

THE PREPARATION AND CRYSTAL STRUCTURES OF SOME METAL FLUORIDE COMPLEXES

A thesis presented for the degree of Doctor of Philosophy in the Faculty of Science by

JOHN FAWCETT

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U311488
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

```
4N
THESIS
606166
```

$\times 752969772$

STATEMENT

The experimental work described in this thesis has been carried out by the author in the Department of Chemistry of the University of Leicester between October 1975 and January 1980, except when otherwise stated. The work has not been submitted, and is not currently being submitted, for any other degree at this or any other university.

March 1980

Parts of this work have been published or are being submitted for publication as follows:

Sur L'exsistence de Nouveaux Composés D'addition de L'Oxytetrafluorure D'Uranium. Preparation des Composés $\mathrm{UF}_{4} \mathrm{O} . \mathrm{nSbF}_{5}(\mathrm{n}=1,2$ ou 3) et structure crystalline de $\mathrm{UOF}_{4} \cdot 2 \mathrm{SbF}_{5}$.
R. Bougon, J. Fawcett, J. H. Holloway, D. R. Russell, C.R. Acad. Sc. Paris, t. 287, 423, 1978.

Interaction between Uranium Oxide Tetrafluoride and Antimony Pentafluoride; Fluorine - 19 Nuclear Magnetic Resonance Investigations in solution; Preparation and characterization of the Adducts $\mathrm{UF}_{4} \mathrm{O} . \mathrm{nSbF}_{5}$ ($\mathrm{n}=1,2$ or 3) and Crystal Structure of $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$.
R. Bougon, J. Fawcett, J. H. Holloway, D. R. Russell, J.C.S. Dalton, 1979, 12, 1881.

The Crystal Structure of Ammonium Hexafluoroplatinate.
J. Fawcett, J. H. Holloway, D. C. Puddick, D. R. Russe11, submitted to Acta Cryst., January 1980.

The Preparation and Crystal Structure of Azidopentafluorotungsten. J. Fawcett, R. D. Peacock, D. R. Russell, submitted to J.C.S. Dalton, February 1980.

Preparation and characterization of the adducts $\mathrm{MF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ ($\mathrm{M}=\mathrm{Mo}$ or W) and the Crystal Structure of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$.
J. Fawcett, J. H. Holloway, D. R. Russell, in preparation.

I wish to express my thanks to:

My Supervisor, Dr. David R. Russell, for his continual help and guidance, particularly in the early stages of this work;

Professor R. D. Peacock for his interest and advice, from which several structures in this thesis have arisen;

Dr. John H. Holloway for his continual interest and advice concerning all aspects of my work, and the provision of facilities for the preparative work involved;

The members of the inorganic teaching staff and technical staff of the Chemistry Department for their assistance;

My colleagues in the laboratory, most notably Drs. Boris Frlec and Gary Schrobilgen, from whose collective wisdom and advice I learnt a great deal;

Miss Vicky Orson-Wright and Mrs. Ann Crane for their skills in preparing respectively this typescript and several of the drawings;

Finally, my family for their help and support during this work.

The preparation of the adducts formed between antimony pentafluoride and the oxide tetrafluorides of uranium, molybdenum, tungsten and rhenium is described. Structural details from full single crystal X-ray investigations are reported for the adducts $\mathrm{UF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{SSbF}_{5}$ and $\mathrm{MF}_{4} 0 . \mathrm{SbF}_{5}$ ($\mathrm{M}=\mathrm{Mo}$ or Re). The rhenium adduct forms discrete fluorine bridged rings of the dimer $2\left(\mathrm{ReF}_{4} 0 . \mathrm{SbF}_{5}\right)$, the molybdenum adduct has a polymeric zig-zag chain arrangement, and the $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ structure contains both the ring and chain units in a three-dimensional network. Crystallographic and vibrational spectroscopic evidence indicate a small ionic contribution in the bridging bonds.

The structures of three complex fluorides of the form $A^{1} B^{\vee} F_{6}$, previously studied by X-ray powder diffraction, have been redetermined. NaTaF_{6} and a new triclinic form of ($\beta-$) CsNbF_{6} were studied by X-ray single crystal methods, and NaWF_{6} by refinement of data from neutron diffraction of the microcrystalline powder. The NaTaF_{6} structure is found to be consistent with the previously described face centred cubic (NaSbF_{6}) type, however, the NaWF_{6} structure has been reassigned as primitive cubic (Pa3). Structures of two complex fluorides of the $\mathrm{A}_{2}^{1} \mathrm{~B}^{1 /} \mathrm{F}_{6}$ general form are reported. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ was found to be of the face centred cubic ($\mathrm{K}_{2} \mathrm{SiF}_{6}$) type and $\mathrm{K}_{2} \mathrm{OsF}_{6}$ of the trigonal ($\mathrm{K}_{2} \mathrm{GeF}_{6}$) type.

Three structures are described that are considered as incomplete due to unsatisfactory refinement of the fluorine atom positions in apparently disordered structures. For $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$, difficulty was encountered in the refinement of fluorine atom positional parameters about the antimony atom. Similar problems were encountered in the location of the fluorine atoms of the hydroxonium salts $\mathrm{H}_{3} 0 . \mathrm{MF}_{6}(\mathrm{M}=\mathrm{Sb}$ or Ta).

Finally the preparation and crystal structure of $\mathrm{WF}_{5} \mathrm{~N}_{3}$, the first azide derivative of a transition metal fluoride are reported. Unsuccessful attempts to isolate $\mathrm{MoF}_{5} \mathrm{~N}_{3}$ and $\mathrm{WF}_{6-\mathrm{n}}\left(\mathrm{N}_{3}\right)_{\mathrm{n}}(\mathrm{n} \geqslant 2)$ are also described.

CONTENTS

Page No.
Abstract ii
List of Tables vi
List of Figures vii
Abbreviations viii
CHAPTER 1 - X-RAY AND NEUTRON DIFFRACTION 1
1.1 Introduction 2
1.2 Collection of X-ray Data 2
1.3 Collection of Neutron Diffraction Data 3
1.4 Computer Programs 4
1.5 Solution of the Phase Problem and Refinement 5
1.6 Scattering Factors, Dispersion Corrections and Absorption Coefficients 5
CHAPTER 2 - EXPERIMENTAL TECHNIQUES 6
2.1 General Preparative Techniques 7
2.2 Vacuum Systems 8
2.3 Preliminary Treatment of Crystals 10
2.4 Characterisation of Products 12
2.5 Generation and Use of Fluorine in Flow Systems 15
2.6 Starting Materials and Solvents 15
CHAPTER 3 - PREPARATION OF $\mathrm{UF}_{4} \mathrm{O}-\mathrm{SbF}_{5}$ ADDUCTS AND THE CRYSTAL STRUCTURE OF $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ 18
3.1 Introduction 19
3.2 Preparation of Uranium oxide-tetrafluoride - Antimony pentafluoride Adducts 22
3.3 Single Crystal X-ray Investigation of $\mathrm{UF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{VSbF}_{5}$ 25
3.4 Crystal Data 26
3.5 Collection of Intensity Data 26
3.6 Solution of the Structure 27
3.7 Discussion 28
CHAPTER 4 - PREPARATION OF $\mathrm{MoF}_{4} \mathrm{O}$ AND $\mathrm{WF}_{4} \mathrm{O}-\mathrm{SbF}_{5}$ ADDUCTS AND THE CRYSTAL STRUCTURE OF $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ 38
4.1 Introduction 39
4.2 Preparation of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ 41
4.3 Single Crystal X-ray Investigation of $\mathrm{MoF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{SbF}_{5}$ 48
4.4 Crystal Data 49
4.5 Collection of the Intensity Data 49
4.6 Solution of the Structure 50
4.7 Discussion 55
CHAPTER 5 - THE PREPARATION AND CRYSTAL STRUCTURE OF $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ 59
5.1 Introduction 60
5.2 Reaction between Rhenium oxide-tetrafluoride and Antimony Pentafluoride 61
5.3 Single Crystal X-ray Investigation of $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ 63
5.4 Crystal Data 64
5.5 Collection of Intensity Data 64
5.6 Solution of the Structure 65
5.7 Discussion 66
CHAPTER 6 - THE CRYSTAL STRUCTURES OF NaTaF6 AND $\beta-\mathrm{CsNbF}_{6}$ 74
6.1 Introduction 75
6.2 Preparation of Sodium Hexafluorotantalate (V) 78
6.3 Single Crystal X-ray Investigation of NaTaF ${ }_{6}$ 82
6.4 Crystal Data 83
6.5 Collection of the Intensity Data 84
6.6 Solution of the NaTaF_{6} Structure 84
6.7 Preparation of Caesium Hexafluoroniobate (V) 86
6.8 Single Crystal X-ray Investigation of CsNbF_{6} 88
6.9 Crystal Data 88
6.10 Collection of the Intensity Data 89
6.11 Solution of the CsNbF_{6} Structure 89
6.12 Discussion of the NaTaF_{6} and CsNbF_{6} Structures 93
CHAPTER 7 - A STUDY OF TIIE NaWF_{6} STRUCTURE BY NEUTRON DIFFRACTION 98
7.1 Introduction 99
7.2 Preparation of Sodium Hexafluorotungstate (V) 102
7.3 Data Collection 106
7.4 Preliminary Treatment of the Diffraction Data 107
7.5 Refinement of the Structure 108
7.6 Discussion 112
CHAPTER 8 - THE CRYSTAL STRUCTURES OF $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ AND $\mathrm{K}_{2} \mathrm{OsF}_{6}$ 115
8.1 Introduction 116
8.2 Preparation of ammonium hexafluoroplatinate (IV) 119
8.3 Single Crystal X-ray Investigation of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ 121
8.4 Crystal Data 122
8.5 Collection of the Intensity Data 122
8.6 Solution of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ Structure 122
8.7 Preparation of Potassium Hexafluoroosmate 124
8.8 Single Crystal X-ray Investigation of $\mathrm{K}_{2} \mathrm{OsF}_{6}$ 127
8.9 Crystal Data 128
8.10 Collection of Intensity Data 128
8.11 Solution of the $\mathrm{K}_{2} \mathrm{OsF}_{6}$ structure 129
8.12 Discussion of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ and $\mathrm{K}_{2} \mathrm{OsF}_{6}$ structures 132
CHAPTER 9 - THE CRYSTAL STRUCTURE OF $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ 135
9.1 Introduction 136
9.2 Single Crystal X-ray Investigation 138
9.3 a. Crystal Data for $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ - room temperature form 139
9.3 b. Crystal Data - low temperature form 140
9.4 a. Collection of the room temperature Intensity Data 140
9.4 b. Collection of the low temperature Intensity Data 141
9.5 Solution of the room temperature structure 141
9.6 Discussion of the $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ structure 145
CHAPTER 10 - THE CRYSTAL STRUCTURES OF $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ AND $\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}$ 148
10.1 Introduction 149
10.2 Characterisation of oxonium hexafluoroantimonate (V) 153
10.3 Single Crystal X-ray Investigation of $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ 155
10.4 Crystal Data for $\mathrm{H}_{3} \mathrm{O}^{2} \mathrm{SbF}_{6}$ 155
10.5 Data Collection 155
10.6 Solution of the $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ structure 156
10.7 Characterisation of oxonium hexafluorotantalate(V) 159
10.8 Crystal Data for $\mathrm{H}_{3} \mathrm{O}$. TaF 6 161
10.9 Data Collection 161
10.10 Solution of the $\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}$ Structure 162
10.11 Discussion of the $\mathrm{H}_{3} \mathrm{O}_{\mathrm{MF}}^{6}$ Structures 164
CHAPTER 11 - THE PREPARATION AND CRYSTAL STRUCTURE OF $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 167
11.1 Introduction 168
11.2 Preparation and Characterisation of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 169
11.3 Single Crystal X-Ray Investigation of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 172
11.4 Crystal Data 172
11.5 Collection of the Intensity Data 173
11.6 Solution of the Structure 173
11.7 Discussion 174
APPENDIX 1 - Structure factor tables for $\mathrm{UF}_{4} \mathrm{O}_{4} \mathrm{SbFF}_{5}$ 181
$" 2 \quad " \quad " \quad " \quad \mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ 185
" 3 " " " " ReF4O.SbF5 189
" 4 " " " " ${ }^{\prime} \mathrm{NaTaF}_{6}$ 193
$\begin{array}{llllll}1 & 5 & " & " & " & \beta-\mathrm{CsNbF}_{6}\end{array}$ 195
" 6 " " " NaWF 6 198
" 7 $" \quad " \quad "\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ 200
" 8 " " $" \quad \mathrm{~K}_{2} \mathrm{OsF}_{6}$ 202
" 9 $" \quad " \quad " \mathrm{NF}_{4} \cdot \mathrm{SbF}_{6}$ 205
" $10 \quad$ " \quad " \quad " $10 \quad " \quad \mathrm{H}_{3} \mathrm{O}^{2} \mathrm{SbF}_{6}$ 207
" 11 " $" \quad " \quad " \mathrm{H}_{3} \mathrm{O} \cdot \mathrm{TaF}_{6}$ 209
" 12 " " $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 211
REFERENCES 214

Vibrational spectra of the adducts of $\mathrm{UF}_{4} \mathrm{O}$ and $\mathrm{SbF}_{5} \quad 24$
2 Atomic positional parameters for $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ 34
3 Anisotropic thermal parameters for $\mathrm{UF}_{4} \mathrm{O}_{2} 2 \mathrm{SbF}_{5}$
Interatomic distances of $\mathrm{UF}_{4} \mathrm{O}_{2} \mathrm{SbFF}_{5} 36$
Interatomic angles of $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5} \quad 37$
Calculated ionicity values of some SbF_{5} adducts 32
Raman spectrum of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5} 44$
The X-ray powder diffraction pattern of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5} 46$
Raman spectrum of $\mathrm{WF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$
Atomic positional parameters for $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$
Anisotropic thermal parameters for $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5} \quad 52$
Interatomic distances of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5} \quad 53$
Interatomic angles of $\mathrm{MoF}_{4} \mathrm{O} \cdot \mathrm{SbF}_{5} \quad 54$
Atomic positional parameters for $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5} \quad 71$
Anisotropic thermal parameters for $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5} \quad 72$
Interatomic distances of $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5} 73$
Interatomic angles of $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5} \quad 73$
The distribution of $\mathrm{A}^{1} \mathrm{~B}^{\vee} \mathrm{F}_{6}$ structure types $\quad 77$
The X-ray powder diffraction pattern of $\mathrm{NaTaF}_{6} \quad 81$
Atomic positional and thermal parameters for $\mathrm{NaTaF}_{6}{ }_{8}$
Raman spectra of $\mathrm{CsNb}_{2} \mathrm{~F}_{11}$ and $\mathrm{CsNbF}_{6} 87$
Interatomic distances for $\mathrm{CsNbF}_{6} \quad 91$
Atomic positional parameters of CsNbF_{6} with disordered
fluorine environment
Anisotropic thermal parameters for Cs and Nb atoms of
CsNbF_{6}
Site occupation factors for the fluorine atoms in CsNbF_{6} - model 297
The X-ray powder diffraction pattern of NalWF_{6} 105
Atomic positional and thermal parameters for NaWF_{6} 110
The structures of $A_{2}^{1} B^{1 V} F_{6}$ conpounds 117
The X-ray powder diffraction pattern of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ 120
Atomic positional and thermal parameters for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ 125
Interatomic distances of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ 125
Atomic positional and thermal parameters for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ 126
Interatomic distances of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ 126
Atomic positional parameters for $\mathrm{K}_{2} \mathrm{OsF}_{6}$ 130
Anisotropic thermal parameters for $\mathrm{K}_{2} \mathrm{OsF}_{6}$ 131
Interatomic distances and angles of $\mathrm{K}_{2} \mathrm{OsF}_{6}$ 131
Patterson map of the $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ low temperature data set 140
Atomic positional parameters for $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ 144
Anisotropic thermal parameters for $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ 144
Interatomic distances of $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ 144
Vibrational spectra of $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ 154
Atomic positional and thermal parameters for $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ 158
Raman spectrum of $\mathrm{H}_{3} \mathrm{O}_{\mathrm{TaF}}^{6}$ 160
Atomic positional and thermal parameters for $\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}$ 163
The mass spectrum fragmentation pattern of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 171
Atomic positional parameters for $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 175
Anisotropic thermal parameters for $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 176
Interatomic distances of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 177
49 Interatomic angles of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 177

LIST OF FIGURES

FIGURE

Page No.
1 The basic high vacuum metal manifold 9
2 Capillary apparatus for the sorting of single crystals 11
3 Mass spectrometer probe attachment 13
4 Low temperature Raman apparatus 14
5 The $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ asymmetric unit 29
6 Stereoscopic view of the unit cell contents of $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ 29
7 Weight loss against pumping time plots for $\mathrm{MoF}_{4} \mathrm{OnSbF}_{5}$ and $\mathrm{WF}_{4} \mathrm{O} . \mathrm{nSbF}_{5}$ 43
8 Stereoscopic view of the unit cell contents of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ 56
9 The asymmetric unit of $\mathrm{MoF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{SbF}_{5}$ 56
10 The mass spectrum of $\mathrm{ReF}_{4} 0 . \mathrm{SbF}_{5}$ 62
11 The dimer ring unit $2\left(\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}\right)$ 67
12 Stereoscopic view of the unit cell contents of $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ 68
13 Apparatus for the preparation of NaTaF_{6} 79
14 Crystal growing apparatus 82
15 Typical 'Hopper' faced crystal of NaTaF_{6} 83
16 The unit cell contents of NaTaF_{6} 93
17 Stereoscopic view of the unit cell contents of CsNbF_{6} (ordered structure, model 1) 96
18 The fluorine atom environment about Nb in the disordered structure (mode1 3) 96
19 The disordered model 2, fluorine environment about niobium 97
20 Apparatus for the preparation of NaWF_{6} 103
21 A standard neutron diffraction sample can 106
22 The final observed and calculated neutron diffraction profiles for NaWF_{6} 111
23
NaWF_{6} a) the unit cell packing b) the fluorine octahedron about tungsten 113
24 Unit cell packing of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ structure 132
25 Stereoscopic view of the unit cell contents of $\mathrm{K}_{2} \mathrm{OsF}_{6}$ 134
26 Stereoscopic views of the unit cell contents of $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ 146
27 The $\mathrm{H}_{3} \mathrm{O} . \mathrm{MF}_{6}(\mathrm{~m}=\mathrm{Sb}, \mathrm{Ta})$ unit cell contents 165
28 Stereoscopic view of the unit cell contents of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 178
29 The asymmetric unit of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ 179

ABBREVIATIONS

[A11 temperatures quoted in the text are in ${ }^{\circ}$ centigrade]

Genetron 113 - 1,1,2 trichlorotrifluoroethane	
Kel-F - polytrifluorochloroethylene	
F.E.P. - tetrafluoroethylene/perfluoropropylene copolymer	
P.T.F.E. - polytetrafluoroethylene	
n.m.r.	- nuclear magnetic resonance
i.r.	- infrared
vs	- very strong
s	- strong
m	- medium
w	- weak
vw	- very weak
br	- broad
sh	- shoulder
p.p.m.	- parts per million
o.d.	- outside diameter
i.d.	- inside diameter
f.c.c.	- face centred cubic
p.c.	- primitive cubic
xs	- excess of
Me	- methy 1

CHAPTER 1

X-ray and Neutron Diffraction

1.1 Introduction

This thesis is concerned with the preparation and structural characterisation of some metal fluoride complexes. Most of the structure determinations used data collected by single crystal X-ray diffraction, however attempts were made to refine data collected by the neutron diffraction of powders. With the improvements in equipment for data collection and the greater availability of computer programs for almost all aspects of refinement, structure determination by single crystal techniques has become increasingly routine. As a consequence, more complex problems may be studied and with greater accuracy than a few decades ago.

For many metal fluoride complexes the effort required to grow good single crystals is as time consuming as the structure determination. Where no single crystals can be grown the required data may be obtained by neutron diffraction and, increasingly, X-ray diffraction, of the micro crystalline powder. Both powder methods give relatively poor convergence of data, and the lack of suitable neutron sources and equipment, is also a disadvantage.

Many texts are available, which describe the theoretical and practical aspects of crystallography upon which this work depends; those found to be most useful are references 1-4.

1.2 Collection of X-ray Data

Intensity data was collected using a Stoe Stadi-2 diffractometer. This is a 2-circle instrument which uses Weissenberg geometry. All data sets were collected using molybdenum radiation, which allows more plane lines to be collected within the limiting sphere than copper.

The stabilised incident beam of X-rays passes through a suitably orientated graphite single crystal monochromator, and the diffracted beam is measured by a scintillation counter connected to a counting chain. The instrument was modified half way through this study and the earlier data sets were collected whilst the instrument was an offline version. The instructions were then given by a punched tape which contained the information to record the intensities of the reflections for one layer. With the updated on-line instrument, the parameters required for data collection were stored in the memory of a PDP 8/A computer. In all cases, the intensity data collected was for a ω-scan through the reflection, with background scans at initial and final positions. The data was output on paper tape for later processing, chart recording and printout provided a visual check. Since the ω width of a reflection in Weissenberg geometry is dependent on both μ and T, the ω-scan width was calculated for each reflection by the formula of Freeman et $\mathrm{al} .,{ }^{5}$ or for the updated instrument by $\Delta \mathrm{w}=\mathrm{A}+\mathrm{B}$. The diffractometer operations manua ${ }^{6}$ gives full details of the equipment and its operation.

1.3 Collection of Neutron Diffraction Data

Neutron diffraction data was collected at A.E.R.E. Harwe11, using either the H.R.P.D or P.A.N.D.A diffractometers. The variable wavelength of the neutron source was constant for a given data set and calibrated by a standard nickel sample before the run, typically a wavelength of $1.3 \AA$ would be used. The samples were enclosed in standard 16 mm neutron diffraction cans constructed from vanadium. The can was fixed on a turntable which could be centred by 4 screws, correct slit settings and collimator were found photographically.

A bank of five (HRPD), or nine (PANDA) detectors move about an arc in the plane of 2θ to the sample and neutron beam. The 2θ step scan would normally take two days, and the step increment and time of count at each position may be adjusted to allow a scan of at least 100°. It was found desirable to split the scan into two parts, and allow longer count times for the weaker high-angle reflections. The data was output on paper tape for later processing.

1.4 Computer Programs

Structure determinations depended on a variety of computer programs at various stages. The paper tapes used for controlling data collection with the off-1ine diffractometer were generated by the program STOTP. The initial work-up of the intensity data was carried out by the program STOWK. This subtracted background intensities, scaled the data, and applied Lorentz ${ }^{6}$ and polarisation corrections. ${ }^{7}$ A modified version of the program, STOWK 2, applied these corrections to the data from the on-line diffractometer. Absorption corrections to the data were performed by the program ABSCR^{8} before refinement or as an option of the full-matrix refinement program SHELX. ${ }^{9}$ This was the program most important to this work since it performed all functions required for refinement of the structures. All of the cell-packing diagrams were drawn by the program ORTEP, ${ }^{10}$ some ball and stick drawings of molecules used CRTPRJ, a program written by D. R. Russe11.

The refinement of data from neutron diffraction involved several programs which performed similar functions to those outlined above. Intensity data from the out of step counters, was sorted and scaled by the program COLLAT. ${ }^{11}$ It is then necessary to determine which reflections of the sample contribute to which part of the powder profile
pattern. The program PREPRF 12 was used for this purpose before refinement was started, but any significant changes in the unit cell or profile parameters required that this stage should be repeated. The refinement of the structure was performed by the program REFINE ${ }^{\mathbf{1 3}}$ which is based on the work and program of Rietveld. ${ }^{14}$

The University main site computer, CDC Cyber 72 , was used to run all the above programs. Numerous small programs were available for use on the Cyber 72 in both batch and interactive modes for less complex calculations or the editing and manipulation of files.

1.5 Solution of the Phase Problem and Refinement

Those structures in this study whose heavy atoms were not fixed on special positions were solved by the heavy atom method. The co-ordinates of heavy atoms were found using Patterson maps, an option of the SHELX refinement program, and this allowed sufficiently accurate phasing for the location of the remaining atoms by difference Fourier maps. Most structures had heavy atoms located on special positions with fixed coordinates of the appropriate space group, allowing location of the lighter atoms. All structures were refined by least squares and any special features of the solutions are discussed in the relevant chapter.

1.6 Scattering Factors, Dispersion Corrections and Absorption Coefficients

The scattering factors used in SHELX were obtained from International Tables Vol. IV, ${ }^{15}$ as were the real and imaginary dispersion corrections. The atomic absorption coefficients were taken from tables of Cromer and Liberman, ${ }^{16}$ and then corrected for ${ }^{12} C^{\prime}$ base.

CHAPTER 2

Experimental Techniques

2.1 General Preparative Techniques

Many of the starting materials used and the majority of the compounds studied are sensitive to air or moisture and required handling either in vacuo or inert atmospheres to prevent decomposition. Metal, glass or fluoroplastic containers were used for reactions and storage. Metal reactors were pumped to 10^{-4} torr, hydrogenated, seasoned with fluorine and re-evacuated before use. All glass and fluoroplastic apparatus was pumped to 5×10^{-5} torr with heating, and seasoned with fluorine or chlorine trifluoride.

Transferences of volatile air sensitive materials were performed in vacuum systems, using either static vacuum conditions with a suitable temperature gradient, or dynamic vacuum. Non-volatile materials were manipulated under a dry nitrogen atmosphere in auto-recirculating positive pressure dry boxes (Lintott Mk III Glove box or VAC HE 42-2 Dri-lab). The atmospheres of both boxes circulated through columns of manganese oxide and molecular sieve to remove oxygen and water. The impurity levels were monitored by a Hersch oxygen meter (Mk II/L) and Elliot moisture meter (model 112). When transferring or particularly weighing small quantities of powders in the dry boxes, static electricity caused difficulties. This problem was alleviated by exposing samples and apparatus to a $4 \mathrm{mCi}{ }^{210} \mathrm{Po} \alpha$-emitter (type PDV 1 Radiochemical Centre, Amersham, Bucks). Weighings accurate to $\pm 1 \mathrm{mg}$ were performed in the dry box with a Oertling double-pan balance. Where greater accuracy was required the dry box balance was used for approximation, with more accurate weighings before and after dry box transfer on a 1aboratory balance (Stanton Unimatic CL41 $\pm 0.1 \mathrm{mg}$).

Samples not required for immediate use were sealed under vacuum or an argon atmosphere in glass ampoules or F.E.P. tubes. Thermally
unstable samples were stored at -196° in a cryostat (British Oxygen Co. Ltd.). Whenever possible volatile samples were stored in glass ampoules with a break seal, in order to free valves for other operations.

2.2 Vacuum Systems

Vacuum line methods were used to prepare all but one of the compounds studied. A metal manifold with high and low vacuum facilities formed the basic system (Figure 1). This was constructed from $\frac{3}{8}^{\prime \prime}$ o.d., $\frac{1^{\prime \prime}}{}$ i.d. nickel tubing (H. Wiggin and Co., Hereford) and argon arc welded nickel U-traps ($\sim 25 \mathrm{~cm}^{3}$ capacity). AE-30 series, hard drawn stainless steel needle valves, crosses and tees (Autoclave Engineers Inc., Erie, Pennsylvania, U.S.A.) completed the manifold.

The low vacuum system (10^{-2} torr) consisted of a single stage rotary pump with a large metal trap containing soda-1ime granules (5-10 mesh) between the pump and the manifold; this removed fluorine and volatile fluorides evacuated. The low vacuum system was used to remove large quantities of gases before opening the manifold to the high vacuum system. The main system vacuum (10^{-4} torr) was maintained by a single stage rotary pump (Genevac type G.R.S.2, General Engineering Co., Radcliffe, Lancs.), mercury diffusion pump and -196° cold trap. Argon and hydrogen could be admitted directly to the manifold from cylinders, and fluorine for seasoning apparatus was contained in welded nickel cans ($\sim 1 \mathrm{dm}^{3}$ capacity) fitted with $\mathrm{AE}-30$ stainless steel needle valves.

Manifold pressures of plus or minus one atmosphere (0 to 1500 torr ± 5 torr) were measured by a stainless steel Bourdon-tube gauge (type 1F/66 Z, Budenberg Gauge Co. Ltd., Broadheath, Greater Manchester). The vacuum was monitored using a cold cathode Penning ionization gauge (Mode1 2A, Edwards High Vacuum Ltd., Crawley, West Sussex) measuring
\checkmark stainiess steel needle valve

T stainkess steel tee

Figure 1
The Basic High Vacuum Metal Manifold.
pressures in the range 10^{-2} to 10^{-6} torr.
A variety of metal or fluoroplastic reactors could be attached to the manifold, and Pyrex or silica reactors were designed as required. Glass apparatus was attached to the manifold either by Kovar seals (glass to $\frac{1}{4}^{\prime \prime}$ o.d. stainless steel) or by precision $\frac{1}{4}^{\prime \prime}$ o.d. glass fitting into Swagelok compression unions (TFE-400-6, Techmation Ltd., Edgware, Middlesex). Greaseless 'Rotaflo' valves (Quickfit type TF2/13 or TF6/13) with PTFE stems were used where glass valves were required. Fluoroplastic apparatus attached to the manifold through two types of valve. Whitey (type B-1KS4) needle valves, constructed from brass with a PTFE compression seal on to a stainless steel stem. They were attached to the manifold and apparatus through $\frac{11}{4}$ i.d. compression seals. Kel-F valves were also used, constructed to a design developed at the Argonne National Laboratory, Chicago, Illinois, U.S.A., the body and stem of the valves were fabricated from Kel-F block (Pampus Fluoroplast Ltd., Stoke-on-Trent, Staffordshire). A PTFE packing disc formed a seal between the stem and body which was enclosed in a supporting aluminium case. Small fluoroplastic reactors were fabricated by heating and moulding either 6 mm o.d. Kel-F tubing (Voltalef - Paris) or $\frac{1}{4}{ }^{\prime \prime}$ o.d. FEP tubing (Trimflex Division, Telef]ex Inc., Dover, New Jersey, U.S.A.). Larger reactors of $\frac{3}{4}{ }^{\prime \prime}$ o.d. Kel-F with approximately $30 \mathrm{~cm}^{3}$ volume were also available (Argonne).

2.3 Preliminary Treatment of Crystals

Single crystals were all grown from solution of either anhydrous solvent or excess starting material. Most of the compounds studied were moisture sensitive. Having prepared and crystallised samples under rigorously dry conditions it was necessary to isolate and mount
suitable single crystals in an inert atmosphere. Crystals were generally of poor quality with, typically, one well defined crystal in a hundred. A Pyrex capillary apparatus (Figure 2) was designed which, after evacuation to 10^{-5} torr and treatment with chlorine trifluoride, could be charged with a sample in a nitrogen atmosphere dry box. The sealed apparatus could then be manipulated under a microscope until selected single crystals were isolated and could be wedged in the capillaries. These were then sealed using a microtorch (mode1 H164/1 Jencons, Hemel Hempstead, Herts).

Figure 2

Capillary apparatus for the sorting of single crystals.

2.4 Characterisation of Products

The identity or purity of the products was established usually by three methods, X-ray powder photography, mass spectroscopy and Raman spectroscopy. Infra-red was used principally as a purity check of starting materials.

For X-ray powder diffraction, samples were ground to a fine powder in a dry box, and loaded into seasoned glass capillaries through a Rotaflo valve. The capillaries were re-evacuated and then sealed with a microtorch. The photographs were taken in a Philips 11.64 cm diameter camera using Kodirex KD 59 T film (Kodak Ltd.). For powder photographs $\mathrm{Cu}-\underline{K} \alpha$ radiation was used with a nickel filter.

An AEI MS9 or V.G. Micromass 16 B were used to record mass spectra. Spectra of solid samples were frequently obtained from glass capillaries already used for X-ray powder diffraction. The capillaries could be inserted directly into the ionization chamber mounted on the end of a stainless steel probe (Figure 3). In order to minimise decomposition of the sample during passage through the mass spectrometer it was seasoned with small amounts of fluorine prior to use. Samples of liquids or gases were admitted from a glass ampoule fitted with a Rotaflo valve and $\frac{1}{4}$ " o.d. compression fitting.

The Raman spectra were obtained using a Coderg T800 spectrometer, with either a $250 \mathrm{~mW} \mathrm{Ar}{ }^{+}$laser (Model 52, Coherent Radiation Laboratories) or $500 \mathrm{~mW} \mathrm{Kr}{ }^{+}$laser (Model 164, Spectra Physics Inc.). The Ar^{+}1aser provided $5145 \AA$ (green) and $4880 \AA$ (blue) radiation, the Kr^{+}laser gave $6145 \AA$ (red). Samples were contained in either glass ampoules or $\frac{1}{4}^{\prime \prime}$ o.d. FEP tubes. Samples likely to be decomposed by the beam were cooled in a stream of cold nitrogen gas. The tubes were secured in an evacuated double-walled glass jacket (Figure 4) which, once positioned,

Figure 3
Mass Spectrometer Probe Attachment for air sensitive
samples.
allowed several samples to be inspected without realignment. The nitrogen stream was generated from a 25 1itre dewar of 1iquid nitrogen, with a controlled heat source allowing temperatures in the range 0° to -100° to be maintained. A copper-constantan thermocouple near the sample connected to an electric thermometer (model 1623, Comark Electronics Ltd., Littlehampton, Sussex) gave readings accurate to $\pm 0.1^{\circ}$.

A Perkin Elmer 580 spectrometer was used to obtain infrared spectra. Solid samples were ground in a dry box and run as nujol mulls, between KBr windows $\left(4000-350 \mathrm{~cm}^{-1}\right)$. A supply of sodium dried nujol was kept in the dry boxes. Gas-phase spectra were óbtained using a 10 cm path 1ength copper cell with AgCl windows ($4000-400 \mathrm{~cm}^{-1}$). PTFE gaskets

Figure 4
Low-Temperature Raman Apparatus.
were used as an air tight seal between the windows and the cell body. The cell attached to the manifold through a Hoke diaphragm valve (type 4171 M2B Hoke International Ltd., Barnet, Herts) and was pumped to 10^{-4} torr before approximately 40 torr pressure of sample was admitted.

2.5 Generation and Use of Fluorine in Flow Systems

Flow system reactions were used to prepare the metal pentafluoride and oxide tetrafluorides used as starting materials. Fluorine was produced by a medium temperature 60 amp fluorine generator (I.C.I. Ltd., General Chemical Division) with a maximum output of 40 g of fluorine per hour. The fluorine exit pipe of the generator led directly to an efficient fume hood and through two metal traps containing sodium fluoride pellets to remove hydrogen fluoride. Further impurities were removed by liquid oxygen traps built into the glass reaction systems, which were attached to the metal line through a $\frac{1}{4}^{\prime \prime}$ i.d. neoprene compression sea1. Dry nitrogen gas was used to purge the cathode compartment of the cell, and the reaction system before and after a preparation. For most reactions nitrogen was used as a diluant during fluorination and for the metal oxide tetrafluorides oxygen was admitted through a valve in the glass apparatus.

2.6 Starting Materials and Solvents

Fluorine; for reactions on the manifold fluorine was used without purification from a cylinder (Matheson Gas Products). For safety and convenience reasons only the fluorine was transferred to welded nickel cans ($\sim 1 \mathrm{dm}^{3}$ capacity).

Tantalum and niobium; the metals were obtained as powders (British Drug

Houses Ltd.) which were reduced at red heat in a stream of hydrogen before use.

Molybdenum (Hopkin \& Williams Ltd.) and tungsten (BDH); metal powders were used without reduction for the preparation of the oxide tetrafluorides.

Antimony (BDH); the metal powder was used without purification. Sodium fluoride (BDH), potassium fluoride (Fisons Ltd.), caesium fluoride (Koch Light Ltd.) and rubidium fluoride (ROC/RIC Ltd.) were all heated at 120° to 150° in dynamic vacuum for 12 hrs , to remove adsorbed gases.

Caesium iodide (Koch Light), sodium iodide and potassium bromide (BDH); these compounds were heated at 110° in dynamic vacuum.

Bromine trifluoride (Matheson Gas Products Ltd.); was vacuum distilled from the cylinder into a silica ampoule, and the first and last fractions rejected.

Iodine pentafluoride (Cambrian Chemicals Ltd.); was vacuum distilled from the cylinder to a $\frac{3}{4}^{\prime \prime}$ o.d. Ke1-F tube where free iodine was converted to iodine pentafluoride by agitation with fluorine gas until the liquid was colourless.

Tungsten hexafluoride (Allied Chemicals Ltd.); was vacuum distilled from the cylinder to a $\frac{1}{4}^{\prime \prime}$ o.d. Kel-F tube over sodium fluoride to remove hydrogen fluoride.

Osmium tetroxide (Johnson Matthey \& Co. Ltd.); was used without purification, or prepared by burning osmium metal powder (Johnson Matthey) in a current of oxygen.

Anhydrous hydrogen fluoride (Imperial Chemical Industries Ltd.); was
vacuum distilled from the cylinder to nickel storage cans or $\frac{3}{4}$ " o.d. Kel-F tubes and degassed before use.

Sulphur dioxide (BDH) ; was vacuum distilled to storage ampoules over phosphorus pentoxide to remove traces of water.

Genetron 113 (Fluka A.G.); was purified by distillation from phosphorus pentoxide and stored over molecular sieve in glass ampoules.

In addition several pentafluorides and oxide tetrafluorides used as reactants were prepared by fluorination in flow systems.

Antimony pentafluoride; from the combination of antimony metal powder and fluorine, was vacuum distilled until the liquid was of a high viscosity.

Niobium and tantalum pentafluorides; obtained by heating the reduced metal powders in a fluorine stream were vacuun sublimed before use. Molybdenum and tungsten oxide tetrafluorides; prepared by heating the metal powders in a stream of fluorine and oxygen (4:1). The products were then resublimed in vacuum to give colourless crystals.

CHAPTER 3

The Preparation of Uranium Oxide-Tetrafluoride-Antimony Pentafluoride Adducts and the Crystal Structure of $\mathrm{UF}_{4} \mathrm{O}^{2} 2 \mathrm{SbF}_{5}$

3.1 Introduction

Although uranium was first discovered in 1789 by Klaproth, it had little conmercial importance until the discovery of nuclear fission by Hahn and Strassman in 1937. The increased importance of uranium as a nuclear fuel resulted in considerable interest in its chemistry. The halides have been studied in great detail and their chemical and structural properties are well established. However, the oxide fluoride compounds of uranium have had an uncertain history. Brooks et a1. ${ }^{17}$ first suggested the existence of $\mathrm{UF}_{4} \mathrm{O}$ as the principal product of a gas-phase reaction between UF_{6} and very low partial pressures of water. Further studies also suggested the existence of $\mathrm{UF}_{4} \mathrm{O}^{18}$ and $\mathrm{U}_{3} \mathrm{~F}_{8} \mathrm{O}_{5} .{ }^{19}$ The first characterization of $\mathrm{UF}_{4} \mathrm{O}$ was by Wilson. ${ }^{20}$ The $\mathrm{UF}_{4} \mathrm{O}$ was isolated from the reaction of UF_{6} with dilute solutions of water in liquid HF. Paine et al. ${ }^{\mathbf{2 1}}$ confirmed the existence of $\alpha-\mathrm{UF}_{4} \mathrm{O}$ and determined its structure by X-ray diffraction. $\alpha-\mathrm{UF}_{4} \mathrm{O}$ is rhombohedral, space group R 3 m , the uranium co-ordination being pentagonal bipyramidal. Three of the light atoms in the bipyramid are terminally bonded, the other four light atoms, which all lie in the plane of the pentagonal ring, each bridge two uranium atoms. Wilson et al. have also studied the $\alpha-\mathrm{UF}_{4} \mathrm{O}$ structure ${ }^{22,23}$ and the polymorphic form $\beta-\mathrm{UF}_{4} \mathrm{O}^{24}$ which is the product of slow crystallization from HF solution.

The chemical properties of $\mathrm{UF}_{4} \mathrm{O}$ have been the subject of numerous studies. ${ }^{20,21,25-32}$ The acidic character of $\mathrm{UF}_{4} \mathrm{O}$ has been demonstrated by its behaviour as a fluoride ion acceptor in reactions with monovalent alkali metal or ammonium fluorides, which give rise to compounds of the formulae $\mathrm{MLF}_{5} \mathrm{O}$ and $\mathrm{M}_{3} \mathrm{UF}_{7} \mathrm{O},{ }^{\mathbf{3 0 - 3 2}}\left(\mathrm{M}=\mathrm{NH}_{4}, \mathrm{~K}, \mathrm{Rb}\right.$ or Cs). The Cs complex may be regarded as essentially ionic with an octahedral environment about the uranium atom. The $\mathrm{NH}_{4}, \mathrm{~K}$ and Rb compounds are
less ionic with eight light atoms about the U forming dodecahedra which are fluorine bridged forming infinite chains. However, recent vibrational spectroscopic evidence ${ }^{33-34}$ suggested the existence of the unlikely cation $\mathrm{UF}_{3} \mathrm{O}^{+}$. The reaction between $\mathrm{CsUF}_{5} \mathrm{O}$ and $\mathrm{XeF}_{2} .2 \mathrm{SbF}_{5}$ in SbF_{5}, which was expected to yield the $\mathrm{UF}_{5} \mathrm{O}^{-}$anion in $\mathrm{XeF}^{+} \mathrm{UF}_{5} \mathrm{O}^{-}$, resulted in a product, the Raman spectrum of which showed the peak associated with $\cup(\mathrm{U}=0)$ shifted to higher frequency than in $\mathrm{CsUF}_{5} \mathrm{O}$ or even $\mathrm{UF}_{4} \mathrm{O}$. The implication that $\mathrm{UF}_{4} \mathrm{O}$ might be behaving as a fluoride ion donor seems unlikely because of the low co-ordination number implied by the formulation for the $\mathrm{UF}_{3} \mathrm{O}^{+}$ion. However, if cationic behaviour of the uranium was occurring it must result from an interaction with the strong Lewis acid antimony pentafluoride which is known to stabilise a number of unusual cations, such as $\left[\mathrm{I}_{2}\right]^{+35}$ and $\left[\mathrm{Br}_{2}\right]^{+} .{ }^{36}$ Antimony (V) fluoride is also capable of forming stable fluorine bridged adducts, or the hexafluoroantimonate anion, with fluoride ion donors. It is also self-associated via fluorine bridges. The occurrence of either fluoride bridged adducts or complex fluorides appears to be dependent on the Lewis acidities of the component molecules.

