
TECHNIQUES FOR INTERACTIVE

COMPUTER GRAPHICS

A Thesis submitted to the University

of Leicester for the Degree of Doctor

of Philosophy

by

Roger Jeffrey Hubbold

March 1971

Engineering Department

University of Leicester

UMI Number: U380761

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U380761
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

CONTENTS page

Acknowledgements

Foreword
Chapter 1 Introduction 1

2 Application Software Design for
Interactive Graphics 6

3 Graphical Communication 21

4 Data Structure Design 34

5 LUISA - An Application System for
Structural Analysis 51

6 An Interactive Three-Dimensional
Drawing Program 66

7 BAID - A Program for Basic
Architectural Investigation and
Design 79

8 Data Generation for Three-Dimensional
Finite Element Analysis 85

9 General Discussion 103
10 Conclusions 110

Figures 3.1 to 8.3
Appendix A : Matrix Algebra for the LUISA System

Appendix B : Basic Software and Display
Organisation

References

Acknowledgements

The author wishes to acknowledge the initiative of
Professor G.D.S. MacLellan in founding and leading the
Computer-Aided Design project in the Engineering Department

of Leicester University, supported by the Science Research

Council. The author is grateful for financial support from
the S.R.C. for the year 1967/68, and to the University of
Leicester for appointment to the post of Research Demonstrator
from October 1968 to September 1970.

Special thanks must go to Dr. A.G. Young for his
supervision, and to members of the C.A.D, group for useful

discussions. The author is indebted to Dr. G.A. Butlin,
with whom he has collaborated on a number of projects, for
much encouragement and guidance.

Foreword

The work described in this thesis was undertaken while
the author was working as a member of the Computer Aided
Design Group in the Engineering Department of the
University of Leicester. The following statement is included
to put into perspective his own contributions to the work
of the group. The thesis describes a number of projects
with which the writer has been closely involved. The
general chapters on data structures and interactive graphics
contain an outline of these areas and ideas and conclusions
derived from work on the projects.

A period of over twelve months was spent on the design
and early implementation of the LUISA system described in
Chapter 5. This work was undertaken jointly with, and
largely under the supervision of Dr. G.A.Butlin,who was
responsible for the original concepts of copying and joining
of finite elements on which the system is based. The author*s
own contributions were made to the design of the data
structure, algorithms and matrix analysis.

Chapter 6 contains a description of the TDD system
for three-dimensional drawing, developed by the author.
The approach adopted is different to other three-D systems
excepting one developed at Brown University, which only
came to light after the completion of the TDD scheme.

The ideas behind the BAUD programs, described in Chapter
7, were due to Boyd Auger ARIBA., the writer’s contribution
being to aid substantially in the translation of these ideas
into a data structure and algorithms. The work is presented
because it réinforces some of the general conclusions
drawn from other sections of the thesis.

Chapter 8 outlines the author’s design for a data
generation system for structural analysis. A major part
of the discussion is devoted to a description of a paging
scheme used to overcome the secondary storage problems
encountered. The scj^me has been implemented and tested
on an I.C.L. 4150 computer.

CHAPTER 1

INTRODUCTION

The field of computer graphics is still comparatively
young. Early work of about ten years ago was presented for the
first time during 1963, work largely the efforts of Ivan

(21 22)Sutherland and Tim Johnson * . Sketchpad, and its counter­
part for three-dimensional problems Sketchpad III, paved the
way for a new form of communication between man and computer.
At the same time, also at M.I.T., development of the first time­

sharing system was underway and 1963 saw the commissioning of
CTSS (Compatible Time-Sharing System). Since that time many
developments have taken place, including the design of better
hardware and improvements in software techniques.

Present day displays still operate in the same way as the
early prototypes, but the last seven years have seen many
developments in the software enabling C.R.T.*s to be programmed

in higher level languages. A major objection to such display
systems has always been their high cost, but now cheaper types
of display are becoming available. Of these the direct view
storage tube (D.V.S.T.) has great potential. Its major

advantage is that no buffer store is needed to hold the picture

information: the device operates like a high speed digital
plotter and the picture is retained by an electrostatic charge
on the scope surface.

The storage tube display is a relatively recent advance
and has only been available in Britain for about one year.
Consequently much of the expertise in graphics has been gained

with the more expensive display systems. These displays rely

on the use of a buffer store to hold the picture information
in digital form. A display controller is used to decode this

data and to drive the analogue C.R.T. to produce the picture.
Often associated with the display are additional pieces of

equipment such as the lightpen. Throughout this thesis the
emphasis is on this type of display system variously described
as a refresh type display, fully interactive display or dynamic
display.

Although a great deal of publicity has been devoted by
computer manufacturers to the potential of the graphical display
as a design aid for the engineer, many industrial organisations
remain unconvinced about the economic advantages offered by this

for certain engineering purposes,
equipment/ Many of the difficulties encountered in programming
displays are brushed aside by software experts as a trivial piece

of programming. Without the necessary basic tools the development
of application systems can be severely hampered, even to the
point of abandonment. The implementation of these basic software

tools can only progress once the problems have been identified.

A main aim of the work of the author has been to identify

the problems of programming the interactive display, and to find
programming tools to solve some of these problems. From the

outset it was considered important to investigate the use of
the lightpen and dynamic capability of the display. Unless these
could be shown to have some advantages the refresh display would
rapidly be superseded by the storage tube.

The refresh type display requires some core store to hold

the picture information. Interrupts generated by lightpen hits
and pressing of function keys must be processed by a computer.
These requirements have encouraged the belief that a small
computer should be devoted to the display system for performing
these taskŝ .

It is shown that such a configuration can form the basis

of a powerful facility, if the small computer is connected as

a satellite to a larger time-shared machine • The price of a
satellite computer and display system is low enough to be

attractive to a large number of industrial groups, but such

facilities will only be viable as a design aid if various
software problems are solved. Some suggestions are made about

the division of labour between the satellite and main computers

for highly interactive programs.
Many aspects of graphical communication are a function

not only of hardware but also of the training of programmers
who implement interactive systems. This training often dictates
the mode of communication favoured by the programmer. Many
interactive programs use the typewriter keyboard as the means

++of inputting data, even though a lightpen is available . The

absence of a conveniently positioned teletype with the Leicester
display system has led to many devices being developed which use

the lightpen and function keys as input. The lightpen can be
used in a variety of ways to aid the communication process

between man and computer, based on its two major functions of

seeing and tracking. Suitably programmed the movements of the
lightpen can be used interpretively, so that it can be employed
for manipulating three-dimensional models and even stereo views

of objects.

Either locally or remotely, but probably the latter for
economic reasons.
Some examples of this can be found at Cambridge University.

The use of pictures as a mod© of communicating with the
computer has for some time highlighted another major problem

area with interactive systems, that of data organisation.
Os)

The techniques of list processing grew out of a study of
problems of ordering data describing a frequently changing

situation. With large problems, the quantity of information

often grows too large to be contained entirely in core store,
and methods for information storage and retrieval using
secondary storage must be developed. The need exists to link
pictures with the data behind them and to express the
relationships, topological and others, between elements of
the data. These topics have been grouped under the general
heading of data structuring. Many of the existing solutions
to data structure problems fail to satisfy the requirements of

highly interactive systems and raise the usual conflicting

demands of generality versus efficiency. These problems can
be simplified by accepting thafe an efficient solution is
application oriented, but can only be provided if the techniques
and necessary basic software tools can be identified and

implemented.
The concepts on which many of the general proposals and

conclusions in this thesis are founded originate from
experience in designing and implementing several interactive

graphics systems. Three of these are described, they are:
(a) LUISA, an interactive system for structural analysis based

on the finite element method,
(b) TDD, a set of programs for three-dimensional drawing,

(c) BAID, a system to aid the architect in the design of high
density housing layouts.

Another chapter contains an outline of some of the problems
and design features of a system which combines the efforts from

LUISA and TDD and which is to be implemented in the near future.

CHAPTER 2

APPLICATION SOFTWARE DESIGN FOR INTERACTIVE GRAPHICS

Introduction

In this chapter, two alternative approaches to application

software design are discussed. An attempt is made to put
these into perspective, taking into account various possible

hardware configurations and economic factors. The two
approaches are referred to as "topping and tailing" and
"modular design", and it is shown that they can be combined
in the design of a specific application system.

The design of a C.A.D. system is intricately associated
with the mode of communication, which in turn may influence
the type of data structure used. These topics are dealt with

separately in Chapters 3 and 4 respectively.

Some conclusions are reached about the type of hardware
needed for a highly responsive fully interactive computer graphics
system.

Non-interactive C.A.D. systems

A non-interactive computer program of the type commonly

used in a batch-processing environment does not always offer
the designer sufficient flexibility for trying new sets of

data. Long turn-around times often associated with this

procedure can be a serious obstacle to the effective use of
a computer in the design process. The necessity of re-running
a whole program when only small changes in data are to be
made leads either to many days or weeks being used to
investigate the effects of different input data, or to only

a few sets of data being tried.

On-line C.A.D. systems using a teletype terminal

Increasing use is now being made of multi-access computing
facilities to provide remote job entry from a teletype terminal,

from which data may also be specified. This situation has much

to offer for on-line program development where programs are held

on disc, in source code, and are edited from the remote teletype

using an appropriate text editing program.

Several systems are now operating where the terminals are
remotely connected to the computer over telephone lines'̂ . These
facilities offer rapid access to data files, but in large analysis

programs involving the output of large quantities of data, it becomes

both inconvenient and inefficient to transmit this information
to a device which, typically, has a speed of only 10 characters
per second.

In such a situation two alternatives exist. The first of
these is to output the results at the central site and to post
them to the user. Secondly, a line printer can be installed at

the remote terminal for rapid daxa output, and this can be
supplemented by a card reader for high speed input.

The line printer is enployed to output large quantities of

data rapidly. Frequently, such data cannot be quickly assessed
and therefore some alternative form of presentation is required

in an interactive system.
The graphical display offers such an alternative.

tG.E.I.S. and Time Sharing Ltd. offer such services and, more
recently, the Ministry of Technology Computer Aided Design Centre

has initiated such a system.

8

The "Topping and Tailing" approach to software design

The processes of data presentation and assimilation can be
improved significantly when interactive facilities are added by

grafting graphical input/output routines on to each end of an
analysis program. To supplement a remote access teletype, the

direct view storage tube (D.V.S.T.) would appear to be a very
suitable type of display hardware. User interactions could be
handled by the teletype with the D.V.S.T. used to monitor program

code and data. This approach of adding graphical input and output
at each end of an analysis, with little or no change in the analysis
program itself, is referred to here as "topping and tailing" and
is shown diagramatically in Figure 3.1.

A "Modular design" approach

An alternative design of software, the modular approach, involves
the subdivision of the input, analysis and output phases into a
series of modular units. This procedure can be considered at two

stages: during the early design stages of software or during the

extensive modification of existing programs.
In general, problem areas can be broken down naturally into

distinct sections or phases for computer solution. In the first

instance these may be input of data, analysis and output of results.
For programs to perform structural analysis an initial division
of separate tasks might be:

(1) A description of geometry and properties of the structure.

(2) Specification of displacements (support constraints).

(3) Specification of applied loads.
(4) Analysis.
(5) Output of results.

9

If the program is expressed as a block diagram, it is a simple
step to divide these modular units into smaller basic operations

which can be implemented as individual subprograms. The basis of

the "modular approach" is the programming of the smallest unit

operations which are then used as building bricks. The result is
a group of programs, some of which are atomic, in that they are

the smallest units and others are molecular: they too perform unit
operations but themselves contain calls to the smaller atomic units.
In this context, the definition of atomic rests with the program
designer and must be sensible in terms of the application system

requirements. If possible programs should be written so that they
can be incorporated in a program library where they are available
for other systems.

Many computer installations make extensive use of library
facilities and this encourages the design of modular software.
However, when viewed in relation to the mode of interaction and
data structure of a conversational system, the modular approach

can be shown to have several other desirable features. The concepts

of modular software design arise from early work of the A.E.D.
group of project MAC at M.I.T. on language d e s i g n ^ h e r e they
are discussed in the context of application software.

The modular approach is represented diagr^patically in

Figure 3.2.

Some discussion of the two approaches

A major limitation of the topping and tailing approach is that

there only exists one entry and one exit point to and from the
main analysis program. The design loop remains essentially unaltered,

10

but the processes of data preparation and assessment have been

speeded up. This advantage, gained from a graphical mode of
communication, makes topping and tailing a worthwhile step, but

no opportunity exists for the intermediate assessment of results

at various stages of calculation. Some examples exist which
show that with certain problems this monitoring and modification

of the course of computation is essential if the correct solution
(2)is to be found

The advantages of a modular design of software can be shown

to be numerous. A saving in effort can be effected by avoiding

unnecessary duplication of programming statements and by using library
routines. Wastage of computer storage associated with such dup­
lication is also minimized.

Another advantage of a modular approach only assumes importance
when attention is focused on conversational programs. If the
analysis program (or indeed the whole system) has been designed
as a series of small units, many entry and exit points can be

established allowing interaction between man and computer, without

the necessity of including interactive facilities within the
modular units themselves (see Figure 3.2). It is then necessary
to provide a set of programs which will cope with the desired

interactions at the interfaces between the modular units.

The form which the interactions take is dependent on the

hardware configuration available. A display with dynamic
capability offers more scope for interactive facilities than a
storage tube (dynamic picture modification using a tracking symbol,
or drawing of "rubber band" lines for example). With only a

teletype the alternative means of specifying data are more

limited.

11

Different forms of interaction can be provided by re-writing

the interaction handling programs without the need to alter the
analysis modules. In order to achieve this, the input/output options

for the modules must be clearly defined and must allow for the full

range of possible interactions.
Program modules which do not have interaction capability built

in can be effectively used by batch programs. If a particular

form of input or output is included within a program there is a
reduced likelihood of it being a useful library program for a

conversational system.
An analogy of the type of program module described is now

given. If a module is imagined to be a black box, the various
input and output arguments can be represented by strings which
pass into the box through a slot. The algorithm (the content
of the box) is represented by a mechanism to which the strings
are connected. Manipulation of the input strings causes the outputs
to change in a way determined by the mechanism.

Different sets of strings exist for various forms of interaction

(interaction implies pulling of the strings) and these may be

connected to different parts of the mechanism. In order to
construct a system from a given set of boxes the appropriate

connections must be made between the strings. In a batch program

the connections are direct, in an interactive system certain outputs
may be monitored by the user who then determines suitable inputs
for the next stage. The purpose of the interaction handling

programs is to enable the user to form the necessary connections,
to change them during the running of the program, and in some
cases to pull the strings (i.e. feed in values). To do this he

12

need not be aware of the contents of the boxes, only their functions,

inputs and outputs which are meaningful to him. Those connections
which are not meaningful to the user, but which need to be made

for administrative purposes should be formed automatically, where
possible.

The task of the application programmer can now be defined, if

the necessary interaction handling facilities are available.
During the process of designing a system, a series of boxes can

be drawn representing the functions of the modular programs, with
lines representing the input and output facilities, suitably
labelled. Boxes can then be compared to ensure that the necessary
values can be passed between modules for any likely sequences of
operation. If, in practice, the user attempts actions which the
system does not logically permit, and this is due to a mis-match
of arguments, the interaction package should be capable of detecting

the error. If the error is problem-oriented rather than a system
fault, the error detection facilities must be internally programmed
in the modules.

Having divided a program into a series of modules, these must

be linked together to form a comprehensive problem-solving system.
Two means exist for doing this. The argument lists of programs

can be used to pass values to the next phase. The major link,
however, lies in the design of a common data base or data structure

for the given application area on which the modular units perform
operations, and it is this which enables a significant flexibility

in the order in which these operations can be performed. This
imposes a restriction on the use of such modules as library items

for other systems, unless a common data structure exists, or unless
the module in question is independent of the problem data structure,

15

From Figure 3.2 it can be seen that many alternative routes

may be chosen to achieve the desired end. The nature of the
problem will almost certainly impose some constraints on this

choice, but in general these will be detectable from the state

of the data structure (because the data structure is a model of
the physical problem) and the necessary checks may be incorporated

in the program modules. If a mistake is made, or a wrong decision
taken, it may be possible to detect this quickly and perform any

necessary alterations without major recalculation. With the

topping and tailing approach a mistake may only become apparent
when considerable cost has already been incurred. Proceeding
in the small steps, characteristic of the modular approach, gives
a higher probability of obtaining a suitable solution efficiently
because of the opportunities for intermediate assessments and
modifications.

The concept of advancing in small steps is attractive from
a practical viewpoint for several reasons. Graphics programs
very often require considerable core store even to perform

relatively simple operations. Dividing the problem solving process
into discrete small steps enables efficient use of core if a suitable
program overlay facility exists. If the program modules are too

large, unacceptably long response times are likely to result.

In practice there is often the need to optimize and compromise

to obtain a balance between size and number of modules in order
not to over-complicate administrative tasks. (Some operating
systems impose limits on the number of subroutines in a given

program suite^.)

tThe ICL 4130 Fortran system allows only 100 Fortran subroutines.

u

The points discussed so far have represented an idealistic

viewpoint, but in many respects are consistent with the real
procedure of application system design. The process of design
is often presented as a loop in which modifications are made many

times before an acceptable solution is obtained for a given problem.

This is often the case with software design, and it is interesting
to observe that the same rules apply to programming as to the design
processes in engineering problems. In particular, part of the

function of design is the discovery of what ia acceptable or

possible. In practice, therefore, the design of software involves
many modifications and major changes can be made more easily if
the programs are in modular form.

