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Foreword

The work described in this thesis was undertaken while 
the author was working as a member of the Computer Aided 
Design Group in the Engineering Department of the 
University of Leicester. The following statement is included 
to put into perspective his own contributions to the work 
of the group. The thesis describes a number of projects 
with which the writer has been closely involved. The 
general chapters on data structures and interactive graphics 
contain an outline of these areas and ideas and conclusions 
derived from work on the projects.

A period of over twelve months was spent on the design 
and early implementation of the LUISA system described in 
Chapter 5. This work was undertaken jointly with, and 
largely under the supervision of Dr. G.A.Butlin,who was 
responsible for the original concepts of copying and joining 
of finite elements on which the system is based. The author*s 
own contributions were made to the design of the data 
structure, algorithms and matrix analysis.

Chapter 6 contains a description of the TDD system 
for three-dimensional drawing, developed by the author.
The approach adopted is different to other three-D systems 
excepting one developed at Brown University, which only 
came to light after the completion of the TDD scheme.

The ideas behind the BAUD programs, described in Chapter 
7, were due to Boyd Auger ARIBA., the writer’s contribution 
being to aid substantially in the translation of these ideas 
into a data structure and algorithms. The work is presented 
because it réinforces some of the general conclusions 
drawn from other sections of the thesis.



Chapter 8 outlines the author’s design for a data 
generation system for structural analysis. A major part 
of the discussion is devoted to a description of a paging 
scheme used to overcome the secondary storage problems 
encountered. The scj^me has been implemented and tested 
on an I.C.L. 4150 computer.



CHAPTER 1

INTRODUCTION

The field of computer graphics is still comparatively
young. Early work of about ten years ago was presented for the
first time during 1963, work largely the efforts of Ivan

(21 22)Sutherland and Tim Johnson * . Sketchpad, and its counter­
part for three-dimensional problems Sketchpad III, paved the 
way for a new form of communication between man and computer.
At the same time, also at M.I.T., development of the first time­

sharing system was underway and 1963 saw the commissioning of 
CTSS (Compatible Time-Sharing System). Since that time many 
developments have taken place, including the design of better 
hardware and improvements in software techniques.

Present day displays still operate in the same way as the 
early prototypes, but the last seven years have seen many 
developments in the software enabling C.R.T.*s to be programmed 

in higher level languages. A major objection to such display 
systems has always been their high cost, but now cheaper types 
of display are becoming available. Of these the direct view 
storage tube (D.V.S.T.) has great potential. Its major 

advantage is that no buffer store is needed to hold the picture 

information: the device operates like a high speed digital 
plotter and the picture is retained by an electrostatic charge 
on the scope surface.

The storage tube display is a relatively recent advance 
and has only been available in Britain for about one year. 
Consequently much of the expertise in graphics has been gained 

with the more expensive display systems. These displays rely



on the use of a buffer store to hold the picture information 
in digital form. A display controller is used to decode this 

data and to drive the analogue C.R.T. to produce the picture.
Often associated with the display are additional pieces of 

equipment such as the lightpen. Throughout this thesis the 
emphasis is on this type of display system variously described 
as a refresh type display, fully interactive display or dynamic 
display.

Although a great deal of publicity has been devoted by
computer manufacturers to the potential of the graphical display
as a design aid for the engineer, many industrial organisations
remain unconvinced about the economic advantages offered by this 

for certain engineering purposes, 
equipment/ Many of the difficulties encountered in programming
displays are brushed aside by software experts as a trivial piece

of programming. Without the necessary basic tools the development
of application systems can be severely hampered, even to the
point of abandonment. The implementation of these basic software

tools can only progress once the problems have been identified.

A main aim of the work of the author has been to identify 

the problems of programming the interactive display, and to find 
programming tools to solve some of these problems. From the 

outset it was considered important to investigate the use of 
the lightpen and dynamic capability of the display. Unless these 
could be shown to have some advantages the refresh display would 
rapidly be superseded by the storage tube.

The refresh type display requires some core store to hold 

the picture information. Interrupts generated by lightpen hits 
and pressing of function keys must be processed by a computer. 
These requirements have encouraged the belief that a small 
computer should be devoted to the display system for performing 
these taskŝ .



It is shown that such a configuration can form the basis 

of a powerful facility, if the small computer is connected as 

a satellite to a larger time-shared machine • The price of a 
satellite computer and display system is low enough to be 

attractive to a large number of industrial groups, but such 

facilities will only be viable as a design aid if various 
software problems are solved. Some suggestions are made about 

the division of labour between the satellite and main computers 

for highly interactive programs.
Many aspects of graphical communication are a function

not only of hardware but also of the training of programmers
who implement interactive systems. This training often dictates
the mode of communication favoured by the programmer. Many
interactive programs use the typewriter keyboard as the means

++of inputting data, even though a lightpen is available . The 

absence of a conveniently positioned teletype with the Leicester 
display system has led to many devices being developed which use 

the lightpen and function keys as input. The lightpen can be 
used in a variety of ways to aid the communication process 

between man and computer, based on its two major functions of 

seeing and tracking. Suitably programmed the movements of the 
lightpen can be used interpretively, so that it can be employed 
for manipulating three-dimensional models and even stereo views 

of objects.

Either locally or remotely, but probably the latter for 
economic reasons.
Some examples of this can be found at Cambridge University.



The use of pictures as a mod© of communicating with the 
computer has for some time highlighted another major problem 

area with interactive systems, that of data organisation.
Os)

The techniques of list processing grew out of a study of 
problems of ordering data describing a frequently changing 

situation. With large problems, the quantity of information 

often grows too large to be contained entirely in core store, 
and methods for information storage and retrieval using 
secondary storage must be developed. The need exists to link 
pictures with the data behind them and to express the 
relationships, topological and others, between elements of 
the data. These topics have been grouped under the general 
heading of data structuring. Many of the existing solutions 
to data structure problems fail to satisfy the requirements of 

highly interactive systems and raise the usual conflicting 

demands of generality versus efficiency. These problems can 
be simplified by accepting thafe an efficient solution is 
application oriented, but can only be provided if the techniques 
and necessary basic software tools can be identified and 

implemented.
The concepts on which many of the general proposals and 

conclusions in this thesis are founded originate from 
experience in designing and implementing several interactive 

graphics systems. Three of these are described, they are:
(a) LUISA, an interactive system for structural analysis based 

on the finite element method,
(b) TDD, a set of programs for three-dimensional drawing,

(c) BAID, a system to aid the architect in the design of high 
density housing layouts.



Another chapter contains an outline of some of the problems 
and design features of a system which combines the efforts from 

LUISA and TDD and which is to be implemented in the near future.



CHAPTER 2

APPLICATION SOFTWARE DESIGN FOR INTERACTIVE GRAPHICS 

Introduction

In this chapter, two alternative approaches to application 

software design are discussed. An attempt is made to put 
these into perspective, taking into account various possible 

hardware configurations and economic factors. The two 
approaches are referred to as "topping and tailing" and 
"modular design", and it is shown that they can be combined 
in the design of a specific application system.

The design of a C.A.D. system is intricately associated 
with the mode of communication, which in turn may influence 
the type of data structure used. These topics are dealt with 

separately in Chapters 3 and 4 respectively.

Some conclusions are reached about the type of hardware 
needed for a highly responsive fully interactive computer graphics 
system.

Non-interactive C.A.D. systems

A non-interactive computer program of the type commonly 

used in a batch-processing environment does not always offer 
the designer sufficient flexibility for trying new sets of 

data. Long turn-around times often associated with this 

procedure can be a serious obstacle to the effective use of 
a computer in the design process. The necessity of re-running 
a whole program when only small changes in data are to be 
made leads either to many days or weeks being used to 
investigate the effects of different input data, or to only 

a few sets of data being tried.



On-line C.A.D. systems using a teletype terminal

Increasing use is now being made of multi-access computing 
facilities to provide remote job entry from a teletype terminal, 

from which data may also be specified. This situation has much 

to offer for on-line program development where programs are held 

on disc, in source code, and are edited from the remote teletype 

using an appropriate text editing program.

Several systems are now operating where the terminals are 
remotely connected to the computer over telephone lines'̂ . These 
facilities offer rapid access to data files, but in large analysis 

programs involving the output of large quantities of data, it becomes 

both inconvenient and inefficient to transmit this information 
to a device which, typically, has a speed of only 10 characters 
per second.

In such a situation two alternatives exist. The first of 
these is to output the results at the central site and to post 
them to the user. Secondly, a line printer can be installed at 

the remote terminal for rapid daxa output, and this can be 
supplemented by a card reader for high speed input.

The line printer is enployed to output large quantities of 

data rapidly. Frequently, such data cannot be quickly assessed 
and therefore some alternative form of presentation is required 

in an interactive system.
The graphical display offers such an alternative.

tG.E.I.S. and Time Sharing Ltd. offer such services and, more 
recently, the Ministry of Technology Computer Aided Design Centre 

has initiated such a system.
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The "Topping and Tailing" approach to software design

The processes of data presentation and assimilation can be 
improved significantly when interactive facilities are added by 

grafting graphical input/output routines on to each end of an 
analysis program. To supplement a remote access teletype, the 

direct view storage tube (D.V.S.T.) would appear to be a very 
suitable type of display hardware. User interactions could be 
handled by the teletype with the D.V.S.T. used to monitor program 

code and data. This approach of adding graphical input and output 
at each end of an analysis, with little or no change in the analysis 
program itself, is referred to here as "topping and tailing" and 
is shown diagramatically in Figure 3.1.

A "Modular design" approach

An alternative design of software, the modular approach, involves 
the subdivision of the input, analysis and output phases into a 
series of modular units. This procedure can be considered at two 

stages: during the early design stages of software or during the

extensive modification of existing programs.
In general, problem areas can be broken down naturally into 

distinct sections or phases for computer solution. In the first 

instance these may be input of data, analysis and output of results. 
For programs to perform structural analysis an initial division 
of separate tasks might be:

(1) A description of geometry and properties of the structure.

(2) Specification of displacements (support constraints).

(3) Specification of applied loads.
(4) Analysis.
(5) Output of results.
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If the program is expressed as a block diagram, it is a simple 
step to divide these modular units into smaller basic operations 

which can be implemented as individual subprograms. The basis of 

the "modular approach" is the programming of the smallest unit 

operations which are then used as building bricks. The result is 
a group of programs, some of which are atomic, in that they are 

the smallest units and others are molecular: they too perform unit 
operations but themselves contain calls to the smaller atomic units.
In this context, the definition of atomic rests with the program 
designer and must be sensible in terms of the application system 

requirements. If possible programs should be written so that they 
can be incorporated in a program library where they are available 
for other systems.

Many computer installations make extensive use of library 
facilities and this encourages the design of modular software.
However, when viewed in relation to the mode of interaction and 
data structure of a conversational system, the modular approach 

can be shown to have several other desirable features. The concepts 

of modular software design arise from early work of the A.E.D. 
group of project MAC at M.I.T. on language d e s i g n ^ h e r e  they 
are discussed in the context of application software.

The modular approach is represented diagr^patically in 

Figure 3.2.

Some discussion of the two approaches

A major limitation of the topping and tailing approach is that 

there only exists one entry and one exit point to and from the 
main analysis program. The design loop remains essentially unaltered,
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but the processes of data preparation and assessment have been

speeded up. This advantage, gained from a graphical mode of
communication, makes topping and tailing a worthwhile step, but

no opportunity exists for the intermediate assessment of results

at various stages of calculation. Some examples exist which
show that with certain problems this monitoring and modification

of the course of computation is essential if the correct solution
(2)is to be found

The advantages of a modular design of software can be shown 

to be numerous. A saving in effort can be effected by avoiding 

unnecessary duplication of programming statements and by using library 
routines. Wastage of computer storage associated with such dup­
lication is also minimized.

Another advantage of a modular approach only assumes importance 
when attention is focused on conversational programs. If the 
analysis program (or indeed the whole system) has been designed 
as a series of small units, many entry and exit points can be 

established allowing interaction between man and computer, without 

the necessity of including interactive facilities within the 
modular units themselves (see Figure 3.2). It is then necessary 
to provide a set of programs which will cope with the desired 

interactions at the interfaces between the modular units.

The form which the interactions take is dependent on the 

hardware configuration available. A display with dynamic 
capability offers more scope for interactive facilities than a 
storage tube (dynamic picture modification using a tracking symbol, 
or drawing of "rubber band" lines for example). With only a 

teletype the alternative means of specifying data are more 

limited.
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Different forms of interaction can be provided by re-writing 

the interaction handling programs without the need to alter the 
analysis modules. In order to achieve this, the input/output options 

for the modules must be clearly defined and must allow for the full 

range of possible interactions.
Program modules which do not have interaction capability built 

in can be effectively used by batch programs. If a particular 

form of input or output is included within a program there is a 
reduced likelihood of it being a useful library program for a 

conversational system.
An analogy of the type of program module described is now 

given. If a module is imagined to be a black box, the various 
input and output arguments can be represented by strings which 
pass into the box through a slot. The algorithm (the content 
of the box) is represented by a mechanism to which the strings 
are connected. Manipulation of the input strings causes the outputs 
to change in a way determined by the mechanism.

Different sets of strings exist for various forms of interaction 

(interaction implies pulling of the strings) and these may be 

connected to different parts of the mechanism. In order to 
construct a system from a given set of boxes the appropriate 

connections must be made between the strings. In a batch program 

the connections are direct, in an interactive system certain outputs 
may be monitored by the user who then determines suitable inputs 
for the next stage. The purpose of the interaction handling 

programs is to enable the user to form the necessary connections, 
to change them during the running of the program, and in some 
cases to pull the strings (i.e. feed in values). To do this he
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need not be aware of the contents of the boxes, only their functions, 

inputs and outputs which are meaningful to him. Those connections 
which are not meaningful to the user, but which need to be made 

for administrative purposes should be formed automatically, where 
possible.

The task of the application programmer can now be defined, if 

the necessary interaction handling facilities are available.
During the process of designing a system, a series of boxes can 

be drawn representing the functions of the modular programs, with 
lines representing the input and output facilities, suitably 
labelled. Boxes can then be compared to ensure that the necessary 
values can be passed between modules for any likely sequences of 
operation. If, in practice, the user attempts actions which the 
system does not logically permit, and this is due to a mis-match 
of arguments, the interaction package should be capable of detecting 

the error. If the error is problem-oriented rather than a system 
fault, the error detection facilities must be internally programmed 
in the modules.

Having divided a program into a series of modules, these must 

be linked together to form a comprehensive problem-solving system.
Two means exist for doing this. The argument lists of programs 

can be used to pass values to the next phase. The major link, 
however, lies in the design of a common data base or data structure

for the given application area on which the modular units perform
operations, and it is this which enables a significant flexibility 

in the order in which these operations can be performed. This 
imposes a restriction on the use of such modules as library items 

for other systems, unless a common data structure exists, or unless
the module in question is independent of the problem data structure,
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From Figure 3.2 it can be seen that many alternative routes 

may be chosen to achieve the desired end. The nature of the 
problem will almost certainly impose some constraints on this 

choice, but in general these will be detectable from the state 

of the data structure (because the data structure is a model of 
the physical problem) and the necessary checks may be incorporated 

in the program modules. If a mistake is made, or a wrong decision 
taken, it may be possible to detect this quickly and perform any 

necessary alterations without major recalculation. With the 

topping and tailing approach a mistake may only become apparent 
when considerable cost has already been incurred. Proceeding 
in the small steps, characteristic of the modular approach, gives 
a higher probability of obtaining a suitable solution efficiently 
because of the opportunities for intermediate assessments and 
modifications.

The concept of advancing in small steps is attractive from 
a practical viewpoint for several reasons. Graphics programs 
very often require considerable core store even to perform 

relatively simple operations. Dividing the problem solving process 
into discrete small steps enables efficient use of core if a suitable 
program overlay facility exists. If the program modules are too 

large, unacceptably long response times are likely to result.

In practice there is often the need to optimize and compromise 

to obtain a balance between size and number of modules in order 
not to over-complicate administrative tasks. (Some operating 
systems impose limits on the number of subroutines in a given 

program suite^.)

tThe ICL 4130 Fortran system allows only 100 Fortran subroutines.
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The points discussed so far have represented an idealistic 

viewpoint, but in many respects are consistent with the real 
procedure of application system design. The process of design 
is often presented as a loop in which modifications are made many 

times before an acceptable solution is obtained for a given problem. 

This is often the case with software design, and it is interesting 
to observe that the same rules apply to programming as to the design 
processes in engineering problems. In particular, part of the 

function of design is the discovery of what ia acceptable or 

possible. In practice, therefore, the design of software involves 
many modifications and major changes can be made more easily if 
the programs are in modular form.

Three types of system development can be identified. Firstly, 
there are systems whose limits have been clearly defined and which 
are implemented and then "frozen". Secondly there are exploratory 

systems (usually the work of universities) the aims of which are 
to discover the limitations of hardware and basic software design, 
and to investigate new techniques (as in Chapter 6). Finally, 

there are many systems which are designed to be open-ended. These 
systems often lead to insight into what is really needed by way 

of hardware and software for such development (as in Chapter 5).
These second two types of system are candidates for modular 

software design, but defining and using routines as building bricks 
poses the following problem. Because of the dependence of other 
programs on them, the basic units must be efficient and free from 

errors. As modifications are made to the system, changes to some 

of these atomic modules will inevitably occur and perhaps this will 
lead to changing of all the calls to the routines in question.
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For such a process, a context editing program is essential: a 

modest system developed in a modular fashion can easily contain 

a hundred subprograms, with many calls to several of them.