In any consideration of bonding in complex fluorides the two extreme bond types, ionic and covalent, must be taken into account. Structures resulting from the interaction between complex ion donors and acceptors may be considered totally ionic if the fluorine atom completes a stable regular array about the metal atom of the anion, with all bond distances equa1. The fluorine bridge bond is a type of covalent bond, where each of the bridged metal atoms effectively contributes half an electron to the bridging fluorine atom. However, in most complex fluorides, bonding may best be represented as a combination or hybrid of the extremes. In such cases the resulting bond energy will be greater than
that of either contributing form. It would be convenient in discussing such structures to be able to make quantitative statements about their nature. Formulae for the degree of ionic character between two atoms are known, but for bonds between complex "ions" the case is less simple and depends upon bond length comparisons, with other adducts and the starting materials where these are polymeric.

The adducts formed between antimony (V) fluoride and the noble gas fluorides are of particular interest in comparing ionic contribution to bonding, since series of adducts are formed with variation of both stoichiometry and the oxidation state of the cation. In recent years the $1: 1$ adducts $\mathrm{M}^{+}\left[\mathrm{SbF}_{6}\right]^{-}\left(\mathrm{M}=[\mathrm{XeF}]^{+} ;{ }^{37-41}\left[\mathrm{XeF}_{3}\right]^{+} ;{ }^{41-45}\left[\mathrm{XeF}_{5}\right]^{+} ;{ }^{41}\right.$, 46,47 $\left.\left[\mathrm{XeOF}_{3}\right]^{+} ;{ }^{41-44}\left[\mathrm{XeO}_{2} \mathrm{~F}_{5}\right]^{+} ;{ }^{41,42}[\mathrm{KrF}]^{+42,48-51}\right)$ have been characterised by vibrational and n.m.r. spectroscopy. The ionic bonding contribution being determined by the number of electron pairs in the bonding she11 such that $[\mathrm{XeF}]^{+}>\left[\mathrm{XeF}_{3}\right]^{+}>\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{XeOF}_{3}\right]^{+}>\left[\mathrm{XeOF}_{5}\right]^{+}$.

The series of adducts of $2: 1,1: 1$ and $1: 2$ composition of the noble gas difluoride/antimony (V) fluoride system have been studied for both xenon and krypton. The series $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-,}{ }^{37-43}[\mathrm{XeF}]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$and $[\mathrm{XeF}]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-37-40,52-54}$ and the analogous $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{48-51}$ $[\mathrm{KrF}]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$and $[\mathrm{KrF}]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-42,48-51,55}$ compounds have been shown to exhibit a large ionic contribution to the bonding and a gradation of ionic character, $1: 1>1: 2>2: 1$ but with no adduct wholly fluorine bridged or ionic.

There are numerous examples of $1: 1$ and $1: 2$ adducts of antimony (V) fluoride with the halogen fluorides. The well defined (1:1) adducts with $\mathrm{ClF}_{3},{ }^{\mathbf{5 6}, 57} \mathrm{IF}_{3},{ }^{\mathbf{5 8}} \mathrm{BrF}_{3}{ }^{\mathbf{5 9}, 60}$ and $\mathrm{ClFO}_{3}{ }^{\mathbf{6 1}}$ have been characterised as largely ionic structures having some fluorine bridged character, as for example in the $\mathrm{BrF}_{3} . \mathrm{SbF}_{5}$ adduct where fluorine bridging between the
ions gives an endless helical chain. Similarly the $1: 2$ adducts of SbF_{5} with $\mathrm{BrF}_{5}{ }^{62}$ and $\mathrm{BrF}_{7}{ }^{63}$ may be represented by the formulations $\left[\mathrm{BrF}_{4}\right]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$and $\left[\mathrm{BrF}_{6}\right]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$with infinite chains of discrete $\left[\mathrm{BrF}_{\mathrm{x}}\right]^{+}$and $\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$ions coupled by relatively weak fluorine bridges. Adducts formed between antimony(V) fluoride and the pentafluorides of niobium ${ }^{64,65}$ and tantalum, ${ }^{65}$ are reported as essentially neutral fluorine bridged compounds. Nuclear magnetic resonance ${ }^{65,66}$ and conductivity measurements ${ }^{65}$ are consistent with the adducts being fluorine bridged with a small degree of ionic character coming from the resonance forms $\left[\mathrm{MF}_{4}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$. Complex fluorides of antimony (V) fluoride with nitrogen containing cations represent the opposite extreme and may be regarded as purely ionic species. The $1: 1$ adducts of FNO_{2} and FNO , and the $1: 2$ adducts of $\mathrm{F}_{3} \mathrm{NO}$ and $\mathrm{F}_{4} \mathrm{~N}_{2}{ }^{\mathbf{6 7}}$ can thus be formulated as $\left[\mathrm{NO}_{2}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-},[\mathrm{NO}]^{+}\left[\mathrm{SbF}_{6}\right]^{-},\left[\mathrm{F}_{2} \mathrm{NO}\right]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$and $\left[\mathrm{F}_{3} \mathrm{~N}_{2}\right]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$ respectively with no appreciable anion-cation interaction.

It was decided, in view of the spectroscopic evidence already obtained for the $\mathrm{UF}_{4} 0-\mathrm{SbF}_{5}$ systen, that an X -ray sing1e crystal study would be helpful in understanding the bonding in the adducts, and to establish from the uranium environment whether there is any evidence for the $\mathrm{UF}_{3} \mathrm{O}^{+}$cation.

3.2 Preparation of uranium oxide-tetrafluoride-antimony pentafluoride adducts

Uranium oxide tetrafluoride was prepared as described by Wilson ${ }^{20}$ and its purity was monitored by X-ray diffraction and vibrational spectroscopy. The $\mathrm{CsUF}_{5} \mathrm{O}$ was prepared by the reaction of $\mathrm{UF}_{4} \mathrm{O}$ and CsF in 1iquid $\mathrm{SO}_{2},{ }^{18}$ and $\mathrm{XeF}_{2} .2 \mathrm{SbF}_{5}$ by the reaction of excess of SbF_{5} with $\mathrm{XeF}_{2} .{ }^{53}$ Single crystals of the adduct $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ were prepared at the

Centre d'Etudes Nucleaires de Saclay by J. H. Holloway and R. Bougon. The crystals were obtained from the reaction of $\mathrm{CsUF}_{5} \mathrm{O}$ with $\mathrm{XeF}_{2} .2 \mathrm{SbF}_{5}$ in liquid SbF_{5} solvent. Stoichiometric quantities of the reactants were taken in F.E.P. tubes. Reaction occurred at room temperature with the evolution of gas, when no further gas was evolved the SbF_{5} was removed by pumping in dynamic vacuum, initially at room temperature then at approximately $70^{\circ} \mathrm{C}$. During this stage orange single crystals separated from the orange/yellow solid product. X-ray powder photographs of the crystals and bulk product showed that $\mathrm{UF}_{4} \mathrm{O}, \mathrm{CsUF}_{5} \mathrm{O}, \mathrm{CsF}$ and CsSbF_{6} were not major constituents of the product. The Raman spectra of the bulk material (Table 1) showed, in addition to the $\nu(\mathrm{U}=0)$ band of $\mathrm{UF}_{5} \mathrm{O}^{-}\left(825 \mathrm{~cm}^{-1}\right)$ and $\mathrm{UF}_{4} \mathrm{O}\left(875 \mathrm{~cm}^{-1}\right)$, a peak at $910 \mathrm{~cm}^{-1}$ which might be tentatively assigned to $v(\mathrm{U}=0)$ of $\mathrm{UF}_{3} \mathrm{O}^{+}$.

The series of adducts $\mathrm{UF}_{4} \mathrm{OnSbF}_{5}(\mathrm{n}=1,2$ or 3) were prepared by the reaction of $\mathrm{UF}_{4} \mathrm{O}$ with SbF_{5} in preseasoned and weighed $\mathrm{Kel}-\mathrm{F}$ reactors. Powdered $\mathrm{UF}_{4} \mathrm{O}$ was added in a drybox and the reactor evacuated before re-weighing. The manifold and reactor were then pumped to good vacuum, $\leqslant 5 \times 10^{-5}$ torr, before SbF_{5} was added in static vacuum. A large excess of SbF_{5} was used to prepare the $1: 3$ and $1: 2$ adducts and complete solution obtained by gentle warming. Excess SbF_{5} removed initially in static vacuum and later in dynamic vacuum yielded the $1: 3$ adduct at room temperature or the $1: 2$ adduct at $60-70^{\circ} \mathrm{C}$. The $1: 1$ adduct required the addition of a stoichiometric quantity of SbF_{5} and the use of anhydrous HF as solvent. The mixture was gently warmed and an orange solution obtained but at no time was complete solution achieved. On removal of the solvent an orange crystalline solid remained.

The solid adducts have been characterized by observations of the

TABLE 1

$\mathrm{UF}_{4} \mathrm{O}$		$\mathrm{SbF}_{5(1)}$ R	$\mathrm{UF}_{4} \mathrm{O} .3 \mathrm{SbF}_{5}$		$\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$		$\mathrm{UF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$	
R	R		I.R.	R	I.R.	R	I.R.	R
			1013		1010		1005	
			920s	921s		931m		
					912s	912s	907s	906s
889 vs	896vs							
	889 vs							
882 vs	882vs							
			740sh		732sh			
		717		721m	722 vs	725sh	715vs	
					710sh	716m		
			700 vs br	704s		702m		700 m
		670				672sh		669vs
665s	665s		660sh	662vs	657 s	655 vs	650sh	649 m
				612 m				620w
			604 s			607w		
						603w		
					596s	590 m	590	589m
550 m	548m				546sh	544m	540 m	560 m
				534 mbr			531m	534m
			525 mbr		526s			522m
					$\begin{aligned} & 518 \mathrm{sh} \\ & 502 \mathrm{sh} \end{aligned}$	512sh		
			475 mbr				480	
					457m	461m		
						441sh		
							420w	
		345					365m	
$\begin{aligned} & 345 \mathrm{vw} \\ & 276 \mathrm{~m} \end{aligned}$	345vw			337w				292m
	275m			284sh				287sh
		268		270m		275m	270m	
		231						
				221m		198m		
201m	202m							204s
		190		188m				185sh
148s	148s			149 m		158m		158sh
		140		146 m				142 s
				139w				
117m	116	116		119w				123sh
				95w				96w

Vibrational data (cm^{-1}) of the adducts of $\mathrm{UF}_{4} \mathrm{O}$ with SbF_{5} compared with those of pure $\mathrm{UF}_{4} \mathrm{O}$ and SbF_{5}.
reaction stoichiometry, chemical analysis, vibrational spectra and X-ray powder diffraction techniques. Chemical analyses for each adduct were in good agreement with the calculated mole ratios. The vibrational spectra obtained for the adducts (Table 1) were distinctly different from $\mathrm{UF}_{4} \mathrm{O}$ and SbF_{5}. The band associated with $\nu(\mathrm{U}=0)$ is shifted to higher frequency as the proportion of highly acidic SbF_{5} increases, suggesting progressive withdrawal of electron density from $\mathrm{UF}_{4} \mathrm{O}$. However, no corresponding peaks are found characteristic of the anionic species of antimony, $\mathrm{SbF}_{6}{ }^{-}$or $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-} .{ }^{43,68,69}$ The X-ray powder diffraction pattern of the $1: 3$ adduct is similar to that of crystalline SbF_{5}, though not perfectly iso-structural. As soon as the composition 1:3 is passed in the pump curve, the rate of loss of SbF_{5} increases and the powder pattern changes to a new form which is maintained until the $1: 2$ composition is reached. This implies that the $1: 3$ form changes to $1: 2$, and that excess of SbF_{5} is present as a 1iquid which can be readily removed. The identity of the single crystals obtained from the $\mathrm{CsUF}_{5} \mathrm{O}$ and $\mathrm{XeF}_{2} .2 \mathrm{SbF}_{5}$ reaction was confirmed by the equivalence of X-ray powder photographs with those of the $1: 2$ adduct.

3.3 Single Crystal X-ray Investigation of $\mathrm{UF}_{1} \mathrm{O} .2 \mathrm{SbF}_{5}$

Crystals of the adduct were transferred in an inert-atmosphere drybox into short lengths of thin-walled preseasoned Pyrex capillaries and sealed. The crystal used for the investigation was rectangular block-shaped and had adhered to the wall of a capillary. It had the approximate dimensions $0.168 \mathrm{~mm} \times 0.083 \mathrm{~mm} \times 0.076 \mathrm{~mm}$. Approximate ce11 dimensions were obtained from Weissenberg photographs taken using $\mathrm{Cu}-\underline{K}_{\alpha}$ (nickel filtered) radiation and precession photographs using Mo- \underline{K}_{α} (Zr filtered) radiation. Final cell dimensions were determined
from an oscillation photograph for the rotation axis \mathfrak{a}, and from its optimised counter angles for zero and upper layer reflections on a Weissenberg diffractometer. Chosen reflections were maximised by ω-scan and then 2θ scan using an asymmetric half slit.

3.4 Crystal Data

$$
\begin{aligned}
& \mathrm{F}_{14} \mathrm{OSb}_{2} \mathrm{U} ; \quad \mathrm{M}=764 \\
& \text { Monoc1inic } \underline{a}=7.864(16), \quad \underline{b}=14.704(8), \quad \underline{c}=9.980(8) \AA, \\
& \beta=99.8(1)^{\circ}, \quad \underline{\mathrm{U}}=1137 \AA^{3}, \quad \underline{\mathrm{D}} \underline{\mathrm{c}}=4.46 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \underline{z}=4, \\
& \mu(\mathrm{MoK} \alpha)=181.4 \mathrm{~cm}^{-1}, \quad \underline{\mathrm{~F}}(000)=1311.9, \quad \text { MoK} \alpha \text { radiation, } \\
& \lambda=0.71069 \AA .
\end{aligned}
$$

Space group $\underline{P} 2_{1} / \mathrm{c}\left(\mathrm{C}_{2}^{5} \mathrm{~h}\right.$ No. 14) . Neutral atomic scattering factors were used with anomalous dispersion corrections.

3.5 Collection of Intensity Data

Data were collected from layers 0 kl to 8 k 1 using the Stadi-2 diffractometer, in the $+\mathrm{h},+\mathrm{k},+1$ quadrant only for the 0 kl layer and in the two quadrants ± 1 for the remaining layers. Data were collected using an ω-scan technique, the counter angle (20) remaining fixed at the calculated value for each reflection, whilst the crystal rotates in the X-ray beam with a count time of 0.5 second at 0.01° increments of ω. The ω-scan angle was determined for each reflection to ensure that counts were not lost from broad reflections at high 2θ angles.

The intensities of reflections with $0.08<\operatorname{Sin} \theta / \lambda<0.7 \AA^{-1}$ were collected at $22-25^{\circ} \mathrm{C}$, and a total of 1170 unique reflections were obtained with $I / \sigma I \geqslant 3$. Monitoring of check reflections throughout each layer indicated no significant deterioration of the crystal during the data collection. Between the collection of data for layer 5 kl and 6 kl
it was necessary to realign the X-ray tube, and this resulted in an increase in beam intensity. It was therefore required to establish a scale factor for layers 6 kl to 8 kl . The check reflections monitored for layers 0 kl to 5 kl were recollected at the higher intensity and a scale factor calculated and applied to the data, no significant trend of deviant reflections resulted from the correction.

Lorentz, polarisation and absorption corrections were made to the data. The accurate measurement of the crystal for the absorption correction was difficult as the crystal was small by comparison with the tube diameter and observation of the crystal down the 011 axis was obscured.

3.6 Solution of the structure

The program system SHELX was used. A Patterson summation was used to locate the uranium and antimony atoms. Three cycles of least squares refinement gave an R factor of 0.15 and allowed sufficient phasing for the location of the light atoms by Fourier maps. The oxygen atom was chosen from the shortest uranium to light atom bond-length, and fourteen other peaks assigned as fluorine. Three cycles of refinement with all atoms included and isotropic temperature factors gave an R factor of 0.095 . An absorption correction with maximum and minimum transmission factors 0.359 and 0.211 respectively, was performed on the data set. Further cycles of refinement using anisotropic thermal parameters for all atoms reduced R to 0.046 . The final cycles employed a weighting parameter $\underline{g}(0.00063)\left[\omega \alpha \frac{1}{\sigma^{2}}(\mathrm{~F})+\mathrm{gF}^{2}\right]$ and an isotropic extinction parameter $\underline{x}(0.0001)\left[F_{c}=F\left(1-\mathrm{XF}^{2} / \operatorname{Sin} \theta\right)\right]$. The final difference Fourier map revealed no significant features and an analysis of the weighting scheme over $\left|\mathrm{F}_{\mathrm{o}}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory. Final
atomic positional parameters are in Table 2, the anisotropic thermal parameters are in Table 3. The interatomic distances and angles are in Tables 4 and 5 respectively, and the observed and calculated structure factors are found in Appendix 1.

Final residual indices for 1170 reflexions:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.0456 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum_{\mathrm{w}}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum_{\mathrm{w}}\left|\mathrm{~F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.0431
\end{aligned}
$$

3.7 Discussion

The structure of the $\mathrm{UF}_{4} 0.2 \mathrm{SbF}_{5}$ adduct is related to that of $\alpha-\mathrm{UF}_{4} \mathrm{O}^{21}$ itself, the uranium oxide tetrafluoride having a pentagonalbipyramidal array of light atoms about the uranium with four bridging and three terminal atoms (Figure 5). Two types of antimony atom exist in the structure, in which ring units of two uranium, two $\mathrm{Sb}(1)$ and 4 F atoms are linked through the uranium atoms into endless zig-zag chains to $\mathrm{Sb}(2)$ atoms by F atoms.

The fluorine bridge angles of 150 and 156° in the (U-F-Sb(1)-F) ${ }_{2}$ ring are approximately the average of the fluorine bridge bond angles in SbF_{5} (141 and 170°). The fluorine bridges with the $\mathrm{Sb}(2)$ atoms in the chain are equal, within experimental error, their average value being 162°. The overall structure may, therefore, be thought of as a fluorine bridged network (Figure 6) in which the features of two of the three structure types conmonly found for transition metal and actinide metal pentafluorides and oxide tetrafluorides exist together. The two structure types represented are the distorted tetrameric ring arrangement typified by $\mathrm{RhF}_{5},{ }^{\mathbf{7 0}}$ and the VF_{5} type, ${ }^{\mathbf{7 1}}$ where octahedra are joined in polymeric zig-zag chains.

In molecular structures determined by X-ray diffraction methods,

Figure 5

Figure 6
Stereoscopic view of the unit cell contents of $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$.

$\xrightarrow{{ }^{\mathrm{b}}} \mathrm{C}$
there is usually ambiguity in the placement of an oxygen atom with respect to fluorine atom positions. In most cases a final assignment has to be made with the help of supporting characterisation data. In the case of $\mathrm{UF}_{4} \mathrm{O}_{2} 2 \mathrm{SbF}_{5}$ it was concluded from the vibrational spectra of the adduct (Table 1), that the oxygen is non-bridging. The terminal atom in the equatorial plane is at a distance of $1.98 \AA$ from the uranium, is comparable with the $\mathrm{U}-\mathrm{F}$ bond distance found in $\mathrm{UF}_{6},{ }^{72}$ and can clearly be assigned to a fluorine atom. Therefore, one of the two short terminal bonds axial to the pentagonal belt belongs to the $\mathrm{U}-\mathrm{O}$ bond, as in the case of $\alpha-\mathrm{UF}_{4} \mathrm{O}$. The axial bond distances, $\mathrm{U}-\mathrm{X}(1)$ $1.820(15) \AA$ and $U-X(2) 1.825(15) \AA$ are, within error limits, equivalent and cannot be uniquely assigned to U-O or U-F. It can be assumed that these axial positions are occupied in a disordered way by F and 0 atoms, and the bond distances an average of the expected $\mathrm{U}-\mathrm{O}$ and $\mathrm{U}-\mathrm{F}$ distances. The average $U-X$ bond length of $1.822 \AA$ is between those found for the disordered axial atoms of $\alpha-\mathrm{UF}_{4} \mathrm{O}$ by Paine et al. (1.77 and $1.79 \AA)^{21}$ and Levy et a1. $\left(1.87\right.$ and $1.88 \AA$).23

Vibrational data, prior to the structure determination, indicated an ionic contribution to the bonding within the adduct. The shift of the band associated with $v(\mathrm{U}=0)$ in the Raman spectra from $875 \mathrm{~cm}^{-1}$ in $\mathrm{UF}_{4} \mathrm{O}$, to $910 \mathrm{~cm}^{-1}$, suggested the ionic formulation $\left[\mathrm{UF}_{3} \mathrm{O}\right]^{+}\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$. However, it is clear from the structure determination that in the absence of adjacent Sb atoms the $\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$unit does not occur in the structure. Further evidence of an ionic contribution to the bonding is provided by the volume per light atom of $19 \AA^{3}$, which is close to the volume expected for the close packed fluorine atoms of an ionic lattice ($18 \AA^{\circ}$).

A comparison of the U and Sb bridging fluorine distances with those
observed in the parent compounds suggests a slight tendency towards the ionic formulation $\left[\mathrm{UF}_{2} \mathrm{O}\right]^{2+}\left[\mathrm{SbF}_{6}\right]_{2}{ }^{-}$. The average U-F bridging distance of $2.34(2) \AA$ is significantly longer than the 2.27(1) \AA distance found for the equivalent bonds in $\mathrm{UF}_{4} \mathrm{O} .^{21}$ The average $\mathrm{Sb}-\mathrm{F}$ bridging distance is slightly shorter at 1.951 (17) \AA compared with $2.02(3) \AA$ found in the solid state structure of $\mathrm{SbF}_{5}{ }^{73}$ The terminal $\mathrm{Sb}-\mathrm{F}$ bond lengths are of the expected order, but less symmetric about $\mathrm{Sb}(1)(1.789-1.871(15) \AA)$ than $\mathrm{Sb}(2)(1.818-1.849(15) \AA)$.

The $[\mathrm{M}]^{2+}\left[\mathrm{SbF}_{6}\right]_{2}^{-}$formulation is unique amongst known structures, and a bond length comparison with closely related adducts is, thus, impossible. Despite the $1: 2$ composition of the adduct, a comparison of ionicity with $[\mathrm{M}]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$adducts is of greater validity than with those containing the $\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$ion. The adduct $\mathrm{NbF}_{5} . \mathrm{SbF}_{5}$ is reported as having a contribution to the structure from the ionic form $\left[\mathrm{NbF}_{4}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-},{ }^{64}$ and like $\mathrm{UF}_{4} \mathrm{O}, \mathrm{NbF}_{5}$ is both a good fluoride ion acceptor, and has a tetrameric structure. ${ }^{74}$ The $\mathrm{Sb}-\mathrm{F}$ bridge distance in $\mathrm{SbF}_{5}(2.02(5) \mathrm{A})$ is shortened by the same amount in both adducts to $1.95(2) \AA$. However, the bond distance is still $0.13 \AA$ greater than the Sb-F distance required for a regular wholly ionic octahedron. A corresponding increase in the fluorine bridge distance is observed for both the U-F and $\mathrm{Nb}-\mathrm{F}$ bonds of the two adducts. The U-F bridging distance of $2.34(2) \AA$ is $0.07 \AA$ longer than found in $U F_{4} \mathrm{O}$, whereas the $\mathrm{Nb}-\mathrm{F}$ bridging distance $(2.17(2) \AA)$ is $0.11 \AA$ longer than the equivalent bond of NbF_{5}.

It is difficult to estinate a value for a non-bridged contact distance between the U and F atoms, and no quantitative assessment of the degree of ionic character, indicated by the increased U-F bond length, can be made. If, for an $\mathrm{Sb}-\mathrm{F}$ bond we assume the average
bridging distance of the neutral SbF_{5} tetramer, 2.025(30) \AA, represents a neutral $\mathrm{Sb}-\mathrm{F}$ bond length (D_{n}), and the $\mathrm{Sb}-\mathrm{F}$ bond length of the recently determined KSbF_{6} structure, ${ }^{75}$ 1.845(10) \AA, to be representative of a regular ionic octahedron (D_{i}) an estimation of ionic character may be made. The $\mathrm{Sb}-\mathrm{F}$ bridging distance of the adduct $\left(\mathrm{D}_{\mathbf{a}}\right), 1.95(2) \AA$, is closer to the expected covalent distance and, although the degree of ionic character is not expected to be linearly proportional, the following equation is an approximation:-

$$
\mathfrak{f}=\left(\mathrm{D}_{\mathrm{c}}-\mathrm{D}_{\mathrm{a}} / \mathrm{D}_{\mathrm{c}}-\mathrm{D}_{\mathbf{i}}\right)=(2.02-1.95 / 2.02-1.845)=0.40(3) .
$$

The value calculated for $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ can be compared only with other antimony pentafluoride adducts for which detailed structures have been reported, Table 6.

TABLE 6

Calculated ionicity values of some antimony pentafluoride compounds

	$\mathrm{Sb}-\mathrm{F}(\mathrm{B})(\mathrm{A})$	$\mathrm{I}=\left(\mathrm{D}_{\mathbf{c}}-\mathrm{D}_{\mathbf{a}} / \mathrm{D}_{\mathbf{c}}-\mathrm{D}_{\mathbf{i}}\right)$
$\left(\mathrm{SbF}_{5}\right)_{4}$	2.02	0.00
$\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$	1.949^{*}	0.40
$\mathrm{NbF}_{5} . \mathrm{SbF}_{5}$	1.945	0.43
$\mathrm{BrF}_{3} . \mathrm{SbF}_{5}$	1.91	0.63
$\mathrm{ClF}_{3} . \mathrm{SbF}_{5}$	1.905^{*}	0.66
KSbF_{6}	1.845	1.00
* distances result from averaging of asymmetric		
bonds		

The higher values obtained for the adducts of SbF_{5} with BrF_{3} and ClF_{3} are as expected. However, the comparable values for $\mathrm{NbF}_{5} . \mathrm{SbF}_{5}$ and $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$, also indicate considerable ionic contribution to the bonding within the adducts, contrary to the evidence of $N M R$ and conductivity measurements for $\mathrm{NbF}_{5} . \mathrm{SbF}_{5}$.

Although the adduct samples obtained from the reactions of $\mathrm{UF}_{4} \mathrm{O}$ and SbF_{5} were microcrystalline, no single crystals were obtained either directly or from solution in anhydrous HF. Variation of the reaction conditions used in the method from which single crystals of $\mathrm{UF}_{4} \mathrm{O}^{2} 2 \mathrm{SbF}_{5}$ were obtained, might provide an alternative preparative method and single crystals. For example, the $1: 1$ adduct might be prepared from the reaction:-

$$
\mathrm{XeF}^{+} \mathrm{SbF}_{6}^{-}+\mathrm{Cs}^{+} \mathrm{UF}_{5} \mathrm{O}^{-} \rightarrow \mathrm{UF}_{3} \mathrm{O}^{+} \mathrm{SbF}_{6}^{-}+\text {mixed products }\left(\mathrm{CsSbF}_{6},\right.
$$

Variation of the stoichiometry previously used with $\mathrm{XeF}_{2} .2 \mathrm{bF}_{5}$ and $\mathrm{CsUF}_{5} \mathrm{O}$ may also yield adducts other than $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$, as the $\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$ unit of the xenon adduct clearly breaks, to give $\left[\mathrm{SbF}_{6}\right]^{-}$ions during the reaction.

The structures of the $1: 1$ and 1:3 adducts are expected to exhibit a similar degree of ionic character, with a probable gradation of ionicity $1: 1>1: 2>1: 3$. It seems likely that the $1: 3$ adduct would be more closely related, structurally, to the $1: 2$ adduct than would the $1: 1$, as transition from $1: 3$ to $1: 2$ adduct is readily achieved by warming in dynamic vacuum, whereas the $1: 2$ to $1: 1$ conversion does not occur. The additional $\left[\mathrm{SbF}_{6}\right]^{-}$ion of the $\mathrm{UF}_{4} 0.3 \mathrm{SbF}_{5}$ may form an $\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]^{-}$ion in the zig-zag chain that links the tetrameric rings.

Atomic positional parameters for $\mathrm{UF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{SSbF}_{5}$, with estimated standard deviations in parentheses.

	x / a	y / b	z / c
U	$0.22398(11)$	$0.14423(6)$	$0.20255(9)$
$\mathrm{Sb}(1)$	$-0.15905(19)$	$-0.04818(11)$	$0.20172(17)$
$\mathrm{Sb}(2)$	$0.61561(18)$	$0.26878(11)$	$0.02113(16)$
$\mathrm{X}(1)$	$0.092(2)$	$0.2319(10)$	$0.1071(17)$
$\mathrm{F}(1)$	$0.7436(19)$	$0.2334(12)$	$0.1857(14)$
$\mathrm{F}(2)$	$0.4219(16)$	$0.2019(9)$	$0.0766(13)$
$\mathrm{F}(3)$	$0.526(2)$	$0.3670(10)$	$0.0950(17)$
$\mathrm{F}(4)$	$0.7842(18)$	$0.3353(12)$	$-0.0403(16)$
$\mathrm{F}(5)$	$0.6589(19)$	$0.1625(9)$	$-0.0654(14)$
$\mathrm{X}(2)$	$0.3288(19)$	$0.0393(10)$	$0.2707(18)$
$\mathrm{F}(7)$	$0.1262(19)$	$0.1694(11)$	$0.3685(15)$
$\mathrm{F}(8)$	$-0.0288(17)$	$0.0591(10)$	$0.1651(14)$
$\mathrm{F}(9)$	$0.036(2)$	$-0.1103(12)$	$0.199(3)$
$\mathrm{F}(10)$	$-0.2772(19)$	$-0.1574(10)$	$0.2150(17)$
$\mathrm{F}(11)$	$-0.3538(20)$	$0.0219(11)$	$0.1737(19)$
$\mathrm{F}(12)$	$-0.115(3)$	$-0.0253(12)$	$0.3828(17)$
$\mathrm{F}(13)$	$0.4612(17)$	$0.2019(8)$	$0.3551(13)$
$\mathrm{F}(14)$	$0.203(2)$	$0.0640(11)$	$-0.0044(15)$

Interatomic distances (\AA), with estimated standard deviations in parentheses.

$\mathrm{U}-\mathrm{X}(1)$	$1.820(15)$
$\mathrm{U}-\mathrm{F}(2)$	$2.322(14)$
$\mathrm{U}-\mathrm{X}(2)$	$1.825(15)$
$\mathrm{U}-\mathrm{F}(7)$	$1.976(16)$
$\mathrm{U}-\mathrm{F}(8)$	$2.325(13)$
$\mathrm{U}-\mathrm{F}(13)$	$2.356(12)$
$\mathrm{U}-\mathrm{F}(14)$	$2.360(15)$
$\mathrm{Sb}(1)-\mathrm{F}(8)$	$1.949(14)$
$\mathrm{Sb}(1)-\mathrm{F}(9)$	$1.789(19)$
$\mathrm{Sb}(1)-\mathrm{F}(10)$	$1.871(15)$
$\mathrm{Sb}(1)-\mathrm{F}(11)$	$1.828(16)$
$\mathrm{Sb}(1)-\mathrm{F}(12)$	$1.812(17)$
$\mathrm{Sb}(1)-\mathrm{F}(14)$	$1.954(15)$
$\mathrm{Sb}(2)-\mathrm{F}(1)$	$1.849(14)$
$\mathrm{Sb}(2)-\mathrm{F}(2)$	$1.970(13)$
$\mathrm{Sb}(2)-\mathrm{F}(3)$	$1.818(17)$
$\mathrm{Sb}(2)-\mathrm{F}(4)$	$1.835(17)$
$\mathrm{Sb}(2)-\mathrm{F}(5)$	$1.845(14)$
$\mathrm{Sb}(2)-\mathrm{F}(13)$	$1.929(12)$

Interatomic angles (${ }^{\circ}$), with estimated standard deviations in parentheses
 Notrmonnoroonnumotnromnomnt

CHAPTER 4

> The Preparation of Molybdenum and Tungsten Oxide Tetrafluoride-Antimony Pentafluoride Adducts and the Crystal Structure of $\mathrm{MoF}_{4} \mathrm{O}^{-\mathrm{SbF}_{5}}$

4.1 Introduction

The oxide tetrafluorides of molybdenum and tungsten were first prepared by the action of anhydrous hydrogen fluoride on the oxide tetrachlorides. ${ }^{76,77}$ A variety of methods have since been reported for the preparation of both $\mathrm{MoF}_{4} \mathrm{O}^{78-80}$ and $\mathrm{WF}_{4} \mathrm{O} .{ }^{\mathbf{7 9 - 8 5}}$ The most convenient method for the preparation of large quantities of the materials, is the thermal reaction of the metals with an oxygen-fluorine mixture in a dynamic system. ${ }^{86}$

The physical and chemical properties of $\mathrm{MoF}_{4} \mathrm{O}$ and $\mathrm{WF}_{4} \mathrm{O}$ have been extensively studied. Both are colourless crystalline solids which are readily hydrolysed in the atmosphere. Vapour density measurements ${ }^{87}$ and gas phase infrared data ${ }^{80,88}$ have shown that both are essentially monomeric in the vapour phase. Further vapour phase infrared spectra of $\mathrm{MoF}_{4} \mathrm{O}$ have been interpreted on the basis of $\mathrm{C}_{4 \mathrm{~V}}$ molecular synmetry, 89 rather than the $C_{2 v}$ symmetry predicted by the valence-shell electronpair repulsion theory. ${ }^{90}$

The crystal structure of $\mathrm{MoF}_{4} \mathrm{O}^{91}$ consist of polymeric zig-zag chains, with the molybdenum atoms linked by cis-fluorine bridges. A second form of $\mathrm{MoF}_{4} \mathrm{O}$ has been described as trimeric, ${ }^{92}$ and the existence of polymorphic forms is supported by Raman spectra for sublimed $\mathrm{MoF}_{4} \mathrm{O}$, and $\mathrm{MoF}_{4} \mathrm{O}$ crystallised from a melt which indicate slightly different structures. ${ }^{93}$

The crystal structure of $\mathrm{WF}_{4} \mathrm{O}^{94}$ was originally interpreted as an oxygen-bridged tetrameric arrangement. Due to the difficulty in distinguishing oxygen and fluorine atoms by X -ray methods, in the presence of a heavy metal atom, the bridging atom was assumed to be oxygen on the basis of infrared data and symmetry considerations. Studies of the solid and liquid phases of $\mathrm{WF}_{4} \mathrm{O}$ by vibrational spectros-
copy ${ }^{87,93,95}$ were found to be inconsistent with this model. The band at $1050 \mathrm{~cm}^{-1}$ attributed to a very short terminal tungsten-fluorine bond, ${ }^{94}$ was reassigned to a terminal tungsten-oxygen bond. Further infrared studies on $\mathrm{WF}_{4} \mathrm{O}$, using labe11ed ${ }^{18} 0$, resulted in a shift of the band attributed to the tungsten-terminal atom bond from $1050 \mathrm{~cm}^{-1}$ to $997 \mathrm{~cm}^{-1} .{ }^{96}$ The same study showed by ${ }^{19} \mathrm{~F}$ n.m.r. that all the fluorine atoms are not terminal. The evidence clearly indicates that the crystallographic study was in error, and that the tetrameric units are fluorine bridged.

The acid properties of the oxytetrafluorides of molybdenum, tungsten and uranium towards some inorganic fluoride ion donors have been studied by Bougon et al. ${ }^{29}$ In HF solutions, evidence was obtained for partial ionization to give $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}{ }^{-}$, and values of equilibrium constants show that $\mathrm{WF}_{4} \mathrm{O}$ is the stronger Lewis-acid. The ionic structures found for the adducts formed with the strong bases FNO and ClOF_{3} is further evidence for the Lewis-acid nature of the oxytetrafluorides. In the $\mathrm{MF}_{4} \mathrm{O}-\mathrm{FNO}-\mathrm{HF}$ system, the anions $\mathrm{MO}_{2} \mathrm{~F}_{9}{ }^{-}$, $\mathrm{MOF}_{5}{ }^{-}$and $\mathrm{MOF}_{6}{ }^{2-}(\mathrm{M}=\mathrm{Mo}$ or W$)$ are formed in amounts dependent on the F^{-}ion concentration. Ionic complexes containing the anion $\mathrm{MOF}_{5}^{-}(\mathrm{M}=\mathrm{Mo}$ or W$)$ result from reactions between alkali fluorides and the hexafluorides in the presence of moisture. ${ }^{97,98}$

The oxytetrafluorides are also capable of forming essentially covalent fluoride bridged adducts. Xenon difluoride and tungsten oxide tetrafluoride form the adducts $\mathrm{XeF}_{2} . \mathrm{nWF}_{4} \mathrm{O}$ ($\mathrm{n}=1$ or 2). ${ }^{99}{ }^{19} \mathrm{~F}$ n.m.r. of the solutions and vibrational spectroscopy of the solids are indicative of covalent structures with xenon-fluorine-tungsten bridges having no appreciable contribution to the bonding from the ionic formulations $[\mathrm{XeF}]^{+}\left[\mathrm{WF}_{5} \mathrm{O}\right]^{-}$or $[\mathrm{XeF}]^{+}\left[\mathrm{W}_{2} \mathrm{~F}_{9} \mathrm{O}_{2}\right]^{-}$. An X-ray structural
investigation on $\mathrm{XeF}_{2} . \mathrm{WF}_{4} \mathrm{O}$ has confirmed this structure for solid $\mathrm{XeF}_{2} . \mathrm{WF}_{4} \mathrm{O} .^{100}$

Following work on the uranium oxide tetrafluoride-antimony pentafluoride system, and the successful preparation and characterisation of the adducts $\mathrm{UF}_{4} 0 . \mathrm{nSbF}_{5}(\mathrm{n}=1,2$ or 3), it was decided to attempt the analogous reactions with $\mathrm{MoF}_{4} \mathrm{O}$ and $\mathrm{WF}_{4} \mathrm{O}$, in order to see whether similar structures were produced. The X-ray single crystal study of $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ indicated a basically fluorine bridged structure with a considerable contribution from the ionic formulation $\left[\mathrm{UF}_{2} \mathrm{O}\right]^{2+}\left[\mathrm{SbF}_{6}\right]_{2}{ }^{-}$. The chemistry of SbF_{5} (discussed in section 3.1) and $\mathrm{MoF}_{4} \mathrm{O}$ and $\mathrm{WF}_{4} \mathrm{O}$ indicates that SbF_{5} is a far stronger Lewis-acid than the oxide tetrafluorides, which should favour ionic formulations. It can be predicted from the relative Lewis acidities of $\mathrm{MoF}_{4} \mathrm{O}$ and $\mathrm{WF}_{4} \mathrm{O}^{29}$ that the adducts with tungsten would have less ionic contribution to the bonding and would be expected to be less stable. The tetrameric nature of both SbF_{5} and $\mathrm{WF}_{4} \mathrm{O}$ structures might also be instrumental in determining the structure of adducts formed between them.

4.2 Preparation

Reactions between molybdenum oxide tetrafluoride and excess of antimony pentafluoride were performed in a preseasoned (ClF_{3}) and weighed Kel-F reactor. Finely ground $\mathrm{MoF}_{4} \mathrm{O}$ was added in a dry-box, and the reactor evacuated before re-weighing. The manifold and reactor were pumped to good vacuum before SbF_{5} was added in static vacuum. The 5:1 excess of SbF_{5} required was approximated by volume and then the reactor re-weighed. Typically, 1.336 mMol of $\mathrm{MoF}_{4} \mathrm{O}$ and 6.645 mMol of SbF_{5} were used. The reaction mixture was warmed ($40-50^{\circ}$) until all the $\mathrm{MoF}_{4} \mathrm{O}$ was dissolved. The product remained homogeneous at room tempera-
ture and the free SbF_{5} was removed in dynamic vacuum. The weight of the reactor was monitored at set intervals during a twenty hour period. A graph of SbF_{5} weight loss vs time of pumping [Figure $7(\mathrm{a})$] was plotted. Some stability for the adduct $\mathrm{MoF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ is indicated by the change of slope at $1: 2$ composition. The pump curve was halted, and, after 12 hr , well defined crystals formed, but after 4 days only 30% of the reaction mixture was crystalline and cooling did not promote further crystallisation. On the assumption that the crystals were of $1: 1$ adduct and not a 1:2 adduct of low melting point, pumping was resumed. After 20 hr the weight corresponded to $1: 1$ composition, and thereafter virtually zero rate of SbF_{5} loss ($<0.00001 \mathrm{~g} \mathrm{~min}^{-1}$) occurred.

