CRYSTAL AND MOLECULAR STRUCTURES
OF SOME TRANSITION METAL
PHOSPIITNE COMPLEXES, AND THETR
RELEVANCE TO HOMOGENEOUS CATALYSTS

A Thesis presented for the degree of Doctor of Philosophy in the Faculty of Science at the University of Leicester

ProQuest Number: U378298

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest U378298
Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
x+53062355
$$

The experimental work described in this thesis was carried out during the period of registration. It has not been presented, and is not being currently presented, for any other degree.

Ursula A. Gregbry February 1971

ACKNOWLEDGEMENTS

I should Iike to express my gratitude to
Dr D R Russell at Leicester, and. Dr R H B Mais and Dr B T Kilbourn at Runcorn for their guidance of the research described in this thesis.

I should also like to thank all my colleagues at Petrochemical and Polymer Laboratory, particularly Dr J A. J. Jarvis for his help in the operation of the diffractometer, Dr S D Ibekwe for his help in the preparation of many of the crystals studied, and Miss A C Mason for her excellent typing.

This research was carried out at Petrochemical and Polymer Laboratory; and I acknowledge gratefully the sponsorship of Imperial Chemical Industries Limited during the period of my Research Studentship.

SUMMARY

Homogeneous catalysis of organic reactions by transition metal complexes, is thought to involve some or all of the following:-

1) Formation of $\mathrm{M}-\mathrm{H}$ bonds
2) Tormation of $\mathrm{M}-\mathrm{C}$ sigma bonds ($\mathrm{M}-\mathrm{C}-$)
3) Formation of $M-C$ "olefinic" bonds ($M-N$)
4) $\quad C(\sigma) \longleftrightarrow C(\pi)$ equilibria, and hydrogen transfers
5) Coordination of small molecules.

Structural information relevant to these processes has been obtained by study of the crystal structures of some appropriate model compounds.

In the system
$\mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\left(\mathrm{Me}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)_{2} \leadsto \mathrm{RuH}\left(\sigma \mathrm{C}_{10} \mathrm{H}_{7}\right)\left(\mathrm{Me}_{2} \mathrm{P}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)_{2}$ \downarrow
$\mathrm{Ru}\left(\mathrm{Me}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)_{2} \stackrel{\mathrm{RuH}}{2}\left(\mathrm{CH}_{2} \cdot \mathrm{Me} \cdot \mathrm{P} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)\left(\mathrm{Me}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)$
$\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{\mathrm{r}}\right)\left(\mathrm{Me}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)_{2}$ is octahedrally coordinated, with cis hydride and $\left(\circ \mathrm{C}_{10} \mathrm{H}_{\mathrm{r}}\right)$. Ru-C is $2.16 \AA$ and Ru-P (average) 2.30A; the phosphine ligands are disordered. The Ru-H observed distance of $1.7 \AA$ agrees with other reported Ru-H bond lengths. The isostructural $\operatorname{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)\left(\mathrm{Me}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)_{2}$ has Os-C $2.13 \AA$. The structure analysis of $\mathrm{Ru}\left(\mathrm{Me}_{2} \cdot \mathrm{PC}_{2} \mathrm{H}_{4} \cdot \mathrm{PM}_{2}\right)_{2}$ was unsuccessful.

The structure of a dihydride complex, $\mathrm{FeH}_{2}\left(\mathrm{Ph}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{PPh}_{2}\right)_{2}$, could not be solved.

A speotral reinvestigation of the solvated complex OsHCl. $\left.\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{CH}_{2} \cdot \mathrm{PPh}_{2}\right)_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$, has shown that the reported interaction between the hydridic hydrogen and the benzene molecule, does not occur. The structure of. [IrH(COOMe) (Me $\left.\left.\mathrm{MP}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)_{2}\right] \mathrm{BPh}_{4}$, formed by 'addition of MeOH across $\operatorname{IrCo}\left(\mathrm{Me}_{2} \mathrm{P} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMe}_{2}\right)_{2}^{+}$, shows the cation to have a trans octahedral configuration with Ir-C $2.10 \AA$, Ir-P (average) $2.31 \stackrel{\circ}{A}$. Ir-H was not measured.

The structures, at $-70^{\circ} \mathrm{C}$, of the isomorphous NiHCl $\left(\operatorname{PPr}_{3} \mathrm{i}_{3}\right)_{2}$ and PdHCl $\left(\operatorname{PPr}_{3}\right)_{2}$, are trans-planar, and exhibit the typical distortions found in transition metal complex hydrides. Ni-P is 2.19A; Ni-C1 2. $21 \AA^{\circ}$; Pd-P $2.30 \AA$; Pd-C1 2.39A. These results are discussed in terms of cis and trans effects. The observed Ni-H distance, 1. $4 \stackrel{\circ}{A}$, is short compared to reported $M-H$ bonds.

The struotures of $\mathrm{MoCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right)_{2}$ and
$\left[\mathrm{MoOCI}\left(\mathrm{Ph}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right)_{2}\right]\left[\mathrm{ZnCl}_{3} \cdot\right.$ acetone $]$ were studied at $-7 \mathrm{O}^{\mathrm{O}} \mathrm{C} . \mathrm{MoCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{P}^{(} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right)_{2}$ is the product of N_{2} loss from the dinitrogenyl complex $\operatorname{Mo}\left(\mathrm{N}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{Ph}_{2} \mathrm{P}^{\prime} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right)_{2}$,
while $\left[\operatorname{MoOCl}\left(\mathrm{Ph}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right)_{2}\right]\left[\mathrm{ZnCl}_{3} \cdot\right.$ acetone $]$ is an intermediate in the formation of $\operatorname{Mo}\left(\mathrm{N}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{Ph}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right)_{2}$. The cation is trans octahedrally coordinated, with $\mathrm{Mo}=0$ 1.69A, Mo-C1 2.46A, Mo-p (average) 2.57A. The
 The complex is solvated with one molecule of acetone.

CONTENTS

Statement

Page
i ii
Acknowledgements
ii
Sunmery

Introductory Section
Chapter 1.1 , Introduction 1
Chapter 1.2 Crystallographic Theory and. 22 Techniques used. in this Research

Hydride Complexes
Chapter 2.1 Trainsition Metal Complex Hydrides 46
Chapter 2.2 The Crystal and Molecular Structure 55 of $\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$ (dmpe) ${ }_{2}$
Chapter 2.3 The Attempted Structure Analysis 91 of $\mathrm{Ru}(\mathrm{dmpe})_{2}$
Chapter 2.4 The Preparation of $\mathrm{Os}^{\left(\mathrm{C}_{10} \mathrm{H}_{8}\right) \text { (dmpe) }} 2$ (27 and $O s$ (dmpe) $)_{2}$: The Crystal and Molecular Structure of $\operatorname{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$
Chapter 2.5 The Attempted Structure Analysis of 146 $\mathrm{Fe}(\mathrm{H})_{2}\left(\mathrm{Ph}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{PPh}_{2}\right)_{2}$
Chapter 2.6 The Preparation and Characterisation 157 of Trans-OsHCl(dppm) 2 and Trans-OsH2 $(\mathrm{dppm})_{2}$

Chapter 2.7 The Crystal and Molecular Structure 163 of Trans-IrH (COOMe) (dmpe) $2 \cdot \mathrm{BPh}_{4}$
Chapter 2.8 The Crystal and Molecular Structure of Trans-NiHC1 (PPri $)_{2}$: Celi Data for Trans-Ni (Me)Cl $\left(\operatorname{PPr}_{3}^{i}\right)_{2}$
Chapter $2.9 \quad \begin{aligned} & \text { The Crystal and Molecular Structure } \\ & \text { of Trans PdHCl(Ppri }\end{aligned}$ 214 of Trans-PdHC1 $\left(\operatorname{Ppr}_{3}\right)_{2}$
Chapter 2.10 Summary of Results on Hydride 228 Complexes: Comparison with Other Work.

CONTENTS (continued)

Page

Molybdenun Complexes

Chaptex 3.1	Activation of Small Molecules by Transition Metals: The Attempted Structure Determimation of a Molybdenum Dinitrogeny 1 . Complex:	238
Chapter 3.2	```The Crystal and Molecular Structure of``` ```tone) .acetone```	254
Appendix I	Programs used routinely in Structural Analyses	277
Appendix	Tables of:	278
	Positions Vibrations Structure factors Agreement analyses	
	$\operatorname{RuH}\left(\mathrm{C}_{1} 0^{\mathrm{TH}_{7}}\right.$) (dmpe) ${ }_{2}$	279
	$\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{HH}_{7}\right)(\mathrm{dmpe})_{2}$	287
	$\operatorname{IrH}(\mathrm{COOMe})(\text { dmpe })_{2} \cdot \mathrm{BPh}_{4}$	294
	$\mathrm{NiHCl}\left(\operatorname{PPr}_{3}{ }_{3}\right)_{2}$	303
	$\operatorname{PCHC1}\left(\operatorname{PPr} \frac{i}{3}\right)_{2}$	314
	MoCl_{2} (dppe) ${ }_{2}$	324
	MoCl (dppe) $2^{\text {. } \mathrm{ZnCl}_{3} \text { acetone }}$	328
Appendix III	Further structures studied:	338
	$\alpha-\left[\operatorname{PtCI}\left(\operatorname{PPr}_{3}^{\mathrm{n}}\right)(\mathrm{SCN})\right]_{2}$	
	$\beta-\left[\operatorname{Ptcl}\left(\operatorname{pgr}_{3}^{11}\right)(\mathrm{SCN})\right]_{2}$	
	$\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{H}\right)$	

Appendix IV
Publications339
References 340

Index to Tables

		Page
$R u-P$		81
M-C (ary 1)		84
Os -P		14.4
Ir-P		184
$\operatorname{Ir}-\mathrm{C}(\mathrm{carbony} \mathrm{I})$ -		184
Esters		191
Ni-P		205
Ni-Cl		206
Pd-P		223
Pd-Cl		224
$\mathrm{M}-\mathrm{H}$	1	230
MO-O		268
Mo-Cl		270
Mo-P		271
$\mathrm{ZnCl}_{4}{ }^{\text {2- }}$ etc.		275
T in dmpe complexes		187
Tin dppe complexes		273

CHAPTER 1.1.

INTRODUCTION

The research for this thesis has been carried out in Imperial Chemical Industries Limited, Petrochemical and Polymer Labonatory, largely in conjunction with other studies on homogeneous catalysis. Chemists seeking new routes to industrially important compouinds are concerned with understanding the factors affecting catalytic activity. The stereochemistry of a catalytically active transition metal complex probably plays an important pant in helping to position an incoming substrate molecule for reaction。Structural. information may also help in understanding the distribution of electron densi.ty likely to favour reaction and, similarly; structural lmowledge about intermediate species is desirable。 Although these intermediates are usually too umstable to be isolated, certain general features have emerged as being important; one is that the intermediates very often contain M-HI or M-C bonds. The work described in this thesis was undertaken to provide background structural information on transition metal complexes containing these types of bonds. While the actual complexes described are not catalytic intermediates, it is hoped that the results obtained may be related to general principles of catalytio behaviour.

```
Homoreneous Catalysis by Transition Metal Complexes
The function of metal ions in organic reactions has
for some time been the subject of kinetic, mechanistic
and structural studies. The metal may act either
stoicheiometrically or catalytically; only the latter
will be discussed in this thesis.
A metal may act catalytically by providing an electronic
surface as the reaction site (heterogeneous catalysis).
Very often, however, it is more convenient to perform
a reaction in solution, in which case the catalyst is
introduced in the form of complexed ions, (homogeneous
catalysis)。
The studies of hetero- and homogeneous catalysis have
to a great extent been separate until quite recently,
when it has become apparent that many of the ideas
developed in the one field, for example the relation
between chemisorption and metal (0) complexes,'
have relevance to the other. However, in this thesis I
shall be considering only those aspects of homogeneous
catalysis which can be related to structural results.
It is a very broad generalisation to state that a
catalyst acts by perturbing the electronic state of an
organic substrate. Acids, and 'bare' metal ions in high
oxidation states, do this by electrostatic polarisation
of the molecule:-
E.g. activation of alkyl halides to nucleophilic attack
```


E.G. catalysis of the hydrolysis of amino acid esters ${ }^{2}$

This is a short-term inductive effect, and is also shown by small molecules such as the Lewis acids AlCl_{3} and $\mathrm{BF}_{3}{ }^{\circ}$ These are the so-called 'hard ${ }^{\circ}$ acids, ${ }^{3}$ acting as hard catalysts. A characteristic of transition metals is that, although they do form ions of high formal oxidation state and polarising ability, they also, in their lower oxidation states, have the ability to interact much more profoundly with a substrate。 In these lower oxidation states, the ion is much more diffuse and the d orbitals usually contain several non-bonding 'd' electrons. In this case, the interaction with ligands, e。go substrates, is much more than just an electrostatic perturbation, and will be helped by the presence of other 1 igands which can also alter the electronic distribution about the substrate, by acting as regulators of the electron density at the metal. Evidence that transition metals affect the organic ligands bound to them, is provided by the stabilisation of otherwise highly unstable or non-existent
species，as metal complexes：－
E．E． $\mathrm{Fe}(\mathrm{CO})_{3}(\text { cyclobutadiene })^{4}$
$\mathrm{EOG} \cdot \mathrm{Fe}(\mathrm{CO})_{3}\left[\mathrm{C}(\mathrm{CH})_{2}(\mathrm{CHPh})\right]^{5}$
Also，coordination to a transition metal makes many
interesting reactions possible：－
E。G．the hundreds of reactions of $\mathrm{Fe}(\mathrm{Cp})_{2}$
E．g。 in situ oxidations：－${ }^{6}$

Coordination very often leads to internal isomerisations
and rearrangements which may be useful synthetically：－
E．g．（2－allylphenyl．P。Ph $)_{2} \xrightarrow[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{~L}]{ }$

L is norbornadiene

The phosphine has rearranged to the（2－propenyl． $\mathrm{P}_{\circ} \mathrm{Ph}_{2}$ ）
form．${ }^{7}$

E．g．${ }^{8}$

Many exotic coupling reactions are known:-

norbornadiene
"Binor-s"

In all these examples, the central metal is 'soft and tends to be complexed to soft ligands, e。go co, phosphines, which contain diffuse, highly polarisable atoms.

The discussion of catalytic reactions may be further divided into several categories; two such categories are considered here: -
(i) Those which involve reactions of organic molecules,
eogo olefines, acetylenes, aldehydes; these have
been widely applied in the petrochemical industry
for the production, from natural petroleum feed-
stocks, of larger organic molecules of high
molecular weight;
(ii) Those which are thought to be simple analogues of
the biological processes whereby very simple
molecules eogo of N_{2}, are taken up by metal ions,
and are utilised by the enzymes in a biochemical

The first part of this thesis will be concerned mainly with type (i); the second part will be concerned with one particular aspect of type (ii)。

Factors affecting catalytic nctivity

```
The following, brief review of some of the factors
thought to affect catalytic activity in transition
metal ions, is divided into eleotronic, and other,
factors.
```

Electronic Factors
1．Eleotron density on the metal atom
The electron density at the metal is very sensitive to the number of d electrons round the metal；by Pauling ${ }^{8}$ s Electroneutnality Primoiple，the charge on the metal will be dispersed into ligand orbitals until very little excess charge remains on the metal。 Towards the end of each transition series this is often achieved by coordination wi，th ligands with empty antibonding orbitals，which can accept electron density from the metal．This concept of lback donation＇，first formulated by Chatt \＆Duincanson，and independently by Dewar，${ }^{10}$ is gemerally accepted as fundamental to an explanation of the stability of metal ions in very low oxidation states，which would otherwise have improbably high electron densities at the central metal atomo The ability of pi－bonding ligands to control this electron density，is almost certainly relevant to the phenomenon of transition metal catalysis。

2．Availability of d orbitals
The geometries observed in transition metal complexes are generally associated with regular 4－or 6－coordination。

6－coordinate complexes are usually ootahedral，while
in 4－coordinate complexes both square－planax and
（less often）tetrahedral arrangements occur。 5－coordination， associated with trigonal bipyramidal or square pyramidal arrangements，is less common，but is， however，of extreme importance as an activated configuration in catalytic intermediates．In a simple 1igand field model，an octahedral or square－planar arrangement of ligands splits the initially equivalent ＇d．orbitals into three nonbonding $t_{2 g}\left(d_{x y}, d_{y z}, d_{x . z}\right)$ and two antibonding $e_{g}^{2}\left(d_{x^{2}}-y^{2}\right.$ and $\left.d_{z} 2\right)$ orbitals． The d electrons will therefore go first into t 2 g ？ and only reluctantly into e_{g}^{*} orbitals。（In square－ planar complexes the d_{z} i is probably also nonbonding， only the $d_{x}{ }^{2}-y^{2}$ being antibonding if the z axis is taken as that perpendicular to the plane of the molecule。）

In a molecular orbital description，combination orbitals are formed from the metal ns, np ，and $(\mathrm{n}-1) \mathrm{d}$ ，and the ligand sigma orbitals，and eleotrons from the sigma M－L bonds go into the bonding combinations．For square－planar complexes，the lowest empty orbital is the $d_{x}{ }^{2}-y^{2}$
combination，and the splitting between $d_{x y}$ ，the highest nonbonding，and $d_{x^{2}-y^{2}}$ ，the lowest antibonding orbital will be increased for good sigma donors like phosphines， which possess lone pairs of electrons．Good pi－acceptors can also interact with the $d_{x y}, d_{y z}, d_{x z}$ orbitals，thus lowering their energies，increasing ΔE ，and stabilising the complex．

The stereochemistry of the available d orbitals may also affect the electronic properties of the complex, ég. an $M-C$ bond is generally stabilised when the organic part is aryl, acyl, or alkynyl, rather than alkyl, since pi-bonding is possible; with empty p π^{*} ligand and filled $d \pi$ orbitals.

The so-called β-effect whereby metal 'd' orbitals can interact with an orbital on a β-atom, may also affect the stability, as it may provide a low energy path for dissociation of the complex to metal hydride and free olefine。"

In some cases, a hydrogen atom several atoms removed from the coordinated atom, may approach quite close to the metal, and if the stereochemistry of the metal 'd'
orbitals is favourable, some interaction may ocour.

Ebg. ${ }^{12} \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}$

E.g. ${ }^{13} \mathrm{Pd}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{I}_{2}$

3: Electronic properties of the other 1igands

A very important factor is the resultant electronic effect of the other ligands. Catalytically important complexes usually contain good pi-bonding ligands, e.g. CO, CN^{-}, phosphines, which will absorb some excess electron density into their antibonding (CO) or d (phosphines) orbitals. They thus stabilise the organometallic complexes that will be seen to be important reaction intermediates.

Cis and trans effects will affect the reactivity of a particular complex, in the sense that a strongly transweakening ligand will labilise the bond trans to it。

Other Factors

1. Coordinative unsaturation and ease of alteration of coordination number, CN

A very important concept is that of coordinative unsaturation. ${ }^{14}$ The preferred coordination number
decreases with increasing number of d electrons， i．e across a transition series or with decreasing formal oxidation state of a given metal ion。 This is a consequence of the fact that，with increasing numbers of nonbonding d electrons，then the higher the coordination number，the larger the number of d electrons which will be forced into antibonding orbitals，e。go for d^{7} to d^{10} configurations some will have to go into the strongly antibonding $d_{x} 2_{-y}{ }^{2}$ （in square－planar and octahedral）or $d_{z 2}$（octahedral） orbitals．A common coordination number for d^{8} and d^{10} complexes is therefore square－planar CN4 or even 1inear CN2．However，d^{8} complexes（e。g。 $\operatorname{Ir}(I), F e(O)$ ， $R u(0)$ and d^{10} complexes（e．g．Pt（o）），also readily and reversibly add further ligands，increasing their coordination number by one or two，and their oxidation state by two．

In general：－

$$
M^{m} L_{n}+X Y \rightleftharpoons M^{m+2} L_{n}(X)(Y)
$$

where

$$
\begin{aligned}
& X=H, R, \text { ary } \\
& Y=H, \text { halogen, acetylide etc. }
\end{aligned}
$$

Obviously this property is of great value in providing sites for attachment of a substrate，and thus，by bringing reacting species into close proximity，increasing their chances of reaction。

Ro Lfigands and solvent erfects
The stereochemistry of the surrounding Jigands，ajso the presence of solvent molecules completing an otherwise incomplete coordination sphere，probably affects the ease of substrate attack．For example， RhCl $\left(\mathrm{PPh}_{3}\right)_{3}{ }^{\prime}$ catalyses double bond hydrogenation，but with rhodium complexes containing smaller phosphines， the first step of dissociation，is mot sterically so favourable，and these complexes are not effective as catalysts。

There may be weak electronic interactions between high energy ligand orbitals and those of incoming substrate， which could in turn provicle a lower energy path for the reaction。

Metal complexes therefore aot by their：－
（i）ability to add and give up electrons，thus changing their coordination number and oxidation state；
（i．i）ability to reduce the activation energy of reaction，thus providing a low energy reaction path；
（i．ii）ability to organise reactants by forming coondination bonds whion are at the same time not so strong that they prevent further dissociation and reactiono This leads to a description of a generalised catalytic scheme。

1. Generation of a coordinatively unsaturated
complex by heat, dissociation of ligands, if necessary;
2. Metal activation by formation of reactive
bonds, generally $M-H$ or $M-(\sigma) C$, often by
reaction with a co-catalyst,
e.g. reduction with $\mathrm{AlR}_{3}, \mathrm{NaBH}_{4}$
oxidative addition
hydrogen abstraction;
3. Activation of substrate by coordination, to form a metastable complex susceptible to further reaction;
4. Reaction of substrate with H or C from the activated $M-H$ or $M-(\sigma) C$ bond. This is often referred to as the 'cis insertion' reaction; (X is the substrate):-

This stage, as well as actually forming the product, has the function of generating further vacant sites;
5. Dissociation of the product from the metal complex, which is left ready for further cycles.

Some examples of proposed mechanisms of various reactions will illustrate these general observations:-
(a) hydrogenation catalysed by Rh complexes;
(b) olefine isomerisation;
(c) olefine dimerisation catalysed by Ni complexes.

Hydrogenation of olefines

This takes place at room temperature and pressure, and, depending on the catalyst, is often very stereospecific, usually giving a cis product:-

This type of reduction is invaluable in steroid chemistry. RuHC1 $\left(\mathrm{PPh}_{3}\right)_{3}$ is the most active and specific catalyst found so far, but does not reduce isolated double bonds:- ${ }^{16}$

$\mathrm{PtCl}_{2}\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} / \mathrm{SnCl}_{2}$ similarly reduces dienes to monoenes. ${ }^{17}$ The most studied catalyst system is that using 'Wilkinson's'

correspond to the general reaction scheme just outlined.

However, there is no direct evidence that complexation of the olefine is necessary for its activation; this is assumed in the above mechanistic scheme. The crystal structure of a complex containing both hydride and the stabilised olefine fumaronitrile ($(\mathrm{CN}) \mathrm{CH}=\mathrm{CH}(\mathrm{CN}) \quad$)

showed that they occupy cis positions, which suggests that complexation does in fact take place in the actual hydrogenation。

Isomerisation of Olefines
In most catalytic reactions involving unsaturated hydrocarbons, isomerisation from terminal to internal $C=C$ occurs as an undesirable side reaction. As this occurs before the main reaction step, and hence leads to branched-chain products, much research effort has been devoted to understanding the mechanism of isomerisation, and hence to preventing its occurrence. Virtually all transition metal complexes catalyse isomerisations, and although this spans a wide range of electronic situations, it is thought that a common mechanism is involved. Two distinct mechanisms have been proposed, however, to account for the fact that
in some systems a co-catalyst, containing hydrogen (as $\mathrm{H}^{+}, \mathrm{H}^{-}$, or H_{2}), is necessary, while other catalysts which have no obvious source of hydrogen, are equally effective without a co-catalyst. The mechanism suggested ${ }^{22}$ for co-catalysed isomerisations, grouped into the steps outlined previously, is as follows:-

This probably corresponds to those cases where a metal such as $R h(I)^{22}$ is used, which readily adds hydrogen to form an $\mathrm{Rh}(I I I)$ complex; also in isomerisations accompanying hydroformylation with $\mathrm{HCo}(\mathrm{CO})_{4}$ as catalyst。 ${ }^{23}$

An allylic mechanism is postulated for those
isomerisations in which there is no hydrogen source, e.g. with $\mathrm{Fe}(\mathrm{CO})_{5}{ }^{24}$; in this case, it is thought that the hydrogen comes, either from the olefine itself, or, if there is no allylic hydrogen available, from another ligand. Hydrogen abstraction from a neighbouring $1 i g a n d$ is well-known, and is considered in more detail in Chapter 2.2:

step 4
step 5

There is little direct evidence for either theory, because of the inherent instability of the intermediates. No metal-alkyl or allyl complexes have been isolated from these reactions, although metal allyl complexes are stable enough to be characterised, and
many have been studied crystallographically,
e.g. $\left[\operatorname{RhCl}(\operatorname{ally} 1)_{2}\right] 2^{25}\left[\operatorname{PdCl}(\right.$ bismethallyl) $] 2_{2}^{26}$

Several complexes of rearranged olefines have been
isolated and their crystal structures studied:-
E.E. ${ }^{27} \quad 1,3$-cyclo-octadiene $(C O D) \longrightarrow 1,5-\mathrm{COD}$

Similarly, although many metal-hydride complexes are known and characterised, there is little direct evidence for their formation as transient intermediates in isomerisations.

Olefine Dimerisation, Co-dimerisation, and Dienylation

Dimerisations and polymerisations of olefines are catalysed by different metals, the end product being determined by the stability of the intermediates. Ziegler Natta polymerisation involves titanium chloride/aluminium
alkyl catalysts, ${ }^{30}$ while dimerisation is catalysed by complexes of Group VIIT metals, ego RhClan, $\operatorname{PdCl}_{4}{ }^{2-},^{32} \operatorname{CoCl}_{2}{ }^{33}$ The active catalyst in the dimerisation of butadiene to 3-methylhepta-1,4,6triene has been isolated and shown to contain a methylheptadienyl radical and a butadiene coordinated to cobalt. The structure analysis also supported the postulated mechanism involving hydride shifts. ${ }^{34}$

Recently, certain nickel complexes, which can form Zieglex-type systems, have also been found to be effective catalysts, combined with a Lewis acid, and a Lewis base as co-catalyst. An effective combineation is $\mathrm{AlEtCl}_{2} / \mathrm{PR}_{3} / \mathrm{TMCB} \mathrm{NiCl}_{2}$ (TMCB is tetramethy1cyclobutadiene), and the active catalyst is thought to be a nicke1-ethy1:-


```
The mechanism postulated is (for propylene
```



```
4-methylpentene-2 and 2,3-dimethylbutene-1 are also
formed by isomerisation at the first step.
Nickel alkyl complexes would be expected to be even
less stable than Pd or Pt alkyl complexes, and no
intermediates have been isolated. The role of nickel
hydrides and alkyls as possible intermediates is
discussed in Chapters 2.8 and 2.9 , where their
instability is considered。
In all these examples, it can be seen that the important reactions are:-
1. formation \(\mathrm{M}-\mathrm{H}\) bonds;
2. formation \(\mathrm{M}-\mathrm{C}(\sigma)\) bonds;
3. formation \(M-C(\pi)\) bonds ('sideways on');
4. \(\quad \sigma \rightleftharpoons \pi\) equilibria;
5. hydrogen transfers
```

These may therefore be considered to be the fundamental processes involved in transition metal catalysis, for which structural information is required: The problems studied for this thesis were chosen to illustrate as many as possible of these reactions, and the structural results will be related to this scheme in the appropriate chapters。

```
    CHAPTER 1.2
    CRYSTAILOGRAPHIC THEORY AND TECHNIQUES
    USTD IN THIS RESTARCH
The completed. structures described in this thesis were
a11 solved by. standard Patterson and Fourier syntheses,
and were refined by least squares methodse Al1 the
data were collected on a Picker Four circle automatic
diffractometer: the genexal procedure followed for each.
problem can therefore be collected into one chapter to
eliminate umnecessary repetition of experimental details.
The mathematical background to structure analysis has
been set out in standard texts, eogo
    1. Arndt & Wi.l.is "Single Crystal Diffractometry"
    2. Buerger "Crystal Structure Analysis"
    3. "International Tables for X-Ray Crystallography"
        Volumes 1-3,
```

and will only be explicitly discussed where relevant to
the particular programs used in this worko
(A) Crystal Preparation and Photography

The crystals examined were generally of good enough quality for single crystal diffractometryo They were examined under polarized light for any peculiarities in their optical properties, and their demsities measured by flotation in cadmium tungstobonate/water mixtureso The crystals were mounted on quartz fibres with araldite; if the complex was likely to react with this adhesive, then Edwards high vacuum silicone grease was used. The quartz fibres were stuck with araldite onto brass pins
made to fit onto the Picker goniometer head. If the crystals were sufficiently stable to air they were. then immediately photographed but generally they had to be handled under nitrogen in a dry box and mounted in thin (O.O1 mmo walls) Lindemann glass 2 mmo diameten capillary tubes. Where possible, and consistent with absorption factors, large crystals were therefore used, to minimize the loss of intensity due to the capillary tube. Preliminary plaotographs were taken on Weissenberg (Unicam) and Precession (Supper) cameras, from which. the space groups and rough cell dimensions were worlsed out. The brass pins were then insented into the special goniometer head made for the IrC:Io Picker, see Tig 1, on which centring and height adjustments are made by warping and raising the central shaft。

(B) Collection of Data

The data were collected on a Picker diffractometer equipped with scintillation counter and pulse height analyser; 0.OO2" of miobium or zirconium foil were used as filters for MoKo radiation, and aluminium disc attenuators were used when necessary。 These reduced the diffracted intensity by factors of:

$$
0.2509,0.06397,0.01955,0.001
$$

Picker Geometry

The Picker is a goniostat with 3 circles (chi, phi and omega) for orienting the orystal, and a fourth (two theta)

Figure 1.2.1
Goniometer Head

Figure 1.2.2
The Picker Axes
carrying the detector arm. The axes of the instrument (the so-called laboratory axes $X Y Z$), are defined in

Fig 2; they remain constant;
$X=90$ points vertically upwards, and in the direction of the Z axis, the X axis lies in the horizontal plane through the X circle, and the direction of the Y axis completes a right handed set of axes. A point a* (hkl in reciprocal space) is represented in laboratory space by xyz.

$$
\underset{\sim}{h}=\left[\begin{array}{l}
\mathrm{h} \\
\mathrm{k} \\
\mathrm{l}
\end{array}\right] \quad \underset{\sim}{x}=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]
$$

then ${\underset{\sim}{x}}^{T}={\underset{\sim}{h}}^{T}$ S where $\underset{\sim}{x}{ }^{T}$ is the transpose of $\underset{\sim}{x}$, and S is the orientation matrix;

$$
S=\left(\begin{array}{lll}
x_{a}^{*} & y_{a}^{*} & z_{a}^{*} \tag{1}\\
x_{b}^{*} & y_{b}^{*} & z_{b}^{*} \\
x_{c}^{*} & y_{c}^{*} & z_{c}^{*}
\end{array}\right)
$$

This equation therefore relates reciprocal to real space:

$$
a^{* 2}=x_{a}^{* 2}+y_{a}^{* 2}+z_{a}^{* 2} \text { etc. }
$$

S is required to calculate reflection positions.

Only $2(X \phi)$ of the 3 circles $(X \phi \omega)$ are necessary
to bring a^{*} into a reflecting position. However, the
extra circle, ω, coaxial with, and in the 2θ plane, is useful for manual setting or when multiple reflections are a problem. In terms of this geometry, the normal to the plane hkl must lie along the X axis for a^{*} to be in a reflecting position. This is achieved by 2 rotations, about Φ, then χ. The θ circle (carrying the detector) must then be moved through 2θ in the horizontal plane. At the same time the reference axial system XYZ is moved through θ.

If the ω circle is being used, then the ϕ rotation orients the crystal about the normal, and this is followed by the x and ω rotations;

$$
[\Phi]_{z}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {[X]_{y}=\left[\begin{array}{ccc}
\cos x & 0 & -\sin x \\
0 & 1 & 0 \\
\sin x & 0 & \cos x
\end{array}\right]} \\
& {[\omega]_{z}=\left[\begin{array}{ccc}
\cos \omega & -\sin \omega & 0 \\
\sin \omega & \cos \omega & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Having determined the rotations $x, \phi, \omega, \theta ; x$ is given by:

$$
\underset{\sim}{x}=[\phi]_{z}[X]_{y}[\omega]_{z}\left[\begin{array}{c}
2 \sin \theta \\
0 \\
0
\end{array}\right]
$$

$=\left[\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos \chi & 0 & -\sin \gamma \\ 0 & 1 & 0 \\ \sin \chi & 0 & \cos \gamma\end{array}\right]\left[\begin{array}{ccc}\cos \omega & -\sin \omega & 0 \\ \sin \omega & \cos \omega & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 \sin \theta \\ 0 \\ 0\end{array}\right]$
$=\left[\begin{array}{l}2(\cos \omega \cos x \cos \phi-\sin \omega \sin \phi) \sin \theta \\ 2(\cos \omega \cos x \sin \phi+\sin \omega \cos \phi) \sin \theta \\ 2 \cos \omega \sin x \sin \theta\end{array}\right]$

Normally ω is set at 180°, and is not altered during automatic data collection。
Now, ${\underset{\sim}{x}}^{T}={\underset{\sim}{n}}^{T}$.

Determination of cell dimensions
S may be determined from the angle settings of any 3
non-coplanar vectors. However, the accuracy is improved, by using more than 3 observations and standard deviations
on the cell parameters may be calculated. If there are n observations, a least squares method reduces the summation

$$
\sum_{i=1}^{n}\left(\mathrm{~h}_{\mathrm{i}}^{\mathrm{T}} \mathrm{~S}-{\underset{\sim}{i}}^{x_{i}}\right)\left(\mathrm{s}^{\mathrm{T}}{ }_{\mathrm{h}_{\mathrm{i}}}-{\underset{\sim}{i}}^{x_{\mathrm{i}}}\right)
$$

to a minimum when

$$
\left.s=\left(\sum_{i=1}^{n} h_{i} h_{h_{i}}\right)^{T}\right)^{-1}\left(h_{i}{\underset{x}{i}}^{T}\right)
$$

The matrix $\sigma^{2}(S)$ gives the variance in each element of s;

$$
\begin{aligned}
\sigma^{2}(s) & =\left[s \sum_{i=1}^{n}\left(S^{T}{\underset{\sim}{i}}-{\underset{\sim}{x}}^{i}\right)^{2}\right] /(n-3) \\
\text { Since } s & =\left(\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right)
\end{aligned}
$$

This gives $a^{*}, b^{*}, c^{*}, \alpha^{*}, \beta^{*}, \gamma^{*}, V^{*}$ as functions of s;

$$
\begin{aligned}
\text { egg. } a^{*} & =s_{11}^{2}+s_{12}^{2}+s_{13}^{2} \quad(\text { from (1)) } \\
\cos \alpha^{*} & =s_{21} s_{31}+s_{22} s_{32}+s_{23} s_{33} \\
v^{*} \quad & =\text { determinant of } S .
\end{aligned}
$$

Hence $\mathrm{a}, \mathrm{b}, \mathrm{c}, \alpha, \beta, \gamma, \mathrm{V}$ may be found;
e.g. $a=\lambda b^{*} c^{*} \sin \alpha^{*} / v^{*}$

$$
\mathrm{v}=\lambda_{\mathrm{o}}^{3} / \mathrm{v}^{*} \quad\left(\lambda_{\mathrm{o}} \text { is mean peak } \lambda\right)
$$

Figure 1.2.3
Section through Cold Sphere ${ }^{36}$

The standard deviations in the real and reciprocal
ce11 dimensions (D) are then given by:-

$$
\sigma^{2} D=\sum_{i=1}^{3} \cdot \sum_{j=1}^{3}\left(\frac{\partial D_{i j}}{\partial S_{i j}}\right)^{2} \sigma^{2}\left(s_{i j}\right)
$$

where $D=f^{\left(S_{11} S_{12} \cdot S_{33}\right)}$

The cold sphere
Data for four structures $\operatorname{NiHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}, \operatorname{PdHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$, (MoOCI (dppe) $\left.)_{2}\right)\left(\mathrm{ZnCl}_{3}\right.$ acetone) and $\operatorname{MoCl}_{2}(\text { dppe })_{2}$ were collected at $-70^{\circ} \mathrm{C}$ using a brass sphere specially designed by R H B Mais and made for the I.C.I. Picker. This encloses the goniometer head and has portholes for the X-Ray collimator and the detector arm (see Figure 3). A temperature of $-70^{\circ} \mathrm{C}$ is readily obtainable without any further apparatus, by maintaining a steady flow of nitrogen (cooled by passing through a Dewar of liquid nitrogen) into the sphere. To prevent frosting of the portholes in the sphere, an external stream of air is directed at these windows. If precautions are taken to reduce the humidity of the surrounding air, by enclosing the entire goniostat in a dry box, lower temperatures may be reached. However, manual operations become very hampered and previous experience had shown that a difference of $90^{\circ} \mathrm{C}$ would make a significant improvement in structural accuracy, so this dry box was not used.

Procedure followed for data collection

(1) Initial reflections

Initial reflections wexe obtained whenever possible by diffraction from a principal face of the crystal, brought into the reflecting position manually by moving the χ and Φ circles, and then scanning up a row in 2θ. The position for reflection is:-

3 non-collinear reflections having been chosen, these have to be correlated for consistency of sign。 This is best illustrated by an example。 Given 3 reflections,

		\mathcal{X}	ϕ	
${ }_{\mathrm{h}}$	o	o	110	10
0	0	± 1	155	197
0	\pm_{k}	\pm_{1}	190	79

The Picker axes have been shown in Fig 2, and hence the directions of the $\pm h \circ 0,00 \pm \pm 1$ and $0 \pm \begin{aligned} & \pm \\ & \pm\end{aligned}$ vectors are defined as in Fig 4. (For simplicity these are represented in 2 dimensional space.) To complete a rhs., $0 k 0$ must lie at $\sim X=+0$ in the fourth quadrant, and therefore $0 \stackrel{ \pm}{ \pm} \quad \underset{-1}{+}$ is $0+k \quad-1$.

An initial orientation matrix is now generated, from which the positions of additional strong reflections are calculated. These are then measured accurately,

Figure 1.2.4
Assignment of Sign to Initial Measurements (2-dimensional illustration - see text)

$\phi \xrightarrow{0}$

$0^{ \pm} k^{ \pm} 1$ remains unsigned:

hoo and 001 define a right handed set of axes; OkO lies in fourth quadrant, almost in plane of ϕ circle.

$$
\therefore O^{ \pm} k^{ \pm} 1 \text { is } O k \bar{l}
$$

their x, ϕ, w and 2θ values noted, and the most convenient segment of reciprocal space is chosen for collecting data. Because of the mechanical limitations of the picker, $h k l$ and $h k-1$ are collected separately to minimize large jumps in x or ϕ 。 To obtain the best orientation matrix for generating reflection positions, initial measurements are made in the relevant quadrants of reciprocal space. For acourate cell dimensions and best esdso, on the other hand, 3 or 4 general reflections are each measured in all 4 quadrants. This is advisable because the computer program is quite general and assumes a triclinic cell. Hence any symmetry-enforced 90° or 120° angles are calculated and refined. This artificial refinement reduces the accuracy of the other derived parameters, but this method minimizes the error introduced。

(2) Card generation

The program Gonioset (see Appendix 1) is used to generate the control cards for each reflection within a specified shell of reciprocal space. The method used is to scan from $\left(2 \theta-\Delta 2 \theta_{1}\right)$ to $\left(2 \theta+\Delta 2 \theta_{2}\right)$; the limiting 2θ values are given by:-

$$
\begin{aligned}
2 \theta_{1} & =2 \sin ^{-1}\left(\sin \theta_{0} \cdot \frac{\lambda_{1}}{\lambda_{0}}+\Delta 2 \theta_{1}\right. \\
2 \theta_{2} & =2 \sin ^{-1}\left(\sin \theta_{0} \cdot \frac{\lambda_{2}}{\lambda_{0}}+\Delta 2 \theta_{2}\right.
\end{aligned}
$$

λ_{1} and λ_{2} are 0.7093 and 0.7135 for molybdenum radiation; θ_{0} is the peak position. The space group absences for
particular symmetries are input as subroutines， which allow absent reflections to be omitted from the input 1istingo

（3）Measurement of data

The goniometer is card controlled and each reflection corresponds to a control．card punched with hly $x \phi \omega 2 \theta_{1} 2 \theta_{2}$ followed by a data card which records hki $x \phi \omega 2 \theta_{1} 2 \theta_{2}$（net count $)\left(b g_{1}\right)\left(b g_{2}\right)$ ．The detector scans up 2θ ，measures the upper background for a fixed time，and then the lower baclsground for the same time．Two standard reflections，of similar 2θ value and intensity，are measured every 2 hours as an indioator of orystal movement and／or decomposition．The data was generally collected in shells or half shells，of inoreasing 2θ ， and each batch of intensities was checked using the program Data Check（See Appendix 1）。 This is a data reduction routine and enables any anomalous background counts，or bad measurements，to be spotted and repeated if necessary。

（4）Measurement of crystal

A special micrometer eyepiece fitted to a microscope was used to measure the crystals accurately for absorption corrections．A K－code programme MK1196（See Appendix 1） was used to calculate the surface equations of the orystal （and also the X and ϕ values of each face，from which the faces could be identified）。

Except where stated，all further calculations were done using the K－code Cosmos master program of R II B Mais，in which most crystal structure calculations are standard routineso

(C) Initial Treatment of Data

The Lp factor is given by:-

$$
\mathrm{Lp}^{-1}=2 \sin 2 \theta /\left(1+\cos ^{2} 2 \theta\right)
$$

also, if $N=$ peak count
$n_{1}=$ upper background
$n_{2}=$ lower background
$A=$ attenuation factor
$t=$ fixed time
$T=$ time spent on peak
then the intensity (I) and its deviation are given by:-

$$
\begin{aligned}
I & =(N / A)-\left(n_{1}+n_{2}\right) T / 2 t A \\
\sigma^{2}(I) & =\left(N / A^{2}\right)+\left(n_{1}+n_{2}\right) T^{2} / 4 t^{2} A^{2}
\end{aligned}
$$

The amplitude (F) and its deviations are given by:-

$$
\begin{aligned}
|F| & =\left(L^{-1} \circ I\right)^{\frac{1}{2}} \\
\sigma^{2}(F) & =\left(L_{p}^{-1} / 4 I\right) \sigma^{2}(I)
\end{aligned}
$$

If the backgrounds are high or uneven then the measurement is rejected, the test being:-

$$
\text { reject if } t_{1}\left(n_{1}-n_{2}\right) T / 2 t A \geqslant I
$$

where t_{1} is a constant。

To eliminate statistically insignificant reflections, one of two tests is applied:- $\quad\left(t_{n}\right.$ are constants)

$$
\begin{aligned}
& \text { a. reject if } I \leqslant t_{2}+t_{3} \sigma(I) \\
& \text { bo if } I \leqslant t_{4}+t_{5} \sigma(I) \\
& \text { then set } I=t_{6}+t_{7} \sigma(I)
\end{aligned}
$$

Test（a）was used for all data collected for this thesis；usually all positive amplitudes were accepted $\left(t_{2}=t_{3}=0\right)$ ，but when a large amount of good data was collected，t_{3} was set to 2 or 3 ．The scale factor was imitially set to unity，and refined during analysiso

No corrections were made for extinction，as no computer programs were available。

Absorption

The intensity I_{o} of a beam is reduced by an amount $\mathrm{dI}=\mu I_{0} d t$ on passing through a crystal of thickness dt ， and linear absorption coefficient，ie $I=I_{0} e^{-\mu t}$ With MoKo radiation，the reduction in intemsity is less serious than with cuK α ，but is still sufficient to make a correction desirable，if any dimension of the crystal i．s more than the optimum thickness $\mathbf{t}=2 / \mu$ 。 A Gaussian correction was used based on that of Busing and Levy，${ }^{37}$ modified by R H B Mais ${ }^{38}$ to give a more even distribution of sample pointso

Collate and sort routine

The common reflections were averaged according to the symmetry of each crystal，and the signs inverted where appropriate to obtain（hkl）in positive quadrants if possible。（This is a valid operation provided one does not intend utilising anomalous dispersion effects，or correcting for $\Delta f_{0}^{\prime \prime}$ ）
(D) Structure Analysis
(1) Patterson syntheses

The unsharpened Patterson function

$$
P_{x y z}=\frac{1}{V} \sum_{h} \sum_{k} \sum_{1}\left|F_{h k I}\right|^{2} \cos 2 \pi h x
$$

was calculated for each problem. The heights of peaks are proportional to the products of the atomic numbers of the 2 atoms concerned, and in most cases it was possible to deduce the heavy atom position from the Harker vectors between symmetry related pairs of these heavy atoms. Usually, no attempt was made to find any light atom positions from the Patterson mapso
(2) Electron density and difference syntheses

The functions

$$
\begin{aligned}
& P_{x y z}=\frac{1}{V} \sum_{h} \sum_{k} \sum_{1}\left|F_{h k 1}\right| \cos \left[2 \pi{\underset{\sim}{x}}^{x}-\alpha(h k 1)\right] \\
& \text { (acentric) } \\
& P_{\mathrm{xyz}}=\frac{2}{\mathrm{~V}} \sum_{\mathrm{h}} \sum_{\mathrm{k}} \sum_{1}\left|F_{\mathrm{hkI}}\right| \cos 2 \pi \underset{\sim}{\mathrm{hx}} \\
& \text { (centric) } \\
& \rho_{o}-\rho_{c}=\frac{1}{V} \sum_{h} \sum_{k} \sum_{1}\left(F_{o}-F_{c}\right) \cos 2 \pi{ }_{\sim}^{x} x
\end{aligned}
$$

were calculated, generally at $\frac{1}{3}$ or $\frac{1}{4} \AA$ § resolution. A fourier analysis routine was used to obtain peak positions, by taking the 19 grid points round each map point in turn, testing if this represented a peak, and calculating its position and heighto ${ }^{39}$
（3）Structure factor calculations and refinement
The structure factor
This is expressed by the equation：－
where

$$
\begin{aligned}
& F=A+i B=\sum f \exp 2 \pi i(h \underset{\sim}{x}) \\
& A=\sum_{i=1}^{n} f_{i} \cos 2 \pi \operatorname{hrx}_{\sim}^{x} \\
& B=\sum_{i=1}^{n} f_{i} \sin 2 \pi h \underset{\sim}{x}\left(=\begin{array}{l}
\text { o for centric } \\
\text { space groups })
\end{array}\right.
\end{aligned}
$$

Planes 1ists

The F_{o} values used in refinement were selected by a ＂minimum amplitude＂or＂minimum amplitude to deviation ratio＂test on the observed amplitudes（scale unity）． The actual threshold valueswere therefore only determined after refinement of the scale factor。 The minimum amplitude to deviation ratio was preset as 3.0 unless a directive was put in。

Planes lists could be edited by the program MK 1533， which enabled modifications to be made to the existing Iist。

Formfactors

These were used in the form：－

$$
f\left(S_{x}\right)=\sum_{i=1}^{n} a_{i} \exp \left(-b_{i} s_{x}^{2}\right)+c \quad \text { for } n=4
$$

where $a_{i} b_{i}$ and c are constants particular to each atom．
Approximate corrections for Δf^{\prime} ，the real part of the anomalous scattering，were made for the heavier atoms in each structure，by altering the constant c_{0}^{41}

Thermal Parameters

The expression $\left.\underset{\sim}{F_{\underset{\sim}{h}}^{h}}=\sum f_{0} \exp 2 \pi i \underset{\sim}{\text { h }} \underset{\sim}{x}\right)$ takes no account of the fact that atoms vibrate, and hence the diffracted intensity is reduced by the amount of out of phase vibration:-

$$
\begin{aligned}
& f=f_{0} e^{-M} \\
& \text { where } M=8 \pi^{2} \overline{u^{2}} \sin ^{2} \theta / \lambda^{2}=B \sin ^{2} \theta / \lambda^{2}
\end{aligned}
$$

(B $=8 \pi^{2} \overline{u^{2}}$ assuming a Debye-Waller type of isotropic vibration, and $\overline{u^{2}}$ is the mean square amplitude of vibration of the atom in \AA^{2}.)

The corresponding expression for anisotropic vibration is that the mean square amplitude in the direction

$$
\begin{aligned}
\frac{1}{\sim} & =\left(1_{1}, 1_{2}, 1_{3}\right) \\
\text { is } \overline{u^{2}} & =\sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} R_{i} 1_{j}
\end{aligned}
$$

where $\underset{\sim}{U}$ is a symmetrical tensor. $\underset{\sim}{U}$ and $\underset{\sim}{1}$ are defined with respect to $a^{*} b^{*} c^{*}$ so that the component of $\underset{\sim}{U}$ in the (100) direction, i.e. parallel to the a^{*} axis, is

$$
\overline{u^{2}}=u_{11}
$$

The full expression for the scattering factor then becomes:-

$$
\begin{aligned}
f= & f_{0} \exp -2 \pi^{2}\left[U_{11} h^{2} a^{* 2}+2 U_{12} h k a^{*} b^{*}+U_{22^{2}}{ }^{2} b^{* 2}\right. \\
& \left.+2 U_{23} k 1 b^{*} c^{*}+U_{33^{*}} 1^{2} c^{* 2}+2 U_{31} h 1 a^{*} c^{*}\right]
\end{aligned}
$$

These are related to b values by the equations: -

$$
\begin{aligned}
& b_{11}=2 \pi^{2} a^{* 2} U_{11} \quad \text { etco } \\
& b_{23}=4 \pi^{2} b^{*} c^{*} U_{23} \quad \text { etc. }
\end{aligned}
$$

The Cosmos routine calculates $U_{i j}$ values; theix dimensions are $\stackrel{\circ}{A}^{2}$. Isotropic Us were initially set to 0.04 unless otherwise stated, and the initial Uiis were set at the refined U values, while initial $U_{i j} s$ were set zero.

The normal equations of least squares refinement
The function to be minimised is:-

$$
\begin{aligned}
& \left(R^{1}\right)=\underset{\sim}{\underset{\sim}{w}} \underset{\sim}{w}=\underset{\sim}{\sum_{\sim}^{h}} \underset{\sim}{w_{h}}\left(\left|F_{i}\right| \underset{\sim}{h}-\left|F_{c}\right|_{\underset{\sim}{h}}\right)^{2} \\
& \text { where }{ }^{\sim} \Delta=\left|F_{0}\right|-\left|F_{c}\right|
\end{aligned}
$$

are the observational equations and $\underset{\sim}{w}$ is a weighting term. If $p_{j}(j=1,2, \ldots \ldots . . .0$) are the parameters in $\left|F_{c}\right|$ to be adjusted (i。e。a trial set of parameters) then:-

$$
F_{c}=f\left(p_{1} p_{2} \ldots \ldots \ldots p_{n}\right)
$$

and R^{\prime} is a minimum when $\frac{\partial R^{\prime}}{\partial p_{j}}=0 \quad(j=1 \ldots . . . n)$
i.e. when

$$
\sum_{\sim}^{h}{\underset{\sim}{w}}_{\sim} \Delta_{\underset{\sim}{h}} \frac{\partial\left|F_{c}\right|}{\partial p_{j}} \underset{\sim}{h}=0
$$

If the values of p_{j} are nearly correct, then Taylor's series may be used to find the effect on ${\underset{\sim}{h}}_{\underset{\sim}{h}}$ of a small change $\underset{\sim}{E}$ in the parameter $\underset{\sim}{p}:-$

$$
\Delta_{\underset{\sim}{h}}(\underset{\sim}{p}+\underset{\sim}{\varepsilon})=\Delta_{\underset{\sim}{h}}^{(\underset{\sim}{p})}-\sum_{i=1}^{n} \varepsilon_{i} \frac{\partial\left|\mathrm{~F}_{c}\right|}{\partial \mathrm{P}_{i}} \underset{\sim}{n}
$$

Now, if $\underset{\sim}{\mathcal{E}}$ is very small, the changes will tend to
make $\quad{\underset{\sim}{h}}_{\underset{\sim}{h}}(\underset{\sim}{p}+\underset{\sim}{\varepsilon})=0$

$$
\therefore \Delta \underset{\sim}{n}(\underset{\sim}{p})=\sum_{i=1}^{n} \varepsilon_{i} \frac{\partial\left|F_{c}\right|}{\partial p_{i}} \underline{\sim}
$$

Substituting in (1):-

$$
\sum_{\underset{\sim}{h}}^{w_{\sim}^{h}} \Delta_{\underset{\sim}{h}} \frac{\left.\partial\right|_{F_{c} \mid}}{\partial p_{j}} \underset{\sim}{h}=\sum_{\underset{\sim}{h}}^{\underset{\sim}{w}} \underset{\sim}{n} \sum_{i=1}^{n} \varepsilon_{i} \frac{\partial\left|F_{c}\right|}{\partial p_{i}^{h}} \underset{\sim}{n} \cdot \frac{\partial\left|F_{c}\right|}{\partial p_{j}} \underset{\sim}{h}
$$

These are the normal equations, and there are n of them; expressed in matrix form these are:-

$$
\sum_{i} a_{i j} \varepsilon_{i}=b_{j}
$$

where $a_{i j}=\sum_{\underset{\sim}{h}} w \frac{\partial\left|F_{c}\right|_{n}}{\partial p_{i}} \cdot \frac{\partial\left|F_{c}\right|_{h}^{h}}{\partial p_{j}}$
and $\quad b_{j}=\sum_{\underset{\sim}{h}} w \frac{\partial\left|F_{c}\right|}{\partial p_{j}} \underline{h}$

The conventional "R factor" is defined as:-

$$
\sum\left|F_{o}\right|-\sum\left|F_{c}\right| / \sum\left|F_{o}\right|
$$

and the "Convergence factor" as:-

$$
\begin{aligned}
& \sum_{w} \Delta_{n-1}^{2}-\sum_{w \Delta_{n}}^{2} \\
& \sum_{w} \Delta_{n-1}^{2}
\end{aligned}
$$

Weighting soheme and standard deviations
The weighting schemes used ${ }^{12}$ were of the form:-

$$
1 / W=1+\left(\frac{\mathrm{F}_{0}-\mathrm{c}_{2}}{\mathrm{c}_{1}}\right)^{2}
$$

where c_{1} and c_{2} are constants determined from plots of $W \Delta^{2}$ against $\left|F_{o}\right|$ for ranges of $\left|F_{o}\right|$, the best function chosen as that in which average values of $w \Delta^{2}$ remained constant when $w \Delta^{2}$ was analysed over sine theta or $\left|F_{0}\right|$ ranges. The standard deviation, using this type of weighting scheme, is given by:-

$$
\sigma^{2}\left(p_{i}\right)=\left(a^{-1}\right)_{i i}\left(\sum w \Delta^{2}\right) /(m-n)
$$

where $\left(a^{-1}\right)_{i i}$ is the inverse of the matrix $a_{i j}$ in the normal equations, m is the number of observations, and n is the number of parameters determined, i.e. we assume that:-

$$
\sigma|\mathrm{F}| \alpha|\mathrm{Fo}|-|\mathrm{Fc}|
$$

This will only represent true esds。 when the correct weighting scheme has been applied.

