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ABSTRACT

Part I

Total cross ssctions for high-energy inelastic collisions

between Helium atoms originally in their ground state have bsen
obtained within the framework of the first Born appro*imation.
The ground state of tﬁa helium atoms was described by the 35-
configuration CI wavefunction of Weiss expressed in the form of
a natural expansion, thsereby facilitating an examination of ths
influence of ground state correlation effects on ths scattering

cross sections.

Part II

The natural expansion of the Weiss 35-configuration
CI wavefunction for helium was used to assess the behaviour
of high=energy electron-capture cross ssections for the reaction

HY + He(1sz) — H(nZ) + He*(1s) uhen the target is described

by wavefunctions of varying sophistication. The impulse approxi-

mation and the continuum distorted wave approximation were used to

evaluate the above cross sections for proton impact energies
ranging from 25 keV to 3.5 MeV. It was found that, in contrast
with the impulse approximation, the continuum distorted wave
(CDU) method is easily applied to electron capture reactions
and overall gave the better agreement with experiment. The CDUW
method was also used to obtain capture cross sections for slpha

particles impinging on.a helium target.
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CHAPTER 0.1

GCeneral JIntroduction

The Correlation Problem f

In the quanﬁum mechanical tfeatment of an atomic or
molecular system we would like, in general, to possess a knowledge
of the exact wavefunction whichvcantains all the 'information'
for that system. However, in order to obtain this quefunction
it is necessary'to find an exact solution to the many-slectron
Schrodinger equationiwhich, in practice, is unobtainable. As a
consequence, varying degrees of approximation to.the exact
wavefunction are made; The first and simplest of such approximations
is dus to Hartree1, where we assume that the total wavefunction

q?(1,2,3,....n) for an n-electron system may be written as

the product of one=electron wavefunctions:

Y 12,8,0000m = Y ) Y ,(2) '\V;(s).... Vo)
| | (0.1.1)

where AjS(i) depends_on the space and spin coordinates of electron
i. One of the assumptions in equation (0.1.1) is that the electrons
behave 'independently' of one anohhqr; that is, each electron
movés in»the aberaga electrostatic‘potantial due to the presence
of all the other electrons. Furtheérmore, we are not'taking into
account ths ingistiﬁguishability of the electrons, nor the Pauli
exclusion principle which states that the total wavafunctioa of
a system must be antisymmetric with respectvto the interchangs
of coordinates of any two electrons: ‘

?(1,2,3....i,j....n) = - \I/(1,2,3.....j,i....n) .

Therefore it is mors accurate to write-



W (1,2,5....0) = W) W) Walieeens A (1)
'\V,l(Z) ‘\.1/2(2) ’\Vs(Z)ooooo ’\.}/n(Z)
W13 Y3 YBeeees Y3 |

-

\y1(n) ’\}lz(n) '\’/3(n)..... ’\}/n(n)

(0.1.2)
This form of writing the many electron waJefunction is known as a
Slater determinant2 and the component one-particle functions are
referred to as spin orbitals. There are only two possible spin
states which an.elegtron can possess. Any épin orbital may be
written as the product of a spaﬂial orbital # and a spin function

ol or B :
' Vosr = B € | (0.1.3a)

(W)
Vo = BB . | (0.1.3b)

When 97 in equation (0.1.2) is determined numerically by an
iterative sself=-consistent-field procedure it is tarmed'the
Hartres=Fock (HF) waﬁefunction3. It corresponds to the best
poésible energy, within the variational principle, compaﬁible witﬁ
a single Slater determinant = termed the Hartree-—=Fock energy EHF'
The HF orbitals are constrained to form an orthonormal set and.
the factor 1//1/51 ensures Q? is normalized to unity. |

In reality, each electron lies in a ‘'coulomb hble', a
region wHich is largely devoid of other electrons owing to
coulombic repulsions. Within the HF approximation, the probability

of finding two electrons with parallel spins at the samse point in



space 1s zero. Such é pqint'may be termed the centre of a 'Fermi
hoie'4 , and is a consequence of #he antisymmetry of the wave-
function. However, for electrons with anti-parallel spins a non-
zero probability is predicted. Therefore the Fermi hole accounts
for part, but not all, of the coulomb hole. The correlation
problem is concerned with introducing flexibility into the wave-
function over and above that given by the HF approximation,
thereby describing the remaiﬁing part of the coulomb hole = that
part which arises from interactibns with anti-parallel spin
electrons. In passing we note that recently it has been shown
that the size of the Fermi hole is much smaller than previously
believads, thereby accentuating the importance of electron
correlation.

In general, the correlation ensrgy AE of a aygtem is
def‘ined6 as that part of the exact non-relativistic energy
E that cannot be accounted qu when using the best single

exact

Slater determinant wavefunction. Thus,

Ak = ;exact - EHF (0'1'4)

*he éorrelation senergy of an atom or molecule is usually of the
‘order’ of magnitude of 1% oF’tha total energy. Although this is

a relatively small contribution to the total energy it is comparable
to spectral transiﬁion energies, binding energies and rotational
barriers in molecules. Many physical quantities such as absorption
frequencies and force constants are directly related to total
energies and can therefore be correlation dependent. Other
quaentitiss are re}ated to expectation values other than that of

the Hemiltonian, for example: dipole and higher multipole moments,

spin densities and field gradients. MNMost of the operators



involved for such properties are one-elsctron operators so that,
according to the Mgller-Plesset theorem7, their expectation values
are affected by correlation corrections to the wayefunctidn
only to the second order in perturbation theory basqd oﬁ the HF
wavefunction as the zeroth order approximation. Thus, correlation
effects generally have only a minimal influence on such axpéctation
values unless of course the HF value is unusually small: a notable
example being the dipole moment of CO for which it is necessary
to allow for correlation in order to determine the correct sign
of the dipolea. Expectation values of two=-particle operators,
which depend on the two=~particle distribution are, not surprisingly,
vary dependent on correlation effects, an exemple of this being
* the calculation of incoherent X-ray scattering factors.

Many methods of analysing and studying correlstion
effects have been proposed. The work of Neébetg, Brueckner10
and Sinanoglu10 has been particularly note-worthy. However, much
of the sarly work on the problem was due to Hylleraas11 who
proposed three methods of constructing correlated wavefunctions,
all of which are stillvin use today. We give here a brief

g

‘description of one of these methods. For a more detailed treatment

we refer the reader to the literature12.

Confiquration Interaction Wavefunctions and Natural

Expansions. The method of Hyllersas referred to above is known

as the superposition of configurations or configuration interaction
(CI) method. In this approach the wavefunction ié expanded as .

a linear combination of Sleter determinants, each of which is
composed from a basis éet of orbitals; the problem being to determine

the coefficients. Application of the variation theorem to such a



trial wasvefunction leads to the following matrix equation determining

the expansion coefficients:

m m

He™ = e"sc" . (041.5)

The H matrix has elements

Hij'a @iIHI @J>’

whers éﬁi is the i configuration (determinant or linear

combination of determinants) and the S , or overlap, matrix has

5> .

The vector g? has components Ci corresponding to the coefficient

elements

. <.

1]

of the ith configuration and associated with the mth eigenvalue
g™ . Frequently the basis orbitals are chosen to be orthonormal,
which leads to the overlsp matrix taking the form of the unit

matrix. In this instance the solution to equation (0.1.5)

reduces to the problem of solving the secular equation:

Hy, = E Hy, Hyg oveses Hy .
Hy Hyy = E Hés ceeese Hy | =0
Y
H oo Ko Ho oues Ho - E
(0.1.6)

A CI calculation therefore gensrally takes the following form:
(1) Choose a set of orbitals -~ usually, though not necessarily,

chosen to be orthogonal.



(2) Construct a set of configurations from these orbitals
appropriate to the particular atomic or molecular state,

(3) Calculate the matrix elements Hij between configuraﬁioﬁa.

(4) Solve the secular equation.

Clearly, provided that the set of basis orbitals can
be made complete and provided that all possible configurations
are included the method cad, in principle, yield the exact non=-
relativistic energy limit. In practice, of course, there is
a restriction on the number of configurations that can be
conveniently handled. The main drawback of the method is that,
at the outset, it is not certain which configurations will be
most effective in lowering the energy. In addition, it is found
that the energy convergence is notoriously slow.

Lomdin14 has defined natural spin orbitals -Xi(z_i)

as being those orbitals which produce a diagonal representation

of the first order density matrix e(i; ’ 51), thap/isz~

¥
/
nj’\‘/(_).(_,l P 52 gsene l(_n) Fq/(_)_(_,l ’ 52 ’ ooogln)dz_zooodﬁn

#
z Cs Xi%’ ) Xi' (x,) (0.1.7)
i |

e(_&; ) _><_1)

wheregg_j refers to the space and spin coordinates of electron j.
The const;ﬁt Ci is known as the occupation number of the

ith natural orbital (NO). Using a theorem dus to Schmidt15‘it

may be shown that the use of the highest N occupied natural

" orbitals in a CI wavefunction leads to. the most rapidly convergent

expansion possible for any basis set of N orbitals. Formally this

result is of little value since in order to determine the natural

-orbitels it is first necessary to know the density matrix, which



in turn demands a knowledge of the exact wavefunction. However,
this result may be utilised by performing an approximate CI
calculatioh, determining approximate natural orbitals, and then
repeating the procedure but now using only those natural orbitals
of highest octupstion number and augmenting the basis set with

a number of new functidns. Among such procedures we may mention
the 'pseudo-natural orbital' techniques of Edmiston and Krauss16
and the titerative NO-CI' procedure of Bender and Davidson17.
Alternatively, natural orbitals may be used for a different
purpose - namely, as an instrument to further our understanding

of electron correlation, and its influence in many physical problems;
for example, atomic -and molecular scattering reactions. This

end may be achieved by expanding an existing CI wavefunction in
terms of natural orbitals which are then grouped ipto natural
configurations. This is generally known as 'the na%yral expansion
of the wavefunction. Such an expansion is well orda;éé/by virtue
of the energeticelly decreasing importance of esach additional
natural configuration, thersby conveniently 'partitioning' the

wavefunction for use in further calculations1e. .

e scattering Matrix

In tﬁe present work, we ére concerned with total
Ajgééttering cross aéctions which include transition probabilities

for direct and rearrangement collisions respectively. As shown in «
Appendix A, the total cross section for a trénsition betwsen

states m and n is given by

4“2 km

where AL is the reduced mass of the colliding systems, and kh' K

q = m? ijT |2 dfl (0.1.8)
°n mn ’ ole

n



are the associated relative momenta. Tmn is gjven by

.= Ly, v jg/';> . (0.1.9)

Here V is the perturbation corresponding to the unperturbed
Hamiltonian H_, such that H = H_ + V. Vv o Y/n are eigenfunctions
of Ho corresponding to total ensrgies Em ’ En respectively.

SE*}iis an eigenfunction of the total Hamiltonian H, and it may

be shown that

Jf\l’m = gt , (0.1.10)

m

whers J\j is the MAller operatora. This establishes the important
fact that unj- acting on a continuum eigenfunction of H0 generates
the continuum eigenfunction of H which has the same energy Em, |

and which satisfies outgoing—wave boundery conditions. q?T; ’

being an eigenfunction of the total Hamiltonian H, represents a
complete solution of the scattering problem. Therefore, _ \P’;
contains the description of all possible reactions and the only
problem remaining is the extraction from gyzlof the information
which refers specifically to the reaction of interest., If

equation (041.9) could be solved exactly, then all the information
gbout any particular reaction would be available; that is,.we would
have sol;ed the complete scattering problem. In practice, howsver,
such a solution is not readily obtainable, and meny theories to

evaluate Tmn’ or its equivalent, have been proposed. The simplest

of these is to replace qy;- by ‘q/m » to give

T . v, | v Wm>- , (0.1.11)
which is just the first Born Approximation. '

It is not intended hsre to consider sll the different

theories proposed to date. For an excellent treatment of this,

® ' See Appendix A.



which includes references to several experiments which support,
or contradict, the many théories, the reader is referred to
MCDomell and Coleman1g.

Aims of the Present Work

In attempting to describe any reaction which includes
a systam more'complicated than hydrogen, any theory, no matter
how good, will suffaf from a limitation; namely, that the many
electron wavefunction is not known exactly. This necessitates
the usse of approximate wavefunctions and, as a consequence, some
authors, in testing their theories,‘have not included electron
correlation in their‘caiculaﬂion, thereby introducing a source of
error over and above that due to the approximations made in the
theory. Hence, a degres of uncertainty must be associated with
any conclusions drawn. The aims of this work are to remove this
degrée of uncertainty by the systematic introduction of electron
correslation, via the natural expansion, into some first and second
order approximations of atomic scattering, thereby enabling us
to make a number of comments on the theories examined. It must be

pointed out at this stage that only high energy collisions (and

theraf&re approximations) are considered; ie.e., at impact velocities

8 -
e -
which are greater than the velocity of the orbital electrons of

the target atom.

B In Part I, a brief outlins is given of the first Born
Approximation which is applied here to the inelastic collisions
between helium atoms. In Part II, we examine the effects of
slectron correlation on the Impulse approximation, and on the

Continuum Distorted Wave approximation; in the present study both

are applied to elect;on capture by protons in helium. For the sake

of completeness we include, in Appendix A, the formal time-dependent

theory of scattering.
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CHAPTER 1.1

Introduction

The study of transition probabilities snd collision
cross sections for helium atoms is of importance in such diverse
fields as astrophysics1, electron microscopy, radiation damage,
atmospheric physics, and research into controlled thermonuclear
fusionz. It is of no surprise therefore, that there is such a large
interest in the quest for theories which will lead to the easy
and accurate evaluation of scattering cross sections. However,
up to the present time, no sxact theories exist, even for a
hydrogenic target system. As mentioned previously, when evaluating
the various cross sections for many electron targets, there are
uncertainties due to approximations made in the theory, and due to
the approximate nature of the wavefunctions used in the application
.
of the theory. Therefore, any study of the effects of electron
correlation is bound within.the framework of the particular theory
under examination,

The first Born Approximation (FBA) has been widely applied
R oA

by many workers to thd'eyaluation of éxcitation, ionization, and
electron capture cross sections,'because it is relatively easily
apﬁlied to large atoms and, for sufficiently high projectils energy,
it is often in reasonable agreement with experiments-e. In order
to estimate the. possible error due to the use of approximate
wavefunctions in the‘Barn Approximation, the differential cro;s
saction for a given inelastic scattering reaction may be evaluated
using several different formulae which are formally equivalent but

which give differqnt results for approximate wavefunctions, since

11



they weight the regions of coordinate space differently. Of

these formulae, the two most commonly used are often referred to

as the 'length' and ‘velocity! formulaee, by analogy with similar
expressions introduced by Chandrasekharg in his work on photoiohization.
Accurate cross sections for the 1 1S — h1D (n = 2 to 6) end

1's —> n'd (n = 3 to 6) excitations of helium, for both electron
and proton impact, have been calculated by Bell, Kennedy and
Kingston10. To a very good approximation the results of thess
calculations may be fégarded as 'exact', within the FBA, since the
discrepancy between 'length' and 'velocity' forms is seen to be

very amall10. Calculations have also been performed using
analytical Hartree-Fock (HF) functions11, unrestricted HF f‘unctiona1
and a 6-term éxplicitly correléted wavefunction13. A comparison

of these calculations with ‘accurate' FBA results confirms the
suggestion of Altshuler14 that scaftering cross sections are
sensitive to the description of electron correlation = particularl;
in the ground state of the £arget atom. Although the magnituds

of the tatal ‘correlation effect' is, on the whole, fairly well
established, the nature of this sensitivity is not well known. With

15,16 4

this in mind, Banyard and Seddon have examined cross sections

for the 1S —> 2'P and 1'S —> 3'P excitations of He and Li%,
afising from the scatfering of e-, H+ and H. Electron correlation

was introduced into the description of the ground states in a
systgmatic and weli-ordered manner by using configuretion interaction
wavefunctions of Weissj7 expressed in the form of natural axpénsi&ns18.
In the present work we éxtend‘their analysis of ground stgté

correlation effects to a consideration of helium—-helium scattering,

where both the projectile and terget atoms are initially in their

12



ground state. Altogether, five possible inelastic

considered:

two single excitation reactions,

He

He

two double

He

He

(1's) + He (1's)

1 1
(1's) + He (1°5)
axcitatidns,

1 1
(1 8) + He (159)

(115) + He (115)

~—3 Heg

- Hea

- Hg

-y He

and the mixed double excitation,

(1's)

(1's)

(2'p)

(3'p)

He

He

He

He

1 1
He (1'8) + He (1'8) —» He (2'P) + He

A brief comment is also made regarding the elastic

gsection.

13

reactions are

(2'p),

(3'p);

(2'p),

(3'p);

(319).

4

(1.7.1)

(11.2)

(1.1.3),

(1.1.4)

(1.1.5)

scattering cross



CHAPTER 1.2

First Born &pprokimation in Atom=Atom Scattering

The theory of the first Born Approximation is well known,
4
and therefore it is only necessary to give a brief outline of the

FBA in the case of atom—atom collisions, essentially to establish
definitions for the purpose of discussion.

Consider an atom A with NA electrons, nuclear charge

YA reduced mass M and LAB velocity v, incident upon an atom B

A’

with NB electrons and nuclear charge ZB. We require to solve the

non-relativistic Schrodinger equation for the systema

2
1 \ 7 L '
- "“"zm B_ + HA + HB + V(EA,_]?_B,E) "EJY(EA’}:B!B,) =0 ’ (10201)

where r

A repressnt collsectively the internal electronib

and Ig

coordinates of the atoms and R is the internuclear distance. The
first term of equation (1.2.1) represents the kinetic energy of atom
A, HA and HB give the internal energies of the ‘atoms and V(EA’EB’E)

is the interaction potantiﬁl:

A -1 i -1
R = ¢

s=1 . t=1
Naoo g 1
+
E .;. ﬂ + £A8 - _I'_Bt . (1.2.2)
s=1 t=1

ET is equal to the projectile kinetic energy (%mvoz) plus the sum

of the energies of the two atoms in their initial states m and p

(Eo = EAm + EBp). We expand ‘\k/(gﬂ,ge,ﬁ) as follows:

R CTEY R) = Z PRV ey 0 zg) (1.2.3)

i

a Atomic units are used throughout this thesis, unless stated otherwise

14



where {;q/i% is the complste setof orthonormal eigenfunctions

of the pseudo-molecule AB satisfying

[HA(_I_‘_A) + HB(EB’)] '\)/i(_x:A,s_B) = (€, + Eg)'y/i(_x;,\,gs)

= Ei ’\l/i(_I_‘_A,EB) . (1-204)

When AB is in a state i, atom A is in state a and atom B is in

state b, For ﬁv/i(gA’EB) we choose

where U(EA) and'Lr(EB) are the eigenfunctions for the individual

atoms, satisfying

' a
Hy Uplzg) = Eg U (zg) | '(1.2.6a)
HoU () = EDVL(zg) - (1.1.6b)

Clearly, equation (1.2.5) neglects electron correlation between
electrons in differsent atoms. However, this 5indepandant particle!
approximation will be very good in the asymptotic region whsre
R—> oo .

Substituting equations (1.2.3) and (1.2.5) into equation
(14241), then simplifying by making use of equation (1.2.4),
multiplying throughout by "V/*’(r r‘) and finally integrating over

j ‘“=A’=B

Ep 9 g we obtain

2 2 ¥
(1.2.7)
2 , . . . 'ﬂ{ '
where k% = 2Mm(& =~ Ej)' Substituting again for (EA’EB’B)'

J .
equation (1.2.7) becames.

(V2 o~ k?)FJ(,&) = -2MZ v; ;(R) F;(R) (1.2.8)

1

i

15



where Uij(ﬂ) :~gV(EA’EB’E)QF;(EA’EBYV/? (EA’EB) dr, drg . (1.2.9)
In Born's method two approximations are made:
(i) Neglect V,; for all i : we assume there is no electrostatic
interaction between projectile and farget atoms,
(ii) Neglect Fi(ﬂ),'except for i = 0. This means ihat all the
"~ coupling tefms Uij on the right hand side of equation (1.2.8)
are assumed zero except Uoj which couples the states 4
involved in the excitation.

Hence, from equation (1.2.3),

VY(zozgoR) = F LRV (z4.z5)

= Fo(R) U (2)V ()

From (i) above, Fo(ﬂ) must have the form of an undistorted plane

wave and so we may write

ik R
kB ,
consequently, equation (1.2.8) becomes
2 2 ik «R .
L. 9L
k. F.(R = =21V . e o 162411
(Vg vy ry@) o (1.2.11)

In the limit of R —» o0 , the right hand side of eguation (1.2.11)
vanishes and Fj(ﬂ) then satisfies the equation for e free particle

of energy (ET - Ej)' Clearly Fj(ﬁ) has the asymptotic form of a

scattered wave:

ik-R
F.(R) = =8 f K 12,12
JGHECE i SHCV ( )

K)

where K =‘50 - Ej , the change in momentum on collision, and foj(

is the scattering amplitude. Equation (1.2.11) can be solveda for
FJ(E) in terms of Foj(ﬁ). A direct comparison of this solution
with equation (1.2.12) yields the expression for the scattering

amplituds:

a‘See, for example, Chapter IV, reference 5.
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FoK) = - ﬂ_jeiﬁ'ﬁ V(zqr2gr BV (2 (2 )V (2) Vi(zg)

pa 2 “
. dr, drg dR | (1.2.13)
where n and q denote the final states of atoms A and B respectively.
Integrating over R by using Bethe's19 integral, we obtain:
Fok) =-2m(§ § 2,2 -2.§ m? 8
mn = =~ |%mn @pg A"B B 2pgM) (~K) -z, § €  (K)
2 i mn A "mn ~pq
pPq K . .
A . B
+ N (=K) €oa (5_)] ’ (142.14)
where ng = 1, 1=

ij=0,i$jo

Therefore we have, finally
B

A
Fon(K) = -2_2 [SmnzA - ’Y}mn(-ﬁ) ] [SDQZB - qu (5)] , (1.2.15)

pa K

where the scattering form factors 'T) A and EB are given by:
m

n Pg
NA --i_bg.rA *
'T]in(‘ﬁ) = Z S e ~As u (e U (z,) dzg (1.2.16a)
=1
NB N . ) '
8 (K) = ‘ elﬁoth,U-—(r ),D_*’(r ) dg 2 16b)
qu— pig’Yq'Eg’ “Eg  ° .2,

t=1

In terms of momentum variables, the differential cross section is

given by
2
I (K) = 2wk - (5),‘ . (1.2.17)
pa ko Pq
The total cross section is
K .
a(T) = S“‘a" 1K) ok, (1.2.18)
K PQ

min

17



where T is the kinetic energy of the incoming projectile in the

LAB frame. Thus,

K

A 2 B 2 _4

a(m) = S mn Zp -.Y)mn(—ﬁ) gquB— 6 (K) K “dK.
K . pa

(1.2.19)

The limits K and K ., are determined from the kinematics of the
max min

reaction, and are given by

3 o+ _ 3
K =M (%) | o2nm (_;l_m_ Asmn) ] (1.2.20)
min P P pa

where mp is the mass of the projectils, and £§ Emn is the sum of

[2]e]
the excitation energies of the projectile and target systems

( AEmn + Aqu).

Equation (1.2.19) describes slastic scattering under the
condition that the kréenecker deltas are unity; Kmin then becomes
zero. At sufficiently high projectile energy, the value for Kmax
is effectively infinite, and it can be shown1g that the elastic
cross section Q(T) then behaves as BT-1, where the constant B
can be ‘referred to as the cros§ section coefficient.,

Calculating thé limit as K-;r 0 of the quantity
2//L2 we fimd that the operator in this expression reduces

B

to > Iz and, as a result equation (1.2.16a) is often referred
t t

L

to as the length formula. However, it may be shoum20 that an

equivalent form of equation (1.2.16a) is

* “
qu(ﬁ_) = 8itr? K [ g Bt ’U-( )VLB f\);(ga)dgs ,
t

ZAE

(1.2.21)
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and now the operator arising from the limiting process above has

been reduced to j{ iB ; hence equation (1.2.21) is referred
t t

to as the velocity formula. For aspproximate wavefunctions,
equations (1.2.16a) and (1.2.21) do not yield the same results,
since the two formulae weight the regions of configuration space
differently. The velocity formule draws its major contribution’:
from regions of space closer to the nucleus than does the length
formula and, consequently, for approximate wavefunctions the
velocity formulation often gives better agreement with results
calculated from 'exact' wavefunctions. In his study of electron
correlation effects in atomic scattering reactions, Seddon20
concludes that, for the CI wavefunctions used, the velocity
formula generally gives more accurate results than the length
formula. Consequently, in the present work, we have used the

velocity formulation in evaluating the form factors T)gn and
B
£ __.