The mass spectrum of the solid revealed the species $\mathrm{SbF}_{6}{ }^{+}, \mathrm{SbF}_{5}{ }^{+}$, $\mathrm{SbF}_{4}{ }^{+}, \mathrm{SbF}_{3}{ }^{+}, \mathrm{SbF}_{2}{ }^{+}, \mathrm{SbF}^{+}, \mathrm{Sb}^{+}$and $\mathrm{MoF}_{2} \mathrm{O}^{+}, \mathrm{MoFO}_{2}{ }^{+}, \mathrm{MoF}_{2} \mathrm{O}_{2}{ }^{+}$and $\mathrm{MoF}_{3} \mathrm{O}^{+}$. The dioxyfluoride species may be attributed to inpurities in the sample but more likely arise from reaction with residual oxygen in the mass spectrometer. The Raman spectra of $\mathrm{MoF}_{4} \mathrm{O}$ and a powdered sample of the adduct were recorded at the same time to eliminate marker zero errors, the results are listed in Table 7. The Raman shift of the metal-oxygen band from $1042 \mathrm{~cm}^{-1}$ to $1047 \mathrm{~cm}^{-1}$ may be taken as some indication of ionic character in the adduct. The upfield shift is expected for an increased positive charge on the metal atom, but the magnitude suggests a covalent compound with only slight contribution from the formulation $\left[\mathrm{MoF}_{3} \mathrm{O}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$.

Upon close examination, crystals appeared to be of two forms. Examples of each were ground and the X-ray powder diffraction patterns recorded. The first crystal form (I), were block shaped crystals, and were suspected to be $\mathrm{MoF}_{4} \mathrm{O}$, but gave a diffraction pattern which could be indexed as primitive cubic, $a=5.03 \AA$. [It is suspected that these

The Raman spectrum (cm^{-1}) of the adduct $\mathrm{MoF}_{4} \mathrm{O} \cdot \mathrm{SbF}_{5}$ compared with those of pure $\mathrm{MoF}_{4} \mathrm{O}$ and SbF_{5}

$\mathrm{MoF}_{4} \mathrm{O} \cdot \mathrm{SbF}_{5}$	$\mathrm{MoF}_{4} \mathrm{O}$	SbF_{5}
$1047 \mathrm{~cm}^{-1}(\mathrm{~s})$	$1042 \mathrm{~cm}^{-1}(\mathrm{~s})$	
$766(\mathrm{mw})$	$740(\mathrm{~m})$	
$704(\mathrm{~m})$	$721(\mathrm{mw})$	$718 \mathrm{~cm}^{-1}(\mathrm{~s})$
$675(\mathrm{~s})$	$688(\mathrm{~s})$	$670(\mathrm{vs})$
$621(\mathrm{w})$		
$578(\mathrm{w})$	$571(\mathrm{w})$	
	$529(\mathrm{w})$	
	$506(\mathrm{vw})$	
$338(\mathrm{w})$	$333(\mathrm{~m})$	$349(\mathrm{vw})$
$314(\mathrm{w})$	$309(\mathrm{~ms})$	
	$275(\mathrm{w})$	$268(\mathrm{~m})$
$233(\mathrm{w})$	$222(\mathrm{mw})$	$231(\mathrm{mw})$
		$189(\mathrm{mw})$

crystals are an antimony adduct of the form $\mathrm{H}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$, see chapter 10.] The bulk of the crystals were of form II, and gave a diffraction pattern (Table 8), which could be indexed using the cell parameters found in the single crystal study.

The reaction conditions used for the tungsten oxide tetrafluorideantimony pentafluoride system were identical, but the results were not consistent. Possibly this system is more strongly influenced by small changes in the amount of heating applied to obtain the initial solution. Three reactions each gave different points of apparent stability on the pump curve, but in all cases SbF_{5} was still being lost when the $1: 1$ composition was reached [Figure 7(b)]. The bulk of the samples consisted of interfering crystals, all good single crystals separated gave cell parameters that were, within experimental error, indistinguishable from $\mathrm{NF}_{4} \mathrm{O}$.

The mass spectra of the product revealed only the species $\mathrm{SbF}_{4}{ }^{+}$, $\mathrm{SbF}_{3}^{+}, \mathrm{SbF}_{2}{ }^{+}, \mathrm{SbF}^{+}, \mathrm{Sb}^{+}$and $\mathrm{WF}_{3} \mathrm{O}^{+}, \mathrm{WF}_{2} \mathrm{O}^{+}, \mathrm{WF}_{3}{ }^{+}, \mathrm{WFO}^{+}$and $\mathrm{WF}_{2}{ }^{+}$. Despite careful pre-treatment of the mass spectrometer, parent ions of complex fluorides introduced to the spectrometer are rarely seen and the mass spectra obtained is as would be expected for $\mathrm{WF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$. The Raman spectra of the product (Table 9) indicates little or no ionic character. The $\nu_{1} \mathrm{Sb}-\mathrm{F}$ band at $670 \mathrm{~cm}^{-1}$ is consistent with $\mathrm{Sb}-\mathrm{F}$ frequency for SbF_{5} rather than $\mathrm{SbF}_{6}{ }^{-}\left(662 \mathrm{~cm}^{-1}\right)$. Similarly the metal-oxygen stretch at $1061 \mathrm{~cm}^{-1}$ is close to that found for $\mathrm{WF}_{4} \mathrm{O}\left(1058 \mathrm{~cm}^{-1}\right)$. An X-ray powder diffraction pattern showed only differences in intensity for the reflections \{130\} and $\{040\}$ from those of $\mathrm{WF}_{4} \mathrm{O}$, but was otherwise identical. There is no clear explanation of these observations, either the adduct is not crystalline and the powder pattern is due to $\mathrm{WF}_{4} \mathrm{O}$ impurity, or SbF_{5} fits into the $\mathrm{WF}_{4} \mathrm{O}$ structure without significant

X-ray powder diffraction pattern of $\mathrm{MoF}_{4} \mathrm{O}_{\mathrm{O}} . \mathrm{SbF}_{5}$

Line	intensity	$\operatorname{Sin}^{2} \theta \times 10^{4}$	$\operatorname{Sin}^{2} \theta \times 10^{4}$ (calc) basedon single crystal study a b\quad mw	182

[$\mathrm{Cu}-\underline{\mathrm{K}}_{\alpha}$ radiation]

Raman spectra $\left(\mathrm{cm}^{-1}\right)$ of the adduct $\mathrm{WF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ compared with that of pure $\mathrm{NF}_{4} \mathrm{O}$.

$\mathrm{WF}_{4} \mathrm{O} \cdot \mathrm{SbF}_{5}$	$\mathrm{WF}_{4} \mathrm{O}$
1061 (vs)	1058 (vs)
758 (mw)	744 (m)
710 (s)	728 (w)
	687 (vw)
670 (s)	669 (vw) (sh)
	663 (mw)
556 (vw)	563 (w)
	532 (vv)
	523 (w)
	388 (w)
	367 (vw)
334 (w)	330 (mw)
	318 (m) (sh)
312 (w)	314 (s)
279 (w)	265 (w)
242 (vw)	242 (mw)
	215 (mw)
	151 (miw)
133 (vw)	135 (w)

alteration of the cell parameters.
As no suitable single crystals were obtained by the removal of the excess of SbF_{5}, attempts were made to recrystallise the adduct from anhydrous HF , and $\mathrm{CH}_{3} \mathrm{CN}$ containing a trace of HF . The latter method yielded no single crystals. From HF solution colourless crystals were formed. An X-ray single crystal study located only one type of heavy metal atom in a tetragonal cell $(a=7.17 \AA, c=5.05 \AA$). This was identified as antimony by the Raman spectrum. It was, therefore, suspected that the crystals were again of the composition $\mathrm{H}_{\mathbf{x}} \mathrm{O}_{\mathbf{y}} \mathrm{SbF}_{6}$, and are discussed in chapter 10.

A further attempt to obtain single crystals of $\mathrm{WF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{SbF}_{5}$ was made using the method employed for the preparation of $U \Gamma_{4} 0 . \mathrm{SbF}_{5}$, whereby stoichiometric quantities of the reactants are mixed in solution. A Kel-F reactor was charged with $1.04 \mathrm{mMol}^{2}$ of $\mathrm{WF}_{4} \mathrm{O}$, and SbF_{5} (0.990 mMol) and the solvent, WF_{6}, were added in static vacuum. Complete solution was obtained by gentle warming of the mixture. A white solid product, consisting of interfering and single crystals, was obtained upon removing the solvent. The weight of the reactor and product was greater than expected from the weights of $\mathrm{WF}_{4} \mathrm{O}$ and SbF_{5} used. This is due to WF_{6} either taking part in the reaction or becoming absorbed on the reactor walls. The Raman and infrared spectra are consistent with those of the previous samples of $\mathrm{WF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$, as is the X -ray powder diffraction pattern.

Unlike the $\mathrm{UF}_{4} \mathrm{O}-\mathrm{SbF}_{5}$ system, it appears that both $\mathrm{MoF}_{4} \mathrm{O}$ and $\mathrm{WF}_{4} \mathrm{O}$ form only stable adducts of $1: 1$ composition with SbF_{5}.

4.3 Single Crystal X-ray Investigation of $\mathrm{MoF}_{4} \mathrm{O}_{\mathrm{CbF}}^{5}$

The crystals grown from excess of SbF_{5} were of suitable dimensions
and appearance, several crystals were sealed in preseasoned Pyrex capillaries. The crystal used for the investigation had approximate dimensions $0.2 \mathrm{~mm} \times 0.1 \mathrm{~mm} \times 0.07 \mathrm{~mm}$, and was wedged obliquely in the tube. This required that the capillary be fixed on the arcs at approximately 45°. Preliminary cell dimensions were obtained from Weissenberg photographs taken using $\mathrm{Cu}-\mathrm{K}_{\alpha}$ (Ni filtered) radiation and precession photographs, using Mo- \underline{K}_{α} (Zr filtered) radiation. Final cell dimension were determined from an oscillation photograph for the rotation axis \underline{b}, and from optimised counter angles for zero and upper layer reflections on a Weissenberg diffractometer.

4.4 Crystal Data

$\mathrm{F}_{9} \mathrm{MoOSb} \quad ; \quad \underline{M}=404.75$

$$
\begin{array}{cl}
\text { Monoclinic } & \underline{a}=7.470(8), \underline{b}=10.40(2), \underline{c}=9.606(9) \AA \\
& \underline{B}=93.13 \pm 0.3^{\circ} \\
& \underline{\mathrm{U}}=745.06 \AA^{\circ} ; \quad \underline{\mathrm{D}} \underline{\mathrm{c}}=3.61 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad \underline{Z}=4 \\
& \underline{\mathrm{~F}}(000)=727.82 ; \quad \text { Mo-K radiation; } \lambda=0.71069 \AA \\
& \underline{\mu}\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=50.12 \mathrm{~cm}^{-1}
\end{array}
$$

Space group $\underline{p} 2_{1} / \underline{n}$ (non-standard setting of $\underline{p} 2_{1} / \underline{\mathrm{c}}$, No. 14). Neutral scattering factors were used, with anomalous dispersion coefficients.

4.5 Collection of the Intensity Data

Data were collected from 1ayers h01 to h101, using the Stadi-2 diffractometer, in the $+\mathrm{h},+\mathrm{k},+1$ quadrant for the h01 layer, and in the two quadrants \pm, for the remaining layers. A total of 1123 unique reflections were obtained with $I / \sigma I \geqslant 3$. Data were collected using an ω-scan technique. Monitoring of check reflections throughout each
layer indicated no significant deterioration of the crystal during the data collection. Lorentz, polarisation and absorption corrections were made to the data set.

4.6 Solution of the structure

The program system SHELX was used. A Patterson summation was used to locate the molybdenum and antimony atoms. Three cycles of least squares refinement gave an R factor of 0.20 , and allowed sufficient phasing for the location of the light atoms by Fourier maps. The oxygen atom was chosen from the shortest molybdenum to light-atom bond length, three cycles of refinement with all atoms included and isotropic temperature factors gave an R factor of 0.11 . An absorption correction, maximum and minimum transmission factors 0.524 and 0.359 respectively, was performed on the data set. Further cycles of refinement using anisotropic thermal parameters for all atoms reduced R to 0.043 . Final cycles employed a weighting parameter $g(0.00076)$ $\left[\omega \alpha 1 / \sigma^{2}(\mathrm{~F})+\mathrm{g} \mathrm{F}^{2}\right]$ and an isotropic extinction paraneter $\underline{x}(0.00045)$ $\left[F_{c}=F^{\prime}\left(1-\mathrm{x} \mathrm{F}^{2} / \operatorname{Sin} \theta\right)\right]$. The final difference Fourier revealed no significant features and an analysis of the weighting scheme over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory. Final atomic positional parameters are given in Table 10, the anisotropic thermal paraneters are in Table 11. The interatomic distances and angles are in Tables 12 and 13 respectively, and the observed and calculated structure factors are found in Appendix 2.

Final residual indices for 1123 reflections:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.0413 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum_{\mathrm{w}}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum_{\mathrm{w}}\left|\mathrm{~F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.0408
\end{aligned}
$$

Atomic positional parameters for $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$, with estimated standard deviations in parentheses.

	x / a	y / b	z / c
Sb	$0.28909(9)$	$0.01861(6)$	$0.19183(7)$
Mo	$0.62617(12)$	$0.32094(9)$	$0.16927(9)$
O	$0.7902(11)$	$0.2514(8)$	$0.0828(8)$
$\mathrm{F}(1)$	$0.4693(9)$	$0.1481(6)$	$0.1594(7)$
$\mathrm{F}(2)$	$0.4555(10)$	$-0.1050(7)$	$0.1597(10)$
$\mathrm{F}(3)$	$0.2241(12)$	$0.0160(8)$	$0.0060(8)$
$\mathrm{F}(4)$	$0.1237(12)$	$0.1442(8)$	$0.2197(13)$
$\mathrm{F}(5)$	$0.3529(15)$	$0.0199(11)$	$0.3744(8)$
$\mathrm{F}(6)$	$0.4713(10)$	$0.3544(7)$	$0.0241(6)$
$\mathrm{F}(7)$	$0.6703(10)$	$0.2574(7)$	$0.3393(6)$
$\mathrm{F}(8)$	$0.3901(9)$	$0.3895(6)$	$0.2769(7)$
$\mathrm{F}(9)$	$0.7085(10)$	$0.4752(7)$	$0.1925(8)$

$$
\begin{aligned}
& \text { in } \\
& \text { n} \\
& 0 \\
& 0
\end{aligned}
$$

(ε) 1 LO $0-$

$$
\begin{array}{ll}
\text { n } & 10 \\
& 1 \\
0 & 0 \\
0 & 0
\end{array}
$$

remer

$$
\begin{aligned}
& 0 \\
& \stackrel{0}{0} \\
& 0 \\
& \dot{0}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{0}{6} \\
& \stackrel{0}{0} \\
& \dot{0}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{m}{0} \\
& -1 \\
& 0 \\
& \dot{0} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{n}{0} \\
& \underset{O}{0} \\
& 0 \\
& 0
\end{aligned}
$$ temperature factors are in the f The

$$
\begin{gathered}
\mathrm{U}_{22} \\
0.0267(4) \\
0.0268(6) \\
0.041(5) \\
0.035(4) \\
0.041(4) \\
0.084(6) \\
0.052(5) \\
0.141(9) \\
0.063(5) \\
0.048(4) \\
0.042(4) \\
0.036(4)
\end{gathered}
$$

$$
\begin{aligned}
& U_{33} \\
& \hline 21 e(1)
\end{aligned}
$$

$$
0.0348(4)
$$

$$
\begin{aligned}
& 0.0408(5) \\
& 0.069(5)
\end{aligned}
$$

$$
0.070(4)
$$

$$
0.147(8)
$$

$$
0.049(4)
$$

$$
\begin{aligned}
& 0.202(11) \\
& 0.047(4)
\end{aligned}
$$

$$
0.041(4)
$$

$$
0.053(4)
$$

$$
0.061(4)
$$

$$
\begin{gathered}
\mathrm{U}_{23} \\
-0.0024(3)
\end{gathered}
$$

$$
\begin{aligned}
& -0.0024(3) \\
& -0.0021(3)
\end{aligned}
$$

$$
-0.007(4)
$$

$$
-0.015(3)
$$

$$
-0.001(4)
$$

$$
0.019(4)
$$

$$
0.007(5)
$$

$$
0.002(3)
$$

$$
\begin{gathered}
\mathrm{U}_{13} \\
0.0081 \\
0.0029
\end{gathered}
$$

$$
0.021(4)
$$

$$
0.017(3)
$$

$$
0.022(5)
$$

$$
-0.010(4)
$$

$$
0.047(6)
$$

$$
-0.002(5)
$$

$$
-0.013(3)
$$

$$
\begin{array}{r}
-0.002(3) \\
0.012(3)
\end{array}
$$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Sb	$0.0296(4)$	$0.0267(4)$	$0.0348(4)$	$-0.0024(3)$	$0.0081(2)$	$-0.0043(3)$
Mo	$0.0253(4)$	$0.0268(6)$	$0.0408(5)$	$-0.0021(3)$	$0.0029(3)$	$-0.0020(4)$
0	$0.039(5)$	$0.041(5)$	$0.069(5)$	$-0.007(4)$	$0.021(4)$	$0.003(4)$
$\mathrm{F}(1)$	$0.048(4)$	$0.035(4)$	$0.070(4)$	$-0.015(3)$	$0.017(3)$	$-0.018(3)$
$\mathrm{F}(2)$	$0.039(4)$	$0.041(4)$	$0.147(8)$	$-0.001(4)$	$0.022(5)$	$0.005(3)$
$\mathrm{F}(3)$	$0.090(6)$	$0.084(6)$	$0.049(4)$	$0.019(4)$	$-0.010(4)$	$-0.035(5)$
$\mathrm{F}(4)$	$0.058(5)$	$0.052(5)$	$0.202(11)$	$-0.039(6)$	$0.047(6)$	$0.008(4)$
$\mathrm{F}(5)$	$0.119(8)$	$0.141(9)$	$0.047(4)$	$0.007(5)$	$-0.002(5)$	$-0.065(7)$
$\mathrm{F}(6)$	$0.053(4)$	$0.063(5)$	$0.041(4)$	$0.002(3)$	$-0.013(3)$	$-0.006(4)$
$\mathrm{F}(7)$	$0.059(5)$	$0.048(4)$	$0.053(4)$	$0.005(3)$	$-0.002(3)$	$0.006(4)$
$\mathrm{F}(8)$	$0.040(4)$	$0.042(4)$	$0.061(4)$	$-0.001(3)$	$0.012(3)$	$0.009(3)$
$\mathrm{F}(9)$	$0.046(4)$	$0.036(4)$	$0.086(5)$	$-0.002(3)$	$0.005(3)$	$-0.011(3)$

$$
\begin{aligned}
& \text { en } \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

Interatomic distances (A) with estimated standard deviations in parentheses
a) bond distances

$\mathrm{Sb}-\mathrm{F}(1)$	$1.942(6)$
$\mathrm{Sb}-\mathrm{F}(2)$	$1.826(7)$
$\mathrm{Sb}-\mathrm{F}(3)$	$1.824(7)$
$\mathrm{Sb}-\mathrm{F}(4)$	$1.827(8)$
$\mathrm{Sb}-\mathrm{F}(5)$	$1.792(8)$
$\mathrm{Sb}-\mathrm{F}(8)$	$1.931(6)$
$\mathrm{Mo}-\mathrm{O}$	$1.681(7)$
$\mathrm{Mo}-\mathrm{F}(1)$	$2.145(6)$
$\mathrm{Mo}-\mathrm{F}(6)$	$1.797(6)$
$\mathrm{Mo}-\mathrm{F}(7)$	$1.776(6)$
$\mathrm{Mo}-\mathrm{F}(8)$	$2.210(6)$
$\mathrm{Mo}-\mathrm{F}(9)$	$1.728(7)$

b) non-bond distances

Sb. . . Mo	4.041
Sb... Mo	4.010
Mo...F(3)	3.690
Mo...F(2)	3.535
0...F(1)	2.763
0...F(6)	2.645
0...F(7)	2.668
0...F(9)	2.641
0...F(3)	2.909
$F(1) \ldots \mathrm{F}(2)$	2.635
$F(1) \ldots F(3)$	2.668
$F(1) \ldots \mathrm{F}(4)$	2.677
$F(1) \ldots F(5)$	2.645
$F(1) \ldots \mathrm{F}(6)$	2.509
F(1)...F(7)	2.500
$F(1) \ldots \mathrm{F}(8)$	2.828
$\mathrm{F}(2) \ldots \mathrm{F}(3)$	2.544
$F(2) \ldots \mathrm{F}(5)$	2.589
$F(2) \ldots \mathrm{F}(8)$	2.685
F(3)...F(4)	2.592
F(3)...F(7)	2.866
$F(3) \ldots F(8)$	2.646
$F(4) \ldots \mathrm{F}(5)$	2.555
F(4) ...F(8)	2.651
$F(5) \ldots \mathrm{F}(8)$	2.638
$\mathrm{F}(6) \ldots \mathrm{F}(8)$	2.561
F(6)...F(9)	2.650
F(7)...F(8)	2.547
F(7)...F(9)	2.692
$\mathrm{F}(8) \ldots \mathrm{F}(9)$	2.705

Interatomic angles (${ }^{\circ}$), with estimated standard deviations in parentheses

$\mathrm{F}(2)-\mathrm{Sb}-\mathrm{F}(1)$	$88.7(0.3)$
$\mathrm{F}(3)-\mathrm{Sb}-\mathrm{F}(1)$	90.2(0.3)
$F(3)-S b-F(2)$	88.4(0.4)
$\mathrm{F}(4)-\mathrm{Sb}-\mathrm{F}(1)$	90.5(0.4)
$\mathrm{F}(4)-\mathrm{Sb}-\mathrm{F}(2)$	178.5(0.5)
$\mathrm{F}(4)-\mathrm{Sb}-\mathrm{F}(3)$	90.5(0.5)
$\mathrm{F}(5)-\mathrm{Sb}-\mathrm{F}(1)$	90.1(0.4)
$\mathrm{F}(5)-\mathrm{Sb}-\mathrm{F}(2)$	91.4(0.5)
$\mathrm{F}(5)-\mathrm{Sb}-\mathrm{F}(3)$	179.6(0.3)
$\mathrm{F}(5)-\mathrm{Sb}-\mathrm{F}(4)$	89.8 (0.6)
F(1)-Mo-0	91.6(0.3)
F (6)-Mo-0	98.9(0.4)
F (6)-Mo-F(1)	78.5(0.3)
F (7) - Mo-0	101.0(0.4)
$\mathrm{F}(7)-\mathrm{Mo}-\mathrm{F}(1)$	78.6(0.3)
$\mathrm{F}(7)-\mathrm{Mo}-\mathrm{F}(6)$	149.9(0.3)
F (8) - Mo-0	172.5(0.3)
$\mathrm{F}(8)-\mathrm{Mo}-\mathrm{F}(1)$	$81.0(0.2)$
$\mathrm{F}(8)-\mathrm{Mo}-\mathrm{F}(6)$	78.7 (0.3)
$\mathrm{F}(8)-\mathrm{Mo}-\mathrm{F}(7)$	78.6 (0.3)
$F(9)-\mathrm{Mo}-0$	101.5(0.4)
$\mathrm{F}(9)-\mathrm{Mo}-\mathrm{F}(1)$	166.7(0.3)
F(9)-Mo-F (6)	97.5(0.3)
$\mathrm{F}(9)-\mathrm{Mo}-\mathrm{F}(7)$	100.4(0.4)
$\mathrm{F}(9)-\mathrm{Mo}-\mathrm{F}(8)$	85.8(0.3)
Mo-F (1)-Sb	163.0(0.4)
Mo-F (8)-Sb	161.6(0.4)

4.7 Discussion

The structure of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ is related to that of $\mathrm{MoF}_{4} \mathrm{O},{ }^{91}$ with alternate antimony and molybdenum atoms linked through fluorine bridges into a polymeric zig-zag chain (Figure 8). Equivalent atoms of each chain are aligned in the ab plane. The arrangement of the pairs of bridging fluorine atoms about the molybdenum atom is cis, and trans for the antimony atom. The light atoms are approximately octahedrally arranged about the antimony atom, with angles of $90 \pm 1.6^{\circ}$, but the octahedron is elongated in the direction of the trans fluorine bridges. The average antimony to fluorine bridge distance is 1.94(1) \AA compared with the average antimony to terminal fluorine distance of $1.82(1) \AA$. The light atom array about molybdenum is less regular, due to the presence of the oxygen atom and the cis fluorine bridging arrangement. The molybdenum atom is effectively displaced away from the adjacent bridging fluorine atoms and towards the two light atoms in the same plane (Figure 9).

Unlike $\mathrm{MoF}_{4} \mathrm{O}$, which has asymmetric molybdenum to fluorine bridge bonds of $1.94(1) \AA$ and $2.29(2) \AA$, the bridging distances to molybdenum in the SbF_{5} adduct are approximately equal at 2.15(1) \AA and 2.21(1) \AA. The possibility that the bridging atoms could be alternately oxygen and fluorine was rejected on the evidence of vibrational spectroscopic data and the equivalence of the bridging bonds. The terminal atoms perpendicular to the bridging plane were assigned to fluorine, the bond distances to molybdenum of $1.78(1) \AA$ and $1.80(1) \AA$ being typical of metal to terminal fluorine atom bond lengths. The assignment of the oxygen atom to one of the two light atoms equatorial to the bridging atoms is not conclusive, but has been made on the basis of the shortest molybdenum to light atom bond length. In the structure of $\mathrm{MoF}_{4} \mathrm{O}$, the

Figure 8
Stereoscopic view of the unit cell contents of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$.

Figure 9
The asymmetric unit of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$.

light atom opposite the longer fluorine bridge has a bond distance of 1.65(1) \AA, compared with $1.82(1) \AA$ for the light atom trans to the short fluorine bridge and the oxygen atom was thus fixed unequivocally. However, the equivalent atoms of the SbF_{5} adduct have bond lengths of 1.68 (1) \AA and 1.73(1) \AA, and though this indicates a preference for placing the oxygen atom at the co-ordinates $1.68(1) \AA$ from molybdenum, this distance is longer than expected for a metal to oxygen bond, and the $1.73(1) \AA$ bond length is short for metal-fluorine, which suggests a degree of disorder between these positions.

The zig-zag chain structure of the adduct is in contrast with the tetrameric form of the antimony pentafluoride solid state structure. ${ }^{73}$ The SbF_{5} tetramer is a distorted fluorine bridged structure with antimony-fluorine-antimony ang1es of 141 and 170° and thus is between the regular tetrameric type of structure exhibited by $\mathrm{NbF}_{5}{ }^{74}$ and the highly distorted tetramers typified by $\mathrm{RhF}_{5}{ }^{70}$

From the closer association of the bridging fluorine atoms with the antimony atoms than the molybdenum atoms it can be argued that there is some contribution from the ionic formulation $\left[\mathrm{MoF}_{3} \mathrm{O}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$. The average $\mathrm{Sb}-\mathrm{F}$ f1uorine bridge distance of the adduct, $1.94(1) \AA$, is less than the fluorine bridge distance of $2.02(5) \AA$ found in the tetrameric SbF_{5} structure. ${ }^{73}$ The average Mo-F bridge distance of the adduct, $2.18(1) \AA$, is greater than the average of the equivalent but asymmetric bonds in the $\mathrm{MoF}_{4} \mathrm{O}$ structure (2.12(1) \AA). ${ }^{91}$ This reflects the greater affinity of antimony for fluorine, but the Raman spectrum with almost insignificant shift to higher frequency of the ν_{1} band for the $\mathrm{Mo}_{\mathrm{o}}=0$ bond suggests an essentially covalent compound.

An estimate of the degree of ionic character of the adduct may be calculated using the method applied to the $\mathrm{UF}_{4} 0.2 \mathrm{SbF}_{5}$ structure
(chapter 3). As with the uranium adduct, no estimate of the Mo-F distance representative of a donor fluorine atom in an ionic structure can be established. However, a comparison of $\mathrm{Sb}-\mathrm{F}$ bridged bond distances for the adduct (D_{a}) with the average bridging distance of the neutral SbF_{5} tetramer (D_{n}), and the $\mathrm{Sb}-\mathrm{F}$ distance found in regular ionic octahedra ($\mathrm{D}_{\mathbf{i}}$), allows an estimation of ionic character to be made:-

$$
\frac{\mathrm{D}_{\mathrm{c}}-\mathrm{D}_{\mathrm{a}}}{\mathrm{D}_{\mathrm{c}}-\mathrm{D}_{\mathrm{i}}}=\frac{2.02-1.94}{2.02-1.845}=0.46
$$

The estimated ionic character of 46% is of the same order as the value obtained for the $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ adduct. This is contrary to the evidence of the Raman data. However, the natures of the two adducts $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ and $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ are si.gnificantly different. As ionic structures, the anticipated formulations would be $\left[\mathrm{UF}_{2} \mathrm{O}\right]^{2+} 2\left[\mathrm{SbF}_{6}\right]^{-}$and $\left[\mathrm{MoF}_{3} \mathrm{O}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$, and it can reasonably be argued that the contributions to bonding from the ionic form of the uranium compound, in which two positive charges are associated with the $\left[\mathrm{UF}_{2} \mathrm{O}\right]^{2+}$ cation, might give rise to a significantly greater Raman shift than in the case of the molybdenum cation $\left[\mathrm{MoF}_{3} \mathrm{O}\right]^{+}$. It appears that the calculations of ionic character in both structures are, at best, indications of a degree of ionicity in essentially covalent, fluorine bridged structures. The Raman shift is apparently not significant as a measure of ionicity in two compounds which differ so much in their basic structures.

The inability to grow crystals of the adduct $\mathrm{WF}_{4} \mathrm{O}^{2} \mathrm{SbF}_{5}$ may be attributable to the stronger Lewis acidity of $\mathrm{WF}_{4} \mathrm{O}$ than $\mathrm{MoF}_{4} \mathrm{O}^{29}$ With increased Lewis acid nature, less contribution from ionic bonding would be expected within the structure, with a lower resultant bond energy. The structure of the $\mathrm{WF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ adduct may; thus, be too disordered at room temperature to obtain good single crystals.

CHAPTER 5

The Preparation and Crystal Structure of $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$

5.1 Introduction

Rhenium oxide tetrafluoride was first reported as a blue crystalline solid, by Hargreaves and Peacock, ${ }^{101}$ as a product of the reaction between tungsten hexacarbony1 and an excess of rhenium hexafluoride. However, under rigorously dry conditions it has been found ${ }^{102}$ that the major product of this reaction is $\operatorname{Re}(\mathrm{CO})_{3} \mathrm{~F}_{3}$. An earlier reported preparation of $\mathrm{ReF}_{4} \mathrm{O},{ }^{103}$ by the fluorination of rhenium metal in the presence of oxygen, was shown later to produce $\mathrm{ReF}_{5} \mathrm{O} .{ }^{104}$ Several preparative methods have since been devised for $\mathrm{ReF}_{4} 0$; these include the slow hydrolysis of ReF_{6} on Pyrex wool, ${ }^{105}$ the action of ReF_{6} on $\mathrm{ReO}_{3}{ }^{106}$ and the reaction of excess of ReF_{6} with $\mathrm{B}_{2} \mathrm{O}_{3} .{ }^{107}$ The method used here was the controlled hydrolysis of an excess of ReF_{6} by $\mathrm{H}_{2} \mathrm{O}$ in anhydrous HF. This method was reported by Paine ${ }^{105}$ as producing only 10% yield, but was found to be efficient for the preparations of $\mathrm{UF}_{4} \mathrm{O},{ }^{20,26} \mathrm{NpF}_{4} \mathrm{O}^{108}$ and $\mathrm{PuF}_{4} \mathrm{O},{ }^{109}$ and under the conditions used was found here to give a high yield of $\mathrm{ReF}_{4} \mathrm{O}$.

The physical properties of the oxide tetrafluorides of the third-row transition elements are remarkably similar. ${ }^{\mathbf{8 6}, 105,110}$ The chemical reactivity is found to increase with the molecular weight. ${ }^{86}$ The rhenium compound is considerably more reactive than $\mathrm{MoF}_{4} \mathrm{O}$ or $\mathrm{WF}_{4} \mathrm{O}$, and more readily hydrolysed by traces of moisture to produce perrhenic acid, rhenium dioxide and hydrofluoric acid. Rhenium oxide tetrafluoride, like several of the transition metal and actinide metal oxide tetrafluorides exhibits polymorphic solid forms. The dark blue phase of $\mathrm{ReF}_{4} \mathrm{O}^{88,111}$ has the $\mathrm{MoF}_{4} \mathrm{O}$ endless chain type of structure, ${ }^{91,93}$ with the rhenium atoms linked through cis-fluorine bridges, with a $\mathrm{Re}-\mathrm{F}-\mathrm{Re}$ bridging angle of 139°. The pale blue metastable form of $\mathrm{ReF}_{4} \mathrm{O}$ has a trimeric unit, ${ }^{112}$ similar to those of the metastable forms of $\mathrm{MoF}_{4} \mathrm{O}^{92,93}$
and $\mathrm{TCF}_{4} \mathrm{O},{ }^{113}$ with similar bond lengths and angles found around rhenium, to those in the normal chain structure. The rhenium atoms lie at the corners of a triangle, with the bridging fluorine atoms cis- to each other as in the other form.

Following the preparation of antimony pentafluoride adducts with uranium, molybdenum and tungsten oxide tetrafluorides, and the single crystal studies on $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ and $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$, it was decided to investigate the $\mathrm{ReF}_{4} \mathrm{O}-\mathrm{SbF}_{5}$ system. It was concluded that the inability to produce single crystals of the adduct $\mathrm{WF}_{4} \mathrm{O}_{\mathrm{O}} . \mathrm{SbF}_{5}$ was due to the greater Lewis acidity of $\mathrm{WF}_{4} \mathrm{O}$ over $\mathrm{MoF}_{4} \mathrm{O}$ and a corresponding reduction in the contribution to the bonding within the adduct from an ionic form. Since $\mathrm{ReF}_{4} \mathrm{O}$ is expected to be a stronger Lewis acid than $\mathrm{WF}_{4} \mathrm{O}$ a similar argument would suggest even less stability for the adducts $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{nSbF}_{5}$, and an identical preparative method was used to test this.

5.2 Reaction between Rhenium Oxide Tetrafluoride and Antimony Pentafluoride

The reaction between rhenium oxide tetrafluoride and excess of antimony pentafluoride was performed in a preseasoned (ClF_{3}) and weighed $\mathrm{Kel}-\mathrm{F}$ reactor. $\mathrm{ReF}_{4} \mathrm{O}$, from the controlled hydrolysis of ReF_{6}, was added to the reactor in a dry-box, and the reactor evacuated and reweighed. The manifold was then pumped to a good vacuum and SbF_{5} added to the reactor in static vacuum. The approximate $12: 1$ excess of SbF_{5} required was estimated by volume, and the reactor reweighed after addition. The $\mathrm{ReF}_{4} \mathrm{O}, 0.0870 \mathrm{~g}(0.315 \mathrm{mMo1})$ was dissolved in the excess of $\mathrm{SbF}_{5}, 0.8007 \mathrm{~g}(3.694 \mathrm{mMol})$ by gently warning the reactor until a dark blue solution was obtained. The rate of weight loss against pumping time was observed as for the adducts of SbF_{5} with uranium,
Figure 10

120	140	160	180	200	220	240	260	280
5	Sb	$\mathrm{SbF}_{2}{ }^{+}$	SbF_{3}^{+}	$\mathrm{SbF}_{4}{ }^{+}$	$\mathrm{ReO}_{2}{ }^{+}$	$\mathrm{ReO}_{2} \mathrm{~F}$	$\mathrm{ReO}_{2} \mathrm{~F}$	$\mathrm{ReF}_{4} \mathrm{O}^{+}$
						ReO	ReO	

——A

molybdenum and tungsten. The pump curve was similar to that observed with the $\mathrm{WF}_{4} \mathrm{O}-\mathrm{SbF}_{5}$ system, SbF_{5} continuing to be lost quite rapidly at 2:1 composition. At this composition pale blue crystals appeared in the liquid, and the reaction mixture was allowed to stand at room temperature for 24 hours, during which time all the material crystallised.

Examples of the single crystals were transferred in a dry-box to a preseasoned Pyrex capillary apparatus. A sample of the material was ground for X-ray powder diffraction, mass spectronetry and Raman studies but decomposed in the process and no X-ray powder pattern or Raman spectrum were obtained. However, several of the single crystals which were isolated for the X-ray study, although giving sufficiently good photographs to determine that the unit cell was identical to the crystal eventually used for data collection, were twinned and accordingly were used for mass spectrometry. The mass spectra were identical (Figure 10), showing the mass peaks $\mathrm{ReF}_{4} \mathrm{O}^{+}, \mathrm{ReF}_{4}{ }^{+}, \mathrm{ReF}_{3} \mathrm{O}^{+}$, $\mathrm{ReF}_{3}{ }^{+}, \mathrm{ReF}_{2} \mathrm{O}^{+}, \mathrm{ReF}_{2}{ }^{+}, \mathrm{ReFO}^{+}, \mathrm{ReF}^{+}, \mathrm{ReO}^{+}, \mathrm{Re}^{+}$and $\mathrm{SbF}_{4}{ }^{+}, \mathrm{SbF}_{3}{ }^{+}, \mathrm{SbF}_{2}{ }^{+}$, $\mathrm{SbF}^{+}, \mathrm{Sb}^{+}$. From the mass spectra it seems certain that the crystals are of a $\mathrm{ReF}_{4} 0 . \mathrm{nSbF}_{5}$ adduct. The crystallisation occurring at a $\mathrm{ReF}_{4} \mathrm{O}: \mathrm{SbF}_{5}$ ratio of $1: 2$ suggest that this would be the form of the single crystals.

5.3 Single crystal X-ray Investigation of $\mathrm{ReF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{nSbF}_{5}$

The pale blue crystals grown from excess of SbF_{5}, were of suitable dimensions for a single crystal study and several were sealed into preseasoned Pyrex capillaries. The crystal chosen for the investigation had the approximate dimensions $0.26 \mathrm{~nm} \times 0.11 \mathrm{mn} \times 0.11 \mathrm{~mm}$ and was a well-defined rectangular block. Approximate cell dimensions were
obtained from Weissenberg photographs taken using Cu- \underline{K}_{α} (Ni filtered) radiation and precession photographs using Mo- \underline{K}_{α} (Zr filtered) radiation. The final cell dimensions were determined from an oscillation photograph for the rotation axis a, and from optimised counter angles for zero and upper layer reflections on a Weissenberg diffractometer.

5.4 Crystal Data

$$
\begin{aligned}
& \mathrm{F}_{9} \mathrm{O} \operatorname{Re~Sb} ; \quad \underline{M}=494.93 \\
& \text { Monoclinic } \underline{a}=5.561(10), \quad \underline{b}=10.198(8), \quad \underline{c}=12.622(9) \AA \\
& \underline{\beta}=99.37(20)^{\circ} \\
& \underline{U}=706.26 \AA^{\circ} ; \quad \underline{D}_{c}=4.656 \mathrm{gcm}^{-3} ; \quad \underline{Z}=4 \\
& \underline{E}(000)=859.80 ; \text { Mo- } \underline{K}_{\alpha} \text { radiation; } \lambda=0.71069 \AA \\
& \underline{\mu}\left(\mathrm{Mo}^{-\mathrm{K}_{\alpha}}\right)=200.95 \mathrm{~cm}^{-1}
\end{aligned}
$$

Space group $\underline{P}_{1} / \underline{\varrho}\left(\mathrm{C}_{2}^{5} \mathrm{~h}\right.$ No. 14). Neutral atomic scattering factors were used with anomalous dispersion coefficients.

5.5 Collection of Intensity Data

Data were collected from layers 0 k 1 to 7 k 1 using the Stadi-2 diffractometer, in the $+\mathrm{h},+\mathrm{k},+1$ quadrant only for the 0 kl layer and in the two quadrants $+\mathrm{h},+\mathrm{k}, \pm 1$ for the upper layers. Data were collected using an $\underline{\omega}$-scan technique, with a count time of 0.3 second at 0.01° increments of ω. The intensities of reflections with $0.06<\operatorname{Sin} \theta / \lambda<0.7$ \AA^{-1} were collected at 22 to $25^{\circ} \mathrm{C}$. A total of 1075 unique reflections were obtained with $\mathrm{I} / \sigma \mathrm{I} \geqslant 3$. Monitoring of check reflections throughout the data collection for each layer showed no significant overall deterioration of the crystal during the data collection. However, the check reflection observed during the collection of 2 kl data, consistently
decreased in intensity during the data collection for that layer, with a total loss of approximately 4%. At this stage the check reflection used for the zero layer was re-measured and also found to be 4% 1ow. The 0kl check reflection was thereafter re-measured after each layer, but showed no further loss of intensity, and no significant trend was observed in the weighting analysis. Layer scale factors were, therefore, not app1ied to the data. Lorentz, polarisation and absorption corrections were made to the data set.

5.6 Solution of the Structure

The program system SHELX was used. A Patterson summation was used to locate the rhenium and antimony atoms. The solution of the Fatterson map was complicated by the approximate zero values for the fractional co-ordinates X / A and Z / C of the antimony atom and Y / B for the rhenium. The resultant vectors indicated a heavy atom on a special position, but three cycles of least-squares refinement indicated further heavy atoms which were ruled out by volume considerations. The final solution of the Patterson summation allowed 4 atoms of rhenium and antimony in general positions of the space group $\mathrm{P} 21 / \mathrm{c}$, with approximately $18 \AA^{\circ}$ for each fluorine atom assuming a molecular formula of $\mathrm{ReF}_{4} \mathrm{O}_{\mathrm{SbF}}^{5}$. Three cycles of least-squares refinement gave an R factor of 0.14 and allowed sufficient phasing for the location of the light atoms by difference Fourier maps. The oxygen atom was chosen to correspond with the shortest rhenium to light atom distance, and three cycles of refinement with all atoms included with isotropic thermal parameters gave an R factor of 0.071 . An analysis of the weighting scheme over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ with various values of fixed or refining weighting parameter, $\mathrm{g}\left[\omega \alpha 1 / \sigma^{2}(\mathrm{~F})+\mathrm{gF}^{2}\right]$ proved unsatisfactory. Poor
agreement between reflections $h(n) 1$ and $h(n+1) 1$ was obtained and several reflections with deviations greater than 2σ occurred for reflections with $k=1$ and 3 . Convergence was improved by repeating the absorption correction with a reduced value for the absorption coefficient (μ), which effectively decreased all measured crystal dimensions.