Approximations made in computing

Because of the high costs involved in computing, approximations were necessary. In the initial stages of each analysis full matrixes were used, but as more atoms were added, these matrixes were subdivided into smaller blocks each containing those groups of atoms that were expected to be correlated, i.e. chemical groupings such as $P-C-C-P$ systems, and naphthyl groups.

These were further split into positional and themmal bloclss，whenever amisotropio refinements were attempted。 Occasiomally the block diagomal approx－－ －1 imation was used，ioe。 only recognising correlations between parameters in the same atom，all off－diagonal terms in the a in matrix being ignored．Hydrogen atom parameters were not refined，being included as constant contributions in structure raotor caloulations． Ocoupancies were always unity except in the calculation on the disondered structure。

A xigid body program became operational in time to be used for the 2 structures with．dppe groups；the phenyl rings were constrained to their known geometry； and refined as rigid bodies；${ }^{43}$ this reduced the number of parameters from 24 （ 6 x． 4 for isotropio Us）to 7 （3）to define the position and orientation，and 1 for a group U）for each ringo Any 3 atoms may be used to define the plane of the ring（using Moleg－See Appendix 1）， which is described in an orthogonal system of axes；and fixed with respect to the cell axes by an orientation matrixo For the caloulation of structure factors，the x, y and z parameters of all atoms are necessary，but for refinement，all the separate derivatives are combined， so that only the 7 rigid body parameters are refined and hence a great saving in computer time is achieved， together with a more realistic description of the geometry of phenyl rings．

For each structure analysis，the calculations are tabulated
with details of R factors, type of matrix used, weighting, and number of terms. It is hoped this will avoid unnecessary repetition of refinement procedure. Tables of structure factors and agreement analyses, also final positional and vibrational parameters, are $1 i s t e d$ in Appendix 2.

Molecular geometries and standard deviations

(I) Cosmos. Bond distances and angles were normally calculated within Cosmos; their esds are given by:-

$$
\sigma^{2}\left(1_{12}\right)=\sigma^{2}\left(x_{1}\right)+\sigma^{2}\left(x_{2}\right)
$$

where x_{1} and x_{2} are the atomic coordinates measured in the direction of the bond, and the atoms are independent. The torsion angle (τ) about the bond $B-C$ is defined by four atoms A-B-C-D, and is the angle between the directions B-A and $C-D$ projected onto the plane perpendicular to the bond B-C. A clockwise rotation is defined as positive.

(II) Moleg was used to calculate best planes and dihedral angles.
(III) Hcoord was used to calculate the theoretical positions of hydrogen atoms bonded to sp^{3} and

```
sp}\mp@subsup{}{}{2}\mathrm{ carbon atoms, as in the methyl groups of
dmpe, and for aromatic hydrogens. It was al.so
used to calculate terminal methyl positions in
disordered dmpe (see Chapter 2.2), by assuming
tetrahedral phosphorus coordination.
```


Drawings of stmuctures

The Calcomp plot program Ortep was used for drawing molecules and projections of the intermolecular packing.

Dixect Methods

The symbolic addition method was used for 1 analysis
and will be desoribed.in the relevant chapter. ${ }^{46}$

Crystal Geometries
The surface equations for those crystals whose surfaces were accurately measured, are of the form:-

$$
1 x+m y+2 x z=p
$$

where p is the perpendicular distance (in microns) from the centroid of the crystal. to each face.

GIIAPTER 2．1

TRANSITION METAL．COMPLEX HYDRTDES

The key intermediates in the catalyti．c reactions described in Chapter 1.1 are probably complexes which contain $M-H$ and $M-C$ bonds，and the factors affeoting their stability have been briefly considered。 Up tili c．1960，very few of these complexes were lnown，and it was believed that the reason was the low covalent energy of these bonds．It is perhaps because of their relative instability，that this type of complex is involved in catalytic reactions，but the corollary of this is that it is difficult to obtain direot information about such intermediates，since isolation is necessary for their study，eg when attempting an X－ray analysis。 Generally spealking，the more stable analogues of catalytic intermediates are examined，in the expectation that，the results may be extrapolated to the actual inter－ mediates，and in some cases a likely intermediate has been synthesised，rather than isolated。 For example， $\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ is a hydrogenation catalyst for fumaron－ itrile，and therefore $\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CN}_{2} \mathrm{CH}_{1}: \mathrm{CH}_{0} \mathrm{CN}\right)$ is probably an intermediate。 This is a rare example of hydride and olefin simultaneously complexed to the same metal，and the X－ray analysis showed thet they ocoupy cis positions．

Bridging hydrides are thought to be involved in hydro－ genation reactions，and so studies on complexes such as $(\mathrm{CO})_{5} \mathrm{Cr}-\mathrm{H} \cdots \mathrm{Cr}(\mathrm{CO})_{5}^{47}$ may be helpful．

Transition Metal Hydrides ${ }^{48}$
Complex hydrides are now known for all transition metals except niobium and hafnium. At the top left of the d block, they are generally stabilised by co or $\pi C p$, at the bottom right by tertiary phosphines and arsines: the complexes usually conform to the $18 e$ rule (or $16 e$ in $P t(I I)$ complexes)。

They may be prepared from almost any source of H, and the complexes studied in this thesis represent examples of all the main preparative routes:-

1. From H_{2}

$$
\mathrm{Fe}(\text { dppe })_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \xrightarrow{\mathrm{H}_{2}} \mathrm{FeH}_{2}(\text { dppe })_{2}
$$

Chapter 2.5
2. From H^{+}

$$
\operatorname{IrCO}(\text { dmpe })_{2}+\xrightarrow{\text { EtOH }} \operatorname{IrH}(\text { COOMe })(\text { dmpe })_{2}+
$$

Chapter 2.7
3. From " $^{-}$"

$$
\mathrm{NiCl}_{2}\left(\mathrm{PPr}_{3}^{\mathrm{i}}\right)_{2} \xrightarrow{\mathrm{NaBH}_{4}} \mathrm{NiHCl}\left(\mathrm{PPr}_{3}^{\mathrm{i}}\right)_{2}
$$

Chapter 2.8
4. From C-H bonds

$$
\mathrm{RuCl}_{2}(\text { dmpe })_{2} \xrightarrow{\mathrm{Na}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)} \operatorname{RuH}\left(\mathrm{C}_{\left.10^{\mathrm{H}}{ }_{7}\right)(\text { dmpe })_{2}}\right.
$$

Chapter 2.2

Hydricde formation competes in many cases with． reduction，and several presumed M° complexes are now correctly formulated as hydrides．

The stability of transition metal hydrides follows opposite trends to that of covalent main group hyclrides，ie it increases down each series（see Chapters 2.2 and 2.8 particularly）。 Most hydrides are air and moisture sensitive，and deconpose on heating。

They are generally neutral，but may be acidic or basi．c；early studies gave conflicting results，ego $\mathrm{FeH}_{2}(\mathrm{CO})_{4}$ is acidic，${ }^{49}$ but $\operatorname{ReH}(\pi \mathrm{Cp})_{2}$ is basic．${ }^{50}$
Theonetical calculations are not conclusive，though they suggest a negatively charged hydride。 Dipole measurements indicate a net positive charge on Ho ${ }^{52}$ Probably a whole range of polarities exists，with the net polarity dependent on the electronegativities of the other ligands．The resultant polarity is undoubtedly important in determining，for example，the diuection of addition of $M-H$ across an unsymmetrical olefin，ego $\mathrm{CoH}_{(\mathrm{CO}}^{4}{ }_{4}$ ohanges in its behaviour towards olefines，${ }^{53}$ when $C O$ groups are replaced by phosphines．The electronic properties of H are very similar to（Me）because in the case of hydrogen，the $1 s$ orbital is a good sigma donor。 For（Me），also，only sigma bonding is possible。 Since II is so snalil and simple it is an ideal model for studying M－L bonding，but，also because of this，it is not striotly typical of most ligandso

Whe chemical reactions of I are similar to those of a normal anionic 1igand, e.g.:- ${ }^{54}$

```
i
    PtHC1(PE\mp@subsup{t}{3}{}\mp@subsup{)}{2}{\prime}\longrightarrow\mp@subsup{\textrm{Cl}}{2}{}
```

It appears to have a trans labilising effect, i.e.
promotes reaction at the trans position, e.g.:- ${ }^{55}$
for $\operatorname{tr}-\mathrm{PtLCl}\left(\mathrm{PR}_{3}\right)_{2}+($ pyridine $) \longrightarrow \operatorname{tr}-\mathrm{PtL}($ pyridine $)\left(\mathrm{PR}_{3}\right)_{2}$.

The order found was $\mathrm{PMe}_{3}>\mathrm{PE}_{3} \underset{\mathrm{NH}}{ }>\mathrm{PPr}_{3}^{\mathrm{M}}>\mathrm{Me}>\mathrm{Ph}>\mathrm{C} 1$

It also adds across double bonds, e.g.:-54.

$$
\operatorname{PtHCl}\left(\mathrm{PEt}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \xrightarrow{ } \operatorname{PtCl}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2}
$$

The most extensive studies of $\mathrm{M}-\mathrm{H}$ have, however, been on its physical properties, which are readily measured. Also, it is difficult to detect H by chemical analysis or stoichiometry of reaction because of its smal.1 percentage in compounds, and its low molecular weight. Accordingly, physical properties are used diagnostically. A11 we11-defined hydrides are diamagnetic. (One reported paramagnetic hydride $\operatorname{OsHCl}_{2}\left(\mathrm{PBu}_{2} \mathrm{nh}_{3}\right)_{3}^{56}$, was later shown to be a nitrogen complex. (${ }^{57}$) The M-H stretching vibration mode is a pure vibration which ocours in the IR between 1700 and $2250 \mathrm{~cm}^{-1}$, as a broad but strong band, unless masked by $\nu(\mathrm{C} \equiv 0)$ or $\nu(\mathrm{N} \equiv \mathrm{N})$. It can usually be confirmed by the deuteration shift to lower frequency (ratio $\left.\nu_{H} / \nu_{D} \sim 1.4\right)$. A previously reported ${ }^{58}$ exception to this is discussed in Chapter 2.6. The bending mode, at
$650-850 \mathrm{~cm}^{-1}$, (a weak to medium band) is usually masked by ligand vibrations. Bridging hydrides have a, band at 1000-1250 cm^{-1}. Trans dihydrides, and cis when trans to similar groups, have, one broad band, usually at lower frequency than corresponding monohydrides (1615-1750 cm^{-1}). Cis dihydrides have two bands jin the nommal range. ${ }^{59}$
$\nu(\mathrm{M}-\mathrm{H})$ in some complexes, is sensitive to solvent
(lowest in n-hexane, highest in CHCl_{3}), and also to other groups in the molecule. It inoreases on descending a series, corresponding to increasing M-H strength, and it has been shown that for Pt-H, decreases with increașing trans effect of the trans ligand. For Ru-H the order differs in detail but not in overall sense. Incoherent inelastic neutron scattering can be used for studying hydrogen vibrations and complements IR as it, also, gives information about vibrational energy levels. ${ }^{61}$ The disadvantage of this technique is that huge samples are required.
d-d transitions in hydride complexes are often obscured in the UV by charge transfer bands, but for RuHCl(dmpe) ${ }_{2}$, the large hypsochromic shifts suggest that H has a strong ligand field, similar to CN^{-}. However, studies on. $\mathrm{RhH}\left(\mathrm{NH}_{3}\right)_{5}^{2+}$ suggest a rather weak ligand field, similar to $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{NH}_{3}{ }^{63}$
The very large positive NMR shift is the main diagnostic test for $\mathrm{M}-\mathrm{H}$ (there are no known exceptions) since there is no interference in the range under observation. The shifts are between 10 and $45 T$ (solvent dependent), and
the magnitude of δ was used as evidence for the early theory that hydri.de was buried ix the electron shel. 1. of; the metale There is no general relationship between δ and trains effect, though high ν are often partmered by high δ values. The splittings of δ by other nuolei', and $J(P-H)$, the coupling constant between H and P, have been used to elucidate the stereochemistry of complexes, particularly as in the case of Ir hydrides, when there are many isomers (J i.s 10-20 cps for H cis to P, 120-160 ops trains to P.o)

The most valuable tool for studying $M-H$ however, is diffraction analysis, since this is the only physical teohinique which provides information about the whole molecule Since the effect H has on the rest of the molecule is possibly more important from the catalytic viewpoint than the $M-H$ bond length itself, this is invaluable Before considering the results obtained, mainly by X-ray studies, it is worth setting out some of the disadvantages of X-ray structure analysis for charaoterising hydrogen atoms。

Since X-rays are scattered by electrons, hydrogen is the most ineffectual soatterer In electron diffraction the scattering is caused by the eleotric potential at an atom, and at small Bragg angles hydrogen is not swamped so mucho (The electron density at the centre of a hydrogen in an organic orystal is 0.6-0.7 e/A3, cfor-10 e/ A^{3} for carbon。. The electric potential at the centre
of hydrogen is $30-35$ volts, cf 130 volts for carbon。 ${ }^{65}$)

The scattering by neutrons is composed of two parts, the potential scattering which $\propto A^{\frac{1}{3}}$ (A is mass number);
the resonance scattering which varjes randomly in magnitude and sign, and for H is comparable to C. At zero theta, the coherent elastic scattering amplitudes (in $10^{-12} \mathrm{~cm}$.) are:- ${ }^{60}$

	electron		X-ray
H	5300	0.28	neutron
C	24500	1.69	0.38

Other factors being equal, therefore, neutron studies would be best, but few nuclear reactors are available, and it is generally difficult to obtain large enough hydride crystals。

X-ray studies are thus more feasible, and, even if the M-H bond cannot be measured, the hydride position can often be deduced.

Because of its small size and its one electron, the scattering factor falls off very rapidly with theta; also, since hydrogens are almost always in terminal positions, they vibrate rapidly and so the scattering falls off even more quickly. Therefore the low angle reflections are most important when studying the $\mathrm{M}-\mathrm{H}$ bond.

Because of the greater stability of 2nd and 3nd row hydrides，these are most often studied，but
because the heavier metal will dominate the scattering， one is even less likely to see the hydrogen than in an organic molecule，or first row complex．

The other factors affecting the problem are：－
1．Errors in the data。
（a）Absorption。 Mo is better than Cu radiation since it is absorbed．lesso
（b）Extinction。 This affects low angle spots most and so could be an important source of error in searching for hydrogens．
（c）Choice of radiation． Cu is better than Mo because there is less white radiation streaking to hamper measurements at low angles．
（d）Completeness of data。
（e）A good crystal

2．Crystal composition。
（a）An even distribution between heavy，medium and light atoms is the most favourable situation．
（b）A rigid structure，eg．PPh 3 groups rather than $\operatorname{PPr}_{3}{ }^{n}$ ，since these can help to tie down the hydrogen．

3．Errors in the model．
（a）Scattering factor curves．These are strictly
only accurate for the free, spherically symmetrical atoms. Any errors will be particularly important for hydrogen, and lead to errors in U values.
(b) Anomalous scattering. When the inner shell electrons scatter with frequency comparable to that of the X-rays, then this has to be allowed for.

$$
\mathbf{f}=\mathbf{f}_{0}+\Delta f^{\prime}+i \Delta f^{\prime \prime}
$$

(Δf^{\prime} is the real, and $\Delta f^{\prime \prime}$ the imaginary part of the anomalous scattering.)

This is most important for polar space groups, and leads to errors in the positional parameters of the anomalous scatterer. ${ }^{67}$
(c) Anharmonic vibrations. This will introduce errors into the positional parameters. ${ }^{68}$

Structural results are now available for hydrides of most transition metals, with some gaps in the first
series. These will be discussed in Chapter 2.10。

CHAPTER 2.2

THI CRYSTAL AND MOLTEULAR STTUCTURD OT

$\underline{\mathrm{Cis}-\mathrm{Riu}(\mathrm{I})\left(\mathrm{C}_{10} \mathrm{Hr}_{7}\right)(\text { dmpe })_{2}}$

Transition metal hydrides are often formed by hydrogen abstraction from an organic molecule，which may be a coordinated Iigand。 However，a hydride is not always formed；the abstraction may result in：－

1．loss of hydrogen，and formation of an $M-C\left(\sigma^{\infty}\right)$ bond；

2．inreversible formation of $M-H$ and $M-C(\sigma)$ bonds；

3．an equilibrium in which a hydridic structure （high coordination number and oxidation state）coexists with a coordinatively unsaturated structure of．lower formal oxidation state。

4o in some cases hydrogen abstraction does not occur；in which case we have the borderline situation in which there is a weak inter－ action between the metal and a Iigand hydrogen
atom。

It is apparent that hydrogen abstraction and $C\left(\sigma^{-}\right)$bond formation do not occur with saturated hydrocarbons， but only when some stabilising substituent，eogo phenyl， is also present in the organic moleoule．This is
consistent with curxent ideas on the formation and stability of $M-C\left(\sigma^{\infty}\right)$ bonds in genexal. Activation of CH_{4} is a problem of impontance since the advent of natural gas as a petroleum feedstock, but abstraction of hydrogen to form $\mathrm{H}-\mathrm{M}-\mathrm{CH}_{3}$ has not been reported.

Examples of these types of abstraction reactions are given below:-

1. Pd- and Pt-carbon sigma bonded complexes are formed by reaction of the halides with amines, e.g. benzylamine, ${ }^{69}$ azobenzene. 70 Hydragen is eliminated as H^{+};

The structure of $\operatorname{PdCl}\left(\text { PEt }_{3}\right)_{2}$ (azobenzene) has been confirmed by an $X-r a y$ analysis. ${ }^{71}$

A series of platinum complexes formed by the
reaction:
$\mathrm{Li}(\mathrm{Carb} \cdot \mathrm{R})+\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2} \longrightarrow \mathrm{Pt}_{2}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{R}, \mathrm{Carb})$
where $(\mathrm{R}-\mathrm{car} \mathrm{b})$ is $\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{B} \cdot{ }_{10} \mathrm{H}_{10}$ or $\mathrm{R} \cdot \mathrm{C}_{-1} \mathrm{C}$ - have $\mathrm{B}_{10} \mathrm{H}_{10}$
been shown to contain $P t-C$ bonds which
complete the 4-coordination round pt. ${ }^{72}$
Spectral data show the absence of $M-H$ bonds,
and the postulated structures are: -

Further examples are:-

In these cases there is no change in formal
oxidation state.
2. This is one case of oxidative addition (See

Chapter 2.7), e.g. if benzene is added to $\operatorname{IrCl}\left(\mathrm{PPh}_{3}\right)_{3}$, a pheny1 hydrogen is abstracted, irreversibly, to form the 6 -coordinate Ir (III) complex who structure is thought to be:- ${ }^{75}$

This illustrates how very readily some
hydrogen abstractions take place; similar behaviour is shown by other iridium compounds containing at least one pheny 1 group.
4. Two examples of complexes where X-ray structure determinations have shown that a phenyl hydrogen approaches a metal, making it pseudo 6-coordinate are:-
(a) $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{12}$
(b) $\left[\operatorname{Ir}(\mathrm{Co})(\mathrm{dppe})_{2}\right] \mathrm{C} 1$

The closest approaches in $\mathrm{RhCl}\left(\mathrm{SO}_{2}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}-$ $2.94 \stackrel{\circ}{\mathrm{~A}, ~}{ }^{77}$ and $\operatorname{RhHCl}\left(\mathrm{SiCl}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}^{78}-2.79 \mathrm{~A}$, are attributed to packing rather than any actual interaction.
3. The largest class of hydride abstraction reaction is that in which the equilibrium is mobile, and further examples are continually being reported. This is also probably the most useful class of reactions from the catalytic point of view, in
that the hydride, once formed, is not too stable
to react further.
Some examples are:-
(a) $\mathrm{Co}^{\mathrm{I}_{\mathrm{H}}\left(\mathrm{N}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3} \xrightarrow[+\mathrm{N}_{2}]{-\mathrm{N}_{2}}}$

(b) $\mathrm{Fe}^{\mathrm{II}} \mathrm{H}_{2}\left(\mathrm{~N}_{2}\right)\left(\mathrm{PEtPh}_{2}\right)_{3} \stackrel{\mathrm{~h} \mathrm{\nu}}{\rightleftharpoons} \mathrm{H}_{2}+$

(c) $\mathrm{Fe}^{\mathrm{O}(\text { dppe })_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \stackrel{-\mathrm{C}_{2} \mathrm{H}_{4}}{\rightleftharpoons}}$

This example is examined later (See Chapter 2.5)
(d) $\mathrm{Ru}^{\circ}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)($ dmpe $) \underset{2}{ } \rightleftharpoons \mathrm{Ru}^{\mathrm{II}} \mathrm{H}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$ (dmpe) ${ }_{2}$

This last example constitutes an interrelated system since IIa is readily obtained by pyrolysis
of Ia. The evidence given by Chatt and
Davidson in their extremely thorough investigation of the tautomerism of (I), ${ }^{82}$ is that chemically the compound behaves as Ia, eog. it loses napthalene giving IIa. However, in the solid, there is a strong $\nu(M-H)$ band in the IR at $1802 \mathrm{~cm}^{-1}$ 。 A1so, the characteristic bands at $\sim 1600 \mathrm{~cm}^{-1}$ due to napthyl, are observed, and those at $200 \mathrm{~cm}^{-1}$ for 2-naphthyls. The NMR shows the high-field group of bands, diagnostic of $M-H$, at 18.6τ. In the same way, the compound II contains $\nu(\mathrm{Ru}-\mathrm{H})$ at $1791 \mathrm{~cm}^{-1}$, and it has been shown that the hydrogen originates from one of the phosphine methyl groupso The constancy of $\nu(\mathrm{Ru}-\mathrm{H})$ has been cited as good evidence of its complete transfer from carbon to ruthenium. An NMR spectrum could not be run on II, because of its insolubility and instability. The structures proposed by Chatt and Davidson were, on the basis of this and other evidence, e.g. deuteration studies:-

Ib

Ila

116
and it was suggested that the solid state structures are $I b$ and $I I b$, and that in solution these predominate, together with small amounts of the reactive Ia and IIa.

These two systems have been examined crystallographically; the naphthyl compound has been shown to have the proposed structure (See this Chapter), whereas the compound II appears to be disordered - no solution has been found. (See Chapter 2.3).

The naphthalene originates from the reductant, and the preparation of these compounds is as follows:-
 eg. Na^{+} $\mathrm{M}=\mathrm{Ru}, \mathrm{Os}$
aryl $=$ naphthyl, phenyl, anthryl, phenanthryl
i.e. arene abstraction has taken place. A11 other metals form the predicted zerovalent .
complexes without arene abstraction:-83
metal halide complex $\xrightarrow[\text { (dmpe) }]{ } \mathrm{M}^{\circ}$ (dmpe) 2 or 3
$\mathrm{M}=\mathrm{Co}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}$ tetrahedral
$\mathrm{M}=\mathrm{V}, \mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$ octahedra1
$M=$ Fe sq. planar

Furthermore, dmpe is the only ditertiary
phosphine for which this has been observed;
the stabilisation of an $M-C(\sigma)$ bond has in
this case been attributed to the increased
basicity of dmpe compared with dppe. i.e. the metal retains a high electron density which is not so easily delocalised within the phosphine d orbitals, and hence may be dispersed into the arene π^{*} orbitals by formation of a strong $M-C$ bond. It will be seen later (Chapter 2.7) that dmpe is a unique ligand in several of its reactions.

The preparations of the osmium analogues of I and II were repeated; the structure of $0 \mathrm{oH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$ is found to be very similar to that of $\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$ (dmpe) $\mathbf{2}^{\text {, }}$ (See Chapter 2.4), while os (dmpe) ${ }_{2}$ proved too unstable to isolate. (See Chapter 2.4). The preparation of the iron analogue - Fe(dmpe) $)_{2}$ - was repeated by S D Ibekwe, but was also too unstable to crystailize.

Preliminany Obsenvations

A. crystallime sample of $\operatorname{RuH}\left(\mathrm{C}_{1.0} \mathrm{H}_{7}\right)$ (dmpe) ${ }_{2}$, prepared by J M Davidson in 1962,' was available, and so these crystals were examined for their suitability for structure determination。 They were laxge honey coloured prisms, bounded by several faces, and prediminary photognaphy indicated that they had not decomposed. The IR spectrum of the sample contained the strong $1802 \mathrm{~cm}^{-1}$ band. The orystals were handled and mounted rnder nitrogen. The orystal used is shown in Figure 10

Crystal Data

$\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{RuP}_{4}, \underline{M}=529.2 ;$ monoclinic, $\underline{a}=15.234 \pm 0.002$, $\underline{b}=10.136 \pm 0.001, \frac{\mathrm{C}}{\mathrm{C}}=18.729 \pm 0.002 \AA, \beta=114.00$ $\pm 0.01 ; \underline{U}=2642.0 \mathrm{~A}^{\circ}, D_{m}=1.30$ (f1otation) $\underline{Z}=4$, $\underline{D_{C}}=1.30, \underline{E}(000)=1104 ;$ Space Group $\underline{P_{1}} / \mathrm{c}\left(C_{2 h}^{5}\right.$ No.14 $)$, Mo-K α radiation ($\mathrm{Nb} \cdot f i l t e r$),$\mu=8.2 \mathrm{~cm}^{-1}$ 。

Data Colleotion

Temperature $R{ }_{0}^{\circ} T$; scan range -0.7° to $+0.6^{\circ}$;
Scan speed $2^{\circ} 2 \theta /$ minute; fixed time 10 seconds;
Standards (0 40) and (500)remaining constant to within -1% of initial intensity; reflections
measured in octants $\{\overline{h k} 1\}$ and $\{h \bar{k} 1\}$, to a maximum $2 \theta=55^{\circ}$; cell dimensions from 19 reflections giving . angles $\alpha=89.98(1)^{\circ}, \quad \gamma=89.99(1)^{\circ}$; total number of independent structure amplitudes obtained after data reduction and collation of equivalent reflections 5451.

Figure 2.2.1
$\underline{\underline{\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })}{ }_{2} \text { Crystal }}$
The Equations of the Bounding Surfaces of the Crystal

	1	m	n	p	(hkl)
1	0.8504	0.4840	-0.2063	-220.38	110
2	0.7646	-0.6274	0.1473	-247.50	110
3	0.6029	0.3678	0.7080	192.51	
4	-0.6783	0.7345	-0.0194	-263.80	Ī10
5	0.8508	0.4580	-0.2578	222.25	110
6	0.2028	-0.0478	0.9780	-218.283	

```
Structure Solution and Refinement
Formfactors for Ru and P were corrected for \Deltaf'.
The Ru position was found by inspection of the Harker
sections of the Patterson:-
\begin{tabular}{ccl}
\(2 x\) & \(2 y\) & \(2 z\) \\
0 & \(\frac{1}{2}-2 y\) & \(\frac{1}{2}\) \\
\(-2 x\) & \(\frac{1}{2}\) & \(\frac{1}{2}-2 z\)
\end{tabular}
which result from the vectors between the positions
in \(P 2_{1} / \mathrm{c}:-\)
\(\pm(x, y, z)\)
\(\pm\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)\)
The initial position of (0.299 0.2250 .1205 ) was refined to \(R=30.5 \%\) (cycles \(1-5\) ), see accompanying table (Table 1). The corresponding \(F\) (obs) map showed four peaks in the expected positions for two cis diphosphine ligands. 450 extra terms were included in refining these positions, (cycles 6-8; \(R=19.1 \%\) )。 An \(F(d i f f)\) map clearly revealed the naphthyl group, also all of the phosphine carbons, although some of these (C41 particularly) were not prominent, and many were elongated peaks, (e.g. C13, C12, C43). Accordingly, cycles 9-12 only included Ru, P1-4, naphthyl carbons, and some of the phosphine carbons. After cycle 12 the \(U\) values of the bridging carbons were all considerably higher than those for Ru and P , e.g. Ru 0.048 , P2 0.077,
```

$\xrightarrow{\frac{\text { TABLE 2.2.1(a) }}{\text { Refinement of the structure of }} \mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\mathrm{dmpe})_{2}}$

Cycle number	Number of terms	Criteria	R Value	Atoms included	Matrix type			Vibrations					Weight used
					Ru	P	${ }^{C}(p)$	${ }^{C}$ (nap)	Ru	P	${ }^{C}(\mathrm{p})$	C(nap)	
1-5	981	min.amp. 40	30.5	Ru	b	-	-	-	i	-	-	-	1
6-8	1430	min.amp. 30	19.1	Ru, Pl-P4	b	b	-	-	i	i	-	-	1
9-12	1430	min.amp.30	12.5	$\begin{aligned} & \text { Ru, PI-P4 } \\ & C(\text { nap }) \\ & \text { some } C_{(p)} \end{aligned}$	$b(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	$\begin{aligned} & \mathrm{b}(1) \\ & \mathrm{b}(2) \end{aligned}$	b (3)	i	i	i	i	1
13	1740	min.amp. 25	14.0	$\begin{aligned} & \mathrm{Ru}, \mathrm{Pl}-\mathrm{P} 4 \\ & \mathrm{C}(\text { nap }) \\ & \text { some } C(\mathrm{p}) \end{aligned}$	$\mathrm{pb}(1)$	$\begin{aligned} & \mathrm{pb}(1) \\ & \mathrm{pb}(2) \end{aligned}$	$\begin{aligned} & \mathrm{pb}(1) \\ & \mathrm{pb}(2) \end{aligned}$	pb (3)	$\begin{aligned} & i \\ & c \end{aligned}$		$\begin{aligned} & i \\ & c \end{aligned}$	$\begin{aligned} & i \\ & c \end{aligned}$	1
14, 15	1740	min.amp. 25	10.8	all atoms	b(1)	$b(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	b (3)	i	i	i	i	1
16, 17	3521	min.amp. 10	11.7	all atoms	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	b (3)	$\stackrel{a}{a}+\mathrm{b}(1)$	i	i	i	1

[^0]$i=$ isotropic
$c=$ constant
$=$ constant

[^1]Refinementinn
TABLE 2.2.1(b)

Cycle. number	Number of terms	Criteria	R Value	Atoms included	Matrix type			Vibrations					Weightir used
					Bu	P	${ }^{C}(\mathrm{p})$	$c^{(n a p)}$	Ru	P	${ }^{c}(\mathrm{p})$	${ }^{C}$ (nap)	
18	3521	min.amp. 10	10.0	all atoms	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	b (3)	$\stackrel{a}{\operatorname{tb}(1)}$	i	i	i	$\begin{gathered} c_{1}=25^{\prime} \\ c_{2}=28 \\ (2) \end{gathered}$
19-21	3521	min.amp. 10	8.0	all atoms	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	b(3)	$\stackrel{a}{\operatorname{tb}(1)}$	$\begin{gathered} a \\ t b(1) \end{gathered}$	i	i	2
22	2573	min.amp./ deviation 20	13.5	all except $C(p)$	b (1)	b(1)	-	b(2)	a	a	-	i	1
23	3513	min.amp. 10	12.8	disordered structure	c	c	c	c	a	a	i	i	2

C111 0．371，C13 0．251。

In order to try and determine more precisely the positions of these ill－defined atoms，one cycle（13） was caloulated in which．Us were not refined（they were held at the refined values for $R u, P$ and maphthyl atoms and at 0.07 for C（phosphine）atoms），and only some of the phosphine carbons，were included．The resulting $F(d i f f)$ map again revealed the other carbon atoms；so it was decided to attempt to refine this structure。＂The centres of elongated peaks were chosen as atomic positions，and cycles 14 and 15－a11 isotropic－and cycles 16 and 17 －Ru anisotropio－． gave $R=11.7 \%$ ．The weighting scheme was now adjusted and refinement with $R u$ and P atoms anisotropic gave $\mathrm{R}=8.0 \%$ with this weighting schenie。 During these calculations the isotropic Us of atoms C11，C12，C32， C33， C 41 and C 42 contimued to rise，although at 8.0% （cyole 21）they had apparently converged at abmormaily high values．

This behaviour was suggestive of disorder in the phosphine ligands，and so cyole 22 and an $F(d i f f)$ map on $R u, P$ and maphthyl atoms was calculated，and the map was drawn out on perspex sheets．The superimposed contour maps are shown in Figure $2 a$ and 2b。 Peaks due to C21， C22，C23，C31，C32，C33 were compact and we11 shaped， though slightly elongated，but those for C12，C13， 442

Figure 2.2.2a
$\underline{\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}}$
Projection of $\mathrm{F}($ diff) map phased on $R u, P$ atoms and naphthyl group, illustrating the disordered ligand Pl.....P2. Contours at intervals of $0.35 \mathrm{e} / \AA^{3}$, lowest at $0.7 \mathrm{e} / \AA^{3}$. The calculated positions for terminal carbon atoms are indicated Q.

Figure 2.2.2b
$\underline{\underline{\operatorname{RuH}}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\mathrm{dmpe})_{2}}$
Projection of $F(\operatorname{diff})$ map phased on $R u, P$ atoms, and naphthyl group, illustrating the disordered ligand P3.....P4. Contours at intervals of $0.35 \mathrm{e} / \AA^{3}$, lowest at $0.7 \mathrm{e} / \AA^{3}$. The calculated positions for terminal carbon atoms are indicated \otimes.
and 443 were very elongated．In addition to C11 and C41（labelied C11a and C4ia）there were two other， smaller peals（labelied C11b and C41b）C11b was well formed，but C4ib was mexely a suggestion of electron density。 However，it was possible to visualise a type of disorder in which one end of each phosphine Iigand remains fixed（P2－C21－）and（P3－C31－）， while the other end is free to move（P1－C11－）and （p4－C41－）。 The splitting between C11a and b，C41a and b ，is quite small．The corresponding splitting of $\mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 42$ and C 43 is consequently also sma1．1，and in these latter atoms，which additionally will be vibrating more vigorously，the two peaks have mergedo To test this hypothesis，the positions C11a and C11b； and $C 41 \mathrm{a}$ and C 41 b ，wexe taken in turn，and the theoretical altermative terminal positions caloulated， assuming an angle of 106° at phosphorus，and P－C distances of $1.82 \AA$ ．In each case the theoretical positions fell within the elongated areas of electron density（see Figure 2）。 It was also noted that in the phosphine P1。o．P2，the positions C12（ a and b ）， $C 13$（ a and b），were almost equally displaced from the observed centres of the peaks。 In P3。o．P4，the C42a and C43a positions lay almost on the centres of their observed peaks，while $C 42 \mathrm{~b}$ and C 43 b lay appreciably to one side In both phosphines，this was consistent with the apparent heights of C 11 and $\mathrm{C} 41 ; \mathrm{C} 11 \mathrm{a}$ and b were almost of equal height，whereas the centre of C 4 ib
was much Less well－defined than that of 441 a ，and therefore its exact position was not easy to judge。 Structure factors were oaloulated on the final． parameters from cyole 21，including contributions from both conformations in a disordered structure， but without refining these parameterso Their relative contributions were estimated as C11a：b－1：1g and C41a：b－7：3，as a rough approxinationo The R value was 12.8%（oycle 23），but，allowing for the fact that it was difficult to be precise in acoounting for the disorder，and also that the disordered structure was not refined to convergence，this discrepancy in final R values is not unreasonable。 Limitations on computer time prevented exhaustive trials of different disordered models from being practicable；the extra cost would have been out of all proportion to the probable value of the results．

A11．the tables therefore refer to the structure at 8．0\％，in which only the predominating conformation is included，and so the geometry involving the phosphine carbon atoms is necessaxily approximate Unobserved reflections were calculated－nome was greater than twice the minimum observed。 The T（diff）map ali $R=8.0 \%$ showed all the $H($ naphthyl）atoms，as peaks of height 0.4 to $0.6 \mathrm{e} / \stackrel{\circ}{A}^{3}$ at，or near，their caloulated positions． （These were not refined）．There was some residual electron density roimd Ru possibly due to unacoounted－for anisotropy
of vibration, but there was a distinct peak of
height~0.4 e/ \AA^{3} in a position almost trans to P1, approximately 1.7 A from the Ru atom.

Characterisation of Hydrogen Position

In order to test whether this peak did, in fact, represent the hydridic hydrogen, Ibers' method of calculating successive $F(d i f f)$ maps on limited sets of data, was applied。 ${ }^{84}$. This is based on the fact that light atoms, in presence of heavy atoms, do not contribute significantly to the scattering at high theta。 The suspected hydride peak remained reasonably constant in position, while other features round $R u$ shifted as the resolution was reduced. The "noise level" (standard deviation of the electron density) increases with theta, and there exists an optimum limiting theta for characterising light atoms. Assuming that the data set is complete, the peak height of an atom is:-

$$
\rho^{c}=\frac{1}{2 \pi^{2}} \int_{0}^{s o}\left(1+a^{2} s^{2} / 4\right)^{-\frac{1}{2}} \exp \cdot\left[\frac{-B s^{2}}{16 \pi^{2}}\right] s^{2} d s
$$

$$
\text { where a is the Bohr radius }=0.5292 \stackrel{\circ}{\mathrm{~A}}
$$

$$
\text { where } s=4 \pi \sin \theta / \lambda
$$

$\rho^{. c}$ approaches a limiting value as so increases. The standard deviation of the electron density is given by:-

$$
\sigma(p)=\left[\sum\left(F_{o}-F_{c}\right)^{2}\right]^{1 / 2} / v
$$

It follows that $\rho H / \sigma(\rho)$ will pass through a
maximum at some value of so However，if a peak is spurious，it will vary randomly in position and height，as the number of terms（i。ees）is varied． This criterion therefore provides a means of charaoterising a peak which is suspected to be caused by a hydrogen atomo Structure factors and an $F($ diff $)$ map are caloulated for data sets in which so is gradually reduced．The ibestr map for obtaining an $M-H$ distance is then that for which $\rho_{H} / \sigma(\rho)$ is a maximum。 From Table 7 it can be seen that the map to $\sin \theta / \lambda=0.5$ is best，giving Ru－H $=1.67 \%^{\circ}$ ．No attempt was made to refine this position。

Results and Discussion

The final positional and vibrational parameters for the predominating structure are shown in the Appendix （Tables 2 and 3）。 Parameters affected by disorder are marked（＊）。 The molecular geometry is shown in Table 4；there are no close intermolecular contacts． Table 5 lists some torsion angles．The final agreement analysis is listed in Table 6。 Figure 3 is a drawing of one molecule，with the numbering system used and Figure 4 is a stereo pain of the orystal packingo

The coordination arrangement about Ru is slightly distorted octahedral，with the naphthyl group and hydridic hydrogen cis to each other in the plane defined

Figure 2.2.3
$\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$
View of one molecule illustrating the numbering system used.

Figure 2.2.3(a)
$\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\mathrm{dmpe})_{2}$
The geometry round ruthenium

Figure 2.2.4
$\underline{\underline{\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}}}$

Table 2.2.4

Bond distances (A) and angles (${ }^{\circ}$), with their estimated standard deviations

Around Ruthenium

$R u-P(1)$	$2.333(3)$	$P(1)-R u-P(2)$	$82.5(1)$	$P(1)-R u-C(2)$	$99.3(3)$
$R u-P(2)$	$2.303(3)$	$P(1)-R u-P(3)$	$102.9(1)$	$P(2)-R u-C(2)$	$88.7(3)$
$R u-P(3)$	$2.280(3)$	$P(1)-R u-P(4)$	$98.4(1)$	$P(3)-R u-C(2)$	$85.9(3)$
$R u-P(4)$	$2.301(3)$	$P(2)-R u-P(3)$	$172.9(1)$	$P(4)-R u-C(2)$	$161.6(3)$
$R u-C(2)$	$2.160(10)$	$P(2)-R u-P(4)$	$98.5(1)$		
$R u . \ldots C(1)$	3.161	$P(3)-R u-P(4)$	$85.4(1)$		
$R u . . C(3)$	3.112				

Naphthyl Group

$C(1)-C(2)$	$1.38(1)$	$C(1)-C(2)-C(3)$	$116(1)$
$C(2)-C(3)$	$1.43(2)$	$C(2)-C(3)-C(4)$	$120(1)$
$C(3)-C(4)$	$1.45(2)$	$C(3)-C(4)-C(10)$	$122(2)$
$C(4)-C(10)$	$1.28(2)$	$C(4)-C(10)-C(9)$	$121(1)$
$C(10)-C(5)$	$1.54(2)$	$C(9)-C(10)-C(5)$	$116(1)$
$C(5)-C(6)$	$1.30(2)$	$C(10)-C(5)-C(6)$	$116(2)$
$C(6)-C(7)$	$1.33(2)$	$C(5)-C(6)-C(7)$	$127(2)$
$C(7)-C(8)$	$1.41(2)$	$C(6)-C(7)-C(8)$	$123(2)$
$C(8)-C(9)$	$1.44(2)$	$C(7)-C(8)-C(9)$	$115(1)$
$C(9)-C(1)$	$1.44(2)$	$C(8)-C(9)-C(10)$	$123(1)$
$c(9)-C(10)$	$1.40(2)$	$C(10)-C(9)-C(1)$	$119(1)$
		$C(9)-C(1)-C(2)$	$122(1)$
		$C(1)-C(2)-R u$	$125(1)$
		$C(3)-C(2)-R u$	$119(1)$
		$C(1)-C(9)-C(8)$	$118(1)$
		$C(4)-C(10)-C(5)$	$123(1)$

Table 2.2.4 (contd.)

Phosphine Groups

* P (1)-C(11)	$1.93(4)$	* $\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	117(1)
* $\mathrm{P}(1)-\mathrm{C}(12)$	1.80(3)	* $C(11)-P(1)-C(13)$	76(1)
* $\mathrm{P}(1)-\mathrm{C}(13)$	1.88(3)	* $\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(13)$	93(1)
P(2)-C(21)	1.82(2)	$C(21)-P(2)-C(22)$	103(1)
$\mathrm{P}(2)-\mathrm{C}(22)$	1.82(2)	$C(21)-P(2)-C(23)$	101(1)
$P(2)-C(23)$	1.83(2)	$C(22)-P(2)-C(23)$	98(1)
P(3)-C(31)	1.83 (2)		
P(3)-C(32)	1.81(2)	$C(31)-\mathrm{P}(3)-\mathrm{C}(32)$	101(1)
P(3)-C(33)	1.80 (2)	$C(31)-P(3)-C(33)$	105(1)
*P(4)-C(41)	1.87(3)	$C(32)-P(3)-C(33)$	101(1)
*P(4)-C(42)	1.84(2)	*C(41)-P(4)-C(42)	95(1)
*P(4)-C(43)	1.80(2)	*C(41)-P(4)-C(43)	99(1)
		* $C(42)-P(4)-C(43)$	99(1)
* $\mathrm{C}(11)-\mathrm{C}(21)$	1.50(3)		
* $\mathrm{C}(31)-\mathrm{c}(41)$	1.44(3)	* $\mathrm{P}(1)-\mathrm{C}(11)-C(21)$	106(2)
		*P(2)-C(21)-C(11)	114(2)
		* $P(3)-C(31)-C(41)$	113(2)
		*P(4)-C(41)-C(31)	118(2)
*Ru-P(1)-C(11)	108(1)	Ru-P(3)-C(31)	111(1)
*Ru-P(1)-C(12)	125(1)	Ru-P(3)-C(32)	118(1)
*Ru-P(1)-C(13)	130(1)	Ru-P(3)-C(33)	118(1)
Ru-P(2)-C(21)	112(1)	*Ru-P(4)-C(41)	108(1)
Ru-P(2)-C(22)	120(1)	*Ru-P(4)-C(42)	131(1)
Ru-P(2)-C(23)	121(1)	*Ru-P(4)-C(43)	119(1)

* involving atomic positions affected by disorder

Table 2.2.5

Selected Torsion Angles (${ }^{\circ}$), positive values indicating clockwise rotation

$*$	$P(1)-C(11)-C(21)-P(2)$	44
$* P(3)-C(31)-C(41)-P(4)$	-25	
$C(1)-C(2)-R u-P(1)$	-20	
$C(1)-C(2)-R u-P(2)$	-102	
$C(1)-C(2)-R u-P(3)$	83	

[^2]Hydrogen peak heights and related quantities for the hydride searching maps

Cut-off $\left(\lambda^{-1} \sin \theta\right)$	Number of terms	$\rho^{E}\left(\mathrm{e} . \AA^{-3}\right)$	$\sigma(\rho)\left(\mathrm{e} . \mathrm{A}^{-3}\right)$	$\rho^{\mathrm{E}} / \sigma(\rho)$	$\mathrm{Ru}-\mathrm{H}(\AA)$
0.3	539	0.25	0.072	3.44	1.59
0.4	1208	0.30	0.080	3.68	1.72
0.5	2189	0.40	0.088	4.54	1.67
0.63	3513	0.40	0.090	4.49	1.64
$($ all data $)$					

Reference 84 explains the meaning of the quantities presented in this table.
by Ru－P1－P4－C2。 As is commonly observed in hydride complexes，eogoosHBr $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}, \quad$ RhH $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3},{ }^{85}$ the other 1igands are bent towards the hydride position，ioe．P1－Ru－P4 98° ，C2－Ru－P4 162° ，probably as a steric effect of the small hydride ligand。

The Ru－p bonds（2．28 to $2.33 \AA$ ）are similar to，or perhaps slightly shorter than，those in other ruthenium phosphines，through there is often quite a large variation in the individual Ru－P lengths in one molecule。 Table 8 shows reported Ru－P distances．Ru－P1，trans to hydride，is the longest（2．33Aㅇ），presumably by a slight trans effect of hydride。．（However，in $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ Ru－P trans to the hydrogen from a phenyl group is considerably shorter than the others．）${ }^{12}$ Within each phosphine，the ordered atoms have a reasonable geometry，the $\mathrm{P}-\mathrm{CH}_{2}$ and $\mathrm{P}-\mathrm{CH}_{3}$ distances， average 1.82 A ，being similar to those observed in other phosphine complexes．Because of the disorder， it is difficult to comment meaningfully on the conformations of the phosplaines．The bridging systems in both groups have staggered conformations about the C－C bond，as is gemerally observed in complexes with bidentate phosphines．In each case，one C（methylene）．－ C21 and C41－lies nearly in the Ru－p plane，while the other－C11 and C31－lies out of this plane。 Table 5 shows some torsion angles．The conformations of ordered（dmpe）are discussed further in Chapter 2.7%

TABLE 2.2.8

$\underline{\text { Ru-P Distances }}$

	Ru-P	Reference
$\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$	2.28-2.33	
$\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$	2.23-2.41	a
$\mathrm{RuHCl}\left(\mathrm{PPH}_{3}\right)_{3}$	2.21-2.36	b
RuH (acetate) ($\left.\mathrm{PPh}_{3}\right)_{3}$	2.23-2.36	c
$\mathrm{RuCl}_{2}\left(\mathrm{PhMe} \cdot \mathrm{P} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{P} \cdot \mathrm{MePh}\right)_{2}$	2.34	d
$\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{PBu}_{3}{ }^{\mathrm{n}}\right)_{4}$	2.32-2.36	e
$\mathrm{Ru}_{2} \mathrm{Cl}_{4}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{5}$	2.26-2.34	f
$\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{6}{ }^{+} \mathrm{RuCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}$	2.26-2.39	g

a. S J LaPlaca \& J A Ibers, Inorg. Chem., 1965, 4, 778
b. A C Skapski \& P G H Troughton, Chem. Comm., 1968, 1230
c. A C Skapski \& F A Stephens, JCS(D), 1969, 1008
d. I Kawada, Tetrahedron Letters, 1969, 793
e. G Chioccola, J J Daly \& J K Nicholson, Angew.Ch.Int.Ed., 1968, 7, 131
f. N W Alcock \& K A Raspin, $\operatorname{JCS}(\mathrm{A}), 1968,2108$
g. \quad K A Raspin, $\operatorname{JCS}(A), 1969,461$

The eleotron density contouns of the phosphine
Iigands show that for each ethane bridge there are two possible conformations differimg only in the positions of C11 and C41．The conversion from one isomex to the other can be achieved by a rotation of approximately 50° about the Ru－P bond．The position of the phosphorus atom in the crystal remains constant whereas the carbon atoms bonded to that phosphorus move。 Both confommations probably have similar energies，as the partial conformation about the $C-C$ bridge remains staggered。 It is noticeable that both．Ru－P bonds involved in the disorder lie in the plane of the naphthyl ringo In contrast the intermolecular packing perpendicular to the aromatic ring is apparently sufficient to determine the positions of the methyl groups C22，C23； C32 and C33．This flexibility of the molecule， observed even in the solid state，may be related to the ease of losing naphthalene from the complex：

The Ru－H distance， $1.7 \AA$ ，deduced from the $0.5 A^{-1}$ map， agrees with other known Rum distances，ioe。 $10 \% \AA$ in RuHCl $\left(\mathrm{PPh}_{3}\right)_{3}{ }^{86}$ and in $\operatorname{RuFI}($ acetate $)\left(\mathrm{PPh}_{3}\right)_{3}{ }^{87}$ The significance of this distance will be discussed later， in Chapter 2.10 ．

The Ru－C2 distance， $2.16 \AA^{\circ}$ ，is slightly Ionger than is usual for $M-C$（aryl）bonds（see Table 9），but is within
the range of observed distances. If the ootahedral. radius of $\operatorname{Ru}(I T)$ is taken as 1.33°, and allowance is made for sp^{2} hybridisation of carbon, then the theoretical Ru-C length is 2oorA. The lengthenimg observed in. the present structure may not be significant, but the ready loss of naphthalene by heating to $150^{\circ} \mathrm{C}$, supports the suggestion of a 1 ong, weak M-C bond

The bond lengths in the coondinated maphthyl group nange from 1.28 to $1.54 \AA$, but the variation is mot systematic as it is, for example, in free $\mathrm{C}_{10} \mathrm{H}_{8}{ }^{\circ}$ The standand deviations are too large to make a meaningful comparison with the geometries of other beta-substituted naphthalenes. However, the angle C1-C2-C3 $\left(116^{\circ}\right)$, agrees with other observations that this angle in $M-C(a r y l)$ complexes is generally nearer 115° than 120°, e.go 114° in $\mathrm{CrCl}_{2}(\mathrm{p}-\mathrm{toIyI})(\mathrm{THF})_{3}$, 116° in $\mathrm{Ni}(\pi \mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right){ }^{90}$

The torsion angle C1-C2-Ru-P1 is 20°. This rotation of the naphthyl group out of the plane Ru.P1.p4 is probably caused by the presence of the Ru-H bond of 1. $\% \AA$; the contact distance $H(C 31) \circ 0 . H(R u)$ is $2.3 \AA$, which is just the van der Waal's radius sum。 If the naphthy 1 group were to lie in the coordination plane (symmetnically positioned between C 22 and C 32), then this contact would be extremely short ($\sim 2 A$)。

TABLE 2.2 .9

M-C(aryl) Distances

a. J J Dạly \& R P A Sneeden, JCS(A), 1967, 736
b. M D Rausch et.al., JACS, 1968, 90, 3242
c. V A Semion et al., Chem. Comm., 1968, 666
d. Yu T Struchkov, 4th International Conference on Organometallic Chemistry, Bristol 1969 (abstract Al5)
e. R L Avoyan, Yu A Chapovskii \& Yu T Struchkov, J.Struct.Chem.(Russ.), 1966, 7, 900
f. U A Raeburn et al., JCS(D), 1969, 433
g. ${ }^{\text {. }}$ See Chapter 2.4
h. P G Owston \& J M Rowe, JCS, 1963, 3411
i。 S•Brückner et al., JCS(D), 1970, 152
j. E B Fleischer \& D Lavallee, JACS, 1967, 89, 7132
k. . M R Churchill \& T A O'Brien, JCS (A), 1969, 266

1. $M R$ Churchill \& $T A O^{\prime} B r i e n, ~ J C S(A), 1968,2970$
m. M R Churchill \& M V Veidis, JCS(D), 1970, 1099
n. D L Weaver, Inorg.Chem., 1970, 9, 2250
o. M Mathew \& N R Kunchur, Canad.J.Chem., 1970, 48, 429

Sigma-pi Equilibrium
$\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$ has been shown to contain an
Ru-C (σ) bond; the naphthalene molecule in
$\mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)(\text { dmpe })_{2}$ is probably attached in some
manner involving pi-bonding. There has been much
discussion recently ${ }^{91,92}$ about the mechanism of
such Sigma-pi shifts, in view of their probable
catalytic importance (Chapter 1.1), but little is
known for certain about whether the shifts occur
by a concerted or a multi-step mechanisme The
earliest reported example is:- ${ }^{93}$

The most studied system is claimed to be that of 'Hein's complexes", but this is just one of several
we11-authenticated cases, and the mechanism does not seem to have been any more thoroughly rationalised
than in others. Hein's complexes are chromium
π-arene species, e.g. $[\operatorname{Cr}(\mathrm{Ph})(\mathrm{Ph}-\mathrm{Ph})]{ }^{+} \mathrm{I}^{-}$, from
PhMgBr and CrCl_{3}, and intermediates, e.g. Cr.3THF。($\left.\sigma-\mathrm{Ph}\right)_{3}$,
have been isolated. The mechanism proposed for these
rearrangements involves radical ions. ${ }^{94}$ The sigma
complexes undergo a great variety of reactions which
are presumed to involve hydrogen abstraction from the
aromatic ligands, e.go:- ${ }^{95}$

CfoxTHF。 $\left(\beta-\mathrm{C}_{1 \mathrm{O}_{7}}\right)_{3}+\mathrm{Me}-\mathrm{C}=\mathrm{C}-\mathrm{Me} \longrightarrow 1,2,3,4$-tetramethylanthracene
$\mathrm{Cr} 。 \mathrm{xTHF} \circ\left(\alpha-\mathrm{C}_{10} \mathrm{H}_{7}\right)_{3}+\mathrm{Me}-\mathrm{C}=\mathrm{C}-\mathrm{Me} \longrightarrow 1,2,3,4$-tetramethy1phenanthrene

Aryne intermediates were postulated for the above reactions. The π-arene complexes are very readily formed, but no structural results are reported so that it is not known how they are bonded. However, the crystal structure of one of the intermediates, CrCl ${ }_{2}$. 3 THF (ptolyl) confirms that it contains σ-bonded tolyl. $(\mathrm{Cr}-\mathrm{C}=2.10 \AA){ }^{\circ}{ }^{89}$

Sigma-pi rearrangements have also been extensively studied in metal-allyl systems, particularly using variable temperature $N M R$, which can detect changes in conformational and rotational freedom by observing changes in the equivalence of protons, e.g.:- ${ }^{96}$

in solution

solid

Sigma-pi rearrangement is often induced by protonation, e.g. as above, as well as by the presence of a strongly trans-weakening ligand in a σ-bonded complex.

