substituted into 
equation (6.4.7). Whalley substituted ln(k/T),

[9ln(k/T)/3t ]̂  = [9ln(k/T)/9T]p

+ (a/K)[9ln(k/T)/9p]^ (6.4.8)

Equations (6.4.1) and (6.4.2) lead to,

[3ln(k/T)/3(l/T))p . -A^h“/R (6.4.9)

and,

[9ln (k/T)/0(1/T) = -A=5̂ Uv/R (6.4.10)

respectively. If these equations combined with equation 
(6.4.4), are substituted into equation (6.4.8) and the 
product multiplied by RT^, then the result is an equation
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which links constant pressure and constant volume 
conditions,

p = d/Uy + (TaA’̂ v/K) (6.4.11)

In all of this work Whalley has 
maintained^*!® that the volume held constant is that of an 
equilibrium mixture of the initial and transition states
i.e. an actual reaction volume. However, Whalley!^ did 
draw attention to a fact which needs to be considered when 
looking at constant volume parameters where the volume 
held constant is as described above. This consideration 
arises for reactions involving dilute solutions with 
formation of a transition state where a change in volume 
occurs. If the reaction is carried out under conditions of 
constant pressure then only the solvent in close vicinity 
to the transition state will be affected by the change in 
volume; the bulk of the solvent remaining unperturbed. 
Where conditions of constant volume of an equilibrium 
mixture are maintained, the entire solvent will have to 
undergo change to compensate for the change in volume as 
the transition state is formed.

At the same time as I^alley was studying 
constant volume activation parameters for equilibrium 
mixtures of initial and transition states, Williams® was
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concerned with constant volume parameters where the volume 
held constant was that of the activated complex. Thus for 
the generalised reaction,

A <— > A^ — > PRODUCTS (6.4.12)

the volume which is held constant is . Regarding the
equilibrium as an ideal system gives.

AH(T;p ) = Hj^#(T;p) - Hj^(T;p) (6.4.13)

and similarly,

AV(T;p ) = V^?t(T;p) - V^(T;p) (6.4.14)

This leads to,

(9lnk/9p)^ = -AV(T;p)/RT (6.4.15)

and,

Olnk/aT)p = -AH(T;p )/RT^ (6.4.16)

In equation (6.4.12) it is assumed that the concentration 
of the activated complex A^ is very small compared to 
that of the reactant A. It therefore follows that the
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volume of the total system Vg, for the equilibrium 
reaction can be adequately approximated to V^,

dVg = dV^ = (8VA/9T)pdT + (9v̂ /9p) ̂ dP (6.4.17)

Williams uses these equations to show that the equilibrium 
can be expressed in terms of the standard states for A and 

, and, therefore,

(T;Vg) = A^u°(T/V^^) + 1/2RT (6.4.18)

where V̂g is the constant volume activation energy and Au 
is the internal energy change. Brummer and Hills 
contention that,

= (Â uo)v̂  (6.4.19)

is, according to Williams, misleading. Williams states 
that this implies a transformation of A in its standard 
state to at constant volume of the system. Williams's
own analysis claims to show that Qvg ( T ; Vg ) in fact 
measures the formation of A^ from A where the volume held 
constant is that of A^ in its standard state.
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Hills and coworkers^»!^»^® also studied 
constant volume systems and came to the conclusion that an 
element of caution was necessary when interpreting the 
results from such calculations,

Lown et al.® measured partial molar volume 
changes for the ionisation of ethanoic acid and having 
derived some equations for constant volume thermodynamic 
parameters, used these results to calculate their 
isochoric parameters. However, they do not define the 
volume held constant.

6.4.2 - Comparison Between Constant Pressure and Constant 
Volume Reaction Conditions

The aim of many a u t h o r s ® w a s  to 
compare constant volume parameters with constant pressure 
parameters in an attempt to discover which set, if either, 
was the more fundamentally important. Reaction data^^ were 
recorded and analysed in an attempt to justify the use of 
constant volume parameters over constant pressure 
parameters.