Final cycles, for which all atoms were refined anisotropically, employed a weighting parameter $g(.001)$ and 13 deviant reflections were omitted. The final difference Fourier revealed no significant features and an analysis of the weighting scheme over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ was now satisfactory.

Final atomic parameters are given in Table 14, the anisotropic thermal parameters are in Table 15. The interatomic distances and angles are in Tables 16 and 17 respectively and the observed and calculated structure factors are found in Appendix 3.

Final residual indices for 1062 reflections:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.0576 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum_{\mathrm{w}}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum \mathrm{w}\left|\mathrm{~F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.0612
\end{aligned}
$$

5.7 Discussion

The structure of $\mathrm{ReF}_{4} \mathrm{O}_{\mathrm{O}} . \mathrm{SbF}_{5}$ contains dimers of the adduct, with two rhenium atoms and two antimony atoms, linked through fluorine bridges into distorted 'tetrameric' rings (Figure 11). The structure is, therefore, more closely related to that of the solid state tetrameric structure of $\mathrm{SbF}_{5}{ }^{73}$ than $\mathrm{ReF}_{4} \mathrm{O},{ }^{88,111}$ which forms endless chains. However, the bond angles about the fluorine bridge atoms, of 137.8 (9) and $148.0(9)^{\circ}$ show the dimer ring is less planar than that of SbF_{5}, and approximates to the distorted tetrameric ring arrangements of $\mathrm{RhF}_{5}{ }^{70}$

Figure 11
The dimer ring unit $2\left(\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}\right)$.
and $\operatorname{RuF}_{5},{ }^{68}$ which have average bridge bond angles of 135 and 132° respectively. With the chosen origin of the unit ce11, no complete. tetramer is contained within the cell and the stereoscopic view of the unit cell contents, Figure 12, is extended to show the tetramers lying across the $\{010\}$ faces.

Figure 12

Stereoscopic view of the unit cell contents of $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$.

The antimony and rhenium atoms are both displaced from the centre of the bonded light atom arrays, away from the cis- fluorine bridge atoms. The displacement is less apparent in the antimony environment where angles between adjacent fluorine atoms about the Sb atom are between $84.2(7)^{\circ}$ and $97.1(8)^{\circ}$. The average Sb to terminal F atom distance of $1.84 \AA$ is close to the distance $(1.82 \AA)$ found in the SbF_{5} tetraner.

The average of the two Sb to fluorine bridge distances, $2.00 \AA$, is also much nearer to the distance found in $\mathrm{SbF}_{5}(2.03 \AA$), than was found for the uranium and molybdenum adducts. The light atom array about rhenium is less regular, with angles between adjacent light atoms about the rhenium varying from $81.7(6)^{\circ}$ to $106.5(9)^{\circ}$. The oxygen atom position, in the plane of the cis- bridges, was chosen entirely by bond length considerations. Vibrational spectra of the adduct were not obtained due to the instability of the material to grinding, and oxygen bridging could not, therefore, be ruled out as was possible for the uranium and molybdenum adducts. However, the light atom distance of $1.66(2) \AA$ from Re and the distance $1.72(2) \AA$ of the other terminal atom in the bridging plane are similar to the bond lengths in the molybdenum adduct and on this basis the oxygen position can be assigned for this adduct, with the same probability of disorder. The Re to oxygen bond distance compares with the distance, $1.63(4) \AA$, found in the monoclinic form of $\mathrm{ReF}_{4} \mathrm{O}$, and is less than the average terminal oxygen distance, $1.695 \AA$, found in the $\mathrm{Re}_{2} \mathrm{O}_{7}$ structure. ${ }^{114}$ The remaining two terminal atoms, axial to the cis- bridging plane, have an average bond length to Re of $1.84 \AA$. The fluorine bridge distance of 2.08 and $2.23 \AA$ are, within errors, equivalent to the distances found in $\mathrm{ReF}_{4} \mathrm{O}$.

The comparability of the Sb to F bridge bond lengths of the adduct and the solid state SbF_{5} tetramer indicates a considerably smaller ionic contribution to the bridging fluorine atom than occurs in the uranium and molybdenum adducts. Using the equation established in chapter 3 for the derivation of approximate degrees of ionicity a value may be calculated for the $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ adduct.

$$
\mathrm{I}=\left(\mathrm{D}_{\mathrm{c}}-\mathrm{D}_{\mathrm{a}}\right) /\left(\mathrm{D}_{\mathrm{c}}-\mathrm{D}_{\mathrm{i}}\right)=(2.02-2.00) /(2.02-1.845)=0.114
$$

Thus, the estimated contribution from the formulation $\left[\mathrm{ReF}_{3} 0\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$
of 11% is much smaller than for the $\left[\mathrm{UF}_{2} \mathrm{O}\right]^{2+}\left[\mathrm{SbF}_{6}\right]_{2}{ }^{-}$or $\left[\mathrm{MoF}_{3} \mathrm{O}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}$ contributions, and the rhenium adduct can thus be regarded as a covalent molecule with only a minor contribution from the ionic form. This is expected from the higher Lewis acidity of $\mathrm{ReF}_{4} \mathrm{O}$, than $\mathrm{UF}_{4} \mathrm{O}$ and $\mathrm{MoF}_{4} \mathrm{O}$, approximating more closely with that of SbF_{5}. The determined ionicity indicates that considerable ionic contribution to the bonding is not a requirement for the formation of a stable and ordered adduct, and this raises the problem of why no single crystals of a tungsten adduct could be obtained.

It seems probable that an adduct with a $\mathrm{ReF}_{4} \mathrm{O}$ to SbF_{5} ratio of $1: 2$ could be formed, which would take the form of the $\mathrm{UF}_{4} \mathrm{O} .2 \mathrm{SbF}_{5}$ adduct, with the additional Sb units chain linking the dimers in a similar manner to the uranium adduct.

TABLE 14

Final atomic positional parameters for $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$, with estimated standard deviations in parentheses.

	x / a	y / b	z / c
Re	$0.3257(18)$	$0.0166(11)$	$0.2094(9)$
Sb	$-0.0159(3)$	$0.2554(16)$	$0.0017(14)$
0	$0.482(4)$	$0.154(2)$	$0.2421(17)$
$\mathrm{F}(1)$	$0.188(3)$	$0.0970(16)$	$0.0605(13)$
$\mathrm{F}(2)$	$0.021(3)$	$0.0594(18)$	$0.2359(12)$
$\mathrm{F}(3)$	$-0.097(3)$	$0.1478(17)$	$-0.1277(12)$
$\mathrm{F}(4)$	$0.535(2)$	$-0.0680(19)$	$0.1320(13)$
$\mathrm{F}(5)$	$-0.263(3)$	$0.1709(18)$	$0.0561(13)$
$\mathrm{F}(6)$	$-0.203(3)$	$0.3907(20)$	$-0.0527(14)$
$\mathrm{F}(7)$	$0.386(3)$	$-0.0860(19)$	$0.3192(14)$
$\mathrm{F}(8)$	$0.100(3)$	$0.3301(17)$	$0.1347(13)$
F(9)	$0.256(3)$	$0.3077(18)$	$-0.0523(13)$

TABLE 15

Anisotropic thermal parameters, with estimated standard deviations in parentheses. The temperature factors are in the form $-\exp \left[-2 \pi^{2}\left(h^{2} U_{11} a^{2}+\ldots 2 h k U_{12} a b\right)\right]$.						
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Re	$0.0293(5)$	0.0274 (6)	0.0314 (6)	-0.0023(5)	0.0048 (4)	$0.0008(5)$
Sb	0.0247 (7)	0.0165 (8)	$0.0226(8)$	-0.0005(7)	0.0054 (6)	-0.0021 (6)
0	$0.052(11)$	$0.030(11)$	$0.035(12)$	-0.015(9)	-0.007(10)	$0.002(9)$
F(1)	0.040 (8)	0.030 (9)	$0.022(8)$	0.004 (7)	-0.004 (6)	$0.007(7)$
F(2)	0.035 (7)	$0.055(11)$	0.020(8)	-0.015(8)	-0.001(6)	$0.012(7)$
F(3)	0.040 (7)	0.044 (10)	0.017 (8)	-0.005(7)	-0.001 (6)	-0.015(8)
F(4)	$0.028(7)$	0.057 (12)	$0.032(9)$	-0.003(8)	0.004 (6)	$0.009(7)$
F(5)	0.027 (6)	0.051 (11)	0.036(9)	$0.002(8)$	$0.012(6)$	-0.000(7)
F(6)	0.045 (8)	$0.057(13)$	$0.036(10)$	$0.022(9)$	0.016(8)	0.025 (9)
F(7)	0.045 (9)	$0.056(12)$	$0.033(10)$	0.016 (9)	-0.004(8)	$0.008(9)$
F(8)	0.051(9)	0.032 (9)	$0.033(10)$	-0.011(8)	0.008 (7)	-0.008(8)
F(9)	$0.038(7)$	0.041 (10)	0.040 (10)	$0.002(8)$	0.013 (7)	-0.007(8)

录

出出出出出

 MiNiNiNiNiNiviNiNiviriNiNiNiNiNiNiN
Interatomic distances（ A ），with estimated

CHAPTER 6

The Crystal Structures of NaTaF_{6} and $\beta-\mathrm{CsNbF}_{6}$

6.1 Introduction

Most of the known compounds having the formulation $A^{1} B^{v} X_{6}$, are fluorides. Compounds containing the heavier halogens are much less stable and only a few $\mathrm{A}^{1} \mathrm{~B}^{\mathrm{V}} \mathrm{Cl}_{6}$ salts are known. The fluorides, $\mathrm{A}^{1} \mathrm{~B}^{\mathrm{V}} \mathrm{F}_{6}$, crystallise with structures which are, basically, of the NaCl or CsCl cubic types. Various modifications of the ideal cubic structures are required to give the A^{+}ions suitable numbers of fluorine contacts.

The structures of known $A^{1} B^{V} \Gamma_{6}$ compounds were reviewed in detail by Kemmitt, Russell and Sharp ${ }^{115}$ (1963). Little structural data has been reported for these compounds following this review, and accordingly, only a brief summary of the five recognised structure types is given here.
a) LiSbF_{6} structure type: This structure may be regarded as a slightly distorted sodium chloride lattice, and is found only among complex fluorides of the smaller cations, Li^{+}and Na^{+}. The rhombohedral structure, R_{1} (space group $\underline{R} \overline{3}$), was characterised by the structure determination of $\mathrm{LiSbF}_{6}{ }^{\mathbf{1 1 6}}$ Discrete $\mathrm{SbF}_{6}{ }^{-}$ions exist in the lattice, which is the same as that of $\mathrm{VF}_{3},{ }^{117}$ with lithium and antimony atoms occupying the positions of the vanadium atoms and, thus, the lithium ions are octahedrally co-ordinated by fluorines from six $\mathrm{SbF}_{6}{ }^{-}$groups.
b) NaSbF_{6} structure type: The sodium hexafluoroantimonate structure ${ }^{118,119}$ has a face centred cubic unit ce11, C_{1} (space group Fm3m), with a sodium chloride lattice of Na^{+}and $\mathrm{SbF}_{6}{ }^{-}$ions. As with LiSbF_{6}, the A^{+}ion is regarded as having octahedral co-ordination by fluorine.
c) CsPF_{6} structure: Like the NaSbF_{6} structure, the CsPF_{6} type ${ }^{\mathbf{1 2 0}}$
is also a cubic structure related to the sodium chloride lattice, but is based on a primitive cubic cell, C_{2} (space group Pa3). The A^{+} cation of this structure is reported to have a co-ordination number of 12 , but there is confusion in the literature as to the distinction between the C_{1} and C_{2} types of structure.
d) KNbF_{6} structure: Most silver salts and some potassium salts have a tetragonal pseudo-cubic structure, T (space group $\underline{\underline{p}} \overline{4} 2 \underline{m}$). A structure determination on $\mathrm{KNbF}_{6},{ }^{121}$ and more recently that of $\mathrm{KSbF}_{6},{ }^{75}$ show that the K^{+}and $\mathrm{MF}_{6}{ }^{-}$ions are arranged in a CsCl lattice, but with slight distortion of the $M \mathrm{~F}_{6}{ }^{-}$ions. Each potassium ion is co-ordinated to eight fluorine atoms as nearest neighbours, with a further four fluorine atoms as next nearest neighbours.
e) KOsF_{6} structure: Complex fluorides containing the larger cations ($\mathrm{Tl}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$) are found to heve this rhombohedral structure, R_{2} (space group R 3 m). The KOsF_{6} structure, ${ }^{122}$ is found to be related to the CsCl 1 lattice, but has lower symmetry due to distortion of the $\mathrm{OsF}_{6}{ }^{-}$octahedron by contraction along a three-fold axis. The A^{+}ion in this structure is co-ordinated to 12 fluorine atoms.

It appears that a major factor determining the structure type is the size of the A^{+}ion, and that with increasing size the cation co-ordination number increases. Thus, the lithium salts having the smallest ionic radius have six co-ordinate (R_{1}) structures, whilst caesium salts with the exception of CsPF_{6}, have the twelve co-ordinate $\left(\mathrm{R}_{2}\right)$ structure. Kemmitt et al. ${ }^{115}$ tabulate the $\mathrm{A}^{1} \mathrm{~B}^{\mathrm{V}} \mathrm{F}_{6}$ structures with unit cell parameters and only the distribution of structure types is given here (Table 18).

Different phases have been reported for several of the $A^{1} B^{V} F_{6}$ compounds. Bode and Clausen ${ }^{120}$ first reported that potassium hexafluoro-

The distribution of $A^{1} B^{v} F_{6}$ structure types

$$
\text { where, } \begin{aligned}
a & =\operatorname{LiSbF}_{6} \text { structure type, } b=\mathrm{NaSbF}_{6}, \mathrm{c}=\mathrm{CsPF}_{6}, \\
& d=\mathrm{KNbF}_{6} / \mathrm{KSbF}_{6}, \mathrm{e}=\mathrm{KOsF}_{6} .
\end{aligned}
$$

phosphate crystallised in both the cubic (C_{2}) and rhombohedral (R_{2}) structures. Heyns and Pistorius ${ }^{123}$ confirmed the existence of these phases, finding that they were dependent upon temperature and reversible upon heating and cooling; the cubic (Fm 3 m) form becomes rhombohedral below $0^{\circ} \mathrm{C}$. They reported a further phase change at approximately $-15^{\circ} \mathrm{C}$ to an undetermined space group. The phase changes were found also to be dependent upon variations of pressure and also impurity, and it is possible that the R_{2} form investigated by Bode and Clausen ${ }^{120}$ was stabilised by small quantities of impurity. Potassium and silver hexafluorantimonate, commonly found to crystallise in the tetragonal, KNbF_{6}, structure have been reported as cubic $\left(\mathrm{C}_{2}\right), 12,125$ and this may be due to the investigation of alternate phases. The tetragonal form of KSbF_{6} has recently been determined by a single crystal study, ${ }^{75}$ but
the alternate (C_{2}) structure remains in doubt.
It seems likely that many of the $A^{1} B^{V} F_{6}$ compounds may give rise to alternate phases when subject to changes in temperature or pressure, and the presence of impurities may well be a significant factor. Such phases may be reversible upon the application of temperature and pressure changes as for KPF_{6}, or be caused by the conditions of crystallisation and be irreversible.

Calculation of lattice energies by co-workers, requiring accurate atomic parameters resulted in an investigation of the structures of sodium hexafluorotantalate and tungstate. With this study it was hoped to clarify the cubic $\left(\mathrm{C}_{1}\right)$ structure. No single crystals of NaNF_{6}, suitable for X-ray study, could be obtained and the structure was investigated by neutron diffraction of the micro-crystalline powder (Chapter 7). Crystals of CsNbF_{6} obtaired from the preparation and attempted crystallisations of $\mathrm{CsNb}_{2} \mathrm{~F}_{11}$ were investigated as a new phase.

6.2 Preparation of Sodium Hexafluorotantalate (V)

Sodium hexafluorotantalate(V) was prepared by the reaction of stoichionetric quantities of sodium fluoride and tantalum metal with an excess of bromine trifluoride.

$$
\mathrm{NaF}+\mathrm{Ta} \xrightarrow{\mathbf{x s ~} \mathrm{BrF}_{3}}\left(\mathrm{NaBrF}_{4}+\mathrm{BrF}_{2}^{+} \mathrm{TaF}_{6}^{-} \longrightarrow \mathrm{NaTaF}_{6}+2 \mathrm{BrF}_{3}\right.
$$

The apparatus (Figure 13) was carefully preseasoned before the addition of the starting materials. Bromine trifluoride was transferred in dynamic vacuum into trap (A), which was cooled by liquid nitrogen, the apparatus was then sealed at point (B). The BrF_{3} was warmed to room temperature and Br_{2} and BrF impurities removed by pumping the

liquid. With valve (1) closed, dry nitrogen was admitted and valve (2) removed to allow the addition of $0.1019 \mathrm{~g}(2.426 \mathrm{mMol})$ of NaF and 0.4382 g (2.421 mMol) of Ta metal, the apparatus was then re-evacuated. A small quantity of BrF_{3} was transferred in dynamic vacuum to trap (C) which was cooled to -196°. The valves were then closed and the reaction allowed to warm slowly to room temperature. Extremely vigorous reaction occurred. Further small portions of BrF_{3} were added until the reaction became less vigorous, and at this stage the total excess of BrF_{3} was added and the reaction allowed to warm to room temperature and stand for two hours. Valve (2) was opened regularly to release the Br_{2} evolved. The excess of BrF_{3} was then removed, and the product evacuated for several days, until Br_{2} was no longer released. The product was an off-white powder.

The X-ray powder diffraction pattern of the product (Table 19), was consistent with the prevjously reported pattern of Kemmitt et al., ${ }^{115}$ and similarly could be indexed as a face-centred cubic cell ($a=8.28$ A). The microcrystalline product was, therefore, of the same phase as has previously been reported.

Single crystals were grown by two methods. A small amount of solid was dissolved in HF in an F.E.P. tube. Slow removal of the HF yielded brittle crystals, of cubic appearance, suitable for X-ray single crystal study. A further sample of the product was transferred to a preseasoned crystal growing apparatus (Figure 14). $\quad \mathrm{SO}_{2}$ dried over $\mathrm{P}_{2} \mathrm{O}_{5}$, was added in static vacuum at -80°, and warmed to obtain a solution. Insoluble material was trapped in the side arm by rotation of the apparatus. The solution was then cooled to -30°. After several days fine needle crystals were observed, but attempts to isolate them were unsuccessful.

TABLE 19

X-ray powder diffraction pattern of NaTaF_{6}

Line	Intensity	$\operatorname{Sin}^{2} \theta \times 10^{4}$	Assignment
a	v.s	263	$\{111\}$
b	v.s	350	$\{200\}$
c	s	694	$\{220\}$
d	s	957	$\{311\}$
e	w	1044	$\{222\}$
f	w	1088	
g	s	1393	$\{400\}$
h	m	1657	$\{331\}$
i	s	1746	$\{420\}$
j	ms	2094	$\{422\}$
k	ms	2358	$\{311\}\{333\}$
1	m	2785	$\{440\}$
m	m	3054	$\{531\}$
n	m	3133	$\{442\}\{600\}$
o	v.w	3260	
p	m.w	3469	$\{620\}$

(Cu-K α radiation, $\lambda=1.5418 \AA$)

Crystal growing apparatus.

6.3 Single crystal X-ray Investigation of Sodium Hexafluorotantalate(V)

The crystals grown from HF were of suitable dimensions for single crystal study. Several crystals were wedged and sealed in preseasoned Pyrex capillaries, by manipulation within a crystal sorting apparatus (Figure 2). The crystal used for the investigation had approximate dimensions $0.26 \mathrm{~mm} \times 0.25 \mathrm{~mm} \times 0.07 \mathrm{~mm}$, with clearly defined faces, and was mounted about the $\subseteq \underline{c}$ axis. Upon close examination under high magnification, all crystals grown from HF solution appeared to be 'hopper faced'' (Figure 15), but produced diffraction patterns without evidence of twinning. Preliminary values of cell dimension a were

Figure 15
Typical 'Hopper' faced crystal of NaTaF ${ }_{6}$.
obtained from Weissenberg photographs, using Cu-K α (Ni filtered) radiation, and precession photographs using $M_{0}-K_{\alpha}$ (Zr filtered)
radiation. The final value of \underline{a} was determined from optimised counter angles for zero layer reflections on a Weissenberg diffractometer.

6.4 Crystal Data

$\mathrm{F}_{6} \mathrm{Na} \mathrm{Ta} ; \quad \underline{M}=317.95$
Cubic $\underset{a}{a}=8.264$ (1) \AA
$\underline{U}=564.48 \AA^{3} \quad ; \quad \underline{D}_{\mathrm{C}}=3.741 \mathrm{~g} \mathrm{~cm}^{-3} \quad ; \quad \underline{Z}=4$ $\underline{F}(000)=547.81 ; \quad \mathrm{M}_{\mathrm{O}}-\underline{K} \alpha$ radiation $; \lambda=0.71069 \AA$ $\underline{\mu}\left(M_{O}-\underline{K}_{\alpha}\right)=187.25$

Space group Fm. $3 \underline{m}\left(O_{h}^{5}\right.$ No. 225) . Neutral atomic scattering factors were used with anomalous dispersion coefficients.

6.5 Collection of the Intensity Data

Data were collected from layers hk0 to hk12, using the Stoe(stadi-2) diffractometer in the $+\mathrm{h},+\mathrm{k},+1$ quadrant for the hk0 layer, and in the two quadrants $\pm \mathrm{h}$, for the remaining layers. Data were collected using an $\underline{\omega}$-scan technique, the counter angle (20) remaining fixed at the calculated value for each reflection. Background count times of 20 secs either side of the reflection were taken, and an $\underline{\omega}$-scan rate of $1^{\circ} / \mathrm{min}$ was used. The $\underline{\omega}$-scan width was calculated for each reflection by the formula of Freeman et al. ${ }^{5}$ The intensities of 465 reflections with $5^{\circ} \leqslant 2 \theta \leqslant 80^{\circ}$ were collected at 22 to 25°. Monitoring of check reflections throughout each layer indicated no significant deterioration of the crystal during the data collection. Lorentz and polarisation corrections were made to the data set.

6.6 Solution of the Structure

Because of the plate-1ike nature of the crystal, the absorption correction for the data set was performed before refinement was attempted. The program $A B S C R$ was used, and maximum and minimum trānsmission factors of 0.5274 and 0.2104 respectively were obtained. In the early stages of refinement, using the program system SHELX, $\underline{R} \overline{3}$ symmetry was assumed for a face-centred cubic lattice. Three cycles of full matrix least-squares refinement, with Ta at $0,0,0$ and Na at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, gave an R factor of 0.15 for 174 unique reflections. The fluorine atom was located from the Fourier difference map, and further cycles of least-squares gave an R factor of 0.035 . Final cycles using $\underline{R} \overline{3}$ symnetry, with anisotropic temperature factors and a weighting parameter g, further reduced the R factor to 0.020 . The X / A and Y / B co-ordinates of the fluorine atom were found to be, within estimated
standard deviations, equal to zero. This indicates higher symmetry than $\underline{\mathrm{R}} \overline{3}$, and refinement was continued in the space group Fm 3 m (data averaged to 121 unique reflections). Final cycles employed a weighting parameter $g(.00036)\left[\underline{\omega} \alpha 1 / \sigma^{2}(F)+\mathrm{g} \mathrm{F}^{2}\right]$ and gave an R factor of 0.0217 . An analysis of the weighting scheme over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory. However, the final difference Fourier map reveals unidentified peaks of ± 6 electrons compared with <0.5 electron found using $\mathrm{R} \overline{3}$ symmetry. Since the negative peaks are equally large it is assumed they result from residual systematic error, and that the marginally lower \underline{R} factor obtained in the $\underline{R} \overline{3}$ space group is due to relaxation of the constraints on the atomic thermal parameters. The space group Fm3m was chosen as appropriate, and the final atomic and thermal parameters are 1isted in Table 20. The observed and calculated structure factors are found in Appendix 4.

Final residual indices for 121 unique reflections:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right| / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.0217\right. \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum \omega\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum \omega\left|\mathrm{F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.022
\end{aligned}
$$

TABLE 20

Final atomic and thermal parameters for sodiun hexafluorotantalate with estimated standard deviations in parentheses

Atom	X / A	Y / B	Z / C	U_{11}	U_{22}	U_{33}
Ta	0.00	0.00	0.00	$0.0216(2)$		
Na	0.50	0.50	0.50	$0.0265(11)$		
F	0.00	0.00	$0.2261(6)$	$0.094(4)$	$0.094(4)$	$0.0139(17)$

The bond length, \quad Ta-F $=1.868(1) \AA$
The non-bond contact, Na---F $=2.264(1) \AA$

$$
F \ldots F=2.642(3) \AA
$$

6.7 Preparation of caesium hexafluoroniobate(V)

The crystals of caesium hexafluoroniobate(V) used in this study resulted from the reaction of a $2: 1$ excess of niobium pentafluoride with caesium fluoride in SO_{2} solvent. The apparatus, a combination reactor and crystal growing apparatus (Figure 14), was pumped to high vacuum and seasoned with fluorine. $\operatorname{CsF}(1.394 \mathrm{mMo1})$ and $\mathrm{NbF}_{5}(2.790$ $\mathrm{mMo1}$) were added to the reactor in the dry-box, and the reactor reevacuated for several hours at high vacuum. SO_{2}, dried over $\mathrm{P}_{2} \mathrm{O}_{5}$, was transferred to the reactor which was then sealed at the Rotaflo valve, and a solid CO_{2} cooling collar was attached just below the valve. The SO_{2} was allowed to reflux for 2 hours, before the solution was tipped through the solid trap into the scored bulb, and the apparatus cooled to $-25^{\circ} \mathrm{C}$. After 20 days crystals were observed, and the solution was returned to the reaction bulb and the SO_{2} removed from the bulk product in static and finally dynamic vacuunt. A batch of single crystals was transferred in the dry-box to a preseasoned capillary apparatus for sorting, and samples of the bulk product and ground single crystals were transferred to capillaries for Raman investigation.

The Raman spectra of the single crystals and microcrystalline product clearly indicated different compounds (Table 21). The microcrystalline product gave a Raman spectrum essentially equivalent to the spectrum found by Gillespie et al. ${ }^{126}$ for $\operatorname{CsNb}_{2} \mathrm{~F}_{11}$. The only significant difference was the reduced intensity of the band at 684 cm^{-1} which is in the expected region of $\mathrm{V}_{1}(\mathrm{Nb}-\mathrm{F})$ for $\mathrm{NbF}_{6}{ }^{-}$. Raman spectra of the sample from single crystals were found to be equivalent with the spectra reported for $\mathrm{CsNbF}_{6}{ }^{\mathbf{1 2 7}}$

$$
\mathrm{CsNbF}_{6}{ }^{127} \text { assignment }
$$

Raman spectra of the products of $\mathrm{CsNb}_{2} \mathrm{~F}_{11}$ preparation

Raman spectra of the products of $\mathrm{CsNb}_{2} \mathrm{~F}_{11}$ preparation			
Microcrystalline sample	$\mathrm{CSNb}_{2} \mathrm{~F}_{11}{ }^{126}$ assignment	Single crystals	$\mathrm{CsNbF}{ }_{6}{ }^{127}$ assignment
$211 \mathrm{~cm}^{-1}$ (21)	211 (cm^{-1}) (36)		
251 (29)	251 (48)		
293 (27)	289 (37)	$283\left(\mathrm{~cm}^{-1}\right)(18)$	$280\left(\mathrm{~cm}^{-1}\right)(\mathrm{m}) \mathrm{V}_{5}\left(\mathrm{NbF}_{6}\right)^{-}$
590 (16)	588 (12)	564 (7)	562 (w) $\mathrm{v}_{2}\left(\mathrm{NbF}_{6}\right)^{-}$
598 (4) (sh)			
668 (54)	666 (44) $\mathrm{V}\left(\mathrm{Nb}_{2} \mathrm{~F}_{11}\right)^{-}$		
683 (4)	685 (31)	686 (100)	683 (s) $\mathrm{V}_{1}\left(\mathrm{NbF}_{6}\right)^{-}$
720 (100)	726 (100) $\cup\left(\mathrm{Nb}_{2} \mathrm{~F}_{11}\right)^{-}$		
		804 (4)	

6.8 Single Crystal X-ray Investigation of Caesium Hexafluoroniobate(V)

The crystals grown from solution in SO_{2} were of approximately cubic appearance. The crystal chosen for the investigation had approximate dimensions $0.21 \mathrm{~mm} \times 0.16 \mathrm{~mm} \times 0.15 \mathrm{~mm}$ and was bounded by the faces $\{001\}$, $\{110\}$ and $\{\overline{1} 10\}$. Preliminary cell dimensions were obtained from Weissenberg photographs taken using $\mathrm{Cu}-\underline{\mathrm{K}}_{\alpha}$ (Ni filtered) radiation, and precession photographs using $M_{n}-\underline{K}_{\alpha}$ (Zr filtered) radiation. The photographs indicated that the structure was triclinic, as opposed to the rhombohedral structure previously reported for $\operatorname{CsNbF}_{6} .{ }^{128}$ Final cell dimensions were obtained from the optimised counter angles for zero and upper layer reflections on a Weissenberg diffractometer. The use of $\underline{\omega}$-scan methods to maximise reflections for detcrmination of the cell parameters, showed that the reflections were double peaks, indicating some twinning of the crystal, and care was needed to observe corresponding peaks from the same crystal component during maximisation of each reflection.

6.9 Crystal Data

Cs $\mathrm{F}_{6} \mathrm{Nb} \quad ; \quad \mathrm{M}=339.81$
Triclinic $\underline{a}=7.077$ (2) $\AA ; \underline{b}=7.924$ (3) \AA; $\underline{\mathrm{c}}=5.274$ (4) \AA $\underline{\alpha}=89.47(15)^{\circ} ; \underline{\beta}=81.61(12)^{\circ} ; \underline{\gamma}=90.08(12)^{\circ}$ $\underline{\mathrm{U}}=292.6 \AA^{\circ} ; \underline{\underline{\mathrm{D}}}=3.856 \mathrm{~g} \mathrm{~cm}^{-3} ; \underline{\mathrm{z}}=2$ $\underline{\mu}\left(M_{o}-\underline{K}_{\alpha}\right)=76.58 \mathrm{~cm}^{-1} ; \underline{F}(000)=297.93$ $M_{0}-K_{\alpha}$ radiation ; $\lambda=0.71069 \AA$

Space group C1 C-centred version of $\mathrm{P} \overline{1}$, No. 2.
Neutral atomic scattering factors were used with anomalous dispersion coefficients.

6.10 Collection of Intensity Data

Data were collected from layers hk0 to hk7 using the (Stoe stadi-2) diffractometer in the $\pm \mathrm{h}, \pm \mathrm{k},+1$ quadrants for all layers. Data were collected using an $\underline{\omega}$-scan technique, with the counter angle (20) fixed at the calculated value for each reflection. The $\underline{\omega}$-scan width was calculated for each reflection using the Freeman-Guss equation, to include both maxima of the $\underline{\omega}$-scan. The initial value chosen for the mosaicity term, ϕm, in the calculation, resulted in a truncation of the peaks on the hk4 layer and was, therefore, increased from 3.5 to 4.5 for layers hk5 to hk7.

The intensities of reflections having $\operatorname{Sin} \theta / \lambda$ values of $\geqslant 0.122$ and $\leqslant 0.704 \AA^{-1}$ were collected, and a total of 753 reflections were obtained with $I / \sigma I \geqslant 3$. Check reflections, monitored during the data collection for each layer, indicatcd no deterioration of the crystal. Lorentz, polarisation and absorption corrections were made to the data set.

6.11 Solution of the Structure

The program system SHELX was used. Refinement was attempted initially in the monoclinic space group $\mathrm{C} 2 / \mathrm{m}$, as the cell parameters α and γ approximate to 90°. However, data averaged to 346 unique reflections gave a high R_{av} factor for the data averaging, indicating that the assumed space group symmetry $\underline{C} 2 / \underline{m}$ was incorrect. This was supported by the refinement, for which final cycles gave an R factor of 0.11 , with high values for the thermal parameters of the f1uorine atoms, and significant residual peaks in the difference Fourier map. The refinement was continued in space group $\underline{C} \overline{1}$ (C -centred version of $\underline{1} \overline{1}$ No. 2), and the $R_{a v}$ for the 601 unique reflections averaged was reduced to 0.025 . Three cycles of least-squares with Cs and Nb on the same special
positions as for the space group $\underline{C} 2 / \underline{m}$, gave an R factor of 0.17 and the fluorine atoms were located from the difference Fourier map. Further cycles with the fluorine atoms included reduced R to 0.09 . The isotropic thermal parameters of the fluorine atoms were all high, indicating that they were either in the wrong positions or highly anisotropic. Peaks in the Fourier difference map of 3 electrons at bond distances from niobium, suggested possible alternate positions for the fluorine atoms. Three cycles of refinement with all atoms having anisotropic temperature factors reduced the R factor to 0.056 . However, the thernal parameters of the fluorine atoms were still high, and the possibility of a disordered structure was investigated. Because of the interdependence of the parameters involved, it was necessary to refine the site occupation factors of the alternate fluorine atoms first, and then to fix the values for final cycles of least-squares involving refinement of thermal parameters.

The largest peaks in the final Fourier difference map of the ordered structure, formed an alternative octahedron about the niobiun atom, slightly displaced from the established fluorine atoms. The first disordered structure (model 2) included both sets of fluorine atoms, with the site occupation factors refined as x and $1-x$. Final cycles gave an R factor of 0.058 , with reduced isotropic thermal parameters and residual peaks in the Fourier map. However, the three strongest peaks of 1.5 electrons appeared to represent a further alternate octahedron of fluorine atoms and a second disordered structure (model 3) with three sites for each fluorine was investigated. Final cycles for this model gave an R factor of 0.056 and all isotropic thermal parameters were reduced to satisfactory values. A weighting parameter g (.00044) $\left[\underline{\omega} \alpha 1 / \sigma^{2}(F)+g F^{2}\right]$ was used and an analysis of the weighting scheme
over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory.
A further disordered structure (model 4), with the octahedra disordered only in two dimensions, and free to rock about an ordered fluorine pair, gave less satisfactory convergence and was rejected. Similarly, attempts to restrain the positional parameters of the fluorine atoms in order to attain a regular octahedron were unsuccessfu1.

The disordered structure (model 3) was considered to be the most satisfactory representation. The final atomic positional parameters are given in Table 23; the thermal parameters are in Table 24. The interatomic distances are in Table 22, and the observed and ca1culated structure factors are found in Appendix 5.

Final residual indices for 601 unique reflections:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.056 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum_{\mathrm{w}}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum \omega\left|\mathrm{F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.066
\end{aligned}
$$

TABLE 22

Interatomic distances (\AA) with estimated standard deviations in parentheses

$\mathrm{Nb}-\mathrm{F} 1$	$1.732(19)$
$\mathrm{Nb}-\mathrm{F} 2$	$2.008(21)$
$\mathrm{Nb}-\mathrm{F} 3$	$2.026(24)$
$\mathrm{Nb}-\mathrm{F} 4$	$1.756(28)$
$\mathrm{Nb}-\mathrm{F} 5$	$1.961(27)$
$\mathrm{Nb}-\mathrm{F} 6$	$2.011(34)$
$\mathrm{Nb}-\mathrm{F} 7$	$1.852(40)$
$\mathrm{Nb}-\mathrm{F} 8$	$2.156(29)$
$\mathrm{Nb}-\mathrm{F} 9$	$1.908(42)$

TABLE 23

Final atomic positional parameters for CsNbF_{6} (model 3) including isotropic thermal parameters and site occupation factors for the fluorine atoms [estimated standard deviations in parentheses]

	x / a		y / b	z / c	s.o.f.	U_{11}
Cs	0.0	(00)	0.0	(00)	0.0	(00)
Nb	0.0	(00)	0.5	(00)	0.5	(00)
F 1	$0.2333(28)$	$0.4449(25)$	$0.3944(37)$	0.453	$0.0476(46)$	
F2	$0.4061(33)$	$0.8044(27)$	$0.3130(42)$	0.453	$0.0559(54)$	
F3	$0.4182(39)$	$0.1313(35)$	$0.2029(53)$	0.453	$0.0627(76)$	
F4	$0.2417(36)$	$0.5504(35)$	$0.4034(29)$	0.311	$0.0442(53)$	
F5	$-0.0472(51)$	$0.3649(39)$	$0.2067(59)$	0.311	$0.0561(76)$	
F6	$0.4019(51)$	$0.1920(40)$	$0.3091(60)$	0.311	$0.0602(72)$	
F7	$0.2657(53)$	$0.4771(51)$	$0.4734(70)$	0.236	$0.0448(83)$	
F8	$-0.1237(62)$	$0.3404(58)$	$0.2456(89)$	0.236	$0.0480(95)$	
F9	$-0.0271(60)$	$0.6495(52)$	$0.2201(85)$	0.236	$0.0437(98)$	

TABLL: 24

Anisotropic thermal parameters for Cs and Nb atoms, with estimated standard deviations in parentheses. The temperature factors are in the form $\exp \left[-2 \pi^{2}\left(h^{2} U_{11} a^{2}+\ldots . .2 h k U_{12} a b\right)\right]$.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Cs	$0.0400(7)$	$0.0301(6)$	$0.0383(6)$	$-.0030(4)$	$0.0171(4)$	$-.0015(4)$
Nb	$0.0346(8)$	$0.0284(7)$	$0.0333(7)$	$-.0034(5)$	$0.0143(6)$	$-.0019(5)$

6.12 Discussion of the Sodium Hexafluorotantalate(V) and Caesium Hexafluoroniobate(V) Structures

The face centred cubic (C_{1}) structure was found to be appropriate for sodium hexafluorotantalate(V), as previously established by X-ray powder diffraction. ${ }^{115}$ There is no distortion of the unit ce11 or $\mathrm{TaF}_{6}{ }^{-}$ion which would justify the choice of a lower symmetry space
 been found to have the C_{1} structure. These are all complex fluorides of sodium ($\mathrm{B}=\mathrm{P},{ }^{129} \mathrm{Mo},{ }^{130} \mathrm{~W},{ }^{130} \mathrm{Sb},{ }^{118,119} \mathrm{Nb},{ }^{115} \mathrm{Ta}^{128}$), and fluorine atom co-ordinates have been given for only two of these structures. Bode and Teufer, ${ }^{129}$ placed the F atoms of the NaPF_{6} structure, on 24 of the 192 general x, y, z positions of the space group Fm 3 m , with the Y / B

Figure 16
The unit cell contents of NaTaF_{6}.
and Z / C fractional co-ordinates close to zero. The resulting coordination of the Na^{+}cation by F atoms is, thus, six as as would be found for the special position $x, 0,0$. Schrewelius, ${ }^{118}$ similarly placed the F atoms in the NaSbF_{6} structure in the general $\mathrm{x}, \mathrm{y}, \mathrm{z}$, positions, with a resulting bond distance of $1.95 \AA$. Teufer ${ }^{119}$ disputed the F atom position, suggesting fluorine should be placed on a special site $x, 0, o,(x=0.217)$, resulting in a bond distance of $1.78 \AA$. Teufer substantiates the F atom position by comparison of the bond length with that of $\mathrm{KSbF}_{6}{ }^{75}(1.77 \AA)$. The bond distance of Schrewelius does seem to be too long, as it is comparable with the Sb-F bridge distances in the predominately covalent $\mathrm{MF}_{4} \mathrm{O} . \mathrm{nSbF}_{5}$ adducts ($\mathrm{M}=\mathrm{U}$, Mo and Re) reported in chapters 3 to 5 of this thesis.

The structure of sodium hexafluorotantalate (V) is found to be in agreement with the Teufer structure for NaSbF_{6}. The F atoms about the Ta occupy the special positions $x, 0, o,(x=0.226)$, and despite the larger ionic radius of Ta, the Ta-F bond length, $1.868(5) \AA$, is still less than the bond length proposed by Schrewelius for $\mathrm{Sb}-\mathrm{F}$. However, it may be that the C_{1} structures all belong to the space group Fm 3 m , but show a trend for the F atoms to move from the special position $x, 0,0$, as the ionic radius, $R_{B 5+}$, decreases. The effect of such a trend would thus be least, or non-existent, with NaTaF_{6} as Ta^{5+} has the largest ionic radius of the series.

The previously reported rhombohedral structure for caesiun hexafluoroniobate (V), ${ }^{116}$ is that expected front consideration of the common structure types for the $A^{1} B^{v} F_{6}$ compounds, and in particular the structures with large cations. The triclinic cell found in this determination represents not only a new phase for CsNbF_{6}, but the first reported $A^{1} B^{v} F_{6}$ structure which does not conform to one of the five
structure types described in the introduction. The unit cell volume of the more usual rhombohedral ($\underline{\mathrm{R}} \overline{\mathrm{B}} \mathrm{m}$) structure is almost exactly half the triclinic unit cell (Cī) determined.
$\mathrm{CsNbF}_{6}, \mathrm{R} \overline{\mathrm{J}} \mathrm{m}$ and $\mathrm{C} \overline{\mathrm{I}}$ unit cell parameters:-

	$\underline{\mathrm{a}}\left(\mathrm{A}_{\mathrm{A}}\right)$	$\underline{\mathrm{b}}(\AA \mathrm{A})$	$\underline{\mathrm{C}}(\AA)$	$\alpha\left({ }^{\circ}\right)$	$\beta\left({ }^{\circ}\right)$	$\gamma\left({ }^{\circ}\right)$	$\mathrm{U}\left(\mathrm{A}^{3}\right)$	Z	U / Z
$\underline{\mathrm{R}} \overline{3} \underline{m}$	5.32			96.84	90.0	90.0	148	1	148
$\underline{\mathrm{C}} \overline{1}$	7.077	7.924	5.274	90.53	98.39	90.08	292	2	146

The very high thermal parameters resulting from the refinement of an ordered $\mathrm{NbF}_{6}{ }^{-}$environment within the structure (Figure 17), indicate that this phase has low thermal stability. The arrangement of the fluorine atoms about the niobium is that of a highly distorted octahedron. The bond distances of the three pairs of fluorine atoms to niobium being $2.000(12), 1.966(12)$ and $1.723(10) \AA$ with F-Nb-F angles of 103,101 , and 81°.