Tsutsui
has discussed these at length, but
without suggestions as to mechanisms parshall,
in a related review, ${ }^{92}$ proposes a mechanism for
the hydrogen abstraction reaction of RuHCI $\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{4}:-$

In the present system:-

Ia tautomerises to a small extent，in solution，to Ib，its chemical properties being consistent with Formula Ibe For example，it readily loses naphthalene to give IIb。However，this in turn is also in tautomeric equilibrium with an Ru（II）hydride，IIa。 Since naphthalene cannot be added to II，this equilibrium probably also favours the Ru（II）hydride； physical measurements support its formulation as IIa， e．g．the IR contains $\nu(\mathrm{Ru}-\mathrm{H})$ at $1791 \mathrm{~cm}^{-1}$ ．The conversion is intramolecular as the hydrogen has been shown to come from the naphthalene，and also since naphthalene cannot be added to IIb to give Ib。

A mechanism analogous to Parshal1＇s seems unlikely， as the phosphine groups would themselves need to undergo considerable rearrangement to accommodate a naphthalene ring system either as a＇half sandwich： as in $\mathrm{Cr}(\mathrm{CO})_{3}\left(\right.$ naphthalene），${ }^{97}$ or a pi－allyl as in $2 \mathrm{SbCl}_{3}($ naphthalene $):-^{98}$

It is more likely that an olefine bond is formed, as in $4 \mathrm{AgClO}_{4}$ (naphthalene) ${ }^{99}$ This would only
necessitate a slight shift of the naphthalene rings
to bring one of the aromatic $C-C$ bonds to a
coordinating position. It is significant that the disorder in the phosphine ligands is connected with the two atoms, $P 1$ and $P 4$, in the equatorial plane; flexibility about these atoms would facilitate this type of shift. The distance from Ru to the midpoint of C1-C2, i。e. Ru-(C1-C2), in the σ complex is 3.07 ${ }^{\circ}$; Ru-(C2-C3); though, is only $2.65 \AA$, so that the movement necessary is slight if the π complex is: -

The hydridic hydrogen has, however, to move onto $C 2$, and a simple concerted mechanism for this is not easy to visualise。 This hydride shift would be easier if the ring rotates in the opposite direction, when a $1 / 2$ complex could result; either structure would be analogous to complexes of silver and copper:-

AgClO_{4} (benzene)	2.55	100
$\mathrm{AgAlC1}_{4}$ (benzene)	2.57	101
AgClO_{4} (m-xylene)	2.55	102
$4 \mathrm{AgClO}_{4}$ (naphthalene)	2.60	99
AgClO_{4} (cyclohexylbenzene)	2.48	103
CuAlC1 $_{4}$ (benzene)	2.13	104

If, on the other hand, the conversion is two-step, either of these could be formed, via a solvated intermediate, possibly Ic. Similarly, if an aryne Id is formed, either a $1 / 2$ or a $2 / 3$ complex could be formed.

Unfortunately, the form Ib is too unstable, and probably exists in too small amounts, for this to be tested.

CHAPTER 2.3

THE ATTEMPTED STRUCTURE ANALYSIS OF Ru (dmpe) 2

The product, Ru^{o} (dmpe) $_{2}$, (II), of pyrolysis of $\mathrm{Ru}^{\circ}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ (dmpe) $2_{2},(I)$, is also postulated to have an $\mathrm{Ru}(I I)$ hydride structure in the solid. The tautomerism was demonstrated, as for (I), by reaction with HC1 and DC1, which gave mixtures of products corresponding to reaction of both tautomers. The hydrogen was shown to have come from a phosphine methyl group, by deuteration studies using $\mathrm{C}_{10} \mathrm{D}_{8}$ and $\mathrm{Me}_{2} \mathrm{P}_{\circ} \mathrm{C}_{2} \mathrm{D}_{4} \cdot \mathrm{PMe}_{2} \cdot \nu(\mathrm{Ru}-\mathrm{H})$ occurs at. $1791 \mathrm{~cm}^{-1}$ (shoulder at $1815 \mathrm{~cm}^{-1}$); no NMR could be obtained.

The structure postulated by Chatt and Davidson is analogous to that of cis- $\mathrm{RuH}_{2}(\text { dmpe) })_{2}$, but is highly strained; the angle $\mathrm{P}-\mathrm{Ru}-\mathrm{C}$ is $\sim 50^{\circ}$.

It may be compared to the Tallyl type of structure:-

ie Here we have a loe system:-

cf. the $6 e$ system:-

If true, this would be a highly novel structure, and so a crystal structure analysis was attempted.

Preparation

Crystals of the complex had been prepared by Chatt and Davidson :-

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{8} / \mathrm{THF} \frac{\text { shake with } \mathrm{Na}}{3 \mathrm{hrs}} \mathrm{Na}^{+}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)^{-} \\
& \operatorname{tr} \cdot-\left(\mathrm{RuCl}_{2}(\text { dmpe })_{2}\right) \frac{\mathrm{NaC}_{10} \mathrm{H}_{8} / \mathrm{THF}}{} \mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)(\text { dmpe })_{2} \\
& \Delta \left\lvert\, \begin{array}{r}
155^{\circ} / 10^{-3} \mathrm{~mm} \\
24 \mathrm{hrs}
\end{array}\right. \\
& \mathrm{Ru}(\text { dmpe })_{2}
\end{aligned}
$$

The crystals were large yellow prisms which came down rapidly on recrystallisation from pentane. A sealed sample of the original preparation was available, and
so these crystals were examined. At first sight they
presented no apparent difficulties, as they gave
excellent photographs showing triclinic symmetry, and were not too unstable in airo Crystals were, however, mounted under nitrogen in tubes.

Crystal Data

$\mathrm{C}_{12}{ }^{\mathrm{H}} 32^{\mathrm{RuP}} 4, \mathrm{M}=401.7$; triclinic, $\underline{a}=10.035 \pm 0.005$,
$\underline{b}=10.724 \pm 0.005, \underline{c}=9.716 \pm 0.005 \AA, \quad \alpha=94.32 \pm 0.04$,
$\beta=114.84 \pm 0.03, \gamma=96.22 \pm 0.04^{\circ} ; \underline{U}=934.9 \AA^{3}$,
$\mathrm{D}_{\mathrm{m}}=1.43$ (flotation), $\underline{Z}=2, \underline{D_{\mathrm{c}}}=1.43, \mathrm{~F}(000)=416 ;$
Space Group P1 ($\mathrm{C}_{\mathrm{i}}{ }^{1}$; no.2) probably, MoK α radiation
(Zr filler) $, \lambda=0.7107 \mathrm{~A}, \mu=10.87 \mathrm{~cm}^{-1}$ 。

Data Collection

Temperature R.To; scan range -0.06° to $+0.6^{\circ}$;
Scan speed $2^{\circ} 2 \theta /$ minute; fixed time 10 seconds for shel1 to $2 \theta=30^{\circ}$,
Scan speed $\frac{1}{2}^{\circ} 2 \theta /$ minute, fixed time 20 seconds for remainder;

Standards (070) and (600) falling to 92% and 73%
of initial intensity; reflections measured in the
hemisphere $\left\{\begin{array}{r}- \pm+ \\ h k 1\end{array}\right\}$, to a maximum $2 \theta=54^{\circ}$;
ce11 dimensions from 12 reflections;
total number of independent structure amplitudes obtained.
after data reduction and collation of equivalent
reflections, assuming Space Group Pī, 2764.

The crystal used is shown in Figure 1.

Attempted Solution of Structure

A Patterson map was first calculated, over half the unit cell, (this is necessary for either $P 1$ or $P \overline{1}$), at a resolution of $\sim \frac{1}{4} \AA$ in each direction。 The projection of the main features of this map is shown in Figure 2 。

For $\mathrm{P} \overline{1}$, the expected vector pattern is formed by combination of $R u-R u, R u-P, P-P$ vectors. If $R u$ is at
$\pm x_{v} \pm y_{1}, \pm z_{v}$ and p is at $\pm x_{2}, \pm y_{2}, \pm z_{2} ;$ then if
$\delta=\left(x_{2}-x_{1}\right)$ and $\sigma=\left(x_{2}+x_{1}\right)$, the cross vectors
are:-

	$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}$	$-\left(\begin{array}{llll}x_{1} & y_{1} & z_{1}\end{array}\right)$	$\mathrm{x}_{2} \mathrm{y}_{2} \mathrm{z}_{2}$	$-\left(x_{2} y_{2} z_{2}\right)$
$\mathrm{x}_{1} \mathrm{y}_{1} \mathrm{z}_{1}$	000	$2 x_{1} 2 y_{1} 2 z_{1}$	$-(\delta \delta \delta)$	$\sigma \sigma \sigma$
$-\left(\begin{array}{llll}x_{1} & y_{1} & z_{1}\end{array}\right)$	$-\left(2 x_{1} 2 y_{1} 2 z_{1}\right)$	000	$-\left(\begin{array}{ll}\sigma & \sigma\end{array}\right)$	$\delta \delta \delta$
$\mathrm{x}_{2} \mathrm{y}_{2} \mathrm{z}_{2}$	$\delta \delta \delta$	$\sigma \sigma \sigma$	000	$2 x_{2} 2 y_{2}{ }^{2 z}$
$-\left(x_{2} y_{2} z_{2}\right)$	$-\left(\begin{array}{lll}\sigma & \sigma & \sigma\end{array}\right)$	-($\left.\begin{array}{lll}\delta & \delta & \delta\end{array}\right)$	$-\left(2 x_{2} 2 y_{2} 2 z_{2}\right)$	000

and the relative expected peak heights will be:-

$$
\left.\begin{array}{ccc}
2 x & 2 y & 2 z \\
\begin{array}{cc}
\sigma u & R u
\end{array} \\
\delta & \sigma & \sigma \\
\delta & \delta & \delta
\end{array}\right\} \quad R u-P \sim 3
$$

$$
2 x \quad 2 y \quad 2 z \quad p-p \quad \sim 1
$$

One would therefore expect to see a Ru-Ru vector peak in a general position in the Patterson $\operatorname{cell}\left(2 x_{1} \quad 2 y_{1} \quad 2 z_{1}\right)$, surrounded by $(\sigma \sigma \sigma)$ type peaks from intermolecular Ru-P vectors. These Ru-P peaks should be confirmed by the occurrence of Ru-P peaks ($\delta \delta \delta$) of intramolecular type, round the origin peak. Of the 3 highest peaks (1, 4, 12) - see Figure $2-2$ were too near the origin

Figure 2.3.2
$\underline{\mathrm{Ru}(\text { dmpe })_{2}}$
Projection of the Patterson map down the z axis. (In this, and all other projections in this chapter, no correction is made for non orthogonality of the unit cell.) z heights (40ths) shown in small type, numbering of peaks in larger type.
to be Ru-Ru vector peaks, (Ru-Ru distances of 1.95 and $2.3 \stackrel{\circ}{A}$ respectively) Interpretation of either of these as Ru-Ru vectors would have raised difficulties in accounting satisfactorily for the many pealss in the vicinity of peak 12 , in the centre of the cell. This peak was at $(13 / 40,14 / 44,12 / 40)$, and it appeared to correspond to the most reasonable Ru-Ru vector. It was surrounded by $5(\sigma \sigma \sigma)$ type peaks, whose positions, heights and distances from the central peak, are shown; also their approximate positions in the real cell, assuming a Ru position of $\sim(7 / 40,7 / 44,6 / 40)$ 。

Peak	Atom	Hgt.	Patterson position			Ru-pk.	Real position		
12	Ru	13	13/40	14/	12/40		7	7	6
9	P1	7	8	19	7	1.9	2	12	1
10	P2	6	4	8	11	2.4	-2	1	5
13	P3	5	21	19	12	2.3	15	12	6
17	P4	7	18	9	17	1.9	12	2	11
20	P5	6	13	18	21	2.3	7	11	15

The disposition of peaks being:-

2 distances (Ru-P1,P4) seemed very short, and more
plausible as Ru-C vectors. However, if these are genuine Ru-P vectors, then one expects ($\delta \delta \delta$) peaks aś follows: -

Peak	Position			
Ru-P1	5	-5	5	Weight
Ru-P2	9	6	1	1
Ru-P3	-8	-5	0	1
Ru-P4	-5	5	-5	1
Ru-P5	0	-4	-9	1

Because peaks from P1 to P4 are nearly centrically arranged around $R u$, these will superpose to give double weight peaks since the Patterson cell always has a centre of symmetry at the origin.

These ($\delta \delta \delta$) peaks were observed, at approximately their expected heights:-

Peak	Vector	Height	Position			$(0 \mathrm{O}$
1	Ru - P2, P3	11	-8	-5	0	2.3
4.	Ru - P1, P4	15	5	-5	5	1.9
6	Ru - P5	7	0	5	8	2.3

The majority of the other peaks were accounted for by $P-P$ vectors, and this accounted for all the highest peaks on the map $(1,2,3,4,5,6,9,10,11,12,13$, 14, 17, 20). At this stage there was no evidence to
suggest that the true space group might be $P 1$, as the three strong vectors round the origin were the only peaks near the origin. The patterson map of a P1 crystal would be expected to be much less clear-cut. The appearance of theoretical Patterson maps for various triciinic crystals is summarised in Table 1 .

Figure 2.3.1
$\underline{\mathrm{Ru}(\text { dmpe })_{2} \quad \text { Crystal }}$

	Space Group	Number of Molecules	Relationship	Expected Peaks Round $(0,0,0)$	Weight	Expected Peaks Round M-M Vector	Weight
1	P1	2 acentric	noncentrically	8	1	8	1
2	P1	2 centric	noncentrically	4	2	8	1
3	$\overline{\text { P1 }}$	2 acentric	centrically	4	2	4	2
4	$\overline{\mathrm{P} 1}$	2 centric	centrically	2	4	4	2
3 a	$\overline{\mathrm{P} 1}$	1 dimer	centred round origin	4	2	4	2
2 a	$\overline{\mathrm{P} 1}$	2 crystallographically centric	noncentrically (as 2 but in $\mathrm{P} \overline{\mathbf{1}}$) asymmetric unit has $2 \frac{1}{2}$ molecules.	4	2	$\begin{gathered} 8 \\ \text { (at } \left.\frac{1}{2}, 0,0\right) \end{gathered}$	1

TABLE 2.3 .1

Case 3 a is equivalent to 3 but in this case the link between Ru1 and Ru2 should be apparent. This possibility was considered very carefully; of the 3 peaks round $(0,0,0)$, peak 4 would correspond to a very short ($1.95 \stackrel{\circ}{\AA}$) metal-metal bond, peak 1 to a fairly short ($2.3 \AA$) bond, and no peaks would be observed in the centre of the Patterson cell; peak 12 would arise from a metal-metal bond of $\sim 5 \AA$, so that the link would have to be through phosphine bridges.

Summarising, the evidence all seemed to support a transplanar symmetrical arrangement of four ligand atoms, plus one atom in one of the two octahedral positions. At this stage, these all looked like P atoms, as the distances between peaks were all rather long for $P-C$ bonds. (Distances not shown are $>3 \AA_{\circ}^{\circ}$)

Formfactors were not initially corrected for Δf^{\prime} 。
The position (peak 12) $0.1617 \quad 0.1589 \quad 0.15$ was chosen for the Ruthenium atom, and after cycles 1-3 (see Table 2), an F (obs) map showed the same pattern of five peaks round $R u$, as the Patterson. Their heights and positions were:-

Peak	Height	x	y	z
Ru	99			
P1	38	0.0445	0.2744	0.0222
P2	26	-0.0490	0.0368	0.1333
P3	25	0.3665	0.2791	0.1667
P4	34	0.2830	0.0392	0.2665
P5	23	0.1625	0.2610	0.3625

Apart from the many peaks round the assumed Ru position, large parts of the cell were quite devoid of density, and all electron density seemed to be concentrated round the origin. Three cycles (4-6) of refinement of Ru and P1-P4 positions led to $R=30.7 \%$, with acceptable position and temperature factor shifts. In this, and all subsequent calculations on this compound, full matrix refinement was used. The F (diff) map phased on this set of planes appeared reasonable (See Figure 3), except that again, all density was concentrated in the first octant of the unit cell. P1 and P4 positions were in slight troughs; P2 and P3 approximately on points of zero electron density. P5 came up strongly, as did several possible carbon atom positions, but these latter lay on

Cycle Number	Number of terms	Criteria	$\begin{gathered} R \\ \text { Value } \end{gathered}$	Atoms included	$\frac{\mathrm{TAB}}{\text { ilation }}$	LS 2.3	a) $\text { ampe) }{ }_{2}$	$\text { in } \mathrm{P} \overline{1}$	Initial Vibrations		Final Vibrations		Maps	
					Atom	Initial	y	z						
1-3	2729	min.amp. 10	47.3	Ru	Ru	. 162	. 159	. 150	Ru	. 04	Ru	. 028	obs.	
4-6	2729	min.amp. 10	30.7	Ru Pl-4	Ru	. 160	. 158	. 150	Ru	. 028	Ru	. 034	diff.	
					Pl	. 044	. 274	. 022	P1-4	. 040	PI	. 033		
					P2	-. 049	. 037	. 133			P2	. 043		
					P3	. 366	- 279	. 167			P3	. 053		
					P4	. 283	. 039	. 266			P4	. 038		
7-9	2729	min.amp. 10	31.2		$\left.\begin{array}{l} \mathrm{Ru} \\ \mathrm{PI}, \\ 3,4 \\ \mathrm{P} 5 \end{array}\right\}$	as above (for cycle 4)$.162 \quad .261 \quad .362$			$\begin{aligned} & \text { Ru } \\ & \text { all } \\ & \text { Ps } \end{aligned}$	$\begin{aligned} & .028 \\ & .040^{\circ} \end{aligned}$. 034	-	
									Pl		. 036			
									P3		. 038			
									P4		. 039			
									P5		. 050			
10-12	2729	min.amp. 10	35.5	$\underset{\mathrm{P} 5}{\mathrm{Ru}} \underset{\mathrm{Pl}, \mathrm{P} 4,}{ }$	$\begin{aligned} & \mathrm{Ru} \\ & \mathrm{Pl}, 4 \\ & \mathrm{P} 5 \end{aligned}$	as for cycle 4 as for cycle 7				$\begin{aligned} & \mathrm{Ru} \\ & \mathrm{all} \\ & \mathrm{Ps} \end{aligned}$	$\begin{aligned} & .028 \\ & .040 \end{aligned}$	Ru	. 031	obs.
								Pl				. 039		
								P4				. 044		
								P5				. 052		
13-15	2729	min.amp. 10	26.3	Ru Pl-5	$\left.\begin{array}{l} \mathrm{Ru} \\ \mathrm{Pl-4}-4 \\ \mathrm{P} 5 \end{array}\right\}$	as fo as fo				Ru	. 028	Ru	. 033	
										all		P1	. 033	
										Ps	. 040	P2 P3	. 045	
											P4	. 038		
											P5	. 046		

TABLE 2.3.2(b)
Calculations on $\mathrm{Ru}(\mathrm{dmpe})_{2}$ in PI

Figure 2.3.3
$\underline{\mathrm{Ru}(\text { dmpe })_{2}}$
Projection down z of $F($ diff $)$ map at cycle 6 . Input atoms marked x; contours at intervals of $2 \mathrm{e} / \mathrm{A}^{3}$ (lowest at $4 \mathrm{e} / \mathrm{A}^{3}$). z heights (40ths) shown in small type.
a suspiciously regular grid（C11，C51，C21，C22，C31， C32．）．Since $P 2$ seemed to lie too near to its centrically related atom，it was omitted from the next calculation．（Cycles 7－9 on Ru，P1，P3－P5，taking initial positions from the first F（obs）map）。 R was reduced to 31.2% and，again，all the vibrations were reasonable．（See table）

Ruthenium formfactors were now corrected for Δf^{\prime} 。 The four phosphorus atoms in Chatt and Davidsons： postulated structure were unlikely to occupy a square plane，so there were grounds for believing that some of the positions P1 to P4 might be spurious，whereas P5 probably represented a genuine phosphorus atom。 Of the four planar atoms，P2 and P3 always came up lowest on maps，so refinement was attempted on $R u, p 1, p 4$ and P5 only．Cycles 10 to 12 gave $R=35.5 \%$ ．However， P2 and P3 reappeared on the corresponding F（obs）map． The peak heights were：Ru 99

P1	34^{*}（＊input atoms）
P2	25
P3	22
P4	$31 *$
P5	$23 *$

This suggested that possibly $P 5$ might really be a carbon atom；also suggested by its（relatively）high U value（0．052）．The molecular geometry now calculated still indicated two very short bonds，and the distance from $P 2$ to the centrically related $P 2^{\prime}$ was rather short， \sim 3A．Possible phosphine links were suggested by the angles，eg P2－Ru－P5 86° ．Cycle 13 and an F（diff）map were now computed on $R u$ and all five possible P positions．

The three highest 'carbon' peaks were chosen:-

Peak	Height (electrons)	
C21	8	1.71
C31	7	1.68
C32	6	1.68

and these were added to the refined positions after two more cycles (14 and 15). After cycles 16 and 17 , the U values of these 'carbons' were widely different, and on the corresponding F (obs) map, the only other peak to come up was 'C22'. (All these 'carbon' peaks are indicated as they occurred on the first F (diff) map, in Figure 3). A slightly different approach was. next tried; cycles 18 to 20 were calculated in which only occupation numbers were refined. However, no definite conclusion could be drawn from the refinement. An F (diff) map was next computed, based on the Ru position found on the Patterson, in which it was hoped to cut out everything except contributions from Ru. The criteria reject if $F_{o}<15$, and if amplitude/ deviation<0.5, were set. This gave a planes list of 1772 terms. The same pattern of peaks was observed, but P5 came up weaker than the others.

Figure 2.3.4
 $\mathrm{Ru}^{(\text {dmpe })_{2}}$

Projection down z of $F($ diff) map at cycle 35. Input atoms marked x; contours at intervals of $0.4 \mathrm{e} / \AA^{3}$ (lowest at $0.8 \mathrm{e} / \mathrm{A}^{3}$).
z heights (36 ths) shown in small type.

Since P1 held a strong claim to be a genuine P atom, it was decided to systematically test the various combinations of P1 with other atoms: -

	Ru	P1	P2	(Cycles 21-23)
then	Ru	P1	P3	(Cycles 24-27)
$\&$ then	Ru	P1	P4	(Cycles 28-31)

The calculations, which were inconclusive, are shown in Table 2 。 A molecular geometry was now calculated on two, more reasonable, positions for P1 and P4 (P11 and P41), together with several possible carbons. P11 and P41 are at peaks on the far side (from Ru), of P1 and P4, on the first F (diff) map. In other words, if P1 and p4 are disordered, then P11 and P41 correspond to atoms at the most chemically sensible distances from Ru. Ru, P11, P2, P3, P41, P5, C11, C12, C31, C32, C41, C51 were put into one cycle (cycle 32), but the resulting U values were nonsensical, some of those for 'carbon' atoms being negative (see table)。

Next, four different 'carbon' atoms were tried; C21, C22, C25, C33 - three of these had appeared on the Patterson map as peaks 3, 17 and 9 - but after 3 cycles (33-35), the U values were again meaningless. An F (diff) map (see Figure 4) after cycle 35 showed no new, sensible peaks round any of the P positions. One cycle (36) on these same parameters, setting the minimum amplitude as 25 (2133 terms) gave $R=25.6 \%$ and the corresponding

$\frac{\text { Figure } 2 \cdot 3.5}{\mathrm{Ru}^{\mathrm{Rumpe})_{2}}}$
Projection down z of $F($ diff $)$ map at cycle 39. Input atoms marked x; contours at intervals of $3 \mathrm{e} / \AA^{3}$ (lowest at $3 \mathrm{e} / \AA^{3}$).
z heights (36ths) shown in small type.

F (diff) map was very similar to the previous one. Finally, three cycles (37-39), were calculated on Ru, P2, P3 and P5, all of which have reasonable Ru-P lengths; the F (diff) map is shown in Figure 5. Nothing new appeared, and there was nothing abnormal about any of the input atom peaks. P1 and P4 still appeared at distances 1.97 and $1.99 \AA$ from $R u$.

Calculations in P1

Concurrently with attempted refinement in $\overline{P 1}$, the alternative solution, in $P 1$, was tested. The atoms were renumbered:-

Initially, four cycles (1-4) of refinement were
computed for Ru1 (fixed at $0,0,0$); Ru2 (at 2x,2y,2z, where x, y, z was the Ru position in $P \overline{1})$, and P13 and P21. The temperature factors refined to widely differing values (see Table 3). The F (obs) map computed over the whole cell, is shown in Figure 6. A large part of the cell was again empty. The heights at which peaks

came up were:	Ru1	$80 *$	Ru2	$99 *$
	P11	29	P21	$66 *$
	P12	16	P22	14
	P13	$38 *$	P23	22
	P14	11	P24	19
	P15	15	P25	15

Figure 2.3.6
$\mathrm{Ru}\left(\right.$ dmpe) ${ }_{2}$

Projection down z of $F(o b s)$ map in $P 1$, at cycle 4. Input atoms marked x; contours at intervals of $10 \mathrm{e} / \AA^{3}$ (lowest at $10 \mathrm{e} / \AA^{3}$).
z heights (40ths) shown in small type.

Figure 2.3.7
 $\underline{\mathrm{Ru}(\text { dmpe })_{2}}$

Two peaks came up near P13 - at distances 1.71 and $1.77 \stackrel{\circ}{A}$, corresponding to C31 and C32 in $P \overline{1}$, and these were called C131 and C132. Similarly, a peak 1.87 8 from P22 was named $C 222$, and structure factors were computed for all these atoms. Refinement proved impossible, as the temperature factors of the carbon atoms increased rapidly, and the refinement diverged. Three cycles (7-9) on Ru1, P11, P13, Ru2, P21, P24 led to $R=19.6 \%$, with very improbable U values. The corresponding F (obs) map, had the geometry shown in Figure 7.

The heights were:-

Ru1	39^{*}	Ru2	37^{*}
P11	23^{*}	P21	24^{*}
P12	15	P22	13
P13	24^{*}	P23	17
P14	18	P24	19^{*}
P15	7	P25	13

Since P11 and P14 were both too close to Rui, whereas all the p atoms round Ru2 were at reasonable distances, cycles 10 and 11 were calculated on Ru1, P12, P13, Ru2, P21-4. This reduced R to 25.1%, but the refinement diverged. No further calculations were made in P1.

Direct Methods

[^3]was used in an attempt to solve this structure.
(The space group $P \overline{1}$ was assumed。)
The statistical tests for centrosymmetry are:-

	Centro-	Noncentro-	Found
$\left.\left.\langle \| E\right\|^{2}\right\rangle$	1.0	1.0	1.030
$\langle \| E\rangle$	0.798	0.886	0.745
$\langle \| E^{2}-1\| \rangle$	0.968	0.736	1.058
	$\underline{0}$ data with	Ca1c.	Found
	$\|E\|>1$	32.0	31.4
	$\|E\|>2$	5.0	5.88
	$\|E\|>3$	0.3	0.3

These together suggested that the original choice of $\mathbf{P} \overline{1}$ was correct and that a well behaved set of E values had been generated by the program.

Two hundred and fifty (250) of the largest E values are chosen, and, by symbolic addition of the arbitrary signs given to six of these E values, a trial set of the most probable signs is obtained.

In triclinic symmetry, there are insufficient sign relationships to determine a unique most probable set of signs. In the present case, only three signs could be assigned and this gave eight equally probable sets followed by three groups of eight sets, of lower probability, and it was necessary to compute E maps for these lower probability sign sets as well as for those in the most probable group.

Figure 2.3.8
 $\mathrm{Ru}(\text { dnpe })_{2}$

Projection down z of llth E map, showing the origin shift.
z heights are shown in small type.

The eight fixst sets were each tried, but in every case there was no sensible structural unit, and all 'peaks' were of approximately the same heighto Generaily the pattern of peaks was similar to that observed in all the F maps already calculated. The Patterson solution corresponded to the 11 th set of signs, in the 2nd most probable group, with an origin shift to $\frac{1}{2}, \frac{1}{2}, 0$ This E map showed the regular grid of pealks seen on a.1. F maps (see. Figure 8 for a projection of the E map)。

Further Attempts

3. The photographs were checked for signs of crystal decomposition or disorder. No evidence was found to support this.
4. A new sample of the complex was kindly prepared by J M Davidson at Cambridge; crystals from this batch gave photographs identical to the original set, so it was decided not to re-collect any data.
5. An analysis was performed on the original sample to check the chemical composition.

Results - found P 27.8 C 36.26 H 8.38\%
Calc. for $\mathrm{C}_{12} \mathrm{H}_{32} \mathrm{P}_{4} \mathrm{Ru} \quad \mathrm{P} 30.9 \quad$ C $35.9 \quad$ H 8.05\%
6. To check the probable number of Ru (dmpe) ${ }_{2}$
units in the cell, Kitaigorodskii's formula ${ }^{105}$
for molecular packing was calculated:-

$$
k=z_{0} \frac{v_{0}}{v}
$$

where V_{o} is the molecular volume
v is the cell volume
z is the number of molecules/cell
k is the coefficient of molecular packing.
The cell volume for $\mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)(\text { dmpe })_{2} \sim 2580$
$\therefore 1$ molecule occupies 645
The cell volume for $\mathrm{Ru}(\text { dmpe })_{2} \quad \sim 935$
for $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right), \mathrm{k} \sim 0.7$, and the volume occupied by $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right) \simeq 70$.

$$
\therefore \text { in } \mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)(\text { dmpe })_{2} 0.7=\frac{4 \times \mathrm{V}_{0}}{2580}
$$

-.the volume of 1 molecule, $V_{0} \approx 450$

Subtracting 70 for a naphthalene fragment, gives 380
V for $R u(d m p e)_{2} \sim 380 \times 1 / 0.7 \sim 540$ for
1 molecule

- 2 molecules require ~ 1080, and so the chosen cell probably contains two Ru (dmpe) $)_{2}$ units.

Possible Structures

Considering the structure as a monomer, with possible disorder affecting all atoms, this would explain the persistent appearance of five peaks; their observed weights are generally (relative to Ru height 99)

would give rise to this pattern, as three of the five peaks would be predicted to be stronger than the other two:-

For example:

or:

$\therefore \quad \cdots$

Considering a dimeric structure, some possibilities are: -

However, the very careful and detailed chemistry which was carried out by the original authors, apparently ruled out the possibility of a dimer, and it does not seem likely that one of the above, elaborate, structures exists, only in the crystalline state.

A long time was spent trying to solve the structure of $\mathrm{Ru}(\text { dmpe })_{2}$, because it describes, with that of $\mathrm{Ru}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)(\text { dmpe })_{2}$
a novel type of tautomerism. The difficulties
have been described in this chapter, but it is worthwhile summarising here their possible explanations and the reasons for eventually abandoning the problem: When a structure cannot be solved, the crystal used may be disordered, so that discrete atomic positions no longer exist. In such cases, disorder is sometimes detected on photographs, as blurred spots, and on a diffractometer trace as broad peaks. Also, characteristically, attempts to refine disordered atoms lead to artificially high U values, and the disorder causes blurred, elongated peaks on Fourier maps, in whioh it is impossible to locate atomic centres. In the present case, this is not observed. A11 the peaks are very well shaped, and sharply defined; there are no banana-shaped peaks spanning possible phosphorus atom positions, and no indication whatever that the observed peaks are not genuine atomic peaks. Even if there is only partial disorder, such that, say, two distinct orientations of the molecule exist, in $P \overrightarrow{1}$, one would expect some indication rof this on the maps:" The fact that five peaks always come up roünd $R u$, almost necessitates an explanation in terms of disorder, as there is no evidence that the assumed composition of the crystals is wrongo If the crystals had; even partly, decomposed during the Lour year period prior to X-ray work, this should have been obvious from initial photographs, and certainly from the first electron density mapso The new batch of
crystals was closely examined and the photographs \therefore compared with those af the original crystals；they were identical．Also，the chemical analyses were $+$ the same． If．on the other hand，the crystal is not disondered， but twinned，it has not been possible to detect it。 There are no pseudo－symmetry elements on any of the Weissenberg photographs－indeed，what twinning could give rise to a pṣeudo－triclinic cell？Examination of the reflections，by sine theta，showed no regularities， and the Delaunay reduction confirmed the original choice of axes．

Possibly the wrong space group was chosen．However， all caloulations in P1（and this should give a solution， even if the symmetry is really $P \overline{1})$ led to erratio U value shifts，and refinements wexe impossible because of divergence Refinements in $P \overrightarrow{1}$ generally led to very reasonable U values．

Finally，the suspicious features of the apparent structure are：－

1．The Patterson of a triclinic crystal has no Harker vectors apart from $2 x, 2 y, 2 z$ ，to make interpretation difficult。 The Ru position chosen seems the only reasonable solution， but is suspect in the light of having failed to lead to a complete structure。
2. All maps show the almost regular grid of peaks:-

3. P1 and P4 are too close to Ru to be phosphorus atoms. They each have satellite peaks that may be the result of disorder, but P1 and P4 have sensible U values.
4. P2 is too near to its symmetry-related position at $-\mathrm{x},-\mathrm{y},-\mathrm{z}$ 。
5. The whole structure lies too close to the origin, leaving a large part of the cell empty.
6. Four planar P atoms do not correspond to the: likely structure, but $P 5$ always comes up lower than the other P atoms.
7. P1 always comes up too high in relation to the Ru peak height. (Atomic numbers : Ru44, P15), whereas P3 is always low relative to other 1 p' peaks.
8. There is no electron density between any of the peaks, and the possible carbon atom peaks also lie on the grid, rather than at tetrahedral
angles to the P atoms．
Eが。 $\mathrm{C} 31-\mathrm{P} 3-\mathrm{C} 32=176^{\circ}$.
9\％The angles between pealss malse it impossible to reconcile the observed and the model
structure，as all peak－peak distances are too long for $P-C$ bonds．

10．Direct methods failed to give an independent solution，and even the Patterson solution was only one of the 2nd most probable．

CHAPTER $\quad 2.4$
THE PREPARATION OF Os $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ (dmpe) ${ }_{2}$ AND Os (dmpe) ${ }_{2}$:
THE CRYSTAL AND MOLECULAR STRUCTURE OF

$$
\operatorname{OsH}^{\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}}
$$

After prolonged attempts at solving the structure of $R u(d m p e)_{2}$, various possible analogues of this system were considered:-

1. The closest analogues may be the corresponding osmium complexes mentioned briefly by Chatt and Davidson. ${ }^{82}$ However, only os ($\mathrm{C}_{1 \mathrm{O}_{\mathrm{H}} 8}$) (dmpe) 2 was reported, not Os (dmpe) 2_{2}. It was likely that the two naphthyls: would be isomorphous, in which case $\left.\mathrm{Os}^{(d m p e}\right)_{2}$ might be as difficult to solve as $R u(d m p e)_{2}$, if it exhibited similar disorder.
2. The correspording iron complexes could not be isolated by Chatt and Davidson. The preparation had been repeated by S I Ibekwe, who obtained black oils. It is possible that maphthalene is too bulky to coordinate to the much smaller iron, and that reduction proceeds direct to the expected planar Fe^{O} (dmpe) ${\underset{Z}{2}}$.

This would be interesting in its own right if it were planar $\mathrm{Fe}(\mathrm{O})$. Another possibility might be to try and reduce FeCl_{2} (dmpe) 2_{2} with $\mathrm{K}^{+} \mathrm{C}_{6} \mathrm{H}_{6}^{-}$, which contains a smaller organic part.
3. The formation of these σ maphthyl complexes appears to be unique to dmpe. This may be a steric effect of the ligand having exactly the right ibite: to form a
hydride，and also small terminal groups；or it could be the increased stabilisation of $M-C(\sigma)$ by the ligand，which withdraws less eleotron density from the metal than other phosphines， e．go Ph． $\mathrm{P}_{2} \mathrm{C}_{2} \mathrm{HI}_{4} \circ \mathrm{PPh}_{2}$（dppe）。It might be possible to＇tailor＇a ligand to give similar behaviour：
（a）（Et $\mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PEt}_{2}$ ）（depe）．This has very nearly equivalent electronic properties，but is decomposed by $\mathrm{Na}^{+} \mathrm{C}_{10^{H}}{ }^{-}$．
（b）（MePhP $\cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PMePh}^{\text {）}}$ ．The phenyl groups might have steric requirements which make the overall geometry unsuitable for hydride formation。
（c）$\left(\mathrm{Me}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{PMe}_{2}\right) \cdot \mathrm{P}^{/=} P$ This would probably be too rigid．
（d）$\left(\mathrm{Me}_{2} \mathrm{P}_{0} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{PMe}_{2}\right) \mathrm{P}^{\prime}$ P。 This retains the conformation about the central $C-C$ bond，and would be expeoted to behave similarly to dmpe．
（e）$\left(\mathrm{Me}_{2} \mathrm{As}_{\circ} \mathrm{C}_{2} \mathrm{H}_{4}\right.$ ．AsMe $\left.{ }_{2}\right)$ ：This is a yellow orystalline solid As some crystals were available；a reduction was attempted；but the 1igand decomposed（sodium naphthalene is well lmown as an extremely powerful． reducing agent）。

It was decided to reprepare $0 s\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$（dmpe）${ }_{2}$ ，and prepare Os（dmpe） 2° This work was done by myself with S D Ibelkwe．

Preparations

The reaction scheme is shown in Figure 1. Either the cis or trans dichloride may be used, but reduction of the cis form giave the cis-clihydride $\left(m p .199^{\circ}\right), \nu(0 s-H)$ 1980; $2020 \mathrm{~cm}^{-1}$)。. Analysis confirmed the product which came down as large pale rhombs, mp. 186°. Found, C 41. 1%, H 6.7% Calculated for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{P}_{4} \mathrm{Os} ; \mathrm{C} 42.8 \%$, H 6. 5%

The $I R$ in nujol showed $\nu(\mathrm{Os}-\mathrm{H})$ at $1880 \mathrm{~cm}^{-1}, \nu(\mathrm{C}-\mathrm{C})$ (naphthy1) at $1570,1610 \mathrm{~cm}^{-1}, \quad \nu(C-H($ naphthy 1$))$ at r40.,815 cm^{-1} 。

Os (dmpe) 2 could be obtained as a white feathery solid by prolonged heating to 220°. $\nu(O s-H)$ had shifted to $1860 \mathrm{~cm}^{-1}$, and complete 10 ss of naphthalene was indicated by the disappearance of the aromatic bandse The reaction always involves substantial losses, and there was not enough product to recrystallize, even after combining the yields from several preparations (eventually some fine needles were obtained from pentane, but these were very fragile); it has therefore not been possible to study the structure, though it appears that O (dmpe) \boldsymbol{I}_{2} is very similar to Ru(dmpe) 2 from comparison of IR traceso (See Figure 2)
$\mathrm{N} \% \mathrm{M} \% \mathrm{R} \%$ of $\mathrm{Os}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)(\text { dmpe })_{2}$

The NMR was run, in $C_{6}{ }^{D}$, to confirm that the complex. exists as a hydride A doublet of quartets was observed at 19.1 and $19.4 T$, which was interpreted as coupling of the hydridic hydrogen to three equivalent cis phosphorus
atoms, (quartet), plus coupling to the trans P atom giving a doublet. $J(P-H)=70$ cycles, (typical of cis phosphines)。 In the phosphine region ($\sim 8.5 \tau$), the spectrum was complex; all CH_{2} groups are equivalent; each CH_{2} couples strongly to its nearest P atom, and weakly to the other P in the same ligand. This gives a doublet of doublets. Six CH_{3} groups are equivalent with respect to the electron density in the naphthyl group. Each couples strongly to its P atom, and weakly to the two other P atoms in its plane giving a doublet of triplets. The methyl groups on $P 4$,trans to naphthyl, only couple appreciably to the nearest P atom, giving a doublet. The ratio of these splittings indicated that the three P atoms were not quite symmetrical with respect to the naphthyl, and thus the phosphorus skeleton is very similar to that of $\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$. In the naphthyl region ($\sim 2 \tau$), β-attachment was confirmed by the presence of one singlet, corresponding to the C1 proton which has no α-protons to couple with, as well as doublets from all those protons with one neighbouring α-proton, and two triplets from the two protons with two neighbouring α-protons;

It was therefore expected that the crystal structure would be closely analogous to that of $\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}{ }^{\circ}$

Figure 2.4.1

1) $\left[\mathrm{Os}_{2} \mathrm{Cl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{6}\right] \mathrm{Cl}$ mpt. $178-180^{\circ}$ recryst. Et OH .
2) \quad cis- OsCl_{2} (dmpe) 2 mpt. 312°. sticky solid, extracted EtOH.
3) $\mathrm{tr}_{\mathrm{H}-\mathrm{OsCl}_{2}}$ (dmpe) 2 mpt. 300°. eluted over $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{C}_{6} \mathrm{H} 6$ with $1: 9 \mathrm{Et}_{2} \mathrm{O}_{6} \mathrm{C}_{6} \mathrm{H}_{6}$, recryst. methylcyclohexane.
4. $\operatorname{cis}-\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$ mpt. 186°. recryst. n-heptane.
5) $\mathrm{Os}(\text { dmpe })_{2}$ recryst. pentane.

Figure 2.4.2

Infra Red Spectra of the related ruthenium and osmium compounds.

Preliminary Photography

Initial photognaphy showed the long, honey-coloured prisms to be isomorphous with the Ru analogue; the crystal used for collecting data, mounted about the b axis, is shown in Figure 3。

Crystal Data

$\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{OsP}_{4}, \mathrm{M}=618.3 ;$ monociinic, $a=15.339+0.010$, $\underline{b}=10.136 \pm 0.006, \underline{c}=18.709 \pm 0.010 \AA, \quad B=114.14 \pm$ $0.04^{\circ} ; \underline{U}=2654 \mathrm{~A}^{3}, \mathrm{D}_{\mathrm{m}}=1.52($ flotation $), \mathrm{Z}=4$, $\underline{D}_{\mathrm{C}}=1.52, F(000)=1232 ;$ Space Group $\mathrm{P} 2 / \mathrm{C}\left(\mathrm{C}_{2}^{5}\right.$. No. 14), Mo-K K radiation $(N b$ filter $), \lambda=0.71070 \AA, \quad \mu=52.4 \mathrm{~cm}^{-1} 0$

Data Colleotion

Temperature $\mathrm{Ro}_{\mathrm{o}} \mathrm{T}$; scan range -0.8° to $+0.7^{\circ}$;
Scan speed $2^{\circ} 2 \theta / m i n u t e ; ~ f i x e d$ time 20 seconds;
Standards $\left(\begin{array}{lll}0 & 4 & 0\end{array}\right)$ and $\left(\begin{array}{lll}0 & 0 & 8\end{array}\right)$ falling to 100% and 82% of initial intensity; reflections measured in ootants $\{\overline{\mathrm{h}} \mathrm{k}\}$ and $\{\overline{\mathrm{h}} \overline{\mathrm{J}}\}$, to a maximim 20 , 47°; cell dimensions from 3 reflections (12 measurements) giving angles $\alpha=90.00(5)^{\circ}, \dot{\gamma}=90.03(5)^{\circ}$, total number of independent structure amplitudes obtained after data reduction and collation of equivalent reflections 3965.

Each reflection was measured twice, in two positions, giving a total of 8460 measurements, which were then combined. Absorption corroctions were applied to all reflections with. $|F|>5|\sigma F|$ using a 0.055 cm mesh (222 points)。

Figure 2.4.3
$\xrightarrow{\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2} \text { Crystal }}$
The Equations of the Bounding Surfaces of the Crystal

	1	m	n	p	(hkl)
1	-0.3221	-0.9302	0.1759	119.704	001
2	0.3060	0.9517	0.0259	124.357	$00 \overline{1}$
3	0.7909	-0.0738	-0.6075	309.379	100
4	0.8638	-0.2056	0.4599	268.236	110
5	-0.0612	-0.0742	0.9954	126.604	110
6	-0.7431	0.1780	0.6451	309.945	100
7	-0.8864	0.2447	-0.3931	271.573	110
8	0.0645	0.1138	-0.9914	131.217	$1 \overline{10}$

Solution and Refinement of Structure

Since it appeared that $\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{O}_{r}\right)$ (dmpe) ${ }_{2}$ might be i.sostructural with $\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$ (dmpe) ${ }_{2}$, the refined coordinates for the $R u$ complex (at $R=8 \%$), were input as initial parameters for the Os complex. Details of the structure factor calculations and refinements are given in Table 1 . The atoms which had been disordered, or affected by the disorder, in $\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$ (dmpe) $\mathbf{2}_{2}$ C11, C21, C31, C41, C12, C13, C42, C43-were omitted from the first few cycles; unit scale factor and weighting were used.

At $R=9.8 \%$, an $F(d i f f)$ map was calculated. The scale of this map was 3.2 so that the C (phosphine) atoms were appearing at up to three electrons. It was apparent that $C 11$ was disordered, as in the Ru complex, but that $C 41$ was only slightly disordered:-

TABLE 2.4.1
$\xrightarrow{\text { Refinement of the structure of } \mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\mathrm{dmpe})_{2}}$

Cycle N umber	Number of terms	Criteria	R Value	$\begin{aligned} & \text { Atoms } \\ & \text { included } \end{aligned}$	Matrix type				Vibrations				Weighti: used
1,2	3044	min.amp. 10	11.1	all except some $C(p)$ (see text)	pb (1)	$\mathrm{pb}(1)$	$b(1)$	$b(2)$	$\stackrel{a}{\operatorname{tb}(1)}$	$\begin{gathered} a \\ \operatorname{tb}(1) \end{gathered}$	-	i	1
3	3044	min.amp. 10	9.8	all except some $C(p)$	$\mathrm{pb}(1)$	pb (1)	b(1)	$b(2)$	$\operatorname{tb}^{\bar{a}(1)}$	$\stackrel{a}{t b(1)}$	i	i	$\begin{aligned} & c_{1}=3! \\ & c_{2}=3 \end{aligned}$
4-8	3044	min.amp. 10	7.2	all atoms	pb (1)	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	$b(3)$	$\stackrel{a}{\operatorname{tb}^{(1)}}$	$\begin{gathered} a \\ t b(1) \end{gathered}$	i	i	$\begin{gathered} c_{1}=41 \\ c_{2}=36 \\ (3) \end{gathered}$
9	3044	min.amp. 10	10.3	$\begin{aligned} & \text { all except } \\ & C(p) \end{aligned}$	b(1)	b(1)	-	$b(2)$	a	a	-	i	3

Figure 2.4.4a
$\xrightarrow{\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}}$
Projection of $F($ diff $)$ map phased on $O s, P$ atoms, and naphthyl group, illustrating the disordered ligand Pl.....P2. Contours at intervals of $0.35 \mathrm{e} / \AA^{3}$, lowest at $0.7 \mathrm{e} / \AA^{3}$. The calculated positions for terminal carbon atoms are indicated \otimes.

Figure 2.4.4b
$0 \mathrm{osH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$
Projection of $F($ diff) map phased on Os, P atoms, and naphthyl group, illustrating the disordered ligand P3.....P4. Contours at intervals of $0.35 \mathrm{e} / \AA^{3}$, lowest at $0.7 \mathrm{e} / \AA^{3}$. The calculated positions for terminal carbon atoms are indicated \otimes.

The appearance of this map was very similar to the corresponding map of the ruthenium complex. A.1. atioms (taking C11a and the 'average: C12 and C13 positions) were now included in the final refinement - cyoles 4 to 8 - which reduced R to 7.2%. (See Table 1) The final scale was 1.0 ; an $F(d i f f)$ map revealed the positions of all but one of the H(naphthyl) atoms, at heights of 0.5 to 0.9 e/ A^{3}, near their calculated positions. No attempt was made to search for the hydridi.c hydrogen, which did not show on this map, because of considerable residual electron density round the osmium position. Structure factors for the unobserved reflections (amplitude $<10 e$) were calculated - the highest caloulated as 26, most others being<20e. Finally, struoture factors were calculated, omitting the entire phosphine ligands and using the refined parameters for the remaining atoms (cyole 9): The corresponding $F(d i f f)$ maps for the two phosphines are shown in Figures $4 a$ and $4 b$. These are comparable to Figures 2.2 .2 a and b for the ruthenium analogue, and i.1.ustrate the disorder.

Results and Discussion
The final parameters are given in the Appendix
(Tables 2 and 3), while the molecular geometry is

Figure 2.4.5
$\underline{\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)\left(\mathrm{dmpe}_{2}\right.}$
View of one molecule, illustrating the numbering system used.