Three types of system development can be identified. Firstly,
there are systems whose limits have been clearly defined and which
are implemented and then "frozen". Secondly there are exploratory

systems (usually the work of universities) the aims of which are
to discover the limitations of hardware and basic software design,
and to investigate new techniques (as in Chapter 6). Finally,

there are many systems which are designed to be open-ended. These
systems often lead to insight into what is really needed by way

of hardware and software for such development (as in Chapter 5).
These second two types of system are candidates for modular

software design, but defining and using routines as building bricks
poses the following problem. Because of the dependence of other
programs on them, the basic units must be efficient and free from

errors. As modifications are made to the system, changes to some

of these atomic modules will inevitably occur and perhaps this will
lead to changing of all the calls to the routines in question.

15

For such a process, a context editing program is essential: a

modest system developed in a modular fashion can easily contain

a hundred subprograms, with many calls to several of them.

Achieving a balance between the two approaches

In spite of its many advantages, the modular approach to
software design does not immediately lend itself to the use of
existing analysis routines. Because of the high cost of software

design and implementation it is desirable to make the greatest
possible use of existing programs. Many analysis routines will

benefit from the addition of graphical input/output using a topping
and tailing approach. In particular in the field of structural
analysis, the preparation and checking of the data prior to the
calculation phase can be invaluable. The preparation of data for
a finite element analysis requires a data generation scheme such

as that described in Chapter 5. With some classes of finite

element problem, the generation of suitable meshes can be performed
(3)automatically , but this is difficult to program for complex

situations where a high degree of control over the input is

required if the results are to be satisfactory. In particular,

in finite element problems, the mesh shape is important: the
occurrence of poorly shaped elements will lead to ill-conditioned

matrices during the analysis, giving rise to inaccurate results.

The use of existing analysis routines can become unsatisfactory
with highly interactive systems if the resulting response times
become large, while calculations are performed. This is also true
of data input and output using displays: the response time must
be of the order of a few seconds at most. If a delay of more

16

than two seconds is to be expected, some instant sign must be

given to the user so that he is aware that the computer is at

least processing his request.
If existing analysis programs have been tested and proved

satisfactory there is little point in not making use of them.

Returning to the topping and tailing approach, the contribution
of a graphical display in this situation is to provide the input
and output, which should lead to an improvement in efficiency of
the overall system. Because of the^aaed «ear fast response these

input and output routines can be very conveniently designed in

modular form. The resulting flexibility in the way in which data
is input and examined is then well suited to the different preferences
of a number of users. General packages of programs can be used
to aid the writing of input and output routines. Such packages
include programs for the administration of messages and lightbuttons,^
and the filing of picture items and their data structure on backing
store.

Data prepared in this manner would be filed on disc, magnetic

tape or drum to be accessed by a batch program which performs the

analysis. Results would be similarly filed ready for examination
using the display for output. This process is shown in Figure 3.3.

Application system design for a remote satellite computer

Often, complex analysis programs are of such a size as to
require powerful (and expensive) computing facilities. An inter­
active display, whose picture is refreshed several times per

^Programs of this nature have been written at Leicester University,

17

second does not warrant the use of a large computer systen to
perform simple picture manipulation tasks. If a large machine
is used it is important to operate in a time sharing mode in which

priority is assigned to the display system, with other jobs
running in the background . This situation has led to an
increasing use of satellite computers whose part function is to

control the picture handling. Lightpen tracking and display file

manipulation are also performed locally.
Figure 3.3 shows a typical division of labour between main

machine and satellite. The analysis routines and their data are

held in the main computer, with the satellite used as little more
than a powerful display processor. Such a division implies that
the satellite computer is only a convenient means for gaining
access to the large machine without loading it with the overheads
of servicing the display. If a satellite is to be used, there

So»v\«.
is much to be said for extending its power to perform/calculations

which would otherwise be performed centrally. The arguments in
favour of this relate to a remote environment with a relatively

The display user needs to have priority over other jobs in

order to obtain good response times. If more than one display
is attached to a multi-access computer, the assignment of priorities

cannot be clearly established without prejudicing one or other
of the users. If a powerful and fast machine is used to overcome

these problems it is not economically sensible to load the machine
with routine simple tasks such as picture manipulation.

18

slow telephone connection between computers^.

A change made to a displayed picture often implies some

modification of the problem in hand and the data associated

with it. The time to update application data held in the central
computer will be unacceptably long for most interactive systems.
If, however, the necessary data were stored in the satellite the

response times would improve considerably. It is possible to
arrange this by designing a data structure for the input/output
operations to be performed using the satellite. The programs for

this input/output can be organised on a modular basis, the aim
being to create a file of data for an analysis program. The
analysis routines are held in the main computer and the prepared
data file is transmitted and filed on disc or drum at the central
site. A request is also sent for the analysis program to be run
as a batch job and for the output to be filed at the central site.
At some convenient time, the output data file is transmitted to
the satellite where the information is put in a structured form

suitable for interactive interrogation. This scheme of operation
is shown in Figure 3.4 and is designed to make economic use of
both the satellite and main computers.

During the period when calculations are being performed in
a batch run at the central site, the user can be employed in using

the satellite for other purposes: either program development or

preparation of data for other problems. A realistic size of

•j»Typically 2400 band. Fast lines are not readily available at the
present time and indeed are not necessary for the scheme outlined.
Theoretical line speeds can be lowered by frequent errors and the

need to check for them.

19

satellite for such a scheme is about 32K words of store and a disc
tof 1 million word capacity . The operating system software could

be expected to occupy up to 12K of store. A further 5K will be
needed for program code at any one time assuming a segmentation

facility is available to operate with the disc. The remaining

15K is a suitable size for holding data in structured form for
fairly large problems. The disc is needed for the segnentation
of program code and for holding library routines, operating system

and compilers. In addition, it can be expected that a number of

data files will be held on disc.

Conclusions

A highly interactive graphics system, which will be
sufficiently fast to allow good response times, requires some
dedicated core store. If the programs are organised carefully
this can be achieved using a medium speed machine (2ysec core).
It does not appear sensible to have a very powerful machine, since

some of the operations to be carried out do not justify such
expense. For these reasons â i effective and economic solution
is to organise such a system around the use of a small, medium

speed computer whose core store is devoted to the display system.

If the total software design, including application programs,
general packages and the operating system, is suitably arranged,

large problems can be tackled by linking the graphics computer

to a large multi-access machine. In order to utilise the satellite

machine most effectively, some of the problem data should be

Preferably with interchangeable disc packs.

20

stored locally and this can best be arranged if local fast backing

store is available (disc or drum).

If the problem is small enough, it can be tackled locally
if the satellite has a good operating system with program

segmentation facilities. The presence of such facilities is an

encouragement for development of modular software and of packages

for interaction handling. A modular design is particularly well
suited to extension by adding further units.

In order to include some of the features described, the size
of computer needed as a satellite is about 32K words of core store,
with some fast backing store. Smaller machines would be adequate

for directly linked machines where high transfer rates are possible.
For remote graphics using telephone lines the suggested size is
more realistic unless response times are to suffer when access
is required to data which has to be held in the main machine if
the satellite is too small.

With less flexible graphics systems such as the storage tube/
teletype console little or no local computing power is necessary
since picture manipulation of the type employed with a refresh

type display would not be attempted. Such a system could well

be organised by connecting it directly to a multi-access computer.
The discrete step form of interrogation offered by the teletype

can be adequately serviced by a time sharing system without any

assignment of priorities.

CHAPTER 3
21

GRAPHICAL COMMUNICATION

Introduction

In this chaptei several aspects of man/computer communication

are discussed. The emphasis is mainly on the use of fully

interactive displays whose picture definition is held in a
display file. An outline is given of some aspects and modes

of communication which require a display whose picture may be
modified dynamically. Discussion is devoted to the organisation
of interactions and the way in which qualitative as well as

quantitative requests may be handled by using a variety of
software devices.

At the end of the chapter an outline is given of some
of the problems encountered with visual representation and some
of the methods available for tackling them.

Forms of communication

Graphical man/computer communication is based on two forms

of representation, pictorial and symbolic. Here pictorial is

taken to cover the representation of objects by images,
suggestive of the external form or shape of those objects and
therefore in some way related to their actual shape. Symbolic

representation covers the use of alpha-numeric characters and other

shapes whose meaning is in some sense pre-defined. A symbol
is used as a representation not by exact resemblance, but by
suggestion or, in this case, by convention.

22

The traditional means of communicating with the computer
via punched programs and data is symbolic, i.e. in terms of

alpha-numeric characters. A conversational program operated from
a teletype relies on symbolic communication, and in graphics

progî aras, some symbolic representation is always present. The

link between pictures and the user is often provided by type­

written commands, physical buttons, or lightbuttons, which are
a symbolic display of various options within the program. Other
examples of symbols are messages, dimensions on a drawing and

numbering schemes or names of components. The essential feature
of a symbol is that it has a pre-defined meaning. With a picture,
however, it is the shape which is significant and the aim is
often to change the shape until it satisfies various constraints.
The picture is not pre-defined therefore, in that it may be
modified at will. Once a definition has been assigned, the
picture may become a symbol as with a sub-picture, such as a
transistor in electronic circuit design.

With a storage tube display the graphical representation

of a problem is limited to output only, and input is usually
via a series of commands typed by the user at an on-line teletype
console. Some users of displays equipped with a lightpen have

abandoned the use of lightpen facilities in favour of a typewriter
mode of communication. A common reason for this is that the

computer operating system in use does not allow for the most

effective use of the equipment. This is usually because of the
need to service other users in a time-sharing environment. The
teletype is a step form of input and is therefore well
suited to some time-sharing systems where the graphics user
receives processor attention in a series of time slices.

25

Aspects of communication requiring a dynamic display

The lightpen only assumes superiority over the typewriter
when it is used to communicate in a manner not possible with

typed commands. Techniques for achieving this can be grouped

generally under the heading of "wand waving", or using the light­

pen interpretively. By this is meant using the lightpen to vary
an input to some calculation whose output is a dynamic change in

the picture. Such dynamic effects cannot be produced using the

direct view storage tube because of the need to "repaint" the
whole picture^. With the dynamic display whose picture is
refreshed several times per second it becomes possible to update
a part of the picture by editing and modifying the display file.

It is possible to point to several examples where dynamic
picture output is of importance. Four areas of such use are:
fluid flow visualization^*^, design of mechanisms^^ simulation

problems including traffic flow^^and aircraft flight^^\ and

dynamic analysis of structures (e.g. vibration analysis of
aircraft structures).

In order to examine how the fully interactive display can

be used to improve the process of man/machine communication, some
attention must be paid to the hardware features of the equipment

and in particular to the use of the lightpen.

^The storage tube is in many ways like a very fast digital plotter

Projects involving these topics have been conducted on the

graphical display at Leicester University.

24

The lightpen has two major functions: to indicate picture
•j* ̂ ^elements and to perform pen-tracking . Pen tracking is often used

in drawing programs where the tracking cross is used to specify

the end positions of lines. It can similarly be used to position
complete parts of a picture, usually with the aid of some algorithm

if very accurate positioning is required, once the approximate
coordinates have been input with the tracking cross.

Many makes of storage tube are now being offered with a
•j*+cursor which may be positioned on the screen by means of a

hardware joystick . This enables coordinates to be specified
in much the same way as pen-tracking, but is of limited use with
a display used primarily for static images. The ability to adjust
the position of an object dynamically using pen tracking
represents a major advantage of the refreshable display.

Pen-tracking offers a means of making available to a program the
position of the lightpen on the CRT screen. This is achieved by
displaying a small symbol (usually a cross) which moves so as to stay

in the centre of the field of view of the lightpen. As the lightpen
is moved across the surface of the CRT, the tracking symbol moves

with it and its coordinates are continuously held in a pair of
registers which may be examined by the user program.

‘̂’̂DEC, ADAGE

•LX4-
Some dynamic displays use a rolling ball (tracker ball) to

position the tracking symbol (Marconi X2000).

25.

Broadly speaking, such facilities enable the user to "prod
or poke" his representation of a physical system, as though with

his finger, in order to gain an appreciation of the dependence

of the system response on various parameters. In Chapter 5 a !

description is given of a system which allows this type of
examination with civil and mechanical engineering structures.

It has often been stated that a major use of display systems

should be to gain insight into the behaviour of physical systems.
Often the display is used as a convenient means of entering and
examining data, without any attempt to create a loop in the

process, whereby the response can be directly associated with
some variation of an input parameter. In order to indicate how
this might be achieved some general concepts about the nature
of communication in an interactive program must be identified.

The organisation of man/machine communication

Interactions involve the setting up of a command which will
cause the computer to take some appropriate course of computation,

and perhaps to indicate this tlirough the medium of a displayed

picture. A command, either implicitly or explicitly, has two

components: an and an operand. A further two components

may be present whose functions are to specify the values of
variables used in executing the command, and to indicate where
these values are to be found.

A simple command can be used to change the scale of a
picture part. The information which has to be specified is;

(1) the operation "change scale",
(2) the name of the picture item whose scale is to be changed.

26

(3) the new scale value,

(4) where the value is to be obtained (e.g. typewriter).

Sections (2), (3) and (4) could be implicitly defined in the

command "change scale". For example, perhaps the whole picture
is to be changed to a new scale of half the previous value.

General programs usually contain very little implicit information.

Choosing an operation such as "change scale" amounts to
identifying a subroutine, or group of routines, to perform the
desired action. The additional information which must be

specified can be passed to the subroutine via its argument list.

Although communication with the computer may be through the medium
of displayed pictures it must be remembered that it is the
digital model which is modified when a change is made. In order
to achieve this, without the user being aware of it, a relationship
must exist between the picture elements and the data describing
the physical situation which they represent.

Indication of a picture element with the lightpen should be

used to identify the part of the digital model to be modified
by a subroutine. This can be achieved by assigning a name to
the picture part whose value is a pointer to the relevant part
of the data structure^. This value is passed to the subroutine
as an argument.

The order of events can be summarized:
(1) Indicate the area of interest using the picture,

(2) Use this information to identify the part of the digital model
(data structure) which the chosen picture element represents,

(3) Modify the digital model as desired and then update the picture
to portray the new situation.

Pointers and data structure are discussed in Chapter 4.

27

It is important that the operation specified by a command should
lead to a change in the digital model, from which the picture
is displayed. This ensures that the displayed picture portrays

the state of the application data.

The algorithm to perform (3) corresponds to the chosen

operation (e.g. change scale). It can be selected from a menu
of lightbuttons or typed on a teletype. Other information will

be obtained from different sources, for example typed values,

from lightpen hits, as output arguments from other subroutines.
General programs can be written to cope with the setting up of

s
(20)

commands using such inputs . A package of Fortran subroutines
has been written at Leicester University to perform this task
and is used by the applications described in Chapters 5 and 6.

Qualitative Assessment and man/machine communication

In order to create a situation where qualitative as well
as quantitative evaluation of a problem can be made, a loop must
be formed within the program. In many processes where parameters
are to be adjusted until some criterion (perhaps visual) is

satisfied, it is often more convenient to change a value to be
"a bit bigger or smaller" rather than to have to be concerned with

its magnitude. Often the magnitude is of significance only after
the process of adjustment is completed. This is particularly true
when judgement is on a visual basis, taking advantage of man*s

superiority over the computer for visual judgement. This assumes
that it is possible to display an unambiguous representation

See Chapter 2. Sometimes such facilities are provided in the

form of Command Definition Languages.

28

of the situation^.

The use of "devices"

If a continuous j-oop is not created for the process of

adjustment, where a command is continuously executed with

parameters modified in value for each execution, the assessment
becomes a repeated "single shot" operation which can be very
laborious. If the value of the parameter to be modified is obtained

from a typewriter execution of the loop becomes discontinuous while
the value is typed. To overcome this problem various devices
are used which can be operated with the lightpen and function keys
of a fully interactive display. In particular these devices
rely on the use of pen-tracking to specify some coordinate value
which may be transformed and used as the magnitude of a parameter.
Where convenient the devices are programmed to correspond as
nearly as possible to the type of parameter modification to
be performed.

If an angle is to be specified, a line can be displayed

to represent a joystick and the angle between this line and
some reference direction used as the parameter value. If the
device is then used in a loop, a picture part may be caused to

rotate in sympathy with movement of the joystick, whose free

end is positioned with the lightpen.
By the use of such techniques a relationship may be

established between the user*s actions and the effects they

produce on the physical system under examination.

+See later this Chapter for discussion of some visualization
problems

29
An example of another device is the pseudo tracking-cross

mentioned in Chapter 6. The pseudo tracking-cross moves in

three dimensions in various planes in space, enabling the two-

dimensional coordinates of the real tracking cross to be
transformed, to contr 1 three degrees of freedom. The trans­

formation is defined by the plane in which the pseudo tracking-

cross is currently constrained to move.

Another device of a similar nature also uses the ordinary
tracking-cross coordinates and transformations of a suitable nature.
The "spider", as the device has been called, is effectively a
pseudo tracking-cross which is constrained to move on a
mathematically defined surface such as a cylinder. As the
ordinary tracking-cross is moved around the screen its movements
are interpreted by a transformation routine fixing the position
of the "spider" on the surface. This is effectively a problem
of mapping the screen coordinate system on to some other mathematically
defined surface. Such a device can also be used if stereo pairs
are displayed, and it overcomes the problem of how to use one
tracking-cross with two images.

Techniques of communication involving dynamic model
manipulation are particularly valuable for gaining insight
into problems where interest is focused on variation of design

parameters rather than assigning absolute values to them. By
including the source of information as an argument in the
routines, various devices may be used including the typewriter,

if a particular parameter value is of interest. Devices such
as the pseudo tracking-cross enable parameters to be varied in
a way which it is difficult to describe using commands. Requests
such as "move this point a little further to the left" cannot

30

always be easily expressed numerically. The burden of typing
numerical values should not be unnecessarily added to the tasks

performed by the user, unless he is interested in specific
numerical values.

