A thesis
presented for the degree of

Doctor of Philosophy
in the

Faculty of Science
by

DONALD MALCOLM BRUCE

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U431612
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
\begin{aligned}
& \text { HeS } 15 \\
& 519218 \\
& 11277
\end{aligned}
$$

The experimental work described in this thesis was carried out by the author in the Department of Chemistry of the University of Leicester, between October 1971 and October 1974. The work has not been submitted, and is not currently being submitted for any other degree in this or any other university.

April 1976

Parts of this work have been published or are being submitted for publication as follows: "New Compounds of Rhenium : The Preparation and Crystal Structures of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}$ and $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-1}$, D.M.Bruce, J.H.Holloway and D.R.Russell : Chem.Comm.,(1973),321. "The Crystal and Molecular Structure of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ol}} \mathrm{ReF}_{5}$ ", "The Preparation and Crystal Structure of $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$". ibid., both to be submitted to J.Chem.Soc.(D). "Rhenium Carbonyl Fluorides; Preparation of Pentacarbonylmonofluororhenium and Preparation and Chemistry of Pentacarbonylmonofluororhenium-Rhenium Pentafluoride", D.M.Bruce, A.J.Hewitt, J.H.Holloway, R.D.Peacock and I.L.Wilson : submitted to J.Chem.Soc.(D), 1976.

Conference papers on parts of the work have also been read: D.M.Bruce, J.H.Holloway, R.D.Peacock and I.L.Wilson : 5th European Symposium on Fluorine Chemistry (Aviemore), 1974, abstract I.22.
D.M.Bruce, J.H.Holloway, et alia : reference 31.

FOR THE GLORY OF GOD

"When I consider Thy heavens, the work of Thy fingers, What is man that Thou art mindful of him?"
"Whatsoever God does endures for ever; nothing can be
added to it, nor anything taken from it; ,

God has made it so that man should fear before Him"

$$
\text { (From Psalm } 8 \text { and Ecclesiastes ch.3) }
$$

Acknowledgements
My deep thanks are due to my supervisor. Dr. John H. Holloway, for his guidance, help and encouragement throughout this work, both in the laboratory and outside. I am also indebted to Dr. David R. Russell for his help in the crystallographic sections.

I wish to express my gratitude to the Inorganic teaching staff of the Chemistry Department for many useful discussions, especially to Professor R.D. Peacock for his help to me in many ways during my time in Leicester, and also to my colleagues in the laboratory for their own inimitable contributions and assistance, notably to Drs. Boris Frlec and Gary Schrobilgen, Mr. Alan Hewitt, Mr. John Fawcett and Miss Gillian Warren. I am grateful to various members of the technical staff for their assistance, especially to Mrs. Diana Sutherland for her help and patience(b) in the running of the mass spectra. I am indebted to Mrs. Clare Wels for her patient work in preparing the typescript, to Mrs. Ann Crane for several of the drawings, and to the Science Research Council for a three year research studentship. 'Finally I would like to thank my parents for their unfailing support and love in all my endeavours.
"Let us not grow weary in well-doing, for in due season we shall reap, if we do notulose heart."

Paul's letter to the Galatians, ch.6, V.9.

ABSTRACT

Rhenium carbonyl reacts with three moles of XeF_{2} in Genetron 113 to produce the novel carbonyl fluoride-pentafluoride complex $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\left(\operatorname{ReF}_{5}\right.}$ This is decomposed to ReF_{6} by three further moles of XeF_{2}. The use of proportions intermediate between these gives only mixtures of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$
 used as the solvent, a similar process is indicated, but partial hydrolysis of HF solutions of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{E}} \mathrm{ReF}_{5}$ frequently occurred, to give $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$. No conclusive evidence for $\operatorname{Re}(\mathrm{CO})_{5} F$ was found.
$\operatorname{Re}_{2}(\mathrm{CO})_{10}$ also forms $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ with two moles of ReF $_{6}$, in $H F$ solution, but with four moles, the new, ionic 1:2 complex $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$is produced. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{TaF}_{5}$ and $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}$were produced by exchange reactions of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ with TaF_{5} and SbF_{5} respectively. The oxidation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ with AgF in acetone produced evidence for a new fluoride, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~F}$.

It was surmised that the maintenance of stable $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right.$) or $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$units governs the course of these fluorinations, and that, in general, carbonyl fluorides will only exist with certain, specific, stable units. Analogous units were proposed for other carbonyl fluoride systems, and a general progression for metal carbonyl fluorinations was established, through simple carbonyl fluoride to carbonyl fluoride-pentafluoride complex(es), and finally binary fluoride. The carbonyl fluoride-pentafluoride complex plays a fundamental role in these systems which has no parallel in other organometallic halides, although related complexes are known in a few cases.

Full X-ray crystal structures of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{C}} \mathrm{ReF}_{5}$ and $\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$were performed, and a partial investigation made of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-} \cdot \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{-R e F} 5$ is an essentially covalent, fluorine-bridged complex whose bond lengths are of value for comparing other fluorine-bridged interactions. Polymorphism is found in $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$. The α - phase has an ionic lattice, with a centrosymmetric anion. Anion-cation interactions in other $\left(M_{2} F_{11}\right)^{-}$structures were discussed.

CONTENTS

Page
Abstract v
List of Tables xiv
List of Figures and Plates xvii
Layout of the Thesis xix
Abbreviations xx
CHAPTER 1. : A Survey of Transition Metal Carbonyl 1
Fluoride work prior to this Study
1-1. The Early Neglect of the Field of Carbonyl Fluorides 2
1-2. The Problems of Applying Fluorine Chemistry to 3
an Organometallic System
1-2.1 The Problems of Fluorine as a Powerful Oxidant 4
1-2.2 The Moisture Sensitivity or Solvolysis of Carbonyl 4
Fluorides
1-2.3 The Difficulty in Finding Suitable Solvents 5
1-2.4 The Tendency to Produce Mixtures of Non-volatile 5Compounds
1-2.5 The Problems of Separating, Purifying and Char- 6 acterising the Products, Under Scrupulously Anhydrous Conditions, Possibly Without a Suitable Solvent
1-3. Carbonyl Fluoride Investigations by the Fluorine 6
Chemical Approach"
1-3.1 Early Work 6
1-3.2 The Use of Xenon Difiuoride with Metal Carbonyls 8
1-3.3 Other Preparative Attempts 9
CHAPTER 1. (cont.)
1-4. The Present Study - The Rhenium System 10
CHAPTER 2. : Results : The Fluorination of Rhenium 12
Carbonyl, and Related Chemistry
2-1. The Re $2(\mathrm{CO})_{10}$ XeF $_{2}$ /Genetron 113 System 13
2-1.1 General Description of the Reactions 13
2-1.2 Identification of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{FReF}} 5$ 15
2-1.3 The Reactions of Lower Stoicheiometries 18
2-1.4 Summary 20
2-2. The $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ /XeF $_{2} / \mathrm{HF}$ System 20
2-2.1 General Description of the System, and Discussion 20of 1:1 Reactions
2-2.2 1:3 and 1:5 Reactions : Identification of 22
$\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$
2-2.3 Summary of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ System 30
2-3. The Re_{2} (CO) $_{10}<\mathrm{ReF}_{6} / \mathrm{HF}$ System 31
2-3.1 General Description of the System, and Discussion 31
of 1:2 Reaction
2-3.2 The $1: 3$ Reaction and the Isolation of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)+$ 32 $\left(\operatorname{Re}_{2} F_{11}\right)^{-}$2-3.3 The 1:4 Reaction, and Identification of a Second32Modification of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
2-3.4 The Properties of α - and $\beta-\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$ 34
2-3.5 The Reaction of $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$with an 38
Excess of XeF_{2}

CHAPTER 2. (cont.)
2-4. Reactions of $\operatorname{Re}\left(\mathrm{CO}_{5} \mathrm{~F}_{-\mathrm{ReF}_{5}}\right.$ with Pentafluorides 43
$2-4.1 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{2} \mathrm{ReF}_{5}$ and TaF_{5}
$2-4 \cdot 2 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{2} \mathrm{ReF}_{5}$ and SbF_{5}

2-5. Reactions of Other Carbonyl Fluoride Systems 46
$2-5.1 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}+\mathrm{HF} \quad 46$
$2-5.2 \mathrm{Mn}_{2}(\mathrm{CO})_{10}+\mathrm{HF} \quad 46$
$2-5.3\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}+$ AgF/Acetone 47

CHAPTER 3.: DISCUSSION OF THE RHENIUM CARBONYL FLUORIDE 51 SYSTEM

3-1. The Re ${ }_{2}$ CO $_{10}$ XeF $_{2}$ System, and Its Analogues 52
3-1.1 Previous Reactions of Rhenium Carbonyl with the
Halogens 52
3-1.2 The $\operatorname{Re}_{2}(\mathrm{CO})_{10} /$ XeF $_{2} /$ Genetron 113 System 52
3-1.3 The $\mathrm{Re}_{2}(\mathrm{CO})_{10} \mathrm{JeF}_{2} / \mathrm{HF}$ System. 55
3-1.4 Comparison with the Results of O'Donnell; 55
Reformulation of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$
3-1.5 Interpretation of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2}$ Fluorinations 59
3-1.6 Concerning the Reaction Mechanism 66
3-1.7 The Use of Other Fluorinating Agents with $\operatorname{Re}_{2}(\mathrm{CO})_{10} 67$
3-1.8 Summary of Section 3-1. 68

3-2. The Re_{2} (CO) $_{10}$ /ReF $_{6} / \mathrm{HF}$ system 69
3-2.1 Introduction : the Significance of ReF_{6} : 69
Previous Reactions

3-2.2 The $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6} / \mathrm{HF}$ Reactions 70
3-2.3 The Mechanism of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$Formation 72
3-2.4 An Assessment of the Results of OiDonnell et alia. 77
$3-2.5$ The Hydrolysis of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{H}} \operatorname{ReF}_{5} \quad 78$
CHAPTER 3. (cont.)
3-2.6 A Review of the $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6}$ System and its 80 Analogues
3-3. Other Rhenium Carbonyl Fluoride Preparations 84
3-3.1 Carbonylation Reactions 84
3-3.2 Halogen Exchange and Related Reactions 85
3-3.3 Pentafluoride Group Exchange in $\operatorname{Re}(C O)_{5} F \cdot \operatorname{ReF}_{5}$ 86
3-4. Fundamental Units in Rhenium and Other Carbonyl 88
Fluoride Systems
3-4.1 The Fưndamental Rhenium Units 88
3-4.2 The Building Blocks Principle for Carbonyl Fluoride 91Formulae
3-4.3 Fundamental Units in Other Carbonyl Fluoride Systems 92
3-5. Discussion of the Metal Carbonyl Fluoride System and 96
Its Analogues
3-5.1 An Analysis of the Metal Carbonyl Fluoride System 96
3-5.2 The Suggested Means of Investigating a Carbonyl 97
Fluoride System
3-5.3 Metal Carbonyl Halide-Acceptor Halide Complexes of 100 Chlorine, Bromine and Iodine
3-5.4 Carbonyl and Dinitrogen Bridged Donor-Acceptor 106 Complexes
3-6. η^{5}-Cyclopentodienyl Iron Dicarbonyl Fluoride 109
3-7. Suggestions for Further Work on the Rhenium System 112
CHAPTER 4. : EXPERIMENTAL SECTION 114
4-1. General Techniques 115
4-1.1 Vacuum Systems 115
CHAPTER 4. (cont.)
4-1.2 Handling the Products 116
4-2. Analyses and Physical Measurements 117
4-2.1 Elemental Analyses 117
4-2.2 X-ray Powder Diffraction 118
4-2.3 Vibrational Spectra 118
4-2.4 Magnetic Resonance 119
4-2.5 Mass Spectra 119
4-2.6 Melting Points 120
4-3. Starting Materials and Solvents 120
4-3.1 Available Materials 120
4-3.2 Preparation of Starting Materials 121
4-4. Carbonyl Fluoride Preparations and Reactions 122
4-4.1 The $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} /$ Genetron 113 Reactions 122
4-4.2 The $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ Reactions 126
4-4.3 The $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{ReF}_{6} / \mathrm{HF}$ Reactions 129
4-4.4 Other HF System Reactions 130
4-4.5 $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}$ Preparation 132
CHAPTER 5. : CRYSTAL STRUCTURE DETERMINATION BY 133
X-RAY DIFFRACTION
5-1. X-ray Diffraction 134
5-2. Geometric Aspects 134
5-3. Reflection Intensities - the Structure Factor and 135the Phase Problem
5-4. Data Reduction 137
5ب5. Deducing a Trial Structure by the Heavy Atom Method 137
5-6. Structure Solution using a Difference Fourier 139
CHAPTER 5. (cont.)
5-7. Least Squares Refinement 139
5-8. Heavy Atom Location by the Patterson Method 141
5-9. Computer Programmes 142
CHAPTER 6. : THE CRYSTAL STRUCTURE OF Re(CO) O $_{5}$.ReF $_{5}$ 144
6-1. Obtaining the Geometric and Intensity Data 145
6-1.1 Mounting the Orange and Green Crystals 145
6-1.2 The Geometric Data 145
6-1.3 Intensity Data Collection 148
6-1.4 The Crỳstal Data 151
6-1.5 The Absorbtion Correction 151
6-2. The Structure Solution 152
6-2.1 Location of the Rhenium Atoms by Patterson Synthesis 152
6-2.2 Location of the Light Atoms, and Least Squares 155
Refinement
6-3. Discussion of the Structure 167
6-3.1 The Establishment of the Formula 167
6-3.2 The Molecular Units and Packing 167
6-3.3 The Detailed Geometry, and the Nature of the 168
$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF}_{5}$ Molecule
6-4. An Assessment of Fluorine-Bridging in Pentafluoride 175
Adducts
6-5. The Vibrational Spectra of $\operatorname{Re}(C O)_{5} \mathcal{F}^{-R_{2}} F_{5}$ 177
CHAPTER 7. : THE CRYSTAL STRUCTURE ${ }^{\circ}$ OF $\alpha-\left(R e(C O)_{6}\right)^{+}\left(R_{2} F_{11}\right)^{-}$ 183
7-1. Obtaining the Geometric and Intensity Data 184
7-1.1 The Geometric Data 184
CHAPTER 7. (cont.)
7-1.2 Intensity Data Collection 184
7-1.3 The Crystal Data 185
7-1.4 Absorbtion Correction 185
7-2. The Structure Solution 186
7-2.1 Location of the Rhenium Atoms by a Patterson 186
Synthesis
7-2.2 Location of the Light Atoms and Elucidation of the 188
Formula
7-2.3 Least Squares Refinement 189
7-3. Description of the Structure 191
7-3.1 The Unit Cell Arrangement 191
7-3.2 The Cation Geometry 197
7-3.3 The Anion Geometry and Comparison with Rhenium 198
Fluorides
7-3.4 A Comparison of the Bridging in $\left(M_{2} F_{11}\right)^{-}$Structures 199
and Related Species
7-3.5 The Chemical Significance of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$ 20.4
CHAPTER 8: Crystallographic Studies on $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}$ 205
8-1. The Geometric Data 206
8-2. Summarised Crystal Data; and the Formula Unit 206
Volume Fit
8-3. A Consideration of the Photographic Intensity Data 208
8-4. Diffractometer Intensity Data Collection 209
8-5. Attempted Structure Solution 210
EPILOGUE 211
APPENDIX 1. : Structure Amplitudes of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{F}} \cdot \operatorname{ReF}{ }_{5}$ 212
APPENDIX 2. : Structure Amplitudes of $\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$ 217
REFERENCES 220

LIST OF TABLES

Table
Section Page

CHAPTER 2.

$$
\begin{aligned}
& \text { 2.1 Infrared and Raman Spectra of } \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{L}} \cdot \mathrm{MF}_{5} \quad 2-1.2 \quad 16 \\
& (M=\operatorname{Re}, T a, A s) .
\end{aligned}
$$

2.2 The $\nu(M-F)$ Region of $\operatorname{Re}(\mathrm{CO})_{5} F \cdot \mathrm{MF}_{5}$ and 2-1.2 16
$\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \mathrm{MF}_{5}\right)_{2}$ Infrared Spectra
2.3 The Raman Spectrum of $\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}\right.$in 23 HF Solution
2.4 The Infrared Spectrum of $\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-} \quad 2-2.2 \quad 23\right.$
2.5 Mass Spectrum from $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}$at $200^{\circ} \mathrm{C} \quad 2-2.2 \quad 28$ $2.6 X$-ray Powder Pattern d-spacings for $\left(\operatorname{Re}(\operatorname{CO})_{6}\right)^{+} \quad 2-3.4 \quad 36$
$\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$and Related Compounds
2.7 Infrared Spectrum of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$and 2-3.4 37

Related Compounds
2.8 Vibrational Spectra of the $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-} / 2-3.5 \quad 39$ XeF $_{2} / \mathrm{HF}$ Product
2.9 Mass Spectra from the $\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-} / \mathrm{XeF}_{2} \quad 2-3.5 \quad 40\right.$ Product at $100^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$
2.10^{1} H N.M.R. Chemical Shifts (τ) of Protonated $2-5.3 \quad 48$
Metal Carbonyls
$2.11{ }^{1}$ H N.M.R. Chemical Shifts (τ) of the cp-ring 2-5.3 48
Protons in $\left.\mathrm{cpFe}_{(\mathrm{CO}}^{2}\right)_{2} X$ and Related Species
2.12 Infrared Spectra of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} X \quad 2-5.3 \quad 50$

CHAPTER 3.
3.1 Results of the $\operatorname{Re}_{2}(\mathrm{CO})_{10} /$ XeF $_{2} /$ Genetron $113 \quad 3-1.2 \quad 53$

Reactions

| 3.2 Results of the $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ /XeF $_{2} / \mathrm{HF}$ Reactions | $3-1.2$ | 53 |
| :--- | :--- | :--- | :--- |
| 3.3 Noble Gas Rule Rhenium Carbonyl Halide | $3-1.5$ | 63 |

CHAPTER 3. (cont.)
3.4 The Results of the $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6} / \mathrm{HF}$ Reactions $3-2.2 \quad 71$
3.5 Reactions of Metal Carbonyls with Metal 3-2.2 71

Hexafluorides
3.6 Summary of Rhenium Carbonyl Fluoride
Preparations
3.7 Predicted Basic Units in Carbonyl Fluoride 3-4.3 95 Systems

CHAPTER 6.
6.1 Observed and Calculated Unit Cell Volumes of 6-1.2 147

Relevant Carbonyl Compounds
6.2 Formula Unit Volumes of Rhenium Carbonyl

6-1.2 147
Fluorides
6.3 Final Positional and Thermal Parameters of 6-2.2 159
$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF} 5$
6.4 Bond Distances $(A \dot{A})$ in $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \cdot \operatorname{ReF}_{5} \quad 6-2.2 \quad 160$
6.5 Bond Angles $\left({ }^{\circ}\right)$ in $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{F} \cdot \operatorname{ReF}_{5}} \quad 6-2.2160$
6.6 Selected Non-bonding Distances (A) of 6-2.2 161
$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF}_{5}$
6.7 Comparison of X-ray Powder Diffraction and 6-2.2 161

Single Crystal Data for $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \cdot \mathrm{ReF}_{5}$
6.8 Terminal and Bridging Metal-Halogen Bond 6-3.3 171

Lengths in Carbonyl Halides
6.9 Bond Lengths in $L-\operatorname{Re}(\mathrm{CO})_{5}$ Structúres 6-3.3 171

6:10 Tentative Vibrational Assignment of 6-5. 179
$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}$, based on $\mathrm{C}_{4 \mathrm{v}}$ Symmetry

CHAPTER 7.
7.1 Final Positional and Thermal Parameters of 7-3.1 192
$\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
7.2 Bond Distances (\AA) in $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-} \quad 7-3.1 \quad 192$
7.3 Bond Angles $\left({ }^{0}\right)$ in $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-} \quad 7-3.1 \quad 193$
7.4 Comparison of X-ray Powder Diffraction and 7-3.1 193

Single Crystal Data for $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
7.5 Rhenium-Fluorine Bond Lengths 7-3.3 200
7.6 Fluorine Bridge Geometry in $\left(M_{2} F_{11}\right)^{-}$Structures 7-3.4 201

CHAPTER 8.

8.1 X-ray Powder Data for $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-} \quad$ 8-2. 207
8.2 Comparative Formula Unit Volumes of Rhenium 8-2. 207 Carbonyl Fluorides and Related Species

LIST OF FIGURES AND PLATES

Figure
Section Page
CHAPTER 2.
2.1 Infrared Spectrum of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)$

2-2.2
24

CHAPTER 3.
$\begin{array}{llll}\text { 3.1 Stepwise Fluorination of } \mathrm{Re}_{2}(\mathrm{CO})_{10} \text { by } \mathrm{XeF}_{2} & 3-1.5 & 60 \\ 3.2 & 3-2.6 & 81\end{array}$ $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ by ReF_{6}
3.3 Scheme for the Stepwise Fluorination of 3-2.6 83 $\mathrm{Mo}(\mathrm{CO})_{6}$ by MoF_{6}
3.4 Major Spècies of the Rhenium Carbonyl Fluoride 3-4.1 90 System
3.5 The "Building Blocks" Principle in the 3-4.2 92 $\operatorname{Re}(C O)_{x} F_{y}$ and $\operatorname{SbCl}_{x} F_{y}$ Systems
3.6 A Generalised Carbonyl Fluoride System
3.7 Crystal Structures of $\mathrm{cpFe}(\mathrm{CO})_{2}{\mathrm{Cl}-\mathrm{SbCl}_{3}}^{(1)}$ 96

3-5.3 105
Complexes
3.8 Covalent and Ionic Forms of Acyl Halide-SbX 5

3-5.4 106 Complexes

CHAPTER 4 .
4.1 Insertion of Air-Sensitive Solids into the Mass 4-2.5 119 Spectrometer
4.2 Apparatus for the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} /$ Genetron $113 \quad 4-4.1 \quad 123$ Reactions

Plate 4.1 General View of the Apparatus for 4-4.1 $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} /$ Genetron 113 Reactions
Plate 4.2 An $\operatorname{Re}_{2}(\mathrm{CO})_{10} / 3 \mathrm{XeF}_{2} /$ Genetron 113 Reaction 4-4.1 Nearirg Completion
4.3 Apparatus for Reactions in HF

4-4.2 127
Plate 4.3 General View of the Apparatus for
4-4.2
$\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ Reactions

6.1 Capillary Apparatus for Single Crystal X-ray Studies	6-1.1	145
6.2 Schematic Representation of the Stöe Diffractometer Geometry (after ref.13, p.37)	6-1.3	150
6.3 Rough Projection of the 4 Rhenium Positions of the Asymmetric Unit down 001	6-2.1	154
6.4 Asymmetric Pair of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{Re}} \mathrm{F}_{5}$ Molecules, Drawn with Both the Re-F-Re Bridges in the' Plane of the Paper	6-2.2	162
6.5 Asymmetric Pair of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ Molecules as Arranged in the Unit Cell	6-2.2	163
6.6 Stereoscopic View of the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{V}} \mathrm{ReF}_{5}$ Unit Cell down c-	6-2.2	164
6.7 "Pseudo-dimeric" Pair of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\left(R e F_{5}\right.}$ Molecules	6-2.2	165
6.8 Average Molecular Geometry of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{(R e F} \mathrm{F}_{5}$	6-2.2	166
6.9 Infrared Spectrum of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ (Carbonyl Region)	6-5.	180
6.10 Infrared Spectrum. of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ (750$400 \mathrm{~cm}^{-1}$ Region)	6-5.	181

CHAPTER 7.
7.1 Rough Projection of the Rhenium Atom Positions 7-2.1 187 down 001
7.2 Unit Cell Contents of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$

7-3.1 194
7.3 Relative Arrangements of One Cation and Two 7-3.1 195

Anions in $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
7.4 Detailed Geometry of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-} \quad$ 7-3.1 196

LAYOUT OF THE THESIS

The thesis is in two sections, chapters 1-4 and 5-8. The field of transition metal carbonyl fluorides is first introduced, with a discussion of the problems attending earlier investigations (chapter 1). My results are then described for each of three rhenium carbonyl fluorination systems, and for sundry related reactions, establishing the identity of the compounds isolated and describing their properties (chapter 2). In chapter 3 , these results are discussed with reference to carbonyl fluoride and related systems as a"whole. Initially an understanding of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2}$ system is deduced, in terms of fundamental units (3-1.). This is then broadened to include other fluorinating agents, and in particular (3-2.) the $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \mathrm{ReF}_{6} /$ HF system. After considering other preparative routes (3-3.), an overall picture of the rhenium carbonyl fluoride system is established (3-4.). This is discussed as a model for transition metal carbonyl fluoride systems in general, with predictions of the fundamental units and basic types of species expected (3-4.). This model is contrasted with carbonyl and other organometallic halide systems not containing fluorine (3-5.). After discussing the formation of $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}$ (3-6.), suggestions are made for future work on the rhenium system (3-7.). The detailed experimental work is described in chapter 4.

The X-ray crystal structure investigations of the compounds $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{V}} \operatorname{ReF}_{5}$ (chapter 6), $\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$ (chapter 7), and $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}$(chapter 8), form the second part of the thesis, preceded by a brief résumé of crystal structure determination (chapter 5). A brief epilogue, two appendices of structure amplitudes, and a cumulative list of references conclude the thesis.

ABBREVIATIONS

Me	methyl, $-\mathrm{CH}_{3}$	vs	very strong
Et	ethyl, $-\mathrm{C}_{2} \mathrm{H}_{5}$	s	strong
i_{Pr}	isopropyl, $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	m	medium
n_{Bu}	normal butyl, $-\mathrm{C}_{4} \mathrm{H}_{9}$	w	weak
${ }^{\text {t }}$ Bu	tertiary butyl, $-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	vw	very weak
Ph	phenyl, $-\mathrm{C}_{6} \mathrm{H}_{5}$	vvw	very, very weak
$c p=\eta^{5}-C_{5} H_{5}=\text { pentahaptocyclopentadienyl }$			
riars	tris-1,1,1-(dimethylarsinomethyl)ethane $\left(\mathrm{Me}_{2} \mathrm{As}^{\left.-\mathrm{CH}_{2}-\right)_{3} \mathrm{C}-\mathrm{CH}_{3}}\right.$		
diars	0-phenylene(dimethylarsino) $\mathrm{Me}_{2}{\mathrm{As}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{AsMe}}_{2}$		
(1)	liquid phase		
m / e	mass number: charge ratio for a charged molecular		
o.d.	outside diameter;	ntern	diameter.

CHAPTER 1

A SURVEY OF TRANSITION METAL

CARBONYL FLUORIDE WORK PRIOR TO THIS STUDY

i-1. THE EARLY NEGLECT OF THE FIELD OF CARBONYL FLUORIDES

Transition metal carbonyls and their derivatives have been the subject of an enormous amount of research over many decades. Since Schutzerberger's original discovery, ${ }^{1}$ in 1870, that carbon monoxide could bond directly to a metal in the compound $\mathrm{Pt}(\mathrm{CO})_{2} \mathrm{Cl}_{2}$, and the extensive work by Hieber and his co-workers from the late 1920's onwards, ${ }^{2}$ carbonyl-containing compounds have been prepared for nearly every transition metal. Substituted derivatives, $M(C O)_{x} L^{\prime}$, are known for an extraordinarily wide variety of ligands, including derivatives of nearly every non-metal (e.g. L= OEt, $N_{2}, \mathrm{PPh}_{3}, \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$, carboranes, H), and many metals (e.g. in the compounds $\left.\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{Co}(\mathrm{CO})_{4}, \mathrm{U}\left(\mathrm{Mn}(\mathrm{CO})_{5}\right)_{4}\right) .^{3}$ Until recently, however, carbonyl fluorides have been little investigated. The first member was not identified until 1968, ${ }^{4}$ and even now only a handful have been thoroughly characterised.

The reasons for this neglect are partly theoretical. Fluorine is far more powerfully oxidising than the other halogens, and might be expected to destroy the oxidationsensitive metal carbonyl framework, rather than complex with it. Fluorine is also an extreme example of a "hard" ligand, whereas $C O$, and π-acceptor ligands generally are "soft". 5 It has also been suggested that carbonyl fluorides might be thermodynamically unstable with respect to stable decomposition products such as lower metal fluorides, COF_{2} ' or CO itself. ${ }^{6}$

Another major problem has been that, until recently, the practical techniques used were not sufficiently sophisticated for handling and characterising the often highly reactive products. The classical organometallic approach
for preparing carbonyl halides was of little use for carbonyl fluorides. This usually involved the reaction of a metal carbonyl with the halogen, dissolved in a suitable organic solvent, or of a metal halide with CO (either at atmospheric or high pressure, with or without a solvent) or a carbonylating agent such as formic acid. ${ }^{3}$ However, few organometallic chemists had elemental fluorine readily available, or had access to the specialist techniques required to manipulate either fluorine or higher metal fluorides. In addition there are few such fluorides which can be readily handled in organic solvents.

The early failure of the organometallic approach is exemplified by the following two reactions:

1. $\mathrm{M}(\mathrm{CO})_{6}+\mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{X}^{-} \xrightarrow{\text { diglyme }}\left(\mathrm{R}_{4} \mathrm{~N}\right)^{+}\left(\mathrm{M}(\mathrm{CO})_{5} \mathrm{X}\right)^{-}+\mathrm{CO}$. $M=C r, M o, W ; X=C l, B r, I ; R=E t,{ }^{n} B u$. $X=F$ gave CO evolution, but no isolable carbonyl fluoride: ${ }^{7}$ **
2. $K_{2} \operatorname{ReX}_{6}+\operatorname{CO} \xrightarrow[\text { and temperature }]{\text { high pressure }} \operatorname{Re}(C O)_{5} X+K X$, etc. $X=C l, B r, I 1^{10,11}$ $X=F$ gave traces of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ in the presence of Al, but failed to react otherwise. ${ }^{11}$

1-2. THE PROBLEMS OF APPLYING FLUORINE CHEMISTRY TO AN
ORGANOMETALLIC SYSTEM
The outcome of the above has been that carbonyl

[^0]fluoride preparation has moved largely out of the realms of organometallic chemistry into the technically specialised field of inorganic fluorine chemistry. The latter has developed over the past 35 years, in the wake of nuclear energy research, so that general preparative chemistry has become possible. Nevertheless, many problems arise when fluorine chemistry is applied to organometallic systems. Some of these are summarised below, in the context of carbonyl fluorides.

1-2.1 The problems of fluorine as a powerful oxidant
Mention has already been made of the extreme oxidising power of fluorine, with reference to organometallic systems. Particularly delicate control of the reaction conditions may, therefore, be required in order to prepare carbonyl fluorides, especially as the products may not be very stable thermodynamically. High temperatures and pressures, and very vigorous fluorinating agents normally have to be avoided. The action of elemental fluorine on metal carbonyls has often given rise to explosions, even when nitrogen was used as a diluent. ${ }^{12,13}$ Even when preparative conditions are mild, most possible first-row transition metal carbonyl fluorides may be too unstable to exist under ordinary conditions. In the analogous carbonyl nitrates, $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{NO}_{3}$ is the only known first-row example. ${ }^{14}$

1-2.2 The moisture sensitivity or solvolysis of covalent
fluorides
Many covalent fluorides are solvolysed in the presence of water, and most other protic species. The
-
driving force for such reactions is believed to be the formation of the very stable HF molecule. ${ }^{15}$ Scrupulously anhydrous conditions are usually required, therefore, for the preparation of even the more air-stable carbonyl fluorides such as $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4} .^{16}$ Most protic solvents, and solvents miscible with water, such as alcohols, acetone, acetonitrile and dimethyl sulphoxide, cannot normally be employed.

1-2.3 The difficulty in finding suitable solvents
Solvents for use in carbonyl fluoride preparations need to be inert (e.g. free from "available" chlorine which might displace co-ordinated fluorine*), and yet polar enough to be effective with the predominantly polar compounds involved. This, together with problem 1-2.2 above, means that most of the solvents commonly used in organometallic chemistry are unsuitable. This has limited the choice to anhydrous HF, tungsten hexafluoride, and chlorofluorocarbons such as Genetron 113 (1,1,2-trichlorotrifluoroethane). Other alternatives include liquid SO_{2}, $\mathrm{SO}_{2} \mathrm{ClF}$ and $\left(\mathrm{SF}_{5}\right)_{2} \mathrm{O}$.

1-2.4 The tendency to produce mixtures of non-volatile

compounds

Carbonyl fluoride preparations have often given rise to mixtures of involatile solids which are very difficult to separate and identify.

* Such exchange has been reported for the metal phosphine fluoride complex $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{PtF}\right]^{+}\left[\mathrm{HF}_{2}\right]^{-}$in the presence of dichloromethane. ${ }^{17}$

1-2.5 The problems of separating, purifying and characterising the products, under scrupulously anhydrous conditions, possibly without a solvent

The combination of the previous four problems may result in unsatisfactory reactions for the following reasons: poor mixing, incomplete reaction, or difficulty in the separation, sublimation or recrystallisation of the products. In addition many analytical techniques may be difficult to apply: e.g. N.M.R., E.S.R., infrared (solution phase), and U.V.-Visible spectroscopy, electrical conductivity, molecular weight determination, and chromatography. This leaves the following general techniques: infrared (mull or dry powder) and laser Raman spectroscopy (though many carbonyl fluorides either absorb strongly, fluoresce or decompose in the laser beam), mass spectrometry (if the compound is volatile enough), X-ray diffraction (powder, and possibly single crystal), magnetic measurements, mass balance and/or thermogravimetric analysis, and elemental microanalysis (though analyses on fluorine-containing compounds can be notoriously unreliable without very good additional supporting evidence ${ }^{18,4}$).

The unequivocal identification of the product has often required a crystal structure determination.

1-3 CARBONYL FLUORIDE INVESTIGATIONS BY THE FLUORINE

CHEMICAL APPROACH

1-3.1 Early Work
The earliest attempt at preparing a carbonyl
fluoride was in 1952, when Peacock found that the action
of carbon monoxide on RuF_{5} gave a yellow, reactive solid. 19 Between 1957 and 1961, Peacock and Hargreaves made the first concerted effort at synthesising carbonyl fluorides by a fluorine-chemical approach. They attempted to fluorinate the hexacarbonyls of chromium, ${ }^{20}$ molybdenum ${ }^{21-23}$ and tungsten $24,23,25$, and $\operatorname{Re}_{2}(\mathrm{CO})_{10} 0^{23}$ using a variety of fluorinating agents. These included fluorine-nitrogen mixtures (in a flow system), bromine trifluoride, ${ }^{20}$ iodine pentafluoride, and the hexafluorides of molybdenum, ${ }^{20}$ tungsten, ${ }^{20}$ rhenium, ${ }^{23}$ and osmium. ${ }^{25}$ These reactions, however, almost invariably displaced all of the CO, producing metal fluorides.** Had they been able to use suitable solvents to moderate some of these reactions, carbonyl fluorides should certainly have been produced in some cases ${ }^{26}$ (see also section 3-5.2). The alternative method, involving the reaction of a metal fluoride with CO under pressure or in a flow system, was investigated by Sharp and Russell at Glasgow during the period 1960-63. A wide range of metal fluorides were found to be reduced to the metal, but the $\mathrm{RuF}_{5} / \mathrm{CO}$ product contained carbonyl bands in its infrared spectrum. ${ }^{27}$ Compounds prepared by Sharp from the tetrafluorides of platinum and rhodium were formulated as $\mathrm{Pt}(\mathrm{CO})_{2} \mathrm{~F}_{8}$ and (Rh(CO) $\left.)_{2} F_{3}\right)_{2}$ respectively, but their nature was not understood. ${ }^{18}$

Following these discouraging series of results, the area lay dormant. Indeed, as late as 1970, Abel and Stone proposed that, on thermodynamic grounds, carbonyl
**As it happened, the method provided some useful preparative routes to new metal pentafluorides.
fluorides were unlikely to be stable, except perhaps as fluorine-bridged polymers. ${ }^{6}$ Moreover, in 1967, Kemmitt, Peacock and Wilson reinvestigated Sharp's two compounds and showed that they were the carbonyl bromides $\mathrm{Pt}(\mathrm{CO})_{2} \mathrm{Br}_{2}$ and $\left(\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Br}\right)_{2}$, arising from BrF_{3} impurities in the tetrafluorides.4,28

They returned to the $\mathrm{RuF}_{5} / C O$ reaction, however, and deduced that the yellow product was a ruthenium carbonyl fluoride - ruthenium pentafluoride complex, for which the formula ($\left.\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{~F}^{+} \mathrm{RuF}_{6}{ }^{-}\right)_{\mathrm{n}}$ was postulated. ${ }^{4}$ Evidence was obtained for similar compounds of osmium, iridium, and possibly platinum. ${ }^{28}$

1-3.2 The Use of Xenon Difluoride with Metal Carbonyls
Having shown that carbonyl fluoride derivatives could be prepared, they went back to the fluorination of metal carbonyls, but with a new fluorinating agent, xenon difluoride, discovered only 5 years before. ${ }^{29}$ This had the advantages that it could be sublimed in dynamic vacuum, was soluble in a wide variety of solvents, and that it produced only xenon'gas as a by-product during fluorinations. In solution in the inert chlorofluoroalkane Genetron 113, this provided the necessary control and specificity for the first general synthetic method for carbonyl fluorides. Preliminary experiments indicated that whereas the firstrow carbonyls tended to produce only lower fluorides, those of Mo, W, Re, Ru, Os and Rh all gave carbonyl fluoride species. ${ }^{12,13,30}$ Tentative formulations were proposed for some of these, but none was fully characterised.

Between 1968 and 1971, Marshall examined the ruthenium and osmium carbonyl reactions, and Misra the molybdenum system, in more detail. 13,31 Though no unequivocal identification of the products of these reactions was possible, Marshall characterised a ruthenium carbonyl fluoride, $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}$, by an X-ray structure on a single crystal obtained from Wilson's further carbonylation of " (Ru(CO) $\left.)_{2} F^{+} \mathrm{RuF}_{6}{ }^{-}\right)_{n} "$. This was the first definitive characterisation of a carbonyl fluoride, 32 and as a result, the species $\left(\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{~F}^{+} \mathrm{RuF}_{6}{ }^{-}\right)_{\mathrm{n}}$ was reformulated as a mixture which contained a majority of the compound (Ru(CO) $\left.\mathrm{F}_{2} \cdot \mathrm{RuF}_{5}\right)_{2} \cdot{ }^{13}$.

1-3.3 Other Preparative Attempts
At about the same time, a molybdenum carbonyl
fluoride was reported by O'Donnell and Phillips in Australia. This synthesis employed the earlier method of combining a metal carbonyl $\left(\operatorname{Mo}(\mathrm{CO})_{6}\right)$ with its own hexafluoride (MoF ${ }_{6}$). but used anhydrous HF as a solvent. 33 A fourth preparative method was investigated during the course of the Leicester work, which involved halogen exchange between a carbonyl chloride and an appropriate fluorinating agent. Among the latter were anhydrous HF, and AgF or XeF_{2} in organic solvents. 12,13,34 The early results were not very successful - in marked contrast to the very facile preparations of the phosphino.carbonyl fluorides, $\left(\mathrm{Ph}_{3} P\right)_{2} M(C O) F \quad(M=R h$, Ir), by similar routes. 35-37

[^1]1-4. THE PRESENT STUDY - THE RHENIUM SYSTEM
By 1971, the results obtained suggested that the molybdenum, rhenium, ruthenium and osmium systems looked most promising for yielding stable carbonyl fluorides. Accordingly this present work on the rhenium system was undertaken as the first attempt at a systematic investigation of the carbonyl fluoride chemistry of one element. The aim was to obtain as complete a picture as possible, to use as a backbone for studying other systems. Full characterisation of any compounds obtained was deemed essential.

The unsuccessful early attempts to prepare rhenium carbonyl fluorides have already been mentioned. Later, preliminary studies on the reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with XeF_{2} in Genetron 113 were made by Wilson ${ }^{12}$ and by Misra. 34 Wilson isolated an extremely air-sensitive, straw-yellow solid, from reactions of unspecified stoicheiometry. The solid analysed to $\mathrm{Re}_{2}(\mathrm{CO})_{5} \mathrm{~F}_{6}$, and a formulation of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ was tentatively proposed on the basis of infrared, mass spectrometric and magnetic data. Yields of up to 91% (based on rhenium) were reported, but the use of excesses of XeF_{2} lowered the yields, and produced some volatile rhenium species. With large excesses of XeF_{2}, all the rhenium was lost as volatiles.

In the light of these results, it was decided to study the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} /$ Genetron 113 system over a range of accurately known stoicheiometries, and to examine similar reactions using anhydrous HF as solvent, in view of preliminary evidence of its potential as a solvent for recrystallising carbonyl fluorides. 13,34

During the course of this work, O'Donnell and Phillips reported that a reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with an unspecified amount of ReF_{6} in anhydrous $H F$, gave a compound formulated as $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3} 0^{38}$ This did not seem to correlate with any of our results, and it was therefore felt necessary to perform a thorough investigation of this system too. O'Donnell subsequently published some results on the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ system, and again $\operatorname{~"Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ " was reported, together with another compound $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{39}$ These reports are discussed in the light of my own results in chapter 3.

CHAPTER 2

RESULTS : THE FLUORINATION OF RHENIUM CARBONYL.

AND RELATED CHEMISTRY

General Outline

This chapter describes, in turn, the investigation of three rhenium carbonyl fluorination systems: $\mathrm{Re}_{2}(\mathrm{CO})_{10} /$ $\mathrm{XeF}_{2} /$ Genetron 113, $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ and $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{ReF}_{6} / \mathrm{HF}$. The products are identified, with the appropriate physical data. Two exchange reactions involving $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{V}} \mathrm{ReF}_{5}$ (section 2-4.), and preliminary work on related carbonyl fluoride systems (section 2-5.), are also described. All experiments except for the $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2} / \mathrm{AgF}$ reaction were performed in vacuum systems, and the solid products handled in nitrogen-filled dry-boxes.

2-1. THE Re ${ }_{2}(\mathrm{CO})_{10} /$ XeF $_{2}$ /GENETRON 113 SYSTEM 2-1.1 General Description of the Reactions

Decacarbonyl dirhenium and xenon difluoride were combined in molar proportions of 1:1, 1:2, 1:3, 1:4 and 1:5, in a series of experiments using 1,1,2-trichlorotrifluoroethane (Genetron 113) as the solvent in a glass apparatus. Smooth reactions took place at or slightly below $25^{\circ} \mathrm{C}$, with the evolution of gas, and the apparent conversion of the white, scarcely soluble, $R e_{2}(C O)_{10}$ to extremely moisture-sensitive, yellow solids. Complete solution was not observed at any time during the reactions. Darkening of the reactor walls around the maniscus, and black deposits on the upper wall's were noted in the 1:4 and 1:5, and occasionally the 1:3 reactions. The solids from these three reactions were orange-yellow, and those from the 1:1 and 1:2 reactions pale yellow.

The volatile products were characterised by mass spectrometry and infrared spectroscopy. The mass spectra
-
all showed the characteristic isotopic abundance pattern (the relative percentages are quoted in parentheses) associated with Xe^{+}(m/e = 136(9), 134(10), 132(27), 131(21), $130(4), 129(26), 128(2)$, and sometimes $126(0.1)$ and $124(0.1)$ if the Xe concentration was sufficiently high), and Xe^{2+} ($68,67,66,651 / 2$ and $641 / 2$ only; $65,64,63$, and 62 were generally too weak to be observed), as well as the solvent breakdown pattern. There was also evidence for small amounts of $\mathrm{SiF}_{4}{ }^{+}(104, \mathrm{Vw}), \mathrm{SiF}_{3}{ }^{+}(85, \mathrm{Vs}), \mathrm{SiF}_{2}{ }^{+}$(also COF ${ }^{+}$, ${ }^{132} \mathrm{Xe}^{2+}$, and $\mathrm{CF}^{35} \mathrm{Cl}^{+}$) $(66, \mathrm{~s})$, and SiF. ${ }^{+}$(also COF ${ }^{+}$, and $\left.C^{35} \mathrm{Cl}^{+}\right)(47, \mathrm{~s})$. A high resolution mass spectrum of the $m / e=28$ region showed two distinct peaks due to ${ }^{14} N^{14} N$ and ${ }^{12} \mathrm{C}^{16} 0$, in each of the reactions. This was found to provide a reliable test for the production of $C O$ from carbonyl fluoride reactions in general. (Conclusive evidence from infrared spectra depends on having a substantial pressure of $C O$ in the infrared cell.) Infrared spectra showed peaks due to the solvent, but no COF_{2} or other species were observed.

No physical data were obtained for the volatile species which caused the darkening of the reactor walls, but the behaviour observed strongly resembled that of metallic deposition from rhenium hexafluoride in glass apparatus. ${ }^{40}$ This deposition may have been caused by reduction by organic trace impurities from the solvent. The presence of ReF_{4} and ReF_{5} was ruled out on the grounds of their low volatility, and ReOF_{4} would have been recognised from its characteristic blue colour. ${ }^{23,41} \mathrm{ReOF}_{5}$ or ReF_{7} could not be discounted as possible sources of the deposit.

2-1.2 Identification of $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{-\mathrm{ReF}_{5}}$
The orange-yellow solids from the 1:3, 1:4 and 1:5 reactions had powder patterns identical with that of powdered orange crystals, obtained from reactions of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with ReF_{6}, which were, in due course, shown to be $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{H}} \mathrm{ReF}_{5}$ by means of an X-ray crystal structure (see chapter 6.). There was no evidence of lines due to $\operatorname{Re}_{2}(\mathrm{CO})_{10}, \operatorname{ReF}_{5}$ or the compounds $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ and $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ of O'Donnell. 38,39

The infrared spectra of the orange-yellow solids were identical with those of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\left(\operatorname{ReF}_{5}\right.}$ from the $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ / $\mathrm{ReF}_{6} / \mathrm{HF}$ system, and also with those obtained by Wilson from his $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} /$ Genetron 113 reactions. A typical spectrum is shown in table 2.1. The basic pattern for the $\nu(C \equiv O)$ region is consistent with the presence of an $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right)$ unit, with peaks at 2172, 2063 and $2013 \mathrm{~cm}^{-1}$ derived from the three infrared-allowed modes in $C_{4 V}$ symmetry: A_{1}, E and A_{1} respectively. ${ }^{42}$ The additional peaks indicate a lowering of the overall symmetry to a sub-group of $C_{4 v}$. The region below $600 \mathrm{~cm}^{-1}$ is also typical of an $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}\right)$ species, and the bands at 642 and $620 \mathrm{~cm}^{-1}$ are ($\mathrm{Re}-\mathrm{F}$) modes of the $\left(-\mathrm{F}-\mathrm{ReF}_{5}\right)$ half of the molecule.

Table 2.1. Infrared and Raman Spectra of $\operatorname{Re}(\mathrm{CO})_{5} \cdot \mathrm{MF}_{5}$
$(M=R e, T a, A s)$

Assign -ment	$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ IR(this work)	$\begin{aligned} & \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{C}} \mathrm{ReF}_{5} \\ & \mathrm{RM}(\mathrm{this} \text { work) } \end{aligned}$	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{TaF}_{5}$ IR(this work)	$\begin{aligned} & \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{AsF}_{5} \\ & \operatorname{IR}(\mathrm{ref} .43) \end{aligned}$
$\nu(C \equiv 0)\{$	$\begin{aligned} & 2172 \mathrm{w} \\ & 2100 \mathrm{vw} \\ & 2082 \mathrm{~m} \\ & 2063 \mathrm{~s} \\ & 2046 \mathrm{~m} \\ & 2022 \mathrm{sh} \\ & 2013 \mathrm{~ms} \\ & 1980 \mathrm{w} \end{aligned}$	$\begin{aligned} & 2172 \mathrm{w} \\ & 2104 \mathrm{~s} \\ & 2062 \mathrm{w} \\ & 2029 \mathrm{w} \end{aligned}$	$\begin{aligned} & 2171 \mathrm{w} \\ & \sim 2075 \mathrm{sh} \\ & 2057 \mathrm{~m}, \mathrm{sh} \\ & 2044 \mathrm{~s} \\ & 2008 \mathrm{~m} \\ & 1985 \mathrm{w}, \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2173 \text { vw } \\ & 2059 \mathrm{vs} \\ & 2019 \mathrm{~s} \end{aligned}$
$\left.\begin{array}{c} \nu(M-F) \\ \dot{\sigma}(R e C O) \\ \nu(R e F M) \\ \nu(R e-F) \\ \nu(R e-C) \end{array}\right\}$	$\left\{\begin{array}{l}722 \mathrm{~m} \\ 705 \mathrm{vw} \\ 642 \mathrm{~s} \\ 620 \mathrm{~s} \\ 588 \mathrm{vs} \\ 552 \mathrm{~ms} \\ 528 \mathrm{w} \\ 485 \mathrm{w} \\ 439 \mathrm{vw} \\ 420 \mathrm{w}\end{array}\right.$	707 m 662 w 595 vw,br 522 ms 497 m 437 w,br 361 vw	$\begin{aligned} & 722 \mathrm{~m} \\ & 700 \mathrm{vw} \\ & \sim 605 \mathrm{~m}, \mathrm{sh} \\ & 58550 \mathrm{~s}, \mathrm{br} \\ & -5700 \mathrm{~m}, \mathrm{sh} \\ & 5500 \mathrm{w} \\ & 522 \mathrm{w} \\ & \sim 485 \mathrm{vw} \end{aligned}$	730 s 712 m 675 m

Table 2.2 The $\nu(M-F)$ Region of $\operatorname{Re}(C O) 5 \cdot{ }_{5} \mathrm{FF}_{5}$ and
$\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{MF}_{5} \mathcal{L}_{2}\right.$ Infrared Spectra

Complex	$\begin{gathered} \nu(M-F) \\ \text { in complex } \end{gathered}$	$\begin{aligned} & \delta(\mathrm{Re}-\mathrm{C}-0) \\ & \text { in complex } \end{aligned}$	$\begin{gathered} \nu_{3}(M-F) \\ \text { in } K^{+} M F_{6}^{-a} \end{gathered}$	Ref.
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{(\mathrm{ReF}} 5$	642, 620	590	627	b
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{TaF}_{5}$	~605, ~575	~585	580	b
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{AsF}_{5}$	730,712,675	?	700	43.
$\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{RuF}_{5}\right)_{2}$	655	555	640	16.
$\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{TaF}_{5}\right)_{2}$	581	549	580	28.

$a=r e f .44, \quad b=$ this work

The Raman spectrum is also given in table 2.1 . Although not entirely unequivocal, owing to sample decomposition in the laser beam, it may similarly be interpreted in terms of an $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right)$ unit and $\nu(\operatorname{Re}-F)$ modes. There is no evidence in either infrared or Raman spectra for $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$species, or for $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ or $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$. A full discussion of the vibrational assignment for $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \operatorname{ReF}{ }_{5}$ is given in Chapter 6 .

Commercial analyses on 1:3 reaction products confirmed the formulation $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{o}} \mathrm{ReF}_{5}$, and are in good agreement with Wilson's figures.

A single determination for rhenium gave $\operatorname{Re}=62.9 \%$ (calc. 59.5\%) .

When heated in a sealed, evacuated, glass capillary, a single crystal of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \mathrm{ReF}_{5}$ decomposed, without melting, over the range 115 to $145^{\circ} \mathrm{C}$. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{0} \operatorname{ReF}_{5}$ is exceptionally moisture-sensitive, and requires scrupulously dry apparatus and conditions for manipulation. In dry-box manipulations, it only remained stable at moisture levels below about $20 \mathrm{p} . \mathrm{p} . \mathrm{m}$. of water. Above this level, the yellow solids quickly became buff. The tendency for high oxidation state rhenium compounds to scavenge oxygenated species to form $R e=0$ bonds is well established. 45

Although $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{5} \mathrm{ReF}_{5}$ dissolves rapidly in
previously-dried acetone ${ }^{46}$ to give a yellow solution, darkening pccurs within minutes to yield a brown solution and precipitate. Molecular weight and conductivity meas-
.
urements were therefore not attempted. The complex is fairly soluble in other polar solvents (anhydrous hydrogen fluoride, acetonitrile, ethanol), with similar decomposition in the latter two cases, but is scarcely soluble in nonpolar solvents (Genetron $113,60-80^{\circ} \mathrm{C}$ petroleum ether, dichloromethane, trichloromethane, benzene).

The $1: 3$ reaction gave pure $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$. The 1:4 reaction was carried out stepwise by using 1:3 proportions of $\mathrm{Re}_{2}(\mathrm{CO})_{10}: \mathrm{XeF}_{2}$ to produce $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{2} \cdot \mathrm{ReF}_{5}$, and then adding a further molar equivalent of XeF_{2}. Darkening of the reactor walls occurred only during this latter stage, and the final yield of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ was lower than that (based on rhenium) from a $1: 3$ reaction alone. This suggests that $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{Re}} \mathrm{F}_{5}$ is fluorinated to a volatile species, presumed to be ReF_{6}, by additional XeF_{2}. The $1: 5$ reaction was performed in a single step, and similarly produced $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \operatorname{ReF}_{5}$ and ReF_{6}.

2-1.3 The Reactions of Lower Stoicheiometries

The infrared spectra of the solid products from the 1:1 and 1:2 reactions showed them to be mostly $\operatorname{Re}_{2}(\mathrm{CO})_{10^{\prime}}$. with additional, weak peaks (2170, 2040 and $620 \mathrm{~cm}^{-1}$) due to $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$. The spectrum obtained from a preliminary 1:1 reaction of Misra ${ }^{34}$ was re-examined, and was now identified as showing a similar mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{He}}^{5}$. The product of an $\mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{F}_{2} / \mathrm{N}_{2}$ reaction of Wilson ${ }^{12}$ was also found to have an infrared spectrum showing mostly $\operatorname{Re}_{2}(\mathrm{CO})_{10}$, with additional $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\prime} \cdot \operatorname{ReF}_{5}$ peaks at 2163, 2045, 622, 554 and $525 \mathrm{~cm}^{-1}$. His analytical data of $C=11.84 \%, F=13.9 \%$ can now be rationalised in
terms of a very approximate composition of $2 \operatorname{Re}_{2}(\mathrm{CO})_{10}$: $5 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF}_{5}$.

If these pale yellow solids were handled in any but the most rigorously dry conditions, they turned buff. X-ray powder patterns of the buff solids confirmed that they were largely unchanged $\operatorname{Re}_{2}(\mathrm{CO})_{10}$, but showed small amounts of a new compound. Separation of the two materials was achieved by adding anhydrous $H F$ to a sample in a polychlorotrifluoroethylene $(K e l-F)$ apparatus. $\operatorname{The~}^{\operatorname{Re}} \mathrm{Ke}_{2}(\mathrm{CO})_{10}$ remained as a white, insoluble solid, but evaporation to dryness of the brown, filtered solution gave a brown solid whose powder pattern showed lines due only to the second component:** An identical powder pattern was given by the buff solid, obtained by handling the orange-yellow 1:3 reaction product under slightly moist conditions. Finally, the compound was obtained as a bulk sample from a 1:3 reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ and XeF_{2}, in liquid $H F$ containing traces of water, and was identified as $\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}(\operatorname{ReOF})_{5}\right)^{-}$, (see section 2-2.2).

It is concluded that the original products of the $1: 1$ and $1: 2$ reactions were $R e_{2}(C O)_{10}$ and a little $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ (explaining the paler yellow colour), which began to decompose in the dry-box. The short time required to run an infrared spectrum was insufficient to allow significant hydrolysis on what was, in any case, a minor
** The low solubility of rhenium and some other carbonyls in $H F$ suggests this as a means of separating soluble carbonyl fluoride species from unreacted starting materials.
component. In the X-ray powder technique there was much more time for decomposition, and also the possibility of the hydrolysis being enhanced by the glass walls of the capillary, in an autohydrolytic cycle:

Subsequently powder samples were obtained in a capillary attatched directly to the reactor, obviating the need to go via a dry-box.

2-1.4 Summary
The products of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} /$ Genetron 113 system were thus $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{10} \cdot \operatorname{ReF}_{5} \cdot \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\prime} \cdot \operatorname{ReF} 5$ alone, or $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{L}} \operatorname{ReF}_{5}$ and ReF_{6} depending on the reaction stoicheiometry. Xenon and carbon monoxide gas were liberated in every case. In the presence of traces of moisture, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{D}} \operatorname{ReF}_{5}$ decomposes to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}(\operatorname{ReOF} 5)^{-}$.

2-2. THE Re ${ }_{2}(\mathrm{CO})_{10}{ }^{10} \mathrm{XeF}_{2} / \mathrm{HF}$ SYSTEM
2-2.1 General Description of the System, and Discussion

of 1:1 Reactions

Reactions were performed for proportions of Re:F of. 1:1, 1:3 and 1:5. In the former two, exact amounts of X_{2} dissolved in doubly-distilled liquid HF were added to solid $\operatorname{Re}_{2}(\mathrm{CO})_{10}$, or $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ under a few mls. of HF, in Kel-F apparatus. $1: 5$ proportions were achieved by adding 2 molar equivalents of $X_{2} F_{2}$ in $H F$ to a sample of fresh Re(CO) ${ }_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$ dissolved in HF. Instant reactions took place (despite, in the first two cases, the insolubility
of $\left.\mathrm{Re}_{2}(\mathrm{CO})_{10}\right)$, with the evolution of gas, and a variety of colour changes. Mass spectra of the volatiles showed the presence of only xenon and carbon monoxide for the 1:1 and $1: 3$ reactions, and xenon and some rhenium-containing species (notably Re^{+}, m/e 185 and 187), for the $1: 5 .{ }^{*}$

The 1:1 reactions produced a pale yellow solution over pale yellow, unreacted solid, after a blue-green colouration had been observed in the solution in the initial stages. Infrared spectra and X-ray powder patterns conclusively established that the filtered solid was $\operatorname{Re}_{2}(\mathrm{CO})_{10^{\circ}}$ The general behaviour was suggestive of partial $\operatorname{Re}(C O)_{5} F^{2} \cdot \operatorname{ReF}_{5}$ formation, in an analogous manner to the 1:1 X_{2} /Genetron 113 reaction. When the yellow solution was concentrated, however, a very viscous, brown oil was produced, which gave a brittle, dark brown solid after many hours pumping. It is concluded that traces of impurity in the $H F$, or leached out of the Kel-F by the $H F$, caused the decomposition of the soluble species at higher concentrations.