Table 2.4.4

Bond distances (\AA) and angles (${ }^{\circ}$), with their estimated standard deviations

Around Osmium

Os-P(1)	$2.325(6)$	$P(1)-O s-P(2)$	$82.4(2)$	$P(1)-O s-C(2)$	$99.5(5)$
Os-P(2)	$2.297(5)$	$P(1)-O s-P(3)$	$102.3(2)$	$P(2)-O s-C(2)$	$88.6(5)$
Os-P(3)	$2.285(5)$	$P(1)-O s-P(4)$	$97.8(2)$	$P(3)-O s-C(2)$	$87.0(5)$
Os-P(4)	$2.301(5)$	$P(2)-O s-P(3)$	$173.9(2)$	$P(4)-O s-C(2)$	$162.1(5)$
Os-C(2)	$2.134(17)$	$P(2)-O s-P(4)$	$98.2(2)$		
Os...C(1)	3.13	$P(3)-O s-P(4)$	$84.9(2)$		
Os...C(3)	3.12				

Naphthyl Group

$C(1)-C(2)$	$1.37(2)$	$C(1)-C(2)-C(3)$	$116(2)$
$C(2)-C(3)$	$1.47(3)$	$C(2)-C(3)-C(4)$	$118(2)$
$C(3)-C(4)$	$1.50(3)$	$C(3)-C(4)-C(10)$	$122(2)$
$C(4)-C(10)$	$1.33(3)$	$C(4)-C(10)-C(9)$	$121(2)$
$C(10)-C(5)$	$1.52(4)$	$C(9)-C(10)-C(5)$	$123(2)$
$C(5)-C(6)$	$1.39(4)$	$C(10)-C(5)-C(6)$	$108(3)$
$C(6)-C(7)$	$1.27(4)$	$C(5)-C(6)-C(7)$	$133(3)$
$C(7)-C(8)$	$1.44(4)$	$C(6)-C(7)-C(8)$	$121(3)$
$C(8)-C(9)$	$1.44(3)$	$C(7)-C(8)-C(9)$	$114(2)$
$C(9)-C(1)$	$1.49(3)$	$C(8)-C(9)-C(10)$	$122(2)$
$C(9)-C(10)$	$1.35(3)$	$C(10)-C(9)-C(1)$	$120(2)$
		$C(9)-C(1)-C(2)$	$123(2)$
		$C(1)-C(2)-0 s$	$125(1)$
		$C(3)-C(2)-O s$	$118(1)$
		$C(1)-C(9)-C(8)$	$118(2)$
		$C(4)-C(10)-C(5)$	$117(2)$

- Table 2.4.4 (contd.)

Phosphine Groups

*P(1)-C(11)	1.87(4)	* $\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(12)$	89(2)
* $\mathrm{P}(1)-\mathrm{C}(12)$	1.81(4)	* $\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(13)$	105(2)
*P(1)-C(13)	1.79 (4)	* C(12)-P(1)-C(13)	92(2)
$\mathrm{P}(2)-\mathrm{C}(21)$	1.87(3)	$C(21)-P(2)-C(22)$	103(1)
$P(2)-C(22)$	1.90 (3)	$C(21)-P(2)-C(23)$	100(1)
$P(2)-C(23)$	1.90 (3)	$C(22)-P(2)-C(23)$	100(1)
P(3)-C(31)	1.92 (3)		
P(3)-C(32)	1.82(4)	$C(31)-P(3)-C(32)$	98(2)
P(3)-C(33)	1.79 (3)	$C(31)-P(3)-C(33)$	102(1)
* $P(4)-C(41)$	1.93 (4)	$C(32)-P(3)-C(33)$	100(2)
*P(4)-C(42)	1.83(3)	*C(41)-P(4)-C(42)	99(1)
$* P(4)-C(43)$	1.83 (3)	*C(41)-P(4)-C(43)	105(2)
		* C(42$)-\mathrm{P}(4)-C(43)$	96(1)
* $\mathrm{C}(11)-\mathrm{C}(21)$	1.61 (4)		
* $\mathrm{C}(31)-\mathrm{c}(41)$	1.45 (4)	*P(1)-C(11)-C(21)	103(2)
		* $\mathrm{P}(2)-\mathrm{C}(21)-\mathrm{C}(11)$	108(2)
		* $P(3)-C(31)-C(41)$	105(2)
		*P(4)-C(41)-C(31)	118(3)
* 0 s-P(1)-C(11)	109(1)	Os-P(3)-c(31)	113(1)
*Os-P(1)-C(12)	126(1)	Os-P(3)-C(32)	120(1)
*0s-P(1)-c(13)	128(1)	Os-P(3)-C(33)	121(1)
Os-P(2)-C(21)	111(1)	*0s-P(4)-C(41)	106(1)
Os-P(2)-C(22)	119(1)	*Os-P(4)-C(42)	129(1)
Os-P(2)-C(23)	121(1)	*0s-P(4)-C(43)	119(1)

* involving atomic positions affected by disorder

Table 2.4 .5
Selected Torsion Angles (${ }^{\circ}$), positive values
indicating clockwise rotation

* $\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(21)-\mathrm{P}(2) \quad-52$
* $P(3)-C(31)-C(41)-P(4)-40$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(1) \quad-25$ $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(2) \quad-107$ $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{Os}-\mathrm{P}(3) \quad 77$
shown in Table 4 。 Parameters marked（前）correspond to atoms affected by the disorder．The standard deviations are larger than in the Ru complexo Selected torsion angles are listed in Table 5；the only intermoleculax contact（other than those between hydrogens）is $\mathbf{C} 41-\mathrm{C} 8,3.55 \mathrm{~A}^{\circ}$ ．The final agreement analysis is listed in Table 6。 Figure 5 shows one molecule，with the numbering system；as the intermoleculax packing is essentially identical to that of $\operatorname{RuFH}\left(\mathrm{C}_{1} \mathrm{OH}_{\mathrm{r}}\right)$（dmpe）$)_{2}$ ，no diagram is given． The complex is almost exactly iso－structural with its $R u$ analogue；the only difference ocourring in the conformation of the disordered phosphines． From a comparison of Figures 2.2 .2 and 2.4 .4 ，it can be seen that the dominant conformation about P1．is reversed in the osmium complex，and that there is much more disorder about p 4 in the ruthenium complex． The observation that the torsion angles about $C-C$ in the phosphines（both－ve，ioe。 as defined in reference 218 ）allow one of the ligands to adopt the opposite conformation relative to $\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$（dmpe）${ }_{2}$ ， confirms that dmpe has minimal steric requirements， even when two dmpe groups ane cis to one another． This contrasts with dppe，which is much less flexible。 The Os－P distances（average 2．30\＆），are slightly shorter than other measurements of Os－P（see Table 7）。 The $P-C$ and $C-C$ parameters are almost identical in

TABLE 2.4.7

Os-P Distances

	Os-P	Reference
$\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$	2.29-2.33	
OsHBr $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$	2.34-2.56	a
$\mathrm{OSCl}_{2}(\mathrm{NO})(\mathrm{HgCl})\left(\mathrm{PPh}_{3}\right)_{2}$	2.39,2.40	b
$\mathrm{OsCl}_{3}\left(\mathrm{NH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	2.41	c
$\mathrm{Os}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$	2.32-2.42	d
$\mathrm{OsCl}_{4}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	2.45	e
$\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	2.35-2.41	e
$\mathrm{OsH}_{4}(\mathrm{PEt} 2 \mathrm{Ph})_{3}$	2.30-2.34	f

a. P L Orioli \& L Vaska, Proc.Chem.Soc., 1962, 333
b. G A Bentley et al., JCS(D), 1970, 998
c. D Bright \& J A Ibers, Inorg.Chem., 1969, 8 , 1078
d. J K Stalick \& J A Ibers, Inorg.Chem., 1969, 8, 419
e. L Aslanov et al., JCS(D), 1970, 30
f. quoted by L Aslanov et al., JCS(D), 1970, 30 (unpublished data of R Mason \& $P \quad O$ Whimp)

```
B
both complexes; plainly the effect of changing Ru
to Os is negligible on the structure in the solid.
'This accords with the well known observation that
second and third row complexes often have very
similar properties, differing from their first row
```



```
not been isolated, if imdeed it existso)
The Os-C length (2.13(2) A) is not significantly
different from Ru-C (2.16(1) A), and almost certainly
insufficient to account. for the fact that the
naphthalene is much more tightly held in the Os
complex. If these are assumed to be pure sigma
bonds, these distances give values for covalent
Ru(II) and OS(II) radii of 1.39-1.42A (sp carbon
0.74A.). They are thought to be the first measure-.
ments of Ru-C(\sigma) and Os-C (\sigma) bonds.
```

CHAPTER 2.5

THE ATTEMPTED STRUCTURE ANALYSIS OF

Iron Dihydride Complexes

The system Fe^{O} (dppe) $)_{2} \stackrel{\rightleftharpoons}{\rightleftharpoons} \mathrm{FI}^{\mathrm{II}} \mathrm{H}_{\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.} \cdot \mathrm{PhP}^{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}$) (dppe) was reported by Hata ${ }^{81}$ as an example of a complex containing a labile ligand hydrogen which reversibly forms an Fe-H bond. IR and NMR spectra were given as evidence for the $M-H$ bond: - $\nu(F e-H) 1893 \mathrm{~cm}^{-1}$, $\delta(\mathrm{Fe}-\mathrm{H}) 24.2 \tau$. Whereas Ru^{O} (dmpe) $)_{2}$, - and probably $0 s^{\circ}$ (dmpe) - exhibits this type of tautomerism; attempts to prepare the iron complex, failed. $\mathrm{Fe}^{\circ 3}$ (dppe) $_{2}$ is thus the nearest analogue. The complex is formed by UV irradiation of Fe° (dppe) (ethylene):-

The coordinated ethylene was thought to be derived from homolytic fission of the Fe-C bond of an Fe ethyl intermediate, cfo the reduction of $\mathrm{Ni}(\text { acac })_{2}:-$

Fe ${ }^{0}$ (dppe) $)_{2}$ is very unstable; it reacts with hydrogen to give a solvated dihydride, for which the only evidence is an IR band at $1850 \mathrm{~cm}^{-1}$. This is within the range for $\nu(F e-H)$ for monohydride complexes, cf:-

tr-FeHC1 (dmpe)	$1810 \mathrm{~cm}^{-1}$
tr- FeHC1 (depe)	18
tr-FeHI (depe)	$1849 \mathrm{~cm}^{-1}$
	$1872 \mathrm{~cm}^{-1}$

and is $\sim 100 \mathrm{~cm}^{-1}$ higher than the only previously reported iron dihydride $\mathrm{FeH}_{2}\left(0-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PEt})_{2}\right)_{2}$ which has been assigned a trans structure because of the low stretching frequency ($\nu(\mathrm{Fe}-\mathrm{H}) 1725 \mathrm{~cm}^{-1}$) 。 It was therefore suggested that $\mathrm{FeH}_{2}\left(\right.$ dppe $_{2}$ might be a cis dinydride complex. The preparation was repeated by A H Mawby, using different reducing systems; he could not isolate $\mathrm{Fe}^{\mathrm{o}}(\mathrm{dppe})_{2}$ but he obtained a dihydride as an intermediate in the preparation of a nitrogen complex, which also suggested that the configuration might be cis:-

The nitrogen complex is always formed as a red oil, from which crystals could not be isolated。 $\quad \nu(N \equiv N)$ was observed at $\sim 2100 \mathrm{~cm}^{-1}$. Nitrogen complexes of iron with ditertiary phosphines have been reported, ${ }^{109}$ in which $F e$ is coordinated to N_{2} and H, e.g. trans $-\left[\mathrm{FeH}\left(\mathrm{N}_{2}\right)(\text { depe })_{2}\right]^{+} \mathrm{BPh}_{4}$, where depe is $\left(\mathrm{Et}_{2} \mathrm{P}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{PE} t_{2}\right)$. These are crystalline solids with $\nu(N \equiv N)$ at $2090 \mathrm{~cm}^{-1}, \nu(\mathrm{Fe}-\mathrm{H})$ at $1870 \mathrm{~cm}^{-1}, \delta(\mathrm{Fe}-\mathrm{H})$ at 28.2 T. Green has reported ${ }^{110}$ the preparation of black oily $\mathrm{Fe}-\left(\mathrm{N}_{2}\right)$ complexes, e.g. Fe ${ }^{\mathrm{o}}\left(\mathrm{N}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{4}$ and these are probably not hydrides; $\nu(N \equiv N) 2100 \mathrm{~cm}^{-1}$. This lends support to the idea of an Fe(O) complex in the present case, since there is no reaction with anions such as $\mathrm{BPh}_{4}{ }^{-}$.

The bidentate phosphines: dppe $\left(\mathrm{Ph}_{2} \mathrm{P}_{\circ} \mathrm{C}_{2} \mathrm{H}_{4} \circ \mathrm{PPh}_{2}\right)$
dppm ($\mathrm{Ph}_{2} \mathrm{P}_{\circ} \mathrm{CH}_{2} \cdot \mathrm{PPh}_{2}$)
dpp $\left(\mathrm{Ph}_{2} \mathrm{P}^{\circ} \mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{PPh}_{2}\right)$ (cis form)
were used in these experiments, and the dihydrides
obtained are listed on the next page.

Cobmplex	Colour	Stability to light	$\nu(\mathrm{Fe}-\mathrm{H})$
$\dot{\mathrm{FeH}}(\text { dppe })_{2}$	yellow	unstable, turning brown	1850
$\underset{\sim}{\mathrm{FeH}} \mathrm{S}_{2}(\mathrm{dpp})_{2}$	$\begin{aligned} & \text { golden- } \\ & \text { yellow } \end{aligned}$	unstable, not much colour change	1860
$\mathrm{FeH}_{2}(\mathrm{dppm})_{2}$	red	stable	1710

Only two orystal struotures are known for iron-group dihydrides; $\mathrm{FeH}_{2}\left(\mathrm{PoPh}_{\mathrm{P}}(\mathrm{OEt})_{2}\right)_{4}^{111}$ and $\operatorname{IrH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\text { GeMe })_{3}^{112}$ and it seemed worthwhile to make a structural comparison to determine whether the difference in $\nu(\mathrm{Fe}-\mathrm{H})$ is related to qis-trans isomerismo. The trans octahedral configuration of $\mathrm{FeH}_{2}\left(0-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PEt})_{2}\right)$ is assumed from IR $_{2}$ is data; an alternative structure (but less likely in view of the known steric requirements of hydride) is a tetrahedral metal phosphine skeleton with the small
hydrogen atoms occupying the spaces. This type of structure was suggested ${ }^{113}$ from powder photographs of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \operatorname{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$, and $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}$, which indicated possible isomorphism。 $P d\left(P P h_{3}\right)_{4}$ is thought to be tetrahedral; the tetrahedral geometry of $\operatorname{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$ was confirmed, ${ }^{114}$ and although the hydrogen was not located, it was required by symmetry to lie on one of the threefold axes through Rh and each phosphorus atom, and is probably disordered between these four positions. It is not known whether $\mathrm{FeH}_{2}\left(\mathrm{P} \circ \mathrm{Ph}(\mathrm{OEt})_{2}\right) 2^{\text {is ootahedral }}$ or tetrahedral; however, by analogy with trans hydrido halides, $\mathrm{FeH}_{2}(\text { diphosphine })_{2}$ might reasonably be expected
to be octahedral. As these are first row complexes, there would be a reasonable chance of locating the hydridic hydrogens, and therefore of measuring a trans effect of hydride, on phosphorus, if these are cis complexes. No trans effect was noted in $\operatorname{ReH}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ (dppe) ${ }^{115}$ There is also the possibility that these are not genuine dihydrides, rathex that there is once again an interaction between the metal and a phenyl hydrogen.

Because of the very poor photographs obtained from $\mathrm{FeH}_{2}(\mathrm{dppe})_{2}$, even from quite large oxystals (0.5 mm across); $\operatorname{FeH}_{2}(d p p)_{2}$ was chosen for detailed study, though in this case also the photographs were very weak, and disorder was suspected.

Preliminary observations

Photography indicated the coexistence of two crystaline forms. One was very unstable indeed; oscillation photos showed a long axis (~25A)。 Possibly there is an equilibrium $\quad \square($ stable $) \not \square \square$ (unstable), similar to that for FeH (clppe) 2° The more stable form was monoclinic with the a and c axes inclined to the orystal faceso The largest possible crystal was selected for data collection, mounted about the b axis (See Figure 1).

Crystal Data

$\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{FeP}_{4}, \mathrm{M}=850.3 ;$ monoclinic, $a=14.226 \pm 0.013$, $\underline{b}=12.219 \pm 0.025, \underline{c}=28.321 \pm 0.034 \AA, \beta=99.20 \pm 0.09^{\circ} ;$ $\underline{U}=4860.0 \stackrel{\mathrm{~A}^{3}}{\mathrm{~A}}, \underline{\mathrm{D}_{\mathrm{m}} \approx 1.3, \underline{Z}=4, \mathrm{D}_{\mathrm{C}}=1.16, \mathrm{~F}(000)=1776, ~, ~}$ Space Group P2, P , $\left(\mathrm{C}_{2 \mathrm{~h}}^{5} \mathrm{No.14}\right)$, MoK α radiation (Nb filter), $\ddot{\lambda}=0.71070 \stackrel{0}{A}, \mu=4.82 \mathrm{~cm}^{-1}$.

$\xrightarrow{\mathrm{Fe}(\mathrm{H})_{2}\left(\mathrm{Ph}_{2}{\left.\mathrm{P} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{PPh}_{2}\right)_{2}}_{\text {Figure 2.5.1 }}\right.}$ Crystal

Data Col1ection
Temperature $R_{0} T o ;$ scan range -0.8° to $+0.5^{\circ}$;
Scan speed. $2^{\circ} 20 /$ minute; fixed time 20 seconds ; Standards ($00 \cdot \overline{4}$) and. (0 3 $\overline{1}$) both falling to 70% of initial intensity; neflections measured in
ootants $\{$ hk 1$\}$ and $\{\overline{h k} 1\}$, to a maximum $2 \theta=30^{\circ}$;
ce11 dimensions from 3 reflections (12 measurements)
giving angles $\alpha=90.03(13)^{0}, \quad \gamma=89.84(14)^{\circ}$;
total number of independent structure amplitudes
obtained after data reduction and collation of
equivalent reflections 1519.

Attempted Structure Determination

Formfactors for Fe and P were corrected for Δf^{\prime}.
A.11 measured intensities were processed, but only

353 had observed amplitudes $>5 e$ on the initial scaling。 A Patterson map was calculated on these 353 terms only, since many of the remainder were statistically insignificant and could lead to confusion in interpretation。 The map did not contain much detail, but a consistent solution could be found, involving the highest peaks, and giving an $F e$ and one P position:-

Fe	0.281	0.014	0.113
P1	0.344	0.111	0.16%

However, refinement of a trial structure phased on these two atoms led to widely different temperature factors,
TABLE 2.5.1
$\underline{\text { Refinement of the structure of } \mathrm{FeH}_{2}\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \cdot \mathrm{PPh}_{2}\right)_{2}}$
Thermal parameters: $i=$ isotropic
Final scale $\quad=9.32$

Cycle number	Number of terms	Criteria	R Value	Atoms included	Matrix type			Vibrations			Weighting used
					Fe	P	C	Fe	P	C	
1-3	353	min.amp. 5	42.2	Fe, Pl	b	b	-	i	i	-	1
4-6	353	min.amp. 5	42.4	$\mathrm{Fe}, \mathrm{Pl}-\mathrm{P} 3$	b	b	-	i	i	-	1

Matrix types: $b=$ full block

Figure 2.5. 2
Projection down z of F (obs) map at cycle 3. Input atoms
marked x; contours at intervals of $0.8 \mathrm{e} / \AA^{3}$ (lowest at
$0.8 \mathrm{e} / \AA^{3}$). z heights (84 ths) shown in small type.
(0.021 and 0.095), and a high R value. (See Table 1)

The Fe-P distance from the $F(o b s)$ map calculated on these planes wás $1.82 \stackrel{\circ}{A} ;$ there were pseudo-mirror effects about $y=0$ but there were other peaks round the Fe atom. Although the positions of these seemed chemically reasonable, the overall appearance of the map was very ill-defined。 (See Figure 2). The scale was very high, so that the Fe integrated peak height was only $8 \frac{1}{2} \mathrm{e} / \mathrm{A}^{3}$, P1 was $3 \frac{3}{4} \mathrm{e} / \mathrm{A}^{3}$. Two of the highest peaks were chosen as P atoms:-

Peak	\underline{x}	\underline{y}	\underline{z}	$\underline{\text { Fe-peak }}$	Height
P2	0.348	-0.099	0.171	2.37	$2 \frac{1}{4}$
P3	0.217	-0.101	0.053	2.42	2

After three cycles $(4-6)$, the refinement had not reduced R, and Fe had a negative $U(-0.036)$. The geometries were also somewhat uncertain:-

	After Cycle 5		After Cycle 6
	1.36		1.29
Fe-P1	2.55	2.63	
Fe-P2	2.68	2.61	
Fe-P3	83°	87°	
P1-Fe-P2		157°	
P1-Fe-P3	168°	93°	

At this point it was decided that further refinement would be pointless, unless better data became available,
and so this structure was abandoned.
$\underline{\mathrm{FeH}}_{2}(\mathrm{dppm})_{2}$
Very small crystals of $\mathrm{FeH}_{2}(\mathrm{dppm})_{2}$ were obtained by the reaction:-

$$
\begin{gathered}
\mathrm{Fe}(\text { acac })_{3}+\mathrm{dppm} \xrightarrow[\mathrm{C}_{6} \mathrm{H}_{6}]{\mathrm{A}^{\mathrm{o}}\left(\mathrm{Bu}^{\mathrm{i}}\right)_{3}} \mathrm{FeH}_{2}(\mathrm{dppm})_{2} \\
0^{\mathrm{A}}
\end{gathered}
$$

These were red hexagonal plates and photography gave
the following cell data:-

$$
\begin{array}{lr}
a=18.54 \stackrel{\circ}{\mathrm{~A}} & \beta=90^{\circ} \\
\mathrm{b}=10.08 & \\
c=22.52 & P 2_{1} / \mathrm{c}
\end{array}
$$

However, in common with the other dihydrides, the photographs were very weak indeed, and after the failure to solve the structure of $\mathrm{FeH}_{2}(\mathrm{dpp})_{2}$, it seemed unlikely that this complex would provide better data, so the problem was abandoned.

CHAPTER 2.6

THE PREPARATION AND CHARACTERISATION OF
$\underline{\text { TRANS－OsHCl }(\mathrm{d} p \mathrm{pm})_{2} \text { AND TRANS－OsH2 }{ }_{2}(\mathrm{dppm})_{2}}$

The trains $\operatorname{MHX}(P P)_{2}$ hydrides，where $M=R u, O$ ；
$X=C 1, B r, I, C N ; P P=$ bidentate ditertiary phosphine， can be prepared from the corresponding cis－$M X_{2}(P P)_{2}$ complexes by LiAlH ${ }_{4}$ reduction。 ${ }^{58}$ the osmium complexes tend to be more stable thermally than the ruthenium complexes，but less stable in air；they also show a tendency to solvate，particularly with benzene。 In the
 the characteristic $0 s-H$ stretching vibration at $\sim 2000 \mathrm{~cm}^{-1}$ was reported to be completely suppressed when the complex． was crystallised from benzene。 It appeared that one molecule of solvent was bound in some way to the hydride complex，as it could not be removed except under vigorous conditions．（50\％remained even after evacuation at 100° for 48 hours，after which a weak $\nu(0 s-H)$ band appeared at $207 \mathrm{~cm}^{-1}$ 。）With ethyl acetate as solvent，no abnormal behaviour was noted．

This suggested the possibility that a weak steric inter－ action is taking place，whereby the benzene in some mannex ＂blocks movement of the hydridic hydrogen and hence partially suppresses the Os－H vibration。 This could be caused by tight locking of ligand phenyl groups trapping the benzene molecule：－

If current theories of transition metal catalysis are correct, and a sigma-pi equilibrium is a vital part of many mechanisms, then one might expect a continuous gradation in structure from:-

1. metal hydride cis to a σ-bonded carbon in
e.g. $\mathrm{RuH}\left(\mathrm{C}_{10 \mathrm{O}_{7}}\right)$ (dmpe) $)_{2}$, through
2. π-bonded complexes, e.g. $\operatorname{Cr}(\mathrm{CO})_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{6},{ }^{116}$ to
3. complexes which contain benzene or toluene
of crystallisation, where the aromatic
molecule is entirely independent of the
complex, e.g. $\mathrm{RhI}_{2} \mathrm{Me}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{6},{ }^{117}$
e.g. $\operatorname{IrCl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}{ }^{118}$

The anomalous properties of $\mathrm{OsHCl}^{(\mathrm{dppm})_{2}}$ suggested that a structure analysis might be worthwhile, giving
information about the extreme case of a very weak ringhydride interaction, on the borderline between 2 and 3.

Experimental Work

the preparation was repeated, by S I Ibekwe and myself, rollowing Chatt and Watson's method, ${ }^{119}$ and it was soon realised that the product depends critically on the exact amount of excess LiAlIf used in the final reduction。 The reaction scheme is shown in Figure 1. $\left[\mathrm{Os}_{2} \mathrm{Cl}_{4}\left(\mathrm{Et} \mathrm{Ph}^{\mathrm{Ph}}\right)_{6}\right]$ was prepared by adding the phosphine in EtOH to the darls red solution of ammonium chlorom osmate in water. The mixture was refluxed for 6 hours by which time the solution had turned yellow. The product came down overnight; washing in petroleum ether removed any excess phosphine, followed by washing with benzene. The second stage is a dry reaction between (dppm) and the osmium salt, in a Schlenck tube under nitrogen. A brown colour developed at $\sim 140^{\circ} \mathrm{C}$: otherwise the only visible indication of reaction was condensation of (PEt ${ }_{2} \mathrm{Ph}$) on the sides of the tube. The mixture fused at 200°, and after cooling, excess phosphine was removed with petroleum ether; the pale yellow feathery crystals were recrystallised from nitrobenzene, and washed with MeOH . The far IR spectrum showed two broad bands due to ci.s chlorines. The reduction was performed in dry THF under nitrogen, using $2 x$ excess LiAlH $_{4}$. The orude product showed a band at $\sim 20 \% 0 \mathrm{~cm}^{-1} .0$ Recrystallisation form EtOAc gave fine yellow needles, mpt。273-274 , wi.th sharp bands for $\nu(\mathrm{Os}-\mathrm{H})$ at $2074 \mathrm{~cm}^{-1}, \nu(\mathrm{C} \equiv 0)$ at $1735 \mathrm{~cm}^{-1}$ and ν (acetate) at $1235,1048 \mathrm{~cm}^{-1}$. The other portion, after recrystallisation from benzene, gave

Figure 2.6.1

Table 2.6.1
Analytical Figures for Osmium Complexes

		found			calc.		
		C	H	Cl	c	H	Cl
OsHCl (dppm) $2_{2} \cdot \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{53} \mathrm{H}_{48} \mathrm{OsP}_{4} \mathrm{Cl}$	61.8	4.75	4.17	61.6	4.7	3.44
OsDCl (dppm) ${ }_{2} \cdot \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{53} \mathrm{H}_{47} \mathrm{DOsP}_{4} \mathrm{Cl}$	61.5	4.78	3.13	61.6	4.7	3.44
OsHCl(dppm) 2 . ${ }^{\frac{1}{2} \mathrm{Et} \text { OAc }}$	$\mathrm{C}_{52} \mathrm{H}_{49} \mathrm{OSP}_{4} \mathrm{ClO}$	60.1	4.92	3.25	60.1	4.75	3.42
$\mathrm{OsH}_{2}(\mathrm{dppm})_{2}$	$\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{OsP}_{4}$	63.1	4.92	-	62.5	4.8	-
OsHCl (dppm) $2_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{C}_{56} \mathrm{H}_{51} \mathrm{OSP}_{4} \mathrm{Cl}$	62.3*	4.9*		62.7	4.75	3.31
OsHCl(dppm) 2	$\mathrm{C}_{50} \mathrm{H}_{45} \mathrm{OSP}_{4} \mathrm{Cl}$				60.3	4.52	3.57

(* determined by Chatt and Hayter)
large yellow prismatio needles mpt．286－288 ${ }^{\circ}$ with a single sharp band for $\mathcal{H}(0,-H)$ at $2088 \mathrm{~cm}^{-1}$ 。 There were no indications of any bands due to benzene in this spectrum；the intense normal frequencies should be present，only very sifghtly shifted，if there is an interaction with the metal。 ${ }^{120}$ The far IR of both． ethylacetate and benzene solvates showed three bands， at $40.0,42.0,43.5 \mu_{0}$ The NMR showed $\delta(0.5-H)=27 \tau$ （quintet）with $J(P-H)=15$ cpse，typical of coupling to four equivalent phosphorus atoms ois to hydride。 The phosphorus methylene resonances appeared at 6.5τ and the phosphorus phenyIs at $2.4-3.2 \tau_{0}$ The corres－ ponding deuteroch1oride was also prepared，using LiAlD．${ }_{4}$ as reducing agent to test Chattis suggestion ${ }^{121}$ that the $2088 \mathrm{~cm}^{-1}$ band might be a benzene vibration．

On recrystallisation from benzene，pale yellow crystals of trans＇－OsDCI（dppm） $2^{\circ} \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}, \operatorname{mpo} 280^{\circ}$ ，were obtained． $\nu(O s-D)=1494 \mathrm{~cm}^{-1}$ 。 The ratio．$\nu(\mathrm{Os}-\mathrm{H}) /(\mathrm{Os}-\mathrm{D})=1.398$ which is close to the theoretical value of $\sqrt{2}$ ．

If a lange（tenfold）excess of LiAlH 4 is used（as in our early attempts to reproduce Chatt and Hayter＇s results），pale yellow brittle hexagons of trans－osH ${ }_{2}$（dppm） mp． 255° ，are formed with $\nu(O s-H)$ at $1712 \mathrm{~cm}^{-1}$ 。 This was confirmed by preparation of the dideuteride， $\operatorname{trans}-\mathrm{OsD}_{2}(\mathrm{dppm})_{2} \quad \operatorname{mp}_{2} 226^{\circ}, \nu(\mathrm{Os}-\mathrm{D})$ at $1228 \mathrm{~cm}^{-1}$ 。 $(\nu)(\mathrm{Os}-\mathrm{H}) /(\mathrm{Os}-\mathrm{D})=1.394)$ 。 A trans assignment is probable from the ocourrence of only one $O s-H$ stretching frequency；
this is thought to be the first preparation of
$\mathrm{OsH}_{2}(\mathrm{dPpm})_{2}$ and compares with trans－ $\mathrm{OsH}_{2}\left(\mathrm{EH} \mathrm{P}_{2}-\mathrm{oC}_{6} \mathrm{IH}_{4}-\mathrm{PEt}_{2}\right)$
which has $\nu(O s-I I)$ at $1720 \mathrm{~cm}^{-1}$ 。 No NMR spectrum could be obtained because of the insolubility of the dinydride in $C_{6}{ }^{D_{6}}$ or DMSO．Analytical details for the various complexes are summarised in Table 1.

The original work reported anomalous behaviour which our worlk has shown to be incorrect．${ }^{122}$ Possibly Chatt and Hayter obtained a different solvate，with 1 molecule $\mathrm{C}_{6} \mathrm{H}_{6}$ ，which．did have $\mu(\mathrm{Os}-\mathrm{H})$ suppressed；however，their analytical figures are not significantly different from ouxs：（see Table 1）．We can therefore re－affirm the generalisation that $\nu(M-H)$ is always observed for metal－ hydrogen bonds，unless it is masked by $\nu(C \equiv 0)$ or $\nu(N \equiv N)$ 。 However，the corollary to this is that the complex was no longer directly relevant to X－ray studies on： catalytically interesting hydrides．Although．the structure might show cis effects due to hydride Iigands， a full structure analysis was not undertaken。 The： crystals of OsHCl（dppm）${ }_{2}$ were，however，photographed and found to be orthorhombic； $\mathrm{a}=21.10 \stackrel{\circ}{\mathrm{~A}}, \mathrm{~b}=10.05 \AA$ ， $c=42.46{ }^{\circ}$ 。

CHAPTER 2.7

THE CRYSTAL AND MOLECULAR STRUCTURE OF
TRANS - (Ir (H) (COOMe) (dmpe) ${ }_{2}$) BPh_{4}

The important step of activation may take place by addition of a substrate molecule to a metal in a low formal oxidation state. Coordinatively unsaturated planar d^{8} complexes add polar or homonuclear molecules e.g. $\mathrm{H}_{2}, \mathrm{HCl}, \mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, to give d^{6} complexes (in the case of addition of $\mathrm{O}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, the complex remains * formally d^{8}.) $)^{123}$

The products may be either cis or trans.

Coordinatively saturated 5 -coordinate complexes add polar molecules either by a two-step mechanism:-

a reactive 4 -coordinate complex. The products are always cis.

This type of reaction is commonly referred to as oxidative addition Reactions of type 1 have been exhaustively studied particularly with Vaska's compound, ${ }^{124} \operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, which is a typical $\operatorname{Ir}(I)$ complex, e.g. $\left(L=P P h_{3}\right):-$

After oxidative addition has occurred, the complex now contains a substrate molecule which is in an activated condition ready for further reaction for example, hydrogenation of olefines is favoured by initial formation of a hydride. This may be derived
from H_{2} gas, ${ }^{125}$ acids, ${ }^{128}$ alcohols, silanes 129 etc, but when an alcohol (ROH) is the source, true oxidative addition does not occur and only the hydrogen appears in the adduct, not the OR.

The addition of alcohols to $\left[\operatorname{Ir}(C O)(d m p e)_{2}\right]$ C1 by a type 2 reaction is the first reported example 131 where both H and or become coordinated. This was discovered during research in the Petrochemical and Polymer Laboratory into the reactions of coordinated dmpe, ${ }^{132}$ since this $1 i g a n d$ is known (see Chapter 2.2) to enhance the activity of metals to oxidative addition. The reaction is:-

$$
\begin{aligned}
& t r-\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \xrightarrow[2(\text { dmpe })]{ } \operatorname{tr}-\left[\operatorname{Ir}(\mathrm{CO})(\text { dmpe })_{2}\right] \mathrm{Cl} \\
& 20^{\circ} \\
& \mathrm{ROH} \\
& \mathrm{NaBPh}_{4} \\
& \operatorname{tr}-\left[\operatorname{IrH}(\mathrm{COOR})(\text { dmpe })_{2}\right] \mathrm{BPh}_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { This may be contrasted with the more usual reactions of } \\
& \text { iridium to form carboalkoxy compounds which do not } \\
& \text { yield hydrides, e.g.:- } \\
& \operatorname{Ir}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2} \stackrel{\mathrm{MeO}^{-}}{\rightleftarrows} \operatorname{Ir}(\mathrm{COOMe})(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \\
& \mathrm{H}^{+} \\
& \text {dmpe is the only phosphine known to cleave alcohols } \\
& \text { in this manner; with the dppe analogue the reaction is:- }{ }^{132}
\end{aligned}
$$

```
and this difference may be due, as in the case of
RuM(C}\mp@subsup{1}{10}{(H7})(\mathrm{ dmpe)}\mp@subsup{)}{2}{\prime}\mathrm{ , to the increased electron
density on the metal atom, which could be dispersed
into ligand orbitals by increasing the oxidation
state and coordination number.
```


Properties

The complex $\left[\operatorname{IrH}(\right.$ COOMe $\left.)(\text { dmpe })_{2}\right]\left(\mathrm{BPh}_{4}\right), \operatorname{mpt} .180^{\circ}$, is stable towards base, but reacts with acids:-

$$
\text { tr- } \operatorname{IrH}(\text { COOMe })(\text { dmpe })_{2}^{+} \stackrel{\text { dil. HC1 }}{\rightleftharpoons} \operatorname{tr}-\operatorname{IrH}(\mathrm{CO})(\text { dmpe })_{2}^{2+}
$$

The origin of the hydridic hydrogen was confirmed by deuteration. The IR spectrum has strong bands, $\nu(\operatorname{Ir}-H)$ at $1960 \mathrm{~cm}^{-1}$, and $\nu(>\mathrm{C}=0)$ at $1625 \mathrm{~cm}^{-1}$.

The NMR shows the phosphine methyls at 8.2T, methylenes at 7.8τ, ester protons at $6.8 T$, and the BPh_{4} protons at $2.7-3.2 \mathrm{~T}$ with $\mathrm{J}(\mathrm{H}-\mathrm{H}) 7 \mathrm{cps}$. The hydridic hydrogen appears as a quintet of bands at 25.5 T with $J(\mathrm{P}-\mathrm{H}) 18$ cps. which is characteristic of hydride cis to phosphorus. The proposed structure was therefore a trans carbomethoxy hydride. This has been confirmed by the structural analysis.

Preliminary Observations

White, platey crystals of $\left.[\operatorname{IrH}(C O O M e)(d m p e))_{2}\right] \mathrm{BPh}_{4}$ were prepared by S D Ibekwe. The analogous BF_{4} or PF $_{6}$ complexes could not be obtained crystalline;

```
possibly a bullyy anion is necessary for the
formation of good crystalso The crystals were
thin and brittle; they showed slight pleochroism
even undei ordinary light, and extinguished.
polarized light in two perpendicular direotionso
Preliminary photographs showed the symmetry to be
orthorhombic, and that the space group absences
were consistent with two space groups; Pnazi (No.33)
and Pama (No.62) if the indices are suitably inter-
changed. Pna2, is moncentric, and in general has
four molecules in the umit cello The cell volume
is ~4000.A and so one unitt would ocoupy just less
tham 1000A. % Pmma is a centric space group with
eight general positions. This did not seem to
provide enough space per molecule. If the molecular
unit had a mirror plane or centre, then z = 4, but
this was lnown to be impossible. The space group
Pna2, was therefone chosen.
```


Crystal Data

```
\(\mathrm{C}_{38} \mathrm{H}_{56} \operatorname{IrP}_{4} \mathrm{O}_{2}^{\mathrm{B}}, \underline{M}=871.3\); orthorhombic, \(\quad \underline{a}=12.752 \pm\)
0.006, \underline{D = 31.852\pm 0.012, c = 9.988\pm0.006 \AA.,}
U}=4057.0 \stackrel{\circ}{A
D,
Mo-K\alpha radiation (Nb filter), '\lambda=0.71070 A,
\mu=37.5 cm
```


Figure 2.7.1a
$\underline{\operatorname{IrH}(\text { COOMe })(\text { dmpe })_{2}^{+} \cdot \mathrm{BPh}_{4} \text { Crystal } 1}$

The Equations of the Bounding Surfaces of Crystal 1

	i	m	n	p	(hkl)
1	0.2283	0.0275	0.9732	224.90	
2	-0.4208	0.8895	0.1780	183.95	
3	-0.7585	0.4790	-0.4418	141.62	
4	0.7026	-0.6965	-0.1459	180.99	201
5	0.0084	-0.3308	-0.9437	264.58	
6	0.5923	0.8022	-0.0747	53.34	010
7	-0.5922	-0.7981	0.1108	53.69	010

$\longleftrightarrow 305 \mu$

Figure 2.7.1b
$\operatorname{IrH}($ COOMe $)(\text { dmpe })_{2}^{+}, \mathrm{BPh}_{4}$ Crystal 2
The Equations of the Bounding Surfaces of Crystal. 2

	1	m	n	p	(hkl)
1	-0.6507	0.3078	-0.6941	231.89	
2	0.4662	-0.1689	-0.8684	155.23	
3	-0.6124	-0.3331	0.7170	150.40	
4.	0.8376	0.0113	0.5461	175.92	
5	0.1051	-0.9945	0.0030	103.65	
6	0.2652	0.9486	0.1726	83.45	010
7	-0.2136	-0.9671	-0.1382	66.01	010

Figure 2.7.1c
$\operatorname{IrH}(\mathrm{COOMe})(\text { dmpe })_{2}{ }^{+} . \mathrm{BPh}_{4}$ Crystal 3
The Equations of the Bounding Surfaces of Crystal 3

	1	m	n	p	(hkl)
1	0.0204	-0.9728	-0.2308	202.11	001
2	-0.9140	-0.2090	-0.3476	41.59	010
3	0.9102	0.2563	0.3253	41.73	010
4	-0.2202	0.8539	0.4715	206.83	
5	-0.3548	0.3934	-0.8482	208.17	
6	-0.0566	-0.1470	-0.9875	207.15	
7	-0.1871	-0.4475	0.8745	288.00	

Data Collection

Temperature R．T；scan range -0.4° to＋0．5 Soan speed $2^{\circ} 2 \theta / m i n u t e ; ~ f i x e d ~ t i m e ~ 15 ~ s e c o n d s ; ~$
standards (0 0 6) and (0.18 2); maximum $2 \theta=60^{\circ}$; cell dimensions from 7 reflections（ 28 measurements）
giving angles $\alpha=89.99(5)^{\circ}, \beta=90.01(5)^{\circ}$ ， $\gamma=90.09(4)^{\circ}$ ；total number of independent structure amplitudes obtained after data reduction and collation of equivalent reflections 4256 。 Data collection was complicated by the fact that the crystals decomposed under molybdenum irradiation， and so three crystals were necessary The first （X1）lasted for 24 hours，decomposing slowly at first，then very rapidly．It turned orange but remained transparent。 The second orystal（X2） decomposed more gradually over $2 \frac{1}{2}$ days．The third crystal（X3）survived till all the data had been collected（ten days）；details of the size and shape of crystals are given in Figures 1a－co Seven reflections from the first cxystal were used to obtain the cell．dimensions．The reflections（o 0 6） and（ 018 2）were used for scaling；their intensities fell by $11 \%, 11 \%$ and 25% during the respective periods of data collection。

Chirality of Crystals
As Pna2 is a polar space group I originally intended
preserving the distinction between hki and $\overline{h k} \bar{I}$
for each orystal, in order to allow for the effect 'of $\Delta f^{\prime \prime}$ on the structural parameters. However, this was olearly unrealistic since the results from three rather unhealthy crystals would certainly not be accurate enough to justify this It was noted, however, that there were detectable differences, on photographs, between $\pm\left(\begin{array}{ll}0 & 5\end{array}\right)$ $(0 . \dot{2} 2)(053)(0,37)$ and, by measuring these acourately in all four quadrants, that the original choice of axes for X2 was the inverse of those for Xi , i.e. hkl (2) $=\overrightarrow{\mathrm{h} k}(1)$. The reasons for not preserving the handedness were:-

1. The decomposition was different for each crystal (worst for X3).
2. The awkward shape of the crystals (very platey) would result in an inacourate. absorption correction。
3. The three crystals may not all be of the same hand - it could be incorreot to assume that they are all the same。

Scaling of the Data

Friedel's Law was therefore assumed to hold. In
order to scale the three sets of data, the measurements common to all three sets were corrected for Lp factors and absorption:-

Crystal	$\frac{\text { Volume }}{\left(\mathrm{cm}^{3}\right)}$	$\frac{\text { Mesh }}{(\mathrm{cm})}$	No。of Points
x 1	1.61×10^{-5}	0.004	208
X 2	2.01×10^{-5}	0.003	491
x 3	1.72×10^{-5}	0.004	216

The corrected amplitudes were next compared for
the three crystals, and it was apparent that for
the undecomposed crystals, if all values for X 1
were multiplied by 1.08 and all for X 3 by 1.07 ,
they would be comparable to those for X 2 。 Also,
the ratios of totals, for $1: 2$, and for $2: 3$ checked,
as did $3: 1$ (ratio $=1.01 \approx 1.08 / 1.07$) . Comparison
of the anomalous pairs measured at the end of each
crystal's life showed that there was no need to
correct for decomposition for $X 1$ and X 2 , and that
slightly more decomposition had occurred with X 3 ,
i.e. at the end of data collection the ratio $2: 3=$
1.065. Scale factors were thus applied to the
complete data (raw intensities) as follows:-
(a) for X 1 no correction;
(b) for x 2 all intensities multiplied by
$1 / 1.08^{2}=0.876$;
(c) for X 3 all intensities multiplied by $1 / 1.01^{2}=0.980$;
and $L p$ and absorption corrections were applied to a11 measurements.

Solution and Refinement of Structure

Formfactors for Iridium and phosphorus were corrected for Δf^{\prime} 。 The Patterson of Pna2 1_{1}, which has equivalent positions:-

$$
\begin{array}{ccc}
x & y & z \\
-x & -y & \frac{1}{2}+z \\
\frac{1}{2}-x \frac{1}{2}+y \frac{1}{2}+z \\
\frac{1}{2}+x \frac{1}{2}-y & z
\end{array}
$$

contains Harker planes at:-

$\frac{1}{2}$	$\frac{1}{2} \pm 2 y$	0
$\pm 2 x$	$\pm 2 y$	$\frac{1}{2}$
$\frac{1}{2} \pm 2 x$	$\frac{1}{2}$	$\frac{1}{2}$

z is indeterminate, therefore all that need be calculated are the two sections at $z=0, \frac{1}{2}$. Three peaks appeared, consistent with an Ir position at (0.2115, 0.1398, 0), and so this position was refined, cycles 1 - 3 (see Table 1) . The z coordinate was held constant throughout the analysis. An $F(o b s)$ map computed over a cube of $5 \AA$ edge, centred on the Ir position, contained a pseudomirror $p l a n e$ at $z=0$, all peaks appearing at $+z$ and also -z. Weaker ghost peaks also appeared at symmetrical positions round the Ir atom, at $x=\operatorname{Ir}-a_{1}, y=a_{2}, z=-a_{3}$, where a genuine peak is probably at $x=\operatorname{Ir}+\mathrm{a}_{1}, \mathrm{y}=\mathrm{a}_{2}, \mathrm{z}=\mathrm{a}_{3}$. There were several possible P atom positions, of which two
TABLE 2.7.1(a)
Refinement of the structure of $\operatorname{IrH}(\mathrm{COOMe})(\mathrm{dmpe})_{2} \cdot \mathrm{BPh}_{4}$

Cycle Number	Number of terms	Criteria	R Value	Atoms included	Matrix type					Vibrations					Weighting used
					Ir	P	$\mathrm{C}(\mathrm{p})$	Alk.	BPh_{4}	Ir	P	$\mathrm{C}(\mathrm{p})$	Alk.	BPh_{4}	
1-3	449	$\begin{aligned} & \min . \operatorname{amp} .40 \\ & \text { min.amp./ } \\ & \text { deviation } 15 \end{aligned}$	18.8	Ir	b	-	-	-	-	i	-	-	-	-	1
4-6	859	min.amp. 30	15.5	Ir, P1, P2	b	b	-	-	-	i	i	-	-	-	1
7-9	2039	min .amp. 15	14.2	Ir, Pl-P4	b	b	-	-	-	i	i	-	-	-	1
10-12	2039	min.amp. 15	11.3	$\begin{aligned} & \text { Ir, Pl-P4, } \mathrm{B}, \\ & 2 \text { rings } \end{aligned}$	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	-	-	b(1)	$\begin{gathered} a \\ \operatorname{tb}(1) \end{gathered}$	$\stackrel{a}{a b(1)}$	-	-	i	1
13	2039	min.amp. 15	10.6		$\mathrm{pb}(1)$.	$\mathrm{pb}(1)$	b(3)	-	$\begin{aligned} & \mathrm{b}(1) \\ & \mathrm{b}(2) \end{aligned}$	$\stackrel{a}{a}+(1)$	$\begin{gathered} a \\ \operatorname{tb}(1) \end{gathered}$	i	-	i	1
14	2039	min.amp. 15	9.9	all atoms	pb (1)	$\mathrm{pb}(1)$	$\begin{aligned} & \mathrm{b}(1) \\ & \mathrm{b}(2) \end{aligned}$	b(7)	$\begin{aligned} & b(3)- \\ & b(6) \end{aligned}$	$\underset{\text { tba }}{a}$	$\underset{\text { tbd }}{a}$	i	i	i	1

TABLE 2.7.1(b)
Refinement of the structure of $\operatorname{IrH}(\mathrm{COOMe})(\mathrm{dmpe})_{2} \cdot \mathrm{BPh}_{4}$

were chosen，both on z～O。 P1，was given a small． negative z value，$P 3$ a small positive z ，and cycles $4-6$ ，and an $F(d i f f)$ map were calculated。 The strong ghosts mirrored by $z=0$ still came up， but not the weaker ones．$P 2$ and 44 were assigned negative and positive z values respectively，by choosing the strongex of the two peaks in each． case On refining these positions，R was reduced to 14.2% after three cycles $(7-9)$ 。 An $F(d i f f)$ map computed over the entire asymmetric unit still had pseudo mirror symmetry，but two rings and the P1－P2 bridge appeared clearlyo From this stage Ir and P atoms were refined anisotropically，and at $R=10.6 \%$（oycle 13），an $F($ diff $)$ map showed the carbomethoxy group and its ghost．Refinement was continued，including all atoms（see table），but the geometry of one of the borate rings remained irregular．This．was attributed to insufficient data，（2039 out of a possible 4256 terms），and so one cycle（17）was calculated on 3169 terms．The distorted ring immediately refined to a reasonable configuration，at an R value of 6.2% on the final F（diff）map，small pealss were observed，associated with carbon atom anisotropy，but none of these were higher than $2 \mathrm{e} / \AA^{3}$ one pealc，of height o． $4 \mathrm{e} / \mathrm{A}^{3}$ appeared $1.5 \AA$ from Ir。 Although this was near the expected position for the hydridic hydrogen，the
ratio of peak height to background was mot
significant。 The unobserved reflections were ， calculated；none were greater than twice the minimun observed．

Results and Discussion
The final positional and vibrational parameters are shown in the Appendix in Tables 2 and 3；the molecular geometry is Iisted in Table 4。 The only carbon－ carbon inter－molecular contact less than $3.5{ }^{\circ}$ is that between $C 23$ and $C 135$（3：42A： ）The final agreement analysis is listed in Table 5．Tigure 2 shows the geometry of the cation，Figure 3 that of the anion （these also indicate the numbering system used），and Figure 4 shows the inter－molecular packingo

The ions in the complex are quite separate。 The cation has the trans－hydride－carbomethoxy structure predioted from the trans addition of MeOH across $\left[\operatorname{Ir}(\mathrm{CO})(\operatorname{dmpe})_{2}\right]$ CI． The stereochemistry round iridium is only slightly distorted from octahedral if one assumes the hydride position trans to the COOMe group，the slight deviations from． 90° and 180° being associated with the usial effect of a small Iigand，ioe。all four Ir－p bonds are bent towards the hydride position by $2^{\circ}-3^{0}$ ．The equation of the plane through the four p atoms is：－

$$
7.88 x+16.21 y-5.99 z-3.75=0
$$

the maximum deviation from this being o．02 ${ }^{\circ}$ 。（Ir lies － $0.10 \AA$ out of this plane。）

Figure 2.7.2
View of $\operatorname{IrH}(\mathrm{COOMe})(\text { dmpe })_{2}{ }^{+}$, illustrating the numbering system and the geometry round iridium.

Figure 2.7.4

Figure 2.7.3
IrH(COOMe) (dmpe) ${ }_{2} \cdot \mathrm{BPh}_{4}{ }^{-}$
View of $\mathrm{BPh}_{4}{ }^{-}$, showing the numbering system used.

Table 2.7.4

Bond distances (\AA) and angles (${ }^{\circ}$), with their estimated standard deviations

Around Iridium

$\operatorname{Ir}-\mathrm{P}(1)$	$2.318(4)$	$\mathrm{P}(1)-\operatorname{Ir}-\mathrm{P}(2)$	$83.3(2)$
$\operatorname{Ir}-\mathrm{P}(2)$	$2.326(6)$	$\mathrm{P}(1)-\operatorname{Ir}-\mathrm{P}(3)$	$176.1(2)$
$\operatorname{Ir}-\mathrm{P}(3)$	$2.308(5)$	$\mathrm{P}(1)-\operatorname{Ir}-\mathrm{P}(4)$	$96.1(3)$
$\operatorname{Ir}-\mathrm{P}(4)$	$2.306(8)$	$\mathrm{P}(1)-\operatorname{Ir}-\mathrm{C}(1)$	$91.9(6)$
$\operatorname{Ir}-\mathrm{C}(1)$	$2.098(22)$	$\mathrm{P}(2)-\operatorname{Ir}-\mathrm{P}(3)$	$96.3(2)$
		$\mathrm{P}(2)-\operatorname{Ir}-\mathrm{P}(4)$	$173.9(2)$
		$\mathrm{P}(2)-\operatorname{Ir}-C(1)$	$93.5(7)$
		$P(3)-\operatorname{Ir}-P(4)$	$83.9(3)$
		$P(3)-\operatorname{Ir}-C(1)$	$92.1(6)$
		$P(4)-\operatorname{Ir}-C(1)$	$92.6(7)$

Phosphine Groups

$P(1)-C(11)$	$1.87(3)$	$\operatorname{Ir}-P(1)-C(11)$	$108.2(8)$
$P(1)-C(12)$	$1.85(2)$	$\operatorname{Ir}-P(1)-C(12)$	$119.4(7)$
$P(1)-C(13)$	$1.85(3)$	$\operatorname{Ir}-P(1)-C(13)$	$115.5(9)$
$P(2)-C(21)$	$1.85(3)$	$\operatorname{Ir}-P(2)-C(21)$	$107.6(11)$
$P(2)-C(22)$	$1.84(4)$	$\operatorname{Ir}-P(2)-C(22)$	$119.1(11)$
$P(2)-C(23)$	$1.86(4)$	$\operatorname{Ir}-P(2)-C(23)$	$118.3(13)$
$P(3)-C(31)$	$1.81(3)$	$\operatorname{Ir}-P(3)-C(31)$	$108.9(10)$
$P(3)-C(32)$	$1.86(4)$	$\operatorname{Ir}-P(3)-C(32)$	$117.3(11)$
$P(3)-C(33)$	$1.92(4)$	$\operatorname{Ir}-P(3)-C(33)$	$116.7(12)$
$P(4)-C(41)$	$1.75(5)$	$\operatorname{Ir}-P(4)-C(41)$	$109.4(17)$
$P(4)-C(42)$	$1.87(3)$	$\operatorname{Ir}-P(4)-C(42)$	$121.8(11)$
$P(4)-C(43)$	$1.90(5)$	$\operatorname{Ir}-P(4)-C(43)$	$115.6(15)$
$C(11)-P(1)-C(12)$	$108.1(16)$	$C(31)-P(3)-C(32)$	$104.3(15)$
$C(11)-P(1)-C(13)$	$105.4(13)$	$C(31)-P(3)-C(33)$	$102.9(14)$
$C(12)-P(1)-C(13)$	$99.3(14)$	$C(32)-P(3)-C(33)$	$105.2(16)$
$C(21)-P(2)-C(22)$	$107.3(15)$	$C(41)-P(4)-C(42)$	$102.9(18)$
$C(21)-P(2)-C(23)$	$103.1(15)$	$C(41)-P(4)-C(43)$	$106.4(22)$
$C(22)-P(2)-C(23)$	$99.9(17)$	$C(42)-P(4)-C(43)$	$99.1(18)$
$C(11)-C(21)$	$1.43(4)$	$P(1)-C(11)-C(21)$	$108.3(21)$
$C(31)-C(41)$	$1.48(5)$	$P(2)-C(21)-C(11)$	$111.9(22)$
		$P(3)-C(31)-C(41)$	$111.0(25)$
		$P(4)-C(41)-C(31)$	$116.5(32)$

Carbomethoxy Group

$C(1)-0(1)$	$1.23(3)$	$\operatorname{Ir}-C(1)-0(1)$	$128.0(19)$
$C(1)-0(2)$	$1.39(3)$	$\operatorname{Ir}-C(1)-0(2)$	$117.8(15)$
$C(2)-0(2)$	$1.45(3)$	$O(1)-C(1)-0(2)$	$113.8(21)$
		$C(1)-0(2)-C(2)$	$120.7(19)$

Table 2.7.4 (contd.)