Visualization problems in pictorial representation

Although pictorial presentation of a problem offers scope

for simple schemes for assimilation of large quantities of data
several major problems exist. These problems are usually

grouped under the heading of "visualization", and relate mainly to
difficulties of using a flat scope surface to represent three-
dimensional, real objects. Solutions to these problems are
expensive and acceptable solutions are not widely available.
The use of orthographic projections in engineering drawings is
an example of a convention to avoid certain visualization problems,
The aim is to make the drawings unambiguous, but they do require
interpretation and it is here that errors can occur. In addition
they are not suitable for many areas of design such as surface
definition.

A major obstacle to three-dimensional display is the

hidden line problem. In the case of paster displays, as opposed

to vector displays, the problem is one of hidden surfaces. The
use of software operating in processors of the present generation,
to compute the solution to the hidden line problem, is generally

too slow for fully interactive systems. A small addition to the

displayed scene may necessitate several seconds, or minutes,
of processing time to update the picture and dynamic rotation
of the image becomes impracticable for the same reason.

31

Much effort has been devoted to software development
(8)for solving the hidden line problem , With most of the

available algorithms the computation time rises in proportion to

the square of the number of objects in the scene. Wamock’s
algorithm^ ̂ ̂ requires a time proportional to the number of

objects and is therefore more suited to complex pictures which
have several component parts. The most effective economic

use of such algorithms would seem to be in the production of
hard copy plots, where the plotted view has the hidden lines

removed.
Another problem with the CRT is to look at a part of a

picture and to compute which part of the whole scene is to
be displayed. This is known as windowing and can be solved
in two ways. One is to provide the scope with a beam deflection
system which will cover an area larger than the viewing area
so that the picture is cut off at the physical edge of the

viewing area. This however involves "drawing" more than the

picture actually observed by the user and wastes time. The
second solution is to clip the picture at the edge of the
viewing area by computation. The picture drawn then corresponds
to those items which lie inside the window. Calculations must
be performed to determine the points at which the picture crosses

the window bounds, and this is useful because it is not then

necessary for the window to correspond to the scope viewing
area.

If the technique of clipping is extended to three dimensions,

it is possible to take slices through a three-dimensional model
and to eliminate unwanted detail lying in front of,or behind.

32

the zone of interest.
•j*A different technique, brightness modulation , or depth

cueing, is a particularly valuable aid to visualization and

is relatively inexpensive. The technique is to vary the
brightness of a line depending on its depth coordinate normal
to the display screen such that points near to the user are

brighter than those which are distant from him. The displayed

picture is two-dimensional but the illusion of depth is created

by the brightness variation. This technique requires suitable
hardware facilities in the form of several brightness
levels (about seven) or a continuously variable brightness

(available on the ADAGE acfecR?age •feCBa® display). If discreet
brightness levels are available, the dept^h-cueing can be
provided by a general purpose 3-D clipping program which also offers
2-D windowing.

Perspective views can be of use in some problems, particularly
where displayed objects have a number of parallel edges. They
are effective too in problems such as highway design^*^^. Stereo
views can be computed but can create some problems of

communication: the need to look through a viewer makes it difficult
to operate the typewriter and lightpen.

Interesting work is in progress at the University of Utah

on problems of c o m m u n i c a t i o n ^ w h i c h hopefully will bring
about an improvement in display processor design. Until that
time, ingenious techniques for the display and manipulation of

graphical images must be devised to overcome visualization
problems.

tUsed by the Cambridge University C-A.D. group.

33

Conclusions

Apart from problems which require a dynamic display for

output, the use of dynamic picture modification can be a

significant aid to the user both for input of data and in

aiding visualization.
The use of the lightpen with suitably programmed devices

offers a flexibility of input not attainable with the typewriter

and storage tube display. There is particular scope in the handling
of three-dimensional models for devices of the type mentioned, and
the need to specify precise values for parameters is not always
necessary. Requests such as "Make X a bit bigger" or adjusting
the value of a parameter X until some function F(X) has a
particular value can be dealt with.

Many problems can be tackled without recourse to such
techniques and a storage tube and teletype may be adequate in
these cases. A major advantage of the dynamic display is the

ability to adjust parameters until some desired criterion is
satisfied. If the problem to be tackled is not well understood
(i.e. the effects of variation of parameter values) dynamic
techniques may prove particularly useful.

The most economic solutions to visualization problems

associated with the hidden line problem appear to be 3-D clipping

and brightness modulation. Some manufacturers of displays are
now offering brightness modulation performed by hardware, and

3-D clipping enables unwanted parts of the picture to be

blanked out completely. Hidden line removal is probably best
reserved for the production of hard copy plots where computation
times are less critical than with on-line design situations.

CHAPTER 4

DATA STRUCTURE DESIGN

Introduction

At the beginning of this chapter an outline is given of

why data structures are needed. This is followed by an example
for which various data structures are presented. The first
data storage scheme is a simple one using arrays to store
information, and it is shown that several problems arise when

the quantities of information are constantly changing as is

usually the case with an interactive program.
A description is given of the general principles of free-

storage schemes and the use of beads (records) and pointers.
Then follow descriptions of various data structures, for the
example problem, which use a free storage scheme. The designs
presented become more complex towards the end of the chapter
and their advantages and limitations are put forward.

Finally some discussion is devoted to the storing of
structured data on backing store, along with some criticisms
of paging schemes. It is shown that an efficient solution to

these problems depends on the particular application.

Ifhat is data structuring and why is it necessary?

The computer-aided solution of a problem involves the design
and implementation of a digital model. This is a task usually
undertaken by an applications programmer who makes use of che

basic software provided by systems programmers. D.T. Ross

34

35

defined the "model" by an equation;

model = data + structure t algorithm.

The equation is a particularly useful one to consider, in that
it expresses the balance which must be obtained between the
component parts of the model for various degrees of sophistication

of the application program. This sophistication is to some

extent dependent on the hardware and the basic software available.
Many requirements arising from the application must be satisfied,

amounting to extra features to be built into the model.
In the above equation the data are the values pertaining

to the physical problem to be modelled, such as lengths, areas,
volumes. Young’s modulus. The algorithm is used to perform
operations on these data, to calculate other values from them.

Consider the line shown in Figure 4.1. The data needed to
describe the line could be stored as:
(1) the coordinates (XI, Yl), (X2, Y2) of PI and P2,
(2) the coordinates of PI, the length L and angle A,
(3) the coordinates of P2, the length L and angle A.

The data in each case can be obtained from either of the
alternatives. However, it may be useful to store all of this

data if some calculations are to be performed which require
each of the alternatives at some time. This is equivalent to
stating that an increase in the data term in the equation can

lead to a reduction in complexity of algorithm. This has in
fact been done in the case of the drawing program described in
Chapter 6, where three sets of coordinates are stored for each

point in space.

36

Consider an example where there are several lines between

a set of points. If the lines are to be defined in terms of the
points, it is necessary to determine which pair of points belong

to a given line. This can be done by storing a reference table

containing extra data about the relationships, but the complexity
of the algorithms increases to include a search of this additional

information before operations can be performed on the original

data. Data structuring (the structure term in Ross’s equation)
is concerned with finding the best way of storing the data to
simplify this search problem for a given application, subject
to the many other constraints to be satisfied. A typical
constraint is the amount of core store available and sophisticated
data structures very often fill up core space at an alarming
rate.

Data structure design for a particular problem

The problem of designing a particular data structure will
now be discussed to illustrate the many alternative solutions,
and to serve as a basis for an examination of their relative
merits.

The example chosen concerns the storage of information

about a set of triangles which are to be displayed on an
interactive graphics console. The basic data to be stored are

the coordinates of the nodes of the triangles. Although a simple
problem, the example has been chosen because of its similarity
to the finite element system described in Chapter 5. It will

be assumed that the operations to be performed by the user are
copying, deletion and joining together of triangles to form
larger shapes with some common boundaries and nodes.

37

The triangles to be considered are typically like that

shown in Figure 4.2.
It is assumed that the boundaries of the triangles will

be displayed and that associated with each boundary is a unique
name or item number for the purposes of the display system.

These item numbers are used to gain access to other data in order

to perform copying, joining and deletion.
Typically the information (both basic and associative data)

can be held in two-dimensional arrays. Two such arrays might be
used, as in Figure 4.3. The BOUNDARY ARRAY has one row assigned

to each boundary (boundaries are numbered consecutively)
containing the reference numbers of the points defining the
boundary, and of the triangle to which it belongs, and the
display file item number for the boundary. The COORDINATES ARRAY
contains the coordinates of the points.

Such a data storage scheme is extremely simple in concept
but presents problems of implementation. A particular difficulty
arises if information is to be deleted, as certain rows of the
arrays will no longer contain useful data. It is possible to

re-order the remaining data in order to remove the redundant spaces,
but this may require considerable relocation of values and must
be programmed for each array which is to be treated in this manner.
Alternatively, the algorithm may be designed to process the

whole array including any redundant information but this is a
waste of both computing time and space occupied by data no longer

required.
A major objection to a simple array storage scheme is the

need to specify the amount of space required at some point before

38

it may be known. Even a block-structured language, such as

Algol, with dynamic array allocation is not adequate for very

interactive work since each separate array has to be declared,

although the array sizes can be allocated at run-time. The
problem of re-ordering of data is still present so the total

workspace available in core is unlikely to be used in the most
efficient manner for a given application.

The requirements for interactive work which an array
storage scheme fail to satisfy would appear to be:

(1) How to allocate space as it is needed during the running
of the program,

(2) How to avoid the problem of re-ordering data when operations
like delete are performed.
From investigations of these types of problem came the

techniques of list processing using free storage schemes with
"garbage collection*^.

Free storage schemes and garbage collection

Free storage schemes usually operate on the basis of

assigning a workspace or free storage zone which will contain
the information otherwise held in arrays. In some implementations
the free storage zone is itself an array, some parts of which contain
the data, and the remainder is considered free. Somewhere in

each free area (often the first word) the address of the start
of the next free block is stored. Addresses used in this way

are termed POINTERS. The free areas are therefore chained
together by a series of pointers. The length of each free block
is also stored. Information is held in records, hereafter

39

referred to as BEADS using AED terminology^^\ A bead is a

block of contiguous computer words whose size is specified by

the programmer and which may be allocated during the running of

the program. When a p^^ogram requests the allocation of a bead,

perhaps as a result of a user interaction, the free storage
routines determine whether the requested space is available. If
it is, the required block is removed from the list of free-store
beads and is assigned to the program for the storing of data.

In order to know where in store the new bead has been allocated,

the free storage routine returns the address of the start of the
bead. In the case of schemes which use an array as the free
storage zone, this address is the array subscript and is therefore
relative to the head of the array. This is a useful feature
which will be discussed later in the context of the use of mass
storage.

When a bead is made available by the deletion of the

information it holds, it is added to the list of free blocks.

If two such blocks are contiguous they are merged to form one
larger block by suitable updating of the pointers.

A simple chain structure for the example problem

In the chosen example the BOUNDARY and COORDINATES arrays
can be split into separate rows, which can then be imagined to

be beads which are linked together by pointers as shown in

Figure 4.4. Previously the boundaries and points were numbered

consecutively, now they are not: their reference numbers are
the pointers to their beads and are stored in the previous bead

40

thus forming a chain or list structure. The lists are cross-

linked by pointers from the boundaries to the end points which

define them.
An algorithm which is designed to process each bead in a

list can therefore be written as: get the next bead (if it exists)

and update the information it contains. By following the lists

in this manner, no problems arise about processing redundant

information and the same beads can be placed on different lists
depending on the operations to be performed (as in the program

described in Chapter 7).
If a bead is to be removed the bead occurring before it in

a list must be located and modified to point to the next but
one bead. The deleted bead is then returned to the free-store
list. Since the processing algorithm is written to follow the
lists the redundant information will not be processed because
it has been by-passed in the list.

Tree structures

A typical aim in application programming is to provide a
general problem solving system for the given application area.

In line with this, several attempts have been made to provide
general data structures for interactive programming^10,11,12) ̂

but the overheads incurred do not make this an attractive proposition.

A typical general structure is based on a tree arrangement^
and very often, for simplicity, mixed pointers and data are not
allowed in the same bead. Such a restriction enables th'' necessary
general structure building commands and pointer manipulation
routines to be easily defined, but implies that data are always

41

held at the base leVel. This is not in keeping with the usually
hierarchical nature of the problem to be solved, and data should
ideally be stored at different levels to reflect the physical

system which the model represents. This may have a significant

effect on the time to access certain of the data.
A critical examination of a tree structure reveals several

disadvantages but also some merits. Figure 4.5 shows a tree

structure for the triangle problem.
The major advantage of the tree structure is its simplicity

resulting in straightforward programs for structure building and
manipulation. A considerable problem encountered, when the .
information is held in structured form, is that of transferring
it to mass storage, because of the need to change the pointer values
when the information is read back into core. One way of achieving
this is to un-structure the information prior to storing on disc
or drum and to re-structure when transferring back to core. This
is achieved more easily with a tree structure than one with more

complex pointer relationships because only one pointer needs to

be "cut" to release a complete section of structure.
The disadvantages of the tree structure also stem from its

simplicity. They arise because of the lack of cross references

between beads, and sometimes from the inability to travel up

the tree rather than down it. If extra pointers are introduced

these problems can be overcome, but the main advantages of using
trees are then removed.

In the case of the triangle the lack of pointers becomes
apparent if the whole triangle is to be translated in space.

42

The operation to be performed is the modification of the
coordinate values, held at the lowest level. These can only

be accessed by searching down the tree from the triangle bead

via the boundary beads, requiring two accesses per point.

In order to save storage space, common elements can be
used at the lowest level, but the structure is no longer a pure

tree and becomes more difficult to segment. Figure 4.6 illustrates

this for the triangle example, and it is evident that less
accessing is needed than previously because duplication of data
has been removed. This is sensible from another viewpoint in
that if only one set of values is to be changed the necessity
to search for duplicate data is removed. This type of structure
can sometimes be convenient for schematic graphics diagrams
v̂ îpre use is made of subpictures corresponding to the common data
beads.

Ring structures

The processing time can be speeded up by stringing together

those items included in a common processsing operation. It
would be helpful to put the point beads on a list and to process

this list when the triangle is to be transformed. This would
imply that the start of the list is knovm, which may not be so,

and it is useful therefore, to arrange that the last item in
the list points back to the first, thus forming a RING structure.
With a ring, processing may begin at any point and is terminated

when the starting point is again reached. Figure 4.7 sh>ws a

ring structure for the triangle problem.

43

Such a structure does not, however, allow for travel back
to the parent triangle from the boundaries or points and would
involve a search and comparison method of determining the triangle
from a pensee on a boundary.

The hierarchical nature of the structure has evolved from a

consideration of the triangle problem and the link back to the

parent triangle can be obtained by pointing from each point bead

to the triangle bead. This also enables it to be reached from
a boundary bead from which there are pointers to point beads.

Some conclusions about the use of associative data structures

Several conclusions can be deduced from an examination of
the various associative data structures so far discussed.

The use of pointers can simplify the problems of data

relocation caused by actions such as deletion. The need to
move large quantities of data (usually much larger than in this
example) is replaced by the simpler operation of manipulating
a few pointers.

If there are many pointers, considerable updating may be

needed both within the application program data structure and
within the free storage routine lists. If many deletions are
performed, the free storage zone may need to be collapsed (i.e.
compressed to remove spaces), but at least the task of organising
this is removed from the application programmer. For the majority

of data structures about half a dozen pointer manipulation routines
will suffice to perform most operations including addition of
new beads and deletion.

44

Because of the ability to manipulate the data using a handful

of simple routines, the use of data structuring enables the
design of application routines to be very straightforward. Various

functions can be parcelled into unit operations on the data
structure and its contents. Information about where to locate

data is contained in the data structure, so that algorithms may

operate in much the same way as a stranger who, attempting to
locate an address in a town, proceeds by travelling a short
distance and then asking again for new directions.

Pointers can be used to link component names (or pictures)
with the data describing them, by arranging that the name (or

item number in a display file) has the value of a pointer to the
bead containing the data. Because the pointer refers to a unique
location there is no possibility for ambiguity in the definition
of the component. In the case of interactive graphics a lightpen
"see" will yield the pointer to the relevant data for the item chosen.
The use of subpicture techniques or common components can be

dealt with by having common beads in the data structure. The
number of uses of the component would then be indicated by the

number of pointers to the common bead.

For the structure proposed, the facility of storing mixed

data types in the same bead is needed. The ease with which this
can be done is a function of the hardware to be used and the level
at which the free storage routines are implemented. If the data

structuring facilities are included at the language level as in

AED-0^^^^ the bead definitions are assigned by declaration state­
ments, If the structuring facilities are provided as a package

45

callable from a procedure-oriented language (Fortran in
Chapters 5, 6 and 7) and the free storage zone is an integer

array, the application programmer must take account of the
storage mechanisms for the various data types . This problem
can be eased by using macros if such a capability is available,

where the macro definition takes account of the data type in
question.

It is desirable to make beads on any given ring of the
same size and type (format). This enables the algorithms which

search round a ring for a given piece of data (sometimes known
as MOUSE algorithms) to be simplified because each algorithm
only needs to operate on one type of bead. Even so, it is wise
to store a code at the head of each bead to indicate its type
and to ensure that only valid operations are performed concerning
the data held in the bead.

The hierarchical ring structure combines the advantages
of rings and trees for most processing operations (except use
of backing store). However, the large number of pointers involved
in such a data structure make it unsatisfactory if core store is

at a premium, unless routines are available for storing structured
data on secondary storage.

For example storing of a real value in an integer array. With
some computers (I.C.L. 4130 and 1900 series) real values are

stored in two consecutive integer locations and a routine can
be written to store real values in two locations of an integer

array. The application programmer must use the routine to
reference all real values.

46

Structured data and the use of mass storage

Some attention will now be paid to the problems of storing

structured quantities of data for which insufficient core space

is available. As already mentioned, one way to tackle the storage

of structured data is to unstructure it first.
This unstructuring approach requires the definition of a format

for the data to be stored on mass storage. In addition the structure
building routines must be written to accept this formatted data

and to rebuild the structure. This rebuilding process re-assigns
any necessary pointer values. The simple formatted data strings
can be held in a suitable file on disc or drum. The reason for
taking this approach is that it obviates the necessity to update
pointers, a process so complex that it is often impracticable
to re-program for each application.

An alternative is to change the pointer address system by

use of a taohmiiyk## atod paging scheme. This is
operated by using a relative addressing scheme, where the storage
area is divided into pages (typically of IK words, but often
variable by the programmer) which are assigned a page number. Any

addresses are then specified relative to the start of the page.

Swapping of programs and data then takes place as whole pages are

shifted between disc or drum and core store. In place of absolute

addresses » address is used which specifies both the
page number and address within the page of the required location.

Aë&lew/A considerable number
Ca m .of pages/Se be used and viM- an effectively large

h dLv&UaWo.;
storage area^ only some of which is resident in core at one time.

47

Such techniques have been widely implemented by software and

hardware . Automatic paging schemes usually create very bad
response times for an interactive system with data structure.

Cross-references within the structure which traverse the page
bounds cause an inordinate amount of page swapping.

The answer to this problem lies in maintaining a given
piece of data structure within a whole page. If the structure
has been designed to reflect the component nature of many physical

systems, and the page size is large enough, this can be done.
If the data structure is suitably segmented, the paging

scheme can still be allowed to operate automatically providing
the programmer can ensure that a given segment of structure is
placed entirely within one page. This implies that new pages
can be allocated when desired (even if they are not completely
filled). A XcKwa. udWCJx fv-lj-'ilk 14

By using arrays a simple paging scheme of this type could
be implemented where the arrays correspond to the pages and
the array subscript corresponds to the address relative to the

page head. If a structure copying technique is programmed, using

structure building routines which re-assign pointer values,
parts of a page could be transferred by copying them into a

buffer page which would then be written to backing store. The
reverse process would be used to read them back into a page

in store.
*5A useful technique woQ&d i$e to arrange programs such that

picture elements on a C.R.T. correspond only to those segn.ents

^I.C.L. 1906A, Atlas.

48

of data in core. Usually the display file contents need not
correspond to the core memory contents and the suggested scheme

would need to be deliberately programmed. This approach would

enable the user to be aware of the page swaps incurred by a request

for an item not held in core.
With an increasing interest being shown in the use of

satellite graphics computers, the decision of how to divide a

problem into those sections which reside in the central site
and satellite machines must be made. Just how this division
is organised depends on whether the satellite is remote from the
main machine, or adjacent to it with a high bandwidth connection.
Much of the software development for satellite computer configurations
is being developed on the basis of experience with closely linked
machines. As a result, much of this software does not offer
adequate facilities and good response times for operation in a
remote environment with only a relatively slow telephone line
connection. Too often the satellite computer's task is seen simply

as to perform picture processing, with the application programs

residing in the central computer. Such a division of labour
ignores the nature of the associations betvjeen the displayed

picture and the engineering data which lies behind it.

For this reason it is desirable to contain much of the

engineering data locally, implying the need to have a disc or
drum attached to the satellite to make this possible. Transfer
of information to a main machine for analysis involves many of

the same problems as transfer to and from disc. The main common
feature is that routines must be available for altering the way

in which data is structured.

49

Conclusions

Several general purpose data structuring schemes have been
implemented and perhaps one of the best known of these is

However, the balance between generality and efficiency often makes
the overheads of a general system too high. In his early Sketchpad

system, Ivan Sutherland used a general purpose data structure

having a ring of points and a ring of lines. For a system mainly
concerned with pictures constructed from lines this is adequate,
but for various applications it is usually necessary to incorporate

more complex relationships than those pertaining to picture topology.
Because the requirements of each application are so different

a data structure should be tailored for each new application area.
Sometimes an ’-off the peg" data structure can be suitably modified

to cope with new applications. For most problems, about half a
dozen pointer manipulation and data structure building routines are
sufficient to cover a wide rante of operations, if a free storage
and garbage collection facility is available*^.

Many difficulties still exist in storing structured data on
backing store. As with data structures in core, the most efficient

solution lies in organising a scheme around the application problem.

This is not very convenient for the application programmer, and

one answer appears to be to organise a paging scheme which the
application program can administer. This can be achieved by
ensuring, as far as possible, that pointers within the data structure

do not cross page bounds. Within each page the pointers are

^Simple free storage routines can be designed and implemented without
difficulty. The applications described in Chapters 5 and 6 make use
of three such routines provided by I.C.L.

50

relative to the page head. This must be taken into account when

the data structure is organised in order to attempt to keep data
segmented to fit within the page size. If several pages are
held in core at once, references from one to another would be

acceptable but would have to be kept to a minimum.
When the problems of storing structured data using a virtual

memory have been solved, larger problems will fit on

to smaller computers used as satellites.

51

CHAPTER 5

LUISA - AN APPLICATION SYSTEM FOR STRUCTURAL ANALYSIS

Introduction

The early design and specification of an application system

which is being implemented at Leicester University^ on an ICL 4130
with ICL 4280 graphical display console is described. The system

has been named LUISA (Leicester University Interactive Structural
Analysis) and it is written mainly in Fortran. The basic software
used is described in Appendix B.

Finite Element Analysis

The structural analysis within LUISA is based on the finite
element method. The finite element approach involves the sub-

(is)
division of a structure into elements whose behaviour is assumed.
When these elements are put together an approximation to the
real structure is obtained. The assumed behaviour of the individual
elements esdanrssspteisds to a choice of either a displacement field

or a stress field; LUISA is based on the displacement method.

In selecting displacement functions, care is taken to ensure

compatibility of displacements across the boundaries of the

^The author has been associated with this project for a period of
2 years and worked full time on the early system design and
implementation for 10 months. The work was done jointly with
Dr. G.A. Butlin, Research Fellow, at Leicester. The original system

has been described previously in two papers^^^’̂ *^\

52

elements. The internal displacements are expressed in terms of

the displacement values at the nodes of the element. Using these
and the stress/strain relationship for the material, a set of

nodal force parameters can be defined. By applying the principle

of minimum potential energy, a set of equations relating nodal

displacements and force parameters can be obtained, expressing a

state of equilibrium. The solution of these equations for a given

set of loads and displacement constraints enables the displaced
form of the structure to be calculated. Again using the stress/
strain relationship, the stress values can be found from the

calculated displacements.

Data Preparation

The traditional procedure in finite element analysis involves
dividing a structure into a mesh of elements. The experience
of the engineer is used in determining the mesh shape: areas of
high stress concentration will have a finer mesh, as will other
regions of the structure where the results may be of special

interest. Elements and nodes are assigned numbers. Typical
data input consists of:

(1) A list of node numbers and their coordinates (relative to

some set of global axes.

(2) A list of element numbers and the nodes corresponding to each.
(3) A list of material properties for the elements.

(4) Vectors of applied loads and displacement constraints for
the nodes.

During the preparation of this data, errors often occur which

are not easy to detect. Wrong values for coordinates will mean

55

an incorrect mesh shape, whilst errors in node lises for the

elements will cau^e e. total mis-representation of the structure.
For structures of noi\nal size (say 250 nodes for a bridge) the

time required to prepare the data is frustrating, particularly

if a series of analyses are to be attempted. The engineer is
often one stage removed from the computer, in terms of access,
and this too can lead to delays in obtaining results.

The engineer is interested in the structure and its behaviour,
and to force him to become concerned with internal details of

program organisation is undesirable but usually necessary to
some degree. The node numbers are of little interest to the
engineer from a structural viewpoint, but are iiaportant as his
means of communication with the computer representation of his
problem (mathematical model). Some sâ '-ing in effort required to
prepare data can be effected by incorporating automatic mesh
generation procedures. However, if a batch program is used,
the difficulty of communicating with the model still exists and

may be complicated by assigning node and element nuni>ers
automatically (i.e. internally).

Programs for automatic generation of element and node
distribution can be written for particular classes of structural
problem, and the author has done this for various examples of bridge

(3) . 'design (see Figure 5.1 for an example mesh). It is not easy

to eoooiesfte of a general scheme for mesh generation because of the
wide variety of constraints to be satisfied for different analyses .

1 * • «Sophisticated techniques for mesh generation have been incorporated
in the ASKA work in Germany. ASKA (Automatic Syitem for Kinematic
Analysis) has been developed at the Institut fur Statik und Dynamic
at the University of Stuttgart.

54

As well as for conanunication, node numbering schemes are
important for the analysis phase, where it is desirable to

obtain a banded stiffness matrix relating nodal stress parameters
to displacement parameters.

Conventionally, the output from finite element analyses is
very large. Much of the information is not of direct interest

but must be available to check that the other results are correct.
A recent analysis of a supertanker produced an output listing
which was longer than the ship itself. This difficulty of data
assessment is an area where a graphical output would be particularly
useful.

Advantages of an interactive graphics approach

Some of the difficulties mentioned are removed when an

interactive graphics program is developed for data generation.
It has been stated that the designer should not need to be
concerned with internal details such as node numbering. A graphics

approach should remove the necessity of this and allow the designer
to indicate "this node" rather than "node number 10". The nodes
do still have a numbering scheme, but this is now an internal
detail of the programs.

The ability to adjust a mesh and to judge its shape by

eye are particularly important. In practice the engineer is
interested in the precise coordinate positions of only a few
nodes on the boundary of a structure. Facilities for the fixing

of these can be provided in the programs, but in general it

is the overall element distribution which is of interest.

55

SifVCC
JEf node numbering need no longer concern the user, and

because of the facilities which can exist for modification of an
element idealization, the graphical display allows a new approach

to finite element analysis. Philosophically the approach is the

reverse of the traditional procedure. Instead of dividing a

structure into elements, the structure is put together from
individual elements. For several reasons this offers interesting

possibilities, but it does create some problems.

The quantities of data involved in the analysis of large
structures are too great to be held entirely in core store in
structured form. By dividing the physical structure into

manageable substructures, the data dsscribing any one of these
can be held in core. The solution of the total structure involves
the joining together of the substructures, a process which in
LUISA is achieved with the same algorithms used to join individual
elements. One aim in LUISA is to provide a flexible approach to
mesh generation, allowing many different structures to be described

by working with a few general algorithms. Because of the ease

with which structures may be modified, the process of description
has evolved as one of joining together a chunk of elements, or
using some previously designed chunk stored on disc, and adjusting

its shape to be that of the desired structure. Figure 5.2 shows

an irregular mesh adjusted to represent one quarter of a plate

with a hole in the centre.

Modes of Operation

In order to perform an analysis in the manner outlined,
several basic operations are needed. Those which were originally
planned for inclusion in the system are as follows:

56

(1) It should be possible to retrieve the data describing previously

designed structural components. These data would reside either
in core store or on backing store when a request is made for

them. If the data are resident in the core store access to

them is provided by pointing at the desired item with the
lightpen. If the data concerning an item reside on backing

store, a nameword or filename previously assigned to the item

is used to retrieve the data. The structural conponents may
be single finite elements (which form the starting point fpr
a problem) or some larger structure previously composed from
individual elements.

(2) During the process of constructing a structure the ability to
copy any component which has been designed is essential. Such
copies may then be used for further building of the structure
(as in (3)) or filed on backing store for subsequent use as
in (1). This enables copies of various stages of construction
to be filed allowing the user to "backtrack" through a problem
if he so desires.

(3) The system should enable the user to compose new components
by using previously designed components (or elements) whose

data reside either in core or on backing store. The joining

of two components involves indicating the boundaries to be
joined. The second boundary chosen defines which component
must be scaled and rotated in order that the two boundaries

are geometrically compatible. If one pair of boundaries have
already been joined and further joins are to be made, the

operation involved is one of linking two parts of the same
object. Under these circumstances, no scaling or rotation

57

is involved, merely a translation of the nodes to form the

join and modification of the boundaries defined by those nodes

affected. Figure 5.3 illustrates both types of join. 5.3(a)

shows the two componeits to be joined. Initially boundaries AB
and DE are linked, involving scaling and rotation and translation

of component II. Boundaries BC and EF are then joined

necessitating the translation of point F.

(4) During composition of a structure, various facilities for

modification of the geometry of the components are needed.
These include changing of scale and translation of nodes. It
is possible to translate nodes according to various constraints
to ensure for example that several nodes all lie on a straight
line after being moved.

(5) At any stage of composition it should be possible to apply

displacement constraints such as specifying engineering displace­
ment assumptions and fixing of boundary conditions.

(6) Corresponding to (5) the facility should exist to apply forces at
points on the structure other than where displacements have

already been fixed. A stiffness matrix is assembled for the

structure, and once either the forces or displacements have been
specified at all the nodes the nodal displacement parameter
values are found by inverting the stiffness matrix and

multiplying it by the load vector. The nodal stresses may be
calculated from the displacement parameters.

(7) The user should be able to request the display of a selection

of those displacement and stress profiles calculated from the
nodal values, and to print them on the line printer if desired.

58

Data Structure

A diagram showing the major features of the data structure
used in LUISA is shown in Figure 5.4. Three types of bead are
used: an ELEMENT BEAD, a NODE BEAD and a BOUNDARY BEAD. The

contents of these beads are shown in Figure 5,5. The node
beads and the boundary beads are grouped on separate rings
which are pointed to from the element bead. A ring of element

beads exists to indicate the component parts of the current level

of assembly of the structure. Each structural component has a
data structure of the type shown in Figure 5.4 and when components
are joined to form . a larger unit a new data structure is
created which also has this form.

The data structure for the problem may exist, therefore,
in several chunks each of which corresponds to a structural
component. Whatever the size and shape of a component, the
arrangement of its data structure has the same basic configuration,

so that the same algorithms may be used to operate on components
which differ considerably both in appearance and material
properties.

For the purposes of using secondary storage it was planned
that the data should be sorted into unstructured term and
stored on disc or magnetic tape as formatted strings. These

strings were to contain the necessary information to restructure
the application data when reloading them to core. Since that
time a scheme has been proposed for secondary storage o^

59

î •information in structured form . This involves the recreation

of the data structure for the specified component in a buffer

area, which is then transferred to backing store. When returning
the data to core store the structure is copied back from the

buffer into the main free storage area. During this process

the basic data remain unaltered and the pointer values are
re-assigned, but the overall configuration of the data structure

remains unaltered (i.e. the associative links remain undisturbed).

Interpretation of stored data

In the finite element method, a continuous displacement
field is represented by a finite number of generalised dis­
placement parameters. The nature of these displacement parameters
is defined here by a set of codes, which serve to indicate the
direction of the displacement and the order of the derivatives
in each direction. Each code has four parts;
(1) 1, 2 or 3 corresponding to displacement in the x, y or

z direction.

(2) An integer defining the order of derivative in the x direction.
(g) ?; I f I t n t i n « « y is

I I I f I I I t I I I t a 11 ” Z "

This set of codes is stored in the displacement INTer pr et at ion
Vector (DINTV).

The pointer to this vector is stored in a component (KDINTV)

in the element bead. In a similar way, all the other vectors

^Suggested and now being implemented at Leicester by Dr. G.A. Butlin,

with the assistance of Mrs. C.K. Grafton.

60

and matrices containing data associated with an element are

pointed to by components of the element bead, the component
name taking the name of the vector or matrix prefixed by the

letter K.

Values of the displacements are stored, when known, in
the Displacement vector (DISP). The generalised forces

corresponding to these displacement parameters are stored when
known in the FORCE vector (FORCE).

The basic force/displacement relations in the finite
element method are expressed in the equation

FORCE = KMAT x DISP

where KMAT is a stiffness matrix. However, the intermediate
specification (application) of non-zero forces leads to non­

zero increments on the forces not yet specified. These Force
INCRements are stored in the vector FINCR, and the more general
force/displacement equation becomes

FORCE = FINCR + (KMAT x DISP)

When forces are applied, their corresponding equations are

eliminated from those represented by the KMAT, and hence a
condensed KMAT has to be calculated. A Transformation MATrix
TMAT has to be calculated to relate the displacement parameters,
corresponding to the eliminated equations, with the parameters

retaining their freedom. A parameter is considered free when
neither force nor displacement is specified. Only one or the
other can be specified. Having specified one of them, the other

is determined by calculation.
The derivation of the matrix analysis is given in Appendix A.

61

For each force and displacement parameter, it will be

necessary to store a code indicating whether both force and
displacement are unknown or which is known. This code amounts

to a structural state variable and the vector of these codes
is called the INDicator Vector (INDV).

The connections between elements are defined by a

matrix, CMAT, This specifies the relationships
between the nodal displacement parameters of a composition of
elements and the nodal parameters of the separate elements from

which it is composed. Each set of elements which are joined
to form a superelement can be considered to be at different
levels, where the C matrices relate the parameters at one level
to the parameters at the next level above. Thus a complete
hierarchy of connections can be represented.

The C matrices provide the means for back-substitution.
When the displacement parameters at one level are known, the
parameters at the level below can be calculated, using the
relevant C matrix, and hence the internal displacements can
be calculated along a 'path* penetrating the total structure to

the point (or area) of interest. When the basic element is
reached the stress/displacement Back Substitution Matrix (BSM)

is then used to calculate the basic element stresses.

There is a need for a means of accessing the nodal
displacements. This is achieved by storing the value of the

component (of the displacement vector bead), which contains the
first parameter of the group of parameters associated with a
node, in a component of that node's data bead. The name given

to this node bead component is KPCOMP.

62

The number of parameters at each node can, of course, be

readily calculated from the values in KPCOMP of two consecutive

nodes, but there is a frequent need for this number and therefore
it is stored in a component of a node bead called KNPRMT.

The stresses are stored when known in the STRESS vector (STRES).

A set of codes is used to interpret these in a similar manner
to displacements, each code having four parts:
(1) 1, 2, 3 9, corresponding to stresses ̂ , a , o ,XX Xjr XZ

(2) An integer defining the order of derivative in the x direction.
(3) " " " " " " " " " y direction.
(4) '* " " " " " " " " 2 direction.
This set of codes is stored in the Stress INTerpretation Vector
(SINTV). Derivatives of stress are necessary to define the stress
field in the basic element and will depend on the assumed
displacement functions.

The component of the stress vector containing the first of

the stresses and their derivatives associated with a node is stored
in a component of that node's data bead, (KSCOMP).

For each boundary a visibility code VISIB is stored, to

indicate whether a boundary is to be treated by the display
as visible or invisible, for a given state of assembly of elements.
The convention adopted is that the internal boundaries of a

group of joined elements are made invisible once the stiffness

matrix (KMAT) of the assembly has been calculated. The internal
nodes are then displayed as a spot. However, by specifying u
level to the display routine all connected boundaries above that
level will then be displayed.

63

Example structure composed using LUISA

Figure 5.6 illustrates the use of some facilities of the

LUISA system employed to define an I section beam. The figure

shows a sequence of photographs taken of the display screen.

Figures 5.6(a) to 5.6(e) show the processes of joining and copying
to produce a larger component starting from one element as the

basic unit. In 5.6(f) a quadrilateral device is used to identify
those nodes lying within it. The positions of the nodes are
then adjusted to lie on a straight line passing through the

tracking cross position. Further copies are made and joined to
give an I section in Figure 5.6(k) and this is adjusted to give
the section of Figure 5.6(&).

Conclusions

Experience gained during early implementation of the LUISA

system indicated that considerable flexibility could be attained
in generation of meshes, but that a major effort would be needed
to organise the large quantities of data involved for the analysis
No information was available to evaluate whether the system

would prove practicable since no comparable systems could be

found, and as development proceeded it became apparent that it
would be necessary to reduce the flexibility, at least for the

first attempt. In particular, difficulties were envisaged in

the analysis and the decision was taken to use a sti^aightforward

analysis method where all the forces and displacements are
specified and the resulting simultaneous equations solved. In

order to trace back to earlier stages of the problem the

64

intermediate states of the data structure are stored rather

than using the CMAT transformation matrices.
With these restrictions imposed it was clear that LUISA

would be most suited to analysis of less sophisticated problems

where removal of internal nodes would allow a more rapid response

and enable insight into the structural behaviour to be gained.
With the ability to use the interactive aspects of the system
to "prod or poke" a structure, a general, but not detailed,

assessment of its behaviour would be possible. The inclusion of
a larger number of nodes allovrs greater detail but precludes
the rapid response which would appear to be necessary for gaining
insight.

The other major facility offered by the LUISA system is the
flexible manner in which meshes of elements may be generated
and modified. It is these data generation aspects of the system

which are valuable in tackling large detailed analyses and which
offer a rapid and reliable form of data input for conventional
analysis programs. The graphical output facilities may be used
to provide easy assessment of results not possible with
conventional line printer output. One problem arising is that

the data generation programs do not contain a sorting algorithm
■Tû.-aSSig*'- AiA*v»bâ.rS

to the modes for an analysis requiring banded matrices.

The LUISA analysis is arranged to cope with non-banded matrices,

but some thought will need to be devoted to this problem in

future if other analysis routines are to be used.

Implementation of the LUISA system has been severely
hampered by operating system software faults and poor hardware

reliability. All of the data generation facilities operate

65

satisfactorily and the programs for the analysis are now
available. It is hoped that with the next release of the

operating system software, the whole system will be operational

and that the first stuctural analyses will be performed in

the near future. Only at that time will a full appraisal of
the system be possible.

66

CHAPTER 6

AN INTERACTIVE THREE DIMENSIONAL DRAWING PROGRAM

Introduction

A description is given of a set of programs written to

investigate the use of a CRT graphical display with lightpen

as a three-dimensional sketchpad. The language used is Fortran
and the programs are implemented on an ICL 4130 computer with
Elliott 4280 display.

The programs were written in order to study some of the
problems arising from three-dimensional display including visualization

and communication techniques. The data structure design formed
an important part of the study and some modifications to the
data structure are proposed.

The work has been described previously in a paper which is
(13)listed as a reference . The system is sometimes referred to

as TDD (Three Dimensional Drawing). The basic software for data

structuring and display are described in Appendix B.

Some Visual appreciation problems

The term "interactive problem solving", used in relation to
computer graphics, implies a two way communication between man

and computer. Many obstacles exist which complicate this

communication process, and they are particularly evident if the
picture is three-dimensional. Much effort has been devoted to
overcoming problems of visualization: for example, algorithms

67

(8)for removing hidden lines and use of stereo views. However,

as much as these may aid the viewer in understanding the picture
on a display screen, they represent investigations into one aspect

of the communication process, namely, the flow of information
from the computer to the man. The programs described here are

concerned with improving the flow of information in the reverse

direction by attempting to provide a natural means for constructing
three dimensional pictures.

A truly effective communication cannot be established without
considering flow of data in both directions, and it might be
thought that improving the man's understanding of the picture
will aid him to communicate his ideas back to the computer. This
is often true but the use of stereo views is an example which
serves to show that this is not always the case. What needs

to be established is a feed-back loop where the user can get a
feel for what happens on the screen as he controls the various
input devices available to him. The lightpen is a very suitable

form of input for achieving this loop as it can be used to alter
a picture dynamically.

Using the programs

Using a tracking cross and lightpen, only two degrees of .

freedom can be controlled independently at any one time,
corresponding to the X and Y coordinates of the cross. Effectively,

in drawing in three dimensions, three coordinate values must be
controlled and if this is to be achieved with the tracking cross,

one of the coordinates must be related in some way to the other
two, or held constant. The choice of how to relate these

68

coordinates plays a significant part in determining how it will

be possible to arrange the operation of the program.

The usual approach xo 3D drawing is to define the plane
of drawing. The method suggested here, however, is to define
planes in which points may be specified and then to allow a drawing

to be constructed by joining these points. Therefore
of lines is not limited to the specified planes. In order to
define points in space, use is made of a pseudo tracking cross

which moves in three dimensions under control of the lightpen.
The operation of the programs is based on the use of lightbuttons
- words or symbols displayed on the screen which when selected
with the lightpen cause some appropriate program to be executed,
or option to be chosen. To control the movement of the pseudo
cross, use is made of "djuiamic" liglitbuttons which appear, at
the appropriate moment, clustered around the tracking cross on

the screen, an idea used by Wiseman at Cambridge, in the PIXIE
(19)system . Usually this corresponds to the current position

of the lightpen and makes selection very rapid, because the
relevant lightbuttons always appear close at hand. Some other

lightbuttons appear at the right-hand edge of the screen and
for major operations, menus of options appear at the bottom of
the screen. The arrangement of these menus and the way in which
they are used to construct commands using the lightpen are the

subject of a paper presented at the Computer Graphics '70
S y m p o s i u m ^ T h i s paper describes a general package of programs

for interaction handling developed at Leicester, which enable

commands to be constructed and executed. Execution of a command
causes an appropriate routine to be entered to perform the
action specified in the command.

69

Commands available in the 3-D drawing system are shown in

Figure 6.1 and they enable the following facilities to be used:
(1) New objects may be drawn, or additions made to existing

components. Lines may be deleted using a facility within

the drawing routine. The pseudo tracking cross can be

caused to latch on to any previously defined point when it
approaches within a certain distance of such a point. The
test for proximity can be made in both a two and three-
dimensional mode and the checking distance can be varied by
the user.

(2) Any pswcispwiy drawn or constructed component may be copied

any number of times, the only limit being the core space
available for data. In practice the drawings become too complex
to handle before the available core is filled.

(3) Items may be moved around the screen and joined to other objects

(any their data structures are linked) enabling larger and
more complex objects to be constructed from a series of simpler
units used as building bricks. Objects are linked at their
vertices, rather than by joining surfaces or boundaries.

(4) Objects are drawn with respect to a set of local axes, and
they may be rotated about these axes in order to redefine
their orientations, under control of a software joystick,

displayed on the CRT.
(5) Components may also be rotated continuously as a check on

their three-dimensionality and as a visualization aid.
(6) Either the whole picture or individual objects may be rescaled.

When the command "DRAW NEW OBJECT" is executed a set of
Cartesian local axes labelled X, Y, Z appears at the tracking cross

70

-rni,̂ act.
position. Objects are drawn with to these local axes

and the view presented to the user is the PI-plane projection

(i.e. there is an equal direction cosine between each axis and
the plane of the display screen). The three lightbuttons XYFLANE,

YZPLANEj ZXPLANE appear down the right-hand side of the screen.

Selecting one of these defines a plane containing the last
defined point in space, parallel to the XY, YZ or ZX plane.

This plane is termed the ACTIVE PLANE.
To construct an object, once the drawing routine has been

entered and the local axes displayed, requires the use of two
console function keys. Both of these 4are used to defined points,

but when one is used a line appears, connecting the present point
to the previously defined one. Drawing commences by assuming as
the first point the origin for the local axes.

Pressing one of the two console keys on the display unit causes
three lightbuttons to appear clustered around the tracking cross.
If the active plane is XYPLANE these lightbuttons will be X,
Y and N. Choosing one of these causes the pseudo tracking cross

to appear, in the active plane.
If the active plane had been YZ the options would have been

Y, Z or N, and similarly Z, X or N for the ZX plane.
Points are defined in space using the pseudo tracking crosp

whose coordinate position is continuously displayed. If a line
is being drawn, the length of the line is also shown. If the
N option is chosen, the projected position of the pseudo cross

in the plane of the display screen is assumed to be coincident
with the ordinary tracking cross position. By moving the tracking

cross, two coordinate values may be varied and the third determined

71

from the active plane. Choosing one of X, Y or Z further contains

the pseudo-cross to move parallel to one of the axes, depending
on which lightbutton is seen.

The pSeudo cross position may be continuously varied while

the console function key is depressed^ enabling “rubber band”

lines to be drawn. The pseudo cross is programmed to grow
larger as it is moved towards the user, a feature which has proved

very useful and which enables the user to appreciate that he is
not drawing in the plane of the display screen.

Figure 6.2 illustrates some of the steps in drawing the

simple figure shown in 6.2(f). In 6.2(a), the arrangement of the

screen is shown: various messages are displayed along the top edge
of the working area to guide the user, and the menus of options
from which commands are constructed appear at the bottom of the
screen. The command ’’DRAW A NEW OBJECT” has already been executed

and the local axes and active plane lightbuttons are present on
the screen.

6.2(b) shows the dynamic lightbuttons corresponding to the

currently active plane which is XYPLANE. A line has already been
drawn from the local origin parallel to the Y axis and choosing
the X lightbutton gives rise to the situation represented in 6.2(c).
In 6.2(d) a rectangle in the XY plane has been completed and the

active plane is now ZXPLANE. Selecting the N lightbutton leads

to fig. 6.2(e). Continuing in this manner, the completed figure
in 6.2(f) is obtained.

Figure 6.3 illustrates some examples of more complex objects

constructed from simple units and then modified.

72

TDD data structure

The data structure used for TDD includes a large number of
pointers and cannot be regarded as a compact structure, but it

oaSdJies the use of saapler and more efficient algorithms. It

is, however, a more compact structure than would have been achieved
using a general scheme such as From a study of this

some conclusions have been reached about how to achieve a more

efficient structuring for the data without complicating the
algorithms unnecessarily.

The data structure used in TDD is an extension of that used
in another project at Leicester, the LUISA system^^^*^^\ The

structure is based on the use of rings and beads. A BEAD is a
block of data, or more correctly, a block of information, because
a bead may contain both problem data and pointers. The POINTERS
are used to show the relationships (associations) between groups
or beads of data. Three free storage organisation routines are
used, for which the free storage zone is a Fortran integer array.

These routines were provided by I.C.L. and are also used by the
LUISA system described in Chapter 5.

For the purposes of data storage in TDD an OBJECT is said
to be composed of EDGES whose ends are defined by VERTICES, For
each object, three types of bead are used:

an OBJECT BEAD containing information about the object (things
like colour or volume or density)

several
VERTEX BEADS containing data about vertices (for example

their coordinates in space)
several
EDGE BEADS containing information about the edges of the

object (e.g. length, orientation)

75

In order to associate the appropriate edgps and vertices with

a given object, the edge beads are grouped on a ring pointed to

from the object bead and there is a similai- pointer to a ring of
vertex beads. Because a given edge is defined by the vertices at
its ends, a pointer to each end vertex is stored in each edge bead.

Figure 6.4 shows the contents of the data beads and Figure 6,5
illustrates the relationships between them. In order to make some
of the algorithms more efficient several additional pointers
have been included. These are:
(1) A pointer from each EDGE bead to the bead for the OBJECT

containing the edge.
(2) A similar pointer from each VERTEX bead to the OBJECT bead.
(3) A pointer from the object to the last VERTEX and another to the

last edge on the vertex and edge rings respectively.
Both forward and backward pointers are used for beads on a ring.

In order to process the whole picture, which may include a
number of objects, the object beads are grouped on a ring pointed

to from a single bead termed the SCENE bead.
lilhen the command “DRAW A NEW OBJECT” is execuyjited a new object

bead is allocated and added to the ring of objects. A set of
local axes appears at the position of the tracking cross on the \
screen. The values of the global coordinates of the origin of
the local axes are stored in the object bead along with the
orientations of the axes.

As vertices and edges are defined, new beads are added to the

vertex and edge rings for the object concerned. This involves
some updating of pointers and several checks. In creating an
edge, for example, it becomes necessary to ascertain whether a

74

new vertex is being created or whether the ends of the edge

correspond to some previously defined vertices. When an edge
is deleted it is necessary to perform a check on the vertices at

its ends. If these vertices do not form the end of some other

edge they too must be deleted and the appropriate edge and vertex
beads returned to free storage. Removing beads necessitates

further updating of pointers.
From an examination of the data stored in the vertex bead

it is apparent that the local and global coordinates of the veptex
are stored in addition to the coordinate position of the point

on the display screen. Evidently this represents a duplication
of data because the three sets of coordinates are related, but
it enables simpler algorithms to be used. For example, in using
the "latch on” facility in a three dimensional mode, a two
dimensional proximity check is made first, using the display
coordinates. If this check is positive the test is made in three
dimensions using the global coordinates of the vertex. Similarly,

the local coordinate values are of interest in some of the other
routines.

Conclusions

As stated in the introduction, these programs represent part

of a more general investigation. It has been found that the user
intuitively watches the movement of the pseudo tracking cross

and very rapidly becomes familiar with the concept of working
in different planes in space. Making use of the lightpen in
the manner described provides the feedback loop mentioned earlier.

75

One problem which has been experienced has been the time to
process the whole scene to produce rotations for purposes of

viewing the objects in three dimensions. This is because of the

time taketi to search round a ring updating the global coordinates.

As a result of this a suggested modification of the data structure
is to remove the global coordinates from the vertex beads and to

place all of them together in one bead. In their place in the
vertex bead a pointer is inserted which indicates their position
in the global coordinates bead. For complete picture transformations
only the global coordinates bead needs to be processed and search

times are much reduced.

Experience indicates that it is not necessary to store local,
global and display coordinates, and it would appear to be sufficient
to store only local values. Global and display values may then be
obtained by applying the appropriate transformations, as in the

LUISA system.
The ability to rotate objects about the local axes is

particularly valuable since it enables the active planes to be

redefined with respect to the objects.
Visualization problems have caused some difficulties and

conclusions about avoiding these have influenced the design for
an application 3-D system described in Chapter 7. The use of a

hidden line removal algorithm would not appear to be satisfactory
since the picture processing times are likely to be too large.

Communication with a three-dimensional pictu:.*e needs either

a very rigidly defined set of operations involving codenames for
identification purposes or the use of devices such as the pseudo
tracking cross. The pseudo tracking cross could be used with
stereo picture pairs, where it is displayed in each view and is

76

moved in sympathy with the normal tracking cross.

With three-dimensional problems, much more attention must

be paid to the requirements of the display system than with

two dimensions. This is mainly because of the need for
visualization aids and the way in which such facilities affect

the data structure design.

New advances in hardware including matrix multipliers and
hardware clipping of lines may make the programming of three
dimensional pictures much easier in the near future. There are
howeVer, many situations where the type of visualization is very

aproblem depend/nt, and software solutions to these problems
are particularly valuable.

77

CHAPTER 7

BAID - A PROGRAM FOR BASIC ARCHITECTURAL INVESTIGATION ’

AND DESIGN

Introduction

The program described in this chapter was developed as one

of the projects of the Computer Applications Workshop scheme

in the Engineering Department at Leicester University. Two
versions of the program exist: a batch version, and the one

described here, an interactive graphics version.
The idea for the program was that of architect Boyd Auger.

Much effort was needed to translate his scheme into a working
computer program, but after preliminary discussions with the
Leicester CAD group , it was decided that the problem was an
ideal candidate for a graphics approach.

The program is concerned with the layout of high density
housing sites. Once various details of the site have been fed

to the computer as input data, a random number program selects

the type (flat or maisonette), location and orientation of a
new dwelling. A series of tests relating to this new dwelling and
those already in existence is conducted to ensure that certain

design criteria are satisfied. When the desired density for the
site has been reached by repeating the selection and acceptance
or rejection process, a variety of outputs can be obtained

tThe author worked on this program for several months with
Dr. G.A. Butlin and the architect Boyd Auger.

78

including hard copy plots of the completed site.

The program is based on the use of list-processing techniques
and the data structure is described.

Organisation of the program

Location of dwellings is carried out by positioning them on

a 99 X 99 square grid where the grid size must be large enough
for the area to encompass the whole site. Coordinate axes x

and y are chosen along two adjacent sides of the grid system.
On the grid are plotted "pads”, where a pad is a square of grids
into which will fit any of the dwelling types to be used in the
development. The number of grids defining the pad size may be
varied. The pad is assumed glazed on two opposite sides and can
have either of two orientations, xx or yy. It may also have one
or two storeys (flat or maisonette).