Achieving a balance between the two approaches

In spite of its many advantages, the modular approach to
software design does not immediately lend itself to the use of
existing analysis routines. Because of the high cost of software

design and implementation it is desirable to make the greatest
possible use of existing programs. Many analysis routines will

benefit from the addition of graphical input/output using a topping
and tailing approach. In particular in the field of structural
analysis, the preparation and checking of the data prior to the
calculation phase can be invaluable. The preparation of data for
a finite element analysis requires a data generation scheme such

as that described in Chapter 5. With some classes of finite

element problem, the generation of suitable meshes can be performed
(3)automatically , but this is difficult to program for complex 

situations where a high degree of control over the input is 

required if the results are to be satisfactory. In particular, 

in finite element problems, the mesh shape is important: the 
occurrence of poorly shaped elements will lead to ill-conditioned 

matrices during the analysis, giving rise to inaccurate results.

The use of existing analysis routines can become unsatisfactory 
with highly interactive systems if the resulting response times 
become large, while calculations are performed. This is also true 
of data input and output using displays: the response time must 
be of the order of a few seconds at most. If a delay of more
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than two seconds is to be expected, some instant sign must be 

given to the user so that he is aware that the computer is at 

least processing his request.
If existing analysis programs have been tested and proved 

satisfactory there is little point in not making use of them.

Returning to the topping and tailing approach, the contribution 
of a graphical display in this situation is to provide the input 
and output, which should lead to an improvement in efficiency of 
the overall system. Because of the^aaed «ear fast response these 

input and output routines can be very conveniently designed in 

modular form. The resulting flexibility in the way in which data 
is input and examined is then well suited to the different preferences 
of a number of users. General packages of programs can be used 
to aid the writing of input and output routines. Such packages 
include programs for the administration of messages and lightbuttons,^ 
and the filing of picture items and their data structure on backing 
store.

Data prepared in this manner would be filed on disc, magnetic 

tape or drum to be accessed by a batch program which performs the 

analysis. Results would be similarly filed ready for examination 
using the display for output. This process is shown in Figure 3.3.

Application system design for a remote satellite computer

Often, complex analysis programs are of such a size as to 
require powerful (and expensive) computing facilities. An inter­
active display, whose picture is refreshed several times per

^Programs of this nature have been written at Leicester University,
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second does not warrant the use of a large computer systen to 
perform simple picture manipulation tasks. If a large machine 
is used it is important to operate in a time sharing mode in which 

priority is assigned to the display system, with other jobs 
running in the background . This situation has led to an 
increasing use of satellite computers whose part function is to 

control the picture handling. Lightpen tracking and display file 

manipulation are also performed locally.
Figure 3.3 shows a typical division of labour between main 

machine and satellite. The analysis routines and their data are 

held in the main computer, with the satellite used as little more 
than a powerful display processor. Such a division implies that 
the satellite computer is only a convenient means for gaining 
access to the large machine without loading it with the overheads 
of servicing the display. If a satellite is to be used, there

So»v\«.
is much to be said for extending its power to perform/calculations 

which would otherwise be performed centrally. The arguments in 
favour of this relate to a remote environment with a relatively

The display user needs to have priority over other jobs in 

order to obtain good response times. If more than one display 
is attached to a multi-access computer, the assignment of priorities 

cannot be clearly established without prejudicing one or other 
of the users. If a powerful and fast machine is used to overcome 

these problems it is not economically sensible to load the machine 
with routine simple tasks such as picture manipulation.
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slow telephone connection between computers^.

A change made to a displayed picture often implies some 

modification of the problem in hand and the data associated 

with it. The time to update application data held in the central 
computer will be unacceptably long for most interactive systems. 
If, however, the necessary data were stored in the satellite the 

response times would improve considerably. It is possible to 
arrange this by designing a data structure for the input/output 
operations to be performed using the satellite. The programs for 

this input/output can be organised on a modular basis, the aim 
being to create a file of data for an analysis program. The 
analysis routines are held in the main computer and the prepared 
data file is transmitted and filed on disc or drum at the central 
site. A request is also sent for the analysis program to be run 
as a batch job and for the output to be filed at the central site. 
At some convenient time, the output data file is transmitted to 
the satellite where the information is put in a structured form 

suitable for interactive interrogation. This scheme of operation 
is shown in Figure 3.4 and is designed to make economic use of
both the satellite and main computers.

During the period when calculations are being performed in 
a batch run at the central site, the user can be employed in using 

the satellite for other purposes: either program development or 

preparation of data for other problems. A realistic size of

•j»Typically 2400 band. Fast lines are not readily available at the
present time and indeed are not necessary for the scheme outlined.
Theoretical line speeds can be lowered by frequent errors and the 

need to check for them.
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satellite for such a scheme is about 32K words of store and a disc
tof 1 million word capacity . The operating system software could 

be expected to occupy up to 12K of store. A further 5K will be 
needed for program code at any one time assuming a segmentation 

facility is available to operate with the disc. The remaining 

15K is a suitable size for holding data in structured form for 
fairly large problems. The disc is needed for the segnentation 
of program code and for holding library routines, operating system 

and compilers. In addition, it can be expected that a number of 

data files will be held on disc.

Conclusions

A highly interactive graphics system, which will be 
sufficiently fast to allow good response times, requires some 
dedicated core store. If the programs are organised carefully 
this can be achieved using a medium speed machine (2ysec core).
It does not appear sensible to have a very powerful machine, since 

some of the operations to be carried out do not justify such 
expense. For these reasons â i effective and economic solution 
is to organise such a system around the use of a small, medium 

speed computer whose core store is devoted to the display system.

If the total software design, including application programs, 
general packages and the operating system, is suitably arranged, 

large problems can be tackled by linking the graphics computer 

to a large multi-access machine. In order to utilise the satellite 

machine most effectively, some of the problem data should be

Preferably with interchangeable disc packs.



20

stored locally and this can best be arranged if local fast backing 

store is available (disc or drum).

If the problem is small enough, it can be tackled locally 
if the satellite has a good operating system with program 

segmentation facilities. The presence of such facilities is an 

encouragement for development of modular software and of packages 

for interaction handling. A modular design is particularly well 
suited to extension by adding further units.

In order to include some of the features described, the size 
of computer needed as a satellite is about 32K words of core store, 
with some fast backing store. Smaller machines would be adequate 

for directly linked machines where high transfer rates are possible. 
For remote graphics using telephone lines the suggested size is 
more realistic unless response times are to suffer when access 
is required to data which has to be held in the main machine if 
the satellite is too small.

With less flexible graphics systems such as the storage tube/ 
teletype console little or no local computing power is necessary 
since picture manipulation of the type employed with a refresh 

type display would not be attempted. Such a system could well 

be organised by connecting it directly to a multi-access computer. 
The discrete step form of interrogation offered by the teletype 

can be adequately serviced by a time sharing system without any 

assignment of priorities.
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GRAPHICAL COMMUNICATION 

Introduction

In this chaptei several aspects of man/computer communication 

are discussed. The emphasis is mainly on the use of fully 

interactive displays whose picture definition is held in a 
display file. An outline is given of some aspects and modes 

of communication which require a display whose picture may be 
modified dynamically. Discussion is devoted to the organisation 
of interactions and the way in which qualitative as well as 

quantitative requests may be handled by using a variety of 
software devices.

At the end of the chapter an outline is given of some 
of the problems encountered with visual representation and some 
of the methods available for tackling them.

Forms of communication

Graphical man/computer communication is based on two forms 

of representation, pictorial and symbolic. Here pictorial is 

taken to cover the representation of objects by images, 
suggestive of the external form or shape of those objects and 
therefore in some way related to their actual shape. Symbolic 

representation covers the use of alpha-numeric characters and other 

shapes whose meaning is in some sense pre-defined. A symbol 
is used as a representation not by exact resemblance, but by 
suggestion or, in this case, by convention.
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The traditional means of communicating with the computer 
via punched programs and data is symbolic, i.e. in terms of 

alpha-numeric characters. A conversational program operated from 
a teletype relies on symbolic communication, and in graphics 

progî aras, some symbolic representation is always present. The 

link between pictures and the user is often provided by type­

written commands, physical buttons, or lightbuttons, which are 
a symbolic display of various options within the program. Other 
examples of symbols are messages, dimensions on a drawing and 

numbering schemes or names of components. The essential feature 
of a symbol is that it has a pre-defined meaning. With a picture, 
however, it is the shape which is significant and the aim is 
often to change the shape until it satisfies various constraints. 
The picture is not pre-defined therefore, in that it may be 
modified at will. Once a definition has been assigned, the 
picture may become a symbol as with a sub-picture, such as a 
transistor in electronic circuit design.

With a storage tube display the graphical representation 

of a problem is limited to output only, and input is usually 
via a series of commands typed by the user at an on-line teletype 
console. Some users of displays equipped with a lightpen have 

abandoned the use of lightpen facilities in favour of a typewriter 
mode of communication. A common reason for this is that the 

computer operating system in use does not allow for the most 

effective use of the equipment. This is usually because of the 
need to service other users in a time-sharing environment. The 
teletype is a step form of input and is therefore well
suited to some time-sharing systems where the graphics user 
receives processor attention in a series of time slices.
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Aspects of communication requiring a dynamic display

The lightpen only assumes superiority over the typewriter 
when it is used to communicate in a manner not possible with 

typed commands. Techniques for achieving this can be grouped 

generally under the heading of "wand waving", or using the light­

pen interpretively. By this is meant using the lightpen to vary 
an input to some calculation whose output is a dynamic change in 

the picture. Such dynamic effects cannot be produced using the 

direct view storage tube because of the need to "repaint" the 
whole picture^. With the dynamic display whose picture is 
refreshed several times per second it becomes possible to update 
a part of the picture by editing and modifying the display file.

It is possible to point to several examples where dynamic 
picture output is of importance. Four areas of such use are: 
fluid flow visualization^*^, design of mechanisms^^ simulation 

problems including traffic flow^^and aircraft flight^^\ and 

dynamic analysis of structures (e.g. vibration analysis of 
aircraft structures).

In order to examine how the fully interactive display can 

be used to improve the process of man/machine communication, some 
attention must be paid to the hardware features of the equipment 

and in particular to the use of the lightpen.

^The storage tube is in many ways like a very fast digital plotter

Projects involving these topics have been conducted on the 

graphical display at Leicester University.
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The lightpen has two major functions: to indicate picture
•j*  ̂ ^elements and to perform pen-tracking . Pen tracking is often used 

in drawing programs where the tracking cross is used to specify 

the end positions of lines. It can similarly be used to position 
complete parts of a picture, usually with the aid of some algorithm 

if very accurate positioning is required, once the approximate 
coordinates have been input with the tracking cross.

Many makes of storage tube are now being offered with a
•j*+cursor which may be positioned on the screen by means of a 

hardware joystick . This enables coordinates to be specified 
in much the same way as pen-tracking, but is of limited use with 
a display used primarily for static images. The ability to adjust 
the position of an object dynamically using pen tracking 
represents a major advantage of the refreshable display.

Pen-tracking offers a means of making available to a program the 
position of the lightpen on the CRT screen. This is achieved by 
displaying a small symbol (usually a cross) which moves so as to stay 

in the centre of the field of view of the lightpen. As the lightpen 
is moved across the surface of the CRT, the tracking symbol moves 

with it and its coordinates are continuously held in a pair of 
registers which may be examined by the user program.

‘̂’̂DEC, ADAGE

•LX4-
Some dynamic displays use a rolling ball (tracker ball) to 

position the tracking symbol (Marconi X2000).
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Broadly speaking, such facilities enable the user to "prod 
or poke" his representation of a physical system, as though with 

his finger, in order to gain an appreciation of the dependence 

of the system response on various parameters. In Chapter 5 a ! 

description is given of a system which allows this type of 
examination with civil and mechanical engineering structures.

It has often been stated that a major use of display systems 

should be to gain insight into the behaviour of physical systems. 
Often the display is used as a convenient means of entering and 
examining data, without any attempt to create a loop in the 

process, whereby the response can be directly associated with 
some variation of an input parameter. In order to indicate how 
this might be achieved some general concepts about the nature 
of communication in an interactive program must be identified.

The organisation of man/machine communication

Interactions involve the setting up of a command which will 
cause the computer to take some appropriate course of computation, 

and perhaps to indicate this tlirough the medium of a displayed 

picture. A command, either implicitly or explicitly, has two 

components: an and an operand. A further two components

may be present whose functions are to specify the values of 
variables used in executing the command, and to indicate where 
these values are to be found.

A simple command can be used to change the scale of a 
picture part. The information which has to be specified is;

(1) the operation "change scale",
(2) the name of the picture item whose scale is to be changed.
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(3) the new scale value,

(4) where the value is to be obtained (e.g. typewriter).

Sections (2), (3) and (4) could be implicitly defined in the 

command "change scale". For example, perhaps the whole picture 
is to be changed to a new scale of half the previous value.

General programs usually contain very little implicit information.

Choosing an operation such as "change scale" amounts to 
identifying a subroutine, or group of routines, to perform the 
desired action. The additional information which must be 

specified can be passed to the subroutine via its argument list. 

Although communication with the computer may be through the medium 
of displayed pictures it must be remembered that it is the 
digital model which is modified when a change is made. In order 
to achieve this, without the user being aware of it, a relationship 
must exist between the picture elements and the data describing 
the physical situation which they represent.

Indication of a picture element with the lightpen should be 

used to identify the part of the digital model to be modified 
by a subroutine. This can be achieved by assigning a name to 
the picture part whose value is a pointer to the relevant part 
of the data structure^. This value is passed to the subroutine 
as an argument.

The order of events can be summarized:
(1) Indicate the area of interest using the picture,

(2) Use this information to identify the part of the digital model 
(data structure) which the chosen picture element represents,

(3) Modify the digital model as desired and then update the picture 
to portray the new situation.

Pointers and data structure are discussed in Chapter 4.
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It is important that the operation specified by a command should 
lead to a change in the digital model, from which the picture 
is displayed. This ensures that the displayed picture portrays 

the state of the application data.

The algorithm to perform (3) corresponds to the chosen 

operation (e.g. change scale). It can be selected from a menu 
of lightbuttons or typed on a teletype. Other information will 

be obtained from different sources, for example typed values, 

from lightpen hits, as output arguments from other subroutines.
General programs can be written to cope with the setting up of

s
(20)

commands using such inputs . A package of Fortran subroutines
has been written at Leicester University to perform this task 
and is used by the applications described in Chapters 5 and 6.

Qualitative Assessment and man/machine communication

In order to create a situation where qualitative as well 
as quantitative evaluation of a problem can be made, a loop must 
be formed within the program. In many processes where parameters 
are to be adjusted until some criterion (perhaps visual) is 

satisfied, it is often more convenient to change a value to be 
"a bit bigger or smaller" rather than to have to be concerned with 

its magnitude. Often the magnitude is of significance only after 
the process of adjustment is completed. This is particularly true 
when judgement is on a visual basis, taking advantage of man*s 

superiority over the computer for visual judgement. This assumes 
that it is possible to display an unambiguous representation

See Chapter 2. Sometimes such facilities are provided in the 

form of Command Definition Languages.
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of the situation^.

The use of "devices"

If a continuous j-oop is not created for the process of 

adjustment, where a command is continuously executed with 

parameters modified in value for each execution, the assessment 
becomes a repeated "single shot" operation which can be very 
laborious. If the value of the parameter to be modified is obtained 

from a typewriter execution of the loop becomes discontinuous while 
the value is typed. To overcome this problem various devices 
are used which can be operated with the lightpen and function keys 
of a fully interactive display. In particular these devices 
rely on the use of pen-tracking to specify some coordinate value 
which may be transformed and used as the magnitude of a parameter. 
Where convenient the devices are programmed to correspond as 
nearly as possible to the type of parameter modification to 
be performed.

If an angle is to be specified, a line can be displayed 

to represent a joystick and the angle between this line and 
some reference direction used as the parameter value. If the 
device is then used in a loop, a picture part may be caused to 

rotate in sympathy with movement of the joystick, whose free 

end is positioned with the lightpen.
By the use of such techniques a relationship may be 

established between the user*s actions and the effects they 

produce on the physical system under examination.

+See later this Chapter for discussion of some visualization
problems
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An example of another device is the pseudo tracking-cross 

mentioned in Chapter 6. The pseudo tracking-cross moves in 

three dimensions in various planes in space, enabling the two- 

dimensional coordinates of the real tracking cross to be 
transformed, to contr 1 three degrees of freedom. The trans­

formation is defined by the plane in which the pseudo tracking- 

cross is currently constrained to move.

Another device of a similar nature also uses the ordinary 
tracking-cross coordinates and transformations of a suitable nature.
The "spider", as the device has been called, is effectively a 
pseudo tracking-cross which is constrained to move on a 
mathematically defined surface such as a cylinder. As the 
ordinary tracking-cross is moved around the screen its movements 
are interpreted by a transformation routine fixing the position 
of the "spider" on the surface. This is effectively a problem 
of mapping the screen coordinate system on to some other mathematically 
defined surface. Such a device can also be used if stereo pairs 
are displayed, and it overcomes the problem of how to use one 
tracking-cross with two images.