Bond distances (\AA) and angles (${ }^{\circ}$), with their estimated standard deviations

Tetraphenylboron Group

B-C(111)	$1.68(4)$	$C(111)-B-C(121)$	$107.8(19)$
$B-C(121)$	$1.67(4)$	$C(111)-B-C(131)$	$107.3(19)$
$B-C(131)$	$1.66(4)$	$C(111)-B-C(141)$	$107.8(19)$
$B-C(141)$	$1.62(3)$	$C(121)-B-C(131)$	$109.9(19)$
		$C(121)-B-C(141)$	$111.2(19)$
		$C(131)-B-C(141)$	$112.6(18)$
$C(111)-C(112)$	$1.41(3)$	$C(121)-C(122)$	$1.43(3)$
$C(112)-C(113)$	$1.47(4)$	$C(122)-C(123)$	$1.39(4)$
$C(113)-C(114)$	$1.42(4)$	$C(123)-C(124)$	$1.40(4)$
$C(114)-C(115)$	$1.32(4)$	$C(124)-C(125)$	$1.33(3)$
$C(115)-C(116)$	$1.49(3)$	$C(125)-C(126)$	$1.42(3)$
$C(116)-C(111)$	$1.38(3)$	$C(126)-C(121)$	$1.45(4)$
$B-C(111)-C(112)$	$122.0(22)$	$B-C(121)-C(122)$	$119.9(22)$
$B-C(111)-C(116)$	$123.8(22)$	$B-C(121)-C(126)$	$121.3(21)$
$C(112)-C(111)-C(116)$	$114.2(22)$	$C(122)-C(121)-C(126)$	$118.7(22)$
$C(111)-C(112)-C(113)$	$125.4(24)$	$C(121)-C(122)-C(123)$	$118.0(26)$
$C(112)-C(113)-C(114)$	$114.7(26)$	$C(122)-C(123)-C(124)$	$122.7(29)$
$C(113)-C(114)-C(115)$	$123.8(33)$	$C(123)-C(124)-C(125)$	$120.2(28)$
$C(114)-C(115)-C(116)$	$118.2(29)$	$C(124)-C(125)-C(126)$	$121.7(27)$
$C(111)-C(116)-C(115)$	$123.3(24)$	$C(121)-C(126)-C(125)$	$118.5(26)$
$C(131)-C(132)$	$1.42(3)$	$C(141)-C(142)$	$1.41(3)$
$C(132)-C(133)$	$1.34(6)$	$C(142)-C(143)$	$1.39(4)$
$C(133)-C(134)$	$1.44(5)$	$C(143)-C(144)$	$1.37(4)$
$C(134)-C(135)$	$1.38(4)$	$C(144)-C(145)$	$1.39(5)$
$C(135)-C(136)$	$1.44(4)$	$C(145)-C(146)$	$1.40(4)$
$C(136)-C(131)$	$1.41(3)$	$C(146)-C(141)$	$1.44(3)$
$B-C(131)-C(132)$	$124.6(19)$	$B-C(141)-C(142)$	$122.8(22)$
$B-C(131)-C(136)$	$118.7(20)$	$B-C(141)-C(146)$	$121.7(20)$
$C(132)-C(131)-C(136)$	$116.6(23)$	$C(142)-C(141)-C(146)$	$115.4(22)$
$C(131)-C(132)-C(133)$	$123.8(22)$	$C(141)-C(142)-C(143)$	$123.9(26)$
$C(132)-C(133)-C(134)$	$120.4(27)$	$C(142)-C(143)-C(144)$	$120.2(29)$
$C(133)-C(134)-C(135)$	$117.9(32)$	$C(143)-C(144)-C(145)$	$118.3(31)$
$C(134)-C(135)-C(136)$	$121.4(28)$	$C(144)-C(145)-C(146)$	$122.8(29)$
$C(131)-C(136)-C(135)$	$119.8(27)$	$C(141)-C(146)-C(145)$	$119.3(23)$

The Ir－P bonds（average $2.31 \AA^{\circ}$ ）are all significantly shorter than is generally found in Ir phosphine
complexes（see Table 6）。 However，most reported Ir ； structures contajn $\operatorname{Ir}(I)$ ，also there are no．reports of $\operatorname{Ir}-\mathrm{P}(a \operatorname{lny} 1)$ bonds，non are theme any rhodium alkyl． phosphine complexes for comparisone With the exception of $\left[\operatorname{Ir}\left(\mathrm{O}_{2}\right)(\text { dppe })_{2}\right]$ ． PT_{6}^{134} and $\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}-$ （fumaronitrile）both of which involve back bonding from Ir to a pi－bonded system，and in which the short－－ ness of the Ir－P bonds may be attributed to a general flow of electron density into the M－I bond，the average Ir－P distance is about $2.36 \mathrm{~A}^{\circ}$ ．（However，a recent determination of Ir－P in a TCNE complex gives $2.40 \AA)_{0}^{135}$ In the present complex，the short distances may be related to the highen electron dënsity maintained at the metal atom，by dmpe，and therefore available for back－bonding to phosphorus。 In ligands suoh as dppe or PPli．, the excess electron density is delocalised among the phenyl groups．

The two phosphine systems have bites：of 83° and 84° and adopt the conformation often observed in complexes of bidentate phosphines，i．e。 one C（methylene）atom－ （C21．and C41）－of each phosphine Iies almost in the equatorial plane，while the other－（C11 and C31）－
lies further from the plane。 This conformation has been calculated for ethylenediamine complexes，to be as stable as the symmetrical arrangement with all，C（methylene） atoms displaced equal amounts from the metal－nitrogen plane，and this is borne out by structural analyses（see Table 2 of refexence 136）．This same flexibility of the

TABLE 2.7.6(a)

Ir-P and Ir-C(carbonyl) Distances

	$\underline{I m}$	$\underline{I r-C}$	Reference
$\operatorname{IrH}($ COOMe $)(\text { dmpe })_{2}{ }^{+}$	2.31	(2.10)	
$\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{O}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	2.36,2.38	disordered	a
$\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{SO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	2.36,2.33	1.96	b
$\operatorname{IrCl}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}{ }^{+}$	2.41	1.86	c
$\operatorname{IrCl}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	2.32,2.34	$\begin{aligned} & 2.04 \\ & \text { (disordered) } \end{aligned}$	d
$\operatorname{IrH}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	2.37,2.38	1.83,1.86	e
$\operatorname{IrH}(\mathrm{CO})(\mathrm{CN} . \mathrm{CH}: \mathrm{CH} . \mathrm{CN})\left(\mathrm{PPh}_{3}\right)_{2}$	2.32	1.98	f
$\operatorname{IrBr}(\mathrm{CO})(\mathrm{TCNE})\left(\mathrm{PPh}_{3}\right)_{2}$	2.40	disordered	f
$\operatorname{Ir}(\mathrm{CO})(\mathrm{TCNE})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	2.40	1.79	g
$\operatorname{IrI}(\mathrm{CO})\left(\mathrm{O}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.39	disordered	h
$\operatorname{IrI}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}^{+}$	2.35,2.37	1.70	i
$\operatorname{Ir}(\mathrm{NO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{+}$	2.34	-	j

a. S J LaPlaca \& J A Ibers, JACS, 1965, 87, 2581
b. S J LaPlaca \& J A Ibers, Inorg. Chem., 1966, 5, 405
c. D J Hodgson \& J A Ibers, Inorg. Chem., 1968, 7, 2345
d. N C Payne \& J A Ibers, Inorg.Chem., 1969, 8, 2714
e. M Ciechanowicz, A C Skapski \& P G H Troughton, 8th International Congress Crystally., 1969, (Abstract s172)
f. L Manojlovic-Muir, K W Muir, \& J A Ibers, Discuss. Faraday Soc., 1969, 47, 84
g. J S Ricci et al., JACS, 1970, 92, 3489
h. J A McGinnety, R Doedens \& J A Ibers, Inorg.Chem., 1967, 6, 2243
i. D J Hodgson \& J A Ibers, Inorg.Chem., 1969, 8, 1282
j. D M P Mingos \& J A Ibers, Inorg.Chem., 1970, 9, 1105

TABLE 2.7.6(b)
Ir-P and Ir-C(carbonyl) Distances

	$\operatorname{Ir}-\mathrm{P}$	$\operatorname{Ir}-\mathrm{C}$	Reference
$\operatorname{Ir}(\mathrm{dppe})_{2}{ }^{+}$	$2.27-2.33$	-	k
$\operatorname{Ir}\left(\mathrm{O}_{2}\right)(\text { dppe })_{2}{ }^{+}$	$2.28-2.45$	-	1
$\operatorname{Ir}(\mathrm{CO})(\text { dppe })_{2}{ }^{+}$	$2.35-2.39$	1.82	m
$\operatorname{Ir}(\mathrm{CO})(\mathrm{dppm})_{2}{ }^{+}$	$2.32-2.41$	1.81	n
$(\mathrm{NO})\left(\mathrm{PPh}_{3}\right) \operatorname{Ir}^{2}-\mathrm{Ir}^{\left(\mathrm{PPh}_{3}\right)(\mathrm{NO})}$	2.31	-	o
$\operatorname{Ir}_{2} \mathrm{Cl}_{4} \mathrm{Me}_{2}(\mathrm{CO})_{4}$	-	$1.74,1.76$	p
$\operatorname{IrI}_{2}(\mathrm{CO})(\mathrm{COOMe})($ bipy. $)$	-	1.80	q

k. B T Kilbourn, unpublished data

1. J A McGinnety, N C Payne \& J A Ibers, JACS, 1969, 91, 6301
m. J A J Jarvis et al., Chem.Comm., 1966, 906
n. B T Kilbourn \& A M Wood, unpublished data
o. P Carty et al., JCS(D), 1969, 1374
p. N A Bailey et al., Chem.Comm., 1967, 1051
q. V G Albano, P L Bellon \& M Sansoni, Inorg. Chem., 1969, 8, 298
```
5-membered ring system is observed in complexes of
chelating diphosphines; the exact equilibrium
conformation appcars to be governed by packing
considerations, the only constant factor being the
torsion angle \tau(C-C) about the central C-C bond.
This is generally less than the ideal staggered 60%,
ranging from 45 'o 55 % }\tau(M-P)\mathrm{ and }\tau(P-C) vary
over a wide range. The only instance of the totally
symmetrical arrangement }\tau(M-P1)=\tau(P2-M) is in the
complex ReH3}(\mp@subsup{\textrm{PPh}}{3}{}\mp@subsup{)}{2}{}(\mathrm{ (dppe) (15 where there is only one
diphosphine and therefore presumably there are no
steric reasons for a distortion. The various possible
configurations are:-
```

1.

 $\tau(M-P 1)=\tau(P 2-M)$ both same sign
2.

$T(M-P 1)>T(P 2-M)$ both same sign e.g. $\operatorname{IrH}($ COOMe $)(\text { dmpe })_{2}+$ e.g. $\mathrm{ReH}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ (dppe)

115

137
3. P......P $\begin{array}{r}\tau(M-P 1)>\tau(P 2-M) \\ \text { opposite signs }\end{array} \quad$ e.g. RuC1 ${ }_{2}\left(\right.$ PhMeP:C $_{2} \mathrm{H}_{4} \cdot \mathrm{PMePh}_{2}$

The commonest arrangements are 2 and 3 (see Table 7 and Table 9 of Chapter 3.2). In the present complex, (Case 2), both $T(C-C)$ have the same sign; this corresponds, other factors being constant, to the most favourable steric arrangement of two trans diphosphine ligands. Angles round coordinated phosphorus tend to vary widely from tetrahedral, because of non-bonded interactions

Table 2.7.4

Selected Torsion Angles $\left({ }^{\circ}\right)$, positive values indicating clockwise rotation

$P(1)-C(11)-C(21)-P(2)$	+50
$P(3)-C(31)-C(41)-P(4)$	+36
$\operatorname{Ir}-C(1)-O(2)-C(2)$	-173
$O(1)-C(1)-O(2)-C(2)$	+1
$O(1)-C(1)-\operatorname{Ir}-P(1)$	-137
$B-C(111)-C(112)-C(113)$	-178
$B-C(121)-C(122)-C(123)$	-177
$B-C(131)-C(132)-C(133)$	-178
$B-C(141)-C(142)-C(143)$	-177

Table 2.7.7
Torsion Angles (${ }^{\circ}$) in dmpe Complexes

	$\tau(\mathrm{M}-\mathrm{P})$	$\tau(\mathrm{P}-\mathrm{C})$	$\tau(\mathrm{C}-\mathrm{C})$	$\tau(\mathrm{C}-\mathrm{P})$	$\tau(\mathrm{P}-\mathrm{M})$
$\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$	+22	-43	+44	-28	-1
$\mathrm{OsH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$	-2	+22	-25	+17	-9
	-25	+51	-52	+34	-2
$\mathrm{IrH}(\mathrm{COOMe})(\text { dmpe })_{2}^{+}$	-7	+32	-40	+33	-11
	+14	-41	+50	-38	+8
	+3	-31	+36	-25	+13

(+ corresponds to δ

- corresponds to λ
on the convention defined in: Inorg.Chem., 1970, 9, 1)
between the different substituentso In the present
example these angles range from 99° to 122°, and
there is also considerable variation in $P-C$ bond
lengths. The average, 1.865°, is long compared to most measured phosphine $P-C\left(\mathrm{sp}^{3}\right)$ bonds, but is close
to the theoretical radius $\operatorname{sum}(1.10+0.77 \stackrel{\circ}{\mathrm{~A}})$. Usually these, and also $P-C\left(s^{2}\right)$ bonds, are about 1.83A. The $C-C$ bonds in each 1igand (1.43 and 1.48 A) are shorter than in complexes of dppe. This seems to be a feature of dmpe - compare $C-C$ bonds of 1.50 and $1.44 \stackrel{\circ}{\mathrm{~A}}$ in $\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$ (dmpe) ${ }_{2}$ with 1.58 and $1.60 \AA$ in $\left[\operatorname{Ir}(\text { dppe })_{2}\right] C 1$ 。

Pauling gives an $\operatorname{Ir}(\operatorname{III})$ octahedral radius of $1.32 \mathrm{~A}^{\circ}$. However, studies on $\operatorname{Ir}-C(\sigma)$ bonds suggest that the true radius is longer than this.

Complex	Ir-C		derived Ir radius	reference
$\operatorname{Ir}(\mathrm{CO}) \operatorname{I}_{2}($ COOMe $)($ bipy $)$	$2.05(2)$	1.31	sp^{2}	139
$\operatorname{IrH}($ COOMe $)(\text { dmpe })_{2}$	$2.10(2)$	1.36	sp^{2}	-
$\operatorname{Ir}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}{ }^{\mathrm{C} 1}{ }_{2}\left(\mathrm{C}_{15^{\mathrm{H}} 13} 0\right)$	$2.16(2)$	1.39	sp^{3}	140
$\operatorname{Ir}_{2} \mathrm{Cl}_{4} \mathrm{Me}_{2}(\mathrm{CO})_{4}$	2.10	1.33	sp^{3}	141

The Ir-C bonds in the two carbomethoxy complexes are probably not pure sigma bonds, because of contributions from the form: -

（In IrH（COOMe）（dmpe）${ }_{2}{ }^{+}$the hydridic hydrogen may exert a trans weakening influence which would explain the longer bond length。）The most reasonable $\operatorname{Ir}(I T I)$ radius is therefore $1 i k e l y$ to be $1.36-1.39 \AA^{\circ}$

The Ir－C bond is $\sim 0.3 \AA$ longer than an average Ir－C （carbonyl）bond（see Table 6）。 It is interesting to speculate on the mechanism of the reaction：－

Since the structure of $\operatorname{Ir}(C O)(\text { dmpe })_{2}{ }^{+}$is unknown the closest analogues are $\operatorname{Ir}(C O)(d p p e)_{2}{ }^{+76}$ and $\operatorname{Ir}(\mathrm{CO})(\mathrm{dppm})_{2}+{ }^{142}$ In both these complexes，there is considerable distortion away from regular geometry． This may be necessary to accommodate phenyl groups． $\operatorname{Ir}(\mathrm{CO})(\mathrm{dmpe})_{2}{ }^{+}$would probably be quite stable in a square pyramidal form。

In fact a compromise might be achieved，with phosphine groups bent away from the $C O$ position，but not so close ＂that entry of hydrogen is prevented，as it is with dppe and dppm．（These will not even form dihydrides，whereas Rh（dmpe）${ }_{2}{ }^{+}$adds H_{2} to form cis－RhH （dmpe）$\left._{2}{ }^{\circ}\right)^{143}$
Possibly $\operatorname{Ir}(\mathrm{CO})(\text { dmpe })_{2}{ }^{+}$has a geometry somewhat similar to $\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right.$（dmpe）${ }_{2}$ ，with hydride removed and CO taking the place of $\mathrm{C}_{10} \mathrm{H}_{7}{ }^{\circ}$ ．In any case，the formation of $\operatorname{IrH}($ COOMe $)(\text { dmpe })_{2}^{+}$should be casy sterically．

The geometry within the ester group is normal
compared both to organic and complexed COOMe（see Table 8），the methyl group and ketonic oxygen 01 being cis to one another．There are no close contacts to force it out of the planar configuration which is generally adopted，since this allows a contribution from the form：－

The torsion angles $\operatorname{Ir}-\mathrm{C} 1-02-\mathrm{C} 2$ and $01-\mathrm{C} 1-02-\mathrm{C} 2$ are 173° and 0° respectively．The ester grouping in this complex is well separated from the phosphine methyls，and has a staggered relationship to the phosphine ligands，e．g．（ $01-\mathrm{C} 1-\mathrm{Ir}-\mathrm{P} 1)=-137^{\circ}$ 。 Since $\operatorname{IrH}(\mathrm{COOMe})(\mathrm{dppe})_{2}{ }^{+}$cannot be isolated，this may also be partly a result of the steric limitations of dppe。

The vacant position trans to the carbomethoxy group is certainly occupied by the hydridic hydrogen；none of the methyl groups approaches close to this hole， so there is no reason to expect much distortion away from the expected position．From the only observed Ir－H bond，in $\operatorname{IrH}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{144}$ the distance is assumed to be in the range 1.65 to $1.7 \AA^{\circ}$ ．The peak on the final $F(d i f f)$ map tends to suggest a shorter bond length，but the evidence is not substantial。

TABLE 2.7 .8

Ester Geometries

	$\mathrm{C}_{1}=0$	$\mathrm{C}_{1}-0$	$0-\mathrm{C}_{2}$	Reference
$\operatorname{IrH}(\mathrm{COOMe})(\text { dmpe })_{2}{ }^{+}$	1.23	1.39	1.45	
$\operatorname{IrI}(\mathrm{CO})(\mathrm{COOMe})\left(\mathrm{C}_{10} \mathrm{~N}_{2} \mathrm{H}_{8}\right)$	1.18	1.28	1.48	a
$\mathrm{Co}\left(\mathrm{CH}_{2} \mathrm{COOMe}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{O}_{2}\right)_{2}$	1.22	1.34	1.46	b
$(\mathrm{MeOOC}){ }_{2} \mathrm{C}-\mathrm{C}(\mathrm{COOMe})_{2}$	1.19	1.32	1.45	c
$\mathrm{MeOOC-COOMe}$	1.19	1.31	1.46	d
Me-COOMe	1.22	1.36	1.46	e

a. V G Albano, P L Bellon \& M Sansoni, Inorg. Chem., 1969, 8, 298
b. P G Lenhert, Chem. Comm., 1967, 980
c. J P Schaefer \& C R Costin, J.Org.Chem., 1968, 33, 1677
d. M W Dougill \& G A Jeffrey, Acta Cryst., 1953, 6, 831
e. J M 0^{\prime} Gorman, W Shand \& V Schomaker, JACS, 1950, 72, 4222

As in $\left(\operatorname{Ir}\left(\mathrm{O}_{2}\right)(\mathrm{dppe})_{2}\right) \mathrm{PF}_{6}^{134}$ and $\left(\operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right)_{2} \mathrm{BF}_{4}{ }^{145}$, the anion plays no part in the coordination about the metal; it is drawn in Figure 3o It has a regular geometry。 The economical way in which BPh. 4 completes the crystal packing may explain the lack of success in orystaliizing the present complex with other, smaller anions, e.g. $\mathrm{Br}_{4}, \mathrm{PF}_{6}$. There is no evidence of disorder, as there sometimes is with smaller spherically symmetrical anions, eogo in $\operatorname{Te}\left(\mathrm{N}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{3}\right)\left(\mathrm{Br}_{4}\right)_{2} \text {, }{ }^{146} \text {, }{ }^{\text {a }} \text {, }}\right.$ and $\operatorname{in}\left(\operatorname{IrI}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right) \mathrm{BF}_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6}{ }^{1}$

CHAPTER 2．8

THE CRYSTAL AND MOLECULAR STRUCTURE OF TRANS－

$$
\underline{\mathrm{Ni}(\mathrm{H}) \mathrm{Cl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}}
$$

CELL DATA FOR TRANS－Ni（Me）CI（PPr $\left.\frac{1}{3}\right)_{2}$

Although platinum hydrides are very stable and palladium hydrides moderately stable，their nickel analogues have proved difficult to isolate。 For example，NiHC1 $\left(\operatorname{PPr}_{3}\right)_{2}$ is unstable。 ${ }^{148}$ This instability was attributed to the general trend for first row complexes to be less stable than their second or third row analogues；until NiHCl $\left(\operatorname{PPr}_{3}\right)_{2}^{149}$ and NiHCl $\left(\mathrm{P}(\operatorname{cyclohexyl})_{3}\right)_{2}{ }^{150}$ were prepared．It then became evident that the reason for the instability of NiHCl $\left(\operatorname{PPr}_{3}^{n}\right)_{2}$ might be partly steric．In a complex containing bulky phosphines attack along the z axis （perpendicular to the molecular plane）is hindered， as is rearrangement to a tetrahedral configuration which would be more susceptible to attack。 Other stable nickel hydrides have since been discovered， also containing buiky phosphines．${ }^{151}$
$\mathrm{Ni}-\mathrm{H}$ bonds，also $\mathrm{Ni}-\mathrm{C}\left(\sigma^{*}\right)$ bonds，are almost certainly involved in nickel catalysed dimerisations of olefines，${ }^{35}$ and it is possible that a reaction analogous to：－ $\operatorname{PtHCl}\left(\text { PEt }_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{4} \rightleftharpoons \operatorname{PtCl}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\text { PEt }_{3}\right)_{2}$
takes place．${ }^{54}$ Nickel complexes are also involved in $152 \quad 153$ ${ }^{153}$ catalysts．There are
no reports of structural studies on nickel complex hydrides and so the effect of an Ni-H bond on other bonds in the molecule is unknown. Consequently it seemed that a structural analysis of one of these stable hydrides would be valuable. All published, reliable $M-H$ bond lengths fall in a very narrow range, regardless of the metal involved; a slightly shorter $N i-H$ distance would be predicted from summing covalent radii, and so it, was hoped that a crystal structure determination would show whether this constancy of $\mathrm{M}-\mathrm{H}$ distances is fortuitous or not。 No M-H distances are known for any of the platinum group: However, Pd-H and Pt-H bonds are known to exert significant trans weakening influences on Pd-C1 and Pt-C1 bonds, and this influence probably extends to nickel. Workers in the Petrochemical and Polymer Laboratory have studied the crystal structures of two nickel isopropyl phosphine complexes (trans-NiC1 $1_{2}\left(\operatorname{PPr}_{3}\right)_{2}$ and trans-Ni $\left(\mathrm{SCN}_{2}\left(\operatorname{PPr}_{3}^{i}\right)_{2}\right)^{154}$ and so NiHC1 $\left(\operatorname{PPr}_{3}^{i}\right)_{2}$ was chosedi for detailed study.

Crystals of the methide-chloride trans-Ni (Me)CI (PPI $\left.{ }_{3}\right)_{2}$ were also examined and photographed. Unfortunately the complex is exceedingly unstable; the crystals decomposed napidly, even in capillary tubes, so no detailed analysis was possible.

Preliminary Observations

Cherry red crystals of tr-NiHCl $\left(\operatorname{PPr}_{3}\right)_{2}$ were kindly prepared by T Saito in Oxford, by the reaction (performed under argon):-

$$
\operatorname{tr}-\mathrm{NiCl}_{2}\left(\operatorname{PPr}_{3}^{\mathrm{i}}\right)_{2} \xrightarrow[20^{\circ}]{\mathrm{NaBH}_{4}} \mathrm{NiHCl}\left(\operatorname{PPr}_{3}^{\mathrm{i}}\right)_{2}
$$

(The Br and I analogues can be easily prepared by displacement of Cl);

The crystals (m.pt. $65-67^{\circ} \mathrm{C}$) show $\nu(\mathrm{Ni}-\mathrm{H})$ at $1937 \mathrm{~cm}^{-1}$, $\delta(\mathrm{Ni}-\mathrm{H}) 34.3 \tau, \mathrm{~J}(\mathrm{P}-\mathrm{H}) 77.8 \mathrm{cps} . \quad$ They were large hexagonal prisms up to 1 mm . across, and were mounted with silicone grease in argon filled capillary tubes. The crystal used for data collection is shown in

Figure 1.

Crystal Data

$\mathrm{C}_{18} \mathrm{H}_{43} \mathrm{NiP}_{2} \mathrm{Cl}, \underline{\mathrm{M}}=415.3$; monoclinic, $\underline{a}=16.350 \pm 0.007$, $\underline{b}=8.961 \pm 0.002, \underline{c}=15.904 \pm 0.003 \AA, \beta=93.73 \pm 0.03^{\circ}$, $\underline{U}=2325.1 \AA^{3}, \underline{D}_{m} \approx 1.13$ (difficult to measure because of decomposition in air), $\underline{Z}=4, \underline{D_{C}}=1.167, F(000)=904$, Space Group $\mathrm{P}_{1} / \mathrm{C}$, ($\mathrm{C}_{2 \mathrm{~h}}^{5}$; no。 14), Mo-K α radiation (Nb filter) $\lambda=0.71070 \AA, \quad \mu=10.62 \mathrm{~cm}^{-1}$ 。

Data Collection

Temperature $-70^{\circ} \mathrm{C}$; scan range -0.55° to $+0.55^{\circ}$; Scan speed $2^{\circ} 2 \theta /$ minute; fixed time 20 seconds; Standards ($\left.\begin{array}{lll}0 & 1 & 7\end{array}\right)$ and $\left(\begin{array}{lll}0 & 6 & 5\end{array}\right)$ both falling to 94% of initial intensity; reflections measured in

```
octants .{hlsl} and {hk\widetilde{I}}, to a maxinium
20=2%.7
total mumber of imdependent structure amplitudes
obtained after data.reduction and collation of
equivalent reflections 5125.
```

The orystal was unfortunately lost in an explosion
which ocourred when the cold sphere was accidentally
allowed to warm up, so it was not possible to
measure the dimensions for absorption corrections.
The cell dimensions are also approximate, as the
accident occurred before they had been accurately
measured.

Structure Solution and Refinement

Formfactors for Ni，P，Cl were corrected for Δf^{9} 。 The Patterson（calculated on 346 terms $>50 \mathrm{e}$ on initial scaling）gave a nickel position of （0．25 0．0089 0．0052）。 After two cycles of refine－ ment of this position（see Table 1），an $F(o b s)$ map was computed，and this produced four peaks of approximately the same height，in a square－planar arrangement around Ni．This was because of its speoial position in the cell $(y=z \sim 0)$ 。 Since it was impossible at this stage to decide．which were genuine，two pealss in a cis configuration were chosen， and structure factors calculated．These were refined as phosphorus atoms（cycles 3 and 4），and at $R=34 \%$ an F（obs）map showed which was a phosphorus and which． a chlorine atom。 The refinement was therefore continued

Cycle Number	Number of terms	Criteria	R Value	Atoms included	Ni		$\underset{\mathrm{Cl}}{\operatorname{trix}} \mathrm{t}^{\mathrm{t}}$	$\text { ype }{ }_{c}$	H(p)	Ni	$\begin{gathered} \text { Vibrat } \\ P \end{gathered}$	$\begin{gathered} \text { tions } \\ \text { CI } \end{gathered}$	c	$\mathrm{H}(\mathrm{p})$	Weighting used
1,2	1026	min.amp. 30	40.5	Ni	b	-	-	-	-	i	-	-	-	-	1
3,4	1026	min.amp. 30	29.0	Ni, "P1,P2"	b	b	-	-	-	i	i	-	-	-	1
5,6	1946	min.amp. 20 min.amp./ deviation 5	6.4	all atoms	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	-	$\stackrel{a}{a}+\frac{1}{b(1)}$	$\stackrel{a}{\operatorname{tb}(1)}$	$\stackrel{a}{t b(1)}$	i	-	1
7,8	1946	min. amp. 20 min.amp./ deviation 5	5.5	all atoms	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	-	$\begin{gathered} a \\ +b(1) \end{gathered}$	$\stackrel{a}{t(1)}$	$\begin{aligned} & a \\ & t b(1) \end{aligned}$	i	-	$\begin{gathered} c_{1}=40 \\ c_{2}=0 \\ (2) \end{gathered}$
9	3243	min.amp./ deviation 10	$0^{7.0}$	all atoms + hydrogens	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	pb (1)		c	$\stackrel{\stackrel{a}{a}}{\text { tb }}$	$\underset{\mathrm{tbd}}{\mathrm{a}}$	$\stackrel{\stackrel{a}{a}}{\text { tb }}$		$\begin{aligned} & i \\ & c \end{aligned}$	2
		Matrix types:	$\begin{aligned} \mathrm{b} & = \\ \mathrm{pb} & = \\ \mathrm{tb} & = \\ \text { tbd\} } & = \\ \mathrm{pbd}\} & = \\ c & = \\ \mathrm{H}(\mathrm{p}) & = \end{aligned}$	full block positional b vibrational block diagon contribution H(propyl)	lock block als only		Final scale Final convergenc			facto		1.07 (cycle 8) . 069 (cycle 8)			

with the correct labelling of atoms, and two
cycles (5 and 6) reduced R to 6.4% on all atoms.
A weighting scheme was now applied with constants
$c_{1}=40$ and $c_{2}=0$, and after cycies 7 and 8
R was 5.5% 。

The $F(d i f f)$ map calculated on these planes showed
the H (propyl) atoms clearly; in order to obtain the best geometry about each carbon, the position of the highest H peak was chosen in each case, and used to calculate the positions of the remaining two:-

The hydrogen on the α-carbon in each propyl group was similarly calculated. In all cases the calculated positions were at, or very near, the observed positions. Structure factors and one cycle of refinement (cycle 9), using the calculated H positions, were computed. This was a more approximate refinement, as block diagonals were used for all atoms except hydrogens, which were added as constant contributions. R was $7 \% 0 \%$ and the corresponding $F(d i f f)$ map showed areas of electron density near some of the carbon and H (propyl) peak positions of height $\sim 0.3 \mathrm{e} / \mathrm{A}^{3}$ 。 Apart from two peaks
of height ~ 1 e/ ${ }^{\circ 3}$ (one near H23 and one in an 'empty part of the cell), the highest peak (peak 1) was near the nickel (height $0.7 \mathrm{e} / \mathrm{A}^{3}$, and $1.37 \AA^{\circ}$ away) at ($0.256-0.085-0.050$) 。 This was
almost trans to the chlorine position (Cl-Ni-Peak = 177°); another peak (peak 2), $\sim 2.56 \AA$ away from the Ni position, also appeared. This was height $0.5 \mathrm{e} / \AA^{3}$, and $1.2 \AA$ away from peak 1 . To ascertain whether these peaks were genuine or spurious, a series of F (diff) maps was calculated, in a similar manner to those computed for $\operatorname{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)$ (dmpe) $)_{2}$. For theee maps the calculated planes at $\mathrm{R}=7.0 \%$ were used, i.e. structure factors were not calculated for each separate set of data. At the lowest resolution (maximum $\sin \theta / \lambda=0.3$) the two peaks 1 and 2 merged together, but at all higher resolutions the nearer of the two remained consistently higher than the farther one, and constant in position:-

Resolution	Height (e/ \AA^{3})		$\underline{\mathrm{Ni}-\mathrm{H}\left({ }^{\mathrm{A}}\right)}$
	Peak 1	Peak 2	
a:ll data	0.66	0.52	1.37
0.6	0.64	0.54	1.37
0.5	0.62	0.48	1.37
0.4	0.52	0.35	1.37
0.3			

Assuming that peak 1 represents the hydride scattering, the derived Ni-H distance is $1.4 \AA$.

The unobserved reflections were caloulated
（those with amplitude＜2Oe，and amplitude：
deviation（5）；all were semsibly small．

Results and Discussion

Final positional and vibrational parameters are listed in the Appendix（Tables 2 and 3）。 The molecular geometry is given in Table 4，and Table 5 lists the agreement analysis at $R=5.5 \%$ 。 A．drawing of one molecule is shown in rigure 2 with the numbering system used，and a stereo drawing of the crystal packing in Figure 3． The structure consists of discrete molecules with． the closest mon－hydrogen contacts C1－C25 3．65； C16－C21 3．63；C22－C28 3．62A．The mickel and coordinated atoms form a nearly regular square plane，the maximum deviation from the plane．． through．Ni，C1，P1，P2：－

$$
15.11 x+2.46 y-5.15 \dot{z}-3.79=0
$$

being 0．01A．The $N i-P$ distances（average 2．193A）， are considerably shorter than in other square planar Ni（II）complexes－see Table 6．Though in other

Ni（II）geometries，e。g． 5 coordinate and octahedral， a wide variety of $N i-P$ bond lengths is observed，in tetrahedral and square planar Ni these are generally in the range $2.25-2.28 \AA^{\circ}$（These are all trans

$\frac{\text { Figure } 2.8 .2}{\mathrm{NiHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}}$
View of one molecule, illustrating the numbering system and the geometry round nickel.

Figure 2.8.1
$\mathrm{NiHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2} \quad$ Crystal

Figure 2.8.3
$\underline{\mathrm{NiHCl}\left(\mathrm{PPr}_{3}^{\mathrm{i}}\right)_{2}}$

Bond distances (\AA) and angles $\left({ }^{\circ}\right.$), with their estimated standard deviations

Around Nickel

$\mathrm{Ni}-\mathrm{P}(1)$	$2.193(2)$	$\mathrm{P}(1)-\mathrm{Ni}-\mathrm{P}(2)$	$163.5(1)$
$\mathrm{Ni}-\mathrm{P}(2)$	$2.192(2)$	$\mathrm{P}(1)-\mathrm{Ni}-\mathrm{Cl}$	$98.3(1)$
$\mathrm{Ni}-\mathrm{Cl}$	$2.207(2)$	$\mathrm{P}(2)-\mathrm{Ni}-\mathrm{Cl}$	$98.2(1)$

Phosphine Groups

P(1)-C(11)	1.86(1)	Ni-P(1)-C(11)	113.7(3)
$P(1)-C(14)$	1.85(1)	Ni-P(1)-C(14)	$110.3(3)$
$P(1)-C(17)$	1.87(1)	Ni-P(1)-C(17)	114.6(3)
$\mathrm{c}(11)-\mathrm{C}(12)$	1.56 (1)	$\mathrm{Ni}-\mathrm{P}(2)-\mathrm{C}(21)$	112.9(3)
c(11)-c(13)	1.54 (1)	Ni-P(2)-C(24)	$110.5(3)$
c(14)-C(15)	1.56(1)	$\mathrm{Ni}-\mathrm{P}(2)-\mathrm{C}(27)$	114.1(3)
C(14)-C(16)	1.56(1)	$C(11)-P(1)-C(14)$	103.3(4)
c(17)-c(18)	1.52(2)	$C(11)-P(1)-C(17)$	110.8(4)
c(17)-C(19)	1.55(1)	$C(14)-P(1)-C(17)$	102.9(4)
P(2)-C(21)	1.86(1)	$C(21)-P(2)-C(24)$	$103.2(4)$
$P(2)-C(24)$	1.86 (1)	$C(21)-P(2)-C(27)$	111.6 (4)
$P(2)-C(27)$	1.85(1)	$C(24)-P(2)-C(27)$	103.6(4)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.54(2)	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	116.1 (6)
$c(21)-c(23)$	1.55 (1)	$\mathrm{P}(1)-C(11)-C(13)$	112.1(7)
C(24)-C(25)	1.53(1)	C(12)-C(11)-C(13)	$111.4(8)$
C(24)-C(26)	1.56 (1)	$P(1)-C(14)-C(15)$	109.5(7)
$\mathrm{c}(27)-\mathrm{C}(28)$	$1.57(1)$	$P(1)-C(14)-C(16)$	$111.8(6)$
c(27)-C(29)	1.58(1)	C(15)-C(14)-C(16)	108:4(8)
	1.58 (1)	$\mathrm{P}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$110.9(7)$
		$P(1)-C(17)-C(19)$	117.6 (7)
		$C(18)-C(17)-C(19)$	110.6(8)
		$P(2)-C(21)-C(22)$	110.6(8)
		$P(2)-C(21)-C(23)$	116.4 (7)
		$C(22)-C(21)-C(23)$	113.0 (9)
		$P(2)-C(24)-C(25)$	111.5(6)
		$P(2)-C(24)-C(26)$	109.5(6)
		$C(25)-C(24)-C(26)$	109.3(8)
		$P(2)-C(27)-C(28)$	112.1(6)
		$P(2)-C(27)-C(29)$	116.7(7)
		$C(28)-C(27)-C(29)$	108.5(8)

complexeso) Values ranging from 1.10 to $1.26 \AA$ have been suggested ${ }^{155}$ as $\mathrm{Ni}(I I)$ radii. However, if $2.28 \AA$ is assumed to represent a pure $\mathrm{Ni}-\mathrm{P}$ sigma bond length, then a covalent radius of $1.18 \AA$ is derived. In trans $-\mathrm{Ni}(\mathrm{C} \equiv \mathrm{C} . \operatorname{Ph})_{2}\left(\operatorname{PEt}_{3}\right)_{2}$, a complex with P cis to $\mathrm{C}(\sigma) ; \mathrm{Ni}-\mathrm{P}$ is $2.17^{\circ} \mathrm{A}$, and this is analogous to the present case, in which P is cis to hydride。 Both H and $C(\sigma)$ are known to exert strong static trans weakening effects (see later), and it appears that they may also have considerable cis strengthening effectso This will also be discussed later.

The Ni-C1 bond, 2.207 , is longer than the radius $\operatorname{sum}(2.18 \AA)$, and, like other platinum group hydrides, is longer than in the corresponding trans dihalide。. (See Table 7) It is compared to other square planar $N i(I I)$ halides in Table 8. Many hydride complexes of square planar or octahedral symmetry show this effect but it is not generally observed for other geometries, perhaps because of the strongly directional nature of such bond-weakening effects.

The two phosphine groups are related by a pseudocentre of symmetry (see Figure 2), indicating that replacement of C 1 by H has very little effect on the ligand geometries. $\left(\mathrm{NiCl}_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right.$ is centrosymmetrio.)

TABLE 2.8.6

Ni-P Distances in square planar complexes

!	Ni-P	Reference
$\operatorname{tr}-\mathrm{NiHCl}\left(\mathrm{PPr}_{3}^{i}\right)_{2}$	2.19	
tr-NiCl ${ }_{2}\left(\mathrm{PPr}_{3}\right)_{2}{ }_{\text {i }}$	2.28	a
$\operatorname{tr}-\mathrm{Ni}(\mathrm{SCN})_{2}\left(\mathrm{PPr}_{3}^{1}\right)_{2}$	2.27	a
$\operatorname{tr}-\mathrm{NiCl}_{2}\left(\mathrm{P}\left(\mathrm{C}_{10} \mathrm{H}_{21}\right)_{3}\right)_{2}$	2.27	b
tr-NiBr $2\left(\mathrm{PEt}_{3}\right)_{2}$	2.28	c
$\mathrm{tr}-\mathrm{Ni}(\mathrm{CECD})_{2}\left(\mathrm{PEt}_{3}\right)_{2}$	2.17	d
$\operatorname{tr}-\mathrm{Ni}\left(\mathrm{Se} \cdot \mathrm{O}-\mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right)_{2}$	2.17	e
$\mathrm{tr}-\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right)_{2}$	2.26	f
$\operatorname{tr}-\mathrm{NiBr}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	2.25	g
$\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	2.18	- h

a. MC Hall, B T Kilbourn \& R H B Mais, unpublished data
b. P L Bellon et al., Ric.Sci., 1963, 33, 1213
c. V Scatturin \& A Turco, J.Inorg.Nucl.Chem., 1958, 8, 447
d. GR Davies, R H B Mais \& P G Owston, JCS(A), 1967, 1750
e. R Curran, J A Cunningham \& R Eisenberg, Inorg. Chem., 1970, 9, 2749
f. B T Kilbourn \& H M Powe11, JCS(A), 1970, 1688
g. D W Meek et al., JACS, 1969, 91, 4920
h. C•D Cook et al., Chem.Comm., 1967, 426

TABLE 2.8.7

Comparison of trans dihalides with trans hydride halides

	M-X	Reference
$\operatorname{tr}-\mathrm{NiHCl}\left(\mathrm{PPr}_{3}^{i}\right)_{2}$	2.21	
$\operatorname{tr}-\mathrm{NiCl}_{2}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	2.16	a
$\operatorname{tr}-\mathrm{PdHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	2.39	b
$\operatorname{tr}-\mathrm{PdCl}_{2}\left(\mathrm{DMSO}_{2}\right.$	2.29	c
$\operatorname{tr}-\mathrm{PtHBr}\left(\mathrm{PEt}_{3}\right)_{2}$	2.56	d
$\operatorname{tr}-\mathrm{PtBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}$	2.43	e

TABLE 2.8.8

Ni-Cl Distances in square planar complexes

	Ni-Cl	Reference
$\operatorname{tr}-\mathrm{NiHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	2.21	
$\operatorname{tr}^{\mathrm{NiCl}}{ }_{2}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	2.16	
$\operatorname{tr}-\mathrm{NiCl}_{2}\left(\mathrm{P}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{11}\right)_{3}\right)_{2}$	2.18	a
		f.

a. MC Hall, B T Kilbourn \& R H B Mais, unpublished data
b. See Chapter 2.9
c. M J Bennett et al., Acta.Cryst., 1967, 23, 788
d. P G Owston, J M Partridge \& J M Rowe, Acta.Cryst., 1960, 13, 246
e. G G Messmer \& E L Amma, Inorg. Chem., 1966, 5, 1755
f. PL Bellon et al., Ric.Sci., 1963, 33, 1213

```
Within each PPry group, the distances appear
normal., with an average P-C bond of 1.86A, and
C-C bonds of 1.o52 to 1.58A. These values are
all slightly longer than in the other two niclsel
isopropyl phosphine complexes (P-C a.1. 1.85\AA,
C-C average 1.52A. in NiC12 (PPre
1.83A, C-C average 1.52& in Ni(SCN)
```

The Ni-H distance of $1.4 \AA$ is among the shortest
observed using X-rays; it is consistent with the
radius $\operatorname{sum}(1.18+0.26 \mathrm{~A}) \%$ This is the first
reported platinum group $M-H$ bond 1 ength, and
its significance will be discussed further in
Chapter 2.10.
The ois and trans effects of the hydridic hydiogen
157
The trans influence has been defined as the static
weakening effect of one ligand on the bond trans to
it, as distinct from the trans effect which is
principally a factor in influencing the rates of
substitution reactions, mainly of $\mathrm{Pt}(\mathrm{II})$ complexes.
Various theories have been advanced to explain the
order of ligands in a trans-(effect or influence-)
series; (the order is very similar for both series).

1. the electrostatic polarisation theory, ${ }^{158}$
2. the π-bonding theory, ${ }^{159 ; 160}$
161,162
3. the σ-bonding theory。
```
Mhere i.s genexal agreement nowadays that the
main factor is the degree of sigma bond strength.
of the labilizing bond, since it is otherwise
impossible to explain why H- and Me }\mp@subsup{\textrm{H}}{}{-}\mathrm{ have.such
Iarge trans influences (see eog. Table %), which
i.lustrates that a trans influence is generally
reflected in bond distanceso An alternative
view would be that static trans influences are
recognised by their efrects on bond length.s.
Following from calculations on ligand-metal p
orbital overlap integrals, (Gray and Langford, }\mp@subsup{}{}{163
and extended by Mason) it has been shown that
the degree of p orbital overlap in the M-L bond
is directly correlated with the trans influence
of L。
It is thought that good \pi-acceptor ligands, e.g. CO,
CN, which exert a large trans influence, do so
mainly because of a higgh \sigma-trans influence which is
actually reduced by their \pi-trans influence, and
that ligands such as ethylene have no static trans
influence, their trans effects operating entirely
through stabilisation of a transition state。
In the case of nickel the overlap integral for
Ni(4p\sigma) with H(1.s) was shown to be 0.56, higher
than for any other Ni-L(sp hybrid) bond. While the
H(ls) orbital also has good overlap with Pd and Pt
p orbitals, the integral is lower than for Ni; this
```

may be a factor contributing to the stability of the Ni-H bond in NiHCl (PPr3 $)_{2}$ This seems intuitively reasonable, in view of the polapisability of the hydrogen atom, and the small, compact nature of its ls orbital, which can form a very strong, highly directed sigma $M-H$ bond.

According to Syrlkin, the trans influence of a 1.igand L is due, not to favourable p orbital overlap, but to an increase in the s character of the bond $M-L$ i.e. there is a re-hybridisation of the metal orbitals to give a predominantly sd orbital for this bond。 This results in the trans bond having more p charactex, and in a simultaneous strengthening of the cis bond, which can also use an orbital of greater sd character. This suggestion that a large trans weakening influence i.s accompanied by a cis strengthening influence, is supported by the bond lengths in NiHCI (PPri$)_{2}{ }^{i}$ (Cis weakening effects are less easy to explain, except on a straightforward polarisation theory. The effects of trans directing properties can be measured using physical properties such as IR force constants and NMR coupling constants and shifts, which are sensitive to trans ligands, but cis influences, being usually smaller, are more difficult to detecto one property which has recently been shown to be affected by cis ligands is the ${ }^{35} \mathrm{C} 1$ NQR frequencyo Recent
studies by Fryer on $\mathrm{Ni}(I I)$, $\mathrm{Pd}(I I)$, and Pt(II) complexes only considered ligands cis to chlorineso P was shown to have a very smal. effect and therefore in NiHCl $\left(\operatorname{PPr}_{3}\right)_{2}$ the trans effect of hydride is more important than the.cis effect of P_{0})

In the present complex. the ois bonds are each. shortened by $0.087 A$ whereas the trans bond i.s only lengthened by $0.027^{\circ} A$, so that the cis strengthening is the more important result of replacing chloride by hydride since one would expect a cis weakening by hydride, Syrlsin rehybridisation is presumed to be the factor that reverses this lengthening effecto However, this cannot account for the entire shortening observed, as one would still expect the cis influence to be less noticeable than the trans influence。 In this case the most likely reason for the additional shortening of Ni-P is the possibility of \mathbb{T}-bonding into $P(d)$ orbitals. In this way the excess charge concentrated on Ni by the hydrogen can be dissipated by back bonding rather than remaining on the Ni atom and thus enhancing the polarity of the cis bond, as is the case with Fryeris complexes. Summarising, in the present complex, the hydridic hydrogen probably forms a very strong, highly concentrated bond to niclee1, which wealsens the trans Ni-Cl. bond, and also the ois Ni-P bonds. The
resultant concentration of electron density on the nickel atom is dispersed by back bonding into the phosphorus d orbitals，which shortens the $N i-P$ bonds．The cis effect of hydride appears to be larger than the trans influence， and is in fact quite significanto

The Stability of NiHCl $\left(\operatorname{PPr}_{3}^{i}\right)_{2}$

In the absence of structural information the stability of the $N i-H$ bond was assumed to be partly steric，as PPri is a very bulky ligand， which could hinder rearrangement of the square plamex complex to a tetrahedral configuration， and also hinder attack of reagents along the z axis，by folding in around the Ni－H region． NiHCI（P。oyolohexy $\left.1_{3}\right)_{2}$ is also stable，for the same reason：${ }^{150} \mathrm{NiHCl}^{15}\left(\mathrm{PPr}_{3}\right)_{2}$ is unstable；molecular
models show that this can just exist in the tetrahedral form，whereas the isopropyl complex． cannot。 NiHCl（PEt $\left.{ }_{3}\right)_{2}$ can easily exist in a tetra－ hedral form。 These are undoubtedly important contributing factors，but the structure analysis reveals that the hydride ligand has a very pronounced effect on the electron density round the nickel atom，and hence on the ligand orbitals， so that this is seen to be a factor contributing to the stability of this complex。

Trans-Ni(Me) $\mathrm{Cl}\left(\mathrm{PPr}_{3}^{\mathrm{i}_{2}}\right)_{2}$

From photographs of an a axis mounted crystal:-

$$
\begin{array}{ll}
\mathrm{a}=8.7 & \AA \\
\mathrm{~A} & =8.3 \\
\mathrm{o} \\
\mathrm{~A} \\
\mathrm{c}=15.2 & \AA
\end{array} \quad \alpha^{*} \approx 108^{\circ} .
$$

Further photography indicated the occurrence of a

```
monoclinic modification (twinned?) whose c axis,
only, was consistent with that of the triclinic
crystals:-
    a. = 5.6 \AA
    b}=13.2\stackrel{\circ}{A}\quad\mp@subsup{\beta}{}{*}\approx10\mp@subsup{6}{}{\circ}
    c = 15.2 \AA
```

No more pictures could be obtained from the sample, so it was decided to wait until a better sample could be prepared, to resolve this ambiguity.

CHAPTER 2.9

THE CRYSTAL AND MOLECULAR STRUCTURE OF

$$
\underline{\text { TRANS -PdHCI }\left(\operatorname{PPr}_{3}^{i}\right)_{2}}
$$

Palladium is involved in several industrially important catalytic reactions but there is less structural information about its complexes than about either nickel or platinum complexes。 This has probably arisen because the palladium and platimum analogues tend to behave similarly, and are expeoted to be isostruotural in many cases. However, palladium is relatively less likely to obscure the observation of very small electron densities such as hydride ligands. The crystal structure of the stable hydride $\operatorname{PdHCl}\left(\operatorname{PPr}_{3}^{\mathrm{i}}\right)_{2}$ was studied for this reason. It was hoped to locate the hydridic hydrogen in order to provide more evidence on the length of an $M-H$ bond, and particularly to confirm whether the short $N i-H$ bond is part of a general trend to contraction at the end of the transition series.

Furthermore, the structural influence of the hydride ligand on stereochemistry and on neighbouring metal-ligand bonds, could be observed and compared. with nickel and platinum structures.