The disordered structure, model 3 , resulted in the best convergence of data, with the lowest thermal parameters for the fluorine atoms (Figure 18). From the data it is impossible to decide upon the exact nature of disorder. The fluorine atoms may oscillate between the alternate, approximately octahedral positions, as a unit, or the disorder may be distributed throughout the lattice with only one orientation found at each site. Model 2, where only two orientations of the fluorine atoms was considered, allows refinement of the site occupation factors of the two alternate positions individually for the three fluorine atoms. The site occupation factors obtained were significantly different (Figure 19, Table 25), and this indicates that the distorted octahedron found in the ordered structure (model 1) does not only oscillate between alternate sites but further deforms.

Figure 17
Stereosconic view of the unit cell contents of CsNbF 6 (ordered model 1).

Figure 18
The fluorine atom environment about Nb in the disordered structure (model 3).

Figure 19

Disordered mode1 (2), niobium environment.
atom S.O.F
$F_{1} \quad 0.5997$
($\mathrm{F}_{1}^{\prime} 0.4003$)
$\mathrm{F}_{2} \quad 0.6134$
$\left(\mathrm{F}_{2}^{\prime} \quad 0.3866\right)$
$\mathrm{F}_{3} \quad 0.6667$
$\left(\mathrm{F}_{3}^{\prime} 0.3333\right)$

TABLE 25

Site occupation factors for the fluorine atoms in $\mathrm{CsNbF}_{\epsilon}$ model (2).

The possibility that the disorder is distributed throughout the lattice with only one orientation at each site cannot be discounted however. A likely cause of such disorder would be impurities within the lattice and it seems probable that this, rather than the low temperature of crystallisation, is the cause of the new phase determined. A further possible cause of disorder throughout the lattice is crystal twimning, which was indicated by the doubled diffraction peaks observed during data collection. However, the $\mathbb{C} \overline{1}$ structure represents a low temperature phase determined at room temperature, and the disorder may be about each niobium atom as a result of the freedom for the $\mathrm{NbFF}_{6}{ }^{-}$ octahedron to 'rattle" in a cell which will have expanded from its low temperature volume.

The disordered model chosen from those investigated may, therefore, be representative of the fluorine environment expected about the niobium or merely represent positions found throughout the lattice.

CHAPTER 7

A Study of the NalFF_{6} Structure by Neutron Diffraction

The determination of all but the simplest structures by profile refinement of powder diffraction patterns appears, at first sight, to be uncompetitive with the more usual single crystal methods. However, recent developments in the techniques of profile refinement of powder data have made the method a realistic alternative for the refinement of moderately complex structures. Though simple structures may be solved by profile refinement, the method is designed primarily for the refinement of atomic parameters of structures solved approximately by other methods.

Due to the overlap of adjacent Bragg peaks in all but the simplest powder diffraction patterns the intensity of the structure factor for each reflection cannot be derived simply by integrating under the peaks ${ }^{\mathbf{1 3 1}}$ and a new approach is needed to interpret the structural information contained in complex powder patterns. Rietveld originated and developed ${ }^{132,133}$ a method to directly use the profile intensities to decide between structural models, rather than separate individual Bragg reflections. The measured profile of a single powder diffraction peak is dependent on the neutron wavelength distribution, the monochromator mosaic distribution, transmission functions of the slits and the sample shape and crystallinity. Despite these contributions the product is almost exactly a Gaussian peak, for which the contribution to the profile at any position of 2θ can be calculated [yi(calc)]. For each 2θ point of ${ }^{\prime \prime}$ a pattern the contributions from all the Bragg reflections in the region are calculated and the total $y_{i}(c a l c)$ from all contributing reflections is compared with the observed value $\mathrm{y}_{\mathrm{i}}(\mathrm{obs})$. The unconstrained structure parameters determining $\mathrm{y}_{\mathrm{i}}(\mathrm{calc})$ are then adjusted to minimize the quantity.

$$
x^{2}=\sum_{i} w_{i}\left[y_{i}(o b s)-\frac{1}{c} y_{i}(\text { calc })\right]^{2}
$$

The summation is over all the 2θ points measured (i), $\mathrm{w}_{\mathbf{i}} \alpha 1 / \sigma_{\mathbf{i}}{ }^{2} \simeq 1 / \mathrm{y}_{\mathbf{i}}$ (obs) is the weight allotted to the count $\mathrm{y}_{\mathbf{i}}$ (obs), and c is a scale factor. Corrections for peak asymmetry at very low scat.tering angles ${ }^{134}$ and the angular dependence of the half-widths of the diffraction peaks ${ }^{135}$ are used. The least-squares parameters are described in section 7.5 , but may be divided into two groups. The first group are profile parameters which describe the positions, halfwidths and possible asymmetry of the diffraction peaks. The second group are structure parameters that define the contents of the asymmetric unit cell.

An updated version ${ }^{136}$ of Rietveld's original method was used in the solution of the NalF_{6} structure. This allowed the inclusion of anisotropic temperature factors for the atoms.

The use of neutron rather than X-ray diffraction techniques has both advantages and disadvantages. Single crystal investigations by neutron diffraction are often impractical due to the large size of crystals required and the errors incurred through extinction. However, for the study of some structural problems profile refinement of neutron diffraction patterns by powder samples has considerable advantages. Neutrons are always scattered by atomic nuclci; scattering by electrons is negligible except for atoms possessing a magnetic moment. As the nucleus of an atom is negligibly small in comparison with the wavelength of the scattered radiation, diffracted waves from the opposite sides of the atom do not interfere destructively, and neutron scattering factors are angularly independent instead of falling with increasing θ angles as with X-ray scattering. Similarly, neutron scattering factors are
not proportional to atomic numbers, as are X-ray scattering factors, and vary relatively little for all elements. The principle advantage of neutron diffraction is a direct result of this approximate equivalence of scattering factors, as it allows accurate determination of light atom positions in the presence of heavy atoms. Studies of the orthorhombic form of PbO by X-ray ${ }^{137}$ and neutron diffraction ${ }^{138,139}$ demonstrate the insensitivity of the positional parameters of the oxygen atom derived from the X-ray data because of the overwhelming contribution to the diffraction pattern of the lead atoms. The neutron diffraction data allows accurate location of both atoms but is relatively insensitive to placement of lead or oxygen on incorrect sites, and it is often essential to locate heavy atoms initially by X-ray methods. The extreme example of a light atom is hydrogen. In compounds containing no heavy atom it is possible, with extremely good data, to obtain approximate hydrogen atom positions with X-ray data. Usually in the presence of heavy atoms, or with an average quality data set, the positions of hydrogen atoms can only be inferred from packing considerations and probable bonding schemes, but with neutron diffraction data, hydrogen atoms can be located directly and accurately even in the presence of heavy atoms.

The location of atoms within the unit cells of the $A^{1} B^{v} F_{6}$ compounds may satisfactorily be refined using neutron diffraction powder data. Preliminary X-ray single crystal studies are not required as the locations of the heavy atoms have been determined by X-ray powder diffraction and a few single crystal studies to be on known special positions of the relevant space groups. Similarly, unit cell dimensions can accurately be measured by X-ray powder diffraction and the number and type of atoms in the unit cell can simply be determined by volume
considerations. The positional parameters of the fluorine atom may then accurately be determined and the effect of applying constraints with different space groups observed. This method is particularly sensitive to incorrect application of constraints placing light atoms, such as the fluorine atom octahedra on special positions of a space group when, in fact, the atoms are orientated slightly away from the axes and are in general positions.

Since no preliminary single crystal study was required, the location of fluorine atoms within $\mathrm{A}^{1} \mathrm{~B}^{\mathrm{V}} \mathrm{F}_{6}$ compounds by refinenent of powder data seems an appropriate method as it is frequently easier to obtain a powder specimen than a single crystal of sufficient quality to allow data collection. The reduced time required for data collection is a further advantage of this method; there being no sorting and aligning of crystals, data may be collected in as little as twenty-four hours. Finally, it is comparatively easy to collect data over large ranges of temperature and pressure to examine lattice changes, or by the use of reduced temperature, simplify disordered structures.

7.2 Preparation of Sodium hexafluorotungstate(V)

The sanple was prepared using the method of Hargreaves and Peacock, ${ }^{130}$ involving the reaction between sodium iodide and tungsten hexafluoride in sulphur dioxide solvent. For neutron diffraction samples are required in large quantities and the required amount, approximately 25 g , was prepared in three batches. Typically, 24.7 mMol of sodium iodide was added to the preseasoned apparatus (Figure 20), through the stopper and the apparatus was re-evacuated and sealed at the constriction (A). The WF_{6} ampoule was cooled before opening the break-seal and the slight excess of $\mathrm{WF}_{6}, 28.2 \mathrm{mMol}$, was transferred to

the reactor in static vacuum, the reactor being cooled to $-78^{\circ} \mathrm{C}$. Approximately $80 \mathrm{~cm}^{3}$ of SO_{2} was then transferred to the cooled reactor causing an immediate colour change in the reactants from white, through yellow, brown and orange to red. The SO_{2} was allowed to reflux to a solid CO_{2} collar around the reactor neck for 2 hours. After the removal of SO_{2} and excess of WF_{6}, trap B was cooled to $-196^{\circ} \mathrm{C}$ causing the rapid sublimation of the iodine side-product. This was hastened by warming the reactor at $100^{\circ} \mathrm{C}$, until the product became pink/buff in colour and no further iodine was liberated. Approximately 0.1 g of yellow crystals were observed to have sublimed out of the reactor during the heating stage of two of the three reactions. The crystals were identified by mass spectroscopy to be sulphur (S_{8}), which suggest oxygen impurity is to be found in the sample.

The reactor was sealed from the manifold, and a small quantity of the product was sealed into the side arm (C) for purity checks by X-ray powder patterns and mass spectroscopy. The mass spectra of the three samples were all very similar, with $\mathrm{WF}^{+}, \mathrm{WF}_{4}^{+}, \mathrm{WF}_{3}{ }^{+}, \mathrm{WF}_{2}{ }^{+}, \mathrm{WF}^{+}$and W^{+} abundance patterns, but in each sample the major peaks were $\mathrm{WOF}_{3}{ }^{+}$, $\mathrm{WOF}_{2}{ }^{+}$and WOF^{+}with traces of $\mathrm{WO}_{2} \mathrm{~F}_{2}{ }^{+}$. Despite the size of the $\mathrm{WOF}_{3}{ }^{+}$ peak it seems likely that most of the oxygen is from contamination upon admitting the sample to the mass spectrometer.

The X-ray powder pattems of all three samples were identical, Table 26. The pattern was measured and the $\operatorname{Sin}^{2} \theta$ values calculated. The pattern was found to be identical with that obtained by Hargreaves and Peacock ${ }^{130}$ at low 2θ angles ($2 \theta<60^{\circ}$), and could accordingly be indexed as face-centred cubic, with $a=8.157 \AA$ compared with the previously reported value of $8.18 \AA$. However, above 2θ of 60°, two weak lines could only be indexed assuming a primitive cubic cell. As no extra

lines were found at lower 2θ angles, it seems unlikely that the peaks which are not in agreement above 60° are due to impurity. The powder pattern will be dominated by the tungsten atoms and it seems probable that whereas the tungsten and sodium atoms are in face-centred positions, the orientation of the fluorine atoms do not conform, making the facecentred tungsten atoms unequivalent.

The samples of NaNF_{6} were transferred to a standard neutron diffraction can, Figure 21, which had been preseasoned with $\mathrm{C1F}_{3}$ after careful evacuation.

Figure 21

A standard neutron diffraction sample can.

7.3 Data Collection

Neutron diffraction data for NaWF_{6} was collected at A.E.R.E. Harwe11. Data was first collected using the High Resolution Powder Diffractometer (H.R.P.D), but the results were unsatisfactory. This was partly due to the fact that one of the detectors was not functioning, but may also be due to a relatively low degree of crystallinity in the sample. The ratio of background to peak height for the strongest reflections was only $1: 2$. The data was later recollected using P.A.N.D.A., and a more satisfactory data set was obtained, with a $1: 7$ ratio of background to peak height.

The P.A.N.D.A. instrument has nine detectors, which move in a horizontal 2θ arc about the sample, in the plane of the incident and diffracted neutron beams. The detectors are arranged in banks of three
(one above and below the equatorial counter) at the same 2θ, with 5° of 2θ between each set. The sample can has a screw thread in the base, by which it is accurately located in the neutron beam, on the axis about which the counters rotate. The diffractometers used for powder work at Harwell, including P.A.N.D.A., have been fully described by Wedgewood. ${ }^{140}$

Two test scans were set to scan through 5° of 2θ at the highest and lowest 2θ values of the proposed range, to ensure that peaks were present. The arrangement of the detectors at 5° intervals means a 5° scan observes 15° in 2θ without overlap. The test scan at low 2θ was used to compare the observed and calculated peak positions as a check for sample decomposition prior to data collection. The calculated peak positions were based on the measured radiation wavelength of 1.2492 A.

The data collection 2θ scan range for the low angle counters was chosen to be 14.00° to 95.50°, and the middle and high angle counters, therefore, scanned 19° to 100.5° and 24° to 105.5° respectively. This resulted in the two Bragg peaks for the \{111\} and \{200\} planes, being measured only by the two low angle sets of detectors. A 2θ step increment of 0.1° was chosen and the time of count/step could then be calculated in order to make maximum use of allocated machine time, with allowance for dead time during angle reset and print-out times.

7.4 Preliminary treatment of the diffraction data

The collected intensity data was first read from the paper tape and listed, using a preliminary program, as a check for spurious high bursts of background radiation which would register on all counters during the same count time. The program Collat was then used to sort the data from the three sets of counters, according to the machine
used, counters in use and the ang1e between them, and the step increment. Initially the data from the equatorial and two non-equatorial counters of each set is summed. The program then sums counts from each set of counters at the appropriate 2θ value to give a total count. As the data is collated, scale factors between the first and subsequent counters are calculated on the basis of the points where all of the counters record a value. These scale factors are then applied in calculating the total counts at points where not all of the counters contribute, thus bringing these values onto the same scale. The series of collated total counts give the observed profile against which it is attempted to fit a calculated profile by refinement of the leastsquares parameters.

7.5 Refinement of the structure

The structure refinement program is used in two stages. A preprofile stage determines which reflections may contribute to each of the observed points in the powder diffraction profile. This stage should also be repeated at any point in the refinement where significant alterations have been made to the unit cell or profile parameters. The unit cell dimension, \underline{a}, was calculated from an X-ray powder pattern and the remaining pre-profile parameters determined during data collection.

Parameters used in the determination of the calculated pre-profile were:-

Space group, cubic \underline{P} a 3 ($\mathrm{T}_{\mathrm{h}}^{6}$ No. 205)
Unit cell, $\underline{a}=8.157 \AA$
Half-width parameters, $\underline{U}=13772.0 ; \quad \underline{V}=-8119.0 ; \quad \underline{W}=2284.0$
Zero point error, 0.00°
Neutron wavelength, $\underline{\lambda}=1.2492 \AA$

Abscissa increment; $\delta 2 \theta=0.10^{\circ}$.
The half-width parameters, $\underline{U}, \underline{V}$ and \underline{W} are found approximately by measuring the half-width, H_{k}, of selected peaks and finding a leastsquares fit to these observed quantities using the equation:-

$$
H_{\mathbf{k}}{ }^{2}=U \tan ^{2} \theta_{\mathbf{k}}+V \tan \theta_{\mathbf{k}}+W
$$

The equation is simplified from the formula of Caglioti et al. ${ }^{135}$ and adequately takes account of the angular dependence of the halfwidths.

The second stage of the refinement program determines the calculated intensity at each point in the observed powder diffraction profile. The zero point error, unit cell dimensions and half-width parameters can be refined or constrained at this stage, as may the other leastsquares parameters which determine the calculated intensity. The other allowed least-squares paraneters are the position in the unit cell of each of the atoms in the asymmetric unit, the nature and magnitude of the thermal vibrations of these atoms and a scale factor relating the ordinates of the calculated and observed profiles. In addition to the least-squares parameters it is necessary to know the number and types of atom in the asymmetric unit, and the contribution at any abscissa value which arises from background rather than Bragg reflections.

For the first cycles of least-squares refinement the unit cell dimension, \underline{a}, the half-width parameters and overall scale factor were refined. In addition an overall temperature factor, rather than individual isotropic or anisotropic thermal parameters, and the X / A co-ordinate of the fluorine atom were refined. The W atom was fixed at the origin, Na at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, and the Y / B and Z / C co-ordinates of the F atom were initially constrained at zero, thus attempting to refine the structure in the space group $\mathrm{Fm} 3 \underline{\underline{m}}$. Three cycles of least-squares
refinement gave an R factor of 0.27 . Further cycles used the refined value for the unit cell dimension as a constrained parameter, and individual isotropic temperature factors for the atoms were refined, as was the zero point error. The Y / B and Z / C co-ordinates of the F atom were also allowed to refine, thus changing the space group to Pa3, and the resulting R factor was 0.18 . Final cycles with the Z / C co-ordinate of the F atom given a positive value further reduced R to 0.16 . The final atomic parameters for NaWF_{6} are given in Table 27, and the final observed and calculated profiles are shown in Figure 22, and 1isted in Appendix 6.

The final residual indices for 111 reflections are:-

$$
\begin{aligned}
& \mathrm{R}=100 \sum \mid \mathrm{I} \text { (obs) } \left.-\frac{1}{\mathrm{c}} \mathrm{I}(\text { calc }) \right\rvert\, / \sum \mathrm{I}(\mathrm{obs})=0.167 \\
& \mathrm{R}_{\mathrm{w}}=100\left[\sum_{\mathrm{w}}\left(y\{o b s\}-\frac{1}{c} y\{\text { calc }\}^{2} / \sum_{\mathrm{w}}(y\{o b s\})^{2}\right]^{-2}=0.168\right.
\end{aligned}
$$

TABLE: 27

Final atomic parameters for NaWF_{6} with estimated standard deviations in parentheses where the values were refined

$\mathrm{F}_{6} \mathrm{NaW}$; $\quad \underline{M}=320.83$				
Cubic ; $\underline{a}=8.168(1) \AA$				
	$\underline{\mathrm{U}}=545.0 \AA^{3} ; \quad \underline{\mathrm{D}}_{\underline{\mathrm{c}}}=3.91 \mathrm{~g} \mathrm{~cm}^{-3} ;$			$\underline{z}=4$
	x / a	y / b	z/c	$B=8 \pi^{2} U$
Na	0.5	0.5	0.5	3.689(327)
W	0.0	0.0	0.0	0.073 (120)
F	0.2187(4)	$0.0101(14)$	0.0126(13)	5.244 (131)
	Interatomic distances:		$\mathrm{W}-\mathrm{F}=$.791(4) ${ }^{\circ}$
			$\begin{aligned} & \mathrm{Na} \cdot \rightarrow \cdot \mathrm{~F}= \\ & \mathrm{F} \cdot \mathrm{~F}= \end{aligned}$	$\begin{array}{ll} .299(4) \AA \\ .533 & \AA \end{array}$

7.6 Discussion

The primitive cubic structure, space group $\underline{\text { Pa3 }}$, was found to appropriate for sodium hexafluorotungstate(V). This is contrary to the previously reported face-centred cubic cell reported by Hargreaves and Peacock. ${ }^{130}$ However, as noted in the preparative section of this chapter, the X-ray diffraction powder pattern obtained on the sample used for neutron diffraction was in complete agreement with that of Hargreaves and Peacock below a 2θ value of 60°, and only two weak reflections above 60° indicated that the structure might be other than face-centred. Despite the fact that the intensities of equivalent reflections from neutron and X-ray diffraction are not related, the non-face-centred cubic reflections are also weak in the neutron data.

The primitive cubic (Pa3) structure requires that the octahedra of fluorine atoms about tungsten at the origin and face-centred positions are rotated in opposite directions from the special ($x, 0, o$) positions (Figure 23). Thus the structure is also different to those proposed for $\mathrm{NaPF}_{6}{ }^{129}$ and $\mathrm{NaSbF}_{6}{ }^{118}$ where the octahedra are rotated equally in the same directions, to be on 24 of the 192 general (x, y, z) positions of the space group Fm 3 m . The y / b and z / c co-ordinates of the F atom in the NaWF_{6} structure are close to zero (.0101(14) and $.0126(13)$ respectively) and the X-ray powder pattern would be expected, through the overwhelming contribution of the face-centred heavy atoms, to indicate the space group Em3m. The NaTaF_{6} structure (chapter 6) was found to be face-centred cubic Fm 3 m , and it was considered that the compounds exhibiting the cubic structure, designated C_{1}, might show a trend for the F atoms to move from the special position $\mathrm{x}, \mathrm{o}, \mathrm{o}$, as the ionic radius of $\mathrm{R}_{\mathrm{B}_{5}{ }^{+}}$decreases. The compounds attributed this structure $\mathrm{NaMF}_{6}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Sb}, \mathrm{Nb}, \mathrm{Ta})$ have only a small range of ionic radii,

Figure 23
The Unit Cell packing in NaWF_{6}.
of which Ta and W are representative of the extremes. Therefore, if the F atoms of NaWF_{6} are shifted furthest, in this series, from the special position, the Fm 3 m structure is a close approximation of this structure type. The W-F bond length is of the expected order for this type of compound ($1.791 \AA$), and the Na atom retains, in paz symmetry, six F atoms as nearest neighbours at $2.299 \AA$.

The final R factor obtained, 0.167 , is not directly comparable with R factors resulting from the refinement of single crystal data sets. The value could probably be reduced further with greater familiarity with the program. In particular the operation of the low 2θ angle asymmetry parameter, a correction which appeared desirable for this data set, was not satisfactorily applied to the calculated profile. However, the estimated standard deviation of all the refined parameters is acceptably low, and the isotropic temperature factors are of the expected orders for this type of structure on the Na and F atoms, and for the W atom virtually no thermal motion is indicated.

Though the intensity of X-ray diffraction peaks are not directly related to those found by neutron diffraction, they both depend upon a basic minimum degree of crystallinity. Neutron diffraction data were collected for the three compounds $\mathrm{NaVF}_{6}, \mathrm{CsWF}_{6}$ and CsIF_{6}; of these NaWF_{6} gave the only data set which was considered probable to yield a satisfactory structure refinement, and all three samples gave comparably poor X-ray powder diffraction patterns, despite the heavy atom contributions. It seems probable that for neutron diffraction data to produce acceptable structure refinements the sample should be capable of producing sharp X-ray diffraction patterns, except where no heavy atom is present in the compound.

CHAPTER 8

The Crystal Structures of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ and $\mathrm{K}_{2} \mathrm{OsF}_{6}$

8.1 Introduction

As with the $A^{1} B^{V} F_{6}$ compounds discussed in chapters 6 and 7 of this thesis, the complex fluorides of the general formula $A_{2}^{1} B^{\prime V} F_{6}$ may be classified by a few known structure types, with only minor deviations from these types. For the $A_{2}^{1} B^{1 v} F_{6}$ compounds having the larger cations ($\mathrm{A}=\mathrm{K}, \mathrm{Cs}, \mathrm{Rb}, \mathrm{Tl}$ and NH_{4}) there are three basic types of structure, with many of the compounds known to exhibit two and even all three polymorphic forms. The hexafluoride, $\mathrm{K}_{2} \mathrm{SiF}_{6},{ }^{141}$ is representative of the cubic structure, space group Em3m. A trigonal type, space group $\underline{p} \overline{3} \underline{m} 1$, is typified by $K_{2} \mathrm{GeF}_{6},{ }^{142}$ but has been recently more accurately determined for $\mathrm{K}_{2} \mathrm{ReF}_{6} .{ }^{143}$ The compound $\mathrm{K}_{2} \mathrm{MnF}_{6}{ }^{144}$ is taken as representative of the third structure type which is hexagonal, space group P_{6} zmc. The structures of known $\mathrm{A}_{2}^{1} \mathrm{~B}^{1 V} \mathrm{~F}_{6}$ compounds are summarised in Table 28.

The $K_{2} \mathrm{SiF}_{6}$ structure, which is more commonly referred to as the well known $\mathrm{K}_{2} \mathrm{PtCl}_{6}$ (antifluorite) structure, ${ }^{145}$ has four molecules in the unit ce11. There is octahedral arrangement of the F atoms about the Si atom, and the octahedra and K atoms are arranged as are the Ca and F atoms of the CaF_{2} structure, with cubic close-packed layers (layer sequence $\mathrm{ABC}, \mathrm{ABC}$). The cations, A^{+}, are coordinated by twelve F atoms, three from each of the equidistant $\mathrm{BF}_{6}{ }^{2-}$ octahedra. This type of structure is found in many of the hexafluorides, and is almost exclusively adopted by the other hexahalides. The trigonal, $\mathrm{K}_{2} \mathrm{ReF}_{6}$, structure type has one molecule in the unit cell and the atoms have a similar arrangement to that found in the CdI_{2} structure, the layers are arranged in hexagonal close-packing (sequence $A B, A B$). In the ideal structure the cations, A^{+}, would have 12 equidistant F neighbours, but most of the compounds deviate slightly from the perfect structure, with
TABLE 28

A^{*}		Li	Na		K	NH_{4}	Rb	Cs
$\mathrm{r}_{\mathrm{A}^{+}}$		0.68	0.97		1.33	1.43	1.48	1.63
$B^{1 / 2} r_{B}{ }^{* *}$								
Si 0.42	Hex	$a=8.22, c=4.56^{150}$	$a=8.86, c=5.04{ }^{146}$	$\begin{aligned} & \text { Hex } \\ & \text { Cub } \end{aligned}$	$a=8.13^{144,161}$	$\begin{aligned} & a=5.78, \quad c=4.79^{178,179} \\ & a=8.395^{179,180} \end{aligned}$	$a=8.45^{151}$	$a=8.87^{141,161}$
(ie 0.53	Hex		$a=8.99, c=5.12^{156}$	$\begin{aligned} & \text { Trig } \\ & \text { Ilex } \\ & \text { Cub } \end{aligned}$	$\begin{array}{ll} a=5.62, & c=4.65^{142} \\ a=5.71, & c=9.27^{162} \end{array}$	$\begin{aligned} & a=5.85, c=4.77^{142} \\ & a=8.46^{181} \end{aligned}$	$\begin{array}{ll} a=5.82, & c=4.79^{172} \\ a=5.94, & c=9.63^{62} \end{array}$	$a=8.99^{177}$
Sn 0.60	Hex	$a=8.42, c=4.59^{152}$	$a=9.03, c=5.13^{150}$	$\begin{aligned} & \text { Trig } \\ & \text { Ilex } \\ & \text { Cuh } \end{aligned}$	$\begin{aligned} & a=5.71, c=4.65^{144} \\ & a=5.67, c=9.35^{144} \\ & a=8.28^{144,163} \end{aligned}$	$a=5.91, c=9.55^{182}$	$\begin{aligned} & a=5.85, c=9.50^{144,173} \\ & a=8.43^{144,173} \end{aligned}$	$a=8.92{ }^{144}$
Cr 0.60	$\begin{aligned} & \text { Hex } \\ & \text { Mono } \end{aligned}$	$4.58,4.58,9.99$, B 117.2^{153}	$a=9.14, c=5.155^{157}$	$\begin{aligned} & \text { hex } \\ & \text { cub } \end{aligned}$	$\begin{aligned} & a=5.70, c=9.35^{163,164} \\ & a=8.16^{163,164} \end{aligned}$		$\begin{aligned} & a=5.95, c=9.69^{164} \\ & a=8.52^{164} \end{aligned}$	$a=9.02^{154}$
Pd 0.65	$\begin{aligned} & \text { !!ex } \\ & \text { Mono } \end{aligned}$	$10.1,4.04,4.63,8117^{154}$	$a=9.23, c=5.25^{158}$	$\begin{array}{\|l\|l} \text { Trig } \\ \text { Hex } \\ \text { Cub } \end{array}$	$\begin{aligned} & a=5.72, c=4.67^{165} \\ & a=5.74, c=9.51^{166} \end{aligned}$		$\begin{aligned} & a=5.98, c=9.70^{141} \\ & a=8.57^{166} \end{aligned}$	$a=0.00{ }^{166,168}$
Pt 0.65	$\begin{aligned} & \text { liex } \\ & \text { Mono } \end{aligned}$	$10.23,4.68,4.65, \beta 117^{154}$	$a=9.41, c=5.16^{150.159}$	$\left\lvert\, \begin{aligned} & \text { Trig } \\ & \text { Cub } \end{aligned}\right.$	$a=5.76, c=4.644^{167,158}$	$a=8.455^{\dagger}$	$a=5.96, c=4.83^{168}$	$a=6.22, c=5.01^{168}$
Ti 0.6 S	Hex		$a=9.21, c=5.15^{150}$	$\begin{aligned} & \text { Trig } \\ & \text { Hex } \\ & \text { Cub } \end{aligned}$	$\begin{aligned} & a=5.71, c=4.65^{141,171} \\ & a=5.75, c=9.46^{171} \\ & c=8.32^{771} \end{aligned}$	$a=5.96, c=4.82^{141}$	$\begin{aligned} & a=5.88, \quad c=4.78^{141} \\ & a=5.91, c=0.81^{141} \\ & a=8.49^{141} \end{aligned}$	$\begin{aligned} & a=6.15, c=4.96^{14!} \\ & a=8.96^{141} \end{aligned}$
Re 0.72	Ortho		5.81, 4.49, 10.10^{157}	Trig	$a=5.88, c=4.61{ }^{143}$	$a=6.06, c=4.77^{174,175}$	$a=6.01, c=4.77$	$a=6.30, c=4.99^{174,175}$
Hf 0.78				$\begin{aligned} & \text { Trig } \\ & \text { Ortho } \end{aligned}$	$a=6.51, b=11.4, c=6.69{ }^{169}$		$a=6.13, c=4.81^{176}$	$a=6.39, c=5.00^{176}$
Er 0.79	Trig Nono	$a=4.98, c=4.66^{147,155}$	5.56, 5.41, 16.1, S $959{ }^{160}$	Trig Ortho	$a=6.85, b=11.4, c=6.944^{169}$		$a=6.16, c=4.82^{176}$	$a=6.41, c=5.01^{176}$
Os 0.38	Hex Ortho		$\begin{aligned} & a=9.36, \quad c=5.11^{157} \\ & 5.80,4.50,10.14^{157} \end{aligned}$	Trig	$a=5.82, c=4.62^{+159}$			$a=6.26, c=5.00^{159}$

+ present work
resulting coordinations of $(9+3)$ or $(3+6+3)$. In the $K_{2} \operatorname{ReF}_{6}$ structure determination, the $\mathrm{ReF}_{6}{ }^{2-}$ octahedron was found to be slightly compressed giving $\mathrm{F}-\mathrm{Re}-\mathrm{F}$ angles for adjacent F atoms of $93.8(2)$ and $86.2(2)^{\circ}$, and the K^{+}ions were not found to be coplanar with hexagonal close-packed layers of F atoms. As a result the 12 F neighbours to each K^{+}are in the $3+6+3$ arrangement, respectively $2.789,2.957$ and 2.998(4) \AA from K^{+}. The hexagonal, $\mathrm{K}_{2} \mathrm{MnF}_{6}$, structure type is related in the case of polymorphic forms, to the $\mathrm{K}_{2} \mathrm{GeF}_{6}$ structure by a doubling of the c axis and, therefore, has two molecules in the unit cell. The layers appear to have a double hexagonal close-packing arrangement (1ayer sequence ABAC, ABAC).

Until recently there were few reported structures for the $A_{2}^{1} B^{1 V} F_{6}$ compounds containing the smaller alkali ions of Li and Na . The most common structure found with Li and Na is a trimolecular hexagonal structure, space group P321, typified by $\mathrm{Na}_{2} \mathrm{SiF}_{6} .{ }^{146}$ The other structures types are a second unimolecular trigonal form, represented by $\mathrm{Li}_{2} \mathrm{ZrF}_{6},{ }^{\mathbf{1 4 7}}$ and a monoclinic form of which $\mathrm{Na}_{2} \mathrm{SnF}_{6}{ }^{\mathbf{1 4 8}}$ is considered to be representative.

The three structure types all exhibit close-packing of the A^{+}and $\mathrm{BF}_{6}{ }^{2-}$ ions, and there is less connection between the relative sizes of the cations ($\mathrm{A}=\mathrm{K}, \mathrm{Cs}, \mathrm{Rb}, \mathrm{T} 1$ and NH_{4}) and the $\mathrm{BF}_{6}{ }^{2-}$ ions and the structures than for the $A^{1} B^{\mathbf{V}} \mathrm{F}_{6}$ compounds. It has been suggested by Cox ${ }^{149}$ that for the complex fluorides $\mathrm{A}_{2} \mathrm{BF}_{6}$, the two structure types, cubic and trigonal, are of nearly equal energy and that their distribution is approximately random. Certainly the irregular distribution of the cubic, trigonal and hexagonal structures, and the existence of complex fluorides in three modifications suggest the structures are similar energetically.

There is doubt concerning the nature of the bonds within the $\mathrm{A}_{2}^{1} \mathrm{~B}^{\mathrm{IV}} \mathrm{F}_{6}$ compounds. For some of these compounds, the $\mathrm{BF}_{6}{ }^{2-}$ ion appears stable in aqueous solution and, in these cases, it is reasonable to consider the structures as true ionic aggregates. However, this is not the case for most of the fluorides and the nature of the bond between the atoms B and F in such cases is not clear. From consideration of interatomic distances the A to F contacts of such compounds have been described as ionic, covalent and transitional. This problem is particularly true of the ammonium compounds where hydrogen bonding may have significance in determining the structures. A consideration of the unit cell size and interatomic distances in the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ structure compared with those of other hexafluoroplatinates may help to clarify this problem.

8.2 Preparation of anmonium hexafluoroplatinate(IV)

Crystals of ammonium hexafluoroplatinate(IV) were provided by D. C. Puddick. Potassium hexafluoroplatinate(IV) was prepared by the direct fluorination of potassium hexachloroplatinate(IV) at $300^{\circ} \mathrm{C} . \mathbf{1 5 1}^{\mathbf{1 5 1}}$

$$
\mathrm{K}_{2} \mathrm{PtCl}_{6}+3 \mathrm{~F}_{2} \xrightarrow{300^{\circ}} \mathrm{K}_{2} \mathrm{PtF}_{6}+3 \mathrm{Cl}_{2}
$$

The purity of the $\mathrm{K}_{2} \mathrm{PtF}_{6}$ was checked by its X -ray powder diffraction pattern. The $\mathrm{K}_{2} \mathrm{PtF}_{6}$ was converted to the ammonium salt by passing an aqueous solution through a column containing a cation exchange resin (Zeocarb 225 SRC 10), which had previously been charged by ammonium chloride solution.

$$
\mathrm{K}_{2} \mathrm{PtF}_{6}+2\left(\mathrm{NH}_{4}\right)^{+} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}+2 \mathrm{~K}^{+}
$$

Upon evaporating the effluent the armonium hexafluoroplatinate(IV)
was obtained as yellow-orange crystals. Infrared spectra of the product, taken over the ranges $5000 \mathrm{~cm}^{-1}$ to $650 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{4}^{+}\right.$bands) using NaCl plates and HCB mull, and $800 \mathrm{~cm}^{-1}$ to $200 \mathrm{~cm}^{-1}$ (Pt-F bands) using polythene plates and nujol mull, showed no evidence of impurity. However, upon close examination two distinct crystal types were found. Both types were of hexagonal plate form, but approximately 10% were orange whilst the remainder were yellow-green in colour. A batch of crystals were separated into the two visible forms by a needle under a microscope. The best examples of each were mounted on glass filaments for single crystal studies and the remainder ground for a preliminary X-ray powder diffraction study. For both crystal forms the diffraction patterns indicated basically face-centred cubic cells.

TABLE 29

X-ray powder diffraction pattern of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$

line	intensity	$\operatorname{Sin}^{2} \theta \times 10^{4}$	$\left(\mathrm{h}^{2}+\mathrm{k}^{2}+1^{2}\right)$ assignment (fcc)
a	10	250	3
b	9	335	4
c	9	672	8
d	10	923	11
e	8	1342	16
f	7	1597	19
g	7	1674	20
h	7	2009	24
i	8	2260	27
j	6	2679	32
k	7	2928	35
l	6	3011	36
m	5	3344	40
n	4	3598	$42.8 ?$

However, the pattern obtained from the yellow-green crystals (Table 29) contained one very weak line which could not be indexed on this assumption, and the cubic indexing may over-simplify a rhombohedral cell. The cubic cell parameters obtained were $9.861 \AA$ for the orange crystals and $8.424 \AA$ for the yellow-green crystals.

The orange crystals were identified by a single crystal study as $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$, the structure of which has been reported by Wyckoff and Posnjak. ${ }^{183}$ Details of the data collection and structure refinement, therefore, are not reported but the atomic parameters found in this study are expected to be more accurate than those previously reported, where data was collected by intensity measurements from Weissenberg photographs and are thus given in Tables 32 to 33 . It is uncertain whether the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ impurity resulted from incomplete fluorination of the $\mathrm{K}_{2} \mathrm{PtCl}_{6}$.

8.3 Single Crystal X-ray Investigation

Armonium hexafluoroplatinate(IV) crystals are not air sensitive and crystals were mounted on thin pyrex filaments with small quantities of adhesive (Araldite). The crystal selected for the investigation was of hexagonal plate appearance, with dimensions $0.28 \mathrm{~mm} \times 0.28 \mathrm{~mm} \times 0.30 \mathrm{~mm}$ across the hexagonal faces and 0.125 mm depth. The crystal was mounted about the \subseteq axis of the hexagonal ce11, the axis being the body-centred diagonal of the face-centred cubic unit cell finally chosen as appropriate. Preliminary cell dimensions were obtained from Weissenberg photographs, taken using $\mathrm{Cu}-\mathrm{K}_{0}$ (Ni filtered) radiation and precession photographs using $\mathrm{M}_{\mathrm{O}}-\underline{K}_{\alpha}$ (Zr filtered) radiation. The final values for the cell parameters were determined from the optimised counter angles for zero and upper layer reflections on a Stoe Weissenberg diffractometer.

8.4 Crysta1 Data for ammonium hexafluoroplatinate(IV)

$$
\begin{aligned}
& \mathrm{F}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Pt} \quad ; \quad \underline{M}=345.1 \\
& \text { Cubic } \underline{a}=8.455(8) \AA \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \left.\underline{\mathrm{E}}(000)=603.6 \AA^{3} ; \quad \underline{D_{c}}=3.792 \mathrm{M} \mathrm{~cm}^{-3}-\underline{K}_{\alpha}\right)=224.0 \mathrm{~cm}^{-1}
\end{aligned}
$$

Space group $\mathrm{Fm} 3 \underline{m}$ (0_{h}^{5} No. 225) . Neutral atomic scattering factors were used with anomalous dispersion coefficients.

8.5 Collection of the Intensity Data

Data were collected from layers hk0 to hk15 of the hexagonal cell $(\mathrm{a}=5.976 \AA, \mathrm{c}=14.648 \AA$), using the Stoe (Stadi-2) diffractometer in the four quadrants $\pm \mathrm{h}, \pm \mathrm{k},+1$. The data were collected using an ω-scan technique, with 2θ constant at the calculated value for each reflection. The intensities of reflections with $0.122 \leqslant \operatorname{Sin} \theta / \lambda \leqslant 0.904 \AA^{-1}$ were collected, and 906 reflections were obtained with $\mathrm{I} / \sigma \mathrm{I} \geqslant 3$. Check reflections were monitored during the data collection for each layer, and indicated no deterioration of the crystal. Lorentz and polarisation corrections were made to the data set. The data was corrected for absorption by the program ABSCR. ${ }^{8}$

8.6 Solution of the ammonium hexafluoroplatinate(IV) structure

The program system SHELX was used. In the early stages of refinement, symmetry of the space group $\underline{\mathrm{R}} \overline{3}$ was assumed, and the data averaged to 274 unique reflections, with an R_{Av} factor of 0.0287 . Platinum was located on the origin, special position, la (Wyckoff notation), of the space group. The fluorine and nitrogen atom positions were located
from a difference Fourier map. The hydrogen atoms were not located. Two cycles of full matrix least-squares refinement gave an R factor of 0.052 with isotropic thermal parameters, and this was reduced to 0.0265 when the atoms were allowed to refine anisotropically. Correlation between the anisotropic thermal parameters for the fluorine atom (where $U_{22}=2 \mathrm{U}_{21}$, and $\mathrm{U}_{23}=2 \mathrm{U}_{13}$) suggested the space group symmetry was higher than $R \overline{3}$. Refinement was, therefore, attempted in the space groups $\mathrm{R} 3 \underline{m}$ and $\mathrm{Fm} 3 \underline{m}$. For $\mathrm{R} 3 \underline{m}$ the data averaged to 171 unique reflections with an R_{AV} factor of 0.0274 . The number of parameters refined was decreased from 15 to 12 by restraints imposed on the anisotropic thermal parameters. Refinement in the space group Fm 3 m further decreased the degrees ${ }_{h}$ freedom, with only the fluorine atom refining anisotropically. The data averaged to 71 unique reflections ($\mathrm{R}_{\mathrm{Av}} 0.0278$) and 6 parameters were refined.