Techniques of communication involving dynamic model 
manipulation are particularly valuable for gaining insight 
into problems where interest is focused on variation of design 

parameters rather than assigning absolute values to them. By 
including the source of information as an argument in the 
routines, various devices may be used including the typewriter, 

if a particular parameter value is of interest. Devices such 
as the pseudo tracking-cross enable parameters to be varied in 
a way which it is difficult to describe using commands. Requests 
such as "move this point a little further to the left" cannot
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always be easily expressed numerically. The burden of typing 
numerical values should not be unnecessarily added to the tasks 

performed by the user, unless he is interested in specific 
numerical values.

Visualization problems in pictorial representation

Although pictorial presentation of a problem offers scope 

for simple schemes for assimilation of large quantities of data 
several major problems exist. These problems are usually 

grouped under the heading of "visualization", and relate mainly to 
difficulties of using a flat scope surface to represent three- 
dimensional, real objects. Solutions to these problems are 
expensive and acceptable solutions are not widely available.
The use of orthographic projections in engineering drawings is 
an example of a convention to avoid certain visualization problems, 
The aim is to make the drawings unambiguous, but they do require 
interpretation and it is here that errors can occur. In addition 
they are not suitable for many areas of design such as surface 
definition.

A major obstacle to three-dimensional display is the 

hidden line problem. In the case of paster displays, as opposed 

to vector displays, the problem is one of hidden surfaces. The 
use of software operating in processors of the present generation, 
to compute the solution to the hidden line problem, is generally 

too slow for fully interactive systems. A small addition to the 

displayed scene may necessitate several seconds, or minutes, 
of processing time to update the picture and dynamic rotation 
of the image becomes impracticable for the same reason.



31

Much effort has been devoted to software development
(8)for solving the hidden line problem , With most of the 

available algorithms the computation time rises in proportion to 

the square of the number of objects in the scene. Wamock’s 
algorithm^ ̂  ̂ requires a time proportional to the number of 

objects and is therefore more suited to complex pictures which 
have several component parts. The most effective economic 

use of such algorithms would seem to be in the production of 
hard copy plots, where the plotted view has the hidden lines 

removed.
Another problem with the CRT is to look at a part of a 

picture and to compute which part of the whole scene is to 
be displayed. This is known as windowing and can be solved 
in two ways. One is to provide the scope with a beam deflection 
system which will cover an area larger than the viewing area 
so that the picture is cut off at the physical edge of the 

viewing area. This however involves "drawing" more than the 

picture actually observed by the user and wastes time. The 
second solution is to clip the picture at the edge of the 
viewing area by computation. The picture drawn then corresponds 
to those items which lie inside the window. Calculations must 
be performed to determine the points at which the picture crosses 

the window bounds, and this is useful because it is not then 

necessary for the window to correspond to the scope viewing 
area.

If the technique of clipping is extended to three dimensions, 

it is possible to take slices through a three-dimensional model 
and to eliminate unwanted detail lying in front of,or behind.
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the zone of interest.
•j*A different technique, brightness modulation , or depth 

cueing, is a particularly valuable aid to visualization and 

is relatively inexpensive. The technique is to vary the 
brightness of a line depending on its depth coordinate normal 
to the display screen such that points near to the user are 

brighter than those which are distant from him. The displayed 

picture is two-dimensional but the illusion of depth is created 

by the brightness variation. This technique requires suitable 
hardware facilities in the form of several brightness
levels (about seven) or a continuously variable brightness 

(available on the ADAGE acfecR?age •feCBa® display). If discreet 
brightness levels are available, the dept^h-cueing can be 
provided by a general purpose 3-D clipping program which also offers
2-D windowing.

Perspective views can be of use in some problems, particularly 
where displayed objects have a number of parallel edges. They 
are effective too in problems such as highway design^*^^. Stereo 
views can be computed but can create some problems of 

communication: the need to look through a viewer makes it difficult 
to operate the typewriter and lightpen.

Interesting work is in progress at the University of Utah 

on problems of c o m m u n i c a t i o n ^ w h i c h  hopefully will bring 
about an improvement in display processor design. Until that 
time, ingenious techniques for the display and manipulation of 

graphical images must be devised to overcome visualization 
problems.

tUsed by the Cambridge University C-A.D. group.
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Conclusions

Apart from problems which require a dynamic display for 

output, the use of dynamic picture modification can be a 

significant aid to the user both for input of data and in 

aiding visualization.
The use of the lightpen with suitably programmed devices 

offers a flexibility of input not attainable with the typewriter 

and storage tube display. There is particular scope in the handling 
of three-dimensional models for devices of the type mentioned, and 
the need to specify precise values for parameters is not always 
necessary. Requests such as "Make X a bit bigger" or adjusting 
the value of a parameter X until some function F(X) has a 
particular value can be dealt with.

Many problems can be tackled without recourse to such 
techniques and a storage tube and teletype may be adequate in 
these cases. A major advantage of the dynamic display is the 

ability to adjust parameters until some desired criterion is 
satisfied. If the problem to be tackled is not well understood 
(i.e. the effects of variation of parameter values) dynamic 
techniques may prove particularly useful.

The most economic solutions to visualization problems 

associated with the hidden line problem appear to be 3-D clipping 

and brightness modulation. Some manufacturers of displays are 
now offering brightness modulation performed by hardware, and

3-D clipping enables unwanted parts of the picture to be 

blanked out completely. Hidden line removal is probably best 
reserved for the production of hard copy plots where computation 
times are less critical than with on-line design situations.



CHAPTER 4

DATA STRUCTURE DESIGN 

Introduction

At the beginning of this chapter an outline is given of 

why data structures are needed. This is followed by an example 
for which various data structures are presented. The first 
data storage scheme is a simple one using arrays to store 
information, and it is shown that several problems arise when 

the quantities of information are constantly changing as is 

usually the case with an interactive program.
A description is given of the general principles of free- 

storage schemes and the use of beads (records) and pointers.
Then follow descriptions of various data structures, for the 
example problem, which use a free storage scheme. The designs 
presented become more complex towards the end of the chapter 
and their advantages and limitations are put forward.

Finally some discussion is devoted to the storing of 
structured data on backing store, along with some criticisms 
of paging schemes. It is shown that an efficient solution to 

these problems depends on the particular application.

Ifhat is data structuring and why is it necessary?

The computer-aided solution of a problem involves the design 
and implementation of a digital model. This is a task usually 
undertaken by an applications programmer who makes use of che 

basic software provided by systems programmers. D.T. Ross

34
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defined the "model" by an equation;

model = data + structure t algorithm.

The equation is a particularly useful one to consider, in that 
it expresses the balance which must be obtained between the 
component parts of the model for various degrees of sophistication 

of the application program. This sophistication is to some 

extent dependent on the hardware and the basic software available. 
Many requirements arising from the application must be satisfied, 

amounting to extra features to be built into the model.
In the above equation the data are the values pertaining 

to the physical problem to be modelled, such as lengths, areas, 
volumes. Young’s modulus. The algorithm is used to perform 
operations on these data, to calculate other values from them.

Consider the line shown in Figure 4.1. The data needed to 
describe the line could be stored as:
(1) the coordinates (XI, Yl), (X2, Y2) of PI and P2,
(2) the coordinates of PI, the length L and angle A,
(3) the coordinates of P2, the length L and angle A.

The data in each case can be obtained from either of the
alternatives. However, it may be useful to store all of this

data if some calculations are to be performed which require 
each of the alternatives at some time. This is equivalent to 
stating that an increase in the data term in the equation can 

lead to a reduction in complexity of algorithm. This has in 
fact been done in the case of the drawing program described in 
Chapter 6, where three sets of coordinates are stored for each 

point in space.
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Consider an example where there are several lines between 

a set of points. If the lines are to be defined in terms of the 
points, it is necessary to determine which pair of points belong 

to a given line. This can be done by storing a reference table 

containing extra data about the relationships, but the complexity 
of the algorithms increases to include a search of this additional 

information before operations can be performed on the original 

data. Data structuring (the structure term in Ross’s equation) 
is concerned with finding the best way of storing the data to 
simplify this search problem for a given application, subject 
to the many other constraints to be satisfied. A typical 
constraint is the amount of core store available and sophisticated 
data structures very often fill up core space at an alarming 
rate.

Data structure design for a particular problem

The problem of designing a particular data structure will 
now be discussed to illustrate the many alternative solutions, 
and to serve as a basis for an examination of their relative 
merits.

The example chosen concerns the storage of information 

about a set of triangles which are to be displayed on an 
interactive graphics console. The basic data to be stored are 

the coordinates of the nodes of the triangles. Although a simple 
problem, the example has been chosen because of its similarity 
to the finite element system described in Chapter 5. It will 

be assumed that the operations to be performed by the user are 
copying, deletion and joining together of triangles to form 
larger shapes with some common boundaries and nodes.
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The triangles to be considered are typically like that 

shown in Figure 4.2.
It is assumed that the boundaries of the triangles will 

be displayed and that associated with each boundary is a unique
name or item number for the purposes of the display system.

These item numbers are used to gain access to other data in order

to perform copying, joining and deletion.
Typically the information (both basic and associative data) 

can be held in two-dimensional arrays. Two such arrays might be 
used, as in Figure 4.3. The BOUNDARY ARRAY has one row assigned 

to each boundary (boundaries are numbered consecutively) 
containing the reference numbers of the points defining the 
boundary, and of the triangle to which it belongs, and the 
display file item number for the boundary. The COORDINATES ARRAY 
contains the coordinates of the points.

Such a data storage scheme is extremely simple in concept 
but presents problems of implementation. A particular difficulty 
arises if information is to be deleted, as certain rows of the 
arrays will no longer contain useful data. It is possible to 

re-order the remaining data in order to remove the redundant spaces, 
but this may require considerable relocation of values and must 
be programmed for each array which is to be treated in this manner. 
Alternatively, the algorithm may be designed to process the 

whole array including any redundant information but this is a 
waste of both computing time and space occupied by data no longer 

required.
A major objection to a simple array storage scheme is the 

need to specify the amount of space required at some point before
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it may be known. Even a block-structured language, such as 

Algol, with dynamic array allocation is not adequate for very 

interactive work since each separate array has to be declared, 

although the array sizes can be allocated at run-time. The 
problem of re-ordering of data is still present so the total 

workspace available in core is unlikely to be used in the most 
efficient manner for a given application.

The requirements for interactive work which an array 
storage scheme fail to satisfy would appear to be:

(1) How to allocate space as it is needed during the running 
of the program,

(2) How to avoid the problem of re-ordering data when operations 
like delete are performed.
From investigations of these types of problem came the 

techniques of list processing using free storage schemes with 
"garbage collection*^.

Free storage schemes and garbage collection

Free storage schemes usually operate on the basis of 

assigning a workspace or free storage zone which will contain 
the information otherwise held in arrays. In some implementations 
the free storage zone is itself an array, some parts of which contain 
the data, and the remainder is considered free. Somewhere in 

each free area (often the first word) the address of the start 
of the next free block is stored. Addresses used in this way 

are termed POINTERS. The free areas are therefore chained 
together by a series of pointers. The length of each free block 
is also stored. Information is held in records, hereafter
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referred to as BEADS using AED terminology^^\ A bead is a 

block of contiguous computer words whose size is specified by 

the programmer and which may be allocated during the running of 

the program. When a p^^ogram requests the allocation of a bead, 

perhaps as a result of a user interaction, the free storage 
routines determine whether the requested space is available. If 
it is, the required block is removed from the list of free-store 
beads and is assigned to the program for the storing of data.

In order to know where in store the new bead has been allocated, 

the free storage routine returns the address of the start of the 
bead. In the case of schemes which use an array as the free 
storage zone, this address is the array subscript and is therefore 
relative to the head of the array. This is a useful feature 
which will be discussed later in the context of the use of mass 
storage.

When a bead is made available by the deletion of the 

information it holds, it is added to the list of free blocks.

If two such blocks are contiguous they are merged to form one 
larger block by suitable updating of the pointers.

A simple chain structure for the example problem

In the chosen example the BOUNDARY and COORDINATES arrays 
can be split into separate rows, which can then be imagined to 

be beads which are linked together by pointers as shown in 

Figure 4.4. Previously the boundaries and points were numbered 

consecutively, now they are not: their reference numbers are 
the pointers to their beads and are stored in the previous bead
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thus forming a chain or list structure. The lists are cross- 

linked by pointers from the boundaries to the end points which 

define them.
An algorithm which is designed to process each bead in a 

list can therefore be written as: get the next bead (if it exists) 

and update the information it contains. By following the lists 

in this manner, no problems arise about processing redundant 

information and the same beads can be placed on different lists 
depending on the operations to be performed (as in the program 

described in Chapter 7).
If a bead is to be removed the bead occurring before it in 

a list must be located and modified to point to the next but 
one bead. The deleted bead is then returned to the free-store 
list. Since the processing algorithm is written to follow the 
lists the redundant information will not be processed because 
it has been by-passed in the list.

Tree structures

A typical aim in application programming is to provide a 
general problem solving system for the given application area.

In line with this, several attempts have been made to provide 
general data structures for interactive programming^10,11,12)  ̂

but the overheads incurred do not make this an attractive proposition. 

A typical general structure is based on a tree arrangement^ 
and very often, for simplicity, mixed pointers and data are not 
allowed in the same bead. Such a restriction enables th'' necessary 
general structure building commands and pointer manipulation 
routines to be easily defined, but implies that data are always
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held at the base leVel. This is not in keeping with the usually 
hierarchical nature of the problem to be solved, and data should 
ideally be stored at different levels to reflect the physical 

system which the model represents. This may have a significant 

effect on the time to access certain of the data.
A critical examination of a tree structure reveals several 

disadvantages but also some merits. Figure 4.5 shows a tree 

structure for the triangle problem.
The major advantage of the tree structure is its simplicity 

resulting in straightforward programs for structure building and 
manipulation. A considerable problem encountered, when the . 
information is held in structured form, is that of transferring 
it to mass storage, because of the need to change the pointer values 
when the information is read back into core. One way of achieving 
this is to un-structure the information prior to storing on disc 
or drum and to re-structure when transferring back to core. This 
is achieved more easily with a tree structure than one with more 

complex pointer relationships because only one pointer needs to 

be "cut" to release a complete section of structure.
The disadvantages of the tree structure also stem from its 

simplicity. They arise because of the lack of cross references 

between beads, and sometimes from the inability to travel up 

the tree rather than down it. If extra pointers are introduced 

these problems can be overcome, but the main advantages of using 
trees are then removed.

In the case of the triangle the lack of pointers becomes 
apparent if the whole triangle is to be translated in space.
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The operation to be performed is the modification of the 
coordinate values, held at the lowest level. These can only 

be accessed by searching down the tree from the triangle bead 

via the boundary beads, requiring two accesses per point.

In order to save storage space, common elements can be 
used at the lowest level, but the structure is no longer a pure 

tree and becomes more difficult to segment. Figure 4.6 illustrates 

this for the triangle example, and it is evident that less 
accessing is needed than previously because duplication of data 
has been removed. This is sensible from another viewpoint in 
that if only one set of values is to be changed the necessity 
to search for duplicate data is removed. This type of structure 
can sometimes be convenient for schematic graphics diagrams 
v̂ îpre use is made of subpictures corresponding to the common data 
beads.

Ring structures

The processing time can be speeded up by stringing together 

those items included in a common processsing operation. It 
would be helpful to put the point beads on a list and to process 

this list when the triangle is to be transformed. This would 
imply that the start of the list is knovm, which may not be so, 

and it is useful therefore, to arrange that the last item in 
the list points back to the first, thus forming a RING structure. 
With a ring, processing may begin at any point and is terminated 

when the starting point is again reached. Figure 4.7 sh>ws a 

ring structure for the triangle problem.
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Such a structure does not, however, allow for travel back 
to the parent triangle from the boundaries or points and would 
involve a search and comparison method of determining the triangle 
from a pensee on a boundary.

The hierarchical nature of the structure has evolved from a 

consideration of the triangle problem and the link back to the 

parent triangle can be obtained by pointing from each point bead 

to the triangle bead. This also enables it to be reached from 
a boundary bead from which there are pointers to point beads.

Some conclusions about the use of associative data structures

Several conclusions can be deduced from an examination of 
the various associative data structures so far discussed.

The use of pointers can simplify the problems of data 

relocation caused by actions such as deletion. The need to 
move large quantities of data (usually much larger than in this 
example) is replaced by the simpler operation of manipulating 
a few pointers.

If there are many pointers, considerable updating may be 

needed both within the application program data structure and 
within the free storage routine lists. If many deletions are 
performed, the free storage zone may need to be collapsed (i.e. 
compressed to remove spaces), but at least the task of organising 
this is removed from the application programmer. For the majority 

of data structures about half a dozen pointer manipulation routines 
will suffice to perform most operations including addition of 
new beads and deletion.
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Because of the ability to manipulate the data using a handful 

of simple routines, the use of data structuring enables the 
design of application routines to be very straightforward. Various 

functions can be parcelled into unit operations on the data 
structure and its contents. Information about where to locate 

data is contained in the data structure, so that algorithms may 

operate in much the same way as a stranger who, attempting to 
locate an address in a town, proceeds by travelling a short 
distance and then asking again for new directions.