For many systems, constant volume 
parameters are theoretically simpler and more readily 
interpreted in terms of the reacting system itself and
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interactions within it. This was Evans and Polanyi’s^ 
original idea. Adams^^ contended that for reactions 
carried out under conditions where the volume remains 
constant, the intermolecular distances between reactants 
also remains constant as the temperature is changed. This 
means that the activation energy at constant volume does 
not contain a term that is dependent on the intermolecular 
properties of the solvent, but is made up of terms derived 
from the reaction process itself. However, Adams^^ went on 
to say that it was simplistic to say therefore that 
constant volume parameters were easier to understand than 
constant pressure ones as this relied on the idea that the 
solvent had no temperature-sensitive structure. Lown et 
al.5 also pointed out a possible pitfall. For isobaric 
equilibrium reactions, the Gibbs energy of activation will 
contain an energy contribution from the thermal expansion 
of the solution in addition to that due to the effect of 
temperature on the equilibrium. When the same reaction is 
studied under isochoric conditions, the system is 
prevented from expanding by applying pressure. This 
superficially makes the results easier to interpret, but 
it must be remembered that whenever the volume change for 
the reaction is non-zero, the pressure applied to maintain 
the isochoric state will alter the position of 
equilibrium.

159



The differences between isobaric and
isochoric parameters revolve around one equation and
derivatives thereof; equation (6.4.11). The term which
gives rise to the differences between values calculated
for isobaric and isochoric conditions is clearly the
TaAv^/K term. Whilst Av^ is frequently relatively small,
the a and k terms can be very large leading to enormous
differences between the parameters for the different

0*1reaction conditions. Holterman and Engberts reiterated 
the importance of électrostriction in reactions carried 
out at constant volume. In the case of a reaction with a 
large, negative Av^ , the électrostriction will also be 
large. This means that the solvent molecules far from the 
site of reaction will have to be expanded to compensate 
for the large électrostriction taking place during 
activation.

The general conclusion appears to be that 
neither the constant volume nor the constant pressure 
parameters can be said to be the more fundamental.
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6.4.3 - Constant Solvent Concentration

A recent alternative approach to conditions
oof constant volume has been made by Albuquerque and Reis . 

They agree with Blandamer et al.^3 that before studying 
isochoric reactions it is vital to clearly define what 
volume is being held constant. Their idea is to consider 
reactions under conditions of constant solvent 
concentration, this being isochoric (constant total 
volume) when suitable standard solutions are used.

The general procedure when studying 
reactions involving equilibrium formation is to carry the 
reaction out whilst keeping constant two intensive 
independent variables. Generally these variables are 
temperature and pressure. Hence,

Xg(T;p) = (3x/9nB) T,p,n' (6.4.20)

where X is an extensive property of the system and n' is 
the total amount of all reactants excluding component B. 
Reis%4 showed that the condition of constant volume of the 
reacting system cannot be directly substituted for
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pressure in the above equation as such a volume is an 
extensive variable. Instead, Reis called this a pseudo- 
partial molar quantity,

Xb ’(T;Vg) = (3x/3nB)T,vs,n* (6.4.21)

where Vg is the volume of the reacting system. Albuquerque 
and Reis® attempt to solve this problem by considering an 
iso-solvent-concentration reaction,

XB(T;Ca) = (3x/anB)T,CA.n' (6.4.22)

is the concentration of solvent A and is equal to n^/V. 
This principle is applied to systems where solvent A does 
not take part in the reaction. Under such conditions 
Albuquerque and Reis claim that as B # A, the conditions 
(T;V;n') and (T;C^;n') become equal. They note however, 
that for reactions where solvent A is involved, the 
condition of iso-solvent-concentration will become one of 
constant-reaction-volume.

6.5 - CONSTANT MOLAR VOLUME OF PURE SOLVENT

Blandamer et al.®>^® first introduced the 
idea that the only meaningful isochoric volume could be to 
hold the molar volume of the pure solvent constant. Two
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problems with other volumes which led to this decision 
were (a) volume is an extensive property whereas the 
normal reaction variables, temperature and pressure, are 
intensive; and (b) when equilibrium reactions are 
considered the system is at a minimum in Gibbs energy 
(i.e. fixed T and p) and not Helmholtz energy (i.e. fixed 
T and V). In introducing the idea of constant molar volume 
of pure solvent as the isochoric condition , Blandamer et 
al. »  ̂ introduced a new set of isochoric parameters to 
describe equilibrium and kinetic reactions. The aim of 
this chapter and the next, is to show that the isochoric 
volume has to be the molar volume of pure solvent, but to 
show this without having to use these complex new 
isochoric parameters.