Final cycles of least-squares in each space group employed a weighting parameter, g, and the final R factors for the space groups $\underline{R} \overline{3}, \underline{R} 3 \underline{m}$ and $\underline{F m} 3 \underline{m}$ were respectively $0.0265,0.0272$ and 0.0278 . An analysis of the weighting scheme over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory in each case, however, the final Fourier difference map for the space group $\mathrm{Fm} 3 \underline{m}$ showed a 7 electron residual peak on a special position, $\mathrm{x}, \mathrm{x}, \mathrm{x}$.

Statistical significance tests were performed on the R factors for the three space groups, using the method of Hamilton. ${ }^{\mathbf{1 8 4}}$ The hypothesis that the restrained model of $\mathrm{Fm} 3 \underline{m}$ symmetry was appropriate was tested. The ratio of the generalised R factors for $E m 3 m\left(R_{G}{ }^{\prime}\right)$ and $\underline{R} \overline{3}\left(R_{G}{ }^{\prime \prime}\right)$ was compared with values, in the significance level tables, determined by the number of data refined and the number of variable parameters. The ratio $R_{G}{ }^{\prime} / R_{G}^{\prime \prime}$ (1.034) was found to be approximately equivalent to the
value determined from the 0.05 significance level table. Therefore, the Fm 3 m structure cannot be rejected at the 5% probability leve1. Although this indicates the space group $\underline{R} \overline{3}$ produces a better refinement, this was thought to be entirely due to the reduction of residual systematic errors in the absorption correction. Accordingly the results from the $\mathrm{Fm} 3 \underline{m}$ refinement are considered to be appropriate, and the parameters listed are for this space group.

The final atomic positional and thermal parameters are in Table 30, and the interatomic distances (bond and non-bond) are given in Table 31. The observed and calculated structure factors are found in Appendix 7.

Final residual indices for the 71 unique reflections are:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.0278 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum_{\mathrm{w}}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum_{\mathrm{w}}\left|\mathrm{~F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.0243
\end{aligned}
$$

The final atomic positional and thermal paramcters for the ammonium hexachloroplatinate(IV) structure are in Table 32, and the interatomic distances are given in Table 33.

Final residual indices for 99 unique reflections are:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathbf{o}}\right|-\left|\mathrm{F}_{\mathbf{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathbf{o}}\right|=0.0165 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum_{\mathrm{w}}\left(\left|\mathrm{~F}_{\mathbf{o}}\right|-\left|\mathrm{F}_{\mathbf{c}}\right|\right)^{2} / \sum \mathrm{w}\left|\mathrm{~F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.0165
\end{aligned}
$$

8.7 Preparation of potassjium hexafluoroosmate(IV)

Potassium hexafluoroosmate(IV) was prepared by the method of Hepworth et al. ${ }^{122}$ Osmium tetroxide was formed by heating osmium metal in a current of oxygen, the volatile material collected in a cooled trap. The osmium tetroxide (1.86 g) was then refluxed, with an excess of $48 \% \mathrm{HBr}\left(25 \mathrm{~cm}^{3}\right)$ and absolute alcohol ($1.5 \mathrm{~cm}^{3}$), for eight hours.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$
 TABLE 31
The interatomic distances (\AA) , with estimated standard
deviations in parentheses.
$\mathrm{Pt}-\mathrm{F}$
$\mathrm{N} \ldots \mathrm{F}$
$\mathrm{Pt} \cdots \mathrm{N}$$\quad \begin{aligned} & 1.935(10) \\ & \mathrm{Pt}\end{aligned}$
TABLE 32

The interatomic distances (\AA), with estimated standard $\begin{array}{lr}\text { deviations in parentheses. } \\ & \\ \mathrm{Pt}-\mathrm{Cl} & 2.323(2) \\ \mathrm{N} \cdots \mathrm{Cl} & \begin{array}{l}3.488(4) \\ \mathrm{Pt} \cdots \mathrm{N}\end{array} \\ \end{array}$

$$
\begin{aligned}
\mathrm{Os}+2 \mathrm{O}_{2} & \xrightarrow{\text { heat }} \mathrm{OsO}_{4} \\
\mathrm{OsO}_{4}+4 \mathrm{HBr} & \longrightarrow \mathrm{OsBr}_{4}
\end{aligned}
$$

The excess of HBr was then removed by heating in a silica crucible, and the heating continued for two hours, to produce a black friable solid.

Potassium hexafluoroosmate(V) was prepared by the reaction of stoichiometric quantities of osmium tetrabromide ($1.3999 \mathrm{~g}, 2.746 \mathrm{mMol}$) and potassium bromide $(0.3270 \mathrm{~g}, 2.748 \mathrm{mMol})$, with an excess of bromine trifluoride.

$$
\mathrm{OsBr}_{4}+\mathrm{KBr}+2 \mathrm{BrF}_{3} \longrightarrow \mathrm{KOsF}_{6}+3 \frac{1}{2} \mathrm{Br}_{2}
$$

The apparatus used was as for the preparation of sodium hexafluorotantalate(V) (Figure 13), and the experimental procedure was identical. After the removal of the excess of BrF_{3} in dynamic vacuum, the product was pumped for 1 hour at $190^{\circ} \mathrm{C}$, until an off-white powder remained. The purity of the $K O s^{\vee} F_{6}$ was ascertained by an X-ray powder diffraction pattern.

Potassium hexafluoroosmate(IV) was prepared by the alkaline hydrolysis of potassium hexafluoroosmate (V). To a solution of $\mathrm{KOs}^{\mathbf{\vee}} \mathrm{F}_{6}$ in deionised water was added a solution of KOH and the crystallisation of $\mathrm{K}_{2} \mathrm{Os}^{\text {IV }} \mathrm{F}_{6}$ was induced by the "common ion effect" of a small quantity of KF. The microcrystalline product was washed with cold water and then absolute alcohol. Crystals suitable for X-ray study were obtained by allowing a saturated solution to evaporate.

8.8 Single Crystal X-ray Investigation

Potassiun hexafluoroosmate(IV) is moderately stable in the atmosphere, and the crystals were, therefore, sorted open to the air, but sealed in

Pyrex capillaries to prevent deterioration during single crystal study. The crystal chosen for the investigation had the appearance of a hexagonal plate with the approximate dimensions $0.023 \mathrm{~mm} \times 0.031 \mathrm{~mm} \times$ 0.030 mm across the hexagonal faces and 0.0093 mm in depth. The crystal was mounted about the a axis of the hexagonal cell of a rhombohedral lattice. Preliminary cell dimensions were obtained from Weissenberg photographs taken using $\mathrm{Cu}-\underline{\mathrm{K}}_{\alpha}$ (Ni filtered) radiation and precession photographs using $M_{0}-\underline{K}_{\alpha}$ (Zr filtered) radiation. The final values for the cell parameters were determined from the optimised counter angles for zero and upper layer reflections.

8.9 Crystal Data for potassium hexafluoroosmate(IV)

$$
\begin{array}{ll}
\mathrm{F}_{6} \mathrm{~K}_{2} \mathrm{Os} ; & \underline{M}=382.4 \\
\text { Trigonal } & \underline{a}=5.821 \AA ; \quad \underline{c}=4.623(8) \AA ; \gamma=120.0^{\circ} \\
& \underline{U}=135.67 \AA^{3} ; \quad \underline{D_{c}}=4.68 \mathrm{~g} \mathrm{~cm}^{-3} ; \underline{Z}=1 \\
& \underline{u}\left(M_{O}-\underline{K}_{\alpha}\right)=240.92 \mathrm{~cm}^{-1} ; \underline{\mathrm{E}}(000)=165.96 \\
& M_{O}-\underline{K}_{\alpha} \text { radiation } ; \lambda=0.71069 \AA
\end{array}
$$

Space group $\mathrm{P} \overline{3} \mathrm{~m} 1\left(\mathrm{D}_{3}^{3} \mathrm{~d}\right.$ No. 164). Neutral atomic scattering factors were used with anomalous dispersion coefficients.

8. 10 Collection of Intensity Data

Data were collected from the layers h01 to h101, using the Stoe Stadi-2 diffractometer in the quadrants $\pm \mathrm{h}, \mathrm{k}, \pm 1$. The data were collected using an ω-scan technique, the width of the scan was determined for each reflection and counts taken every 0.01° for 0.3 seconds. A pre-scan of each reflection was used to determine whether attenuation was required for count rates >10000 counts s^{-1} to prevent flooding of the counter. The intensities of reflections with $6^{\circ} \leqslant 2 \theta \leqslant 80^{\circ}$ were
collected, and 1802 reflections with $\mathrm{I} / \sigma \mathrm{I} \geqslant 3$ were obtained. Check reflections were monitored during the data collection for each layer and indicated no deterioration of the crystal. Lorentz, polarisation and absorption corrections were made to the data set.

8.11 Solution of the potassiun hexafluoroosmate (IV) structure

The program system SHELX was used. The refinement of the structure was based on the space group ($\underline{\underline{p} \overline{3} \underline{m} 1 \text {) and atomic parameters found for the }}$ $K_{2} \mathrm{ReF}_{6}{ }^{143}$ structure. Three cycles of least-squares refinement with osmium on the origin, potassium at $1 / 3,2 / 3,0.3$ and fluorine at $0.162,-0.162,0.228$ gave an R factor of 0.076 . The positional parameters refined for the fluorine atom, $x / a(=-y / b)$ and z / c, remained within error limits the same as for the $K_{2} \operatorname{ReF}_{6}$ structure, and the z / c parameter of the potassium atom showed only a small shift. Further cycles of least-squares refinement using allowed anisotropic thermal parameters for all atons reduced the R factor to 0.055 . The residual difference Fourier map at this stage showed several large unexplained electron density peaks along the ooz axis, including 4.6 electrons on the osmium site $(0,0,0)$. The residual peaks were considered to be a result of an inadequate absorption correction. The averaging of the 1802 reflections collected, by the symmetry operations of the space group $\mathrm{P} \overline{3} \underline{m} 1$, to 576 reflections produced an internal R_{AV} of 0.099 . Further attempts were made to improve the absorption correction, however, accurate measurements of the crystal dimensions were difficult due to distortion produced by the capillary walls and the lowest R_{AV} value obtained was 0.0916 . Final cycles of least-squares, using this data, employed a weighting parameter $\mathrm{g}(0.00735)\left[\omega \alpha 1 / \sigma^{2}(\mathrm{~F})+\mathrm{g} \mathrm{F}^{2}\right]$ and an isotropic extinction parameter $\mathrm{x}(.0341)\left[\mathrm{F}_{\mathrm{c}}=\mathrm{F}\left(1-\mathrm{xF}^{2} / \operatorname{Sin} \theta\right)\right]$.

The final difference Fourier was, however, only marginally improved and residual peaks were present on the ooz axis. The analysis of the weighting scheme over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory. The absence of any significant trends in the data or high thermal parameters support the conclusion that the residual peaks in the Fourier map result from absorption correction errors.

Final atomic positional parameters are given in Table 34, the anisotropic thermal parameters are in Table 35, and the interatomic distances and angles are in Table 36. The observed and calculated structure factors are found in Appendix 8.

Final residual indices for 576 unique reflections:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.0493 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum_{\mathrm{w}}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum_{\mathrm{w}}\left|\mathrm{~F}_{0}\right|^{2}\right]^{\frac{1}{2}}=0.0447
\end{aligned}
$$

TABLE 34

Final atomic positional parameters for potassium hexafluoroosmiate(IV) with estimated standard deviations in parentheses

	x / a	y / b	z / c
Os	0.0	0.0	0.0
K	0.3333	0.6667	$0.2979(6)$
F	$0.1612(5)$	$-0.1612(5)$	$-0.2286(10)$

TABLE 35

Thermal parameters of the form $\exp \left[-2 \pi^{2}\left(h^{2} U_{11} a^{2}+\ldots . .2 h k U_{12} a b\right)\right]$ with estimated standard deviations in parentheses

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Os	$.0109(2)$	$.0109(2)$	$.0155(2)$			$.0055(1)$
K	$.0200(5)$	$.0200(5)$	$.0249(8)$			$.0100(2)$
F	$.0330(18)$	$.0330(18)$	$.0278(17)$	$-.0039(7)$	$.0039(7)$	$.0234(21)$

TABLE 36
a) Interatomic distances ((A) with estimated standard deviations in parentheses

Os ——F $1.936(5)$
K -----3F 2.798(5)
K-----6F 2.929(5)
K ------3F 2.987(5)
K----Os $3.632(5)$
b) Interatomic ang1es

$$
\begin{array}{ll}
\mathrm{F}-\mathrm{Os}-\mathrm{F} & 86.8(2) \\
\mathrm{F}-\mathrm{Os}-\mathrm{F} & 93.2(2)
\end{array}
$$

8.12 Discussion of the ammonium hexafluoroplatinate(IV) and potassium hexafluoroosmate (IV) structures

The structure of ammonium hexafluoroplatinate(IV) was found to be isostructural with the cubic $K_{2} \mathrm{PtCl}_{6}$, or $\mathrm{K}_{2} \mathrm{SiF}_{6}$ structure. The $\mathrm{BF}_{6}{ }^{2-}$ anions of the $A_{2}^{1} B^{i v} F_{6}$ compounds cormonly show distortion from Fm 3 m symmetry by compression along a three-fold axis. ${ }^{143}$ The $\mathrm{PtF}_{6}{ }^{2-}$ ion showed no distortion from the $\underline{m} 3 \underline{m}$ symmetry required by the space group, and refinement in lower symmetry space groups did not lead to any significant departure from this geometry. The $\mathrm{NH}_{4}{ }^{+}$ion has, therefore, twelve equidistant F atom neighbours at 2.99 A (Figure 24). The unit

Figure 24
Unit cell packing of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$ structure.
cell size of ammonium hexafluoroplatinate is almost equal to those of the other $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BF}_{6}$ compounds $(\mathrm{B}=\mathrm{Ge}$, Si) that are known to have cubic modifications. The unit cell size is thus not related to the size of the $r_{B^{4+}}$ ion. However the unit cell size is determined, for any given $\mathrm{BF}_{6}{ }^{2-}$ series, by the size of the alkali ion, A^{+}, involved. This is clearly illustrated from the cell parameters for the cubic structures in Table 28, with the unit cell volumes increasing with the ionic radius A^{+}, such that $\mathrm{Cs}>\mathrm{Rb}>\mathrm{NH}_{4}>\mathrm{K}$. The ionic radii of the anmonium and rubidium ions are approximately equal, respectively 1.43 and 1.48 \AA, and the comparability of the unit cell volumes for the known compounds suggest hydrogen bonding has little effect upon the ammonium structures. A comparison of the $\mathrm{Pt}-\mathrm{F}$ bond distance is not possible with $\mathrm{Rb}_{2} \mathrm{PtF}_{6}$ as the z / c value is not quoted in the literature. However, the Pt-F bond length, found for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{FtF}_{6} 1.936 \AA$, is comparable with that found in the trigonal $\mathrm{K}_{2} \mathrm{PtF}_{6}$ structure (1.91 \AA).

The potassium hexafluoroosmate (IV) structure (Figure 25) is as expected isostructural with the $\mathrm{K}_{2} \mathrm{ReF}_{6}$ structure, ${ }^{143}$ although polymorphic forms may be discovered for both compounds. The $0 \mathrm{SF}_{6}{ }^{2-}$ ions are not perfectly regular, despite the Os-F distance (1.932 A) being equal by space group symonetry. The ions are compressed along a threefold axis, and the resulting angles between the fluorine atoms about the osmium are $86.8(2), 93.2(2)$ and 180°. The distortion is similar to that found in the $\mathrm{ReF}_{6}{ }^{2-}$ ion of the $\mathrm{K}_{2} \mathrm{ReF}_{6}$ structure where the angles found were $86.2,93.8$ and 180°. The K^{+}ions are not coplanar with the ABAB... layers of F atoms and the 12 F neighbours of each K^{+}are in a $3+6+3$ arrangement with K-F distances of $2.798(5), 2.929(5)$ and 2.987(5) \AA. The distortion of the $0 \mathrm{SF}_{6}{ }^{2-}$ ion, is also similar to that found in the $\mathrm{OSF}_{6}{ }^{-}$ion of the KOsF_{6} structure, ${ }^{122}$ but in this compound

Figure 25
Stereoscopic view of the unit cell contents of $\mathrm{K}_{2} \mathrm{OsF}_{6}$.
the K^{+}ion has a $6+6$ arrangement of nearest F atom neighbours. The average K^{+}to F contact distance is shorter, $2.911 \AA$ in the $\mathrm{K}_{2} \mathrm{OsF}_{6}$, compared with $3.005 \AA$ in $K_{0} S_{6}$, whilst the Os-F bond length is greater, respectively 1.94 and $1.82 \AA$. This suggests a contribution to the $\mathrm{K}_{2} \mathrm{OsF}_{6}$ structure from a covalent bonding model, although the increasing Os-F bond distance may be due entirely to the larger radius of Os(IV) than that of $\operatorname{Os}(\mathrm{V})$.

CHAPTER 9

The Crystal Structure of $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$

9.1 Introduction

Recent interest has developed in compounds containing the tetrafluoronitrogen(V) cation, $\mathrm{NF}_{4}{ }^{+}$, due to their potential as oxidisers for solid propellant gas generators. The applications of solid propellant gas generators in space vehicle fuel systems and HF-DF chemical lasers, required the development of new materials for gas generator systems with radically new properties. The new materials were required, for safety in rocket propulsion, to yield combustion products which are oxidiser conpatible, to minimise the risk of accidents. Materials were also required that would act as a fluorine atom gas generator for continuous wave HF-DF chemical laser. Pilipovich ${ }^{185}$ sought to solve these problems by the use of a fluorocarbon as the binder and primary fuel source, and an oxidiser, where the oxidising ability was contained principally in the cation. Salts derived from Lewis acids and $\mathrm{NO}_{2} \mathrm{~F}$ were found to be useful as oxidisers, however it is preferable to employ the lower molecular weight Lewis acids in order to assure volatility of the combustion products and the most satisfactory oxidiser was found to be $\mathrm{NF}_{4}{ }^{+} \mathrm{BF}_{4}{ }^{-}$.

The synthesis and characterisation of the tetrafluoronitrogen(V) compounds, and the subsequent applications that have been developed are a recent occurrence. Prior to 1965 theoretical calculations ${ }^{\mathbf{1 8 6}, 187}$ indjcated that compounds containing the $\mathrm{NF}_{4}{ }^{+}$cation should be thermodynamically unstable and unlikely to produce stable crystalline solids. However, in 1966 compounds containing the $\mathrm{NF}_{4}{ }^{+}$cation were simultaneously reported by Christe et al. ${ }^{\mathbf{1 8 8}, 189}$ and Tolberg et al. ${ }^{190,191}$ The non-existence of a stable NF_{5} parent molecule was overcome by reacting NF_{3} and F_{2} with a strong Lewis acid in the presence of a suitable activation energy source. Christe et al. used
a low-temperature glow discharge method for the synthesis of $\mathrm{NF}_{4} \mathrm{AsF}_{6}$. Tolberg et al. used high pressure and thermal activation to prepare $\mathrm{NF}_{4} \mathrm{SbF}_{6}$ and $\mathrm{NF}_{4} \mathrm{AsF}_{6}$. Various synthetic methods have since been established. The compound $\mathrm{NF}_{4} \mathrm{BF}_{4}$ was first prepared by the lowtemperature glow discharge method, ${ }^{192,193}$ but may also be synthesised by using γ-irradiation at low-temperature. ${ }^{194}$ The synthesis of $\mathrm{NF}_{4} \mathrm{BF}_{4}, \mathrm{NF}_{4} \mathrm{AsF}_{6}$ and $\mathrm{NF}_{4} \mathrm{SbF}_{6} \cdot \mathrm{nSbF}_{5}$ using u.v. photolysis was originally reported as giving very low yields, ${ }^{195}$ however, the method has been developed ${ }^{196}$ and at temperatures approaching $-196^{\circ} \mathrm{C}$, results in a simple and high-yield preparation which may also be used for the compounds $\mathrm{NF}_{4} \mathrm{PF}_{6}$ and $\mathrm{NF}_{4} \mathrm{GeF}_{5}$. A further method involves displacement reactions ${ }^{196-198}$ from the $\mathrm{NF}_{4}{ }^{+}$salts, particularly $\mathrm{NF}_{4} \mathrm{BF}_{4}$ and $\mathrm{NF}_{4} \mathrm{SbF}_{6}$, which may be most easily prepared in a pure state.

The properties of the $\mathrm{NF}_{4}{ }^{+} \mathrm{MF}_{6}{ }^{-}$compounds have been extensively studied by Christe and co-workers. The X-ray powter patterns of all the $\mathrm{NF}_{4}{ }^{+}$compounds that have been recorded have been indexed in the tetragonal system. From consideration of the unit cell volumes the compounds $\mathrm{NF}_{4} \mathrm{MF}_{6}(\mathrm{M}=\mathrm{P}, \mathrm{As}$; Sb and Bi$)$, have been described as having two molecules in the unit cell, and on the lack of characteristic absences tentatively placed in the space group P4/m. $189,196,198$ It is suggested that the structures are similar to that of $\mathrm{PCl}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-},{ }^{199}$ where each ion $\left(\mathrm{PCl}_{4}{ }^{+}\right.$or $\mathrm{PCl}_{6}{ }^{+}$) has eight neighbouring ions of opposite charge. The average volume per fluorine atom, based on the X-ray powder data, gives a very low value for the $\mathrm{NF}_{4}{ }^{+} \mathrm{PF}_{6}{ }^{-}$salt $\left(16.23 \AA^{3}\right.$). The value is dependent only on unit cell volume and, therefore, increases in the order $\mathrm{PF}_{6}{ }^{-}<\mathrm{AsF}_{6}{ }^{-}<\mathrm{SbF}_{6}{ }^{-}<\mathrm{BiF}_{6}{ }^{-}$. The ionic nature of the adducts is confirmed by the vibrational spectra of the compounds, 196,198 where the bands attributable to the M-F bonds are as expected in the
$\mathrm{MF}_{6}{ }^{-}$anions ${ }^{61,66,67}$ rather than the MF_{5} molecule. ${ }^{200}$ Similarly, the four fundamentals expected for the tetrahedral $\mathrm{NF}_{4}{ }^{+}$cation are established. 194,201,202

In view of the interest in the $\mathrm{NF}_{4}{ }^{+}$salts and the applications under development, a full crystal structure study of chosen compounds is important. A study of the $\mathrm{NF}_{4}{ }^{+} \mathrm{BF}_{4}{ }^{-}$structure is being undertaken by Professor Bau ${ }^{203}$ using crystals supplied by K. Christe and coworkers. However, difficulty is being found in distinguishing the tetrahedral ions and a single crystal study of an $\mathrm{NF}_{4}{ }^{+} \mathrm{MF}_{6}{ }^{-}$compound may help to fix the $\mathrm{NF}_{4}{ }^{+}$ion in the structure. Crystals of $\mathrm{NF}_{4}{ }^{+} \mathrm{AsF}_{6}{ }^{-}$ and $\mathrm{NF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$supplied by K . Christe were investigated, however, the $\mathrm{NF}_{4}{ }^{+} \mathrm{AsF}_{6}{ }^{-}$crystals were of poor quality and gave diffraction patterns which showed they were powders.

9.2 Single crystal X-ray investigation

Crystals of $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ were supplied by K . Christe sealed in quartz capillaries. Samples of crystals grown from both HF and BrF_{5} solutions were investigated. Those from HF gave powder diffraction patterns comparable with the $\mathrm{NF}_{4} \mathrm{AsF}_{6}$ samples which were also investigated. The crystals from BrF_{5} solution all had a slight orange colouration, indicating the presence of trace quantities of bromine, but gave better diffraction patterns. The crystals were generally large for X-ray single crystal study, and the crystal chosen for the investigation was brick-shaped with the approximate dimensions, $0.64 \mathrm{~mm} \times 0.50 \mathrm{~mm} \times 0.26 \mathrm{~mm}$. The crystal was mounted about a $\{110\}$ axis of the tetragonal cell. The preliminary cell dimensions were obtained from Weissenberg photographs, taken using $\mathrm{Cu}-\underline{K}_{\alpha}$ (Ni filtered) radiation and precession photographs using $M o-\underline{K}_{\alpha}$ (Zr filtered) radiation. The final values for the unit
cell parameters were determined from the optimised counter angles for zero and upper layer reflections on a Stoe Weissenberg diffractometer. Although the crystal used for the structure study was the one which gave the simplest diffraction pattern, the reflections at $10 w 2 \theta$ values were very broad, up to 10° in ω, and this was attributed to disorder. Problems later encountered in the solution of the structure confirmed that the structure was partially disordered at room temperature. In an attempt to obtain an ordered structure, data was recollected at low temperature by Dr. N. W. Alcock using the four-circle diffractometer, at the University of Warwick. However, the compound was found to exhibit a phase transition between the two temperatures of data collection, with a doubled c -axis at the low temperature $\left(-120^{\circ} \mathrm{C}\right)$, and the data was not, therefore, expected to allow elucidation of the room temperature structure. In fact the Patterson map obtained from the low temperature data set (Table 37) appeared representative of a still further disordered structure, and has not been conclusively solved.

9.3 (a) Crystal Data for tetrafluoronitrogen(V) hexafluoroantimonate(V)

$$
\begin{aligned}
& \mathrm{F}_{10} \mathrm{NSb} ; \quad \underline{M}=325.74 \\
& \text { Tetragona1 } \underline{\mathrm{a}}=7.956(5) \AA ; \quad \underline{\mathrm{c}}=5.840(4) \AA \\
& \underline{\mathrm{U}}=369.63 \AA^{3} ; \quad \underline{\mathrm{D}}=2.928 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad Z=2 \\
& \underline{\mathrm{E}}(000)=296.0 ; \quad \text { Mo- } \underline{K}_{\alpha} \text { radiation } ; \lambda=0.71069 \AA \\
& \mu\left(\mathrm{Mo}-\underline{K}_{\alpha}\right)=35.77 \mathrm{~cm}^{-1}
\end{aligned}
$$

Space group $\underline{P} 4 / \mathrm{nnm}$ ($\mathrm{D}_{4}^{7} \mathrm{~h}$ № 129) . Neutral atomic scattering factors were used with anomalous dispersion corrections.

9.3 (b) Crystal Data - low temperature form

Tetragonal $\underline{a}=7.979(4) \AA ; \quad \underline{c}=11.428(4) \AA$

$$
\underline{\mathrm{U}}=727.56 \AA^{3} ; \quad \underline{\mathrm{D}}_{\mathrm{c}}=2.975 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad Z=4
$$

Space group: not resolved, $\underline{\mathrm{P}} 4_{2} / \underline{\mathrm{n}}$ appeared to be most applicable.

TABLE 37

Patterson map of the low temperature data set

height	x / a	y / b	z / c
999	.000	.000	.000
969	.500	.500	.500
445	.500	.500	.061
188	.061	.069	.500
79	.079	.086	.933
69	.440	-.002	.285

9.4 (a) Collection of the Room Temperature Intensity Data

The crystal was mounted about the \{110\} axis of the tetragonal cell and data were collected for layers 0 k 1 to 8 k 1 of the larger cell ($\mathrm{a}=11.251 \AA, \mathrm{c}=5.840 \AA$), using the Stoc Stadi-2 diffractometer in the quadrants $h, \pm k, \pm 1$ for all layers. The data were collected using an ω-scan technique with 2θ constant at the calculated value for each reflection. The intensities of reflections with $0.171 \leqslant \operatorname{Sin} \theta / \lambda \leqslant 1.166$ \AA^{-1} were collected, and 1177 reflections with $\mathrm{I} / \sigma \mathrm{I} \geqslant 3$ were obtained. As observed from Weissenberg photographs (section 9.2), low 2θ angle reflections are asymnetric and broad ($\omega \leqslant 11^{\circ}$), and high background counts resulted on one side of several high intensity peaks. Due to
the asymmetry of the peaks, the high background values are on opposite sides of the maxima, calculated from cell dimensions, for the quadrants $\pm \mathrm{k}$, and an ω-scan range of 15° would be required to collect the broadest peaks. The affected reflections were, therefore, collected with high background and the worst examples omitted after the early stages of refinement: Check reflections were monitored during the data collection of each layer and no deterioration of the crystal was indicated. Lorentz, polarisation and absorption corrections were made to the data set.

9.4 (b) Collection of the Low-Temperature Intensity Data

The data were collected at $-120^{\circ} \mathrm{C}$ by Dr. N. W. Alcock using the Syntex P21 four-circle diffractoneter at Warwick University. For a four-circle instrument, the crystal is mounted in arbitrary orientation and the control computer requires only the accurate location and indices of a few reflections, in this case 11 , in order to collect a data set. The reflections are located photographically, and at this stage it was observed that weak reflections required a doubling of the c-axis. The intensities of reflections in the $h, k, 1$ quadrant were recorded for layers 0 k 1 to 9 k 1 , in the range $0 \leqslant 2 \theta \leqslant 50^{\circ}$, and a total of 767 reflections were obtained. Lorentz, polarisation and absorption corrections were applied to the data set.

9.5 Solution of the room-temperature structure

The program system SHELX was used. A Patterson summation was used to locate the antimony atom. Antimony was, found to be on $\frac{1}{4}, \frac{1}{4}, Z$ and, therefore, the refinement was undertaken in the space group $\underline{P} 4 / \underline{n} m$. Three cycles of least-squares refinement gave an R factor of 0.19 and
allowed sufficient phasing for the location of the nitrogen atom and the fluorine atoms about the nitrogen on respectively positions 2 b $\left(\frac{3}{4}, \frac{1}{4}, \frac{1}{2}\right)$ and $8 \mathrm{i}\left(\frac{3}{4}, \mathrm{x}, \mathrm{x}\right)$ of the space group. However, several possible sites for the fluorine atoms about the antimony were indicated with a maximum peak height of 2 electrons. From the bond distances the most likely set of F atoms was chosen. Further cycles of refinement with all atoms included and isotropic tenperature factors gave an R factor of 0.108 , but the two axial $\left(\frac{1}{4}, \frac{1}{4}, Z\right) \mathrm{F}$ atoms were moved to position approximately $1 \AA$ from Sb and the temperature factors of all the F atoms about Sb were high, $\left(\mathrm{U}_{11}>0.25\right)$. Allowing all atoms to refine anisotropically further reduced R to 0.083 without improving the temperature factors of the F atoms about Sb . The refinement was continued without symmetry operations, except for the centre of symmetry, thus requiring all the atoms of one molecule to be given individual coordinates. The environment of F atoms about Sb was made disordered, by using all Fourier peaks between 1.74 and $1.90 \AA$ from the Sb atom as partial F atoms, refining site occupation factors. Three cycles of least-squares with 18 F atoms refining isotropically about the Sb atom and the remaining atoms with anisotropic temperature factors, gave an R factor of 0.088 . Six of the F atoms were shifted to distances greater than $2.0 \AA$, and were thus rejected for further cycles. However, with further cycles of refinement several more partial fluorine atoms were moved to positions $>2.0 \AA$ from Sb , and new possible sites appeared in the Fourier difference map. Although the residual peaks in the Fourier difference map were $\leqslant 1.2$ electrons, the temperature factors of the refined atoms were not significantly lower than for those chosen in the ordered structure refinement of the space group p4/nmm. Accordingly, the ordered structure was chosen as most
appropriate, although representing an incomplete solution to the structure. Final cycles of refinement used only the variables of atomic coordinates and thermal parameters of the Sb, N and F atoms of the NF_{4} group. The reported atomic positional parameters for the F atoms about Sb are those which were dominant in the Fourier difference map and are included as the most likely fluorine positions in an apparently disordered environment. The final cycles of least-squares refinement employed a weighting parameter, $\mathrm{g}(.001)\left[\omega \alpha 1 / \sigma^{2}(\mathrm{~F})+\mathrm{g} \mathrm{F}^{2}\right]$. An analysis of the weighting scheme over $\left|F_{0}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory. The final atomic positional parameters are given in Table 38, the thermal parameters are in Table 39, and the interatomic distances are in Table 40. The observed and calculated structure factors are found in Appendix 9.

The final R factors refer to the space group $\mathrm{P} 4 / \mathrm{mm}$ refinement, with parameters refined only for the antimony, nitrogen and four fluorines of the NF_{4} group.

Final residual indices for 240 unique reflections:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathbf{o}}\right|-\left|\mathrm{F}_{\mathbf{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathbf{o}}\right|=0.1073 \\
& \mathrm{R}_{\mathrm{w}}=\left[\sum \omega\left(\left|\mathrm{F}_{\mathbf{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum \omega\left|\mathrm{F}_{\mathbf{o}}\right|^{2}\right]^{\frac{1}{2}}=0.0836
\end{aligned}
$$

TABLE 38

Final atomic positional parameters of the $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$ room temperature structure, with estimated standard deviations in parentheses where refined.

	x / a	y / b	z / c	site occupancy
Sb	0.25	0.25	$0.0997(4)$	0.25
N	0.75	0.25	0.500	0.25
F 1	0.75	$0.3772(36)$	$0.3747(30)$	1.00

Unrefined fluorine atoms about Sb , taken from a difference Fourier map.

F2	0.25	0.0206	0.0425	1.00
F3	0.25	0.25	0.8026	0.25
F4	0.25	0.25	0.4669	0.25

TABLE 39

Anisotropic thermal paraneters, with estimated standard deviations in parentheses. The temperature factors are given in the form $\exp \left[-2 \pi^{2}\left(\mathrm{hJ}_{11} \mathrm{a}^{2}+\ldots .2 \mathrm{hkU}_{12} \mathrm{ab}\right)\right]$

	U_{11}	U_{22}	U_{33}	U_{23}
Sb	$.061(1)$	$.061(1)$	$0.0663(14)$	
N	$.088(11)$	$.088(11)$	$.077(17)$	
F 1	$.136(16)$	$.123(16)$	$.139(10)$	$.036(10)$

TABLE 40

Interatomic distances (\AA)

$\mathrm{N}-\mathrm{F}_{1}$	$1.250(19)$	$\mathrm{N} . \ldots . \mathrm{Sb}$	4.614
$\mathrm{Sb}-\mathrm{F}_{2}$	1.86	$\mathrm{~N} \ldots . \mathrm{Sb}$	5.302
$\mathrm{Sb}-\mathrm{F}_{3}$	1.73		
$\mathrm{Sb}-\mathrm{F}_{4}$	2.14		

9.6 Discussion of the $\mathrm{NF}_{4} \cdot \mathrm{SbF}_{6}$ structure

The tetragonal structure, space group $\underline{p} 4 / \underline{n} m \underline{m}$, was considered to best represent the room temperature structure of $\mathrm{NF}_{4} \cdot \mathrm{SbF}_{6}$. However, the refinement represents an incomplete solution to the structure due to apparent disorder. The positional parameters of the antimony, nitrogen and four fluorine atoms bonded to the nitrogen refined satisfactorily, and the resultant N-F bond distance, $1.25 \AA$, is of the expected order. Even when refinement was attempted without symmetry operations, the fluorine atoms bonded to the nitrogen retained the expected tetrahedral symmetry, although the thermal parameters indicate considerable motion. In the case of the fluorine atomis about antimony, however, the positional parameters reported are those of the dominant peaks in the Fourier map (also consistent with the special positions of the space group), but appear to be representative of a disordered sphere of partial atoms.

The arrangement of the ions in the unit cell (Figures 26, 27) suggest the reason for the apparent distortion of the F atoms about Sb from an octahedral array. Considering the antimony and nitrogen atom positions only, it might be expected that the Sb atom would have a z / c coordinate of zero. However, the fluorines of the NF_{4} cation, which is a well-defined tetrahedron, require the axial $\mathrm{F}(\mathrm{Sb})$ atoms to be shifted along the $\frac{1}{4}, \frac{1}{4}, z$ axis to equalise the $F(N) \cdots F(S b)$ interaction. The antimony atom is displaced along the $\frac{1}{4}, \frac{1}{4}, z$ axis in the expected direction, though less than is required to give equal bond distances to the two reported F atoms ($F 3,1.73$ and $F 4,2.14 \AA$). The four F atoms in the $a b$ plane (F1) are still less displaced from $z=0$. The result is that each Sb atom has four nearest N neighbours ($4.61 \AA$) in the +c direction, and four more at $5.30 \AA$, in the -c direction.

a) down the a axis

b) down the \underline{c} axis

However, this does not explain the disorder of the F environment about the Sb atom. When two F atoms are positioned on the $\frac{1}{4}, \frac{1}{4}, \mathrm{z}$ four-fold axis, a close non-bond contact between the two atoms in adjacent cells is caused as a result of the short \subseteq cell parameter ($5.840 \AA$). With the two atoms on the positions given in Table 38, the distance between atoms of adjacent cells is obviously too short, $1.97 \AA$ (cf. Van der Waal's radii, $\mathrm{F}=1.35 \AA$). However, the $\mathrm{Sb}-\mathrm{F}$ bond lengths could acceptably be $<1.80 \AA$, producing a contact distance of $0.46 \AA$ less than the sum of Van der Waal's radii. The problem is comparable with that encountered in the $\mathrm{PC1}_{4}{ }^{+} \mathrm{PCl}_{6}{ }^{-}$structure, ${ }^{199}$ where the chlorine atoms on the four-fold axis are located with a contact distance $0.45 \AA$ less than the sum of Van der Waal's radii. The disorder apparent in the arrangement of the F atoms about Sb may possibly result from problems of locating the F atoms about a four-fcld axis, or the structure may exhibit a phase change near room temperature, since the data collected at $-100^{\circ} \mathrm{C}$ was of a separate phase.

CHAPTER 10

The Crystal Structures of $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ and $\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}$

10.1 Introduction

The concept of a hydrogen ion occurring as a hydrated species in aqueous solution is some 70 years old, ${ }^{204,205}$ however, it is extremely difficult to characterise the various hydrated proton complexes in solution. Recent crystal structure determinations, including neutron diffraction studies, of the hydrates of several strong acids have been reviewed in detail by Lundgren and Olovsson ${ }^{206}$ with particular emphasis on the local bonding within the hydrated proton species. A clearly unsymmetric monohydrated proton, $\mathrm{H}^{+} \ldots \mathrm{OH}_{2}$, has not been identified and neutron diffraction studies of two monohydrates of strong acids 207,208 indicate equivalence of the three protons. The complex may therefore be regarded as a distinct chemical entity, $\mathrm{H}_{3} \mathrm{O}^{+}$, termed an oxonium ion. The $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$ion may be considered, according to bond lengths and symmetry, as aquaoxonium ion, $\mathrm{H}_{3} \mathrm{O}^{+} \cdot \mathrm{H}_{2} \mathrm{O}$, or diaquahydrogen ion, $\left[\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H} \cdots \mathrm{OH}_{2}\right]^{+}$. The small size of the proton does not permit symmetric ions of the higher hydrates, thus, ions with $\mathrm{H} \geqslant 7$ may be regarded as hydrates, $\mathrm{H}_{3} \mathrm{O}^{+} \cdot \mathrm{nH}_{2} \mathrm{O}$ or $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} . \mathrm{nH}_{2} \mathrm{O}$. Williams ${ }^{209}$ has recently reviewed the vibrational spectroscopic data for the hydrated proton complexes. In general spectroscopic techniques are widely used to characterise H-bonds, however, because of the complexity of the solid state spectra produced by these species it is difficult to differentiate between them. The frequencies of the $v_{1}-v_{4}$ modes for the species $\mathrm{H}^{+} \mathrm{nH}_{2} \mathrm{O}(\mathrm{n}=1,2,3,4)$ overlap. Similarly, the assignment of the ν_{1}, symmetric stretch, and ν_{3}, asymmetric stretch bands is questionable. Early studies of the oxonium compounds indicated clearly defined frequency regions for the v_{1} and v_{3} modes of $\mathrm{H}_{3} \mathrm{O}^{+}$. However, the most recent i.r. studies of the oxonium ion ${ }^{210,211}$ indicate that the frequencies are a function of donor-acceptor distances in the
hydrogen bonds formed. The range of spectral frequencies for the ν_{1} and ν_{3} bands, respectively $3380-3150$ and $3800-2400 \mathrm{~cm}^{-1}$, introduces the possibility of frequency reversal. Though the ν_{2} and ν_{4} bands of the hydrated proton complexes may be unequivocally assigned, these bands also are not definitive of the separate hydrates.