Pointers can be used to link component names (or pictures) 
with the data describing them, by arranging that the name (or 

item number in a display file) has the value of a pointer to the 
bead containing the data. Because the pointer refers to a unique 
location there is no possibility for ambiguity in the definition 
of the component. In the case of interactive graphics a lightpen 
"see" will yield the pointer to the relevant data for the item chosen. 
The use of subpicture techniques or common components can be 

dealt with by having common beads in the data structure. The 
number of uses of the component would then be indicated by the 

number of pointers to the common bead.

For the structure proposed, the facility of storing mixed 

data types in the same bead is needed. The ease with which this 
can be done is a function of the hardware to be used and the level 
at which the free storage routines are implemented. If the data 

structuring facilities are included at the language level as in 

AED-0^^^^ the bead definitions are assigned by declaration state­
ments, If the structuring facilities are provided as a package
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callable from a procedure-oriented language (Fortran in 
Chapters 5, 6 and 7) and the free storage zone is an integer 

array, the application programmer must take account of the 
storage mechanisms for the various data types . This problem 
can be eased by using macros if such a capability is available, 

where the macro definition takes account of the data type in 
question.

It is desirable to make beads on any given ring of the 
same size and type (format). This enables the algorithms which 

search round a ring for a given piece of data (sometimes known 
as MOUSE algorithms) to be simplified because each algorithm 
only needs to operate on one type of bead. Even so, it is wise 
to store a code at the head of each bead to indicate its type 
and to ensure that only valid operations are performed concerning 
the data held in the bead.

The hierarchical ring structure combines the advantages 
of rings and trees for most processing operations (except use 
of backing store). However, the large number of pointers involved 
in such a data structure make it unsatisfactory if core store is 

at a premium, unless routines are available for storing structured 
data on secondary storage.

For example storing of a real value in an integer array. With 
some computers (I.C.L. 4130 and 1900 series) real values are 

stored in two consecutive integer locations and a routine can 
be written to store real values in two locations of an integer 

array. The application programmer must use the routine to 
reference all real values.
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Structured data and the use of mass storage

Some attention will now be paid to the problems of storing 

structured quantities of data for which insufficient core space 

is available. As already mentioned, one way to tackle the storage 

of structured data is to unstructure it first.
This unstructuring approach requires the definition of a format 

for the data to be stored on mass storage. In addition the structure 
building routines must be written to accept this formatted data 

and to rebuild the structure. This rebuilding process re-assigns 
any necessary pointer values. The simple formatted data strings 
can be held in a suitable file on disc or drum. The reason for 
taking this approach is that it obviates the necessity to update 
pointers, a process so complex that it is often impracticable 
to re-program for each application.

An alternative is to change the pointer address system by

use of a taohmiiyk## atod paging scheme. This is
operated by using a relative addressing scheme, where the storage
area is divided into pages (typically of IK words, but often
variable by the programmer) which are assigned a page number. Any

addresses are then specified relative to the start of the page.

Swapping of programs and data then takes place as whole pages are

shifted between disc or drum and core store. In place of absolute

addresses »  address is used which specifies both the
page number and address within the page of the required location.

Aë&lew/A considerable number
Ca m .of pages/Se be used and viM- an effectively large

h dLv&UaWo.;
storage area^ only some of which is resident in core at one time.
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Such techniques have been widely implemented by software and 

hardware . Automatic paging schemes usually create very bad 
response times for an interactive system with data structure. 

Cross-references within the structure which traverse the page 
bounds cause an inordinate amount of page swapping.

The answer to this problem lies in maintaining a given 
piece of data structure within a whole page. If the structure 
has been designed to reflect the component nature of many physical 

systems, and the page size is large enough, this can be done.
If the data structure is suitably segmented, the paging 

scheme can still be allowed to operate automatically providing 
the programmer can ensure that a given segment of structure is 
placed entirely within one page. This implies that new pages 
can be allocated when desired (even if they are not completely 
filled). A XcKwa. udWCJx fv-lj-'ilk 14

By using arrays a simple paging scheme of this type could 
be implemented where the arrays correspond to the pages and 
the array subscript corresponds to the address relative to the 

page head. If a structure copying technique is programmed, using 

structure building routines which re-assign pointer values, 
parts of a page could be transferred by copying them into a 

buffer page which would then be written to backing store. The 
reverse process would be used to read them back into a page 

in store.
*5A useful technique woQ&d i$e to arrange programs such that 

picture elements on a C.R.T. correspond only to those segn.ents

^I.C.L. 1906A, Atlas.
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of data in core. Usually the display file contents need not 
correspond to the core memory contents and the suggested scheme 

would need to be deliberately programmed. This approach would 

enable the user to be aware of the page swaps incurred by a request 

for an item not held in core.
With an increasing interest being shown in the use of 

satellite graphics computers, the decision of how to divide a 

problem into those sections which reside in the central site 
and satellite machines must be made. Just how this division 
is organised depends on whether the satellite is remote from the 
main machine, or adjacent to it with a high bandwidth connection.
Much of the software development for satellite computer configurations 
is being developed on the basis of experience with closely linked 
machines. As a result, much of this software does not offer 
adequate facilities and good response times for operation in a 
remote environment with only a relatively slow telephone line 
connection. Too often the satellite computer's task is seen simply 

as to perform picture processing, with the application programs 

residing in the central computer. Such a division of labour 
ignores the nature of the associations betvjeen the displayed 

picture and the engineering data which lies behind it.

For this reason it is desirable to contain much of the 

engineering data locally, implying the need to have a disc or 
drum attached to the satellite to make this possible. Transfer 
of information to a main machine for analysis involves many of 

the same problems as transfer to and from disc. The main common 
feature is that routines must be available for altering the way 

in which data is structured.



49

Conclusions

Several general purpose data structuring schemes have been 
implemented and perhaps one of the best known of these is 

However, the balance between generality and efficiency often makes 
the overheads of a general system too high. In his early Sketchpad 

system, Ivan Sutherland used a general purpose data structure 

having a ring of points and a ring of lines. For a system mainly 
concerned with pictures constructed from lines this is adequate, 
but for various applications it is usually necessary to incorporate 

more complex relationships than those pertaining to picture topology.
Because the requirements of each application are so different 

a data structure should be tailored for each new application area. 
Sometimes an ’-off the peg" data structure can be suitably modified 

to cope with new applications. For most problems, about half a 
dozen pointer manipulation and data structure building routines are 
sufficient to cover a wide rante of operations, if a free storage 
and garbage collection facility is available*^.

Many difficulties still exist in storing structured data on 
backing store. As with data structures in core, the most efficient 

solution lies in organising a scheme around the application problem. 

This is not very convenient for the application programmer, and 

one answer appears to be to organise a paging scheme which the 
application program can administer. This can be achieved by 
ensuring, as far as possible, that pointers within the data structure 

do not cross page bounds. Within each page the pointers are

^Simple free storage routines can be designed and implemented without 
difficulty. The applications described in Chapters 5 and 6 make use 
of three such routines provided by I.C.L.
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relative to the page head. This must be taken into account when 

the data structure is organised in order to attempt to keep data 
segmented to fit within the page size. If several pages are 
held in core at once, references from one to another would be 

acceptable but would have to be kept to a minimum.
When the problems of storing structured data using a virtual 

memory have been solved, larger problems will fit on

to smaller computers used as satellites.
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CHAPTER 5

LUISA - AN APPLICATION SYSTEM FOR STRUCTURAL ANALYSIS 

Introduction

The early design and specification of an application system 

which is being implemented at Leicester University^ on an ICL 4130 
with ICL 4280 graphical display console is described. The system 

has been named LUISA (Leicester University Interactive Structural 
Analysis) and it is written mainly in Fortran. The basic software 
used is described in Appendix B.

Finite Element Analysis

The structural analysis within LUISA is based on the finite 
element method. The finite element approach involves the sub-

(is)
division of a structure into elements whose behaviour is assumed. 
When these elements are put together an approximation to the 
real structure is obtained. The assumed behaviour of the individual 
elements esdanrssspteisds to a choice of either a displacement field 

or a stress field; LUISA is based on the displacement method.

In selecting displacement functions, care is taken to ensure 

compatibility of displacements across the boundaries of the

^The author has been associated with this project for a period of 
2 years and worked full time on the early system design and 
implementation for 10 months. The work was done jointly with 
Dr. G.A. Butlin, Research Fellow, at Leicester. The original system 

has been described previously in two papers^^^’̂ *^\
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elements. The internal displacements are expressed in terms of 

the displacement values at the nodes of the element. Using these 
and the stress/strain relationship for the material, a set of 

nodal force parameters can be defined. By applying the principle 

of minimum potential energy, a set of equations relating nodal 

displacements and force parameters can be obtained, expressing a 

state of equilibrium. The solution of these equations for a given 

set of loads and displacement constraints enables the displaced 
form of the structure to be calculated. Again using the stress/ 
strain relationship, the stress values can be found from the 

calculated displacements.

Data Preparation

The traditional procedure in finite element analysis involves 
dividing a structure into a mesh of elements. The experience 
of the engineer is used in determining the mesh shape: areas of 
high stress concentration will have a finer mesh, as will other 
regions of the structure where the results may be of special 

interest. Elements and nodes are assigned numbers. Typical 
data input consists of:

(1) A list of node numbers and their coordinates (relative to 

some set of global axes.

(2) A list of element numbers and the nodes corresponding to each.
(3) A list of material properties for the elements.

(4) Vectors of applied loads and displacement constraints for 
the nodes.

During the preparation of this data, errors often occur which 

are not easy to detect. Wrong values for coordinates will mean
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an incorrect mesh shape, whilst errors in node lises for the 

elements will cau^e e. total mis-representation of the structure.
For structures of noi\nal size (say 250 nodes for a bridge) the 

time required to prepare the data is frustrating, particularly 

if a series of analyses are to be attempted. The engineer is 
often one stage removed from the computer, in terms of access, 
and this too can lead to delays in obtaining results.

The engineer is interested in the structure and its behaviour, 
and to force him to become concerned with internal details of 

program organisation is undesirable but usually necessary to 
some degree. The node numbers are of little interest to the 
engineer from a structural viewpoint, but are iiaportant as his 
means of communication with the computer representation of his 
problem (mathematical model). Some sâ '-ing in effort required to 
prepare data can be effected by incorporating automatic mesh 
generation procedures. However, if a batch program is used, 
the difficulty of communicating with the model still exists and 

may be complicated by assigning node and element nuni>ers 
automatically (i.e. internally).

Programs for automatic generation of element and node 
distribution can be written for particular classes of structural
problem, and the author has done this for various examples of bridge

(3) . 'design (see Figure 5.1 for an example mesh). It is not easy

to eoooiesfte of a general scheme for mesh generation because of the
wide variety of constraints to be satisfied for different analyses .

*1* * • «Sophisticated techniques for mesh generation have been incorporated
in the ASKA work in Germany. ASKA (Automatic Syitem for Kinematic
Analysis) has been developed at the Institut fur Statik und Dynamic
at the University of Stuttgart.
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As well as for conanunication, node numbering schemes are 
important for the analysis phase, where it is desirable to 

obtain a banded stiffness matrix relating nodal stress parameters 
to displacement parameters.

Conventionally, the output from finite element analyses is 
very large. Much of the information is not of direct interest 

but must be available to check that the other results are correct.
A recent analysis of a supertanker produced an output listing 
which was longer than the ship itself. This difficulty of data 
assessment is an area where a graphical output would be particularly 
useful.

Advantages of an interactive graphics approach

Some of the difficulties mentioned are removed when an 

interactive graphics program is developed for data generation.
It has been stated that the designer should not need to be 
concerned with internal details such as node numbering. A graphics 

approach should remove the necessity of this and allow the designer 
to indicate "this node" rather than "node number 10". The nodes 
do still have a numbering scheme, but this is now an internal 
detail of the programs.

The ability to adjust a mesh and to judge its shape by 

eye are particularly important. In practice the engineer is 
interested in the precise coordinate positions of only a few 
nodes on the boundary of a structure. Facilities for the fixing 

of these can be provided in the programs, but in general it 

is the overall element distribution which is of interest.



55

SifVCC
JEf node numbering need no longer concern the user, and 

because of the facilities which can exist for modification of an 
element idealization, the graphical display allows a new approach 

to finite element analysis. Philosophically the approach is the 

reverse of the traditional procedure. Instead of dividing a 

structure into elements, the structure is put together from 
individual elements. For several reasons this offers interesting 

possibilities, but it does create some problems.

The quantities of data involved in the analysis of large 
structures are too great to be held entirely in core store in 
structured form. By dividing the physical structure into 

manageable substructures, the data dsscribing any one of these 
can be held in core. The solution of the total structure involves 
the joining together of the substructures, a process which in 
LUISA is achieved with the same algorithms used to join individual 
elements. One aim in LUISA is to provide a flexible approach to 
mesh generation, allowing many different structures to be described 

by working with a few general algorithms. Because of the ease 

with which structures may be modified, the process of description 
has evolved as one of joining together a chunk of elements, or 
using some previously designed chunk stored on disc, and adjusting 

its shape to be that of the desired structure. Figure 5.2 shows 

an irregular mesh adjusted to represent one quarter of a plate 

with a hole in the centre.

Modes of Operation

In order to perform an analysis in the manner outlined, 
several basic operations are needed. Those which were originally 
planned for inclusion in the system are as follows:
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(1) It should be possible to retrieve the data describing previously 

designed structural components. These data would reside either 
in core store or on backing store when a request is made for 

them. If the data are resident in the core store access to 

them is provided by pointing at the desired item with the 
lightpen. If the data concerning an item reside on backing 

store, a nameword or filename previously assigned to the item

is used to retrieve the data. The structural conponents may 
be single finite elements (which form the starting point fpr 
a problem) or some larger structure previously composed from 
individual elements.

(2) During the process of constructing a structure the ability to 
copy any component which has been designed is essential. Such 
copies may then be used for further building of the structure 
(as in (3)) or filed on backing store for subsequent use as
in (1). This enables copies of various stages of construction 
to be filed allowing the user to "backtrack" through a problem 
if he so desires.

(3) The system should enable the user to compose new components 
by using previously designed components (or elements) whose 

data reside either in core or on backing store. The joining 

of two components involves indicating the boundaries to be 
joined. The second boundary chosen defines which component 
must be scaled and rotated in order that the two boundaries 

are geometrically compatible. If one pair of boundaries have 
already been joined and further joins are to be made, the 

operation involved is one of linking two parts of the same 
object. Under these circumstances, no scaling or rotation
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is involved, merely a translation of the nodes to form the 

join and modification of the boundaries defined by those nodes 

affected. Figure 5.3 illustrates both types of join. 5.3(a) 

shows the two componeits to be joined. Initially boundaries AB 
and DE are linked, involving scaling and rotation and translation 

of component II. Boundaries BC and EF are then joined 

necessitating the translation of point F.

(4) During composition of a structure, various facilities for 

modification of the geometry of the components are needed.
These include changing of scale and translation of nodes. It 
is possible to translate nodes according to various constraints 
to ensure for example that several nodes all lie on a straight 
line after being moved.

(5) At any stage of composition it should be possible to apply 

displacement constraints such as specifying engineering displace­
ment assumptions and fixing of boundary conditions.

(6) Corresponding to (5) the facility should exist to apply forces at 
points on the structure other than where displacements have 

already been fixed. A stiffness matrix is assembled for the 

structure, and once either the forces or displacements have been 
specified at all the nodes the nodal displacement parameter 
values are found by inverting the stiffness matrix and 

multiplying it by the load vector. The nodal stresses may be 
calculated from the displacement parameters.

(7) The user should be able to request the display of a selection 

of those displacement and stress profiles calculated from the 
nodal values, and to print them on the line printer if desired.
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Data Structure

A diagram showing the major features of the data structure 
used in LUISA is shown in Figure 5.4. Three types of bead are 
used: an ELEMENT BEAD, a NODE BEAD and a BOUNDARY BEAD. The 

contents of these beads are shown in Figure 5,5. The node 
beads and the boundary beads are grouped on separate rings 
which are pointed to from the element bead. A ring of element 

beads exists to indicate the component parts of the current level 

of assembly of the structure. Each structural component has a 
data structure of the type shown in Figure 5.4 and when components 
are joined to form . a larger unit a new data structure is 
created which also has this form.

The data structure for the problem may exist, therefore, 
in several chunks each of which corresponds to a structural 
component. Whatever the size and shape of a component, the 
arrangement of its data structure has the same basic configuration, 

so that the same algorithms may be used to operate on components 
which differ considerably both in appearance and material 
properties.

For the purposes of using secondary storage it was planned 
that the data should be sorted into unstructured term and 
stored on disc or magnetic tape as formatted strings. These 

strings were to contain the necessary information to restructure 
the application data when reloading them to core. Since that 
time a scheme has been proposed for secondary storage o^
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*î* •information in structured form . This involves the recreation

of the data structure for the specified component in a buffer

area, which is then transferred to backing store. When returning
the data to core store the structure is copied back from the

buffer into the main free storage area. During this process

the basic data remain unaltered and the pointer values are
re-assigned, but the overall configuration of the data structure

remains unaltered (i.e. the associative links remain undisturbed).