Pa
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CHAPTER 1.3

Wavefunctions and Results

In the evaluation of equation (1.2.21), applied to
helium=helium scattering, we have taken for the ground state
wavefunction the natural expansion of the 35-~configuration CI
wavefunction of erissZ1, truncated to include only the first X
terms. Thus, as X is increased from unity (approximating the HF
equival-ent mavgf‘unctionzz) to fifteen (equal to Weiss' total wave-
function), electron correlation is introduced into‘ the ground
state through configurations which are well ordered 5y virtue of
their energetically decreasing importance. This helium u:ave.f‘unction,
denoted by Yx(1,2), may be written as

X

Ylzpm) =ty 3 oy §ilzez) (X123, wl18)
i=1
(1.3.1)
The natural configurations éi are of the form
e :
(% L L
b - X
(1,2) = (24, + 1 S 1 2) , 1.3.2
() = @d AZ,(;A) X (1.3.2)
where S = ]__ocm)p (2) - ﬁ(1)o<(2)] and the natural orbitals

(% .
X are linear combinations of the 15 besis Slater-type orbitals

/A-

sTO"
( S)’)('° 15

all z '(73 ¢nj VARIP (1.3.3)

j=1'
h b ) e d e 4Ty (®,¢) (1.3.4)
) = e ’ eJde
where ”J' r{lje)/“(p r "i/*
| ' (22 )3
and L= 3ty . (1.3.5)
o (2n,) ]
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Note that .(;? = 0 for li'# ,(J. for S states of helium (this
does not apply for S states of larger atomszs). Each wavefunction

T x was renormalized to unity by a multiplying factor Nx:

X . -%
N, = 2 ai . (1.3.6)

i=1
The total energy expectation value Ex for each ground
state wavefunction ‘:Px('l,Z) was used to obtain the 1 15 — N 1P
excitation energy O Ey . The energiss Ex are shoun in Table
1.5 along with thg natural expansion coefficients a e The quantum
numbers ,{ of“ the STO's used to construct each natural configuration
are also indicated;

The normalized excited state wavefunctions, which are

orthogonal to the ground state wavefunction, are of the form

Y, 0.2 - = V) Up2) « VY@ | (eaen)
2 o

" where ,U;(r,e,(])) = 2 £ exp(-r) Yoo (6 P ) © (1.3.8)

.and ’U;‘f,o(r,e ,¢) = N,,\P (¢ + dr)r exp(-—ﬁ r)Y,)0 (e,¢). (1.3.9)

for a ZPO orbital,

c=1;d=03Np = 28%/% (1.3.10)

V3

and for a SPO orbital,

7/a

c= 2;d=-13;N_= 45 . (1.3.11)
3p

p 3 V2

The optimized exponents (o(,l% ) and energies for the 2 'P and 3 1P

states of helium are shown in Table 1.2, For comparison, the

Hartree=Fock and exact energies are also given. We see that the

optimum value for o is almost identical to Z = the nuclear charge;
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this is expected since the screening of the nucleus by the p o
electron is very small. The optimized values for ﬁ are close
toA(Z - 1)/n indicating that the'1s electron screens the nucleus
to the extent pf a large Fréction of an electronic chargs.

The use of wavefunctions (1.3.7) and (1.3.1) in equation
(1.2.21) enables us to evaluate the form factors 'T) end £ |
analytically, leaving only the final integration in (1.2.19)
to be performed numerically. Great care was taken to ensure
numerical accuracy of at least four significant figurds.

We have defined the terms 'single excitation', 'double
‘ excitation', and 'mixed double excitation' in equations (1.%1.1)
to (1.1.5). Results for the single and double excitations to the
3 1P state are given in Tables 1.3 and 1.4, respectively. Results
for the single and double excitations to the 21 P state are
presented in Tables 1.5 and 1.6, respectively, and finally, the:
mixed double excitation results are given in Table 1.7. The
symmetry of'the basis orbitals used to construct each additional
natural configuration, as X is increased, is given by Banyard
and Bakerzz; howsver, for convenienca, they are also quoted in the
tables after sach X value. Values of the total cross section
Q(T) for the five reactions (when X = 15) are compared graphically

in Figure 1.1,
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CHAPTER 1.4

Discussion

Since our analysis is concerned with ground state
correlation effects, our discussion will concentrate on results
for transitions to the excited state which should, intuitively,
be least influenced by correlation, namely, the 3 1P state.

Correlation effects influence Q(T) through improvements
in (i) the transition energy, and (ii) the wavefunction used in
thé evaluation of the form factors. The nature of this dusl
dependence as X is increased has already been discussed by Seddon
and Banyard16. Essentially, at low ensrgises, the changes which
occur in the cross sections are dependent o» the monotonic increaese
which occurs in the transition energy z&Ex. as X variss from 1 to
195, When T is large, however, the initial introduction of
correlation causes changes in Q(T) tﬁrough variations which occur
in the integrand of equation (1.2.21). As X increases beyond 6,
the variations in the cross sections become once again dominated
by the behaviour of [&Ex-. Table 1.3 shows that for low impact
energies the non-correlated result (X = 1) is reduced by about a
quarter when using the total CI wavefunction (X = 15). Howsver,
as T increaées, the results for X = 1 and 15 are seen to converg%t
The initial introduction of correlation, based on p-orbitsls
and therefore of an essentially angular neature, causes a drop in
the value of Q(T) at low T and an increase at large T which
results in an improvement and worsening, 'respectively, of the
agreement with the X = 15 values., The addition of purely radial
correlation through the inclusion of a configuration based on

s=-orbitals as X = 2 —» 3 causes a reduction in Q(T) for all T.
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However, at high energy, the rasulfs are still inferior to the
non-correlated valuss, when compared with X = 15, even though we
have accounted for 85% & the correlation energy at X = 3:.8t low
energies, on the other hand, a significant improvement hes occurred.
Table 1.3 also reveals that, relative to X = 1, the point of
cross=over of the X = 3 values occurs at a higher energy than

that observed for X = 2, This latter trend continues as X increases
and when X = 6 the cross=over point is in excess of 35000 keV.

In the energy range considered here, the results for 6 4; X §§ 15
exhibited a general convergence towards X = 15 as a consequence of
being dependent essentially on the transition energy. Overall,

- p~based configurations were found to be of greater relativse
significance than other angular-basea configurations in their
influence on Q(T) = irrespective of their ordering in X. Such a
feature, reflecting the symmetry of the excited states, may well

be modified if the 2 1P and 3 1P wavefunctions were of correlated

- form.

Inspection of Table 1.4 shows that, as expected, the Q(T)
values for the single atom excitation to the 3 1P state are lerger
than those for the double excitation. However, from a percentage
point of view, correlation effects are seen to be of less importancg.
As X increasses, the trénds in relative magnitudes shown in Tabls
1.4 f;llow those for the double excitation but the cross-over
points, with respect to X = 1, were found teo occur at lower energiss.
As before, p=-based configurations gave rise to the greatest change
when introducing angular correlation. In passing, we note that
the influence of correlation in the present case is less than
that determinsd16 for the 3 1P excitation of He by He' ions

although, in that instance, the Q(T) values are larger due to the’
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long range nature of the interaction forces = c.f. Table 4 of
Seddon and Banyard16. A further comparison with Teble 4 of the
earlier work indicates that, at comparable velocities, the bresent
results are in close agreement with those for H - He(1 15-‘»-3 1P)
scattering. |

Turning now to the 1 'S—>2 'P excitation, Tables 1.5
and 1.6 show that the cross sections for thq double and singlse

2 1

P excitation reactions are, of course, considerably larger than
their 3 1P counterparts, For the 2 1P excitation the trends in
Q(T) es X is increased were found to parallel those for the 3 "o,
This also holds for comparisons between double excitations except
that, in contrast with (3 'p ’ 3 1P), the cross sections for the
(2 Tp y 2 1P) excitation for X = 3 were found to be superior to
those for X = 1 over the whole energy range when compared with

X = 15 as a reference. As shown in Tables 1.5 and 1.6, the
influence of angqular correlation on Q(T) waes once again dominated

1p)

by the p-based configurations. For the mixed (2 1P y 3
excitation, presented in Table 1.7, Q(T)'corresponds most closely
in magnitude with (3 1P y 3 1P). This feature arises noﬂ only &
because of the nature of the integrand in equation (1.2.19) but
also from the sizeof the lower limit Kmin' Consequently, as X
increases, the trends in Q(T) at high T follow those for the
double 3 1P excitation.

The energy dependence of the single, double and mixed
excitation cross sections for X = 15 can be compared by inspection
of Figure 1.1. We note that double and mixed excitations peak at
a common T value; a similar observation holds for the single
excitation, This behaviour has been rationalized in an earlier

work15. We note also that the double, mixed double, and single
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excitation cross sections all exhibit 8 high energy 'teail' which
is very flaf. This rather unphysical feature is 8 consequence of
the Born apprqximatioﬁ, which predicts 8 comparatively large
tail in the differential scattering cross section Imn(ﬁ) for
large K values = the region which is of perticuler pa importance
in evaluating very high impact energy cross sections. Although
not obviously apparaht from Figure 1.1 (due to the different scale;
used) the single, double, and mixed double excitation high ensergy
tails sre all of approximately tha same magnituds,

For elastic scattering the non-correlsted (X = 1) and

N o
correlated (X = 15) values for B, the cross section coefficient,*) )

are 4,734 end 4.747, respectively (measured in units of 10-16 m2

pef keV). .Such small changes for the elastic cross section srise

from the fact £hat, within the Fifst Born approximation, wé are
-eavaluating a one-pérticle expectation property over a pure state’

end therefore it is easily shown that correlation effects are of
second order., Howevér, fcr inelastic scattering, where we are

dealing with transitions between different states, correlation can
make a first—order contribution which, as seen, is clearly significsant.
: This, then, also rationalises the fect thet, as observed esarlier,

the double excitation cross sections are more sensitive to electron

correlation than are the single excitation cross sections.

Summary

The influence of en ordered introduction of ground state
correlation hes been examined for He - He scattering within the
first Born approximation when one or both atoms are excited to

low=lying n 1P states, Electron correlation proved to be most

significant at low projectile energies. For the double excitations,
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where correlation effects were of greatest importance, the cross
sections were reduced by about a gquarter at low T values. As
observed earlier, correlation gave rise to similar trends irrespective
of whether the excited state was 2 'P or 3 1P = the cross sections
possessing a maximum at approximately the semse impect enargy;
The initial introduction of correlation for He was of an angular
character and accounted for nearly half the totel correlation energy;
this resulted in a sizeable improvement over the non-correlated
cross sections only for low energy double excitations = in all
other cases tﬁe agreement mith.the total correlated result became
worse., A general improvement over the non-correlated results was
not achieved until approximately 93% of the ground state correlation
‘energy had béen recovered. The observation regarding the refative‘
importence of p-based apgulér correlation effects in the ground
state when determining Q(T) suggests an extension of our enalysis
to include correlation effects in the excited states,

It may be of further interest to study reactions in
which the initial state of the target and projectile atoms is not
necessarily the ground state, This would then facilitate an |

examination of excited-state correlation effects in atom-atom

scattering reactions.
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TABLE 1.1

Natural Expansion of Weiss!

35=Confiquration

CI Wavefunction for Hslium

(See equation (1.3.1) of text)

Coofficiant (®)
of the X'th Total
configuration Energy (b)
a ;L E
X i Ex corr
1 -0.995982 o (s) =2.86169 0
2 0.061906 1 (p) =-2.88201 48.4
3 0.061628 o (s8) =2.89747 8541
4 0.012644 2 (d) =-2.89927 89.4
5 0.011139 1 (p) =2.90094 93.4
6 0.007902 o (8) =2,90173 95,3
15 0.000652 o (s) 98.8

-2,90320

(a) See Reference (22)

(b) % E_

orr

= 100 [Ex -

28
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JABLE 1.2 Excited State Wavefunctions for Helium

(See equation (1.3.7) of text)

Hartree
Excited =Fock Exact
State ol B E Energy Energy
2 1P 2.003 0.4825 =2,12239 -2.122&6(8) -2.12384(b)
3 'p 2.00  0.323  -2.05471 -2.05474®) -2,05515(P)

(a) See Reference (24)

(b) Theoretical value taken from Reference (25)
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FIGURE 1.1 Comparisons of the alngle andthuble excitetion cross
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PART I1I

CORRELATION EFFECTS IN ELECTRON CAPTURE

CROSS SECTIONS FOR A  HELIUM TARGET




CHAPTER 2.1

Introduction

If, during a collision betwesn two systems of particles,
one or more particles are exchanged between the systems, the
process is termed a rearrangement collision. In the field
of atomic physics, examples of these processes include electron
capture by ions (or atoms) from atoms; the exchange contribution
to the scattering amplitude for electron scattering by atoms,
in which the incident electron may be captured into a bound state
of the atom, and an atomic electron ejected; the formation of
positronium by positron impact on atoms. Similar reactions
involving muons rather:than slectrons can also be studied. The
application of the theory of rearrangement collisions extends
beyond the confines of atomic or ionic physics intoc nuclear and
elementary particle physics., In this and the following chapters
of this thesis we will be concerned primarily with electron
capture procssses of the type

XT 4 A —— X+ A+', (2.1.1)
where X' is a structureless projectile and A is an atom in its
ground state, This typs of process has been the subject of
several theoretical investigations which have been discussed in
reviesws by Gerjuoy1, Bates and MCCarrollz, and BranSdens, where
full references to ear;ier work may be found. A common conclusion
of these reviews 1is that second-order methods are nesded to

describe rearrangement processes adequately. It is of considerable

interest to examine why this should be so.
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For many years it had been thought that there wefe no
fundamental thecretical problems concerning high energy collisions,
because the Born ébproximation was expected to be valid whenever
the incoming particle velocities were high compared with the
velocities of the atomic electrons. However, this validity
became to be questioned for rear:ahgement processes, although
for a long time the situstion was far from clear.

Consider a fast structureless particle. (1) incident
on a system composed of a core (2) and a bound electron (3).
During the course of the collision, particle (3) is transferred
to give a bound state of (1,3). Let Vij be the interaction
potential between particle (i) and particle (j). Taking HD

as the kinetic energy operator, the total Hamiltonian is
H o= H_ o+ VU, + U, + Voo (2.1.2)

We may suppose the initial and final unperturbed systems to have
Hamiltonians

H. = H + V , H.=H +V , (2.1.3)

v, = Vig + Vg s Vo= Voo s v23 . (2.1.4)

The 'post! form of the first Born approximation T matrix element

. 8
1ls

e = Ve \ Ve ‘ﬁ*ﬁ:> = <Y ‘V12+ V23 iWV;7 ,

(2.1.5)

\

whers WVi and ’f/f are the initial and final wavefunctions
involved. The earliest quantal calculations of electron capture

cross sections were based on a simplified version of the first

® see appendix A
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Born approximation. Oppenheimer4 and Brinkman and Kramerss,
who studied proteons interacting with hydrogen atoms, argued that

the internuclear potential V should not have an appreciable

12
effect on the electron capture probability, and consequently
they omitted this potential in their calculations (referred to
as the 0BK approximation). This neglect seemed justifigd since
at sufficiently high velocities of impact «yi and NVF are
almost orthogonal and independent of the coordinates involved
in U12. Further support was lent to this approach when MOtt6

pointed out that, on physical grounds, one would expect that the

only effect of the V interaction would be to change slightly

12
the direction of propsgation of the incoming plane wave. It is
certainly true that in an exéct treatmen£ of the problem the
contribution from the internuclear potential is nagligiblea,
but it does not necessarily follow that an approximate treatment
will display the same features. Indeed, when compared with the
experimental cross section for the process

H + H(1s) —> H + H' (2.1.6)
it is found that the 0BK cross section4’5 is clearly much larger
than the measured value7 over the snergy range 25 keV = 250 keV.

Bates and Dalgarno8 argued that while the previously
mentioned orthogonalify condition held if ~Pi and ﬂyf were-
exact, it did not do so for the first Born wavefunctions actually
employed and consequently it may be necsssary to reintroduce the

term <’5V} I.V12 ,’q/i:> . The errors which the approximate

wavefunctions introduced into <'\}/f. l U23 ,’\’/ i> might well

be compensated for by those in <:\VF , V.o [’V/i:> , and it

seemed clear that the matrix element (2.1.5) would be reduced

@ 5ee Chapter 2.2, p.59
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by interference waves from the two centres. The improvement in
the calculated cross sections was marked. In an independent
calculation, Jackson and Sching, who also argued that the neglect

of in equation (2.1.5) was unjustified, obtained similar

V12
results. In an extensive analysis, Mapleton10 obtained Born
cross sections for reaction (2.1.6) for capture into the

1s, 2s, 2p, 3s, 3p, 4s, and 5s states. His estimate of the total
capture cross section arising from this calcﬁlation agreed well
with that of Bates and Dalgarno8 and, in particular was found to
be in good agreement with the experiment of Wittkower et al.7
Mapleton11 has also considered the reaction

+ 2 +
H + He(18°) —= H(n‘i‘(’l m1) + He (nzlzm2 (2.1.7)

with the following (rH 11 , nz,lz) combinations; (1s, 2s), (s, 2p),
(2s, 1s), (2s, 2s), (2s, 2p), (2p, 1s), (2p, 2s), (3s, 1s),

(3p, 1s8) and (3d, 1s). The resultant first Born total capture
cross section is in very good agreement with the measurements of
Welsh et al12 at energies above 40 keV. The close agreement
between the Born cross sections and the experimental values is
remarkabie, especially since thers appears to be little theorsetical
justification for this approximation. It would seem that this
agreemsnt is fortuitoussince the first Bo;n approximation
differential cross section has a zero and a large angle tail which
are unphysical and arise from the difference bstween the 0BK and
core terms which, for the first Born approximation, are both

large and of opposite sign. Therefore, it would appear that the
use of the first Born approximation for larger target atomic

systems is not advisable, since the cancellation of errors may

no longer be so favourable. A more profound objection to the

41



use of the Born approximation in rearrangement collisions arises
from the work of Aaron, Amando and Lae13, who claim to prove
that in any rearrangement collision the Born Series necessarily
diverges. However, Bransden3 has commented that calculations in
which just the first one or two terms in the Born Series are
retained are not necessarily meaningless; see also the discussion
of Gerjuoy1. |

In the light of the preceding paragraphs, it is evident
that second—-order approximations may be necessary to describe
high-energy electron capture processes adequately. In this
connection we mention, in passing, the second Born approximation,
for which detailed analysis of electron capture cross sections
has not been carried out. However, some interesting results
which refer to the high ensrgy limit behaviour of the capture
cross section have been obtained by Driskb14, who considered
the reaction

HY 4+ H(1s) —> H(1s) + H' . (2.1.8)
In his analysis, he used a 'peaking' approximation to evaluate
some integrals, and showed that the contribution to TiF from <o
the proton=proton potential, which plays an important role in the
first Born approximation, is exactiy cancelled (to order 1/mprojectile)
in the high energy liﬁit by two of the‘second Born approximation
terms. | |

A very interesting approximation is that of the expansion
in atomic and.molecular eigenfunctions =~ in which one esxpands ths
total three-body wavefunction in terms of eigenfunctions of the
subsystems (2 + 3) or (1 + 2) = in that ultimately it may prove

to be a good bridge between low and high energy calculations. In

the charge exchange problem, Bates15 has shown that advantage may
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be taken of the small ratio of the mass of the exchanged electron
to that of the heavy particles to reduce the coupled partial
integro-differential equations of the expansion method to coupled
partial differential equations, for which reliable approximations
are available., An equivalent formalism using the impact parameter
method has also been given by Bates15 and later rederived by
Mittleman16, and also by Sil17 who explicitly employed a variational
method. The application of the expansion method to many-electron
systems has-received considerable attention. Two-state calculatiohs
on |
HY  + He(1s?) —> H(1s) + He*(1s) (2.1.9)
have been reported.by Green et 3118 and by Bransden and Sin Fai
Lam19, and Sin Fai Lam20 has carried out a five-state calculation.
The procedure is similar to that adopted by Fulton and Mittleman21

and will not be described in detail. For the ground state wavefunction

of helium, the first authors18 take "+%;h , 52) to be written as

' -Lp, - -olp, -
Vi, » ) =N (e TP TR Br1)' , (2.1.10)

where o& and 'p are variationally determined constants, chosen
to minimise the approximate eigenenergy. Bransden and Sin Fai
Lam used, in turn, the following representations for the helium
wavefunction:

- (r,+ r.) | .
Ve ) = nje e : (2.1.11)

- ol - -ol -
[e 1‘1+ ce Fr1] [e I‘2+ ce Prz] , (2.1.12)

-b(r,l- F)I.‘z -Br1—o(r2
+ e

’Y/( 2) (_I;v»l 7£2 )

e

and ’\I/(S)(£1 ,_;2) , (2.1.13)

but otherwise followed Green et al. The two-state cross sections

obtained are in apparently good agreement with the experimental
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results of Barnett and Reynoldszz, in the energy range 15 to 40 keV.
However, theoretical arguments suggest that at moderate energiss,
as much as 30% of the observed total capture cross section may
arise from capture into excited states (Mapletonza), therefore
the calculated values probably overestimate the cross section for
the process (2.1.9)vby as much as 30%. More recent measurements
of total cross sections by Berkner et al23 and Welsh et 3112,
which agree within experimental error with the earlier measurements
of Barnett and Reynolds in the energy range whers they overlap,-.
are substantially lower than the calculations of Bransden and
Sin Fai Lam at energies above 2 MeV, the computed cross sections
being in error by as much as a factor of four at 10 MeV. It
was also found that the considerable disagreement with experiment
was not improved by employing the refined wavefunctions \V(z)
and \V(S) rather than the simple function \y(1). It is
evident, therefore, that additional theoretical work will be
required before a significant improvement is achieved, and it may
be anticipated that, to reduce the computed cross sections
substantially, it will not be sufficient merely to add discrete
terms to the expansion, but it will be necessary to considser
representing the continuum in some way. In this respect, the
impulse approximation, which takes some account of the continuum
states, does have an advantage over the atomic expansions method.
The gquantum mechanical impulse approximation represents
an attempt to describe many-body scattering in terms of known
two=body scattering amplitudes. This approximation, which
originated from the work of Fermiz5 was appiied by Chaw26 to the

problem of high energy neutron-deutron scattering. The assumptions
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involved in Chew's work were examined by Chew and lUick27 and by
Ashkin and Wickze, and the approximation was further generalized
by Chew and Goldberger29 within the framework of the formal theory
of scattering. The impulse app;oximation to the T matrix element

corresponding to equation (2.1.5) is given bya

T?:,lp = Ve Uy, + Vs [ v0,5 = 1) \//i> (2.1.14)

where Cdig is a two-body operator defined in chapter 2.2. If
V12 is neglected, and consequently C01; replaced by unity, equation
(2.1.14) reduces to

INp
Tip = <")VFIV23IW1§ "//i> . (2.1.15)

From a theoretical point of view, the impulse approximation is

more satisfactory than the first Born approximation for high

energy electron capture as it replaces the Born matrix element
(2.1.5) by the exact two-body matrix element and only retains

the assumption that the binding forces may be nsglected. Account
should also be taken of the fact that, at high energies, observed
capture cross sections are known to be very small compared with
cross sections for target ionization and excitation reactions. =
Therefore, coupling to the excitation and ionization channels must
play an important role’in slectron capture processes. All such
couplings are ignored in the first Born approximation bug the
impulse approximation takes some account of them as it is readily
seen that an expansion of L01; WVA in terms of £arget eigenfunctions

will contain contributions from all bound and continuum states

of the target. A further satisfactory feature of the impulse

approximation is that the inclusion of V12 in \lf does not make

®see chapter 2.2
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an appreciable difference to the cross section. Pradhan30 has
shown that

lim <‘\fo\112|~'.01§ '\yi> =0 (2.1.16)

1/M=> 0

1,32 have confirmed that the contribution

and numerical computations3

from this term is negligible at the energies for which calculations

have been carried out. It has been shown3 that a similafify

should exist between the predictions of the impulse approximation

and the second Born approximation; thus the impulse approximation

may be regarded as having the status of a 'second-order' approximation.
Pradhan30 first suggested that the impulse approximation

would be very suitable for describing electron capture by fast

protons, and applied it to the symmetric resonant capture process

W + H(1s) —» H(1s) + W™ , (2.1.17)

but made the simplifying approximation of replacing V2 " in equation

3

(2.1.15) by V,., which no longer described the collision under

13
considerationzs. Calculations for the same process have been carried
out by l‘ﬂcDowell34 and by Cheshir931; the former author made an
additional approximation to simplify the analysis whereas the

latter evaluated the cross section without any further approximations.
Cheshire's results were later confirmed by Coleman and MCDowellzz.
Calculations have also been performed for capture into higher

states: Coleman and MCDowellsz; Coleman and Treleasess. From

these, estimates for the capture cross section

HY  +  H(1s) —s H' 4+ H (2.1.18)

can be made. A comparison of values derived from both the first
. . 10 - . .35
Born approximation and the impulse approximation with

experiment7 shows that the impulse approximation cross sections
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lie about a factor of two below the obssrved results throughout

the energy range of the experiment, which is very puzzling since

one would expect the impulse approximation to become more accurate

as the energy range is increased. In contrast, the Born approximation
seems much more successful.