Throughout these calculations, and in the 
next chapter where results will be considered, the solvent 
studied is water. By defining reaction conditions where 
the volume held constant is the molar volume of pure 
solvent, extrinsic isochoric parameters are being used, as 
with Blandamer et al.®*23 important point when using
such a volume is that unlike reaction volumes which are 
extensive, the molar volume of pure solvent under the 
defined conditions is intensive. In this analysis these 
conditions are T = 298.2K and p = 101325 N m~^.
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The method used here is the determination 
of (T-p) pairs where the molar volume of the solvent is 
the same. e.g. (Ti,Pi)^ t (T2,P2)^ •••• This idea is
extended in the next chapter to reaction data. Using 
equilibrium measurements of the dependence of K^(aq;T;p) 
on T and p, thermodynamic properties of the system can be 
calculated for these extrinsic isochoric conditions, e.g.

ArV°°[aq; (Ti,pi) ] , A^V^ [aq; (T2, P2) ]

6.5.1 - Liquid Water

For a closed system containing n^ moles of 
water, the volume can be given by,

V = V(T;p;n,) (6.5.1)

V is extensive here. The molar volume is intensive and
is given by.

Vi = Vi (T;p) (6.5.2)

From results reported by Fine and Millero^^ the molar 
volume of water at 298.2K and 101325 N m”  ̂ can be 
calculated as 18.0683 x 10~^ m® mol”^ . From the equations 
reported in (Ref. 25), T-p pairs can be calculated at 
which remains constant. These are shown in Figure 6.1.
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Equation (6.5.1) can be rewritten to define the pressure,

p = p ( V ; T / n 3_ ) (6.5.3)
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6.5.2 - Aqueous Solutions

Consider a solution containing n^ moles of 
water and n j moles of added solute. Equation (6.5.1) 
becomes,

V = V(T;p;ni;nj) (6.5.4)

If the system contained otn̂  moles of water and ocnj moles
of added solute-j, then the volume would equal av . 
Therefore at fixed T and p ,

aV(ni;nj) =V(ani;anj) (6.5.5)

Using Euler’s theorem,

V = niVi + ryVj (6.5,6)

wnere

Vi ~~ (6.5.7)

and.

Vj = (3v/3nj) T^p^m (6.5.8)
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and Vj are partial molar volumes. This means that they 
are intensive variables and so,

Vi (T;p;ani;anj) = (T/p/n^;nj) (6.5.9)

and similarly for Vj. If we now consider a chemical 
reaction where substance X is converted to substance P,

ArV = Vp - v% (6.5.10)

For an ideal solution equation (6.5.10) becomes.

A,v“ = Vp“ - v r  (6.5.11)

If the reaction mixture contains n moles of X and n moles 
of P,

Av = nAj-V^ (6.5.12)

If P is in fact a transition state then,

Av = nA V̂°° = n[V^ " (6.5.13)

Equation (6.5.4) can be rewritten for pressures,

p = p(V;T;n,;nj) (6.5.14)
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If the system contains ocn̂  moles of water and an j moles 
of added solute-j, the pressure will not be ap as 
pressure is an intensive variable. This means that the 
above derivations for volumes do not apply for pressures 
meaning that there cannot be an activation pressure as 
proposed by Albuquerque and Reis®.

6.5.3 - Thermodynamic Functions

Two important thermodynamic equations which 
show the difference between intensive and extensive 
variables are,

dG = -SdT + Vdp - AdÇ (6.5.15)

and,

dF = -SdT - pdv - AdÇ (6.5.16)

where G is the Gibbs energy, F is the Helmholtz energy and 
A is the affinity for spontaneous chemical reaction. 
Consider a closed aqueous system where substance X reacts 
to form substance Y. When the system is at equilibrium, 
A = 0, and dÇ/dt = 0. At time t = 0, n% = n^° and n̂ . = 0; 
spontaneous reaction will lead to a decrease in G, The 
equilibrium condition will be a minimum in G, G^%, with
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yeq^ and n^^g. By changing T and/or p, the
composition of the equilibrium mixture will change.

A similar case can be developed for the 
Helmholtz energy, equation (6.5,16), However, for this 
system, V and T are the defined variables and so p changes 
as the composition changes. When the system reaches a 
minimum in F, F®^ , there will also be ny^%' and
p^^ . Keeping T the same in both of the above examples, 
then by varying p in the first example and V in the 
second, it would be extremely unlikely that n^^^ = 
n^^^ and n̂ .̂  ̂ = ny^% . From this it can be seen that the 
difference between isobaric (G) and isochoric(F) 
conditions are far more important than acknowledged by 
Whalleyl®.