Interpretation of stored data

In the finite element method, a continuous displacement 
field is represented by a finite number of generalised dis­
placement parameters. The nature of these displacement parameters 
is defined here by a set of codes, which serve to indicate the 
direction of the displacement and the order of the derivatives 
in each direction. Each code has four parts;
(1) 1, 2 or 3 corresponding to displacement in the x, y or 

z direction.

(2) An integer defining the order of derivative in the x direction.
( g )  ?; I f  I t  n  t i  n  «  «  y  is

I I  I f  I I  I t  I I  I t  a 11 ”  Z "

This set of codes is stored in the displacement INTer pr et at ion 
Vector (DINTV).

The pointer to this vector is stored in a component (KDINTV) 

in the element bead. In a similar way, all the other vectors

^Suggested and now being implemented at Leicester by Dr. G.A. Butlin, 

with the assistance of Mrs. C.K. Grafton.
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and matrices containing data associated with an element are 

pointed to by components of the element bead, the component 
name taking the name of the vector or matrix prefixed by the 

letter K.

Values of the displacements are stored, when known, in 
the Displacement vector (DISP). The generalised forces 

corresponding to these displacement parameters are stored when 
known in the FORCE vector (FORCE).

The basic force/displacement relations in the finite 
element method are expressed in the equation

FORCE = KMAT x DISP

where KMAT is a stiffness matrix. However, the intermediate 
specification (application) of non-zero forces leads to non­

zero increments on the forces not yet specified. These Force 
INCRements are stored in the vector FINCR, and the more general 
force/displacement equation becomes

FORCE = FINCR + (KMAT x DISP)

When forces are applied, their corresponding equations are 

eliminated from those represented by the KMAT, and hence a 
condensed KMAT has to be calculated. A Transformation MATrix 
TMAT has to be calculated to relate the displacement parameters, 
corresponding to the eliminated equations, with the parameters 

retaining their freedom. A parameter is considered free when 
neither force nor displacement is specified. Only one or the 
other can be specified. Having specified one of them, the other 

is determined by calculation.
The derivation of the matrix analysis is given in Appendix A.
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For each force and displacement parameter, it will be 

necessary to store a code indicating whether both force and 
displacement are unknown or which is known. This code amounts 

to a structural state variable and the vector of these codes 
is called the INDicator Vector (INDV).

The connections between elements are defined by a

matrix, CMAT, This specifies the relationships 
between the nodal displacement parameters of a composition of 
elements and the nodal parameters of the separate elements from 

which it is composed. Each set of elements which are joined 
to form a superelement can be considered to be at different 
levels, where the C matrices relate the parameters at one level 
to the parameters at the next level above. Thus a complete 
hierarchy of connections can be represented.

The C matrices provide the means for back-substitution. 
When the displacement parameters at one level are known, the 
parameters at the level below can be calculated, using the 
relevant C matrix, and hence the internal displacements can 
be calculated along a 'path* penetrating the total structure to 

the point (or area) of interest. When the basic element is 
reached the stress/displacement Back Substitution Matrix (BSM) 

is then used to calculate the basic element stresses.

There is a need for a means of accessing the nodal 
displacements. This is achieved by storing the value of the 

component (of the displacement vector bead), which contains the 
first parameter of the group of parameters associated with a 
node, in a component of that node's data bead. The name given 

to this node bead component is KPCOMP.
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The number of parameters at each node can, of course, be 

readily calculated from the values in KPCOMP of two consecutive 

nodes, but there is a frequent need for this number and therefore 
it is stored in a component of a node bead called KNPRMT.

The stresses are stored when known in the STRESS vector (STRES). 

A set of codes is used to interpret these in a similar manner 
to displacements, each code having four parts:
(1) 1, 2, 3 .... 9, corresponding to stresses  ̂ , a , o ,XX Xjr XZ

(2) An integer defining the order of derivative in the x direction.
(3) " " " " " " " " " y direction.
(4) '* " " " " " " " " 2 direction.
This set of codes is stored in the Stress INTerpretation Vector 
(SINTV). Derivatives of stress are necessary to define the stress 
field in the basic element and will depend on the assumed 
displacement functions.

The component of the stress vector containing the first of 

the stresses and their derivatives associated with a node is stored 
in a component of that node's data bead, (KSCOMP).

For each boundary a visibility code VISIB is stored, to 

indicate whether a boundary is to be treated by the display 
as visible or invisible, for a given state of assembly of elements. 
The convention adopted is that the internal boundaries of a 

group of joined elements are made invisible once the stiffness 

matrix (KMAT) of the assembly has been calculated. The internal 
nodes are then displayed as a spot. However, by specifying u 
level to the display routine all connected boundaries above that 
level will then be displayed.
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Example structure composed using LUISA

Figure 5.6 illustrates the use of some facilities of the 

LUISA system employed to define an I section beam. The figure 

shows a sequence of photographs taken of the display screen. 

Figures 5.6(a) to 5.6(e) show the processes of joining and copying 
to produce a larger component starting from one element as the 

basic unit. In 5.6(f) a quadrilateral device is used to identify 
those nodes lying within it. The positions of the nodes are 
then adjusted to lie on a straight line passing through the 

tracking cross position. Further copies are made and joined to 
give an I section in Figure 5.6(k) and this is adjusted to give 
the section of Figure 5.6(&).

Conclusions

Experience gained during early implementation of the LUISA 

system indicated that considerable flexibility could be attained 
in generation of meshes, but that a major effort would be needed 
to organise the large quantities of data involved for the analysis 
No information was available to evaluate whether the system 

would prove practicable since no comparable systems could be 

found, and as development proceeded it became apparent that it 
would be necessary to reduce the flexibility, at least for the 

first attempt. In particular, difficulties were envisaged in 

the analysis and the decision was taken to use a sti^aightforward 

analysis method where all the forces and displacements are 
specified and the resulting simultaneous equations solved. In 

order to trace back to earlier stages of the problem the
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intermediate states of the data structure are stored rather 

than using the CMAT transformation matrices.
With these restrictions imposed it was clear that LUISA 

would be most suited to analysis of less sophisticated problems 

where removal of internal nodes would allow a more rapid response 

and enable insight into the structural behaviour to be gained.
With the ability to use the interactive aspects of the system 
to "prod or poke" a structure, a general, but not detailed, 

assessment of its behaviour would be possible. The inclusion of 
a larger number of nodes allovrs greater detail but precludes 
the rapid response which would appear to be necessary for gaining 
insight.

The other major facility offered by the LUISA system is the
flexible manner in which meshes of elements may be generated
and modified. It is these data generation aspects of the system

which are valuable in tackling large detailed analyses and which
offer a rapid and reliable form of data input for conventional
analysis programs. The graphical output facilities may be used
to provide easy assessment of results not possible with
conventional line printer output. One problem arising is that

the data generation programs do not contain a sorting algorithm 
■Tû.-aSSig*'- AiA*v»bâ.rS

to the modes for an analysis requiring banded matrices.

The LUISA analysis is arranged to cope with non-banded matrices,

but some thought will need to be devoted to this problem in

future if other analysis routines are to be used.

Implementation of the LUISA system has been severely 
hampered by operating system software faults and poor hardware 

reliability. All of the data generation facilities operate



65

satisfactorily and the programs for the analysis are now 
available. It is hoped that with the next release of the 

operating system software, the whole system will be operational 

and that the first stuctural analyses will be performed in 

the near future. Only at that time will a full appraisal of 
the system be possible.
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CHAPTER 6

AN INTERACTIVE THREE DIMENSIONAL DRAWING PROGRAM 

Introduction

A description is given of a set of programs written to 

investigate the use of a CRT graphical display with lightpen 

as a three-dimensional sketchpad. The language used is Fortran 
and the programs are implemented on an ICL 4130 computer with 
Elliott 4280 display.

The programs were written in order to study some of the 
problems arising from three-dimensional display including visualization 

and communication techniques. The data structure design formed 
an important part of the study and some modifications to the 
data structure are proposed.

The work has been described previously in a paper which is 
( 13)listed as a reference . The system is sometimes referred to 

as TDD (Three Dimensional Drawing). The basic software for data 

structuring and display are described in Appendix B.

Some Visual appreciation problems

The term "interactive problem solving", used in relation to 
computer graphics, implies a two way communication between man 

and computer. Many obstacles exist which complicate this 

communication process, and they are particularly evident if the 
picture is three-dimensional. Much effort has been devoted to 
overcoming problems of visualization: for example, algorithms
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( 8 )for removing hidden lines and use of stereo views. However, 

as much as these may aid the viewer in understanding the picture 
on a display screen, they represent investigations into one aspect 

of the communication process, namely, the flow of information 
from the computer to the man. The programs described here are 

concerned with improving the flow of information in the reverse 

direction by attempting to provide a natural means for constructing 
three dimensional pictures.

A truly effective communication cannot be established without 
considering flow of data in both directions, and it might be 
thought that improving the man's understanding of the picture 
will aid him to communicate his ideas back to the computer. This 
is often true but the use of stereo views is an example which 
serves to show that this is not always the case. What needs 

to be established is a feed-back loop where the user can get a 
feel for what happens on the screen as he controls the various 
input devices available to him. The lightpen is a very suitable 

form of input for achieving this loop as it can be used to alter 
a picture dynamically.

Using the programs

Using a tracking cross and lightpen, only two degrees of . 

freedom can be controlled independently at any one time, 
corresponding to the X and Y coordinates of the cross. Effectively, 

in drawing in three dimensions, three coordinate values must be 
controlled and if this is to be achieved with the tracking cross, 

one of the coordinates must be related in some way to the other 
two, or held constant. The choice of how to relate these
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coordinates plays a significant part in determining how it will 

be possible to arrange the operation of the program.

The usual approach xo 3D drawing is to define the plane
of drawing. The method suggested here, however, is to define
planes in which points may be specified and then to allow a drawing

to be constructed by joining these points. Therefore
of lines is not limited to the specified planes. In order to
define points in space, use is made of a pseudo tracking cross

which moves in three dimensions under control of the lightpen.
The operation of the programs is based on the use of lightbuttons
- words or symbols displayed on the screen which when selected
with the lightpen cause some appropriate program to be executed,
or option to be chosen. To control the movement of the pseudo
cross, use is made of "djuiamic" liglitbuttons which appear, at
the appropriate moment, clustered around the tracking cross on

the screen, an idea used by Wiseman at Cambridge, in the PIXIE 
(19)system . Usually this corresponds to the current position 

of the lightpen and makes selection very rapid, because the 
relevant lightbuttons always appear close at hand. Some other 

lightbuttons appear at the right-hand edge of the screen and 
for major operations, menus of options appear at the bottom of 
the screen. The arrangement of these menus and the way in which 
they are used to construct commands using the lightpen are the 

subject of a paper presented at the Computer Graphics '70 
S y m p o s i u m ^ T h i s  paper describes a general package of programs 

for interaction handling developed at Leicester, which enable 

commands to be constructed and executed. Execution of a command 
causes an appropriate routine to be entered to perform the 
action specified in the command.
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Commands available in the 3-D drawing system are shown in

Figure 6.1 and they enable the following facilities to be used:
(1) New objects may be drawn, or additions made to existing 

components. Lines may be deleted using a facility within 

the drawing routine. The pseudo tracking cross can be 

caused to latch on to any previously defined point when it 
approaches within a certain distance of such a point. The 
test for proximity can be made in both a two and three- 
dimensional mode and the checking distance can be varied by 
the user.

(2) Any pswcispwiy drawn or constructed component may be copied 

any number of times, the only limit being the core space 
available for data. In practice the drawings become too complex 
to handle before the available core is filled.

(3) Items may be moved around the screen and joined to other objects 

(any their data structures are linked) enabling larger and 
more complex objects to be constructed from a series of simpler 
units used as building bricks. Objects are linked at their 
vertices, rather than by joining surfaces or boundaries.

(4) Objects are drawn with respect to a set of local axes, and 
they may be rotated about these axes in order to redefine 
their orientations, under control of a software joystick, 

displayed on the CRT.
(5) Components may also be rotated continuously as a check on 

their three-dimensionality and as a visualization aid.
(6) Either the whole picture or individual objects may be rescaled.

When the command "DRAW NEW OBJECT" is executed a set of
Cartesian local axes labelled X, Y, Z appears at the tracking cross
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-rni,̂ act.
position. Objects are drawn with to these local axes

and the view presented to the user is the PI-plane projection 

(i.e. there is an equal direction cosine between each axis and 
the plane of the display screen). The three lightbuttons XYFLANE, 

YZPLANEj ZXPLANE appear down the right-hand side of the screen. 

Selecting one of these defines a plane containing the last 
defined point in space, parallel to the XY, YZ or ZX plane.

This plane is termed the ACTIVE PLANE.
To construct an object, once the drawing routine has been 

entered and the local axes displayed, requires the use of two 
console function keys. Both of these 4are used to defined points, 

but when one is used a line appears, connecting the present point 
to the previously defined one. Drawing commences by assuming as 
the first point the origin for the local axes.

Pressing one of the two console keys on the display unit causes 
three lightbuttons to appear clustered around the tracking cross.
If the active plane is XYPLANE these lightbuttons will be X,
Y and N. Choosing one of these causes the pseudo tracking cross 

to appear, in the active plane.
If the active plane had been YZ the options would have been 

Y, Z or N, and similarly Z, X or N for the ZX plane.
Points are defined in space using the pseudo tracking crosp 

whose coordinate position is continuously displayed. If a line 
is being drawn, the length of the line is also shown. If the 
N option is chosen, the projected position of the pseudo cross 

in the plane of the display screen is assumed to be coincident 
with the ordinary tracking cross position. By moving the tracking 

cross, two coordinate values may be varied and the third determined
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from the active plane. Choosing one of X, Y or Z further contains 

the pseudo-cross to move parallel to one of the axes, depending 
on which lightbutton is seen.

The pSeudo cross position may be continuously varied while 

the console function key is depressed^ enabling “rubber band” 

lines to be drawn. The pseudo cross is programmed to grow 
larger as it is moved towards the user, a feature which has proved 

very useful and which enables the user to appreciate that he is 
not drawing in the plane of the display screen.

Figure 6.2 illustrates some of the steps in drawing the 

simple figure shown in 6.2(f). In 6.2(a), the arrangement of the 

screen is shown: various messages are displayed along the top edge 
of the working area to guide the user, and the menus of options 
from which commands are constructed appear at the bottom of the 
screen. The command ’’DRAW A NEW OBJECT” has already been executed 

and the local axes and active plane lightbuttons are present on 
the screen.

6.2(b) shows the dynamic lightbuttons corresponding to the 

currently active plane which is XYPLANE. A line has already been 
drawn from the local origin parallel to the Y axis and choosing 
the X lightbutton gives rise to the situation represented in 6.2(c). 
In 6.2(d) a rectangle in the XY plane has been completed and the 

active plane is now ZXPLANE. Selecting the N lightbutton leads 

to fig. 6.2(e). Continuing in this manner, the completed figure 
in 6.2(f) is obtained.

Figure 6.3 illustrates some examples of more complex objects 

constructed from simple units and then modified.
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TDD data structure

The data structure used for TDD includes a large number of 
pointers and cannot be regarded as a compact structure, but it 

oaSdJies the use of saapler and more efficient algorithms. It 

is, however, a more compact structure than would have been achieved 
using a general scheme such as From a study of this

some conclusions have been reached about how to achieve a more 

efficient structuring for the data without complicating the 
algorithms unnecessarily.

The data structure used in TDD is an extension of that used 
in another project at Leicester, the LUISA system^^^*^^\ The 

structure is based on the use of rings and beads. A BEAD is a 
block of data, or more correctly, a block of information, because 
a bead may contain both problem data and pointers. The POINTERS 
are used to show the relationships (associations) between groups 
or beads of data. Three free storage organisation routines are 
used, for which the free storage zone is a Fortran integer array. 

These routines were provided by I.C.L. and are also used by the 
LUISA system described in Chapter 5.

For the purposes of data storage in TDD an OBJECT is said 
to be composed of EDGES whose ends are defined by VERTICES, For 
each object, three types of bead are used:

an OBJECT BEAD containing information about the object (things
like colour or volume or density)

several
VERTEX BEADS containing data about vertices (for example

their coordinates in space)
several
EDGE BEADS containing information about the edges of the

object (e.g. length, orientation)
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In order to associate the appropriate edgps and vertices with 

a given object, the edge beads are grouped on a ring pointed to 

from the object bead and there is a similai- pointer to a ring of 
vertex beads. Because a given edge is defined by the vertices at 
its ends, a pointer to each end vertex is stored in each edge bead.

Figure 6.4 shows the contents of the data beads and Figure 6,5 
illustrates the relationships between them. In order to make some 
of the algorithms more efficient several additional pointers 
have been included. These are:
(1) A pointer from each EDGE bead to the bead for the OBJECT 

containing the edge.
(2) A similar pointer from each VERTEX bead to the OBJECT bead.
(3) A pointer from the object to the last VERTEX and another to the 

last edge on the vertex and edge rings respectively.
Both forward and backward pointers are used for beads on a ring.