The only application of the impulse approximation to_

- N

a problem involving a target other than atomic hydrogen is the

work of Bransden and Cheshir936 on the reaction

H + He(‘lsz) —> H(1s) + He'(1s) . | (2.1.19)

If a second electron (particle 4) is added to the configuration
described earlier in this chapter, it may be shouma that the
impuise approximation matrix element for the capture of electron

3 is
Imp
= <"V | vyo% Vogt Vygr Vg, | (W74 w075+ W] - 2)(\{/1>

(2.1.20)
If it is assumsed, Jjustifiably, that the distortion due to the
. PR +
12 is negligible, 0912
if the effect of the interaction V

potential V may be replaced by unity and,

14 between the projectils and
the passive electron is treated in the same way, equation (2.1.20)

then becomes .

1mP~<’\V lun Uyt \/ 34,(,013'\}’ > , (2.1.21)

which is the matrix element used by Bransden and Cheshirse.
In calculations for reactions such as (2.1.19) there is
a source of uncertainty which is not present when the target 'is

hydrogenic - the exact bound state wavefunctions of the target

® See chapter 2.2
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are not known. Bransden and Cheshire36 chose, as the ground stats
wavefunction of helium, the simple one-parameter variational

’

wavefunction

3 = Nr,+ 1)
"4/(3, , L,) = jl_ e M , X = 1.6875 . (2.1.22)
3 4 T

They evaluated the cross section for (2.1.19) in the ensrgy range
25 keV = 1 MeV and estimated the cross section for

Y+ He(1s2) —> H + He' (2.1.23)
by multiplying their results by the ratio of the first Born
approximation cross section for (2.1.23) and (2.1.19) obtained
from the work of Mapleton11. The results obtainsed in this way
lie below the experimental results of Barnett and Reynoldszz,
Uelsh et al12 and Toburen et a137, wheraas the average of the
Born post and prior cross sections calculated by I‘ﬂapleton11 is
in close agreement with the measurements in the esnergy range
200 keV =-10 MeV. It has been suggasted3 that the use of a more
accurate wavefunction for the helium ground state may increase the
magnitude of the impulse approximation cross section at high energiss,
since the high-momentum components of the bound state wavefunction
would be represented with 8 higher degree of accuracy.

In the present study, we systematically introduce
electron correlation into the ground state wavefunction of the
helium atom and examine the consequent effects on the impulse
approximation cross section for reaction (2.1.19), in the energy
range 25 keU - 3.5 MeV., Such an examination will reveal‘both
the sign and magnitude of the change in the cross section as a
function of electron correlation. In chapter 2.4, we make some

further comments on the nature of the impulse approximation in the

light of the present examination.
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An alternative method of including continuum states
has been introduced by Cheshire38 in an impact parameter treatment
of rearrangement collisions. It proceeds by analogy with the
well known distorted wave method in the wave treatment 6f'scattering
theory39’40, and is known as the continuum distorted wave (CDW)
approximation. The method fails to take into account back-
coupling to the initial state38 and therefore can be expected to
be valid only at projectile velocities greater than the typical
velocity of the target electrons, which, for process (2.1.18),
corresponds to proton. energies ébove 25 keV. Detailed numerical
calculation538 show that the COW cross section for reactian
(2.1.17) lies close to, but above, the impulse approximation in
the energy range 80 keV = 1 NMeV,. However, above 120.kev, the
CDW approximation is alﬁays below the first Born approximation
prediction. It is interesting to note that the CDW method has an
asymptotic form at high energies which is exactly equal to that
of the second Born approximation. Until recently, there had been
no rigorous theoretical foundation for the CDW approximation and
therefore its application to capture reactions has been viewed
with some caution. However, in their work on high energy charge
transfer, McCarroll and Salin41 have shown that the CDW method is
a high-energy second-order approximation. This work was later
superseded by that of Gayet42, who gave a rigorous foundation to
the CDW method on the basis of a quantum three-~body theory for
rearrangement coliisions. Salin43 has esvaluated cross sections

for the process

H' + He(1s2) —s HM L) + He'(1s) (2.1.24)
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where T\L = s, 2s, 2p, 3s, in the energy rangs 400 keV = 3 MeV,
For the helium ground state wavefunction he choss the two wave-
functions:

(a) The simple one-parameter variational wavefunction

=A(x,+ x,)
"V(51, X,) = 23 e T , A = 1.6875 . (2.1.25)

(b) The open shell wavefunction of Eckart44

-(0(x1+ £x2)+ -(Bx1+e<x2)

) e (2.1.26)

Yix,, x,) =N

1 2 T

where of = 2.1832; § = 1.1885; N2 - 2[_,;:"3 5'3+ (o{ g Y707 .
= J

The difference between the two sets of results obtained by using

wavefunctions (a) and (b) was about 10% for E ¢ 1 MeV, and up

to 20% for E > 1 MeV. The discrepancy is therefbre more

. 1 ()
significant than that found in Bransden and Sin Fai Lam's 2

calculations discussed earlier. The CDU cross section for capture
into any- state, evaluated using (2.1.25), is in reasonable

agreement with experiment12,22,37,45

throughout the energy range
of the calculation. In addition, it is noted that the above
theoretical results are in closer agreement with experiment than
those of Bransden and Cheshirezs.

In view of the large percentage cHanga in the electron
capture cross sections due to the use of the two different
wavefunctions, we have also examined, in the present study, the
influence of electron correlation on the CDW approximation cross
sections for reaction (2.1.24), for m{ = 1s, 2s, 2p, in the
energy range 25 keV = 3 MeV, With the influence of slectron

correlation still in mind, we have also evaluated slectron

capture cross sections for

++

He'* + He(1s?) —s He'(wd) + He*(1s) (2.1.27)
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where 1\1. = 1s, 2s, 2p in the energy range 25 keV - 3 MeV.
Calculations within the CDW approximation for reaction (2.1.27),

4
using a helium ground state wavefunction of the form 6

- ( + bx,) -(bx, + ) '
W(Z-']’E-Z)_:N[e ST Pl T axz] , (2.1.28)

have alsoc been reported by Belkic and Janev47.

In chapter 2.7, we compare the fully correlated electron
capture cross sections, arising from celculations based on the
impulse and CDW approximations, with experimental values, as far
as possible. A comparison is also made betwseen the impulse and
CDW approximations, with the emphasis being on the feasibility
of using these technigues in studies.involving larger atomic

systems.
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CHAPTER 2.2

Impulse Approximation

Formal Derivation

When considering rearrangement collisions between atomic

systems it is convenient to write the total Hamiltonian H as

H = H, + V., = H_, + V . (2.2.1)

Here Hi and H_, are the initial and final unperturbed Hamiltonians

f'

and Ui and V_, are the corresponding perturbations. If one is

£
interested in the probability that a system, prepared in an
eligenstate “Vi of Hi in the remote past, will evolve, under the
action of the Hamiltonian H, to a specific sigenstate 4?} of Hf’
then it can pe shown that the relevant transition matrix slement

. a
1S

= vt .
Here Q?Z is an eigenfunction of the total Hamiltonian H representing

a complete solution to the scattering problem and satisfies the

integral equation

+ +
¥ = ¥, + (R ¢ (2.2.3a)
E,- + LE
1 1
= Y.+ 1 v, ¥, . (2.2.3b)

b .
In deriving the impulse approximation we shall restrict
attention to 8 three-particle system consisting of a projectile

(1) and 2 target composed of a core (2) and bound electron (3).

@ see appendix A.

b In this derivation, we follow McDowell and Coleman, reference 40,
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The extension to systems of more than three particles is then
straightfbrward. Let us assume that during the course of the
collision, perticle (3) is transferred to a bound state of (1, 3)
and let us denote the interaction potential between any two
particles (i) and (j) as Uij' The initisl and final unperturbed

systems have Hamiltonians

Hy = Hy o+ Vo , He = Ho o+ Voo (2.2.4)

where H0 is the total kinetic energy operator and the perturbations

are considered to be, respectively,

Vi = Vg # Vg s Ve = Vg + Vg e (2.2.5)

The total Hamiltonian of the system is therefore

H = Hj o+ Uyq + v]2 + V4 , (2.2.6L

which satisfies the Schrodinger equatian

(H-€) P7 o, (2.2.7)

i
where E is the total energy of the system. The initial and final

unperturbed wavefunctions ‘V/i and \y £ satisfy the equations

(Ho# Vpg= )W, = 0= (Hyw Vyye )Y, . (2.2.8)
The wavefunction for the thrse-particle system corresponding to

an initial unperturbed state “Vi and outgoing-wave boundary

conditions can be expressed as

Q?Z J\j 2 , (2.2.9)

where JU = 1+¢6" v, , (2.2.10)

and the Green's function operator ¢t is given by

ot = . , (2.2.11)
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where it is understood that the limit ¢ == 0" is to be taken

eventually. O0One first expands the'three~body Moller operator

JL+ in terms of the two-body operators GJZJ defined below and

the impulse approximation is obtained by truncating this expansion.
Let X’m be a member of the complete set of free-particles

wavefunctions (plane waves), associated with an energy Em,

satisfying Schrodinger's equation

v}

(H, =€) Xm = 0 . (2.2.12)
Clearly, the 7( 's are the wavefunctions for the system of thres
particles when there are no interactions amongst them, The two-
body operators €O Zj(m) (i,j =1, 2, 3 ;3 is j) are defined by
the equation
w;j(m)')(m = |1+ 1 Vs s = ”\U;(i,j) .

Em_ Ho— Vij+ (g

(2.2.13)
Pre-multiplying equation (2.2.13) throughout by (H0+ uij—ie -E),

we obtaih
(H°+ vij- Em)"f/;(i,j) - LE’Y/;(i,j) = (Ho- Em-lﬁ )'Xm .

X (2.2.14)
Now provided that
lim €'\V;(i,j) =0 |, , (2.2.15)
: + .
€E=>o0
L . ' +o. o
it is clear from equation (2.2.14) that 'Y/m(l,J) satisfies the

differential equation

(H_+ Vg Em)"f’;(i,j) =0 . | (2.2.16)

It is evident that "%’;(i,j) is the mth member of a complete set
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of wavefunctions describing the three particles when there is an
interaction between particles (i) and (j) only. If Vij is a coulomb
potential the condition (2.2.15) is not satisfiedaa; in that case,
following McDowell and Coleman40, equation (2.2.16) rather than
equation (2.2.13) will be regerded here as the equation which defines
ﬂ%/m+(i, j). This seems reasonable in the light of I‘ﬂapleton's48
work.a He has shouwn that if W m+(i, j) is obtained diractly from
equation (2.2.13), the behaviour of this wavefunction at ©=> o0
necessitaﬁed a non-trivial renormalization in order to achieve
unit amplitude even though 4?'m+(i, j) was originally normalized.
The resultant wavefunction was then found to have the same form
as V/m+(i, J) wéen obtained from equatioﬁ (2.2.18).

If P and Qlare operators for which inverse operators

exist, then obvicusly

=1 -1 1

L (2.2.17)

= o' . 0'1(0 - p)p'1 : (2.2.18)

The expansion of §7i+ in terms of two=body operators is facilitated
if we define P = E = H +tE and Q = Em- HD - Vij +LE ; the

operator identity (2.2.17) then becomes

= 1= 1 + 1 [e =E+h-n v ] 1 .
E-H+<€ E -H -V, +LE E-H+rie " © HTE CH -V, +iE
. m o ij m o ij

(2.2.19)

But From equation (2.2.6), H - H, = V23 *+ Uy, + Vo, and therefore

we obtain

+ - .
- - 1 .
L T E-L+'E [e ~ov vy ey, vij‘]
m o iJ L ¢

a

See also reference 53,
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Therefore,

+ .
v, = 1 UV, + 1 [E =E+v_ v, +V, =V, ] 1 v, . .
iJ T o =v. +igiJ E-hrie 237712 13 Lo oy g e i
, m o ij m o ij
(2.2.27)
But G+E 1 , . (2.2.22)

E - H + (€
and from equation (2.2.13), if we take the plane wave basis of X o

as understood, then

s nF
wij (m) =1 = 1 v.. , : (2.2.23)

- -~ — . 1]
Em H0 Uij + LE

and therefore equation (2.2.21) becomes

+ _b* + - _ bt

G Vij ..j(m)+G lE VE+U23+U12+V13 Vij l ij(m) ’ (2.2.24)
b+ - + -

where ij(m) &Jij(m) 1 o (2.2.25)

Let us now expand ‘V/i in terms of the complete set of 7Y m’

Vi = z Xo Xn | Viy (2.2.26)
m
Operating on ﬁVi by G¥ Vij’ we obtain

PR [X,D <Kol Vi

G+Vij !’V’i>

z E’ ;j(m)+g+{(sm-E)+U12+u13+u23-vij} b Ij(m] IXQ@(mN/D
m

(2.2.27)

However, it is evident from equations (2.2.8) and (2.2.12) that
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(£ ) Chy |V = <E %o | ¥y = Ky lEw)

ol | vy = Klhge vy Vi

- <’X'm IV23H/1> , (2.2.28)

and consequently

G+Vij,v1‘> "‘z bgj(m)n(m> Kl Vo> - Ec+b1j(’“) lxm> <Xm\vzzi“{/i>

* z G¥ (U Vygr Vpg= V3 075 1Xy X [ Wiy -
- |

Collecting together terms containing V23, we obtain

g IV > {E oMKy Kyl = 8 E[“zs 15Xy (Xl

_ sz(m)lxm> <’Xm\ U23J + G"'X (V1 2+V1::-Vij)b;j(m)l'xb <XmlJNf>

(2.2.29)
If we write

F oot Xy = . 2o

m

then equation (2.2.29) is reduced to

+ + + ,
W’> [ VpsPs 5™ P1Vaa)*E (Vyp*Vag vij)bij] l'\Vi> ’
and if we denote the commutator of b;j and st as
+ + -— + :
\/%bi.j bijV23 = Ezs ) biﬂ , (2.2.31)

7




then

G+Vijl‘\i/i> = EJZJ+ G+[V23’b~;ﬂ * G+(V12+V13'Vij)bzg] H/> ’
‘ (2.2.32)

From equations (2.2.10) and (2.2.5),

+ . + + +
= 1 = o
J\ + G Vi 1 + G V12 + G V13
But from equation (2.2.32), we see that
+ + + + + +
GV = by + G [st ’ b12] * G Vsb
+ + + + + +
REE = bzt € E’zz ’ bmz] B VioPs

and therefore,
+ + + o + + + + +
JU =1+ blpv blge G E’zs’ (byp+ b13zl + G (Vygbyoe Viobas)
That is,
+ + + + * + + + +
Ju - (q3+,= 1)+ G [Vza’(b12* b13)] + G (Vggbgor Vigbyg)
(2.2.33)

where 27 . = bt . + 1 (2.2.34)
. ij ij . ,

zw;j(m) I'an <7(m\ | (2.2.35)

Therefore, the matrix element Ti for the thrae-particlé collision

f‘

process under considerstion may be written as
e Kb [Vl B = Kbl Vel Y

»<\Pf‘ [Ve] @05 @, - 1)'\Pi> +

Ve [ve] 6 [as +(orz + 03] ¥

Y [Ve] 87 (Uaghys + Vpphq3) ‘Vi> - (2.2.38)

T

+

+
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The 'impulse hypothesis' is that thse binding potential

2
V23 will not play an important role during the collision 8 and

therefore may be neglected. This implies that the commutator

o
involving V23 will vanish., Consequsently, the second term on the
right hand side of equation (2.2.36) vanishes, but clearly some
other approximation must be made before one can calculats Tif -
otherwise a specific knowledge of the three-body operatar c*
would be required. The simplest procedure is to neglect the

expression

+ + +
<V el Ve | 67 (Uigpil + Vpphyg )WL) (2.2.37)
on the grounds that it is a contribution from multiple scattering.

the matrix

One then obtains as the impulse approximation to Tif’
element
if f f 13 12 i

While multiple scattering effects are not always hegligible,
an argument can be put forward to justify their neglect in heavy
particle collisions. Consider, for simplicity, a collision between
a proton and a hydrogen atom. The time=dependent Séhrodingar
equation for the.problem under consideration is

Hv\y = (: B_\_I_/_ ’
ot

where H = HO + U12 + \I13 + V23. It is possible to remove thg

proton-proton potential V from the Hamiltonian of the system by

12

the transf‘ormationa
q? >, -1 L 2
& - exp ¢ =LV n(wR =V t)

where R is the inter-proton distance, and AV is their relative

velocity. This transformation holds under the condition that

aSee reference 40, p.297
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(1/m) < 1 which, when M is the mass of a proton expressed in
units of electron mass, is clearly satisfied. Since the effect of

the removal of V from the Hamiltonian is merely to introduce a

12

phase factor into the total wesvefunction, it follows that when ths
protons are regarded as infinitely massive this potential cannot

affect any electronic process. Consequently, contributions to

.

T.. from the potential V can be expected to be of the orderuﬁ/m

if

when compared with the corresponding contributions from other

12

potentials., Therefore, neglecting V by setting it equal to zero

12
introduces an error of order 1/M and, in addition, implies through
equations (2.2.23) and (2.2.35) that w1; —> 1; it then follouws
that b1; —» 0, Thus, in comparison with the first term on the
right hand side of equation (2.2.36), the multiple scattering
expression (2.2.37) can justifiably be neglécted.

The extension of the above analysis to a system of four
particles is now straightforward., Let us add another electron,
particle (4), to the system described sarlier in this chaptsr.
Therefore, the system nouw consists of a projectile (1) and a
target composed of a core (2) with two bound electrons (3,4). It

may easily be shown that the relevant electron-capture matrix

element corresponding to (2.2.36) is given by

+ + + '
T..= <-\yf[vf,;(w12 + Qo5 v, = 2) «{/i> + )

+

Ve lVel& [st’ (by3 + by% + 3)] Yy
<yf1VfiG+ [V24’ (b1; * b1; * b12)] Wi>+
<'\'Vf*‘VFIG+€(”13*”14)"1;*("12*”14)"1;*("12*V23)b12}Vi> ’

(2.2.39)

+

+
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where now,

V, =V +V,, + V., +V . (2.2.392a)

The neglect of binding forces implies that the commutators involving
\/23 and U24 vanish and, as discussed previously, the multiple
scattering ‘term in equation (2.2.39) may also be neglected.

Therefore,
Imp

T o= Ve lve] @ vy v, - 2)W,> . (2.2.40)

Consider now the rearrangement in which the fast proton (1),
incident on a helium atom in the ground state with nucleus (2) and
electrons (3,4), captures electron (3) to give a hydrogen atom in
its ground state, leaving the residual ion in its ground state.

As previously indicatéd, the distortion of the incident proton
wavefunction by the internuclear potential V12 is expected to be
small at high energies, and the approximation 601; —» 1 is made
(although to be consistent with the work of Bransden and Cheshireza,
we have retained U12 in the perturbing interaction). The interaction
between the incident proton and the passive electron (4) may be
treated in @ similar manner by putting w12-+-1. The matrix

element Ti now becomes

f

Imp _ ' o+
Tir = <'\}/F,V12 * Uy ¥ Vpa # U34}w13'\{/i> (2.2.41)
and no further approximation is made.

Expression for the Total Capture Cross Section.

In general, the total cross section for a raérrangement

- . . a
collision is

Op = LLLE “¢ f 761 e (2.2.42)
k.
477 i

where ,ZLi and /ALF are the initial and final reduced massss

%see appendix A.
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such that if, as in the present case, M, and M, are the masses

1 2

of the proton and helium nucleus respectivelya, then

(1 + m1)(1 + mz)

/AF = (2.2.43)
2+ M, + m2
m. (2 + m,)
A.. =, 1 2 * (2.2.44)
i — 2
2 + m1 + m2

The initial and final relative momenta gi and k. of the colliding

f‘

-

systems can be written as:

k, = AL

M = ’U’ °
s Yy ke = AU (2.2.45)
where 1£'i and Eff are the relative velocities of the atomic
systems in the initial and final states. If one chooses spherical

polar coordinates (W”,e,(P) with the polar axis in the direction

of the incident beam, equation (2.2.42) reduces to

+1
a.. = AiHlr Ke T. 1% d(cose) . (2.2.46)
2qr k.
1
-1

Assuming that all quantities on the right hand side of this equation

are expressed in atomic units, then Qif is measured in units of

2

aj e If we wish to express Qi in the customary units of TTs

f o’
then
+1
. k 2 2 _
Q.. = AiMhr f ]T,] d(cosg@ ) (TMa “). (2.2.47)
if  —— if 0
217 i
-1

The major contribution to the integral in equation (2.2.42) generally
comes from a very narrow cone about the forward direction. For this
reason, it is convenient to replace the integral with respsct to

cos e by an integral with respect to momentum transfer, in which

I

®Units such that m ='ﬁ = e = 1 are used except where otheruwise
specified.
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the integrand is a more slowly varying function of the variabls

of integration.

B are

defined by the equations

oL = k. - a k., ’ a = m2 *
- =f - M. +
2
?’ = k, = c k ’ c = m1
- 1t =f M, +
1
From equation (2.2.49),
52= k.2+czk2-2ck. k. cos©
i f i’°f
therefore sine de = _P df ,
ck k
if
and similarly,
. . ol do(_
sing de .
a k.,k
i f

The relevant momentum transfer vectors

and

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)

It may readily be seen that equation (2.2.47) may be written as

g
max
N B
if ZTTZC’UEZ /&1
min
max
or Q, .= ! xuf
if 277281fi2 /L(i
“Lmin
The integration limits are
P nin = ’ki-Ckf‘l 3 B
% nin < ka"akil i ol

We will normally use the form (2.2.52).

[Ti‘f,z p dp ('n'aoz),(2.2.52)

lTif.lz o d¢  (Ta_?).(2.2.53)

=
maXx

=
max

k.
i

K¢

+

c

a

k

k.

]

(2.2,54)

(2.2.55)

Since the total energy is conserved in the centre of mass

system, we have

2 2
Ei - ki = € ’
P P
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where € = ZEHe - ZGH - 2€ . (2.2.57)
He
and € ’ GEH and € , aere the (negative) binding energies
He He

(in atomic units) of the ground state of the helium atom, the
hydrogen atom and the helium ion, respectively. This equation
serves as a definition for the energy defect € . From the

definitions of ‘/01 and J/a? it is clear that

Ao My« 2) c (2.2.58)
/o{f, (m1+1)(m2+1) a
and, consequently, from equations (2.2.54) and (2.2.56)
L 3
2 _ 2 - 7,2 A€
?min = ki(’l +ac) + ac U € 2(ac) ki, 1 + ; .
k.
i
(2.2.59)

L
2
The binomial expansion of (1 +_,aie /kf) = (1 +é§ai’v'§)

converges rapidly if ’U’i>> 6;01 and, if we retain the first
three terms of the expansion, equation (2.2.59) becomes
2
2 22 [' %] %] 3 ie?
B oin =M1V L1 ~(ee) [1 (ac)?[(ac)?u €+ (oc) A
4U,
. i
here have de use of the relati k2 = 2 2
where we have ma u o] ion i"/l"'i’wi .

This may be simplified further by noting that, from the definitions

of a, ¢ and/\i,

1 = (ac)% = _1 1+ 0 (_l) .
24y ",

Therefore, if we neglect terms of order 1/in1 comparsed to unity,

we obtain

2 v}
B . = ('Ui -€)
min —-—2-;{-;_—1-—— . (2.2.60)

The upper limit Pmax may be evaluated in a similar manner, but this

is generally unnecessary since pmax may be regarded as infinite
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in most applications. An exception is the casse of symmetric
resonant electron capture at very high energies; in that case,

the use of the correct value of ﬁ is sssential since m2 = m1 ’

max

ko = k; and, therefore, B

expressions for ocmin and a‘max are sasily obtainable by. noting

- 4 IU- Y i
ax (1 + c)ki | m1 i Corresponding

that, from energy conservation considerations,

«2 - B% - e . (2.2.61)
a [o]

Another useful relation which will be required at a later stage is

2

CV. - l ac - s1 + ac! (32 ° (2.2.62)
2 2c

2.8 = 1
2 1

The expression for the total capture cross section may now be

written as
oo

Q.. = 1 M [1,.1% qp

if > >
siev. | M
i @ 2
min

In the case of electron capture by protons in helium, before
calculating cross sections from the above formula, it is necessary
to take account of the indistinguishability of the two hselium
electrons, Since these are in a singlet state, the Tif matrix
element corresponding to the capture of electron (3), say, must

be added to that corresponding to the capﬁure of electron (4),

and the sum multiplied by the singlet normalization factor 2-%.
These tmo matrix elements are easily seen to be identical'so that

the matrix element describing the capture of either electron is

BN ,
2% T.p+ Therefore we have, finally,
oo
a 2 2 2
Q.. = —a— T, dp (TMa %) , (2.2.63)
o o r%ea? 52 sl °
min
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with 6 . = 502 _’ez 9 , ) (2.2064)

min T
where we have now dropped the subscript i of 4fi'

It should be noted that if 4 is expressed in. atomic
units, the energy of the incaming proton is given by the relation

£E o~ 25-:)'2 (keV).
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CHAPTER 2.3

Evaluation of the Capture Cross Section

In this chapter, we evaluate the impulse approximation

matrix element Tigp for the reaction
+ 2 + :
H™ + He(1s") —> H(1s) + He (1s) . (2.3.1)

If the momentum transfer of the passive electron is neglected,

the initial and final unperturbed wave functions may be written

_ ik.. O
YV, = O, t)e * : (2.3.2)
ikee @
V. = "Xf(_s_) ¢f(-t-) e - (2.3.3.)

where @ (x , t) is the ground stéte helium wavefunction, X f‘(-§-)
the ground state wavefunction of hydrogen and ¢JF(£) that of the
residual helium ion; the initial and final coordinates appropriate
to the present system are:

Initial: o = ax = s

x = I, ~ I (2.3.4),
r = Lo - _1‘_4

Final: ¢ = co + (1 -ac)x = x =-cs
s = &, = I, (2.3.5)

t = 5, -
where £i is the position vector of particle (i).
For the description of the helium atom in its ground

state, we have employed two types of normalized wavefunction:

(1) The simple one-parameter variational function

Sx,8) = ¢ ()

[N

(2.3.6)
with . (x) =[}° o~ A , X = 1.6875 ;
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(2) The natural expansion of the 35-configquration CI wavefunction

. a
of Weiss

@(l y t) = Djln GJL(Z_)Gjn(E) ’ : (2.3.7a)
where
X Y v 15 <,
. d )
Dt Ne ) —i Y -Z"n " (2.3.7b)
J L Hlij*", <
§ =l /4,:..6. g=¢ m=i
) = le(-x-)y,t“/u (e, 9,) (2.3.7¢)
and n., =1 -J.L T
RJL(E) =r Y e . (2.3.7e)

For the hydrogen and helium ion, the eigenfunctions are

L
X)) = (_1_) e, (2.3.8)
w
P () = (_8_)2 g2t (2.3.9)
w

The matrix element we wish to evaluate is given by (see equation

2.2'41)

+
Tif - <vf !V']z + V14 * V23 + V34l w13"i/i> [ (203010)

This was first evaluated for wavefunction (2.3.6) by Bransden and
Cheshire36. We follow this derivation, but use a genefal wavefunction
which is separable and may be written in the form (2.3.7a). It is

necessary to obtain an expression for the term

0 Yos 5 @i m X, XYy

H

z Y1, 3) <)(m[\,l/i> . | (2.3.11)

@gee chapter 1.3 and references therein,
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The free-particle wavefunctions 7(m are given by

-9/2 .
'Xm = (27) exp [o (_k_,l._s_ + 52._@ + 53.3)1 , (2.3.12)
where 51, 52, 53 are the momentum vectors conjugate to s | e » and

t, respectively. The function n+;+(1,3) satisfies equation
(2.2.16) and is given by

(K ep + K. ot)
"Vm*m,z) - (292 '\&1’“'(5) e"(_2g =, (2.3.13)

QV (s) is a coulomb wavefunction describing the incoming proton
—1

when scattered by potential V satisfies outgoing=-wave boundary

13’
conditions, and is given by

-3T Y bl.f. '.§. . .
"f/k (s) =e * (1 + iy )e ! (=Y, 1, Lk, s= 551._5_)
(2.3.14)

where Y = —’I/k1

Making use of equations (2.3.12) and (2.3.2), the coefficients

o
of ”WE+(1,3) in (2.3.11) becone
"'L.(k e S+ .e +k ot)
Zqe2¥Zp0€ TEge2
<Xm|"*’> (2w > D.tn e X
k.o
Gj((i)cjn(g) e dx ds . (2.3.15)
Therefore, since e_ =X =-CS ,
_‘:k .t
R -3/2 1 -3 -
K (WS = m ™20 4 stek,m k= k)7, 6 (e ,
- (2.3.16)
where I is the Dirac delta function
[
-L(k.‘l'k -C k )oS
-3 X876 Xp/-2
$ e k- k= k)= (2m) o ds
(2.3.17)
and where Igg)(ﬁl) is the Fourier transform of sz(l)’ namely,
s '
1) u7y _ -tK . x
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with K = k,-ak. . (2.3.19)

On substituting equation (2.3.16) into (2.3.11), we obtain

+ - ’ + oKy
LY, = (2m° DJ‘”UJ "f%(.s.) e 20 (e, -2 k) x

jt
6 (8) Sle by kg - k) dky dk, diy (2.3.20)
since ji implies integration over all values of kT’ EZ amd 53.
m
The integrations over 53 and 52 are elementary, and thereforse
+ =3 % (kq+ky)ep
€3 Y; = (2we) Djeat Jn j’\l/k(s) © X
r () 1(k, + k)= a k dk . (2.3.21)
Ut A £y X

The substitution of equation (2.3.21) into (2.3.10) gives

. . , .

Tip = (2wre) ®jtn jj 'XF(E) QF(E)WK t ‘—e—'z-'—h—s-' o
1 - 2 + 1 Q%(E+B)'§
tg-hi'ﬂ g -esl dgwe

jn

-t

1)
6 (8) T, :r [( 1-a)k, _1__;5:{ ok ds dp A& (2.3.22)
o] (o]

where h = (1 + m1)"1 , and where we have used P =k; - cke

=i
(see equation 2.2.49). Note that the subscript 1 of k, has nou

been dropped. The integral with respect to e is of the form

P o= eb= ¢ 2 - T 1 dp
Ig —hs| Jle-hs=-%t] |g+cs{ | +cs~-1l-

where L = 1 (5 + 9). This type of integral may be evaluated by
e T 49 '
making use of Bethe's integral

iL.@ ke,
= do = 4 e o, (2.3.23)

st

e .
e -z 2
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giving

‘h . ‘:

—(k+B).s -L(k+B).s —(k+8).t

R [ec—" _—e - S][z—e‘c ]
(k+8)2 i

Therefore, equation (2.3.22) becomes

Tif s 41T3 Djen j’\ dEJ‘ dk @f(_f_.) [2 - e
c(2m)

(k 8)™ %L(T)Bl = e)k;+ —k] dsX @Y} () x

Ole.

(k+f).t
\cjn(g) X

[ Lh(kep).s ~i(k+p) .g]
e © e . (2.3.24)

The integral over s is of the form

S = j[ﬁ ,% (k + ] f[ +f)] , (2.3.25)
where j(_k_, ;/_L)= P{ (s)"{/ (s) exp(c /L .s)ds . (2’3f25)

5
This integral has been evaluated by Massey and Mohr 0 and by MCDowell34
It is found that
Ly T2 . c -1d1* 2,=2
(k, A)= 8% ¢ M (1+0p) o (1 +w%)
1 +w2

™~
N

(C§+ dz)-'lgr:i + d2— Y(kc- d)(w2+ 1)+ LE(Cz + d2) -

V(e + kd)(1 +co2)] , , (2.3.27)
where
'7:.-1/]( , d = 2k ,C°=1 +ZL2—k2 ,y:_ls-i—A ’
A = nk +8). o

Note that h is a dummy which now takes on the value h, = ‘l/m1 and

1

h2 = =1 to give the first and second terms on the right hand side
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of equation (2.3.25). Ffrom a computational point of view, a
more convenient way of writing equation (2.3.27) is in the following

form:

—yJ2

f(g,é)zll'_h(_tg-»ﬁﬂ = en‘%e P(nw)exp[vtan"‘d/co](c + LD)

(C:; +d2)£1+[£+ h(l<_+£ )] 2} 2

(2.3.28).

whers
Co= (F v fopms f3/&2) cos@ - (f,+ fou+ fﬁf‘z)Si”QD ’
(2.3.29)
D = (F1+ FZ/L+ fS/&Z) sin@) + (F4+ FS/&+ Fs/&z)cosﬁ> ’
/&=i<_ - @ , . (2.3.30)
. F
2 2
® = v1log, (g » &) , (2.3.31)

T

P, = 2n(n=1)k +2n(h=1)(h+1)%k*s2n? (20=1) (he1 )i p2ean? (14n%p7) g%

f, = 2h(2h-1)kp +2h(h+1)(4h2-h-1)k3p +2h3(4h+1)kp3
3 2 2
fy = 4h (2h+1)k g
_ (2.3.32)
2
f, = 2h(h+1)2k3+2h2(h+2)kp + 2hk
2 2 2
e = 2h(3h+1)(h+1)k p +2h(1+h p )ﬁ
3 2
fg = 4h7k g .
Therefore, eduation (2.3.24) may now be written as
1 1
T,.= ——>—0D, 5dl<_ 1[h, (k+p) -I[h (k+B)}-——— x
if 211 2c jtn { [1 _] 2'\= ,] (£+§)2
(1) (2) '
K
;ﬂ (_)Iﬁl (R) ’ (2.3.33)
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where .
1) - IK.X
Tg-L (K) = j e Gj,_(z) dx (2.3.34)
(2) ) - 65.3] -

Tin () = [2-e G n (L) ‘f’f(i) dt (2.3.35)
and if we note that (% - a) ki = &+ % 2 (see equations
(2.2.48) and (2.2.49)), then

K= = + % (k +8) (2.3.36)

R = %(£+E) . (2.3.37)

In order to evaluate the transition matrix‘element TiFvand,
ultimately, the total cross section Q, we have adopted the following
procedure: :

(1) The integrands in equations (2.3.35) and (2.3.34) wers evaluated
by substituting the appropriate part of the helium wavefunction in

(2)

place of Gjn(i) and Cjt(i)’ thersby giving 311) and J as functions
of k, « and ﬁ . We note here that k is the momentum vector
conjugate te s, which is the coordinats that links the incoming
proton with the 'active' electron, and & and ﬁ are the momentum
transfer vectors defined in equations (2.2.48) and (2;2.47).

(2) The functions Ij§1) (_l<_,§,§) and :rjISZ) (k, B) were substituted
into equation (2.3.33). In order to obtain the transition amplitude
TiF it was then ngcessary.to integrate over k. Taking polar
coordinates for k, with E as axis, it was possible to perform the
resulting integral over the azimuthal angle ¢ enalytically,

k . p

leaving the integrals over the polar variable M = - - , and
the radial variable k, to be evaluated by numerical in:£;ration
procedures.,

(3) Finally, the total cross section for process (2.3.1) uas

obtained by making use of equation (2.2.63) and performing a further

numerical integration.
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RN

Numerical Methods

rapidly in the region 0 < k£ 0.8. Howsver,

The expression (2.3.33) for the transition matrix

element Ti may be written, after the analytical integration

f‘

over A , in the form
oL +1
TiF( a,uz) = J‘dk P - i/k) ' d/uF(k,p,/L)H(k,P,/c,vz) )
° -1
(2.3.38)
where F contains, essentially, the expression (2.3.28) and the
term I(z)(k,pa/& ) while H arises from 3(1)(k,g/u,vz). The
symbol M(x + iy) represents a gamma function with complex .
argument; a numerical routine was used which gave M(x + iy)
to an accuracy of six significant figures. All three numerical
integrations were evaluated by dividing each integrand into
an appropriate number of ranges, and then applying a Gaussian
quadrature f‘ormulas1 to each range. The a -integration presented
the least difficulty in that it has finite limits, and a tatal
of 32 Gaussian points ensured an accuracy of at least ssven

significant figures in all cases examined. The function

[ (1 - ;_)varies smoothly for k > 0.8 but oscillates extremely
k .

’

+1

mik, ¢, W?) = o F(k,p{/u,)H(k,ﬁnfﬂyz) - (2.3.39)
-1

is a slowly varying function of k for k £ 0.8. Accordingly, N
was calculated at, only 8 points in this region and interpolated
to a further 240 points before integrating over k. Interpolated
values were checked against calculated values of 1 for a iarga
number of k and f values and were found to agrée to fiive
significant figures in all cases. In the region 0.8 { k < 00,

a safe cut=off value kmax was found (which increased with

74



increasing v2) corresponding to the point beyond which there is

no significant contribution to the total area coming from the
k—=integration. The region 0.8 < k < kmax was divided into 60
ranges, such that a large proportion of the ranges were concentrated
in the most significant part of the k=~curve, with 4 Gaussian points
in each range. In the final ﬁ -~integration, a similar technique
to»that described sbove was used except that, in this case, only

15 ranges with 4 Gaussian points in each range were required to

give a final answer accurate to 4 significant figures.
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CHAPTER 2.4

Impulse Approximation Cross Sections

Results for the total cross section Q(1s) for the

capture process
+ 2 +
H + He(1s”) = H(1s) + He (is) , (2.4.1)

obtained within the impulse approximqtion, are presented in
Table 2.17. In the evaluation of these cross sections, the wave=-
function of the helium atoﬁ in its ground state was represented
by (i) the simple one=-parameter wavefunction (2.3.6), denoted here
by E?; , and (ii) the natural expansion of thé 35-configuration
CI wavefunction (2.3.7) of Weiss®, denoted here by Q?X(X = 1,2,3...15).
The symbol X is used to indicate the degree of truncation of the
natural expension such that X = 1 can be taken as a representation
of thé Hartree Fock (HF) equivalent wavefunction within the basis
set used'by Weiss, while X = 15 represents the total Weiss wave=-
function. In Table 2.1 we quote! after sach X valus, the.symmetry
of the basis orbitals used to construct the X'th natural orbital.
In this discussion we denote the cross sections arising from the
use of ¥ and ¥y in equations (2.3.33) and (2.2.63) by Q4 and
Qx respectively. |

In our caléulations, we have used the ground state
energy appropriate to ths particular wavefunction being employed.
Therefore the influence of electron correlation on Q(1s) is two-fold:
(a) through improvements in the ground state energy of helium, wﬁiéh
appears in the formula for the energy defect ¢
( € = -2eHe+ - 2eH + ZE,HE , whers eHe’ eH and eHe* are the

binding energies of the ground state of the helium atom, ths

®sSee chapter 1.3 and references therein
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hydrogen atom and the helium ion respectively); (b) through
improvements in the helium wavefunction E?X , which alters the
functional behaviour of the integrand in equation (2.3.33). The
nature of this dual dependence is not immediately apparent since

the energy defect € appears inside the integrand for Ti in a way

f‘

that makes factorization of € from T impossible. Howsver,
such a two=-fold dependence may be ratizgalized in the following
way. The terms in the probability amplitude TiF contain €& in a
factor of the form J' = v2 - € , where v is the incoming proton
velocity. The factor é~ also appears in ﬂmin’ the lower l%w}t
of the integrand (2.2.63). At high impact energiesa the changes
in & due to improvements in € are minimal, since V2 >S>E
and Q(1s) is influenced only through the wavefunction. 0On the
other hand, at low ihpéct energies, Q(1s) is influenced by improvements
in € and in the wavefunction. At very low energies (E £ 50 keV),
the dominant effect on the cross section stems from €& in its
influence on 6min' Finally, from a series_of pilot studies,
throughout which € was held constant, it was found that improving
the ground state wavefunction (from &7;\ to \ZXr-'{b‘ ) alone
resulted in an increase for all values of Q(1s) throughout the
projectile energy range studied here.
The effects of introducing an improved wavsefunction

ﬂ?x into the formula for Q(1s) may be seen more easily by examin-

ation of -Table 2.2 wherse, for convenience, we present the percentage

changes in Q(1s) due to improvements in g? The relative

X L]
percentage change in Q(1s), as we move from a wavefuhction E({ to

a more accurate wavefunction qzrn (say), is defined here as

O

A(lL— n) = [Qm - ) x 1008 . (2.4.2)

®Note that if V is in atomic units, then the impact ensrgy
E = 25 \/2(kev).
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The first improvement over the simple non-correlated wavefunction
tf& is the HF equivalent wavefunction q?X=1 , which 1is the

natural expansion wavefunction truncated to include only the

first (normalized) natural configuration. The percentage change
A(XN—=1) in the cross section introduced by the replacement of
SEX by ¥

but positive for E 7> 400 keV. Therefore, in the light of our

« =1 is seen to be negative for 25 keV &£ E £ 200 keV,

discussion above of the dual nature of the correlation effect, it N

is apparent that the use of a HF wavefunction for describing the
helium atom ground state increases the capture cross section Q(71s)
for all energies but, at the same time, the concomitant improvement
in the ground state energy gives a reduction in Q(1s) through

the energy defect € , which is seen to become dominant at low
impact energies, The initial introduction of electron correlation,'
essentially of an angular nature based on p-orbitals, causes a
rather different behaviour. At low ensrgies, the percentage

change A (1—>2) is negative, indicating that angular correlation
has reduced the cross section even further. At intermediate
energies (100 keV L E <§ 400 ksV) the cross=-over describeq in

the A\ (AN—>1) case has occurred and Q(1s) has consequently
increased but, at high ensrgies, the percentage increase indicated
by A (1 —>=2) i; rapidly falling - being only +0.4% at E = 3500 keV
whereas AN (A—>=1) = +5.5% at the samé energy. It is seen, |
therefore, that if we confine our comments to esnergies E ;; 600 keV,
we may conclude that Q(1s) has beeﬁ further increased by the

initial introduction of angular correlation, although this increase
is less than that due to the introduction of the HF wavéfunction.
The correlation introduced into Q?X as we move from X = 2— 3

is of a purely radial nature. The copsequent percentage change in
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Q(1s) is shown in Table 2.2 under the column headed A (2-4>-£;:
The magnitude of [k (2~ 3) is greater than the magnitude of

AN (1= 2) throughout the energy range considered, notwithstanding
the fact that the percentage change A (2—=3) is due to the
introduction of a netural configuration (X = 3).which, from the
point of view of the ground state esnergy of the targst, is of
less importance than the preceding natural configuration (X = 2)
which, of course, gave rise‘to A(1— 2).. Furthermore, &\ (2—>3)
is negative throughout the energy range considered and, for
E > 600 kev, A(2 —- 3) becomes steadily greater in magnitude
with increasing impact energy E&, which is in direct contrast with
the hehaviour of A (1=—»=2). 1In other words, in the energy range
600 keV £ E é 3500 keV, whereas angular correlation increases
the cross section Q(1s) (an effect which diminishes in importance
with increasing enerqgy) radial correlation causes a decrease in
the Q(1s) values which grows in importance with incqeaéing energy.
The influence on Q(1s) of total correlation within Weiss' wave-
function can be examined by comparing the results for X = 15 with
those for X = 1 in Table 2.1 or, alternatively, by examining the
change & (1—>15) listed in Table 2.2. It is seen that the
effect of the inclusion of all the corrslation terms is oscillatory;
decreasing Q(1s) at the extreme ends of our energy scale, but
increasing Q(1s) in the middle range. A comparison between

A (2A—1) and A(1—-15) reveals that, for E 3> 50 keV, the
improvement in the wavefunction over the simple non-correlated
wavefunction and its associated energy, achieved by using the HF
wavefunction, gives changes in Q(1s) which are considerably larger

than those obtained due to correlation effects.
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In order to make a comparison with experimenﬁ it is
necessary to allow for capture into excited states and also for
the possibility that the residual ion has been léft in an excited
state. To estimate our total cross‘section Q we have multiplied
the results Foru5(1s) obtained from the impulse approximation by
the factor® 5; n-s = 1,202, The results are compared with

n=1 12° 52

the experiments of Uelsh st al and of Stier and Barnsett in
Table 2.3. Although the fully correlated results afe in better
agreement with experiment than the non-correlated results, it is
seen that, at high snergies, theoretical and exparimenéal cCross
sections are diverging with increasing projectile energy.. It is
evident that the use of a more accurate wavefunction for the
helium ground state has increased the impulse approximation cross
section = thereby improving the agreement between theory end
experiment, at high energies, over that obtained when using e
simple non-correlated wavefunction. However, the amount of improve-
ment is not as large as had been hoped for by Bransdanz. This
leads us to suggest that an assumption made in the impulse approxi=-
mation to the scaﬁtering amplitude Tif is no£ valid at high impact
energies.

In chapter 2.2 it was found possible to express the
many-body operator Jf in terms of the two=body operators wij’

in the .wllowing manner

> : + * * + + +
= (Lo -
JU \12+ Q%3+(J14 2) + G {(V23+ V24), (b12+ b13+ b14i] -

+

+ + + =y
G {(v13+ V14)b12+ (v12+ V14)b13+ (u12+ V23)b14} y (254.3)

where b, = T -1 . (2.4.4)

®This is the well knouwn Dppenheimer4 sum rule.
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Thus, T._. could be written as

if
= Yel Vo, 05w €9 5- 2)\{"1> *
(¥ | Vel 6 [Cvpgr Vpg)s (byow bygs b12>] Y >+

+ ' + + +\ .
el vele g(v13+ VigdBgg* (Vyat V14)b13*("12*"23)*314}17"?

(2.4.5)
The third term of equation (2.4.5) was identified as a multiple
scattering contribution and, as such, was neglected; the second

term, which involves the binding potentials V and V24, was also

23

neglected on the grounds of the 'impulse hypothesis'; the remaining

term represents the impulse approximation to TiF

= 1, was the matrix element

and, with the

added assumption that &31; = Q)1Z
used to evaluate the cross sections reported here. The validity

of the expansion for JL¥ in terms of the operators CJE}(m)
depends not only on the non-coulombic nature of the perturbation
potential Ui = V12 + V13 + V14 but also on the non-couloﬁbic form
of the individual contributions Vij in order that the definition

of &)ig(m), see edquation (2.2.13), is strictly rigorous. Although
Ui satisfies the required condition when dealing with a neutral
target system, the individual components are coulombic and,
conseguently, a modification of the impulse approximation would
appear to bs required. A morse saﬁisfactory version is provided

by the extended impulse approximation where one now defines, in

place of CJ (m), the more complicated opserators u);(m) by the

equation

-

wimX =1+ X, =¥, (1) . (2.4.6)

E_ = H -V, +(€

Consequently, it may be shown that ’
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!
Tie = LYelVelw " wi) + K¥e[vele” [vpgev, ), b, ] Yiy o

(2.4.7)
where b.Y = . -1 y (2.4.8)
i i .
which, after invoking the 'impulse hypothesis', becomes
+
Teer VelVel wy Yiy - (2.4.9)

Results for cross sections based on the mat;ix elemenf (2.4.9),
which involves only potentials. of a non-COQIombic nature, have not
been reported by any authors due to difficulties associated with
the resulting integrals.

An alternative aspproach to the svaluation of electron
capture cross sections is provided by the continuum distorted
wave method, which was first studied by Chashire38 and is discussed
in the following chapters.
Summary

The initial aim of this study was to examine the effects
of electron correlation on the impulse approximation to the cross
section Q(1s) of the electron capture process (2.4.1), thereby
enabling us to comment on the consequent effects on the total
cross section Q

H' + He(1s?) —= H + He* . (2.4.10)

The introduction of angular and radial correlation,in that order,
showed that, at low impact energies, radial correlation is the

more important and, for energies well below 400 keV, both effects
work together to reduce the cross section Q(1s) whéreas, at about
400 keV, the effects almost cancel since thesy now oppose - angular
correlation giving an increase in Q(%7s) and radial borrelation still

giving a reduction. At larger impact energies (E o< 1000 keV),
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the reduction in Q(7s) due to radial correlation was found to
predominate over the increase which erose from the angular
correlation effect. As the degree of truncation X within the
natural expansion of the ground state wavefunction for the target
is increased, correlation eFFecté drop off feirly respidly and,
at X = 5,we have converged on to the X = 15 (totally correlated)
result to within about 1%.

To evaluate the total cross section Q it is necessary
to allow for the possibility of capture into any state; i.e.
Q = ji Q(nf). This was achieved by making use of the Oppenheimer4
sum rulgf Q = 1.202 Q(1s). A comparison of the evaluated cross .
section Q0 with experiment revesled that, at high enérgies, although
the correlated results are an improvement over the non-correlated
results, experimental and theorétical values still diverged as the
projectile energy was increased. Thus, the increase in magnitude
of the cross section due to thé introduction of electron correlation,
within the impulse approxihation, was not sufficient to prﬁduca the
expected convergence between theory and experiment at high impact
energies. It is thought that this situation must presumably
arise because of the presence of the coulomb potential V13 in the

two=body Moller operator 091;(m), which was subsequently used to

evaluate Q(1s).
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Impulse approximation total cross section Q (in units

TABLE 2.3
of 7?302) for the reaction H'+ He(1s2)-?'H + He',
evaluated using the non-correlated ( A) and the
natural expansion (X—terms) helium wavefgndtions -
see equations (2.3.6) and (2.3.7)of text.,

E(keV) A X = 1 X = 15 Experiment
-1 (2) -1 -1 =1
100 2.510 2.441 2.421 3.4 (b)
440 1.0937° 17.1207° 1,146 (1.8 = 0.2)'3(c)
654 1.825 1.887" % 1.9307% (3.3 = 0.9)'4(c)
851 5.255° 5.4617° 5.570°° (9.4 1_1.1)'5(c)
1063 1.783° 1.857"° 1.900"° (3.3 £ 0.4)"°(c)
2450 | 2.54077 2.665°7  2.67277 (3.6 % 0.4)"(c)
2990 8.874" 8 9.3377°% . 9.151°8 (1.4 = 0.1)'7(c)

(a) The superscript denotes the power of ten by which the entry
should be multiplied.

(b) Stier and Barnett, reference 52.

(c¢) Welsh et al., reference 12.
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CHAPTER 2.5

Continuum Distorted Wave Method

In recent years, a certain amount of interest has arisen
in the continuum distorted wave (CDW) method since it may be sasily
applied to electron capture scattering reactions, with a high
degree of accuracy, at large impact energies. The CDU method,CD
which has the advantage of being a second=-order approximation,
has been introduced by Cheshirese, who applied it to the rssonant
charge transfer process

HY + H(1s) — H(1s) + H* . (2.5.1)

Detailed numerical calculations38 have shown that the CDW cross
sections for reaction (2.5.1) lie close to, but above, the impulse
approximation cross sections in the esnergy range 80 keV = 1 NMeV
and are therefore found to be in closer agreement with axpefimant.
However, until recently, thers had been no rigorous theoretical
foundation for the CDW method and consequently its application'
to other dapture reactions has been viewed with some caution. In
their work on high energy charge transfer, McCarroll and Salin41
have shown that the CDW method is a high energy second-order
approximétion. This work was later superseded by that of Gayet42,
who gave a rigorous foundation to the COW method on the basis of
a quantum three-body theory for rearrangement collisions and, in
addition, suggested that it would be interesting to compare the
cross sections calculated by means of this method with available
experimehtal data down to about 25 kaeV. Salin43 has evaluated

cross sections for the process

H*Y + He(182) — H(nf) + He*(1s8) (2.5.2a)
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where nd = 1s, 2s, 2p, 3s, in the energy range 400 keV = 3 NeV.
The difference between his two sets of results = obtained using the

helium wavefunctions (2.1.25) and (2.1.26) = was up to 20% for

impact energies greater than 1 MeV. 1In view of this large percentage

change in the electron capture cross section which, after all,
was due to a change in the basis set 152 to 1s1s', we examine here
the influence of phe systematic introduction of electron correlaﬁion
on the CDW approximation cross section Q(nl) for reaction (2.5.2a)
for nf = 1s, 2s, 2p, in the snergy range 25 keV =~ 3 MeV. In
particular, it will be aof interest to compare our results for the
cross sections Q(n@ ) obtained by using the simple one-paramster
target wavefunction with those we obtained by Qsing the HF descrip-
tion of the tarbet. It will be recaslled that, within the impulse
approximation, it was fhe introduction of the HF wavefunction which
had the greatest effect on the magnitude of Q(1s). Also considered,
are similar effects for the reaction which invélves alpha=-particles
as projectiles, namely,

HE* + He(1s2) — He*(nl) + He*(1s) (2.5.2;)],
where nd = 1s, 2s, 2p, in the energy range 25 keV = 3 [leV.

Derivation of the Transition Amplitude

Consider an encounter in which a nucleus A, of charge ZA'
is incident on an atom or ion consisting of two electrons (1) and

(2) bound to a nucleus B, charge ZB. Let x, and X, be the position

vectors of electron (1) and (2) with respect to the nucleus of B

and s s, be. the cqrresponding vectors relative to the nucleus A,

17 =2

Then the process wse are considering is of the typs
—
Z, + [zB, e(1), e(z)] : [zA, e(‘l)] .t [zB, 9(2)] [,

(2.5.3)
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where i and f denote initial and final states, respectively. This
treats the electrons as being distinguishable; the cross section

for single eleétron capture is then twice the cross section for
capture of either electron. Let R be the position vector of A
rolative to B. Let us assume that the velocity v of A, relative to
the fixed nucleus B, remains constant and that the impact parameter

of the collision is b. Therefore

R = b + v t, (2.5.4)

where t is the time chosen such that, at t = 0, the nuclei A ¢nd
B have a minimum separation b. Let O be an arbitrary origin along

AB, such that pR + gR = R, and let r, and r,

i 2

vectors of electron (1) and (2) with respect to the origin 0. The

1 be the position
complete Schrodinger equation describing the motion of the electrons

during collision is

2 2 Z Z Z z Z .z
[.12_‘7£1+ Werreelaela- 1 -0 Wizt -
1 2 1 2 12

- LY (z,02,,8) | (2.5.5)
yt
where X, . is the distance between electrons (1) and (2).

12

In a frame of reference with origin at a point which
divides the internuclear line AB in the ratio p : g, the active
electron (1) has,'in addition to its orbital motion about the
target ﬁucleus B,.a velocity =-p v by virtue of being bound to B.
Similarly, ah electron bound to the nucleus A would have a velocity
qQ v. If a collision results in the excitation of the target atom,
the active elsctron continues to move with the nucleus B, and its

translational motion remains unchanged since v is assumed constant.

However, in the case of a rearrangement collision, the electron,
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which was originally moving with B, is captured by A and must ~
therefore acquire the linear velocity of A. The consequent change in
momentum of the electron might be expected to have an increasingly
important effect on the elsesctron capture cross section as the
projectile energy is increased. It was therefore suggested by

Bates and mcCarrolls4 that a set of wavefunctions which take into
account the energy and momentum associated with the translational
motion of the active electron should be used as the basis for the
expansion of the electronic wavefunction 9?(51, 52, t). |

Following Bates > we write 9?(51, t) in terms of

Iy

the function
. 22
(Pi(.z.fl 9_r.21t)= ¢i(.).<.1 !lz)exP { "('[P \_/_-£1+P .‘i‘_{z"'p v t+ elg} (2'5°6)

or alternatively,

@F(£1 ,iz,t)=\f;1(_§1)7(€2(52)exp£5 [q Ver, = P Y.I, =

22 22
th-%qvt-(ef,1+ efz)t]} ’ (2.5.7)

N[

where ¢.(x , )y, VY. (s.), X. (x,) are the helium atom,
it =2 F1 -1 F2 =2
hydrogen atom and helium ion electronic wavefunctions with

corresponding eigenenergises éi, ef ’ 61,, such that
: 1 2
1V2+1v2+28+28- 1 +. €, ¢(x , X.) = 0 (2.5.8)
FRETMICA Pl S BAE R B
1 %2 12
2 Z
AV +a+ €.} Yo(g) = 0 (2.5.9)
2 = 51 1 1
(2.5.10)
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In the limit of infinite internuclear separation, the functions

@i and ¢f‘ satisfy the equations

{lvz + lvz +Z_B +i@.-L 1 ] df.i(gw Iy t) = 0 (2.5.11)

r L
2 1232 x, X, X1 3t
and
1V2+1V2r+ﬂ3_+_2_5+ ib]éf (2,5 £,p ) = 0 (2.5.12)
2 VL 2V 5, Xy S, 3t

respectively. The above is easily seen to be true by substituting
equation (2.5.6) or (2.5.7) for ¥ in equation (2.5.5), and then,
after some manipulation, taking the limit t -—-'r 00 . Bates
and Iﬂc[:arrolls4 have shown that the results of the theory are

independent of the choice of origin 0; therefore we shall always

o~
/ 3
-}

take 0 to be the mid-point of the line AB which corresponds to
making the choice p = q = 3. This means that equations (2.5.6)

and (2.5.7) become

éi(£1 »Iyrt) =<l>i(_>g,l 1X,)E8XP { - L[% Yoz + z))+ 14 vZe . eit—B
(2.5.13)
@(31 ,5_2.1:) ="{’F1(21 )sz(iz)expgi[-"z- velz,- z,)- 12 V2t-(ef + efz)t]} .
, 1 '
.(2.5.14)

We now introduce the distorted waves ‘Xi and Xf, ’

defined as solutions of the equations

’I_V§+_’I_V2+_Z_§+E_B_- 1 & L+ U, Xi(£1’ I, t)= 0
2° =1 2752 X%, 3 b

X X
2 12 (2.5.15)
2 2 Z -2 ) : .
’IV +1V + B+ A+ ¢ + U X(r,r,t):.o ,
275 25 % s, e ] PV
_ X2 1 (2.5.16)
with the boundary conditions
X, — q.si ; Xf—"* éf . ' (2.5.17)

L= -0 t =+

Clearly the distorting potentials Ui and Uf will vanish in the limit
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of large internuclear separation.

Ltet Y¥. and WY _ be the solutions of squation (2.5.5)

i f
with boundary conditions
Yy — &, ¥ — é . (2.5.18)
i i f f
t =% =oco t—»+

The transition amplitude a,_, is obtained by projecting thes initial

if

state on the complete wavsfunction QYf. Therefore

a, lim S d£1 d£2 ‘[/* @

l_f t — - O f 1

t =>»=w0

lim §d£1 dr, ‘I/: X, . . (2.5.19)

Now consider the term \

d Sd_x;,l dr, ‘Y: 'Xi = |dz, dgz{ Wex . ¥

at St . F 3t

. Using equation (2.5.15), this becomes

% . X ] »®
o (az, az, ¥ X, = 2\ez, ez, L3¥r X, . \Pf‘ -1V, -
gt B 3t * 2 <1
lVrz R A ui> Xi] . (2.5.20)
2 =2 X Xy X190

By noting the relation that, if an operator Q is Hermitian, then

S\V* a Y, d = go* "}/: Y, dar , (2.5.21)

a

and also mking use of equation (2.5.5), we find that (2.5.20)

becomes : )
¥ * A\
d lar. az. ¥° K =1 ldc ar, ¥ (% + %a - %% -u )\ X.
== |\ "1 =2 f i == =2 fF\T— —™ == i i
dt 7 s 8 R
1 2
(2.5.22)
Consider ths integral o
- * .
J. .= =1 1lim dt dr, dr g? ZA + ZA - ZAZB - U X.
if T L =00 -1 =2 f - — — i i
L 8 s R
t 1 2
(2.5.23)
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which, by equation (2.5.22), is
_ o N
3, F < lim dt | _d ‘( ar, dz, ¥, X, ] . (2.5.24)
* Ler-x dt . .
t .

Now provided

’ *
lim gdr dr 14 X. = 0 y (2.5.25)
-1 =2 f i
t++o2
we can integrate equation (2.5.24) to obtain
J = lim dr, dr ‘P* X, = a (2.5.26)
if L9 %52 Ty i if
t>e~ew

Therefore we have shown that, provided condition (2.5.25) holds,

oD
* .
a,,. = vidt dr, dr ? ZA+ZA-ZAZB—U, X .
lf‘ _1 -—2 f‘ .s—.. — —— i 1
v s R
~o0 : 1 2
- (2+5.27)

Alternatively, we can consider the time reversed reaction

to obtain the transition amplitude in the form bif‘ s
o0
. % X
b,., = tldt dr, dr ZB + ZA -1 = ZAZB - U ‘X g?. '
if , -1 =2 = 5 - R f f i
- 1 2 12
(2.5.28)
Yy
provided lim X ., dc, dz, = 0 . (2.5.29)
f i = =2
L~»-o0

The total cross section Qif‘ is obtained by integrating over all
possible impact parameters "

2

Q. = 2&13 Iaif_l2 db (-n'aoz) = Zj‘b \bif\z db (wa ) . (2.5.30)

The Distorted Wave Functions.

" We represent the sclutions \?i and Yf. in the form

Yo (zrmy )= B (s ) Lilegn 5 8) (2.5.3%8)
‘YF(_I; » Lo» t) = @F(_I;1, I, t) If(g_(_.], Sy t) . (2.5.32b)
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Clearly, 1lim :Li= lim 1F=1 . (2.5.33)
L = = oo t —=>+o0

f
that .Zi and If, are solutions of

Substituting for ?i or Y into equation (2.5.5), we see

V2V ta-tls -ty .V -bu. V-
2 = 2

2 512 R2 5 s, R 1 L2
‘ 2
*-5?___ Ii(.§1 1.§zyt)= - 2 Vr. ler (pi(2<'1 ,2(_2)] .[Vr.zi(§1’§2’tﬂ ’
3t E; L;
=1
(2.5.34)
AT A VAT T S TR G- ARV VA TR VAN 2 Tl [
2 =1 2 =2 x, S,  Xqp R 2 =1 2 =2 3t

(2.5.35)

Equations (2.5.34) and (2.5.35) are exact. The exact solution to

I. and l

i f

scattering praoblem. First-order approximgtions ‘to Zi and Zf. ’

cannot be obtained without solving the complets

denoted by I; and Z/f , are obtained by neglecting the right

hand sides of equations (2.5.34) and (2.5.35). In solving such
equations for Z'i and I; attention should be paid to the

fact that the dominant contribution to the single electron capture
amplitude in reaction (2.5.3) comes from the region of small values
of ]3(_2[ . This implies that in the equations for Z; and ZIF

we can replace 1/32 by 1/R and 'l/x,|2 by 'I/x,1 to a good approximation.
In this way the coordinate s, of the ‘passive' electron disappears

2

/ ~?
from these equations; Zi and Zf. then becoms solutions of .

2 7. z.(z.-1) & \ J
1 + A - a8 ARV (s., t) =0
("Vf s, R 2'\.'1' L 3?) Ty f2

(2.5.36a)
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% 2 (zg-1) _ zA(zB- 1),
2 X, R

with boundary conditions
/ /
lim . = lim L _ = 1 .
t = —-wo * t -~ +o0

/

Solving for li and Z,f, , Wwe obtain

1

vV v 3 V) =0,

(2.5.36b)

9
(2.5.37)

2 (082N, () FlE% 5 1 5 Elvs s x-iﬂexpg 023 (2g=1) ¢ n(ur- vzt)g

\Y

Y

(2.5.38)

12(5_1,t)=N§(V)1F1[—£%; 1 ;—(:(vx1+ _v_.ﬁ,l)]expg-z'zﬁ\(ze-n en(vR+ vzt)}

where
O I ST AV
Yi=2z, [v
N;(” _ TR/2 M1 0Y,)
V= (25 - /v .

If we now choose to define the distorted wavefunctions as

X, 2oz, )= @ @z, 01 (g ¢)

XF(£1,£2{t) éf(£1,£2,t)1?(1w &)

and the corresponding distortion potentials as

(2.5.39)

(2.5.40a).
- (245.40b)
(2.5.41a)

(2.5.41b)

(a)
(2.5.42)

(2.5.43)

(2.5.44)

(a)It is not difficult to show that conditions (2.5.25) and (2.5.29)

are satisfied with the present choice of ‘Xi and X
f
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U.=B+"A=-_1 ~-"a"B+A,. , (2.5.45)

then equation (2.5.15) is of the form (2.5.36a) and equation

(2.5.16) is of the form (2.5.36b) provided we take

Ay Xy = - éi[vg1loge¢i(->-<-1 ’52)] . [V_r_1 1} (31,1:)] | (2.5.46)

and

(2.5.47)

Substituting for U, and U, in equations (2.5.27) and (2.5.28), we

F

obtain
. - 0 *
a0 =~ U S dt S dz, dz, Ai ’Xi ?_/F - (2.5.48)

-
™ o0 ’,
. _* * . .
- ‘/ () L] [ 4
if S_.,,odt S o, dr, AF X% ¥, . (2.5.49)

b

The continuum distorted wave approximation consists of the
replacement of 9?i R 9?% in equations (2.5.49) and (2.5.48)

by 'Xi ’ XF‘respectivaly. It is easily seen that in this

" approximation the distorted wavefunctions ‘X; and ’X} have the

correct asymptotic conditions: from equations (2.5.42) and (2.5.43),

— /7 /
we have that Xi = Qi Zi and Xf. = §f‘ ZF ; therefors,

by virtue of equations (2.5.37) and (2.5.18),

X > @i >9?i and X ;I)F =Y _ , uhich

i f

L= -w t > - F t —»<+od t—>+co

‘are the required conditions.
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CHAPTER 2.6

Evaluation of the Transition Amplituds

We are interested in evaluating the transition amplitude

a..= a(nl) for the reactions

if
HY + He(152) —» H (nl) + Ha+(1s) (2.6.1)
He't + He(1s2) —» He™(nd) + He*(18) , (2.6.2)
for nl = 1s, 2s and 2p. As before, the ground stats wavefunction

of the helium atom is represented by:

(a) The simple one-parameter variational function

Flix, ) = ¢, x)P (%)
s\ %
()\ o™ N\ 2 1.6875 ;

(2.6.3)
with . (x)

T
(b) The natural expansion of the 35-configuration CI wavefunction
of Weiss
where Q‘Fx ’ G&P and G,y are defined in an equivalent manner to
equation (2.3.7) - see also chapter 1.3. The following analysis
is general for a helium wavefunction which is separable into ths
form (2.6.4)., The transition amplitude we wish to evaluate is

given by (see equation (2.5.48))

ot \ *- -
a(nf) = - ¢ f dt\[‘cl_:_c_.,I dr, A; ‘Xi Yf. , (2.6.5)
-0
where Aixi = —@i[v£1loge \Fx(?-(-’l ’3_(,2)] -[v£1 Z: (31, t)j . |
' (2.6.6)

The integral representation for the coulomb f"unction55 is given by

3 . -y -{«w
Fy ey 15 ¢a) '-'-‘___1__»_§dg_ (1 +_1_) e ., (2.6.7)
2yt L w w
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where the contour encloses the points 0 and =-1. Substituting for
Ill from equation (2.5.38) and making use of the representation

(2.6.7), equation (2.6.6) then becomes

-y |
'Xl = -@ivﬁqloge %‘(-)51 ,_>£2)V£1 NA(V) § deo (1 + l) X

29 i w w
—Lw(vs + V.S ) .
e ! ! exp [g}_ fn(vR - vzt)] ’ (2.6.8)
v

where Z = ZA(ZB - 1)e Therefors,

a(nl) = - (',Smdt S dg_,lgd_x_‘_z v NA(\I) exp|eZ ln(vR— v2t)]§i X

27 . v

-y,
SqXq1 _\1-1‘.1] d [log‘3 fo(_>51,_>52] § deo [1 + 1 X
S4%, VX, )x,l w ,\
Cos

—~

-bw(vs+ .s)
* } ? . (2.6.9)

*
Replacing ?F by ? Z , and substituting for éf.

and éi , we obtain

a(pl) = = VNA(V)NB(V) (bv)2£ z/v S dt e-;'etgdw§d§ X

41 2 - 3
-i}: ".Lyq_ . *
*
(1 +¢%) (1 + %) S'd_r_,ljdgz Yoo (&) X, (2,) 33;(_1_ F(xq,x,)
9-61.21 e"““)(vs‘lW‘.Eﬂ)9-."g(V)<1+y"2s.1 )[31'51 s LX), (2.6.10)
| % v

where ‘P(x1, __2 , "-]/nl (31),7(15(52) are the helium atom,
hydrogen atom and helium ion electronic wavefunctions with corres-
ponding .e'igenenergies =4 B(’lsz), E.A(nlv): 68(18) and where

€ = 68(132) - EA(ni) -EB(‘Is). Equation (2.6.10) may be

re=wuritten in tﬁe form
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0

2vZ/v € ,
a(ng) = - vN, (v): (v) (bv) atﬁb’ [ dt e‘e § dw § d’;' X

Py
- ¥
(1 + 1‘) (1 . 1> Ly PRup (2.6.113)
*
where Iod' = Sdrz 7(18 (x,) Gxa( (x,) (2.6.11b)
* =ty.r, =ww(vs,+ v.s,)
and R -—S. T (s.) 3 G (x,)e e x
< 1 \ynl 1 S;: B

=18 (ux,+ Vox.) vV oex s, . X
e ! L E————l + "'J—'—"l] . " (2.6.1%¢c)

v X, S, X,

Using the Fourier transform method of evaluating two=-centre integralsa,

it is easily shown that

)
a(nf) = - vN, ()N (v) (b\,)252/" Dyny g dt e dwf%._f_ x
4‘1’I2(2‘rf)6 : P - s
-, <Y, - iv.r1
(1 +£) (1 +%) Ixxl\d_1;1 e de gdk F (k)H F(K) x
Ltk . s -tK . x
o T TS A ‘ (2.6.12a)
'*_ -aw(\lS"'F _\_/.o_s_.])
where F_ (k) Hdﬁ(K)- fdsq fdx,l 'Y ¢ (__1) 8 X
JHERY oy o tem) Sy e T
Sx—1 P v X, s, X,
(2.6.12b)

From the coordinate system described in chapter 2.5 we have the

relationships x, = ¢, + 1 1 Rwhen p=qg=1.
2 2 2
Using these relations the integrations over L, and k in equation

ﬂandg,l =£1 -

(2.6.12a) may be performed with little difficulty. A further

substitution, u = vt, enables us to evaluate the integral over time

@ See reference 40, p.213.
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t. Taking cartesian coordinates for K, with v defining the
'z-direction, it is found that another integration, that over

Kz, may easily be performed. The result achieved is:

L7/u _iV,
2l = = (W) ()P Docpb'§ dw§ g 1+ l> x
4wt (24 )2 e | @ '

-9 ©  —lbKe [, |
(1 + _1__) Iy Xdee j\de Fnl(Kx,Ky,y_-J’) Hda;(K*,Ky,-_\_/_—f) ,
< 2 2 /.

- o0 - w0

(2.6.13)
where §-e/v. (<.6.14)
The quantity I,y defined in equation (2.6.11b) is the overlap
betwsen the orbitals of the electron which is not captured. This
is easily seen, since it may be shown (2gain using the Fourier

transform technique) that

Tay = j 9z, st(ﬁz) Cay (%) = h:a/ L=0

LLox

j?ﬂsqz) Cylx,) o 2k,

where, generally, haX (L)

which means

X*
Iy 15(52) G“,(ﬁz) dﬁz , (2.6.15)

where :K1S is the wavefunction of the residual helium ion and, in
our case, G_y (52) is the natural‘expansion description of the
'passive' electron in-the helium atom. From a correlation point
of view, the behaviour of I, Y has a very signifiéant effect on
the transition amplitude a(n{). The wavefunction of the helium
ion, lefﬁ in the 1s state, is given by

-2 .
X, (%) = (9_) BT (2.6.16)

1s I

Therefore,
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I, = 8
ala’ (:IF

% 3 —2X2
) \g & . Rdx(lz) Yld}"/‘*(exz’ ¢X2) ci'>£2 ’

(2.6.17)

=0 fes)

where we have made use of equation (2.3.7d). Consider the integral

over the azimuthal angle ¢%( 3 the integral will be of the form
2 . ' : .

2""'-;‘:/,._4) 27 if“/«:ﬂ
e 7 X2 4d¢ = | (2.6.18)
X2

o 0 if wo=1,2,3 oo

Therefore M is restricted to zero irrespective of 1,4, values,

This means that equation (2.6.17) bscomes

: @ -2x, - ™ '
Iy = 2ﬂ(§ % dlee 2 xg R (52)“( Ye, (6. ,b_ )sine_de .
T . ) . , 0 X2 X2 )(2 X2
i

2
Using Yo o (e ,(P) = (2! + 'lv)/ p((COSQ) ,
: ] —

4w
3 LR Ty 3 .
Iy = 2n(%) 20+ 1 dx,e xy Ry (X)| P, (cosax2)51n6&2dc&2 .
4 e
2.6.19
- ( )
But f P (cos® )P, (cose) sin@ de = 2 if €. = 0,
o L, ——
o 2L, + 1
(2.6.20)

= 0 otheruwise.,
Therefore, due to the orthogonality between ‘X1s(52) and the
angular parts of Gy (52), the contribution to a(nd) from all
natural configurations using basis functions with Q‘#i 0 will be
zero. This, in turn, means that only pure radial correlation will
have any effect on a(nl) and consequently on the total cross section.,
It is also evident that if we were considering, for example, the

process

HY He(162) — H(nl) + He*(2p) , (2.6.21)

then only configurations involving Z* = 1 would contribute to
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the cross section. Therefore, within the present approximation,
a zero cross section for process (2.6.21) would be predicted
unless angular correlation is included in the description of the
helium ground state. The orthogénality condition in Ixd has
arisen because, in equation (2.5.36), we have eliminated the
'passive! electron from the distorted wavefunctions I; and

1’ . If this had not been done, an operator of the type

f‘

L (v S * 1.32)
e would have been introduced into I,y = destroying

the orthogonality condition in (2.6.20) and therefore retaining
contributions from all angular-type correlation terms.

Returning to equation (2.6.13), it was found that, on
further integration, the expression for a(nl) may be reduced to the

form o
+ 1
a(nd) = Jl'q‘“ Jh(bn) wnZ (7 ) d7 , (2.6.22)

where: m = 0 for nI.‘E 1s, 2s, 2p,5 m = 1 for nl = 2px; :rm(m))

is a Bessel function of order m; wnl(n ) is a complicated function
which depends not only on the quantum numbers nl for the hydrogen=-
like atom but also on the type of wavefunction used for the helium
atom ground state. With n¢ = 1s, 2s and 2p, wn((v_) was evaluated
analytically forboth types of helium wavefunction employed here =
see equations (2.6.3) and (2.6.4). In the evaluation of the ijﬁegrals
in equation (2.6.12), the polar axis z is defined as being in the
direction of the velocity v of the incident projectile and the
impact parameter b has been chosen to specify the x=-axis.
Consequeﬁtly, if, as in this case, it is of interest tocompute the
total cross section Q for capture into the 2p state of the hydrogen=-
like system, then Q(2p) is given by

a(2p) = a(2p,) + Q(2p.) ,
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since, in the present mathematical framework, Q(2py5 is identically
zero.

Fortunately, there is no need to perform the integration
in (2.6;22) since, by substituting equation (2.6.22) into (2.5.30)

and noting thaj‘.56

,l-")”ff\fﬂ'm(by)) I (b)b db = J‘(v)'- 7 ), (2.6.24)

where m is arbitrary, we obtain finally

- 2‘
a(nl) = j. 7)2”‘ [WM_(VI)} dﬂr)z , (2.6.25)

which leaves only one numerical integration to be performed in order
to obtain the total cross section Q(n{). This numerical integration
has been evaluated by dividing the integrand into an .appropriate
number of ranges R and then applying a four=point Gaussian
quadrature formula to each range. A safe cut=off 7)max was
determined for each value of impact velocity_considered. The

values of R and q]max were chosen to give cross sections accurate

to at least five significant figures. .
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CHAPTER 2.7

Continuum Distorted Wave Approximation Cross Sections,

In this chapter we discuss our results for the capture
cross sections Q(nL), obtained within the continuum distorted

wave (CDW) method, for the processes
‘ C\‘:}

¥ 1s,2s,2p (2.7.1)

H o+ He(1sz) —> H(nl) + He"(1s), nd

ond He™ + He(18?) —sHe (nd) + He*(1s), nl = 1s,2s,2p. (2.7.2)
The calculations were carried out using not only a simple non-
correlated description for the ground state of the helium atom

but also we employed a series of truncated functions ny obtained
from the natural expansion of a CI wavefunction. At high impact
energies, the major coﬁtribuﬁion to the capture cross section arises
from small impact parameteré which corresponds to a regioh close

to the target nucleus. Therefore, any improvements in the description
of the innermost region of the target wavefunction are likely to

be of most importance in their effect on the total cross section
Q(nl). UWe may further suppose, as is physically reasonable, that

at high impact energies the target electron is most likely to be
captured if the trajectories of the incident projectile and target
electron almost coincide (at the same point in time) in the vicinity
of the target nucleus. It is evident, therefore, that the cross
section is determined by a quantity which involves the orbital of

the 'active' electron in the helium target, a coulombic operator,
pnd the.orbital of the captured electron in the hydrogen=liks

system. An examination of the 1s, 2s and 2p hydrogen=like orbitals57

reveals that, at small nucleus-electron separations (0 £ 4 1),

the radial parts of the 1s and 2s orbitals are remarkably similar,
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but both are radically different from the radial part of the 2p
orbital (the 2p wavefunction is zero at r = 0 whereas the 1s and
2s wavefunctions are non-zero at r = 0). Therefore it is expectesd
that, at high energies, the percentage changes in Q(nf), arising
from the use of an improved helium wavefunction, will be very
similar in the case of capture into the 1s and 2s states of the
hydrogen-like atom, but will be fundamentally different from 5;;
percentage changes derived in the case of capture into the 2p st;te;
Ue examine first the results for a proton projectile-
reaction (2.7.1). The cross sections Q(nf) were evaluated at
impact energies E ranging from 25 keV to 3 MeV using the following
descriptions of the helium atom:
(a) the simple wavefunction g& (equation (2.6.3)) and
(b) the natural expansion wavéfunction qz‘(equation (2.6.4))
for various orders X of truncation. Therefﬁre, as X is increased
incrementally from X = 1 (the HF=-equivalent wavefunction) to X = 15
(equal to the Weiss total wavefunction) electron correlation is
introduced systematically by virtue of the decreassing importance,
energetically, of each additional natural configuration. For the
reasons discussed in chapter 2.6, configurations composed of
angular-type orbitals do not contfibute to the cross sectionsp
only X =1, 3, 6, 10 and 15, each composed of s-type.ofbitals, make
a8 non-zero contribution. The cross sections Q(%1s) and Q(2s) are
given in Tebles 2.4 and 2.5 for various values of impact energy.
The cross secfion Q(2p) for capture into the 2p state, given in
Table 2.8, is composed of a contribution from capture into the

2pz orbital and a contribution from capture into a 2px orbitél, l1eBey

a(2p) = Q(2pz) + Q(ZpX). Values for Q(sz) and Q(pr) are given in
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Tables 2.6 and 2.7. For convenience, we have shown in Table 2.9
the percentage changés A(N =>1) and A (1= 15) in Q(nl)(for

nd = 1s, 2s and 2p) due to improving the basic waveFunctionSPs

O/

to the HF wavefunction = y=1

and those due to improving the
HF wavefunction E?x=1 to the totally correlated wavefunction

X=15 ? respectively. Inspection of Table 2.9 reveals that,
as expected, the percentage change A ()N=—>1) in Q(1s) and q(2s)
is virtuslly the same in each case throughout the energy range
considered whereas, in contrast, ﬁ&(%-—> 1) in Q(2p) displays a
completely different behaviour. This observation aslso holds when
comparing ZS(1 —» 15) for Q(1s), Q(2s) and Q(2p). Furthermore,
we observe that the A (N ->1) results for Q(2px) and Q(2p2) are
different in behaviour. as the energy is increased; a corresponding
observation holds for A (1 —>15). This is due to the fact that
the different angu}ar parts in the 2pz and 2px orbitals give rise
to differing forms of equation (2.6.22) for the transition amplitude.

As we move from the simple wavefunction QP&, describing
the helium ground state, to the more sophisticated HF description
§2X=1 , 8 large percentage change is observed in each of the
capture cross sections Q(1s), Q(2s) and Q(2p), throughout the
energy range considered. At energies greater than 300 keV,
A(\—= 1) is greater for Q(2p) than it is for Q(1s) 'and Q(2s), which

means that a HF description of the helium wavefunction 1s more
important when considering capture into excited states of an
angular nature than it is when the excited state is spherically
symmetric. However, it shpu}djbe notad-that, even in the case of
Q(1s) and Q(2s), A(N-= 1) is about 36% at E = 3000 keV, and is

therefore very significant. It is also important to note thét at

high energies the difference between the values for Q(1s), Q(2s)
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and Q(2p), derived from the use of 4%\ and §?X=1 respectively, is
becoming grester with increasing energy. In addition Table 2.9
reveals that the effect of the HF wavefunction over and above the
one-parameter wavefunction is first to reduce and then to incrsase
the cross sections Q(1s) and Q(2s) as we move from low to high
impact energiss, the cross-over occurring a2t E =~ 600 keV. 1In
general, this behaviour is followed in the case of Q(sz), bugt%he
cross—-over occurs at E & 400 keV. However, in Q(pr), the effect
of the HF wavefunction is to increase the cross section everywhere,
except at E = 25 keV. Therefore, in the energy range 50 keV £ E
£ 400 keV, the changes in Q(2p) are small in spite of the
significant changes which accur for Q(pr) and Q(sz) since they
are of opposite sign, whereas, at E > 400 keV, the changes in
the individual components are now additive. The resultant effect
is that, at impact energies greater fhan 50 keV, a relativeiy small
increase in Q(2p) is observed due to the introduction of the HF
wavefunction. However, this increase grows rapidly in importance
with increasing energy and is as large as 86% at E = 3000 keV.
Turning now to the effect due to the inclusion of all
the electron correlation terms within the total helium wavefunction
g’X=15.we see that, as shown in Table 2.9, the percentage change
A (1~ 15) in Q(1s), Q(2s) end Q(2p), is negative for all energies
E > 50 keV. This means that all th;F;Eoss sections have been
reduced by introducing total electron correlation over and above
our approximate HF wavefunction. The magnitude of this decrease,
however,.is far less importsnt, at high energies, than the increase
arising from the use of the HF wavefunction. At high energies,

therefore, the overall effect due to improving Eﬁ to Q?X-15
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is a large increase in the cross sections Q(né), for all nt
considered. Although not shown in Table 2.9, it is easily seen
from Taebles 2.4, 2.5 and 2.8 that the percentage change A(1 — 3)
gives thé greatest contribution to A (1 —15) ih all cases
( A(3 =>15) gives small variations of an oscillatory nature).
Thus, the initial introduction of radial correlation gives the most
important contribution to the cross sections when compared with
subsequent radial correlation contributions (X = 6, 10 and 15).

At this stage, it is of interest to compare the relative
effects of electron correlation within the impuise and continuum

distorted wave approximations when applied to the procsss

HY + He(1sz) —> H(1s) + He (1s). (2.7.3)
Tables 2.2 and 2.9 reveal that the trends in G(1s), introduced By
the use of an improved helium wavefunction, are different for the
two methods. The most striking difference is the high energy
behaviour of A (A —1) which, in the CDOW method, rises steeply
with increasing E and is 32% at E = 2500 keV, whereas, in the |
impulse approximation, the rise is very gradual and is only 5%
at £ = 2500 keV. The trendé introduced by the introduction of al&ﬂ-
electron correlation terms, A (1 — 15), are also quite different
in the two methods = in fact, for most of the energy range,vthey are
of opposite sign. It is interesting to note, however, that the
initial introduction of radial correlation has the same aFFect'in
both cases; that is, to redﬁce the cross section = the reduction
being the greafer in the COU method (cf Tables 2.1 and 2.4). In
the impulse approximation, this reductién is largely compensated

for by the increase due to the initial introduction of anqular

correlation, Of course, no such compensation exists within the
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COW approximation - sce chapter 2.6.
The totesl cross section Q, which includes capture into
any state, may be obtained from the relation43
Q= Y and) = a(1s) + 1.616 [ac2s) + a(zp)] . (2.7.4)
n,¢
Values for the CDW approximation total cross section Q@ are presented
in Table 2.10; also given are the experimental resulés of Stier
and Barnett52 and of UWelsh et al.12 ft is quite clear that for
E 2; 654 keV, the fully correlated (X = 15) results are in better
agreement with experiment than are the simple non-correlated ( A.)
results. At impact energies greater than sbout 1500 keV, the.
X = 15 results are in agreement with experimental values, within
experimental error. This is in direct contrast with the situation
found in the impulse approximation, where the correlated results
vere seen to diverge from the experimental values at high energies -
cf Teble 2.3.
We now turn our attention to the electron capture by
alpha=-particles in heliﬁm, reaction (2.7.2). Calculations within e
the CDW approximation for this reaction, using a helium ground —

state wavefunction of the f‘orm46

’\P(iﬂ X,) = N[e"(ax1+ bx2)'+ e-(bx1+ axz)] |

have been reported by Belkic and 3anev47. They conclude that

(2.7.5)
above 600 keV ;heir results are in‘good agreement with experimentsa.
We have alsq evaluated cross sections for reaction (2.7.2) in the
energy range 25 keV = 3 MeV, using wavefunctions (2.6.3) and (2.6.4),
and examine the consequent effects on the capture cross sections.

It should be noted that the velocity of an alpha-particle is 0.5

times the velocity of a proton with the same kinetic energy.
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Therefore,’in this discussion, it should be kept in mind that we

are not in‘the same high velocity region as was the case when
discussing proton=helium collisions, and the high velocity arguments
used in that case cannot be used here. Calculated values for
Q(1s),‘Q(2s), Q(2pz), Q(pr) and Q(2p) are given in Tables 2.11 =

2.175 respectively. It is seen that the effects of introducing a

A~
{

HF wavefunction for helium are quite different at these low
velocities. At most energies considered here, the cross sections
for capture into ths 1s and 2s states of the helium ion, when
evaluated using g?k=1 , were considerably reduced relative to thaosse
evaluated using §Z>, This is more sasily seen by examination of
Table 2.16, where we present the relative percentage changes in
Q(nl) due to using the improved wavefunctions Q?X=1 and ¥ X=15°
Also reduced by the HF wavefunction were the'Q(sz) cross sections,
whereas Q(2px) were mostly increased. The resultant cross éections,
Q(2p), were reduced everywhere except at energies E ‘ﬁ; 50 keV and
E ;7 2 MeV, The effect of total corrslation was, as in the case
of proton projectiles, to reduce all the cross sections Q(nl)
considered for all energies-E > 300 keV. As before, the greatsest
contribution to A (1 = 15) arose from the initial introduction

of -;radial' correlation, 41— 3).

The total cross section Q was obtained with the aid of
equation (2,7.4) and the corresponding values for a particular
impact energy are given in Table 2.17. Also shown, for comparison,
are the experimental results of Pivovar et alSB. At low ensergiss,
the Fully correlated results give better agreement with experimént
than the simple non-correlated () ) results. However, in the ‘higher

energy region, the correlated results are in worse agreement with

experiment than the non-correlated ()} ) results, although the
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overall agreement with experiment is still good. It is expected
that if the energy range of the calculation were extended to include
alpha-particle velocities of comparable magnitude to proton velocities
~corresponding to proton energies E = 3 MeV, then the correlated
results would give the better agreement with expesriment., For such
a comparison it would be necessary to extend the energy rangse of the
alpha-particle reaction to 12 fMeV. Unfortunately, no expérimental
data exists for E > 1.5 MeV.
Conclusion

Including electron correlation in the helium atom
wavefunction, over and above the HF description, hés a small effect
on the total capture cross sectiaon Q when compared with the effect
of using a HF wavefunction rather than the one-~parameter wavefunction;
the latter effect gives an increase in Q as large as 37% at E = 2990 keV
when considering‘electron capture by protons incident on a8 helium
target. However, although by comparison the total correlationt>
effect may be small, it is also significant, causing a decrease
in Q of as much as 7% at intermediate energies. Nevertheless,
we may conclude that if the CDWU method were applied to larger
atomic systems, then the use of HF wavefunctions for the description
of the initiaitand final states should be adequate to give reliable
results, From 2 compﬁtational viewpoint, it is anticipated that the
cross sections Q(nf) for charge transfer reactions involving large
atomic systems will still only require one final numerical integration
if the target‘is described by a HF-type wavefunction.

Perhaps, in the above, @ note of caution should be added..
In the application of the CDW method to reactions (2.7.1) and

(2.7.2) an approximation was made which was to replace ’l/x12 by



1/><1 and ’I/s2 by 1/R in equations (2.5.34) and (2.5.35) (see
chapters 2.5 and 2.6) thereby removing the coordinates of the
'passive' electron from the problem. This caused a simplification
which meant that only purely radial correlation terms would
contribute to the cross sections. In aFfect, we have eliminated
electron correlation from within the method itself, but have

included it in the atomic wavefunction. It would be of considerable
interest to see the difference made to the theory, and the consequent
difference in the cross sections, if we left the term 1/32 as it

is, and replaced ’I/x12 by an expansion59 in terms of X4 and Xot

o +4 . ;
im(@,-0,) ¢
1= z z gL—lml )%P{'m’(cos%)lem'(cosez)e T2t xe ,

(L+iml) Ll

X
=0 m=-{ : >

(2.7.6)
where (x,l,@,l, ¢1); (xz, 8,, CPZ) are the polar coordinates of
electrons (1) and (2) respectively, xg @nd x5 are respectively

the lesser and greater of x, and X

mt . .
1 9 and PL is an associated

Legendre function. The expansion (2.7.6) cannot be used as it
stands because it has an infinite number of terms. However, instead
of restricting the summation over £ to 2 - 0, as we have done
in the present study, a2 second-order term could be included by
allowing £ = 1 and an attempt made to solve the resulting
differential equation which would replace (2.5.36). The distorted

’ ’

wavefunctions Zi and lf‘

thereby modifying the CDW approach from within the structure of the

would now include electron correlation,

method.
With reference to the capture reaction
o+

H o+ He(132) —> H(1s) + He ' (1s) ,

we have seen that, for the impulse approximation, the cross sections
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arc vory cumbersome to evaluate since they involve a triple
numerical integration for each impact energy. Furthermore, the
validity of the impulse approximation is uncertain due to the

presence of the coulamb potential V in the two-body operator

13

691;(m) (see chapter 2.4) which is subsequently used to evaluate

the transition amplitude. In contrast, the COU cross sections are
easy to evaluate and areymore reliable since they are based on a
rigorous theoretical fcundation42. In the light of our expefience,
extension of the impulse method to charge transfer reactions
involving large atomic systems would be extremely difficult, if not
impossible, due to numerical complications. On the other hand, a m
real possibility exists that the CDW method may be extended to

charge transfer reactions of the type

) )+
"t A > XM L At

where Xm+ is a structureless projectile and A is a many=-electron
system.

In summary, although the impulse approximation gave
somewhat disappointing results for a helium target, the application
of the CDY method yielded very satisfactory values. Furthermore,
the latter method has the added advantage of possessing a rigorous
theoretical foundation and is easily applied to high-energy electron

capture reactions.
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TABLE 2.4

Continuum distorted wave approximation total cross

section Q(1s) (in units of Na 2) for the reaction
HY + He(1sz) —>>H(1s) + He+(1s§, evaluated using
the non-correlated (;\) and the natural expansion
(X-terms) helium wavefunctions = see equations

(2.6.3) and (2.6.4) of text.

E(keV) A X = 1 X = 3 X = 6 X = 15
(a)

25 7.552° 7.254° 6.632° 6.554° 6.527°
50 1.806° 1.711° 1.640°" 1.631° 1.628°
100 2.958" 2,701 2,637 2.6317] 2.629
200 | 3.05572 2.73372 2.664~2 2.661"%  2.66172
300 6.445° 5.853 0 5.668° 5.666 5 5.665 5
400 | 1.936° 1.8077° 1,740 1.7407°  1.74070
so0 | 7.228™% 6.9544 6.668" % 6.670°%  6.6717%
600 3,131"%4 3.104"% 2.967" % 2.969™% 2.969™%4
700 1.5127%4 1.542”% 1.47174 1.4727% 1.4727%
800 7.9357° 8.306 > 7.909"° 7.918"° 7.9187°
900 | 4.4487° 4.7697° 4.535° 4.5427°  4.5427°
1000 2.6307° 2.8827° 2.7397° 2.7447° 2.7447°
1500 | 3.2847° 3.9207° 3.7217° 3.73178  3,7317°
2000 | 7.15277 9.052" 7 8.603" " 8.631"7  8.629"'
2500 2.145"7 2.833"7 2.697"" 2.706 " 2.705"7
3000 | 7.9227° 1.081"7 1.030"7 1,034 1.03477

(2) The superscript denotes the power of ten by which the entry
should be multiplied.
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TABLE 2.5 Continuum distorted wave approximation total cross
section Q(2s) (in units of’?Taoz) for the reaction
HY + He(1sz) —>> H(2s) + He"(1s), evaluated using
the non-correlated (;\) gnd the natural expansion
(X-terms) helium wavefunctions - see equations
(2.6¢3) and (2.6.4) of text.
E(keV) ?\ X =1 X =3 X = 6 X = 15
-1 (2) -1 -1 -1 -1
25 5.583 5.118 4,481 4,412 4,389
50 2.1327 2.0267 1.900" " 1,884 1.8787"
100 4.228"2 53,9072 3.794™2 3.781°%2 3.77772
200 4.5197° 4.0527° 3,952 3.9473 3.946 0
300 9.395%4 8.505 % 8.246% 8.241"%  g.2407%
400 2.776"% 2.576"% 2.484™4 2.483"% 2.48374
500 1.02274 9.768° 9.375"°> 9.376"° 9.377™°
600 4.3747° 4.3007° 4.12273 4.1247°  4.1247°
700 2.0927° 2.1217° 2.0247° 2.0257°  2.0250
800 1.089° 1.1347° 1.0807° 1.0817°  1.08170
500 6.065° 6.468° 6.154° 6.163°%  6.16370
1000 3.566 0 3.889 0 3,697 0 3,703 3.703"°
1500 4,358'7 5.196" " 4.934~7 4.94777 4.94777
2000 9,414 1.188"7 1.12977 1.13377 1.13377
2500 2.80478 3,695 ° 3.518"C 3.530°°  3.52978
3000 17.03178 1.40478 1.33878 1.34378 1.34378

(a) The superscript denotes the power of ten by which the entry

should be multiplied.
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TABLE 2.6 Continuum distorted wave approximation total cross
section D(sz) (in units ofch'aoz) for the reaction
HY + He(132) —%>H(2pz) + He"(1s), evaluated using
the non-correlated (A ) and the natural expansion
(X-terms) helium wavefunctions - see equations
(2.6.3) and (2.6.4) of text.
E(ksV) ;\ X =1 X =3 X =6 X = 15
-1 (2) -1 -1 -1 -1
25 3.759 3,432 3.195 3.167 3.157
50 | 7.80172 7.11472 6.800 2 6.771"2  6.760"2
1700 | 1.08672 9.812"° 9.406"° 9.376 >  9.365 "
200 | 8.3687% 7.6964 7,366 % 7.356"%  7.3527°
300 | 1.392°% 1.3427% 1.2777% 1.2777%  1.29778
400 | 3.4687° 3,528 3,344 3.3467°  3.345°
500 1.11372 1.1937° 1.1287° 1,129 1.1297°
600 4.2577° 4.78575 4.516"° 4.52378 4.5237°
700 1.851°° 2.1727°8 2.048° 2.052"° 2.052"°
goo | s.881"7 1.083°° 1.0217° 1.0237%  1.0237%
500 | 4.606" 7  s5.81277 5.480° 7 5.495"7  5.494~7
1000 | 2.54477 3,312 7 3,124 7 3.13377  3.13277-
1500 | 2.48778 3.6437° 35,4498 3.462°8  3.46078
2000 | 4.6587° 7.385° 7.018™° 7.045"°  7.0417°
2500 | 1.2637° 2.1197° 2.0217° 2.028"°  2.0277°
3000 4.344~10 7.609"10 7.275 10 7.301710  7.296™10

(a) The superscript denotes the power of ten by which the entry

should bs multiplied.
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TABLE 2.7

Continuum distorted wave approximation total cross

section Q(pr) (in units of 0(202) for the reaction
HY o+ He(1s2) -%>H(2px) + He"(1s), evaluated using

the non-correlated (A ) and the natural expansion

(X=terms) helium wavefunctions - see equations

(2.6.3) and (2.6.4) of text.

E(keV) A\ X = 1 X = 3 X'z 6 X = 15
_1(5) - -1 -1 -1

25 | 5.787 4.680 4,741 4.745 4.767
50 | 7.15372 7.87372 7.826 2 7.841"2 . 7.8697%
100 | 8.5357° 9,746 9.398™3 9.411°° - 9.,4297°
200 | 6.494”% 7.776 "% 7.334™% 7.351"% . 7.3607%
300 | 1.12474 1.4477° 1.3547% 1.3567%  1.3607¢
400 | 2.9377° 4,043 3.7747° 3.7907° 3.7927°
500 9.8987° 1.439° 1.3457° 1.3527° 1.3527°
600 | 3.9687° 6.031" 5.652° 5.682 %  5.6827°
700 | 1.80478 2.842" 2.6737° 2.688"°%  2.6877°
800 | 9.0327"7 1.464" 1.3827° 1.3907%  1.3907°
900 | 4.875 7 8.095 7.67077  7.714"7  2.71177
1000 2,796 4,736 4.504""7 4.530"7 4.5277"
1500 | 3.19878 5.771" 5,573 8 5.603%  5.50878
2000 | 6.7397° 1.257" 1.2287° 1.2337%  1.2327°
2500 | 2.0017° 3.8107 3.7507° 3.7667°  3.7617°
3000 | 7.4017'9% 1,428 1.414° 1.4207°  1.4187°

(a) The superscript denotes the

should be multiplied.
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TABLE 2.8

Continuum distorted wave approximation total cross

2
section Q(2p) (in units of‘Ofao ) for the reaction

H

- He(1sz) ~>H(2p) + He'(1s), evaluated using

the non-correlatsd (;X) and the natural expansion

(X-terms) helium wavefunctions = see equations

(2.6.3) and (2.6.4) of text.