Returning to the (T-p) pairs for an aqueous 
solution containing added solute-j, reference chemical 
potentials can be defined as 
|Iĵ  [aq; (T2/P2) etc

6.6 - DISCUSSION

Evans and Polanyi’s^ suggestion that 
constant volume parameters may be more readily interpreted 
than constant pressure parameters is an important one, but 
before results can be interpreted the correct constant
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volume must be found. Here, the volume used was the molar 
volume of the pure solvent. This is extrinsic to the 
reacting system and, as molar volume is intensive like T 
and p, it is far more valid than other proposed^»® 
volumes.

The advantage in studying isochoric systems 
rather than isobaric ones is that intermolecular 
separations remain constant. By studying reactions where 
the molar volume of solvent is kept constant, solvent- 
solvent intermolecular separations will remain constant 
and so the role of the solvent bathing the solute 
molecules can be monitored. For example, when studying 
kinetic reactions, the effect of the solvent structure on 
the activation process can be studied. By comparing 
results obtained under isothermal/isobaric conditions with 
those obtained under isochoric conditions, mechanistic and 
solvent-related properties can be further probed. This 
will be developed in the next chapter.
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CHAPTER SEVEN

An Isochoric Study of Equilibrium and Kinetic Data



7.1 - INTRODUCTION

In the previous chapter, the possibility was 
considered of studying reactions under isochoric conditions 
rather than isobaric/isothermal conditions. This issue has 
been discussed by many authorsl”  ̂ following the original 
suggestion made by Evans and Polanyi?. it has now been 
shown that the volume which must be held constant to 
satisfy thermodynamic requirements of standard states is 
the molar volume of the pure solvent^^5,8^

In this chapter some equilibrium and kinetic 
data for reactions in aqueous solutions are examined with 
respect to isochoric and isothermal/isobaric conditions®'9. 
Under isochoric conditions the solvent-solvent 
intermolecular distance remains constant. This means that 
the role of the solvent on activation or during the 
reaction can be discussed and thus lea.dL to an alternative 
way of probing reaction mechanisms.

The chemical equilibria considered here are 
(1) dissociation of ethanoic acid; (2) ionisation of 
orthophosphoric acid; and (3) self-dissociation of water. 
The kinetic data describe (a) aquation of [Fe(5-Br-l,10-
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phenanthroline) 3] (b) solvolysis of benzyl chloride; and

(c) hydrolysis of two 1-acyl-l,2,4-triazoles. The data 

describe reactions in aqueous solution.

7.2 - ISOCHORIC STUDY OF EQUIL I B R I U M  DAT A

7.2.1 - Theoretical Outline

As explained in Chapter Six, if the 

isochoric volume is the molar volume of pure solvent then a 
series of extrinsic equilibrium constants can be calculated 
for the isochoric (T-p) pairs, [aq; ( T ̂ ; p ] ,

[aq; (T2 ;P2) ̂] • Related extrinsic isochoric thermodynamic

parameters can also be calculated, including 
A^H°^[aq; (Ti;pi)V], and A^V°^[aq; (Ti;pi)V] .

A Taylor expansion was used^^'ll to express 

the dependence of equilibrium constants on temperature T, 

and pressure p. The expansion uses a reference temperature 
0, and a reference pressure K,

lnK#(T;p) = lnK#(0;7C) + a2 [ (T-0)/0] + ag [ (p-7C)/7T]
+ a^ [ (T-0) (P-7C)/07i:] + as [ (T-0) 2/02] (7.2.1)

+ ag [ (p-7C) 2/ti2] + a-7 [ (T-0) 2 (p-7t)/027t]

+ ag[(T-0)(p-%)2/0%2]
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To obtain Aj.H®®(T;p), equation (7.2.1) is differentiated 

with respect to T at fixed p. Similarly, differentiation of 

equation (7.2.1) with respect to p at fixed T generates 
A^V°°(T;p ) .

A FORTRAN program was used to analyse the 

dependence of In on temperature and pressure using

equation (7.2.1). This led to the determination of InK#, 
Aj.H°° and Aj.V°° under extrinsic isochoric conditions for the

three equilibrium mixtures studied. The FORTRAN program 

included the volumetric parameters calculated from 

equations reported by Fine and Millero^^ (see Chaper Six).

7.2.2 - Results and Discussion

The first system studied® was the 

dissociation of ethanoic acid. Lown et al.® measured the 

dependence cf the acid dissociation constant for ethanoic 

acid on temperature and pressure. These data were analysed 

using the FORTRAN program and the results are given in 

Table 7.1.