Preparation

PdHCl $\left(\operatorname{PPr}_{3}^{i}\right)_{2}$ cannot be prepared in the same way as NiHC1 $\left(\operatorname{PPr}_{3}\right)_{2} ;$ it has to be reached via the cyclohexyl

```
phosphine derivative, and purified by a cyclic
    165
procedure: -
```


(ii) $\operatorname{PPr}_{3}^{i}$

$$
C y=C y c l o h e x y l
$$

The colourless crystals were prepared by H Munakata
in Oxford, as large hexagonal prisms, almost perfectly shaped. These were fairly stable under nitrogen, but were mildly photosensitive. The crystal used is shown in Figure 1.

Crystal Data

$\mathrm{C}_{18} \mathrm{H}_{43} \mathrm{PdP}_{2} \mathrm{C1}, \underline{\mathrm{M}}=463.0 ;$ monoclinic, $\underline{a}=16.335 \pm 0.007$,
$\underline{b}=8.944 \pm 0.004, \underline{c}=16.343 \pm 0.011 \AA, \beta=93.41 \pm 0.05^{\circ} ;$
$\underline{U}=2383.5 \AA^{3}, \underline{D_{m}}=1.29$ (flotation), $\underline{Z}=4, \underline{D_{C}}=1.30$,
$\mathrm{F}(000)=976 ;$
Space Group $\underline{\underline{p}} 2_{1 / \mathrm{c}}$, $\left(\mathrm{C}_{2 \mathrm{~h}}^{5}\right.$; no.14), Mo-K α radiation
(Nb filter) $, \lambda=0.71070 \stackrel{\circ}{\mathrm{~A}}, \mu=10.13 \mathrm{~cm}^{-1}$

Figure 2.9.1
$\operatorname{PdHCl}\left(\operatorname{PPr}_{3}^{\mathrm{i}}\right)_{2}$ Crystal
The Equations of the Bounding Surfaces

.	1	m	n	p	(hkl)
1	-.6415	.5795	-.5026	123.56	$\overline{1} 00$
2	.5887	-.6171	.5221	122.92	100
3	-.5807	-.7486	-.3201	201.00	$00 \overline{1}$
4	-.7539	-.2386	.6122	222.65	$0 \overline{1} \overline{1}$
5	-.1783	.4359	.8821	225.35	$0 \overline{1} 1$
6	.5531	.7927	.2563	199.17	001
7	.5758	.3937	-.7166	214.73	011
8	.0962	-.3398	-.9356	218.89	$01 \overline{1}$

Data Collection

Temperature -70°; scan range -0.5° to $+0.5^{\circ}$;
Scan speed $2^{\circ} 2 \theta /$ minute; fixed time 10 seconds;
Standards ($00 \overline{1} \overline{2}$), ($\overline{10} 000$) and (060) falling
to $78 \%, 94 \%$ and 95% of initial intensity;
reflections measured in octants \{hk $\overline{1}\}$ and $\{\bar{h}] \bar{I}\}$,
to a maximum $2 \theta=27^{\circ}$; cell dimensions from 5
reflections (20 measurements) giving angles
$\alpha=89.99(4)^{\circ}, \gamma=90.06(4)^{\circ}$; total number of independent structure amplitudes obtained after data reduction and collation of equivalent reflections 4325.

Solution and Refinement of Structure

Preliminary photography had indicated that $\operatorname{PdHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$ would be isostructural with the nickel analogue, and so the final parameters for the nickel hydride were input and refined; $P d, C 1, P$ were corrected for Δf^{\prime}, and were given anisotropic Uijs, while the carbon atoms were given isotropic U values. Hydrogen atoms were not included.

Cycles 1-3 (see Table 1) reduced R to 8.8%, at which point an improved weighting scheme was introduced. The final refinement (Cycles 4,5) used the 1936 terms with observed amplitude >35 and ratio of amplitude to deviation >8, so that the number of planes refined was
TABLE 2.9.1

Cycle Number	Number of terms	Criteria	R Value	Atoms included		P^{Ma}	$\underset{\mathrm{Cl}}{\mathrm{trix}} \mathrm{t}^{\mathrm{t}}$	${ }_{\mathrm{C}}^{\mathrm{ype}}$	H(p)	Pd	$\begin{gathered} \text { Vibra } \\ P \end{gathered}$	$\begin{gathered} \text { tions } \\ \text { Cl } \end{gathered}$	c	$\begin{gathered} \text { Weighting } \\ H(p) \quad \text { used } \end{gathered}$	
1	2332	$\begin{gathered} \min . a m p .30 \\ \text { min.amp./ } \\ \text { deviation } 5 \\ \hline \end{gathered}$	21.7	all atoms	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	-	$\begin{gathered} a \\ t b(1) \end{gathered}$	$\stackrel{a}{\operatorname{tb}(1)}$	$\begin{gathered} a \\ \operatorname{tb}(1) \end{gathered}$	i	-	1
2,3	1576	$\begin{gathered} \min \cdot a m p .40 \\ \min . a m p . / \\ \text { deviation } 8 \end{gathered}$	8.8	all atoms	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	-	$\begin{gathered} a \\ \operatorname{tb}(1) \end{gathered}$	$\begin{gathered} a \\ \operatorname{tb}(1) \end{gathered}$	$\begin{gathered} a \\ \operatorname{tb}(1) \end{gathered}$	i	-	1
4,5	1936	min.amp. 35 min.amp./ deviation 8	6.1	all atoms		$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	$\begin{aligned} & b(1) \\ & b(2) \end{aligned}$	-	$\stackrel{a}{\mathrm{a}(1)}$	$\stackrel{a}{\mathrm{tb}(1)}$	$\stackrel{a}{a}(1)$	i	-	$\begin{gathered} c_{1}=90 \\ c_{2}=0 \\ (2) \end{gathered}$
6	4025	$\begin{aligned} & \text { min.amp./ } \\ & \text { deviation } 10 \end{aligned}$	7.9	all atoms + hydrogens	$\mathrm{pb}(1)$	$\mathrm{pb}(1)$	pb (1)		c	$\underset{\mathrm{tbd}}{\mathrm{a}}$	$\underset{\text { tb }}{\mathrm{a}}$	$\underset{t b \mathrm{a}}{\mathrm{a}}$	i	i	2

comparable for the palladium and nickel complexes.
This refinement proceeded smoothly to convexgence at $R=6.1 \%$, when an $T(d i f f)$ map was computed. Thero was considerable residual electron density round the metal, but al. the H(propyl) atoms could be seen. The programme $H C O O R D$ was again used to check the positions, and these wene then included, as constant contributions, in a final cyole. This was based on 4025 terms $>100^{\circ}$, and used the same blocle diagonal approximation as had been used for NiHCl $\left(\mathrm{PPr}_{3}\right)_{2}$. The conresponding $F(d i f f)$ map again showed evidence of unaccounted-for anisotropy around Pd (maximum peak height 1.5e), and. so it was not possible to locate the hydridic hydrogen. A small peak was visibleg $1.88 \AA$ from Pd and almost trans to chlorine, but it was surrounded by residual density. As with the Ni structure a meutrion study would be very worthwhile. Unobserved reflections were calculated; none were greater than 1. $3 x$ the minimum observed.

Results and Discussion

Final positional and vibrational parameters are listed in the Appendix in Tables 2 and 3; the molecular geometry is shown in Table 4. The agneement analysis at $R=6.1 \%$ is Iisted in Table 5. The molecule, which has an almost identical. shape to NiHCl (PPri $\left.{ }_{3}\right)_{2}$, is shown in Figure 2. The packing of molecules is also

$\frac{\text { Figure } 2.9 .2}{\operatorname{PdHCl}\left(\operatorname{Pr}_{3}^{i}\right)_{2}}$
View of one molecule, illustrating the numbering system
and the geometry round palladium.

Table 2.9.4

Bond distances (\AA) and angles (${ }^{\circ}$), with their estimated standard deviations

Around Palladium

$\mathrm{Pd}-\mathrm{P}(1)$	$2.299(3)$	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$	$167.4(1)$
$\mathrm{Pd}-\mathrm{P}(2)$	$2.312(3)$	$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{Cl}$	$95.9(1)$
$\mathrm{Pd}-\mathrm{Cl}$	$2.390(4)$	$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{Cl}$	$96.7(1)$

Phosphine Groups

$P(1)-C(11)$	$1.87(2)$	$P d-P(1)-C(11)$	$112.7(5)$
$P(1)-C(14)$	$1.84(2)$	$P d-P(1)-C(14)$	$111.1(6)$
$P(1)-C(17)$	$1.85(2)$	$P d-P(1)-C(17)$	$112.6(5)$
$C(11)-C(12)$	$1.55(2)$	$P d-P(2)-C(21)$	$111.4(5)$
$C(11)-C(13)$	$1.53(2)$	$P d-P(2)-C(24)$	$110.4(4)$
$C(14)-C(15)$	$1.59(3)$	$P d-P(2)-C(27)$	$113.4(5)$
$C(14)-C(16)$	$1.55(3)$	$C(11)-P(1)-C(14)$	$103.9(7)$
$C(17)-C(18)$	$1.56(3)$	$C(11)-P(1)-C(17)$	$112.0(7)$
$C(17)-C(19)$	$1.59(3)$	$C(14)-P(1)-C(17)$	$103.8(7)$
$P(2)-C(21)$	$1.85(2)$	$C(21)-P(2)-C(24)$	$104.4(7)$
$P(2)-C(24)$	$1.89(1)$	$C(21)-P(2)-C(27)$	$112.7(7)$
$P(2)-C(27)$	$1.85(1)$	$C(24)-P(2)-C(27)$	$103.9(6)$
$C(21)-C(22)$	$1.57(3)$	$P(1)-C(11)-C(12)$	$116.2(11)$
$C(21)-C(23)$	$1.54(3)$	$P(1)-C(11)-C(13)$	$113.3(12)$
$C(24)-C(25)$	$1.52(2)$	$C(12)-C(11)-C(13)$	$110.1(14)$
$C(24)-C(26)$	$1.55(2)$	$P(1)-C(14)-C(15)$	$110.0(13)$
$C(27)-C(28)$	$1.56(2)$	$P(1)-C(14)-C(16)$	$110.7(12)$
$C(27)-C(29)$	$1.59(2)$	$C(15)-.C(14)-C(16)$	$108.0(16)$
		$P(1)-C(17)-C(18)$	$111.6(12)$
		$P(1)-C(17)-C(19)$	$115.9(13)$
		$C(18)-C(17)-C(19)$	$111.5(16)$
		$P(2)-C(21)-C(22)$	$109.5(12)$
		$P(2)-C(21)-C(23)$	$116.8(11)$
		$P(22)-C(21)-C(23)$	$111.1(15)$
		$P(2)-C(24)-C(25)$	$112.3(10)$
		$P(25)-C(24)-C(26)$	$108.4(9)$
		$C(28)-C(27)-C(28)$	$113.1(12)$
			$114.0(10)$

very similar and is not given as a separate drawing。

The complex is isostructural with NiHCI $\left(\operatorname{PPr}_{3}\right)_{2}$ ， consisting of well－separated molecules．No intex－ molecular contacts are less than $30.5 \AA$ ，except some involving hydrogens．The best plane through $P d, P$ ， Cl atoms is：－

$$
15.10 x+2.52 y-5.09 z-3.77=0
$$

and Pd lies only $0.009 \AA^{\circ}$ from this plane．The structure may be compared chiefly with the similar PdHCl（PEt $)_{2}^{160}$ and the analogous Ni and Pt hydrides $\left(\mathrm{NiHCl}\left(\mathrm{PPr}_{3} \mathrm{~N}_{3}^{\mathrm{i}}\right)_{2}\right.$ ， $\left.\operatorname{PtHBr}\left(\text { PEt }_{3}\right)_{2}^{167}, \operatorname{PtHCl}\left(\text { PEt。Ph }{ }_{2}\right)_{2}^{168}\right)$ ；also with analagous $\mathrm{Pd}-\mathrm{C}(\sigma)$ complexes（PdBr（pyridine）${ }_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{OMe}\right)^{169}$ and $\operatorname{PdCl}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}\right)\left(\right.$ PEt $\left._{3}\right) 2^{170}$ 。

Pt－and Pd－P distances tend to be very similar，and these bonds are always shorter than the theoretical radius sum ${ }^{138}(2.42 \mathrm{~A})$ ．In the present case，$P d-P=2.30 \AA$ ， and so the shortening is not exceptional（see Table 6）。 This length is identical to that in PdHCl（PEt $\left.{ }_{3}\right)_{2}$ ，and， by analogy with the nickel hydride，this may be attributed to a cis strengthening effect of hydride。 However，in the two Pt hydrides the same effect is observed to a significantly greater extent（2026A．in PtHBr（PEt $\left.{ }_{3}\right)_{2}$ ， 2.27 A in $\left.\operatorname{PtHCl}\left(\mathrm{PEtPl}_{2}\right)_{2}{ }^{\circ}\right)$

Pt－and Pd－Cl distances are usually in the range 2.30 to $2.38 \AA^{\circ}$（radius sum $2.30 \AA$ ），and so the $P d-C 1$ bond of

TABLE 2.9.6

Pd-P Distances

	Pd-P	Reference
i		
$\mathrm{tr}-\mathrm{PdHCl}\left(\mathrm{PPr}_{3}\right)_{2}$	2.30	
tr-PdHCl $\left.\mathrm{PEt}_{3}\right)_{2}$	2.31	a
$t r-\mathrm{PdCl}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}$	2.30-2.32	b
cis $-\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{NEt} \cdot \mathrm{PPh}_{2}\right)$	2.22	c
cis- Pd (NCS) (SCN) (dppe)	2.26, 2.25	d
cis- $\mathrm{Pd}(\mathrm{NCS})(\mathrm{SCN})\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \cdot \mathrm{NMe}_{2}\right)$	2.24	e
$\mathrm{Pd}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{SnCl}_{3}\right)\left(\mathrm{PPh}_{3}\right)$	2.32	f
$\mathrm{PdCl}\left(\mathrm{Me}-\mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)$	2.31	g
$\mathrm{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	2.32, 2.42	h
tr-PdI ${ }_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	2.34	i

a. H M M Shearer, personal communication
b. D L Weaver, Inorg. Chem., 1970, 9, 2250
c. D S Payne, J A A Mokuolu \& J C Speakman, Chem.Comm., 1965, 599
d. G Beran \& G J Palenik, JCS(D), 1970, 1354
e. G R Clark, G J Palenik \& D W Meek, JACS, 1970, 92, 1077
f. R Mason et al., Chem.Comm., 1968, 1655
g. R Mason \& D R Russell, Chem.Comm., 1966, 26
h. T Kashiwagi et al., Bull.Chem.Soc.(Japan), 1968, 4l, 296
i. N A Bailey et al., Chem. Comm., 1965, 237

TABLE 2.9.7

$\mathrm{Pd}-\mathrm{Cl}$ Distances in square planar complexes

	$\underline{\mathrm{Pd}-\mathrm{Cl}}$	Reference
$\operatorname{tr}-\operatorname{PdHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	2.39	
tr-PdHCl $\left.\mathrm{PEt}_{3}\right)_{2}$	2.43	a
$\operatorname{tr}-\mathrm{PdCl}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}$	2.38	b
tr- $\mathrm{PdCl}_{2}(\mathrm{DMSO})_{2}$	2.29	c
$\operatorname{tr}-\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NOH}\right)_{2}$	2.24	d
cis $-\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{NEt} . \mathrm{PPh}_{2}\right)$	2.37	e
cis- PdCl_{2} (norbornadiene)	2.31	f
PdCl_{2} (benzonitrile) 2	2.32	g
$\mathrm{PdCl}\left(\pi-\mathrm{CH}_{3} \mathrm{C}_{3} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)$	2.38	h
$\mathrm{PdCl}_{4}{ }^{2-}$	2.30	i

a. H M M Shearer, personal communication
b. D L Weaver, Inorg.Chem., 1970, 9, 2250
c. M J Bennett et al., Acta.Cryst., 1967, 23, 788
d. M Tanimura, T Mizushima \& Y Kinoshita, Bull.C.S.Japan, 1967, 40, 2777
e. D S Payne, J A A Mokuolu \& J C Speakman, Chem.Comm., 1965, 599
f. N C. Baenziger, J R Doyle \& C Carpenter, Acta.Cryst., 1961, 14, 303
g. W L Duax, Diss.Abs., 1968, 28, 3239-B
h. R Mason \& D R Russell, Chem.Comm., 1966, 26
i. R H B Mais, P G Owston \& A M Wood, unpublished data

2．39A in the present complex is not lengthened so much as in the comparable $P d$ and $P t$ complexes $\left(2.43 \AA^{\circ}\right.$ in PdHC1（PEt $)_{2}, 2.42 \AA$ in PtHC1 $\left(\text { PEtPh }_{2}\right)_{2}$ ）。 This suggests that the trans weakening influence is not so strong in $\operatorname{PdHCl}\left(\operatorname{PPr}_{3}\right)_{2}$ ，and this fits in well with an order of increasing trans and cis effects of hydride in this series；it may also provide some insight into the effectiveness of palladium complexes as catalysts． Platinum hydrides are generally very stable，whereas nickel hydrides are often unstable．It appears that palladium complexes may lie in the middle range of reactivity and the particular balance between the strengths of the different bonds could be favourable for catalytic activity。

	$\underline{M-P}$	$\frac{\text { Radius }}{\text { Sum }}$	\triangle	M－C1	$\frac{\text { Radius }}{\text { Sum }}$	Δ
$\operatorname{NiHC} 1\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	2.19	2.28	－0．09	2.21	2.18	＋0．03
$\operatorname{PdHC1}\left(\operatorname{PPr}_{3}^{\mathrm{i}}\right)_{2}$	2.30	2.42	－0．12	2.39	2.30	＋0．09
$\operatorname{PtHC1}\left(\mathrm{PEtPh}_{2}\right)_{2}$	2.27	2.42	-0.15	2.42	2.30	＋0．12

Similar trans effects are noted in Pd－C（ σ ）complexes， e．g．Pd－C1 2．38A in PdCl $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}, \operatorname{Pd}-\mathrm{Br} 2.58 \AA$ in $\operatorname{PdBr}(\text { Pyridine })_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{OMe}\right) ;$ Pd－halide distances are listed in Table 7 。

The angles at the metal are distorted from 90° and 180° ，as is always observed with transition metal hydrides．The size of the distortion is，as expected， in proportion to the size of the central atom，and is greatest for the smallest metal．

	$\underline{\mathrm{P}-\mathrm{M}-\mathrm{P}}$	P－M－X
$\operatorname{NiHC1}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	$163{ }^{\circ}$	98， $98{ }^{\circ}$
$\operatorname{PdHC} 1\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	168	96， 97
PdHCl $\left(\mathrm{PEt}_{3}\right)_{2}$	169	95， 95
$\mathrm{PtHCl}(\mathrm{PEtPh})_{2}$	171	93， 95
$\operatorname{PtHBr}\left(\mathrm{PEt}_{3}\right)_{2}$	172	94， 94

However，the slight increase in distortion in $P-M-P$ from Pt to Pd is unexpected，since the sizes of these two metals are almost the same。（cfo in the ruthenium and osmium naphthyl complexes the angles are nearly identical．） This again suggests that apparently similar palladium and platinum complexes may show slight structural differences which are just large enough to influence catalytic behaviour。

The configurations of the two phosphine groups are very close to those in the nickel analogue。 Again，there is very nearly a centre of symmetry．Within each group the geometries are unexceptional：the average $P-C$ bond $(1.865 \mathrm{~A})$ ，is 1 onger than in $\operatorname{PdHC} 1\left(\operatorname{PEt}_{3}\right)_{2}(1.844 \stackrel{\circ}{\mathrm{~A}})$ ，as is
the average C-C of $1.55 \AA$ compared with 1.50°. The values are similar to those in NiHCI (PPr $\left.{ }_{3}\right)_{2}$,

The hydridic hydrogen was not obsenved, and in view
of the residuial density round $P d$, no attempt was
made to locate the hydrogen by successive $F(d i f f)$
maps. It is assumed to lie about 1. 7 A from the
metal, in the vacant site trans to ch1orine。

CHAPTER 2.10

SUMMARY OT RESULTS ON HYDRTDE COMPLEXES:
 COMPARISON WITH OTHER WORK

Within the Last few years there has been a
proliferation in crystallographic studies on
transition metal hydrides. The complexes studied for this thesis illustrate some of the problems encountered in obtaining accurate results. The known crystal structures are listed in Table 1, and these show that in almost all cases the hydridic hydrogen occupies a normal coordination position. The only reported exceptions to this generalisation are $\operatorname{RhH}\left(\mathrm{PPh}_{3}\right)_{4}($ and its mixed arsine analogue), in which the hydrogen appears to be mobile, and $\operatorname{CoH}\left(\mathrm{PF}_{3}\right)_{4}^{171}$ There are some gaps in the coverage of eaclu transition series, and, in particular a general soarcity of data on first row complexes. This is because, although there is a greater chance of locating the hydrogen, first row hydride complexes are less stable than their heavier analogues.

The hydrogen atom is very small and so a distortion is often obsexved in the surrounding angles; leading to a reduction in crowding in other parts of the molecule, for example:-

All known M-H distances are consistent with covalent radius sums (assuming $0.26-0.3 \AA$ as the covalent radius of H^{-}), if one bears in mind the very wide variation in covalent radii assigned to transition metals. An 'average' radius, derived from $M-M$ distances in metalmetal bonded compounds, is $1.1-1.3 \AA$, and this leads to prediction of a 'normal' M-H distance of 1.4-1.7 ${ }^{\circ}$; this range does indeed cover all reported distances. Spectral information for diatomic hydrides also predicts distances in this range。

There has been much controversy over the question of whether a hydride ligand is buried in the electron cloud of the metal atom, because of some early calculations and claims of very short distances. ${ }^{51 a, 646,173}$ The argument over $\mathrm{MnH}(\mathrm{CO})_{5}$, in particular, has only recently been resolved by accurate X-ray and neutron analyses, which

Table 2.10.1

Transition Metal Complex Hydride Structure Determinations

Complex

```
Cr(B33H8})(\textrm{CO}\mp@subsup{)}{4}{-
Cr2
MO
MoH
WH(CO)
```

$\mathrm{MnH}(\mathrm{CO})_{5}$
$\mathrm{Mn}_{2} \mathrm{H}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{2}\right)$
$\mathrm{Mn}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mathrm{BH}_{3}\right)_{2}$
$\mathrm{MnHRe}_{2}(\mathrm{CO})_{14}$
$\mathrm{ReH}_{9}{ }^{2-}$
$\mathrm{ReH}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ (dppe)
$\mathrm{Re}_{3} \mathrm{H}(\mathrm{CO})_{12}{ }^{2-}$
$\mathrm{Re}_{3} \mathrm{H}_{2}(\mathrm{CO})_{12}{ }^{-}$
$\operatorname{Re}_{4} \mathrm{H}_{6}(\mathrm{CO})_{12}{ }^{2-}$
cis- $\mathrm{FeH}_{2}\left(\mathrm{PPh}(\mathrm{OEt})_{2}\right)_{4}$
$\mathrm{FeH}\left(\mathrm{SiCl}_{3}\right)_{2}(\pi \mathrm{Cp})(\mathrm{CO})$
$\mathrm{Fe}_{3} \mathrm{H}(\mathrm{CO})_{11}$
$\mathrm{FeRu}_{3} \mathrm{H}_{2}(\mathrm{CO})_{13}$
$\mathrm{RuHCl}\left(\mathrm{PPh}_{3}\right)_{3}$
$\mathrm{RuH}(\mathrm{COOMe})\left(\mathrm{PPh}_{3}\right)_{3}$
$\operatorname{cis}-\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$
$\mathrm{Ru}_{6} \mathrm{H}_{2}(\mathrm{CO})_{18}$
$\mathrm{OsHBr}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$
cis-OsH $\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\text { dmpe })_{2}$
$\mathrm{OsH}_{4}\left(\mathrm{PEt}_{3} \mathrm{Ph}\right)_{3}$

Reference $\quad \mathrm{M}-\mathrm{H}$

a	1.75	observed
b	1.70	inferred
c	(1.80)	inferred
d	-	-
e	-	-
f	1.6	observed
g	(1.86)	observed
h	(1.65)	inferred
i	1.7	inferred
j	1.6-7	observed
k	-	-
1	1.7	inferred
m	1.6	inferred
n	1.6	inferred
-	1.5	?
p	-	-
q	-	-
r	-	-
s	1.7	observed
t	1.7	observed
u	1.7	observed
v	-	-
x	-	-
y	-	-
z	-	-

Complex	Reference	M-H	
$\operatorname{tr}-\mathrm{COH}\left(\mathrm{N}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}$	aa	1.65	observed
$\mathrm{COH}\left(\mathrm{PF}_{3}\right)_{4}$	bb	-	-
$\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$	cc	1.60	observed
$\mathrm{RhHCl}\left(\mathrm{SiCl}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	dd	(1.5)	observed
$\mathrm{RhH}\left(\mathrm{NH}_{3}\right)_{5}{ }^{2+}$	ee	-	-
$\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4}$	ff	-	-
$\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{3}\left(\mathrm{AsPh}_{3}\right)$	gg	-	-
$\mathrm{Rh}_{3} \mathrm{H}(\pi \mathrm{Cp})_{4}$	hh	(1.57)	inferred
$\mathrm{IrH}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	ii	1.7	observed
	jj	-	-
$\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{~N}_{2}\right)$	kk	-	-
$\mathrm{IrH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{GeMe}_{3}\right)$	11	-	-
$\mathrm{IrHCl}_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{3}$	mm	-	-
$\mathrm{IrH}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{3}^{+}$	nn	-	-
$\operatorname{tr}-\mathrm{NiHCl}\left(\operatorname{PPr}_{3}^{i}\right)_{2}$	-0	1.4	observed
tr-PdHCl $\left.\mathrm{PPr}_{3} \mathrm{i}_{3}\right)_{2}$	00	-	-
$\mathrm{tr}-\mathrm{PdHCl}\left(\mathrm{PEt}_{3}\right)_{2}$	pp	-	-
$\mathrm{tr}-\mathrm{PtHBr}\left(\mathrm{PEt}_{3}\right)_{2}$	qq	-	-
$\mathrm{tr}-\mathrm{PtHCl}(\mathrm{PEtPh})_{2}$	rr	-	. ${ }^{-}$
$\mathrm{Zn}_{2} \mathrm{H}_{2}\left(\mathrm{MeN} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{NMe}_{2}\right)_{2}$	ss	1.6	observed

Table 2.10.2
Transition Metal Hydrogen Distances

Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
		$\begin{aligned} & 1.7 \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 1.6 \\ & (f) \end{aligned}$	$\begin{aligned} & 1.5 \\ & \text { (o) } \end{aligned}$	$\begin{aligned} & 1.6 \\ & (\mathrm{aa}) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (\infty 0) \end{aligned}$		$\begin{aligned} & 1.6 \\ & (\mathrm{ss}) \end{aligned}$
Zr	Nb	Mo	T_{c}	Ru	Rh	Pd	Ag	cd
				$\begin{gathered} 1.7 \\ (s, t, u) \end{gathered}$	$\begin{gathered} 1.5-6 \\ (c c, d d) \end{gathered}$			
Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
			$\begin{aligned} & 1.6-7 \\ & (i, j) \end{aligned}$		$\begin{aligned} & 1.7 \\ & (i i) \end{aligned}$			

References

'a. F Klanberg, E L Muetterties \& L J Guggenberger, Inorg. Chem., 1968, 7, 2272.
b. L B Handy et al., JACS, 1966, 88, 366.
c. R J Doedens \& L F Dahl, JACS, 1965, 87, 2576.
d. M Gerloch \& R Mason, JCS, 1965, 296

S C Abrahams \& A P Ginsberg, Inorg. Chem., 1966, 5, 500.
e. P L Johnson, Diss.Abs., 1968, 29, B1626.
f. S J LaPlaca, W C Hamilton \& J A Ibers, Inorg.Chem., 1964, 3, 1491. S J LaPlaca et.al., Inorg. Chem., 1969, 8, 1928 (neutron study).
g. R J Doedens, W T Robinson \& J A Ibers, JACS, 1967, 89, 4323.
h. H D Kaetz et al., JACS, 1965; 87, 2753.
i: M R Churchill \& R Bau, Inorg. Chem., 1967, 6, 2086.
j. K Knox \& A P Ginsberg, Inorg. Chem., 1964, 3, 555.

S C Abrahams, A P Ginsberg \& K Knox, Inorg.Chem., 1964, 3, 558. (neutron study).
k. VAlbano, P Bellon \& V Scatturin, Instituto Lombardo (Rend.Sci.), 1966, A100, 989.

1. M R Churchill, Proc. 4th Int. Conf. Organomet. Chem., Bristol 1969.
m. M R Churchill et al., JACS, 1968, 90, 7135.
n. H D Kaetz et al., JACS, 1969, 91, 1021.
o. P Meakin et al., JACS, 1970, 92, 3482 .

D D Titus et al., JACS, in press (private communication from M I H Green).
p. L M-Muir, K W Muir \& J A Ibers, Inorg. Chem.; 1970, 9, 447.
q. LF Dahl \& J F Blount, Inorg. Chem., 1965, 4, 1373.
r. C J Gilmore \& P Woodward, JCS(D), 1970, 1463.
s. A C Skapski \& P G H Troughton, Chem. Comm., 1968, 1230.
t. A C Skapski \& F A Stephens, JCS (D), 1969, 1008.
u. S D Tbekwe, B T Kilbourn \& U A Raeburn, JCS (D), 1969, 433. U A Gregory et al., JCS (A), in press (paper 0/573).
v. M R Churchill et al., JCS(D), 1970, 458.
x. P L Orioli• \& Vaska, Proc. Chem.Soc., 1962, 333.
y. U A Gregory et al., (reference u).

References (continued)

z. $\quad R$ Mason \& P O Whimp, in preparation (quoted in

L Aslanov et al., JCS(D), 1970,30).
aa. J H Enemark et al., Chem.Comm., 1968, 96.
B R Davis, N C Payne \& J A Ibers, JACS, 1969, 91, 1240.
bb. B A Frenz \& J A Ibers, Inorg. Chem., 1970, $9,2403$.
cc. S J Laplaca \& J A Ibers, Acta Cryst., 1965, 18, 511.
dd. K W Muir \& J A.Ibers, Inorg.Chem., 1970, 9, 440.
ee. J A Ibers, private communication, 1969.
ff. R W Baker \& P Pauling, UCS(D), 1969, 1495.
gg. RW Baker et al., JCS(D), 1970, 1077.
hh. OS Mills \& E F Paulus, J.Organomet. Chem., 1968, 11, 587.
ii. M Ciechanowicz, A C Skapski \& P G H Troughton, 8th Int. Congress Crystallography, New York 1969, (Acta Cryst., 22, sl72).
jj. U A Gregory et al., in preparation (JCS(A)).
kk. K W Muir \& J A Ibers, J.Organomet. Chem., 1969, 18, 175.
11. H M M Shearer, private communication.
mm. M McPartlin \& R Mason, unpublished work (quoted in M McPartlin
\& R Mason, $\operatorname{JCS}(A)$, 1970, 2206).
nn. D M P Mingos \& J A Ibers, in preparation (quoted in reference bb).
oo. U A Gregory et al., in preparation (JCS(A)).
pp. H M M Shearer, private communication.
qq. P G Owston, J M Partridge \& J M Rowe, Acta Cryst., 1960, 13, 246.
rr. R Eisenberg \& J A Ibers, Inorg.Chem., 1965, 4, 773.
ss. P T Moseley, H M M Shearer \& C B Spencer, 8th Int. Congress Crystallography, New York 1969, (Acta Cryst., 22, sl69).
showed that the Mn-HI distance is $1.6{ }_{\Lambda}^{0}$, in the same range as all the others. (See references 51b, 174, 175) The evidence is thus wholly in suppont of a normal covalent bond.

Almost all the most reliable M-H distances are from 1.6 to $1.7 \stackrel{\circ}{A}$, and there seems to be a remarlsable constancy, extending from ohromium to zino, for metals in their normal oxidation states. The only exceptions are $\operatorname{Fe}-\mathrm{H}(1.5 \AA)$, and $\mathrm{Ni}-\mathrm{H}(1.4 \stackrel{\circ}{\mathrm{~A}})$. These metals are both in the first row, and there is a tendenoy for $M-H$ to lengthen from first to second row, and then to remain constant from second to third. This is probably a size effect rather than an indication that stronger bonds are formed with first row metals. The Fe-H distance may be anomalous in that it ocouns in the only example. of a ois dihydride (excluding the rhemium hydricles) and there may in this case be some cis effect operating to shonten both bonds. There is no discernible trend along each series, or paralleling the number of d electrons. Neutron studies on NiHCl $\left(\operatorname{PPr}_{3}^{i}\right)_{2}$ and PdHCl $\left(\operatorname{PPr}_{3}^{i}\right)_{2}$ would be worthwhile, to verify the short Ni-H distance, and to establish whether Pd-H is also short. If the short distance were confirmed this would suggest that there is a trend to contraction of $M-H$ at the completion of a 'di shell. This could arise if a stronger bond is formed at the end of a series, using predominantly s and p orbitals, after the d orbitals have
sumk into the core

The only metal for which there are reliable $M-I$
distances in two common oxidation states，is rhodiumo $\operatorname{Rh}(I)-H$ is $1.6-1 . \%^{\circ} \mathrm{A}^{84}$ while Rh（III）－H is $1.5 \mathrm{~A}^{\circ}$ （though this is not such an accurate determination）。

The M－H bond seems to be exceptionally strong，because of the very polarisable ls orbital。 This highly directed bond is very sensitive to its environment （e．g．the influence of trans ligands on $\nu(M-H)$ ），and also apparently strongly perturbs the metal orbitals， as judged by changes in the rest of the molecule the most obvious effect is that of polanisation which wealkens all the other bondso This is most noticeable in the trans bond and an additional explanation is provided in terms of rehybridisation。（See Chapter 2．8）The effect is most noticeable in regular geometrieso

Square planar complexes：－
$\mathrm{NiHCl}\left(\mathrm{PPr}_{3}^{i}\right)_{2} \quad \mathrm{Ni} \mathrm{Cl} \quad .2 .21 \quad\left(2.16\right.$ in $\left.\mathrm{NiCl}_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right)$
$\operatorname{PdHCL}\left(\operatorname{PPr}_{3}^{\frac{1}{3}}\right)_{2} \quad \operatorname{Pd}-C 1 \cdot 2.39\left(2.30\right.$ in $\left.\operatorname{PdCl}_{4}^{2-}\right)$
PdHCI PEt $\left._{3}\right)_{2}^{166} \quad \operatorname{Pd}-\mathrm{CI} \quad 2.43$
PtHCl（PEtPh $\left.{ }_{2}\right)_{2}^{168} \quad$ Pt－C1 2.42 （radius sum 2．30）
$\operatorname{PtHBr}\left(\text { PEt }_{3}\right)_{2}^{167} \quad$ Pt－Br 2.56 （radius sum 2．43）

It can be seen that the trans lengthening increases
markedly from Ni to Pd．

Octahedral complexes:-

BUT
$\operatorname{MnEH}(\mathrm{CO})_{5}^{175} \quad \operatorname{Mn-C} \quad 1.82$ (1.85 in cis positions)

In the bonds cis to hydrogen the polarisation effect is cancelled by formation of a very strong bond, in agreement with Syrkin's theory.

In each case the ois ligand contains suitable orbitals for back donation, and this may explain the marked strengthening effect of cis hydrogen。

In a more general way, hydxogen may perturb the electron clouds round other atoms because of the build-up of electron density at: the metal, and it is possible that
the energies of．the bonding orbitals in，say，a $C-C$ system may be altered by the presence of a hydride， so that a reaction can talse place。 It is thought that in catalytic hydrogenations the substrate must be ois to the hydrogen and this suggests that some dinect interaction ocours between substrate orbitals and the hydrogen 1 s orbital．However，the cis bond seems to be strengthened，which could inhibit reaction。 The trans bond，while wealcened，is less favourably placed for further reaction。

A11 these effects appear to be more pronounced at the ends of each sexies．Possibly the d shell is more susceptible to such influences when it is nearly full。 This suggests that metals at the end of each series are most affected by the formation of $\dot{M}-H$ ，and the observation that the trams effect increases from Ni to Pt suggests that the heavier metals are more affected possibly this could be correlated with a stronger M－H bond at the lower right hand side of the d block caused by greater orbital overlap。 The catalytioally important metals lie in this region；presumably a strong $M-H$ bond is necessary in order for hydrogen to remain on the complex long enough．for reaction。 Also，since these metals are most susceptible to changes in theix electronic environment，they should be most effective catalytically。

CHAPTER 3.1

ACTIVATION OF SMAL, MOLECULES BY

TRANSTTION METALS:

THE ATTEMPTED STRUCTURE DETERMINATION OF
A MOITYDENUM DINITROGENYL COMPLEX

Transition metal intermediates are probably important in biological reactions, partioularly those involving smal. molecules, eogo $\mathrm{O}_{2}, \mathrm{~N}_{2}$ o These may be taken up by metallo-proteins and utilised in biochemical processes; an example is the uptake of oxygen by the jron-containing protein haemoglobino Simple analogues of these systems may be found among certain transition metal complexes, and Vaskais compound, $\operatorname{Ircl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}{ }_{2}^{12}$ in partioular, reacts with small gaseous molecules in several ways:-

1. The small molecule is dissociated, and the atoms bond separately to the metal atom, eog. addition of H_{2} to give a cis dihydride $\operatorname{Ir}(\mathrm{H})_{2} \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}{ }^{\circ}$
2. Both atoms bond to the metal but the molecule remains assooiated, eogo $\operatorname{Ir}\left(\mathrm{O}_{2}\right) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} ;^{120}$ $\mathrm{Pt}\left(\mathrm{O}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}^{176}$ These may be compared to olefine and acetylene adducts, e.g. $\operatorname{Ir}(\operatorname{TCNE}) \mathrm{Br}(\mathrm{CO})\left(\mathrm{PPl}_{3}\right)_{2}{ }^{21}$ (Case 1 is really the extreme of Case 2 ; the strength. of
the complexed $O=0$ bond depends on the eleotron demsity at the metalo)
3. One atom bonds to the metal, eago in addition of $\mathrm{CO}, \mathrm{SO}_{2}, \mathrm{~N}_{2}, \mathrm{NO}$. In some of these adducts, the small molecule retains the same shape as in its uncomplexed form $\left(\mathrm{e} \cdot \mathrm{g}_{\mathrm{o}} \operatorname{Ir}\left(\mathrm{SO}_{2}\right) \mathrm{Cl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}^{177}\right)$, whereas in others a distortion in geometry ocours e.g. $\left[\operatorname{Ru}\left(\mathrm{SO}_{2}\right) \mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{4}\right] \cdot \mathrm{Cl}{ }^{178}$ Also, some diatomic molecules bond linearly (eog. $\operatorname{Ir}(\mathrm{CO}) \mathrm{CI}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}^{118}$, $\left.\mathrm{Fe}(\mathrm{NO})\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}^{36}\right)$, others at an angle $\left(\mathrm{e} \circ \mathrm{g} \cdot \operatorname{Ir}(\mathrm{NO}) \mathrm{CI}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}^{145}\right)_{0}$ It has been suggested from these and related observations that the electronic effect of bonding to a metal can be equivalent to raising the molecule to an exoited state。 There is some support for this from the geometries of, eogo $\operatorname{Pt}\left(\mathrm{CS}_{2}\right)\left(\text { PPh }_{3}\right)_{2}^{180}$, $\left(\mathrm{NMe}_{3} \mathrm{Et}\right)_{2}\left[\left(\mathrm{PtCl}_{3}\right)_{2}(\text { butadiene })^{181}\right]^{\circ}$
4. The small moleoule is linearly ooopdinated to two metal atoms, e.g: $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right]_{2}\left(\mathrm{O}_{2}\right)^{4+{ }^{182}\left[\operatorname{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]_{2}\left(\mathrm{~N}_{2}\right)^{183} .}$ Bridging dinitrogenyl complexes will be discussed in the following section as the two molybdenum structures to be described arose out of work on $\operatorname{Mo-}\left(\mathrm{N}_{2}\right)$ complexes.

Transition Metal Dinitrogenyl Complexes

Ni.trogen is classically described as an inert gas; however, biological. systems can convert atmospheric nitrogen at normal temperatures and pressures into ammonia and thence into useful nitrogen-containing compoundso the equivalent industrial process,
(Haber-Bosch), though ecomomic, requires extreme conditionso ${ }^{184}$ The nitrogen-fixing enzyme is now lnown to contain iron and molybdenum fractions, and so it is possible that an inorganic compound might exist which would perform the same functiono Attempts to achieve fixation using tramsition metal catalysts have been widely reviewed.

The existence of $M-\left(N_{2}\right)$ complexes was predicted in 1960 , although it was thought that they would be less stable than complexes of the isoelectronic $C \equiv 0$ 。 It was also suggested that the sidewatys mode of bonding would be relatively more stable than $M-\underset{O}{C}$, but this argument did not take into account the fact that the orbitals are less favourably disposed for sideways bonding to a metal. The first $M-\left(N_{2}\right)$ complex was not isolated until $1965-$ $\operatorname{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)^{2+\quad 190}$ but probably many had been unwittingly prepared before。 Examples are now linown formany Group VIII metals, ${ }^{191}$ also Mo, ${ }^{192}$ Re, ${ }^{193}$ and W, as well as bridging dimuclear ${ }^{195}$, and bis- $\left(\mathrm{N}_{2}\right)^{190}$ complexes, and many of these
have been prepared directiy from atmospheric mitrogen。 filectronic factors influence the stabilities of such compounds；good donor lijgands help to stabijize a $M-\left(N_{2}\right)$ bond，and the complexes，once formed，axe usually very，stable indeed。 This is partioularly true of the heavier metals where the larger d orbitals provide better overlap，and the most stable complexes Lie on the $N i-W$ line。

In free nitrogen，the stretohing vibration is only Raman－ active，at $2331 \mathrm{~cm}^{-1}$ ，but al1 $\mathrm{M}-\left(\mathrm{N}_{2}\right)$ complexes have a band in the IR，usually $200-300 \mathrm{~cm}^{-1}$ lower than this． This corresponds to a slightly wealser $N=N$ bond，still much stronger than $N=N$ in eg． $\mathrm{Ph}-\mathrm{N}=\mathrm{N}-\mathrm{Ph}\left(\dot{\mathrm{L}}(\mathrm{N}=\mathrm{N}) 1510 \cdot \mathrm{~cm}^{-1}\right)$ 。 The lowest $\mathcal{\nu}(N \equiv N)$ yet observed for a monomuclear complex． is $1922 \mathrm{~cm}^{-1}$ for $\operatorname{ReCl}\left(\mathrm{N}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}^{197}$ ，but significant lowering of $\nu(N \equiv N)$ occurs in the dinuclear compounds which are consequently thought to be more readily reducible，given the appropriate conditions． So far no $\mathrm{M}-\left(\mathrm{N}_{2}\right)$ complexes have been reduced to ammoni， and it has been suggested that the end－on structure is too stable。（A11 known mitirogenyl complexes contain end－ on bonded nitrogen。）There is no evidence，however，that reducible species need contain sideways－bonded nitrogen， except by analogy with catalytic hydrogenations of olefines。 It is hoped that the $N \equiv N$ bond will be weakened and activated by complexes．Structural studies have been reported for
four complexes：－

	M－N	$\mathrm{N} \equiv \mathrm{N}$	$\mathrm{M}-\mathrm{N}-\mathrm{N}$	Reference
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right] \mathrm{Cl}_{2}$	2．10（1）	1．12（8）	$\begin{gathered} \sim 180^{\circ} \\ \text { iisorde } \end{gathered}$	198
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]_{2}\left(\mathrm{~N}_{2}\right)$	1．93（1）	1．21（1）	$178{ }^{\circ}$	183
$\mathrm{CoH}\left(\mathrm{N}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}$	1．81（2）	1．11（1）	$178{ }^{\circ}$	199
$\left[\mathrm{Ru}\left(\mathrm{~N}_{3}\right)\left(\mathrm{N}_{2}\right)(\mathrm{en})_{2}\right]$	PF_{6} no data available 200			

These results show that the bond length is almost the same as in free gaseous $N_{2}(1.1 \AA),{ }^{201}$ i．e．still essentially a triple bond。
Although there were some early claims ${ }^{202}$ that complexed nitrogen had been successfully reduced to NH_{3} ，there is no authenticated example of this happening．Various Ziegler－Natta type systems have been found to generate ammonia，but always in strongly reducing，non－aqueous conditions．Some of these are catalytic reactions，${ }^{203}$ and there is some evidence（ESR）for hydride inter－ mediates．This correlates with the observation that all nitrogen－fixing bacteria contain hydrogenases，and it is possible that cis coordinated H and N_{2} would be in the most favourable orientation for reduction。 The recently discovered heterodinuclear complexes may be the closest， so far，to a nitrogenase model；itt has been suggested ${ }^{197}$ that the $\operatorname{Re}(I)-\left(N_{2}\right)-M o$ system in $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4} \mathrm{ClRe}-\left(\mathrm{N}_{2}\right)-\mathrm{MoCl}_{4}$ （ $\mathrm{PE}, \mathrm{Ph}_{2}$ ）is analogous to $\mathrm{Fe}(\mathrm{II})-\left(\mathrm{N}_{2}\right)$－Mo。 A bonding scheme has been postulated in which the Mo acts as an
electron sink to polarise the $N=N$ bond ln the extreme case this would give $R E \equiv N-N \neq$ Mo，which could then break up giving $\mathrm{NH}_{3}{ }^{\circ}$ ．

There have also been studies on nitrogen fixation on metal surfaces，eogo with nicleel a strong band at
$2202 \mathrm{~cm}^{-1}$ in the IR indioates that the bonding i．s probably end－on，and that chemisorption has ocourred ${ }^{204}$

MoIybdenum－Nitrogen System

D C Smith and comorlsers in Petrochemical and Polymer
Laboratory have been studying routes to molybdemum dinitrogenyl complexes，starting from Mo（V）${ }^{205}$ The precise course of the reduction to Mo（I）and Mo（O）was， however，unclear because of difficulties in characterising． the intermediates．The reaction scheme，as finally elucidated，is shown in Figure 1。 The yellow，air－stable Mo（I）complex gave variable analyses，the nearest formula being MoCl $\left(\mathrm{N}_{2}\right)$（dppe） 2°（The analysis was complicated by the presence of co－product $\left.\operatorname{Mo}\left(N_{2}\right)_{2}(\text { dppe })_{2}{ }^{\circ}\right)$ Different samples always had．one，sometimes two，bands at 1970 and $1950 \mathrm{~cm}^{-1}$ ，which were assigned to $\nu(N \equiv N)$ 。 Far IR（single $\nu\left(\right.$ Mo－C1）at $\left.313 \mathrm{~cm}^{-1}\right)$ and $\mu_{\text {efs }}(2.1 \mathrm{BM})$ were also in agreement with this structure。 The complex reacts with $\mathrm{MoCl}_{4}(\mathrm{THF})_{2}$ to give a blue product with $\nu(N \equiv N)$ at 1770 ， $1720 \mathrm{~cm}^{-1}$ ，and this probably contains the Mo－$\left(\mathrm{N}_{2}\right)-\mathrm{Mo}$ grouping，by analogy with Chatt？s Re－Mo nitrogen complex． Crystals were prepared by $D C$ Smith，and recrystallised

by Mrs V C Adam from 98% acetone／ 2% pentane。 They were very thin，brittle yellow flakes of irregular shape。 The orystal used for collecting data was one of the largest obtainable，and is shown in Figure 2 。

Crystal Data

$\mathrm{C}_{52} \mathrm{HI}_{48} \mathrm{MoP}_{4} \mathrm{Cl}_{2}, \underline{M}=963$ ，monoc1inic；$\underline{a}=49.161 \pm 0.076$ ，
$\underline{b}=10.958 \pm 0.012, \underline{c}=18.171 \pm 0.019 \AA, \quad \beta=99.1 \pm 0.1^{\circ}$ ，
$\underline{U}=9666 \mathrm{~A}^{3}, \underline{Z}=8, \underline{D_{\mathrm{C}}}=1.33, \mathrm{~T}(000)=3968$,
Space Group $\mathrm{C} 2 / \mathrm{c}\left(\mathrm{C}^{6}\right.$ 2h ；no．15），MoK α（Nb filtex）， $\lambda=0.7107 \mathrm{~A}, \mu=5.5 \mathrm{~cm}^{-1}$ 。

Data Co11eotion

Temperature -70° ；scan range -0.8° to $+0.5^{\circ}$ ；
Scan speed $2^{\circ} 2 \theta /$ minute；fixed time 20 seconds；
Standards（ 002 ）and（12 000 ）falling to 97% and 100% of initial intensity；reflections measured in octants $\{n \overline{\mathrm{~K}} I\}$ and $\{\mathrm{h} \overline{\mathrm{V}} \boldsymbol{I}\}$ ，to a maximum
$2 \theta=39^{\circ}$ ；cell dimensions from 4 reflections
（16 measurements）giving angles $\alpha=90.00(10)$ ， $\gamma=89.97(12)$ ；total number of independent structure amplitudes obtained after data reduction and collation of equivalent reflections 3260 。

Solution of Structure

Form factors for Mo，Cl，P atoms were corrected for $\triangle P^{1}$ 。 After averaging equivalent reflections，only 270 terms had observed amplitudes $>10 e$ ．All terms >8 e were used in
TABLE 3.1.1
Refinement of the structure of MoCl_{2} (dppe) 2

Cycle Number .	Number of terms	Criteria	R Value	Atoms included	Mo	$P^{\text {M }}$	$\begin{gathered} \text { Matrix } \\ \text { Cl } \end{gathered}$	type $C(B)$	$C(R)$	Mo	$\begin{gathered} \text { Vib } \\ \mathrm{P} \end{gathered}$	ions Cl	C (B)	$C(R)$	Weighting used
1-3	455	min.amp. 8	34.5	Mo	b	-	-	-	-	i	-	-	-	-	1
4-5	455	min.amp. 8	31.1	Mo, Pl-P3	b	b	-	-	-	i	i	-	-	-	1
6	455	min.amp. 8	32.5	$\begin{aligned} & \mathrm{Mo}, \mathrm{Pl}-\mathrm{P} 3 \\ & \mathrm{Cl} 1 \text {, } \\ & 6 \mathrm{C}(\text { ring }) \end{aligned}$	bd	bd	bd	-	bd	i	i	i	-	i	1
7	455	min.amp. 8	30.3	Mo, Pl-P4, Cl 1 , C(bridgin Some C(ring (see text)	bd	bd	bd	bd	bd	i	i	i	i	i	1
8,9	455	min.amp. 8	14.5	all atoms	b(1)	$b(1)$) b (1)	$\mathrm{b}(2)$	rbg	i	i	i	i	i	1

[^4]the analysis, giving a total of 455. The Patterson map of C2/c has Harker vectors at:-

$2 x$	$2 y$	$2 z$
0	$2 y$	$\frac{1}{2}$
$\frac{1}{2}-2 x$	$\frac{1}{2}$	$\frac{1}{2}-2 z$

corresponding to the equivalent positions at:-

x	y	z	-x	-y	-z
x	-y	$\frac{1}{2}+\mathrm{z}$	-x	y	$\frac{1}{2}-\mathrm{z}$
$\frac{1}{2}+\mathrm{x}$	$\frac{1}{2}+\mathrm{y}$	z	$\frac{1}{2}-\mathrm{x}$	$\frac{1}{2}-\mathrm{y}$	-z
$\frac{1}{2}+\mathrm{x}$	$\frac{1}{2}-\mathrm{y}$	$\frac{1}{2}+\mathrm{z}$	$\frac{1}{2}-\mathrm{x}$	$\frac{1}{2}+\mathrm{y}$	$\frac{1}{2}-\mathrm{z}$

A consistent solution was found for Mo at (0.134
$0.180 \quad 0.0505$), and after three cycles (see Table 1)
the R value for this position was 34.5%, though the U value had decreased to 0.014 . The F (obs) map on these planes showed the positions of three possible P atoms, but after two more cycles R had only decreased to 31.1%. The corresponding $F(d i f f)$ map showed that one P atom (P 3) had been wrongly identified; it also indicated a Cl atom and the positions of the phosphine links. There was a blur of electron density in the area of the wrongly placed P atom, but it was not possible to identify this as a nitrogen molecule. Further calculations are shown in the table (cycles 6 and 7), during which more carbon atoms were added。

It appeared from the maps computed that p3 was in ract a second chlorime atom。 Acoordingly，the rigid body parameters for the phenyl nings were calculated， and two cycles（ 8 and 9）of refinement assuming the
 at $R=14.5 \%$ showed quite conclusively that thexe is no space to accommodate a nitrogen molecule so that N_{2} must have been lost during recrystalifsationo The geometry of the molecule was not very olearly defined， although the positions of the two chlorine atoms and the phosphime groups could be seeno since the mitrogen had been lost，and the data was so weak，further refinement did not seem to be justifiable，and so was halted at $R=1.4 .5 \%$ ．