In order to process the whole picture, which may include a
number of objects, the object beads are grouped on a ring pointed

to from a single bead termed the SCENE bead.
lilhen the command “DRAW A NEW OBJECT” is execuyjited a new object 

bead is allocated and added to the ring of objects. A set of 
local axes appears at the position of the tracking cross on the \ 
screen. The values of the global coordinates of the origin of 
the local axes are stored in the object bead along with the 
orientations of the axes.

As vertices and edges are defined, new beads are added to the

vertex and edge rings for the object concerned. This involves
some updating of pointers and several checks. In creating an 
edge, for example, it becomes necessary to ascertain whether a
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new vertex is being created or whether the ends of the edge 

correspond to some previously defined vertices. When an edge 
is deleted it is necessary to perform a check on the vertices at 

its ends. If these vertices do not form the end of some other 

edge they too must be deleted and the appropriate edge and vertex 
beads returned to free storage. Removing beads necessitates 

further updating of pointers.
From an examination of the data stored in the vertex bead 

it is apparent that the local and global coordinates of the veptex 
are stored in addition to the coordinate position of the point 

on the display screen. Evidently this represents a duplication 
of data because the three sets of coordinates are related, but 
it enables simpler algorithms to be used. For example, in using 
the "latch on” facility in a three dimensional mode, a two 
dimensional proximity check is made first, using the display 
coordinates. If this check is positive the test is made in three 
dimensions using the global coordinates of the vertex. Similarly, 

the local coordinate values are of interest in some of the other 
routines.

Conclusions

As stated in the introduction, these programs represent part 

of a more general investigation. It has been found that the user 
intuitively watches the movement of the pseudo tracking cross 

and very rapidly becomes familiar with the concept of working 
in different planes in space. Making use of the lightpen in 
the manner described provides the feedback loop mentioned earlier.
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One problem which has been experienced has been the time to 
process the whole scene to produce rotations for purposes of 

viewing the objects in three dimensions. This is because of the 

time taketi to search round a ring updating the global coordinates.

As a result of this a suggested modification of the data structure 
is to remove the global coordinates from the vertex beads and to 

place all of them together in one bead. In their place in the 
vertex bead a pointer is inserted which indicates their position 
in the global coordinates bead. For complete picture transformations 
only the global coordinates bead needs to be processed and search 

times are much reduced.

Experience indicates that it is not necessary to store local, 
global and display coordinates, and it would appear to be sufficient 
to store only local values. Global and display values may then be 
obtained by applying the appropriate transformations, as in the 

LUISA system.
The ability to rotate objects about the local axes is 

particularly valuable since it enables the active planes to be 

redefined with respect to the objects.
Visualization problems have caused some difficulties and 

conclusions about avoiding these have influenced the design for 
an application 3-D system described in Chapter 7. The use of a 

hidden line removal algorithm would not appear to be satisfactory 
since the picture processing times are likely to be too large.

Communication with a three-dimensional pictu:.*e needs either 

a very rigidly defined set of operations involving codenames for 
identification purposes or the use of devices such as the pseudo 
tracking cross. The pseudo tracking cross could be used with 
stereo picture pairs, where it is displayed in each view and is
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moved in sympathy with the normal tracking cross.

With three-dimensional problems, much more attention must

be paid to the requirements of the display system than with

two dimensions. This is mainly because of the need for
visualization aids and the way in which such facilities affect

the data structure design.

New advances in hardware including matrix multipliers and
hardware clipping of lines may make the programming of three
dimensional pictures much easier in the near future. There are
howeVer, many situations where the type of visualization is very 

aproblem depend/nt, and software solutions to these problems 
are particularly valuable.
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CHAPTER 7

BAID - A PROGRAM FOR BASIC ARCHITECTURAL INVESTIGATION ’

AND DESIGN

Introduction

The program described in this chapter was developed as one 

of the projects of the Computer Applications Workshop scheme 

in the Engineering Department at Leicester University. Two 
versions of the program exist: a batch version, and the one 

described here, an interactive graphics version.
The idea for the program was that of architect Boyd Auger.

Much effort was needed to translate his scheme into a working 
computer program, but after preliminary discussions with the 
Leicester CAD group , it was decided that the problem was an 
ideal candidate for a graphics approach.

The program is concerned with the layout of high density 
housing sites. Once various details of the site have been fed 

to the computer as input data, a random number program selects 

the type (flat or maisonette), location and orientation of a 
new dwelling. A series of tests relating to this new dwelling and 
those already in existence is conducted to ensure that certain 

design criteria are satisfied. When the desired density for the 
site has been reached by repeating the selection and acceptance 
or rejection process, a variety of outputs can be obtained

tThe author worked on this program for several months with 
Dr. G.A. Butlin and the architect Boyd Auger.
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including hard copy plots of the completed site.

The program is based on the use of list-processing techniques 
and the data structure is described.

Organisation of the program

Location of dwellings is carried out by positioning them on 

a 99 X 99 square grid where the grid size must be large enough 
for the area to encompass the whole site. Coordinate axes x 

and y are chosen along two adjacent sides of the grid system.
On the grid are plotted "pads”, where a pad is a square of grids 
into which will fit any of the dwelling types to be used in the 
development. The number of grids defining the pad size may be 
varied. The pad is assumed glazed on two opposite sides and can 
have either of two orientations, xx or yy. It may also have one 
or two storeys (flat or maisonette).

As part of the input data, the designer specifies which 
areas of the 99 x 99 grid may be used in the positioning process. 
Existing roads, dwellings and areas outside the site boundary, 
but inside the grid area, are regions where new dwellings may 

not be located. Another grid system is used to specify the 
variations in height of the site.

An X and y coordinate value, measured in grids, is selected 
by a random number which also specifies the orientation (xx or yy) 

and type (1 or 2 storey) of a new pad. These last two properties 
may bo varied by weighting factors, entered as input data, the 
two extremes being all flats or all maisonettes, and all ^x 
or all yy orientations.
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As each new pad location is assigned, three basic tests are 

conducted corresponding to three architectural design criteria.

These criteria are a measure of:

(a) The distances between the windows of different dwellings to 

test that these are greater than a minimum figure required for 
privacy.
(b) The amount of daylight falling on each glazed side of the 

pads.
(c) The number of hours of sunlight falling on the living room 
facade during ten months of the year.
If any of the calculated figures fall below a minimum specified
in the input data, the proposed new pad location is rejected.
Once a pad has been accepted it is added to the data structure 
and the process is repeated. Checks (b) and (c) involve calculating 
the skyline shape as seen from the windows of the dwellings.
Any random choice which results in a new pad landing within a 

specified zone around an existing pad results in the new pad being

placed on top of the old one. The size of this zone is part
of the input data, and can be varied to encourage the ^growth” 
of tower blocks. If this addition to an existing block causes 
the maximum allowable block height (again part of the input) 

to be exceeded, the new pad is left in its selected position 

and checked in the normal way.

Under certain circumstances, the orientation of the pad 
is switched if a pad fails a test, and it is rechecked.

The order in which the various criteria are checked is as 
follows :
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(1) For each new pad, calculate which existing pads are close 

enough to be tested for the various criteria and set a
check parameter to indicate this for each of the existing pads,

(2) Check the privacy distance.
(3) Calculate the shape of the skyline from the windows of the

new pad and perform checks (b) and (c)

(4) Add to the skylines for the existing pads the effects of the

new one and perform checks (b) and (c) for each of them.

Checks (2) and (3) are only performed if the new pad is 
on the ground, otherwise it will be on top of a ground pad 
which has already been appropriately checked.

Data structure

Because the situation is constantly changing as the site 
develops, the BAID program data can be very conveniently 
organised using list-processing techniques. Figure 7.1 shows the 

contents of a bead containing the data for each pad. A pad 
bead can exist on three possible lists. These lists are:
(1) a list of all pads, used for various search operations, and 

for plotting and printing data about the completed site,
(2) a list of ground pads used to check skyJ.ines of existing 

ground pads when a new one is added,
(3) a list of roof pads used to construct the shape of the skyline,

Pointers used to construct these lists are held in the first 
three components of the pad bead. A pad which is sandwic'^ed 
between a ground and roof pad, termed a middle pad, will only 
exist on the list of all pads.
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The last component of the pad bead points to another bead, 

that containing the skyline data. This is only present in the 
case of ground pads and is not allocated if a new pad is placed 
on top of some existing block. The skyline data is packed, 

four values per word. The other components of the bead are 

defined in Figure 7.1.
When a pad has been checked and has passed the specified 

tests, its bead is added to the data structure by updating the 
pointers to link it to the appropriate lists.

Interactive aspects of the program

Although there ai-e both batch and interactive versions of 
the BAID program, it was developed originally using graphical 
display equipment. The logic used in the program is of such 
complexity that the use of the C.R.T. for debugging operations 
clearly had particular value. An axonometric plot of the site 
is displayed during development.

Interaction via the display console

Interactive facilities within the program enable the user to:

(1) Interrupt the random selection of pad properties and to specify 
particular locations, orientations and types for pads using 

the lightpen and function keys,

(2) Using the lightpen, to select a dwelling and display the 

skyline as seen from its window (this can only be done for 
ground pads). Figure 7.2 shows a photograph of the display 

screen showing the axonometric site plot and three skylines.
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The three views correspond to positions at the left-hand 

side, centre and right-hand side of the chosen window. The 

box in which each skyline is depicted represents the limits 
of the view from the window as defined for the purposes of 

the tests.

(3) Change the scale of the displayed picture and also rotate it.
(4) Request a hard-copy plot of the picture displayed on the C.R.T,

Features (1) and (2) proved to be invaluable as an aid to 
debugging, enabling extreme cases for each test to be tried 
rapidly, and for quick visual assessment of the calculated values 
in each of the tests.

The amount of output printed on a line printer can be 
varied by setting sense switches during the running of the 
program.

Output

Three separate forms of output are available: printed 

information from a line-printer, plots of plan, axonometric or 
section views, and punched paper tape. Each form of output is 

optional and may be specified with the input data. The requested 
information is printed when either the site density is achieved 

or a specified time limit exceeded. Figure 7.3 shows a plan and 
axonometric plot for a partially developed site.

Extensions to the graphics version.

The aim of the program is not to automate the process of 
design, but to produce complex and original arrangements which
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will be assessed by the user. Because of the complexity of the 

tests conducted, without the aid of the computer there is a 

tendency for the designer to produce small groupings of dwellings 
and to repeat these groupings over the site area. The BAID program 

allows the designer to obtain a series of suggestions, which 

satisfy the design criteria. From these, he can select and 
"freeze” areas for re-entry as input data, allowing the remainder 
of the site to develop in a random fashion.

Using the graphics console, these frozen areas could be 
specified on-line, using a quadrilateral device similar to that 
incorporated in the LUISA system described in Chapter 5. The 

parts of the data structure corresponding to the frozen areas 
could be isolated.

The controlling values for the various tests are variables 
which the user can modify, and variation of these on-line 
would enable an assessment of the importance of each test in 

relation to a given site.

Another use of the program is to assess possible site 
densities for a given plot of land. If the architect so desires, 
he may design a site in the traditional manner and feed details 
of his layout into the BAID program to check the criteria.

Experience of designing the BAID program

Unlike the other applications described in this thesis, the 
scope of the BAID program was completely decided before the 

design process began. As a result of this, the entire system 
was flow-charted before any development or debugging was performed
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on the computer. The system was implemented ii. modular form 

with each of the test and other operations existing as separate 

subprograms, allowing easy modification during debugging. The 

language used was Fortran, apart from two assembly code 

routines for number packing. The data structure routines 
are mentioned in Appendix B.
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Chapter 8

Data generation, for Three-Dimensional Finite Element 
Analysis

Introduction

The LUISA system described in Chapter 5 was developed 
to enable two-dimensional finite element analyses to be 
tackled using a graphics console. At that time it seemed 
likely, from a structural viewpoint, that an extension of 
the data structure used for two dimensions would suffice 
for three dimensions, but this view has been modified in 
the light of various display and interactive programming 
problems.

A description is given of the data to be generated 
using the system. It is shown that the data needs to be 
segmented in some manner and that this can be achieved by 
paging the data structure. The difficulties of using a paging 
scheme in an interactive program are put forward. This is 
followed by a description of a paging scheme which has been 
implemented on an I.C.L. 4150 computer in an attempt to 
overcome some of these difficulties. This is backed up by 
some test results. The implementation of the problem data 
structure using the paging scheme is explained, bearing in 
mind that response times must be kept small. Some discussion 
is devoted to software required for the representation of
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the three-dimensional structures.
The Chapter concludes by outlining future plans for 

linking the data generation system with analysis programs.

The data to be generated
The basic data needed by the analysis are much the 

same as those required in LUISA, extended to three dimensions 
Little work has been done in this areas Three-dimensional 
systems based on the use of Coons* patches (Coons 
Armit^^^))* have not been designed with analysis in mind, 
and the Coons* patch approach involves a different form of 
representation from traditional finite element procedure.
Some work has been done on representation of surfaces using 
a formulation based on finite element functions, but again 
there is no provision for the requirements of analysis 
programs (Throsby^^^)).

Three-dimensional bodies to be included can be grouped 
under the headings of shells and solids. The data needed 
in each group are slightly different depending on the type 
of element used. The form of this data, however, can be 
specified and generally involves the definition of a set 
of nodes and assignment of various parameter values 
associated with each node. A reference is given to an 
introductory book on finite element theory which outlines

* Also the Numerical Master Geometry system implemented 
by the British Aircraft Corporation.
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the organization of this data more fully, for conventional 
analysis ( Z i e n k i f c ' x c z .

For the designed system it has proved possible to employ 
a standard data structure, much like that used in LUISA 
but made more compact in the light of experience and with 
8@me modifications made to allow for segmentation. A variety 
of sub-systems are being evolved for the handling of 
different types of shell and solid structures, but the 
overall system organization described here applies to each 
of these types.

In each group the required data includes a list of 
coordinates of nodes and a list of elements and their nodes. 
These fix the mesh shape, the coordinates being specified 
relative to some global set of axes. For shell structures 
additional data are required to specify the shape, including 
various derivatives to define shape functions. These shape 
functions are polynomials which describe the geometry of 
curved shell elements.

In addition, vectors of applied loads and displacements 
nust be entered, and the system has been designed so that 
these can also be prepared using the graphical display.
The description which follows relates to the topological 
and geometric data, because the loads and displacements do 
not require a complex storage method (ordinary Fortran 
vectors are adequate).

The data must be stored in some structured manner in 
order to perform a variety of modifications to the
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topology and geometry of the components to be analysed. 
Moving a node, for example, involves updating any elements 
to which this node is common and these links are modelled 
by pointers in the data structure. For most finite element

A/
problems the quaj[bities of data are large, and if the 
topology is to be represented in the manner needed for 
design using a graphical display there is usually 
insufficient core space to store this data. Thus some 
scheme for segmenting the data, making use of secondary 
storage, is unavoidable.

Correspondence between the physical structure and 
the data structure

In order to determine the best way of segmenting the 
data structure a study was made of the quantities of data 
involved in typical problems using the IÜISA data structure. 
However, the data structure described in Chapter 5 can be 
considerably reduced in size (LUISA was designed to permit 
analysis as well as data generation). When this is taken 
into account, the element data bead requires 7 words, the 
node bead 10 words and the boundary bead 4 words. These 
figures are for a full three-dimensional structure, but 
assuming that components are linked by nodes not by 
boundaries as in LUISA. No allowance has been made to 
include surfaces as separate entities because these can be 
defined in terms of nodal parameters from which the
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boundary shapes can be calculated and displayed.
Experience gained from LUISA indicated that a data 

structure which allows deletion of elements as well as 
geometry modifications should include duplication of the 
data describing linked nodes and boundaries. This duplication 
is removed before performing the analysis by "assembling 
the structure". This operation is accompanied by the formation 
of the structural stiffness matrix for the assembly. To 
distinguish between the cwo states, the initial structure 
will be termed the linked data structure, and the other 
the composed data structure.

Using the above figures for the lengths of the beads in 
the data structure, the following space requirements can 
be calculated for the linked data structure. The size of 
problem chosen is a structure with 400 finite elements.
The analysis of a bridgedeck is an example of a problem of 
this size. The space per element is found by multiplying 
the bead sizes by the number of nodes and boundaries for 
the element type. For a parallelepiped with 8 nodes and 
12 boundaries the space needed is

7 + 8*10 + 12*4 = 135 words.
For 400 elements the number of words needed is therefore 
5<,000.

Because the associations between data in finite element 
problems exist between beads describing physically adjacent 
pieces of engineering structure, some correspodence between
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physical sub-structuring and data structure segmentation 
has been attempted. The size of a physical sub-structure 
is, of course, determined by the core space available for 
storing the data in structured form. It should be emphasized 
that the use of sub-structures is very important in large 
analyses in two ways. Firstly, the total problem can be 
broken into manageable units which are sensible to the 
design engineer. This provides a means for segmenting a 
large data structure. Secondly, during the design and analysis 
process it may be necessary to change a part of the design. 
This often only requires a re-analysis of the appropriate 
sub-structure instead of a large computation involving the 
total structure. It is important, therefore, that the scheme 
chosen for implementing the data structure allows for the 
incorporation of physical sub-structuring.