The first reported isolation and characterisation of an $\left(\mathrm{H}_{\mathrm{x}} \mathrm{O}_{\mathrm{y}}\right)^{+}$salt with a metal hexafluoro anion was by Bonnet et al..212 for the antimony salt, $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} . \mathrm{SbF}_{6}{ }^{-}$. From differential thermal analysis studies of solutions of SbF_{5} in $\mathrm{H}_{2} \mathrm{O}$ and HF , the themnal conditions required to obtain stable crystalline phases of the hydrates $\mathrm{SbF}_{5} .2 \mathrm{H}_{2} \mathrm{O}, 4 \mathrm{SbF}_{5} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{SbF}_{5} . \mathrm{H}_{2} \mathrm{O}, 3 \mathrm{SbF}_{5} .2 \mathrm{H}_{2} \mathrm{O}$ and the compound $\mathrm{SbF}_{5} . \mathrm{HF} .2 \mathrm{H}_{2} \mathrm{O}$ were determined. The vibrational spectra of $\mathrm{SbF}_{5} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{SbF}_{5} . \mathrm{HF} .2 \mathrm{H}_{2} \mathrm{O}$ were found to be consistent with the ionic formulations $\mathrm{H}_{3} \mathrm{O}^{+}$. $\mathrm{SbF}_{5} \mathrm{OH}^{-}$and $\mathrm{H}_{5} \mathrm{O}_{2} . \mathrm{SbI}_{6}{ }^{-}$, the bands associated with the $\mathrm{Sb}-\mathrm{F}$ bond occurring at the lower frequencies ($663 \mathrm{~cm}^{-1}$) established for $\mathrm{SbF}_{6}{ }^{-},{ }^{43,61,66}$ rather than that expected for $\mathrm{SbF}_{5} .{ }^{200}$ The hydroxonium salt $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \mathrm{SbF}_{5}{ }^{-}$has also been isolated as a side product from the reaction system $\mathrm{UF}_{4} \mathrm{O}-\mathrm{HF}-\mathrm{SbF}_{5},{ }^{213}$ when reactions were performed in thin wall F.E.P. tubing. The $\mathrm{H}_{2} \mathrm{O}$ involved in the reactions was presumed to result from inadequate drying of the HF or diffusion through the reactor walls. The composition $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$was indicated by Sb and F analyses, and the i.r. spectrum showed peaks at the expected frequency for $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$or $\mathrm{H}_{3} \mathrm{O}^{+}$. The X-ray powder pattern was found to be closely related to KSbF_{6}, which was first reported as cubic ${ }^{124}\left(a=10.15 \AA, U=1039.5 \AA^{\circ}\right)$, and more recently been determined as tetragonal ${ }^{75}(a=5.16 \AA, c=10.67 \AA$, $\mathrm{U}=268.12 \AA^{\circ}$).

The oxonium compounds $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{SbF}_{6}{ }^{-}$and $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{AsF}_{6}{ }^{-}$have been isolated
as white stable crystalline solids by Christie and co-workers from the $\mathrm{H}_{2} \mathrm{O}-\mathrm{HF}-\mathrm{MF}_{5}$ system, ${ }^{214}$ following the discovery of the antimony salt as a product of the controlled hydrolysis of $\mathrm{BrF}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$in HF. Differential scanning calorimetry measurements show that both are thermally very stable with decomposition not occurring until 357 and 193° for the Sb and As compounds respectively. The thermal stability is very much greater than for previously reported $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{X}^{-}$salts $\left(\mathrm{X}=\mathrm{CF}_{3} \mathrm{SO}_{3}, \mathrm{ClO}_{4}\right.$, $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}$). From X -ray powder diffraction patterns, the $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{AsF}_{6}{ }^{-}$ salt was found to be cubic ($\mathrm{a}=8.015 \AA$) with $\mathrm{Z}=4$. The $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{SbF}_{6}{ }^{-}$salt was indexed as tetragonal $(a=11.48, \mathrm{c}=8.78)$ with $Z=8$, and was described in terms of a distorted cubic KSbF_{6} structure. The compound $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{UF}_{6}{ }^{-}$has been prepared ${ }^{215}$ but is thermally less stable than the Sb and As salts, decomposing at about 68°. Three bands assigned to the $\nu_{5}(\mathrm{U}-\mathrm{F})$ bond frequency were considered to be the result of distortion of the anion. X-ray powder diffraction patterns were indexcd assuming a cubic unit ce11, $a=5.223 \AA$.

More recently, Selig et al..216 have studied the hydrolysis reactions of $\mathrm{MT}_{6}(\mathrm{M}=\mathrm{Os}$, $\mathrm{Ir}, \mathrm{Pt}, \mathrm{Ru}$ and Rh$)$ in hydrogen fluoride, with the intention of preparing the uncharacterised and largely unknown oxidefluorides of $\mathrm{Ir}, \mathrm{Pt}, \mathrm{Ru}$ and Ph . The OSF_{6} was used principally as a standard, being known to readily yield $\mathrm{OsF}_{4} \mathrm{O}$. However, the hydrolysis of $\mathrm{IrF}_{6}, \mathrm{PtF}_{6}$ and RuF_{6} were found to yield the oxonium salts $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{MF}_{6}{ }^{-}$, and in the case of platinum with an excess of water, $\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}{ }^{+} \mathrm{PtF}_{6}{ }^{2-}$. The hydrolysis of RhF_{6} was inconclusive, but was considered to have produced an unstable oxonium salt. The X-ray powder patterns of the three compounds (Ir, Pt and Pu) are isostructural, with only small differences in the unit cell dimensions, and have been indexed as rhombohedral.

A11 the oxonium salts of hexafluorometallates described, were first observed either as impurities or unexpected products of reactions. Similarly the oxonium salts reported here, of hexafluoroantimonate(V) and tantalate (V), were isolated as minor impurities resulting from side reactions. The hexafluoroantimonate(V) salt was briefly mentioned in chapter 4, occurring as inconsistent block-shaped crystals in the preparation of $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$, and has subsequently been observed as a minor product in the reaction systems $\mathrm{UF}_{4} \mathrm{O}$ and $\mathrm{WF}_{4} \mathrm{O}-\mathrm{HF}-\mathrm{SbF}_{5}$. Crystals of the hexafluorotantalate (V) compound were formed during the attempted recrystallisation of CsTaF_{6} from SO_{2}.

In the presence of heavy anions, determination of the cations to be $\mathrm{H}_{3} \mathrm{O}^{+}$or $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$requires precise analysis. The $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{SbF}_{6}^{-}$and $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$salts have been described respectively as tetragonal ${ }^{214}$ and cubic, ${ }^{213}$ however the unit cell dimensions measured for the two salts give calculated volumes / fluorine and oxygen atons of $20.7 \AA^{3}$ and $15.8 \AA^{3}$, and it seems more likely that the compound Christic et al. studied was the $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$salt and that noted by Bougon and co-workers was the $\mathrm{H}_{3} \mathrm{O}^{+}$salt. The resulting calculated volumes of the fluorine and oxygen atoms then becomes $18.1 \AA^{3}$ in each case. In view of the uncertainty concerning the composition and structure of these compounds, the isolation of single crystals of antimonate and tantalate salts presented the opportunity of clarjfying this type of compound. Although these structure determinations proved not to be entirely satisfactory, they are believed to be consistent with the formulation $\left(\mathrm{H}_{3} \mathrm{O}\right)^{+} \mathrm{MF}_{6}{ }^{-}, \mathrm{M}=\mathrm{Sb}$ or Ta .

10.2 Characterisation of Oxonium hexafluoroantimonate(V)

Single crystals of oxonium hexafluoroantimonate(V) were isolated from the reaction between $\mathrm{MoF}_{4} \mathrm{O}$ and SbF_{5} in thin walled F.E.P. tubing. The rectangular block-shaped crystals of $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{SbF}_{6}{ }^{-}$were inconsistent with the major product ($\sim 1: 100, \mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{SbF}_{6}{ }^{-}: \mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$) and could, thus, be separated in a crystal sorting apparatus (Figure 2). Similar side-products have been observed in the reaction systems, $\mathrm{MF}_{4} \mathrm{O}-\mathrm{HF}-\mathrm{SbF}_{5}$ (where $\mathrm{M}=\mathrm{W}$ or U). Though the formation of hydrated proton compounds in the latter systems may be explained by incomplete drying of the HF , in the reaction between $\mathrm{MoF}_{4} \mathrm{O}$ and SbF_{5}, the $\mathrm{H}_{2} \mathrm{O}$ appears to result from diffusion through thin-wa11ed F.E.P. reactors.

Insufficient crystals of the $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{SbF}_{6}{ }^{-}$compound were obtained from the $\mathrm{MoF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$ preparation to allow the i.r. spectrum to be taken, however, the i.r. spectrum of crystals from the $\mathrm{UF}_{4} \mathrm{O}-\mathrm{HF}-\mathrm{SbF}_{5}$ system, which gave the same unit coll parameters, was taken in the range $4000-400 \mathrm{~cm}^{-1}$, (Tab1e 41). The hydrated proton nature of the cation is confirmed by the bands at 3600 and $3520 \mathrm{~cm}^{-1}$ which are in the expected region for the $\mathrm{H}^{+} \mathrm{nH}_{2} \mathrm{O} \nu_{1}$ and ν_{3} bands, and the peaks at 1606 and 905 cm^{-1}, respectively ν_{4} and ν_{2} of $\mathrm{H}^{+} \mathrm{nH}_{2} \mathrm{O}$. The $\nu_{1}, \mathrm{Sb}-\mathrm{F}$ band, is also present in the i.r. spectrum at the expected frequency for $\mathrm{SbF}_{6}{ }^{-}$, $661 \mathrm{~cm}^{-1}$. The Raman spectrum of the single crystal used for data collection was also obtained (Tab1e 41), and clearly characterised the $\mathrm{SbF}_{6}{ }^{-}$anion, peaks occurring at $666\left(\nu_{1}\right), 590\left(\nu_{2}\right)$ and $283\left(\nu_{4}\right) \mathrm{cm}^{-1}$. The spectra are in excellent agreement with those obtained by Christie et al. for the compound described as $\mathrm{H}_{3} \mathrm{O}^{+}$. $\mathrm{SbF}_{6}{ }^{-}$, the only discrepancy appearing in the lower frequency of the ν_{1} and ν_{3} hydrated proton bands of the spectrum obtained by Christie and co-workers.

Vibrational Spectra of $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{SbF}_{6}{ }^{-}\left(\mathrm{cm}^{-1}\right)$
TABLE 41

$\mathrm{H}_{3} \mathrm{SbF}_{6}^{-}$
Present work
i.r.
3600 (w)
3520 (m)
1606 (w)
930 (w)
905 (m)
661

10.3 Single Crystal X-ray Investigation of $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{SbF}_{6}{ }^{-}$

The crystal used for the investigation was sealed in a preseasoned Pyrex capillary, and had the approximate dimensions $0.46 \mathrm{~mm} \times 0.35 \mathrm{~mm} \times$ 0.22 mm . The crystal was mounted about the 110 axis of the cubic cell. Preliminary cell dimensions were obtained from Weissenberg photographs, taken using $\mathrm{Cu}-\underline{K}_{\underline{\alpha}}$ (Ni filtered) radiation and precession photographs using Mo-K $\underline{\underline{\alpha}}$ ($Z \mathrm{r}$ filtered) radiation. The final value for the unit cell parameter was determined from the optimised counter angles for zero layer reflections on a Stoe Weissenberg diffractometer.
10.4 Crystal Data for $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{SbF}_{6}^{-}$
$\mathrm{F}_{6} \mathrm{H}_{3} \mathrm{O} \mathrm{Sb} \quad ; \quad \underline{\mathrm{M}}=254.75$
Cubic $\quad \underline{a}=10.130(8) \AA$.
$\underline{U}=1039.51 \AA^{3} ; \quad \underline{D}_{\underline{c}}=3.255 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad Z=8$ $\underline{E}(000)=927.98 ;$ Mo- \underline{K} radiation $; \lambda=0.71069 \AA$ $\underline{\mu}\left(\mathrm{No}_{\mathrm{o}}-\underline{K}_{\alpha}^{\alpha}\right)=49.69 \mathrm{~cm}^{-1}$

Space group Ia3 ($\mathrm{T}_{\mathrm{h}}^{7}$ № 206). Neutral scattering factors were used, with anomalous dispersion coefficients.

10.5 Data Collection

The crystal was mounted about the 110 axis of the cubic cell, and data were collected for layers 0 kl to 6 kl of the aligned pseudotetragonal cell, using the Stoe Stadi-2 diffractoneter, in the four quadrants $\mathrm{h} \pm \mathrm{k} \pm 1$. The data were collected using an ω-scan technique, with 2θ at the calculated value for each reflection. The intensities of reflections with $0.171 \leqslant \operatorname{Sin} \theta / \lambda \leqslant 1.22 \AA^{-1}$ were collected, and a total of 719 reflections obtained with $\mathrm{I} / \sigma \mathrm{I} \geqslant 3$. Check reflections
were monitored during the data collection of each layer and no deterioration of the crystal was indicated. Lorentz and polarisation corrections were made to the data set.

10.6 Solution of the $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{SbF}_{6}{ }^{-}$structure

The program systcm SHELX was used. Three cycles of least squares refinement with antimony on the Wyckoff position, $8 \mathrm{a}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of the space group Ia3 gave an R factor of 0.27 . The Fourier difference map located a 9 electron peak, assumed to be oxygen, on the 8 b position $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ with two sets of possible fluorine octahedra each att $1.90 \AA$ from Sb . Three cycles of refinement with the oxygen atom included reduced the R factor to 0.22 . The inclusion of either of the peaks on the general positions about Sb , as F atoms, with all atoms refining isotropically resulted in a reduced R factor of 0.13 , however, the refinement cycles moved the F atoms to $>2.0 \AA$ from Sb . The inclusion of fluorine atoms also resulted in a more complex difference Fourier map, with several peaks $\leqslant 3$ electrons appearing. The problem was treated in the same manner as the other apparently disordered structures (CSNbF_{6} chapter 6 , and $\mathrm{NF}_{4} \mathrm{SbF}_{6}$ chapter 9) encountered in this study. The alternate fluorine atom positions indicated were refined as disordered, initially refining the site occupation factors and then the temperature factors. The resultant R factor of 0.12 was not significantly less than with an ordered structure; one of the fluorine atoms refined to a position $2.2 \AA$ from Sb , and further possible fluorine sites appeared in the Fourier map. Refinement of various models with either ordered fluorine atoms or disordered atoms constrained to be $1.86(3) \AA$ from antimony, did not improve the R factor or the residual Fourier map. For final cycles of least-squares refine-
ment, the atomic positional and thermal parameters of that fluorine atom which remained at the expected distance from antimony in the disordered model, were refined. As in the case of $\mathrm{NF}_{4} \mathrm{SbF}_{6}$, this represents an incomplete solution, as the fluorine atom parameters reported appear representative of disorder. This is reflected in the structure factor table (Appendix 10), where agreement between $\left|\mathrm{F}_{\mathrm{o}}\right|$ and $\left|F_{c}\right|$ is good for even, even, even reflections with dominant contribution by the antimony and oxygen atoms but poor agrecment is obtained for odd, odd, even reflections which are dependent only upon the fluorine (and hydrogen) atom parameters. The final atomic positional and thermal parameters are in Table 42. The observed and calculated structure factors are in appendix 10.

Final residual indices for 155 unique reflections:-

$$
\mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|=0.119
$$

TABLE 42

10.7 Characterisation of oxonium hexafluorotantalate(V)

The crystal of oxonium hexafluorotantalate (V) used for the diffraction study also occurred as a trace impurity, in this case from the recrystallisation of caesium hexafluorotantalate(V). Data was collected on the assumption that the crystal was CsTaF $_{6}$. Preliminary determination of the unit cell parameters suggested a new phase of CsTaF_{6}, as found for CsNbF_{6} (chapter 6), however, during the subsequent structure refinement the temperature factor of the atom designated as Cs gave an impossibly high value. This suggested that the crystal under investigation must have a cation of lower atomic number at this site.

A detailed inspection of the bulk material from the recrystallisation by X-ray powder diffraction and mass spectroscopy showed the material was predominately CsTaF_{6} and, accordingly, an attempt was made to characterise the single crystal used for data collection. The Raman spectrum of the sing1e crystal (Table 43), is more complex than that obtained for $\mathrm{Cs}^{+} \mathrm{TaF}_{6}{ }^{-}$by Keller et al., ${ }^{127}$ in which only the ν_{1} (692 cm^{-1}), ν_{2} (580) and ν_{5} (270) bands expected for O_{h} symmetry were observed. The spectrum can be assigned in terms of a $\mathrm{T}_{\mathrm{h}}^{7}$ symmetry $\mathrm{TaF}_{6}{ }^{-}$ion, where the $\nu_{1}\left(714 \mathrm{~cm}^{-1}\right)$ and ν_{2} (618) bands are shifted to higher frequency than in CsTaF_{6}, as expected for a smaller cation, and the three bands in the ν_{5} region (295, 291 and $273 \mathrm{~cm}^{-1}$) can be attributed to factor group splitting of ${ }_{\mathcal{L}} \nu_{5}$ band expected in T_{h}^{7} symmetry. The remaining bands have been tentatively assigned to rotatory modes, $U R$ for $\mathrm{H}_{3} \mathrm{O}^{+}$(704 and $669 \mathrm{~cm}^{-1}$) and $U R$ for $\mathrm{TaF}_{6}{ }^{-}$(225 cm^{-1}).

A further indication of the crystal composition was provided by the determination of the density. If the crystal was CsTaF_{6} the calculated

The Raman spectrum of $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{TaF}_{6}{ }^{-}$

$\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{TaF}_{6}{ }^{-}$	$\mathrm{Cs}^{+} \mathrm{TaF}_{6}{ }^{-}$
Raman	Raman
714 (100) $\nu_{1}\left(\mathrm{TaF}_{6}\right)$	
704 (40) VR $\left(\mathrm{H}_{3} \mathrm{O}\right)^{+}$	
	692 (100) ν_{1}
669 (38) VR $\left(\mathrm{H}_{3} \mathrm{O}\right)^{+}$	
618 (10) $\nu_{2}\left(\mathrm{TaF}_{6}\right)$	
	580 (10) ν_{2}
295 (20)	
291 (40) $\nu_{5}\left(\mathrm{TaF}_{6}\right)$	
273 (38)	
	270 (7) ν_{5}
225 (15) UR (TaF_{6})	

density for a unit cell of $10.20 \AA^{3}$ with $Z=8$ would be $5.36 \mathrm{~g} \mathrm{~cm}^{-3}$, however, if as was supposed the crystal is the hydroxonium salt, $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{TaF}_{6}{ }^{-}$, the density would be $3.00 \mathrm{~g} \mathrm{~cm}^{-3}$. The crystal was measured in the Pyrex capillary used for data collection, using a vernier microscope eyepiece, routinely used for absorption correction measurements. The measured dimensions of the crystal $(.0775 \mathrm{~cm} \times .0667 \mathrm{~cm} \times$ $.0462 \mathrm{~cm})$ gave a volume of $.000238 \mathrm{~cm}^{3}$. The capillary was then broken and the crystal placed on the pan of a zeroed Cahn Electrobalance (model G, range $1.0 \pm .001 \mathrm{mg}$). Weighings at one minute intervals from the time of exposure to the atmosphere allowed extrapolation of the crystal weight (0.881 mg). The resulting calculated density 3.71 g
cm^{-3} is in good agreement with the expected density of the salt $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{TaF}_{6}{ }^{-}$.

10.8 Crystal Data for $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{TaF}_{6}{ }^{-}$

Preliminary cell dimensions were obtained from Weissenberg photographs, taken using $\mathrm{Cu}-\underline{K}_{\underline{\alpha}}$ (Ni filtered) radiation, and the cell parameter, a (final value), was determined from the optimised counter angles for zero and upper layer reflections on a Stoe Weissenberg diffractometer. The crystal was mounted about the a axis of the cubic cell.

$$
\begin{array}{ll}
\mathrm{F}_{6} \mathrm{H}_{3} \mathrm{O} \mathrm{Ta} & ; \underline{M}=313.95 \\
\text { Cubic } & \underline{\mathrm{a}}=10.225(6) \AA \\
& \underline{\mathrm{U}}=1069.0 \AA^{3} ; \underline{\mathrm{D}}_{\underline{c}}=3.901 \mathrm{~g} \mathrm{~cm}^{-3} ; Z=8 \\
& \underline{\mathrm{E}}(000)=1103.6 ; \mathrm{Mo}^{-} \underline{\mathrm{K}}_{\underline{\alpha}} \text { radiation } ; \lambda=0.71069 \AA \\
& \underline{\mu}\left(\mathrm{Mo}-\underline{K_{\alpha}}\right)=197.2 \mathrm{~cm}^{-1}
\end{array}
$$

Space group Ia3 ($\mathrm{T}_{\mathrm{h}}^{7}$ № 206). Neutral scattering factors were used, with anomalous dispersion coefficients.

10.9 Data Collection

Data were collected from the layers 0 kl to 6 kl , using the Stoe Stadi-2 diffractometer, in the $+\mathrm{h},+\mathrm{k},+1$ quadrant only. The intensities of reflections with $0.147 \leqslant \operatorname{Sin} 2 \theta / \lambda \leqslant 1.22 \AA^{-1}$ were collected, and a total of 218 reflections obtained with $\mathrm{I} / \sigma \mathrm{I} \geqslant 3$. The datawere collected using an ω-scan technique, with 2θ constant at the calculated value for each reflection. Check reflections were monitored during the data collection of each layer and no deterioration of the crystal was indicated. Lorentz and polarisation corrections were made to the data set.

10.10 Solution of the $\mathrm{H}_{3} \mathrm{O}^{+} \mathrm{TaF}_{6}{ }^{-}$structure

The program system SHELX was used. The crystal was initially supposed to be a new phase of CsTaF_{6}, resulting from the recrystallisation of CsTaF_{6} from SO_{2}. Three cycles of least-squares refinement with tantalum on the 8 a position $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and caesium on the 8 b $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ position of the space group Ia 3 resulted in an R factor of 0.19 . However, the isotropic temperature factor of the atom designated as Cs gave an impossibly high value indicating a lighter atom on this site. The Raman spectrum and density measurements (section 10.7) together with the unit ce11 indicated the probability that the crystal was an refinement aqua-hydrogen compound, and three cycles of least-squares ${ }_{k}$ with oxygen replacing the caesium atom gave an R factor of 0.15 and an acceptable isotropic temperature factor for oxygen. As with the $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ structure, alternate fluorine sites were indicated in the residual Fouricr map, however, in this case one of the positions for fluorine refined without either displacement of the atom away from tantalum or unacceptable thermal parameters. An R factor of 0.11 was obtained for the final cycles which employed a weighting parameter, $\mathrm{g}(.0001)$ $\left[\omega \alpha 1 / \sigma^{2}(F)+g F\right]$ and an analysis of the weighting scheme over $\left|F_{0}\right|$ and Sin θ / λ was satisfactory. The final Fourier difference map contained +3 and -2.5 electron peaks but these were not at tantalum-fluorine distances and agreement between the observed and calculated structure factors for the odd, odd, even reflections was generally good.

The final atomic positional and thermal parameters are in Table 44 and the observed and calculated structure factors are found in Appendix 11.

Final residual indices for 130 unique reflections:-

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{o}}\right|=0.109 \\
& \mathrm{R}_{\mathrm{w}}=\left[\omega\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum \omega\left|\mathrm{F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.102
\end{aligned}
$$

10.11 Discussion of the $\mathrm{H}_{3} \mathrm{O} . \mathrm{MF}_{6}$ structures

The body-centred cubic structure, space group Ia3 was found to be appropriate for the structures of both $\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}$ and $\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}$. The final R factors for both structures are high, the small R factor for the tantalate resulting predominately from the greater overall contribution of tantalum than antimony. The high values for the R factor may be explained by the apparent disorder of the fluorine atoms, though as in the case of $\mathrm{NF}_{4} \cdot \mathrm{SbF}_{6}$ the cause is not obvious, particularly for the $\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}$ structure where no obvious alternate fluorine sites were indicated in the final difference Fourier map, and the thermal parameters of the fluorine atom included are not excessively high. For this structure a lower final R factor should be possible.

The unit cell packing of both compounds is essentially the same, and only one figure is used to describe both $\mathrm{II}_{3} \mathrm{O} . \mathrm{MI}_{6}$ structures (Figure 27). In the $\mathrm{H}_{3} \mathrm{O}_{\mathrm{Sb}} \mathrm{SbF}_{6}$ structure the eight nearest oxygenantimony neighbours are at $4.39 \AA$ and each oxygen atom has six nearest F atoms at $2.66 \AA$. In the $\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}$ structure the eight nearest oxygen-tantalum distances are $4.43 \AA$ and each oxygen atom has six nearest fluorine atoms at $2.69 \AA$. The angles between the fluorine atoms about Ta indicates a slight compression of the fluorine octahedron along a three-fold axis but in the antimonate structure the angles are within error limits of 90°.

Despite the unsatisfactory results of the structure refinement, the identity of the compounds as hydroxonium compounds, $\mathrm{H}_{3} \mathrm{O} . \mathrm{MF}_{6}$ seems to

Figure 27

The $\mathrm{H}_{3} \mathrm{O} . \mathrm{MF}_{6}(\mathrm{M}=\mathrm{Sb}$ or Ta$)$ unit cell contents.
be unequivocally established. No other possible sites for oxygen atoms are indicated in the Fourier maps and the temperature factors of the oxygen atoms in both structures are of similar and expected values. This supports the conclusion reached in the introduction (section 10.1), based upon volume considerations that the compounds described by Christie et al. $\left(\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}\right)$ and Bougon and co-workers $\left(\mathrm{H}_{5} \mathrm{O}_{2} . \mathrm{SbF}_{6}\right)$ should, in fact, be reversed. This results in volumes per light atom of $18.1 \AA^{3}$ in the case of each of the antimonate structures against the values of $15.8 \AA^{3}\left(\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}\right)$ and $20.7 \AA^{3}\left(\mathrm{H}_{5} \mathrm{O}_{2} . \mathrm{SbF}_{6}\right)$ proposed. The volumes per light atom found in this study are $18.5 \AA^{3}$ and $19.1 \AA^{3}$ for the antimony and tantalum compounds respectively.

A complete solution to these structures would best be obtained
through neutron diffraction studies, which with the accurate location of hydrogen atoms, would not only provide the complete crystal structure but remove any doubt about the nature of the cation. However, the problem of obtaining samples of either $\mathrm{H}_{3} \mathrm{O}^{+} . \mathrm{MF}_{6}{ }^{-}$or $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} . \mathrm{MF}_{6}{ }^{-}$compounds in sufficiently large samples, for neutron diffraction without the other, or higher aqua-hydrogen compounds, as impurity probably requires a novel preparative method rather than precise reaction stoichiometry.

CHAPTER 11

The Preparation and Crystal Structure of $\mathrm{WF}_{5} \mathrm{~N}_{3}$

11.1 Introduction

Several azido compounds derived from transition metal chlorides or oxide chlorides have been reported by Dehnicke and Sträh1e. The reactions, replacement and addition, were all performed with chlorine azide. The compounds $\mathrm{VCl}_{4} \mathrm{~N}_{3},{ }^{217} \mathrm{CrO}_{2} \mathrm{ClN}_{3}, \mathrm{MoCl}_{4}\left(\mathrm{~N}_{3}\right)_{2},{ }^{218} \mathrm{TiCl}_{3} \mathrm{~N}_{3}$ and $\mathrm{VOC1} \mathrm{~N}_{3}{ }^{219}$ were isolated as unstable $\operatorname{explosive}$ solids, and characterised by i.r. spectroscopy. In each case the spectra showed absorption bands in regions expected for azido groups, 2180-2050 ($\mathrm{vas}_{\mathrm{as}}, \mathrm{N}_{3}$), 1250-1225 ($\nu_{\mathrm{S}}, \mathrm{N}_{3}$) and 700-660 $\mathrm{cm}^{-1}\left(\delta, \mathrm{~N}_{3}\right)$, in addition to the bands associated with $\mathrm{M}-\mathrm{Cl}$ or $\mathrm{M}=0$. The monoazides $\mathrm{MoCl}_{5} \mathrm{~N}_{3}$ and $\mathrm{WCl}_{5} \mathrm{~N}_{3}$ were reported ${ }^{218}$ as intermediates, which could not be isolated without the loss of N_{2} and Cl_{2} to give the chloronitride compounds $\mathrm{MCl}_{3} \mathrm{~N}$. No azide derivatives of transition metal fluoro compounds have previously been reported.

Reactions in which one or more of the fluorine atoms of hexafluorotungsten(VI) may be replaced by ch1orine, ${ }^{220,221}$ alkoxy, ${ }^{222}$ aroxy ${ }^{222,223}$ or diethylamine ${ }^{224,225}$ have been reported. Although various preparative routes to the compounds $\mathrm{WF}_{5} \mathrm{X}$ are known, the reactions between WF_{6} and the compounds $\mathrm{Me}_{3} \mathrm{SiX}$ represent a general method. As a result of experiments to prepare novel transition metal fluoro compounds, or estab1ish improved preparative routes for known compounds, by reactions of $\mathrm{MF}_{6}(\mathrm{M}=\mathrm{W}, \mathrm{Mo}, \mathrm{Re})$ with $\mathrm{Me}_{3} \mathrm{SiX}$, the first transition metal fluoro azide, $W_{5} \mathrm{~N}_{3}$, has been isolated and characterised. Crystals of the compound, obtained from Genetron 113 solution, proved to be sufficiently stable to permit a single crystal X-ray study of the structure. In addition, evidence for the compounds $\mathrm{MoF}_{5} \mathrm{~N}_{3}$ and $\left.\underset{\mathrm{WF}}{6-\mathrm{n}} \mathrm{n}_{3} \mathrm{~N}_{3}\right)_{\mathrm{n}}$, $(\mathrm{n} \geqslant 2$) has been obtained, however, the compounds are less stable than $\mathrm{WF}_{5} \mathrm{~N}_{3}$ and have not been successfully isolated.

11.2 Preparation and Characterisation of $\mathrm{WF}_{5} \mathrm{~N}_{3}$

CAUTION - This reaction is likely to EXPLODE
Azido pentafluoro tungsten(VI) was prepared by the reaction between trimethyl silyl azide and an excess of tungsten hexafluoride in Genetron 113 solvent. In a typical reaction $0.1362 \mathrm{~g}(1.184 \mathrm{mMol})$ of silyl azide was distilled in static vacuum, at $-196^{\circ} \mathrm{C}$, into a preseasoned Pyrex reaction vessel, ($\sim 10 \mathrm{~cm}^{3}$ volume) fitted with a Rotaflo valve. Approximately $1 \mathrm{~cm}^{3}$ of Genetron, pre-dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over molecular sieve was then distilled into the reactor at $-196^{\circ} \mathrm{C}$, and the reactor allowed to warm to room temperature. This allowed the Genetron, collected at the top of the reactor, to wash the trimethylsily1 azide off the reactor walls. In reactions where this was not done, or the order of the addition of compounds was changed, a dark brown solid product resulted. This was presumed to result from reaction between small quantities of reagents on the walls of the vessel, which then initiated decomposition of the product in the diluant. An approximate 5:1 excess of tungsten hexafluoride, 1.805 g ($6.06 \mathrm{mMo1}$), was then added to the reactor which was allowed to warm slowly to room temperature. A yellow solid and solution resulted. The reactor was then warmed to $45^{\circ} \mathrm{C}$ for two hours to complete the reaction, by reflux to a solid CO_{2} collar.

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiN}_{3}+\mathrm{WF}_{6}(\mathrm{XS}) \xrightarrow{\text { Genetron, } 4^{\circ}} \mathrm{WF}_{5} \mathrm{~N}_{3}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiF}
$$

After cooling the reactor to roon temperature, the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiF}$, excess of WF_{6} and most of the solvent were removed in a static vacuum. If the product was dried under vacuum an explosion resulted, however, if the moist product was allowed to dry by evaporation in a dry-box it was found to be stable to grinding.

The azido pentafluoro tungsten(VI) was characterised by mass spectroscopy, infra-red and Raman spectroscopy and ${ }^{19}$ F n.m.r. A sample was ground and sealed in preseasoned Pyrex capillaries, one such capillary was then heated in melting point apparatus and decomposition was found to occur at $63^{\circ} \mathrm{C}$. The mass spectrum was, therefore, run with the probe at $58^{\circ} \mathrm{C}$. The resultant spectrum surprisingly showed the parent ion $\mathrm{WF}_{5} \mathrm{~N}_{3}{ }^{+}$and the fragmentation pattern shown in Table 45.

The vibrational spectra of the compound show absorption bands attributable to the azido-group. The infra-red at 2140 and $640 \mathrm{~cm}^{-1}$ and the Raman, obtained on the solution in Genetron, at $2157 \mathrm{~cm}^{-1}$. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum in Genetron shows the expected doublet and a poorly resolved quintet, respectively -144.8 and -136.5 ppm from $\mathrm{CF}_{3} \mathrm{C} 1$ standard. The $\mathrm{WF}_{6}(-163 \mathrm{ppm})$ and $\left(\mathrm{CH}_{3}\right)_{3} \operatorname{SiF}(+76.3 \mathrm{ppm}){ }^{19} \mathrm{~F}$ shifts are observed in the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum.

Reactions between WF_{6} and an excess of trimethyl-silyl azide were performed in Genetron in attempts to obtain the azides $\mathrm{WF}_{6-\mathrm{n}}\left(\mathrm{N}_{3}\right)_{\mathrm{n}}$ $(\mathrm{n} \geqslant 2)$. All such reactions resulted in orange-red solutions which detonated at, or below, $25^{\circ} \mathrm{C}$. Reactions between an excess of MoF_{6} and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiN}_{3}$ yielded a yellow solid, assumed to be $\mathrm{MoF}_{5} \mathrm{~N}_{3}$, which decomposed or detonated at approximately $-10^{\circ} \mathrm{C}$. Prior to the definitive mass spectroscopic and sing1e crystal characterisations of $\mathrm{WF}_{5} \mathrm{~N}_{3}$ an attempt was made to establish the identity of the compound from its reaction with $\mathrm{CH}_{3} \mathrm{CN}$, with the expected product being $W_{F} \mathrm{~N}_{4} \mathrm{C} . \mathrm{CH}_{3}$, a nitrogen-carbon ring compound:-

TABLE 45
The mass spectrum fragmentation pattern of $\mathrm{WF}_{5} \mathrm{~N}_{3}$, with approximate
intensities in parentheses.

However, the ${ }^{19}$ F n.m.r. p produced was extremely complex and has not been solved.

11.3 Single crystal X-ray Investigation of $\mathrm{WF}_{5} \mathrm{~N}_{3}$

Yellow crystals were obtained upon standing the product of the reaction between an excess of $W F_{6}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiN}_{3}$ in Genetron for several days. The crystals which formed on the reactor walls just above the solution were of suitable dimensions for a single crystal study and several were sealed into preseasoned Pyrex capillaries. The crystal chosen for the investigation was a rectangular block with approximate dimensions $0.279 \mathrm{~mm} \times 0.111 \mathrm{~mm} \times 0.033 \mathrm{~mm}$. Approximate cell dimensions were obtained from Weissenberg photographs taken using $\mathrm{Cu}-\mathrm{K}_{\underline{\alpha}}(\mathrm{Ni}$ filtered) radiation and final cell dimensions were determined from an oscillation photograph for the rotation axis, \underline{b}, and from optimised counter angles for zero and upper layer reflections on a Weissenberg diffractometer.

11.4 Crystal Data

$$
\mathrm{F}_{5} \mathrm{~N}_{3} \mathrm{~W} ; \quad \underline{M}=320.85
$$

Monoclinic $\quad \underline{a}=5.240(8) \AA ; \quad \underline{b}=9.662(12) \AA ; \quad \underline{c}=10.835(8) \AA$ $\underline{B}=102.4(1)^{\circ}$
$\underline{U}=535.77 \AA^{3} ; \quad \underline{\underline{D}}_{\underline{C}}=3.976 \mathrm{~g} \mathrm{~cm}^{-3} ; \quad Z=4$ $F(000)=559.81$; Mo-Ka radiation $; \lambda=0.71069 \AA$ $\mu\left(\mathrm{Mo}-\underline{K}_{\alpha}\right)=206.96 \mathrm{~cm}^{-1}$
Space group $P 2_{1} / C\left(C_{2}^{5} h\right.$ № 14). Neutral atomic scattering factors were used with anomalous dispersion coefficients.

11.5 Collection of the Intensity Data

Data were collected from layers h 01 to h101, using the Stadi-2 diffractometer, in the two quadrants $\pm \mathrm{h}, \mathrm{k}, 1$ for all layers. Data were collected using an $\underline{\omega}$-scan technique. The intensities of reflections with $0.086<\sin \theta / \lambda<0.7 \AA^{-1}$ were collected, and a total of 1122 reflections were obtained with $I / \sigma I \geqslant 3$. Monitoring of check reflections throughout the data collection for each layer indicated that the crystal was slowly decomposing. Therefore, at the end of the data collection, each of the check reflections was re-determined with four scans in order to enable scale factors to be calculated for each layer - in such a way as to give increased weight to the reflections collected last. The calculated scales for each layer were used as a check against layer scale factors refined by the program SHELX. Lorentz and polarisation corrections were made to the data set.

11.6 Solution of the Structure

The program system SHELX was used. A Patterson summation was used to locate the tungsten atom, which was found to be in the general position $(Z=4), 0.151,0.036,0.288$ of the space group $\mathrm{P} 2_{1} / \mathrm{c}$. Three cycles of least-squares refinement with the variable parameters, overall scale factor and the atomic positional and isotropic temperature factor of the tungsten atom refining gave an R factor of 0.29 and allowed sufficient phasing for the location of the fluorine and nitrogen atoms by difference Fourier maps. Further cycles of leastsquares, with all atoms included and refining isotropic temperature factors reduced the R factor to only 0.25 . The temperature factors of all atoms were moderately low and the high R value can be attributed to absorption and layer scale factors. An absorption correction was
performed on the data, maximum and minimum transmission values 0.3198 and 0.0454 respectively, and further cycles of refinement reduced the R factor to 0.19 . Layer scale factors were then refined, and found to be in good agreement with the calculated values from the redetermined check reflections of data collection. Three cycles of least-squares refinement still with isotropic temperature factors for all atoms further reduced the R factor to 0.15 , and upon allowing anisotropic refinement the R factor became 0.0757 . For final cycles of refinement a weighting parameter, $g(.008)\left[\omega \alpha^{1} / \sigma^{2}(\mathrm{~F})+\mathrm{g} \mathrm{F}^{2}\right]$ was employed. An analysis of the weighting scheme over $\left|\mathrm{F}_{\mathrm{o}}\right|$ and $\operatorname{Sin} \theta / \lambda$ was satisfactory.

Final atomic parameters are given in Table 46, the anisotropic thermal parameters are in Table 47. The interatomic distances and angles are in Tables 48 and 49 respectively and the observed and calculated structure factors are found in Appendix 12.

Final residual indices for 1056 unique reflections.

$$
\begin{aligned}
& \mathrm{R}=\sum\left(\left|\mathrm{F}_{\mathrm{O}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right) / \sum\left|\mathrm{F}_{\mathrm{O}}\right|=0.0757 \\
& \mathrm{R}_{\mathrm{W}}=\left[\sum \omega\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2} / \sum \omega\left|\mathrm{F}_{\mathrm{o}}\right|^{2}\right]^{\frac{1}{2}}=0.0799
\end{aligned}
$$

11.7 Discussion

The molecular structure of azido pentafluoro tungsten(VI) exhibits two unexpected, but related features. Firstly, the angle at N1 ($\mathrm{W}-\mathrm{N} 1-\mathrm{N} 2$) , is found to be 157°, compared with the more usual angles (114 to 120°) found in organic covalent azides. ${ }^{226-228}$ Secondly, the $\mathrm{N} 1-\mathrm{N} 2$ bond 1 ies in a plane with three fluorine atoms of the same molecule and, thus, the atom N 2 is oriented towards one of the fluorine atoms (F5), rather than between two equidistant intramolecular contacts. The direction of the $\mathrm{N} 1-\mathrm{N} 2$ bond is considered to result from the arrangenent of the molecules within the unit cell (Figure 28),
TABLE 46
Final atomic positional parameters for $\mathrm{WF}_{5} \mathrm{~N}_{3}$, with estimated
standard deviations in parentheses.

TABLE 47

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
W	. 0317 (5)	. 0419 (7)	. 0518 (6)	-. 0026 (5)	-. 0030 (3)	-. 0001 (4)
F1	. 0565 (87)	. 0746 (125)	. 0865 (121)	-. 0202 (109)	-. 0043 (87)	-. 0272 (87)
F2	. 0386 (67)	. 0571 (110)	. 0819 (113)	. 0075 (92)	. 0016 (68)	. 0047 (63)
F3	. 0394 (69)	. 0576 (97)	. 1044 (140)	-. 0227 (110)	-. 0090 (82)	. 0026 (70)
F4	. 0785 (109)	. 0661 (113)	. 0601 (95)	-. 0055 (98)	-. 0041 (85)	-. 0116 (101)
F5	. 0725 (101)	. 0508 (106)	. 0661 (89)	. 0092 (83)	. 0093 (80)	-. 0096 (78)
N1	. 0333 (78)	. 0459 (132)	. 0927 (168)	-. 0171 (124)	-. 0051 (98)	-. 0100 (82)
N2	. 0443 (89)	. 0401 (115)	. 0448 (102)	-. 0043 (94)	-. 0101 (75)	-. 0017 (92)
N3	. 0533 (135)	. 0768 (179)	. 0908 (175)	. 0196 (161)	-. 0075 (124)	-. 0147 (129)

TABLE 48

Interatomic distances (\AA) , with estimated standard deviations in parentheses.

$\mathrm{W}-\mathrm{F}_{1}$	1.890	(18)
$\mathrm{W}-\mathrm{F}_{2}$	1.843	(14)
$\mathrm{W}-\mathrm{F}_{3}$	1.826	(17)
$\mathrm{W}-\mathrm{F}_{4}$	1.838	(20)
$\mathrm{W}-\mathrm{F}_{5}$	$1.785(16)$	
$\mathrm{W}-\mathrm{N}_{1}$	$1.854(21)$	
$\mathrm{N}_{1}-\mathrm{N}_{2}$	$1.254(31)$	
$\mathrm{N}_{2}-\mathrm{N}_{3}$	$1.102(36)$	

TABLE 49

Interatomic angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses.