Results

The molecular geometry is listed in Table 4。（This is， however，not very acourate，because of lack of data。 No standard deviations are given。）The final positional and vibrational parameters are given in Tables 2 and 3 in the Appendix．A drawing of one molecule is shown in Figure 3. It is not possible to comment usefully on the coordination around Mo：the bond lengths vary considerably，but this is probably due to the low resolution Mo－P distances vary from 2.38 to $2 . r 6 \stackrel{\circ}{A}$ ；the average being close to that in MoOCl（dppe）${ }_{2}^{+},(2.55 \mathrm{~A})$ 。 The two Mo－CI bonds ane

Figure 3.1.3
View of Molybdenum and ligand skeleton, with the numbering system used.

```
; Table 3.1.4
Bond distances (A) and angles (').
```

$\mathrm{MO}-\mathrm{Cl}(1)$	-2.42	$\mathrm{P}(1)-\mathrm{Mo}-\mathrm{P}(2)$	73
Mo-Cl (2)	2.48	$P(1)-\mathrm{Mo}-\mathrm{P}$ (3)	172
Mo-P(1)	2.60	P (1) - Mo-P(4)	101
Mo-P(2).	2.76	$\mathrm{P}(1)-\mathrm{Mo}-\mathrm{Cl}(1)$	104
Mo-P (3)	2.38	$\mathrm{P}(1)-\mathrm{Mo}-\mathrm{Cl}$ (2)	78
Mo-P(4)	2.49	$\mathrm{P}(2)-\mathrm{MO}-\mathrm{P}$ (3)	107
		$P(2)-M O-P(4)$	174
$P(.1)-C(11)$	2.14	$\mathrm{P}(2)-\mathrm{Mo}-\mathrm{Cl}$ (1)	92
$P(2)-C(21)$	1.58	$\mathrm{P}(2)-\mathrm{MO}-\mathrm{Cl}$ (2)	83
$C(11)-C(21)$	1.85	P (3)-MO-P(4)	78
		$\mathrm{P}(3)-\mathrm{Mo}-\mathrm{Cl}(1)$	84
$P(3)-C(31)$	2.30	$\mathrm{P}(3)-\mathrm{Mo}-\mathrm{Cl}$ (2)	94
$P(4)-C(4.1)$	1.53	$\mathrm{P}(4)-\mathrm{Mo}-\mathrm{Cl}$ (1)	87
C(31)-C(41)	2.16	$\mathrm{P}(4)-\mathrm{MO}-\mathrm{Cl}(2)$	98
$\mathrm{P}(1)-\mathrm{C}(111)$	1.79	$P(3)-C(311)$	2.04
$P(1)-C(121)$	1.90	P(3)-C(321)	1.75
$P(2)-C(211)$	1.79	$P(4)-C(411)$	1.98
$P(2)-C(221)$	1.81	$P(4)-C(421)$	1.96

Figure 3.1.4
MoCl_{2} (dppe) ${ }_{2}$
Projection down z of $F($ diff $)$ map at cycle 9 . Contours at
intervals of $0.5 \mathrm{e} / \AA^{3}$; z heights (48 ths) shown in small type.

```
similar to that in MoOCl(dppe)}\mp@subsup{2}{}{+},(2.46.A). A11 the
angles round Mo are approximately 90', the largest
being P1-Mo-P4, 101 % P1-Mo-C11, 1044}; P2-Mo-P3
10%% None of these gaps is large enough to
accommodate an extra ligand, nor is there any
suggestion of electron demsity in any of the gaps.
(See Figuxe 4). It is therefore impossible to decide
where the nitrogen molecule was situated before it
was lost from the complex. The geometry of the
phosphine ligands is very approximate; the linking
C(methylene) atoms, and some of the phenyl rings appear
as smears of density.
```


Postscript

```
This structure analysis and that of MoOCl(dppe) \({ }_{2}{ }^{+}\) (desoribed in the following ohapter), show that the reduction of Mo (V) species follows a complicated route, of whicl the main stages are:-
\[
\mathrm{Mo}(\mathrm{~V}) \longrightarrow \mathrm{Mo}(\mathrm{IV}) \longrightarrow \mathrm{Mo}(\mathrm{II})
\]
and that the intermediate stage probably involves a delicate equilibrium between several different complexes. The analysis of MoCl \({ }_{2}\) (dppe) \(2_{2}\) has shown that the nitrogencontaining complex is a 7 -coordinate \(\mathrm{Mo}(I I)\) species, since it probably has the formula \(\mathrm{Mo}^{I I_{C 1}} \mathrm{C}_{2}\left(\mathrm{~N}_{2}\right)\) (dppe) \({ }_{2}\) wather than \(\mathrm{Mo}^{I_{C l}}\left(\mathrm{~N}_{2}\right)(\text { dppe })_{2}{ }^{\circ}\) The nitrogen is readily
```

Lo:st to give Mo ${ }^{\mathrm{IT}} \mathrm{CI}_{2}$ (dppe) 2 as the stable producto A sample of MoCl_{2} (dppe) 2 , prepared independentiy by $D C$ Smith, was photographed, ancl shown to be identical. with the crystal.s analysed。. This confirms the composition of the sample studied。

CHAPTER 3.2

THE CRYSTAL AND MOLECULAR STRUCTURE OF
TRANS-[Mo(o)C1 (dppe) $\left.{ }_{2}\right]\left[\mathrm{ZnCl}_{3}\right.$ (acetone) $]$ oacetone

```
The route to molybdenum nitrogenyl complexes involving
reduction of Mo(V) oxychloro complexes has been
described in the preceding Chapter. Starting from
MoC15, addition of tetrahydrofuran and then a phosphine,
e.g. dppe, gives MoOC1_3(dppe)。 If a reducing agent is
now added, many different low-valent complexes can be.
formed, depending on the agent used. At an early stage
in these investigations, the postulated reaction scheme
was:-
(rust red)
    Zn/Hg
    MoI
    (yellow solution)
(dppe is the bidentate phosphine Ph}\mp@subsup{2}{2}{}\mp@subsup{\textrm{P}}{0}{}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{4}{}.\circ\textrm{PPh}\mp@subsup{)}{2}{}\mathrm{ )
The lilac compound was thought to be a dimer of \(\mathrm{Mo}(\mathrm{V})\) formed by a disproportionation of \(\mathrm{Mo}(\mathrm{IV})\) to \(\mathrm{Mo}(\mathrm{V})\) and Mo(III). (The oxidation state and composition of the yellow complex were also uncertain at this time。)
```

Crystals could not be isolated from the green solution， but purple crystals could be obtained from either the lilac or the yellow solutions．However，these could not be satisfactorily characterised，and so the crystal structure of the purple compound was studied． The structure analysis revealed the unexpected reason for poor analytical figures．The compound is not a dimer，but is a solvated ionic Mo（IV）complex－ $[$ MoOCl（dppe） 2$]+\left[\operatorname{ZnCl}_{2}(\right.$ acetone）$]-$ ．The presence of zinc was later confirmed by elemental analysis； conductivity measurements showed the compound to be a 1：1 electrolyte。 Chemical analysis gave good agreement with the calculated values for crystals after allowing for the acetone molecule of solvation．

	Observed	$\left[\begin{array}{c}\text { Calc。for } \\ \text { MoOC1（dppe）}\end{array}\right]\left[\mathrm{ZnCl}_{3}\right.$（acetone）$]$ 。acetone
Mo	-	7.8
Zn	-	5.3
Cl	11.68	11.53
P	10.32	10.07
O	-	3.9
C	55.8	56.5
H	5.14	4.88

By hindsight，this structure is also interesting because of the rarity of simple $\mathrm{Mo}(\mathrm{IV})$ oxo species；the only
other crystal structure is that of
$\mathrm{NaH}_{3}\left[\mathrm{MOO}_{2}(\mathrm{CN})_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}^{206}$ It is also an example of olnemical analysis by crystallograply！
.1
The reaction scheme finally elucidated，is shown in
Tigure 1 of the preceding chapter（Chapter 3．1）．
This acheme also gives the method of preparation of
the crystals used in the struẹture analysiso

Preliminary Observations

Two forms of the crystals were examined：－
（a）triclinic needles from the lilac or greem solution；and
（b）orthorhombic prisms from the yel．1ow solution。

The orthorhombic crystals were much better formed and were therefore chosen for detailed study。（Chemical
analysis confirmed that both forms were the same
compound。）The crystal used is shown in Figure 1 。

Crystal Data

$\dot{C}_{58} \mathrm{H}_{60} \mathrm{MoZnP}_{4} \mathrm{Cl}_{4} \mathrm{O}_{3}, \underline{M}=1231.3 ;$ orthorhombic，
$a .=25.377 \pm 0.030, \underline{b}=18.337 \pm 0.014, \underline{c}=24.558 \pm 0.011 \mathrm{~A}$,
$\underline{U}=11428 \AA^{3}, \underline{D}_{m}=1.40(11$ otation $), \underline{Z}=8, \mathrm{D}_{\mathrm{C}}=1.43$ ，
$F(000)=7456$, Space Group Pboa $\left(D_{2 h}^{15} ;\right.$ no。61），MoKo
radiation（Nb filter），$\lambda=0.7107 \AA$ A，$\mu=9.9 \mathrm{~cm}^{-1}$.

Data Collection

Temperature -70° ；scan range -0.8° to＋0． 5° ；
Scan speed $2^{\circ} 20 / m i n u t e ;$ fixed time 20 seconds；
Standards（ 0 o 12）and（ 080 ）falling to 87% and 89% of initial intensity；reflections measured．
in the ootant $\{$ hls $\}$ to a maximum $20=46^{\circ}$ ；
cell dimensions from 5 reflections（20 measurements）
giving angles $\alpha=89.96(5), \beta=89.99(6), \gamma=90.07(8)$ ；
total number of independent．structure amplitudes
obtained after data．reduction and collation of
equivalent reflections 3822.

Solution and Refinement of Structure

Formfactors for $M o, P, C l$ were corrected for Δf^{\prime} ；
also those for Zn ，when the presence of zinc was discovered。

A modified planes list，containing only those terms with observed amplitude $>30 e$ on initial scaling，was generated for the Patterson，which was solved for a Mo atom in the general position（0．158 0．1385 0．222）。 This corresponds to a Mo－Mó distance of $\sim 14 \stackrel{\circ}{A}$ ，so that a binuclear structure was ruled out。 Cyoles $1-4$（see Table 1）gave $R=49.1 \%$ ．The subsequent T（obs）map clearly revealed the positions of six atoms round the metal atom，but when refinement was attempted on Mo， and the five highest peaks，it diverged at 38．8\％．The temperature factor of the atom labelled chlorine
TABLE 3.2.1(a)
Refinement of the structure of $\mathrm{MoOCl}(\mathrm{dppe})_{2}, \mathrm{ZnCl}_{3}$ (acetone) . acetone

Cycle Number	Number of terms	Criteria	R Value	$\begin{aligned} & \text { Atoms } \\ & \text { included } \end{aligned}$	Mo	Cl	0	P	$C(B)^{M}$	$\begin{aligned} & \text { latrix } \\ & C(R) \end{aligned}$	$\begin{array}{r} \text { types } \\ \mathrm{Zn} \end{array}$	Cl	acetone	free acetone	weighting used
1-4	2931	min.amp./ deviation 10	49.1	Mo	$\begin{aligned} & b \\ & i \end{aligned}$	-	-	-	-	-	-	-	-	, -	1
5,6	413	min.amp./ deviation 20	38.8	$\begin{aligned} & \mathrm{Mo}, \mathrm{Cl} \\ & \mathrm{Pl}-\mathrm{P} 4 \end{aligned}$	$\begin{aligned} & b \\ & i \end{aligned}$	$\begin{aligned} & \mathrm{b} \\ & \mathrm{i} \end{aligned}$	-	$\begin{aligned} & b \\ & i \end{aligned}$	-	-	-	-	-	-	1
7-9	1799	min.amp./ deviation 18	39.6	Mo, Pl-P4	$\begin{aligned} & \mathrm{b} \\ & \mathrm{i} \end{aligned}$	-	-	$\begin{aligned} & b \\ & i \end{aligned}$	-	-	-	-	-	-	1
10,11	1799	min.amp./ deviation 18	33.0	$\begin{aligned} & \mathrm{Mo}, \mathrm{O}, \mathrm{Cl} \\ & \mathrm{Pl} 1-\mathrm{P} 4 \\ & \text { Some carbons } \\ & \mathrm{Zn} \mathrm{Cl2} \mathrm{Cl3} \end{aligned}$	$\begin{aligned} & \hline \mathrm{pbd} \\ & \text { tbd } \\ & \mathrm{i} \end{aligned}$	$\begin{gathered} \text { pbd } \\ \text { tbd } \\ i \end{gathered}$	$\begin{gathered} \mathrm{pbd} \\ \mathrm{tbd} \\ \mathrm{i} \end{gathered}$	$\begin{gathered} \mathrm{pbd} \\ \text { tbd } \\ i \end{gathered}$	$\begin{aligned} & \hline \text { pbd } \\ & \text { tbd } \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{pbd} \\ & \mathrm{tbd} \\ & \mathrm{i} \end{aligned}$	$\begin{gathered} \text { pbd } \\ \text { tbd } \\ \text { i } \end{gathered}$	$\begin{gathered} \mathrm{pbdd} \\ \mathrm{tbd} \\ \mathrm{i} \end{gathered}$	-	-	
12	1799	min.amp./ deviation 18	20.2	$\begin{aligned} & \left(\mathrm{Mo}^{+}\right)^{+} \\ & \mathrm{Zn}, \mathrm{Cl2-4} \end{aligned}$	$\begin{aligned} & \text { bd } \\ & \mathrm{i} \end{aligned}$	bd	bd	$\begin{aligned} & \mathrm{bd} \\ & \mathrm{i} \\ & \hline \end{aligned}$	${ }_{i}^{b d}$	$\begin{aligned} & \mathrm{rbg} \\ & i \end{aligned}$	bd	bd	-	-	1
13	1799	$\begin{aligned} & \text { min.amp./ } \\ & \text { deviation } 18 \end{aligned}$	12.5	$(\mathrm{MO})^{+}(\mathrm{Zn})^{-}$	$\begin{aligned} & \text { bd } \\ & \text { i } \end{aligned}$	bd	$\underset{;}{\text { bd }}$	$\stackrel{\text { bd }}{\mathrm{i}}$	$i^{b d}$	$\begin{aligned} & \mathrm{rbg} \\ & \mathrm{i} \end{aligned}$	bd	$\begin{aligned} & \text { bd } \\ & i \end{aligned}$	$\underset{\text { bd }}{\text { bd }}$	-	1

[^5]TABLE 3.2 .1 (b)
Refinement of the structure of $\mathrm{MoOCl}(\mathrm{dppe})_{2} . \mathrm{ZnCl}_{3}$ (acetone). .acetone

increased to 0.16 - (this was later seen to be a P atom) - and so three cycles omitting this atom were computed (Cycles 7-9), and an F (obs) map. A11 the vibrations were low, but not unreasonable. This map revealed a large peak a long way from the Mo coordination sphere, surrounded by three peaks. At the time, I did not know that zinc dust had been used in the reduction, and thought possibly that this extra atom (which was too high to be Al, Li, or C), might be another Mo, possibly part of a complex anion。 When it was discovered that zinc had been in the reaction mixture, it seemed most likely that the anion was $\left(\mathrm{ZnCl}_{3} \mathrm{X}\right)^{-}$, with X as yet unknown. The peak heights on this map were:-

Mo	99^{*}	Zn	37
P1	24^{*}	C12	19
P2	32^{*}	C13	15
P3	27^{*}	C14	13
P4	$28 *$		
C1	$26 *$		
O	9		

* input atoms

From some possible phenyl carbon positions, and bridging carbons, all the coordinated atoms were now identified and renumbered. Two further cycles (10, 11) were calculated using the block diagonal approximation, and an F (obs) map. As well as showing all the ring atoms, this suggested that the zinc was tetrahedrally coordinated, to three chlorine atoms, and to a trigonal planar molecule, possibly acetone。

```
At this stage, the phenyl rings were constrained to
rigid bodies, and their group parameters were calculated.
All atoms except the possible coordinated acetone were
included in the first cycle (12) of rigid body refine-
ment (as described in Chapter 1.2), and an F(obs) map
was computed, over the area occupied by the acetone.
This confirmed that it was a coordinated acetone, and
it was included in the next cycle (13), which reduced
R to 12.5%. A better weighting scheme was next intro-
duced, and anisotropic refinement of the heavy atoms
(Mo, P, C1, Zn atoms), was attempted. However, after
the first cycle (14), R was 13.0%, but all the shifts
in Uii were large and negative; the new U11 values
were:-
\begin{tabular}{lrlr} 
Mo & .01 & Zn & .03 \\
P1 & .01 & C12 & .02 \\
P2 & -.00 & C13 & .02 \\
P3 & .01 & C14 & .03 \\
P4 & .01 & & \\
C11 & .02 & &
\end{tabular}
After Cycle 15, R increased to \(16.8 \%\), and all the anisotropic vibrations had regained their original values:-
```

Mo	.03	Zn	.05
P1	.04	C12	.06
P2	.04	C13	.05
P3	0.05	C14	.08
P4	.05		
C11	.06		

The cause of this behaviour is not clear, but a contributing factor could be that the block diagonal
refinement used did not allow sufficiently for the connelations between chemically interdependent atoms; the shifts in Cycles 14 and 15 were in each case as lange as the expected U values, and the parameters showed signs of oscillating。 Accordingly, it was decided not to refine amisotropically, to use larger blocks, and to apply fractional shifts to all parameters. i.e. the atoms Mo, 01, P1-4, C11; Zn, c12-4; acetone; and bridging carbons, were put into four separate bloclss in which positions and vibrations were refined together, and 0.8 of the calculated shifts were applied. After three cycles (16-18) of refinement, R was 8.3%, and the shifts were small comparied to the standard deviations: The agreement analysis seemed reasonable, and so an T (diff) map was computedo This showed smail variations of electron density at on near most of the atoms, corresponding to unaccounted-for anisotropy of vibration, and also several peaks due to hydrogen atomso However, there was a very pronounced group of four peaks in an otherwise empty part of the cell, and this is presumed to be an acetome molecule of solvation: (The atoms appeared at heights of $\sim 2 e_{0}$) Refinement of the whole structure gave $R=6.6 \%$ after two further cycles (19 and 20), and was not continued any funther.

Table 3.2.4
Bond distances (\AA) and angles $\left({ }^{\circ}\right)$, with their estimated standard deviations.
$\underline{\mathrm{MoOCl}(\text { dppe })_{2}{ }^{+}}$

Mo-cl(1)	2.462(6)	$\mathrm{Cl}(1)-\mathrm{MO}-\mathrm{P}(1)$	85.3(2)
Mo-P(1)	2.554(7)	$\mathrm{Cl}(1)-\mathrm{Mo}-\mathrm{P}(2)$	86.1(2)
Mo-P(2)	$2.569(7)$	$\mathrm{Cl}(1)-\mathrm{Mo}-\mathrm{P}$ (3)	89.1(2)
Mo-P (3)	2.575(6)	$\mathrm{Cl}(1)-\mathrm{MO}-\mathrm{P}(4)$	$86.2(2)$
Mo-P(4)	2.574(7)	$\mathrm{P}(1)-\mathrm{Mo}-\mathrm{P}$ (2)	78.7(2)
Mo-0(1)	1.687(16)	$\mathrm{P}(1)-\mathrm{Mo}-\mathrm{P}$ (3)	100.0(3)
		$\mathrm{P}(1)-\mathrm{Mo}-\mathrm{P}(4)$	171.4(2)
P(1)-C(11)	1.81(3)	$\mathrm{P}(2)-\mathrm{Mo}-\mathrm{P}$ (3)	175.1(3)
$\mathrm{P}(1)-\mathrm{C}(111)$	1.85 (2)	$\mathrm{P}(2)-\mathrm{MO}-\mathrm{P}(4)$	101.6(2)
$\mathrm{P}(1)-\mathrm{C}(121)$	1.85(2)	$\mathrm{P}(3)-\mathrm{MO}-\mathrm{P}(4)$	$79.0(2)$
$P(2)-C(21)$	1.87(2)	$\mathrm{O}(1)-\mathrm{MO}-\mathrm{Cl}(1)$	176.8(6)
$P(2)-C(211)$	$1.84(2)$	$O(1)-\mathrm{Mo}-\mathrm{P}(1)$	97.2(6)
$P(2)-C(221)$	1.83(2)	O(1)-Mo-P(2)	96.4(6)
$\mathrm{P}(3)-\mathrm{C}(31)$	1.82 (3)	O(1)-MO-P(3)	88.5(6)
$P(3)-C(311)$	1.85(2)	O(1)-Mo-P(4)	91.4(6)
$P(3)-C(321)$	1.83 (2)		
$P(4)-C(41)$	1.88(2)	$P(1)-C(11)-C(21)$	112.6(18)
$P(4)-C(411)$	1.85 (2)	$P(2)-C(21)-C(11)$	111.8(17)
$\mathrm{P}(4)-\mathrm{C}(421)$	1.84 (2)	$P(3)-C(31)-C(41)$	109.9(15)
C(11)-C(21)	1.51 (4)	$P(4)-C(41)-C(31)$	105.2(14)
$c(31)-C(41)$	1.62 (3)		
$\mathrm{Mo}-\mathrm{P}(1)-\mathrm{C}(11)$	105.8(10)	Mo-P(2)-C(21)	108.6(7)
Mo-P(1)-C(111)	125.6(7)	Mo-P(2)-C(211)	119.1(8)
Mo-P(1)-C(121)	112.8(7)	Mo-P(2)-C(221)	117.6(7)
$C(11)-P(1)-C(111)$	101.9(12)	$C(21)-P(2)-C(211)$	98.7(11)
$C(11)-P(1)-C(121)$	105.3(12)	$C(21)-P(2)-C(221)$	104.8(10)
$C(111)-P(1)-C(121)$	103.5(9)	$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	105.6(10)
Mo-P(3)-C(31)	105.6(9)	Mo-P(4)-C(41)	108.8(7)
Mo-P(3)-C(311)	113.3(7)	Mo-P(4)-C(411)	128.1(7)
Mo-P(3)-C(321)	121.8(7)	Mo-P(4)-C(421)	110.7(8)
$C(31)-P(3)-C(311)$	101.4(11)	$C(41)-P(4)-C(411)$	99.8(9)
$C(31)-P(3)-C(321)$	106.2(11)	$C(41)-P(4)-C(421)$	104.1(11)
$C(311)-P(3)-C(321)$	106.4(10)	$C(411)-P(4)-C(421)$	102.7(11)

Table 3.2.4 (contd.)
$\mathrm{ZnCl}_{3} \cdot$ acetone ${ }^{-}$

$\mathrm{Zn}-\mathrm{Cl}(2)$	$2.235(8)$	$\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{Cl}(3)$	$117.6(3)$
$\mathrm{Zn}-\mathrm{Cl}(3)$	$2.221(8)$	$\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{Cl}(4)$	$113.2(3)$
$\mathrm{Zn}-\mathrm{Cl}(4)$	$2.233(8)$	$\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{O}(2)$	$99.1(6)$
$\mathrm{Zn}-0(2)$	$2.121(20)$	$\mathrm{Cl}(3)-\mathrm{Zn}-\mathrm{Cl}(4)$	$116.6(3)$
		$\mathrm{Cl}(3)-\mathrm{Zn}-0(2)$	$100.6(6)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.24(4)$	$\mathrm{Cl}(4)-\mathrm{Zn}-\mathrm{O}(2)$	$106.2(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.52(5)$		
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.48(4)$	$\mathrm{Zn}-0(2)-\mathrm{CC(1)}$	$131.2(18)$
		$0(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.4(26)$
		$0(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$125.5(26)$
		$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$115.8(26)$

Free Acetone

$0(3)-c(4)$	$1.21(4)$	$0(3)-c(4)-c(5)$	$123.1(31)$
$c(4)-c(5)$	$1.51(5)$	$0(3)-c(4)-c(6)$	$120.9(31)$
$c(4)-c(6)$	$1.47(5)$	$c(5)-c(4)-c(6)$	$115.9(28)$

Figure 3.2.1
$\underline{\mathrm{MoOCl}(\text { dppe })_{2}} \cdot\left(\mathrm{ZnCl}_{3}\right.$ acetone) Crystal
$\longleftarrow \sim$

$\underline{\underline{\text { Figure } 3.2 .2}} \begin{aligned} & \text { Mo(0) } \mathrm{Cl}(\mathrm{dppe})_{2} \\ & \end{aligned}$
View of the cation, showing the geometry round molybdenum.

Figure 3.2.3
$\mathrm{Mo}(0) \mathrm{Cl}(\text { dppe })_{2} \cdot \mathrm{ZnCl}_{3}$ (acetone) . acetone

One asymmetric unit viewed down the z axis.

Results and Discussion

The final positional and vibrational parameters are listed in Tables 2 and 3 in the Appendix, and the geometry of the complex in Table 4 . The agreement analysis is shown in Table 5. Figure 2 shows the cation; Figure 3 shows one asymmetric unit of the structure, projected down the c axis. (This figure also shows the numbering scheme used.)

The cation has a nearly regular octahedral geometry, while the anion is distorted tetrahedral。 The free acetone molecule of solvation plays no part in the coordination。

Considering first the Mo(IV) cation, the Mo=0 bond (1.69A) is very comparable to other non-bridging Mo=0 bonds, in which there is some double bonding. Similar $M=0$ distances are observed with other heavy metals, e.g. $1.75 \AA^{\circ}$ in $\mathrm{OsCl}_{4} \mathrm{O}_{2}{ }^{2-208}, 1.76 \mathrm{~A}^{2}$ in ReClO_{3}^{209} and $1.89 \mathrm{~A}^{\circ}$ in WOC1 $_{4}$ (diars) ${ }^{210}$ Bridging Mo-O bonds are longer, and terminal Mo-O single bonds (as in $\mathrm{Mo}_{2} \mathrm{O}_{2}\left(\right.$ oxalate) ${ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{211}$) are $\sim 2.1 \AA^{\circ}$. Molybdenum is a metal for which there is extensive bond length data in all its oxidation states, and it can be seen that the $M o=0$ distance is not very sensitive to changes in the Mo oxidation state:(See also Table 6)
$M O=O$

TABLE 3.2.6

Mo-0 Distances in mononuclear complexes

	Mo-0	Reference
$\mathrm{MO}^{\mathrm{VI}} \mathrm{OF}_{4}$	1.65	a
$\mathrm{MO}^{\mathrm{VI}} \mathrm{O}_{2} \mathrm{Cl}_{2}$ (gas)	1.75	b
$\mathrm{Mo}^{\mathrm{VI}_{\mathrm{O}}^{2}} \mathrm{Cl}_{2}(\mathrm{NN}-\mathrm{DMF})_{2}$	1.68	c
$\mathrm{MO}^{\mathrm{VI}} \mathrm{O}_{3}\left(\mathrm{NH}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{NH} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}\right)$	1.74	d
$\mathrm{Mo}^{\mathrm{VI}_{\mathrm{O}}^{2}}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}$	1.71	e
$\mathrm{Mo}^{\mathrm{VI}_{\mathrm{O}}^{2}}\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)$	1.63	f
$\mathrm{Mo}{ }^{\mathrm{VI}} \mathrm{O}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right) \mathrm{Br}_{2}$	1.64,1.83	g
$\mathrm{Mo}{ }^{\mathrm{V}} \mathrm{OBr}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}$	1.78	h
$\mathrm{Mo} \mathrm{OCl}_{3}$	1.60	i
$\mathrm{Mo} \mathrm{V}_{\mathrm{OF}_{5}{ }^{2-} \text { - }}$	1.66	j
$\mathrm{Mo}^{\mathrm{IV}} \mathrm{O}_{2}(\mathrm{CN})_{4}^{4-}$	1.83	k
$\mathrm{Mo}^{\text {IV }} \mathrm{OCl}(\mathrm{dppe})_{2}{ }^{+}$	1.69	1

a. A J Edwards \& B R Steventon, JCS(A), 1968, 2503
b. A F Wells, "Structural Inorganic Chemistry", p. 387
c. L R Florian \& E R Corey, Inorg. Chem., 1968, 7, 722
d. FA Cotton \& R C Elder, Inorg. Chem., 1964, 3, 397
e. L O Atovmyan \& Y A Sokolova, JCS(D), 1969, 649
f. A Kopwillen \& P Kierkegaard, Acta.Chem.Scand., 1969, 23, 2184
g. RHEenn, $\operatorname{JCS}(A), 1969,1764$
h. J G Scane, Acta.Cryst., 1967, 23, 85
i. G Ferguson, M Mercer \& D W A Sharp, JCS (A), 1969, 2415
j. D Grandjean \& R Weiss, Compt.Rend., 1966, 263(C), 58
k. V W Day \& J L Hoard, JACS, 1968, 90, 3374

1. V C Adam, U A Gregory \& B T Kilbourn, JCS (D), 1970, 1400

An octahedral radius of $1.6{ }^{\circ}$ has been derived for Mo(0), from Mo-C sigma bonds but is probably not applicable to Mo(IV). Nevertheless, the correct radius for Mo(IV) is presumably greater than the Pauling ionic value of $1.3 \mathrm{~A}^{138}$

The oxygen and chlorine are almost exactly trans to each other $\left(0-M o-C 1=177^{\circ}\right)$, with Mo-C1 $2.462 \AA$. This fits in well with the trend of Mo-Cl distances for different oxidation states. It is not possible to say that the short $M o=0$ bond has a weakening effect on the bond trans to it, but there is a slight lengthening of Mo-C1 relative to Mo(III)-C1 of $2.45 \AA$. If the interpolation is reliable:-

Mo(IV)-C1 should be about 2.40A. (See also Table 7)

The Mo-p bonds (average $2.57 \AA$) are all very similar and longer than in other Mo phosphine complexes (see Table 8);

TABLE 3.2.7

Mo-Cl Distances

;	$\mathrm{MO}-\mathrm{Cl}$	Reference
$\mathrm{Mo}^{\mathrm{VI}} \mathrm{O}_{2} \mathrm{Cl}_{2}$ (gas)	2.28	a
$\mathrm{Mo}^{\mathrm{VI}} \mathrm{O}_{2} \mathrm{Cl}_{2}(\mathrm{NN}-\mathrm{DMF})_{2}$	2.34	b
$\mathrm{Mo}^{\mathrm{V}} \mathrm{Cl}_{5}$,	$2.24,2.25$	c
$\mathrm{Mo}^{\mathrm{V}} \mathrm{OCl}_{3}$	2.28	d
$\mathrm{Mo}^{\mathrm{IV}} \mathrm{OCl}$ (dppe) ${ }_{2}{ }^{+}$	2.46	
$\mathrm{Mo}^{\text {IV }} \mathrm{Cl}_{6}{ }^{2-}$	2.31	e
$\mathrm{Mo}^{\text {III }} \mathrm{Cl}_{6}{ }^{3-}$	2.43-2.49	f
$\mathrm{Mo}_{2}{ }^{\mathrm{II}} \mathrm{Cl}_{8}^{4-}$	2.44-2.46	g
$\mathrm{MO}_{2}{ }^{-} \mathrm{Cl}_{8}{ }^{3-}$	2.38	h
$\mathrm{Mo}^{\mathrm{I}}(\mathrm{CO})_{3}(\pi \mathrm{CP}) \mathrm{Cl}$	2.54	i
MO^{I} (CO) ($\left.\pi \mathrm{Cp}\right) \mathrm{Cl}$ (dppe)	2.55	j

a. A F Wells, "Structural Inorganic Chemistry", p. 387
b. L R Florian \& E R Corey, Inorg. Chem., 1968, 7, 722
c. D E Sands \& A Zalkin, Acta.Cryst., 1959, 12, 723
d. G Ferguson, M Mercer \& D W A Sharp, JCS(A), 1969, 2415
e. A G Edwards, R D Peacock \& A Said, JCS, 1962, 4643
f. Z Amilius, B van Laar \& H M Rietveld, Acta.Cryst., 1969, B25, 400
g. J V Brencic \& F A Cotton, Inoxg. Chem., 1969, 8,7 J V Brencic \&.F A Cotton, Inorg. Chem., 1969, $\underline{\underline{8}}, 2698$
h. M J Bennett, J V Brencic \& F A Cotton, Inorg. Chem., 1969, 8, 1060
i. S Chiawasie \& R H Fenn, Acta.Cryst., 1968, B24, 525
j. JH Cross \& R H Eenn, JCS(A), 1970, 3019

Mo-P Distances

	Mo-P	Reference
MoOCl(dppe) ${ }^{+}$		
$\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{PEt})_{5}$	2.51,2.53	a
$\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}: \mathrm{CHMe}\right)$	2.52	b
$\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{NEt} \cdot \mathrm{PPh}_{2}\right)$	2.51	c
$\mathrm{Mo}(\mathrm{CO})_{2}(\pi \mathrm{Cp})\left(\mathrm{COCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)$	2.47	d
$\mathrm{Mo}_{2}(\pi \mathrm{CP})_{2} \mathrm{H}\left(\mathrm{PMe}_{2}\right)(\mathrm{CO})_{4}$	$\begin{gathered} 2.43 \\ \text { (bridging) } \end{gathered}$	e
$\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{Ph}_{2} \mathrm{P} \cdot \mathrm{NEt} \cdot \mathrm{PPh} \cdot \mathrm{NEt} \cdot \mathrm{PPh}_{2}\right)$	2.43-2.53	f
Mo(CO)CI($\pi C \mathrm{C}$) (dppe)	2.44,2.50	g

a. M A Bush \& P Woodward, JCS(A), 1968, 1221
b. H Luth, M R Truter \& A Robson, JCS(A), 1969, 28
c. D S Payne, J A A Mokuolu \& J C Speakman, Chem. Comm., 1965, 599
d. M R Churchill \& J P Fennessey, Inorg. Chem., 1968, 7, 953
e. R J Doedens \& L F Dahl, JACS, 1965, 87, 2576
f. K K Cheung, T F Lai \& S Y Lam, JCS(A), 1970, 3345
g. J H Cross \& R H Fenn, JCS(A), 1970, 3019

```
these other complexes contain the metal in a very
Low oxidation state which i.s not really comparable.
If there is no pi-bonding in the present example,
a radius of 1.4rA is derived for Mo (P 1:10A.).
```

Since there will probably be some double bonding
contributión, a radius of $\sim 1 \circ 5 \AA$ would be a reasonable
value for Mo(IV).
The four P atoms and the metal are almost co-planar,
Mo Iying 0.1.5A out of the plane;
$-2.99 x+17.99 y-3.75 z+1.3=0$

In the phosphine groups, each Iigand has one short ($1.81 \AA$) and one long (1.8% A) p-C(bridging) bond. The average of the $P-C(p h e n y 1)$ bonds is $1.843 \AA^{\circ}$. The angles round P range from 99° to 125°. The bites: of both Ligands are 79°, and within each ligand the torsion angles are comparable to those in other dppe complexes (see Table 9)。 It is noticeable that this is the only structure in which both ligands have the same ($\lambda \lambda$) conformation, joe the most favourable sterically for trans diphosphine groupings.

The phenyl groups were refined as rigid bodies, so no comment can be made on their geometries. The dihedral angles between rings are $83^{\circ}, 82^{\circ}, 75^{\circ}, 79^{\circ}$. This

TABLE 3.2 .9

Torsion angles (${ }^{\circ}$) in dppe complexes

	$T(M-P)$	$\underline{T}(\mathrm{P}-\mathrm{C})$	$\underline{T(C-C)}$	$\underline{T}(C-P)$	$\underline{T(P-M)}$	Reference
$\mathrm{MoOCl}(\text { dppe })_{2}{ }^{+}$	$\begin{aligned} & -24 \\ & -19 \end{aligned}$	$\begin{aligned} & +51 \\ & +52 \end{aligned}$	$\begin{aligned} & -51 \\ & -62 \end{aligned}$	$\begin{aligned} & +26 \\ & +42 \end{aligned}$	$\begin{aligned} & +2 \\ & -10 \end{aligned}$	
$\mathrm{ReH}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ (dppe)	+14	-45	+55	-46	+14	a
$\begin{array}{cr}\mathrm{Rh}(\text { dppe })_{2} & \mathrm{ClO}_{4}\end{array}$	$\begin{aligned} & -32 \\ & +26 \end{aligned}$	$\begin{aligned} & +52 \\ & -51 \end{aligned}$	$\begin{aligned} & -43 \\ & +51 \end{aligned}$	$\begin{aligned} & +18 \\ & -31 \end{aligned}$	$\begin{gathered} +10 \\ 0 \end{gathered}$	b
$\mathrm{Ir}(\text { dppe })_{2} \mathrm{Cl}$	$\begin{aligned} & +30 \\ & -26 \end{aligned}$	$\begin{aligned} & -49 \\ & +50 \end{aligned}$	$\begin{aligned} & +42 \\ & -48 \end{aligned}$	$\begin{aligned} & -18 \\ & +25 \end{aligned}$	$\begin{aligned} & -9 \\ & +3 \end{aligned}$	c
$\mathrm{IrCO}(\text { dppe })_{2} \mathrm{Cl}$	$\begin{array}{r} -17 \\ +31 \end{array}$	$\begin{aligned} & +45 \\ & -47 \end{aligned}$	$\begin{array}{r} -54 \\ +38 \end{array}$	$\begin{aligned} & +38 \\ & -13 \end{aligned}$	$\begin{aligned} & -8 \\ & -12 \end{aligned}$	d
$\mathrm{Rh}\left(\mathrm{O}_{2}\right)(\text { dppe })_{2} \mathrm{PF}_{6}$	$\begin{aligned} & -29 \\ & +27 \end{aligned}$	$\begin{array}{r} +52 \\ -46 \end{array}$	$\begin{array}{r} -49 \\ +43 \end{array}$	$\begin{aligned} & +24 \\ & -21 \end{aligned}$	$\begin{aligned} & +6 \\ & -6 \end{aligned}$	e
$\operatorname{Ir}\left(\mathrm{O}_{2}\right)(\text { dppe })_{2} \mathrm{PF}_{6}$	-26 +24	$\begin{aligned} & +49 \\ & -50 \end{aligned}$	$\begin{aligned} & -50 \\ & +53 \end{aligned}$	$\begin{aligned} & +28 \\ & -30 \end{aligned}$	$\begin{array}{r} +3 \\ 0 \end{array}$	e
$\mathrm{NiBr}($ dppe $)\left(\mathrm{CH}_{2} \mathrm{CMeCH}_{2}\right)$	+31	-54	+48	-22	-8	f

a. V Albano, P Bellon \& V Scatturin, lst Lombardo (Rend.Sci.)A, 1966, 100, 989
b. MC Hall, B T Kilbourn \& K A Taylor, JCS(A), 1970, 2539
c. M C Hall \& B T Kilbourn, unpublished data
d. J A J Jarvis et al., Chem.Comm. 7 1966, 906
e. J A McGinnety, N C Payne \& J A Ibers, JACS, 1969, 91, 6301
f. MR Churchill \& T A O'Brien, JCS(A), 1970, 206
again fits in with other dppe geometries, eogo in
$\operatorname{Rh}(\text { dppe })_{2}^{+}$these angles are $54^{\circ}, 59^{\circ}, 63^{\circ}, 88^{\circ}{ }^{21}$
The anion in this complex is derived from $\operatorname{ZnCl}{ }_{4}^{2-}$ by replacement of one chlorine by a neutral molecule。 In the crystals examined, this is acetone, though analogous compounds containing ZnCl $_{3}$ (THF) and ZaCl $_{3}\left(\mathrm{CHCl}_{3}\right)^{-}$have also been prepared. This is thought to be the first reported structure of a $\operatorname{ZnCl}_{3} X^{-}$ion, al.though $\operatorname{ZnBr}_{3} X^{-}$and $\operatorname{ZnI}_{3} X^{-}$have been described. (See Table 10): Zinc readily forms anions with neutral ligands; and the geometries are usually distorted tetrahedral, as in ZnCl ${ }_{4}^{2-}$ itselfo The zinc and acetone lie in a plane and the acetone forms a donor bond through its lone pair, at an angle of 131° and a distance of $2.12 \AA^{\circ}$. This is longer than other reported $\mathrm{Zn}-\mathrm{O}$ distances which range from 2.03 A in $\mathrm{Zin}\left(\mathrm{NH}_{2} \circ \mathrm{NH}_{0} \mathrm{CO}_{2}\right)_{2}^{215}$ to $2.09 \AA$ in $(M e Z n O M e)_{4}^{216}$, and this may be related to the ease of replacement of acetone by other solvent molecules. The acetone geometry is regular; the best plane being: -

$$
5.08 x-5.63 y-22.84 z+0.3=0
$$

The distances are $C=0$ 1.24, $C-C 1.48,1.52 \AA$, and these are very similar to those in the free molecule of solvation $(C=01.21, C-C 1.47,1.51 A)$ o The best plane through the free acetome i.s:-

$$
16.15 x-2.40 y-18.67 z+2.4=0
$$

TABLE 3.2 .10
$\underline{\mathrm{ZnCl}_{4}{ }^{2-} \text { and related entities }}$

	$\mathrm{Zn}-\mathrm{X}$	Reference
$\left(\mathrm{ZnCl}_{3} \cdot \text { acetone }\right)^{-}$	2.23	
$\left(\mathrm{ZnCl}_{4}\right)\left(\mathrm{NMe}_{4}\right)_{2}$	2.27-2.30	a
$\left(\mathrm{ZnCl}_{4}\right)\left(\mathrm{N}_{2}-\mathrm{pC}_{6} \mathrm{H}_{4}-\mathrm{N}_{2}\right)$	2.28	b
$\left(\mathrm{ZnCl}_{4}\right)\left(\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right) \mathrm{Cl}$	2.22-2.36	c
$\left(\mathrm{ZnBr}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right)^{-}$	2.36-2.39	d
$\left(\mathrm{ZnI}_{3} \cdot\left(\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{SCH}_{2}\right)\left(\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)_{2} \mathrm{SMe}\right)\right.$	2.62-2.68	e
ZnCl_{2} (terpyridyl)	2.25-2.27	f
$\mathrm{ZnCl}_{2}\left(\mathrm{SC}\left(\mathrm{NH}_{2}\right) \mathrm{NHNH}_{2}\right)$	2.24	g
ZnCl_{2} (1,10-phenanthroline)	2.20,2.21	h
$\mathrm{ZnCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}\right)_{2}$	2.25	i

a. J R Wiesner et al., Acta Cryst., 1967, 23, 565
b. A Mostad \& C R ϕ mming, Acta.Chem.Scand., 1968, 22, 1259
c. D W Meek \& J A Ibers, Inorg.Chem., 1970, 9, 465
d. H Follner \& B Brehler, Acta.Cryst., 1968, B24, 1339
e. B T Kilbourn \& D Felix, JCS(A), 1969, 163
f. F W B Einstein \& B R Penfold, Acta. Cryst., 1966, 20, 924
g. L Cavalca, M Nardelli \& G Branchi, Acta. Cryst., 1960, 13, 688
h. C W Reimann, S Block \& A Perloff, Inorg.Chem., 1966, 5, 1185
i. R.S Sager \& W H Watson, Inorg. Chem., 1968, ㄱ, 1358
and the geometry is comparable with other solvated acetone molecules, eogo in an inon complex $\mathrm{Cs}_{2}\left(\pi-(3)-1,2-\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right)_{2} \mathrm{Te}_{2}(\mathrm{CO})_{4}$ acetone。H $_{2} \mathrm{O}_{0}$ There are no abmormally close contacts and so the intermolecular contacts ane not listed。

APPENDIX I

Programs used routinely in structural analyses

APPENDIX II

The final positional and thermal parameters are tabulated, for each completed structure analysis.

The tables of observed and calculated structure factors are arranged in the form:

1) centric structures: $F_{o} F_{c}(\operatorname{sign}$ of $\cos \alpha)$
2) acentric structures: $F_{o} F_{c} \alpha$

1 is the running index, and all the values are on the absolute scale.

Tables of the agreement between F_{o} and F_{c}, follow the structure factor tables.

$$
\underline{\mathrm{RuH}\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\mathrm{dmpe})_{2}}
$$

Table 2.2.2

Final Positional Parameters (fractional coordinates, X 10^{5} for the ruthenium and phosphorus atoms, $\times 10^{4}$ for the remainder) with estimated standard deviations, and mean square atomic vibrations $\left(\AA^{2}, \times 10^{3}\right)$ for carbon atoms, with estimated standard deviations.

Atom	\underline{x}	y	\underline{z}	U
Ru	29769(5)	21965(8)	11775(4)	
P(1)	22779(25)	41342(35)	05189(19)	
P(2)	42400(22)	28765(33)	08915(18)	
P (3)	17669(23)	12651(35)	14247(20)	
P(4)	35209(23)	29860(33)	24363(15)	
* C (11)	2918(25)	4610(38)	-0144(21)	253(14)
*C(12)	1864(18)	5470(29)	0933(17)	189(9)
*C(13)	1272(21)	4361(34)	-0471(18)	217(12)
C(21)	3968(12)	4408(17)	0340(10)	114(5)
C(22)	4665(11)	1821(15)	0311(9)	102(4)
C(23)	5411(12)	3275(18)	1671(10)	120(5)
C(31)	1992(14)	1398(21)	2456(12)	137(6)
C(32)	1561(13)	-0485(20)	1264(11)	133(6)
C(33)	0574(16)	1898(23)	0907(13)	155(7)
*C(41)	2651(19)	2445(26)	2848(16)	175(9)
*C(42)	3632(13)	4680(20)	2810(11)	131(6)
c(43)	4596(13)	2298(18)	3171(11)	121(5)
c(1)	1310(7)	1076(10)	-0524(6)	$64(2)$
C(2)	2553(7)	0863(10)	0195(6)	64(2)
C(3)	3058(10)	-0351(15)	0279(8)	96(4)
C(4)	2786(11)	-1263 (16)	-0375(9)	105(4)
C(5)	1791(13)	-1977(18)	-1731(11)	121(5)
C(6)	1093(13)	-1590(19)	-2371(10)	121(5)
C(7)	0590(13)	-0480(20)	-2475(11)	129(6)
C(8)	0804(9)	0487(14)	-1890(8)	90(3)
c(9)	1568(8)	0148(12)	-1155(7)	79(3)
C(10)	2087(9)	-1027(14)	-1029(7)	85(3)

[^6]
Table 2.2.3

Mean square atomic vibrations $\left(\mathrm{A}^{2}, \times 10^{4}\right)$ for ruthenium and phosphorus atoms, with estimated standard deviations

Atom	U_{11}	$2 \mathrm{U}_{12}$	$2 \mathrm{U}_{13}$	U_{22}	$2 \mathrm{U}_{23}$	U_{33}
Ru	$543(3)$	$032(7)$	$436(5)$	$611(4)$	$016(7)$	$403(3)$
$\mathrm{P}(1)$	$898(21)$	$353(33)$	$609(31)$	$830(20)$	$231(30)$	$673(17)$
$\mathrm{P}(2)$	$703(16)$	$-037(30)$	$869(28)$	$906(21)$	$096(31)$	$748(17)$
$\mathrm{P}(3)$	$779(18)$	$-416(32)$	$960(32)$	$915(22)$	$-145(33)$	$847(19)$
$\mathrm{P}(4)$	$854(19)$	$138(30)$	$371(26)$	$863(21)$	$-157(26)$	$470(13)$

-1,

促

"

Table 2.2.6

Analysis of Agreement between Observed and Calculated Structure Factors at $\mathrm{R}=8.0 \%$

Range $\left\|F_{0}\right\|$	No.	$\Sigma\left\|F_{0}\right\|$	$\Sigma\left\|F_{C}\right\|$	$\Sigma\|\Delta F\|$	$A v \cdot W\|\Delta F\|^{2}$	R
$0-11$	611	5946	5925	865	2.78	0.145
$11-23$	1318	21121	20780	2092	2.71	0.099
$23-34$	632	17455	17323	1465	4.05	0.084
$34-45$	350	13564	13300	968	3.27	0.071
$45-56$	221	11001	10969	718	3.10	0.065
$56-68$	131	8047	7931	575	4.41	0.071
$68-79$	77	5634	5573	344	3.33	0.061
$79-90$	51	4336	4259	270	3.47	0.062
$90-101$	39	3732	3693	163	1.59	0.044
$101-113$	27	2881	2770	148	2.70	0.051
113-135	28	3429	3344	187	2.99	0.054
$135-338$	28	5021	4782	329	3.49	0.064
all data	3513	102167	100649	8124	-	0.080

$\operatorname{Sin} \theta / \lambda$

$0.0-0.1$	17	2498	2340	195	6.33	0.078
$0.1-0.2$	140	9270	8852	1018	12.86	0.110
$0.2-0.3$	384	21010	21159	1575	5.98	0.075
$0.3-0.4$	671	23982	23646	1914	4.02	0.080
$0.4-0.5$	986	24526	23670	1926	2.54	0.079
$0.5-0.6$	1046	17595	17605	1242	1.27	0.071
$0.6-0.7$	269	3284	3378	253	0.91	0.077

$$
\mathrm{OsH}^{\left(\mathrm{C}_{10} \mathrm{H}_{7}\right)(\mathrm{dmpe})_{2}}
$$

CHAPTER 2.4

Table 2.4.2

Final Positional Parameters (fractional coordinates, $\times 10^{5}$ for the osmium and phosphorus atoms, $\times 10^{4}$ for the remainder) with estimated standard deviations, and mean square atomic vibrations ($\AA^{2}, \times 10^{3}$) for carbon atoms, with estimated standard deviations.

Atom	x	y	\underline{z}	$\underline{\mathrm{U}}$
Os	29665(5)	22557(7)	11772(3)	
$\mathrm{P}(1)$	22682(44)	41844(63)	05201(33)	
$\mathrm{P}(2)$	42202(41)	29570(61)	09026(32)	
P(3)	17588(45)	13370(64)	14256(34)	
P(4)	34936(44)	30599(61)	24346(28)	
* $\mathrm{C}(11)$	3230(29)	5380(41)	0599(23)	211(15)
* $\mathrm{C}(12)$	1710(25)	5447(38)	0879(22)	185(13)
* C (13)	1385(25)	4363(38)	-0459(21)	185(13)
C(21)	3916(20)	4514(29)	0320(17)	138(9)
C(22)	4666(20)	1856(29)	0301(17)	138(9)
C(23)	5404(18)	3462(28)	1711(15)	129(8)
C(31)	1970(24)	1431(35)	2508(20)	166(11)
c(32)	1536(23)	-0429(34)	1290(19)	162(11)
c(33)	0562(22)	1952(31)	0952(18)	148(10)
*C(41)	2508(28)	2638(35)	2788(24)	179(13)
*C(42)	3733(21)	4771(30)	2779(18)	151(10)
* C (43)	4589(21)	2372(25)	3190(18)	130(9)
C(1)	1799(13)	1091(18)	-0496(11)	84(5)
C(2)	2571(12)	0941(17)	0205(10)	78(4)
c (3)	3087(18)	-0322(25)	0316(15)	119(7)
C(4)	2845(20)	-1193(28)	-0385(17)	135(9)
C(5)	1864(22)	-2027(29)	-1682(19)	138(9)
C(6)	1088(22)	-1580(33)	-2339(18)	143(9)
C(7)	0592(22)	-0536(34)	-2477(19)	152(10)
C(8)	0776(18)	0441(25)	-1878(15)	118(7)
C(9)	1566(14)	0131(19)	-1148(11)	89(5)
c(10)	2082(15)	-0985(23)	-1046(13)	102(6)

[^7]
Table 2.4.3

Méan square atomic vibrations $\left(\AA^{2}, \times 10^{4}\right)$ for osmium and phosphorus atoms, with estimated standard deviations

Atom	U_{11}	$2 \mathrm{U}_{12}$	$2 \mathrm{U}_{13}$	U_{22}	$2 \mathrm{U}_{23}$	U_{33}
Os	$723(4)$	$059(7)$	$595(5)$	$763(4)$	$042(6)$	$490(3)$
$\mathrm{P}(1)$	$1041(41)$	$354(64)$	$568(60)$	$1086(41)$	$328(58)$	$786(33)$
$\mathrm{P}(2)$	$925(34)$	$-020(60)$	$983(56)$	$1158(42)$	$186(57)$	$808(31)$
$\mathrm{P}(3)$	$1071(40)$	$-503(68)$	$1164(65)$	$1190(45)$	$-196(62)$	$878(35)$
$\mathrm{P}(4)$	$1088(40)$	$270(64)$	$587(53)$	$1133(42)$	$099(52)$	$595(26)$

——at:

…...:
 \qquad

: $=\ldots \ldots$.

-

\# ; …sus,

 -Аะะ
$=\ldots \ldots \ldots$...... -

 …...