The segmentation of the data structure is achieved by 
paging the available core and disc s p a c e ^ .
Paging was chosen because it provides a solution to handling 
all the data in the same general way. The alternative would 
be a filing scheme written specially which would not provide 
this generality. Because of the highly interactive nature 
of the data generation system, and of graphics programs in 
general, the choice of paging scheme had to be made with 
some care to prevent excessive page swapping. This could 
have a drastic effect on response times.,A study of some 
paging schemes developed e l s e w h e r e r e v e a l e d
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that changes could be made to improve their performance for 
particular types of problem, as is discussed below.

Paging schemes for list data structures

1 major difficulty with the paging of list data structures 
is that if the space allocation is performed automatically 
a given list may spread over several pages. Operations 
which involve searching lists may therefore result in a 
reduction in efficiency due to page swapping. Page size is 
a factor which affects this situation. Usually some 
assignment of priorities to different pages can also help 
to alleviate this problem.

With small pages it is possible, for some applications, 
to hold in core all those pages required for the operation 
in hand. This allows easy handling of the total structure 
by keeping relevant sections of lists in core together.

In a survey paper on demand paging, Kuehner and Randell 
discuss the paging of both program code and data, and 

it is in this area that most work appears to have been 
done. Different strategies may be applied to the control 
of page swapping, particularly with regard to the choice 
of pages to be swapped. The prediction of page requests is 
a subject which has received much attention^^®^(Joseph^^^^), 
but the results of this work cannot be readily applied to 
interactive programs. In such programs foreknowledge of 
page requests may not be available because the data structure 
can change dynamically. Program code is different in that
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usually it does not change once compiled and algorithms can 
he devised to transfer to core (autonomously) those pages 
which may he called hy the one currently being processed.

Some systems have been developed which deal specifically 
with paging of list data structures (Bobrow and Murphy 
Oohen^^^)), but these systems do not relate directly to 
interactive situations in which response times figure 
prominently.

Priorities are assigned to pages to determine which page 
is replaced by a new one being swapped into core. Cohen 
has maintained that the priority should correspond to the 
time of inactivity of a page. That is, the page which has 
been in core for the greatest time without being referenced 
should be the one replaced. Another criterion is to assign 
a priority related to the number of references made to a 
page while it has been in core.

Bobrow and M u r p h y p r e s e n t  an algorithm which is 
designed to group lists on a single page with a consequent 
reduction in page swapping. This is a useful feature for 
an automatic system to possess, but is no more efficient 
in cases where the page boundary is crossed by a number of 
pointers. This is a situation which is seldom avoidable 
and which can only be improved by relating the allocation 
of space to the problem in hand.

The scheme described below has been designed with this 
difficulty in mind and allows the application program to 
control space allocation by arranging that each page is a 
separate free-storage zone in which beads may be allocated 
for data storage. This also overcomes some of the problems 
which occur with garbage c o l l e c t i o n s i n c e  this is done 
separately for each page.
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It must be emphasized that the scheme has been designed 
with the long term aim of running it on a medium sized 
machine without raulti<-.programming. Most of the available 
references relate to larger computer systems where many 
more factors must be taken into account, and where it may 
be less efficient (in an overall sense) to use a paging 
scheme with a high degree of programmer control. In such 
systems the time-sharing supervisor must control the 
swapping of programs and data, and a paging scheme which
will operate efficiently in conjunction with this is

(n e c e s s a r y H o w e v e r ,  some of the general difficulties 
of paging apply equally to a dedicated computer system.

Description of the paging scheme developed on 
the I.C.L. 4130 computer

The scheme uses a random-access file for storage of 
pages on disc and an array for working space in core.
Word transfers can only be made from ar to the start of a 
disc sector (64 words) and page sizes are an integral 
number of sectors. Pages are of variable length and may be 
extended if desired. Although pages may be of any size which 
is a multiple of 64 words (subject to them fitting into 
the assigned array in core), the data generation system 
will make use of large pages for storage of structural 
analysis data (typically 5K words). Such a size of page 
is adequate for the storage of complete sub-structures 
(for example it will accommodate 37 parallelepiped 
elements with a linked data structure). This enables a 
sub-structure to be defined by the fact that it is contained 
in a8ingle page, and connections between sub-structures 
to be represented by pointers which traverse the page 
boundaries. This is a major reason for choosing a large 
page size.
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One general disadvantage of a large page, mentioned by 
Kuehner and Randell, is that considerable unwanted quantities 
of data may be transferred to core when a page is needed.
With the described scheme, those items of data which are 
most closely related are grouped, as far as is possible, 
on one page. Thus, although the requested data may be only 
a fraction of the page content, the next operation will 
very likely be performed on some related item in the same 
page.

Different classes of data can be identified, depending 
on the time taken to process them. For example, messages 
stored as character strings take very littD.e time to output 
but an engineering component may take some time to draw 
because its description must be extracted from a complex 
data structure. Thus, in some senses, the engineering 
component data is of higher priority than the message data.
It would be unwise to arrange that a page of message data, 
of low priority, replaced a page of structural data which is 
of higher priority. This is overcome by assigning a 
class number when a page is allocated. Pages with different 
class numbers are loaded into separate areas of the array 
in core. The class number may be changed if desired, but 
only a limited number of different classes should be 
defined, depending on the size of the array used for paging 
and the size of page to be accommodated in a given class.

Within a given class, pages are loaded one behind 
another into the appropriate class area in core, when they 
are requested. When no space remains in the class area the 
process begins again from the bottom of the area. Any pages 
in that class which have been updated since being 
fetched into core are written back to disc before being 
overwritten in core. This "end around" storage procedure
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makes the management of the core space very straightforward, 
If the application program is designed to group together 
references to a particular page, then the criterion 
approximates closely to the time of inactivity used hy 
Cohen»

The algorithms which control the paging are written 
in Fortran and assembly code, hut all the routines are 
callable from Fortran. Because of this the Fortran 
programmer can administer any part of the control of paging 
if he wishes. The routines will automatically update the 
administrative data used by the scheme.

Administrative information is held in three COMMON 
areas, these are:

(1) A page directory,
(2) A class directory,
(3) A free space map for the disc file.

The page directory contains the following information
for each page :

(a) The class number,
(b) The disc address,
(c) The core address (-ve if the page is 

not in core),
(d) An eight character Alphanumeric name 

(optional),
(e) The length of the page,
(f) Aflag to indicate whether the p&ge 

has been updated since being fetched 
into core.

The class directory contains for each class:
(a) The lower limit array index for the 

class area.
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(b) The upper lirait array index for the 
class area,

(c) A pointer to the start of the free area.
The free space map is arranged as a list of beads each

containing the address and length of free areas on the 
disc. Free areas are created when pages are deleted or 
extended. When there are twenty such spaces, or if no free
area is large enough to allocate a new page, the disc file
is re-ordered to move the spaces to the end of the file.
A problem with software paging is the need to use modified 
addressing for each item in a page, allowing for the 
position of the page in core. In the scheme described this 
is normally performed by checking the page directory, and 
trapping requests for pages not in core. A significant 
improvement can be gained if the application programmer 
wishes to make many successive accesses to one page. After 
ensuring that the page is in core, the position may be 
determined once and used to reference the page consents 
without trapping every access.

Results of tests with the paging scheme

Figure 8.1 shows a table of average swap times for a 
variety of page sizes. These times were obtained from 
test runs and they include updating of the directories.

The results show that there is little difference in 
the time to swap a 64 word page from that required for a 
5K word page. The scheme appears unfortunately slow and 
this is attributed to two factors:
(1) The computer has moving head discs. During the tests, 
the read/wl*ite heads were observed to move across about 
30 cylinders of the disc per access, requiring 120 msec.
The heads are repositioned at the start of the file prior



to each access hy the assembly level filing routines.
Thus the actual disc access time is increased to an average 
of 240 msec, for each transfer.
(2) The scheme is written mainly in Fortren, It is 
therefore considerably less efficient than if it had been 
written entirely at a lower level. The availability on the 
4130 of extra fast registers and the ability to use fixed 
locations would remove the need to pass large numbers of 
parameters between the routines as arguments. Fixed locations 
were not used because it was not clear at that time how the 
operating system moves programs around the core when 
multiprogramming* The scheme would make use of fixed 
locations on a dedicated computer.

In order to assess the suitability of the developed 
scheme for the data generation system, the way in which 
it would be used must be examined.

A_ complete sub-structure can be accommodated in one
5K page. Manipulation of such a sub-structure involves
no swapping. An important time is the period required to
change from one sub-structure to another. If only a small

are
page size is used, many page swaps necessary, and 
alternatively if only one page of 5K is used, only one 
swap is needed. Figure 8.2 shows a graph of time to swap 
to a new sub-structure plotted against page size. The two 
extremes obtained were 34 seconds for a 64 word page and 
0.6 second for a 5K page. The latter is an acceptable 
speed for the application program, subject to special 
provision being made for the handling of boundaries 
between sub-structures. The difference in times is another 
incentive to use a large page for structural data.
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The data structure for the data generation system

The data structure contains three basic types of bead. 
These are;
(1) An element bead containing information about a single 
finite element of the linked data structure, or collection 
of elements after assembly.
(2) A node bead containing information about the node, 
including its coordinates and a pointer on a list of 
connected nodes.
(3) A boundary bead containing pointers to end nodes.

Figure 8.3 shows the contents of these beads in more
detail.

Joining of elements is achieved by linking nodes.
Node beads corresponding to these links are put on lists to
indicate which other nodes they are connected to. A node
can only exist on one such list. Different substructures
are held in separate pages, so that requests for node
information contained in other substructures ^a.n be trapped
by examining the node pointer. In this way the links between
separate substructures can be handled differently to avoid
excessive page swapping.

When a change is made to the boundary of a sub­
is

structure, an updating list constructed for each reference 
to pages not in core. The updating list contains a pointer 
to all affected locations and their new values. When a 
new substructure is brought into core, the updating list 
is scanned and the new values are inserted in the data 
structure. Only one update per location is permitted on 
the list, to avoid ambiguity.

Linking of substructures is performed using another 
list which contains linking information (i.e. pointers to
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linked nodes)• Affected pages are brought into store one 
at a time and the list information is used to insert 
pointers in the node beads to place them on the linked 
node list.

The representation of the three-dimensional elements

The usual problems of visualization arise and a variety 
of techniques and conventions are necessary to prevent 
these from leading to serious limitations on the types of 
structure which can be handled. Fewer problems are apparent 
with shell analyses than with solids, but in both cases 
some common software needs can be identified. A major 
requirement is a package of display programs capable of 
treating the display as a three-dimensional device. 
Particularly important is a three-dimensional clipping 
program for performing windowing. The major use of this will 
be for removing unwanted detail in the Z coordinate 
direction (normal to the display screen), thereby providing, 
as far as is practicable, a user-oriented hidden line 
removal feature.

A rotation program is included to enable selection of 
the most convenient view of a structure. Rotation achieved 
by software has the advantage over hardware that various 
axes of rotation can be selected.

It will be possible to assign a visibility level to 
each displayed element. This enables different elements to 
have a variety of brightnesses including an invisible 
state. Such a procedure allows dimming internal boundaries 
of a structure to distiguish them from its external 
surfaces (in the case of solids).
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Manipulation of the structures

The definition of structures needs p variety of programs 
for assignment of parameter values# For shell problems one 
way of working is to distort initially flat sheets of 
elements to conform to the surface which it is desired to 
represent. It is possible to formulate this procedure 
using finite element theory and some results are available 
from work already performed in this field (Throsby^^^^).
The resulting parameter values are those needed to define 
the shape functions already mentioned.

For solid problems the most promising approach appears 
to be the distortion of blocks of elements to represent 
the desired component. It is particularly important to 
employ three-dimensional windowing for this purpose. The 
display file only contains information about displayed 
items inside the window* Modifications are performed 
on the application data,from which the displaf file is 
compiled,Thus any items related to those being changed are 
updated although they are not/displayed.

For communicating with the digital model via the displayed 
picture a number of devices can be used. These include the 
pseudo tracking-cross of the TBD system and the quadrilateral 
device from LUIS/. In addition a "spider” device will be 
implemented. The "spider” is an extension of the pseudo 
cross concept with the additional restriction that the 
cross is confinea to move on a mathematically defined 
surface (e.g. a cylinder). Thus for shell problems, it 
will be possible to modify mesh shapes whilst ensuring that 
the shape is accurately represented. Stereo views of the 
constructed components may eventually be made available 
as an option. This is easily organized when using homogeneous
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coordinates by assigning appropriate values to the terms 
of the transformation matrix and calling the display 
program twice. The pseudo cross and spider devices can 
be programmed to appear in each image. These devices 
operate with respect to the local coordinate systems for 
individual substructures, which can simplify some of the 
coordinate transformations needed. This kind of use of 
local coordinate systems is to be found in the APT 
language

Requirements for interfacing to analysis routines

The method to be adopted for interfacing with the 
analysis routines has recently been implemented and tested 
in the LUISA system • Because the LUISA system has shown 
the feasibility of separating the tasks of data generation 
and analysis, the interface is not discussed in detail. 
However a. brief description of the interface is given below.

In each node bead is stored a global node number. This 
number identifies the position of the data for that node 
in the vectors and matrices used in the analysis. These 
vectors and matrices include the applied loads and 
displacements and nodal stiffness matrix for the structure. 
The same relationship, using global node numbers, allows 
the results of the analysis to be associated with the 
described data structure, permitting the display of 
displacements and stresses on the graphical display. Thus 
the system provides for the viewing of the results as well

*This is a development beyond the early system design 
described in Chapter 5.
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as data generation facilities for input.
Because of the straightforward manner in which the 

interface is achieved, the analysis program can he run as 
a separate hatch program, either locally or on a larger 
remote computer to which the local machine is connected as 
a satellite.
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CHAPTER 9

GENERAL DISCUSSION

The design of interactive system software is a task requiring 

much effort. Several factors contribute to the existence of this 

state of affairs, one of these being the problem of software 
transferability. One estimate has stated that only about two 

percent of programs are transferable between different computers 
because of alternative internal machine organisation. Another 
contributary factor is the lack of acceptable low-level 
software and knowledge of techniques for graphical communication 
and data structuring. Much expertise has been gained ih these 
areas by many research groups working with computer graphics, 
but the results of such research are often not readily available 
in a form suitable for use with application programs.

One means of gaining this knowledge and identifying the

necessary software is to study a variety of applications. Three
application systems are presented in this thesis and from them

several common features have been isolated. General purpose

software has been designed to set up and use messages, light-
(23)buttons and data structures . Filing schemes are being 

developed to simplify the transfer of application data to disc* 
drum or magnetic tape. It is important to emphasise that the 

common features are being found by studying and implementing 

trial application systems . Provision of general packages

+A Computer Applications Workshop is in progress at Leicester 
University where industrial knowledge of applications is being 
combined with University research to identify common software needs
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can be made without reference to the applications, as with some 

manufacturers’ software* but the accompanying restrictions often 

result in such facilities being ignored by application programmers.
At the other end of the spectrum, if the general programs are not 
provided, each application programmer will implement his own 

programs for file handling and other tasks, with consequent 

duplication of effort and absence of compatibility between programs 

on the same computer.
General low-level software packages should be provided for three-

dimensional work with displays. In particular, it would be
valuable to be able to treat the display as a three-dimensional
output device by specifying three coordinates to the display routines

"t*instead of just two . If the application is concerned with a three- 
dimensional problem it should not be the concern of the programmer 
to have to produce a two-dimensional projection for display 
purposes.

A major area of interest to application programmers is data 
structure design. From the applications presented it has been 
concluded that a pointer structure (plex structure in AED 
terminology^offers the most flexible approach to designing 
data structures which are entirely core-resident. Such structures 

do carry the overhead of space needed to store the pointers, but 
this is a necessary compromise for interactive programming.

Software packages should be of sufficiently low level of 

implementation to be efficient without being too restrictive.
There is a danger that the lowest common denominator of common

t (25)Available with GINO used by Cambridge University C.A.D. 
Group.
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features is very small. Data structuring facilities can be

included in a language compiler^, but if the structured information
is larger than the core space available a number of problems

arise. It was as a result of these problems that paging schemes
were developed based on a virtual memory concept. General,

automatic paging schemes for data, however, create such poor response

times, if many page swaps are needed, that they are impracticable
for highly interactive systems. It is essential, if these
problems are to be overcome, that some control of page allocation
and content definition is assigned to the application programmer.
Programs should be arranged to keep page swapping to a minimum
or, at least, to make the user aware of any page swaps he may
incur by issuing a request at a particular stage of analysis.

hai bjxA.<v
A scheme of this type ins for the system outlined in
Chapter 8* fedt a* iesr vpstsf dapeedamt».

Until general solutions which can be implemented in an
acceptable manner for use by applications systems, at a low level
for the sake of efficiency, can be found good progress can be

ttmade by using Fortran level packages for data structuring , as 
in the application systems described.