Marshall and Frank^® and Covington et 

a l . 14 reported data for the water dissociation constant.
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The results for the analysis using these data are reported 
in Table 7.1.

parameter HA(aq) HjO(aq) H,PO,(aq)

0/K 373.15 323.15 398.15zr/IO' N 401.01 501.01 1001.01
= \nK\0,n) -11.1607 -30.2027 -5.636

±0.0055 ±0.0083 ±0.017
a„ -2.943 19.401 -5.129

±0.026 ±0.058 + 0.074
0.2155 0.3420 0.0556

±0.0028 ±0.0041 ±0.015
", 0.280 -0.378 0.373

±0.015 ±0.038 ±0.105
-5.16 -28.69 -0.735
±0.13 ±0.60 ±0.47a,/10-' -6.72 -12.57 -66.5
±0.46 ±0.54 26.9

«7 0.204 1.231 —

±0.036 ±0.147 __
a,/10- -1.26 2.13 ___

±0.23 ±0.50 ___
standard error/10''̂ 1.67 3.90 7.69
à,H^{0.n)/kS mob' -9.13 53.12 -16.98K"■•((/, Tijim" mob' -16.7 -18.34 -18.37

Table 7.1 - Calculated thermodynamic parameters for three equilibrium 

reactions using equation (7.2.1)

The final data used in this analysis to 
determine extrinsic isochoric parameters were first
ionisation constants for the dissociation of 
orthophosphoric acid. The data used were reported by 
Readl®. The results are given in Table 7.1.

Figure 7.1 shows the isobaric and
isochoric equilibrium constants as a function of
temperature for the three reactions studied. There are 
noticeable differences between the dependences for all
three reactions, the value of InK increases under isochoric
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conditions, this becoming more pronounced as the 

temperature increases. These plots show the role played by 

the solvent during the reaction. In these reactions ions 

are produced. Under isobaric conditions the volume of 

solvent increases with increase in temperature at fixed 

pressure. To hold the volume of the solvent constant and 

hence to conform to the isochoric condition, the pressure 

must increase. An increase in pressure disrupts water-water 

interactions. This disruption will favour processes which 

require strong solute-water interaction. For the reactions 

considered here this trend favours an increase in 

equilibrium constant K.

Figure 7.2 gives a comparison between the 
isobaric and isochoric plots for ArH®°(aq) for the self

dissociation of water. Here we can see that the two sets of

conditions produce very similar trends but with a slightly 
smaller ArH®® as discussed above for the isochoric

condition. The differences in equilibrium constants under

isobaric and isochoric conditions is, as expected,

determined by the entropy terms.
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Figure 7.2 - Dependence of standard enthalpy of dissociation (aq)

for the self dissociation of water on temperature under isobaric (— ) 

and isochoric (— — ) conditions.

■7.3 - ISQCHQRIC- STVPY OF. KINETIC. DATA
7 . 3 . 1 -  T h ê o re-t i c ^ X  O u t l i n e

The dependence of rate constants on 

temperature and pressure was expressed using a Taylor 
expansion with a reference temperature 0, and pressure K;

equation (7.3.1),

[lnk(T;p)/T] = ln[k(0;%)/8] + a2[(T-0)/0]

+ a3 [ (p-TT) /7T] + â  [ (T-0) (p-TU)/07i:]
+  a j l  ( T - 9 )  2 / 0 2 ]  +  a s [  ( p - 7 t )  2 / j t 2 ]  (7.3.1)

+ [ (T-0)2 (p-%)/02%]
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To take account of Transition State Theory the dependence 

of ln(k/T) on temperature and pressure, rather than that of 

Ink, was fitted to the Taylor expansion^!. The derived 
parameters were used to calculate and under

extrinsic isochoric conditions. The analysis was carried 

out using a FORTRAN program.

7.3.2 - Results and Discussion (I)

The first kinetic reaction studied was the 
aquation of [Fe ( 5-Br-phen)3 ]2+ (where phen = 1,10-

phenanthroline). This complex was prepared by mixing 

stoichiometric quantities of Iron (II) ammonium sulphate(aq) 

and 5-bromophenanthroline^^.

This aquation reaction is first-order with 

the rate-determining step being the loss of the first 

substituted-phen ligand. 0.01 mol dm“2 edta was used to 

scavenge the Fe(II) centre to prevent the reverse reaction. 

The temperature dependence of the aquation reaction was 
measured spectrophotometrically at Xmax = 512nm. The

pressure dependence of the aquation reaction was measured 

as described in (Ref. 17). The results are given in Table
7.2.

180



T/K f/lO^Nm-: A/IO"*s-i
298.15 1.013 2.74
303.15 1.013 6.74
308.15 1.013 13.6
313.15 1.013 31.0
318.15 1.013 64.1
298.15 173.51 233
298.15 346.01 1.95
298.15 518.51 1.62
298.15 691.01 1.41
298.15 863.51 1.33
298.15 1036.0 1. 1 0

Table 7.2 - Kinetic data for the aquation of [ Fe ( 5 -Br-phen) 3 ] ^

cations in aqueous solution.

T h e s e d a t a  w e r e f i t t e d  to  e q u a t i o n  (7.3.1)

a n d  a n a l y s e d  u s i n g  a F O R T R A N  p r o g r a m ;  see Table 7.3.

param cic r Fe" B z C F

(//K 298.15 313.15
;r/1 0'N nr- 518.5 501.01
A/s-' I.478E-4 9.105E-5

- 14.452 -15.051
+ 0.050 + 0.006
33.54 33.653
+ 1.47 + 0.105
-0.4814 0.1834
±0.0309 ±0.0040

(/j -16.40 0.4136 " Benzyl chloride.
±0.95 + 0.0568

— -46.308
— + 2.295

W,/1 0-: — -4.18
— + 0 62

a. — 339
— ±1.45

standard  e r r o r / 1 0 ' ' 17.0 2.51
A ’'U ' (0, %)/kJ mol"' 83.14 87.62
A" 7r)/cm" mol" ' 23.01 -9.5

Table 7.3 - Calculated thermodynamic parameters for two kinetic

reactions using equation ( 7 . 3 . 1 ) .
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The second set of data examined described 

the solvolysis of benzyl c h l o r i d e ^ ® ” 2 0  ̂ These data were 

used to obtain thermodynamic parameters reported in Table
7.3.

The parameters reported in Table 7.3 for 

the two kinetic reactions under consideration were used to 

yield the temperature dependence of the rate constants; 

Figure 7.3,

Figure 7.3 shows that for both systems as 

the temperature increases so the gap between the isobaric 

and isochoric plots increases. For the Iron(II) reaction, 

the transition state is more hydrophobic than the initial 

state as the large, hydrophobic substituted-phen ligands 

are pushed out into the surrounding medium on activation. 
At a given temperature the extent of water-water 

interaction decreases on going from isobaric to isochoric 

conditions. Therefore this disruption does not favour the 

expansion of the ligands into the solvent.
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Figure 7 . 3 - Dependence of rate constants on temperature under

isobaric ) and isochoric (— — ) conditions in aqueous solutions for 

(a) aquation of [ F e ( 5 - B r - p h e n ) 3 ] cations; and (b) solvolysis of

benzyl chloride.

The opposite trend emerges for the 
solvolysis of benzyl chloride. In this case activation 
involves a marked increase in solute-solvent interaction in 
terms of the developing chloride anion. Hence the solute 
becomes less hydrophobic on activation. At a given 
temperature, the rate Constant increases on going from 
isobaric to isochoric conditions.
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7.3.3 - Results and Discussion (II)

The second two kinetic reactions studied

under extrinsic isochoric conditions were the hydrolysis

reactions of two acyl triazoles, 1-acetyl-1,2,4-triazole 
(SUBSTRATE 1) and 1-benzoy1-3-pheny1-1,2,4-triazo1e 
(SUBSTRATE 2)21. Figure 7.4 shows the reaction mechanism 

of this hydrolysis reaction. The reaction involves 

nucleophilic attack by water at the carbonyl group. Figure
7.4 shows that the reaction is bimolecular with respect to
water and trimolecular overall.

The d e p e n d e n c e s ^ ! ^ 22 of rate constants for 

acyl triazoles on temperature and pressure were fitted to 
equation (7.3.1) and the parameters obtained are reported 
in Table 7.4.

/
H

J_ , r CHj . Rj rri 

2 . R, = Rj=CgH5

H,0

'ob*

H60

0 —  H 

H

R^COgH ♦ H -N

I
H

Figure 7 . 4 - Reaction scheme for the pseudo-first order hydrolysis 

reaction of substrates (1) and (2) .
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Parameter Substrate (1) Substrate (2)

e/K 298.15 298.15
71/10» N m-2 1.0015 1.0015

-11.118  ±  0.011 -11 .675  +  0.018
«2 15.50 +  0.60 17.18 ±  0.90
«3 0.6821 ±  0.014 0.689 +  0.021
St. error 3.826 X 10-2 4.96 X 10-2
A^//°°(0; 7i)/kJ mol'^ 38.68 42.59
A* K®(0; 7r)/cm^ mol'^ -1 6 .9 -1 7 .0 6

— 2-.-i - Calculated thermodynamic parameters for substrates (1)

and (2) using equation (7.3.1).

The parameters reported in Table 7.4 were 

used to obtain isobaric temperature dependent rate 

constants and extrinsic isochoric temperature dependent 
rate constants; Figure 7.5.

Figure 7.5 shows that the rate constants 

increase more rapidly under isochoric conditions as the 

temperature increases than under isobaric conditions.

S t u d y 2 1 , 2 3  of the reaction pathway of these 

acyl triazoles has shown that the transition state is less 

hydrophobic than the initial state. Hydrophobic solutes 

enhance water-water interactions. Therefore, the presence 

of strong water-water interactions will inhibit the 

hydrolysis reaction of these acyl triazoles, especially as
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water is also a reactant. As the temperature increases, the 

water-water interactions will be disrupted under isobaric 

and isochoric conditions. However, this disruption will be 

greater under isochoric conditions as the pressure must 

also be increased to maintain a constant molar volume. This 

increase in disruption of the water-water interactions 

observed for the isochoric case relative to the isobaric 
case will facilitate the hydrolysis reaction of the acyl 
triazoles and hence give the increased rate constant under 

isochoric conditions shown in Figure 7.5.

7.4 - DISCUSSION

The results discussed in this chapter show 

that if the isochoric volume is carefully chosen such that 

reference state conditions are fulfilled, then the results 

obtained by use of isochoric conditions can be very helpful 

in understnding the role played by the solvent in a 

reaction. The role of the solvent, water in the cases 

studied here, can be monitored for reactions under 

isochoric conditions as the solvent-solvent intermolecular 

distances will remain constant (as envisaged by Evans and 

Polanyi ) . Whilst measurements made under isochoric 

conditions may not necessarily be more fundamental than
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those obtained using conventional reaction conditions, the 

use of isochoric and isobaric reaction conditions together 

can lead to an insight into the role of the solvent in 

kinetic and equilibrium reactions.
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APPENDIX ONE

Experimental Section



Kinetic measurements were carried out using 
two minicomputer-controlled spectrophotometers. These 
spectrophotometers measured the change in absorbance at a 
given wavelength, and then analysed these data to give 
first order rate constants.

All rate constants discussed in this thesis 
were determined as first order. Equation (A.l) shows a 
typical first order reaction,

kR ------------- > P (A.l)

The integrated rate equation commonly used is ,

ln{[R]q / [R]t) = ht ( A . 2)

where [R]t is the concentration of reactant-R at time t, 
[R]q is the concentration of reactant-R at time t=0 and k 
is the first order rate constant. This equation can be 
rewritten as,

[R]t = [R]oexp(-kT) (A. 3)
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For second order r e a c t io n s ,

k,X + Y ------- > P (A. 4 )

we have,

- d[X] /dt = k[X] [Y] (A. 5)

where k is the second order rate constant. If substance-Y is 
present in far higher concentrations than substance-X then 
the concentration of Y can be considered constant,

kobs “ k [Y] (A. 6)

where kobs is the observed first order rate constant. This 
equation becomes,

-d[X]/dt = kobsfX] (A. 7)

The r e a c t i o n s  are m o n i t o r e d
ospect^photometrically by measuring the change in absorbance 

as the reaction proceeds. Using the Beer-Lambert law,

P = logdo/lt) = EX1[X] (A. 8)
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where P is the absorbance of substance X, Iq is the

intensity of the incident light at the monitored wavelength 
X, It is the intensity of the transmitted light, is the
molar extinction coefficient of X at X, and 1 is the path

length. For the reaction solution described by equation

(A.4), the total absorbance is given by,

P = £x[X]l + £y[Y]l (A. 9)

The reaction will be complete at t = «», and so equation 

(A.2) becomes,

ln[(Po - Poo)/(Pt - Poo)] = kt (A. 10)

A non-linear least squares method^ is used 
to solve equation (A.10).

Rearranging equation (A.10) gives,

Pt = (Po - Poo) exp (-kt) + Poo (A. 11)

Hence at time t,

Pt = Pt [Po;Poo/k] (A. 12)
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D i f f e r e n t i a t i o n  o f  (A.12) g i v e s ,

dP = 0Pt/3Po>p<„,k dPo + 0Pt/3P~)p^,k dPoo (A. 13)
+ (3Pt/3k)p^,p^ dk

The partial differentials from equation (A.13) are,

(0Pt/3Po) p^, k = exp(-kt) = (X\ (A. 14)

(^Pt/^Poo) pQ, k = 1 - exp(-kt) = CX2 (A. 15)

(0Pt/3k) = -t (Po - Poo)exp(-kt) = a g (A. 16)

Predefined estimates of P q , P o o  and k are entered into the 
microcomputer prior to starting a kinetic run. At the 
predefined time interval t, Pt is measured and compared to 
the previous value of Pt y

dPt = Pt(obs) - Pt (calc) (A. 17)

At each time-step t, the values a, <X2 and OC3 are calculated 
to improve the current fit.

Q = E(dPt - aidPo - a2dPoo - aadk)2 (A. 18)
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The aim i s  to  minimise Q such th a t  dQ/dX = 0,

dQ/dPo =2[Xai2dPo + Zaio^dPx, + Zaiaadk (A. 19)

- ZaidPt)] = 0

dQ/dPoo =2[Iaia2dPo + Za2^dPoo + Za2asdk
- Za2dPt)] = 0

(A.20)

dQ/dk =2[Socia3dPo + Za20C3dPc» + Zo^^dk
- Z a a d P t ) ] =  0

(A.21)

This can be written as a matrix,

Zai2 Zaia2 Zaia3 dPo ZaidPt
Zaia2 Za22 Za2a3 * dPoo Za2dPt
Zaia3 Za2#3 ZaaZ dk Z&3dPt

(A.22)

X

This matrix can be written as.

Y = Xp (A.23)
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Equation (A.23) is solved for P using a linear least 

squares method^. Thus Pq  ̂ Poo and k are continually 
improved. This is repeated until Z[Pt(obs) - Pt(calc)]2 is

a minimum or is of the same magnitude as the estimated 
experimental precision.

The first spectrophotometer used was a Pye

Unicam SP 1800 UV/VTS spectrophotometer. Figure A.l shows

a block diagram of the spectrophotometer. Readings are 
taken at predefined t and X. Reactions in up to three cells
can be monitored simultaneously (all at the same X) . The

spectrophotometer was connected to a HP 9825A minicomputer 
via a MIKE interface and a digital voltometer (where MIKE = 

Microprocessor Instrumentation of Kinetic Experiments). The 

system was controlled by a Hewlett Packard BASIC program 
written by Dr. M. J. Blandamer. At the calculated time

interval an absorbance reading was made for each cell and 

at the end of the kinetic run the absorbance data were,

analysed as outlined above to yield the first order rate

constant for each reaction cell. (N. B. - All cells were

monitored for at least 2.5 half-lives.).

The cell block required thermostatting to 

ensure a constant temperature throughout the reaction. The
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cell block was water-cooled using a coiled copper pipe 

around the outside and monltOTed using a platinum

resistance thermometer. This was connected to a Wheatstone 

bridge coiled around an inner copper block.

The second spectrophotometer used was a 

Hewlett Packard 8451A diode array spectrophotometer. This 

is shown in Figure A. 2. This was a single beam 

spectrophotometer operated by two microcomputers. The Z80 

controlled the internal hardware and carried out the 

absorbance measurements. The HP85A handled the data. Light 

was provided by a deuterium lamp and the beam was focussed 

on the sample cell using an ellipsoidal mirror. The BASIC 
programs used to control the kinetic runs and analyse the 
resultant data were written by Dr. M. J. Blanadamer. The 

data were analysed using the non-linear least squares 

method^ outlined above.
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APPENDIX TWO

Flow Diagrams



FLOW DTAGRAM OF KTRKWOOD-BUFF PROGRAMS
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FLOW DTAGRAM OF ISOCHORIC PROGRAM

DEFINITION OF VARIABLES

LINEAR
LEAST-SQUARES
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INPUT OF EQUILIBRIUM DATA 
SETUP OF TAYLOR EXPANSION

RECALCULATION OF 
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