W $-\mathrm{N}_{1}-\mathrm{N}_{2}$	157.4 (23)	$\mathrm{F}_{1}-\mathrm{W}-\mathrm{F}_{3}$	86.2 (9)
$\mathrm{N}_{1}-\mathrm{N}_{2}-\mathrm{N}_{3}$	174.6 (29)	$\mathrm{F}_{1}-\mathrm{W}-\mathrm{F}_{4}$	88.4 (9)
$\mathrm{N}_{1}-\mathrm{W}-\mathrm{F}_{1}$	178.6 (11)	F_{1}-W-F-F	84.9 (9)
$\mathrm{N}_{1}-\mathrm{W}-\mathrm{F}_{2}$	92.8 (9)	$\mathrm{F}_{2}-\mathrm{W}-\mathrm{F}_{3}$	172.1 (7)
$\mathrm{N}_{1}-\mathrm{W}-\mathrm{F}_{3}$	94.1 (9)	$\mathrm{F}_{2}-\mathrm{W}-\mathrm{F}_{4}$	88.5 (8)
$\mathrm{N}_{1}-\mathrm{W}-\mathrm{F}_{4}$	92.9 (10)	$\mathrm{F}_{2}-\mathrm{W}-\mathrm{F}_{5}$	93.2 (8)
$\mathrm{N}_{1}-\mathrm{W}-\mathrm{F}_{5}$	93.7 (10)	$\mathrm{F}_{3}-\mathrm{N}-\mathrm{F}_{4}$	87.1 (10)
$\mathrm{F}_{1}-\mathrm{W}-\mathrm{F}_{2}$	87.1 (8)	$\mathrm{F}_{3}-\mathrm{W}-\mathrm{F}_{5}$	90.4 (9)
		$\mathrm{F}_{4}-\mathrm{W}-\mathrm{F}_{5}$	173.1 (8)

Figure 28

Stereoscopic view of the unit cell contents of $\mathrm{WF}_{5} \mathrm{~N}_{3}$.
with the barrier to rotation of the N 2 atom about the $\mathrm{W}-\mathrm{N} 1$ axis, which is expected to be low, being overcome to allow a more favourable packing configuration. The ang1e of 157° found about N1, though not comparable with other azides is similar to the angle found about the nitrogen atom in the isothiocyanates, for example $\left(\mathrm{CH}_{3}\right)_{3}$ SiNCS $\left(154^{\circ}\right) .^{229}$ The four fluorine atoms equatorial to the azide group are a11 distorted away from N1 with N1-W-F angles all $>90^{\circ}$ (92.8 to 94.1), and towards the fluorine atom (F1) trans to the azide group (F1-W-F, 84.9 to 88.4°).

Bond distances within the molecular unit (Figure 29) are of the expected order. The fluorine atom, F5, with the closest intramolecular contact to the azide group has the shortest bond length (1.78 A), and the fluorine atom, F1, trans to the azide group, has the longest

bond length ($1.89 \AA$) , the three remaining W-F distances are 1.82 to $1.84 \AA$. There are no reported transition metal to nitrogen of azide bond distances for comparison of the $\mathrm{W}-\mathrm{N} 1$ bond $(1.85 \AA$). However, the $\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{N} 2-\mathrm{N} 3$ bond distances, respectively 1.25 and $1.10 \AA$, are comparable to those of reported azides, with the terminal $1.10 \AA$ bond distance a close approximation to an $N \equiv \mathrm{~N}$ bond.

Each tungsten atom has six approximately equidistant neighbours (5.10 to 5.27 A) . The nitrogen atom N 1 has four intranolecular contacts at 2.66 to $2.69 \AA$ but, like N3, has no intermolecular contacts of $<3.0 \AA$. The nitrogen atom N 2 has two nearest fluorine atom neighbours at 2.82 and $2.98 \AA$, and the fluorine atom F4 has a close contact $(2.82 \AA)$ with its symmely h_{h} The The N1 and N3 atoms are in approximate planes of fluorine atoms in the $\{101\}$ plane.

APPENDIX 1

Structure factor tab1es for $\mathrm{UF}_{4} 0.2 \mathrm{SbF}_{5}$

 I TSGMN゙,

$\underset{0}{x}$

x

APPENDIX 2

Structure factor tables for $\mathrm{MoF}_{4} \mathrm{O}_{\mathrm{O}} \mathrm{SbF}_{5}$

\qquad

\qquad

I \tan thmanconcone

$\underset{\sim}{\sim}$			
0		()	
\leftarrow		4	NNMNHTCUMNMFININN
0			11111
\&			
4			
ω		4.	NNMNV-1NMNMNMNN
$\underset{\sim}{\sim}$			
7			
5			
$\underset{\leftarrow}{\alpha}$			
is x incismancontarivins			
-		I	
(4)			1111
$\stackrel{\square}{4}$			
$\stackrel{5}{5}$			
O	-	0	
-	in	u.	
¢			
	n		
			Nocstonntorncosn
z	0	4	
a 4 L			
	4		
0	O		
ω	Σ	-	
≈ 0			
	4.		
0		I	
			111

 $\stackrel{\sim}{0}$

APPENDIX 3

Structure factor tables for $\mathrm{ReF}_{4} \mathrm{O} . \mathrm{SbF}_{5}$

 H1 Fit

- Mommon


```
        #1,
```


,

APPENDIX 4

Structure factor tables for NaTaF_{6}


```
H
```



```
    ~umumucrmx, o umNúgmm,scire in
```



```
L
```


APPENDIX 5

Structure factor tables for $\beta-\mathrm{CsNbF}_{6}$

 1, MMMMMMMMM.

-
23N3F

APPENDIX 6

Observed and Calculated Intensities for NaWF_{6}

Observed and Calculated Intensities for NalNF_{6}

 $2 \theta\left(\times 10^{2}\right)$
$I_{c} \quad I_{0}$
H K
L
$2 \theta\left(\times 10^{2}\right)^{\circ}$

 5977
+977

7835
7934
8181
8249
8249
8522
acos
vivn
unin
-
8725
8792
9661
9661
9262
9262
9329

9597	9
9799	7
10135	13
16334	0
10338	4
10338	0
10679	11
12679	4

[^0]
APPENDIX 7

Structure factor tables for $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtF}_{6}$

APPENDIX 8

Structure factor tables for $\mathrm{K}_{2} \mathrm{OsF}_{6}$

\qquad

 $\mathrm{K}_{2} \mathrm{O}_{\mathrm{sF}}^{6}$ L


```
n9r.-
```



```
    I #
```



```
\mp@subsup{K}{2}{}\mp@subsup{\textrm{SF}}{6}{}
    - \
```


APPENDIX 9
 Structure factor tables for $\mathrm{NF}_{4} . \mathrm{SbF}_{6}$

```
is NuTLEGuL
L masumulu
-cnanNan
y MccNMNg
1 (-n-N+N-
\begin{tabular}{|c|c|c|c|}
\hline c & & \(c\) &  \\
\hline 5 & & 4 & 1111 \\
\hline \(\stackrel{C}{c}\) & & & \\
\hline \multicolumn{4}{|l|}{L} \\
\hline 1. & & \[
i
\] & せビひきいコココ \\
\hline \multicolumn{4}{|l|}{c} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{5 － \(5+\ldots\).} \\
\hline i & & & ざしくいむ゙けu \\
\hline \multicolumn{2}{|l|}{t} & & ゴビuty \\
\hline c & & J & a＊－arrar \\
\hline \multicolumn{4}{|l|}{4} \\
\hline ＊ & & & \\
\hline \multicolumn{4}{|l|}{三} \\
\hline \(\stackrel{ }{3}\) & & \(i\). & そu.10 亿. \\
\hline \multicolumn{4}{|l|}{こ く} \\
\hline \multicolumn{4}{|l|}{\(L\)} \\
\hline 5 & & c & Nしゃのバリ \\
\hline \multicolumn{4}{|l|}{\(\underset{\sim}{2}\) L} \\
\hline \(\checkmark\) & i & & \\
\hline \(\pm\) & \(c\) & \(\sim\) & がくいいいぐい \\
\hline ＂ & \({ }^{6}\) & & \\
\hline \(\stackrel{\square}{4}\) & 3 & \(\cdots\) & rrmranau \\
\hline \({ }_{6}^{-}\) & \(\stackrel{4}{2}\) & & \\
\hline 2 & & \(=\) & \(\cdots \mathrm{Hrcma}\) \\
\hline
\end{tabular}
```



```
\cap\trianglerE







```

crefGNFRG
NF4.COFG

```


\section*{APPENDIX 10}

Structure factor tables for \(\mathrm{H}_{3} \mathrm{O} . \mathrm{SbF}_{6}\)

```

l

```











```

WマC.CRFG

```


\section*{APPENDIX 11}

Structure factor tables for \(\mathrm{H}_{3} \mathrm{O} . \mathrm{TaF}_{6}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & M \(\mathrm{Cl}^{\text {SI }}\) & & & & 0－ & 「．T） & & & & \(0 \wedge\) & 1 \\
\hline & \(\bigcirc\) & A & & & & & & & & & & & & \\
\hline 4 & K & L & －？ & 「0 & 4 & K & 1 & 57 & 5？ & 4 & \(k\) & L & Fn & E？ \\
\hline － & ¢ & \(?\) & \(4^{2}\) ： & 5.77 & 7 & ？ & 7 & ？ & 47 & r． & z & 10 & ？9 & －4 \\
\hline \(\vdots\) & ？ & \(?\) & 57 ： & 547 & ？ & 2 & 7 & \(5 \cdot 7\) & 34 & \(\cdots\) & 4 & \(1 ?\) & 1：9 & 159 \\
\hline \(i\) & \(\cdots\) & \(?\) & 2．） & 14i？ & is & & 7 & 27 & 1， & ， & 4 & 17 & 197 & \\
\hline ？ & 1 & 3 & \(7{ }^{7}\) & 77 & 1 & 4 & 7 & 35 & ？ & 4 & 4 & 15 & 177 & 157 \\
\hline j & 3 & 3 & \(1 \cdot 6\) & －8： & 5 & 4 & 7 & 37 & \(\bigcirc\) & 5 & 4 & 10 & 147 & 157 \\
\hline ？ & C & \(i\) & 3う， & 230 & ？ & 5 & 7 & 34 & 7 & a & 4 & \(\therefore\) & 175 & 12？ \\
\hline ？ & － & 4 & 272 & 79 & 1 & 5 & \(?\) & 77
\(>75\) & 7 & \(\pm\) & 5 & 10 & 97 & －i， \\
\hline 1 & ， & 4 & 7 & －4． & & 5 & \(\stackrel{\square}{2}\) & 735 & \(\rightarrow{ }^{\text {a }}\) ， & ¢ & \(\stackrel{\square}{5}\) & 12 & 97 & \({ }^{3} \mathrm{H}\) \\
\hline & 1 & 4 & っこう & \(7{ }^{-45}\) & \(?\) & ？ & \(\stackrel{\square}{2}\) & 271 & ？ \(8^{-}\) & 9 & 5 & 15 & 18. & 173 \\
\hline － & \({ }_{2}\) & 4 & 27\％ & 75\％ & \(\stackrel{+}{6}\) & \(?\) & 2 & \(\bigcirc 92\) & \begin{tabular}{l} 
？ \\
1 \\
1 \\
\hline 14
\end{tabular} & 4 & ¢ & 10 &  & \(14 \%\) \\
\hline 1 & 3 & 4 & そマ & －1： & 1 & 1 & R & 12 & 47 & 2 & a & 1 & 140 & 147 \\
\hline 7 & 7 & 4 & 77 & － 51 & \％ & 1 & H & 47 & a & 4 & a & \(1 j\) & 1 ？\({ }^{\text {？}}\) & i1 \({ }^{\text {a }}\) \\
\hline － & 4 & 4 & \(4 ?\) & 45： & \(\checkmark\) & 1 & 9 & 57 & －30 & ， & 1. & 1 1－ & 1.7 & 39 \\
\hline \(?\) & 4 & 4 & 2－\％ & 375 & & ； & \(\mu\) & \(\rightarrow 7\) &  & ； & 1. & ij & \(\therefore 4\) & 97 \\
\hline 4 & 4 & 4 & 3号 & 214 5 & \(?\) & ？ & 4 & \(3 \cdot 1\) &  & 1 & ？ & \(1!\) & 71 & ， \\
\hline ？ & 1 & 5 & 35 & ： 1 & 1. & \(?\) & \(a\) & 374 & つて， & 5 & ， & 11 & 20 & 1 \\
\hline 4 & & 5 & こ？ & \(2^{\prime}\) & － & ？ & 9 & 137 & 309 & 5 & ＇ & 11 & 71 & \(-7\) \\
\hline z & 2 & 5 & \(\bigcirc 2\) & －5． & & 4 & \(\bigcirc\) & 了 & 773 & 4 & － & 11 & 77 & －14 \\
\hline \(\checkmark\) & \(?\) & 5 & \(7 \times\) & & ， & 4 & a & \(\cdots 3\) & 373 & ， & \(=\) & 1 ？ & 157 & 193 \\
\hline 4 & \(?\) & \(\bar{\square}\) & 7 & \(\bigcirc\) & ， & 4 & a & \(? 70\) & こ？ & ， & 3 & \(1 ?\) & i54 & 15 ？ \\
\hline ？ & 4 & \(\bar{j}\) & 75 & \(\bigcirc\) & ＇ & 4 & － & 123 & 184 & 4 & & \(1 ?\) & 155 & 14.4 \\
\hline 7 & 4 & 5 & 79 & \(?{ }^{\text {r }}\) & \(!\) & 5 & a & 72 & \(-17\) & 5 & & 17 & \(13 \%\) & 119 \\
\hline & ［ & 5 & 219 & \％\％ & － & 5 & \(\bigcirc\) & \(\bigcirc 7\) & 312 & 5 & 1 & \(1 ?\) & 25 & i？ \\
\hline ， & & 5 & 372 & マら号 & \(\checkmark\) & 5 & \(\stackrel{ }{2}\) & ？ 75 & 715 & ， & ， & 1？ & 147 & 147 \\
\hline ＋ & 3 & ， & 3！ & ra＇ & 4 & 5 & P & 195 & \(\pm{ }^{\circ}\) & ？ & \(\cdots\) & 17 & 157 & 15こ \\
\hline 1 & ！ & 5 & ＇1 & 15 & & \＆ & Q & 174 & 19\％ & 4 & 2 & 1 ？ & 144 & 175 \\
\hline 5 & 1 & \(j\) & －a & \(\rightarrow\) & ？ & 9 & 2 & \(17 \%\) & ：57 & F & 7 & 12 & 1：\({ }^{\text {a }}\) & 1？ \\
\hline i & ？ & 5 & \(27 \%\) & 417 & 4 & a & a & 172 & \(\therefore 57\) & 1 & 3 & 1？ & 37 & － 31 \\
\hline ？ & \(?\) & 5 & 35 & 74. & ？ & 7 & 2 & 75 & \(1!\) & 5 & 1 & \(1 ?\) & \(7 ?\) & 12 \\
\hline 4 & \(?\) & 5 & 2：9 & \({ }^{2} 1{ }^{\text {a }}\) & 1 & 4 & － & 74 & －7 & － & 1 & \(1 ?\) & 140 & 135 \\
\hline 1 & \(?\) & F & 3 ？ & －\({ }^{-}\) & \(\bigcirc\) & 4 & \(\cdots\) & \(7=\) & －11 & \(\bigcirc\) & \(t\). & \(1 ?\) & 176 & 123 \\
\hline 7 & 7 & a & 7. & －7 & 5 & \(\bigcirc\) & 0 & 7 ？ & －4 & 4 & 4 & 1？ & 135 & 137 \\
\hline \(\square\) & 3 & ， & \(3:\) & \(\rightarrow\) ． & & ก & \(1 \%\) & \(\cdots \cdots\) & \(\rightarrow\)－ & 6 & 4 & \(1 ?\) & 1 ？ & ： 17 \\
\hline － & 4 & a & 23） & 3f？ & － & \(j\) & \(1{ }^{1}\) & 334 & 377 & 5 & 6. & 1 ？ & 141 & 13 ？ \\
\hline \(\cdots\) & 1. & 6 &  & 74 & 4 & \(\stackrel{+}{+}\) & ！ & \(\therefore 3\) & \(\bigcirc 1\) & ？ & 5 & \(1 ?\) & 145 & 121 \\
\hline 4 & 4 & 5 & 2？ & 25．4 & \(\stackrel{\square}{\text { a }}\) & j & & 147 &  & 4 & 5 & \(1 ?\) & \(12 ?\) & ：11 \\
\hline 7 & \({ }_{5}\) & \(\dot{\sim}\) & \(\cdots ?\) & －14 & 9 & 5 & & 115 & 134 & 4 & ， & 13 & 7 & －11 \\
\hline & 5 & 6 & ？\({ }^{\text {a }}\) & 1＇ & & ？ & ¢ & ？？？ & \(12 ?\) & 5 & ？ & 14 & 111 & 119 \\
\hline & \({ }_{5}\) & 5 & 279 & 75. & \(?\) & ？ & & 30 & \({ }^{\text {a }}\) & ？ & 5 & 14 & 169 & 113 \\
\hline ， & \(f\) & h & ？ 25 & ？\({ }^{\text {a }}\) & \({ }_{5}\) & \(?\) & 19 & ？ 12 & \(\rightarrow 07\) & \(\stackrel{4}{4}\) & 5 & 14 & 97 & 919 \\
\hline 4 & 6. & 5 & ？？ & \(\bigcirc 4\) & 5 & ？ & ． & & & i & & 14 & & 134 \\
\hline \(?\) & 1 & 7 & \％ & －？ 7 & R & \(?\) & & 177 & 14？ & 2 & \(\cdots\) & 14 & \(1{ }^{\text {－7 }}\) & 11： \\
\hline 1 & 2 & 7 & 49 & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{APPENDIX 12}

Structure factor tables for \(\mathrm{WF}_{5} \mathrm{~N}_{3}\)




OBSERVEO AND CALCULATED STRUCTURE FACTORS









WF5NZ.

3
2
2




OSERVCD ANO CALCULAT: D STRUCTUR: FACIJRS
\(\star\) FSN3.






















دAG_












WFうN


REFERENCES
1. L. S. Dent Glasser, Crystallography and its applications (1977), Van Nostrand Reinhold (Wokingham, England).
2. G. H. Stout, L. H. Jensen, X-Ray Structure Determination (1968), Macmillan (Toronto).
3. M. J. Buerger, X-Ray Crystallography (1942), Wiley (New York).
4. M. J. Buerger, Contemporary Crystallography, (1970) McGraw-Hill (New York).
5. H. C. Freeman, J. M. Guss, C. E. Nockolds, R. Page, A. Webster, Acta Cryst., 1970, A26, 149.
6. Stadi-2 operations manual, Stoe GmbH, Darmstadt.
7. STOWK (II), D. R. Russell, Leicester University.
8. N. W. Alcock, Acta Cryst., 1969, A25, 518.
9. G. M. Sheldrick, SHELX-76, program for crystal structure determination.
10. C. K. Johnson, 'ORTEP', Report ORNL-3744, Oak-Ridge National Laboratory (1965).
11. M. W. Thomas, COLLAT, UKAEA Harwell.
12. M. W. Thomas, PREPRF, UKAEA Harwell.
13. M. W. Thomas, REFINE, UKAEA Harwell.
14. H. M. Rietveld, J. App1. Cryst., 1969, \(2,65\).
15. International Tables for X-Ray Crystallography Vol. IV, p. 99 (1974), Kynoch, Birmingham.
16. D. T. Cromer, D. Liberman, J. Chem. Phys., 1970, 53, 1891.
17. L. H. Brooks, E. V. Garner, E. Whitehead, Chemical and X-ray crystallography studies on uranyl fluorides, IGR-TN/CA, 277, 1956.
18. N. Bartlett, P. L. Robinson, J. Chem. Soc., 1961, 3549.
19. M. G. Otley, R. A. LeDoux, J. Inorg. Nucl. Chem., 1967, 29, 2249.
20. P. W. Wilson, J.C.S. Chem. Comm., 1972, 1241.
21. R. T. Paine, R. R. Ryan, L. B. Asprey, Inorg. Chem., 1975, 14, 1113.
22. J. C. Taylor, P. W. Wilson, J.C.S. Chem. Comm., 1974, 232.
23. J. H. Levy, J. C. Taylor, P. W. Wilson, J. Inorg. Nucl. Chem., 1977, 39, 1989.
24. J. C. Taylor, P. W. Wilson, Acta Cryst., 1974, B30, 1701.
25. E. Jacob, W. Polligkeit, Z. Naturforsch., 1973, 28B, 120.
26. P. W. Wilson, J. Inorg. Nucl. Chem., 1974, 36, 303.
27. P. W. Wilson, ibid., p.1783.
28. K. W. Bagnall, J. G. H. du Preez, B. J. Gellatly, J. H. Holloway, J.C.S. Dalton, 1975, 1963.
29. R. Bougon, T. Bui Huy, P. Charpin, Inorg. Chem., 1975, 14, 1822.
30. P. Joubert, R. Bougon, Compt. rend., 1975, 280, C, 193.
31. P. Joubert, R. Bougon, B. Gaudreau, Can. J. Chem., 1978, 56, 1874.
32. P. Joubert, J. M. Weulersse, R. Bougon, B. Gaudreau, ibid., p. 2546.
33. R. Bougon, J. Fawcett, J. H. Holloway, D. R. Russell, Compt. rend., 1978, 287, C, 423.
34. R. Bougon, J. Fawcett, J. H. Holloway, D. R. Russell, J.C.S. Dalton, 1979, 1881.
35. R. D. W. Kemmitt, M. Murray, V. M. McRae, R. D. Peacock, M. C. R. Symons, T. A. D'Donnell, J. Chem. Soc., 1968, 862.
36. A. J. Edwards, G. R. Jones, R. J. C. Sills, J.C.S. Chem. Comm., 1968, 1527.
37. B. Frlec, J. H. Holloway, J.C.S. Dalton, 1975, 535.
38. R. J. Gillespie, B. Landa, Inorg. Chem., 1973, 12, 1383.
39. J. Burgess, B. Frlec, J. H. Holloway, J.C.S. Dalton, 1974, 1740.
40. F. O. Sladky, P. A. Bulliner, N. Bartlett, J.C.S. (A), 1969, 2179.
41. G. J. Schrobilgen, J. H. Holloway, P. Granger, C. Brevard, Inorg. Chem., 1978, 17, 980.
42. D. E. McKee, C. J. Adams, A. Zalkin , N. Bartlett, J.C.S. Chem. Comm., 1973, 26.
43. D. E. McKee, C. J. Adams, N. Bartlett, Inorg. Chem., 1973, 12, 1722.
44. R. J. Gillespie, G. J. Schrobilgen, Inorg. Chem., 1974, 13, 2370.
45. P. Boldrini, R. J. Gillespie, P. R. Ireland, G. J. Schrobilgen, Inorg. Chem., 1974, 13, 1690.
46. R. J. Gillespie, G. J. Schrobilgen, Inorg. Chem., 1974, 13, 765.
47. G. L. Gard, G. H. Cady, Inorg. Chem., 1964, 3, 1745.
48. R. J. Gillespie, G. J. Schrobilgen, J.C.S. Chem. Comm., 1974, 90.
49. B. Frlec, J. H. Holloway, J.C.S. Chem. Comm., 1974, 89.
50. R. J. Gillespie, G. J. Schrobilgen, Inorg. Chem., 1976, 1, 22.
51. B. Frlec, J. H. Holloway, Inorg. Chem., 1976, 15, 1263.
52. A. J. Edwards, J. H. Holloway, R. D. Peacock, Proc. Chem. Soc., 1963, 275.
53. V. M. McRae, R. D. Peacock, D. R. Russell, J.C.S. Chem. Comm., 1969, 62.
54. J. Burgess, C. J. W. Fraser, V. M. McRae, R. D. Peacock, D. R. Russell, J. Inorg. Nucl. Chem., 1976, supplement 183.
55. D. E. McKee, Report 1973, L.B.L., 1814, 93, Nucl. Sci. Abst., 1973, 28(10), 26894.
56. F. Seel, O. Detmer, Z. anorg. allg. Chem., 1959, 301, 113.
57. A. J. Edwards, R. J. C. Sills, J. Chem. Soc. (A), 1970, 2697.
58. M. Schmeisser, W. Ludovici, Z. Naturforsch., 1965, 20b, 602.
59. A. A. Woolf, N. N. Greenwood, J. Chem. Soc., 1950, 2200.
60. A. J. Edwards, G. R. Jones, J. Chem. Soc. (A), 1969, 1467.
61. R. Bougon, T. Bui Huy, A. Codet, P. Charpin, R. Rousson, Inorg. Chem., 1974, 13, 690.
62. M. D. Lind, K. O. Christe, Inorg. Chem., 1972, 11, 608.
63. R. J. Gillespie, G. J. Schrobilgen, Inorg. Chem., 1974, 13, 1230.
64. A. J. Edwards, J. Chem. Soc. (A), 1972, 2325.
65. P. A. W. Dean, R. J. Gillespie, Can. J. Chem., 1971, 1736.
66. A. M. Qureshi, F. Aubke, Can. J. Chem., 1970, 3117.
67. G. M. Begun, A. C. Rutenberg, Inorg. Chem., 1967, 6, 2212.
68. K. 0. Christe, W. Sawodny, Inorg. Chem., 1973, 12, 2879.
69. D. E. McKee, N. Bartlett, Inorg. Chem., 1973, 12, 2738.
70. B. K. Morrell, A. Zalkin, A. Tressaud, N. Bartlett, Inorg. Chem., 1973, 12, 2640.
71. A. J. Edwards, G. R. Jones, J. Chem. Soc. (A), 1969, 1651.
72. J. C. Taylor, P. W. Wilson, J. W. Kelly, Acta Cryst., 1973, B29, 7 .
73. A. J. Edwards, P. Taylor, Chem. Comm., 1971, 1376.
74. A. J. Edwards, J'. Chem. Soc., 1964, 717, 3714.
75. G. J. Kruger, C. W. F. T. Pistorius, A. M. Heyns, Acta Cryst., 1976, B32, 2916.
76. O. Ruff, F. Eisner, Ber., 1907, 40, 2926.
77. O. Ruff, F. Eisner, W. Heller, Z. Anorg. Chem., 1907, 52, 256.
78. E. E. Aynsley, G. Hetherington, P. L. Robinson, J. Chem. Soc., 1954, 1119.
79. R. T. Paine, R. R. Ryan, L. B. Asprey, Inorg. Chem., 1975, 14, 1113.
80. B. G. Ward, F. E. Stafford, Inorg. Chem., 1968, 7, 2569.
81. O. Von Schmitz--Dumont, I. Bruns, I. Heckmann, Z. Anorg. Chem., 1953, 271, 347.
82. K. F. Zmbov, O. M. Uy, J. L. Margrave, J. Phys. Chem., 1969, 73, 3008 .
83. F. N. Tebbe, E. L. Muetterties, Inorg. Chem., 1968, 7, 172.
84. A. M. Noble, J. M. Winfield, J. Chem. Soc. (A), 1970, 501.
85. A. D. Webb, H. A. Young, J. Amer. Chem. Soc., 1950, 72, 3356.
86. G. H. Cady, G. B. Hargreaves, J. Chem. Soc., 1961, 1568.
87. L. E. Alexander, I. R. Beattie, A. Bukovszky, P. J. Jones, C. J. Marsden, G. J. van Schalkwyk, J.C.S. Dalton, 1974, 81.
88. A. J. Edwards, G. R. Jones, B. R. Steventon, Chem. Comm., 1967, 462.
89. R. T. Paine, R. S. McDowe11, Inorg. Chem., 1974, 13, 2366.
90. R. J. Gillespie, "Molecular Geometry" Van Nostrand Reinhold, London, 1972.
91. A. J. Edwards, B. R. Steventon, J. Chem. Soc. (A) , 1968, 2503.
92. A. J. Edwards, G. R. Jones, R. J. C. Sills, Chem. Comm., 1968, 1177.
93. I. R. Beattie, K. M. S. Livingstone, D. J. Reynolds, G. A. S. Ozin, J. Chem. Soc. (A), 1970, 1210.
94. A. J. Edwards, G. R. Jones, J. Chem. Soc. (A), 1968, 2074.
95. I. R. Beattie, D. J. Reynolds, Chem. Comm., 1968, 1531.
96. L. B. Asprey, R. R. Ryan, E. Fukushima, Inorg. Chem., 1972, 11, 3122.
97. G. B. Hargreaves, R. D. Peacock, J. Chem. Soc., 1958, 2170.
98. G. B. Hargreaves, R. D. Peacock, ibid., 1958, 4390.
99. J. H. Holloway, G. J. Schrobilgen, P. Taylor, Chem. Comm., 1975, 40.
100. P. A. Tucker, P. A. Taylor, J. H. Holloway, D. R. Russell, Acta Cryst., 1975, B31, 906.
101. G. B. Hargreaves, R. D. Peacock, J. Chem. Soc., 1960, 1099.
102. T. A. O'Donne11, K. A. Phillips, Inorg. Chem., 1972, 11, 2611.
103. O. Ruff, W. Kwasnik, Z. Anorg. Chem., 1934, 219, 65.
104. E. E. Aynsley, R. D. Peacock, P. L. Robinson, J. Chem. Soc., 1950, 1622.
105. R. T. Paine, Inorg. Chem., 1973, 12, 1457.
106. H. Selig, unpublished communication.
107. R. C. Burns, T. A. O'Donnel1, A. B. Waugh, J. Fluorine Chem., 1978, 12, 505.
108. R. D. Peacock, N. Edelstein, J. Inorg. Nucl. Chem., 1976, 38, 771.
109. R. C. Burns, T. A. O'Donnell, Inorg. Nucl. Chem. Letters, 1977, 13, 657.
110. R. T. Paine, R. S. McDowe11, Inorg. Chem., 1974, 13, 2366.
111. A. J. Edwards, G. R. Jones, J. Chem. Soc., 1968, 2511.
112. A. J. Edwards, cited by R. D. Peacock, Advan. Fluorine Chem., 1973, 7, 134.
113. A. J. Edwards, G. R. Jones, R. J. C. Sills, J. Chem. Soc., 1970, 2521.
114. B. Krebs, A. Muller, H. H. Beyer, Inorg. Chem., 1969, 8, 436.
115. R. D. W. Kemmitt, D. R. Russell, D. W. A. Sharp, J. Chem. Soc., 1963, 4408.
116. J. H. Burns, Acta Cryst., 1962, 15, 1098.
117. V. Gutmann, K. H. Jack, Acta Cryst., 1951, 4, 246.
118. N. Schrewelius, Z. Anorg. Chem., 1938, 238, 241.
119. G. Teufer, Acta Cryst., 1956, 9, 539.
120. H. Bode, H. Clausen, Z. Anorg. Chem., 1951, 265, 229.
121. H. Bode, H. V. Döhren, Acta Cryst., 1958, 11, 80.
122. M. A. Hepworth, K. H.'Jack, G. J. Westland, J. Inorg. Nucl. Chem., 1956, 2, 79.
123. A. M. Heyns, C. W. F. T. Pistorius, Spectrochemica Acta, 1974, 30A, 99 .
124. H. Bode, E. Voss, Z. Anorg. Chem., 1951, 264, 144.
125. H. Bode, Z. Anorg. Chem., 1951, 267, 62.
126. R. J. Gillespie, B. Landa, Inorg. Chem., 1973, 12, 1383.
127. O. L. Keller, Inorg. Chem., 1963, 2, 783.
128. J. Cox, J. Chem. Soc., 1956, 876.
129. H. Bode, G. Teufer, \(\underline{Z}_{\text {L Anorg. Chem., 1952, } 268,20 .}\)
130. G. Hargreaves, R. D. Peacock, J. Chem. Soc., 1957, 4212.
131. H. M. Rietveld, Acta Cryst., 1966, 20, 508.
132. H. M. Rietveld, Acta Cryst., 1967, 22, 151.
133. H. M. Rietveld, J. App1. Cryst., 1969, 2, 65.
134. W. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures, 1959, 2nd. Ed. p.251, New York, John Wiley.
135. G. Caglioti, A. Paoletti, F. P. Ricci, Nucl. Instrum., 1958, 3, 223.
136. M. W. Thomas, REFINE, UKAEA Harwell.
137. A. Bystrom, Arkiv Kem., 1943, 8, 17B.
138. I. Kay, Acta Cryst., 1961, 14, 80.
139. J. Leciewicz, Acta Cryst., 1961, 14, 66.
140. F. A. Wedgewood, UKAEA research group report, 1968, R-5802.
141. B. Cox, A. G. Sharpe, J. Chem. Soc., 1953, 1783.
142. J. L. Hoard, W. B. Vincent, J. Amer. Chem. Soc., 1939, 61, 2849.
143. G. R. Clark, D. R. Russel1, Acta Cryst., 1978, B34, 894.
144. H. Bode, W. Wendt, Z. Anorg. Chem., 1952, 269, 165.
145. R. J. Williams, D. R. Dillin, W. O. Milligan, Acta Cryst., 1973, B29, 1369 .
146. A. Zalkin, J. D. Forrester, D. H. Templeton, Acta Cryst., 1964, 17, 1408.
147. R. Hoppe, W. Dähne, Naturwiss., 1960, 47, 397.
148. Ch. Hebecker, H. G. Schnering, R. Hoppe, Naturwiss., 1966, 53, 154.
149. B. Cox, J. Chem. Soc., 1953, 197.
150. B. Cox, J. Chem. Soc., 1954, 3251.
151. R. D. Peacock, Prog. Inorg. Chem., 1960, 2, 193-249.

Ailgem.
152. R. Hoppe, W. Liebe, W. Dähne, Z. Anorg. Chem., 1961, 307, 276.
153. G. Siebert, R. Hoppe, Z. Anorg. Chem. . \(1972,391,113\).
154. R. Hoppe, H. Henke1, Z. Anorg. Chem., 1968, 359, 160.
155. G. Brunton, Acta Cryst., 1973, B29, 2294.
156. C. Cipriani, Rend. Soc. Mineral Ital., 1954, 10, 253; ibid., 1955, 11, 58.
157. D. H. Brown, K. R. Dixon, R. D. W. Kemmitt, J. Chem. Soc., 1965, 1559 .
158. B. Cox, D. W. A. Sharp, A. G. Sharpe, J. Chem. Soc., 1956, 1242.
159. M. A. Hepworth, P. L. Robinson, G. J. Westland, J. Chem. Soc., 1958, 611.
160. G. Brunton, Acta Cryst., 1969, B25, 2164.
161. J. A. A. Ketelaar, Z. Krist., 1935, 92A, 155.
162. H. Bode, R. Brockmann, Z. Anorg. Chem., 1952, 269, 173.
163. R. Huss, W. Klemm, Z. Anorg. Allgem. Chem., 1950, 262, 25.
164. H. Bode, E. Voss, Z. Anorg. Chem., 1956, 286, 136.
165. N. Bartlett, J. W. Quail, J. Chem. Soc., 1961, 3728.
166. R. Hoppe, W. Klemm, Z. Anorg. Allgem. Chem., 1952, 268, 364.
167. D. P. Mellor, N. C. Stephenson, Aust. J. Sci. Res., 1951, 4A, 406.
168. A. G. Sharpe, J. Chem. Soc., 1953, 197.
169. H. Bode, G. Teufer, Acta Cryst., 1956, 9, 929.
170. R. Hoppe, B. Mehlhorn, Z. Anorg. Allgem. Chem., 1976, 425, 200.
171. S. Siegel, Acta Cryst., 1952, 5 , 683.
172. J. L. Hoard, W. B. Vincent, J. Amer. Chem. Soc., 1942, 64, 1233.
173. R. Hoppe, B. Hofmann, Z. Anorg. Allgem. Chem., 1977, 436, 65.
174. R. D. Peacock, J. Chem. Soc., 1956, 1291.
175. E. Weise, Z. Anorg. Allgem. Chem., 1956, 283, 377.
176. H. Bode, G. Teufer, Z. Anorg. Allgem. Chem., 1956, 283, 18.
177. R. W. G. Wyckoff, J. H. Müller, Am. J. Sci., 1927, 13, 347.
178. B. Gossner, 0. Kraus, Z. Krist., 1934, 88, 223.
179. E. O. Schlemper, W. C. Hamilton, J. Chem. Phys., 1966, 44, 2499; ibid., 45, 408.
180. B. K. Vajnstejn, M. M. Stasova, Kristollografija SSSR, 1956, 1, 311.
181. B. K. Vajnstejn, R. N. Kurdjumova, Kristollografija, 1958, 3, 29.
182. B. Cox, A. G. Sharpe, J. Chem. Soc., 1954, 1798.
183. R. W. G. Wyckoff, E. Posnjak, J. Am. Chem. Soc., 1921, 43, 2292.
184. W. C. Hamilton, Acta Cryst., 1965, 18, 502.
185. D. Pilipovich, United States patent 3,963,542, 1976.
186. W. C. Price, T. R. Passmore, D. M. Roessler, Discussions Faraday Soc., 1963, 35, 201.
187. J. N. Wilson. Paper presented at Symposium on Advanced Propellant Chemistry, Am. Chem. Soc., Detroit, Michigan, 1965.
188. K. O. Christe , J. P. Guertin, A. E. Pavlath, Inorg. Nucl. Chem. Letters, 1966, 2, 83.
189. K. O. Christe , J. P. Guertin, A. E. Pavlath, Inorg. Chem., 1966, 5, 1921 .
190. W. E. Tolberg, R. T. Rewick, R. S. Stringham, M. E. Hill, Inorg. Nucl. Chem. Letters, 1966, 2, 79.
191. W. E. Tolberg, R. T. Rewick, R. S. Stringham, M. E. Hill, Inorg. Chem., 1967, 6, 1156.
192. S. M. Sinel'nikov, V. Ya. Rosolovskii, Dokl. Akad, Nauk, SSSR, 1970, 194, 1341.
193. V. Ya. Rosolovskii, V. I. Nefedov, S. M. Sinel'nikov, Izv. Akad. Nauk. SSSR, Ser. Khim., 1973, 7, 1445.
194. C. T. Goetschel, V. A. Campanile, R. M. Curtis, K. R. Loos, D. C. Wagner, J. N. Wilson, Inorg. Chem., 1972, 11, 1696.
195. K. O. Christe , R. D. Wilson, A. E. Axworthy, Inorg. Chem., 1973, 12, 2478.
196. K. O. Christe , C. J. Schack, R. D. Wilson, Inorg. Chem., 1976, 15, 1275.
197. S. P. Mishra, M. C. R. Symons, K. O. Christe , R. D. Wilson, R. I. Wagner, Inorg. Chem., 1975, 14, 1103.
198. K. O. Christe, R. D. Wilson, C. J. Schack, Inorg. Chem., 1977, 16, 937 .
199. D. Clark, H. M. Powell, A. F. Wells, J. Chem. Soc., 1942, 642.
200. I. R. Beattie, K. M. S. Livingstone, G. A. Ozin, D. J. Reynolds, J. Chem. Soc., 1969, 958.
201. K. O. Christe, D. Pilipovich, Inorg. Chem., 1971, 10, 2803.
202. R. A. Pennemann, Inorg. Chem., 1967, 6, 431.
203. K. O. Christe, private communication.
204. H. Goldschmidt, O. Udby, Z. Physik. Chem., 1907, 60, 728.
205. A. Hantzsch, Z. Physik. Chem., 1908, 61, 257.
206. J. O. Lundgren, I. Olovsson, The Hydrogen Bond, Vol. II, Chapter 10, North-Holland Publishing Co., 1976, p. 473.
207. J. O. Lundgren, J. M. Williams, J. Chem. Phys., 1973, 58, 788.
208. J. O. Lundgren, R. Tellgren, I. Olovsson, to be published.
209. J. M. Williams, The Hydrogen Bond, Vol. II, Chapter 14, NorthHolland Publishing Co., 1976, p.656.
210. L. Basile, P. LaBonville, J. R. Ferraro, J. M. Williams, J. Chem. Phys., 1974, 60, 1981.
211. B. S. Ault, G. C. Pimentel, J. Phys. Chem., 1973, 77, 57.
212. B. Bonnet, J. Roziere, R. Fourcade, G. Mascherpa , Can. J. Chem., 1974, 52, 2077.
213. R. Bougon et al., private communication.
214. K. O. Christe , C. J. Schack, R. D. Wilson, Inorg. Chem., 1975, 14, 2224.
215. J. P. Masson, J. P. Desmoulin, P. Charpin, R. Bougon, Inorg. Chem., 1976, 15, 2529.
216. H. Selig, W. A. Sunder, F. A. Disalvo, W. E. Falconer, J. Fluorine Chem., 1978, 11, 39.
217. J. Sträh1e, K. Dehnicke, Z. Anorg. Chem., 1965, 338, 287.
218. K. Dehaicke, J. Strähle, Z. Anorg. Chem., 1965, 339, 171.
219. K. Dehsicke, J. Inorg. Nucl. Chem., 1965, 27, 809.
220. G. W. Fraser, M. Mercer, R. D. Peacock, J. Chem. Soc. (A) , 1967, 1091.
221. G. W. Fraser, C. J. W. Gibbs, R. D. Peacock, J. Chem. Soc. (A), 1970, 1708.
222. A. M. Noble, J. M. Winfield, J. Chem. Soc. (A) , 1970, 501 ; idem ibid, 2574.
223. F. Brinckman, R. B. Johannesen, L. B. Hardy, J. Fluorine Chem., 1972, 1, 493.
224. A. Majid, R. L. McLean, D. W. A. Sharp, J. M. Winfield, Z. Anorg. Chem., 1971, 385, 85.
225. A. Majid, D. W. A. Sharp, J. M. Winfield, I. Henley, J. Chem. Soc. (Dalton), 1973, 1876.
226. M. Winnewisser, R. L. Cook, J. Chem. Phys., 1964, 41, 999.
227. A. Mugnoli, C. Mariani, M. Simonetta, Acta Cryst., 1965, 19, 367.
228. R. L. Livingstone, C. N. Ramachandra Rao, J. Phys. Chem., 1960, 64, 756 .
229. K. Kimura, K. Katada, S. H. Bauer, J. An. Chem. Soc., 1966, 88, 416.```


[^0]:    c. c.erre.c.afrochor
    