General paging schemes for data may be suitable for interactive 

programs operated from a teletype console, where computation takes 

place in a series of discreet steps. Such programs can run 
adequately under a time-sharing operating system where processor 
time is allocated to the user in slices. Bigger machines having 
a time-sharing system capable of supporting a large number of 

teletype users often provide for paging of data.

t (24)As in the AED-0 progranming language
ttSee Appendix B.
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If enough processor attention can be devoted to the display, 

various devices can be used to aid the man-computer communication 
process . These devices provide the means to manipulate models 

in a flexible and dynamic fashion. The devices amount to a set 

of control mechanisms, and their use can be likened to the function 
of a steering wheel in a car, where the amount by which the wheel 
is turned is gauged in terms of the car's response. In this way, 

the response of a physical system can be linked with the variation 
of some input parameter enabling insight into the behaviour of the 

model to be gained. A simple linear movement of a tracking symbol 
can, for example, be transformed into a complex variation in the 

shape of a mathematically defined surface.
Provided the behaviour of the digital model is well understood, 

less sophisticated techniques of communication will suffice 
and, with the exception of dynamics problems, for many applications 
the facilities offered by a storage tube and teletype are 

adequate . In other areas, and in particular in some finite 

element analyses, the problems are not well understood and the 
ability to probe using flexible communication techniques is very 
valuable.

Although advances in hardware are being made, it is desirable 

to search for the software solutions to the many problems which 
exist in the use of present computer graphics hardware. Many 

of the software solutions can then be transferred to various 
output devices and cheaper forms of hardware. For example,

^Examples are the pseudo tracking cross in Chapter 6 and the 
quadrilateral device used in the LUISA system (Chapter 5),
This would be true of one version of the BAID program described 

in Chapter 8.
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transformation routines and programs for three-dimensional work 

can be Implemented for dynamic graphics, storage tubes or digital 
plotters.

A modular approa h to software design is desirable from a
number of viewpoints. Breaking a problem into its component
parts enables their separate aspects to be individually studied,

allowing their different requirements to be satisfied. Modular
programming allows efficient overlaying of program code for large

systems. Development of program modules can proceed in a series
of well defined steps with each module tested and filed as the
system is implemented. The effort required for this process

must not be belittled and many changes will result as development
proceeds until the final system has evolved. A context editing
program is needed to make possible the modifications to the
system, particularly a modular system with many cross-references 

+between modules . This should be arranged to operate on source 
code files stored on disc, with the ability to compile and test- 

run the program when the desired changes have been made. For the 
sake of efficiency, an editing program of this type should be 

used in a time-sharing environment.
Graphics can fulfil a particularly useful role in the 

debugging of complex programs. Errors which would not normally * 

become evident from a numerical print-out are often brought to 
the attention of the programmer by the occurrence of alarmingly

*t*An example modification is to change the common blocks in a 
large number of Fortran subroutines. This is easily achieved 

with a context-editor which will locate each occurrence of the 
block and make the desired modification.
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distorted pictures. This aspect of using graphics was of 

significant value in developing the BAID program described in 

Chapter 7.
Dynamic and flexible communication using a variety of devices 

requires more processor time than simple teletype programs.

For some operations continuous attention is demanded, and this 

has led to an increasing tendency to use a small con^uter to 
handle interactions, and to connect it as a satellite to a larger 

machine for performing calculations.
There are two distinctly different approaches to using 

satellite computers. One is to situate the satellite adjacent 

to the main machine enabling a complex operating procedure to 
be operated with high data transfer rates. With such a 
configuration the satellite becomes a sophisticated peripheral 
whose main task is to service the display console. A different 
approach, gaining in popularity for economic reasons and because 
of a Shortage of suitable main computers, is to connect the 
computers over telephone lines. This configuration requires 
totally different concepts for dividing labour between the two 

machines with much more computing done at the satellite. 
Connection of machines over telephone lines is generally 
distinguished from the other configuration by describing it 

as remote satellite operation.
Suitably organised, many graphics programs only require a 

small or medium size of computer, of medium speed core cycle 

time (2ysec). A remote satellite machine with 32K words of core 
store (18 bit word length) and disc storage would provide

l>AMidL
adequate local computing power to make a 2400 band telephone line
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sufficiently fast for most applications of the type described. 

The cost of this hardware is within a range which makes it 
attractive to many industrial organisations, if its ability to 

solve realistic engineering problems can be demonstrated.
For a given computer configuration it is important that 

compatible packages of software are provided. With a satellite 

and main multi-access computer configuration used for the 
development of realistic engineering systems where large amounts 
of data must be handled, it is important to be able to access 

files in the main computer from the satellite.

It is undesirable that interactive requests are dealt with 
over the link, with a remote configuration. The response times 
are too large for such a procedure to be satisfactory. Ideally, 
programs should be organised to use the main computer for 
"number crunching" with data passed to and fro for interactive 
examination executed at the satellite.

Computer graphics has been an a>?ea of active research and 
development for more than ten years. During this period its 
potential as a design aid has always been recognised. Only now 

that the software problems are being tackled does it appear 

that this potential will be fulfilled.
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Chapter 10 

Gonolus.lon&

Eight main conclusions have been drawn from the 
work presented. They are;
1. Application software development requires a considerable 
and well directed effort» Two major reasons for this are a 
lack of suitable general purpose software for interactive 
programming, and a shortage of techniques for graphical 
communication and data structuring. Provision for both of 
these shortages must be related to the application programs 
to be tackled.
2. A number of common features can be identified for a 
cross section of application areas, and this has been done 
for the systems described in the thesis. Packages developed 
as a result of the investigations conducted include programs 
for organization of messages, lightbuttons, paging of data 
structures and file handling. These packages were extensively 
affected by the applications which use them.
3. Plex structures for data storage are very powerful 
but carry the overhead of the space needed to st^re the 
pointers. This is an acceptable restriction in the problems 
tackled because the advantages outweigh the inconvenience 
of performing the digital modelling in some other way.
(i.e. the algorithms can be designed more simply if space 
allocation and garbage collection are performed by a 
general package.) If backing store is to be used for 
larger problems, paging can provide a suitable mechanism 
for segmenting the data structure. Most paging schemes
are not sufficiently problem-oriented to provide an
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efficient solution to the difficulties of storing data 
in lists on secondary storage media. The paging scheme 
described in Chapter 8 overcomes some of the usual 
difficulties, and from test results appears satisfactory 
for the types of application discussed* Using the paging 
scheme, realistically large problems can be tackled in 
5K words of data space.
4. A variety of devices, provided by software, have been 
developed which permit implementation of dynamic techniques 
for graphical communication with a digital model. An example 
of such a device Is the pseudo tracking cross used for three- 
dimensional drawing, which could be equally well employed 
for communicating with stereo pairs. ProgranLning of these 
devices extends the range of operations which can be achieved 
with the lightpen. They are based on the two major functions 
of the lightpen of seeing and tracking.
5. Software solutions to various difficulties afe in 
many respects more attractive than hardware solutions. 
Software should be developed in modular form to permit 
easy extension of system capability and efficient over­
laying of program code in the core space available 
(large systems invariably require an overlay facility- 
LUISAl, for example, is too large for a 64K machine with 
24 bit words unless overlays are employed)• Development 
of such large programs could be boosted : significantly 
by an on-line context editing facility.
6. Disere0% representation of engineering components, 
as with the finite element method, is ideally suited to 
the organization of data in structured form in the computer 
store. Segmentation can be arranged to coincide with the
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division of an engineering component into substructures 
or sub-components. This provides an opportunity to v 
segment the data in an efficient manner such that response 
times are kept to a minimum,
7» Graphical representation has been of particular 
value during the debugging of some programs by avoiding the 
necessity to scan many sheets of output.
8. Programs of the type described could be efficiently 
implemented on a small computer connected as a . : • '
satellite to a large time-shared machine. With this 
configuration, the larger computer should be used for 
performing the analysis computations, but most of the data 
should be stored locally to achieve fast response times.
The performance of the satellite would depend on the 
provision of an overlay gdheme for program code and paging 
of data. A satellite computer with 32K words of 16 or18 
bits would be adequate for the applications described if 
overlaying and paging are available.
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ELEMENT BEAD

COMPONENT ItEPttESENTING

KTYPE
KNEXT
KTNON
KTNOB
KTNEL
KNOD
KBOD
KCOFEL
KGLX
KGLY
KORIE
KSCALE
KYMOD
KTNOP
KINDY
KFINCR
KFORCE
KDISP
KDINTV
KKMAT
KCMAT
KTMAT
KSTRES
KSINTV
KBSK

Type of bead
Pointer to next element
Number of nodes in this element
Number of boundaries in this element
Number of elements joined
Pointer to a ring of nodes
Pointer to a ring of boundaries
Code of first element of ring of elements
Global x-coordinate of element's local ori gin

R y  R R n R M

Global value of local axis orientation 
Scaling factor between local and global axes 
Young's modulus
Total number of parameters for this element 
Pointer to indicator vector INDV

" " force increment vector
" " Vector of forces
** " " " displacements
" " displacement interpretation vector
" " stiffness matrix for element
" " transformation matrix
M M  R M

" " vector of stresses
" " stress interpretation vector
^  ** back substitution matrix

FIGURE 5.5



NODE BEAD

COMPONENT REPRESENTING

KTYPE
KNEXT
KX
KY
KPEL
KNPRMT
KPCOMP
KPORIE
KSCOMP

Type of bead
Pointer to next bead on ring 
Local x-coordinate of node 
Local y-coordinate of node 
Pointer to parent element 
Number of parameters at this node 
Position in element parameter vector 
Parameter orientation w.r.t» local axes 
Position in element stress vector

BOUNDARY BEAD

COMPONENT REPRESENTING

KTYPE
KNEXT
KBN
KFN
KVISIB

Type of bead
Pointer to next bead on ring 
Pointer to back node for this boundary 

** ” forward " " * ”
Visibility level for this boundary

FIGURE 5.5
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OBJ

NEXT
XORIG
YORIG
ZORIG
ALPHA
BETA
GAPE'IA
SCALE
NVSRTS
HEDGES
WERT
LV3RT
F EDGE
LEDGE

}
Pointer to next bead

Y > global coordinates of origin of local axes
zj

Orientations of local axes w.r.t# global axes

Local scale for this object
Nnmber of vertices
Number of edges
Pointer to ring of vertices
Pointer to last vertex bead on ring
Pointer to ring of edges
Pointer to last bead on edge ring

VERT
NEXT
LAST

Pointer to next bead
Pointer to object
Pointer to preceding bead on ring

^Local coordinates of vertex 

y Global coordinates of vertex

y Display coordinates of vertex

EDGE
NEXT
OBJ
LAST
VERT1
VSRT2

Pointer to next bead
Pointer to object
Pointer to preceding bead
Pointer to vertex at end of this edge
Pointer to vertex at other end of this edge

SCENE
NOBJ
POBJ
LOBJ

Number of objects
Pointer to ring of objects
Pointer to last object bead on ring

FIGURE 6.4
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COMPONENT REPRESENTING

KP1ÜAL
KPADGR
KPADRF
KBNTIIP
KORENT
KSTOYS
KCHECK
KX
KY

KZ

KSKYLN

pointer to next bead on list of all pads
tf II n ff II If II g r o u n d  **

n n II n II II ii p O O f  ”

Number of floors below this pad 
Orientation of pad
Number of storeys (flat or maisonette) 
Code used by checking algorithms 
X-coordinate of pad
y  w m u

Z-coordinate of pad (absolute)

Pointer to skyline data for pad (if a
ground pad)

FIGURE 7.1



. ' J

This figure shows an axonometric display of
a housing site developing under control of
the BA ID program. Three skyline views are
displayed representing three viewpoints
from the window of one dwelling.

FIGURE.? 2
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PAGE SIZE 
(WORDS)

TIME TO SWAP PAGE 
(MSECS)

TIME TO SWAP A 
5K SUBSTRUCTURE 

(SECS)

64 425 34
128 425 17
256 425 8.5
640 425 3.4
IK 450 2.25
2K 550 1.65
3K 550 1.1
5K 600 0.6

FIGURE 8.1 TIME TO SWAP A PAGE AND
TIME TO SWAP A 5K SUBSTRUCTURE



Time (seconds)

Graph showing time to swap 
a complete substructure 
occupying 5K words for 
a variety of page sizes

9

8

7

6

5

4

3

2

1

0
0 IK 4K2K 5K

FIG 8.2 Page size (words)



Pointer to next bead
Bead type Display status
Number of nodes Number of elements
Pointer to nodes '
Pointer to boundaries
Pointer to transformation matrix
Pointer to stiffness matrix

Pointer to next* bead
Bead type Global node number
Local X coordinate
Local Y coordinate
Local Z coordinate
Pointer to parent element
Pointer on linked node list

ELEMENT
BEAD

NODE
BEAD

Pointer to next bead
Type of bead
Pointer to end of boundary
Pointer to other end of boundary

BOUNDARY
BEAD

FIGURE 8.3 DEFINITIONS OF BEAD CONTENTS
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APPENDIX A

Matrix algebra for LUISA system

The general matiix equation relating the vector of nodal 
force parameters {f} to nodal displacement parameters {6}is:

{f} = |K| {6} (1)

If forces f 1 are specified and f^ are those remaining 
unfixed the matrices may be partitioned to give

K1

M
K _ K ,
G O  0 1

K, K lo 11
w
IN (2)

From which 6.

= A6, - T «1 o (3)

and = Klo) «0

= (4)

The first term in equation (3), represents the effects

on displacements at those nodes where forces fi are applied ̂ 
due to their application. The second term, TG^, expresses the 
relationship between the displacements 5̂  and the displacements



at free nodes where neither force or displacement has been fixed. 
Equation (3) is the displacement-force relationship for the fixed 
nodes.

Equation (4) is tne force-displacement relationship for the 

nodes remaining free. The second term, Afj, represents the force 
increments stored in thé force increment vector FINCR.

The connection matrix referred to relates the parameters 
at one level of assembly to those at the level below. A simple 

connection matrix to represent one-dimensional displacements for 

the assembly shown in Figure B.l would be

«1 z 1 0 0 0

«2 0 1 0 0

«3 0 0 0 1
0 1 0 0

«5 0 0 1 0

*6 0 0 0 1 D



APPENDIX B

Basic software, and display organisation

In order to implement the system in Fortran a package 

of programs known as FRED (Fortran Routines for the Elliott 
Display) was used. The FRED package includes all the 
necessary routines for the three major aspects of display 
usage: basic administration operations, code generation 
routines for creating pictures, and control routines. It 

should be emphasised that these routines are for basic operations 
only, and interactive aspects of an application system are 
programmed using the FRED package as a tool.

Objects are drawn on the screen by creating code in a buffer
area, then inserting this code into the display file, which 
is an area of core store devoted to the display. The code contains 
formatted information about the picture to be drawn and is 
decoded and converted to analogue form by the display controller. 

The display file is scanned, and the picture redrawn, ten times 
per second. A block of code is termed an item, and has an
identifying number to allow subsequent referencing. It is usual
practice for items to correspond to complete picture elements, 

but the definition of a picture element rests with the programmer 
and is dependent on the application. Using the control routines, 
the machine can be programmed to await some action on the part 

of the user, including pressing of function keys and indicating 

items on the screen with the lightpen. If an item is seen by the 
lightpen (the lightpen having been enabled for this purpose), a



program returns the identifying number of the item. This can 

then be used to perform display file editing or to access other 

data, associated with the item,stored in the application data 

structure.

Three Fortran subprograms are Used to perform data structuring 
operations and the administration of free storage zones. The 
three routines enable various free storage zones to be defined, 

areas to be assigned within these zones for storing data 
(i.e. allocation of beads), and the returning of these areas to 

free store. The routines were provided by I.C.L. and are 
called OPEN, lALLOC, RETURN.
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1 .
TECHNIQUES FOR INTERACTIVE COMPUTER GRAPHICS 

Ph.D. THESIS SUMMARY - R.J. HUBBOLD

The work presented is concerned with investigations into 
the use of a refreshable graphical display for the solution of 
design and analysis problems in engineering. Effort has been 

devoted to the study and implementation of a variety of applications 
in an attempt to identify the most suitable techniques, form of 
program organization and hardware configuration for this type 
of equipment. General topics pertinent to these investigations, 
including data structuring, graphical communication and some 

general principles of software design* are discussed.
The applications which are presented are:

(a) LUISA, a system for finite element analysis of two-dimensional 
engineering structures,
(b) TDD, a set of programs for three-dimensional drawing, 

written to investigate a number of methods of communicating with 
a three-dimensional model,
(c) BAID, a program for aiding the architect with the design 
of high density housing layouts,
(d) An outline of a system for generating the data input for 
three-dimensional finite element analysis of solid and shell 
structures. A detailed description is included of a paging 
scheme used to segment the data structure.

The data structure employed and scope of facilities provided 

are described for each of the applications. Discrete representation 
of engineering components is shown to be ideally suited to the 
organization of data in structured form both in the computer core 
store and on secondary storage.

A description is given of some devices, provided by software 

and making use of the lightpen, which allow development of dynamic



2.

techniques for graphical communication with a digital model. A 
modular approach to software design is advocated, with advantage 
being taken of general packages, wherever possible, for administration 
of interaction handling and data organization.

Proposals are made about the re-arrangement of the applications 

dealt with in order to implement them on a remote satellite 

computer configuration* Suggestions are made about the size of 
such a configuration and the organization of software in the two 
machines.

March 1971