E(keV) ;\ X = 1 X = 3 X = 6 X = 15
_1(8) -1 -1 -1 -1
25 | 9.546 8.112 7.936 7.912 7.924

50 | 1.4957" 1,499 1.4637" 1.46170  1.4637
100 | 1.94072 1.9562 1.880"2  1.879"2  1.87972
200 1.4867° 1.5477° 1.4707° 1.4717° 1.47170
300 | 2.516° 2,789~ % 2.631"%  2.8367%  2.6377¢
400 | 6.4057° 7.5717° 7.1187° 7.136"°  7.1377°
500 | 2.1037° 2.6327° 2.4737° 2.4817°  2.,4817°
600 8.2257° 1.0827° 1.0177° 1,0217° 1.0217°
700 | 3.655°° 5.0147° 4.72178 4.740"%  4.7397°
800 | 1.7917° 2.5477° 2.4037° 2.4137%  2,4137°
900 | 9.48177 1.39178 1.,3157° 1.3217%  1,32178
1000 | 5.34077 8.048"" 7.628"" 7.663"  7.6597 "
1500 5.685° 9.41478 9.022'8 9.065"%  9.0587°
2000 | 1.14078 1.99678 1.9307°8 1.93878  1.93678
2500 | 3.2647° 5.929"° 5,7717° 5.7947° 5,788 °
3000 1.1757° 2.1897° 2.1427° 2.1507° 2.,148°

(a) The superscript denotes the
should be multiplied.
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TABLE 2.11

Continuum distorted wave approximetion total cross

section Q(1s) (in units of QYaO2) for the reactian
He "+ He(152) —>He (1s) + He (1s), evaluated using

the non-correlated (>\) and the natural expansion

(X—terms) helium wavefunctions - see equations

(2.6.3) and (2.6.4) of text.

E(keV) ;\ X = 1 X = 3 X = 6 X = 15
25 '9.005*1(8) 9.084"" 9.064"" g.105%7  9.118"]
50 | 2.464"" 2.497% 2.476"" 2.493*"  2.498""

100 1.420"] 1.355%] 1.383%" 1.394"" 1.397%"
200 6.233° 5.653° 5.636° 5.654° 5.660°

300 | 2.925° 2.629° 2.593° 2.597° 2.599°

400 1.536° 1.381° 1.354° 1.355° " 1.356°

500 8.788 7.9357 7.7457" 7.7517 7.7547
600 | 5.3637 4.8707" 4,738~ 4.74177  4.7427"
700 3.4397" 35,1447 3,050 3,051 3.0527
800 | 2.2947 2.1127" 2.0457" 2.0457"  2.046"]
500 1.5807" 1,466 1,416 1.4177" 1.4177"
1000 1.118"" 1.0457" 1.008" 1.009"" 1.0097"
1500 2,651 2 2.575 2 2.468"2 2.46972 2.4702
2000 | 8.6107° 8.667 " '8.2767° 8.2837°  8.2847°
2500 35,4017 13,5360 3,368 3,3727° 3.3727°
3000 1.5387° 1,646 1.5657° 1,568 1.568 >

=

(a) The superscript denotes the power of ten by which the entry

should be multiplied.
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TABLE 2.12

Continuum distorted wave approximation total cross

section Q(2s) (in units of O(aoz) for the reaction

+

He %+ He(1sz) ~>He"(2s) + He"(1s), evaluated using

the non-correlated (?\) and the natural expansion

(X-terms) belium wavefunctions - see equations

(2.6.3) and (2.6.4) of text.

E(keV) A X = 1 X =3 X=6 X =15
25 1.194*2(3) 1.042%2 8.223"" 7.993%7  7.916*"
s0 | 4.401"" 4,170 3.788"" 3.738%"  3.721%"

100 | 1.247%" 1.189"" 1.150%" 1.144%" 1,142
200 2.902° 2.696° 2.658° 2.653° 2.651°
300 | 1.098° 1.001° 9.8767" 9.867  9.863
400 | 5.1337 4,623 4.5547" 4.55177 4,550

500 2,713 2.428"" 2,386 2,384 2.3847"

600 | 1.5577" 1,391 1.3637 1.36270  1.3627"
700 9,488 8.48272 8.28972 8.286 2 8.285 2
800 | 6.06172 5.43372 5.29772 5.29572  5.,29472
900 4.02072 3.61972 3.52072 3.51972 3.5192
1000 | 2.75072 2.4897% 2,416 2 2.416"%  2.41672
1500 | 5.7407° 5.378° 5.1787° 5.1787°  5.178 >
2000 | 1.7127° 1.665 1.5957° 1.595°0 1,595 °
2500 6.357"% 6.405 % 6.114"% 6.119 % 6.1207%
3000 | 2.7447% 2,854~ % 2.71974 2.7227%  2.7227%

(2) The superscript denotes the power of ten by which the entry
should be multiplied.,
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TABLE 2.13 Continuum distorted wave approximation total cross

section Q(2pz) (in units of‘ogaoz) for the reaction

++

He + He(152) —€>He+(2pz) + He*(1s), evaluated using

the non-correlated ('%J and the natural expansion

(X=terms) helium wavefunctions - see equations

(2.6.3) and (2.6.4) of text.

E(keV) 7\ X =1 X = 3 X =6 X = 15
(a)

25 | 1.137%2 1.479%2 1.396%2 1.38672  1.383%2
50 3.525%" 3,625 3.472%" 3.463%" 3.460""
100 1.046"" 8.891° 8.270° 8.213° 8.193°
200 | 2.469° 1.948° 1.834° 1.822° 1.818°
300 | 8.801" 6.867 " 6.540 6.509 " 6.498"
- - - -1 -

400 | 3.806 " 2.9757 2.8517] 2.840 2.836
500 1.857 1,462 1.405" 1.4007] 1.3997)
600 9.873"2 7.844=2 7.544"2 7.525°2 7.518"2
200 | s5.60072 4.498 2 4.326 2 4.31772  4.31372
800 3,344 2 2.718™2 2.61372 2.608 % 2.606 2
900 2.082"2 1.71472 1.646 2 1.644"2 1.643 2
1000 | 1.34372 1.12072 1.0752 1.07372  1.0737°2
1500 | 2.1917° 1.9487° 1.8617° 1.860°°  1.859 >
2000 | s.402”° 5.095 % 4.848"% 4.849° %  4.s48”"
2500 | 1.7207° 1.7087 1.6227% 162574 1.6227°
-5 - - - -5

3000 6.527"° 6.779° 6.424° 6.4327° 6.431

(a) The superscript denotes the power of ten by which ths entry

should be multiplied.
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TABLE 2.14 Continuum distorted wave approximation total cross
section Q(2p_) (in units of<k'a02) for the reaction
He' 4+ HeT (1) = He+(2px) + He'(1s), evaluated using
the non-correlated (;\) and the natural expansion
(X-terms) helium wavefunctions = see equations

(2.6.3) and (2.6.4) of text.

E(keV) A X = 1 X =3 X = 6 X = 15
25 8.336*1(6) 7.068"" 7.348%] 7.399*" 7.444""
50 | 1.387%" 1.373%] 1,342%" 1.34370 1,347

100 | 3.458° 3.699° 3.450° 3.530° 3.529°
200 8,479 9.1707" 5.878" 8.859 8.853
300 3,167 3,417 3,327 3,322 3,321
400 | 1.42177 1.5297 1,491 1.4507"  1.4907"
500 7.1462 7.677 2 7.4817 % 7.480 2 7.4797%
600 3.898" 2 4.183°2 4,071 2 4.07172 4,07172
700 | 2.26177 2,427 % - 2,357 % 2.3587%  2.358 7
800 | 1.37872 1.48172 1.43572 1.436° %  1.436 2
900 8.738° 9.4197° 9.108"° 9.1167> 9.117°3
1000 | 5.7317° 6.202"° 5,985 > 5.9917°  s5,9927°
1500 | 1.0027° 1.1197° 1.07070 1.0727°  1.07373
2000 2.608% 3.03374 2.8907% 2.g898"% 2.898"%
2500 8.708° 1.085"% 1.006"% 1,007"% 1.007"%
3000 | 3.4487° 4.3437° 4.1327° 4.1467° 4.1463

(2) The superscript denotes the power of ten by which the entry
should be multiplied.



TABLE 2,15

Continuum distorted wave approximation total cross

section Q(2p) (in units of 77802) for the reaction

He '+ He(132) —> He'(2p) + He'(1s), eveluated using

, the non-correlated ( A) and the natural expansion

(X-terms) helium wavefunctions - see equations

(2.6.3) and (2.6.4) of text.

E(keV) A X = 1 X =3 X =6 X = 15
25 1.971*2(3) 2.186%2 2.131%2 2.126%2  2.127%2
50 | 4.912%" 4.998"" 4.814%" 4.806""  4.807""

100 | 1.392%" 1.259"" 1.172%" 117471 1 972"
200 3.317° 2.865° 2.722° 2.708° 2.703°
300 1.197° 1. 028° 9.867 9.831] 9.8197"
400 5.2277" 4.5047" 4.3427" 4,330 4,326
s00 | 2.5727" 2.2307" 2,153 2.148"7 2,147
600 1.3777" 1.2037" 1.1627" 1.1607" 1,159
700 7.86172 6.925" 2 6.683 2 6.675 2 6.6712
800 | 4.7227% 4,19972 4.04872 4.0447%  4,0427°
900 | 2.956 % 2,656 2 2.5572 2.556"2  2.555 2
1000 1.916 2 1.74072 1.67472 1.67272 1.672"2
1500 35,1937 3,067 2.9317° 2.9327° 2.93272
2000 .10 % 8.128~ % 7,738~ % 7,747 7.746"%
2500 | 2.5917% 2,763 % 2.626™% 2.6307%  2.6297%
3000 9.9757> 1.11274 1,056 % 1.088"% 1.058"%

(a) The superscript denotes the power of ten by which the entry
should be multiplied.
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APPENDIX A

Formal Time-Dependent Theory of Scattering

The Interaction Representation

The equation of motion of a system, in the Schrodinger

representation, is given by

I ¥ ()

It

[ o0

1

HY (t) |, (A.1)

where H denotes the Hamiltonian for the system, with units such
that R = 1. If the state of the system at time tD'is denoted

by g?(to), equation (A.1) may be formally integrated to give

' -CH(t = t_) .
F(t) = e ° \f—/(to) . (R.2)

Thus the causal development of the system from time t0 to time t
is specified by the unitary operator- exp [-'CH(t - toE}

We now suppose that the Hamiltonian H may be decomposed
into two parts; an unperturbed Hamiltonian H0 ’ whose eigenfunctions

and eigenvalues are known, and a perturbation V:
H = HO + V (A.3)

The wavefunction in the interaction representation is defined by

CHt
T()=e ° F . (A.4)

Differentiating equation (A.4) with respect to time leads to

. . H t
LBSPI (t) = Leb © )
3t

LS

" H t
(£) = H_ o0 F ()

o/
o

which, by using equations (A.1), (A.3) and (A.4), becomes

ib;I’I (¢) = () ¥ (&) (r5)
t

a
An operator, say a(t), satisfying a(t)af(t) = E, where E is the
identity matrix, is said to be unitary.
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where

tH t - {H t
U(t) = e 2 ve o . (R.6)

Therefore, in the interaction representation, both the wavefunction
Q?I(t) and the operator V(t) are explicit functions of time.
If there is no interaction at time tD , the wavefunction

in the Schrodinger representation is

-

_(,E

t
Fe)=e *° 4 (A.7)
where \V 5 is an eigenfunction of the unperturbed Hamiltonian -H0
and Ei is the corresponding eigeneneragy. Therefore.the‘Formal
solution (A.Z)Vto equation (A.1) may be written as
q‘/i(t) : e- ;H(t-.to){/i(to) _ e- tH(t- to) e.- :.Eito "

i
(A.8)
where the subscript i in g?i<t) corresponds to the i in E . Nouw
equation (A.2) above implies that at £, (when the system is in the
state g?i(to) of Ho)’ the system is suddenly subjected to the
interaction V. A more physical picture and a better mathematical
formulation of the collision problem is to require that, as
t,—> - &, the Hamiltonian H approaches HO , and g?i(t) approaches
the stationary state “V; asymptotically. In this view, it is
convenient to introduce the artifice of assuming the interaction
V to be 'switched on' adiabatically from V —> 0 as to—d? -0
to the full strength V at t = 0, and to V—>0 35 t w—> +0 ,

=
The ?i(t) at time t is then the result of the exp[ = ¢ H(t- to)]f;.(to)

of equation (A.8) for all to ranging from - o to 0. This is most

conveniehtly represanted by the average

_ e gt = CH(t- t ) '
- o 0°' g
¥i(t) = eJ dto e e ‘;L/i(to) dto , t >0
-od

(A.9)
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- LHt p° €t ¢ (H- Ei)to
= e € dt0 e e HVi (A.10)
badi< ]
- . .
= ¢~ “ht CE V. (A.11)
'Ei - H +¢g
Therefore,
Y'Y (o) = ¢ E W , o (A.12)
* E. = H+ € 1

i
where it is understood that the limit € — 0 will be taken eventually,

and that the superscript + signifiss outgoing wave boundary

conditions. iF we make use of the fact that
(HO - Ei)‘\{/i = 0 = (H -\ - Ei)«‘/i ’ (A.13)

then equation (A.12) becomes

Y+_. v 1 v Y, . (A.14)

Ei - H + ¢¢ 1

In an entirely anaslogous manner, we can obtain

v '«//i , (A.15)

1
E. - H=-¢¢g
i

where Q?i+ , g?i— are, respectively, the outgoing and ingoing
vave eigenfunctions of H corresponding to the initial wave ﬁVi.
Note that the above is also true in the interaction representation,
since, by equation (A.4), ‘?I(U) = kP(C]). ‘

As in the Schrodinger representation, the time development
of the dynamical state of the system may be represented by the
action of a unitary linear operater on the wavefunction describing
the system at some arbitrary time to. If this operator is denoted

by U(t, to), then

C}?I'(t) = U(t, to)‘i?l(to) . (A.16)
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Making usse of eguations (A.2) and (A.4), we have
_ LHt =c¢H(t -t ) =¢CHt - ‘
Y (t) =6 ©° o e 9O YW (Y, (R.17)
I I o}
Comparing equation (A.17) with (A.76), then

LHt = tH(t -to) -CH t
U(t,to) = e © ¢ e © 0 . (A.18)

On substituting the expression (A.16) for Q?I(t) in equation
(A.5), it is evident that U(t, to) satisfies the differential
equatiaon
U (t,t ) = v(t) ult,t ) , (A.19)
T o
a result which may also be obtained by differentiating (A.18).

If we note that

U(to, to) =1 s (A.20)

then integration of the expression (A.19) yields the integral

equation
t
/ / /
u(t , to) =1 + 1 S v(t ) u(t’, to) dt . (A.27)
L dyg
0]

A number of other results, which will be useful later, may also be

obtained from equation (A.18); in particular

. - (H t .
U(o , t) = e LI ° (A.22)
+ LHot = bH(E- £ ) - iHot
U(t, t)=c=e e ° ¢ = Uu(t , t)
0 0 Sz
(A.23)
/ 7/
ult , t)u(e , to) = U(t , to) . (A.24)

The S Matrix

| In discussing @ collision problem, one is interested
in the evolution of @ system prepared in a specific state Q?I(-OO)'
in the remote past. At time t = + & , the system will have

evolved to a state
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‘?I(-roo) - s¥ (- ), (A.25)

where the scattering operator S is defined to be

s = lim ult, to) , (A.26)
I
(o]
t—> +L

provided the double limit exists. At the time t0~—?' -0 , there
is no interaction present in the system and we suppose, therefore,
that

¥ (- ) = VY. , (A.27)

I . i

where, as before, “Pi is an eigenfunction of the unperturbéd
Hamiltonian Ho' The final state Q?I(+ o ) will be a superposition
of eigenstates of HO and consequently the amplitude for a transition
from the initial state - «yi to any eigenstate ﬂ/F of Ho is simply
the coefficient of q/F in the expansion of Q?I(+-ao ) in terms

of the eigenfunctions of Ho' Thus the required amplitude for a

transition from ‘Vi to “Vf is

]

S, ¢ <. sl .S | (A.28)

lim <«.}/F ] u(e, t,) g «}Ji>

t > -0
(0]

t =7 + o0

i u(s, )V, | ule, £ )V, Y, (.29)

t = -
o

t
Tt

where we have used equations (A.26), (A.24) and (A.23). The

aggregate of the quantities Si is called the scattering or S

F

matrix. In order to evaluate Sif one must first examine the
effect of U(S,t) operating on an eigenfunction of Ho’ and then

consider what happens in the limit as t —> %00 ,
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Let ﬁ/a be an arbitrary continuum sigenfunction of H0 ’
and Ea the corresponding eigenenergy. Then, from equation (A.22),

it is evident that

cae T LE t :
U(o,t)‘Va = e e S V4 » (A.30)

a
This result, in its present form, is of little use if we wish to
investigate the limits t —» % o© , Difficulties which arise in
these limits are most easily seen by examining the integral equation
(A.21). Each term in the Neumann solution of this equation involves
an oscillatory integral, and the.limits as t —» # © gre not
defined (see reference 61, pp 308-315). These oscillations must
somehow be démped‘out to achieve a meaningful limiting process,

To remove the difficulties associsted with the limits t —%» & o0

we adopt the method of‘adiabatic switching., This treatment is

due originally toc Gell-Mann and Goldbergerﬁz. Ue define the limits

of a function f(t) as t —= £ o by the equations

o /
/

lim  f(t) = lim € j e €Y r(¢”) dt (A.31)
t = = 00 E_.’o-f ) o

R ’ ,

- € ’

lim f(t) = lim E:J e tf‘(t ) dt . (A.32)
t—=> + e__,.o‘* o

If the functions f(t)possesslimits in the ordinary sense as
t —» £ o© |, then by integrating by parts we cen sese that these

limits coincide with

lim f(t) = f(=oa)
t —» =00
lim f(t) = f(+o0)
t —=» + o0

as it should be. On the other hand, if f(t) is an oscillatory
77

function, the above procedure provides the required damping of the

oscillatiaons,
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Introducing the Moller operator JL+, defined by the

equation

lim U(o, t) ’ _ (A.33)
te>r ~-co

;ﬂj

and using the limiting process prescribed by (A.31), one obtains
o

7/
. ’ £t 4 /
lim € j‘ e U(o, t )ﬁV; dt .

. +
£~ 0o

]

X,

lin | 3 v, , (A.34)
£ 0 (Ea - H +:¢€)

where we have made use of equation (A.30). Since

(€ - HO)\}/a =0=(E_-Hs+ v, (A.35)

equation (A.34) reduces to

ATy, = 1in LV s 1 vy 2= EF, (a.36)

¢ o0 ° E_ - H+CE

(by A.14) with

(A.37)

where, as usual, it is understood that the limit as €7 ot is to

be taken eventually. This establishes the important fact that the
+ . . . .

icller operator JL acting on 2 continuum eigenfunction of HO

generates the continuum eigenfunction of H which has the same

energy and which satisfies outgoing=-wave boundary conditions.

Likewise, if the opsrator JL- is defined by

J~ = 1im  U(o,t) ' (A.38)
Lt =>4+ 00

it is easily seen that

v, = Y- , (A.39)

a
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with V= = v . 1 Voo, (A.40)
@ @ E_-H-if @
a

which is the contipuum eigenfunction of H with energy Ea , and
satisfies incoming-wave .boundary conditions.

If P and Q are operators for which inverse operators
exist, then‘obviously

-1 -1 -1

p = Q  + P (q-pmP)a . (A.41)
-1 - -1
= o'+t (a-p)p . (A.42)
Taking )
pmt 1 (A.43).
Ea - H + (,E
and . v
! - , (A.44)

then using the identity (A.42) it is relatively easy to show that

v §;+ . ' (A.45)

Y~ = v - a . (R.46)

It is now evident from equations (A.33), (A.36), (A.38) and (A.39)

that the S matrix element S, defined by (A.29) takes the form

if?

poe <ESLED

<:§éf | E?i+:>'* <fi?- - B ‘£1+ >> ’

(A.47)

S

However, kI/i*' and \I_/"'

f‘

Hamiltonian and have the same normalization as “f; and WVF ;

are continuum eigenfunctions of the same

consequently

‘<1§E;+ ‘ 92i+j> - J. (A.48)

if
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where iy contains a Dirac delta function for the energies and

if
Kronecker deltas for other quantum numbers. Also, from equations

(A.37) and (A.40),

‘?F" - ‘I’F* = 1 - 1 v ‘;"F . (A.49)
E~H =€ E.-H+i€

Consequently,

i T dir <’\FF, ’ [E = H1-2£ E- H1+i€] q{i+>

f f

R (S B ]<«yf1v«\?;>

- El- LQ Ef‘— Ei+"£

£ - 2: ¢ | LV v ¥ . (A.50)
if E(EF" Ei)["' €7_] f i >

At this point we recall that the limit € +0o" is implied in

equation (A.50), and using the result63

lim [' € ] = vJ‘(Et',-Ei) , (A.51)
( .

2 2
ot -
€ > Ef, Ei) + £

we obtain

5,0 = J'if,-z:ra: §E, - E£,) T, (A.52)
where T = ¥, lv] ¥.7) . | (A.53)

The expression Ti may be regarded as a matrix element of the

f
operator T defined by

TY, = v ?i* . - (A.54)

Alternatively, if we write

Sip 7 <\Pf‘_ h?i-> ’ <{/F- A \Pl-> (A.55)

it follows that
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So= de-zwi dg, ~e) ¥ v |'\Vl> . (A.56)

Therefore, on the energy shell, that is when Ei = Ef ’

<“V{, | v Pi+> - <\I’F' [v]\Pi> . - (R.57)
This result may also be obtasined directly by using the formel “
expressions for §?i+ and Q?}_ in terms of AFE end . , and from
this derivation it is seen that (A.57) is not, in general, valid off

the energy shell.

Transition Probability for Direct Collisionse.

The quantity Isifl 2 is the probability for all time

of finding the system in a state ¥, if it was prepared in a state Y.

However, the duration of any experiment is necessarily finits.
The physically meaningful quantity is therefore the transition

probability per unit time, which will bs denotsed. by wi Thus, at

f.
time t, we have

. 2
Uip = tof_t'“ o _;2%. [Si¢]

, . . 2 .
lim _g_t I<’\VF | u(e, to)[‘\{/i>’ . (A.58)

t > -0
0
From equations (A.4) and (A.27)
Yi(e) = ult, t)) Y, y b T — o (A.59)

Therefors,

W, = ___(_.‘l_
if T

|+ | \Pl(t)>l- 2

v, (¥ )y <\}’f | %‘E fl(t)> + coca  (A.60)

where the abbreviation c.c. is used to denote the complex conjugate

of the first term in the expression. Using equations (A.5), (A.16),

(A.18), (A.24) and the fact that ‘I’I(O) = \Pi‘“ we obtain
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B
NV

where Tif

as before,

¥ T8y

Using the integral equation (A.45) for

<yf‘, gjl(t)> = e

where d

is the same as given in equation (A.53).

R AR A

C L(E= E.)t
- {8 f . T R

if (A.61)

Also, proceseding

_ (A.623)

R ALY

_§2+ , this becomss
C(E- E,)t
f? A
* [<'\'Vf}*i> * <4Fr TR _; +.£V i/J.+>
i o ¢ :
C(E- E.)t
Sl «f“ + 1 Tie , (R.62b)

Ei- Ef‘+ Lt €

has the same meaning as in (A.48).

if
Therefore
C(E_~E.)t ~4(E ~E. )t 4
W f = lim ] e Fod J;F+ 1 T,f te Fi T.F+c.c.
€ >0 E -E_+i¢ *
i f
— J‘ ] 3
= lim M + T T.. + CeCe

€0 if E- E.v i€ ifg if



which, using equation (A.51), becomes

%
W o= 20 T Sif+2w §(e;, ~E

) |
o ) lTif_.‘ (A.63)

f.‘

which is obviously independent of tims.
The Dirac delta function in equation (A.63) arises

because wi is the probability of a transition to a specified

£
continuum state. This apparent singularity disappears if ons
considers instead the probability of transitions-to a group of
states centered at E = Ef. Let the density of these states be

Q (E) per unit solid angle; in other words, the number of states,
with momentum vectors lying within dJL and with energies in the
range £ to E + dE , is Q(E) dE d L . Then, if NVi does not
belong to the group of .final states under consideration, the

transition probability per unit time from ﬁPi to some state of the

group 1is
£E. + AE

aCF
w;r = S W @(E) dE dJ;

E, - AE

AE .
£ _
= g | [2 ImTff, I+ 2w I(Ei-E)ITiF\ﬁe(E)dEdJL
At ‘

]2 dJL | | (A.64)

2w R(E) | T,
and in the final expression EF = Ei .
An expression for the density of final states is readily

obtained by considering the possible states of a free particle

in a box with periodic boundary conditions. Let the box bs a cubse

.

of volume L3 with edges parallel to the axes of & system of
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cartesian coordinates (x, y, z). The wavefunction for a free
particle with momentum k is
L(xk, + yk_ o+ zk
¢ (x ) - (xk vk, ;)
k’Y’ = 8
and the periodic boundary conditions require that

¢’k(x +lyy+l,z+Ll)= ¢ (x, vy, 2).

Thus the allowed values of the components of k are

kx = ZWNX ; k ZwN ; k 21'er ,
L YL 2L

o

where Nx ’ Ny’ NZ are positive or negative integers or zero. -
Consequently the total number of states with momenta in the rangs
k to k + dk is (L/21T)3 dk, and the number of states per unit

volume in this range is

(2w)"° dk = (27)° k2 d dk.
From the definition of Q(E) it follows that

2 40 dk

p (E) dEdN = ()3
and, since E = kz/gﬁ* , the required expression for the density of

states is

e(E) = Ak (A.65)

3
81

When this result is applied to a collision problem, E is the
energy associated with the relative motion of the colliding systems

and /u.is their reduced mass. Therefore equation (A.64) becomes

4“’2 .

e = ke |Tif]2 du , (A.66)

where kf is the final relative momentum. In order to relate this
quantity to the differential cross section I(& ,$ ), one notes
that, for an incident flux of N particles per unit area per unit

time, the number of particles per unit time which cause the required
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transition, and are scattered into an element of solid angla_dJL ’

is N I(e ,¢ ) do . Since W, e

per unit time corresponding to an incident flux of magnituds

is the transition probability

ki//u., it follows that

59
e ,$) =42 K |Tif|2 (A.67)
4ﬁ2 ki

and the total cross section for a2 traensition from an initial state

i to a final state f is

a.. = A% ke \( T 12 dL . (A.68)
if - — if
.
4 i

The results in equations (A.67) and (A.68) are identical to those
obtained in the time-independent approach.

Rearranoement Collisions.,

When considering rearrangement collisions, it is convenient

to express the total Hamiltonian H as

H = H, + V, = H. +V , (A.69)

where Hi and H_, are the initial and final unperturbed Hamiltonians

f‘

and \li and V. are the corresponding perturbations. If one is

f‘
interested in direct transitions from one eigenstate of Hi to
another eigenstate of the same Hamiltonian, it follows from the

analysis preceding equation (A.53) that the relevant transition

matrix element is

. | .
Tip = <'\Pf lUiI ‘Pi > (A.70)

whers

+ : +
‘Pi = Yi+E-li+' ui\f,/i o (R.71)
i i (-E
= “I/‘ + 1 V. '?/. (A’72)
. Ei- H+ ¢€ * + :



and “Vi and NVf are both eigenfunctions of Hi corresponding to
the same total energy Ei. Although the wavefunction Q?i+ was
introduced for the discussion of direct collisions only, it is
nevertheless clear that, being an eigenfunction of the total
Hamiltonian H, it represents a complete solution of thse scattaring
problem. Therefore Q?;+ contains the description of all possibls
reactions and the only remaining problem is the extraction from
g?i+ of the inFormation'which refers specifically to rsarrangements.
It is evident that for rearrangement transitions, the quantity of
interest is the probability that a system, prepared in an eigenstate
“Vi of Hi in the remote past, will evolve, under the action of
the Hamiltonian H, to a specific eigenstaté -ﬂp of H,e It is

£ £

convenient to re-write the initisl Green's function operator

c.* () = 1 , (A.73)

which occurs in equation (A.71), in a form which includes explicit

reference to the decomposition of H in terms of HF and V the

f.\ 14

object being to facilitate the expansion of q?i+ in terms of the

complete set of eigenstates of H To this end we define the

F.

final state Green's function for arbitrery E

T (e) = 1 . (A.74)

f E - HF+55

Using the operator identity (A.42) and setting

! 1 = G, % (g,) (A.75)
E.- H.+ (¢ * 1 ’
i it

0'1 = 1 = Gf.+ (El) , (A.76)
E.- H.+ ¢E .
i f

we obtain
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G +(Ei) GF+(Ei) + Gf+(Ei)(Hi- HF)Gi+(Ei)

+ - .+
6" (E,) L_1 + (V= V)G, (Ei)] . (A.77)
The integral equation (A.71) now becomes

Y?i* =V, + GF+(Ei)[:1 + (V- vi)ci*(aii] v, q(i+

¥, o) [V B (e v (- )

[} B Gf+(Ei)(UF- Uii] \V; * Gf+(Ei)VFQ?;+ .

However,

E -'GF+(Ei)(Vf‘_ Ui)..l ’\}/.'L +(Ei) [Ei" Hi*:’-?’]Yi

1}

. )
G (ENY
since (Hi'- Ei)ﬁ/i =0 ,

and therefore

ot + + +
i G (B )W; + G (E)) Vo,
- LE Yo+ 1 vf\Ei* (A.78)
Ei- Hf‘+ LE Ei- HF+ L‘;

This expression may now be used to'expand Eﬂf in terms of the

complete set of solutions qp} of the equation

(Hp = E.) ”P} = 0 (A.79)

and the expansion takes the form

§2+.= j{: L€ Ve <6P% ‘\kﬁ:> EE. Yr <2V/f | vel :>

Ei-Ef+Le "'o&

f
(A.80)
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Uhen endeavouring to obtain a scattering amplitude, one
is interested in the asymptotic form of q{i+ as the separation
between the interacting systems tends to infinity. Under these
conditions the bound states within the set “P% are irrelevant
since they vanish asymptotically, and we may thersfore confine our

attention to those states of ﬂ/F which lie in the continuume.

If EIo * Ei , the £ dependent factor in the first term of

(A.80) tends to zero as € —> 0, whereas for EF = Ei this factor

tends to unity. Thus the effect of the & dependent factor is

to project out of WPE only those states #/f for which Ep = E;.

Since the states of interest lie in the continuum, the sum over all
states f involves g sum over discrete quantum numbers and an

integral over the energy E The € dependent factor ensures

FO

that the integrand vanishes except at one value of E_. and, therefore,

r

this integral can be non-zero only if the integrand contains the
delta function S(Ei - EF)'
Tq show that such a delta function does not normally

arise we consider a rearrangement collision of the form

7 + (2 +3) =—> (1 +3)+ 2
where initially particle 1 is free and particles 2 and 3 are bound
whereas, finally, particles 1 and 3 are bound and particle 2 is
free., If the independent coordinates are chosen to be the position

vectors r, and r, of the exchanged particle 3 with respect to 1

1 2
and 2, the scalar product <“}’f. ] ’\}’l> involves integration

over the spaces of r "and ¢ The r, integral involves a plane

2.

wave from “Fl and a bound state wavefunction from y/f ; the

1 1

I, integral involves a plane wave fraom WVf and a bound state

wavefunction from ﬁVi. It is therefore clear that for collisions
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of this type <<#/F l “Vi:> does not involve a delta function.
In fact, a delta function could arise only if all three particles
were unbound before and after the collision. Since such situations
are of no interest in the present context, they will be ignored
from now on. |

We have now shown that the first term in equation (A.80)

vanishes asymptotically and consequently

<'Y/F ] ?i+> - Ve ) Vel \P.].+> . (R.81)

The trensition probability for rsarrangement is given by
. \ 2
e = [ <V, | > ] (A.82)

as in equation (A.60), but in this case the appropriate intergltion
picture wavefunction is

tH. t

Wit)=e " Hr) (A.83)

and therefore

|
o

1]

. LHFt
_}S_:PI(t) Lo i - n) Yo

. LH t - UHt
=te v e P o+ . (A.84)

Consequently, proceeding as before in the direct transition case,

. . 7 2
if E:'LinO+ [Ei- Ef"“ LE ’ <l\l/€ ‘Vfl Yi+>l ’ C.c.]

(=
1

= 27 ]<\}/F' Ve | \I/i*>’ 2 S, -e . (A.85)
This may be written as
U, o = 2 lTiFIZ §(e; =€) | (A.86)

where now

Tip = <V/ffuf1 \Pi+> . - (A.87)
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The arguments concerning the use and evaluation of the density of

final staetes follow through precisely as before, and we obtain ﬂ
A U k 2
e ,¢)=44c F | Tiel (n.88)
2 |3 ’
4m i
and
A M k 2
Q = iAr “r ‘Tifl dot , (A.89)
— _
41 ki
where //Ai and //AF are the reduced masses before and after the
collision,

In the foregoing analysis the expression for the cross
section is obtained by examining the expansion of q?i+ in terms
of the complete set of eigenfunctions of Hf. Alternatively, one
may proceed by expanding the wavefunction

Y™ = v 1 V. Y, (A.90)

= , .

f f E - H —L& f f
where £ = Ei = EF , in terms of the eigenfunctions of Hi to obtain
o= ¥y ’Y’i> y . (R.91)

The Born Series.

In the evaluation of cross sections based on the formulae
derived above, the use of approximate expressions for the matrix

elements Ti is inevitable bscause, irrespective of the type of

F

collision under consideration, the relevant matrix element takes

the form

o= <Folvel \'[/i+>

1]

‘SRR l'\}’i> ,
 (A.92)

where

G = 1 , (A.93)
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since for direct collisions UF = Vi » and tractable expressions
for the matrix elements of operators involving the Green's function
¢* are not available. Physical arguments suggest that, if the
relative velocity of two colliding systems is sufficiently largs,
the distortion of the systems due to their interaction may be

disregarded in calculating scattering amplitudes, which leads to

the expectation that the first Born approximation matrix element

Ti? = Yo fov | ¥ > (R.94)
is the high-energy limit of the exact matrix slement, and that in
some range of large finite energies Ti? provides an adequate
The matrix elemsnt TiB

f
obtained by expanding the

representation of Ti may be regarded sas

F.
the first term in a8 Born series for TiF
Green's function G' in terms of a simpler. Green's function. Use of

the identity (A.42) shows that G* satisfies the integral equations

+ + + +

G = G, + G, V.G (A.95)
i 1 1 . <o
and c¥ = 6T +c vt (A.96)
o] (8]
+
where G = 1 s, V=H=H ’
[w] (e}

E - H0 +LlE
and H0 is the sum of kinetic energy operators for all the particles
present. By splitting the Hamiltonian in different ways many other
integral equations for g* may be obtained, and the iterative
solution of any of these leads to a Born series for Tif’ For
example from equations (A.95) and (A.96)

G' = G,  + G, V;G" + GTVG VG T 4 eeae (A.97)

=ct+cvet+ctvugtuy co+ + oeeeee "~ (A.98)

and substitution of these in equation (A.92) yields
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Tip = Ti?‘ * sz’VFGi+Ui!\Fi> * <Vrlvfci+vici+vi\\yi> Toeee
(A.99)
and
T =T+ <WFIUFGO+U]\/11> * <V/flVFGO+VGO+VH’i> feee g
| (A.100)

The nth Born approximation is obtained by retaining the first n
terms of either of these expansions. It is obvious by examination
of equations (A.99) and (A.100) that, unlike the first Born approxi-
mation, the second and higher order Born approximations are not

uniquely defined, but dspend on the particular series used for ct.
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Abstract. The previous analysis concerning the influence of electron correlation in the
ground-state description of He when evaluating inelastic scattering cross sections via the
first Born approximation is applied here to an examination of He-He scattering. Excitations
of one or both atoms to either a 2 'P or 3 'P state are considered along with the example
of a mixed (2'P, 3 'P) transition. Correlation effects were found to be most important
when both atoms were excited, the cross sections being reduced by about a quarter at low
impact energies. For the description of angular correlation within He (1 'S), configurations
based on p orbitals were always the most significant thus reflecting the symmetry of the
excited states. A brief comment is made regarding the elastic cross sections at large impact
energies.

1. Introduction

Ground-state correlation effects are known to be of considerable significance when
evaluating generalized oscillator strengths and inelastic scattering cross sections for
closed-shell target systems; see, for example, Banyard and Seddon (1974), Banyard and
Taylor (1974), and Seddon and Banyard (1974). For He and Li* we have already
examined, within the first Born approximation, cross sections for the 1 'S — 2 'P and
1 1S — 3 'P excitations arising from the scattering of e ", H* and H. Electron correlation
was introduced into the description of the ground states in a systematic and well ordered
manner by using configuration-interaction (C1) wavefunctions (Weiss 1961) expressed
in the form of natural expansions (Lowdin 1955). In the present work we extend our
analysis of ground-state correlation effects to a consideration of He-He scattering
where both the projectile and target atoms may be excited from their ground states to the
excited states 2 'P or 3 !P giving, in total, five possible inelastic reactions. A brief
comment is also made regarding the elastic scattering cross sections.

2. Calculations and results

The theory of the first Born approximation is well known and we quote the expression
for the total scattering cross section Q(T) essentially to establish definitions for the
purposes of discussion. For a collision between identical atoms we may write

_ 4nM Kmax

o) = = 1650Z = € — K)| 26 mnZ — m K)2K 2 dK (1)

Kmin

where M is the mass of the projectile with kinetic energy T and K is the momentum
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transfer. The limits K ,, and K ;, are determined from the kinematics of the reaction.
The projectile and target atoms, of atomic number Z, are assumed to undergo excitations
from states p —» g and m — n, respectively, and the corresponding form factors are
denoted by €,,(— K) and ¢,,(K), these being determined here within the velocity formula-
tion. Throughout the present work the atoms are initially in their ground states and the
excited states are 2 'P and 3 'P. The latter are described, as before, in terms of anti-
symmetrized products of hydrogen-like orbitals which, for such states, represent close
approximations to Hartree-Fock (HF) orbitals; see Bell et al (1968). Equation (1)
describes elastic scattering under the condition that the Kroenecker deltas are unity;
K.in then becomes zero. At sufficiently high T the value for K, is effectively infinite
and the elastic cross section Q(T) then behaves as BT ~! where the constant B can be
referred to as the cross section coefficient. The natural expansion of the Weiss c1 wave-
function was used to describe the ground state of He and Q(T) values were determined
for various orders, X, of truncation. Thus, as X is increased from unity (approximating
the HF equivalent wavefunction) to fifteen (equal to Weiss’ total wavefunction), electron
correlation is introduced into the ground state through configurations which are well
ordered by virtue of their energetically decreasing importance.

Results for the 3 'P excitation of both atoms and for a single atom are given in tables
1 and 2, respectively. For reasons of space, only selected results for the double and

Table 1. Cross sections Q(T) (in units of 10™2* m?) for He(l 'S)+ He(! 'S) —» He(3 'P)+
He(3 'P) for various orders of truncation, X, in the natural expansion of the ground-state
wavefunction. Quoted after each X value is the symmetry of the basis orbitals used to
-form the additional natural configuration.

X = 1(s) 2(p) 3(s) 4d) 3(p) 6(s) 15(s)
T(keV)

100 0-1386 01171 00959 00938 0-0889 0-0880 0-0867
200 07202 06720 0-5881 05786 05570 0-5530 0-5466
400 1432 1-418 1:294 1278 1:242 1.235 1:225
600 1.568 1.587 1-469 1.454 1.417 1-411 1-400
1000 1417 1-461 1.369 1356 1:326 1-320 1312
2000 09707 1015 0-9597 09517 09318 0-9286 09236
4000 0-5693 0-5999 05694 0-5650 0-5536 0-5518 0-5491
8000 0-3084 0-3262 03103 03079 0-3019 03010 0-2995
12000 02112 0-2237 02129 0-2113 0-2072 0-2066 0-2056

Table 2. As in table 1, for He(1 'S)+ He(1 'S) —» He(1 'S)+He(3 'P).

\ﬂ(s) 2p) 3(s) 4(d) 5(p) 6(s) 15(s)
T(keV)

100 9624 97-04 9444 94.07 9261 9245 9229
200 56-60 57-82 56-81 56-64 5587 55-80 5576
400 29-86 3065 3022 30-14 2975 2972 2970
600 2013 20-69 2042 20-37 2010 2008 20-07
1000 12:16 12:50 12-34 12:31 12.15 12.14 12.14
2000 6-095 6-270 6191 6175 6-096 6090 6-088
4000 3050 3137 3.098 3090 3-051 3048 3.047
8000 1.525 1.569 1-549 1.546 1-526 1.524 1-524
12000 1.017 1.046 1.033 1-030 1017 1016 1.016
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single 2 'P excitations and the (2 'P, 3 'P) mixed excitation are presented in table 3. The
symmetry of the basis orbitals used to construct each additional natural configuration as
X is increased is given by Banyard and Baker (1969); however, for convenience, they are
also quoted in the tables after each X value. Values for Q(T), when X = 15, are compared
graphically in figure 1.

Table 3. Cross sections Q(T) (in units of 1072*m?) for X = 1 and 15 for the scattering
products: the double excitation He(2 'P)+ He(2 'P); He(1 !S)+ He(2 'P); and the mixed
double excitation He(2 'P)+He(3 'P).

(2'P,2'P) (2'P) (2'P,3'P)

T(keV) X=1s) X=15) X=1s) X=155 X=1) X =15(s)

100 2360 1-482 3142 301.8 0-5692 0-3569
200 10-53 7945 181-3 178.5 2737 2073
400 19-53 16-51 95.05 94.47 5257 4471
600 2105 18-55 64:02 6376 5712 5070
1000 18-89 1725 3862 38-52 5149 4.735
2000 1293 12-14 1936 1932 3-528 3335
4000 7-596 7-232 9-686 9-666 2072 1986
8000 4121 3.952 4.843 4.834 1.124 1.085

12000 2824 2:714 3.229 3.223 0-7699 0-7448

3. Discussion

Our analysis is concerned with ground-state correlation effects. Therefore, our discussion
will concentrate on results for transitions to the excited state which should, intuitively,
be least influenced by correlation, namely the 3 !P state.

Correlation effects influence Q(T) through improvements in (i) the transition energy,
and (i1) the wavefunction used in the evaluation of the form factor. The nature of this
dual dependence as X is increased has already been discussed (Seddon and Banyard
1974). Table 1 shows that for low impact energies the non-correlated result (X = 1) is
reduced by about a quarter when using the total c1 wavefunction (X = 15). However,
as T increases, the results for X = 1and 15 are seen to converge. The initial introduction
of correlation, based on p orbitals and therefore of an essentially angular nature, causes
adrop in the value of Q(T) at low T and an increase at large 7 which results in an improve-
ment and worsening, respectively, of the agreement with the X = 15 values. The addi-
tion of purely radial correlation through the inclusion of a configuration based on s
orbitals as X = 2 — 3 causes a reduction in Q(T) for all T. However, at high energy the
results are still inferior to the non-correlated values when compared with X = 15, even
though we have accounted for 85 9/ of the correlation energy at X = 3. At low energies,
on the other hand, a significant improvement has occurred. Table 1 also reveals that,
relative to X = 1, the point of crossover of the X = 3 values occurs at a higher energy
than that observed for X = 2. This latter trend continues as X increases, and when
X = 6 the crossover point is in excess of 35000keV. In the energy range considered
here, the results for 6 < X < 15 exhibited a general convergence towards X = 15 as a
consequence of being dependent essentially on the transition energy. Overall, p-based
configurations were found to be of greater relative significance than other angular-based"
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Figure 1. Comparisons of the single and double excitation cross sections Q(T) (measured
in units of 10~2% m?) against T. The left-hand scale refers to the full curves and the right-
hand scale is for the double excitations shown by broken curves.

configurations in their influence on Q(T), irrespective of their ordering in X. Such a
feature, reflecting the symmetry of the excited states, may well be modified if the 2 'P and
3 1P wavefunctions were of correlated form.

Inspection of table 2 shows that, as expected, the Q(T) values for the single-atom
excitation to the 3 'P state are larger than those for the double excitation. However,
from a percentage point of view, correlation effects are seen to be of less importance. As
X increases, the trends in relative magnitudes shown in table 2 follow those for the
double excitation but the crossover points, with respect to X = 1, were found to occur
at lower energies. As before, p-based configurations gave rise to the greatest change
when introducing angular correlation. In passing, we note that the influence of correla-
tion in the present case is less than that determined for the 3 *P excitation of He by He*
ions although, in that instance, the Q(T) values are larger due to the long-range nature of
the interaction forces—cf table 4 of Seddon and Banyard (1974). A further comparison
with table 4 of the earlier work indicates that at comparable velocities the present results
are in close agreement with those for H-He (1 'S — 3 'P) scattering.

Cross sections for the double and single 2 !P excitation reactions are, of course,
considerably larger than their 3 'P counterparts. For the single 2 !P excitation the
trends in Q(T) as X increased were found to parallel those observed for 3 !P. This also
holds for comparisons between the double excitations except that, in contrast with
(3P, 3 'P), the cross sections for the (2 !P, 2 'P) excitation for X = 3 were found to be
superior to those for X = 1 over the whole energy range when compared with X = 15 as
areference. Although not shown in table 3, the influence of angular correlation on Q(T)
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was once again dominated by the p-based configurations. For the mixed (2 'P, 3 'P)
excitation, Q(T) corresponds most closely in magnitude with (3 'P, 3 !P). This feature
arises not only because of the nature of the integrand in equation (1) but also from the
size of the lower limit K;,. Consequently, as X increases, the trends in Q(T) at high
energy follow those for the double 3 !P excitation.

The energy dependence of the single, double and mixed excitation cross sections for
X = 15 can be compared by inspection of figure 1. We note that double and mixed
excitations peak at a common T value; a similar observation holds for the single excita-
tions. This behaviour has been rationalized in earlier work (Banyard and Seddon 1974,
Seddon and Banyard 1974).

For elastic scattering the non-correlated (X = 1) and correlated (X = 15) values for
B are 4734 and 4747, respectively (measured in units of 107*® m? keV~?!). Such small
changes for the elastic cross sections arise from the fact that, within the first Born approxi-
mation, we are evaluating a one-particle expectation property over a pure state and
therefore it is easily shown that correlation effects are second order. However, for
inelastic scattering, where we are dealing with transitions between different states,
correlation can make a first-order contribution which, as seen, is clearly significant.

4. Summary

The influence of an ordered introduction of ground-state correlation has been examined
for He—He scattering within the first Born approximation when one or both atoms are
excited to low-lying n ! P states. Electron correlation proved to be most significant at low
projectile energies. For the double excitations, where correlation effects were of greatest
importance, the cross sections were reduced by about a quarter at low T values. As
observed earlier, correlation gave rise to similar trends irrespective of whether the
excited state was 2 !P or 3 'P—the cross sections possessing a maximum at approxi-
mately the same impact energy. The initial introduction of correlation for He was of an
angular character and accounted for nearly half the total correlation energy; this
resulted in a sizeable improvement over the non-correlated cross sections only for low-
energy double excitations. In all other cases the agreement with the total correlated
result was worse. A general improvement over the non-correlated results was not
achieved until approximately 939 of the ground-state correlation energy had been
recovered. The observation regarding the relative importance of p-based angular
correlation effects in the ground state when determining Q(7') suggests an extension of
our analysis to include correlation effects in the excited states.

References

Banyard K E and Baker C C 1969 J. Chem. Phys. 51 2680-9

Banyard K E and Seddon G J 1974 J. Phys. B: Atom. Molec. Phys.7 429-39

Banyard K E and Taylor G K 1974 Phys. Rev. A 10 1019-27

Bell K L, Kennedy D J and Kingston A E 1968 J. Phys. B: Atom. Molec. Phys. 1 204-17
Léwdin P O 1955 Phys. Rev. 97 1474-89, 1490-508, 1509-20

Seddon G J and Banyard K E 1974 J. Phys. B: Atom. Molec. Phys. 7 2476-88

Weiss A W 1961 Phys. Rev. 122 1826-36



B.J. SZUSTER.  Ph.D. THESIS, 1975,

LN

g ii—j"’:" yin

. P
A

AT
v

.

ABSTRACT

Part 1
Total cross sections for high-ensrgy inelasﬁic collisions

between helium atoms originally in their ground state have been
obtained within thebfrémeworkvof the first Born éppro#imation.

The ground state of tﬁe helium_atoms was described by the 35~
configuratibn CI wavefunction:of Veiss expressed in the form of

a natural éxpansion, thereby facilitating an examination of the
influence of ground state correlation effects on the scétfering

cross sections.

Part II
The‘natural expansion of the Weiss 35-configuration

e .~ 01 wavefunction for helium-was used to assess the behaviour

of high=energy electron-capture ﬁross sections for the reaction
HY 4 He(132) — H(nZ) + Hé+(1s) when the target is described
by wavefunctions of varying sophisfication. The impulse approxi=-
mation and the continupm‘distortad wave approximation Qere used to

It

evaluate the above croés sections for proton impact energies
ranging from 25 keV to 3.5 MeV. it was found that, in contrast
with the impulse approximation, the continuum distorted wave
(cow) method is eésily applied to electron capture reactions
and overall gave the better agreement with expsriment. The CDU

method was also used to obtain capture cross sections foi alpha

particles impinging on.a helium target,