Definitive characterisation of the brown material has not been possible because of the difficulty of removing the last traces of HF. Weak, but reproducible Raman bands obtained from the concentrated brown HF solution, and from pale crystals**precipitated from this solution below $-80^{\circ} \mathrm{C}$, suggest the presence of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}(2205 \mathrm{w}, 2134 \mathrm{~m}, 494 \mathrm{w}$, $441 \mathrm{w} \mathrm{cm}^{-1}, \mathrm{c} . \mathrm{f} .2204 \mathrm{~s}, 2134 \mathrm{vs}$ for $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$ in HF, see section 2-3.4, and 486 and 441 for $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(A s F_{6}\right)^{-}$ in MeCN^{47}), and possibly of the $\left(\operatorname{Re}(\mathrm{CO})_{5} F\right.$) moiety (2179 w , $2113 \mathrm{w} \mathrm{cm}{ }^{-1}, c . f .2170 \mathrm{~m}, 2106 \mathrm{~s}$ for $\operatorname{solid} \operatorname{Re}(\mathrm{CO})_{5} F \cdot \operatorname{ReF}_{5}$).

[^2]2-2.2 1:3 and 1:5 Reactions : Identification of

$$
\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}
$$

The $1: 3$ reactions also gave rise to initial, transient, blue-green colourations, but soon formed.orange solutions of a similar colour to those of $\operatorname{Re}(C O)_{5} F \cdot \operatorname{ReF}_{5}$ in HF, with no unreacted solid. On standing at room temperature, the solutions gradually became a pale blue-green colour. The 1:5 reaction formed a similar pale blue-green solution almost immediately.

Colour change phenomena were observed in these final solutions between pale green and pale blue. This resembled the behaviour of solutions of ReF_{6} in liquid $H F$ containing a few per cent of water, attributed to $\left.\left(\operatorname{Re}^{V I_{0 F}}\right)_{5}\right)^{-}$ and similar anions, 48 and suggested that partial hydrolysis of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{o}} \mathrm{ReF}_{5}$ had occurred. E.S.R. spectra of these solutions at $-196^{\circ} \mathrm{C}$ were obtained, and these were identical to the $\left(\operatorname{ReOF}_{5}\right)^{-}$spectra found in the $\operatorname{ReF}_{6} / \mathrm{HF} / \mathrm{H}_{2} \mathrm{O}$ system. 48 These show the 6-line spectrum resulting from the odd d-electron of the rhenium (VI) species, hyperfine split by the rhenium nuclei of spin $I=\frac{5}{2}$. Raman spectra of these 1:3 and 1:5 reaction solutions show unequivocal evidence of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\right.$see table 2.3), but only a weak band at $714 \mathrm{~cm}{ }^{-1}$ can be attributable to anionic absorbtions in these solution spectra. The combined data establish the presence of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ and $\left(\operatorname{ReOF}_{5}\right)^{-}$ions in the pale blue-green solutions.

When HF was distilled slowly off at low temperatures, white or pale-green crystals remained. The volatiles that were removed from the $1: 5$ reaction were colourless at room temperature, and pale-yellow at $-196^{\circ} \mathrm{C}$. This behaviour demonstrated the presence of ReF_{6} in the HF. 40 The absence

Table 2.3. The Raman Spectrum of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$
in HF Solution

$\begin{aligned} & \left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-} \\ & \text {in HF (this work) } \end{aligned}$	$\begin{aligned} & \left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{AsF}_{6}\right)^{-} \\ & \text {in } \mathrm{MeCN} \text { ref. } 47 \end{aligned}$	Assignment
2201 s	2197 s P	$A_{1 g} \nu(C \equiv 0)$
2132 vs	2122 vs	$\mathrm{E}_{\mathrm{g}} \nu(\mathrm{C} \equiv \mathrm{O})$
714 w		$\nu(R e-F)$?
497 w	486 w	$T_{2 g} \delta(R e-C-0)$
439 s	441 s P	$\mathrm{A}_{1 \mathrm{~g}} \nu(\mathrm{Re}-\mathrm{CO})$
	426 sh	$\mathrm{E}_{\mathrm{g}}, \nu(\mathrm{Re}-\mathrm{CO})$

$P=$ polarised band.

Table 2.4. The Infrared Spectrum of $\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}\right.$

$\begin{gathered} \left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-} \\ (\text {this work }) \end{gathered}$	$\begin{aligned} & \left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{AsF}_{6}\right)^{-} \\ & \text {ref. } 47 \end{aligned}$	Assignment
$\begin{array}{r} 2193 \mathrm{sh} \\ \sim 2125 \mathrm{sh} \\ 2084 \mathrm{vs} \\ 2063 \mathrm{sh} \\ 2044 \mathrm{sh} \end{array}$	$\begin{aligned} & 2191 \text { w } \\ & 2122 \text { * } \\ & 2086 \text { vs } \\ & 2062 \text { sh } \end{aligned}$	$\begin{aligned} & A_{1 g} \nu(C \equiv 0) \\ & E_{g} \nu(C \equiv 0) \\ & T_{1 u} \nu(C \equiv 0) \\ & T_{1 u} \nu\left({ }^{13} C \equiv 0\right) . \end{aligned}$
1167 w 1070 w 1010 sh 997 m 969 vvw 936 w $910 \mathrm{vw}, \mathrm{br}$ 880 w $\sim 845 \mathrm{sh}$ $\sim 772 \mathrm{vvw}, \mathrm{br}$	$\begin{aligned} & 1070 \mathrm{~m} \\ & 1010 \mathrm{~m} \\ & \\ & 940 \mathrm{~m} \\ & 878 \mathrm{~m} \\ & 844 \mathrm{w} \\ & 775 \mathrm{w}+ \end{aligned}$	$\begin{array}{\|c} \} \\ \begin{array}{c} \\ \nu(\operatorname{Re}=0) \\ \\ 0 / c \end{array} \\ \} \\ 0 / c \end{array}$
$\begin{aligned} & 736 \mathrm{sh} \\ & 722 \mathrm{~m} \\ & 658 \mathrm{~m} \\ & 611 \mathrm{~s} \end{aligned}$	700 br	$\} \begin{gathered} ? \\ \} \begin{array}{c} T_{1 u} \nu\left(A s F_{6}{ }^{-}\right) \\ \nu(\operatorname{Re}-F) \end{array} \end{gathered}$
582 vs 574 sh \sim 540 m 522 w 480 w 421 w	584 vs 576 sh 522 m 487 vw 420 vw	$\begin{gathered} \} T_{1 u} \delta(R e-C-0) \\ T_{1 u} \nu\left(R e F_{6}{ }^{2-}\right) \\ T_{2 u} \delta(R e-C-0) \\ T_{2 g} \delta(R e-C-0) \\ E_{a} \nu(R e-C O) \end{gathered}$

All are nujol mulls except the peak *, which is in MeCN soln.
t Value observed for $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ClO}_{4}\right)^{-}$, owing to obscuration
by AsF_{6}^{-}peak. $\quad \mathrm{o} / \mathrm{c}=$ overtone/combination bands.
$2-2 \cdot 2$

Fig.2.1 Infrared Spectrum of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$

of clear $\operatorname{ReF}_{\mathrm{n}}{ }^{+}$series; in the mass spectrum of these volatiles can be attributed to loss of the parent ReF_{6} as it fluorinated the mass spectrometer inlet system.

The infrared spectra of the solids (figure 2.1) confirm the carbonyl species as $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$, and the various $\nu(C \equiv 0), \delta(R e-C-O)$ and $\nu(R e-C)$ bands can be assigned on the basis of published data on $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(A s F_{6}\right)^{-} .47$ (see table 2.4). The shoulder at $2044 \mathrm{~cm}^{-1}$ may be due to solid state effects or impurities, and the peak at $\sim 540 \mathrm{~cm}^{-1}$ is attributed to the $\nu_{3}(\operatorname{Re}-F)$ stretching mode of the $\left(R e F_{6}\right)^{2-}$ anion (reported value $541 \mathrm{~cm}^{-1} 44$), arising from the disproportionation of $\operatorname{Re}(C O)_{5} \mathrm{~F}_{\mathrm{C}} \cdot \mathrm{ReF}_{5}$ in the presence of moisture to give $\left(R e^{I V} F_{6}\right)^{2-}$ and $\left(\mathrm{Re}^{\mathrm{VI}} \mathrm{OF}_{5}\right)^{-}$ions.

The remaining bands at 997,658 and $611 \mathrm{~cm}^{-1}$ are assigned to the $\left(\mathrm{ReOF}_{5}\right)^{-}$anion. Although no infrared data have been reported for this anion, its Raman spectrum in HF solution has been obtained from $\operatorname{ReF} F_{6} / \mathrm{H}_{2} \mathrm{O} / \mathrm{HF}$ solutions. ${ }^{48}$ Vibrational data are known for the molybdenum and tungsten analogues $\left(\mathrm{NO}^{+}\left(\mathrm{MOF}_{5}\right)^{-49,50}\right.$ and $\left(\mathrm{Ph}_{4} \mathrm{P}\right)^{+}\left(\mathrm{WOF}_{5}\right)^{-}, 51$ and several full vibrational assignments of other $\left(\right.$ MOF $\left._{5}\right)$ species have been made. 52 By comparison with the $\nu(M=0)$ vibrational modes of related species, the peak* at $997 \mathrm{~cm}^{-1}$ is assigned to the $A_{1 g} \nu(R e=0)$ mode of the $C_{4 v}\left(R e O F_{5}\right)$ anion:

	Raman (HF)	Raman(s)	IR (s)	($\mathrm{R}=$ alkyl)	IR(s)
. $\left(\mathrm{ReOF}_{5}\right)^{-}$	$1008 \mathrm{vs}^{48}$	-	997*	$53\left(\mathrm{R}_{4} \mathrm{~N}\right)^{+}\left(\mathrm{ReOCl}_{5}\right)^{-}$	966
$\left(\mathrm{NO}^{+}\left(\mathrm{WOF}_{5}\right)^{-}\right.$	1010	1001	1003	${ }^{54}\left(R_{4} N\right)^{+}\left(\text {WOCl }_{5}\right)^{-}$	960-970

By comparison with the $\nu(M-F)$ region of solid $\left(\mathrm{MOF}_{5}\right)^{-}$salts $\left(\left[\mathrm{Ph}_{4} \mathrm{P}\right]^{+}\left[\mathrm{WOF}_{5}\right]^{-} 670 \mathrm{vs}, 610 \mathrm{vs}^{51}(\mathrm{NO})^{+}\left(\mathrm{WOF}_{5}\right)^{-}\right.$ $625 \mathrm{~s}, \mathrm{br}^{49}$ and $680 \mathrm{sh}, 610 \mathrm{vs}, \mathrm{br} ;^{50}(\mathrm{NO})^{+}\left(\mathrm{MOOF}_{5}\right)^{-} 650 \mathrm{vs}, \mathrm{br}$.
$550 \mathrm{sh}^{50} \mathrm{~cm}^{-1}$), the bands at 658 and $611 \mathrm{~cm}^{-1}$ are consistent with the major $\nu(R e-F)$ modes. The two peaks at 736 and $722 \mathrm{~cm}^{-1}$ may be $\nu(R e-F)$ modes (c.f. the 736 and $700 \mathrm{~cm}^{-1}$ Raman peaks of $\left.\left(\operatorname{ReOF}_{5}\right)^{-} / \mathrm{HF}\right)$, or else carbonyl overtone / combination bands (peaks at around 736 and $722 \mathrm{~cm}^{-1}$ are frequently found in rhenium carbonyl fluoride spectra, and have been reported, though not assigned, in solid $\operatorname{Re}_{2}(\mathrm{CO})_{10}{ }^{55}$). Lower frequency anion modes ($\sim 450 \mathrm{~cm}^{-1}$) cannot be distinguished because of the presence of carbonyl bands in this region. Reproducible Raman spectra of the solid could not be obtained because of decomposition in the laser beam.

A mass spectrum was obtained from the solid on heating to $200^{\circ} \mathrm{C}$ in a glass capillary held in the probe of the (unseasoned) mass spectrometer. The spectrum shows fragmentation patterns associated with the species $\mathrm{F}^{\mathrm{C}} \mathrm{C}-\mathrm{Re}(\mathrm{CO})_{5}{ }^{+}, \mathrm{ReOF}_{5}{ }^{+}, \mathrm{ReO}_{3} \mathrm{~F}^{+}$and $\mathrm{ReO}_{2} \mathrm{~F}_{2}{ }^{+}$. No spectrum could be obtained without heating the probe.

Steps $\operatorname{Re}(\mathrm{CO})_{n} \mathrm{~F}^{+} \xrightarrow{-\mathrm{C}} \operatorname{Re}(\mathrm{CO})_{n-1} \mathrm{OF}^{+}$

The relative intensities of the peaks are given in table 2.5.
The spectrum can be interpreted in terms of the
decomposition of the ionic, involatile $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}$giving the volatile species $\mathrm{ReOF}_{5}, \mathrm{ReOF}_{4}, \mathrm{ReO}_{3} \mathrm{~F}, \mathrm{ReO}_{2} \mathrm{~F}_{3}$, (c.f.ref.56)
$\mathrm{F}^{\mathrm{O}} \mathrm{C}-\mathrm{Re}(\mathrm{CO})_{5}$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$. These species may be produced by the following processes:

$$
\begin{aligned}
& \mathrm{ReOF}_{5}^{-}+\mathrm{e}^{-} \xrightarrow{\longrightarrow \mathrm{ReOF}_{5}+2 \mathrm{e}^{-}} \\
& \mathrm{ReOF}_{5}^{-} \\
& \xrightarrow{\mathrm{HEAT}} \mathrm{ReOF}_{4}+\mathrm{F}^{-} \text {, perhaps aided }
\end{aligned}
$$

by moisture from the glass, by O_{2} or SiO_{2}, or by electron impact.

$$
\begin{aligned}
& \mathrm{ReOF}_{5}{ }^{-}+\mathrm{O}_{2} \xrightarrow{\mathrm{HEAT}} \mathrm{ReO}_{3} \mathrm{~F}+\mathrm{F}_{2}+\mathrm{F}^{-} \text {, ditto. } \\
& \mathrm{ReOF}_{5}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{ReO}_{3} \mathrm{~F}^{-}+4 \mathrm{HF}, \text { followed by: } \\
& \mathrm{ReO}_{3} \mathrm{~F}^{-}+\mathrm{e}^{-} \longrightarrow \mathrm{ReO}_{3} \mathrm{~F}+2 \mathrm{e}^{-} \because \text {. }
\end{aligned}
$$

$\mathrm{ReO}_{2} \mathrm{~F}_{3}$, the probable precursor of $\mathrm{ReO}_{2} \mathrm{~F}_{2}{ }^{+}$, will be produced in a similar fashion to $\mathrm{ReO}_{3} \mathrm{~F}$.
$\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}+\mathrm{F}^{-} \xrightarrow{\mathrm{HEAT}} \mathrm{F}^{\mathrm{C}-\mathrm{Re}(\mathrm{CO})_{5} \text {, which can fragment by: }}$

Tiable 2.5. Mass spectrum from $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$at $200^{\circ} \mathrm{C}$

| m / e | Ion $^{\text {\%Abund- }}$ |
| :--- | :--- | :---: | :--- | :--- | :---: |
| ance | |$]$

The major peaks in the spectrum are the series $\mathrm{ReOF}_{4}{ }^{+}, \mathrm{ReOF}_{3}{ }^{+}$and $\mathrm{ReOF}_{2}{ }^{+}$and the highest mass peak in this fragmentation series is, as expected, $\mathrm{ReOF}_{5}{ }^{+}$. This indicates that the major species from the anion fragmentation are ReOF_{5} and $\mathrm{ReOF}_{4}\left(\mathrm{ReOF}_{3}\right.$ being involatile). ${ }^{56}$ This is further supported by the principal peaks in the secondary spectrum $\mathrm{ReOF}_{3}{ }^{2+}, \mathrm{ReOF}_{2}{ }^{2+}, \mathrm{ReOF}^{2+}$ and ReF^{2+}. These results are entirely consistent with the anion of the solid being $\left(\mathrm{ReOF}_{5}\right)$-. The other oxyfluoride species result from the oxygenation of this anion, as shown above, under the conditions in the probe. The low intensity of the carbonylcontaining fragments indicates either that only small decomposition of the $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ion occurs, or, alternatively, rapid degradation to CO and rhenium metal.

X-ray powder patterns of the ground crystals from the $1: 3$ and $1: 5$ reactions were identical to those of the buff solid obtained after handling $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{f}} \mathrm{ReF}_{5}$ under moist conditions (c.f. section 2-1.3). There are similarities in the general spacing and intensity distribution of the major lines with the powder pattern of $\operatorname{Re}(C O)_{5} F \cdot \operatorname{ReF}_{5}$, but the pattern is unlike that of any other carbonyl fluoride. The d-spacings are tabulated with the crystallographic data in table 8.1, page 207.

A single crystal of the bulk solid was mounted for X-ray structural work, which is described more fully in chapter 8. Though a definitive structural analysis could not be achieved, the essential details confirm the formulation of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}$. The unit cell dimensions are consistent with the theoretical volume required for $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$calculated on the basis of established
principles. The electron density maps of the unit cell show a regular array of rhenium atoms with highly symmetrical co-ordination spheres, with the light atoms contributing very little to the data. The $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$cation was distinguished, but the identity of the anion could not be established, probably because of disorder.

These crystal data, together with the other information described above, serve to show that the solid product of both the $1: 3$ and $1: 5 \mathrm{Re}_{2}(\mathrm{CO})_{10}: \mathrm{XeF}_{2} / \mathrm{HF}$ reactions is predominately the ionic salt $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$. This was produced, along with $\left(\operatorname{ReF}_{6}\right)^{2-}$ derivatives, by the partial hydrolysis of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ by traces of moisture, or other oxygen-containing impurities, in the HF. The remarkable affinity of rhenium (V) fluorides for such species has already been noted. That $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}$ was the preçursor of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$, and thus the original product of the $1: 3$ reaction, is supported by the fact that solid $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$ is hydrolysed by traces of moisture to give $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$, and that this same final product was obtained from the $1: 5$ reaction where $X e F_{2}$ and HF were added to freshly-prepared $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$. The mechanism of the hydrolysis is discussed in section 3-2.5.

2-2.3 Summary of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ System The results obtained can be summarised in the following three equations:
$\mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{XeF}_{2} \longrightarrow \sim 1 / 2 \mathrm{Re}_{2}(\mathrm{CO})_{10}+$ brown solid of indefinite composition + CO and Xe .
$\mathrm{Re}_{2}(\mathrm{CO})_{10}+3 \mathrm{XeF}_{2} \longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}+5 \mathrm{CO}+3 \mathrm{Xe}$

$$
\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}+\left(\operatorname{ReF}_{6}\right)^{2-} \text { species }
$$

$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}+2 \mathrm{XeF}_{2} \longrightarrow 1 / 3 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}+2 / 3 \operatorname{ReF}_{6}+2 \mathrm{Xe}(+\mathrm{CO})$ \downarrow^{5} hydrolysis $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}+\left(\operatorname{ReF}_{6}\right)^{2-}$ species.

2-3. THE Re 2 (CO) $10 / \mathrm{ReF}_{6} / \mathrm{HF}$ SYSTEM
2-3.1 General Description of the System, and Discussion of

1:2 Reaction

Proportions of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ to ReF_{6} of $1: 2,1: 3$ and 1:4 were used. The stoicheiometric amounts of ReF_{6} were condensed on to frozen mixtures of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ and anhydrous $H F$, in a metal and Kel-F apparatus, and the mixture warmed to room temperature. Complicated colour-change phenomena were observed, particularly during the $1: 3$ reaction, where the ReF_{6} was added stepwise. In all three reactions, a transient blue colour was visible on the surface of the solid rhenium carbonyl, with a pale yellow solution above, as the first traces of ReF_{6} dissolved into the molten HF. This behaviour was similar to that of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ reactions. The colour dispersed immediately the bulk of the ReF_{6} had dissolved. There was no gas evolution in any of the reactions. The absence of CO was demonstrated by the lack of a measureable vapour pressure above the reaction mixture at $-196^{\circ} \mathrm{C}$.

The 1:2 reaction gave a bright orange-red solution from which orange crystals of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$ were obtained as the sole product. These were identified by comparison of
the X-ray powder pattern and infrared spectrum with those of the orange product of the 1:3 reaction (see below), and with $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}, \mathrm{ReF}_{5}$ from the $\mathrm{XeF}_{2} /$ Genetron reactions.

2-3.2 The 1:3 Reaction and the Isolation of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re} 2 \mathrm{~F}_{11}\right)^{-}$
The $1: 3$ reaction gave a red-brown solution and dark solid when approximately 1:2 proportions had been added, but on addition of the last molar equivalent of ReF_{6}, the solution became green, with only small amounts of undissolved residue. After filtering, orange, brick-shaped crystals and green needles were gradually precipitated from the solution at $0^{\circ} \mathrm{C}$, and further crystals of both sorts were obtained on slowly distiliing off the HF. Single crystal X-ray structures on the two types of crystals established the orange to be $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ (see chapter 6), and the green to be a new, ionic species $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$(see chapter 7). Definitive infrared and Raman spectra, and X-ray powder patterns, of these two compounds were also obtained, and were used as the basis for interpreting the results of the $X_{2} F_{2}$ systems.

Rather more $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{--}$seemed to be formed than $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$. The presence of small quantities of other solid species could not be ruled out; but no definitive evidence was obtained.

2-3.3 The 1:4 Reaction, and Identification of a Second
Modification of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
The 1:4 reaction produced a yellow solution, (which gradually turned green during several days at room
temperature) over a considerable amount of golden yellow, crystalline solid. Undissolved solid was always present in the reaction. The yellow crystals were filtered off and gave an X-ray powder pattern almost identical to that of the green $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}{ }_{2} F_{11}\right)^{-}$from the $1: 3$ reaction, (see table 2.6 page 36). The infrared spectrum was also almost identical (see table 2.7 page 37). Elemental analysis confirmed that the formula was $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReF} \mathrm{F}_{11}\right)^{-}$:

$$
\begin{aligned}
& \text { Yellow crystals (found) : } 7.69 \% \text { C , } 21.2 \% \text { F • } \\
& \operatorname{Re}(\mathrm{CO})_{6}^{+} \mathrm{Re}_{2} \mathrm{~F}_{11}{ }^{-} \text {(calc.) : } 7.70 \% \text { C }, 22.3 \% \mathrm{~F} \cdot
\end{aligned}
$$

This suggested that the yellow solid was a different crystalline modification of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$from the green crystals from the $1: 3$ reaction. It seemed significant that the former were produced by a heterogeneous reaction, whereas the latter were precipitated from solution. Recrystallisation from HF thus seemed a possible means of converting the yellow form to the green. A sample of the yellow solid was duly treated with $H F$, and gave a green solution, together with an undissolved.dark residue. The latter probably resulted from surface hydrolysis from handling in the dry-box and subsequent storage in glass. An E.S.R. spectrum of the green solution after decanting gave a weak signal due to $\left(\mathrm{ReOF}_{5}\right)^{-}$, at about a twentieth the concentration of the signal from the $1: 3 \mathrm{XeF}_{2} / \mathrm{HF}$ reaction (see section 2-2.2). This confirmed that trace hydrolysis of the yellow solid had occurred, giving a small concentration of $\left(\operatorname{ReOF}_{5}\right)^{-}$in solution, and some insoluble residue. Evaporation of the green solution to dryness produced green, needle crystals whose powder pattern and infrared spectrum were identical to those of the green
crystals of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$from the $1: 3$ reaction.
It was concluded that the green and yellow crystals are indeed differing crystalline modifications of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ $\left(\operatorname{Re}_{2} F_{11}\right)^{-}$, hereafter known as α - and β - respectively. Polymorphism is a common feature amongst compounds with mononuclear cations and binuclear anions.

The green solution from the 1:4 reaction was itself concentrated, precipitating grass-green, needle crystals which may have been $\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$. As the last traces of $H F$ were removed, however, the mixture became an intractible, brown tar, probably due to traces of impurity, and was not examined further. It is possible the tar may have contained ReF_{5} which is known to form a solid mass initially, rather than crystallise. 61 The HF and volatiles that were taken off formed a pale yellow solid at $-196^{\circ} \mathrm{C}$, and a colourless solution at room temperature, suggesting the presence of some unreacted ReF_{6} in the HF. In the presence of traces of water this colourless solution became pale blue from the formation of $\left(\operatorname{ReOF}_{5}\right)^{-}$.

The probable equation for the $1: 4$ reaction (see section 3-2.3) is:
$3 \mathrm{Re}_{2}(\mathrm{CO})_{10}+12 \operatorname{ReF}_{6} \longrightarrow 5\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}+\operatorname{ReF}_{5}+$

$$
2 \operatorname{ReF}_{6} \quad \text { (unreacted) }
$$

On this basis, the yield of $\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$is approximately 86%.

2-3.4 The Properties of $\alpha-$ and $\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
$\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$decomposed without melting at $259^{\circ} \mathrm{C}$, when heated in an evacuated Pyrex glass capillary.

Both α - and β - forms dissolve completely in acetone, to give brown, presumably hydrolysed, solutions. Like other rhenium (V) species, both forms are extremely moisturesensitive, turning black in moist air. The yellow solid darkened even on handling in a recirculating dry-box atmosphere, but X-ray powder photographs showed that this was only a surface effect, the bulk being unchanged. This agrees with the E.S.R. evidence for only traces of ($\left.\mathrm{ReOF}_{5}\right)^{\text {- }}$ in HF solution. Pure $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$exhibits neither E.S.R. nor N.M.R. signals in HF solution, as expected for a high-spin, $d^{2} \mathrm{Re}^{\mathrm{V}}$ anion.

Table 2.6 compares the X-ray powder patterns of α - and $\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}{ }_{2} \mathrm{~F}_{11}\right)^{-}$, as well as of 0^{\prime} Donnell's product of his $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6} / \mathrm{HF}$ reaction, $" \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3} " \cdot{ }^{38}$ The d-spacings of the α-form are indexed from the single crystal data (see table 7.4, page 193). The most striking differences between the α - and β - forms lie in the region $d=3.50$ to $d=3.00 \AA$; otherwise they are very similar. It is apparent that the pattern of $" \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ " parallels those of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$quite closely, at least as far as $d=3.00 \AA$, although more marked divergence is shown at lower d-spacings.

The infrared data on $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$are summarised in table 2.7. The $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$bands may be identified unambiguously in both forms, just as in the case of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$. Peaks at 688,663 and $649 \mathrm{~cm}^{-1}(\alpha-)$ and 680,665 and $642 \mathrm{~cm}^{-1}(\beta-)$ are $\nu(R e-F)$ modes of the anion. Only $\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-\quad}$ has given a reproducible Raman spectrum, the α - phase tending to decompose in the

Table 2.6. X-ray Powder Pattern d-spacings for
$\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re} \mathrm{F}_{11}\right)^{-}$and Related Compounds

Table 2.7. Infrared Spectra of $\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$and

Related Compounds

$\begin{gathered} \operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \mathrm{Re}_{2} \mathrm{~F}_{11}- \\ \alpha- \\ \beta- \end{gathered}$		$\begin{gathered} \operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \\ \mathrm{Sb}_{2} \mathrm{~F}_{11} \end{gathered}$	$\begin{aligned} & \operatorname{Re}(\mathrm{CO})_{6} \\ & \mathrm{AsF}_{6}^{-} \end{aligned}$	$\mathrm{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$	Assignment
	2470 vw	2474 vw	2480 sh		o/c
$\begin{aligned} & 2194 \mathrm{vw} \\ & 2126 \mathrm{~m} \\ & 2071 \mathrm{~s} \\ & 2041 \mathrm{sh} \end{aligned}$	$\begin{aligned} & 2194 \mathrm{vw} \\ & 2154 \mathrm{vw} \\ & 2126 \mathrm{w} \\ & 2118 \mathrm{~m} \\ & 2105 \mathrm{sh} \\ & 2078 \mathrm{vs} \\ & 2052 \mathrm{sh} \end{aligned}$	$\begin{aligned} & 2195 \mathrm{vw} \\ & 2153 \mathrm{w} \\ & 2121 \mathrm{sh} \end{aligned}$ 2083 vw	$\begin{aligned} & 2191 \text { w } \\ & 2165 \text { sh } \\ & 2122 \text { * } \end{aligned}$ 2086 vs 2062 sh	$\begin{aligned} & 2120 \text { m } \\ & 2070 \text { s } \\ & 2040 \text { sh } \end{aligned}$	$\{\nu(C \equiv 0)$
1072 vvw 1041 vw 1012 vw ~943 vw ~885 vw	$\begin{aligned} & 1067 \mathrm{vw} \\ & 1052 \mathrm{w} \\ & 1012 \mathrm{vw} \\ & 941 \mathrm{vw} \\ & 886 \mathrm{vw} \end{aligned}$	$\begin{array}{rl} \sim 1070 & \mathrm{vw} \\ \sim 1040 & \mathrm{sh} \\ \sim 1010 & \mathrm{vw} \\ 966 & \mathrm{w} \\ \sim 944 & \mathrm{vw} \\ 886 & \mathrm{vw} \end{array}$	$\begin{aligned} & 1070 \mathrm{~m} \\ & 1010 \mathrm{~m} \\ & 940 \mathrm{~m} \\ & 878 \mathrm{~m} \end{aligned}$		$\}$
$\begin{gathered} \sim 740 \mathrm{sh} \\ 721 \mathrm{w} \\ 688 \mathrm{w} \\ 663 \mathrm{sh} \\ 649 \mathrm{~s} \end{gathered}$		$\begin{aligned} & 720 \mathrm{sh} \\ & 701 \mathrm{~ms} \\ & 680 \mathrm{~s} \\ & 663 \mathrm{vs} \end{aligned}$	700 br	650 m	$\left\{\begin{array}{c} ? \\ \nu \nu(M-F) \end{array}\right.$
$\begin{aligned} & 582 \mathrm{~s} \\ & 515 \mathrm{vw} \\ & 485 \mathrm{vw} \end{aligned}$	$\begin{aligned} & 582 \mathrm{vs} \\ & 542 \mathrm{~s} \\ & 527 \mathrm{sh} \\ & 491 \mathrm{vw} \end{aligned}$	$\begin{aligned} & 582 \mathrm{vs} \\ & 522 \mathrm{w} \\ & 497 \mathrm{vw} \\ & 485 \mathrm{vw} \end{aligned}$	$\left\{\begin{array}{ll} 584 & \mathrm{vs} \\ 576 & \mathrm{sh} \end{array}\right\}$ $522 \text { m }$ 487 vw	580 m	$\begin{gathered} \delta(R e-C-0) \\ ? \\ \delta(R e-C-0) \\ \nu(R e-C O) \end{gathered}$
This work	This work	This work	ref. 47	ref. 38	

All peaks are nujol mulls except * (MeCN solution)
\neq An additional peak at 2174 w may be due to an impurity. $o / c=o v e r t o n e / c o m b i n a t i o n ~ b a n d s$.
laser beam. Characteristic $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$peaks occur at 2196 vw $\mathrm{cm}^{-1}\left(\mathrm{~A}_{1 \mathrm{~g}} \nu_{\mathrm{CO}}\right), 2122 \mathrm{vs}\left(E g \nu_{\mathrm{CO}}\right), 487 \mathrm{~m}, \mathrm{sh}\left(T_{2 \mathrm{~g}} \delta_{\mathrm{ReCO}}\right)$ and 435 s ($A_{1 g} \nu_{R e C}$), with an extra 2178 vw peak, and anion bands at 718 $\mathrm{m}, 707 \mathrm{sh}, 462 \mathrm{~m}, \mathrm{sh}$ and 314 vw . A solution spectrum in HF also showed $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+} \nu_{\mathrm{CO}}$ absorbtions (2204 s, $2134 \mathrm{vw} \mathrm{cm}^{-1}$), but no clear signals at lower frequencies. Definitive vibrational assignments of $\left(M_{2} F_{11}\right)^{-}$species have not so far been made. 65 It has not been possible to obtain a mass spectrum from $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$on account of its involatility. 2-3.5 The Reaction of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}{ }_{2} \mathrm{~F}_{11}\right)^{-}$with an Excess of $\mathrm{XeF}_{2}{ }^{\cdot}$ An excess of $X_{2} F_{2}$ was added to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re} \mathrm{F}_{11}\right)^{-}$ in $H F$, to see whether further oxidation might take place, or whether an $X_{2 e F}$ complex like $X_{2} F_{2} \cdot 2 R e F_{5}$ would be formed. A pale blue solution was produced, with the evolution of xenon gas, but not of $C O$ (from a mass spectrum of the volatiles). The solution became colourless on standing, and yielded very pale green, needle crystals on removal of the HF. Once again the condensible volatiles were pale yellow at $-196^{\circ} \mathrm{C}$ and colourless at room temperature, indicating $R_{6} F_{6}$ dissolved in the $H F$. The pale solid gave a powder pattern identical to that of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$, except for a few extra lines. While confirming the presence of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$as the only carbonyl species, the infrared and Raman spectra (table 2.8) of the solid show significantly different $\nu(R e=0)$ and $\nu(R e-F)$ regions from those associated with $\left(\operatorname{ReOF}_{5}\right)$-.

Mass spectra from the solid heated to $100^{\circ} \mathrm{C}$ in a glass capillary, held in the spectrometer probe, show only

Table 2.8. Vibrational Spectra of the $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-1 /}$
$\underline{X e F}_{2} / \mathrm{HF}$ Product

IR(nujol mull)	Raman (powder)	Raman (HF soln)	Assignment
2198 VVW 2122 sh 2078 vs 2065 sh	$\begin{aligned} & 2201 \text { m } \\ & 2126 \text { vs } \end{aligned}$	$\begin{aligned} & 2203 \text { w } \\ & 2133 \text { s } \end{aligned}$	$\begin{aligned} & A_{1 g} \nu(C \equiv 0) \\ & E_{g} \nu(C \equiv 0) \\ & T_{1 u} \nu(C \equiv 0) \\ & T_{1 u} \nu\left({ }^{13} C \equiv 0\right) \end{aligned}$
$\begin{aligned} & 988 \mathrm{vw} \\ & 969 \mathrm{w} \\ & 935 \mathrm{w} \\ & 912 \mathrm{vw} \\ & 876 \mathrm{vvw} \end{aligned}$	$\begin{aligned} & 989 \mathrm{vw} \\ & 970 \mathrm{~m} \\ & 938 \mathrm{w} \end{aligned}$		$\nu(R e=0)$ o/c o/c
$\begin{aligned} & 656 \mathrm{vw} \\ & 638 \mathrm{sh} \\ & 635 \mathrm{w} \\ & 619 \mathrm{sh} \\ & 614 \mathrm{w} \end{aligned}$	720 vw ? 660 vw 641 vw	742 vw ?	0/c ? $\nu(R e-F)$
582 m 542 vw 511 vw 482 vw	$\begin{aligned} & 486 \mathrm{vw} \\ & 444 \mathrm{~s} \\ & 410 \mathrm{vw} \\ & 325 \mathrm{vw} \end{aligned}$	$\begin{aligned} & 553 \mathrm{w} \\ & 502 \mathrm{vw} \\ & 486 \mathrm{vw} \\ & 442 \mathrm{~s} \end{aligned}$	$\begin{aligned} & T_{1 u} \delta(R e-C-0) \\ & T_{1 u} \nu\left(R e F_{6}{ }^{2-}\right) \\ & T_{2 u} \delta(R e-C-O) ? \\ & T_{2 g} \delta(R e-C-0) \\ & A_{1 g} \nu(R e-C O) \\ & E_{g} \nu(R e-C O) ? \end{aligned}$

$o / c=$ overtone or combination band

Table 2.9. Mass Spectra from the $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$

$\angle \mathrm{XeF}_{2}$ Product at $100^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$

Probe at $100^{\circ} \mathrm{C}$ 砉

m/e *	Ion	\% Abundance *
328	$\mathrm{HRe}(\mathrm{CO})_{5}{ }^{+}$328/26	13
327	$\mathrm{Re}(\mathrm{CO})_{5}{ }^{+} 327 / 25$	47
326	$\operatorname{Re}_{2}(\mathrm{CO})_{10}{ }^{2+} 327 / 26 / 25$	16
325		39
300/298	$\mathrm{HRe}(\mathrm{CO})_{4}{ }^{+}$	24
299/97	$\mathrm{Re}(\mathrm{CO})_{4}{ }^{+}$	34
272	$\mathrm{HRe}(\mathrm{CO})_{3}{ }^{+}$272/70	58
271	$\mathrm{Re}(\mathrm{CO})_{3}{ }^{+} 271 / 69$	55
270	$\mathrm{Re}_{2}(\mathrm{CO})_{6}{ }^{2+} 271 / 70 / 69$	55
269		32
244	$\mathrm{HRe}(\mathrm{CO})_{2}{ }^{+}$	95
243	$\mathrm{Re}(\mathrm{CO})_{2}{ }^{+}$	100
242	$\mathrm{Re}_{2}(\mathrm{CO})_{4}{ }^{2+}$	45
241		22
216/14	$\mathrm{HRe}(\mathrm{CO})^{+}$	21
215/13	$\mathrm{Re}(\mathrm{CO})^{+}$	34
203/01	Reo ${ }^{+}$	<8
200/198	HReC ${ }^{+}$	7.9
199/97	ReC ${ }^{+}$	32
188/86	HRe ${ }^{+}$	13
187/85	Re ${ }^{+}$	71

* For the bracketed groups of m / e values and abundances, there is sufficient deviation from the normal ${ }^{185} \operatorname{Re} 37 \%$,
${ }^{187} \mathrm{Re} 63 \%$ isotopic abundance, to indicate a significant
intensity of $\mathrm{Re}_{2}(\mathrm{CO})_{n^{2+}}$ peaks $(\mathrm{n}=10,6,4$ and 2$)$, or peak overlap from other ions (\neq). Otherwise abundances are quoted for the ${ }^{187} \mathrm{Re}$ peak of each fragment.
\neq Weak evidence was also found for the series $\operatorname{Re}_{2}(\mathrm{CO})_{n}{ }^{+}$ ($n=10$ and $7-0$), $\mathrm{HRe}(\mathrm{CO})_{n}{ }^{2+}(n=5-0), \operatorname{Re}(\mathrm{CO})_{n}{ }^{2+}(n=5-0)$, and ReC^{2+}. Non-rhenium containing peaks are omitted.

Table 2.9 cont.
Probe at $200^{\circ} \mathrm{C}$

m/e	Ion	\%Abundance*
346/44	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{+}$	10
334/32	$\mathrm{Re}(\mathrm{CO})_{4} \mathrm{OF}^{+}$	10
$\left.\begin{array}{c}328 / 26 \\ 327 \\ 326 \\ 325\end{array}\right\}$	$\left\{\begin{array}{l}\mathrm{HRe}(\mathrm{CO})_{5}^{+} 328 / 26 \\ \operatorname{Re}(\mathrm{CO})_{5}^{+}{ }^{+} 327 / 25 \\ \operatorname{Re}_{2}(\mathrm{CO})_{10} 0^{2+} 327 / 26 / 25\end{array}\right.$	$\left\{\begin{array}{l}21 \\ 12 \\ 17 \\ 10\end{array}\right.$
318/16	$\mathrm{Re}(\mathrm{CO})_{4} \mathrm{~F}^{+}$	8.6
306/04	$\mathrm{Re}(\mathrm{CO})_{3} \mathrm{OF}^{+}$	7.4
300/298	$\mathrm{HRe}(\mathrm{CO})_{4}{ }^{+}$	12
299/97	$\mathrm{Re}(\mathrm{CO})_{4}^{+}$	12
298/96	$\mathrm{ReOF}_{5}{ }^{+}$	very weak
290/88	$\mathrm{Re}(\mathrm{CO})_{3} \mathrm{~F}^{+}$	20
282/80	ReF_{5}^{+}	very weak ?

281/79
279/77
278/76
272
271
270
269
262
260
258
254/52
244
243
242
241
239
238/36
235/33
234/32
225/23
222/20
219/17
216
215
214
213
296/04
203/01
199/97
187/85
the breakdown patterns of $\mathrm{HRe}(\mathrm{CO})_{5}{ }^{+}$and (very weakly) $\operatorname{Re}_{2}(\mathrm{CO})_{n}{ }^{+}(n=10$ and $7-0)$, with the doubly charged series of $\mathrm{HRe}(\mathrm{CO})_{5}{ }^{2+}$ and $\operatorname{Re}_{2}(\mathrm{CO})_{n}{ }^{2+}\left(n=10,6\right.$ and 4). At $200^{\circ} \mathrm{C}$ however, the spectra show patterns from $\mathrm{ReO}_{3} \mathrm{~F}^{+}$(the most intense series), $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{+}$and (very weakly) ReOF ${ }_{5}{ }^{+}$, in addition to a weaker $\mathrm{HRe}(\mathrm{CO})_{5}{ }^{+}$series. The relative intensities of the peaks are given in table 2.9.

Steps $\operatorname{Re}(C O)_{n} \mathrm{~F}^{+} \xrightarrow{-\mathrm{C}} \operatorname{Re}(\mathrm{CO})_{n-1} \mathrm{OF}^{+}$

$$
(n=4-1) \text { are omitted for clarity. }
$$

As with $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}(\operatorname{section} 2-2.2)$ the spectra result from volatile decomposition products $\mathrm{ReOF}_{5}, \mathrm{ReO}_{3} \mathrm{~F}$ and $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}$, and also $\mathrm{HRe}(\mathrm{CO})_{5}$, produced by heating the sample in a glass capillary, in the probe, to $200^{\circ} \mathrm{C}$. The much greater abundance of the $\mathrm{ReO}_{3} \mathrm{~F}^{+}$ series than the $\operatorname{ReOF}_{5}{ }^{+}$indicates a greater degree of hydrolysis in the sample than in $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}$, producing an anion richer in oxygen, perhaps $\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)^{-}$ or $\left(\mathrm{ReO}_{3} \mathrm{~F}\right)^{-}$(but not $\left(\mathrm{ReO}_{4}\right)^{-}$, which may be excluded on account of the vibrational spectra). $H \operatorname{Re}(C O)_{5}$ probably resulted from a high temperature hydrolysis of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$: $\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{HEAT}} \mathrm{HO}^{\mathrm{O}} \mathrm{C}-\mathrm{Re}(\mathrm{CO})_{5}+\mathrm{H}^{+}$, which fragments by:-

also the hydrolysis of $\left.\left(\mathrm{Mn}(\mathrm{CO})_{6}\right)^{+58}\right)$. The absence of this fragmentation in $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$is consistent with the smaller proportion of $\mathrm{H}_{2} \mathrm{O}$ present.

No definite conclusion can be drawn about the formula of the anion, in view of the general lack of data on rhenium oxide fluoride anions.

2-4. REACTIONS OF $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{-\mathrm{ReF}_{5}}$ WITH PENTAFLUORIDES
Reactions of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ with TaF_{5} and SbF_{5} were investigated, in preliminary attempts to exchange the pentafluoride fragment, which would give $\operatorname{Re}(C O)_{5} \mathrm{~F}^{\prime} \mathrm{MF}_{5}$ 。 or to add a second, which would give $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5} \cdot \mathrm{MF}_{5}$.

2-4.1 $\mathrm{Re}(\mathrm{CO})_{5}{\mathrm{~F} \cdot \mathrm{ReF}_{5} \text { and } \mathrm{TaF}_{5}}$
The reaction of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Ce}} \mathrm{ReF}_{5}$ with TaF_{5} in HF solution gave a golden yellow solution, with no evolution of gas. Decomposition of the solution occurred on standing, with much darkening. The solid that was isolated, however, gave an infrared spectrum similar to that of $\operatorname{Re}(C O)_{5} F^{2} \cdot \operatorname{ReF}_{5}$ (table 2.1.), except that the $V(R e-F)$ peaks at 642 and $620 \mathrm{~cm}^{-1}$ are absent, and the $\delta(\mathrm{Re}-\mathrm{C}-0)$ peak at $588 \mathrm{~cm}^{-1}$ is unusually broad, with a new shoulder at $\sim 605 \mathrm{~cm}^{-1}$. Comparing the bands in this region with those of $\left(\mathrm{TaF}_{6}\right)^{-}, 44$ $\left(\operatorname{ReF}_{6}\right)^{-}, 44 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{44} \mathrm{ReF}_{5}$, and the recently-reported $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{AsF}}^{5}$, ${ }^{43}$ (table 2.2); the solid may be formulated as $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{TaF}_{5}$. An analogous mixed complex was prepared by Wilson from the carbonylation of $\mathrm{RuF}_{5} / \mathrm{TaF}_{5}, 28$ and can be identified as $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{TaF}_{5}\right)_{2}$ from a similar infrared comparison with $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{RuF}_{5}\right)_{2} \cdot$

X-ray powder patterns of the solid showed the preserice only of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{--}$and an unidentified second phase. As no evidence for $\left(\operatorname{Re}(C O)_{6}\right)^{+}$or $\left(\operatorname{ReOF}_{5}\right)^{-}$ could be found in the infrared spectrum, it is likely that hydrolysis of the ReF_{5} by-product occurred in the X-ray capillary to give rise to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$:
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}+\mathrm{TaF}_{5} \longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{TaF}_{5}+\mathrm{ReF}_{5}$ $\mathrm{ReF}_{5}+$ moisture $/ \mathrm{glass} \longrightarrow \mathrm{ReOF}_{5}{ }^{-}, \mathrm{ReF}_{6}{ }^{2-}$, etc. No further data were obtained from this reaction.

2-4.2 $\operatorname{Re}(\mathrm{CO})_{5}{\mathrm{~F} \cdot \mathrm{ReF}_{5}}^{\text {and } \mathrm{SbF}_{5}}$
An excess of SbF_{5} was added to freshly prepared $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$, in the absence of a solvent. A lime-green suspension in molten SbF_{5} was fomred, and there was no gas evolution. The more volatile components were distilled off as a pale green syrup, the colour showing the presence of a second species of comparable volatility with $\operatorname{SbF}_{5}{ }^{\text {• }}$ Gas phase infrared and liquid phase Raman spectra of this syrup showed characteristic bands for SbF_{5} and a suggestion of weak bands* due to a second species. (I.R.: $759 \mathrm{~cm}^{-1} \mathrm{w}$, $726 \mathrm{~m}, 709 \mathrm{w}$, and 691 w : reported for $\mathrm{SbF}_{5}(\mathrm{~g})^{59}: 760 \mathrm{~s}$, $727 \mathrm{~s}, 710 \mathrm{~s}$ and 684 s . Raman : $720 \mathrm{~s}, 684 \mathrm{sh} *$, and 673 s ; reported for $\mathrm{SbF}_{5}(1)^{60}: 718 \mathrm{~s}$ and 670 s$)$. On concentrating the syrup, the 691 (IR) and 684 (Raman) bands increased in intensity relative to the SbF_{5} signals, indicating that the bands belonged to the green species. It was not possible, however, to isolate this material free from $\operatorname{SbF}_{5}{ }^{\circ}$

The colour, inseparability from SbF_{5}, and reluctance to crystallise, of the green species are all sugg-
estive of ReF_{5}, ${ }^{61}$ but the volatility is too high for ReF_{5}. In addition the vibrational bands show no clear correlation with unpublished data on ReF_{5} supplied by Dr. R.T. Paine (e.g. Raman of ReF_{5} melt at $\sim 45^{\circ} \mathrm{C}: 746 \mathrm{~s}, 690 \mathrm{w}$). ${ }^{62}$ Transition metal pentafluorides are known to increase in volatility in adducts with $\mathrm{SbF}_{5} \cdot 63$ The compound $\mathrm{NbF}_{5} \cdot \mathrm{SbF}_{5}$ has been established, 64 and there is preliminary evidence for the adducts $\mathrm{MF}_{5} \cdot \mathrm{SbF}_{5}(M=\mathrm{Ta}, \mathrm{Ru}) \cdot{ }^{63}$ It is likely that the green material is a similar adduct $\operatorname{ReF}_{5} \cdot \mathrm{nSbF}_{5}$. This would be expected to have significantly different vibrational spectra from pure ReF_{5}.

The involatile products were a pale green, crystalline solid, and a red-brown or violet powder. The latter appeared to have undergone some decomposition, but the green solid was investigated further. It gave an X-ray powder pattern very similar to those of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ $\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$, but with enough minor variations to indicate that it was a different phase (table 2.6). The infrared spectrum (table 2.7) confirmed the presence of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$, but instead of the $\nu(R e-F)$ peaks at 649,663 and $688 \mathrm{~cm}^{-1}$ $(\alpha-)$ and 642,665 and $680 \mathrm{~cm}^{-1}(\beta-)$ for $\left(\operatorname{Re}_{2} F_{11}\right)^{-}$, new peaks at $663 \mathrm{vs}, 680 \mathrm{~s}$ and $701 \mathrm{~ms} \mathrm{~cm}{ }^{-1}$ were observed. These are in the region expected for $\nu(S b-F)$ bands.in $\left(S b_{n} F_{5 n+1}\right)^{-}$anions. 65

In view of the indications of ReF_{5} formation in the volatiles, and the absence of $\nu(R e-F)$ absorbtions in the solid, the green solid is unlikely to be $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReSbF}_{11}\right)^{-}$, and is therefore believed to be $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}$. Conclusive evidence could not be found for $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ derivatives.

2-5. REACTIONS OF OTHER CARBONYL FLUORIDE SYSTEMS
$2-5.1 \cdot \mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}+\mathrm{HF}$

In the light of a report by O'Donnell et alia of the solvolysis of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ by anhydrous HF , to produce $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ and $\mathrm{HCl}, 39$ a preliminary reaction was investigated. The $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ was found to be insoluble in $H F$, and no detectable reaction occurred.

2-5.2 $\mathrm{Mn}_{2}(\mathrm{CO})_{10}+\mathrm{HF}$
Having noted an apparent solvent dependence on the course of the $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2}$ reactions (sections 2-1. and 2-2.), information was required on the solvation of metal carbonyls by HF. The closely analogous η^{5}-cyclopentadienyl irondicarbonyl dimer. $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}\right.$, had been shown to dissolve in a variety of acid solvents, including anhydrous HF and HCl , and $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$, to produce solutions containing the protonated, linear Fe-H-Fe bridged species, $\left[\mathrm{H}\left\{\mathrm{Fe}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]^{+66,67}$ Tentative evidence had been obtained from U.V.-visible spectra that $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ dissolved partially in $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to form a similar cation, but that $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ was insoluble. 66 In order to provide a model for the mode of the (very low) solubility of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ in $H F$, evidence was required for the formation of $\left(\mathrm{HMn}_{2}(\mathrm{CO})_{10}\right)^{+}$in solution. $M n_{2}(C O)_{10}$ was partially soluble in anhydrous $H F$. producing a pale, golden yellow solution. The ${ }^{{ }^{1} H}$ N.M.R. spectrum of this solution (after filtering) gave signals at $+2.4 \tau(H F)$ and $+36.4 \tau$. It is apparent that the known carbonyl hydride species fall into various N.M.R. groups. 68

Terminal $M-H$ protons resonate in the approximate region +15 to $+25 \tau$, and singly-bridging $M-H-M$ protons in the regions +20 to $+30 \tau$ (neutral and anionic), and +30 to $+40 \tau$ (cationic species). 69,70 By comparison with published data on related compounds (table 2.10), the $36.4 \boldsymbol{\tau}$ signal can be assigned to the species $\left[(\mathrm{OC})_{5} \mathrm{Mn}-\mathrm{H}-\mathrm{Mn}(\mathrm{CO})_{5}\right]^{+}$. No 19^{19} N.M.R. signal could be observed, and no attempt was made to isolate the $\left(\mathrm{HMn}_{2}(\mathrm{CO})_{10}\right)^{+}$cation as a salt.

This is the first positive identification of a hydrogen-bridged cation of an unsubstituted metal carbonyl. It therefore seems very likely that the species in solution in the rhenium system is $\left(\mathrm{HRe}_{2}(\mathrm{CO})_{10}\right)^{+}$. Linear $\mathrm{M}-\mathrm{H}-\mathrm{M}$ bridged cations, $\left[\mathrm{H}\left\{\mathrm{M}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]^{+}(M=M o, w)$, also exist in HF and $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solutions. 66 The decreasing solubility in HF and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the series $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ 。 $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3}\right]_{2}>\mathrm{Mn}_{2}(\mathrm{CO})_{10}>\mathrm{Re}_{2}(\mathrm{CO})_{10}$, correlates with the increasing difficulty in breaking the metal-metal bond, suggesting that to dissolve such carbonyls in acid solvents $H X$, requires the cleaving of that bond, and the formation of hydrogen-bridged cations.

2-5.3 $\left[\left(\eta^{5}-\mathrm{C}_{5} \underline{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}+$ AgF/Acetone
The fluorination of the $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ analogue, $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$, was studied briefly. $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ was refluxed under nitrogen with :a suspension of silver (I) fluoride in acetone. Metallic silver was precipitated and filtered off. Evaporation of the solution to dryness, and recrystallisation of the resulting solid from benzeñe / (60-80 ${ }^{\circ}$) petroleum ether, gave blood-red, needle crystals and a large quantity of brown powder.

Table 2.10. ${ }^{1} \mathrm{H}$ N.M.R. Chemical Shifts (τ) of Protonated
Metal Carbonyls

$\begin{aligned} & {\left[\mathrm{H}\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{cp}\right\}_{2}\right]^{+}} \\ & \mathrm{HFe}(\mathrm{CO})_{2} \mathrm{cp} \end{aligned}$	$\begin{gathered} 36 \cdot 3-36 \cdot 6^{a \cdot b} \\ 21.91^{c} \end{gathered}$ C) $\mathrm{Fe}_{2} \mathrm{Fe}-\mathrm{H}-\mathrm{Mn}(\mathrm{CO}$	$\begin{aligned} & {\left[\mathrm{H}\left\{\mathrm{Mn}(\mathrm{CO})_{5}\right\}_{2}\right]^{+}} \\ & \mathrm{HMn}(\mathrm{CO})_{5} \\ &]^{+} 38.07^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 36.4^{\mathrm{d}} \\ & 17.5^{\mathrm{e}} \end{aligned}$
$\begin{aligned} & {\left[\mathrm{H}\left\{\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{cp}\right\}_{2}\right]^{+}} \\ & \mathrm{HMO}(\mathrm{CO})_{3} \mathrm{cp} \end{aligned}$	$\begin{aligned} & 30.99^{a} \\ & 15.65^{c} \end{aligned}$ C) $3_{3} \mathrm{MO}-\mathrm{H}-\mathrm{W}(\mathrm{CO})$	$\begin{aligned} & {\left[\mathrm{H}\left\{\mathrm{w}(\mathrm{CO})_{3} \mathrm{cp}\right\}_{2}\right]^{+}} \\ & \mathrm{HW}(\mathrm{CO})_{3} \mathrm{cp} \\ & \mathrm{p}]^{+} 32.88^{a} \end{aligned}$	$\begin{aligned} & 34.77^{\circ} \\ & 17.55^{\circ} \end{aligned}$
$\left.\begin{array}{lr} c p= & \left(\eta^{5}-C_{5} \mathrm{H}_{5}\right) \\ \text { a. } & \text { ref. } 66 \\ \text { b. } & \text { ref. } 67 \end{array}\right\}$	us ents	ref 71 (cyclohe this work (HF) ref. 72 (liquid	ne) $\mathrm{Mn}(\mathrm{CO}$

Table 2.11. ${ }^{1}$ H N.M.R. Chemical Shifts (τ) of the cp-ring
Protons in cpFe(CO) $22 x$ and Related Species

X	$\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{x}$	$\left[\mathrm{X}\left\{\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{cp}\right\}_{2}\right]^{+}$
F	$4.75{ }^{\text {a }}$	
Cl	4.94-4.99 ${ }^{\text {b }}$ c, d	$4.71{ }^{\text {f }}$
I	4.96-4.99 ${ }^{\text {b c }}$	$4.71{ }^{\text {f }}$
H	$5.26{ }^{\text {e }}$	4.76-4.77 ${ }^{\text {g }}$
NCS	$4.94{ }^{\text {b }}$	
SCN	$4.86{ }^{\text {b }}$	
OC(0) Ph	$4.73{ }^{\text {h }}$	
$\mathrm{OS}(\mathrm{O})_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$	$4.70{ }^{\text {h }}$,
$\begin{gathered} {\left[\mathrm{cpFe}(\mathrm{CO})_{2}\left(\mathrm{OCMe}_{2}\right)\right]^{+}} \\ {\left[\mathrm{cpFe}(\mathrm{CO})_{3}\right]^{+}} \end{gathered}$	+ 4.39^{j}	
	3.85-3.87 ${ }^{\text {, } 1}$	

$c p=\left(\eta^{5}-C_{5} H_{5}\right)$
a. this work (acetone solvent)
f. ref. 76 (acetone)
b. ref. $73\left(\mathrm{CDCl}_{3}\right)$
g. refs. 66 \& 67 (various)
c. ref. $74\left(\mathrm{CDCl}_{3}\right)$
h. ref. 77 (D^{6} acetone)
j. ref. 77 (acetone)
k. ref. 78 (acetone)
l. ref. 75 (acetone)

The X-ray powder patterns of these two products showed the absence of either starting material. The red crystals gave an infrared spectrum very similar to the other halides $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{X}$ (table 2.12), but with a new peak at $587 \mathrm{~cm}^{-1}$, assigned to $\nu(\mathrm{Fe}-\mathrm{F})$. A proton N.M.R. spectrum of the red, acetone solution of these crystals gave a singlet resonance at 4.75τ, consistent with the five equivalent protons of the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ring in a $\left(\eta^{5}-C_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{X}$ system. No ${ }^{19}$ F N.M.R. peaks could be observed because the solution was too weak. After an hour the red solution had become pale brown, with the deposition of a brown solid. The proton N.M.R. was then re-run. The 4.75τ signal had shifted to 4.85τ, and was of a weaker intensity. The red crystals decomposed very slowly in air (a matter of weeks), and quickly (1 hour) in acetone or chloroform solution.

By comparison with proton N.M.R. data on related systems (table 2.11), and in view of the infrared data, the red crystals are most probably $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~F}$. The yield was too small for further data to be obtained. The brown solid gave proton N.M.R. resonances at 5.05τ and 7.88τ in methanol solution, but reliable infrared spectra could not be obtained owing to the tendency of the solid to coagulate on mulling. The solid appears to be air-stable. By comparison with some reported resonances for the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ring in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{R}$ species, ${ }^{74}$ the proton N.M.R. signal at 5.05τ may indicate the co-ordination of an organic ligand:
$\mathrm{R}=-\mathrm{CH}_{3} 5.70 \tau ;-\mathrm{CF}_{3} 5.01 ;-\mathrm{CO}_{3} \mathrm{CH}_{3} 5.13$; $-\mathrm{CO}^{0} 0 \mathrm{CH}_{3} 5.14$; $-\mathrm{CH}_{2} \cdot \mathrm{CO}^{-\mathrm{CH}_{3} 5 \cdot 10 \text {. }}$

Table 2.12. Infrared Spectra of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{X}$

$\mathrm{X}=\mathrm{F}^{\text {a }}$	$x=C l^{b}$	$x=B r^{\text {b }}$	$X=I^{\text {b }}$	Assignment
$\left.\begin{array}{l}3126 \mathrm{w} \\ 3104 \\ 3091 \\ \text { sh }\end{array}\right\}$	3113 sh 3086 m	3105 sh 3089 m	$\begin{aligned} & 3115 \mathrm{~m} \\ & 3086 \mathrm{sh} \end{aligned}$	$\} \nu(C-H)$
$\begin{aligned} & 2065 \mathrm{~s} \\ & 2008 \mathrm{~s} \\ & 1985 \mathrm{~m}, \mathrm{sh} \\ & 1980 \mathrm{~m}, \mathrm{sh} \end{aligned}$	2053 s**	2048 s**	2039 s *	$\} \nu(C \equiv 0)$
1427 m	1429 m	1426 m	1429 m	$\nu(C-C)$
1423 sh 1364 m	1361 vw	1357 vw	1357 vw	$\nu(C-C)$
1270 s	(1259 vw)	(1256 w)	1261 Vw	$\delta(\mathrm{C}-\mathrm{H})$
1170 vw	1166 w, br	1170 sh, br	$1166 \mathrm{vw}, \mathrm{br}$	$\} \delta(C-H)$
1148 vvw,br	1130 vw	1130 vw	(1125 sh?)	$\} \delta(C-H)$
1115 vvw, br	1112 vw , br	1112 vw , br	1114 w , sh	Ring "breathing"
1068 vvw	$\left(\begin{array}{l}1060 \mathrm{w} \\ 1036 \mathrm{w}\end{array}\right.$		$(1059 \mathrm{w})$ 1040 w	
1012 sh	1012 sh	(1010 sh)	(1008 sh)	$\delta(C-H)$
$\left.\begin{array}{c}1002 \text { sh } \\ 993\end{array}\right\}$	1004 m	1005 m	1007 m	
962 w	962 vw	940 vw	935 vw	$\delta(C-C)$
~895 vvw, br	915 vw	915 vw	926 vw	
867 vvw	875 s	876 s		
855 wm	842 vs	844 vs	843 vs	
$\left.\begin{array}{l}837 \mathrm{vvm} \\ 833 \mathrm{vw}\end{array}\right\}$	832 sh	(833 vs)	(835 vs)	$\int \delta(C-H)$
599 m	603 vs	603 vs	605 vs	$\delta(\mathrm{Fe}-\mathrm{C}-0$)
587 m	$302 \neq$	$229 \mathrm{vs}+$	$137 \neq$	$\nu(F e-X)$
559 m	567 vs	564 vs	566 vs	$\delta(\mathrm{Fe}-\mathrm{C}-\mathrm{O})$
530 m	532 vs	535 vs	54 vs	$\delta(F e-C-O)$
466 m	479 w	479 m	488 w	ν (Fe-CO)
429 m	436 w	434 m	434 w	$\nu(F \mathrm{ClCO}$

All nujol mulls, except *(KBr discs), $+\left(\mathrm{CHCl}_{3}\right.$ solution)
and bracketed figures $\left(\mathrm{CS}_{2}\right.$ solution).
References: a. this work, b. 3200-3000 cm ${ }^{-1}$ ref. 79; 2200$1800 \mathrm{~cm}^{-1}$ ref. $76 * ; 1600-800 \mathrm{~cm}^{-1}$ ref. 79, $700-420 \mathrm{~cm}^{-1}$ ref. 80 , + ref. 80 , \neq ref. 81.
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~F}$ has additional bands at $796 \mathrm{w}, 761 \mathrm{vvw}, \mathrm{br}$ and $707 \mathrm{~cm}^{-1}$. for which region there are no published data.

3-1. THE Re $2(\mathrm{CO})_{10}$ XeF $_{2}$ SYSTEM, AND ITS ANALOGUES $^{\text {STS }}$

3-1.1 Previous Reactions of Rhenium Carbonyl with the Halogens
Dirhenium decacarbonyl has been shown to react with chlorine, bromine, or (with the aid of u.v. irradiation) iodine, dissolved in dichloro- or tetrachloro-methane, to produce the monomeric pentacarbonyl halides, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X} \cdot{ }^{82,83}$ The ease of reaction is in the order $\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$. Dimeric, doubly halogen-bridged, tetracarbonyl halides, $\left(\operatorname{Re}(\operatorname{CO})_{4} X\right)_{2},{ }^{11}$ and tricarbonyl halides, of uncertain structure $\left(\operatorname{Re}(C O)_{3} X\right)_{n}, 84,85$ are also known. They are best prepared by the elimination of CO on refluxing $\operatorname{Re}(\mathrm{CO})_{5} X$ in an inert solvent. These series of compounds are among the most stable, and best established of the carbonyl halides.

Early results ${ }^{23,12}$ indicated that direct fluorination with fluorine/nitrogen mixtures in a flow system did not provide the necessary control over the conditions for preparing carbonyl fluorides in a pure state. The use of xenon difluoride, in a suitable solvent, has successfully overcome this problem, especially as it allows exact control over the number of gram atoms of fluorine added to the carbonyl.

3-1.2 The Re ${ }_{2}$ (CO) $_{10}$ XeF $_{2}$ LGenetron 113 System
The results obtained in this system over the range of molar proportions of $\mathrm{Re}_{2}(\mathrm{CO})_{10}: \mathrm{XeF}_{2}$ from 1:1 to 1:5 are summarised in table 3.1, together with the preliminary results of Wilson. ${ }^{12}$

Though the system is formally analogous to above halogenations of rhenium carbonyl, it is clear that it is not the pentacarbonyl fluoride, $\operatorname{Re}(\mathrm{CO})_{5} F$, that is being formed,

Table 3.1. Results of the $\mathrm{Re}_{2}{\left(\mathrm{CO}_{10}\right)}^{\left(X_{2} \mathrm{XeF}_{2} / \text { Genetron } 113 \text { Reactions }\right.}$

Reaction	$\mathrm{Re}_{2}(\mathrm{CO})_{10}: \mathrm{XeF}_{2}$	Rhenium-containing Products
1.	1:1	$\operatorname{Re}_{2}(\mathrm{CO})_{10}+\mathrm{a} \mathrm{little} \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}$
2.	1:2	$\mathrm{Re}_{2}(\mathrm{CO})_{10}+\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}$
3.	1:3	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}$
4.	1:4*	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\left(R e \mathrm{Re}_{5}+\mathrm{ReF}_{6} \text { }\right.}$
5.	1:5	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\left(R e F_{5}\right.}+\mathrm{ReF}_{6}$
6.	large excess $\mathrm{XeF}_{2}{ }^{\dagger}$	ReF 6 , with no involatile products

All reactions produced both xenon and CO.

* 1:4 proportions were achieved by addition of one molar equivalent of XeF_{2} to $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ freshly-prepared by a 1:3 reaction.
t I.L. Wilson, ref.12.

Table 3.2 Results of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} \mathcal{X e F}_{2} / \mathrm{HF}$ Reactions

Reaction	$\mathrm{Re}_{2}(\mathrm{CO})_{10}: \mathrm{XeF}_{2}$	Rhenium-containing Products
1.	1:1	$\mathrm{Re}_{2}(\mathrm{CO})_{10}+$ probably $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{(} \cdot \mathrm{ReF}_{5}$
2.	1:3	$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}, \operatorname{ReF}_{5}{ }^{\neq}$
3.	1:5*	

All reactions produced both xenon and CO

* 1:5 proportions were achieved by adding two molar equivalents of XeF_{2} to freshly-prepared $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \operatorname{ReF}_{5}$
$\neq \operatorname{Re}(\mathrm{CO})_{5}{\mathrm{~F} \cdot \mathrm{ReF}_{5}}$ eventually hydrolysed to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}$ in both reactions.
but the complex carbonyl fluoride, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$. In accordance with the stoicheiometry, this complex is the single rhenium-containing product in the $1: 3$ reaction, but it is also formed, in smaller yields, when lower proportions of rhenium to fluorine are used (the 1:1 and 1:2 reactions) together with a majority of unreacted $\mathrm{Re}_{2}(\mathrm{CO})_{10^{\circ}}$. In these latter cases, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ is formed until all the XeF_{2} is used up, rather than lower carbonyl fluorides such as $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ or $\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{2}$.

When proportions greater than 1:3 are used, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$ is formed until all the $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ is consumed, then the complex is itself fluorinated. If enough $X e F_{2}$ is used, all of the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ is converted to ReF_{6} (reaction 6, table 3.1). With less than that required amount, ReF_{6} is formed until all the "extra" $X_{2} F_{2}$ has been used up, and a smaller amount of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \mathrm{ReF}_{5}$ remains. Again, this occurs in preference to the formation of higher carbonyl fluoride complexes such as $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3} \cdot \operatorname{ReF}_{5}$ (reaction 4.), or of ReF_{5} (reaction 5.).

The fluorination evidently proceeds stepwise. First one $-\operatorname{Re}(\mathrm{CO})_{5}$ unit of $(\mathrm{OC})_{5} \operatorname{Re}^{\mathrm{O}}-\operatorname{Re}^{\mathrm{O}}(\mathrm{CO})_{5}$ is fluorinated to an "ReF $_{6}$ " unit - producing ($\left.O C\right)_{5} \operatorname{Re}^{I}-F-\operatorname{Re}^{V_{5}}{ }_{5}$, and then the other - producing two moles of free ReF_{6}. Reactions 1.,2. and 3. are thus respectively analogous to reactions 4.,5. and 6. In this way, controlled oxidation has been achieved through $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{V}} \mathrm{ReF}_{5}$ to ReF_{6}, given by the equations:
$\begin{aligned} \mathrm{Re}_{2}(\mathrm{CO})_{10}+3 \mathrm{XeF}_{2} & \rightarrow \mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}+5 \mathrm{CO}+3 \mathrm{Xe} \text { (3.1), } \\ \mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}_{1} \mathrm{ReF}_{5}+3 \mathrm{XeF}_{2} & \rightarrow 2 \mathrm{ReF}_{6}+5 \mathrm{CO}+3 \mathrm{Xe}\end{aligned}$

The earlier, preliminary results of Wilson and Misra can now be seen to be in full agreement with this scheme.

3-1.3 The $\mathrm{Re}_{2} \mathrm{CO}_{10} \mathrm{CXeF}_{2}$ /HF System
The results from this system (table 3.2) follow a similar course to those obtained using Genetron 113 as the solvent. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ is predominant in the reactions, although problems encountered over hydrolysis in this medium prevented isolation of the complex itself.

Thus $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Cl}} \mathrm{ReF}_{5}$ is the initial product of the 1:3 reaction, and addition of two further moles of XeF_{2} to a fresh sample of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$ gives rise to a mixture of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ and ReF_{6}. In both reactions, the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}$ was ultimately converted to its hydrolysis product $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$by traces of oxygen-containing impurities. This is discussed in section 3-2.5.

The $1: 1$ reaction also appears to follow the same course as the analogous reaction in Genetron, with evolution of CO , and at least half of the $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ remaining unreacted, intimating'a fluorination product richer in fluorine than $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$. Although decomposition occurred on concentrating, the original formation of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ in the solution seems likely. Thus the three HF reactions 1:1, 1:3 and "1:5", seem to parallel their analogues in Genetron.

3-1.4 Comparison with the Results of 0^{\prime} Donnell; Reformulation

$$
\text { of } \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}
$$

During the course of this work a study of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ system was reported by 0 Donnell et alia. ${ }^{39}$

In their 1:1 reaction, they record that all the $\operatorname{Re}_{2}(C O)_{10}$ is consumed, with the evolution only of xenon gas, to give a brown solution, which yielded as a single product a brown solid identified as the simple carbonyl fluoride $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$. The analytical, infrared and powder diffraction data for this material are consistent with the formulation, but no supporting evidence was given for the nature of the volatiles.

The consumption of all the $R e_{2}(C O)_{10}$, the "absence" of CO evolution, and the production of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ from this reaction all conflict with the present study. It may be that there are conditions under which $\operatorname{Re}(C O)_{5} F$ can be formed, and others under which more complete fluorination of some $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ molecules occurs, producing $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \operatorname{ReF}_{5}$.: With the evidence currently available, it is not possible to define what the appropriate conditions might be. The most significant procedural differences were that the author used considerably more solvent than O'Donnell, and that the reaction was complete in a shorter time. Assuming neither study is in error, it appears that an intermediate stage in the $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ fluorination, producing $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$, is possible. O'Donnell also reported the reaction of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ with a further molar equivalent of XeF_{2} (equivalent to the author's $\operatorname{Re}_{2}(\mathrm{CO})_{10}: 3 \mathrm{XeF}_{2}$ reaction). Another brown solid was produced. It was formulated from its infrared spectrum and X-ray powder pattern as $" \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ ", the same material that had been reported earlier as the major product of the reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with a defficiency of ReF_{6} in HF. 38 The original formulation was based largely on the elemental analysis and an infrared spectrum, but the present study shows that this formulation is incorrect.

The X-ray powder pattern of $" \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3} "$ is similar to those of α - and $\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$, produced in the author's $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6} / \mathrm{HF}$ reactions, and also to that of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}$, see table 2.6. In addition, the infrared data are similar to those for $\alpha-\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$, see table 2.7. The positions and shape of the $\nu(C \equiv 0)$ bands had been interpreted in terms of a faç-Re(CO) $)_{3} F_{3}$ pattern, but $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$is equally satisfactory. Furthermore, the band at $580 \mathrm{~cm}^{-1}$ correlates with the characteristic, strong $\delta(\operatorname{Re}-\mathrm{C}-0)$ fundamental of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)+470$ Donnell's interpretation of the 580 and $650 \mathrm{~cm}^{-1}$ peaks as rhenium (III) fluoride modes is most unlikely, compared with the wellestablished series of $\nu(\operatorname{Re}-F)$ fundamentals of $\left(R e F_{6}\right)^{2-} 541$, $\left(\operatorname{ReF}_{6}\right)^{-}$627-639, and $\operatorname{ReF}_{6} 715 \mathrm{~cm}^{-1}$. 44, 86,87 0'Donnell proposed electron withdrawal by the trans- carbonyl groups to account for the high values, but no unusually high frequency $\nu(R u-F)$ modes are found in $\left(R u(C O)_{3} F_{2}\right)_{4}$ or $\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{3}$, both of which possess fac-Ru(CO) ${ }_{3} \mathrm{~F}_{3}$ co-ordination. ${ }^{16}$ A more likely explanation is that the $650 \mathrm{~cm}^{-1}$ band is a $\nu\left(R e^{V}-F\right)$ fundamental of $\left(\operatorname{ReF}_{6}\right)^{-}$or $\left(R e_{2} F_{11}\right)^{-}$, (c.f. the $\nu\left(\operatorname{Re}^{V}-F\right)$ modes in $\left(\operatorname{ReF}_{6}\right)^{-},\left(\operatorname{Re}_{2} F_{11}\right)^{-}$and $\operatorname{Re}(C O)_{5} F \cdot \operatorname{Re} F_{5}$ in the 625-665 cm^{-1} region).

In addition, it is most unlikely that $\mathrm{Re}^{\mathrm{III}}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ would be a d^{4} octahedral monomer, having only 16 valence electrons, two short of the nearest noble gas configuration, when 18-electron, 7-co-ordinate, d^{4} carbonyl halides are wellestablished, 88 e.g. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{CO})_{3} \mathrm{Cl}^{+140}$ and $\left(\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Cl}\right)_{2} \cdot{ }^{88}$ Any polymeric formulation, $\left(\operatorname{Re}(\mathrm{CO})_{3} F_{3}\right)_{n}$ would have at least local $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{4}$ 7-co-ordination, which could not give such a simple infrared spectrum. The molecular weight evidence
for monomeric $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$, and the conductivity data, came from measurements made in acetone solutions. In view of the extreme difficulty in drying acetone sufficiently to prevent fast hydrolysis of rhenium(V) fluorides (see section 3-2.5), these measurements are almost certainly invalid.

It seems most likely that $" \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ " is another crystalline modification of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$, or the hitherto unknown (ReF_{6}) ${ }^{\text {T }}$ salt. O'Donnell's original analytical data ${ }^{38}$ point to the latter formulation, but from his second paper, 39 it appears that his $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6} / \mathrm{HF}$ reaction produces $\operatorname{Re}(\mathrm{CO})_{5} F$ as well as $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3} "$. This must throw doubt on the validity of the analytical data of "pure" $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$.

The stoicheiometry of the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\left(\mathrm{XeF}_{2} / \mathrm{HF} \text { reaction, }\right.}$ however, suggests that the formula $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{ReF}_{6}\right)^{-}$may be correct. This would correlate with the production of its "covalent analogue" $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{P}} \mathrm{ReF}_{5}$, from the same proportions of rhenium to fluorine of $1: 3$, in the author's $\operatorname{Re}_{2}(\mathrm{CO})_{10} /$ $3 X_{2} F_{2}$ reactions. (An equivalent pair of compounds $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{AsF}}^{5} 43$ and $\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{AsF}_{6}\right)^{-47}$ is now known.) In O'Donnell's reaction the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\cdot} \cdot \mathrm{ReF}_{5}$ evidently incorporates liberated CO in situ (c.f. section 3-2.3):
$2 \mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}+2 \mathrm{XeF}_{2} \longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}+5 \mathrm{CO}+2 \mathrm{Xe}$ (3.3), $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{5} \cdot \mathrm{ReF}_{5}+\mathrm{CO} \longrightarrow\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReF}_{6}\right)^{-}$
The results of the Genetron 113 system suggest that the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{XeF}_{2}$ reaction should produce $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$, if Genetron were used as the solvent.

Further fluorination of $" \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ " with an excess of XeF_{2} was reported ${ }^{39}$ to give a green solution similar to that produced from $R e_{2}(\mathrm{CO})_{10}$ and a defficiency ReF_{6} in $H F .{ }^{38}$

The colour was attributed to ReF_{5}, though no evidence was cited to support this. In view of the results of the author's study of the $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6} / \mathrm{HF}$ system, this green colour seems almost certainly to be due to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$, or the $\left(\mathrm{ReF}_{6}\right)^{-}$derivative. No examination was made of the volatiles, and so it is not possible to say whether ReF_{6} was also produced, but this would be expected by analogy with the author's $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\prime} \cdot \mathrm{ReF}_{5} / \mathrm{XeF}_{2}$ reactions.

3-1.5 Interpretation of the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2}$ Fluorinations

The fluorination of rhenium carbonyl with xenon difluoride is summarised in fig.3.1. The reason for the different courses of the two sets of reactions is not yet clear, but a definite progression has been established for the fluorination of rhenium carbonyl, which may be represented:

Re:F $\quad 0$
1:1 $1: 3$ 1 :6

The most significant feature of these reactions is the predominance of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{P}} \mathrm{ReF}_{5}$, even where the molar proportions of the starting materials were not favourable. It is the exclusive carbonyl fluoride species in the Genetron 113 system, though $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ (and $\left(\operatorname{Re}(\mathrm{CO})_{6}\right){ }^{+}$species derived from $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$) may also be present under certain conditions in the HF system. The formation of $\operatorname{Re}(C O)_{5} \mathrm{~F}_{\mathrm{H}} \cdot \operatorname{ReF} 5$ is remarkable in that one half of the $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ molecule has been fully fluorinated, and the other half has not. By the application of some basic principles, a framework can be built up in which the course of these reactions, and the particular formation of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}$, can be understood.
$\frac{R e}{}: F$
$1: 1$
$1: 3$
$1: 5$
$1:$
$1: 6$

To prepare stable carbonyl fluorides, a balance has to be achieved between the preference of the fluoride ligand for high oxidation states, and of the carbonyl ligand for low oxidation states. Thus the fluorination of metal carbonyls must involve opening the $M(C O)_{x}$ shell, without then completely oxidising the metal to some higher fluoride, $M F_{y} . \neq$ Too weak a fluorinating agent gives no reaction, but conditions that are too vigorous result in complete degradation of the carbonyl. This is illustrated by two of Hargreaves and Peacock's earlier reactions ${ }^{20}$:

$$
\begin{aligned}
& \mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{WF}_{6} \rightleftharpoons \text { charge-transfer solution } \\
& \mathrm{Re}_{2}(\mathrm{CO})_{10}+4 \mathrm{BrF}_{3} \longrightarrow 2 \mathrm{ReF}_{6}+10 \mathrm{CO}+2 \mathrm{Br}_{2}:(3.6) .
\end{aligned}
$$

This phenomenon sets such a restraint on carbonyl
fluoride formation that the necessary balance will be achieved only for particularly stable metal carbonyl configurations. By applying some well-established principles, the number of expected carbonyl fluorides becomes limited to a small group. The main principles are as follows:
i). The "Noble Gas Rule" requirement of an effective valence shell of 18 electrons (that of the nearest noble gas) should generally be obeyed.
ii). Carbonyl bridging will not generally be found. ${ }^{3,89}$ To date only one confirmed carbonyl-bridged halide is known, $\left(\mathrm{Pd}^{\mathrm{I}}(\mathrm{CO}) \mathrm{Cl}\right)_{\mathrm{n}} .90$
iii). Only single fluorine bridges will be found. Multiple, covalent fluorine bridging is rare. Proven cases are almost entirely limited to very large metal ions such as the actinides, and the d^{0} transition metal species $\left(T i\left(N e_{2}\right)_{2} F_{2}\right)_{4},^{91}$
\neq The converse applies to the carbonylation of metal fluorides.
$\dot{V O F}_{3}{ }^{92} \mathrm{CrO}_{2} \mathrm{~F}_{2}{ }^{9}{ }^{93}$ and various fluorozirconates (IV). 94 iv). There will be a preference for particularly stable metal co-ordination spheres and d-electron configurations, especially octahedral d^{6}, but also 7 -co-ordinate d^{4}, square planar d^{8} (a 16-electron system), etc.

For rhenium, this results in the possibilities
shown in table 3.3.
In the rhenium carbonyl system, the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$
unit is found to be particularly important, and the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2}$ reactions can be interpreted in terms of the maintenance and stability of this group. All the compounds formed contain only this unit, or fully fluorinated species. Intermediate units like $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{2}$ do not occur; once an $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ group has been broken into, complete degradation takes place, with the displacement of all the CO ligands by fluoride.

$$
\operatorname{Re}(\mathrm{CO})_{5} F \text { itself is only formed under certain }
$$ circumstances. It should be the product of the $1: 1$ $\mathrm{Re}_{2}(\mathrm{CO})_{10}: \mathrm{XeF}_{2}$ reactions, by a simple one-electron oxidation, but in both the Genetron 113 system and the author's HF reactions, it is not stable. Formally it may be considered that further oxidation occurs to produce ReF_{6}, which then reacts with unchanged $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ to form the new, fluorinebridged, mixed oxidation state, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ complex, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}$. This process may take place either by a). the in situ degradation of an $\operatorname{Re}(\mathrm{CO})_{5}$ group within each $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ molecule, or $\left.b\right)$. the separation of individual $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ moieties which then react further.

$\operatorname{Re}^{I}\left(d^{6}\right) \quad \operatorname{Re}(\mathrm{CO})_{5} X \quad\left(\operatorname{Re}(\mathrm{CO})_{4} X\right)_{2} \quad\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{X}\right)_{4} \quad\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{X}\right)_{4}$
$\left.\begin{array}{c}\left.\begin{array}{c}\text { Bridging } \\ \text { mode }\end{array}\right\} \quad M-X \\ \begin{array}{c}\text { (Co-ord. } \\ \text { No. })\end{array}\end{array}\right\} \quad(6)$

(6)

(6)
$\left(\operatorname{Re}(\mathrm{CO})_{4} X\right)_{m} \quad\left(\operatorname{Re}(\mathrm{CO})_{4} X\right)_{n}$

$-M-X-M-X-$
(6)
(7) $m=3,4, e t c$
$\operatorname{Re}^{I I}\left(d^{5}\right)\left(\operatorname{Re}(C O)_{4} X_{2}\right)_{2}\left(\operatorname{Re}(C O)_{3} X_{2}\right)_{2}\left(\operatorname{Re}(C O)_{3} X_{2}\right)_{4}\left(\operatorname{Re}(C O)_{2} X_{2}\right)_{n}$

$$
M-M
$$

(7)
$M \equiv M$
(6)

(8)

(7)

(7)
(7)
$\underline{\operatorname{Re}^{I I I}\left(d^{4}\right)} \operatorname{Re}(\mathrm{CO})_{4} X_{3} \quad\left(\operatorname{Re}(\mathrm{CO})_{3} X_{3}\right)_{2}\left(\operatorname{Re}(\mathrm{CO})_{3} X_{3}\right)_{4}\left(\operatorname{Re}(\mathrm{CO})_{2} X_{3}\right)_{n}$
$M-X$
(7)

(7)

(7)

(7) $\left(\operatorname{Re}(\mathrm{CO})_{3} x_{3}\right)_{m}\left(\operatorname{Re}(\mathrm{CO})_{3} x_{3}\right)_{n}\left(\operatorname{Re}(C O)_{2} x_{3}\right)_{4}$

$-M-X-M-X-$
cubane structure is unlikely in 7 co-ordn.
(7) $m=3,4, e t c$

In $\operatorname{Re}(C O)_{5} \mathrm{~F}_{\mathrm{F}} \mathrm{ReF}_{5}$, the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ moiety has been stabilised by acting as a donor to a co-ordinatively unsaturated ReF_{5} molecule. In this form the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ group is resistant to further oxidation for proportions of $\operatorname{Re}_{2}(\mathrm{CO})_{10}: \mathrm{XeF}_{2}$ up to 1:3 (the exact proportions required for complete conversion of the $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ to $\left.\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}\right)$, but it is decomposed by additional XeF_{2} to free ReF_{6}, as there is no remaining $\mathrm{Re}_{2}(\mathrm{CO})_{10^{\circ}}$. The use of intermediate proportions gives rise to mixtures of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}$ and unchanged $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ (the 1:1 and 1:2 reactions), or of ReF_{6} and unchanged $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$ (the $1: 4$ and $1: 5$ reactions). These entities are more stable, evidently, than species of intermediate formula such as $\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{2}$ or $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3} \cdot \operatorname{ReF}_{5} \cdot$ The production of mixtures of unchanged metal carbonyl and a higher carbonyl fluoride has also been observed in other systems. For example, 1:1 reactions of $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}$ with XeF_{2}, in either HF or halocarbon solvents, give complexes like $\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{MoF}_{5}$ together with unreacted carbonyl. 95 The stability of the $\operatorname{Re}(\mathrm{CO})_{5} F$ unit is especially remarkable in that it can co-exist with a rhenium(V) species in the same molecule. Such stability is reflected in the electronic configuration, viz. d^{6} octahedral with 18 valence electrons, which is particularly favourable for partially filled d-electron shells. It will be seen later that d^{6} species play a dominant role in other carbonyl
fluoride systems, and form similar complex carbonyl fluorides.
The stable existence of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$ is also
favoured by the fact that ReF_{5} is a reducing Lewis acid, despite its high oxidation state. In other words, it is very readily oxidised to ReF_{6}, but does not so readily act as an oxidising agent itself. Indeed, ReF_{5} has only been prepared to date by the reduction of $\operatorname{ReF}_{6} \cdot 23,96$ The pentafluorides $\mathrm{MoF}_{5}, \mathrm{WF}_{5}$, and OsF_{5} are somewhat similar in these respects, and might well form analogous $\operatorname{Re}(C O)_{5} F^{\prime} \cdot \mathrm{MF}_{5}$ complexes. In the case of tungsten, the fact that W_{6} does not fluorinate $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ may indicate that $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ is capable of oxidising WF_{5} ! This provides an illustration of the point that a higher oxidation state in a given element does not necessarily mean a greater effective oxidising power. Another example is found in manganese chemistry, where the $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}$ oxidation potential is greater than that of $\mathrm{MnO}_{2} / \mathrm{Mn}^{2+}$. The main group pentafluorides AsF_{5} and SbF_{5} are also only weakly oxidising, and a complex $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{F}} \mathrm{AsF}_{5}$ has recently been reported. ${ }^{43}$

Because of the ready oxidation of ReF_{5}, the final fluorination product is ReF_{6}. This is domonstrated.most clearly by the $1: 5$ reactions, where the products are a mixture of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ and ReF_{6}, rather than ReF_{5}, despite the stoicheiometry. The presence of rhenium(V) in $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ is a consequence of the ready reduction of ReF_{6} by any unreacted $\operatorname{Re}_{2}(C O)_{10}$; as soon as all the $\operatorname{Re}_{2}(C O)_{10}$ has been consumed, any further ReF_{6} that is formed remains unreacted as free ReF_{6}.
$3 \mathrm{Re}_{2}(\mathrm{CO})_{10}+15 \mathrm{XeF}_{2} \rightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{2} \mathrm{ReF}_{5}+4 \mathrm{ReF}_{6}+25 \mathrm{CO}+15 \mathrm{Xe} \cdot 3 \cdot 11$

It is also noteworthy that reaction 4 of table 3.1 gave ReF_{6} instead of proceeding according to:
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}+\mathrm{XeF}_{2} \longrightarrow \operatorname{Re}(\mathrm{CO})_{5}^{\prime} \mathrm{F}+\mathrm{XeF}_{2} \cdot \operatorname{ReF}_{5} \quad$ (3.12). Evidently, ReF_{5} is unstable towards oxidation by XeF_{2}. This agrees with the generally established fact that xenon can be oxidised by only the most thermodynamically unstable transition metal hexafluorides, $\mathrm{PtF}_{6}, \mathrm{RhF}_{6}$ and $R u F_{6}$, and not by those of intermediate $\left(\mathrm{IrF}_{6}, \mathrm{OsF}_{6}, \mathrm{TcF}_{6}\right.$) or lowest reactivity $\left(\operatorname{ReF}_{6}, \mathrm{MoF}_{6}, \mathrm{WF}_{6}\right){ }^{29}$ Further, it is known that XeF_{2} forms stable complexes with $\mathrm{PtF}_{5}, \mathrm{RuF}_{5}$ and IrF_{5}, but that $\mathrm{XeF}_{2} \cdot \mathrm{OsF}_{5}$ is rather less stable. 97,98 The present observations on the $X e F_{2} / R e^{V}$ system** thus suggest that complexes $\mathrm{XeF}_{2} \cdot \mathrm{MF}_{5}$, for metals whose hexafluorides belong to the "lowest reactivity group" ($M=$ Re, Mo, W) may not be stable with respect to the hexafluorides (or possibly ReF_{7}) and xenon, at ordinary temperatures.

$$
\begin{equation*}
\mathrm{XeF}_{2}+2 \mathrm{MF}_{5} \longrightarrow \mathrm{Xe}+2 \mathrm{MF}_{6} \tag{3.13}
\end{equation*}
$$

3-1.6 Concerning the Reaction Mechanism

Rhenium carbonyl is scarcely soluble in either
Genetron 113 or HF. In Genetron, it probably reacts in simple, molecular form. Insoluble $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ is formed and CO escapes freely. In HF, the carbonyl probably reacts as the $\left[(O C)_{5} \mathrm{Re}-\mathrm{H}-\mathrm{Re}(\mathrm{CO})_{5}\right]^{+}$cation (see section 2-5.2), producing an initial, transient, blue species in solution which may possibly be $\left(\mathrm{FRe}_{2}(\mathrm{CO})_{10}\right)^{+} .\left(\mathrm{Fe}(\mathrm{CO})_{5}\right.$ and $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}$ both dissolve in liquid $\mathrm{HF} 99,66$ and

* $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-} / \mathrm{xs} \mathrm{XeF}_{2} / \mathrm{HF}$ also gave ReF_{6}, though the cation remained unchanged.

HC1 ${ }^{100,67}$ as protonated species, and react with Cl_{2} in liquid HCl to produce $\left(\mathrm{Fe}(\mathrm{CO})_{5} \mathrm{Cl}\right)+100$ and $\left(\mathrm{Cl}\left[\mathrm{Fe}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2}\right)+67$ ions, both isolable as $\mathrm{BCl}_{4}{ }^{-}$ salts.) $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ are soluble in $H F$, and it is evident both from O'Donnell's further reactions of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ with XeF_{2}, and from the author's $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6} / \mathrm{HF}$ reactions, that the CO liberated is capable of reacting with $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ to produce $\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}$salts, see section 3-2.3. The formation of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$ in both Genetron and HF systems underlines its fundamental importance in the fluorination of $\mathrm{Re}_{2}(\mathrm{CO})_{10}{ }^{\circ}$

3-1.7 The Use of Other Fluorinating Agents with Re_{2} (CO) $_{10}$

The reactions of rhenium carbonyl with fluorine/ nitrogen mixtures follow a similar course to the XeF_{2} reactions above. Under very mild conditions ($-75^{\circ} \mathrm{C}$), there. is no reaction. 20 Above room temperature, probably with Genetron 113 as a solvent, some $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ seems to be formed, together with unreacted carbonyl (see section 2-1.3), and at higher temperatures, ReF_{6} is produced. ${ }^{23}$ The author has observed that $\operatorname{Re}_{2}(C O)_{10}$ reacts violently with 300 torr. of undiluted fluorine gas, producing considerable black deposits and some yellow solid which may be $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}{ }^{-}$

The rationale employed for the XeF_{2} system can be applied successfully to interpret the reactions of $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ with many other fluorinating agents in the early work of Peacock and Hargreaves. ${ }^{20} \mathrm{WF}_{6}$ failed to fluorinate. $\mathrm{Re}_{2}(\mathrm{CO})_{10}$, but BrF_{3} was too reactive and gave only the hexa-
-
fluoride (equations 3.5 and 3.6). Similar results were obtained with $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}$. An excess of liquid IF_{5}, however, gave an intermediate reaction with $\mathrm{Re}_{2}(\mathrm{CO})_{10}$, producing yellow crystals and iodine, but with no $C O$ evolution. The crystals decomposed above $50^{\circ} \mathrm{C}$ liberating IF_{5}, and presumably $C O$, to produce $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{I}\right)_{2}$. The yellow crystals were tentatively formulated $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{I}^{\left(\mathrm{IF}_{5}\right.}$ on the basis of weight increase, and $\mathcal{V}(\mathrm{C} \equiv 0)$ infrared absorbtions in CCl_{4} solution. In the light of the present study, a formula of $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{IF}_{5}$ seems rather more plausible.. This would account for the first stage much better, IF_{5} oxidising $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ to $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$, which then complexed with the excess $I F_{5}$:

The decomposition to $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{I}_{2}\right.$ is less obvious, though, The infrared spectrum of $" \operatorname{Re}(\mathrm{CO})_{5} \mathrm{I} . \mathrm{IF}_{5}$ " was said to be identical to that of $\operatorname{Re}(C O)_{5} I$, and so may well be of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{I}$ itself, produced by decomposition in CCl_{4}. It is not clear how quantitative the weight loss data were. By contrast, IF_{5} oxidised both $\mathrm{Mo}(\mathrm{CO})_{6}{ }^{22}$ and $\mathrm{W}(\mathrm{CO})_{6}{ }^{24,20}$ to their hexafluorides (with MoF_{4} and MoF_{5} for $\mathrm{Mo}(\mathrm{CO})_{6}$). Evidently there is no equivalent unit stable enough under these conditions for molybdenum and tungsten to form complexes.

3-1.8 Summary of Section 3-1.
A stepwise fluorination of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ by XeF_{2} has been established, through $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \operatorname{ReF}_{5}$ to ReF_{6}. Results with other fluorinating 'agents are consistent with
this progression. The maintenance of the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ unit is of fundamental importance for the formation of carbonyl fluorides by oxidative methods, but it is degraded to ReF_{6} by excesses of the more vigorous fluorinating agents.

3-2. THE Re 2 (CO) $_{10}$ /ReF $_{6} / \mathrm{HF}$ SYSTEM
3-2.1 Introduction: the Significance of ReF 6 ; Previous

Reactions

The most significant of the alternative fluorinating systems for rhenium carbonyl is that using a higher fluoride of the same element, in this case ReF_{6}. This allows the possibility of three different types of reaction:-
i) Producing carbonyl fluorides by "scrambling", $1 / 2 \operatorname{Re}_{2}(\mathrm{CO})_{10}+\mathrm{ReF}_{6} \longrightarrow \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}+\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{2}$
ii) ReF_{6} acting as a simple fluorinating agent to produce a carbonyl fluoride and a lower rhenium fluoride, $1 / 2 \mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{ReF}_{6} \longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}+\mathrm{ReF}_{5}$
iii) As ii), but the lower fluoride might also complex with the product,

$$
1 / 2 \operatorname{Re}_{2}(\mathrm{CO})_{10}+\operatorname{ReF}_{6} \longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}
$$

The reaction of $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ with ReF_{6} was first attempted by Hargreaves and Peacock in 1959-60, ${ }^{23}$ along with other metal carbonyl/metal hexafluoride systems, see section $3-2.6$. An excess of liquid ReF_{6} was used, and mixtures of $\mathrm{ReOF}_{4}, \mathrm{ReF}_{4}{ }^{20}$ and CO were produced. The present work systematically examined $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6}$ reactions using HF as a solvent. A more limited study of the, same system was performed concurrently by 0^{\prime} Donnell and Phillips, 38 their somewhat equivocal results are discussed in section 3-2.4.

3-2.2 The $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{ReF}_{6} / \mathrm{HF}$ Reactions
The results of the reactions in this system, with molar proportions of $\operatorname{Re}_{2}(\mathrm{CO})_{10}: \operatorname{ReF}_{6}$ of $1: 2,1: 3$ and 1:4, are summarised in table 3.4. It was found that reaction type iii). predominated. Only two major products were obtained, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ and the new compound $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$. No CO was liberated.

The 1:2 reaction is very straightforward. Two moles of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} 5$ are formed by splitting the $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ molecule in two, and attatching one ReF_{6} molecule to each half by means of an Re-F-Re bridge:

$$
\begin{equation*}
\operatorname{Re}_{2}(\mathrm{CO})_{10}+2 \operatorname{ReF}_{6} \longrightarrow 2 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{6} \operatorname{ReF}_{5} \tag{3.18}
\end{equation*}
$$

This reaction of a rhenium(0) species with a rhenium(VI) to produce a $\mathrm{Re}^{\mathrm{I}}-\mathrm{Re}^{V}$ complex may be described as "oxidative halogenation /: complex-formation". Another example of this unusual type of reaction is that between xenon(O) gas and platinum(VI) hexafluoride to give $X e^{I I}-P t V^{I V} / \mathrm{Pt}^{V}$ complexes, the first noble gas compounds. ${ }^{101}$ e.g. $\mathrm{Xe}+2 \mathrm{PtF}_{6} \longrightarrow(\mathrm{XeF})^{+}\left(\mathrm{Pt}_{2} \mathrm{~F}_{11}\right)^{-}$

A similar reaction, but where it is the oxidant itself that acts as the acceptor, is that between $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ and IF_{5} giving $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{I}} \mathrm{IF}_{5}$ (equation 3.14 , section $3-1.7$).

The $1: 4$ reaction gives a greater than 80% yield of a 1:2 complex which is not $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot 2 \operatorname{ReF} 5_{5}$, but an ionic compound related to this, $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$. The $1: 3$ reaction, as would be expected, gives a mixture of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}$ and $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$.

Table 3.4 The Results of the $\mathrm{Re}_{2}\left(\mathrm{CO}_{10} /^{/ \mathrm{ReF}_{6}} /\right.$ /HF Reactions

$\operatorname{Re}_{2}(\mathrm{CO})_{10}: \operatorname{ReF}_{6}$	Products
$1: 2$	$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \operatorname{ReF}_{5}$
$1: 3$	$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}+\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$
$1: 4$	$\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}+$unreacted ReF_{6}

No CO was produced in these reactions.

* ReF_{5} may have been a minor product.

Table 3.5 Reactions of Metal Carbonyls with Metal Hexafluorides

Carbonyl	Products with	$\mathrm{MoF}_{6}{ }^{\text {a }}$	$\mathrm{ReF}_{6}{ }^{\text {b }}$	OsF ${ }_{6}{ }^{\text {c }}$
$\mathrm{Mo}(\mathrm{CO})_{6}$	$\mathrm{MoF}_{5}+\mathrm{CO}+$	MoF_{4}	- ReF_{5} + residue	
$\mathrm{w}(\mathrm{CO})_{6}$	$W \mathrm{~F}_{6}+\mathrm{CO}+$	$\mathrm{MoF}_{4}, \mathrm{MOF}_{5}$	$\operatorname{ReF}_{4} \cdot \operatorname{ReF}_{5}$ $+ \text { residue* }$	$\begin{aligned} & \mathrm{OsF}_{4} \mathrm{OsF}_{5} \\ & +\mathrm{Os} \end{aligned}$
$\operatorname{Re}(\mathrm{CO})_{10}$	$\mathrm{ReF}_{4}+\mathrm{CO}+$		residue	

* With WF_{6} as solvent. All other reactions without a solvent. a. refs. 20 and 111; b. refs. 20,23 and 109; c. ref. 25.

ReOF $_{4}$ was a frequent by-product of ReF_{6} reactions, by hydrolysis

All 3 carbonyls, and $\mathrm{Cr}(\mathrm{CO})_{6}$, gave red, charge-transfer solutions with WF_{6}.
.
3-2.3 The Mechanism of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$Formation
The most remarkable feature of these reactions is the formation of the new compound $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$, from $\operatorname{Re}(\mathrm{CO})_{5}$-species, without any CO evolution. This can be explained by a closely analogous mechanism to that proposed for the reaction of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{on}} \operatorname{ReF}_{5}$ with XeF_{2}.

With 1:2 proportions of $\operatorname{Re}_{2}(\mathrm{CO})_{10}: \operatorname{ReF}_{6}$, $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ is formed, and there is no CO evolution. An excess of ReF_{6} causes the fluorination of some of the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$ molecules, just as an excess of XeF_{2} did in the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2}$ system. It is probable that the ReF_{6} attacks the $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right)$ units of $\operatorname{Re}(\mathrm{CO})_{5} F \cdot \mathrm{ReF}_{5}$, causing initial oxidation to an $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{2}\right.$) unit with the release of CO : $\left(\mathrm{Re}^{\mathrm{I}}(\mathrm{CO})_{5} \mathrm{~F}\right)+\mathrm{ReF}_{6} \longrightarrow\left(\mathrm{Re}^{\mathrm{II}}(\mathrm{CO})_{4} \mathrm{~F}_{2}\right)+\mathrm{CO}+\mathrm{ReF}_{5} \quad$ (3.20). Precedence for such a step is found in the reactions of the analogous rhenium(I) dinitrogen complex ($\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{4} \mathrm{Re}\left(\mathrm{N}_{2}\right) \mathrm{Cl}$ with Lewis acids. 102 Poorly-oxidising halides like TaF_{5} form dinitrogen-bridged adducts, but TiF_{4} performs a oneelectron oxidation producing $\left[\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{4} \mathrm{Re}^{\mathrm{II}}\left(\mathrm{N}_{2}\right) \mathrm{Cl}\right]^{+}$, a stable cation isolable as a salt. $\left(\operatorname{Re}^{I I}(C O)_{4} F_{2}\right)$ is not stable, as has already been demonstrated in the $\operatorname{Re}_{2}\left(\mathrm{CO}_{10}{ }_{10}\right.$ XeF_{2} system, and complete degradation occurs, but with two significant differences. Firstly, ReF_{5} is produced not ReF 6 , because ReF_{6} itself is the oxidant:

$$
\begin{equation*}
\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5} 5+4 \mathrm{ReF}_{6} \longrightarrow 6 \mathrm{ReF}_{5}+5 \mathrm{CO} \tag{3.21}
\end{equation*}
$$

Secondly, instead of the CO being evolved as gas, it becomes incorporated with the unreacted $\operatorname{Re}(C O)_{5} F^{\prime} \cdot \operatorname{ReF}_{5}$ molecules, together with the ReF_{5}, to produce

This may take place in a concerted fashion, or by a stepwise process involving either the prior reaction of the CO (to produce $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReF}_{6}\right)^{-}$, which then picks up ReF_{5}), or of the ReF_{5} (to give $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{C}} \cdot 2 \operatorname{ReF} \mathrm{~F}_{5}$, which then takes up CO):
 $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$

$$
\begin{equation*}
\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}+\mathrm{ReF}_{5} \longrightarrow \mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot 2 \operatorname{Re} \mathrm{~F}_{5} \tag{3.23}
\end{equation*}
$$

Whichever process occurs, the uptake of CO must
be rapid, or it would be lost as gas, and it takes place at room temperature, in solution and at atmospheric pressure. This is remarkable because the usual method for preparing $\left(M(C O)_{6}\right)^{+}$salts ($\left.M=M n, T c, R e\right)$ requires the use of a considerable pressure of CO on the appropriate pentacarbonyl halide, in the presence of a good halide ion acceptor. ${ }^{103}$ e.g. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}+\mathrm{CO}+\mathrm{AlCl}_{3} \longrightarrow\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{AlCl}_{4}\right)^{-} \quad$ (3.24). There are examples where amounts of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$have been isolated from an atmospheric pressure process, but these are of poor yield, e.g.:

$$
\text { EtO.C(O).Re(CO) } 5+2 \mathrm{HCl} \xrightarrow{\text { benzene }}
$$

$$
\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{HCl}_{2}\right)^{-}+\mathrm{EtOH}^{58}:(3.25) .
$$

$$
\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}+\mathrm{sym}_{\mathrm{Cl}}^{6} \mathrm{H}_{3} \mathrm{Me}_{3}+\mathrm{AlCl}_{3} \xrightarrow[95^{\circ} \mathrm{C}]{\text { ligroin }}
$$

$$
\begin{equation*}
\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{AlCl}_{4}\right)^{-} \text {by-product }{ }^{104} \tag{3.27}
\end{equation*}
$$

By contrast, the analogous $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right]^{+}$ion is readily prepared from the much more labile $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} x$ derivatives. 103

$$
\begin{aligned}
& \left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-} \text {: } \\
& 5 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}+5 \mathrm{CO}+6 \operatorname{ReF}_{5} \longrightarrow 5\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-} \\
& +\operatorname{ReF}_{5} \text { (3.22). }
\end{aligned}
$$

The substitution of $C O$ in these generally rather stable pentacarbonyl derivatives $L-M(C O)_{5}$, ($L=-M(C O)_{5}$, halogen, etc), requires there to be:
i) A sufficient concentration of $C O$, either free, or co-ordinated but in some suitably "available" form,
ii) Sufficient labilisation of the ligand L to make it a good potential leaving group, and
iii) A good enough Lewis acid present to act as a driving force for ionising off the ligand (and so provide the necessary anion), e.g. $\mathrm{M}-\mathrm{Cl}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{M}^{+}+\mathrm{AlCl}_{4}{ }^{-}$,

In the previous preparations of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$species, the combined effects of leaving group and Lewis acid have not been enough for efficient reaction under one atmosphere of CO , the chloride ion in $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$, for example, being too tightly bound to the rhenium. In $\operatorname{Re}(C O)_{5} \mathrm{~F}_{\mathrm{F}} \mathrm{ReF}_{5}$ there is a much better leaving group, the $\left(\operatorname{ReF}_{6}\right)^{-}$ion, and presumably the complex must be sufficiently labile for attack to be possible even by the CO generated in situ by $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right.$) unit decomposition. This being so, it should be possible, simply by bubbling CO through an HF solution of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$, to produce the $\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}$derivative $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReF}_{6}\right)^{-}$. Indeed, it is very likely (see section 3-1.4) that this latter is the compound $" \operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3} "$ obtained by 0 'Donnell in his $3 \mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{ReF}_{6} / \mathrm{HF} 38$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} / \mathrm{XeF}_{2} / \mathrm{HF}$ reactions. 39

Incorporation of CO was not observed, however, in the author's $\operatorname{Re}_{2}(\mathrm{CO})_{10} / 3 \mathrm{XeF}_{2} / \mathrm{HF}$ reactions, where $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF} 5_{5}$ was being produced accompanied by the liberation of CO.**

[^3]In this latter case it may be that the rate of $C O$ production was too fast to allow the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{F}} \mathrm{ReF}_{5}$ to react. In contrast the conversion of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Fe}} \mathrm{ReF}_{5}$ into $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$is a slow process, which is governed by the gradual oxidation of the $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right.$) groups by ReF_{6} producing a rate of $C O$ generation slow enough for it all to be incorporated, rather than lost as gas.

The process may be aided by the presence of $\mathrm{ReF}_{5}{ }^{\prime}$ increasing the ease of dissociation of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{E}} \cdot \mathrm{ReF}_{5}$ through forming $\left(\operatorname{Re}_{2} F_{11}\right)^{-}$. It is well-established that $M_{2} F_{10}$ groups have a greater fluoride ion affinity than single MF_{5} species. ${ }^{105}$ Hence $\left(\operatorname{Re}_{2} F_{11}\right)^{-}$should be a better leaving group than $\left(\operatorname{ReF}_{6}\right)^{-}$. It should be possible to combine $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ with ReF_{5} in HF , in the strict absence of CO , to produce the $1: 2$ covalent complex $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{RReF}_{5}$, which should react very readily with $C O$ to give $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$.

Thus, the production of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}$, rather than its covalent relative, is a consequence of the slow production of $C O$ in the reaction; and of the extreme susceptibility of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{C}} \mathrm{ReF}_{5}$ itself to incorporate CO and eliminate its $\left(\operatorname{ReF}_{6}\right)^{-}$group (either associatively or dissociatively**). This is supported by a recent report by Mews ${ }^{43}$ that the complex $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{AsF}_{5}$ (see section 3-3.2) dissolves readily in liquid SO_{2}, a much weaker donor ligand than CO, to give the ionic complex $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{SO}_{2}\right)\right]^{+}\left[\mathrm{AsF}_{6}\right]^{-}$.
** Cotton has proposed that the reaction of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{I}$ with AgBF_{4} in liquid SO_{2} to produce $\left.\left[\operatorname{Ife}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\right]^{+}$ ${ }^{\left[\mathrm{BF}_{4}\right]_{106}}{ }^{-}$, proceeds dissociatively via the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}{ }^{+}$ ion. 106
whose SO_{2} group may, in turn, be easily displaced even by such poor ligands as acetone and water.

The $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5} / \mathrm{ReF}_{6} / \mathrm{HF}$ system is evidently capable of $\mathbf{C O}$ "fixation". It is just possible that by bubbling nitrogen gas through an $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{M}} \cdot \mathrm{MF}_{5}$ solution
 $\left(-80^{\circ} \mathrm{C}\right.$?), N_{2} might be co-ordinated. A very unstable neutral species $\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right)$ has been isolated in argon matrices at $-253^{\circ} \mathrm{C},{ }^{107}$ but the cation $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{~N}_{2}\right)\right]^{+}$should offer the best chance of isolating a more stable metal carbonyl dinitrogen species.

The equation for the conversion of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$can be written: $6 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}+4 \operatorname{ReF}_{6} \longrightarrow 5\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}+\operatorname{ReF}_{5}$ (3.27). The $\operatorname{Re}_{2}(\mathrm{CO})_{10} / 3 \operatorname{ReF}_{6} / \mathrm{HF}$ reaction therefore proceeds by a fast initial step of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$ formation (c.f. the red colour of the initial solution, see section 2-3.2).

$$
4 \mathrm{Re}_{2}(\mathrm{CO})_{10}+8 \mathrm{ReF}_{6} \longrightarrow 8 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{6} \operatorname{ReF}_{5} \quad \mid \quad(3.28) .
$$ This is followed by a slow, partial conversion to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ $\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$after equation 3.27, giving an overall reaction of: $4 \mathrm{Re}_{2}(\mathrm{CO})_{10}+12 \mathrm{ReF}_{6} \longrightarrow$

$$
2 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}+5\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}+\operatorname{ReF}_{5}
$$

It was impossible to separate the two main products except by crystal picking by hand, but their expected relative proportions of 2:5 agree well with visual estimates.i The stoicheiometry requires there to be residual ReF_{5}, both in this reaction and in the 1:4. This may well have been present in the residues of both reactions.

The $\operatorname{Re}_{2}(\mathrm{CO})_{10} / 4 \operatorname{ReF}_{6} / \mathrm{HF}$ reaction itself has a theoretical excess of ReF_{6} over the proportions required (3.33 moles) for the production of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$ free from $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$ by the above process. $3 \mathrm{Re}_{2}(\mathrm{CO})_{10}+12 \mathrm{ReF}_{6} \longrightarrow$

$$
\begin{equation*}
5\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}+2 \operatorname{Re}_{6}+\operatorname{ReF}_{5} \tag{3.30}
\end{equation*}
$$

This agrees with the experimental observation that there was indeed unreacted ReF_{6} in the volatiles removed from the reaction. The final yield of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re} \mathrm{F}_{11}\right)^{-}$, based on rhenium, by equation 3.30 was 86%.

These fluorinations of rhenium carbonyl by ReF_{6} in liquid $H F$ can thus be said to follow a similar pattern to that established for XeF_{2}, except that, under the more forcing conditions where $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}$ is being decomposed, the more stable $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ion is formed - by the reaction of CO liberated from $\left(\operatorname{Re}(C O)_{5} F\right)$ unit decomposition. This ion remains stable with respect to further oxidation, in contrast to the final formation of ReF_{6} in the XeF_{2} system. In a separate experiment an excess of XeF_{2} in HF oxidised the anion of $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}$to ReF_{6} yet failed to affect the cation. This indicates a remarkable stability for $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$amongst the normally oxidation-sensitive metal carbonyl derivatives.

3-2.4 An Assessment of the Results of O'Donnell et alia. O'Donnell and Phillips have reported an $\mathrm{Re}_{2}(\mathrm{CO})_{10}{ }^{\prime}$
$\mathrm{ReF}_{6} / \mathrm{HF}$ reaction with a three-fold excess of the carbonyl. but there is confusion in their results. The original
paper ${ }^{38}$ gave $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}, \mathrm{ReF}_{5}$ and CO as the products, though without citing evidence for the latter two species. A subsequent report ${ }^{39}$ maintained on the basis of rather limited infrared data, that $\operatorname{Re}(\mathrm{CO})_{5} F$ was the major product, with only small amounts of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ and ReF_{5}.

It was shown in section 3-1.4 that the formulation of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ is in error, and that this material is almost certainly either $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReF}_{6}\right)^{-}$or $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$, and that the green $" R e F_{5} "$ solution contains similar species. Furthermore the report of $C O$ evolution must be viewed with some scepticism when none could be detected in the author's reactions. Clearly, O'Donnell's work needs careful reexamination before definite conclusions can be drawn.

3-2.5 The Hydrolysis of $\mathrm{Re}\left(\mathrm{CO}_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}\right.$
Having considered the oxidation of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ by XeF_{2} and ReF_{6}, the hydrolysis reaction to give $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ $\left(\mathrm{ReOF}_{5}\right)^{-}$can now be discussed. This also involves oxidation of the rhenium (V) moiety and conversion of the $\operatorname{Re}(C O)_{5} F$ group to $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$, and an analogous mechanism can be proposed.

The hydrolysis is probably caused by traces of water in HF solutions or in nitrogen atmospheres above solid $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{-\mathrm{ReF}_{5}}{ }^{\text {• }}$ By comparison with Mews' reaction of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \mathrm{AsF}_{5}$ dissolved in liquid SO_{2} with water, ${ }^{43}$ an, initial step is proposed:

$$
\begin{equation*}
\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)\right]^{+}+\left(\mathrm{ReF}_{6}\right)^{-} \tag{3.31}
\end{equation*}
$$

$\left(\operatorname{ReF}_{6}\right)^{-}$is the anion derived from $\operatorname{ReF}_{5} \cdot \operatorname{ReF}_{5}$ is known to disproportionate rapidly in water to give $\left(\mathrm{Re}^{\mathrm{VII}} \mathrm{O}_{4}\right)$-,
($\mathrm{Re}{ }^{\mathrm{IV}} \mathrm{F}_{6}$) ${ }^{2-}$ and $\mathrm{ReO}_{2},{ }^{23}$ a reaction typical of many pentafluorides. With only traces of water, the $\left(\mathrm{ReF}_{6}\right)^{-}$ion probably undergoes less complete hydrolysis, forming $\left(\mathrm{ReOF}_{6}\right)^{-}$as the rhenium(VII) species:
 The $\left(\mathrm{ReOF}_{6}\right)^{-}$ions so formed now oxidise $\left[\mathrm{Re}^{\mathrm{I}}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)\right]^{+}$ cations in much the same way as ReF_{6} does the $\left(\operatorname{Re}(C O)_{5} F\right)$ units, degrading the carbonyl cation by an initial step:

$$
\begin{gather*}
\mathrm{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)^{+}+\left(\mathrm{ReOF}_{6}\right)^{-} \longrightarrow\left[\mathrm{Re}^{\mathrm{II}}(\mathrm{CO})_{4} \mathrm{~F}\left(\mathrm{OH}_{2}\right)\right]^{+} \\
\left(\text {or } \mathrm{Re}^{\mathrm{II}}(\mathrm{CO})_{4} \mathrm{~F}(\mathrm{OH})+\mathrm{H}^{+}\right)+\left(\mathrm{Re}^{\mathrm{VI}} \mathrm{OF}_{5}\right)^{-}+\mathrm{CO} \tag{3.33}
\end{gather*}
$$

The rhenium(II) species is ultimately degraded to ($\left.\mathrm{ReOF}_{5}\right)^{-}$, giving an overall equation:
$\left[\mathrm{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)^{+}+5\left(\mathrm{ReOF}_{6}\right)^{-} \rightarrow 6\left(\mathrm{ReOF}_{5}\right)^{-}+5 \mathrm{CO}+2 \mathrm{H}^{+}\right.$
Again, the CO is not liberated, but displaces
$\mathrm{H}_{2} \mathrm{O}$ from unreacted $\left[\mathrm{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)\right]^{+}$cations, so giving $\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$as the primary hydrolysis product: $5\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)\right]^{+}+5 \mathrm{CO}+5\left(\mathrm{ReOF}_{5}\right)^{-} \longrightarrow$

$$
\begin{equation*}
5\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}+5 \mathrm{H}_{2} \mathrm{O} \tag{3.35}
\end{equation*}
$$

A possible complete equation for the hydrolysis can be written:-
$15 \mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}+15 \mathrm{H}_{2} \mathrm{O} \rightarrow 5\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}+6 \mathrm{H}_{2} \mathrm{ReF}_{6}+$

$$
\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)\right]^{+}\left(\mathrm{ReOF}_{5}\right)^{-}+4\left\{\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)\right]^{+}\right\}_{2}\left(\mathrm{ReF}_{6}\right)^{2-}(3.36) .
$$ This suggests that $\mathrm{H}_{2} \mathrm{ReF}_{6}$ and $\left[\mathrm{Re}(\mathrm{CO})_{5}\left(\mathrm{OH}_{2}\right)\right]^{+}$are by-products. The latter may undergo further degradation to produce more $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$species. Further hydrolysis could be envisaged with excesses of water to give $\left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right)^{-},\left(\mathrm{ReO}_{3} \mathrm{~F}\right)^{-}$, and eventually $\left(\mathrm{ReO}_{4}\right)^{-}$. Such species may have been produced in the $\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$hydrolysis mentioned in section 2-3.5.

This hydrolysis produces the first carbonyl oxide fluoride species, and the first $R e^{I}-R e^{V I}$ compound. The mechanism is a consequence of the instability to oxidation of rhenium carbonyl species of oxidation states greater than 1, and of the ready incorporation of $C O$ by labile $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{X}$ species. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ probably hydrolyses in acetone solution in a similar fashion, initially producing $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{OCMe}_{2}\right)\right]^{+}\left(\operatorname{ReF}_{6}\right)^{-}$followed by disproportionation of the $\left(\operatorname{ReF}_{6}\right)^{-}$by dissolved water.

3-2.6 A Review of the $\mathrm{Re}_{2} \mathrm{CO}_{10} \mathrm{CReF}_{6}$ System and its Analogues
Early work by Hargreaves and Peacock shows that, in the absence of a solvent, ReF_{6} is capable of liberating all the CO from the carbonyls $\mathrm{Mo}(\mathrm{CO})_{6} \mathrm{~W}(\mathrm{CO})_{6}$ and $\mathrm{Re}_{2}(\mathrm{CO})_{10^{\prime}}$ producing $\mathrm{MoF}_{5}, \mathrm{WF}_{6}$ and ReF_{4} respectively (as well as ReOF_{4} hydrolysis products), see table 3.5.23,20 Thus it may be possible to oxidise $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$with liquid ReF_{6}. By comparison, a calculated excess of ReF_{6} slowly converts the isoelectronic $\mathrm{W}(\mathrm{CO})_{6}$ to WF_{6} and CO even when using a solvent, $W_{6}{ }^{\circ} 23,108$
$\mathrm{W}(\mathrm{CO})_{6}+6 \mathrm{ReF}_{6} \frac{\mathrm{WF}_{6}}{4 \text { weeks, room T. }} \mathrm{WF}_{6}+6 \operatorname{ReF}_{5}+6 \mathrm{CO}$
ReOF_{4} and ReF_{4} are by-products. Jones has reported that a yellow solid floated to the surface of the WF_{6} in the earlier stages of this reaction. ${ }^{108}$ This may well have been a tungsten carbonyl fluoride complex $W(C O)_{x} F_{y} \cdot R_{5} F_{5}$, which later decomposed. (On the present evidence, 12,109 tungsten carbonyl fluorides are much less stable than those of rhenium or even molybdenum). All these $M(C O)_{x} / \operatorname{ReF}_{6}$ reactions gave unidentified solid residues, some of which may have resulted from carbonyl fluoride species that were intermediates in
the fluorinations.
It seems that the $\operatorname{Re}_{2}(\mathrm{CO})_{10} / \operatorname{ReF}_{6}$ system may be represented by a stepwise oxidation, as shown in figure 3.2. In this case two stable and isolable intermediates are known, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF}_{5}$ and $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$. If it were possible to remove the $C O$ rapidly from the $\operatorname{Re}(C O)_{5} F^{\circ} \cdot \operatorname{ReF}_{5}$ oxidation stage, and so prevent $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$formation, the complete fluorination would proceed much more readily.

$\frac{\text { ave.ox. }}{\text { state }}$

Fig.3.2 Scheme for Stepwise Fluorination of $\mathrm{Re}_{2}{\left(\mathrm{CO}_{1}\right)}_{10}$ by ReF 6
$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot 2 \mathrm{ReF}_{5}$ would be the second intermediate, but would be as vulnerable to oxidation as its 1:1 analogue, unlike the stable $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$. Further oxidation would continue, giving a smaller and smaller concentration of ($\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}$) groups amongst ReF_{5} molecules, until they had all been decomposed.

This same effect of a "brake" provided by the $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ion probably does not occur with the $\mathrm{Mo}(\mathrm{CO})_{6} /$ and
$W(\mathrm{CO})_{6} / \operatorname{ReF}_{6}$ systems, nor are they likely to have such stable $M(C O)_{x} F_{y} \cdot \mathrm{ReF}_{5}$ complexes. It should be possible, nonetheless, to moderate these $M(C O)_{6} / \operatorname{ReF}_{6}$ reactions, especially by the use of a solvent, and so isolate any analogous intermediate complexes.

The metal carbonyl/ MoF_{6} systems provide similar possibilities, MoF_{6} having a similar fluorinating ability to ReF_{6}. Thus, excesses of liquid MoF_{6} have been shown by Edwards, Peacock and Small to oxidise $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}$ to give, respectively, $\mathrm{MoF}_{5}, \mathrm{MoF}_{4}$ and CO , and $\mathrm{WF}_{6}, \mathrm{MoF}_{5}$ and Co. 110 With more controlled conditions, Wilson was able to isolate a red, intermediate carbonyl fluoride complex from the room temperature $\mathrm{Mo}(\mathrm{CO})_{6} / \mathrm{MoF}_{6}(1)$ reaction. ${ }^{12}$ The analyses of this solid were variable, but the high proportion of fluorine, together with the infrared spectrum suggest an $\mathrm{Mo}(\mathrm{CO})_{x} \mathrm{~F}_{\mathrm{y}} \cdot \mathrm{MoF}_{5}$ type of complex, (though apparently a different one from that, $\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{MoF}_{5} "$, isolated from his Mo(CO) ${ }_{6} / \mathrm{XeF}_{2} /$ Genetron 113 reactions). O'Donnell and Phillips obtained what appears from their infrared spectrum to be the same material, from a reaction of $\mathrm{Mo}(\mathrm{CO})_{6}$ with MoF_{6} using anhydrous HF as a solvent. ${ }^{33}$ Their formulation of ($\left.\mathrm{Mo}^{\mathrm{IV}}(\mathrm{CO})_{2} \mathrm{~F}_{4}\right)_{\mathrm{n}}$ (based on elemental analysis) is unlikely to be correct, but gives an idea, of the overall stoicheiometry, A simple carbonyl fluoride of such a high oxidation state is improbable in view of the stable existence of the simple molybdenum(IV) fluoride MoF_{4} (which is in fact the major product of the $\mathrm{MO}(\mathrm{CO})_{6} / \mathrm{MOF}_{6}(1)$ reaction at $100^{\circ} \mathrm{C}^{12}$), and with respect to the proven prevalence of carbonyl fluoridepentafluoride complexes in other systems. The intermediacy of such complexes in metal carbonyl fluorination systems is
further illustrated by the fact that with an excess of MoF_{6}, O'Donnell's " $\mathrm{Mo}(\mathrm{CO})_{2} \mathrm{~F}_{4}$ " is oxidised to $\mathrm{MoF}_{5} .33$ Hence one may write an analogous scheme for the $\mathrm{Mo}(\mathrm{CO})_{6} / \mathrm{MoF}_{6}$ reactions (fig.3.3).

Fig.3.3 Scheme for Stepwise Fluorination of $\operatorname{Mo}(\mathrm{CO})_{6}$ by MoF_{6}

The $\mathrm{W}(\mathrm{CO})_{6} / \mathrm{MOF}_{6}$ system would be expected to give similar, though less stable, intermediate complexes, rather easily oxidised to WF_{6} and CO. The $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{MoF}_{6}$ system has never been examined, however, and is rather interesting because it should produce stable analogues $\operatorname{Re}(C O)_{5} F \cdot \mathrm{MoF}_{5}$ and $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Mo}_{2} \mathrm{~F}_{11}\right)^{-}$, of the products of the $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ / $\mathrm{ReF}_{6} / \mathrm{HF}$ system.

In other early studies, ${ }^{25}$ an excess of the slightly more reactive OsF_{6} was shown to react with $W(C O)_{6}$ very much as an excess of ReF_{6} does. In liquid HF, therefore, OsF_{6} should give the analogous rhenium/osmium complexes with $\mathrm{Re}_{2}(\mathrm{CO})_{10}$, and, under carefully controlled conditions, molybdenum/osmium and tungsten/osmium complexes with $\mathrm{Mo}(\mathrm{CO})_{6}$ and $W(\mathrm{CO})_{6}$. The other metal hexafluorides except tungsten are all probably too highly oxidising to form similar
complexes. WF_{6} is only a very weak oxidant, and merely forms red, charge-transfer solutions with the carbonyls of chromium, molybdenum, tungsten and rhenium. ${ }^{20}$ The unusual stability of W_{6} probably account's for the observed instability of tungsten carbonyl fluorides.

Carbonyl fluoride complexes might also be expected to result from metal carbonyl/metal hexafluoride reactions in other groups, e.g. $\mathrm{Os}_{3}(\mathrm{CO})_{12} / \mathrm{OsF}_{6}$, but these have not yet been investigated. The more stable metal carbonyls such as $\mathrm{Ir}_{4}(\mathrm{CO})_{12}$ may allow the use of very reactive hexafluorides like $I^{\prime} F_{6}$. The carbonyls of the first-row are generally less stable, and may be decomposed even by ReF_{6} and $\mathrm{MoF}_{6}{ }^{\text {. }}$ It would be particularly interesting in view of the isolation of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{AsF}_{5}$ by Mews, ${ }^{43}$ to see whether $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ and $\mathrm{Tc}_{2}(\mathrm{CO})_{10}$ would form $\mathrm{M}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}$ complexes with ReF_{6}, or simply be oxidised to binary fluorides and CO.

3-3. OTHER RHENIUM CARBONYL FLUORIDE PREPARATIONS

The stepwise fluorination of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ by XeF_{2}, the action of other fluorinating agents, and the special example of ReF_{6} were examined in the preceding sections. To complete the contemporary picture of the rhenium carbonyl fluoride system, preparative attempts by the remaining two methods, carbonylation and halogen exchange, are now discussed briefly.

3-3.1 Carbonylation Reactions

The failure to prepare a carbonyl fluoride from high pressure carbonylations of $K_{2} \operatorname{ReF}_{6}{ }^{11}$ has already been discussed in section 1-1. More recently Wilson passed a
mixture of CO and $\mathrm{ReF}_{6} / \mathrm{ReF}_{7}$ vapour through a Pyrex tube at about $120^{\circ} \mathrm{C}$. A volatile, dark blue solid (ReOF_{4} ?), and a white residue were produced, but these were not analysed. ${ }^{12}$ As a similar method successfully produced carbonyl fluorides from $\operatorname{RuF}_{5},{ }^{4,16} \mathrm{IrF}_{5}, \mathrm{OsF}_{6}$ and possibly PtF_{5}, ${ }^{28}$ the rhenium reaction is worth repeating, either with ReF_{6} or ReF_{5}. $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{W}(\mathrm{CO})_{6}$ merely reduce liquid ReF_{6} to $\operatorname{ReF}_{5}{ }^{23}$ (see section 3-2.6).

3-3.2 Halogen Exchange and Related Methods
Halogen exchange methods have had mixed success when applied to rhenium carbonyl fluoride preparations. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{I}$ failed to react with liquid AsF_{3} in an early reaction of Wilson. ${ }^{12}$ More recently, O'Donnell et alia reported that $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ reacts with anhydrous HF to produce $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{39}$ but it is evident from the author's investigations and subsequent studies ${ }^{111}$ that this reaction does not go to completion.

$$
\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br} \text { reacts with } \mathrm{AgSCF}_{3} \text { in dichloromethane }
$$ to produce the trifluoromethylthio derivatives $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{SCF}_{3}$ and $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{SCF}_{3}\right)_{2} \cdot{ }^{112}$ The former fragments in a mass spectrometer, with the elimination of SCF_{2}, to produce a series of $\operatorname{Re}(C O)_{n} F^{+}$ions ($n=3-0$). Similar series have been observed in the mass spectra of $\mathrm{F}_{3} \mathrm{Si}-\operatorname{Re}(\mathrm{CO})_{5}$ (the product of $\left.\mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{SiHF}_{3}\right)^{113}$ and sundry fluoroalkyl analogues.

In contrast, $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)_{2} \mathrm{TiCl}_{2}$ spontaneously eliminates SCF_{2} in its reaction with AgSCF_{3}, to produce $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiF}_{2}$ as a stable compound. ${ }^{112}$ This process is favourable because the $T_{i} V_{-F}$ bond is much stronger than the
$R^{I}-F$, but with a less tightly-bound leaving group than SCF $_{2}$, SiF $_{2}$, etc., a facile fluorine-atom shift to rhenium does become feasible. This is found in Mews' reaction of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}$ with $\mathrm{Ag}^{+} \mathrm{AsF}_{6}{ }^{-}$in liquid $\mathrm{SO}_{2} .^{43} \mathrm{AgBr}$ is precipitated, and the vacant octahedral co-ordination site of the hypothetical $\left(\operatorname{Re}(\mathrm{CO})_{5}\right)^{+}$cation is filled with a solvent molecule, giving the ionic complex $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{SO}_{2}\right)\right]^{+}\left(\mathrm{AsF}_{6}\right)^{-} \cdot \mathrm{SO}_{2}$, is, however, a very weakly co-ordinating ligand, and is slowly displaced by pumping on the solid, allowing the co-ordination of the extremely poor nucleophile $\mathrm{AsF}_{6}{ }^{-}$at the vacant site of the highly reactive intermediate $\operatorname{Re}(\mathrm{CO})_{5}{ }^{+}$, to produce the new carbonyl fluoride derivative $\operatorname{Re}(C O)_{5} \mathrm{~F}_{\mathrm{A}} \mathrm{AsF}_{5}{ }^{\text {. }}$

$$
\begin{aligned}
\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}+\mathrm{AgAsF}_{6}+\mathrm{SO}_{2}(\mathrm{I}) \longrightarrow & {\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{SO}_{2}\right)\right]^{+}\left(\mathrm{AsF}_{6}\right)^{-} } \\
& 40-50^{\circ} \mathrm{C} \downarrow \text { pump } \\
& \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{AsF}_{5}+\mathrm{SO}_{2}(\mathrm{~g})
\end{aligned}
$$

This has effected a combined halogen exchange and complex-formation reaction, equivalent to adding $A g F$, to produce $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$, followed by AsF_{5}. An analogous scheme has been used to prepare $\mathrm{Me}_{3} \mathrm{SnF} . \mathrm{AsF}_{5}$ and similar species, ${ }^{114,115}$ though with no intermediate SO_{2} complex. Simple exchange reactions with AgF have not been attempted, but should be successful in a solvent capable of dissolving either or both reactants, and precipitating $\mathrm{AgBr}, \mathrm{e} \cdot \mathrm{g}:$ liquid SO_{2}, acetone (in view of the ready formation of $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{OCMe}_{2}\right)\right]^{+}\left(\mathrm{AsF}_{6}\right)^{-}$ from the SO_{2} complex ${ }^{43}$), thf and HF.

3-3.3 Pentafluoride Group Exchange in $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{-\mathrm{ReF}_{5}}$ The complex $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{TaF}_{5}$ was prepared in the present work by the reaction of TaF_{5} with $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \dot{R e F}_{5}$ in HF solution. In contrast, excess liquid SbF_{5} reacted with
$\dot{R e}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}$ to produce mainly $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}$. The formation of this $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$salt, and not $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{SbF}_{5}$, may result from the oxidation of $\left(\operatorname{Re}(\mathrm{CO})_{5} F\right)$ groups by $\left(\operatorname{ReOF}_{6}\right)^{-}$, produced by partial hydrolysis of ReF_{5} in the system. Traces of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}$were detected in the products.

These two reactions, and the preparation of $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{-\mathrm{AsF}_{5}}$ above, show that the pentafluoride moiety of $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}$ may be exchanged by a range of suitable acceptor pentafluorides. A similar heterometallic complex $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{~T} \cdot \mathrm{aF} \mathrm{F}_{5}\right)_{2}$ has been prepared in the ruthenium system. ${ }^{28}$ Pentafluoride displacement seems to be preferable to addition, mixed complexes of the type $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{MF}}^{5}$ being as yet unknown. Bcownstein and others have also reported difficulties in isolating solid $E^{+}\left(M M^{\prime} F_{11}\right)^{-}$salts, even where these exist in solution. 116,117

3-4. FUNDAMENTAL UNITS IN RHENIUM AND OTHER CARBONYL

FLUORIDE SYSTEMS

3-4.1 The Fundamental Rhenium Units
The various rhenium carbonyl fluoride preparations discussed in the previous three parts of this chapter are now summarised in table 3.6. The routes to the major species are shown schematically in fig 3.4. The predominance of the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ and $\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}$units, established in the XeF_{2} and ReF_{6} reactions respectively, can be seen to extend over the whole range of reactions so far attempted. The $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ unit is the major species under milder oxidising conditions, the $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$cation, or else fully fluorinated species, under more forcing ones.

The importance of these units lies in their being rhenium(I) species, with the particularly stable, octahedral d^{6} configuration, and 18 valence electrons. It is quite possible that other species fulfilling these requirements might be found in the rhenium carbonyl fluoride system. One such, the $\left[(\mathrm{OC})_{5} \mathrm{Re}-\mathrm{F}-\operatorname{Re}(\mathrm{CO})_{5}\right]^{+}$cation, has already been referred to in section 3-1.6. Two other plausible species are based on the $-\mathrm{F}_{-2 \mathrm{Re}}(\mathrm{CO})_{4} \mathrm{~F}-$ unit. These are the anion $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{2}\right)^{-}$, completing the well-established series $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{X}_{2}\right)^{-}$ ($\mathrm{X}=$ halogen), and $\left(\operatorname{Re}(\mathrm{CO})_{4} F\right)_{4}$, the fluoride equivalent of the tetracarbonyl halide dimers $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{X}\right)_{2}$, but which, by analogy with the related ruthenium carbonyl fluoride $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}$, should be a single-fluorine-bridged tetramer. This latter species might be easily prepared by a simple exohange reaction (see section 3-3.2) on ($\left.\mathrm{Re}(\mathrm{CO})_{4} \mathrm{Br}\right)_{2}$ (or the chloride). Addition of fluoride ion should produce $\left(\operatorname{Re}(\mathrm{CO}) 4_{4}\right)^{-}$. Addition of ReF_{5} could produce a cyclic complex.

Table 3.6 Summary of Rhenium Carbonyl Fluoride Preparations

Reactions giving Carbonyl Derivatives but not Carbonyl Fluorides
$\mathrm{K}_{2} \mathrm{ReF}_{6}+300$ atm.CO/300 ${ }^{\circ} \mathrm{C} / \mathrm{Al}$, (refs.11,20) \longrightarrow trace $\operatorname{Re}_{2}(\mathrm{CO})_{10}$
$\operatorname{Re}_{2}(\mathrm{CO})_{10}+\mathrm{F}_{2} / \mathrm{N}_{2} /(\mathrm{s}) /-75^{\circ} \mathrm{C}$, (ref.20) \longrightarrow no reaction
$\mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{WF}_{6}(\mathrm{l}),($ ref.20) $=$ charge-transfer soln.
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Br}+\mathrm{AgSCF}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (ref.112) $\longrightarrow \mathrm{Re}(\mathrm{CO})_{5} \mathrm{SCF}_{3}$
$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{I}+\mathrm{AsF}_{3}(\mathrm{l}),($ ref. 12$) \longrightarrow$ no reaction
Reactions giving $\operatorname{Re}(\mathrm{CO})_{5}$ F
$\mathrm{Re}_{2}(\mathrm{CO})_{10}+1 \mathrm{XeF}_{2} / \mathrm{HF}$, (ref.39)
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}+\mathrm{HF}(\mathrm{l})$, (ref.39)

Reactions giving $\operatorname{Re}\left(\mathrm{CO}_{5}{ }_{5}{\mathrm{~F} \cdot \mathrm{MF}_{5}}^{5}\right.$
$\operatorname{Re}_{2}(\mathrm{CO})_{10}+\mathrm{F}_{2} / \mathrm{N}_{2} / \mathrm{Gnt} \cdot / 25^{\circ} \mathrm{C}, 1 \mathrm{XeF}_{2} / \mathrm{Gnt} \cdot \mathrm{or} / \mathrm{HF} \longrightarrow$ $\operatorname{Re}_{2}(\mathrm{CO})_{10}+\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF}_{5}$
$\mathrm{Re}_{2}(\mathrm{CO})_{10}+3 \mathrm{XeF}_{2} / \mathrm{Gnt} \cdot \mathrm{or} / \mathrm{HF}, 2 \mathrm{ReF}_{6} / \mathrm{HF} \longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}$ $\mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{IF}_{5}(\mathrm{l}),\left(\right.$ ref.20) $\longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{IF} 5$
$\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}+\mathrm{AgAsF}_{6} / \mathrm{SO}_{2}(\mathrm{l})$ and heat, $\left(\right.$ ref.43) $\longrightarrow \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{AsF}_{5}$
$\mathrm{Re}(\mathrm{CO})_{5}{\mathrm{~F} \cdot \mathrm{ReF}_{5}}+\mathrm{TaF}_{5} / \mathrm{HF} \longrightarrow \mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{TaF}_{5}$
Reactions giving $\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}\left(\mathrm{M}_{n} \mathrm{~F}_{5 n+1}\right)^{-}\right.$
$2 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}+2 \mathrm{XeF}_{2} / \mathrm{HF},($ see $3-1.4) \longrightarrow\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReF}_{6}\right)^{-}$
$\mathrm{Re}_{2}(\mathrm{CO})_{10}+10 / 3 \mathrm{ReF}_{6} / \mathrm{HF}$
$\longrightarrow\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
$\operatorname{Re}(\mathrm{CO})_{5}{\mathrm{~F} \cdot \mathrm{ReF}_{5}}+2 / 3 \mathrm{ReF}_{6} / \mathrm{HF} \quad \longrightarrow\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}$
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}+\mathrm{SbF}_{5}(\mathrm{l}) \quad \longrightarrow\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}$
Reactions giving Binary Rhenium Fluorides
$\operatorname{Re}_{2}(\mathrm{CO})_{10}+\operatorname{ReF}_{6}(1),($ refs. 20,23$) \quad \longrightarrow \operatorname{ReF}_{4}$
$\operatorname{ReF}_{6}(\mathrm{l})+\mathrm{Mo}(\mathrm{CO})_{6}$ or $\mathrm{W}(\mathrm{CO})_{6}$. (ref.23). $\longrightarrow \operatorname{ReF}_{5}$
$\mathrm{Re}_{2}(\mathrm{CO})_{10}+\mathrm{F}_{2} / \mathrm{N}_{2} /(\mathrm{s}) / 25^{\circ} \mathrm{C}, 6 \mathrm{XeF}_{2} / \mathrm{Gnt} . \mathrm{BrF}_{3}(1) * \longrightarrow \operatorname{ReF}_{6}$

Gnt. = Genetron 113. * Refs. 23, 12, 20 respectively.

O =ave.ox.state
1.0

3.0 $\quad \operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \mathrm{ReF}_{6}{ }^{-} \leftarrow-\mathrm{CO}-\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{6}$
$2 / 3$ ReF $_{6} / \mathrm{HF}$
3.75
 (xs $\operatorname{ReF}_{6}(1) ?$)!

5 or 6 $\underset{\operatorname{ReF}_{5}----\left(\mathrm{XeF}_{2}\right)}{\downarrow} \stackrel{\downarrow}{\downarrow} \operatorname{ReF}_{6}$

$$
\begin{aligned}
& 6 . \mathrm{XeF}_{2} / \mathrm{Gnt} . \\
& \mathrm{BrF}_{3}(\mathrm{I}) \\
& \mathrm{F}_{2} / \mathrm{N}_{2} /(\mathrm{s}) /
\end{aligned}
$$

$\ldots-)_{-} \rightarrow$ are postulated reactions. Gnt. $=$ Genetron 113 .

* either in Genetron 113 or HF

$\operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$

A Possible Tetrameric Carbonyl Fluoride $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{4}\right.$

 Alternatively the unit may prefer to give infinite chain structures, as in ReF_{5}.

3-4.2 The Building Blocks Principle for Carbonyl Fluoride

Formulae

On the basis of the compounds discovered so far, it is to be expected that all rhenium carbonyl fluorides will be built up from a very small number of basic units which are either rhenium(I) species satisfying the above conditions', or fully-fluorinated rhenium (V) species, e.g. $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$, $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}\right)_{4}$. It is possible that there could be other units, but the existing knowledge of the rhenium system gives no precedent for this.

This 'building blocks' principle is not exclusive to carbonyl fluorides, and is found in such mixed-ligand systems as the antimony(V) chlorofluorides. In both these systems, the known compounds can be built up as a progression
Fig.3.5 The "Building Blocks" Principle in the $\operatorname{Re}(\mathrm{CO}) \times \mathrm{F}$ and $\mathrm{SbCl} \times \mathrm{F}$ Systems

$\begin{aligned} & \mathrm{CO}: \mathrm{F} \\ & \text { ratio } \end{aligned}$	Empirical Formula	Structure	Empirical Formula	Structure	$\begin{aligned} & \text { Cl:F } \\ & \text { r.atio } \end{aligned}$
5.00	$\begin{aligned} & \operatorname{Re}(\mathrm{CO})_{5} \\ & \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \end{aligned}$	$\begin{aligned} & \left(\operatorname{Re}(\mathrm{CO})_{5}\right)_{2}^{a} \\ & \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{SbCl}_{5} \\ & \mathrm{SbCl}_{4} \mathrm{~F} \end{aligned}$	unknown $\left(\mathrm{SbCl}_{4} \mathrm{~F}\right)_{4}^{\mathrm{c}}$	$\begin{gathered} \infty \\ 4.00 \end{gathered}$
$\begin{aligned} & 1.00 \\ & 0.83 \end{aligned}$	$\begin{aligned} & \operatorname{Re}(C O)_{3} F_{3} \\ & \operatorname{Re}(C O)_{2.5} F_{3} \end{aligned}$	$\begin{aligned} & \operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \mathrm{ReF}_{6}^{-} \\ & \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF}{ }_{5} \end{aligned}$	$\begin{aligned} & \mathrm{SbCl}_{3} \mathrm{~F}_{2} \\ & \mathrm{SbCl}_{2} \mathrm{~F}_{3} \end{aligned}$	unknown ${ }^{\text {d }}$ $\mathrm{SbCl}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{9}^{-\mathrm{e}}$	$\begin{aligned} & 1.50 \\ & 0.67 \end{aligned}$
$\begin{aligned} & 0.55 \\ & 0.46 \end{aligned}$	$\begin{aligned} & \operatorname{Re}(\mathrm{CO})_{2} \mathrm{~F}_{3.67} \\ & \operatorname{Re}(\mathrm{CO})_{1.67} \mathrm{~F}_{3.67} \end{aligned}$	$\begin{aligned} & \operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \operatorname{Re}_{2} \mathrm{~F}_{11} \\ & \operatorname{Re}(\mathrm{CO})_{5}{ }^{-} \cdot 2 \operatorname{Re} \mathrm{~F}_{5} \end{aligned}$	$\begin{aligned} & \mathrm{SbCl}_{1.67} \mathrm{~F}_{3.33} \\ & \mathrm{SbCl}_{1.33} \mathrm{~F}_{3.67} \end{aligned}$	$\begin{aligned} & \mathrm{SbCl}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{ClF}_{10}{ }^{-\mathrm{f}} \\ & \mathrm{SbCl}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}-\mathrm{g} \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.36 \end{aligned}$
0.00	ReF_{5}	$\left(\mathrm{ReF}_{5}\right)_{\mathrm{n}}{ }^{\mathrm{b}}$	SbF_{5}	$\left(\mathrm{SbF}_{5}\right)_{4}{ }^{\mathrm{h}}$	0.00

References: a. 118, b. 119, c. 120, d. 121, e. 122, f. 123, g. 124, h. 125.
of stoicheiometries, starting from $\operatorname{Re}(\mathrm{CO})_{5}$ and SbCl_{5} at one extreme, to ReF_{6} and SbF_{5} at the other, by using combinations of the basic units of each system. This is set out in fig 3.5. Thus simple stoicheiometries like $\operatorname{Re}(C O)_{3} F_{3}$ may only occur where these happen to coincide with those of stable complexes, as in the case of $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReF}_{6}\right)^{-}$. The concentration of similar types of ligand on one atom in some of these species $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}, \mathrm{SbCl}_{4}{ }^{+}, \mathrm{ReF}_{6}{ }^{-}\right.$, etc.) gives the most favourable electron distribution. Ligands, such as carbonyl, which require a high electron density at the metal to form strong bonds, concentrate on a low oxidation state atom, ligands which prefer a low electron density at the metal, e.g. fluoride, on a higher oxidation state atom. The phenomenon may also be seen in the related platinum metal phosphine fluorides, where Dixon has postulated ${ }^{126}$ that to stabilise the fluoride ligand on an electron-rich metal centre like platinum(II) (d^{8}) may require a minimum of three strongly electron-withdrawing ligands. The cation $\left[\left(E t_{3} P\right)_{3} P t F\right]^{+}$is stable, but no confirmed species have keen found where there is a less acidic ligand in "the co-ordination sphere, such as $\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{CO}) \mathrm{F}\right]^{+}$ or $\left(E t{ }_{3} P\right)_{2} P t F C I .127,17,126$

3-4.3 Fundamental Units in Other Carbonyl Fluoride Systems
The same principle of fundamental units as building blocks may be applied to the other carbonyl fluoride systems. Since the completion of the author's work, a detailed study of the ruthenium system has been made, ${ }^{12}$ and the $-\mathrm{F}-\mathrm{Ru}^{\mathrm{II}}(\mathrm{CO})_{3} \mathrm{~F}_{2}-$ group has emerged as the fundamental unit of the system. This is another d^{6} species, but is analogous
not to $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ but to $-\mathrm{F}-\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}-$. It is present in the two major species of the system, $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}$ and $\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{RuF}_{5}\right)_{2}$, cyclic compounds based on the $\left(\mathrm{Ru}_{4} \mathrm{~F}_{4}\right)$ ring of $\left(\mathrm{RuF}_{5}\right)_{4}$. These are the relatives of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}}^{5}$, formed in preference to their direct analogues $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{~F}_{2}$ and $\mathrm{Ru}(\mathrm{CO})_{4} \mathrm{~F}_{2} \cdot \mathrm{RuF}_{5}$.

Only fragmentary data are available on the other systems, but similar fundamental units can be proposed. There is a series of octahedral d^{6} units which should be of particular importance in the chromium, manganese, iron and cobalt triads: $\mathrm{W}(\mathrm{CO})_{6}, \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}, \mathrm{Os}(\mathrm{CO})_{4} \mathrm{~F}_{2}$ and $\operatorname{Ir}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ (giving the third-row examples), together with their firstand second-row homologues, and derived units such as $\left(\mathrm{W}(\mathrm{CO})_{5} \mathrm{~F}\right)^{-}$and $-\mathrm{F}-\mathrm{Os}(\mathrm{CO})_{3} \mathrm{~F}_{2}{ }^{-\cdot}$

Square planar d^{8} species will be important for rhodium and iridium ($\mathrm{M}^{\mathrm{I}}(\mathrm{CO})_{3} F$, etc.), and especially for palladium and platinum $\left(M(C O)_{2} F_{2}\right.$, etc.), where the +4 oxidation state required for the corresponding d^{6} species $M(C O)_{2} F_{4}$ is effectively unattainable in carbonyl derivatives. Indeed the reactivity of palladium and platinum fluorides may preclude carbonyl fluoride formation altogether. For silver and gold, the likely species is $d^{10} \mathrm{M}(\mathrm{CO}) \mathrm{F}$. For the chromium triad, the d^{6} species are the parent hexacarbonyls $\mathrm{M}(\mathrm{CO})_{6}$. Therefore the formation of higher oxidation state carbonyl fluorides should not be very favourable because of the consequent requirement to adopt less stable electronic configurations. Accordingly, such molybdenum and tungsten carbonyl fluorides have been found to be less thermodynamically stable than those of rhenium and ruthenium.

Nevertheless, by analogy with other group VIB carbonyl halides, basic units can be proposed for carbonyl fluorides of higher oxidation states, namely 7-cọ-ordinate $d^{4}\left(M^{I I}(\mathrm{CO})_{5} F_{2}\right.$ or $-\mathrm{F}-\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{~F}_{2}-$) and perhaps octahedral $d^{3}\left(M^{\text {III }}(\mathrm{CO})_{3} F_{3}\right) \cdot d^{6}$ carbonyl fluorides can, of course, be found in the anions $\left(M^{\circ}(\mathrm{CO})_{5} F\right)^{-}$.

Table 3.7 Predicted Basic Units in Carbonyl Fluoride Systems

Triad	$C r$	$M n$	$F e$	$C o$	$N i / C u$
d^{10}					
d^{8}					
d^{6}	$\left(M^{0}(C O)_{5} F\right)^{-}$	$M^{I}(C O)_{5} F$	$-F-M^{I I}(C O)_{3} F_{2}-$	$M^{I I I}(C O)_{3} F_{3}$	
d^{4}	$-F-M^{I I}(C O)_{4} F_{2}$				
d^{3}	$M^{I I I}(C O)_{3} F_{3}$				

Other species are possible, but because of the requirement for particularly stable units in order to balance the carbonyl and fluoride ligands on the same metal atom, such cases should be rare.

The few species that have been characterised in these other systems comfirm this picture. Osmium studies to date show that $\left(\mathrm{Os}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}$ predominates in $\mathrm{Os}_{3}(\mathrm{CO})_{\cdot 12} / \mathrm{XeF}_{2}$ reactions. ${ }^{111} \mathrm{Mn}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{AsF}_{5},^{43}$ and the group VIB anions $\left(\mathrm{M}(\mathrm{CO})_{5} \mathrm{~F}^{-}(\mathrm{M}=\mathrm{Cr}, \mathrm{W})^{8,9}\right.$ have been reported recently. In the cobalt triad, the d^{8} phosphine carbonyl fluorides $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{M}(\mathrm{CO}) \mathrm{F}$ ($\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}$) are well known. 35-37

It might be expected that once these systems have been studied in depth, the above pattern of units will be confirmed.

AND ITS ANALOGUES

3-5.1 An Analysis of the Metal Carbonyl Fluoride System Having established the principle of fundamental units as building blocks in carbonyl fluoride systems, and on the basis of the total work on the rhenium and ruthenium systems, a general sequence of reactions for carbonyl fluoride preparations has been established. This is shown schematically in fig.3.6.

* or some other 1: 1 adduct, e.g. (Ru(CO) $\left.)_{3} F_{2} \cdot 3 R u F_{5}\right)$; 1: 1 adducts are also possible

The above requirements for atmospheric (flow system), or higher, pressures of CO are suggestions only.

Fig. 3.6 A Generalised Carbonyl Fluoride System

In the light of the rhenium results, metal carbonyl fluorinations can be expected to follow a progression from metal carbonyl, to simple carbonyl fluoride, through carbonyl fluoride-pentafluoride complex(es), to a final, fullyfluorinated species, which will not in general be the
highest fluoride unless very vigorous conditions are used. The particular species obtained depends very much on the conditions, but also on which are the most stable species for that system. For example, the complex $\operatorname{Re}(C O)_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ is the predominant species for the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{XeF}_{2}$ system, whereas for another (e.g.Mn ?) it may be that only the simple carbonyl fluoride is stable.

From the ruthenium studies, ${ }^{16,13}$ the carbonylation.
of metal fluorides should follow the reverse proceedure, although it may be difficult to avoid mixtures of carbonyl fluoride complexes in the initial stages, and complete reduction to the metal in the final stage.

3-5.2 The Suggested Means of Investigating a Carbonyl
Fluoride System
A. Study the $M(C O)_{x} / X_{2} /$ Genetron 113 and /HF systems in stepwise fashion, to establish the progression of compounds in the system. Consider the use of other solvents for precipitation, separation, and especially recrystallisation (e.g. $\mathrm{WF}_{6}, \mathrm{SO}_{2}, \mathrm{SO}_{2} \mathrm{ClF}, \mathrm{CFCl}_{3}$, etc.). The more stable systems may require more vigorous oxidants to achieve the more highly fluorinated species (e.g. osmium ${ }^{111}$), or even, in the case of iridium ${ }^{16}$, to prepare a carbonyl fluoride at all. Possible alternative fluorinating agents include $\mathrm{XeF}_{6}, \mathrm{BrF}_{3}, \mathrm{SF}_{4}$ and $\mathrm{N}_{2} \mathrm{~F}_{2}$, all preferably diluted in a suitable solvent. Conversely, the more delicate systems may require milder fluorinating agents (e.g. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}+$ $\mathrm{AgF} / \mathrm{SO}_{2}(\mathrm{l})$?), or else other methods of obtaining carbonyl fluorides altogether, particularly halogen exchange techniques.
B. Explore $M F_{n} / C O$ reactions to see if they follow the the reverse of i).

These two methods set out the basic sequence of metal carbonyl fluoride species, but individual compounds may be better prepared by other methods.
C. Perform $M(C O)_{x} / M^{\prime} F_{6} / H F$ reactions (where $M=M^{\prime}$ if possible), in controlled proportions, to obtain pure $M(C O)_{x} F_{y}, M F_{5}$ complexes and ultimately higher fluorides (see 3-2.5). Also investigate the preparation of heterometallic complexes ($M \neq M^{\prime}$), and the use of oxidising pentafluorides which can themselves complex with a carbonyl fluoride (e.g. IF $5_{5},{ }^{20}$ AsF_{5} and SbF_{5}).
D. Attempt halogen exchange reactions on the known carbonyl chlorides (or bromides). This method is more specific for a particular formulation than the others, and involves no oxidation. Simple carbonyl fluorides are therefore probably best prepared this way, provided the right conditions can be found. Important requirements are a good solvent, a driving force/means of removing the unwanted halide (e.g. precipitating out $A g C l)$, and the absence of undue moisture. As a general principle, organometallic fluoride formation seems only likely in halide systems where the metal-halogen bond is particularly polar, e.g. $\operatorname{Re}(C O)_{5}-X$, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO})-\mathrm{X},{ }^{37}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cu}-\mathrm{X},{ }^{128,129}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{NO})_{2}-\mathrm{X},{ }^{130}$ $\left(\eta^{5}-C_{5} H_{5}\right) \mathrm{Ti}_{X}{ }_{X}^{\mathrm{X}}{ }^{131} \mathrm{Me}_{3} \mathrm{Sn}-\mathrm{X},{ }^{132,114}$ where $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I . Often such series have a fairly easily-formed, co-ordinat-ively-unsaturated intermediate which is very susceptible to nucleophilic attack, a situation very amenable to the simple exchange of one halide ion by another, e.g.
$\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}+\mathrm{AgF} \xrightarrow{\text { acetone }}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) \mathrm{F}, 36,127$ (3.39), and the subsequent exchange of the fluoride ion for numerous halides, pseudohalides, etc. ${ }^{37}$ A further characteristic is the ready dissociation into ionic species in co-ordinating solvents, by the ligation of a solvent molecule which can be readily displaced by even such a weak nucleophile as F^{-}, e.g. ${ }^{133}$

$$
\begin{gathered}
\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}+\mathrm{AgClO}_{4}+\mathrm{MeCN} \longrightarrow\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO})(\mathrm{NCMe})^{+} \mathrm{ClO}_{4}^{-} \\
+\mathrm{AgCl} \\
\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) \mathrm{F} \longrightarrow
\end{gathered}
$$

This provides two versatile methods of halogen exchange, neither of which have been properly examined in carbonyl fluoride syntheses. Early attempts at the first method were not very encouraging $\left[\left(\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right)_{2} 34\right.$ and ($\left.\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{2}\right)_{2}{ }^{13}$ with AgF/acetone, $\left(\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right)_{2}$ with AgF/MeCN ${ }^{12}$] possibly due to moist conditions and/or an unsuitable solvent, but Mews' preparation of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\prime} \cdot \mathrm{AsF}_{5} 43$ is a successful variant on the second method.

AgF is probably the best exchanging agent, with acetone, ${ }^{127} \mathrm{MeCN}, \mathrm{thf},{ }^{8}$ or aq. $\mathrm{HF},{ }^{134}$ as the solvent for the less moisture-sensitive compounds, liquid SO_{2} or HF for the others. TlF/HF solutions (prepared simply by dissolving thallium metal in HF ${ }^{15}$ may be suitable for some compounds, but $H F$ on its own does not give completed reactions with $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}($ see section $3-3.2),\left(\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right)_{2}{ }^{12}$ or $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) \mathrm{Cl},{ }^{36}$ and is therefore unlikely to be useful. $\mathrm{F}_{2} / \mathrm{N}_{2}$.mixtures ${ }^{36}$ and $\mathrm{XeF}_{2}{ }^{13}$ in Genetron 113 or MeCN have also been unsuccessful.
E. Investigate the possible complexes of simple carbonyl fluorides prepared by \underline{D}. with pentafluorides, by simple addition reactions in a suitable solvent. On the evidence of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ and apparently $\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}$, carbonyl fluorides are likely to be quite stable fluoride ion donors, capable of complexing with Lewis acids in the same way as more recognised fluoride bases such as $\mathrm{SeF}_{4}, \mathrm{BrF}_{3}$ and XeF_{2}. Certain of the more reactive pentafluorides, e.g. CrF_{5} and BiF_{5}, may, however, oxidise the carbonyl fluoride instead.

These above investigations should be performed for the Mo, W, Tc, Ru, Os, Rh and Ir systems. For the first row series Cr, Mn, Fe, etc., only methods A. and \underline{D} - are applicable, for $\mathrm{Pd}, \mathrm{Pt}, \mathrm{Cu}, \mathrm{Ag}$ and Au , only B . and D . Single crystal X-ray structures may be necessary to characterise many of the products, until enough data has been assembled to predict structures on the basis of vibrational spectroscopy, magnetic resonance, etc.

3-5.3 Metal Carbonyl Halide-Acceptor Halide Complexes of
Chlorine, Bromine and Iodine
The general outline of the transition metal
carbonyl fluoride system has been established. It differs significantly from that of the other carbonyl halides both in the general instability of the compounds, with their ready conversion into binary fluorides (the first-row and the molybdenum and tungsten carbonyl halides ${ }^{38}$ are perhaps. their closest relatives in this respect), and in fundamental role of the $M(C O)_{x} F_{y} \cdot \mathrm{MF}_{5}$ complex. Analogous complexes of formula $M(C O)_{x} X_{y} \cdot M_{n}$ are almost unknown, and play little
part in the particular carbonyl halide system. Both the halogenation of metal carbonyls and carbonylation of metal halides give, in general, only simple carbonyl halides. This is because the suitable acceptor halides are either inaccessible or unstable under the halogenation or carbonylation conditions employed, whereas high oxidation state acceptor fluorides, especially the unique series of pentafluorides, can be stable even in the presence of CO.

The odd carbonyl chloride-metal chloride complexes that have been reported have all resulted from simple addition (method E. of the previous section) or an oxidative chlorination involving an acceptor chloride (method C.), rather than orthodox chlorination or carbonylation. $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}_{2}+\mathrm{FeCl}_{3} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}}\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}_{2} \cdot \mathrm{FeCl}_{3}$, also ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}^{2} \mathrm{FeCl}_{3}$, both in solution only ${ }^{135}(3.41)$. $\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}+3 \mathrm{FeCl}_{3} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}}\left[\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3} \mathrm{Cl}\right]^{+}\left[\mathrm{FeCl}_{4}\right]^{-}$ ($\mathrm{R}=\mathrm{Me}$, OMe)

$$
\begin{equation*}
+2 \mathrm{FeCl}_{2}{ }^{136} \tag{3.42}
\end{equation*}
$$

An intermediate $W^{\mathrm{II}}-W^{V}$ species, $\mathrm{Cl}(\mathrm{OC})_{4} \mathrm{~W}_{\mathrm{Cl}}^{\mathrm{Cl}} \mathrm{WCl}_{4}$ (c.f. $\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{~F}_{2} \cdot \mathrm{MoF}_{5}$), has been proposed in the method C . reaction of $\left(W(\mathrm{CO})_{5} \mathrm{Cl}\right)^{-}$with $\mathrm{WCl}_{6}, 137$ but the final products of both this and $M(C O)_{6} / M C l_{6}$ reactions ($M=M o, W$) are mostly the metal(IV) and (V) chlorides and CO. ${ }^{137-139}$

There is, however, quite a range of heterometallic complexes, $M(C O)_{x} X_{y} \cdot M^{\prime} X_{n}$, prepared by the oxidation of the parent carbonyl by, or in the presence of, an acceptor halide of a different element, particularly SbCl_{5}. The dimeric carbonyls $\operatorname{Re}_{2}(\mathrm{CO})_{10} 140$ and $\left(\mathrm{cpFe}(\mathrm{CO})_{2}\right)_{2} 141$ ($c p=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) are oxidised by SbCl_{5} in dichloromethane to
$d^{6} 2: 1\left(L_{3} M(C O)_{2} C l\right)$ complexes $\left(L_{3}=(C O)_{3}\right.$ or $\left.c p\right)$, where a second mole of the oxidant acts as an acceptor molecule, with SbCl_{3} as a by-product.
e.g. $\mathrm{Re}_{2}(\mathrm{CO})_{10}+2 \mathrm{SbCl}_{5} \longrightarrow\left(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right)_{2} \mathrm{SbCl}_{5}+\mathrm{SbCl}_{3}(3.43) \cdot$ This is similar to the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{IF}_{5}(\mathrm{l})$ reaction discussed in section 3-1.7, but contrasts with the $\operatorname{Re}_{2}(\mathrm{CO})_{10} / 2 \operatorname{ReF}_{6} / \mathrm{HF}$ reaction of section $3-2.3$ where it is the reduced form of the oxidant which is the acceptor. Antimony trihalides can themselves act as acceptors, and oxidise $\left(\operatorname{cpFe}(\mathrm{CO})_{2}\right)_{2}$ in dichloromethane to give traces of the analogous ($\left.\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{X}\right)_{2} \mathrm{SbX}_{3}$ complexes ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$), along with numerous Fe-Sb bonded complexes. ${ }^{141} \mathrm{AsBr}_{3}$ gives a 3:1 complex. ${ }^{141}$ A 1:1 complex $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl}^{\mathrm{SbCl}} 3$ is a by-product of an $\mathrm{Na}^{+}\left(\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{cp}\right)^{-} / \mathrm{SbCl}_{3}$ reaction. ${ }^{142}$

These complexes are generally covalent, with 2 (or 3) single $\mathrm{M}-\mathrm{X}-\mathrm{Sb}(\mathrm{As}) \mathrm{bridges}$ (c.f. (OC) $5^{\operatorname{Re}-F-R e F_{5}}$), but the oxidation of $\left(\operatorname{cpFe}(\mathrm{CO})_{2}\right)_{2}$ by X_{2} in the presence of a non-co-ordinating anion (in benzene), or performed in the ionising solvent liquid $\mathrm{HCl}, \mathrm{gives}$ ionic 2:1 complexes of formula $\left(c p(O C)_{2} M-X-M(C O)_{2} C P\right)^{+} Y^{-} \quad\left(M=F e,{ }^{143 a} R u,{ }^{143 b} X=C l\right.$ $\mathrm{Br}, \mathrm{I}, \mathrm{Y}=\mathrm{BPh}_{4}$, or $\mathrm{M}=\mathrm{Fe},{ }^{67} \mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{HCl}_{2}$ (in solution only), respectively).

With $\mathrm{SbCl}_{5} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3}, the monomeric carbonyls $\mathrm{W}(\mathrm{CO})_{6}{ }^{*},\left(\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{W}(\mathrm{CO})_{3},($ triars $) \mathrm{W}(\mathrm{CO})_{3}, \mathrm{cpMn}(\mathrm{CO})_{3}{ }^{*}$ and cpRe(CO) 3 all give 7 -co-ordinate d^{4} ionic derivatives $\left(\mathrm{L}_{3} \mathrm{M}(\mathrm{CO})_{3} \mathrm{Cl}\right)^{+}\left(\mathrm{SbCl}_{6}\right)^{-},\left(\mathrm{L}_{3}=(\mathrm{CO})_{3}, \mathrm{C}_{6} \mathrm{Me}_{6}\right.$, triars, cp$)$, some of them* very unstable. ${ }^{140,144}$
$\mathrm{L}_{3} \mathrm{M}(\mathrm{CO})_{3}+2 \mathrm{SbCl}_{5} \longrightarrow\left(\mathrm{~L}_{3} \mathrm{M}(\mathrm{CO})_{3} \mathrm{Cl}\right)^{+}\left(\mathrm{SbCl}_{6}\right)^{-}+\mathrm{SbCl}_{3}$ (3.44). Similarly, $\mathrm{Fe}(\mathrm{CO})_{5}$ dissolved in liquid HCl reacts with the halogens to produce $d^{6}\left(\mathrm{Fe}(\mathrm{CO})_{5} \mathrm{X}\right)^{+}$species $(X=C l, B r, I)$,
precipitateable as $\mathrm{BCl}_{4}{ }^{-}$salts bly adding $\mathrm{BCl}_{3} \cdot{ }^{100}$ To form covalent complexes in these monomeric cases would require the loss of a molecule of $C O$ to maintain a noble gas electron configuration, and this is evidently unfavourable under these conditions. In contrast, $\mathrm{Fe}(\mathrm{CO})_{5}$ reacts with SbCl_{5} in CCl_{4} at $-5^{\circ} \mathrm{C}$, with CO evolution, to produce the covalent $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{Cl}_{2} \cdot \mathrm{SbCl}_{3} .^{145} \mathrm{~A}^{\prime}$ yellow precipitate formed without CO evolution at $-20^{\circ} \mathrm{C}$ may, in hindsight, be unstable $\left(\mathrm{Fe}(\mathrm{CO})_{5} \mathrm{Cl}\right)^{+}\left(\mathrm{SbCl}_{6}\right)^{-}$.

Heterometallic complexes have also been formed by the addition of the acceptor to the appropriate carbonyl halide. The complexes $\left(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right)_{2} \mathrm{SbCl}_{5}$ and (in much improved yield $)\left(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl}\right)_{2} \mathrm{SbCl}_{3}$ have been prepared from the carbonyl chlorides and $\mathrm{SbCl}_{5} \cdot{ }^{140,141}$ There is also evidence for a whole range of adducts in dihalomethane solutions, ${ }^{135,136} \mathrm{e} \cdot \mathrm{g} \cdot \mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Cl}^{\left(\mathrm{FeCl}_{3},\right.} \mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl} \cdot \mathrm{SbCl}_{5}$ and $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}_{2} \cdot 2 \mathrm{AlBr}_{3}$, none of which have, however, been isolated. Ionic $\left(X\left(\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{cp}\right)_{2}\right)^{+} \mathrm{Y}^{-}$.complexes have also been prepared from the halides $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{X}$ by addition of $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}{ }^{146}$ or BF_{3} etherate, ${ }^{147}$ or of a Lewis acid in an ionising solvent $\left(\mathrm{AlX}_{3} / \mathrm{SO}_{2},{ }^{148} \mathrm{BCl}_{3} / \mathrm{HCl}^{67}\right)$, all followed by a non-co-ordinating anion $\mathrm{Y}^{-}\left(\mathrm{y}=\mathrm{BF}_{4}\right.$ or $\left.\mathrm{PF}_{6}\right)$, or of AgY in benzene ${ }^{106}$ or toluene. ${ }^{146}$

The choice of an ionic or covalent form depends partly on the stability of the possible cation, partly on the nucleophilicity of the anion, and partly on the solvent. For 1:1 complexes such as $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Cl} . \mathrm{FeCl}_{3},{ }^{135}$ the free cation $\left(\mathrm{Mn}(\mathrm{CO})_{5}\right)^{+}$is unstable, and the covalent form exists in a non-co-ordinating solvent (c.f. $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{AsF}_{5} / \mathrm{SO}_{2}{ }^{43}$).

Stable dimeric $\left(X\left(\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{CP}\right)_{2}\right)^{+}$and monomeric $\left(\mathrm{L}_{3} \mathrm{M}(\mathrm{CO})_{3} \mathrm{Cl}\right)^{+}$ cations allow the formation of $2: 1 d^{6}$ and $1: 1 d^{4}$ ionic complexes, confirmed by the crystal structures of the cations $\left(\mathrm{I}\left(\mathrm{Fe}(\mathrm{CO})_{2}\right)_{2}\right)^{+106}$ and (diars) $)_{2} \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{I}^{+},{ }^{149}$ but the weak complex $\left[\left(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl}\right)_{2} \mathrm{SbCl}_{3}\right]_{2}{ }^{*}$ adopts a covalent structure, ${ }^{150}$ see fig.3.7a.

Presumably an equilibrium must exist in solution: $2 \mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{X} \rightleftharpoons\left(\mathrm{X}\left(\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{cP}\right)_{2}\right)^{+}+\mathrm{X}^{-} \quad$ (3.45). Addition of a non-co-ordinating anion forces the equilibrium over to the right, a process aided by an ionising solvent. With a more nucleophilic anion such as $\mathrm{SbCl}_{4}{ }^{-}$, the solvent may govern the position of the equilibrium, the complex.* being produced in ether. The $2: 1 \mathrm{SbCl}_{5}$ complexes are also probably covalent in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, but might be ionic in liquid HCl.

The prevalence of $2: 1$ stoicheiometry, despite frequent large excesses of acceptor halide is partly due to the stability of dimeric cations, but is also a consequence of the electronic requirements of SbCl_{3} and SbCl_{5}. These attain a stable $5 s^{2}, 5 p^{6}, 5 d^{6}$ valence shell configuration with (${S b^{I I I} C l_{6}}$) and $\left(S b^{V_{C l}}{ }_{7}\right)$ co-ordination spheres, respectively. SbCl_{5} thus requires two molecules of a chloride ion donor to complete an $\left(\mathrm{SbCl}_{7}\right)$ unit. SbCl_{3}, however, achieves $\left(\mathrm{SbCl}_{6}\right)$ co-ordination be dimerising a $2: 1$ adduct**, see fig.3.7a., or by tetramerising a 1:1 adduct, in a similar, weak complex $\left(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl} \cdot \mathrm{SbCl}_{3}\right)_{4}, 142$ which adopts a cubane-like structure, with SbCl_{3} antimony atoms and $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl}$ chlorine atoms occupying alternate corners of a distorted cube, fig.3.7b. (simplified).

a. $\left[\left(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl}\right)_{2} \mathrm{SbCl}_{3}\right]_{2}^{150}$
b. $\left(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl} \cdot \mathrm{SbCl}_{3}\right)_{4}^{142}$

Fig.3.7 Crystal Structures of $\mathrm{cpFe}\left(\mathrm{CO}_{2}{\underline{\mathrm{Cl}}{ }^{-S b C l}}_{3}\right.$ Complexes
The monomer-favouring AsBr_{3} system achieves $\left(\mathrm{AsBr}_{6}\right.$) coordination by a monomeric 3:1 adduct. ${ }^{141}$ The above behaviour contrasts with that of the pentafluorides, which prefer to form 1:1 and 1:2 complexes because of the stability of the $\left(M F_{6}\right)^{-}$and $\left(M_{2} F_{11}\right)^{-}$anions and their covalent analogues, unless there happens to be stable dimeric cation such as $\left(\mathrm{Xe}_{2} \mathrm{~F}_{3}\right)^{+} .65 \mathrm{An} \mathrm{Re} 2(\mathrm{CO})_{10} / \mathrm{XsSbF}_{5}$ reaction should produce $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{H}} \mathrm{nSbF}_{5}$ complexes $(\mathrm{n}=1,2)$, though with only two moles of SbF_{5}, in an ionising solvent, $\left[(\mathrm{OC})_{5} \operatorname{Re-F-Re(CO)_{5}}\right]^{+}$ $\left[\mathrm{SbF}_{6}\right]^{-}$might be formed.

Metal carbonyl halides can therefore act as
reasonable donor halides, but only for the fluorides is complex formation of fundamental importance. As little is known about most of these halide complexes, there is considerable scope for exploration in this area. The complexes mostly seem to exhibit single halogen bridges, which is rare in metal carbonyl halides, except in the fluorides where
the formation of single fluorine bridges (e.g. (Ru(CO) $\left.{ }_{3} F_{2}\right)_{4}$) is an important factor in carbonyl fluoride stability. ${ }^{6}$

Reactions like (3.43) are very interesting,
because they show that analogues of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{MF}_{5}$ can be produced under orthodox halogenation conditions, though a crystal structure of $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right)_{2} \cdot \mathrm{SbCl}_{5}$ is required to establish its true formulation. It is just possible that a $1: 1$ complex $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}^{\left(\cdot \mathrm{ReCl}_{5}\right.}$ might be formed by the analogous reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with ReCl_{5} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and even more likely by $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} / \mathrm{ReCl}_{5} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

3-5.4 Carbonyl and Dinitrogen Bridged Donor-Acceptor Complexes
Donor-acceptor complexes where the bridging made. is via the carbonyl group are rare, and are restricted to those with $M-C \equiv O \rightarrow M^{\prime}$ bridges to very electropositive sites such as: aluminium trialkyls $\operatorname{AlR}_{3}\left(\mathrm{e} \cdot \mathrm{g} \cdot\left[\mathrm{cpFe}(\mathrm{CO})\left(\operatorname{COAlMe}_{3}\right)\right]_{2}{ }^{151}\right.$ $\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Re}(\mathrm{CO})_{2}\left(\mathrm{COAlMe}_{3}\right) \mathrm{Cl}^{152}\right)$, metal pyridyls ${ }^{153}$ and lanthanide η^{5}-cyclopentadienyls. ${ }^{154}$ Interesting analogues are the Friedel-Crafts acylation intermediates R.C(O)X.MX ${ }_{n}$ ($R=$ organic, $M X_{n}=\mathrm{AlCl}_{4}, \mathrm{SbF}_{6}$, etc.), formed by the addition of the appropriate acyl halide to a Lewis acid. Both covalent and ionic forms are possible. Both occur in the p-toluyl chloride-SbCl ${ }_{5}$ complex (fig.3.8a.). ${ }^{155}$

Fig.3.8a. ${ }^{155}$
Fig.3.8b: ${ }^{158}$
Covalent and Ionic Forms of Acyl Halide-SbX 5 Complexes

The fluorides all adopt the ionic form ${ }^{156}$ (e.g. $\mathrm{CH}_{3} \mathrm{CO}^{+} \mathrm{SbF}_{6}^{-157}$), with the exception of the succinyl fluoride. $2 \mathrm{SbF}_{5}$ complex, where one SbF_{5} group is bound by a $-\mathrm{C}=0-\mathrm{SbF}_{5}$ linkage because of cyclisation (fig.3.8b). ${ }^{158}$ C=O....M bridging interactions have also been proposed to account for the N.M.R. spectra of mixtures of COF_{2} and COClF with SbF_{5} or AsF_{5} in $\mathrm{SO}_{2} \mathrm{ClF}$ solution, $\mathrm{e} \cdot \mathrm{g} \cdot \mathrm{F}_{2} \mathrm{C}=0 \quad \mathrm{SbF}_{5} \cdot{ }^{159}$

Metal dinitrogenyl halides can also form complexes with acceptor molcules, but in marked contrast to carbonyl halides, bridging is exclusively via the dinitrogen group, rather than the halide, in all complexes so far characterised. Thus the $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ analogue $\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{4} \mathrm{Re}\left(\mathrm{N}_{2}\right) \mathrm{Cl}$ forms a large range of complex with acceptor halides via linear $\operatorname{Re}-N \equiv N-M$ bridges, but ($\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{4} \mathrm{Re}(\mathrm{CO}) \mathrm{Cl}$ forms almost none. ${ }^{102}$ Crystal structures have been performed of the 1:1 and 1:2 complexes $\mathrm{ClP}_{4} \mathrm{Re}-\mathrm{N} \equiv \mathrm{N}-\mathrm{MoCl}_{4}(\mathrm{OMe})^{160}$ and $\mathrm{ClP}_{4} \mathrm{Re}-\mathrm{NN}-\mathrm{MoCl}_{4}-\mathrm{NN}-$ $\mathrm{ReP}_{4} \mathrm{Cl},{ }^{161}$. $\left(\mathrm{P}=\mathrm{PMe}_{2} \mathrm{Ph}\right)$. The latter has both molecules of $\mathrm{P}_{4} \mathrm{Re}\left(\mathrm{N}_{2}\right) \mathrm{Cl}$ acting as donors, in the same sense as $\left(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}\right)_{2} \mathrm{SbCl}_{5},{ }^{140}$ but in contrast to complexes which have a "dimeric" cation e.g. $\left(\mathrm{I}\left(\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cp}\right)_{2}\right)^{+}\left(B F_{4}\right)^{-}, 102$ $\left(\mathrm{N}_{2}(\mathrm{Fe}(\text { dmpe }) \mathrm{cp})_{2}\right)^{2+}\left(\mathrm{BF}_{4}{ }^{-}\right)_{2},^{162}$ (dmpe $=1,2$-bis (dimethylphosphino)ethane). TiCl_{4} forms a similar 2:1 complex, for which there is also a carbonyl analogue ($\left.\mathrm{ClP}_{4} \mathrm{Re}-\mathrm{C} \equiv \mathrm{O}-\right)_{2} \mathrm{TiCl}_{4}{ }^{163}$ Excesses of the tetrachlorides TiCl_{4} or $\mathrm{MoCl}_{4} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{Et}_{2} \mathrm{O}\right.$, thf, $\left.\mathrm{PMePh}_{2}\right)$ give incompletely characterised 1:2 dinitrogen complexes of probably formula $\mathrm{ClP}_{4} \mathrm{Re}-\mathrm{N}_{2}-\mathrm{M}_{2} \mathrm{OCl}_{5} \mathrm{~L}^{\prime} \quad\left(\mathrm{M}-\mathrm{Ti}, L^{\prime}=\mathrm{Cl}^{163} ; M=\mathrm{Mo}, L^{\prime}=L^{102}\right)$ in which the two acceptor molecules may either be bound in a chain $\operatorname{Re}-N N-M X_{n}-M X_{m}$, or both to the same nitrogen
atom $\operatorname{Re}-N \equiv N_{M X}^{\prime} \int_{M X}$. The carbonyl analogue is, however, oxidised to $\mathrm{P}_{3} \operatorname{Re}(\mathrm{CO}) \mathrm{Cl}_{3} \cdot 102,163$

Thus a considerable variety of dinitrogen-bridged
[rhenium(I)-transition metal](III).(IV) or (V) complexes can be formed. Amongst these there is evidence for a homometallic complex $\mathrm{Cl}\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{4} \mathrm{Re}^{\mathrm{I}}-\mathrm{NN}-\mathrm{Re}^{\mathrm{V}}\left(\mathrm{PPh}_{3}\right) \mathrm{OCl}_{3}, 102,164$ an interesting relative of $(O C)_{5} \operatorname{Re}^{I}-\mathrm{F}-\mathrm{Re}^{V_{E_{5}}}$. Only two fluoro complexes have been reported, of probable formula $\mathrm{ClP}_{4} \mathrm{Re}-\mathrm{NN}-\mathrm{MF}_{5}(\mathrm{M}=\mathrm{P}, \mathrm{Ta}) .{ }^{102} \mathrm{It}$ would be interesting to see if $\mathrm{P}_{4} \operatorname{Re}\left(\mathrm{~N}_{2}\right) \mathrm{F}$ could be prepared, and if this would prefer to bridge to TaF_{5} via the fluorine atom: $\mathrm{P}_{4}\left(\mathrm{~N}_{2}\right) \mathrm{Re}-\mathrm{F}-\mathrm{TaF}_{5}{ }^{\text {. }}$

There is also a large range of metal-metal bonded carbonyl halide complexes but these are beyond the scope of this review. It is interesting to note that $\mathrm{BF}_{3}{ }^{165}$ and $\mathrm{SbF}_{3}{ }^{166}$ complexes of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}$ are probably $\operatorname{Ir}-\mathrm{M}$ bound, not Ir-Cl-MF 3 bonded.

It has been demonstrated in the preceding sections that carbonyl fluoride formation is only expected within a fairly limited range of compounds. It should be possible to extend this range to other metals (e.g. first-row transition metals) and to other formulations, by allowing the substitution of some of the carbonyl groups by suitable electron-withdrawing ligands, (e.g. tertiary phosphines, η^{5}-cyclopentadienyl), capable of stabilising a metal-fluorine bond by giving the metal a greater effective positive charge. For example, the compound $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) \mathrm{F}$ is well-established, 127 but the "parent" $\operatorname{Ir}(\mathrm{CO})_{3} F$ is as yet unknown.

A η^{5}-cyclopentadienylchromium dinitrosyl fluoride, $\operatorname{cpCr}^{\circ}(\mathrm{NO})_{2} \mathrm{~F}$, had been known since $1954,{ }^{130}$ but despite the similarity between the halides $\operatorname{cpCr}(\mathrm{NO})_{2} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and the isoelectronic iron dicarbonyl series $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{X}^{167}$ the corresponding iron fluoride, $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}$, had not been isolated. The well-established analogy between these two d^{6} series and the manganese-triad pentacarbonyl halides made it particularly interesting to attempt to prepare this compound, not only as a first-row carbonyl fluoride, but also as an analogue of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$.
$\operatorname{cpCr}(N O)_{2} F$ was prepared by displacement of the solvent molecule from $\left[\operatorname{cpCr}\left(\mathrm{NO}_{2}\left(\mathrm{OH}_{2}\right)\right]^{+}\left(\mathrm{NO}_{3}\right)^{-}\right.$by fluoride ion, and extracting the covalent complex into chloroform, (c.f. section 3-5.2). However an attempt by Meyer et alia ${ }^{168}$ to displace acetone from $\left[\mathrm{cpFe}(\mathrm{CO})_{2}\left(\mathrm{OCMe}_{2}\right)\right]^{+}$(prepared in solution by the oxidation $\left(\mathrm{cpFe}(\mathrm{CO})_{2}\right)_{2} / \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$ /acetone) with sodium fluoride in methanol merely regenerated the parent
carbonyl, though the other halides and even the nitrate were synthesised by this route. The reasons for the failure were the lack of a suitable driving force, and possibly the use of a hydroxylic solvent.

In a later study, ${ }^{77}$ Williams and Lalor prepared various derivatives in a single step, by using the appropriate silver salt as both oxidant and nucleophile, where these were soluble in acetone, e.g.
$\left(\mathrm{cpFe}(\mathrm{CO})_{2}\right)_{2}+2 \mathrm{AgNO}_{3} \xrightarrow{\mathrm{Me}_{2} \mathrm{CO}} 2 \mathrm{cpFe}(\mathrm{CO})_{2}\left(\mathrm{ONO}_{2}\right)+2 \mathrm{Ag}$ (3.46). Here the driving force is the precipitation of silver. Despite the fairly low solubility of AgF in acetone, this method proved successful in preparing $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}$ in the present study (see section 2-5.2), Difficulties experienced in extracting the compound, because of its tendency to decompose in solution, meant that the yield obtained was low, but it should be possible to improve this with a more rapid work-up. The decomposition probably occurs by the substitution of an organic ligand, R:

$$
\left.\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}+\mathrm{R}-\mathrm{H} \longrightarrow \mathrm{cpFe}_{2} \mathrm{CO}\right)_{2} \mathrm{R}+\mathrm{HF}
$$

The metal-fluorine bond in $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \operatorname{Ir}(\mathrm{CO}) F$ is also very labile. 37 An AgF suspension in thf has recently effected a low-yield oxidation of $\left(\mathrm{Cr}_{2}(\mathrm{CO})_{10}\right)^{2-}$ to $\left(\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{~F}\right)^{-} .8^{8}$

Because of the ready solubility of both AgF and ($\left.\mathrm{cpFe}(\mathrm{CO})_{2}\right)_{2}{ }^{\prime}{ }^{66}$ anhydrous $H F$ may be a better medium for preparing $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}$. Other possible methods include $\operatorname{cpFe}(\mathrm{CO})_{2} \mathrm{Cl} / \mathrm{AgF} / \mathrm{L}$, where $\mathrm{L}=$ acetone, $\mathrm{thf}, \mathrm{SO}_{2}$ or HF , or a solvent elimination method with a suitable driving force, e.g. $\left(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~L}^{+}\left(\mathrm{ClO}_{4}\right)^{-} / \mathrm{AgF} / \mathrm{L} . \mathrm{XeF}_{2}\right.$ is probably too vigorous an oxidant to be used here.

By analogy with the behaviour of $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Cl}$ in
 cation $\left(\mathrm{cp}(\mathrm{OC})_{2} \mathrm{Fe}-\mathrm{F}-\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{cp}\right)^{+}$, which might be precipitated by adding a non-co-ordinating anion, e.g. AgBF 4 . This, however, may give rise to a complication not found in the analogous pentacarbonyl manganese and rhenium (I) systems (where $X M_{2}(C O)_{10}{ }^{+}$ions have not been observed), in attempts to prepare $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F} \cdot \mathrm{M} \cdot \mathrm{F}_{5}$ complexes. Addition of half a mole of AsF_{5} to $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}$ may produce $\left(\mathrm{F}\left(\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{CP}\right)_{2}\right)^{+}\left(\mathrm{AsF}_{6}\right)^{-}$ instead of $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}^{2} \mathrm{AsF}_{5}$. To prepare the covalent type of complex, other methods may be required, such as $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{Br} /$ $\mathrm{AgAsF}_{6} / \mathrm{SO}_{2}$ (after Mews ${ }^{43}$) or ($\left.\operatorname{cpFe}(\mathrm{CO})_{2}\right)_{2} / 2 \mathrm{AgAsF}_{6} /$ acetone . (after Lalor ${ }^{77}$), both followed by pumping out the solvent molecule L from the $\left(\operatorname{cpFe}(C O)_{2} L\right)^{+}\left(\mathrm{AsF}_{6}\right)^{-}$complex. cpFe(CO) ${ }_{2} F$ is the first η^{5}-cyclopentadienyl carbonyl
fluoride, but many others should be preparable, including the ruthenium and osmium analogues, and group VIB derivatives $\operatorname{cpM}(C O)_{3} \mathrm{~F}$.

3-7. SUGGESTIONS FOR FURTHER WORK ON THE RHENIUM SYSTEM

One of the aims of this work was to achieve an understanding in some depth of one carbonyl fluoride system, (rhenium), on which to base future studies of the other transition metals' systems. Having achieved this, it is clear that there is enormous scope for further exploring the carbonyl fluoride chemistry of rhenium itself, let alone the other metals. This section summarises some suggested future work on the rhenium system.
Re_{2} (CO) $_{10} / \mathrm{XeF}_{2} / \mathrm{HF}$ System
In order to clarify uncertain features about this system (see section 3-1.4), three reactions in particular should be checked:- $\mathrm{Re}_{2}(\mathrm{CO})_{10} / 1 \cdot \mathrm{XeF}_{2}, \mathrm{Re}_{2}(\mathrm{CO})_{10} / 3 \cdot \mathrm{XeF}_{2}$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} / 1 . \mathrm{XeF}_{2}$, to establish the conditions under which $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}, \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ or $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReF}_{6}\right)^{-}$are formed, and confirm the true identity of $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$ ".
$\mathrm{Re}_{\mathrm{CO}}^{5} 5$ Freparations
New preparative routes for $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ are required, to check O'Donnell's data, and obtain more detailed information (Raman, ${ }^{19}$ F N.M.R., Re-F bond length, etc). The following are suggested: $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} / \mathrm{AgF} / \mathrm{SO}_{2}$./acetone or/thf, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl} / \mathrm{TlF} /$ $\mathrm{HF}, \mathrm{Re}_{2}(\mathrm{CO})_{10} / 2 \mathrm{AgF} /$ acetone or /thf (under ultra-violet irradiation), and also the precipitation of insoluble KMF_{6} salts by adding KF to $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}$ / HF or $\operatorname{Re}(\mathrm{CO})_{5}\left(\mathrm{SO}_{2}\right)^{+}$ $\left(\mathrm{AsF}_{6}\right)-/ \mathrm{SO}_{2}$ solutions, to leave $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$ in solution. $\underline{\mathrm{Re}(\mathrm{CO})_{5}} \stackrel{\mathrm{~F}}{2}^{\mathrm{MF}} 5$ Complexes

Covalent complexes $\operatorname{Re}(C O)_{5} F^{\prime} \cdot \operatorname{RREF}_{5}(n=1,2)$ should be prepared by $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} / \mathrm{ReF}_{5} / \mathrm{HF}$, and also CO bubbled through
their HF solutions to prepare the ionic salts $\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}$ $\left(\operatorname{Re}_{\mathrm{n}} \mathrm{F}_{5 \mathrm{n}+1}\right)^{-}$. A crystal structure of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot 2 \operatorname{ReF} \mathrm{~F}_{5}$ (and of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}$) would provide an interesting comparison of the bonding in these complexes.

The exchange/addition properties of other pentafluorides with $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}$ should be further explored, and new $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{MF}_{5}$ and perhaps mixed $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{MF}_{5} \cdot \mathrm{M}^{\prime} \mathrm{F}_{5}$ complexes should be prepared by $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} / \mathrm{MF}_{5} / \mathrm{HF}$ methods. Also reactions. of $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{HF}$ with $\mathrm{MoF}_{6}, \mathrm{TcF}_{6}$ and OsF_{6} and of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ and $\mathrm{Tc}_{2}(\mathrm{CO})_{10}$ with ReF_{6} and TcF_{6}, should be examined for new $M(C O)_{5} F \cdot M^{\prime} F_{5}$ complexes, especially $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{MoF}_{6} / \mathrm{HF}$ and $\mathrm{Mn}_{2}(\mathrm{CO})_{10} / \mathrm{ReF}_{6} / \mathrm{HF}$. By analogy with $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{SbCl}_{5}$, the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{SbF}_{5}$ reaction should be studied, in a suitable solvent (Genetron 113, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$?, $\mathrm{HF}, \mathrm{SO}_{2} \mathrm{ClF}$, etc.).

Miscellaneous Reactions

$$
\text { Preparations of possible }\left(\operatorname{Re}(\mathrm{CO})_{4} F\right)_{n^{\prime}}\left(\operatorname{Re}(\mathrm{CO})_{4} F \cdot \operatorname{ReF}_{5}\right)_{n^{\prime}}
$$ and $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{2}\right)^{-}$species should be attempted by halogen exchange with $\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{Cl}\right)_{2}$, followed by addition of the $\mathrm{ReF}_{5}, \mathrm{~F}^{-}$, etc. Crystal structures may be required to show the extent of polymerisation. The carbonylation of ReF_{5} or ReF_{6} needs a proper investigation. Finally some chemistry of $\operatorname{Re}(\mathrm{CO})_{5} F \cdot \operatorname{ReF}_{5}$ should be examined, to explore a). its potential as a co-ordinator of small molecules to give $\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~L}\right)^{+}\left(\operatorname{ReF}_{6}\right)^{-}$species (e.g. $\mathrm{L}=\mathrm{N}_{2}$, NO, CO_{2}, "CS", $\left.(\mathrm{C} \equiv \mathrm{CH})^{-}\right)$, and $\left.b\right)$. any unusual phenomena associated with the close proximity of two co-ordination sites (Re ${ }^{I}$ ánd Re^{V}) of widely different character and oxidation states, e.g. reactions with olefins and fluoro-olefins, with a view to assessing the possible catalytic activity of these sort of complexes.

4-1.1 Vacuum Systems

Because of the air sensitivity of most of the fluorinecontaining reactants and products used in this work, reactions were carried out in high vacuum systems, (1×10^{-4} torr, or better), with the exception of the $\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}$ and SbF_{5} preparations, which were performed under dry nitrogen. Glass systems were baked out under vacuum, and the metal systems, and metal,glass and fluoroplastic equipment attached to them, were pre-treated with 300 torr of ClF_{3} or elemental fluorine for about 15 minutes, to remove the last traces of moisture and other impurities.

An all-Pyrex glass system was used for the reactions in Genetron 113, see section 4-4.1 and fig.4.2. The number of valves and joints was minimised, to reduce possible sources of leaks. "Quickfit" joints and valves, lubricated with Voltalef-90 Kel-F grease or Apiezon M, were generally employed. In regions where attack on the grease was likely, greaseless "Rotaflo" valves with PTFE stems, and Young's O-ring joints (with "Viton" O-rings) were used. Checks for leaks were made with a high frequency coil.

Manipulations involving $H F$ or ReF_{6} were carried out in metal and fluoroplastic systems. The basic metal manifold was made up of " 316 " stainless steel needle valves, crosses, tees and elbows (supplied by Autoclave Engineers, Erie, Pennsylvania, U.S.A.), and argon-arc welded nickel
 see fig.4.3. A separate single-stage rotary pump, fitted with a soda-lime trap to absorb volatile fluorides, F_{2} and

HF, was used to evacuate large quantities of volatiles from the manifold. The manifold also included facilities for the direct introduction of F_{2}, H_{2} or Ar. Fluorine for seasoning and ReF_{6} were handled in detachable, welded, nickel cans, fitted with stainless steel valves.

```
Translucent Kel-F (polytrichlorotrifluoroethylene),
``` and occasionally Teflon F.E.P. (fluorinated ethylene-propylene, a \(\mathrm{C}_{2} \mathrm{~F}_{4}-\mathrm{C}_{3} \mathrm{~F}_{6}\) co-polymer) equipment was attached to the manifold by adaptors consisting of brass or copper connections, hard silver-soldered to standard nickel tubing. Kel-F apparatus was connected by \(1 / 4\) " o.d. Kel-F tubing (Pampus Fluoroplast Ltd., Stoke-on-Trent). Kel-F valves, based on a design developed at Argonne National Laboratory, Chicago, U.S.A., were fabricated from Kel-F blocks (Pampus). Kel-F reaction vessels were of three types: \(3 / 4\) " o.d. moulded tubes of approximately 28 ml . volume, purchased from Argonne Laboratory, and \(3 / 16^{\prime \prime}\) N.M.R. and \(1 / 4\) " tubes, made by sealing a length of the appropriate tubing, and flaring the opposite end to fit the \(45^{\circ}\) taper of the nipples of the Kel-F valves and N.M.R. adaptors. Kel-F adaptors were constructed to attach the \(3 / 4\) " tubes to the valves. Seals were made by accurate compression-fittings, secured by backing nuts. Checks for leaks were made using a helium leak-detector.

4-1.2 Handling the Products
Solid products with the exception of \(\mathrm{cpFe}(\mathrm{CO})_{2} F\) were handled in nitrogen-filled dry boxes. Initially a non-regenerable, non-recirculating box, with \(\mathrm{P}_{2} \mathrm{O}_{5}\) as a dessicant, was used, but this.was found unsatisfactory for handling \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}\). Subsequent work was in a closed-
system, auto-recirculating box with regenerable, on line; molecular sieves and MnO columns, for water and oxygen removal, respectively (Lintott Engineering Ltd., Horsham, Sussex; mark 11). The box was used at moisture levels between 30 and 1 p.p.m. Static problems were minimised by exposing samples and tubes to a 2 millicurie \({ }^{204}\) Tl \(\beta\)-emitter (Radiochemical Centre, Amersham). Weighings in the box were made on an Oerting two-pan balance, reliable to \(\pm 1 \mathrm{mg}\). under optimum box conditions, with the pumps temporarily turned off. Accurate weighings (\(\pm 0.1 \mathrm{mg}\).\() of all reactants\) and products were made by difference, on a Stanton Unimatic CL41 single-pan balance, outside the box.

\section*{4-2. ANALYSES AND PHYSICAL MEASUREMENTS}

4-2.1 Elemental Analysis
Elemental microanalyses for carbon and fluorine were performed by Beller Mikroanalytisches Laboratorium, 34 Göttingen, Theatrestrasse 23, and Pascher Mikroanalytisches Laboratorium, 53 Bonn, Buschstrasse 54, West Germany. Samples were loaded in the dry box into seasoned 13 mm . o.d. glass ampoules fitted with valves, and sealed under vacuum.

A single determination for rhenium was carried out by a modification of the published \(\mathrm{Re}_{2} \mathrm{~S}_{7}\) procedure. \({ }^{169}\) About 50 mg . of sample was converted to the perrhenate by heating with a mixture of aqueous NaOH and 30 volume \(\mathrm{H}_{2} \mathrm{O}_{2}\) in a platinum crucible. After prolonged boiling and further additions of \(\mathrm{H}_{2} \mathrm{O}_{2}{ }^{38}\) an insoluble, flocculent white precipitate dissolved on adding a little 1:1 HCl. Rhenium was then precipitated as nitron perrhenate as described, \({ }^{169}\) after having
made the colourless final solution up to 50 mls ., and adjusted to pH 6 with NaOH solution. 97.Omg. of nitron perrhenate were obtained, equivalent to a rhenium content of \(62.9(5) \%, c . f \cdot \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}\) calc. \(59.5 \%\).

\section*{4-2.2 X-Ray Powder Diffraction}

Powder samples for X-ray work were ground in the dry-box, and loaded into pre-seasoned glass capillaries, which were then re-evacuated. Samples were sealed using a micro-torch. Photographs were taken using a Philips 11.64cm. diameter camera with Ni-filtered Cu-K radiation, using exposures between 4 and 12 hours. Photographs were measured on a cold light box fitted with a rule and vernier scale.

\section*{4-2.3 Vibrational Spectra}

Infrared spectra were obtained using a Perkin-Elmer 225 Grating Spectrophotometer, and a Hilger-Watts Infragraph H1200, and KBr and AgCl windows (4000-400 \(\mathrm{cm}^{-1}\)) or polythene discs (400-200 \(\mathrm{cm}^{-1}\)). Solid samples were prepared in the dry box by sprinkling finely-ground solid on to the windows, or in the form of mulls with sodium-dried Nujol (stored in the box). Gas phase spectra were performed in evacuable allglass or copper cells of 10 cm path length, fitted with valves, and side arms.

Raman spectra were obtained on Coderg PH1 and T800 instruments, using \(50 \mathrm{~mW} 5370 \AA \mathrm{He} \mathrm{Ne}\) (red) and \(250 \mathrm{~mW} 4880 \AA\) \(\mathrm{Ar}^{+}\)(blue) lasers (Coherent Radiation Laboratories) as the excitation sources. Solid samples were contained in glass X-ray capillaries or ampoules, prepared as above. Solution spectra were obtained on concentrated solutions in Kel-F or
F.E.P. tubes. Low temperature solution spectra were obtained by passing a current of cold, dry nitrogen, boiled out of a liquid nitrogen Dewar vessel, up past the \(3 / 16^{\prime \prime}\) Kel-F N.M.R. tube containing the sample. Temperatures down to \(-80^{\circ} \mathrm{C}\) and below were easily obtained, measured using a thermocouple and Comark thermometer, and adjusted by controlling the rate of gas flow.

\section*{4-2.4 Magnetic Resonance}
N.M.R. and E.S.R. spectra were carried out in \(3 / 16\) "o.d.

Kel-F tubes"attached to Kel-F values, or standard glass tubes. Varian T60 (\(\left.{ }^{1} \mathrm{H}, 60 \mathrm{MHz}.\right)\), Varian DA60 (\({ }^{1} \mathrm{H}, 60 \mathrm{MHz} .{ }^{19} \mathrm{~F}, 56.4 \mathrm{MHz}\)) and JEOL \(100\left({ }^{1} \mathrm{H}, 100 \mathrm{MHz} . ;{ }^{19} \mathrm{~F}, 94.1 \mathrm{MHz}\right.\)) N.M.R. instruments were used. E.S.R. spectra were obtained by Dr.J.B.Raynor on a Varian E. 3 machine.

4-2.5 Mass Spectréa
Mass spectra were obtained on an A.E.I. MS9 spectrometer operating at 70 eV ionisation potential. Volatiles

Fig 4.1 Insertion of Air-Sensitive Solids into the Mass
Spectrometer

were introduced from glass bulbs through the standard inlet system, air-sensitive solids via the solids probe of the instrument. An X-ray capillary B, containing the solid sample (fig.4.1), rested in a glass jacket A, which was wedged inside a copper adaptor \(C\) on the end of the probe D. The outer tip of the capillary was broken at \(X\), while sprayed with a jet of helium, and the probe inserted immediately into the spectrometer. This minimised the amount of moisture admitted to the sample and prevented solid falling out of the sample tube.

\section*{4-2.6 Melting Point}

Melting points were obtained on X-ray capillary samples on a Reichert microheating stage.

\section*{4-3. STARTING MATERIALS AND SOLVENTS}

4-3.1 Available Materials
Standard chemicals were obtained as follows, and used without further purification, except where specified.
:Re metal: Johnson Matthey Metals Ltd.; \(\mathrm{Re}_{2}(\mathrm{CO})_{10}\) and \(\mathrm{Mn}_{2}(\mathrm{CO})_{10}{ }^{*}\) : Strem Chemicals Inc. (*stored at \(-20^{\circ} \mathrm{C}\), in the dark); \(\left(\operatorname{cpFe}(\mathrm{CO})_{2}\right)_{2}\) : Alfa Inorganics.

Genetron 113 (1,1,2-trichlorotrifluoroethane):
Fluka \(A G\) (stored over \(\mathrm{P}_{2} \mathrm{O}_{5}\); degassed over fresh \(\mathrm{P}_{2} \mathrm{O}_{5}\) prior to use); acetone \({ }^{+}\)and methanol for the \(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}\) preparation: B.D.H. "AnalaR" grade, (\({ }^{+}\)acetone for attempted solution studies on \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}\) was dried via the NaI adduct. \({ }^{46}\)).

Diethyl ether, \(\neq\) benzene, \(\neq\left(60-80^{\circ}\right)\) petroleum ether, nitromethane, dichlóromethane, chloroform and carbon tetra-
chloride: May and Baker Ltd. (\({ }^{\neq}\)stored over sodium wire); acetonitrile: Fisons Ltd.; trichlorofluoromethane: B.D.H. Ltd.

Aqueous HF (40\%): Hopkin and Williams Ltd. Anhydrous HF: supplied in steel cylinders by I.C.I. Ltd. and by Imperial Smelting Ltd. The quality varied considerably from cylinder to cylinder, the former giving generally lower moisture and impurity levels. The HF was purified by trap-to-trap distillation, discarding the first and last fractions each time, followed by two fluorinations at about \(100^{\circ} \mathrm{C}\) and 950 torr, in a 1 litre nickel can. The purified HF was stored in pre-seasoned Kel-F tubes.

Argon and nitrogen (high purity "white spot" grade): British Oxygen Ltd. Fluorine for seasoning and for preparing ReF \({ }_{6}\) was supplied by the Matheson Co. Ltd., in steel cylinders, which were connected to the metal vacuum manifold.

Xenon difluoride was prepared by Miss G.M. Warren by the method of Holloway, \({ }^{170}\) and stored at \(-20^{\circ} \mathrm{C}\) in weighed breakseal ampoules. Tantalum pentafluoride was prepared by Mr. J. Fawcett from the elements, in a flow system.

\section*{4-3.2 Preparation of Starting Materials}

Rhenium hexafluoride was prepared from the elements in 1.5 and 5 g . quantities by the method of Malm and Selig, \({ }^{171}\) and stored in a seasoned 75ml. nickel can. Its purity was checked by its gas phase infrared spectrum.

Antimony pentafluoride was prepared in a flow system, attached to the fluorine generator. After flushing with nitrogen, a 1:1 fluorine:nitrogen mixture (cell at 4 amps) was passed over 24 g . Sb metal in nickel boats in a 30 cms . long, 1.6 cm . o.d. silica tube with a \(20^{\circ}\) downward slope.

Heat was required to initiate the reaction. Thereafter the heat of reaction maintained a constant flow of \(\mathrm{SbF}_{5}\) into a Pyrex U-trap, fitted with a breakseal, cooled to \(-183^{\circ} \mathrm{C}\). The lower end of the reactor required periodic heating to clear solid deposits of \(S b^{I I I} / S b^{V}\) fluorocomplexes (such as \(S b_{11} F_{43}^{172,173}\)). Moisture was excluded from the system by a \(-183^{\circ} \mathrm{C}\) trap before the reactor, and \(\mathrm{a}-80^{\circ} \mathrm{C}\) trap and conc. \(\mathrm{H}_{2} \mathrm{SO}_{4}\) bubbler after the U-trap. The excess of fluorine was vented to the fume cupboard. Reaction was complete after 7 hours. The U-trap was sealed off, and the \(\operatorname{SbF}_{5}\) purified from white and yellow involatile 'solid by-products by trap-to-trap distillation under dynamic vacuum, in a flamed-out. Pyrex system. The purified material was stored in breakseal ampoules. Silver(I) fluoride was prepared be the procedure described by Kemmitt, 174 from a slight excess of aqueous HF (\(40 \%\)) and freshly prepared silver carbonate, but in a polythene beaker. Adherence to the recommended quality of reagents, and the proportions of \(5 \mathrm{~g} \cdot \mathrm{Ag}_{2} \mathrm{CO}_{3}: 10 \mathrm{ml}\). "AnalaR" methanol : 300 ml . sodium-dried ether, was important to prevent moisture contamination affecting the AgF precipitation. *Re(CO) \({ }_{5} \mathrm{Cl}\) was prepared by passing chlorine gas through a benzene solution of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{I}\) (supplied by Drs. S. Fieldhouse and N. Forbes), followed by recrystallisation from hot benzene. 175

\section*{4-4. CARBONYL FLUORIDE PREPARATIONS AND REACTIONS}

4-4.1 The \(\operatorname{Re}_{2}(\mathrm{CO})_{10}\) KeF \(_{2} /\) Genetron 113 Reactions
The apparatus (fig. 4.2 and plates 4.1 and 4.2) was
evacuated overnight, with the \(\mathrm{XeF}_{2}\) breakseal ampoules \(G\)

\section*{4-4.1}

\section*{Plate 4.1}

\section*{General View of the Apparatus for}
\(\mathrm{Re}_{2} \mathrm{CO}_{10} \mathrm{XeF}_{2}\) /Genetron 113 Reactions

\[
4-4.1
\]

\section*{Plate 4.2}

An \(\mathrm{Re}_{2}\left(\mathrm{CO}_{10} / \mathrm{SXXF}_{2} /\right.\) Genetron 113 Reaction

Nearing Completion

cooled in acetone \(/ \mathrm{CO}_{2}\), and then flamed out at least three times. Valve 1 was closed, and \(\mathrm{P}_{2} \mathrm{O}_{5}\)-dried nitrogen admitted at K . The \(\mathrm{XeF}_{2}\) ampoules were removed at \(F\), with nitrogen blowing through the apparatus; and both outlets plugged with B14 stoppers. Valve 5 was closed, and the 100 ml . volume reactor \(E\) was removed at \(C\). The required amount (0.2 to 0.5 g.\()\) of \(\mathrm{Re}_{2}(\mathrm{CO})_{10}\), was weighed in accurately via the delivery tube. The weight was calculated according to the known weight of \(\mathrm{XeF}_{2}\) in the ampoule(s), to give a \(15 \%\) excess of \(\mathrm{XeF}_{2}\) over the required proportions, to allow for \(\mathrm{XeF}_{2}\) decomposition on standing or on transference. The reactor was replaced on the line, valve 5 re-opened, the stoppers removed from the reactor and the \(\mathrm{XeF}_{2}\) "bank", and the latter replaced at F. The stream of nitrogen was now stopped by closing valve 7. and the apparatus pumped to a high vacuum for an hour. In a similar fashion (though with valve 4 closed), the 20 cm . long solvent tube was removed at J, half-filled with Genetron 113 (20-30ml.) with 2 cm ., of \(\mathrm{P}_{2} \mathrm{O}_{5}\) at the bottom, and replaced. Valve 7 was closed, the solvent tube cooled to \(-196{ }^{\circ} \mathrm{C}\) and the whole apparatus pumped. The Genetron was "degassed" to remove dissolved air, by warming to room temperature with valves 1 and 4 closed, recooling to \(-196^{\circ} \mathrm{C}\) and pumping. This process was repeated twice, and then the reactor was cooled to \(-196^{\circ} \mathrm{C}\), and the Genetron warmed towards \(0^{\circ} \mathrm{C}\) to distill it carefully across with valve 1 closed. The sinter at \(X\) prevented solid \(\mathrm{P}_{2} \mathrm{O}_{5}\) entering the main system. The solvent tube section was sealed off at \(H\). The \(\mathrm{XeF}_{2}\) breakseal(s) were broken, and the \(\mathrm{XeF}_{2}\) distilled into the reactor (\(a t-196^{\circ} \mathrm{C}\)) under dynamic vacuum. The \(\mathrm{XeF}_{2}\) bank was then sealed below \(F\), and the fragment from the reactor
weighed.
Valve 1 was closed off and the reactor allowed to warm towards room temperature. The \(\mathrm{XeF}_{2}\) dissolved as soon as the Genetron melted \(\left(\sim-70^{\circ} \mathrm{C}\right)\), but the \(R e_{2}(\mathrm{CO})_{10}\) remained as a whitu colid at the bottom. Reactions began at or just below room temperature, with vigorous gas evolution and the formation of flocculent, yellow solid at the liquid surface. With larger proportions of \(\mathrm{XeF}_{2}\), judicious cooling with a liquid nitrogen bath was used to moderate the reaction, whose progress was monitored by the pressure increase on the gauge. The reactions were generally complete in 20 minutes, forming an insoluble yellow solid below a pale yellow solution. The volatiles were sampled via ports \(K\) and \(L\) for infrared and mass spectra (the cell and bulb were previously well pumped out), and the remainder carefully pumped away, cooling the auxilliary trap \(B\) to \(-196^{\circ} \mathrm{C}\) to trap the solvent and other condensibles. The reactor was pumped to dryness for an hour, closed off by valve 5, removed and weighed evacuated. A sample of the powdery, yellow solid was tipped into the capillary \(D\) and sealed for an X-ray powder photograph. The reactor was then transferred to the dry-box, to work up the solid products.

This basic procedure was used for all the reactions of this system. The 1:4 reaction was performed in two stages. Three molar equivalents of \(\mathrm{XeF}_{2}\) were added from one ampoule, and allowed to react to completion, before adding the calculated fourth equivalent from a second ampoule. Volatiles were sampled after the second stage. The \(\operatorname{Re}(C O)_{5} F \cdot R e F_{5} /\) \(\mathrm{SbF}_{5}(\mathrm{I})\) reaction was performed by first preparing \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{F}} \cdot \operatorname{ReF}_{5}\) from \(\operatorname{Re}_{2}(\mathrm{CO})_{10}\) using 3 molar equivalents of \(\mathrm{XeF}_{2}\) from one
ampoule, removing the Genetron to the waste trap, and adding the large excess of \(\mathrm{SbF}_{5}\) from the second ampoule. The final excess of \(\operatorname{SbF}_{5}\) and \(\operatorname{ReF}_{5} \cdot \mathrm{nSbF}_{5}\) was distilled into \(B\), which was subsequently built into a separate apparatus for analysing these volatiles.

4-4.2 The \(\mathrm{Re}_{2} \mathrm{CO}_{10}\) (XeF \(_{2} / \mathrm{HF}\) Reactions
The apparatus for this system, and reactions in HF generally, is shown in fig. 4.3 and plate 5.3, with detail differences for certain reactions as shown. The apparatus was initially pumped and seasoned with \(\mathrm{ClF}_{3}\) or \(\mathrm{F}_{2}\). Thereafter removal or addition of vessels was performed with dry argon blowing through that part of the system, and open connections capped while the manipulation was carried out. Known weights (0.2 to 0.5 g .) of \(\mathrm{Re}_{2}(\mathrm{CO})_{10}\) (the \(1: 1\) and 1:3 reactions) and \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}\) (freshly-prepared for the "1:5" reaction by a 1:3/Genetron reaction) were loaded into the \(3 / 4\) " Kel-F tube \(A\) in the dry-box. For the \(1: 1\) reactions the calculated weight of \(\mathrm{XeF}_{2}\) was distilled under dynamic vacuum from the weighed glass U-tube C into the \(3 / 4\) " Kel-F tube B, fitted with a 2-arm head, held at \(-196^{\circ} \mathrm{C}\). For this process, valves \(1,4,5\) and \(7-9\) were open, the remainder closed. C was removed for check weighing(s) until the required amount had been added. Then, with valves 8-10 closed, tube \(B\) was detached from the system above valve 8 , to allow it to be tipped freely as part of the \(Y\)-piece system. For the 1:3 and 1:5 reactions, the \(X_{2} F_{2}\) was distilled under static vacuum into a single-arm \(3 / 4\) tube \(B^{\prime \prime}\), attached only at \(P\). \(B^{\prime}\) was then removed and mounted on the \(Y\)-piece as shown.
Fig. 4.3 Apparatus for Reactions in HF

\section*{KEY}
\(\square \not \square\) stainless steel valves
\(\square \square\) Crosses, Tees and Elbows
In Ni (or Cu) tubing
— \(1 / 4 \mathrm{Kel}-\mathrm{F}\) or FEP \(3 / 4 \mathrm{Kel}-\) F or FEP tube + Kel-F valve
\(\xrightarrow{S}\) Copper-glass seal
G Monel Pressure Gauge (2 atm .)
\(\cup \quad\) Argon-arc welded Ni U-trap
F PTFE sintered frit
C Glass \(\mathrm{XeF}_{2}\) U-trap
\[
4-4.2
\]

\section*{Plate 4.3}

General View of the Apparatus for

1cm. depth of liquid HF was distilled from the storage vessel \(D\) into each tube at \(-196^{\circ} \mathrm{C}\). The tubes were warmed to room temperature with valves 6 and 7 closed, and the colourless \(\mathrm{XeF}_{2} / \mathrm{HF}\) solution in B tipped on to the \(\mathrm{Re}_{2}(\mathrm{CO})_{10} / \mathrm{HF}\) mixture in \(A\), using the flexibility of the \(1 / 4 " K e l-F\) tubing of the Y-piece. Reactions commenced immediately, as described in section 2-2. Once gas evolution had ceased, the volatiles were sampled for infrared and mass spectra, and pumped away (with valves 6 and 7 closed). Tube \(A\) was cooled to \(-196^{\circ} \mathrm{C}\) (with valves 6 and 7 re-opened) to ensure all the \(X e F_{2}\) had been transferred out of \(B\), and then warmed to room temperature, refluxed briefly, then allowed to stand for one hour, to ensure completion of reaction.

The 1:1 reaction mixture required filtering through the sinter \(F\) into tube \(B\), to remove unreacted \(\operatorname{Re}_{2}(C O)_{10}\), and the latter was pumped dry. Tube A was exchanged for a \(3 / 16\) " Kel-F N.M.R. tube (and valve), which was then seasoned, and half the solution in \(B\) was tipped into this, and concentrated, for N.M.R. and low-temperature Raman studies The remaining solution in tube \(B\) was cooled between -60 and \(-20^{\circ} \mathrm{C}\), as required, and evaporated slowly to dryness to attempt to crystallise the soluble product. The HF and condensible volatiles were distilled into the collection tube E. The 1:3 and 1:5 reactions gave only soluble products, and so half the solution in \(A\) was tipped into \(B\), and evaporated to dryness as above, and the other half tipped into a seasoned N.M.R. tube put on in place of tube B. The tubes of the final solids were removed, weighed and transferred to the dry-box.

4-4.3 The \(\mathrm{Re}_{2} \mathrm{CO}_{10}\) /ReF \(_{6} / \mathrm{HF}\) Reactions
A single reactor \(A^{\prime}\) was used for the 1:2 and
(initially) 1:3 reactions. The 1:4 reaction was performed with tube \(A\) already in position on the \(Y\)-piece, with evacuated tube \(B^{\prime}\) on the other limb.

HF was condensed on to a weighed amount of \(\mathrm{Re}_{2}(\mathrm{CO})_{10}\) at \(-196^{\circ} \mathrm{C}\) to give 2 cm . depth when. molten. Aliquots of \(R e F_{6}\), expanded from a 75 ml . nickel storage can \(R\) attached at \(Q\), were measured by the pressure developed in the 120.0 ml . basic vacuum manifold with valves \(1,3,4\) and \(10-13\) closed, and condensed into \(A\left(A^{\prime}\right)\) at \(-196^{\circ} \mathrm{C}\), up to the required amount. The reactor was warmed to room temperature, at which point reaction commenced.

The 1:2 reaction was complete in minutes, giving an orange-red solution, which soon precipitated orange, \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}\) crystals when cooled to \(0^{\circ} \mathrm{C}\). These were slowly evaporated to dryness, and the tube removed to the dry-box.

The 1:3 reaction required periodic warming, and standing overnight, to dissolve most of the solid and give a green solution. The formation of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}\) is a much faster process than its subsequent conversion to \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\) \(\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\). The green solution was filtered from traces of residue into a second tube \(B^{\prime}\), using the \(Y\)-piece. Orange and green crystals began to be precipitated on cooling the filtrate to \(0^{\circ} \mathrm{C}\). The original tube was pumped \(d r y\), and replaced on the \(Y\)-piece by a third \(3 / 4\) tube, into which (after pumping and seasoning) the green solution was decanted from tube \(B^{\prime \prime}\). This final solution was evaporated to dryness, yielding a further crop of predominantly green crystals, with
some orange, and a brown gum. Both tubes were pumped, and removed to the dry-box.

The 1:4 reaction took 4-5 days to complete, giving a green solution and copious, golden-yellow crystals. The solution was filtered into a \(1 / 4\) " Kel-F tube, concentrated for Raman studies, and finally pumped dry (see section 2-3.3). The yellow crystals were pumped dry and the tube removed to the dry box.

4-4.4 Other HF System Reactions
\(\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)Recrystallisation from HF \(\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)was dissolved in 1 cm . of HF in a seasoned \(3 / 4\) " tube, attached to the Y-piece. The green solution was filtered from undissolved residues into a second \(3 / 4\) " tube, and green crystals of the \(\alpha\)-phase were precipitated on concentrating the filtrate. The original tube was replaced by a \(3 / 16^{\prime \prime}\) Kel-F N.M.R. tube, and a sample of the green solution tipped in for Raman, N.M.R. and E.S.R. studies. The remaining solution was evaporated to dryness, and the tube rempved to the dry-box. \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-} / \mathrm{XSXeF}_{2} / \mathrm{HF}\) and \(\operatorname{Re}(\mathrm{CO})_{5}{\underline{\mathrm{~F}} . \mathrm{ReF}_{5} / \mathrm{TaF}_{5} / \mathrm{HF}}^{(\mathrm{Re}}\) The \(\beta-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}(0.079 \mathrm{~g} \cdot) / \mathrm{XeF}_{2}(0.145 \mathrm{~g} \cdot) / \mathrm{HF}\) and \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}(0.315 \mathrm{~g} \cdot) / \mathrm{TaF}_{5}(0.123 \mathrm{~g} \cdot) / \mathrm{HF}\) reactions were each performed in a single tube into which weighed amounts of both solid reactants had been loaded in the dry-box (the \(\mathrm{XeF}_{2}\) and \(\mathrm{TaF}_{5}\) from glass ampoules, the rhenium complexes from their reactors). After sampling the volatiles of both reactions, the tubes were transferred to the Y-piece. The former reaction gave a pale blue, and finally colourless
solution over two days. The HF was distilled at between -40 and \(0^{\circ} \mathrm{C}\) into the second tube at \(-196^{\circ} \mathrm{C}\), to test the condensible volatiles for \(\operatorname{ReF}_{6}\). The colourless crystals left behind in the reactor were pumped dry (0.047g.) and the tube removed to the dry-box. If the solid were a single \(\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{ReX}_{n}\right)^{-}\)species, the weight loss corresponds to a loss of at least \(\operatorname{ReF}_{6}\) from each \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\) molecule to give a species of molecular weight 568 \(\left(\sim \operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \operatorname{ReF}_{1.5}{ }^{-}\right)\). The product is more likely therefore to contain a mixture of \(\left(\mathrm{HF}_{2}\right)^{-}\)and \(\left(R e O_{x} F_{y}\right)^{-}\)anions.

Found: C=14.02\%, Calc: \(\operatorname{Re}(\mathrm{CO})_{6}{ }^{+} \mathrm{ReF}_{\mathrm{x}}{ }^{-}(\mathrm{M} . \mathrm{W} .=56 E) \mathrm{C}=12.6 \%\). In the \(\mathrm{TaF}_{5}\) reaction, the brown solution was
filtered from dark, undissolved residues (weight=0.078g.) and then evaporated to dryness to give a brown solid (0.351g.), and both tubes removed to the dry-box. The mass balance indicated a total weight loss of 9mg., probably from ReF 5 decomposition.
\(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl} / \mathrm{HF}\)
1 cm . depth of HF was condensed on to 0.066 g .
\(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}\) in a \(3 / 4\) " Kel-F tube, but no solution was observed. Periodicàlly the mixture was refluxed and shaken, and the volatiles above the HF expanded into a tube of sodium fluoride, to absorb HF and leave HCl . Pressure changes and mass spectra, however, gave little evidence for HCl . After three days the HF was removed. The infrared spectrum and powder pattern of the solid showed it to be largely unchanged: The above procedure follows that of 0'Donnell, 39 except that no "tea bag" was used.
\(\mathrm{Mn}_{2} \mathrm{CO}_{10} / \mathrm{HF}\)
HF was condensed on to \(\sim 0.1 \mathrm{~g} \cdot \mathrm{Mn}_{2}(\mathrm{CO})_{10}\) in a \(3 / 16\) "

Kel-F N.M.R. Zube to give a depth of \(\sim 45 \mathrm{~mm}\). when molten. Some of the carbonyl dissolved to give a golden yellow solution. This was cooled to \(-190^{\circ} \mathrm{C}\), and the tube sealed near the valve using an electrical, annular heater. \({ }^{1} H\) and 19 F N.M.R. spectra were then run on the saturated solution.

4-4.5 \(\mathrm{cpFe}(\mathrm{CO})_{2}\) F Preparation
\(1.071 \mathrm{~g} \cdot\left(\mathrm{cpFe}(\mathrm{CO})_{2}\right)_{2}\) were dissolved in 50 ml .
acetone, freshly redistilled over molecular sieves 4A, in a 250 ml ., 3-necked, round-bottomed flask fitted with a reflux condenser and nitrogen bleed. The deep red solution was purged with nitrogen for 30 minutes. A similarly-flushed suspension of 0.784 g . fresh AgF in 30 ml . acetone was added via a separating funnel. The mixture was refluxed under nitrogen, with vigorous stirring for an hour, silver precipitating as a grey suspension in the deep red solution.

The acetone was removed on a rotary evaporator, and the brown solid extracted with 50ml. of dry benzene, forming a red solution. This was decanted, and various solvents were added to portions, to attempt to precipitate the product. A very small amount of red, needle crystals of \(\mathrm{cpFe}(\mathrm{CO})_{2} F\) was precipitated overnight from 1:>1 benzene:(60-80 \({ }^{\circ}\)) petroleum ether, with a little \(\mathrm{CFCl}_{3}\), and filtered off. They were air-stable, and gave an infrared spectrum and X-ray powder pattern different from the starting materials. Attempts to extract further quantities from the solution or the original residue only gave brown solids after this, owing to the decomposition of \(\mathrm{cpFe}(\mathrm{CO})_{2} \mathrm{~F}\) in solution.

\section*{CHAPTER 5}
- CRYSTAL STRUCTURE DETERMINATION

BY X-RAY DIFFRACTION

The theory and standard methods of crystallography have been well documented by several comprehensive accounts. \({ }^{176-178}\) This chapter summarises some of the major principles, especially with regard to features referred to in the structure determinations in chapters 6 to 8.

5-1. X-ray Diffraction
X-rays are scattered by the lattice arrays of atoms in crystals, to give a pattern of emergent rays characteristic of the unit cell of the crystal. Each emergent ray comes from a stack'of parallel planes in the lattice which satisfy the Bragg condition. This is that the stack has an angle, \(\theta_{h k l}\), to the incident ray, and a spacing, \(d_{h k l}\), between its individual planes, such that the path difference of the reflected rays from individual planes is an integral number \((n)\) of wavelengths \((\lambda)\), so that all the planes of the stack reflect the incident ray in phase, producing a single, combined, reflected ray. This is expressed by the Bragg equation:
\[
\begin{equation*}
n=2 d_{h k l} \cdot \sin \theta_{h k l} \tag{5.1}
\end{equation*}
\]
where (hkl) is the index defining the stack of planes (or the combined reflection from those planes), and expresses the fraction of the unit cell edge of the crystal at which this stack intersects the cell axes \(a, b\) and \(c\) respectively. Each reflection (hkl) has a specific geometry, and intensity. Crystal structure determination is concerned with the analysis of all the reflections from the stacks (hkl) in the crystal, in terms of their geometry and intensity.

\section*{5-2. Geometric Aspects}

The geometry of a reflection depands only on the
unit cell geometry of the crystal. The geometries of the reflections are monitored as the array of points on Weissenberg and Precession photographs of the crystal. This array represents the "reciprocal lattice" of the crystal, where each point represents a stack of planes (hkl) of the real lattice, and is located on a normal to that stack, at a distance of \(1 / d_{h k l}\) from the unit cell origin of the real lattice. The spacings of the reciprocal lattice are related to the reciprocals of the unit cell spacings \(a, b\) and \(c\) and to the cell angles \(\alpha, \beta\) and \(\gamma\), and enable these to be determined. "Systematic absences in the array of spots on the photographs are factors of the space group and crystal habit, which can thus be determined. 179

5-3. Reflection Intensities - the Structure Factor and
the Phase Problem
The quantity of each combined reflection depends on the nature of the atoms doing the scattering, and their location in the unit cell. It is represented by the Structure Factor, \(F_{h k l}\), of the reflection, which is a vector, with an amplitude - the Structure Amplitude \(\left|F_{h k l}\right|\) - and a phase, \(\phi_{h k I} \cdot\) It is the vector combination of the amplitudes, \(f_{1,2 \ldots} \ldots\), and phases, \(\oint_{1,2 \ldots} \ldots\). of the individual waves scattered by the atoms \(1,2 \ldots . . n\) in the stack of planes, and is given by the Fourier series:
\[
\begin{equation*}
F_{h k l}=\sum_{j=1}^{n} f_{j} \cdot \exp \left(i \phi_{j}\right)=\left|F_{h k I}\right| \cdot \exp \left(i \phi_{h k l}\right) \tag{5.2}
\end{equation*}
\]

Each component amplitude, \(f_{j}\), is the atomic scattering factor of the \(j^{\text {th }}\) atom, dependent only on the nature of the atom and on \(\theta_{h k l}\), and calculable from published
tables. 180 Each individual phase angle, \(\phi_{j}\), depends on the individual atom position \(\left(x_{j}, y_{j}, z_{j}\right)\), and the particular stack (hkl) reflecting the wave. It is given by:
\[
\begin{equation*}
\varnothing_{j}=2 \pi\left(h x_{j}+k y_{j}+l z_{j}\right) \tag{5.3}
\end{equation*}
\]

As it is the electrons of the atoms which do the scattering, the sum of the scattering factors, i.e. the structure amplitude term \(\left|F_{h k l}\right|\), can be re-expressed as an integral over the whole unit cell, of the electron density at any point, \(P(x, y, z)\). This version of equation 5.2 may be re-expressed, by a Fourier transformation, as a Fourier series for the electron density at a given point, in terms of the structure factor of every possible reflection from the crystal:
\[
\rho(x, y, z)=\frac{1}{U} \sum_{h k I} F_{h k l} \cdot \exp [-2 \pi i(h x+k y+l z)]
\]

The structure factors, \(F_{h k l}\), are not experimentally observable, however. Although the structure amplitudes, \(\left|F_{h k l}\right|\), are determinable, because their squares are directly proportional to the intensities of the observed reflections, see equation 5.5 , the phase angle, \(\phi_{h k l}\), of each reflection is dependent on the knowledge of the atom positions, and so is not experimentally observable. This constitutes the phase problem in crystallography. The phase angles must be deduced on the basis of some trial structure, and the principle of a successful crystal structure determination is to deduce and refine this trial structure until its set of theoretical structure amplitudes, \(\left|F_{\text {calc }}\right|\), matches those, \(\left|F_{\text {obs }}\right|\). derived from the observed reflection intensities, to the best possible closeness.

\section*{5-4. Data Reduction}

The manipulation of the raw reflection intensity data collected by the diffractometer, and its conversion into the corrected structure amplitudes, \(\left|F_{\text {obs }}\right|\), is known as data reduction. It was carried out in this study by the programmes STOWK, ABSCR and PRFTP.

For the best solution of equation (5.4), the intensities of as many reflections as can be accurately measured must be obtained, and corrected for secondary effects, according to:
\[
\begin{equation*}
\left|F_{h k l}\right|=\sqrt{\frac{K \cdot I_{h k l}}{L p}} \tag{5.5}
\end{equation*}
\]
where \(p\) is a correction for the polarisation of \(x\)-ràys on reflection, known as the polarisation factor, and is a simple function of \(2 \theta\);
\(L\) is a correction for the decrease in diffracting power of the atoms with increasing \(\theta\), known as the Lorenz factor. This depends on \(2 \theta\) and the precise measurement techniques used;
\(K\) is an overall scale factor, dependent on the crystal size, \(X^{-r}\) rảy beam intensity and some fundamental constants. This brings \(\left|F_{\text {obs }}\right|\) to the absolute scale, with the dimensions of electrons. This scale factor is set to an arbritary value, and refined by the structure factor least-squares programme, SFLS.

In addition, the intensities usually need correction for the effects due to the absorbtion of \(X\)-rays by the crystal.

5-5. Deducing a Trial Structure by the Heavy Atom Method
The method used in this study for deducing a suitable
trial structure was the "heavy atom" method. It is assumed that, to a first approximation, all the scattering from any given stack of planes is due to a small number of atoms (in this case, of rhenium) significantly heavier than the others. Thus the phase angle, \(\phi_{h k l}\), of the reflection from that stack is approximately that due to the heavy atoms alone, and can be determined if the positions of the heavy atoms \(\left(X_{j}, Y_{j}, Z_{j}\right)\) can be located (see section 5-9.) by substituting these in the equation:
\[
\begin{equation*}
\phi_{h k l}=\sum_{j} \exp 2 \pi i\left(h x_{j}+k Y_{j}+l Z_{j}\right) \tag{5.6}
\end{equation*}
\]

The structure amplitudes of the trial structure, \(\left|F_{\text {calc }}\right|\), are calculated by substituting the heavy atom positions into a combination of equations 5.3 and 5.2. Allowance must be made in this theoretical structure, for the real thermal vibration of the atoms reducing the scattering power by spreading out the electron density cloud. This appears as a reduction of each coefficient \(f_{j}\) from its stationary atom value \(f_{O(j)}\), by a factor of \(\exp -B\left(\sin ^{2} \theta\right) / \lambda^{2}\) :
\[
\begin{equation*}
f_{j}=f_{O(j)} \cdot \exp \left[-B_{j}\left(\sin ^{2} \theta\right) / \lambda^{2}\right] \tag{5.7}
\end{equation*}
\]
\(B_{j}\) is the, temperature factor of the atom, related to the mean square amplitude of atomic vibration. The value of \(B_{j}\) for each \(f_{j}\) is estimated initially, and then refined in the least squares refinement (see section 5-8.). Towards the end of the refinement, anisotropy of the electron cloud can be allowed for by an expression:
\[
\begin{gather*}
f_{j}=f_{O(j)} \cdot \exp \left[-1 / 4\left(h^{2} a * B_{11}+k^{2} b * B_{22}+l^{2} c * B_{33}+2 h k a * b * B_{12}+\right.\right. \\
\left.\left.2 h l a * c * B_{13}+2 k l b^{*} c * B_{23}\right)\right] \tag{5.8}
\end{gather*}
\]
where \(B_{i j}\) are anisotropic temperature factors, and \(a^{*}, b^{*}, c^{*}\) are the reciprocal lattice parameters.

The accuracy of the heavy atom positions is briefly checked by least squares methods, and the light atoms are then located by a difference Fourier synthesis. The difference between the real and trial structure amplitudes, written (\(\left.\left|F_{\text {obs }}\right|-\left|F_{\text {calc }}\right|\right)\), are substituted in equation 5.4 , with the calculated phase angles, \(\phi_{\text {calc }}\) to give a Fourier series for the residual electron density in the cell after the effect of the heavy atoms has been removed: \(\quad \Delta \rho(x, y, z)=\)
\[
\frac{1}{U} \sum_{h k l}\left(\left|F_{o b s}\right|-\left|F_{c a l c}\right|\right) \cdot \exp \left(i \phi_{c a l c}\right) \cdot \exp [-2 \pi i(h x+k y+l z)] \quad \text { (5.8). }
\]

This electron density is plotted in the form of a 3-dimensional map of numbers (the Fourier map) which is contoured to reveal the position of the light atoms. More accurate phase angles and \(\left|F_{\text {calc }}\right| ' s\) are derived using these extra atoms, and substituted into a new difference Fourier, which will remove all the located atoms as the "minus \(\left|F_{\text {calc }}\right|\) " portion of the synthesis, and reveal the electron density due to any remaining atoms. Successive difference Fouriers are used until all the non-hydrogen atoms have been located, and could be used thereafter to refine the structure using better and better phase angles and atom positions. Because of series termination and other errors resulting from the requirements of an infinite Fourier series, and the difficulty of refining temperature factors by Fourier methods, structure refinement is normally carried out by least squares methods.

\subsection*{5.7 Least Squares Refinement}

The technique involves minimising a weighted function of \(\left(\left|F_{\text {obs }}\right|-\left|F_{\text {calc }}\right|\right)\), with respect to the parameters of which
these amplitudes are functions, to achieve "best" atomic parameters, assuming a normal distribution of errors. This is achieved by taking the derivative of the function \(\sum_{h k l} w_{h k l}\left(\left|F_{\text {obs }}\right|-k^{\prime}\left|F_{c a l c}\right|\right)^{2}\), written \(w \Delta^{2}\), with respect to each of the positional, thermal or scale parameters, \(p_{1}, p_{2} \ldots p_{n}\), of which \(\left|F_{\text {calc }}\right|\) is a function, and setting the derivative equal to zero. \(w_{h k l}\) is the weight for each term in the series, a measure of the reliability of each observed reflection, and \(k^{\prime}\) is the overall scale factor to scale the \(\left|F_{\text {obs }}\right|\) values to the same units as \(\left|F_{\text {calc }}\right|\). (related to \(K\) of equation 5.5). In the programme SFLS, the best values of \(p_{j}\). in the resulting \(n\) equations in \(n\) unknowns, are found by the block-diagonal matrix approximation, refining positional parameters by a \(3 \times 3\) matrix, thermal by a \(1 \times 1\) (isotropic) or \(6 \times 6\) (anisotropic), and \(k^{\prime}\) and its interaction with the overall isotropic temperature factor by a \(2 \times 2\). Weighting schemes suggested by Cruickshank et alia \({ }^{181}\) were employed.

In the later stages of refinement, the least squares output is checked for trends inw \(\Delta^{2}\) for groups of reflections - arranged by their value of \(\left|F_{h k l}\right|\), by \((\sin \theta) / \lambda\), and by lattice layer - to look for any significant discrepancies. Finally the individual reflections are checked for anomalous values of \(w \Delta^{2}\), and these edited out.

The discrepancy between the (correctly scaled)
observed and calculated data at the end of each refinement cycle is expressed by the residual factor \(R\), summed over all reflections:
\[
\begin{equation*}
R=\sum_{h k l} \frac{\left\|F_{o b s}\left|-k^{\prime}\right| F_{c a l c}\right\|}{\sum_{h k 1}\left|F_{o b s}\right|} \tag{5.9}
\end{equation*}
\]

The value of \(R\) reflects the accuracy of the proposed structure
model with respect to the observed data. A value of 0.035 or below, when the last atom has been introduced, generally indicates a reasonably accurate structure which will refine to a good solution with \(R\) below 0.010. \(R\) is also affected by i). the precision with which the \(\left|F_{\text {obs }}\right|^{\prime} s\) were measured, and how well they were corrected for experimental effects, ii). how well the theory on which the \(\left|F_{\text {calc }}\right|^{\prime}\) 's were calculated represents the true state of affairs in the crystal (e.g. correct temperature factor estimation), iii). the dominance of the data by the heavy atoms (so that \(R\) scarcely monitors light atom inaccuracies, a problem in this present study), and iv). the proportion of weak reflections in the data.

Other accuracy guides are the achievement of low temperature factors and of chemically reasonable bond distances and angles, with low standard deviations.

5-8. Heavy Atom Location by the Patterson Method
The heavy atoms were located in this work by the Patterson method. This involves summing a Fourier series for a function \(P_{u v w}\), which represents the vectors at points in the unit cell \((u, v, w)\), between the atoms in the cell.
\[
P_{u v w}=\frac{1}{u^{2}} \sum_{h, k, 1}^{\infty}=-\infty \quad\left|F_{h k I}\right|^{2} \cdot \cos 2 \pi(h u+k v+l w)
\]

The coefficients are \(\left|F_{h k l}\right|^{2}\), directly obtainable from the intensity data (equation 5.5). A vector at (u,v,w) indicates that there exist in the crystal atoms at \(\left(x_{1}, y_{1}, z_{1}\right)\) and \(\left(x_{2}, y_{2}, z_{2}\right)\) such that \(u=x_{1}-x_{2}, v=y_{1}-y_{2}\), and \(w=z_{1}-z_{2}\). Printing out a map of Patterson vector density in the same way as the Fourier electron density (using a variant of the Fourier programme) enables the vector peaks to be picked out.

Assuming the heavy atoms dominate these vectors, the positions of the atoms can be deduced by analysing all the vectors.

\section*{5-9. Computer Programmes}

The computer programmes used in this study were written by Dr.D.R.Russell of the University of Leicester, except for ORTEP. 181 The STOE CONTROL TAPE GENERATOR programme and the \((\sin \theta) / \lambda\) listing (for comparison with powder diffraction data) were used on an Elliott 803 computer, the remaining programmes on an Elliott 4130. STOE CONTROL" TAPE GENERATOR calculates \(\mu\) and \(\omega\) for each reflection, layer by layer, on the basis of a set \((\sin \theta) / \lambda\) range and the unit cell parameters. It also sets the scan range and rate. See section 6-1.3.

STOWK calculates the structure amplitudes according to \(\left|F_{h k l}\right|^{2}=I_{h k l} / K_{h k I}\), where \(K\) embodies \(L\) and \(p\) corrections and instrumental constants.

ABSCR corrects all \(\left|F_{\text {obs }}\right|^{\prime} s\) for absorbtion by \(I=I_{0} \cdot e^{-\mu s}\). PRFTP writes the absorbtion-corrected \(\left|F_{o b s}\right|\) 's on to magnetic tape in order of hkl, in a form to act as the input to FOUR and SFLS. It calculates all \(f_{j}{ }^{\prime}\) s for each reflection, and has facilities for setting layer scale factors, weights and temperature factors, and calculation of the \(\left|F_{h k I}\right|^{2}\) coefficients for a sharpened Patterson synthesis.

FOUR calculates the Patterson, Fourier and Difference Fourier syntheses.

SFLS performs the least-squares refinement of positional and thermal parameters, and scale factors. It calculates \(R\), weights the \(\left|F_{\text {obs }}\right|^{\prime} s\), analyses \(w \Delta^{2}\) by \(|F|,(\sin \theta) / \lambda\) and layer, and calculates bond distances and angles, and
standard deviations.
EDIT removes unwanted reflections from the SFLS input.
ORTEP draws perspective views of the molecules on the basis of the atomic thermal ellipsoids.
\((\sin \theta) / \lambda\) calculates \((\sin \theta) / \lambda\) for each reflection and sorts them in order of hkl.

6-1.1 Mounting the Orange and Green Crystals
Mixtures of orange and green crystals from an \(\mathrm{Re}_{2}(\mathrm{CO})_{10} /\) \(3 R e F_{6} / H F\) reaction were transferred in a recirculating dry-box to a Pyrex, multiple-capillary apparatus (fig.6.1), which had been previously evacuated, and seasoned with \(\mathrm{ClF}_{3}\) to remove moisture.

Fig.6.1 Capillary Apparatus for Single Crystal X-ray Studies

The apparatus was re-evacuated and individual crystals were introduced into the capillaries by very careful tapping with a glass tube. By this means, separation of the orange and green crystals was achieved. Capillaries containing either green or orange crystals were sealed in 2-3" lengths, and examined under a microscope. Suitable; single crystals of each sort which were wedged in the capillaries were sealed in shorter lengths of capillary. These were mounted on goniometer heads for crystallographic examination.

6-1.2 The Geometric Data
The orange crystal used was in the form of an irregular
platelet (see section 6-1.4), and was aligned by cone axis and precession photographs. Zero layer precession photographs were taken about two orthogonal, reciprocal axes, using \(Z r\)-filtered, \(M o-K_{\alpha}\) radiation \((\lambda=0.7107 \AA\)). The true spacing of the first layer was determined by a cone axis photograph, and a first layer precession photograph was taken about one of the axes. Initially, axis symbols were assigned arbitrarily.

The symmetry of the photographs suggested that the crystal adopted the orthorhombic habit. There were no general systemmatic absences of reflections (hkl). This indicated a primitive space group. The specific absences were:
\[
\begin{aligned}
& \text { hoo } h=2 n+1 \text { only; OKO } k=2 n+1 \text { only; } 101 \text { missing. } \\
& \text { OOl } l=2 n+1 \text { only; OKl } l=2 n+1 \text { only; } 1 \text { kO } k=2 n+1 \text { only. } \\
& \text { hOl } h=2 n+1 \text { only. }
\end{aligned}
\]

These three sets of absences implied, respectively, an a-glide
 perpendicular to \(c\), suggesting a space group of Pcab. Comparison with the listed space groups \({ }^{179}\) showed that only the space group Pbca had these absences. The a- and b-axes were thus interchanged, and the crystal assigned to the orthorhombic space group Pbca.

Accurate unit cell dimensions were obtained by measuring the zero layer precession photographs. The values, \(a=22.34(3)\). \(b=15.51(1), c=13.67(1) \AA, \alpha=\beta=\gamma=90^{\circ}\), gave a unit cell volume of \(4737 \AA^{3}\). For numerous fluoride crystal structures, it appears that the lattice may be considered as a close-packed array of fluorine atoms of 17 or \(18 \dot{A}^{3}\) volume, the other elements occupying the interstices between the close-packed spheres. This principle has been used to elucidate formula units, \({ }^{183}\) and to obtain other information. \({ }^{184}\) In the present study, a

Table 6.1. Observed and Calculated Unit Cell Volumes of
Relevant Carbonyl Compounds
\begin{tabular}{|c|c|c|c|c|}
\hline Molecule & Crystal Habit & \(z\) & \multicolumn{2}{|c|}{\begin{tabular}{c}
Unit Cell Volume \\
Obs.
\end{tabular}} \\
\hline\(\left(\operatorname{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}\) & Tetragonal & 2 & 1146 & 1232 \\
\(\left(\operatorname{Re}(\mathrm{CO})_{5}\right)_{2}\) & Monoclinic & 4 & 1480 & 1600 \\
\(\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{H}_{2}\right.\) & Monoclinic & 4 & 1263 & 1280 \\
Orange crystal & Orthorhombic & \(8 ?\) & 4737 & 4824 \\
\hline
\end{tabular}

Table 6.2 Formula Unit Volumes of Rhenium Carbonyl Fluorides
\begin{tabular}{|c|c|c|}
\hline Empirical Formula & Vol.of 8 units & Probable Structure \\
\hline \[
\begin{aligned}
& \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \\
& \operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{2}
\end{aligned}
\] & \[
\begin{aligned}
& 1736 \\
& 1552
\end{aligned}
\] & \[
\begin{aligned}
& 8 \times \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \\
& 8 \times \operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}_{2}
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\operatorname{Re}(\mathrm{CO})_{4} F \\
\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{2} \\
\operatorname{Re}(\mathrm{CO})_{2.5} \mathrm{~F}_{3} \\
\operatorname{Re}(\mathrm{CO})_{2.5} \mathrm{~F}_{2.5} \\
\operatorname{Re}(\mathrm{CO})_{2} \mathrm{~F}_{3}
\end{gathered}
\] & \begin{tabular}{l}
1416 \\
1232 \\
1208 \\
1140 \\
1048
\end{tabular} & \[
\begin{aligned}
& 2 \times\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{~F}\right)_{4} \\
& 2 \times\left(\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4} \\
& 4 \times \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{Re} \mathrm{~F}_{5} \\
& 4 \times \operatorname{Re}(\mathrm{CO})_{5} \cdot \operatorname{ReF}_{5} \\
& 2 \times\left(\operatorname{Re}(\mathrm{CO})_{2} \mathrm{~F}_{3}\right)_{4}
\end{aligned}
\] \\
\hline \(\mathrm{Re}(\mathrm{CO})_{2} \mathrm{~F}_{4}\) & 1184 & \(8 \times \operatorname{Re}(\mathrm{CO})_{2} \mathrm{~F}_{4}\) \\
\hline Orange crystal & \(4 \times 1184\) & \(16 \times \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}\) \\
\hline
\end{tabular}
correlation was sought between observed and calculated unit cell volumes, assuming close-packed arrays of carbon, oxygen and fluorine atoms. Atomic volumes of 21(C), 19(0), and \(17 \AA^{3}(F)\) were calculated on the basis of the covalent radii, \({ }^{185}\) and gave satisfactory agreement for the related structures \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}, \operatorname{Re}_{2}(\mathrm{CO})_{10} 0^{118 \mathrm{a}}\) and \(\left(\mathrm{Re}(\mathrm{CO})_{4} \mathrm{H}_{2},^{186}\right.\) (table 6.1). As there are eight general symmetry positions in the Pbca unit cell of the orange crystal, the volumes required by eight formula units of various plausible carbonyl fluoride species were calculated, and these compared with the observed unit cell volume (table 6.2). It was apparent that the asymmetric unit contained four rhenium atoms, possibly indicating a tetrameric compound like \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}\). The absence of CO evolution in the reactions suggested that, of the possible structures, those maintaining the \(\operatorname{Re}(\mathrm{CO})_{5}\) unit were the most likely, especially favouring \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}}^{5} \mathrm{Re}_{5}\).

\section*{6-1.3 Intensity Data Collection}

The goniometer head was mounted on a Stöe-Guttinger Weissenberg diffractometer, for collection of the intensity data about, the c-axis. The diffractometer records reflected intensities under equi-inclination Weissenberg conditions, with a scintillation counter replacing the photographic film. These conditions are fulfilled when the angle (\(\mu^{\prime}\)) between the crystal rotation axis and the incident beam is equal in magnitude to the angle \(\left(\nu^{\prime}\right)\) between the counter and the rotation axis (figure 6.2). This is achieved in practice by setting the angles \(\mu\left(=90-\mu^{\prime}\right)\) and \(\nu\left(=90-\nu^{\prime}\right)\) for each reciprocal layer in turn.

The diffraction maxima for each individual reflection are located by rotating the crystal (\(\omega\) arc) at specified
settings of the counter (\(2 \theta\) arc). In fact, the angle measured by the counter arc is strictly \(\uparrow\), the vertical component of \(2 \theta\) for non-zero layers. The settings of \(\Upsilon\) and \(\omega\) for each reflection were generated in the form of a control paper tape for each layer, using the STOE CONTROL TAPE GENERATOR programme. For this purpose, \(a-\) and b-axis cell parameters were determined on the diffractometer, by adding the \(\theta\) values for the maximum pen-recorder deflection, for a series of hOO and OkO reflections. The rotation axis (c-) parameter used was that obtained from the precession photographs, and this figure was also employed to calculate the values of \(\mu\) for each layer. With these values, the alignment of the crystal could be optimised using the pen recorder trace, for a series of reflections 001.

The intensity data were collected by scanning through a range in \(\omega\), whilst the reflection was measured, and taking a stationary background count of 10 seconds before and after each reflection. For reciprocal layers hkO to hk5, \(\omega\) was. scanned at 1.00 deg.min \({ }^{-1}\) over a range of \(1.2^{\circ}\), up to a maximum \(\omega\) value of \(30^{\circ}\) and \(\Upsilon\) of \(60^{\circ}\). Because of peak broadening in higher layers, a \(1.25^{\circ}\) range was used for layers hk6 to hk12, up to a maximum \(\omega\) of \(25^{\circ}\). The intensities of the background and the reflections were recorded by a paper tape output, and were also monitored on a pen recorder chart. The net intensity, \(I_{h k l}\), for each reflection was given by:
\[
\begin{equation*}
I_{h k l}=c_{r}-1 / 2\left[C_{1} \cdot \frac{t_{r}}{t_{1}}+\dot{c}_{2} \cdot \frac{t_{r}}{t_{2}}\right] \tag{6.1}
\end{equation*}
\]
where \(C_{r}\) is the number of counts for the reflection, recorded in time \(t_{r}\), and \(C_{1}\) and \(C_{2}\) are the number of counts for the background, recorded in times \(t_{1}\) and \(t_{2}\) respectively. A check reflection for each layer was measured every 30 reflections, to indicate any changes in the crystal alignment. The intensity

Fig.6.2 Schematic Representation of the Stoe Diffractometer

> Geometry (after ref.13, p.37).

* actually measures \(\Upsilon\), the vertical component of \(\theta\) for an upper layer (\(\nu\) being the horizontal component).
\(\mu\) sets the incident beam for the layer in question.
\(\nu\) for each reflection is set by the instrument angles \(\omega\) and 2日. \(\omega\) rotates the crystal (about the rotation axis), and \(2 \theta\) rotates the counter up and down to receive each reflection.
\[
\omega=\text { Weissenberg drum setting }+\sim 135^{\circ}+\theta
\]
\[
\theta=B r a g g \text { angle for the reflection }=\sin ^{-1} \frac{m \lambda}{2 d}
\]
where \(m\) is \(h, k\) or \(l\) for the reflection along the appropriate axis, and \(d\) is the cell dimension of that axis.
data were processed as described in section 5-4.

6-1.4 The Crystal Data
\(\mathrm{C}_{5} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{Re}_{2}, \mathrm{M}=626.4\), orange orthorhombic crystals, \(\mathrm{a}=22.34(3)\), \(b=15.51(003), c=13.67(1) \AA, U=4737 \AA^{3}, Z=16, D_{c a l c}=3.51 \mathrm{~g} \cdot \mathrm{~cm}^{-3}\), space group Pbca. 2047 reflections (before editing) to \((\sin \theta) / \lambda=0.70\), collected at \(22-25^{\circ} \mathrm{C}\) with graphite-monochromated Mo- \(K_{\alpha}\) radiation \((\lambda=0.7107 \AA)\), and corrected for absorbtion. Density measurements were impracticable owing to the extreme air-sensitivity of the compound.

\section*{6-1.5 The Absorbtion Correction}

The correction for the absorbtion of X-rays by the crystal was made on the observed structure amplitudes on the basis of the relationship \(I_{h k l}=I_{o} \cdot \exp (-\mu s)\), employing the programme ABSCR. Here, \(I_{0}\) is the intensity of the incident beam, \(I_{h k I}\) are the corrected intensities of the reflections (hkl), \(\mu\) is the linear absorbtion coefficient of the crystal (see below), and \(s\) is the path length of the reflection in question.

The crystal could be approximated to an irregular brick with 5 edges parallel with, and the top and bottom faces perpendicular to, the a*-axis, as shown.

longest diagonal 0.0812 cms
longest face 0.0597 cms
thickness 0.0145 cms

To calculate the parameter s, ABSCR requires the determination of the coefficients \(A, B, C\) and \(D\) of an equation for each face:
\[
\begin{equation*}
D=A x+B y+C z \tag{6.2}
\end{equation*}
\]
where \(D\) is the perpendicular distance from some fixed reference point inside the crystal (in this case the centroid), and (xyz) is a cartesian system whose origin is the reference point, and whose axes are parallel to the reciprocal axes of the crystal. The crystal size was measured using a monocular microscope fitted with a cursor eyepiece, with the goniometer head remounted on a crystal orienter (Charles Supper Co.). A plan view of the crystal was plotted on graph paper, and the drawing measured to obtain the appropriate equations for each face.

The linear absorbtion coefficient, \(\mu\), which depends solely on the composition of the compound and not on atomic arrangement, was calculated assuming a molecular formula of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \operatorname{ReF}_{5} \cdot\)
\[
\begin{equation*}
\mu=\frac{n}{v} \cdot \sum_{i}\left(\mu_{a}\right)_{i} \tag{6.3}
\end{equation*}
\]
where n is the number of molecules in the unit cell, V is the volume of the unit cell, and \(\sum_{i}\left(\mu_{a}\right)_{i}\) is a summation of the absorbtion coefficients \(\left(\mu_{a}^{1}\right)^{180}\) for all the atoms of one molecule. This gave a figure of \(\mu\) of \(216.8 \mathrm{~cm}^{-1}\).

The figures for \(A, B, C, D\) and \(\mu\) were substituted into the ABSCR programme, and the structure amplitude for each reflection was thereby corrected for the effects of the absorbtion of X-rays by the crystal.

6-2. THE STRUCTURE SOLUTION

6-2.1 Location of the Rhenium Atoms by Patterson Syntheses The absorbtion-corrected structure amplitude data were
written by the programme PRFTP on to magnetic tape to become the input for the Fourier and least squares programmes. Layer scale factors and weights were set at unity, and an arbitrary temperature factor of \(1.50 \AA^{2}\) was assigned to all atoms for possible Patterson sharpening.

A three-dimensional Patterson synthesis was performed, using the programme \(F O U R\), for the asymmetric unit of the unit cell, the boundaries of this volume being \(x=0-120, y=0-120\), \(z=0-120,240\) ths. of the cell edges. The map was sectioned along the z-axis, at intervals of \(\overline{6} / 240\) ths. Peak resolution was insufficient for the precise location of the vectors, and a "Sharpened" Patterson synthesis was used, assuming point atoms.

On the basis of the space group and the unit cell volume, it was assumed that there were 32 rhenium atoms comprising an asymmetric unit with 4 at each of the eight Pbca general symmetry positions. The expected Patterson map co-ordinates (\(u, v, w\)) were derived for vectors (e.g. \(\operatorname{Re}_{2}-\operatorname{Re}_{2}\)) between rhenium atoms at general positions (\(x, y, z\)) and the equivalent atoms at the other seven symmetry-related positions. The map was then searched for the peaks corresponding to these vectors. The rhenium atom \(x-, y-\), and \(z-c o-o r d i n a t e s\) were deduced in turn, by locating vectors specified by two fixed co-ordinates (Harker lines).

Thus, peaks on the Harker line (\(u=0, v=120-2 y, w=120\)),
derived from the symmetry position (\(x, 1 / 2-y, 1 / 2+z\)), were found at \(v=0\) (intensity 2804), 10(958), 85(1406) and 102(1128). From these v-co-ordinates; the values of \(2 y\) were calculated to be 120, 110, 35 and 18, respectively. The values of \(2 x\) and \(2 z\) were deduced in a similar way. The set of \(2 x, 2 y\) and
\(2 z\) values were then confirmed by locating the Harker plane vectors such as (\(1 / 2-2 x,-2 y, 1 / 2\)), with only one co-ordinate fixed.
\(2 x=\sim 116\) (2 vectors), 4 (2 vectors),
\(2 \mathrm{y}=120,110,35,8\) (1 vector each),
\(2 z=98\) (2 vectors), 26 (2 vectors).
The particular combination of these values giving the four correct atoms positions was deduced by assigning a pair of co-ordinates for two atoms, and searching for the appropriate cross-vectors (e.g. \(\mathrm{Re}_{2}-\mathrm{Re}_{3}\)) between them. The correct choice of co-ordinates was indicated by identifying all the cross-vectors (heavy atom-heavy atom only), and locating the four vector peaks \((2 x, 2 y, 2 z)\) - the only same-atom vectors with no co-ordinate fixed. The peaks located for the latter were \((u, v, w)=(2 x, 2 y, 2 z)=0,120,24(816): \operatorname{Re}_{1}-\operatorname{Re}_{1} ; 9,19,96(334):\) \(R e_{2}-\operatorname{Re}_{2} ; 115,33,99(228): \operatorname{Re}_{3}-\operatorname{Re}_{3}\); and \(115,110,24(302): \operatorname{Re}_{4}-\operatorname{Re}_{4}\). The rhenium atoms were thus assigned the Fourier co-ordinates: \(\operatorname{Re}_{1}(0,60,12), \operatorname{Re}_{2}(5,9,48), \operatorname{Re}_{3}(62,17,70)\) and \(\operatorname{Re}_{4}(62,65,108)\).

Fig.6.3. Rough Projection of
the 4 Rhenium Positions of
the Asymmetric Unit
down 001 .

A rough plot of these positions on a projection looking down \(z\) (fig.6.3), showed that the pairs of atoms \(R e_{1}\) and \(R e_{2}\), and \(R e_{3}\) and \(R e_{4}\), were at reasonable distances (\(\sim 3.8 \AA\)) to be linked by single fluorine bridges, \(\operatorname{Re}_{1}-F-\operatorname{Re}_{2}\) and \(\mathrm{Re}_{3}-\mathrm{F}^{-R e_{4}}\), but that \(\mathrm{Re} e_{1}\) and \(R e_{4}\), and \(R e_{2}\) and \(R e_{3}\), were too far apart \((>5.4 \AA)\) to be linked. This suggested that the asymmetric unit was probably not a single tetrameric molecule, but a pair of asymmetric, fluorine-bridged molecules.

6-2.2 Location of the Light Atoms, and Least Squares Refinement
The four rhenium positions were entered, and subjected to three cycles of structure factor least squares refinement by the programme SFLS. 1981 unique reflections with 0.70 \((\sin \theta) / \lambda>0.10\) and \(I \geqslant 3 \sigma I\) were used, thus removing 66 of those collected which were of low angle (with consequent shielding by the back-stop) or were very imprecise, weak reflections. An arbitrary value of 10.0 was set for the overall scale factor (to scale the \(\left|F_{\text {obs }}\right|\) values to the same standard as \(\left.\left|F_{\text {calc }}\right|\right)\), and one of \(5.0 \AA^{2}\) for the rhenium atom temperature factors. Accurate figures for these were obtained by refinement in the least squares programme. Unit layer scale factors and weights were used initially. Over the three cycles the R-factor fell from 0.384 to 0.329 .

A difference Fourier synthesis was then performed using the programme FOUR, the effect of the heavy atoms being subtracted from the electron density map, to reveal the light atom positions. The light atom peaks obtained were traced on to layers of perspex sheet, to simulate the atom distribution in three dimensions. Several light atoms associated with each rhenium were located. \(\mathrm{Re}_{2}\) and \(\mathrm{Re}_{4}\) both had six single-atom
near neighbours, arranged roughly octahedrally, suggesting two \(\left(\operatorname{ReF}_{6}\right)\) units. The positions of atoms \(F_{21}, F_{22}, F_{24}, F_{25}\) and \(F_{41}\) to \(F_{44}\) were estimated, and entered in a subsequent least squares cycle. The environment of the atoms \(R e_{1}\) and \(\mathrm{Re}_{3}\) appeared to contain peaks consistent with carbonyl groups, but at this stage only atoms \(O_{11}\) and \(O_{31}\) were entered. The light atoms were given initial temperature factors of \(5.0 \AA^{2}\).

After one cycle of refinement the R-factor fell to 0.307 , and temperature factors were 3.1 to \(3.8 \AA^{2}\) for the rhenium atoms and 4.7 to 8.4 for the light atoms. Another difference Fourier was calculated, and the remaining light atoms were located. \(\mathrm{Re}_{1}\) and \(\mathrm{Re}_{3}\) could then each be seen to be associated with a roughly square pyramidal arrangement of 5 terminal carbonyl groups. The sixth position of an octahedral coordination sphere was occupied by the fluorine atoms \(F_{21}\) and \(F_{41}\), bridging \(R e_{1}\) to \(R e_{2}\), and \(R e_{3}\) to \(R e_{4}\) respectively. The asymmetric unit thus contained two discrete molecules of the expected formula (OC) \(5_{5} \operatorname{Re-F-ReF} 5_{5}\).

A least squares cycle with all the atoms included reduced \(R\) to 0.299 . The temperature factors and interatomic distances suggested the co-ordinates of \(F_{23}, F_{26}, C_{31}, C_{35}\) and the carbonyl groups \((C O)_{12},(C O)_{13}\) and \((C O)_{15}\) needed to be modified slightly. This was done over two further refinement cycles, but the R-factor was still as high as 0.290. A refinement of the scale factors for each layer was now commenced, to take into account the affect on the observed structure factors of having realigned the collimator after collecting layer hk5. As a result, \(R\) was reduced to 0.169 after two cycles, and to 0.085 after a further four. This confirmed that the structure was predominantly correct,
though minor adjustments of the light atoms positions continued, to correct for anomalies in the temperature factors and bond distances. Temperature factors were by this time 1.8 to 2.6 for the rhenium atoms, and 1.4 to 7.4 for most of the light atoms.

After fou'r more cycles, \(R\) had fallen to 0.075 and most atom positions were fairly constant. Layer scale factor refinement was ceased, and the rhenium atom temperature factors were allowed to become anisotropic. A weighting scheme for the observed structure factors was introduced at the same time. This had the form:
\[
\begin{equation*}
w=\left(10+\left|F_{o b s}\right|+0.02\left|F_{o b s}\right|^{2}\right)^{-1} \tag{6.4}
\end{equation*}
\]
and replaced the unit weights used hitherto. After four cycles of refinement, \(R\) was reduced to 0.065 , and the weighting scheme was altered to the form:
\[
\begin{equation*}
w=\left(10+\left|F_{o b s}\right|\right)^{-1} \tag{6.5}
\end{equation*}
\]
to obtain a better agreement between the individual layer \(R\) factors. This brought \(R\) to a steady value of 0.064 , but an error was then discovered in the original absorbtion correction. ABSCR was therefore re-run, followed by PRFTP, and a series of least squäres refinements which brought \(R\) to a steady value of 0.066, with anisotropic temperature factors for the rhenium atoms only.

Twelve reflections of the 1981 used in the least squares cycles had large discrepancies between \(\left|F_{\text {obs }}\right|\) and \(\left|F_{c a l c}\right|\). indicated by values of \(w \Delta^{2}>3\), and were edited out using the programme EDIT. This reduced the R-factor to its final value of 0.061. A difference Fourier map (scale factor 1.0) showed no peaks above 11 or below -17 , confirming that no significant electron density had been left unaccounted for.

The final atomic and thermal parameters are listed in table 6.3, and the bond lengths and angles in tables 6.4 to 6.6. ORTEP drawings of the structure are shown in figs. 6.4 to 6.7, and a complete listing of the observed and calculated structure amplitudes is given in Appendix 1. The standard deviations of the bond lengths and angles are fairly high, but not so as to prevent their detailed analysis with respect to the nature and properties of the compound. The high values are chiefly caused by the proportion of heavy atoms in the structure, which lowers the precision of the location of the light atoms, and of the non-ideal size and shape of the crystal, which was unavoidable.

Table 6.3 Final \(\operatorname{Re}\left(\mathrm{CO}_{5}\right.\) F.ReF \(_{5}\) Positional and Thermal Parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Atom & x/a & \(y / b\) & z/c & \(B\left(\AA^{2}\right)\) \\
\hline \(\operatorname{Re}\) (1) & \(0.00508(5)\) & \(0.25151(7)\) & \(0.04928(13)\) & \\
\hline \(\operatorname{Re}(2)\) & 0.02047 (7) & 0.04076 (8) & \(0.20123(14)\) & see \\
\hline \(\operatorname{Re}\) (3) & \(0.25882(6)\) & 0.06940 (8) & \(0.28522(14)\) & below \\
\hline \(\operatorname{Re}(4)\) & 0.26004 (7) & 0.27430 (8) & 0.44986(14) & \\
\hline C(11) & 0.075 (2) & 0.318 (3) & 0.097 (4) & 4.8 (9) \\
\hline C(12) & 0.050 (1) & 0.226 (2) & -0.075(3) & 2.8 (6) \\
\hline C(13) & -0.065(2) & 0.186 (2) & -0.003(3) & 3.0 (6) \\
\hline C(14) & -0.033(2) & 0.272(3) & 0.179 (4) & 4.7 (9) \\
\hline C(15) & -0.025(2) & \(0.357(2)\) & -0.004(3) & 3.4(7) \\
\hline O(11) & \(0.112(1)\) & 0.364 (2) & 0.124 (2) & 7.0 (7) \\
\hline O(12) & \(0.069(1)\) & \(0.209(2)\) & -0.150(3) & 4.7 (6) \\
\hline O(13) & -0.106(1) & 0.148 (2) & -0.032(3) & \(5.8(7)\) \\
\hline O(14) & -0.063(1) & 0.286 (2) & 0.241 (3) & \(6.2(8)\) \\
\hline O(15) & -0.044(1) & 0.423(1) & -0.029(2) & 3.2(5) \\
\hline F (21) & \(0.042(1)\) & \(0.131(1)\) & \(0.109(2)\) & 4.4(5) \\
\hline F (22) & \(0.099(1)\) & 0.006 (1) & 0.205 (2) & \(6.3(6)\) \\
\hline F (23) & -0.009(1) & -0.039(2) & 0.293(2) & 6.0(6) \\
\hline F (24) & -0.056(1) & \(0.083(1)\) & 0.193 (2) & 5.0(5) \\
\hline F (25) & \(0.036(1)\) & 0.120 (2) & 0.299 (2) & 6.1(6) \\
\hline F (26) & \(0.004(1)\) & -0.034(1) & 0.104 (2) & 5.6(6) \\
\hline C(31) & \(0.200(1)\) & \(0.149(2)\) & 0.225 (3) & \\
\hline C(32) & 0.321 (2) & 0.123(4) & \(0.211(4)\) & \(6.1(1 \cdot 1)\) \\
\hline C(33) & 0.320 (2) & -0.007 (3) & \(0.354(4)\) & \(5.4(100)\) \\
\hline C (34) & \(0.194(2)\) & \(0.023(3)\) & 0.375 (4) & \(5.7(1.1)\) \\
\hline C(35) & 0.244 (2) & -0.008(3) & 0.185 (4) & 4.9 (9) \\
\hline O(31) & \(0.164(1)\) & 0.191 (2) & 0.195 (3) & 6.3(8) \\
\hline O(32) & \(0.358(2)\) & 0.145 (2) & 0.156 (3) & \(7.3(9)\) \\
\hline 0 (33) & \(0.354(1)\) & -0.052(2) & 0.373 (3) & 5.6(7) \\
\hline O(34) & 0.155 (2) & \(0.005(3)\) & \(0.427(4)\) & 10.0(1.3) \\
\hline O(35) & \(0.231(2)\) & -0.059(3) & \(0.119(4)\) & 9.1(1.1) \\
\hline F (41) & \(0.282(1)\) & \(0.160(1)\) & 0.397 (2) & \\
\hline \(F(42)\) & \(0.339(1)\) & 0.306 (2) & 0.444 (2) & 6.1(6) \\
\hline \(F(43)\) & \(0.239(1)\) & 0.385 (2) & \(0.507(2)\) & \(5.8(6)\) \\
\hline F (44) & 0.182(1) & \(0.238(2)\) & 0.456 (2) & \(5.8(6)\) \\
\hline \(F(45)\) & 0.246 (1) & \(0.311(2)\) & 0.328 (2) & 6.8(7) \\
\hline F (46) & 0.272(1) & 0.235(2) & 0.574(2) & 5.5(6) \\
\hline
\end{tabular}

Figures in parentheses here, and in subsequent tables are the estimated standard deviations for the least significant figures.

Anisotropic Rhenium Atom Temperature Factors \(\left(\AA^{2}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Atom & \(\mathrm{B}_{11}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{33}\) & \multicolumn{1}{c|}{\(\mathrm{~B}_{23}\)} & \(\mathrm{~B}_{13}\) & \(\mathrm{~B}_{12}\) \\
\hline \(\mathrm{Re}(1)\) & \(2.69(5)\) & \(2.05(4)\) & \(2.06(7)\) & \(0.03(5)\) & \(0.31(7)\) & \(0.08(4)\) \\
\(\mathrm{Re}(2)\) & \(4.26(7)\) & \(2.03(5)\) & \(2.68(9)\) & \(-0.04(5)\) & \(0.39(8)\) & \(-0.36(4)\) \\
\(\operatorname{Re}(3)\) & \(3.12(5)\) & \(2.23(5)\) & \(3.67(10)\) & \(0.02(6)\) & \(0.01(8)\) & \(0.14(4)\) \\
\(\operatorname{Re}(4)\) & \(3.83(6)\) & \(2.74(5)\) & \(2.90(10)\) & \(0.12(6)\) & \(-0.22(8)\) & \(0.50(5)\) \\
\hline
\end{tabular}

Table 6.4 Bond Distances \((\AA)\) in \(\operatorname{Re}(C O)_{5}\) F. \(^{(A e F}{ }_{5}\)
\begin{tabular}{ll}
\(\operatorname{Re}(1)-C(11)\) & \(1.98(4)\) \\
\(\operatorname{Re}(1)-C(12)\) & \(2.01(4)\) \\
\(\operatorname{Re}(1)-C(13)\) & \(2.00(4)\) \\
\(\operatorname{Re}(1)-C(14)\) & \(1.99(5)\) \\
\(\operatorname{Re}(1)-C(15)\) & \(1.91(4)\) \\
\(C(11)-0(11)\) & \(1.16(5)\) \\
\(C(12)-0(12)\) & \(1.14(5)\) \\
\(C(13)-0(13)\) & \(1.16(5)\) \\
\(C(14)-0(14)\) & \(1.11(6)\) \\
\(C(15)-0(15)\) & \(1.16(4)\) \\
\(\operatorname{Re}(1)-F(21)\) & \(2.20(2)\)
\end{tabular}
\begin{tabular}{ll}
\(\operatorname{Re}(2)-F(21)\) & \(1.95(2)\) \\
\(\operatorname{Re}(2)-F(22)\) & \(1.84(3)\) \\
\(\operatorname{Re}(2)-F(23)\) & \(1.88(3)\) \\
\(\operatorname{Re}(2)-F(24)\) & \(1.84(2)\) \\
\(\operatorname{Re}(2)-F(25)\) & \(1.85(3)\) \\
\(\operatorname{Re}(2)-F(26)\) & \(1.80(3)\)
\end{tabular}
\begin{tabular}{ll}
\(\operatorname{Re}(3)-C(31)\) & \(1.98(3)\) \\
\(\operatorname{Re}(3)-C(32)\) & \(1.91(5)\) \\
\(\operatorname{Re}(3)-C(33)\) & \(2.03(5)\) \\
\(\operatorname{Re}(3)-C(34)\) & \(2.04(5)\) \\
\(\operatorname{Re}(3)-C(35)\) & \(1.86(5)\) \\
\(C(31)-0(31)\) & \(1.10(5)\) \\
\(C(32)-0(32)\) & \(1.18(7)\) \\
\(C(33)-0(33)\) & \(1.07(6)\) \\
\(C(34)-0(34)\) & \(1.15(7)\) \\
\(C(35)-0(35)\) & \(1.23(7)\) \\
\(\operatorname{Re}(3)-F(41)\) & \(2.13(3)\)
\end{tabular}
\begin{tabular}{ll}
\(\operatorname{Re}(4)-F(41)\) & \(1.98(2)\) \\
\(\operatorname{Re}(4)-F(42)\) & \(1.83(3)\) \\
\(\operatorname{Re}(4)-F(43)\) & \(1.94(3)\) \\
\(\operatorname{Re}(4)-F(44)\) & \(1.83(3)\) \\
\(\operatorname{Re}(4)-F(45)\) & \(1.78(3)\) \\
\(\operatorname{Re}(4)-F(46)\) & \(1.83(3)\)
\end{tabular}

Table 6.5 Bond Angles \({ }^{\circ}\)) in Re(CO) \({ }_{5}\) F.ReF \(_{5}\)
\begin{tabular}{|c|c|c|c|}
\hline \(F(21)-\operatorname{Re}(1)-C(11)\) & 91.4 (1 & \(F(41)-\mathrm{Re}(3)-C(31)\) & \\
\hline \(F(21)-\operatorname{Re}(1)-C(12)\) & 87.3(1.1) & \(F(41)-\operatorname{Re}(3)-C(32)\) & \\
\hline \(F(21)-\operatorname{Re}(1)-C(13)\) & 89.7(1.2) & \(F(41)-\operatorname{Re}(3)-C(33)\) & \(83.5(1.6)\) \\
\hline \(F(21)-\operatorname{Re}(1)-C(14)\) & 88.3(1.4) & \(F(41)-\operatorname{Re}(3)-C(34)\) &) \\
\hline \(F(21)-\operatorname{Re}(1)-C(15)\) & 178.5(1.3) & \(F(41)-\operatorname{Re}(3)-C(35)\) & \(176.2(1.6)\) \\
\hline \(C(11)-\operatorname{Re}(1)-C(12)\) & 89.4(1.7) & \(C\) (31)-Re (3)-C (32) & 89.3(1.8) \\
\hline \(C(11)-\operatorname{Re}(1)-C(13)\) & 178.3(1.9) & \(C\) (31)-Re (3)-C (33) & 17 \\
\hline \(C(11)-\operatorname{Re}(1)-C(14)\) & 87.5(1.9) & C (31)-Re (3)-C (34) & \(90.0(1.7)\) \\
\hline \(C(11)-\operatorname{Re}(1)-C(15)\) & \(87.7(1.7)\) & \(C\) (31)-Re (3)-C (35) & \\
\hline \(C(12)-\operatorname{Re}(1)-C(13)\) & 89.4 (1 & \(C\) (32)-Re (3)-C (33) & \\
\hline \(C(12)-\operatorname{Re}(1)-C(14)\) & \(174.6(1.6)\) & \(C\) (32)-Re (3)-C (34) & 173 \\
\hline \(C\) (12)-Re (1)-C (15) & 91.4(1.6) & C (32)-Re (3)-C (35) & 9 \\
\hline \(C(13)-\operatorname{Re}(1)-C(14)\) & \(93.7(1.7)\) & C (33)-Re (3)-C (34) & \\
\hline \(C(13)-\operatorname{Re}(1)-C(15)\) & 91 & \(C\) (33)-Re (3)-C (35) & \\
\hline \(C(14)-\operatorname{Re}(1)-C(15)\) & 93.0(1 & \(C\) (34)-Re (3)-C(35) & 94.8(2.1) \\
\hline \(\operatorname{Re}(1)-\mathrm{C}(11)-0\) & & Re(3)-c(31)-0(31) & \\
\hline \(\operatorname{Re}(1)-\mathrm{C}(12)-0(1\) & & \(\operatorname{Re}(3)-C(32)-0(32)\) & \\
\hline \(\operatorname{Re}(1)-\mathrm{C}(13)-\mathrm{O}(13)\) & & \(\operatorname{Re}(3)-C(33)-0(33)\) & \\
\hline \(\operatorname{Re}(1)-\mathrm{C}(14)-\mathrm{O}(14)\) & \(167.5(4.1)\) & \(\operatorname{Re}\) (3)-C(34)-0 (34) & \(172.8(4.2)\) \\
\hline \(\operatorname{Re}(1)-\mathrm{C}(15)-\mathrm{O}(15)\) & 174.7(3 & \(\operatorname{Re}(3)-\mathrm{C}(35)-\mathrm{O}(35)\) & \(177.5(4.0)\) \\
\hline Re & 1 & \(\operatorname{Re}(3)-F(41)-\operatorname{Re}(4)\) & \\
\hline & 89.0(1.1) & \(F(41)-\mathrm{Re}(4)-F(42)\) & 1) \\
\hline \(F(21)-\operatorname{Re}(2)-F(23)\) & \(173.5(1.0)\) & \(F(41)-\operatorname{Re}(4)-F(43)\) & \(177.5(1.2)\) \\
\hline \(F(21)-\operatorname{Re}\) (2)-F (24) & \(86.6(1.0)\) & \(F(41)-\operatorname{Re}(4)-F(44)\) & 88. \({ }^{1} 1.1\)) \\
\hline \(F(21)-\operatorname{Re}(2)-F(25)\) & \(87.0(1.1)\) & \(F(41)-\operatorname{Re}(4)-F(45)\) & 88.9(1.3) \\
\hline \(F(21)-\operatorname{Re}(2)-F(26)\) & 91.8(1.1) & \(F(41)-\operatorname{Re}(4)-F(46)\) & O \\
\hline \(F(22)-\operatorname{Re}\) (2)-F (23) & 97.3(1.2) & \(F(42)-\operatorname{Re}(4)-F(43)\) & \\
\hline \(F(22)-\operatorname{Re}(2)-F(24)\) & 175.3(1.1) & \(F(42)-\operatorname{Re}(4)-F(44)\) & \[
177.5(1.1)
\] \\
\hline \(F(22)-\operatorname{Re}(2)-F(25)\) & 89.4(1 & \(F(42)-\operatorname{Re}(4)-F(45)\) & \(92.2(1.3)\) \\
\hline \(F(22)-\operatorname{Re}(2)-F(26)\) & 91.6(1.2) & \(F(42)-\operatorname{Re}(4)-F(46)\) & 89.1(1.2) \\
\hline
\end{tabular}

Table 6.5 Bond Angles \(\left({ }^{\circ}\right)\) in \(\operatorname{Re}(C O)_{5}\) F.ReF \(_{5}\) (cont.).
\begin{tabular}{|l|r|r|r|}
\hline\(F(23)-\operatorname{Re}(2)-F(24)\) & \(87.1(1.1)\) & \(F(43)-\operatorname{Re}(4)-F(44)\) & \(91.6(1.1)\) \\
\(F(23)-\operatorname{Re}(2)-F(25)\) & \(91.2(1.2)\) & \(F(43)-\operatorname{Re}(4)-F(45)\) & \(93.5(1.3)\) \\
\(F(23)-\operatorname{Re}(2)-F(26)\) & \(90.0(1.2)\) & \(F(43)-\operatorname{Re}(4)-F(46)\) & \(87.2(1.1)\) \\
\(F(24)-\operatorname{Re}(2)-F(25)\) & \(89.0(1.2)\) & \(F(44)-\operatorname{Re}(4)-F(45)\) & \(88.9(1.3)\) \\
\(F(24)-\operatorname{Re}(2)-F(26)\) & \(90.0(1.2)\) & \(F(44)-\operatorname{Re}(4)-F(46)\) & \(89.8(1.2)\) \\
\(F(25)-\operatorname{Re}(2)-F(26)\) & \(178.4(1.2)\) & \(F(45)-\operatorname{Re}(4)-F(46)\) & \(178.6(1.2)\) \\
\hline
\end{tabular}

Table 6.6 Selected Non-Bonded Distances \((A)\) in \(\operatorname{Re}(C O)_{5}\) F.ReF \(_{5}\)
\begin{tabular}{llll}
\(\operatorname{Re}(1)-\operatorname{Re}(2)\) & 3.89 & \(\operatorname{Re}(2)-\operatorname{Re}(3)\) & 5.46 \\
\(\operatorname{Re}(1)-\operatorname{Re}(4)\) & 7.91 & \(\operatorname{Re}(3)-\operatorname{Re}(4)\) & 3.89 \\
\(\operatorname{Re}(1)-F(25)\) & 4.04 & \(\operatorname{Re}(3)-F(46)\) & 4.72 \\
\(\operatorname{Re}(1)-F(44)\) & 6.84 & \(\operatorname{Re}(3)-F(22)\) & 3.85 \\
\(\operatorname{Re}(1)-F(41)\) & 7.94 & & \(\operatorname{Re}(3)-F(21)\) \\
& & 5.49 \\
\(\operatorname{Re}(2)-F(41)\) & 6.69 & \(\operatorname{Re}(4)-F(21)\) & 7.10 \\
\(\operatorname{Re}(2)-C(31)\) & 4.36 & \(\operatorname{Re}(4)-0(11)\) & 6.39 \\
\(\operatorname{Re}(2)-0(31)\) & 3.97 & \(F(44)-C(11)\) & 5.72 \\
\(F(22)-C(31)\) & 3.17 & \(F(44)-0(11)\) & 5.18 \\
\(F(22)-O(31)\) & 3.21 & & \\
\(F(22)-C(34)\) & 3.15 & & \\
\(F(22)-0(34)\) & 3.27 & & \\
\(F(21)-0(31)\) & 3.11, the closest non-bonding approach
\end{tabular}

Table 6.7 Comparison of X-ray Powder Diffraction and Single
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ hkl } & \multicolumn{2}{|c|}{ Crystal } & \multicolumn{2}{|c|}{ Powder } \\
& \({ }^{*} I_{\text {obs }}\) & \(d_{\text {hkl }}\) & d & \(I\) \\
\hline 020 & 1424 & 7.75 & 7.78 & 1 \\
021 & 5538 & 6.75 & 6.72 & 5 \\
& & & 6.51 & 1 \\
400 & 6248 & 5.58 & 6.04 & 2 \\
022 & \(21142^{+}\) & 5.13 & 5.13 & 10 \\
421 & 1390 & 4.30 & 4.31 & 4 \\
023 & 6452 & 3.93 & 3.88 & \\
040 & 6303 & 3.888 & 3.77 & 9 \\
422 & 7579 & 3.78 & 3.77 & 9 \\
041 & 5481 & 3.73 & 3.73 & 2 \\
141 & 973 & 3.68 & 3.66 & 1 \\
323 & 1196 & 3.48 & 3.49 & 1 \\
\hline
\end{tabular}

Crystal Data for \(\operatorname{Re}(\mathrm{CO})_{5}\) F.ReF \(_{5}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{hkl} & \multicolumn{2}{|r|}{Crystal} & \multicolumn{2}{|l|}{Powder} \\
\hline & *Iobs & \({ }_{\text {d }}^{\text {k }}\) I & & I' \\
\hline 133 & 1145 & 3.381 & 3.38 & 2 \\
\hline 042 & 1935 & 3.37\} & & 2 \\
\hline 440 & 4237 & 3.19 & 3.20 & 2 \\
\hline 441 & 3216 & \(3.10\}\) & 3.10 & 4 \\
\hline 124 & 3774 & 3.10\} & 3.10 & 4 \\
\hline 442 & 1419 & 2.89 & 2.89 & 2 \\
\hline 324 & 3817 & \(2.88\}\) & 2.89 & 2 \\
\hline 134 & 5078 & \(2.83\}\) & 2.81 & 2 \\
\hline 152 & 1022 & \(2.80\}\) & 2.81 & 2 \\
\hline 640 & 4236 & 2.68 & 2.70 & 2 \\
\hline 334 & 2638 & 2.66 & 2.65 & br \\
\hline 352 & 1352 & \(2.64\}\) & 2.65 & br \\
\hline
\end{tabular}
+ Inaccurately measured reflection; \(w \Delta^{2}>3\)
\(I^{\prime}=\) Visually estimated \(I_{o b s}{ }^{\circ} \quad d\) in \(A\).
* Units are arbitrary. Values under 950 are excluded.

Reflections with no clear powder counterpart are:
Fig.6.4 Asymmetric Pair of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{FoReF}_{5}\) Molecules Drawn with Both the
Re-F-Re Bridges in the Plane of the Paper

Fig. G. 5 Asymmetric Pair of Re(CO) 5 FoRe \(_{5}\) Molecules as Arranged in the Unit Cell

Average bond lengths (\(\AA\)) with s.d.s., taken from the two non-equivalent molecules.
\(a=1.91(3), \quad b=1.83(3), \quad c=1.97(2), \quad d=2.17(4)\)
\(e=1.89(3), f=1.19(4), \quad g=1.99(4), \quad h=1.13(3)\)
The e.d.s.'s of the individual bonds are:
Re-F 0.03, Re-C \(0.05, \quad \mathrm{C}-00.07\).
Average \(\mathrm{Re}-\mathrm{F}-\mathrm{Re}\) angle is \(141(1)^{\circ}\).

6-3.1 The Establishment of the Formula
The X-ray structural analysis of the orange crystal confirmed the predicted formula of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \mathrm{ReF}_{5}\). The crystal was shown to be typical of the bulk orange solid by the agreement between the d-spacings obtained from a powder photograph of ground orange crystals, and those calculated from the stronger single crystal reflections (table 6.7). This result also established the formula of the orange-yellow solid from the \(\mathrm{Re}_{2}(\mathrm{CO})_{10} / 3 \mathrm{XeF}_{2} /\) Genetron 113 reaction.

\section*{6-3.2 The Molecular Units and Packing}

Each formula unit consists of slightly distorted \(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}\) and \(\mathrm{ReF}_{6}\) octahedra, sharing one vertex, forming a bent, planar Re-F-Re linkage. This plane confers \(C_{s}\) symmetry on the molecule, giving rise to two crystallographically nonequivalent types of molecule, of symmetry \(C_{S}\left(\sigma_{V}\right)\) and \(C_{S}\left(\sigma_{d}\right)\), differing only in the orientation of the \(\left(\operatorname{Re}(C O)_{4}\right)\) and \(\left(\operatorname{ReF}_{4}\right)\) equatorial planes, relative to the Re-F-Re plane (see fig.6.4). The \(R e_{1}-\operatorname{Re}_{2}\) molecule (A) has the \(R e F_{4}\) unit eclipsed with respect to the \(\operatorname{Re}-\mathrm{F}-\mathrm{Re}\) bridge, and the \(\operatorname{Re}(\mathrm{CO})_{4}\) unit staggered. The opposite situation holds for the \(\operatorname{Re}_{3}-\operatorname{Re}_{4}\) molecule(B).

Fig.6.5 shows how the two molecules are oriented relative to one another in the crystal. There are eight of these asymmetric pairs in the unit cell, packed so as to form alternate layers of \(R e_{1}-R e_{2}\) and \(R e_{3}-R e_{4}\) molecules, perpendicular to the c-direction, see fig.6.6. The \(R e_{3}-R e_{4}\) layers comprise alternate parallel chains stretching diagonally across the bc plane, whereas the \(R e_{1}-\operatorname{Re}_{2}\) layers consist of alternate zig-zag chains. Each \(R e_{1}-R e_{2}\) molecule has four \(R e_{1}-R e_{2}\) and
"one and two halves" \(\mathrm{Re}_{3}-\mathrm{Re}_{4}\) nearest neighbours, and vice versa. There are thus two distinct types of interaction between \(R e_{1}-R e_{2}\) and \(R e_{3}-R e_{4}\) molecules, see fig.6.7. In one, the \(\left(\operatorname{Re}(\mathrm{CO})_{5}\right)\) half of an \(\mathrm{Re}_{3}-\mathrm{Re}_{4}\) molecule is close to the (\(\mathrm{ReF}_{5}\)) half of its \(R e_{1}-R e_{2}\) asymmetric relative, lying slightly below it in \(c-\) (the \(R e_{3} \ldots \ldots F_{22}-\operatorname{Re}_{2}\) approach \(=3.85 \AA\)), but the (\(\operatorname{ReF}_{5}\)) half is close to the \(\left(\operatorname{Re}(\mathrm{CO})_{5}\right)\) half of an \(R e_{1}-\operatorname{Re}_{2}\) molecule of a different asymmetric pair, lying slightly above it in c-\(\left(\operatorname{Re}_{4}-\mathrm{F}_{44} \ldots \mathrm{Me}_{1}=4.16 \AA\right)\). The other interaction is "broad-side-on" to a complete molecule, \(R e_{1}{ }^{\prime}-R e_{2}{ }^{\prime}\), lying above it in a-, but almost on the level in c-. This forms a pseudo-dimeric, 8-membered ring arrangement, which bears some resemblance to the 8 -membered ring in \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4} .^{32}\) The order of magnitude of the two long Re.....F contacts \(\left(R e_{3} \ldots . F_{24}^{\prime}=4.14\right.\), \(\mathrm{Re}_{1}, \ldots . \mathrm{F}_{42}=3.80 \AA\)), however, shows that there is no significant bonding between the \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{H}} \mathrm{ReF}_{5}\) molecules.** These Re.....F distances, and the remaining intermolecular approaches confirm that the structure comprises molecular monomers of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}\) packed in infinite chains.

6-3.3 The Detailed Geometry, and the Nature of the \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{F} \cdot \operatorname{ReF}} 5\) Molecule
Having established the molecular character of the compound, it is important to consider its chemical interpretation. It may be most satisfactorily regarded as an adduct between \(\operatorname{Re}^{I}(\mathrm{CO})_{5} F\) and \(\operatorname{Re} V_{5}\), but the nature of the interaction needs deducing from a detailed analysis of the bond lengths. This is of particular interest with respect to the continuing

\footnotetext{
** Similar loose oligomeric units are found in \(\left(\mathrm{XeF}_{5}\right)^{+}\left(\mathrm{AsF}_{6}\right)^{-}\) (dimers), \({ }^{187}\) and \(\left(\mathrm{SeF}_{3}\right)^{+}\left(\mathrm{NbF}_{6}\right)^{-}\)(tetramers, in a cuboid arrangement). \({ }^{188}\)
}
discussion on the nature of fluorine-bridged interactions (see for example, refs. 189,97 and 98).

The average bond lengths of the two asymmetric molecules are given in fig.6.8, where they are divided into statistically equivalent sets. For example, the eight equatorial \(\mathrm{Re}^{\mathrm{V}}-\mathrm{F}\) bonds of the asymmetric pair are equivalent, with a mean value of \(1.83 \AA ̊\), the standard deviation between these eight values being identical to the estimated standard deviations of the individual \(\mathrm{Re}^{\mathrm{V}}-\mathrm{F}\) bonds (\(0.03 \AA\)). For comparison purposes, typical values for mean \(\mathrm{Re}^{\mathrm{V}}-\mathrm{F}\) bond distances of \(1.84(2)\) (terminal) and 2.01 (1) \(\AA\) (bridging) are taken from the \(\left(\operatorname{Re}_{2} F_{11}\right)^{-}\)anion of \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{+}\), a discrete, centrosymmetric anion with no close interatomic contacts (see chapter 7). The equatorial \(\operatorname{Re}^{V}-\mathrm{F}\) bonds of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \cdot \mathrm{ReF}_{5}\) may thus be regarded as of typical length.

The axial \(\mathrm{Re}^{\vee}\) - F distances of \(1.91(4)\) (terminal) and 1.97(2) \(\dot{A}\) (bridging), however, show that the \(\operatorname{ReF}_{6}\) unit has been distorted tetragonally, so that the \(\left(-F-R e F_{4}-\right)\) moiety is nearly identical to its counterpart in \(\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)\) - . The bridging \(\operatorname{Re}^{V}-\mathrm{F}\) distance in \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}\) is very slightly shorter than the value for the completely symmetrical \(R e^{V}-F-R e{ }^{V}\) bridge of \(\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\). This implies that the \(\mathrm{Re}^{\mathrm{V}}-\mathrm{F}\) bond has a marginally greater share of the electron density, in a covalent \(R^{I}-F-R e V\) bridge, i.e. that there is only a small polarisation:
 of the terminal \(R e^{V}-F\) bond trans- to the bridge, relative to its counterpart in \(\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)which is indistinguishable from. the other terminal bonds.

There are no directly comparable data for the \(R e^{I}-F\) bond, but an estimate of \(2.16 \AA\) for a terminal \(R e^{I}-F\) bond can
be obtained from the covalent radii of fluorine (\(0.64 \AA\) after Pauling \({ }^{185}\)) and of rhenium (taken as \(1.52 \AA\), half the Re-Re distance in \(\left.\operatorname{Re}_{2}(\mathrm{CO})_{10}{ }^{118 \mathrm{~b}, * *}\right)\). This suggests at first sight that the value of \(2.17 \AA\) is too short for an \(R e^{I}-F\) bridging bond, by comparison with the normal substantial lengthening of bridging bonds relative to terminal. However, consideration of the bond lengths of many carbonyl halides and their derivatives, including the only comparable low oxidation state metal fluoride \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}\), shows that there is often little or no difference between terminal and bridging distances for metals in low oxidation states (table 6.8). In interpreting the similarity between the \(\mathrm{Mn}-\mathrm{Br}\) distances quoted, Ibers has suggested that these distances are largely controlled by nonbonding interactions. 198

The \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\) unit is closely similar to \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~L}\) units in \(\mathrm{Re}_{2}(\mathrm{CO})_{10},^{118} \mathrm{Re}(\mathrm{CO})_{5} \mathrm{ONO}_{2},{ }^{199} \mathrm{Cl} . \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}(\mathrm{O})-\mathrm{Re}(\mathrm{CO})_{5},{ }^{200}\) \(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{H} \cdot \mathrm{Cr}(\mathrm{CO})_{5} 2 \mathrm{O}\) and \(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{H} \cdot \mathrm{Mn}(\mathrm{CO})_{4} \cdot \operatorname{Re}(\mathrm{CO})_{5},{ }^{202}\) with four equivalent \(\mathrm{Re}-\mathrm{C}\) and \(\mathrm{C}-\mathrm{O}\) bonds in the axial plane, and the Re-C bond length being close to \(2.00 \AA\) (table 6.9). As expected, the Re-C bond of the axial carbonyl (trans- to the ligand L) ìs lengthened relative to the equatorial carbonyls. with a corresponding shortening of the \(\mathrm{C}-\mathrm{O}\) bond. This distortion results from the back-donation of electron density from the metal \(d \pi\) orbital to the \(C O \pi^{*}\) orbital, the amount of which increases the weaker the \(\pi\)-acceptor ability of the ligand \(L\). Consequently \(-\mathrm{F}_{-2 \mathrm{ReF}}^{5}\) is a stronger \(\pi\)-acceptor than \(-\mathrm{H}-\mathrm{Mn}(\mathrm{CO})_{4}\)-. but weaker than the benzoyl group in \(\mathrm{p}-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \cdot \operatorname{Re}(\mathrm{CO})_{5}\), which has a conjugated \(\pi\)-system. 200 Though the electron
** A value of \(1.51 \AA\) has been calculated for rhenium \(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\) complexes. \({ }^{190}\)

Table 6.8 Terminal and Bridging Metal-Halogen Bond Lengths
in Carbonyl Halides
\begin{tabular}{|c|c|c|c|}
\hline Terminal & Bridging & Structure & Ref. \\
\hline 1.99(3)* & 2.01(6)* & \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}\) & 13 \\
\hline 2.40(2) & 2.40(2) & \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Cl}\right)_{2}\) & 191 \\
\hline 2.534 (4) & 2.571 (4) & \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Br}\right)_{2}\) & 192 \\
\hline 2.50 (1) & - & \(\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\) & 193 \\
\hline 2.527 (8) & - & \(\mathrm{Mn}(\mathrm{CO})_{3}\left(\mathrm{CNPh}_{2}\right) \mathrm{Br}\) & 194 \\
\hline - & \(2.526(5)\) & (OC) \({ }_{4} \mathrm{Mn}^{-\mathrm{Br}} \mathrm{Br}^{\text {- }} \mathrm{Mn}(\mathrm{CO})_{4}\) & 195 \\
\hline 2.790 (2) & - & \(\left(\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{I}\right)^{-}\) & 196 \\
\hline - & \(2.79(1)\) & \(\left[(\mathrm{OC})_{5} \mathrm{Cr}-\mathrm{I}-\mathrm{Cr}(\mathrm{CO})_{5}\right]^{-}\) & 197 \\
\hline - & \[
\left.\begin{array}{l}
2.581(2) \\
2.595(2)
\end{array}\right\}
\] & \(\left(\mathrm{cp}(\mathrm{OC})_{2} \mathrm{Fe}-\mathrm{I}-\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{cp}\right)^{+}\) & 106 \\
\hline
\end{tabular}
* Statistically equivalent. Figures taken from final refinement data (\(R=0.066\)) as quoted in ref.13.
\(c p=\eta^{5}-C_{5} H_{5}\).
Table 6.9 Bond Lengths in \(\mathrm{L}-\mathrm{Re}(\mathrm{CO})_{5}\) Structures
\begin{tabular}{|c|c|c|c|c|c|}
\hline Structure & Re-L & \(\mathrm{Re}-\mathrm{C}(\mathrm{eq})\) & \(\operatorname{Re}-\mathrm{C}(a x)\) & \(C \equiv 0(\mathrm{eq})\) & \(C \equiv 0(a x)\) \\
\hline \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+*}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\) & - & \multicolumn{2}{|c|}{2.01 (4)} & \multicolumn{2}{|c|}{1.13(3)} \\
\hline \((\mathrm{OC})_{5} \mathrm{Re}-\operatorname{Re}(\mathrm{CO})_{5}\) (g) & \(3.040(5)\) & \(2.01(1)\) & 2.01(2) & 1.16 (2) & 1.16 (2) \\
\hline \(\mathrm{Re}(\mathrm{CO})_{5}-\mathrm{C}(\mathrm{O}) \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CI}\) & \(2.22(1)\) & 2.00 (1) & 1.96 (1) & 1.15(3) & 1.21 (3) \\
\hline \(\mathrm{Re}(\mathrm{CO})_{5}-\mathrm{F}-\mathrm{ReF} 5_{5}\) & 2.17 (4) & \(1.99(4)\) & 1.89 (3) & 1.13(3) & 1.19(4) \\
\hline \[
\begin{aligned}
& \operatorname{Re}(\mathrm{CO})_{5}-\mathrm{H}-\mathrm{MnRe}(\mathrm{CO})_{9} \\
& \operatorname{Re}(\mathrm{CO})_{5}-\mathrm{H}-\mathrm{Cr}(\mathrm{CO})_{5}
\end{aligned}
\] & \(3.392(2)\)
\(3.453(1)^{*}\) & \(2.01(5)\) & 1.86(3) & 1.13(5) & 1.26 (4) \\
\hline
\end{tabular}

The accuracy of the \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{ONO}_{2}\) structure was insufficient to quote bond lengths. \({ }^{197}\)
* Re-Mn and Re-Cr distances.
diffraction study of gaseous \(\operatorname{Re}_{2}(\mathrm{CO})_{10} 0^{118 \mathrm{~b}}\) failed to detect a significant difference between the axial Re-C bond length, \(X-r a y\) diffraction studies show that this bond is also shorter. \({ }^{203}\)

The bond angles show that both rhenium atoms have a slightly distorted, octahedral arrangement of ligands, but in view of the high estimated standard deviations, little can be said about the significance of such distortions.

It is concluded that the Re-F bond distances in \(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}\) are indicative of an essentially covalent, fluorine-bridged structure, with a slight polarisation of the electron distribution in the bridge towards the \(\operatorname{ReF}_{5}\) group. The fluoride ion donation by \(\operatorname{Re}(\mathrm{CO})_{5} F\) is therefore only partial, and the data give no support for more complete donation to give an ionic structure \(\left(\operatorname{Re}(\mathrm{CO})_{5}\right)^{+}\left(\operatorname{ReF}_{6}\right)^{-}\). The latter structure would be unlikely in any event, as the \(\left(\operatorname{Re}(\mathrm{CO})_{5}\right)^{+}\)cation would be two electrons short of a noble gas valence-electron configuration, and would be formed in the same reaction as that which produces the extremely stable, 18-electron cation \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)(equation 3.29). In this respect, the complex is different from most other fluorine-bridged complexes, such as \(\mathrm{XeF}_{2} \cdot 2 \mathrm{SbF}_{5},{ }^{189}\) where chemically reasonable structures may be written representing the completely ionic form, viz \((X e F)^{+}\left(S b_{2} F_{11}\right)^{-}\). In such cases neither structure accurately represents the true state of affairs, the latter form neglecting the substantial covalent interaction between its ions, and the former the significant polarisation of its fluorine bridge. \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}\) may therefore be said to be approaching the limit of the purely covalent fluorine bridge,** and the bond

\footnotetext{
** \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\left(\mathrm{q} \cdot \mathrm{v}_{\mathrm{o}}\right)\), on the other hand, approaches the opposite limit of a purely ionic lattice, and it is interesting that the same reaction should have produced two such extremes of complex interaction.
}
distances may possibly be used as a yárdstick to assess fluorine-bridging interactions in other complexes (see section 6-4.).

The overall geometry shows \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}\) to be a carbonyl halide derivative of the familiar \(\operatorname{Re}(C O)_{5} L\) type, but with a novel "ligand", where the halogen is acting as a donor to an acceptor halide of the same metal. This is the first structure of a molecule of this type. The nearest related structure is of \(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{ONO}_{2}, 204,199\) which also possesses \(\mathrm{C}_{s}\) symmetry, with a planar Re-O-N linkage, and has two crystallographically distinct molecules in the asymmetric unit. Although inaccurately determined, the Re-O bond distance (2.15(10) \(\AA\)) appears to be of the same order as the \(\operatorname{Re}^{I}-F\) bond in \(\operatorname{Re}(\mathrm{CO})_{5} \cdot \operatorname{ReF}_{5}\), and again there seems no doubt of the covalent formulation.

A closer relative is probably the heterometallic ccmplex \(\left(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}_{2} \mathrm{SbCl}_{5},{ }^{140}\right.\) but its structure is at present unknown. Structures have been determined of two \(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}^{\mathrm{SbCl}} 3\) complexes, \({ }^{142,150}\) see section \(3-5.3\), but these involve only very weak interactions more akin to those of molecular adducts such as \(\mathrm{XeF}_{2} \cdot\) IF \(_{5} \cdot{ }^{205}\)

A combination of good carbonyl halide donor ability and binary halide acceptor strength is required for strong bridge bonding, and is best achieved where the halogen is fluorine. The (OC) \(x\) M-F bonds are relatively weak, with high polar contributions, and are thus favourable for bridge formation to suitable fluoride ion acceptors. This is also true of other organometallic fluorides as shown by the recent x-ray structure of the complex \(\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuF} \cdot \mathrm{BF}_{3} \cdot 129\) This is particularly interesting, because \(\left(\mathrm{BF}_{4}\right)^{-}\)is not normally regarded as a co-ordinating anion, and the existence of a
discrete \(\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cu}\right]^{+}\)ion is chemically reasonable. The Cu---F-BF 3 interaction is weak (ave. Cu---F \(=2.31 \AA\), c.f. \(1.84 \AA\) in \(C u F^{206}\)), but this is in part due to the steric crowding of the phenyl rings preventing a closer approach of the tetrafluoroborate group, as the copper co-ordination tends to tetrahedral. By comparison with \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \mathrm{ReF}_{5}\), \(\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuF} \cdot \mathrm{BF}_{3}\) may be regarded as a complex of the known phosphine fluoride \(\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuF}^{128}\) with \(\mathrm{BF}_{3}\), but where the fluoride ion donation is so nearly complete that the bridging interaction is very largely ionic, with only a small contribution from the covalent fluorine-bridged form. In contrast, there is no reason to expect any covalent interaction in the complex \(\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{PtF}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-}\), which contains, presumably, a square-planar \(d^{8}\) cation. \({ }^{127}\)

The structure determination of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}\) confirms the existence of the carbonyl fluoride-pentafluoride complex, and now gives credance to earlier postulated structures of similar species. \(30,31 \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \mathrm{ReF}_{5}\) is the first confirmed compound where the potential octahedral vacancy of a transition metal pentafluoride has been filled by an organometallic fluoride donor, and opens up the possibility of a range of such complexes. In particular, its existence should cultivate interest in other reported fluorine-bridged organometaliic fluoride complexes \(\mathrm{Me}_{3} \mathrm{SnF} \cdot \mathrm{BF}_{3}\) and \(\mathrm{Me}_{3} \mathrm{SnF} \cdot \mathrm{MF}_{5}(\mathrm{M}=\mathrm{As}, \mathrm{Sb}), 114\) \(\mathrm{Me}_{3} \mathrm{SbY}_{2}\left(\mathrm{Y}=\mathrm{BF}_{4}, \mathrm{SbF}_{6}\right)\) and \(\mathrm{Me}_{3} \mathrm{Sb}\left(\mathrm{SiF}_{6}\right)\), 115 and \(\mathrm{Me}_{\mathrm{n}} \mathrm{SiF}_{4-\mathrm{n}} \cdot \mathrm{SbF}_{5}\) \((n=3,2,1) .207\) These may show considerable variation in the nature of their bridging interactions. \(\mathrm{Me}_{3} \mathrm{SnF}_{\mathrm{MF}}^{5}\) possibly possess an infinite chain structure, related to that of the parent Me \({ }_{3} \mathrm{SnF} .132,208\)

Fluorine bridging, also found in the organometallic structures \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4},^{16}\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{TiF}_{2} 4^{\prime}{ }^{91} \mathrm{Me}_{2} \mathrm{SnF}_{2},{ }^{209}\) and
\(\left(\mathrm{Me}_{2} \mathrm{AlF}\right)_{4},{ }^{210}\) is, as predicted, \({ }^{6}\) an important stabilising factor in these complexes. This contrasts with the complexes of the phosphine dinitrogenyl chloride \(\left(\mathrm{Me}_{2} \mathrm{PhP}\right)_{4} \operatorname{Re}\left(\mathrm{~N}_{2}\right) \mathrm{Cl}^{211}\) with numerous acceptors, which are all dinitrogen-bridged. 102 To bridge via the (trans-) chlorine atom might have significantly weakened the important \(R e \rightarrow N \equiv N \pi\)-back-donation, whereas Re \(-N \equiv N-M\) bridging \({ }^{160,161}\) enhances the co-ordination of the \(N_{2}\) ligand by back-donation to it from both sides.

\section*{6-4. AN ASSESSMENT OF FLUORINE-BRIDGING IN PENTAFLUORIDE ADDUCTS}

Having established the predominant covalency of the fluorine bridge in \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}\) it was suggested that its bond distances might be used as model for comparing the nature of other fluorine-bridged complexes. In the past, such complexes have frequently been assigned "covalent" or "ionic" structures, but it has now emerged that the situation is seldom as clearcut as such delineations imply, and some monitor of the strength of the covalent interaction is desireable. One possibility is the ratio of the bridging metal-fluorine distance to the terminal, for either the donor species ("cation") or the acceptor ("anion"). The former criterion has been used by Edwards \({ }^{212}\) " to assess the bridging in a related series of \(\mathrm{MF}_{3}{ }^{+}\) complexes of increasing covalency: \(\left(\mathrm{SF}_{3}\right)^{+}\left(\mathrm{BF}_{4}\right)^{-}\)1.75, \(\left(\mathrm{SeF}_{3}\right)^{+}\left(\mathrm{Nb}_{2} \mathrm{~F}_{11}\right)^{-}\)1.46, \(\left(\mathrm{TeF}_{3}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-1.41}\) and \(\left(\mathrm{SeF}_{3}{ }^{+} \mathrm{NbF}_{6}{ }^{-}\right)_{4}\) 1.36, (and \(\mathrm{SbF}_{3} 1.36\)), approaching the presumed limit of maximum covalency in the parent base \(\operatorname{TeF}_{4}(1.17) .^{213}\) Gillespie et alia have, in effect, followed a similar proceedure in comparing the \(\mathrm{Xe} . . . \mathrm{F}\) bond lengths of \(\mathrm{XeF}^{+}, \mathrm{XeF}_{3}{ }^{+}\)and \(\mathrm{XeF}_{5}{ }^{+}\)complexes, and also correlated these with vibrational spectroscopic data. 214 (e.g. \(\mathrm{ClF}_{2}{ }^{+}\)and \(\mathrm{BrF}_{2}{ }^{+} 215\) have given satisfactory results within each restricted series of compounds, but no attempt has been
made to correlate pentafluoride complexes more generally using the "anion" ratio.

If the "anion" ratio for \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}\) of 1.07 is taken as indicative of a predominantly covalent \(M-F-M\) interaction, the values for other complexes can be compared. A detailed analysis is beyond the scope of this work, but the indications are that there is significant correlation in many cases. Complexes regarded as having a high degree of ionic character tend to have the bridging bond lengths scarcely distinguishable (if at all) from the terminal, e.g. \(\left(\mathrm{Xe}_{2} \mathrm{~F}_{3}\right)^{+}\) \(\left(A s F_{6}\right)^{-} 1.00 ;{ }^{187}\) and \(\left(\mathrm{XeF}_{5}\right)^{+}\left(\mathrm{RuF}_{6}\right)^{-1.01 .216}\) Complexes where the interionic interaction is more important have higher ratios, e.g. \(\left(B r F_{2}\right)^{+}\left(S b F_{6}\right)^{-217}\) and \(\left(\operatorname{SeF}_{3}\right)^{+}\left(N b_{2} F_{11}\right)^{-},{ }^{218}\) both 1.04, and in the \(1.07-1.08\) region are \(\operatorname{Re}(C O)_{5} F, \operatorname{ReF}_{5}\), \(\mathrm{NbF}_{5} \cdot \mathrm{SbF}_{5}{ }^{64}\) and \(\mathrm{AsF}_{3} \cdot \mathrm{SbF}_{5},{ }^{219}\) all of which show evidence of a largely covalent bridge. Finally, the polymeric and oligomeric acceptor fluorides themselves \({ }^{61}\) have ratios between 1.08 and 1.11 for \(\left(\mathrm{SbF}_{5}\right)_{4},{ }^{125}\left(\mathrm{BiF}_{5}\right)_{n}{ }^{220}\) and pentafluorides with the \(\left(\mathrm{RuF}_{5}\right)_{4}\) structure, and 1.15 to 1.17 for \(\left(\mathrm{VF}_{5}\right)_{\mathrm{n}}\), those with the \(\left(\mathrm{MOF}_{5}\right)_{4}\) structure, and \(\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Tc}, \mathrm{Re})\). Thus the anion ratio monitors a gradation of covalent interaction in these complexes from essentially ionic lattices (e.g. (\(\left.\mathrm{Xe}_{2} \mathrm{~F}_{3}\right)^{+}\) \(\left(A s F_{6}\right)^{-}\)through to the presumed limit of maximum covalency in the parent acceptor fluorides.**

There are, however, less straightforward examples. Bartlett regarded an ionic formulation for (XeF) \({ }^{+}\left(\mathrm{RuF}_{5}\right)^{-}\)as sufficient, without need to invoke covalent contributions. \({ }^{216}\) The anion ratio of 1.07, however, points to a substantialiy

\footnotetext{
** This ratio is approached form below in the anion bridge
} ratio, and from below in the cation bridge ratio.
covalent formulation, which is also supported by Gillespie's Xe....F bond correlations. By comparison, \((X e F)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) \((1.05)^{189}\) has a weaker covalent contribution. This again agrees with Gillespie's correlations, and with the expectations of the relative fluoride ion donor abilities of \(\mathrm{RuF}_{5}\) and \(2 \times \mathrm{SbF}_{5} \cdot{ }^{105}\) In the remaining \(\mathrm{XeF}_{2}\) complex, \(\mathrm{XeF}_{2} \cdot\) WOF \(_{4},{ }^{221}\) the anion ratio (1.21) is unrepresentative, because the Xe-F-W bridge is distorted by lying trans- to the short \(W=0\) bond. The bridging \(W-F\) distance (2.18A) is, however, close to its equivalent (2.19A) in the revised structure of the parent (WOF \(\left.4_{4}\right)_{4} \cdot 222,223\) This suggests predominant covalency in the Xe-F-W bridge, approaching that in (\(\left.\mathrm{WOF}_{4}\right)_{4}\) itself, and agrees with the short Xe....F distance. This both points out a drawback to the simple anion ratio criterion, and suggests an alternative - a direct comparison of the anion bridging bond length with that of the parent fluoride. Anomalous ratios may also be caused by structural distortions, as in the case of the unusual cubic arrangement of \(\left(\mathrm{SeF}_{3}{ }^{+} \mathrm{NbF}_{6}{ }^{-}\right)_{4}(1.12) .{ }^{\text {188 }}\) Further problems are caused by the small differences involved, which are often little greater than the standard deviations of the bond lengths. On the whole, however, for discrete molecular units, the anion bond length ratio can give qualitatively useful comparisons of the covalency of the fluorine bridge.

6-5. THE VIBRATIONAL SPECTRA OF Re(CO) \()_{5} \underline{F-R e F}_{5}\)
With the \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{He}}^{5}\) geometry established, a more detailed assignment of its vibrational spectra may be attempted. Because of the effects peculiar to the solid state (such as lattice interactions and sample inhomogeneity), the assignment can only be regarded as tentative, but it was felt worthwhile
in view of the interesting nature of the compound, and the knowledge of its crystal structure. An attempt to obtain a Raman spectrum of the single crystal resulted in the shattering of the crystal by the laser beam, and the powder spectrum is not unequivocal because of decomposition in the beam.

An assignment based on the \(C_{s}\) symmetry of the whole \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}\) molecule, neglecting the symmetry differences between the crystallographically distinct \(C_{S}\left(\sigma_{v}\right)\) and \(C_{S}\left(\sigma_{d}\right)\) molecules of the asymmetric pair, predicts five infrared and Raman active bands in the carbonyl stretching region (4A' \(+A^{\prime \prime}\)). The peaks at` 2172 (i.r. and Raman), at 2100 (i.r.) and 2104 (Raman), and at 2082, 2063, 2046 (factor-group split i.r.) and \(2062 \mathrm{~cm}^{-1}\) (Raman), and that at \(1980 \mathrm{~cm}^{-1}\) (i.r.) can thus be attributed to \(A^{\prime}\) modes, while the bands at 2022, 2013 (factor-group split i.r.) and \(2029 \mathrm{~cm}^{-1}\) (Raman) can be associated with the \(A "\) mode, c.f. table 6.10, figs.6.9 and 6.10.

A more instructive alternative is to seek parallels with the rhenium pentacarbonyl halides (\(\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}\)), 111,224,55 on the basis of perturbations from the \(C_{4 v}\) microsymmetry of the \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\) unit. A similar approach has been used in the assignment of the vibrational spectra of the related \(C_{s}\) molecule \(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{ONO}_{2} \cdot 204\) Three infrared allowed bands in the carbonyl stretching region are predicted \(\left(2 A_{1}+E\right)\). The lowering of the overall microsymmetry by the \(-\mathrm{F}_{\mathrm{R}} \mathrm{ReF}_{5}\) group and coupling interactions within the crystallographic unit, give rise to splittings of the degenerate \(E\) mode and weak allowance of the formally forbidden \(B_{1}\), as the perturbation tends towards the breakdown of four-fold \(C_{4 V}\) symmetry to that of the \(C_{S}\) point group.

ier. spectra were of nujol mulls, Raman spectra of powdered solids.
* Possibly \(A_{1}\) or E.
+ This band may, alternatively be \(A_{1} \delta(R e-C-O)\).
\(\ddagger\) This band is assigned to the \(\nu\left(R^{I}-F\right)\) or \(\nu\left(R e^{I}-0\right)\) mode, c.f. \(\nu\left(\operatorname{Re}^{\mathrm{I}}-\mathrm{F}\right)\) in \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\) of 475,39 or \(480 \mathrm{w} \mathrm{cm}^{-1}, 111\) but it may, alternatively, be a \(\delta(\) Re-C-O) mode. 204

Fig.6.9 Infrared Spectrum of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Fe}} \mathrm{ReF}_{5}\) (Carbonyl Region)

Fig.6.10 Infrared Spectrum of \(\operatorname{Re}(C O)_{5} \mathrm{~F}_{\mathrm{FREF}}^{5}\left(750-400 \mathrm{~cm}^{-1}\right.\) Region)
\begin{tabular}{|c|c|c|c|}
\hline & \(C_{4 V}\) & \(C_{S}\) & \\
\hline i.r. and Raman & \(2 \mathrm{~A}_{1} \longleftrightarrow\) & \(2 A^{\prime}\) & i.r. and Raman \\
\hline inactive & \(\mathrm{A}_{2} \longleftrightarrow\) & \(A^{\prime}\) & inactive \\
\hline Raman & \(\mathrm{B}_{1} \longleftrightarrow\) & A' & i.r. and Raman \\
\hline inactive & \(\mathrm{B}_{2} \longrightarrow\) & \(A^{\prime}\) & inactive \\
\hline i.r. and Raman & \(\mathrm{E} \longrightarrow\) & \(A^{\prime}+A^{\prime \prime}\) & i.r. and Raman \\
\hline
\end{tabular}

This gives the assignments listed in table 6.10, and suggests that the previously unassigned peaks at 2032 and \(2035 \mathrm{~cm}^{-1}\) in the infrared spectra of solid \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}\) and \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}\), respectively, \({ }^{223}\) should be assigned to factor-group split \(E\) modes, as should the \(2013 \mathrm{~cm}^{-1}\) band in the preliminary spectrum of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\left(A s F_{5}\right.}\) which Mews' had assigned to the lower \(A_{1}\) mode. \({ }^{43}\) A more detailed spectrum of this latter compound should show bands comparable with \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}\), including a weak \(A_{1}\) mode at \(\sim 1980 \mathrm{~cm}^{-1}\). Extensive factor group splitting in the carbonyl region has also been found in the infrared spectra of solid \(\left(\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}, \mathrm{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{3}\) and \(\left(\mathrm{Os}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4} \cdot 16,111\) In the \(800-300 \mathrm{~cm}^{-1}\) regions, five sets of modes are expected: \(\delta(\operatorname{Re}-C-0),\left(650-500 \mathrm{~cm}^{-1}\right) ; \nu(R e-C),\left(500-350 \mathrm{~cm}^{-1}\right)\); \(\nu\left(R e^{V}-F_{t e r m}\right),\left(750-600 \mathrm{~cm}^{-1}\right) ; \nu\left(R e^{V}-F_{b r}\right)\), and \(\nu\left(R e^{I}-F_{b r}\right)\). Since the crystal structure indicates little ionic character in \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{ReF}}^{5}\), the microsymmetry about the \(\mathrm{Re}^{\mathrm{V}}\) atom will be close to \(C_{4 v}\), and the assignments have been made on this basis. Few unambiguous assignments of vibrations due to Re-C stretching and Re-C-O deformation modes have been made; those made for this region of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{CR}} \mathrm{ReF}_{5}\) follow previous attempts. 223,224

CHAPTER 7

THE CRYSTAL STRUCTURE

OF \(\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)

The proceedure for determining the crystal structure of \(\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)follows that of the previous chapter, and only the unique features of this determination are described. 7-1. OBTAINING THE GEOMETRIC AND INTENSITY DATA

\section*{7-1.1 The Geometric Data}

Several green crystals from the \(\mathrm{Re}_{2}(\mathrm{CO})_{10} / 3 \mathrm{ReF}_{6} / \mathrm{HF}\) reaction were photographed before finding one which both remained stable and gave satisfactory photographs. This had an irregular wedge shape. Again the symmetry and lack of general systematic absences of the photographs indicated an orthorhombic habit, and a primitive cell. The specific absences were:-
hoo \(h=2 n+1\) only okO \(k=2 n+1\) only hkO \(=2 n+1\) only \({ }^{+}\) \(001 \mathrm{l}=2 \mathrm{n}+1\) only 0kl \(k+1=2 n+1\) only* 101 no absences \({ }^{\star}\) hol no conditions

These implied: * an n-glide perpendicular to a, \({ }^{+}\)an a-glide perpendicular to \(c\), no glide perpendicular to b, i.e. a 2-fold rotation axis about b or a mirror plane through b. The two possible space groups are thus Pnma or \(\mathrm{Pn}_{1} a\), and the former was chosen".

\section*{7-1.2 Intensity Data Collection}

The crystal was mounted on the diffractometer about the b-axis. For reciprocal layers hol to h2l, w was scanned at 1.00 deg.min \({ }^{-1}\) over a range of \(1.2^{\circ}\), up to a maximum \(\omega\) value of \(30^{\circ}\) and T of \(60^{\circ}\). A \(1.25^{\circ}\) range was used for layers h3l to h6l. The crystal moved slightly in the capillary during the collection of both of the layers h2l and h3l. This necessitated realigning the crystal (using the diffractometer), and repeating the layer both times.
\(C_{6} \mathrm{~F}_{11} \mathrm{O}_{6} \mathrm{Re}_{3}, \mathrm{M}=935.6\), green orthorhombic crystals, \(a=15.30(9), b=13.64(7), c=8.16(3) \AA, U=1703 \AA^{3}, Z=4\), \(D_{\text {calc }}=3.65 \mathrm{~g} \cdot \mathrm{~cm}^{-3}\), space group chosen Pnma. 763 reflections (before editing) to \((\sin \theta) / \lambda=0.70\), collected at \(22-25^{\circ} \mathrm{C}\), with graphite-monochromated Mo-K \(\mathcal{K}_{\alpha}\) radiation (\(\mathcal{K}=0.7107 \AA\)), and corrected for absorbtion. Again, the air-sensitivity of the compound rendered density measurements impractical.

The unit cell volume was consistent with one molecule of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\) at each of the eight general symmetry positions of the cell (\(U_{\text {calc }}=1736 \AA^{3}\)). The Patterson synthesis, however, showed that there were 12 rhenium atoms in the cell, thus implying a different formula.

\section*{7-1.4 Absorbtion Correction}

For the highly-irregularly shaped crystal, the method of deMeulenaer and Tompa was used, \({ }^{225}\) which involves indexing the faces by means of the orientation with respect to a fixed point in the crystal. The crystal was re-aligned on the diffractometer to have the \(c^{*}\)-axis pointing down the goniometer, and the heap was transferred to a Nonius Crystal Orienter. The crystal was centred on the microscope crosswires so that, as the crystal was rotated, as many faces as possible appeared edge-on in the field of view intersecting the vertical crosswire. The intersection point for each edge-on face, and its complementary position \(180^{\circ}\) away, were noted, to obtain the perpendicular distance \(D\) of the face to a central point in the crystal. The \(x, y\) and \(z\) components of the equation of each face (the coefficients \(A, B\) and \(C\)) were derived from the corresponding dial readings, and from the angle the face made with the crosswires. These coefficients \(A-D\) were substituted.
in the programme ABSCR, together with the calculated linear absorbtion coefficient, \(\mu\), of \(226.2 \mathrm{~cm}^{-1}\).

As the formula of the compound was uncertain, the absorbtion correction was not applied until all the atoms in the cell had been located by difference Fourier syntheses. Until then, the uncorrected intensity data, written on to magnetic tape by the programme PRFTP, were sufficient.

\section*{7-2. THE STRUCTURE SOLUTION}

7-2.1 Location of the Rhenium Atoms by a Patterson Synthesis
A three-dimensional Patterson synthesis was performed, exactly as for \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \mathrm{ReF}_{5}\), except that the z-axis was sectioned at intervals of \(10 / 240\) ths. Peak resolution was sufficient to locate all the rhenium-rhenium vectors, without the need for a "sharpened" synthesis.

By means of Harker lines and planes, the Fourier coordinates of a rhenium atom at \((28,0,30)\) were deduced. This accounted for the eight expected \(R e_{1}-R e_{1}\) vectors associated with the eight general symmetry positions of the Pnma space group, but several other peaks still remained unassigned. This implied the presence of at least one rhenium atom at one of the special, symmetry-defined positions of the space group. The expected co-ordinates were calculated for the four vectors derived from an atom at the special position (\(x^{\prime}, 1 / 4, y^{\prime}\)). These were found to co-incide with \(\operatorname{Re}_{1}-R e_{1}\) vectors assigned to the atom (\(28,0,30\)) on the general position. This suggested co-ordinates for the special atom of \((28,60,30)\).

An atom at this position instead of the general position still would not have accounted for all the Patterson peaks, and it was concluded that there was one rhenium atom \(\left(\operatorname{Re}_{1}\right)\) at
a general position \((28,0,30)\), and one \(\left(\operatorname{Re}_{2}\right)\) at a special position. Having fixed \(\operatorname{Re}_{1}\), the correct position of \(\operatorname{Re}_{2}\), amongst all the possible relatives of \((28,60,30)\), was deduced to be \((92,60,30)\). This was done by considering all the possible atom positions which gave rise to the only \(\operatorname{Re}_{2}-\operatorname{Re}_{2}\) Harker plane \(\left(2 x^{\prime}, 1 / 4,2 z^{\prime}\right)\), found at \((\pm 56,60, \pm 59)\), and searching for their corresponding \(\operatorname{Re}_{1}-\operatorname{Re}_{2}\) cross-vectors. These two atom positions successfully accounted for all the Patterson peaks. As the general position generates a total of eight symmetry positions, and the special position four, there are twelve rhenium atoms in the unit cell, \(2 / 3\) of type \(R e_{1}\), \(1 / 3\) of type \(\operatorname{Re}_{2}\). This suggested a \(1: 2\) complex of some description. This was further supported by a rough plot of the relevant

Fig.7.1 Rough Projection of the Rhenium Atom Positions down 001
symmetry-related positions of the unit cell on a projection down \(z\) (fig.7.1). This showed that the \(R_{1}\) atoms are grouped in pairs at a separation of about \(4.3 \dot{A}\), consistent with them being linked by a single fluorine bridge \(\operatorname{Re}_{1}-\mathrm{F}_{\mathrm{R}} \mathrm{Re}_{1}\). The
distance from the atoms of each pair to the \(R e_{2}\) or other \(R e_{1}\) atoms was at least \(5.1 \AA\), implying a lattice based on discrete \(\left(R e_{1}-R e_{1}\right)\) dimers and single \(R e_{2}\) atoms, with an empirical formula \(\mathrm{Re}_{3}(\mathrm{CO})_{x} \mathrm{~F}_{\mathrm{y}}\).

7-2.2 Location of the Light Atoms and Elucidation of the
Formula
After three initial cycles of least squares refinement** with only the position of \(\mathrm{Re}_{1}\) entered, a difference Fourier synthesis confirmed the position of \(\mathrm{Re}_{2}\) from the electron density map. With both rhenium atoms entered, three least squares cycles brought \(R\) down to 0.24 , and a second difference Fourier revealed many light atom positions. Because of a mirror plane at \(y=60\), the \(y\)-range of the map required changing from \(0 \rightarrow 120\) to \(-60 \rightarrow+60\) in order for both halves of the asymmetric unit to lie on the Fourier map. Contouring the map on to perspex sheets revealed an octahedral environment of six fluorine atoms about \(R e_{1}\), with \(F_{1}\) very near the origin, and three carbonyl groups about \(R e_{2}\), two lying on the mirror plane, and one perpendicular to it.

\footnotetext{
** 736 unique reflections were used, with \(0.70>(\sin \theta) / \lambda>0.10,2\) and \(I \geqslant 3 \sigma I\). Rhenium atom temperature factors were set at \(3.0 \AA^{2}\) initially. The other details were as for \(\operatorname{Re}(C O)_{5} F_{0} \operatorname{ReF}_{5}{ }^{\circ}\)
}

These positions were entered, with initial temperature factors of \(3 \AA^{2}\). Three cycles of refinement brought \(R\) down to 0.141 , and another difference Fourier was calculated. This established a square plane of 4 carbonyl groups about \(R e_{2}\), lying on the mirror plane, with \((\mathrm{CO})_{21}\) perpendicular to it, indicating an \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)cation lying astride the mirror plane.

The Pnma space group has a centre of symmetry at \((0,0,0)\), and as a consequence, the \(\operatorname{ReF}_{6}\) octahedron must be related to a second octahedron in the neighbouring asymmetric unit through a shared fluorine atom \(\left(F_{1}\right)\) lying at (\(0,0,0\)), thus forming an \(\left(\operatorname{Re}_{2} F_{11}\right)^{-}\)ion, with an exactly linear, single fluorine bridge and with the two halves the \(\operatorname{Re}_{2} F_{11}\) unit exactly eclipsed.

The unit cell thus consisted of four molecules of a new ionic salt \(\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}\). The calculated volume of \(1708 \dot{A}^{3}\) (see section 6-1.2) was in excellent agreement with the observed figure of \(1703 \AA^{3}\). At this stage it was still possible that the space group could be \(\mathrm{Pn}_{1} \mathrm{a}\), which would. remove the mirror plane through the \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)ion, and the centrosymmetry of the \(\left(\operatorname{Re}_{2} F_{11}\right)^{-}\)ion. The R-factor was already quite low, "however, the subsequent refinement on the basis of Pnma proceeded satisfactorily, and the low anisotropy of the rhenium atom temperature factors indicated that their positions were not being unduly artificially constrained.

\section*{7-2.3 Least Squares Refinement}

Introduction of all the light atoms lowered \(R\) to 0.119 after two cycles of refinement. Temperature factors were between 2.7 and \(3.6 \AA^{2}\) for the rhenium atoms, and 1.6 and \(7.6 \AA^{2}\) for the light atoms. After two more cycles (\(R=0.117\)), the rhenium atom temperature factors were allowed to become
anisotropic, reducing \(R\) to 0.102 after four cycles. Some unrealistic interatomic distances at this stage meant that the co-ordinates of atoms \(C_{24}, C_{25}, O_{25}\) and \(F_{4}\) had to be changed slightly. This had little effect, however, as the atoms began to refine to their previous positions over six cycles, with \(R\) no lower than 0.101 , and so their original positions were restored. The refinement of the rhenium anisotropic temperature factors was ceased to calculate a difference Fourier, which revealed a low, substantially uniform, residual electron density in the cell.

Having thus confirmed the formula, the absorbtion correction was applied (see section 7-1.4), and the corrected intensity data written on to magnetic tape by PRFTP. After three refinement cycles, a difference Fourier showed improved uniformity in the residual electron density. After three cycles with anisotropic rhenium atom temperature factors, \(R\) was still only 0.116, and thereafter began rising. An error in the absorbtion correction was amended, and improved unit cell parameters employed. \(R\) fell to 0.101 after three cycles of isotropic refinement, and to a steady value of 0.077 after three cycles with anisotropic rhenium atom temperature factors.

Fifteen reflections with \(w \Delta^{2}>3\) were edited out by EDIT, reducing \(R\) to a final value of 0.064 after five SFLS cycles. A difference Fourier map showed no peaks above 15 or below -13 , confirming that no significant electron density remained unaccounted for. A refinement cycle was performed with the weighting scheme:
\[
w=\left(10+\left|F_{o b s}\right|\right)^{-1}
\]
replacing the unit weights used hitherto. No significant improvement was shown in the temperature factors or bond
distances, and the refinement was ceased.
The final positional and thermal parameters are listed in table 7.1, and the bond lengths and angles in tables 7.2 and 7.3. Again, the standard deviations are fairly high, for reasons similar to the previous structure. ORTEP drawings of the structure are shown in figs.7.2 and 7.3, and a complete listing of the observed and calculated structure amplitudes is given in Appendix 2. The crystal was shown to be typical of the bulk by comparison of the d-spacings of the of the powder photograph with those of the stronger single crystal reflections (table 7.4).

\section*{7-3. DESCRIPTION OF THE STRUCTURE}

7-3.1 The Unit Cell Arrangement
Green, \(\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)consists of a lattice of discrete \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)and \(\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)ions. The unit cell contents are shown in fig.7.2, and indicate that the cell is made up of zig-zag chains of \(\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)anions, sandwiched by \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)cations. There is no doubt of the ionic formulation, the closest contacts between the fluorine atoms of the anion and cation atoms being: to \(\operatorname{Re}=4.13 \AA\), to \(0=2.85 \AA\), and to \(C=3.19 \AA\), (see figs.7.3 and 7.4). The non-bonded Re....F approaches are slightly longer than those between \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{\mathrm{ReF}} 5_{5}\) molecules.

The detailed geometry of the individual ions is shown in fig.7.4. The Re-C, \(C \equiv 0\), and terminal Re-F bond lengths form statistically equivalent sets, with mean values of 2.01(4), 1.13(3) and \(1.84(2) \dot{A}\) respectively. The bridging Re-F distance of \(2.01(1)\) is significantly longer than the mean \(R e-F\) terminal bond.

Table 7.1 Final Positional and Thermal Parmeters of
\(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Atom & x/a & \(y / b\) & z/c & \(E\left(\dot{A}^{2}\right)\) \\
\hline \(\operatorname{Re}(1)\) & 0.11220 (9) & -0.00105(11) & \(0.12782(24)\) & see \\
\hline \(\mathrm{Re}(2)\) & 0.37747 (14) & 0.25 & \(0.10831(34)\) & below \\
\hline \(F(1)\) & 0.0 & 0.0 & 0.0 & 7.6(1.0) \\
\hline \(F(2)\) & 0.153(2) & -0.092(2) & -0.022(3) & \(5.9(0.6)\) \\
\hline F (3) & \(0.148(2)\) & \(0.105(2)\) & -0.005 (4) & 6.3(0.6) \\
\hline F (4) & \(0.212(2)\) & -0.002(3) & 0.242 (4) & 7.7(0.7) \\
\hline \(F(5)\) & \(0.066(2)\) & -0.105(2) & 0.242 (4) & 6.2(0.6) \\
\hline \(F(6)\) & 0.060(2) & 0.088(2) & 0.266(3) & 5.3(0.5) \\
\hline C(21) & 0.380(2) & \(0.105(2)\) & 0.097 (4) & 2.5(0.5) \\
\hline C(22) & 0.267 (3) & 0.25 & 0.244 (7) & 3.4(1.0) \\
\hline C(23) & 0.440 (3) & 0.25 & 0.326 (7) & \(3.2(1.0)\) \\
\hline C(24) & \(0.484(4)\) & 0.25 & -0.007 (10) & \(4.7(1.4)\) \\
\hline C (25) & \(0.301(4)\) & 0.25 & -0.100 (9) & \(5.0(1.3)\) \\
\hline O(21) & 0.380 (2) & \(0.021(2)\) & \(0.099(4)\) & \(5.0(0.6)\) \\
\hline O(22) & 0.206 (3) & 0.25 & 0.320 (6) & 6.5(1.1) \\
\hline 0 (23) & 0.479 (3) & 0.25 & 0.448 (6) & \(6.5(1.2)\) \\
\hline O(24) & \(0.552(3)\) & 0.25 & -0.080(6) & \(5.0(0.9)\) \\
\hline O(25) & 0.270(4) & 0.25 & -G.224(7) & 7.5(1.3) \\
\hline
\end{tabular}

Anisotropic Rhenium Atom Temperature Factors \(\left(\AA^{2}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Atom & \(\mathrm{B}_{11}\) & \(\mathrm{~B}_{22}\) & \(\mathrm{~B}_{33}\) & \(\mathrm{~B}_{23}\) & \(\mathrm{~B}_{13}\) & \(\mathrm{~B}_{12}\) \\
\hline \(\operatorname{Re}(1)\) & \(3.26(6)\) & \(4.05(7)\) & \(4.63(10)\) & \(-0.21(7)\) & \(0.08(8)\) & \(-0.45(7)\) \\
\(\operatorname{Re}(2)\) & \(2.98(8)\) & \(2.81(7)\) & \(4.08(14)\) & 0.0 & \(0.15(11)\) & 0.0 \\
\hline
\end{tabular}

Figures in parentheses here, and in the subsequent tables are the estimated standard deviations for the least significant figures.

Table 7.2 Bond Distances \((\dot{A})\) in \(\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)
\begin{tabular}{ll}
\(\operatorname{Re}(1)-F(1)\) & \(2.009(2)\) \\
\(\operatorname{Re}(1)-F(2)\) & \(1.85(3)\) \\
\(\operatorname{Re}(1)-F(3)\) & \(1.89(3)\) \\
\(\operatorname{Re}(1)-F(4)\) & \(1.79(3)\) \\
\(\operatorname{Re}(1)-F(5)\) & \(1.84(3)\) \\
\(\operatorname{Re}(1)-F(6)\) & \(1.84(3)\)
\end{tabular}
\(\begin{array}{ll}\operatorname{Re}(2)-C(21) & 1.98(3) \\ \operatorname{Re}(2)-C(22) & 2.03(6) \\ \operatorname{Re}(2)-C(23) & 2.02(6) \\ \operatorname{Re}(2)-C(24) & 1.89(7) \\ \operatorname{Re}(2)-C(25) & 2.07(7)\end{array}\)
\(\begin{array}{ll}C(21)-0(21) & 1.14(4) \\ C(22)-0(22) & 1.12(7) \\ C(23) & -0(23) \\ 1.16(8)\end{array}\)
\(\begin{array}{ll}C(24)-0(24) & 1.19(8) \\ C(25)-O(25) & 1.12(9)\end{array}\)

\begin{tabular}{|l|r|r|r|}
\hline\(F(1)-\operatorname{Re}(1)-F(2)\) & \(87.0(0.8)\) & \(C(21)-\operatorname{Re}(2)-C(22)\) & \(92.5(1.0)\) \\
\(F(1)-\operatorname{Re}(1)-F(3)\) & \(86.9(0.8)\) & \(C(21)-\operatorname{Re}(2)-C(23)\) & \(91.7(1.0)\) \\
\(F(1)-\operatorname{Re}(1)-F(4)\) & \(179.7(1.1)\) & \(C(21)-\operatorname{Re}(2)-C(24)\) & \(87.6(1.0)\) \\
\(F(1)-\operatorname{Re}(1)-F(5)\) & \(86.6(0.9)\) & \(C(21)-\operatorname{Re}(2)-C(25)\) & \(88.6(1.0)\) \\
\(F(1)-\operatorname{Re}(1)-F(6)\) & \(86.8(0.8)\) & \(C(22)-\operatorname{Re}(2)-C(23)\) & \(85.1(2.2)\) \\
\(F(2)-\operatorname{Re}(1)-F(3)\) & \(92.4(1.2)\) & \(C(22)-\operatorname{Re}(2)-C(24)\) & \(176.8(2.8)\) \\
\(F(2)-\operatorname{Re}(1)-F(4)\) & \(93.3(1.3)\) & \(C(22)-\operatorname{Re}(2)-C(25)\) & \(88.5(2.4)\) \\
\(F(2)-\operatorname{Re}(1)-F(5)\) & \(86.8(1.2)\) & \(C(23)-\operatorname{Re}(2)-C(24)\) & \(91.7(2.7)\) \\
\(F(2)-\operatorname{Re}(1)-F(6)\) & \(173.7(1.1)\) & \(C(23)-\operatorname{Re}(2)-C(25)\) & \(173.6(2.3)\) \\
\(F(3)-\operatorname{Re}(1)-F(4)\) & \(93.1(1.3)\) & \(C(24)-\operatorname{Re}(2)-C(25)\) & \(94.7(2.9)\) \\
\(F(3)-\operatorname{Re}(1)-F(5)\) & \(173.4(1.2)\) & \(\operatorname{Re}(2)-C(21)-0(21)\) & \(176.5(3.2)\) \\
\(F(3)-\operatorname{Re}(1)-F(6)\) & \(88.4(1.1)\) & \(\operatorname{Re}(2)-C(22)-0(22)\) & \(179.7(5.3)\) \\
\(F(4)-\operatorname{Re}(1)-F(5)\) & \(93.5(1.4)\) & \(\operatorname{Re}(2)-C(23)-0(23)\) & \(177.1(4.7)\) \\
\(F(4)-\operatorname{Re}(1)-F(6)\) & \(92.9(1.3)\) & \(\operatorname{Re}(2)-C(24)-0(24)\) & \(180.0(5.8)\) \\
\(F(5)-\operatorname{Re}(1)-F(6)\) & \(91.7(1.2)\) & \(\operatorname{Re}(2)-C(25)-0(25)\) & \(170.3(5.7)\) \\
\hline
\end{tabular}

Table 7.4 Comparison of X-ray Powder Diffraction and Single.

\section*{Crystal Deta for \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{hkl} & \multicolumn{2}{|l|}{Crystal} & \multicolumn{2}{|l|}{Powder} \\
\hline & \[
{ }^{*} I_{o b s}
\] & \({ }^{\text {d }}\) ¢ 1 & & \\
\hline & & & 7.60 & 1 \\
\hline & & & 7.10 & 4. \\
\hline 210 & 509 & 6.67 & 6.67 & 7 \\
\hline & & & 6.39 & 3 \\
\hline 201 & 993 & 5.58 & 5.56 & 3 \\
\hline 121 & 3793 & 4.95 & 4.97 & 10 \\
\hline 221 & 3115 & 4.32 & 4.33 & 10 \\
\hline 311 & 175 & 4.12 & 4.10 & 1 \\
\hline 230 & 436 & 3.91 & 3.92 & 6 \\
\hline 400 & 4233 & 3.83 & 3.79 & 6 \\
\hline 321 & 713 & 3.65 & 3.65 & 4 \\
\hline 122 & 829 & 3.41 & & \\
\hline 040 & 7593 & 3.41 \(\}\) & 3.44 & 5 \\
\hline 420 & 419 & 3.34 & 3.33 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{hkl} & \multicolumn{2}{|r|}{Crystal} & \multicolumn{2}{|l|}{Powder} \\
\hline & \(I_{\text {obs }}\) & \[
{ }^{d_{n k l}}
\] & & I' \\
\hline 302 & 4509 & 3.19 & 3.16 & 6 \\
\hline 312 & 366 & 3.10 & & 2 \\
\hline 421 & 230 & 3.09 & 3.09 & 2 \\
\hline 132 & ?104 & \(2.98\}\) & 2.93 & 1 \\
\hline 241 & 183 & \(2.91\}\) & 2.93 & 1 \\
\hline 322 & 330 & 2.89 & 2.90 & 1 \\
\hline 511 & 153 & \(2.80\}\) & 2.79 & 1 \\
\hline 402 & 143 & 2.79 & 2.79 & 1 \\
\hline 521 & 611 & 2.64 & 2.63 & 3 \\
\hline 051 & 423 & 2.59 & & 6 \\
\hline 142 & 1899 & \(2.58\}\) & 2.59 & 6 \\
\hline 600 & 290 & \(2.55\}\) & 2.55 & 3 \\
\hline 440 & 1111 & 2.55 & 2.55 & 3 \\
\hline 610 & 259 & 2.51 & 2.49 & 2 \\
\hline
\end{tabular}
\(I^{\prime}=\) Visually estimated \(I_{o b s}{ }^{\circ}\)
d in Å. * Units are
arbitrary. Values under 100 are excluded. Single crystal
reflections with no clear powder counterpart are:
\begin{tabular}{rrrrrr}
020 & \(d=6.82\) & \(I=316\) & 410 & \(d=3.68\) & \(I=299\) \\
031 & 3.97 & 522 & 411 & 3.36 & 200 \\
131 & 3.84 & 223 & 250 & 2.57 & 613
\end{tabular}

Fig.7.2 Unit Cell Contents of \(\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{-11}\right)^{-}\right.\)

Fig.7.3 Relative Arrangements of One Cation and Two Anions in \(\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)

Fic.7.4 Detailed Geometry of \(\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}{ }_{2} \underline{F}_{11}\right)^{-}\)

Selected non-bonded Distances:
\begin{tabular}{llll}
\(\operatorname{Re}(2)-F(3)\) & \(4.13 \AA\) & \(O(21)-F(4)\) & 2.85 \\
\(\operatorname{Re}(2)-F(4)\) & 4.41 & \(C(21)-F(4)\) & 3.19 \\
\(\operatorname{Re}(2)-F(6)\) & 5.30 & \(O(21)-F(3)\) & 3.83 \\
\(\operatorname{Re}(2)-\operatorname{Re}(1)\) & 5.31 & \(C(21)-F(3)\) & 3.65
\end{tabular}

\section*{7-3.2 The Cation Geometry}

Four carbonyl groups of the cation lie on the Pnma crystallographic mirror plane, which is also parallel to the linear \(F-R e-F-R e-F\) units of the anions. Two more carbonyl groups complete an almost exactly regular octahedral \(\operatorname{Re}(\mathrm{CO})_{6}\) unit, as expected for an 18-electron, \(d^{6}\) hexa-co-ordinate species, and in agreement with the reported vibrational spectra. Asymmetries in the bond angles are not significant. X-ray 226 and electron diffraction \({ }^{227,228}\) studies have shown the neutral hexacarbonyls of chromium, 226,227 molybdenum 227,228 and tungsten 227,228 to exhibit similar geometry, but hitherto no structure had been performed on any of the isoelectronic ionic species \(\left(M(C O)_{6}\right)^{-}(M=V, N b, T a)\) or \(\left(M^{\circ}(C O)_{6}\right)^{+}\left(M^{i}=M n, T c, R e\right)\).

The mean \(\mathrm{Re}-\mathrm{C}\) and \(\mathrm{C}-\mathrm{O}\) bond lengths are comparable with those of the rhenium carbonyl derivatives previously listed in table 6.9. It is more interesting, however to compare these bond distances with those of the isoelectronic \(W(C O)_{6}\), in the light of the present understanding of bonding in metal carbonyls.

The \(\nu(C \equiv 0)\) stretching frequencies in the vibrational spectra of \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)are known to be increased by some \(70 \mathrm{~cm}^{-1}\) relative to \(W(C O)_{6}\), as a result of the increased nuclear charge on the metal. \({ }^{47}\) The rhenium \(d \pi\) electrons are more tightly bound, the \(d \pi \rightarrow p \pi\) back-bonding to the \(C O \pi^{*}\) orbitals is therefore decreased, and the \(C \equiv 0\) bond strengthened. Unfortunately the \(C \equiv 0\) bond length is a poor monitor of such changes, being largely invariant over a wide range of metal carbonyl complexes. 229 No particular significance can therefore be attached to the probable shortening of this bond length in \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}(1.13(3) \AA)\) relative to \(W(\mathrm{CO})_{6}\) \(\left(1.148(2) \AA\right.\))..\(^{228}\)

The metal-carbon bond length is, however, more sens-
itive. Because CO is such a weak \(\sigma\)-donor, the magnitude of the corresponding weakening of the \(M-C \pi\)-system in the above process normally swamps any increase in \(M \longleftarrow\) :CO \(\sigma\)-donation, and the \(R e-C\) bond should be weaker than the \(W-C\). The mean Re-C bond (2.01(4) \(\dot{A}\)) is unexpectedly shorter than the mean \(W-C(2.058(3) \AA)\) distance in \(W(C O)_{6},{ }^{228}\) or an Re-C bond distance of \(2.07 \dot{A}\) estimated by Beach and Gray \({ }^{230}\) on the basis of early electron diffraction data on \(W(C O)_{6} .^{231}\)

This lends support, however, to a suggestion made by Abel et alia; 47 on the basis of vibrational data, that considerable strengthening of the \(M-C \sigma\)-bond occurs along the series \(\left(V(C O)_{6}\right)^{-}, \operatorname{Cr}(C O)_{6}, W(C O)_{6},\left(\operatorname{Re}(C O)_{6}\right)^{+}\), balancing out the weakening of the \(\mathrm{M}-\mathrm{C} \pi\)-bond. Accurate bond length data on \(\left(\mathrm{Mn}(\mathrm{CO})_{6}\right)^{+}\)and \(\left(\mathrm{V}(\mathrm{CO})_{6}\right)^{-}\), where the central atoms are much weaker scatterers, are required to confirm this postulate.
\(\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)is the first crystal structure of an unsubstituted, cationic metal carbonyl. Confirmed species are at present restricted to the manganese triad, the existence of \(\left(\mathrm{Fe}(\mathrm{CO})_{6}\right)^{2+}\) and \(\left(\mathrm{Os}(\mathrm{CO})_{6}\right)^{2+103}\) now having been questioned, and there being no confirmation of the presence of \(\left(\mathrm{Co}(\mathrm{CO})_{5}\right)^{+}\)in the highly unstable \(\mathrm{CO}_{2}(\mathrm{CO})_{9}{ }^{232}\) It is interesting that while their carbonyl analogues evade isolation, X-ray structures are known of several unsubstituted cationic isocyanides, e.g. \(\left(\mathrm{Fe}(\mathrm{CNMe})_{6}\right)^{2+}\left(\mathrm{Cl}^{-}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 233\) and \(\left(\mathrm{Co}(\mathrm{CNMe})_{5}\right)^{+}\left(\mathrm{ClO}_{4}\right)^{-} .234\)

7-3.3 The Anion Geometry and Comparison with Rhenium Fluorides
The anion may be thought of in terms of two ReF \({ }_{6}\)
octahedra sharing one vertex, which is a centre of symmetry. Consequently the Re-F-Re bridge is exactly linear, and the
two linked octahedra exactly eclipsed. The symmetry and "isolation" of the anion enabled the use of its bond lengths as "typical" \(\operatorname{Re}^{\vee}-F\) bridging and terminal distances to interpret the bridge bonding in \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{A}} \cdot \mathrm{ReF}_{5}\), in the absence of a full structure on \(\operatorname{ReF}_{5}\). The Re-F distances of both compounds are compared with those of other rhenium fluorides in table 7.5.

The terminal distances of \(\operatorname{ReF}_{7}, \operatorname{ReF}_{6},-\operatorname{Re} F_{5}\) (in \(\left.\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}} \mathrm{ReF}_{5}\right)\), and \(\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)form a group at 1.83-1.84 \(\AA\), and those of \(\mathrm{ReO}_{3} \mathrm{~F}\) and \(\mathrm{ReOF}_{4}\) a pair at \(1.86 \dot{A}\), but in neither "group" is there a significant variance of the distance with oxidation state. The long average bond distance of \(\left(\operatorname{ReF}_{8}\right)^{2-}\) is probably a consequence of the need to avoid ligand crowding with the larger co-ordination sphere. Long Re-F bonds also occur when trans- to \(\mathrm{Re}=0\) bonds in the octahedral environments of ReOF \({ }_{4} 239\) and the novel, linear oxygen-bridged, cubic-cluster anion \(\left(\mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{~F}_{6}\right)_{4}{ }^{8-} .240\) Bridging distances are best considered as individual cases. The \(\operatorname{Re}^{I}-F\) bond in \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Cl}} \mathrm{ReF}_{5}\) is the first transition metal(I)-fluorine bond length to be determined apart from CuF and AgF, and is significantly longer than the higher oxidation state bonds. The Re....Re separation in \(\left(\operatorname{Re}_{2} F_{11}\right)^{-}(4.02 \dot{A})\) is, however, longer than that in \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}\) (\(3.89 \AA\)), but similar to that in \(\mathrm{ReOF}_{4}(4.01 \AA)\), the respective \(\mathrm{Re}-\mathrm{F}-\mathrm{Re}\) bridging angles being \(180^{\circ}, 141^{\circ}\) and \(139^{\circ}\).

7-3.4 A Comparison of the Bridging in \(\left(M_{2}{\underset{-11}{11}}^{)^{-} \text {Structures }}\right.\)
and Related Species
A number of crystal structures have been performed where the \(M_{2} F_{11}\) unit may be identified, with a variety of

Table 7.5 Rhenium-Fluorine Bond Lengths
\begin{tabular}{|c|c|c|c|c|}
\hline Compound & O.S. & Re-F(term) & Re-F(br) & Ref \\
\hline \(\mathrm{ReF}_{7}\) (vapour) \(^{\text {a }}\) & 7 & 1.835 & - & 233 \\
\hline \(\mathrm{ReF}_{6}\) (vapour) \(^{\text {a }}\) & 6 & \(1.832(4)\) & - & 234 \\
\hline \(\mathrm{K}_{2} \mathrm{ReF}_{8}\) & \(\sigma\) & 1.90 (4) & - & 235 \\
\hline \[
\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}
\] & 5 & \(\left\{\begin{array}{l}1.83(3) \\ 1.91(4) c\end{array}\right.\) & 1.97(2) & e \\
\hline \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\) & 5 & 1.84(2) & 2.01(1) & e \\
\hline \(\mathrm{ReO}_{3} \mathrm{~F}\) (vapour) \(^{\text {b }}\) & 7 & 1.859 (8) & - & \\
\hline \[
\mathrm{ReOF}_{4}
\] & 6 & 1.86 (4) & \[
\left\{\begin{array}{l}
1.99(4) \\
2.30(4) d
\end{array}\right.
\] & 237 \\
\hline \(\left(\mathrm{NH}_{4}\right)_{8}\left(\mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{~F}_{6}\right)_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}\) & 5 & \(2.02(9)\) & - & 238 \\
\hline \(\mathrm{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{ReF}_{5}\) & 1 & - & \(2.17(4)\) & e \\
\hline
\end{tabular}
O.S. = Rhenium oxidation state for the Re-F bond in question.
a. Gas phase electron diffraction study.
b. Gas phase microwave study.
c. Bond trans- to bridging fluorine.
d. Bond trans- to \(\mathrm{Re}=0\) bond.
e. This work.

Table 7.6 Fluorine Bridge Geometry in \(\left(M_{2} F_{11}\right)^{-}\)Structures

\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Compound } & \begin{tabular}{l}
Exti. \\
Br.
\end{tabular} & \begin{tabular}{l}
Ave. \\
Term
\end{tabular} & \begin{tabular}{l}
Extl. \\
Ratio
\end{tabular} & \begin{tabular}{l}
Intl. \\
Ratio
\end{tabular} & \begin{tabular}{l}
Cation \\
Ratio
\end{tabular} & \begin{tabular}{l}
Intl. \\
Angle
\end{tabular} & Ref \\
\hline\(\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Re}_{2} \mathrm{~F}_{11}\right)^{-}\) & - & 1.84 & - & 1.0 & \((4.13)\) & \(180^{\circ}\) & 0 \\
\(\left(\mathrm{I}_{2}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & - & 1.85 & - & 1.0 & \((2.89)\) & 166 & 241 \\
\(\left(\mathrm{SbCl}_{4}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & - & 1.87 & - & 1.0 & \((\sim 3.0)\) & 155 & 124 \\
\(\left(\mathrm{ClO}_{2}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & - & 1.82 & - & 1.03 & - & 146 & 242 \\
\(\left(\mathrm{IF}_{4}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & - & 1.87 & - & 1.0 & 1.40 & & 243 \\
\(\left(\mathrm{TeF}_{3}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & 1.88 & 1.84 & 1.02 & 1.04 & 1.41 & 161 & 212 \\
\(\left(\mathrm{BrF}_{4}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & 1.86 & 1.81 & 1.03 & 1.11 & 1.24 & 173 & 244 \\
\(\left(\mathrm{XeF}_{3}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & 1.90 & 1.84 & 1.03 & 1.01 & 1.34 & 155 & 245 \\
\(\left(\mathrm{SeF}_{3}\right)^{+}\left(\mathrm{Nb}_{2} \mathrm{~F}_{11}\right)^{-}\) & 1.90 & 1.82 & 1.04 & 1.02 & 1.46 & 166 & 218 \\
\(\left(\mathrm{XeF}^{+}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\) & 1.93 & 1.83 & 1.05 & 1.04 & 1.30 & 149 & 189 \\
\hline
\end{tabular}
a. Average external bridging M-F bond distance (where one can be distinguished), \(\AA\).
b. Average terminal M-F distance (\(\dot{A}\)).
c. and d. Internal bridging M-F distances (\(\AA\)).
e. Nearest X....F approach (\(X=R=I, S b, e t c\).)
* Bridging/Terminal X-F ratio in the "cation", where one exists For the ionic structures, the value of \(e\) is given, in parentheses.
© This work.
cations, See table 7.6. \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)is the ideal limiting case of an undistorted \(\left(M_{2} F_{11}\right)^{-}\)anion in an ionic lattice. \(\left(\mathrm{I}_{2}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-241}\) and \(\left(\mathrm{SbCl}_{4}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-124}\) also consist of discrete ions, and have a symmetrical Sb-F-Sb bridge in the anion, but in both cases this bridge is substantially "bent". The size of the bridging angle in (\(M_{2} F_{11}\)) groups does not therefore appear to bear any relation to the degree of ionic character of the compounds. The remaining structures show a significant distortion of the \(\left(M_{2} F_{11}\right)\) unit bond lengths from discrete ion cases, but in contrast to the complexes discussed in the previous chapter, it is difficult to establish an order of covalency in the series.

Davies' criterion of the asymmetry of the internal M-F-M bridge assumes oversimply that this is not affected significantly by other factors. Thus it fails in the cases of \(\left(\mathrm{ClO}_{2}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-242}\) and \(\left(\mathrm{Br}_{2}\right)^{+}\left(\mathrm{Sb}_{3} \mathrm{~F}_{16}\right)^{-}, 246\) where despite considerable asymmetry of the anion bridges, the Cation....F distances clearly indicate predominantly ionic structures. The external bridging ratio, analogous to the "anion ratio" used in section 6-4., confirms the substantially ionic nature of the first five structures in table 7.6, with perhaps a little covalent interaction in \(\left(\mathrm{ClO}_{2}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\)and \(\left(\mathrm{IF}_{4}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\), but gives a rather different order for the remaining structures, compared with that predicted roughly on the basis of the cation bridge ratios. In particular, the \(\left(\mathrm{TeF}_{3}\right)^{+}\)and \(\left(\mathrm{BrF}_{4}\right)^{+}\)structures appear much less covelent than their positions in their respective cation ratio series would suggest.

Clearly, though the anion distortions are related to the degree of covalency in the complexes, they are governed
by a complicated combination of factors, different from those determining the cation ratios, and currently unravellable. The number, and angle, of the interactions will be important, as well as the effect of trans- ligands (most Cation....F-M. bridges lie cis- to the internal M-F-M birdge), and the relative orientation of the two \(M F_{6}\) octahedra (usually more or less eclipsed). These factors are difficult to assess with the present data on \(\left(M_{2} F_{11}\right)^{-}\)complexes.

Discrete, fluorine-bridged, binuclear anions are still comparatively uncommon, and crystallographic studies (mostly of antimony species) show that bent bridges are almost exclusive. Linear arrangements are known only in \(\left(\operatorname{Re}_{2} F_{11}\right)^{-}\), \(\left(\mathrm{Zr}_{2} \mathrm{~F}_{13}\right)^{-247}\) and \(\left(\mathrm{Et}_{3} \mathrm{AlFAlEt}_{3}\right)^{-2}, 248\) in each case fixed by a centre of symmetry at the bridging fluorine. Linear oxygen bridging in the related metal \((V)\) species \(\left(\mathrm{Re}_{2} \mathrm{O}_{3}(\mathrm{CN})_{8}\right)^{4-} 249\) and \(\mathrm{Re}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt} 2\right)_{4}, 250\) and the \(M^{I V}\) anions \(\left(\mathrm{Cl}_{5} \mathrm{M}^{\left.\mathrm{M}-\mathrm{O}-\mathrm{MCl}_{5}\right)^{4-}(\mathrm{M}=\mathrm{W}, \mathrm{Re}, \mathrm{Ru}, \mathrm{Os}}{ }^{251-254}\right.\)) are said to be associated with \(\pi\)-bonding. There is no definite evidence, however, for \(\pi\)-bonding in pentafluoride derivatives. 255,125 Linear bridging in the tetrameric \(\operatorname{MoF}_{5}{ }^{110}\) and WOF \(_{4}{ }^{222}\) sturctures, and many infinite chain structures such as \(\mathrm{BiF}_{5}{ }^{220}\) and \(\mathrm{Me}_{2} \mathrm{SnF}_{2},{ }^{209}\) are more likely to be determined by symmetry, packing or ionic bonding considerations, and the same probably applies to \(\left(\operatorname{Re}_{2} F_{11}\right)^{-}\).

A compound of formula \(\mathrm{Re}_{2}^{\mathrm{VI}} \mathrm{OF}_{10}\) was proposed for a by-product of the preparation of \(\mathrm{ReF}_{5}\) and \(\mathrm{ReOF}_{4}\) from \(W(\mathrm{CO})_{6}\) and \(R e F_{6}\), using \(W F_{6}\) as the solvent, \({ }^{108}\) but this has yet to be confirmed. Non-linear oxygen-bridged \(\left(\mathrm{M}_{2} \mathrm{OF}_{10}\right)^{2-}\) anions (\(M=A s, S b\)) have recently been established by X-ray crystal structures. \({ }^{256}\)

7-3.5 The Chemical Significance of \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\) \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)is well-known in being amongst the most stable of simple metal carbonyl species, forming salts with a wide variety of anions, including \(\left(P F_{6}\right)^{-258}\) and \(\left(A s F_{6}\right)^{-47}\) \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)is, however, the first occurrence of an organometallic cation with a transition metal (V) fluoroanion. These latter species had previously been associated only with highly fluorinated systems considered incompatible with oxidation-sensitive organometallic species. The stable coexistence of \(\operatorname{Re}^{\mathrm{I}}\) and \(\mathrm{Re}^{\mathrm{V}}\) in the same, molecule in \(\operatorname{Re}(\mathrm{CO})_{5} F \cdot \operatorname{ReF}_{5}\), and the same: lattice in \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\), as well as the now growing number of other organometallic compounds exhibiting widely separated oxidation states, imply a greater stability to oxidation of organometallic systems than had been appreciated hitherto. A measure of the stability of \(\left(\operatorname{Re}(\mathrm{CO})_{\sigma}\right)^{+}\)has already been noted in its failure to react with an excess of \(X_{2} F_{2}\) in HF solution. (Section 3-2.3). These compounds also represent a significant extension of the range of pentafluoride complexes, which would benefit further investigation. \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)in particular provides the first report of the \(\left(\operatorname{Re}_{2} F_{11}\right)^{-}\)anion, even though analogous ions of most other pentafluorides are well established. This reflects the present neglect of the chemistry of \(\operatorname{ReF}_{5}\), whose only derivatives prior to this study were simply the \(\operatorname{ReF}_{6}{ }^{-}\)salts of \(\mathrm{NO}^{+}, \mathrm{NO}_{2}{ }^{+}, \mathrm{K}^{+}, \mathrm{Cs}^{+}\)and \(\left(\mathrm{N}_{2} \mathrm{H}_{6}\right)^{2+} .258\)

\section*{CHAPTER 8}

CRYSTALLOGRAPHICAL STUDIES
\(\mathrm{ON}_{\mathrm{N}\left(\mathrm{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}}^{-}\)

\section*{8-1. The Geometric Data}

An irregular, brick-shaped, white crystal from the pale green crystalline product of an \(\mathrm{Re}_{2}(\mathrm{CO})_{10} / 3 \mathrm{XeF}_{2} / \mathrm{HF}\) reaction was mounted for X-ray studies. Weissenberg and precession photographs revealed spurious spots amidst a pattern of reflections from an orthorhombic unit cell, but the imperfections were not sufficient to prevent analysis of the data. The unit cell parameters (see below) were taken from zerolayer precession photographs, indexed in conjunction with cone-axis and Weissenberg photographs.

There were no general systematic absences, implying a primitive cell. The specific absences were: Okl, \(k+l=2 n+1\); hol, \(h+l=2 n+1\), implying \(n-g l i d e s\) perpendicular to the aand b-axes respectively; hkO, no absences. Pnn2 or Pnnm were the only possible space groups consistent with these absences, but a distinction between them was impossible at this stage.

The d-spacings obtained from an X-ray powder pattern of ground white cŕystals are listed in table 8.1. 8-2. Summarised Crystal Data, and the Formula Unit Volume Fit
C. \(\mathrm{C}_{5} \mathrm{O}_{7} \mathrm{Re}_{2}\), \(\mathrm{M}=651.5\), white or pale green orthorhombic crystals, \(a=6.67(1), b=10.95(2), c=8.81(1) \AA, U=644 \dot{A}^{3}, z=2\), \(D_{\text {calc }}=3.37 \mathrm{~g} \cdot \mathrm{~cm}^{-3}\). Space group Pnn2 or Pnnm. The data consisted of 415 unique reflections, collected in two parts as described below, using graphite-monochromated Mo-K \(K_{\alpha}\) irradiation \((\lambda=0.7107 \dot{A})\).

The probable formula had been deduced to be \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\) \(\left(\text { ReOF }_{5}\right)^{\text {- }}\) on the basis of other physical data (see section 2-2.2). The expected volume for two such molecules, calculated

Table \(8.1 \quad X\)-ray Powder Data for \(\left(\operatorname{Re}\left(\mathrm{CO}_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}\right.\)
\begin{tabular}{ccccc}
d & Intensity & & \multicolumn{1}{c}{} & Intensity \\
5.15 & vw & & 3.48 & s \\
4.98 & s & 3.12 & m \\
4.84 & s & 2.45 & vw \\
3.99 & w & 2.22 & w
\end{tabular}

Table 8.2 Comparative Formula Unit Volumes of Rhenium Carbonyl
Fluorides and Related Species
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Molecule } & Crystal Habit & \(V_{\text {obs }}\) & \(V_{\text {calc }}\) & \(\Delta V_{8}\) & Ref. \\
\hline\(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\) & Orthorhombic & \(3 / 2 \times 1135\) & \(3 / 2 \times 1139\) & 4 & \(*\) \\
\(\left(\operatorname{Re}(\mathrm{CO})_{4} \mathrm{H}_{2}\right.\) & Monoclinic & \(1 \times 1271\) & \(1 \times 1280\) & 9 & 186 \\
\(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}\) & Orthorhombic & \(4 \times 1184\) & \(4 \times 1206\) & 22 & \\
\(\left(\operatorname{Ru}(\mathrm{CO})_{3} \mathrm{~F}_{2}\right)_{4}\) & Tetragonal & \(1 \times 1146\) & \(1 \times 1232\) & 86 & 32 \\
\(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}\) & Orthorhombic & \(1 / 2 \times 1288\) & \(1 / 2 \times 1376\) & 88 & \(*\) \\
\(\left(\operatorname{Re}(\mathrm{CO})_{5}\right)_{2}\) & Monoclinic & \(1 \times 1480\) & \(1 \times 1600\) & 120 & \(118 a\) \\
\hline
\end{tabular}
* This work.
\(V=\) Unit cell volume, expressed as a multiple of \(V_{8}\), the volume occupied by the number of molecular units required to give a unit containing eight metal atoms.
\(\Delta V_{8}=V_{8}(c a l c)-V_{8}\) (obs), i.e. the scaled difference for comparing the fits.
on the basis of the principles established in section 6-1.2, is \(688 \AA^{3}\). This is in reasonable agreement with the observed unit cell volume, \(644 \dot{A}^{3}\), when compared with the correlations for related compounds (table 8.2). Although the formula \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{4}\right)^{-}\)provides a better fit \(\left(U_{\text {calc }}=650 \dot{A}^{3}\right)\), it is not consistent with the other physical data on the compound. \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}\)is thus regarded as the most likely formula. 8-3. A Consideration of the Photographic Intensity Data

The general pattern of the X-ray photographs was of a regular array of strong reflections, with a few, additional, and very much weaker reflections lying between major rows. This suggested that the major reflections monitored primarily a simple sub-lattice of rhenium atoms, in very similar environments. The weak reflections, however, only monitored the light atom positions, or any slight asymmetry of the rhenium atom positions they might impose.
\[
\text { If the crystal is a simple lattice of }\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}
\]
and \(\left(\mathrm{ReOF}_{5}\right)^{-}\)ions, the co-ordination spheres of the rhenium atoms are indeed very similar. As the scattering is so dominated by the rhenium atoms, the intensity data may not distinguish between the co-ordination spheres of anion and cation, and may thus monitor only an averaged rhenium atom environment. This problem is accentuated if the space group is Pnnm, because in this case both anion and cation are required to be centrosymmetric. Concomitantly, this would render a distinction between anion oxygen and fluorine atoms impossible. With Pnn2, the centrosymmetric requirement is removed, and the situation is more favourable for distinguishing between anion and cation. It still might not be possible,
however, to define the anion geometry more than as "an octahedral array of six light atoms."

8-4. Diffractometer Intensity Data Collection

To minimise the above problems, these vitally important weak reflection intensity data were collected separately from the strong, using a longer counting time to improve the precision of their measurement.

The crystal was mounted on the diffractometer about the \(b^{*}\)-axis. Systemmatic weaknesses noted in the pattern of the strong reflections suggested that the rhenium atoms lay on a body-centred sub-lattice:

OKI: \(k=2 n+1, l=2 n+1\); c.f. true absences \(k+1=2 n+1\).
1kl: \(k=2 n+1, l=2 n\); c.f. no true absences,
hkO: \(h=2 n+1, k=2 n+1\); c.f. no true absences,
hk1: \(h=2 n, k=2 n+1 ; ~ c . f . n o t r u e ~ a b s e n c e s . ~\) The strong reflections were therefore collected by selecting only the reflections of this body-centred lattice, with no absences. The even layers hol to h12l (there being no strong reflections for odd layers in \(b-\)) were collected by scanning a range in \(\omega\) of \(1.20^{\circ}\), at a rate of \(1.00 \mathrm{deg} \cdot \mathrm{min}^{-1}\), up to a maximum \(\omega\) value of \(30^{\circ}\), and maximum \(\Upsilon\) of \(60^{\circ}\), using a ten second background count before and after each reflection. Two check reflections were measured after every 20 reflections. The weak reflections were collected in two sets. The even layer reflections were collected for the full lattice, using the true absences, but those reflections of body-centred origin (for which \(h+k+l=2 n\)) were rejected. For the odd layers, all reflections were collected. An \(\boldsymbol{\omega}\) scan range of \(1.35^{\circ}\) was used in both cases, at \(0.5 \mathrm{deg} \cdot \mathrm{min}^{-1}\), with a 30 second background, up to a maximum \(\omega\) of \(20^{\circ}\) and \(r\) of \(40^{\circ}\), using one
check reflection after every 20.
The data were corrected for absorbtion of \(X\)-rays by estimating the crystal to be a rectangular block of dimensions \(0.530 \times 0.317 \times 0.270 \mathrm{~mm}\)., with the a-axis perpendicular to the largest face, and thus obtaining the equation for each face. A value of \(199.33 \mathrm{~cm}^{-1}\) was calculated for the linear absorbtion coefficient, assuming a formula of \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{ReOF}_{5}\right)^{-}\). The coefficients \(A, B, C, D\) and \(\mu\) were substituted in the programme ABSCR, as.before.

8-5. Attempted Structure Solution.
The subsequent parts of the analysis were performed by Dr. D.R. Russell. A body-centred array of rhenium atoms was found by Patterson and Fourier methods. A pattern of light atom peaks round one atom in the difference Fourier map was consistent with an \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\)ion, but it has not yet been possible to identify uniquely the light atom arrangement of the anion, whichever of the two space groups was used.

Thus, a full solution of the crystal structure of the white compound was not found, but the available X-ray diffraction data are consistent with the formula, \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\) \(\left(\mathrm{ReOF}_{5}\right)^{-}\), already proposed on the basis of other physical and chemical data.

\section*{EPILOGUE}

This study has set out to establish an understanding of the carbonyl fluoride system of rhenium, and to use that as a basis for understanding the whole field of transition metal carbonyl fluorides, considered in the context of organometallic halides in general. It is the author's opinion, however, that such a work is not just a study in chemistry, but, in a wider sphere, is seeking to unravel some small part of the glory of God, as revealed in creation. I believe that the order of the universe is not a "chance" occurrence, but the handiwork of a wise and compassionate creator, who made man as part of that creation that he might seek after God and enjoy a relationship with Him, and understand and subdue the world around him. No mechanistic understanding of any aspect of the universe, great or small, removes its dependence on the sustaining word of God. The scientist is called to look at his test tube or into his microscope at the wonders of creation, and give praise to Him who created it. And so I do.
```

,
"The heavens are telling the glory of the Lord, and the firmament proclaims His handiwork"

```

\section*{APPENDIX 1}

A listing of the observed and calculated structure amplitudes for \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{Re}}^{5} \mathrm{Re}_{5}\). Values of \(\mid \mathrm{F}_{\text {obs }}\) ! are multiplied by an overall scale factor, K, of 3.614, while both \(K\left|F_{\text {obs }}\right|\) and \(\left|F_{\text {calc }}\right|\) are multiplied by a factor of 20 .

The output is of the form:
* h k
\(1 \mathrm{KF}_{\mathrm{o}} \mathrm{F}_{\mathrm{c}}\)

\(4=\)
1

\(\begin{array}{lll}3 & 4727 & 4180 \\ 4 & 0 \cap 27 & 8786\end{array}\) \(\begin{array}{lll}4 & 8027 & 8786 \\ 5 & 196 ? & 1055\end{array}\)

5
7
8
9
10
\(H=\)
\(\begin{array}{lll}1 & 1075 \\ 1 & 9677 & 1052 \\ 2 & 6084 & 560\end{array}\) 2 6084
3040
3
\(\begin{array}{lll}4183 & 2117 \\ 1611 & 1520\end{array}\)
\begin{tabular}{rr}
1 & \\
3 & 2 \\
4 & 7 \\
5 & 2 \\
6 & 1 \\
7 & 1 \\
8 & 2 \\
0 & 1 \\
12 & 1 \\
\hline\(H=\)
\end{tabular}

224
023
986
391
\(\begin{array}{rr}715 & 39 n \\ 1539 & 154 n\end{array}\)

\section*{APPENDIX 2}

A listing of the observed and calculated structure amplitudes of \(\alpha-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\). Values of \(\left|F_{\text {obs }}\right|\) are multiplied by an overall scale factor, K, of 4.038, while both \(K\left|F_{\text {obs }}\right|\) and \(\left|F_{\text {calc }}\right|\) are multiplied by a factor of 20 .

The out.put is of the form:
* h k
\(1 \mathrm{KF}_{\mathrm{o}} \mathrm{F}_{\mathrm{C}}\)

 \(\begin{array}{lr}H=16 \\ 1 & 5 \\ 3 & 57\end{array}\) \(\begin{array}{ll}k= & 10 \\ 65 & -57 \\ 76 & 46\end{array}\) 10
\(=107\)
\(=100\)
\(=10\)
1. P.Schutzenberger : Compt.rend., 1870,70,1134, and J.Chem.Soc., (1871),1008.
2. W.Hieber : Adv.Organometallic Chem., 1970, 8 , 1.
3. See for example E.W.Abel and F.G.A.Stone : Quart.Rev., 1970, 24, 498.
4. R.D.W.Kemmitt, R.D.Peacock and I.L.Wilson : Chem.Comm., (1968), 772.
5. R.G.Pearson : Chem.in Britain, 1967,3,103.
6. reference 3., Page 534 and 538.
7. E.W.Abel, I.S.Butler and J.G.Reid : J.Chem.Soc., (1963), 2068.
8. W.Douglas and J.K.Ruff : J.Organometallic Chem., 1974,65,65.
9. J.L.Cihonski and R.A.Levenson : Inorg.Chem., 1975,14,1717.
10. W.Hieber and H.Schulten : Z.anorg.allgem.Chem., 1939, 243, 164.
11. E.W.Abel, G.B.Hargreaves and G.Wilkinson : J.Chem.Soc., (1958), 3149.
12. I.L.Wilson : unpublished results 1968-69.
13. C.J.Marshall : PhD Thesis (Leicester), 1972.
14. C.C.Addison, M.Kilner, and A.Wojcicki : J.Chem.Soc., (1961), 4839.
15. M.F.A.Dove and A.F.Clifford : "Inorganic Chemistry in Liquid Hydrogen Fluoride", Vieweg and Pergamon, Oxford, (1971) - vol.II,part 1 of "Chemistry in Non-aqueous Ionising Solvents", G.Jander, H.Spandau and C.C.Addison, eds.
16. A.J.Hewitt, J.H.Holloway, R.D.Peacock, J.B.Raynor and I.L.Wilson : J.Chem.Soc.(D), (1976), in the press.
17. R.D.W.Kemmitt, R.D.Peacock and J.Stocks : J.Chem.Soc.(A), (1971), 846.
18. D.W.A.Sharp : Proc.Chem.Soc., (1960), 317.
19. E.E.Aynsley, R.D.Peacock and P.L.Robinson : Chem.and Ind.(London), (1952),1002, and R.D.Peacock : Progr. Inorg.Chem., 1960, 2, 193.
20. G.B.Hargreaves : PhD Thesis (Imperial College, London), 1959.
21. R.D.Peacock : Proc.Chem.Soc., (1957),59.
22. G.B.Hargreaves and R.D.Peacock : J.Chem.Soc., (1958),4390.
23. ibid., (1960),1099.
24. ibid., (1958),2170.
25. ibid., (1960),2618.
26. D.M.Bruce, J.H.Holloway and D.R.Russell : Chem.Comm., (1973), 321.
27. D.R.Russel.l : PhD Thesis (Glasgow), 1963.
28. I.L.Wilson : PhD Thesis (Leicester), 1968.
29. J.H.Holloway : "Noble-Gas Chemistry", Methuen, London, (1968).
30. C.J.Marshall and R.D.Peacock : 6th Internat.Symposium on Fluorine Chemistry (Durham), 1971, Abstract C-33.
31. D.M.Bruce, J.H.Holloway, C.J.Marshall, S.Misra and R.D.Peacock : 4th European Symposium on Fluorine Chemistry (Ljubljana), 1972, Abstract 1-17.
32. C.J.Marshall, R.D.Peacock, D.R.Russell and I.L.Wilson :

Chem.Comm., (1970), 1643.
33. T.A.O'Donnell and K.A.Phillips : Inorg.Chem., 1970, 9 , 2611.
34. S.Misra : unpublished results 1970-71.
35. A.A.Grinberg, M.M.Singh and Y.S.Varshavskii : Russ.J.

Inorg.Chem., 1968,13,1399.
36. J.Stocks : PhD Thesis (Leicester), 1969.
37. L.Vaska, J.Peone : Chem.Comm., (1971),418.
38. T.A.O1Donnell and K.A.Phillips : Inorg.Chem., 1972,11,2563.
39. T.A.O'Donnell, K.A.Phillips and A.B.Waugh : Inorg.Chem., 1973,12,1435.
40. J.H.Holloway : unpublished observations.
41. R.T.Paine : Inorg.Chem., 1973,12,1457.
42. H.D.Kaesz, R.Bau, D.Hendrickson and J.M.Smith : J.Amer. Chem.Soc., 1967,89,2844.

今. ‥rows : Angew.Chem.internat.Edit., 1975,14,640.
44. R.D.Peacock and D.W.A.Sharp : J.Chem.Soc., (1959),2762.
45. R.Colton : "The Chemistry of Rhenium and Technetium", p.54, Interscience, London, (1965).
45. A.J.Vogel : "Practical Organic Chemistry", 3rd edit., p.172, Longmans, London, (1957).
47. E.W.Abel, R.A.N.McLean, S.P.Tyfield, P.S.Braterman, A.P.Walker and P.J.Hendra : J.Mcl.Spectroscopy, 1969, 30,29.
48. J.H.Holloway and J.B.Raynor : J.Chem.Soc.(D), (1975),737.
49. O.Glemser, J.Wegener and R.Mews : Chem.Ber., 1967,100, 2474.
50. R.Bougon, T.B.Hui and P.Charpin : Inorg.Chem., 1975, 14.1822.
51. K.W.Bagnall, J.G.H.du Preez, B.J.Gellatly and J.H.Holloway : J.Chem.Soc.(D), (1975), 1963.
52. J.H.Holloway, H.Selig and H.H.Claasen : J.Chem.Phys., 1971,54,4305; K.O.Christe, C.J.Schack, D.Pilipovitch, E.C.Curtis and W.Sawodny : Inorg.Chem., 1973,12,620; and E.Mayer and F.Sladky : ibid., 1975,14,589.
53. B.J.Brisdon and D.A.Edwards : ibid., 1968,7,1898.
54. G.W.A.Fowles and J.L.Frost: J.Chem.Scc.(A), (1966),1631.
55. I.J.Hyams, D.Jones and E.R.Lippincott : ibid., (1967),1987.
56. W.A.Sunder and F.A.Stevie : J.Fluor.Chem., 1975, \(\underline{6}, 449\).
57. E.L.Muetterties : Inorg.Chem., 1965, 4,1841.
58. T.Kruck, M.Höfler and M.Noack : Chem.Ber., 1966,99,1153, and refs. cited therein.
59. J.Gaunt and J.B.Ainscough : Spectrochim.Acta, 1957,10,57. 60. I.R.Beattie, K.M.S.Livingstone, G.A.Ozin and D.J.Reynolds : J.Chem.Soc.(A), (1969),958.
61. R.D.Peacock : Adv.Fluorine Chem., 1973, ㄱ,113.
62. R.T.Paine : personal communication 1974 , see also ref.96.
63. J.Fawcett and J.H.Holloway : unpublished results, see also ref. 116.
64. A.J.Edwards : J.Chem.Soc.(D). (1972:. 2325.
65. B.Frlec and J.H.Holloway : ibid, (1975),535.
66. A.Davison, W.McFarlane, L.Pratt and G.Wilkinson : J.Chem. Soc., (1962),3653.
67. D.A.Symon and T.C.Waddington : J.Chem.Soc.(A), (1971), 953.
68. See for example observations made in ref. 67 and in A.P.Ginsberg and M.J.Hawkes : J.Amer.Chem.Soc., 1968,90,5930.
69. A.P.Ginsberg : Transition Metal Chemistry, 1965, í,111; tabies 11,12 and 14-16, and p.184f.
70. J.C.Green and M.L.H.Green : "Transition Metal Hydrogen Compounds", in. "Comprehensive Inorganic Chemistry", J.C.Bailar, H.J.Emeleus, R.Nyholm and A.F.TrotmanDickenson, eds., Pergamon, Oxford, vol.4, (1973), p.355f, and especially p.402-428.
71. A.Davison, J.A.McCleverty and G.Wilkinson : J.Chem.Soc., (1963), 1133.
72. F.A.Cotton, J.L.Down and G.Wilkinson : ibid., (1959),833.
73. T.E.Sloan and A.Wojcicki : Inorg.Chem., 1968, 工, 1268.
74. R.Ugo, S.Cenini and F.Bonati : Inorg.Chim.Acta, 1967,1,451. 75. W.Jetz and W.A.G.Graham : Inorg.Chem., 1971,10,1159. 76. R.H.Haines and A.L.du Preez : J.Chem.Soc.(A), (1970),2341. 77. W.E.Williams and F.J.Lalor : J.Chem.Soc.(D), (1973),1329. 78. P.M.Treichel, R.L.Shubkin, K.W.Barnett and D.Reichard : Inorg.Chem., 1966, \(\underline{5}, 1177\).
79. D.J.Parker and M.H.B.Stiddard : J.Chem.Soc.(A), (1970), 480.
80. D.J.Parker : ibid., p.1382.
81. D.M.Adams, J.N.Crosby and R.D.W.Kemmitt : ibid., (1558), 3056 .
82. R.B.King : "Transition-Metal Organometallic Chemistry", Academic Press, New York, (1969), p. 98.
83. K.Moedritzer : Sÿn.Inorg.Metal-Org.Chem., 1971,1,63.

E4. R.Colton and J.E.Garrard : Aust.J.Chem., 1973,26,1781.
85. c.f. a). E.W.Abel, W.Harrison, R.A.N.McLean, W.C.Marsh and J.Trotter : Chem.Comm., (1970),1531, and b). M. Herberhold and G.Suss : Angew.Chem.internat.Edit., 1975,14,700.
86. B.Frlec, H.Selig and H.H.Hyman : Inorg.Chem., 1967, 6, 1775.
87. H.H.Cläasen, J.G.Malm and H.Selig : J.Chem.Phys. 1962, 36,2890.
88. M.W.Anker, R.Colton and I.B.Tomkins : Rev.Pure Appl.Chem. 1968,18,23.
89. F.A.Cotton and D.L.Hunter : Inorg.Chem., 1974, 13, 2044.
90. P.L.Goggin and J.Mink : J.Chem.Soc.(D), (1974),534.
91. W.S.Sheldrick : J.Fluor.Chem., 1974, 4,415.
92. A.J.Eówards and P.Taylor : Chem.Comm., (1970). 1474.
93. M.F.A.Dove and A.J.Edwards : personal communications, 1974.
94. See for example J.Fischer and R.Weiss : Acta.Cryst., 1973, B29, 1963.
95. J.H.Holloway and S.Misra : unpublished results, 1971. 96. R.T.Paine and L.B.Asprey : Inorg.Chem., 1975,14,1111, and refs. cited therein.
97. J.H.Holloway and J.G.Knowles : J.Chem.Soc.(A), (1969), 756.
98. F.O.Sladky, P.A.Bulliner and N.Bartlett : ibid., p.2179. 99. M.D.Campbell : Dissert.Abs., 1965,26,2457, also referred to in ref. 15 p .167.
100. Z.Iqbal and T.C.Waddington : J.Chem.Soc.(A), (1968), 2958. 101. N.Bartlett and N.K.Jha in "Noble-Gas Compounds", H.H. Hyman, ed., University of Chicago Press, Chicago, (1963),p.23.
102. J.Chatt, J.R.Dilworth, G.J.Leigh and R.L.Richards : Chem.Comm., (1970),955.
103. E.W.Abel and S.P.Tyfield : Adv.Organometallic Chem., 1970, 조.117.
104. R.S.Nyholm, M.R.Snow and M.H.B.Stiddard : J.Chem.Soc., (1965), 6564.
105. J.Burgess, J.H.Holloway, R.D.Peacock and P.Taylor : 5th European Symposium on Fluorine Chemistry, (A`viemore), 1974, Abstract I3.
106. F.A.Cotton, B.A.Frenz and A.J.White : J.Organometallic Chem., 1973,60,147.
107. R.F.Turner and J.J.Turner : personal communication, 1974.
108. G.R.Jones : PhD Thesis, (Birmingham), 1966.
109. T.A.O:Donnell and K.A.Phillips : Inorg.Chem., 1973,12, 1437.
110. A.J.Edwards, R.D.Peacock and R.W.H.Small : J.Chem.Soc., (1962), 4486.
111. A.Hewitt and J.H.Holloway : unpublished results, 1974-76.
112. R.B.King and N.Welcman : Inorg.Chem., 1969, 8 , 2540. 113. R.R.Schreike and B.O.West : Inorg.Nucl.Chem.Letts., 1969, 5, 141.
114. H.C.Clark and R.J.O'Brien : Inorg.Chem., 1963,2,1020. 115. H.C.Clark and R.G.Goel : ibid., 1966.5.998.
116. P.A.W.Dean and R.J.Gillespie : Can.J.Chem., 1971,49,1736.
117. Refs. quoted in S.Brownstein : ibid., 1974,52,4101. 118.a). L.F.Dahl, E.Ishishi and R.E.Rundle : J.Chem.Phys., 1957,26,1750.
118.b). N.I.Gapotchenko, Y.T.Struchov, N.V.Alekseev and I.A.Ronova : J.Strukt.Chem., 1973,14,383.
119. A.J.Edwards and G.R.Jones : J.Chem.Soc.(A), (1969),1651. 120. H.Preiss : Z.Chem., 1966, \(\underline{6}, 350\).
121. M.F.A.Dove and M.O.Ali : J.Inorg.Nucl.Chem., in the press. 122. H.Preiss : Z.anorg.allgem.Chem., 1972,389,254. 123. M.O.Ali : PhD Thesis, (Nottingham), 1973. 124. H.B.Miller, H.W.Baird, C.L.Bramlett and W.K.Templeton : Chem.Comm., (1972),262.
125. A.J.Edwards and P.Taylor : Chem.Comm., (1971),1377.
126. K.R.Dixon : personal communication, 1974.
127. M.A.C"airns, K.R.Dixon and J.J.McFarland : J.Chem.Soc.(D), (1975),1159.
128. F.H.Jardine, L.Rule and A.G.Vohra : J.Chem.Soc.(A), (1970), 238.
129. A.P.Gaughan, Z.Dori and J.A.Ibers : Inorg.Chem., 1974, 13.1657.
130. T.S.Piper and G.Wilkinson : J.Inorg.Nucl.Chem., 1956, 2,38.
131. P.M.Druce, B.M.Kingston, M.F.Lappert, T.R.Spalding and R.C.Srivastava : J.Chem.Soc.(A), (1969),2106.
132. H.C.Clark, R.J.O'Brien and J.Trotter : J.Chem.Soc., (1954), 2332.
133. C.A.Reed and W.R.Roper : J.Chem.Soc.(D); (1973),1370. 134. M.J.Hacker : PhD Thesis, (Leicester), 1972. 135. M.Pánkowski, B.Demerseman, G.Bouquet and M.Bigorgne : J.Organometallic Chem., 1972,35,155.
136. B.Demerseman, G.Bouquet and M.Bigorgne : ibid., p.341. 137. W.H.Delphin and R.A.D.Wentworth : Inorg.Chem., 1973,12, 1914.
138. ibid., 1974,13,2037.
139. ref. cited in M.A.S.King and R.E.McCarley : ibid., 1973, 12,1972.
140. R.B.King : J.Inorg.Nucl.Chem., 1967,29,2119.
141. W.R.Cullen, D.J.Patmore and J.R.Sams : Inorg.Chem., 1973, 12, 867.
142. Trinh-Toan : Dissert.Abs.Internat., 1972,32B,6938. 143.a). R.J.Haines and A.L.du Preez: J.Amer.Chem.Soc., 1969, 91,769.
143.b). ibid., 1971, 93,2820.
144. M.R.Snow and M.H.B.Stiddard : Chem.Comm., (1965),580. 145. W.Hieber and A.Wirsching : Z.anorg.allgem.Chem., 1940, 245, 35 .
146. D.A.Symon and T.C.Waddington : J.Chem.Soc.(D), (1974), 78.
147. E.O.Fischer and E.Moser : Z.anorg.allgem.Chem., 1966, 342,156.
148. E.O.Fischer and E.Moser : J.Organometallic Chem., 1965, \(\mathbf{3}^{16}\), and Z.Naturforsch, 1965,20B,184.
149. M.G.B.Drew and J.D.Wilkins : J.Chem.Soc.(D), (1973), 2664.
150. F.W.B.Einstein and A.C.MacGregor : ibid., (1974),778.
151. N.J.Nelson, N.E.Kime anci D.F.Shriver : J.Amer.Chem.Soc., 1969, 91, 5173.
152. J.Chatt, R.H.Crabtree, E.A.Jeffery and R.L.Richards: J.Chem.Soc.(D), (1973),1167.
153. T.Blackmore and J.M.Burlitch : Chem.Comm., (1973), 405.
154. A.E.Crease and P.Ledzdins : J.Chem.Soc.(D), (1973),1501.
155. B.Chevrier, J.-M.Le Carpentier and R.Weiss : J.Amer. Chem.Soc., 1972,94,5718.
156. B.Chevrier and R.Weiss : Angew.Chem.internat.Edit., 1974,13,1.
157.F.P.Boer: J.Amer.Chem.Soc., 1966, 88,1572.
158. G.A.Olah and M.B.Comisarow : ibid., p.3313.
159. J.Bacon, P.A.W.Dean and R.J.Gillespie : Can.J.Chem., 1971, 49, 1276.
160. M.Mercer, R.H.Crabtree and R.L.Richards : Chem.Comm., (1973), 808, and M.Mercer : J.Chem.Soc.(D), (1974),1637.
161. P.D.Cradwick, J.Chatt, R.H.Crabtree and R.L.Richards : Chem. Comm., (1975), 351.
162. W.E.Silverthorn : Chem.Comm., (1971), 1310 .
163. R.Robson : Inorg.Chem., 1974,13.475.
164. D.J.Dárensbourg: Inorg.Chim.Acta, 1972, 6, 527.
165. R.N.Scott, D.F.Shriver and D.D.Lehman : ibid., 1970, 4, 73.
166. R.J.Fitzgerald, N.Y.Sakkab, R.S.Strange and V.P.Narutis: Inorg. Chem. 1973,12,1081.
167. T.S.Piper, F.A.Cotton and G.Wilkinson : J.Inorg.Nucl. Chem., 1955,1,165, and B.F.Hallam, O.S.Mills and P.L.Pauson : ibid., p.313.
168. E.C.Johnson, T.J.Meyer and N.Winterton : Inorg.Chem., \(1971,10,1673\).
169. "Standard Methods of Chemical Analysis", vol.5,p.771, W.W.Scott and N.H.Firman, eds., Technical Press, London, (1952).
170. J.H.Holloway : J.Chem.Educ., 1966,43,203.
171. J.G.Malm and H.Selig : J.Inorg.Nucl.Chem., 1961,20,189.
172. A.J.Hewitt, J.H.Holloway and B.Frlec : J.Fluor.Chem., 1975, 5, 169.
173. A.J.Edwards and D.R.Slim : Chem.Comm. (1974),178.
174. R.D.W.Kemmitt : PhD Thesis (Imperial College, London), 1962, and F.A.Anderson, B.Bak and A.Hillebert : Acta `Chem.Scand., 1953,ㄱ,236.
175. R.Colton and J.E.Knapp : Aust.J.Chem., 1972,25,9. 176. G.H.Stout and L.H.Jensen : "X-ray Structure Determination. A Practical Guide", MacMillan, London, (19ie).
177. M.J.Buerger : "Crystal Structure Analysis", Wiley, New York, 1960.
178. M.J.Buerger : "Contemporary Crystallography", McGrawHill, New York, 1970.
179. "International Tables for Crystallography", vol.1, N.F.M. Henry and K.Lonsdale, eds., Kynoch Press, Birmingham, (1"952) .
180. ibid., vol.3, C.H.MacGillavry, G.D.Rieck and K.Lonsdale, eds., (1962).
181. D.W.J.Cruickshank, D.E.Pilling, A.Bujosa, F.M.Lovell and M.Truter : "Computing Methods and the Phase Problem in X-ray Crystal Analysis", Pergamon, Oxford, (1961).
182. C.W.Johnson : "ORTEP - A FORTRAN thermal ellipsoid plot program for crystal structure illustrations", Oak Ridge Natl.Lab., Tennessee, U.S.A., (1965).
183. W.H.Zachariasen : J.Amer.Chem.Soc., 1948, 70, 2147 .
184. S.J.Mitchell and J.H.Holloway : J.Chem.Soc.(A), '(1971), 2789.
185. L.Pauling : "The Nature of the Chemical Bond". p. 246 , Cornell University Press, Ithaca, (1960).
186. M.J.Bennett, W.A.G.Graham, J.K.Hoyano and W.L.Hutcheon : J.Amer.Chem.Soc., 1972,94,6232.
187. N.Bartlett, B.G.de Boer, F.J.Hollander, F.O.Sladky, D.H.Templeton and Z.Zalkin : Inorg.Chem., 1974,13,780.
188. A.J.Edwards and G.R.Jones : J.Chem.Soc.(A): (1970),1891. 189.a). V.M.McRae, R.D.Peacock and D.R.Russell : Chem.Comm., (1969), 29.
189.b). J.Burgess, C.J.W.Fraser, V.M.McRae, R.D.Peacock and D.R.Russell : J.Inorg.Nucl.Chem. in the press.
190. V.G.Andrianov, B.P.Biryukov and Y.T.Struchkov : J.Strukt. Chem., 1969,10,1014.
191. S.Merlino and G.Montagnoli : Atti.Soc.Toscana Sci.Nat. Mem., 1969,76,335.
192. ibid. : Acta Cryst., 1968, B24,424.
193. P.T.Greene and R.F.Bryan : J.Chem.Soc (A), (1971), 1559.
194. D.Bright and O.S.Mills : J.Chem.Soc.(D), (1974),219. 195. L.F.Dahl and Chin-Hsuan Wei : Acta Cryst., 1963,15,611. 196. H.P.Calhoun and J.Trotter : J.Chem.Soc.(D), (1974), 377 . 197. L.B.Handy, J.K.Ruff and L.F.Dahl : J.Amer.Chem.Soc., 1970, 92, 7327.
198. D.Bright and J.A.Ibers : Inorg.Chem., 1969, 8 , 709 .
199. J.Hilton : PhD Thesis, Nottingham, (1968).
200. I.S.Astakhova, V.A.Seminon and Y.T.Struchkov : J.Strukt. Chem., 1969,10,419.
201. A.S.Foust, W.A.G.Graham and R.P.Stewart : J.Organometallic Chem., 1973,54, C22.
202. M.R.Churchill and R.Bau : Inorg.Chem., 1967, \(\underline{\text {, 2086, }}\) 203. D.R.Russell : personal communication, 1974.
204. C.C.Addison, R.Davis and N.Logan : J.Chem.Soc.(A), (1970), 3333.
205. F.O.Sladky and N.Bartlett : ibid., (1969),2188. 206. R.W.G.Wyckhoff : "Crystal Structures", vol.I, 2nd edit., Wiley, New York, (1963).
207. G.A.Olah and Y.K.Mo : J.Amer.Chem.Soc., 1971,93,4942. 208. K.Licht, P.Koehler and H.Kreigsmann : Z.anorg.allgem. Chem., 1975,415,31.
209. E.O.Schlemper and W.C.Hamilton : Inorg.Chem., 1966, 5, 995.
210. G.Gundersen, T.Haugen and A.Haaland : J.Organometallic Chem., 1974, 54.77.
211. B.R.Davis and J.A.Ibers : Inorg.Chem, 1971,10,578. 212. A.J.Edwards and P.Taylor : J.Chem.Soc.(D), (1973),2150. 213. A.J.Edwards and F.I.Hewaidy : J.Chem.Soc.(A), (1968), 2977.
214. R.J.Gillespie, B.Landa and G.J.Schrobilgen : J.Inorg. Nucl.Chem., in the press; R.J.Gillespie and B.Landa : Iñorg.Chem., 1973,12,1383; and B.Landa : PhD Thesis, McMaster University, Canada, (1974).
215. H.Lynton and J.Passmore : Can.J.Chem. 1971, 49, 2539. 216. N.Bartlett, M.Gennis, D.D.Gibler, B.K.Morrell and A.Zalkin : Inorg.Chem., 1973,12,1717.
217. A.J.Edwards and G.R.Jones : J.Chem.Soc.(A), (1969),1467. 218. ibid. : (1970),1491.
219. A.J.Edwards and R.J.C.Sills : ibid., (1971),942.
220. C.Hebecker : Z.anorg.allgem.Chem., 1971, 384,111.
221. P.A.Tucker, P.A.Taylor, J.H.Holloway and D.R.Russell :

Acta Cryst., 1975, B31,906.
222. A.J.Edwards and G.R.Jones : J.Chem.Soc.(A), (1968), 2074.
223. M.J.Bennett, T.E.Haas and J.T.Purdman : Inorg.Chem., 1972,11,207.
224. W.A.McAllister and A.L.Marston : Spectrochim.Acta, 1971, 27A, 523.
225. J.deMeulenaer and H.Tompa : Acta Cryst., 1965,19,1014. 226. A.Whitaker and J.W.Jeffrey : ibid., 1967,23,977.
227. L.O.Brockway, R.V.G.Evans and M.W.Lister : Trans.Far. Soc., 1938,34,1350.
228. S.P.Arnesen and H.M.Seip : Acta Chem.Scand., 1966,20,2711.
229. F.A.Cotton and G.Wilkinson : "Advanced Inorganic Chemistry" Wiley Interscience, New York, 3rd edit., (1972),p.685. 230. N.A.Beach and H.B.Gray : J.Amer.Chem.Soc., 1968,90,5713. 231. G.M.Nazarian : PhD Thesis, California Institute of Technology, (1957).
232. S.Metlin, I.Wender and H.W.Sternberg : Nature, 1959, 183, 457.
233. H.M.Powell and G.W.R.Bartindale : J.Chem.Soc. (1945),799.
234. F.A.Cotton, T.G.Dunne and J.S.Wood : Inorg.Chem.,

19它5, 4, 318.
235. J.E.Jacob and L.S.Bartell : J.Chem.Phys., 1970, 53,2235.
236. ibid. : p.2231.
237. P.A.Koz'min : J.Strukt.Chem., 1964, \(\underline{5}, 60\).
238. A.Engelbrecht, A.Javan and J.F.Lotspeich : J.Chem.Phys., 1959,31,633.
239. A.J.Edwards and G.R.Jones : J.Chem.Soc.(A), (1968),2511.
240. F.Pintchovski, S.Soled, R.G.Lawler and A.Wold :

Inorg.Chem., 1975,14,1390.
241. C.G.Davies, R.J.Gillespie, P.R.Ireland and J.M.Sowa : Can.J.Chem., 1974, 52,2048.
242. A.J.Edwards and R.J.C.Sills : J.Chem.Soc.(D), (1974), 1726.
243. A.J.Edwards and P.Taylor : ibid., (1975),2174.
244. M.D.Lind and K.O.Christe : Inorg.Chem., 1972,11,608. 245. D.E.McKee, A.Zalkin and N.Bartlett : ibid., 1973,12,1713. 246. A.J.Edwards and G.R.Jones : J.Chem.Soc., (1971),2318. 247. R.M.Herak, S.S.Malc̆ić and L.M.Manojlovič : Acta Cryst., 1965,18,520.
248. G.Allegra and G.Perego : ibid., 1963,16,185.
249. R.Shendles, E.O.Schlemper and R.K.Murmann : Inorg.Chem., 1971,10,2785.
250. S.R.Fletcher and A.C.Skapski : J.Chem.Soc.(D), (1972),1073. 251. T.Glowiak, M.Sabat and B.Jerowska-Trzebiatowska :

Acta Cryst., 1975, B31,1736.
252. J.C.Morrow : ibid., 1962,15,851.
253. J.D.Dunitz and L.E.Orgel : J.Chem.Soc., (1953), 2594.
254. K.-F.Tebbe and H.G.von Schnering : Z.anorg.allgem.Chem., 1973, 396, 66.
255. J.H.Canterford and R.Colton : "Halides of the Second and Third Row Transition Metals", Wiley, New York, (1968),p.19.
256. W.Haase : Acta Cryst., 1974, B30,1722 and 2508, and refs. cited therein.
257. R.W.Brink and R.J.Angelici : Inorg.Chem., 1973,12,1062. 258. R.D.Peacock : "Rhenium", in "Comprehensive Inorganic Chemistry", (c.f. ref.170), vol.3,(1973),p.925.

Rhenium carbonyl reacts with three moles of \(\mathrm{XeF}_{2}\) in Genetron 113 to produce the novel carbonyl fluoride-pentafluoride complex \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \operatorname{ReF}_{5}\). This is decomposed to ReF 6 by three further moles of \(\mathrm{XeF}_{2}\). The use of proportions intermediate between these gives only mixtures of \(\operatorname{Re}_{2}(\mathrm{CO})_{10}\) and \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \operatorname{ReF}_{5}\); or \(\operatorname{Re}(\mathrm{CO})_{5} F \cdot \operatorname{ReF}_{5}\) and \(\operatorname{ReF}_{6}\). When HF is used as the solverit, a similar process is indicated, but partial hydrolysis of HF solutions of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \operatorname{ReF}_{5}\) frequently occurred, to give \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-}\). No conclusive evidence for \(\operatorname{Re}(C O)_{5} F\) was found.
\[
\operatorname{Re}_{2}(\mathrm{CO})_{10} \text { also forms } \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{10} \operatorname{ReF}_{5} \text { with two moles of }
\]
\(\operatorname{ReF}_{6}\), in \(H F\) solution, but with four moles, the new, ionic \(1: 2\) complex \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)is produced. \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F} \cdot \mathrm{TaF}_{5}\) and \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\mathrm{Sb}_{2} \mathrm{~F}_{11}\right)^{-}\)were produced by exchange reactions of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{L}} \operatorname{ReF}_{5}\) with \(\mathrm{TaF}_{5}\) and \(\mathrm{SbF}_{5}\) respectively. The oxidation of \(\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}\) with AgF in acetone produced evidence for a new fluoride, \(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{~F}\).

It was surmised that the maintenance of stable \(\left(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}\right.\)) or \(\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\). units governs the course of these fluorinations, and that, in general, carbonyl fluorides will only exist with certain, specific, stable units. Analogous units were proposed for other carbonyl fluoride systems, and a general progression for metal carbonyl fluorinations was establişhed, through simple carbonyl fluoride to carbonyl fluoride-pentafluoride complex(es), and finally binary fluoride. The carbonyl fluoride-pentafluoride complex plays a fundamentąl role in these systems which has no parallel in other organometallic halides, although related complexes are knowri"in a few cases.
Full X-ray crystal structures of \(\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{ReF}_{5}\) and \(x-\left(\operatorname{Re}(\mathrm{CO})_{6}\right)^{+}\left(\operatorname{Re}_{2} \mathrm{~F}_{11}\right)^{-}\)were performed, and a partial investigation made of \(\left(\operatorname{Re}(\mathrm{CO})_{5}\right)^{+}\left(\operatorname{ReOF}_{5}\right)^{-} \cdot \operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}^{2} \cdot \operatorname{ReF} 5\) is an essentially covalent, fluorine-bridged complex whose bond lengths are of value for comparing other fluorine-bridged interactions. Polymorphism is found in \(\left(\operatorname{Re}(C O)_{6}\right)^{+}\left(\operatorname{Re}_{2} F_{11}\right)^{-}\). The \(\alpha\) - phase has an ionic lattice, with a centrosymmetric anion. Anion-cation interactions in other \(\left(M_{2} F_{11}\right)^{-}\)structures were discussed.```

[^0]: ** More recently this reaction has been found to give chromium and tungsten $\left(M(C O)_{5} F\right)^{-}$anions, using the novel cations $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]^{+8}$ or crown ether-solvated $\mathrm{K}^{+}, 9$ with ultra-violet irradiation.

[^1]: * In recent work at Leicester. Hewitt and Holloway have obtained this compound pure, and established the identity of the ruthenium and osmium compounds of Marshall and Peacock. ${ }^{16}$

[^2]: * No special search was made for CO (m/e 28) in this latter experiment.
 ** These crystals also turned to a brown oil on removal of the HF at low temperature.

[^3]: * * In the $\mathrm{Re}_{2}(\mathrm{CO})_{10} / 3 \mathrm{XeF}_{2} /$ Genetron. 113 reactions, the insolubility of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{~F}_{\mathrm{F}} \mathrm{ReF}_{5}$ in Genetron 113 should preclude any reaction with the CO.