As part of the input data, the designer specifies which
areas of the 99 x 99 grid may be used in the positioning process.
Existing roads, dwellings and areas outside the site boundary,
but inside the grid area, are regions where new dwellings may

not be located. Another grid system is used to specify the
variations in height of the site.

An X and y coordinate value, measured in grids, is selected
by a random number which also specifies the orientation (xx or yy)

and type (1 or 2 storey) of a new pad. These last two properties
may bo varied by weighting factors, entered as input data, the
two extremes being all flats or all maisonettes, and all ^x
or all yy orientations.

79

As each new pad location is assigned, three basic tests are

conducted corresponding to three architectural design criteria.

These criteria are a measure of:

(a) The distances between the windows of different dwellings to

test that these are greater than a minimum figure required for
privacy.
(b) The amount of daylight falling on each glazed side of the

pads.
(c) The number of hours of sunlight falling on the living room
facade during ten months of the year.
If any of the calculated figures fall below a minimum specified
in the input data, the proposed new pad location is rejected.
Once a pad has been accepted it is added to the data structure
and the process is repeated. Checks (b) and (c) involve calculating
the skyline shape as seen from the windows of the dwellings.
Any random choice which results in a new pad landing within a

specified zone around an existing pad results in the new pad being

placed on top of the old one. The size of this zone is part
of the input data, and can be varied to encourage the ^growth”
of tower blocks. If this addition to an existing block causes
the maximum allowable block height (again part of the input)

to be exceeded, the new pad is left in its selected position

and checked in the normal way.

Under certain circumstances, the orientation of the pad
is switched if a pad fails a test, and it is rechecked.

The order in which the various criteria are checked is as
follows :

80

(1) For each new pad, calculate which existing pads are close

enough to be tested for the various criteria and set a
check parameter to indicate this for each of the existing pads,

(2) Check the privacy distance.
(3) Calculate the shape of the skyline from the windows of the

new pad and perform checks (b) and (c)

(4) Add to the skylines for the existing pads the effects of the

new one and perform checks (b) and (c) for each of them.

Checks (2) and (3) are only performed if the new pad is
on the ground, otherwise it will be on top of a ground pad
which has already been appropriately checked.

Data structure

Because the situation is constantly changing as the site
develops, the BAID program data can be very conveniently
organised using list-processing techniques. Figure 7.1 shows the

contents of a bead containing the data for each pad. A pad
bead can exist on three possible lists. These lists are:
(1) a list of all pads, used for various search operations, and

for plotting and printing data about the completed site,
(2) a list of ground pads used to check skyJ.ines of existing

ground pads when a new one is added,
(3) a list of roof pads used to construct the shape of the skyline,

Pointers used to construct these lists are held in the first
three components of the pad bead. A pad which is sandwic'^ed
between a ground and roof pad, termed a middle pad, will only
exist on the list of all pads.

81

The last component of the pad bead points to another bead,

that containing the skyline data. This is only present in the
case of ground pads and is not allocated if a new pad is placed
on top of some existing block. The skyline data is packed,

four values per word. The other components of the bead are

defined in Figure 7.1.
When a pad has been checked and has passed the specified

tests, its bead is added to the data structure by updating the
pointers to link it to the appropriate lists.

Interactive aspects of the program

Although there ai-e both batch and interactive versions of
the BAID program, it was developed originally using graphical
display equipment. The logic used in the program is of such
complexity that the use of the C.R.T. for debugging operations
clearly had particular value. An axonometric plot of the site
is displayed during development.

Interaction via the display console

Interactive facilities within the program enable the user to:

(1) Interrupt the random selection of pad properties and to specify
particular locations, orientations and types for pads using

the lightpen and function keys,

(2) Using the lightpen, to select a dwelling and display the

skyline as seen from its window (this can only be done for
ground pads). Figure 7.2 shows a photograph of the display

screen showing the axonometric site plot and three skylines.

82

The three views correspond to positions at the left-hand

side, centre and right-hand side of the chosen window. The

box in which each skyline is depicted represents the limits
of the view from the window as defined for the purposes of

the tests.

(3) Change the scale of the displayed picture and also rotate it.
(4) Request a hard-copy plot of the picture displayed on the C.R.T,

Features (1) and (2) proved to be invaluable as an aid to
debugging, enabling extreme cases for each test to be tried
rapidly, and for quick visual assessment of the calculated values
in each of the tests.

The amount of output printed on a line printer can be
varied by setting sense switches during the running of the
program.

Output

Three separate forms of output are available: printed

information from a line-printer, plots of plan, axonometric or
section views, and punched paper tape. Each form of output is

optional and may be specified with the input data. The requested
information is printed when either the site density is achieved

or a specified time limit exceeded. Figure 7.3 shows a plan and
axonometric plot for a partially developed site.

Extensions to the graphics version.

The aim of the program is not to automate the process of
design, but to produce complex and original arrangements which

85

will be assessed by the user. Because of the complexity of the

tests conducted, without the aid of the computer there is a

tendency for the designer to produce small groupings of dwellings
and to repeat these groupings over the site area. The BAID program

allows the designer to obtain a series of suggestions, which

satisfy the design criteria. From these, he can select and
"freeze” areas for re-entry as input data, allowing the remainder
of the site to develop in a random fashion.

Using the graphics console, these frozen areas could be
specified on-line, using a quadrilateral device similar to that
incorporated in the LUISA system described in Chapter 5. The

parts of the data structure corresponding to the frozen areas
could be isolated.

The controlling values for the various tests are variables
which the user can modify, and variation of these on-line
would enable an assessment of the importance of each test in

relation to a given site.

Another use of the program is to assess possible site
densities for a given plot of land. If the architect so desires,
he may design a site in the traditional manner and feed details
of his layout into the BAID program to check the criteria.

Experience of designing the BAID program

Unlike the other applications described in this thesis, the
scope of the BAID program was completely decided before the

design process began. As a result of this, the entire system
was flow-charted before any development or debugging was performed

84

on the computer. The system was implemented ii. modular form

with each of the test and other operations existing as separate

subprograms, allowing easy modification during debugging. The

language used was Fortran, apart from two assembly code

routines for number packing. The data structure routines
are mentioned in Appendix B.

85

Chapter 8

Data generation, for Three-Dimensional Finite Element
Analysis

Introduction

The LUISA system described in Chapter 5 was developed
to enable two-dimensional finite element analyses to be
tackled using a graphics console. At that time it seemed
likely, from a structural viewpoint, that an extension of
the data structure used for two dimensions would suffice
for three dimensions, but this view has been modified in
the light of various display and interactive programming
problems.

A description is given of the data to be generated
using the system. It is shown that the data needs to be
segmented in some manner and that this can be achieved by
paging the data structure. The difficulties of using a paging
scheme in an interactive program are put forward. This is
followed by a description of a paging scheme which has been
implemented on an I.C.L. 4150 computer in an attempt to
overcome some of these difficulties. This is backed up by
some test results. The implementation of the problem data
structure using the paging scheme is explained, bearing in
mind that response times must be kept small. Some discussion
is devoted to software required for the representation of

86

the three-dimensional structures.
The Chapter concludes by outlining future plans for

linking the data generation system with analysis programs.

The data to be generated
The basic data needed by the analysis are much the

same as those required in LUISA, extended to three dimensions
Little work has been done in this areas Three-dimensional
systems based on the use of Coons* patches (Coons
Armit^^^))* have not been designed with analysis in mind,
and the Coons* patch approach involves a different form of
representation from traditional finite element procedure.
Some work has been done on representation of surfaces using
a formulation based on finite element functions, but again
there is no provision for the requirements of analysis
programs (Throsby^^^)).

Three-dimensional bodies to be included can be grouped
under the headings of shells and solids. The data needed
in each group are slightly different depending on the type
of element used. The form of this data, however, can be
specified and generally involves the definition of a set
of nodes and assignment of various parameter values
associated with each node. A reference is given to an
introductory book on finite element theory which outlines

* Also the Numerical Master Geometry system implemented
by the British Aircraft Corporation.

87
the organization of this data more fully, for conventional
analysis (Z i e n k i f c ' x c z .

For the designed system it has proved possible to employ
a standard data structure, much like that used in LUISA
but made more compact in the light of experience and with
8@me modifications made to allow for segmentation. A variety
of sub-systems are being evolved for the handling of
different types of shell and solid structures, but the
overall system organization described here applies to each
of these types.

In each group the required data includes a list of
coordinates of nodes and a list of elements and their nodes.
These fix the mesh shape, the coordinates being specified
relative to some global set of axes. For shell structures
additional data are required to specify the shape, including
various derivatives to define shape functions. These shape
functions are polynomials which describe the geometry of
curved shell elements.

In addition, vectors of applied loads and displacements
nust be entered, and the system has been designed so that
these can also be prepared using the graphical display.
The description which follows relates to the topological
and geometric data, because the loads and displacements do
not require a complex storage method (ordinary Fortran
vectors are adequate).

The data must be stored in some structured manner in
order to perform a variety of modifications to the

88

topology and geometry of the components to be analysed.
Moving a node, for example, involves updating any elements
to which this node is common and these links are modelled
by pointers in the data structure. For most finite element

A/
problems the quaj[bities of data are large, and if the
topology is to be represented in the manner needed for
design using a graphical display there is usually
insufficient core space to store this data. Thus some
scheme for segmenting the data, making use of secondary
storage, is unavoidable.

Correspondence between the physical structure and
the data structure

In order to determine the best way of segmenting the
data structure a study was made of the quantities of data
involved in typical problems using the IÜISA data structure.
However, the data structure described in Chapter 5 can be
considerably reduced in size (LUISA was designed to permit
analysis as well as data generation). When this is taken
into account, the element data bead requires 7 words, the
node bead 10 words and the boundary bead 4 words. These
figures are for a full three-dimensional structure, but
assuming that components are linked by nodes not by
boundaries as in LUISA. No allowance has been made to
include surfaces as separate entities because these can be
defined in terms of nodal parameters from which the

89

boundary shapes can be calculated and displayed.
Experience gained from LUISA indicated that a data

structure which allows deletion of elements as well as
geometry modifications should include duplication of the
data describing linked nodes and boundaries. This duplication
is removed before performing the analysis by "assembling
the structure". This operation is accompanied by the formation
of the structural stiffness matrix for the assembly. To
distinguish between the cwo states, the initial structure
will be termed the linked data structure, and the other
the composed data structure.

Using the above figures for the lengths of the beads in
the data structure, the following space requirements can
be calculated for the linked data structure. The size of
problem chosen is a structure with 400 finite elements.
The analysis of a bridgedeck is an example of a problem of
this size. The space per element is found by multiplying
the bead sizes by the number of nodes and boundaries for
the element type. For a parallelepiped with 8 nodes and
12 boundaries the space needed is

7 + 8*10 + 12*4 = 135 words.
For 400 elements the number of words needed is therefore
5<,000.

Because the associations between data in finite element
problems exist between beads describing physically adjacent
pieces of engineering structure, some correspodence between

90

physical sub-structuring and data structure segmentation
has been attempted. The size of a physical sub-structure
is, of course, determined by the core space available for
storing the data in structured form. It should be emphasized
that the use of sub-structures is very important in large
analyses in two ways. Firstly, the total problem can be
broken into manageable units which are sensible to the
design engineer. This provides a means for segmenting a
large data structure. Secondly, during the design and analysis
process it may be necessary to change a part of the design.
This often only requires a re-analysis of the appropriate
sub-structure instead of a large computation involving the
total structure. It is important, therefore, that the scheme
chosen for implementing the data structure allows for the
incorporation of physical sub-structuring.

The segmentation of the data structure is achieved by
paging the available core and disc s p a c e ^ .
Paging was chosen because it provides a solution to handling
all the data in the same general way. The alternative would
be a filing scheme written specially which would not provide
this generality. Because of the highly interactive nature
of the data generation system, and of graphics programs in
general, the choice of paging scheme had to be made with
some care to prevent excessive page swapping. This could
have a drastic effect on response times.,A study of some
paging schemes developed e l s e w h e r e r e v e a l e d

91
that changes could be made to improve their performance for
particular types of problem, as is discussed below.

Paging schemes for list data structures

1 major difficulty with the paging of list data structures
is that if the space allocation is performed automatically
a given list may spread over several pages. Operations
which involve searching lists may therefore result in a
reduction in efficiency due to page swapping. Page size is
a factor which affects this situation. Usually some
assignment of priorities to different pages can also help
to alleviate this problem.

With small pages it is possible, for some applications,
to hold in core all those pages required for the operation
in hand. This allows easy handling of the total structure
by keeping relevant sections of lists in core together.

In a survey paper on demand paging, Kuehner and Randell
discuss the paging of both program code and data, and

it is in this area that most work appears to have been
done. Different strategies may be applied to the control
of page swapping, particularly with regard to the choice
of pages to be swapped. The prediction of page requests is
a subject which has received much attention^^®^(Joseph^^^^),
but the results of this work cannot be readily applied to
interactive programs. In such programs foreknowledge of
page requests may not be available because the data structure
can change dynamically. Program code is different in that

92

usually it does not change once compiled and algorithms can
he devised to transfer to core (autonomously) those pages
which may he called hy the one currently being processed.

Some systems have been developed which deal specifically
with paging of list data structures (Bobrow and Murphy
Oohen^^^)), but these systems do not relate directly to
interactive situations in which response times figure
prominently.

Priorities are assigned to pages to determine which page
is replaced by a new one being swapped into core. Cohen
has maintained that the priority should correspond to the
time of inactivity of a page. That is, the page which has
been in core for the greatest time without being referenced
should be the one replaced. Another criterion is to assign
a priority related to the number of references made to a
page while it has been in core.

Bobrow and M u r p h y p r e s e n t an algorithm which is
designed to group lists on a single page with a consequent
reduction in page swapping. This is a useful feature for
an automatic system to possess, but is no more efficient
in cases where the page boundary is crossed by a number of
pointers. This is a situation which is seldom avoidable
and which can only be improved by relating the allocation
of space to the problem in hand.

The scheme described below has been designed with this
difficulty in mind and allows the application program to
control space allocation by arranging that each page is a
separate free-storage zone in which beads may be allocated
for data storage. This also overcomes some of the problems
which occur with garbage c o l l e c t i o n s i n c e this is done
separately for each page.

93

It must be emphasized that the scheme has been designed
with the long term aim of running it on a medium sized
machine without raulti<-.programming. Most of the available
references relate to larger computer systems where many
more factors must be taken into account, and where it may
be less efficient (in an overall sense) to use a paging
scheme with a high degree of programmer control. In such
systems the time-sharing supervisor must control the
swapping of programs and data, and a paging scheme which
will operate efficiently in conjunction with this is

(n e c e s s a r y H o w e v e r , some of the general difficulties
of paging apply equally to a dedicated computer system.

Description of the paging scheme developed on
the I.C.L. 4130 computer

The scheme uses a random-access file for storage of
pages on disc and an array for working space in core.
Word transfers can only be made from ar to the start of a
disc sector (64 words) and page sizes are an integral
number of sectors. Pages are of variable length and may be
extended if desired. Although pages may be of any size which
is a multiple of 64 words (subject to them fitting into
the assigned array in core), the data generation system
will make use of large pages for storage of structural
analysis data (typically 5K words). Such a size of page
is adequate for the storage of complete sub-structures
(for example it will accommodate 37 parallelepiped
elements with a linked data structure). This enables a
sub-structure to be defined by the fact that it is contained
in a8ingle page, and connections between sub-structures
to be represented by pointers which traverse the page
boundaries. This is a major reason for choosing a large
page size.

94

One general disadvantage of a large page, mentioned by
Kuehner and Randell, is that considerable unwanted quantities
of data may be transferred to core when a page is needed.
With the described scheme, those items of data which are
most closely related are grouped, as far as is possible,
on one page. Thus, although the requested data may be only
a fraction of the page content, the next operation will
very likely be performed on some related item in the same
page.

Different classes of data can be identified, depending
on the time taken to process them. For example, messages
stored as character strings take very littD.e time to output
but an engineering component may take some time to draw
because its description must be extracted from a complex
data structure. Thus, in some senses, the engineering
component data is of higher priority than the message data.
It would be unwise to arrange that a page of message data,
of low priority, replaced a page of structural data which is
of higher priority. This is overcome by assigning a
class number when a page is allocated. Pages with different
class numbers are loaded into separate areas of the array
in core. The class number may be changed if desired, but
only a limited number of different classes should be
defined, depending on the size of the array used for paging
and the size of page to be accommodated in a given class.

Within a given class, pages are loaded one behind
another into the appropriate class area in core, when they
are requested. When no space remains in the class area the
process begins again from the bottom of the area. Any pages
in that class which have been updated since being
fetched into core are written back to disc before being
overwritten in core. This "end around" storage procedure

95

makes the management of the core space very straightforward,
If the application program is designed to group together
references to a particular page, then the criterion
approximates closely to the time of inactivity used hy
Cohen»

The algorithms which control the paging are written
in Fortran and assembly code, hut all the routines are
callable from Fortran. Because of this the Fortran
programmer can administer any part of the control of paging
if he wishes. The routines will automatically update the
administrative data used by the scheme.

Administrative information is held in three COMMON
areas, these are:

(1) A page directory,
(2) A class directory,
(3) A free space map for the disc file.

The page directory contains the following information
for each page :

(a) The class number,
(b) The disc address,
(c) The core address (-ve if the page is

not in core),
(d) An eight character Alphanumeric name

(optional),
(e) The length of the page,
(f) Aflag to indicate whether the p&ge

has been updated since being fetched
into core.

The class directory contains for each class:
(a) The lower limit array index for the

class area.

96

(b) The upper lirait array index for the
class area,

(c) A pointer to the start of the free area.
The free space map is arranged as a list of beads each

containing the address and length of free areas on the
disc. Free areas are created when pages are deleted or
extended. When there are twenty such spaces, or if no free
area is large enough to allocate a new page, the disc file
is re-ordered to move the spaces to the end of the file.
A problem with software paging is the need to use modified
addressing for each item in a page, allowing for the
position of the page in core. In the scheme described this
is normally performed by checking the page directory, and
trapping requests for pages not in core. A significant
improvement can be gained if the application programmer
wishes to make many successive accesses to one page. After
ensuring that the page is in core, the position may be
determined once and used to reference the page consents
without trapping every access.

Results of tests with the paging scheme

Figure 8.1 shows a table of average swap times for a
variety of page sizes. These times were obtained from
test runs and they include updating of the directories.

The results show that there is little difference in
the time to swap a 64 word page from that required for a
5K word page. The scheme appears unfortunately slow and
this is attributed to two factors:
(1) The computer has moving head discs. During the tests,
the read/wl*ite heads were observed to move across about
30 cylinders of the disc per access, requiring 120 msec.
The heads are repositioned at the start of the file prior

to each access hy the assembly level filing routines.
Thus the actual disc access time is increased to an average
of 240 msec, for each transfer.
(2) The scheme is written mainly in Fortren, It is
therefore considerably less efficient than if it had been
written entirely at a lower level. The availability on the
4130 of extra fast registers and the ability to use fixed
locations would remove the need to pass large numbers of
parameters between the routines as arguments. Fixed locations
were not used because it was not clear at that time how the
operating system moves programs around the core when
multiprogramming* The scheme would make use of fixed
locations on a dedicated computer.

In order to assess the suitability of the developed
scheme for the data generation system, the way in which
it would be used must be examined.

A_ complete sub-structure can be accommodated in one
5K page. Manipulation of such a sub-structure involves
no swapping. An important time is the period required to
change from one sub-structure to another. If only a small

are
page size is used, many page swaps necessary, and
alternatively if only one page of 5K is used, only one
swap is needed. Figure 8.2 shows a graph of time to swap
to a new sub-structure plotted against page size. The two
extremes obtained were 34 seconds for a 64 word page and
0.6 second for a 5K page. The latter is an acceptable
speed for the application program, subject to special
provision being made for the handling of boundaries
between sub-structures. The difference in times is another
incentive to use a large page for structural data.

98

The data structure for the data generation system

The data structure contains three basic types of bead.
These are;
(1) An element bead containing information about a single
finite element of the linked data structure, or collection
of elements after assembly.
(2) A node bead containing information about the node,
including its coordinates and a pointer on a list of
connected nodes.
(3) A boundary bead containing pointers to end nodes.

Figure 8.3 shows the contents of these beads in more
detail.

Joining of elements is achieved by linking nodes.
Node beads corresponding to these links are put on lists to
indicate which other nodes they are connected to. A node
can only exist on one such list. Different substructures
are held in separate pages, so that requests for node
information contained in other substructures ^a.n be trapped
by examining the node pointer. In this way the links between
separate substructures can be handled differently to avoid
excessive page swapping.

When a change is made to the boundary of a sub­
is

structure, an updating list constructed for each reference
to pages not in core. The updating list contains a pointer
to all affected locations and their new values. When a
new substructure is brought into core, the updating list
is scanned and the new values are inserted in the data
structure. Only one update per location is permitted on
the list, to avoid ambiguity.

Linking of substructures is performed using another
list which contains linking information (i.e. pointers to

99

linked nodes)• Affected pages are brought into store one
at a time and the list information is used to insert
pointers in the node beads to place them on the linked
node list.

The representation of the three-dimensional elements

The usual problems of visualization arise and a variety
of techniques and conventions are necessary to prevent
these from leading to serious limitations on the types of
structure which can be handled. Fewer problems are apparent
with shell analyses than with solids, but in both cases
some common software needs can be identified. A major
requirement is a package of display programs capable of
treating the display as a three-dimensional device.
Particularly important is a three-dimensional clipping
program for performing windowing. The major use of this will
be for removing unwanted detail in the Z coordinate
direction (normal to the display screen), thereby providing,
as far as is practicable, a user-oriented hidden line
removal feature.

A rotation program is included to enable selection of
the most convenient view of a structure. Rotation achieved
by software has the advantage over hardware that various
axes of rotation can be selected.

It will be possible to assign a visibility level to
each displayed element. This enables different elements to
have a variety of brightnesses including an invisible
state. Such a procedure allows dimming internal boundaries
of a structure to distiguish them from its external
surfaces (in the case of solids).

100

Manipulation of the structures

The definition of structures needs p variety of programs
for assignment of parameter values# For shell problems one
way of working is to distort initially flat sheets of
elements to conform to the surface which it is desired to
represent. It is possible to formulate this procedure
using finite element theory and some results are available
from work already performed in this field (Throsby^^^^).
The resulting parameter values are those needed to define
the shape functions already mentioned.

For solid problems the most promising approach appears
to be the distortion of blocks of elements to represent
the desired component. It is particularly important to
employ three-dimensional windowing for this purpose. The
display file only contains information about displayed
items inside the window* Modifications are performed
on the application data,from which the displaf file is
compiled,Thus any items related to those being changed are
updated although they are not/displayed.

For communicating with the digital model via the displayed
picture a number of devices can be used. These include the
pseudo tracking-cross of the TBD system and the quadrilateral
device from LUIS/. In addition a "spider” device will be
implemented. The "spider” is an extension of the pseudo
cross concept with the additional restriction that the
cross is confinea to move on a mathematically defined
surface (e.g. a cylinder). Thus for shell problems, it
will be possible to modify mesh shapes whilst ensuring that
the shape is accurately represented. Stereo views of the
constructed components may eventually be made available
as an option. This is easily organized when using homogeneous

101

coordinates by assigning appropriate values to the terms
of the transformation matrix and calling the display
program twice. The pseudo cross and spider devices can
be programmed to appear in each image. These devices
operate with respect to the local coordinate systems for
individual substructures, which can simplify some of the
coordinate transformations needed. This kind of use of
local coordinate systems is to be found in the APT
language

Requirements for interfacing to analysis routines

The method to be adopted for interfacing with the
analysis routines has recently been implemented and tested
in the LUISA system • Because the LUISA system has shown
the feasibility of separating the tasks of data generation
and analysis, the interface is not discussed in detail.
However a. brief description of the interface is given below.

In each node bead is stored a global node number. This
number identifies the position of the data for that node
in the vectors and matrices used in the analysis. These
vectors and matrices include the applied loads and
displacements and nodal stiffness matrix for the structure.
The same relationship, using global node numbers, allows
the results of the analysis to be associated with the
described data structure, permitting the display of
displacements and stresses on the graphical display. Thus
the system provides for the viewing of the results as well

*This is a development beyond the early system design
described in Chapter 5.

102

as data generation facilities for input.
Because of the straightforward manner in which the

interface is achieved, the analysis program can he run as
a separate hatch program, either locally or on a larger
remote computer to which the local machine is connected as
a satellite.

103

CHAPTER 9

GENERAL DISCUSSION

The design of interactive system software is a task requiring

much effort. Several factors contribute to the existence of this

state of affairs, one of these being the problem of software
transferability. One estimate has stated that only about two

percent of programs are transferable between different computers
because of alternative internal machine organisation. Another
contributary factor is the lack of acceptable low-level
software and knowledge of techniques for graphical communication
and data structuring. Much expertise has been gained ih these
areas by many research groups working with computer graphics,
but the results of such research are often not readily available
in a form suitable for use with application programs.

One means of gaining this knowledge and identifying the

necessary software is to study a variety of applications. Three
application systems are presented in this thesis and from them

several common features have been isolated. General purpose

software has been designed to set up and use messages, light-
(23)buttons and data structures . Filing schemes are being

developed to simplify the transfer of application data to disc*
drum or magnetic tape. It is important to emphasise that the

common features are being found by studying and implementing

trial application systems . Provision of general packages

+A Computer Applications Workshop is in progress at Leicester
University where industrial knowledge of applications is being
combined with University research to identify common software needs

104

can be made without reference to the applications, as with some

manufacturers’ software* but the accompanying restrictions often

result in such facilities being ignored by application programmers.
At the other end of the spectrum, if the general programs are not
provided, each application programmer will implement his own

programs for file handling and other tasks, with consequent

duplication of effort and absence of compatibility between programs

on the same computer.
General low-level software packages should be provided for three-

dimensional work with displays. In particular, it would be
valuable to be able to treat the display as a three-dimensional
output device by specifying three coordinates to the display routines

"t*instead of just two . If the application is concerned with a three-
dimensional problem it should not be the concern of the programmer
to have to produce a two-dimensional projection for display
purposes.

A major area of interest to application programmers is data
structure design. From the applications presented it has been
concluded that a pointer structure (plex structure in AED
terminology^offers the most flexible approach to designing
data structures which are entirely core-resident. Such structures

do carry the overhead of space needed to store the pointers, but
this is a necessary compromise for interactive programming.

Software packages should be of sufficiently low level of

implementation to be efficient without being too restrictive.
There is a danger that the lowest common denominator of common

t (25)Available with GINO used by Cambridge University C.A.D.
Group.

105

features is very small. Data structuring facilities can be

included in a language compiler^, but if the structured information
is larger than the core space available a number of problems

arise. It was as a result of these problems that paging schemes
were developed based on a virtual memory concept. General,

automatic paging schemes for data, however, create such poor response

times, if many page swaps are needed, that they are impracticable
for highly interactive systems. It is essential, if these
problems are to be overcome, that some control of page allocation
and content definition is assigned to the application programmer.
Programs should be arranged to keep page swapping to a minimum
or, at least, to make the user aware of any page swaps he may
incur by issuing a request at a particular stage of analysis.

hai bjxA.<v
A scheme of this type ins for the system outlined in
Chapter 8* fedt a* iesr vpstsf dapeedamt».

Until general solutions which can be implemented in an
acceptable manner for use by applications systems, at a low level
for the sake of efficiency, can be found good progress can be

ttmade by using Fortran level packages for data structuring , as
in the application systems described.

General paging schemes for data may be suitable for interactive

programs operated from a teletype console, where computation takes

place in a series of discreet steps. Such programs can run
adequately under a time-sharing operating system where processor
time is allocated to the user in slices. Bigger machines having
a time-sharing system capable of supporting a large number of

teletype users often provide for paging of data.

t (24)As in the AED-0 progranming language
ttSee Appendix B.

106

If enough processor attention can be devoted to the display,

various devices can be used to aid the man-computer communication
process . These devices provide the means to manipulate models

in a flexible and dynamic fashion. The devices amount to a set

of control mechanisms, and their use can be likened to the function
of a steering wheel in a car, where the amount by which the wheel
is turned is gauged in terms of the car's response. In this way,

the response of a physical system can be linked with the variation
of some input parameter enabling insight into the behaviour of the

model to be gained. A simple linear movement of a tracking symbol
can, for example, be transformed into a complex variation in the

shape of a mathematically defined surface.
Provided the behaviour of the digital model is well understood,

less sophisticated techniques of communication will suffice
and, with the exception of dynamics problems, for many applications
the facilities offered by a storage tube and teletype are

adequate . In other areas, and in particular in some finite

element analyses, the problems are not well understood and the
ability to probe using flexible communication techniques is very
valuable.

Although advances in hardware are being made, it is desirable

to search for the software solutions to the many problems which
exist in the use of present computer graphics hardware. Many

of the software solutions can then be transferred to various
output devices and cheaper forms of hardware. For example,

^Examples are the pseudo tracking cross in Chapter 6 and the
quadrilateral device used in the LUISA system (Chapter 5),
This would be true of one version of the BAID program described

in Chapter 8.

1 07

transformation routines and programs for three-dimensional work

can be Implemented for dynamic graphics, storage tubes or digital
plotters.

A modular approa h to software design is desirable from a
number of viewpoints. Breaking a problem into its component
parts enables their separate aspects to be individually studied,

allowing their different requirements to be satisfied. Modular
programming allows efficient overlaying of program code for large

systems. Development of program modules can proceed in a series
of well defined steps with each module tested and filed as the
system is implemented. The effort required for this process

must not be belittled and many changes will result as development
proceeds until the final system has evolved. A context editing
program is needed to make possible the modifications to the
system, particularly a modular system with many cross-references

+between modules . This should be arranged to operate on source
code files stored on disc, with the ability to compile and test-

run the program when the desired changes have been made. For the
sake of efficiency, an editing program of this type should be

used in a time-sharing environment.
Graphics can fulfil a particularly useful role in the

debugging of complex programs. Errors which would not normally *

become evident from a numerical print-out are often brought to
the attention of the programmer by the occurrence of alarmingly

*t*An example modification is to change the common blocks in a
large number of Fortran subroutines. This is easily achieved

with a context-editor which will locate each occurrence of the
block and make the desired modification.

108

distorted pictures. This aspect of using graphics was of

significant value in developing the BAID program described in

Chapter 7.
Dynamic and flexible communication using a variety of devices

requires more processor time than simple teletype programs.

For some operations continuous attention is demanded, and this

has led to an increasing tendency to use a small con^uter to
handle interactions, and to connect it as a satellite to a larger

machine for performing calculations.
There are two distinctly different approaches to using

satellite computers. One is to situate the satellite adjacent

to the main machine enabling a complex operating procedure to
be operated with high data transfer rates. With such a
configuration the satellite becomes a sophisticated peripheral
whose main task is to service the display console. A different
approach, gaining in popularity for economic reasons and because
of a Shortage of suitable main computers, is to connect the
computers over telephone lines. This configuration requires
totally different concepts for dividing labour between the two

machines with much more computing done at the satellite.
Connection of machines over telephone lines is generally
distinguished from the other configuration by describing it

as remote satellite operation.
Suitably organised, many graphics programs only require a

small or medium size of computer, of medium speed core cycle

time (2ysec). A remote satellite machine with 32K words of core
store (18 bit word length) and disc storage would provide

l>AMidL
adequate local computing power to make a 2400 band telephone line

109

sufficiently fast for most applications of the type described.

The cost of this hardware is within a range which makes it
attractive to many industrial organisations, if its ability to

solve realistic engineering problems can be demonstrated.
For a given computer configuration it is important that

compatible packages of software are provided. With a satellite

and main multi-access computer configuration used for the
development of realistic engineering systems where large amounts
of data must be handled, it is important to be able to access

files in the main computer from the satellite.

It is undesirable that interactive requests are dealt with
over the link, with a remote configuration. The response times
are too large for such a procedure to be satisfactory. Ideally,
programs should be organised to use the main computer for
"number crunching" with data passed to and fro for interactive
examination executed at the satellite.

Computer graphics has been an a>?ea of active research and
development for more than ten years. During this period its
potential as a design aid has always been recognised. Only now

that the software problems are being tackled does it appear

that this potential will be fulfilled.

110

Chapter 10

Gonolus.lon&

Eight main conclusions have been drawn from the
work presented. They are;
1. Application software development requires a considerable
and well directed effort» Two major reasons for this are a
lack of suitable general purpose software for interactive
programming, and a shortage of techniques for graphical
communication and data structuring. Provision for both of
these shortages must be related to the application programs
to be tackled.
2. A number of common features can be identified for a
cross section of application areas, and this has been done
for the systems described in the thesis. Packages developed
as a result of the investigations conducted include programs
for organization of messages, lightbuttons, paging of data
structures and file handling. These packages were extensively
affected by the applications which use them.
3. Plex structures for data storage are very powerful
but carry the overhead of the space needed to st^re the
pointers. This is an acceptable restriction in the problems
tackled because the advantages outweigh the inconvenience
of performing the digital modelling in some other way.
(i.e. the algorithms can be designed more simply if space
allocation and garbage collection are performed by a
general package.) If backing store is to be used for
larger problems, paging can provide a suitable mechanism
for segmenting the data structure. Most paging schemes
are not sufficiently problem-oriented to provide an

111

efficient solution to the difficulties of storing data
in lists on secondary storage media. The paging scheme
described in Chapter 8 overcomes some of the usual
difficulties, and from test results appears satisfactory
for the types of application discussed* Using the paging
scheme, realistically large problems can be tackled in
5K words of data space.
4. A variety of devices, provided by software, have been
developed which permit implementation of dynamic techniques
for graphical communication with a digital model. An example
of such a device Is the pseudo tracking cross used for three-
dimensional drawing, which could be equally well employed
for communicating with stereo pairs. ProgranLning of these
devices extends the range of operations which can be achieved
with the lightpen. They are based on the two major functions
of the lightpen of seeing and tracking.
5. Software solutions to various difficulties afe in
many respects more attractive than hardware solutions.
Software should be developed in modular form to permit
easy extension of system capability and efficient over­
laying of program code in the core space available
(large systems invariably require an overlay facility-
LUISAl, for example, is too large for a 64K machine with
24 bit words unless overlays are employed)• Development
of such large programs could be boosted : significantly
by an on-line context editing facility.
6. Disere0% representation of engineering components,
as with the finite element method, is ideally suited to
the organization of data in structured form in the computer
store. Segmentation can be arranged to coincide with the

112

division of an engineering component into substructures
or sub-components. This provides an opportunity to v
segment the data in an efficient manner such that response
times are kept to a minimum,
7» Graphical representation has been of particular
value during the debugging of some programs by avoiding the
necessity to scan many sheets of output.
8. Programs of the type described could be efficiently
implemented on a small computer connected as a . : • '
satellite to a large time-shared machine. With this
configuration, the larger computer should be used for
performing the analysis computations, but most of the data
should be stored locally to achieve fast response times.
The performance of the satellite would depend on the
provision of an overlay gdheme for program code and paging
of data. A satellite computer with 32K words of 16 or18
bits would be adequate for the applications described if
overlaying and paging are available.

NPUT ANALYSIS OUTPUT

M A N

FIGURE 3.1

APPLICATION PACKAGE

MAN

INTERACTION PACKAGE

FIGURE 3.2 '

I I !

SATELLITE LARGE MACHINE

M O D E MM O D E M

HANDLING.

INTERACTION
PEN TRACKING

DISPLAY FILE

ROUTINES.

ANALYSIS
data STRUCTURE

ASSOCIATIVE

FIGURE 3.3

s a t e l l i t e LARGE MACHINE

DISC

M O D E M

DRUM

M O D E M

STRUCTURE

ANALYSIS .
SIMPLE DATA

STRUCTURE
DATA GENERATION

ASSOCIATIVE DATA
PICTURE MANIPULATION

FIGURE 3.4

P2

Pi

P3

£19URe ^.3

N N
CMM

m
N jdN M EN j

>
CM> m> •* Jtd> > >; (
<M m E 1

X X X X X X I

CL rsiCL mQ. of cT of

to111H<
Z
a
oc.
O
OV

m

HI
on
3
O

5
HIH

Q:h-
oj
O
s
azHI

m

<oz3o
m

c

a

m
a

crh* OL O oc oc oc ,crX > NI H-

mm
T

CM
m

m
H

m
CL m m mC X > N h"

00

CM
H

CM
Q.

LUon
3
O

CM (M CM41 X > NI 1-

CL « X >• NI 1-

(O
CD

ï

CMm

j

m

J

CL X > N

J

mû. mX m>- fON+
en m m mCL X > N

J

CM
CL CM

X
CM
>

CM
M

f
CM CM CM CMCL X > NI

J

X >• N

m
Tf
LUon
3
O
u.

CD

m m mX > N

CM OI CMX >• N

X > N

O

ÜJ
q :
3
O
U.

m
£0

<M
CD

CD

4

cn m ro m
Q. X > N

CM
CL

CM CM CM
i X > M

z'V.

X > N

LÜ
q :
o
(£
IL

I I

1 '

/X

3 / 3 2 IN. i T O I F T
r. E. ORIO SOUTH OÆRgRIDGE

* ! ! j ;
i.j___1 i
i ! •

_1 .!
ÜL:\

ORIO t o r qonsgtt no rt h- - - . • ! 1— Î— I

FIGURE 5.1

\\

\

FIGURE 5.2

A

C

£

F

H (a)

A,D

B>E

CA,D

M

C,F

(b)

(O

FIGURE 5.3

>
û:<ûz3
OCD

OZ
œ

Q ^O E z cr

in

U "O

en e

ELEMENT BEAD

COMPONENT ItEPttESENTING

KTYPE
KNEXT
KTNON
KTNOB
KTNEL
KNOD
KBOD
KCOFEL
KGLX
KGLY
KORIE
KSCALE
KYMOD
KTNOP
KINDY
KFINCR
KFORCE
KDISP
KDINTV
KKMAT
KCMAT
KTMAT
KSTRES
KSINTV
KBSK

Type of bead
Pointer to next element
Number of nodes in this element
Number of boundaries in this element
Number of elements joined
Pointer to a ring of nodes
Pointer to a ring of boundaries
Code of first element of ring of elements
Global x-coordinate of element's local ori gin

R y R R n R M

Global value of local axis orientation
Scaling factor between local and global axes
Young's modulus
Total number of parameters for this element
Pointer to indicator vector INDV

" " force increment vector
" " Vector of forces
** " " " displacements
" " displacement interpretation vector
" " stiffness matrix for element
" " transformation matrix
M M R M

" " vector of stresses
" " stress interpretation vector
^ ** back substitution matrix

FIGURE 5.5

NODE BEAD

COMPONENT REPRESENTING

KTYPE
KNEXT
KX
KY
KPEL
KNPRMT
KPCOMP
KPORIE
KSCOMP

Type of bead
Pointer to next bead on ring
Local x-coordinate of node
Local y-coordinate of node
Pointer to parent element
Number of parameters at this node
Position in element parameter vector
Parameter orientation w.r.t» local axes
Position in element stress vector

BOUNDARY BEAD

COMPONENT REPRESENTING

KTYPE
KNEXT
KBN
KFN
KVISIB

Type of bead
Pointer to next bead on ring
Pointer to back node for this boundary

** ” forward " " * ”
Visibility level for this boundary

FIGURE 5.5

(a)

(b)

(c)

• TL.

FIGURE 5.6

(e)

(f)

FIGURE 5^

(91

(h)

FIGURE 5.6

(il

(j)

(k)

(I)

FIGURE 5.6

d s p r in t

T W I R L - OBJECT
r X AXIS

•Y AXIS-
Z AXIS

-DSCALE

- D I S T -----
VALCHG-

-ANCLE—

-L SC ALE — OBJECT-i

— VALUE —

OPTION p N E W -i
DRAW —

'-O L D - '

- EXECUTE

BUILD

TUMBLE

COPY

FIGURE 6.1

(<J ̂

(b)

(O

FIGURE 6.2

(d)

(e)

(f)

FIGURE 6.2

FIGURE 6.3

OBJ

NEXT
XORIG
YORIG
ZORIG
ALPHA
BETA
GAPE'IA
SCALE
NVSRTS
HEDGES
WERT
LV3RT
F EDGE
LEDGE

}
Pointer to next bead

Y > global coordinates of origin of local axes
zj

Orientations of local axes w.r.t# global axes

Local scale for this object
Nnmber of vertices
Number of edges
Pointer to ring of vertices
Pointer to last vertex bead on ring
Pointer to ring of edges
Pointer to last bead on edge ring

VERT
NEXT
LAST

Pointer to next bead
Pointer to object
Pointer to preceding bead on ring

^Local coordinates of vertex

y Global coordinates of vertex

y Display coordinates of vertex

EDGE
NEXT
OBJ
LAST
VERT1
VSRT2

Pointer to next bead
Pointer to object
Pointer to preceding bead
Pointer to vertex at end of this edge
Pointer to vertex at other end of this edge

SCENE
NOBJ
POBJ
LOBJ

Number of objects
Pointer to ring of objects
Pointer to last object bead on ring

FIGURE 6.4

oz
ce
h*
a
m
O

o
z
ce
LU
oaUJ

oz
œ
XÜJ
Hce
UJ>

n

u i L I L

X
t)
f»l_
>
lAU

WenX»V
inO

in
\Ô
UJce
3
O
ÜL

UJ
ZUJuU)

i !

COMPONENT REPRESENTING

KP1ÜAL
KPADGR
KPADRF
KBNTIIP
KORENT
KSTOYS
KCHECK
KX
KY

KZ

KSKYLN

pointer to next bead on list of all pads
tf II n ff II If II g r o u n d **

n n II n II II ii p O O f ”

Number of floors below this pad
Orientation of pad
Number of storeys (flat or maisonette)
Code used by checking algorithms
X-coordinate of pad
y w m u

Z-coordinate of pad (absolute)

Pointer to skyline data for pad (if a
ground pad)

FIGURE 7.1

. ' J

This figure shows an axonometric display of
a housing site developing under control of
the BA ID program. Three skyline views are
displayed representing three viewpoints
from the window of one dwelling.

FIGURE.? 2

Q

FIGURE 7.3

PAGE SIZE
(WORDS)

TIME TO SWAP PAGE
(MSECS)

TIME TO SWAP A
5K SUBSTRUCTURE

(SECS)

64 425 34
128 425 17
256 425 8.5
640 425 3.4
IK 450 2.25
2K 550 1.65
3K 550 1.1
5K 600 0.6

FIGURE 8.1 TIME TO SWAP A PAGE AND
TIME TO SWAP A 5K SUBSTRUCTURE

Time (seconds)

Graph showing time to swap
a complete substructure
occupying 5K words for
a variety of page sizes

9

8

7

6

5

4

3

2

1

0
0 IK 4K2K 5K

FIG 8.2 Page size (words)

Pointer to next bead
Bead type Display status
Number of nodes Number of elements
Pointer to nodes '
Pointer to boundaries
Pointer to transformation matrix
Pointer to stiffness matrix

Pointer to next* bead
Bead type Global node number
Local X coordinate
Local Y coordinate
Local Z coordinate
Pointer to parent element
Pointer on linked node list

ELEMENT
BEAD

NODE
BEAD

Pointer to next bead
Type of bead
Pointer to end of boundary
Pointer to other end of boundary

BOUNDARY
BEAD

FIGURE 8.3 DEFINITIONS OF BEAD CONTENTS

3

A

D

FIGURE BJ

APPENDIX A

Matrix algebra for LUISA system

The general matiix equation relating the vector of nodal
force parameters {f} to nodal displacement parameters {6}is:

{f} = |K| {6} (1)

If forces f 1 are specified and f^ are those remaining
unfixed the matrices may be partitioned to give

K1

M
K _ K ,
G O 0 1

K, K lo 11
w
IN (2)

From which 6.

= A6, - T «1 o (3)

and = Klo) «0

= (4)

The first term in equation (3), represents the effects

on displacements at those nodes where forces fi are applied ̂
due to their application. The second term, TG^, expresses the
relationship between the displacements 5̂ and the displacements

at free nodes where neither force or displacement has been fixed.
Equation (3) is the displacement-force relationship for the fixed
nodes.

Equation (4) is tne force-displacement relationship for the

nodes remaining free. The second term, Afj, represents the force
increments stored in thé force increment vector FINCR.

The connection matrix referred to relates the parameters
at one level of assembly to those at the level below. A simple

connection matrix to represent one-dimensional displacements for

the assembly shown in Figure B.l would be

«1 z 1 0 0 0

«2 0 1 0 0

«3 0 0 0 1
0 1 0 0

«5 0 0 1 0

*6 0 0 0 1 D

APPENDIX B

Basic software, and display organisation

In order to implement the system in Fortran a package

of programs known as FRED (Fortran Routines for the Elliott
Display) was used. The FRED package includes all the
necessary routines for the three major aspects of display
usage: basic administration operations, code generation
routines for creating pictures, and control routines. It

should be emphasised that these routines are for basic operations
only, and interactive aspects of an application system are
programmed using the FRED package as a tool.

Objects are drawn on the screen by creating code in a buffer
area, then inserting this code into the display file, which
is an area of core store devoted to the display. The code contains
formatted information about the picture to be drawn and is
decoded and converted to analogue form by the display controller.

The display file is scanned, and the picture redrawn, ten times
per second. A block of code is termed an item, and has an
identifying number to allow subsequent referencing. It is usual
practice for items to correspond to complete picture elements,

but the definition of a picture element rests with the programmer
and is dependent on the application. Using the control routines,
the machine can be programmed to await some action on the part

of the user, including pressing of function keys and indicating

items on the screen with the lightpen. If an item is seen by the
lightpen (the lightpen having been enabled for this purpose), a

program returns the identifying number of the item. This can

then be used to perform display file editing or to access other

data, associated with the item,stored in the application data

structure.

Three Fortran subprograms are Used to perform data structuring
operations and the administration of free storage zones. The
three routines enable various free storage zones to be defined,

areas to be assigned within these zones for storing data
(i.e. allocation of beads), and the returning of these areas to

free store. The routines were provided by I.C.L. and are
called OPEN, lALLOC, RETURN.

REFERENCES

(1) Ross, D.T., ’’The A.E.D. Approach to Generalized Computer
Aided Des»ign”, Proceedings A.C.M. National Meeting, 1967.

(2) Leckie, F.A. and M.P. Ranaweera, "Interactive Use of the
Lightpen in Finite Element Limit Load Analysis",
Proceedings of Computer Graphics 70 Symposium, Brunei

University, April 1970.

(3) Hubbold, R.J., "A Preliminary Report on the Automatic Input

and Output of Data for a Triangular Plate Bending
Finite Element Program Used for Analysing Bridgedecks",
University of Leicester Engineering Department Report 68-13,

(4) Greatorex, F.S., Jr., and D. Cohen, "Producing Dynamic
Perspective Views for Vehicle Simulation", Data
Processing Magazine, April 1968.

(5) Sutherland, I.E., "A Head Mounted Three Dimensional Display",

A.F.I.P.S. Conference Proceedings, Volume 33 Part 1,

1968 Fall Joint Computer Conference. Thompson Book Co.

(6) Sutherland, I.E. and R.F. Sproull, "A Clipping Divider",

A.F.I.P.S. Conference Proceedings, Volume 33 Part 1,
1968 Fall Joint Computer Conference. Thompson Book Co.

(7) Sutherland, I.E., "Computer Displays", Scientific American,

June 1970.

(8) Forrest, A.R., "A Survey of Techniques for Removing Hidden
Lines", C.A.D. Group Document No. 19. Cambridge
University Mathematical Laboratory.

(9) Feeser, L.J. and J.D. Cutrell, "Perspective Views and

Computer Animation in Highway Engineering", Proceedings
of Computer Graphics 70 SjTnposium. Brunei University,
April 1973.

(10) Gray, J.C., "Compound Data Structure for Computer Aided

Design: A Survey", Proceedings of 22nd National
Conference, Association for Computing Machinery.

Thompson Book Co., 1967.

(11) Gray, J.C., "ASP Programming Manual", C.A.D. Group Document

No. 15, Cambridge University Mathematical Laboratory.

(12) Johnson, T.E. "A Mass Storage Relational Data Structure
For Computer Graphics and other Arbitrary Data Stores",
Department of Architecture Report, M.I.T., October 1967.

(13) Programmers Guide to Genesys.

(14) Roos, D., ICES System Design. I'LI.T. Press, 1965.

(15) Foster, J.M., List Processing. MacDonald/Elsevier, 1967.

(16) Butlin, G.A. and R.J. Hubbold, "A Scheme for Man-Machine

Interactive Structural Analysis". Proceedings I.E.E.
International Conference on Computer Aided Design,
April 1969. I.E.E. Conference Publication No. 51.

(17) Youngs A.G., "Structural Design Using Interactive Graphics".
Proceedings of Computer Graphics 70 Symposium. Brunei
University, April 1970.

(18) Hubbold, R.J., "TDD - An Interactive Three Dimensional Drawing
Program for Graphical Display and Lightpen". Proceedings
of Computer Graphics 70 Symposium. Brunei University,
April 1970.

(19) Wiseman, N.E. et.al. "PIXIE - A New Approach to Graphical

Man-Machine Communication". Proceedings I.E.E.

International Conference on Computer Aided Design,

April 1969. I.E.E. Conference Publication No. 51.

(20) Butlin, G.A., "A Fortran Package for Interactive Graphics".

H?oceedings of Computer Graphics 70 Symposium. Brunei

üiiversity, April 1970.

(21) Sutherland, I.E. "Sketchpad: A Man-Machine Graphical
Communication System". A.F.I.P.S. Conference
Proceedings, 1963 Spring Joint Computer Conference.

(22) Johnson, T.E., "Sketchpad III: A Computer Program for
Drawing in Three Dimensions". A.F.I.P.S. Conference
Proceedings, 1963 Spring Joint Computer Conference.

(23) Butlin, G.A., R.J. Hubbold, C.K. Grafton, Fortran Programs
for the 4280 Display. Leicester University Engineering
Department Report No. 70-26.

(24) AED-0 Programmer's Guide. Electronic Systems Laboratory,

Massachusetts Institute of Technology.

(25) Lang, C.A. et. al. GINO - Graphical Input/Output.
Cambridge University C.A.D. Group.

(26) I.I.T. Research Institute. APT Part Programming.

McGraw-Hill, 1967.

(27) Throsby, P.W., "A Finite Element Approach to Surface
Definition". Computer Journal Vol. 12 p.385, 1969.

(28) Kuehner, C.J., and B. Randell; "Demand paging in perspective",

AFIPS Fall Joint Computer C inference proceedings 1968,
(29) Joseph, M,:"An analysis of aging and program behaviour".

The Computer Journal, Vol. . 3. Number 1, February 1970.
(30) Bobrow, D.G. and Murphy, D.l "Structure of a LISP system

using two-level storage", Co irunications of the A.C.M. Vol.10.,

number 3, March 1967.
(31) Cohen, J.: "A use of fast and slow memories in list-processing

languages". Communications of irhe A.C.M. Vol.10., number 2,
February 1967.

(32) Wilkes, M.V.: Time Sharing Computer Systems. MacDonald/Elsevier
Computer Monographs No.5. 1968.

(33) Coons, S.A.: "Surfaces for Computer-Aided Design of Space Forms",
MAC-TR-41. MIT, 1967.

(34) Armit, A.P.: "A multipatch design system for Coons' patches."

I.E.E. Conference on Computer-Aided Design, Southampton, 1969.
(35) Zienkiewicz, O.C., and Cheung, Y.K.: "The Finite Element Method

in Structural and Continuum Mechanics". McGraw Hill Publishing Co.

1 .
TECHNIQUES FOR INTERACTIVE COMPUTER GRAPHICS

Ph.D. THESIS SUMMARY - R.J. HUBBOLD

The work presented is concerned with investigations into
the use of a refreshable graphical display for the solution of
design and analysis problems in engineering. Effort has been

devoted to the study and implementation of a variety of applications
in an attempt to identify the most suitable techniques, form of
program organization and hardware configuration for this type
of equipment. General topics pertinent to these investigations,
including data structuring, graphical communication and some

general principles of software design* are discussed.
The applications which are presented are:

(a) LUISA, a system for finite element analysis of two-dimensional
engineering structures,
(b) TDD, a set of programs for three-dimensional drawing,

written to investigate a number of methods of communicating with
a three-dimensional model,
(c) BAID, a program for aiding the architect with the design
of high density housing layouts,
(d) An outline of a system for generating the data input for
three-dimensional finite element analysis of solid and shell
structures. A detailed description is included of a paging
scheme used to segment the data structure.

The data structure employed and scope of facilities provided

are described for each of the applications. Discrete representation
of engineering components is shown to be ideally suited to the
organization of data in structured form both in the computer core
store and on secondary storage.

A description is given of some devices, provided by software

and making use of the lightpen, which allow development of dynamic

2.

techniques for graphical communication with a digital model. A
modular approach to software design is advocated, with advantage
being taken of general packages, wherever possible, for administration
of interaction handling and data organization.

Proposals are made about the re-arrangement of the applications

dealt with in order to implement them on a remote satellite

computer configuration* Suggestions are made about the size of
such a configuration and the organization of software in the two
machines.

March 1971