Analysis of Agreement between Observed and Calculated
Structure Factors at $R=7.2 \%$

Range $\left\|F_{o}\right\|$	No.	$\Sigma\left\|F_{o}\right\|$	$\Sigma\left\|F_{c}\right\|$	$\Sigma\|\Delta F\|$	$A v . w\|\Delta F\|^{2}$	R
$0-17$	226	3431	2520	1087	31.68	0.317
$17-34$	1172	28409	27022	3154	12.87	0.111
$34-51$	649	27003	27121	1568	9.03	0.058
$51-68$	371	21547	21605	1175	12.10	0.055
$68-84$	222	16679	16755	766	8.30	0.046
$84-101$	110	10105	10166	456	9.03	0.045
$101-118$	94	10330	10172	581	12.89	0.056
$118-152$	92	12213	12124	607	9.63	0.050
$152-203$	71	12163	11831	743	12.80	0.060
$203-507$	37	9782	9155	837	19.93	0.073
al1 data	3044	151662	148471	10974	-	0.072

$\sin \theta / \lambda$

$0.0-0.1$	18	3939	3513	480	36.38	0.122
$0.1-0.2$	154	16273	15554	1397	29.30	0.086
$0.2-0.3$	398	33761	33649	2136	15.78	0.063
$0.3-0.4$	698	39039	38609	2246	9.81	0.058
$0.4-0.5$	1036	38168	37614	2648	10.39	0.069
$0.5-0.6$	740	20481	19532	2067	13.66	0.101

Table 2.7.2

Final positional parameters (fractional co-ordinates, x 10^{5} for Iridium and phosphorus atoms, $\times 10^{4}$ for the remainder) with corresponding standard deviations and mean square atomic vibrations $\left(\AA^{3} \times 10^{3}\right)$ for carbon atoms, with estimated standard deviations

Atom	\times	y	z	U
Ir	21143(4)	14042(2)	00000(0)	
P(1)	31448(31)	08061(14)	-01299(74)	
P(2)	12363(45)	10958(19)	-17887(70)	
P(3)	10081(43)	19736(17)	02168(82)	
P(4)	28747(65)	16670(23)	19192(78)	
c(11)	2865(20)	0541(8)	-1761(27)	68(6)
C(12)	4583(15)	0853(6)	0050(48)	66(5)
C(13)	2892(20)	0404(8)	1168(28)	65(6)
C(21)	1761(25)	0558(10)	-1997(34)	89(9)
C(22)	1282(28)	1351(10)	-3436(36)	100(10)
C(23)	4800(27)	3992(11)	-1635(40)	95(11)
C(31)	1557(25)	2333(9)	1434(32)	98(8)
C(32)	4655(27)	3130(10)	0836(36)	110(10)
C(33)	0832(31)	2321(12)	-1335(40)	103(12)
C(41)	2166(37)	2103(15)	2466(51)	174(17)
C(42)	4261(24)	1860(9)	1943(34)	100(9)
C(43)	2936(36)	1290(15)	3392(53)	145(17)
c(1)	3141(17)	1740(7)	-1244(24)	51(5)
C(2)	4437(20)	1724(8)	-3068(29)	72(7)
0(1)	3452(16)	2105(6)	1109(22)	91(6)
O(2)	3633(15)	1524(5)	-2271(19)	74(5)
B	2468(20)	4003(8)	3494(29)	50(6)
C(111)	2576(21)	3528(8)	4204(28)	64(7)
C(112)	1695(20)	3278(8)	4481(25)	75(7)
C(113)	1717(21)	2867(8)	5141(41)	97(8)
C(114)	2715(29)	2742(11)	5615(37)	111(12)
C(115)	3591(24)	2951(9)	5368(32)	95(10)
C(116)	3516(19)	3356(7)	4623(25)	70(7)
C(121)	3556(19)	4271(7)	3842(25)	63(6)
C(122)	4441(21)	4245(8)	2964(29)	72(7)
C(123)	5356(23)	4453(9)	3334 (31)	88(8)
C(124)	5422(24)	4703(9)	4479(30)	85(9)
C(125)	4620(18)	4724(7)	5328(25)	73(7)
C(126)	3658(16)	4510(6)	5075(44)	60(5)
C(131)	2371(15)	3931(6)	1856(23)	46(5)
C(132)	2119(18)	3542(7)	1237(23)	65(5)
C(133)	2007(18)	3492(7)	-0085(56)	81(7)
C(134)	2145(22)	3842(9)	-0977(31)	82(7)
C(135)	2364(22)	4228(9)	-0423(28)	75(8)
C(136)	2478(22)	4281(9)	1002(30)	78(7)
C(141)	1445(17)	4231(7)	4123(22)	49(5)
C(142)	1172 (20)	4199(8)	-4515(24)	72(7)
C(143)	0326(24)	4407(10)	-3940(33)	74 (8)
C(144)	-0301(23)	4661(9)	-4708(31)	113(9)
C(145)	-0095(23)	4688(9)	3926(30)	84(7)
C(146)	0765(16)	4489(7)	3321(23)	53(5)

Table 2.7.3

Mean square atomic vibrations $\left(\AA^{2} \times 10^{4}\right)$ for
Iridium and phosphorus atoms, with corresponding standard deviations

	U_{11}	$2 \mathrm{U}_{12}$	$2 \mathrm{U}_{13}$		U_{22}	$2 \mathrm{U}_{23}$
	U_{33}					
Ir	$342(2)$	$-24(6)$	$151(14)$	$397(2)$	$-34(15)$	$531(3)$
$\mathrm{P}(1)$	$35(2)$	$11(4)$	$-5(6)$	$51(2)$	$-16(7)$	$53(3)$
$\mathrm{P}(2)$	$39(3)$	$-1(5)$	$-1(6)$	$60(3)$	$-13(6)$	$68(4)$
$\mathrm{P}(3)$	$57(3)$	$23(5)$	$27(7)$	$45(3)$	$-18(7)$	$99(6)$
$\mathrm{P}(4)$	$76(5)$	$-23(8)$	$31(9)$	$75(4)$	$-31(7)$	$67(4)$

 :

 a

 $\mathfrak{A B}$

 …

 - Bry zin

Table 2.7 .5

Analysis of Agreement between Observed and Calculated
Structure Factors at $R=6.2 \%$

Range	No.	$\Sigma\left\|F_{0}\right\|$	$\Sigma\left\|F_{C}\right\|$	$\Sigma\|\Delta F\|$	$A v, w\|\Delta F\|^{2}$	R
$\left\|F_{0}\right\|$						
$0-28$	666	15619	15185	2910	32.20	0.186
$28-42$	788	27159	27337	2661	17.86	0.098
$42-56$	508	24738	24839	1531	13.64	0.062
$56-70$	335	21006	20835	999	12.59	0.048
$70-84$	266	20399	20240	837	12.78	0.041
$84-98$	188	17021	16968	611	11.73	0.036
$98-112$	111	11568	11540	384	14.94	0.033
$112-126$	69	8194	8206	228	10.23	0.028
$126-140$	62	8209	8205	252	14.70	0.031
$140-168$	75	11547	11464	390	22.15	0.034
$168-224$	72	13676	13684	435	20.45	0.031
$224-420$	29	8019	8098	349	43.15	0.041

$\sin \theta / \lambda$

$0.0-0.1$	20	3854	3917	178	29.70	0.046
$0.1-0.2$	131	6155	15901	897	38.93	0.056
$0.2-0.3$	326	32411	32841	1279	16.60	0.039
$0.3-0.4$	577	42017	41785	1808	12.47	0.043
$0.4-0.5$	808	45029	44580	2493	13.39	0.055
$0.5-0.6$	942	36850	36791	3228	18.97	0.088
$0.6-0.7$	365	10838	10789	1702	35.47	0.157

Table 2.8.2

Final positional parameters (fractional co-ordinates, $\times 10^{5}$ for Nickel, Phosphorus and Chlorine atoms, $\times 10^{4}$ for the remainder) with corresponding standard deviations and mean square atomic vibrations ($\AA^{2} \times 10^{3}$) for carbon atoms, with estimated standard deviations.

Atom	x	y	z	U
Ni	25205 (7)	02693(11)	01340(6)	
P(1)	30703(13)	-14774(23)	09546(12)	
P(2)	19413(12)	14816(23)	-09444(12)	
Cl	25312(23)	20951(29)	10657(14)	
C(11)	3731(6)	-2797(10)	0405(6)	36(2)
C(12)	4080(7)	-4142(12)	0937(7)	52(3)
c(13)	4409(7)	-1988(12)	-0040(6)	50(3)
C(14)	2262(6)	-2697(10)	1344(6)	36(2)
C(15)	1629(8)	-1728(15)	1797(8)	67(3)
C(16)	1795(7)	-3567(13)	0613(7)	52(3)
c(17)	3611(6)	-0775(10)	1950(6)	37(2)
C(18)	4374(8)	0097(15)	1763(8)	67(3)
c(19)	3807(8)	-1918(15)	2667(8)	70(3)
C(21)	1323(6)	3109(11)	-0626(6)	39(2)
C(22)	0593(9)	2585(16)	-0136(8)	73 (4)
C(23)	1076(8)	4260(15)	-1327(8)	69(3)
C(24)	2730(5)	2348(9)	-1575(5)	30 (2)
c(25)	3277(7)	1166(12)	-1952(6)	47(2)
c(26)	3272(7)	3426(13)	-1006(7)	55(3)
C(27)	1356(6)	0284(12)	-1712(5)	39(2)
c(28)	0702(7)	-0686(12)	-1287(7)	51(3)
C(29)	0927(7)	1085(12)	-2507(6)	51(3)

Table 2.8.0 3

Mean square atomic vibrations ($\AA^{2} \times 10^{4}$) for Nickel, Chlorine and Phosphorus atoms, with estimated standard deviations.

	U_{11}	$2 \mathrm{U}_{12}$	$2 \mathrm{U}_{13}$	U_{22}	$2 \mathrm{U}_{23}$	U_{33}
Ni	$282(5)$	$49(11)$	$-42(7)$	$222(4)$	$18(10)$	$224(4)$
$\mathrm{P}(1)$	$265(12)$	$73(18)$	$-58(16)$	$222(9)$	$1(17)$	$257(9)$
$\mathrm{P}(2)$	$219(12)$	$10(18)$	$-35(15)$	$236(9)$	$7(17)$	$235(9)$
Cl	$1186(27)$	$583(31)$	$365(28)$	$359(14)$	$-176(21)$	$293(12)$

 :

2:5voukiob
 …........: …............................:0:ニ̊:

 ․oposorovo

Table 2.8 .5

Analysis of Agreement between Observed and Calculated Structure Factors at $R=5.5 \%$

Range $\left\|F_{0}\right\|$	No.	$\Sigma\left\|F_{\mathrm{o}}\right\|$	$\Sigma\left\|F_{\mathrm{c}}\right\|$	$\Sigma\|\Delta F\|$	$A v . w\|\Delta F\|^{2}$	R
$0-25$	429	9987	9905	737	3.65	0.074
$25-34$	601	17627	17491	1030	3.40	0.058
$34-42$	307	11614	11526	617	3.74	0.053
$42-51$	218	10067	10056	489	3.90	0.049
$51-59$	130	7137	7084	356	5.27	0.050
$59-68$	87	5517	5485	235	3.65	0.043
$68-76$	53	3802	3759	139	2.74	0.037
$76-85$	34	2741	2696	154	7.48	0.056
$85-102$	37	3415	3391	189	8.91	0.055
$102-119$	21	2307	2308	110	4.81	0.048
$119-254$	29	4517	4387	265	6.93	0.059

$\operatorname{Sin} \theta / \lambda$

$0.0-0.1$	11	1267	1304	86	8.60	0.068
$0.1-0.2$	95	6206	6016	489	12.99	0.079
$0.2-0.3$	245	13904	13797	968	7.96	0.070
$0.3-0.4$	431	19644	19477	990	3.73	0.050
$0.4-0.5$	524	18698	18620	867	2.61	0.046
$0.5-0.6$	482	14906	14758	701	2.15	0.047
$0.6-0.7$	158	4105	4116	221	2.23	0.054

Table 2.9.2

Final positional parameters (fractional co-ordinates, $\times 10^{5}$ for Palladium, Chlorine and Phosphorus atoms, $\times 10^{4}$ for the remainder) with corresponding standard deviations and mean square atomic vibrations ($\AA^{2} \times 10^{3}$) for carbon atoms, with estimated standard deviations

Atom	x	y	z	U
Pd	25083(6)	01951(10)	01066(5)	
P(1)	30897(21)	-15771(40)	09789(19)	
P(2)	19082(20)	15499(40)	-09747(18)	
Cl	25077(36)	21586(51)	10985(23)	
c(11)	3730(10)	- 2955(18)	0443(9)	47(4)
c(12)	4102(12)	- 4250(22)	0975(11)	66(5)
C(13)	4394(12)	- 2225(22)	- 0043(11)	66(5)
C(14)	2300(11)	- 2735(19)	1426(10)	51(4)
c (15)	1695(15)	- 1706(28)	1909(14)	88(7)
c(16)	1784(14)	- 3577(26)	0746(13)	85(6)
c(17)	$3654(10)$	- 0740(19)	1882(10)	51(4)
c(18)	4411(16)	0185(29)	1631(14)	94(7)
C(19)	3894(15)	- 1852(28)	2615(14)	93(7)
c(21)	1319(10)	3162(18)	- 0607(9)	46(4)
c(22)	0570(13)	2578(24)	- 0137(12)	70(5)
C(23)	1045(13)	4349(24)	- 1249(12)	77(6)
C(24)	2720(8)	2420(15)	- 1595(8)	38(3)
C(25)	3279(11)	1256(20)	- 1950(10)	56(4)
C(26)	3233(11)	3519(21)	- 1035(10)	61(4)
C(27)	1304(9)	0386(18)	- 1724(8)	43(3)
C(28)	0659(11)	- 0618(21)	- 1319(11)	63(5)
C(29)	0855(12)	1295(21)	- 2458(11)	63(5)

Table 2.9.3

Mean square atomic vibrations ($\AA^{2} \times 10^{4}$) for Palladium, Chlorine and Phosphorus atoms, with estimated standard deviations

	U_{11}	$2 \mathrm{U}_{12}$	$2 \mathrm{U}_{13}$	U_{22}	$2 \mathrm{U}_{23}$	U_{33}
	$237(3)$	$57(12)$	$34(6)$	$346(4)$	$-14(11)$	$257(3)$
Pd	$237(21)$	$78(30)$	$62(25)$	$375(18)$	$-8(30)$	$315(15)$
$\mathrm{P}(1)$	$267(20)$	$69(30)$	$6(23)$	$411(19)$	$20(29)$	$257(14)$
$\mathrm{P}(2)$	$236(20)$	$589(54)$	$-304(44)$	$506(26)$	$-167(37)$	$348(19)$

 ュキッ：

 y

(1)

 \cdots

$\begin{array}{ll}0 & 0: \\ 0 & 0 \\ 38 & 38:\end{array}$

 …

!

 -

ニระ

[^8] …

[^9]Table 2.9.5

Analysis of Agreement between Observed and Calculated Structure Factors at R=6.1\%

Range $\left\|F_{0}\right\|$	No.	$\Sigma\left\|F_{o}\right\|$	$\Sigma\left\|F_{c}\right\|$	$\Sigma\|\Delta F\|$	$A v . w\|\Delta F\|^{2}$	R
$0-33$	356	11043	11010	804	7.03	0.073
$33-44$	656	24905	24810	1626	8.71	0.065
$4.4-55$	341	16703	16700	965	10.21	0.058
$55-66$	203	12114	12057	664	14.06	0.055
$66-77$	119	8479	8460	433	12.28	0.051
$77-88$	56	4623	4510	248	18.16	0.054
$88-99$	56	5223	5066	321	31.95	0.062
$99-110$	38	3989	3954	194	18.64	0.049
$110-132$	48	5725	5625	383	35.72	0.067
$132-154$	25	3510	3455	208	27.80	0.059
$154-176$	15	2450	2369	137	30.43	0.056
$176-199$	12	2232	2248	129	43.87	0.058
$199-331$	11	2689	2671	203	74.83	0.086

$\operatorname{Sin} \theta / \lambda$

$0.0-0.1$	14	1960	2024	138	50.66	0.071
$0.1-0.2$	90	8250	7994	660	39.55	0.080
$0.2-0.3$	236	18386	18396	1104	19.71	0.060
$0.3-0.4$	430	25389	25000	1415	11.43	0.056
$0.4-0.5$	592	27676	27637	1574	8.41	0.057
$0.5-0.6$	455	17860	17723	1104	8.23	0.062
$0.6-0.7$	119	4160	4161	319	9.95	0.077

$\mathrm{MoCl}_{2}(\text { dppe })_{2}$

CHAPTER 3.1

Table 3.1.2

Final Positional Parameters (fractional coordinates, $\times 10^{4}$) with estimated standard deviations, and mean square atomic vibrations $\left(\AA^{2}, \times 10^{3}\right)$, with estimated standard deviations.

Atom	\times	y	z	U
Mo	1351(3)	1779(15)	0509(11)	8(4)
P(1)	0880(8)	1707(48)	-0375(25)	45(13)
$P(2)$	1448(9)	0718(42)	-0799(32)	29(15)
P(3)	1786(13)	2121(58)	1260(43)	43(23)
P(4)	1211(10)	2669(43)	1651(33)	$31(16)$
C1(1)	1373(9)	-0164(40)	1147(28)	32(15)
Cl(2)	1362(10)	3700 (40)	-0203(32)	40(17)
c(11)	0902(38)	1842(202)	-1540(120)	59(73)
c (21)	1141(28)	0583(132)	-1208(96)	7(51)
C(31)	1847(52)	2530(241)	2517(174)	79(114)
C(41)	1409(18)	2184(75)	2320(58)	- 9(24)
c(111)	0254(20)	-1345(82)	-0287(64)	
C(112)	0202(17)	-0313(104)	-0737(57)	
C(113)	0404(25)	0579(75)	-0733(57)	
C(114)	0659(20)	0440(82)	-0279(64)	
c(115)	0711(17)	-0593(104)	0171(57)	
c(116)	0509(25)	-1484(75)	0166(57)	
C(121)	0663(25)	3125(112)	-0317(91	
C(122)	0508(30)	3093(108)	0262(80)	
c(123)	0358(24)	4117(157)	0416(68)	
C(124)	0364(25)	5174(112)	-0008(91)	
C(125)	0519(30)	5205(108)	-0588(80)	
C(126)	0669(24)	4181(157)	-0742(68)	
c(211)	1571(22)	-0821(72)	-0794 (60)	
c(212)	1846(19)	-1115(88)	-0802(63)	
C(213)	1933(15)	-2326(103)	-0725(63)	
C(214)	1744(22)	-3246(72)	-0639(60)	
C(215)	1469(19)	-2952(88)	-0631(63)	
C(216)	1382(15)	-1741(103)	-0709(63)	

Table 3.1.2 (contd.)

Atom	\mathbf{y}	y	z
		y	
C(221)	$1879(26)$	$1936(118)$	$-2393(51)$
C(222)	$1705(21)$	$1256(89)$	$-2014(75)$
C(223)	$1704(21)$	$1460(101)$	$-1257(75)$
C(224)	$1876(26)$	$2344(118)$	$-0878(51)$
C(225)	$2050(21)$	$3024(89)$	$-1258(75)$
C(226)	$2051(21)$	$2820(101)$	$-2014(75)$
C(311)	$2362(23)$	$5406(94)$	$0732(73)$
C(312)	$2474(17)$	$4235(113)$	$0808(72)$
C(313)	$2325(24)$	$3284(81)$	$1058(73)$
C(314)	$2063(23)$	$3503(94)$	$1234(73)$
C(315)	$1951(17)$	$4675(113)$	$1158(72)$
C(316)	$2101(24)$	$5626(81)$	$0907(73)$
C(321)	$2017(29)$	$0922(145)$	$1205(129)$
C(322)	$2197(44)$	$0954(144)$	$1878(105)$
C(323)	$2392(33)$	$0032(214)$	$2053(73)$
C(324)	$2406(29)$	$-0924(145)$	$1554(129)$
C(325)	$2225(45)$	$-0956(144)$	$0880(105)$
C(326)	$2031(33)$	$-0034(214)$	$0706(73)$
C(411)	$0844(25)$	$0979(126)$	$2139(84)$
C(412)	$0604(31)$	$0519(92)$	$2349(87)$
C(413)	$0401(22)$	$1314(138)$	$2519(85)$
C(414)	$0439(25)$	$2572(126)$	$2479(84)$
C(415)	$0680(31)$	$3032(92)$	$2268(87)$
C(416)	$0882(22)$	$2236(138)$	$2098(85)$
C(421)	$1205(23)$	$4418(75)$	$1863(89)$
C(422)	$1092(20)$	$5140(132)$	$1260(60)$
C(423)	$1076(20)$	$6402(123)$	$1342(68)$
C(424)	$1173(23)$	$6942(75)$	$2028(89)$
C(425)	$1285(20)$	$6219(132)$	$2632(60)$
C(426)	$1301(20)$	$4958(123)$	$2549(68)$

TABLE 3.1 .3
Group vibrational parameters for ligand phenyl rings $\left(\AA^{2}, \times 10^{3}\right)$ with estimated standard deviations.

	Ring	U
P1:	$c(111)-\mathrm{c}(116)$	47(20)
	$\mathrm{C}(121)-\mathrm{C}(126)$	66(29)
P2:	$\mathrm{c}(211)-\mathrm{C}(216)$	59(21)
	c(221)-c(226)	40(25)
P3:	c(311)-c(316)	59(25)
	c (321)-C(326)	112(41)
P4:	C(411)-C(416)	118(33)
	C(421)-C(426)	44(23)

Table 3.2.2

Final positional parameters (fractional coordinates, $\times 10^{5}$ for Mo, $\mathrm{Zn}, \mathrm{P}, \mathrm{Cl}$ atoms, $\times 10^{4}$ for the remainder) with estimated standard deviations, and mean square atomic vibrations $\left(\AA^{2} \times 10^{3}\right)$, with estimated standard deviations.

Atom	x	y	z	U
Mo	15821(8)	13720(11)	22094(9)	18(1)
$\mathrm{Cl}(1)$	14927(26)	26926(33)	20534(25)	$31(2)$
$\mathrm{P}(1)$	17642(26)	12965(39)	11883(28)	27(2)
$\mathrm{P}(2)$	25814(25)	15925(35)	21823(29)	26(2)
$P(3)$	$05703(24)$	12631(35)	22062(31)	24(2)
P(4)	13696(26)	16524(35)	32127 (26)	$21(2)$
0 (1)	1615(7)	0470(9)	2340(6)	$30(5)$
C(11)	2360(12)	1816(15)	1076(12)	$38(8)$
c(21)	2801(8)	1596(12)	1457(9)	17(6)
c(31)	0381(10)	1138(13)	2915 (10)	21(7)
c(41)	0639(9)	1773 (11)	3285(9)	17(5)
Zn	41315(12)	15365(16)	05878(13)	$33(1)$
Cl(2)	34378(31)	19278(36)	01090(28)	$42(2)$
Cl(3)	48332 (29)	11579(38)	01272(32)	46(2)
Cl(4)	42864(31)	22008(40)	13331(32)	$48(2)$
O(2)	3824 (8)	0526(11)	0864(8)	56(6)
C(1)	4044(11)	-0014(16)	1065 (12)	45 (8)
C(2)	3722 (15)	- 0706(20)	1146(15)	74(12)
c(3)	4614(12)	- 0074(17)	1188(13)	51(10)
O(3)	3749(9)	0292(13)	4502(10)	92(7)
C(4)	$3817(13)$	0942(20)	4470(15)	68(10)
C(5)	3479(13)	1434(18)	4121(12)	71(9)
c(6)	4232 (13)	1306(18)	4789(13)	67(9)
C(111)	0632(7)	1448(10)	- 0008(8)	
C(112)	0617(7)	2195(10)	- 0117(7)	
C(113)	$0957(8)$	2668(7)	0155(8)	
C(114)	1313(7)	2396(10)	0536(8)	
c(115)	1329(7)	1649(10)	0645(7)	
c(116)	0989(8)	1176(7)	0374(8)	
C(121)	2065(8)	- 1067(7)	0594(8)	
C(122)	1649(7)	- 0903(9)	0945(8)	
c(123)	1577(7)	- 0190(11)	1127(7)	
C(124)	1920(8)	0360(7)	0959(8)	
C(125)	2336(7)	0195(9)	0608(8)	
c(126)	2409(7)	- 0518(11)	0426(7)	

Table 3.2.2 (contd.)

Atom	x	y	z
C(211)	2865 (7)	0157(13)	2465(9)
C(212)	3026 (8)	0883(11)	2442(10)
C(213)	3550(10)	1065(9)	2547(10)
C(214)	3913(7)	0520(13)	2676(9)
C(215)	3752(8)	- 0206(11)	2699(10)
C(216)	3228(10)	- 0388(9)	2594(10)
C(221)	2828(7)	2452(8)	2463(8)
C(222)	2848(8)	2527(9)	3028(8)
C(223)	3006 (8)	$3185(11)$	3259(6)
C(224)	$3145(7)$	3770(8)	2925(8)
C(225)	3126(8)	3695(9)	2360(8)
C(226)	2967(8)	3036(11)	2129(6)
C(311)	$0044(8)$	- 0894(9)	1388(8)
C(312)	- 0101(8)	- 0227(12)	1160(7)
C(313)	0042 (8)	0423(9)	1416(9)
C(314)	0331 (8)	0406(9)	1899(8)
C(315)	0476(8)	- 0261(12)	2126(7)
C(316)	оззз(8)	- 0911(9)	1871(9)
C(321)	0256(7)	2280(11)	1426(8)
C(322)	0149(8)	1991(10)	1939(8)
C(323)	- 0290(8)	2231(11)	2231(6)
C(324)	- 0622(7)	2759(11)	2009(8)
c(325)	-0515(8)	3048(10)	1496(8)
C(326)	- 0076(8)	2809(11)	1205(6)
C(411)	1600(8)	2429(9)	3630 (8)
C(412)	1400(7)	3123 (11)	$3527(7)$
C(413)	1541(8)	3706(8)	3862 (8)
C(414)	1883(8)	3595(9)	4299(8)
C(415)	2084(7)	2901(11)	4401(7)
C(416)	1943(8)	2318(8)	4067(8)
C(421)	1520(10)	0861(10)	3647(9)
C(422)	2031(9)	0585(13)	3609 (9)
C(423)	2182(7)	- 0006(13)	3931 (10)
C(424)	1823(10)	- 0320(10)	4291(9)
C(425)	1312(9)	- 0044(13)	4329(9)
C(426)	1161(7)	0547(13)	4008(10)

TABLE 3.2.3

Group Vibrational Parameters for Ligand Phenyl Groups $\left(\AA^{3}, \times 10^{3}\right.$), with estimated standard deviations.

	Ring	U
Pl:	C(111)-C(116)	46(3)
	C(121)-C(126)	44(4)
P2:	$C(211)-C(216)$	58(5)
	C(221)-C(226)	40(4)
P3:	$C(311)-C(316)$	$51(4)$
	C(321)-C(326)	44(4)
P4:	$c(431)-C(416)$	44(4)
	$C(421)-C(426)$	56(5)

Table 3.2.5

Analysis of Agreement between Observed and Calculated
Structure Factors at $\mathrm{R}=6.6 \%$

Range $\left\|F_{0}\right\|$	No	$\Sigma\left\|F_{0}\right\|$	$\Sigma\left\|F_{c}\right\|$	$\Sigma \mid \Delta F$	Av.w $\|\Delta \mathrm{F}\|^{2}$	R
0-66	1	60	59	1	1.70	0.022
66-98	164	15005	14988	1609	149.26	0.107
98-131	612	70530	69240	5793	139.92	0.082
131-164	439	64102	63056	4382	156.81	0.068
164-197	233	41760	40892	2385	167.30	0.057
197-230	133	28263	27838	1686	256.89	0.060
230-262	72	17597	17253	869	228.28	0.049
262-295	45	12507	12363	586	240.70	0.047
295-328	33	10286	10064	449	280.52	0.044
328-394	39	13792	13584	577	373.64	0.042
394-722	27	12308	12585	472	467.20	0.036
$\operatorname{Sin} \theta / \lambda$						
0.00-0.10	37	8833	8673	470	642.60	0.053
0.10-0.20	210	43599	41696	2940	312.65	0.067
0.20-0.30	477	82804	82225	5101	183.62	0.062
0.30-0.40	487	74046	72902	4786	152.42	0.065
0.40-0.50	435	60878	59559	4329	151.06	0.071
0.50-0.60	153	17634	17714	1320	112.51	0.075

APPENDIX ITI

FURTHER STRUCTURES STUDIED

The structures of the following complexes were also solved during the period covered by my studentship:

$$
\begin{aligned}
& \alpha-\operatorname{PtCl}\left(\operatorname{PPr}_{3}^{\mathrm{n}}\right)(\mathrm{SCN}) \\
& \beta-\operatorname{PtCl}\left(\operatorname{PPr}_{3}^{\mathrm{n}}\right)(\mathrm{SCN}) \\
& \operatorname{Te}(\mathrm{CO})_{4}\left(\operatorname{PPH}_{2} \mathrm{H}\right)
\end{aligned}
$$

For these three compounds, the preliminary
work was done by Miss M C Barrett, and the diffractometer data was collected by
Dr J A J Jarvis.

APPENDIX IV

PUBLICATIONS

1. The structure of a hydridonaphthy1-ruthenium (II) complex:
S.D. Ibekwe, B.T. Kilbourn, U.A. Raeburn, and D.R. Russell.; Chem. Comm., 1969, 433.
2. Hydrido complexes of osmium (II):
trans-OsH ${ }_{2}\left(\mathrm{Ph}_{2}{\left.\mathrm{P}-\mathrm{CH}_{2}-\mathrm{PPh}_{2}\right)_{2} \text { and the } \mathrm{Os}-\mathrm{H} \text { bond } . ~}_{\text {ba }}\right.$ in trans-osHCl ($\mathrm{Ph}_{2} \mathrm{P}_{\left.-\mathrm{CH}_{2}-\mathrm{PPh}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{6} \text { : }}$
S.D. Ibekwe and U.A. Raeburn; J. Organometal. Chem., 19 (1969) , 447.
3. Structures of hydrides formed by addition of an organic molecule to a transition-metal complex, Part I. "The crystal and molecular structure of bis (1,2-bis (dimethylphosphino)ethane)naphthyl-hydrido-ruthenium (II) and its osmium analogue: S.D. Ibekwe, B.T. Kilboum, U.A. Raeburn, and D.R. Russeli; J. Chem. Soc. (A), Paper 0/573 in press.
4. Oxochlorobis-(1,2-bis (diphenylphosphino)ethane)molybdenum (IV) Trichloro(acetone)zincate: $\left(\operatorname{MoOCl}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}\right)_{2}\right)^{+}\left(\mathrm{ZnCl}_{3} . \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)^{-}:$ V.C. Adam, U.A. Gregory, and B.T. Kilbourn; J. Chem. Soc. (D) , 1970, 1400.
5. Crystal and molecular structure of diphenylphosphinetetracarbonyl iron:
B.T. Kilbourn, U.A. Rȧeburn, and D.T. Thompson; J. Chem. Soc. (A.), 1969, 1906.
6. The molecular structure of dinuclear complexes of platimum (II), Part II, α - and β - forms of dichloro-μ-dithiocyanatobis tri-n-propylphosphine diplatinum (II) :
U.A. Gregory, J.A.J. Jarvis, B.T. Kilbourn and P.G. Owston; J. Chem. Soc. (A), 1970, 2770.

RETERENENCS

1. S.Carrà and R. Ugo, Inorg.Chim.Acta Revs., 196\%, 1, 49.
2. M.L. Bender, Chem. Revs., 1960 , 60, 53.
3. R.G. Pearson, JACS., 1963, 85, 3533.
4. M. Rosenbium and C. Gatsonis, JACS, 1967, 89, 5074.
5. M.R. Churchill and K. Gold, Chem. Comm., 1968, 693.
6. K.R. Laing and W.R. Roper, Chem. Comm., 1968, 1568.
7. H. Luth, M.R. Truter and A. Robson, Chem. Comm., 1967, 738.
8. G. Wilke, Angew. Chem. Int. Ed., 1963,2, 105.
9. G. N. Schrauzer, B.N. Bastian and G.A. Fosselius, JACS., 1966, 88, 4890.
10.a) J. Chatt and L.A. Duncanson, JCS., 1953, 2939.
b) M.J.S. Dewar, Bull. Soc. Chim. France, 1951, 18, C71.
10. M.L.H. Green, "Organometal1ic Compounds", p.209,(Vol.II)
11. S.J. LaPlaca and J.A. Ibers, Inorg. Chem., 1965, 4, 778.
12. N.A. Bailey et al., Chem. Comm., 1965, 237.
13. J.A. Osborn, Endeavor, 1967, 26, 144.
14. J.E. Lyons, L.E. Rennick and J.L. Burmeister, Ind. Eng. Chem. Prod. Res. Development, 1970, 2, 2.
15. P.S. Hallman, B.R. McGarvey and G. Wilkinson, JCS (A)., 1968, 3143.
16. R.W. Adams, G.E. Batley and J.C. Bai.lar, Inorg. Nucl: Chem. Letters, 1968, 4, 455.
17. J.A. Osborn et al., JCS(A)., 1966, 1711.
18. C. OiConnor and G. Wilkinson, JCS (A)., 1968, 2665.
19. I.C.I. Netherlands Patent 1966, (No. 6,608, 122).
20. L. Manojlovic-Muir, K.W. Muir and J.A. Ibers, Discuss. Faraday Soc., 1969, 47, 84.
21. R. Cramer, Accounts Chem. Res., 1968, 1, 186.
22. R.F. Heck and D.S. Breslow, JACS., 1961, 83, 4023.
23. T.A. Manue1, J. Org. Chem., 1962, 27, 3941.
24. M. McPartlin and R. Mason, Chem. Comin., 1967, 16.
25. G.R. Davies et al., Chem. Comm., 196\%, 1151.
26. R.E. Rinehart and J.S. Laslsy, JACS, 1964, 86, 2516.
27. J.A. Ibers and R.G. Sinyder, JACS., 1962, 84, 495.
28. C. Krüger, J. Organomet. Chem., 1970, 22, 697.
30.eg.P. Cossee, J. Catalysis, 1964, 3, 80.
29. R, Cramer, JACS., 1965, 87, 4717.
30. A.D. Ketley et al., Inorg. Chem., 1967, 6, 65\%.
31. G. Natta et al., Chimica e. Industria., 1965, 47, 524.
32. G. Allegra et al., Chem. Comm., 1967, 1263.
33. O-T. Onsager, H. Wang and U. Blindheim, Helv.Chim. Acta, 1969, 52, 187 and following papers.
34. G.R. Davies et al., JCS (A)., 1970, 1275.
35. W.R: Busing and H.A. Levy, Acta Cryst., 1957, 10, 180.
36. R.H.B. Mais, umpublished work.
37. J.S. Rollett, "Computing Methods in Crystallography", p. 35 .
38. D.T. Cromer and J.T. Waber, Acta Cryst., 1965, 18, 104.
39. D.T. Cromer, Acta Cryst., 1965, 18, 17.
40. D.W.J. Cruickshank et al., "Computing Methods and the Phase Problem in X-Ray Analysis", p. 45.
41. J.A.J. Jarvis, unpublished work.
42. W. Klyne and V. Prelog, Experientia, 1960, 16, 521.
43. C.K. Johnson, Oak Ridge National Laboratory, 1965.
44. G. Germain and M.M. Woolfson, Acta Cryst., 1968, B24, 91.
45. L.B. Handy et al., JACS., 1966, 88, 366.
48.a) A.P. Ginsberg, in "Transition Metal Chemistry", 1965, I, 112.
b) M.L.H. Green and D.J. Jones, Adv. Inorg. and Radio Chem., 1965, 7, 115.

49: P. Krumholz and H.M.A. Stettiner, JACS., 1949, 71, 3035.
50.: G. Wilkinson and J.M. Birmingham, JACS., 1955, 77, 3421.
51.a) E.O. Bishop et al., JCS., 1959, 2484.
b) L.L. Lohr and W.N. Lipscomb, Inorg. Chem., 1964, 3, 22.
c) A.D. Bucki.ngham and P.J. Stephens, JCS., 1964, 2747.
52. J. Chatt, Proc. Chem. Soc., 1962, 318.
53. L.H. Slaugh and R.D. Mullineaux, J. Organomet. Chem., 1968, 13, 469.
54. J. Chatt and B.L. Shaw, JCS., 1962, 5075.
55. F. Basolo et aI., JCS., 1961, 220%.
56. J. Chatt et al., Chem. Ind., 1967, 1324.
57. J. Chatt, G.J. Leigh and.D.M.P. Mingos, Chem. Ind., 1969, 109.
58. J. Chatt and R.G. Hayter, JCS., 1961, 2605.
59. D.M. Adams, "Metal Ligand and Related Vibrations", Chapter 1.
60. J. Chatt, L.A. Duncanson and B.L. Shaw, Chem. Ind., 1958, 859.
61. J.W. White and C.J. Wright, JCS (D)., 1970, 970, 971.
62. J. Chatt and R.G. Hayter, JCS., 1961, 772.
63. J.A. Osbom, R.D. Gillard and G. Wilkinson, JCS., 1964, 3168.
64.a) W. Hieber, Die Chemie., 1942, 55, 25.
b) F.A. Cotton, JACS., 1958, 80, 4425.
65. B.K. Vainstein, in "Adv. Struct. Res. by Diffraction Methods, Vol.I", p. 38.
66. W.C. Hamilton and J.A. Ibers, "Hydrogen Bonding in Solids", p. 34.

6\%. D.H. Templeton, Acta Cryst., 1955, 8, 842.
68.a) E.G. Cox, D.W.J. Cruickshank and J.A.S. Smith, Nature, 1955, 175, 766.
b) W.R. Busing and H.A. Levy, Acta Cryst., 1964, 17, 142.
69. A.C. Cope and E.C. Fxiedrich, JACS., 1968, 20, 909.

7O. A.C. Cope and R.W. Siekman, JACS., 1965, 87, 3272.
71. D.L. Weaver, Inorg. Chem., 1970, 2, 2250.
72. S. Bresadola, P. Rigo and A. Turco, Chem. Comm., 1968; 1205.
73. W. Keim, J. Organomet. Chem. 1968, 14, 179
74. G.W. Parsha11, W.H. Knoth and R.A. Schumn, JACS., 1969, 91, 4990.
75. M.A. Bennett and D.L. Milner, JACS., 1969, 91, 6983.
76. J.A.J. Jarvis et a1., Chem. Comm., 1966, 906.
77. K.w. Muir and J.A. Ibers, Inorg. Chem., 1969, 8, 1921.
78. K.w. Muir and J.A. Ibers, Inorg. Chem., 1970, 2, 440.
79. G.W. Parshall, JACS., 1968, 90, 1669.
80. A. Sacco and M. Aresta, Chem. Comm., 1968, 1223.
81. G. Hata, H. Kondo and A. Miyake, JACS., 1968, 90, 2278.
82. J. Chatt and J.M. Davidson, JCS., 1965, 843.
83. J. Chatt and H.R. Watson, JCS., 1962, 2545.
84. S.J. LaPlaca and J.A. Ibers, Acta Cryst., 1965, 18, 511.
85. P.L. Orioli and L. Vaska, Proc. Chem. Soc., 1962, 333.
86. A.C. Skapski and P.G.H. Troughtion, Chem. Comm., 1968, 1230.
87. A.C. Skapski and F.A. Stephens, JCS(D)., 1969, 1008.
88. D.W.J. Cruickshank, Acta Cryst., 1957, 10, 504.
89. J.J. Daly and R.P.A. Sneeden, JCS (A)., 1967, 736.
90. M.R. Churchill and T.A. OiBrien, JCS(A)., 1969, 266.
91. M. Tsutsui et al., Angew. "Chem. Int. Ed., 1969, 8, 410.
92. G.W. Parshall, Accounts Chem. Res., 1970, 3, 139.
93. M.L.H. Green and P.L.I. Nagy, Proc. Chem. Soc., 1961, 378.
94. W. Herwig and H. Zeiss, JACS., 1959, 81, 4798.
95. W. Herwig, W. Metlesics and H. Zeiss, JACS., 1959, 81, 6203.
96. K. Vrieze and H.C. Volger, J. Organomet. Chem., 196\%, 2, 53%.

9\%. \quad V. Kunz and W. Nowacki, Helv. Chim. Acta, 1967, 50, 1052.
98. R. Hulme and J.T. Szymańnsici, Acta Cryst., 1969, B25, 753.
99. E.A. Hall and E.L.Amma, JACS., 1969, 21, 6538.
100. H.G. Smith and R.E. Rundle, JACS., 1958, 80, 5075.
101. R.W. Turner and E.L. Amma, JACS., 1966, 88, 3243.
102. I.T. Taylox, E.A. Hall and E.L. Amma, JACS., 1969, 21, 5745°.
103. E.A. Hall and E.L. Amma, Chem. Comm., 1968, 622.
104. R.W. Turner and E.L. Amma, JACS., 1966, 88, 1877.
105. A.I. Kitaigorodskii, "Organje Chemical Crystallography", p. 106.
106. A. Bondi, J. Phys. Chem., 1964, 68, 441.
107. G. Wilke and G. Herrmann, Angew. Chem., 1962, 74, 693.
108. J. Chatt, F.A. Hart and R.G. Hayter, Nature, 1960, 187, 55.
109. G.M. Bancroft et a1., JCS (A)., 1970, 2146.
110. C.H. Campbelı et al., J. Organomet. Chem., 1968, 14, 349.
111.a) D.D. Titus et al., (personal communcation, M.L.H. Green).
b) P. Meakin et al., JACS., 1970, 92, 3482.
112. M.L. Schneider and H.M.M. Shearer, 4 th International Conference on Organometal1ic Chemistry, Bristo1, 1969, (Abstract A16).
113. J.J. Levison and S.D. Robinson, Chem. Ind., 1969, 1514.
114.a) R.W. Baker and P. Pauling, JCS (D)., 1969, 1495.
b) R.W. Baker et al., JCS (D)., 1970, 107%.
115. V. Albano, P. Bellon and V. Scatturin, Ist Lombardo (Rend. Sc.), 1966, A100, 989.
116. P. Corradini and G. Allegra, JACS., 1959, 81, 2271.
117. P.G.H. Troughton and A.C. Skapski., Cliem. Comm., 1968, 575.
118. N.C. Payne and J.A. Ibers, Inorg. Chem., 1969, 8, 2714.
119. J. Chatt and R.G. Hayter, JCS., 1961, 896, 2605.
120. H.P. Fritz, Adv. Organomet. Chem., 1964, 1, 239.
121. J. Chatt, private communication.
122. S.D. Ibekwe and U.A. Raeburu, J. Organomet. Chein., 1969, 19, 447.
123. L. Vaska, Accounts Chem. Res., 1968, 1, 335.
124. L. Vaska and J.W. Di Luzio, JACs., 1961, 83, 2784.
125. L. Vaska and J.W. Di Luzio, JACS., 1962, $84,679$.
126. L. Vaska, Science, 1963, 140, 809.
127. R.C. Taylor, J.F. Young and G. Wilkinson, Inorg. Chem., 1966, 5, 20.
128. H. Singer and G. Wilkinson, JCS(A)., 1968, 2516.
129. L. Vaska and J.W. Di Luzio, JACS., 1962, $84,4989$.
130. A.J. Chalk, JCS(D)., 1969, 120%.
131. S.D. Ibekwe and K.A. Taylor, JCS(A), 1970, 1.
132. K.A. Taylor, Advances in Chemistry, Series No. 70, (A.C.S. Publication), 1968.
133. L. Malatesta, G. Caglio and M. Angoletta, JCS., 1.965, 6974.
134. J.A. MoGinnety, N.C. Payne and J.A. Ibers, JACS., .1969, 21, 6301.
135. J.S. Ricci et a1., JACS., 1970, 92, 3489.
136. J.R. Gollogly and C.J. Hawkins, Inorg. Chem., 1969, 8, 1168.

13\%. I. Kawada, Tetrahedron Letters, 1969, 793.
138. L. Pauling, "The Nature of the Chemical Bond", Chapter 7.
139. V.G. Albano, P.L. Bellon and M. Sansoni, Inorg. Chem., 1969, $8,298$.
140. M. McPartilin and R. Mason, JCS(A)., 1970, 2206.
141. N.A. Bailey et al., Chem. Comm., 1967, 1051.
142. B.T. Kilbourn and A. Wood, unpublished data.
143. J. Chatt and S.A. Butier, Chem. Comm., 1967, 501.
144. M. Ciechanowicz, A.C. Skapski and P.G.H. Troughton, 8th International Congress of Crystally., New York, 1969 (Abstract s172).
145. D.J. Hodgson and J.A. Tbers, Inorg. Chem., 1968, ㄱ, 2345.
146. C. Mealli and E.C. Lingafelter, $\operatorname{JCS}(D) ., 19 \% 0,885$.
147. D.J. Hodgson and J.A. Ibers, Inorg. Chem., 1969, 8, 1282.
148. M.L.H. Green, C.N. Street and G. Wilkinson, Z.Nature., 1959, 14b, 738.
149. M.L.H. Green, H. Munalkata and T. Sai.to, JCS (D)., 1969, 1287.
150. M.L.H. Green and T. Saito, JCS (D), 1969, 208.
151.a) K. Jonas et al., Angew. Chem. Int. Ed., 1969, 8, 519.
b) R.A. Schunn, Inorg. Chem., 1970, 2, 394.
152. Mo.Kumada, Y. Kiso and M. Umeno, $\operatorname{JCS}(\mathrm{D}) ., 1970,611$.
153. R.G. Miller, T.J. Kealy and A.L. Barney, JACS., 1967, 89, 3756 .
154. M.C. Hall, B.T. Kilbourn and R.H.B. Mais, unpublished data.
$155 . \mathrm{eg}$
a) R. MoWeeny, R. Mason and A.D.C. Towl, Disc. Faraday Soc., 1969, 47, 20.
b) B.T. KiIbourn and H.M. Powe11, JCS (A)., 1970, 1688.
156. G.R. Davies, R.H.B. Mais and P.G. Owston, JCS (A), 1967, 1.750.
157. A. Pidcock, R.E. Richards and L.M. Venanzi, JCS (A), 1966, 1707.
158. A.A. Grinberg, Ann. Inst. Platine (USSR), 1927, 5: 109.
159. J. Chatt, L.A. Duncanson and L.M. Venanzi, JCS., 1955, 4456 .
160. L.E. Orgel, J. Inorg. Nuc1. Chem., 1956, 2, 137.
161. Y.K. Syrkin, Bul1. Acad. Sci. USSR., 1948, 69 (Chem. Abs. $1948,42,5368$.)
162. L.M. Venanzi, Chem. in Brit., 1968 , 4, 162.
163. C.II. Langford and H.B. Gray "Ligand Substitution Processes", p. 27.
164. C.W. Fryer, JCS (D), 1970, 902.
165. H. Munakata and M.L.H. Green, JCS (D), 1970, 881.
166. H.M.M. Shearer, personal communication.
167. P.G. Owston, J.M. Partridge and J.M. Rowe, Acta Cryst., 1960, 13, 246.
168. R. Eisenberg and J.A. Ibers, Inorg. Chem., 1965, 4. 773 .
169. E. Forsellini et al., JCS(D), 1970, 1203.
170. D.L. Weaver, Inorg. Chem. 1970, 9, 2250. -
171. B.A. Frenz and J.A. Ibers, Inorg. Chem., 1970, 9, 2403 .
172. G. Herzberg, "Spectra of Diatomic Molecules", 1950. (W.N. Lipscomb, in "Advances in Magnetic Resonance, Vo1. $\left.2^{\prime \prime}, 1966,147.\right)$
173.a) M. Gerlock and R. Mason, JCS., 1965, 296.
b) S.C. Abrahams and A.P. Ginsberg, Inorg. Chem., 1966, 5, 500 .
174.a) T.C. Farrar et al., JACS., 1966, 88, 184.
b) A.G. Robiette, G.M. Sheldrick and R.N.F. Simpson, J. MoI. Struct., 1969, 4, 221.
175.a) S.J. LaPlaca, W.C. Hamilton and J.A. Ibers, Inorg. Chem. , 1964, 3, 1491.
b) S.J. LaPlaca et al., Inorg. Chem., 1969, 8, 1928.
176. T. Kashiwagi et a1., JCS (D)., 1969, 743.
177. S.J. LaPlaca and J.A. Ibers, Inorg. Chem., 1966, 5, 405 .
178. L.H. Vogt, J.L. Katz and S.E. Wiberley, Inorg. Chem., 1965, 4, 1157.
179. R. Mason, Nature, 1968, 217, 543.
180. R. Mason and A.I.M. Rae, $\operatorname{JCS}(A)$., 1970, 1767 .
181. J.A.J. Jarvis et a1., in press, JCS(D).
182. W.P. Schaefer and R.E. Marsh, Acta Cryst., 1966, 21, 735.
183. I.M. Treite1 et al., JACS., 1969, 21, 6512.
184. B. Timm, Chem. and Ind., 1960, 274.
185. R. Murray and D.C. Smith, Coord. Chem. Revs., 1968, 3, 429, and references therein.
186. J. Chatt, Proo. Roy. Soo;, 1969, B172, 327.

18\%. A.D. Allen and F. Bottomley, Accounts Chem. Res., 1968, $1,360$.
188.a) Yu G. Borodiko and A.E. Shilov, Russian Chem. Revs., $1969,38,355$.
b) G. Henrici-olivé and S. Olivé, Angew. Chem. Int. Ed., 1969, 8, 650.
189. L.E. Orge1, "An Introduction to Transition Metal Chemistry", 1960.
190. A.D. Allen and C.V. Senoff, Chem. Comm., 1965, 621.
$191 . \mathrm{eg}$.
a) A. Sacco and M. Rossi, Inorg. Chim. Aota, 1968, 2, 127 .
b) A.D. Allen and J.R. Stevens, Chem. Comm., 196\%, 114\%.
c) A. Yamamoto, S. Kitazume and S.Ikeda, JACS., 1968, 90, 1089.
d) J.P. Colıman et al., JACS., 1968, 90, 5430.
192.eg.M. Hidai et a1., JCS(D)., 1969, 814.
$193 . \mathrm{eg}$.
a) J. Chatt et al., JCS(D), 1970, 90.
b) J.T. Moelwyn-Hughes and A.W.B. Garner, JCS(D), 1969, 1309.
194.eg.B. Bell, J. Chatt and G.J. Leigh, JCS(D).: 1970, 842.
195.eg.P.W. Jolly \& K. Jonas, Angew. Chem. Int. Ed., 1968, 7, 731.
196. M. Hidai et a.l., JCS(D)., 1969, 1392.

19\%. J. Chatt et al., Nature, 1969, 224, 1201.
198. F. Bottomley and S.C. Nyburg, Acta Cryst., 1968, B24, 1289.
199. B.R. Davis, N.C. Payne and J.A. Ibers, Inorg. Chem., 1969, 8, 2719.

```
200. B.R. Davis. and J.A. Ibers, Inorg. Chem., 19%0,
        9, 2768.
201. P.G. Wjakinson and NoB. Houk, J. Chem. Phys.,
        1956, 24, 528.
202. A.D. Allen.et al., JACS., 196%, 89, 5595.
```

203.eg.E.E. van Tamelen, G. Boche and R. Greeley, JACS.,
1968, 90, 1677.
204. R.P. Ei.schens and J. Jacknow, Proc. 3nd Int.
Congress Catalysiis, 1964, 62\%.
205. L.K. Atkinson, A.H. Mawby and D.C. Smith, JCS(D).,
in press.
206. V.W. Day and J.L. Hoard, JACS., 1968, 20, 3374.
207. L.K. Atkinson, A.H. Mawby and D.C. Smith, JCS(D).,
1970, 1399.
208. F.H. Kruse, Acta Cryst.; 1961, 14, 1035
209. E. Amble et al., J. Chem. Phys., 1952, 20, 192.
210. M.G.B. Drew and R. Mandyczewsky, JCS(D)., 1970, 292.
211. T.A. Cotton and S.M. Morehouse, Inorg. Chem., 1965,
4, 1377.
212.eg.R.J. Doedens and L.F. Dah1, JACS., 1965, 87, 2576.
213. M.C. Hall, B.T. Kilboum and K.A. Taylor, JCS(A).,
1970, 2539.
214. B. Morosin and E.C. Lingafelter, Acta Crysti, 1959,
12, 611.
215. F. Bigoli et al., JCS(D), 1970, 120.
216. H.M.M. Shearer and C.B. Spencer, Chem. Comn., 1966,
194.
217. P.T. Greene and R.F. Bryan, Inorg. Chem., 1970, 2,
1464.
218. Inorg. Chem., 1970, 9, 1.

[^0]: Thermal parameters: $\quad a=$ anisotropic

[^1]: $=$ full block
 $=$ positional block
 vibrational block
 $\begin{aligned} C(p) & =C(\text { phosphine }) \\ C(\text { nap }) & =C \text { (naphthyl })\end{aligned}$
 Matrix types:

[^2]: * involving atomic positions affected by disorder

[^3]: A direct methods package ${ }^{46}$ for centrosymmetric structures, which uses the symbolic addition method, see Appendix,

[^4]: Thermal parameters: $i=$ isotropic
 Final scale $=21.5$ (cycle 9)

[^5]: Thermal parameters: $i=$ isotropic

[^6]: * atomic positions affected by disorder

[^7]: * atomic positions affected by disorder

[^8]:

[^9]:

