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Abstract

This paper presents a new framework for multi-subject event inference in surveillance video, where

measurements produced by low-level vision analytics usually are noisy, incomplete or incorrect.

Our goal is to infer the composite events undertaken by each subject from noise observations. To

achieve this, we consider the temporal characteristics of event relations and propose a method to

correctly associate the detected events with individual subjects. The Dempster-Shafer (DS) theory

of belief functions is used to infer events of interest from the results of our vision analytics and to

measure conflicts occurring during the event association. Our system is evaluated against a number

of videos that present passenger behaviours on a public transport platform namely buses at different

levels of complexity. The experimental results demonstrate that by reasoning with spatio-temporal

correlations, the proposed method achieves a satisfying performance when associating atomic

events and recognising composite events involving multiple subjects in dynamic environments.

Keywords: Transport surveillance, video events, event modelling, reasoning under uncertainty,

spatio-temporal constraint, minimum conflict optimisation, event association and recognition

1. Introduction

Security information and event management systems (SIEMs) are well-established within the

field of network security. Physical SIEMs are also well-established within the physical secu-

rity domain. However, many of the events that they deal with are of a very simple nature with
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a high degree of certainty, e.g., intrusion alarms, access control. Intelligent analysis and correla-

tion/aggregation of incoming events from different sources represents a challenge to these systems.

Recent developments in the field of video analytics have resulted in a new source of events

for PSEIM that can provide rich semantically meaningful information with regard to situational

awareness. However, unlike earlier event types, these can have a degree of uncertainty and can

conflict with one another. Whilst the video analytics community has been making progress on

generating low-level events, typically termed action recognition [1, 2, 3], little thought has been

given to how one manages events of this nature over a period of time to give higher-level com-

posite events [4]. However, as this technology has started to migrate from the laboratory to the

commercial sector, there is a growing realisation of the need to manage the events generated by

video analysis software. By manage we mean the representation, storage, reasoning and mining

of events.

One of the main tasks of event management systems is that of event composition, whereby pat-

terns of events across a distributed network are detected. Event composition allows us to represent

different events and also to instantly infer events of interest by applying rules to combine existing

events. In addition, new situations can be captured by simply adding a new rule instead of modi-

fying custom code, hence ensuring a flexible solution for evolving situations. Event composition

can either be deterministic, or probabilistic, or both [5, 6], however, to date only a few researchers

have addressed the problems of imperfect information, or information from different sources that

may be conflicting.

For the past decade or so, the deployment of CCTV in major urban centres and cities has be-

come well established. Recently, CCTV technology has begun to be deployed on public transport

systems such as buses and trains. The application domain of interest to us is the analysis of peo-

ple’s behaviour as they move into, remain in, and move out of seated areas. Whilst this scenario

has received very little attention to date within the computer vision community, seated areas are

ubiquitous in many application scenarios. For example, these can be found onboard transport plat-

forms such as buses, trains and planes. They are also to be found in many transport hubs such as

train stations and departure lounges in airports. Other sectors where they are to be found include

sports stadiums, entertainment venues such as concert halls, and leisure venues such as restau-
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rants and bars. Of particular interest to us is the bus scenario and detecting anti-social or criminal

behaviour on buses. Studies have shown that the vast majority of crime carried out on transport

platforms such as buses is by young males [7]. Therefore, having knowledge of the gender of

passengers, and how they are moving relative to one another, as well as their seated positions, en-

ables one to infer the degree of threat and likelihood of an anti-social/criminal incident occurring.

The vast majority of events on a bus consist of passengers undertaking normal journeys in which

nothing untoward happens. This can be decomposed as a passenger boarding the bus at an en-

trance, moving into the saloon area along the gangway, and taking a seat. Similarly, when exiting,

a passenger stands, moves along the gangway towards an exit, and then disembarks from the bus.

We classify both these as composite events. Less regular composite events include a passenger

changing a seat whilst the bus is moving. This could indicate that one of the passengers is either

being intimidated or threatened by another passenger.

Unfortunately, imperfect information frequently occurs in real world applications. For exam-

ple, in the case of a person entering the bus doorway, the person may be classified as male with

a certainty of 85% by the classification analytics, however, the remainder does not imply that the

person is female with a 15% certainty, rather, it is unknown. Hence, it can only give imperfect

information for the remaining 15%. Imperfect information is usually caused by the unreliability

of the information sources. For example, in the classification example above, the camera may

have been tampered with, illumination could be poor, or the classifier training set may be unrepre-

sentative. Any or all of these can result in imperfect information which cannot be represented by

probability measures.

In this work, we investigate the use of evidential reasoning, for dealing with low-level, or

atomic, events that are uncertain, and combining them into higher level composite events that

have semantic meaning from a security viewpoint. Our main contributions can be summarised as

follows:

A. The development of a novel technique for associating identities with atomic events.

B. One of the first attempts at integrating video analytics with an event reasoning framework.

C. First demonstration of the recognition of composite, semantically meaningful, events on-
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board the challenging environment of a moving transport platform (bus).

The rest of this paper is organised as follows. In Section 2, we review related work. Section 3

provides a preliminary treatment of the Dempster-Shafer theory of evidence and temporal relation

representation. We propose a new framework of subject-event association and composite event

recognition in Section 4, a case study in Section Appendix B illustrates how our framework works.

In Section 5, the experimental methodology is described and results are presented. Finally, Section

6 concludes this paper and discusses the future work.

2. Related Work

During the recent past there has been an extensive amount of work on video action recognition

by the computer vision research community ([2, 8] and references therein). However, most of this

work has been on what we call atomic event recognition, e.g. running, walking etc, which have

a unique and enclosed, but limited, semantic meaning in relation to the application context. Less

emphasis has been given to the use of reasoning for aggregating atomic events so that high-level

semantically rich composite events can be recognised. This straddles the boundary between the

computer vision and artificial intelligence communities, and perhaps is the reason why there has

been less work in this area [9]. In this section we first review vision-based action recognition and

then event reasoning approaches for composite event recognition.

2.1. Action Recognition

Given a specific scenario, where interactive elements are known, simple action recognition

can be performed by applying human detection to video sequences, and from these generate tra-

jectories which can then be used to describe the actions of the detected subjects. For example,

part-based techniques can be used to locate [10] and track [11] human body parts. These trajecto-

ries can then be modelled using methods such as Hidden Markov Models (HMMs) [12].

Although these techniques are simple to implement and effective for simple actions and sce-

narios, they fail to provide richer information of the sort needed to recognise more subtle actions.

Extending this methodology to estimate the trajectory of the human pose [13, 14], i.e. the trajec-

tory of each body part, allows this. However, current methods have been shown not to be robust
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for real scenarios and multiple actors [15]. It is also debatable whether such fine grain detail

is really necessary for action recognition [16]. In most practical scenarios human detection and

pose estimation can be difficult, due to the presence of background clutter and foreground occlu-

sions. Therefore, another approach is to treat a sequence, or part thereof, as a single entity from

which low-level spatio-temporal features can be extracted and classified as belonging to a partic-

ular action. For example, Klaser et al. [17] proposed calculating the 3D Histogram of Oriented

Gradients (HoG) over a space-time volume in order to characterise actions. Similarly, Ke et al.

generated over segmented spatio-temporal volumes and optical flow correlation and then used a

distance metric to determine the subset of spatio-temporal volumes that best matched a parts-based

event template [18]. A common approach is to describe a video sequence as an unordered set of

space-time features, e.g., bag of visual words (BoV). Wang et al. proposed a BoV approach to

describe videos by dense trajectories [19]. Oneata et al. applied the Fisher vector representation,

an extension of BoV, to action classification [20]. By employing approximations to Fisher nor-

malisations they obtained a speed-up of an order of magnitude whilst maintaining state-of-the-art

action recognition performance. In a different approach to BoV, Sadanand and Corso proposed the

use of action banks, consisting of a bank of individual template-based action detectors that pro-

vided location features by maximum poling of volumetric correlation outputs [21]. The resulting

feature vectors generated for different actions and scales were then concatenated and used to train

an SVM for classification.

An event scenario that has received considerable attention is the detection of abandoned bags.

Tian et al. applied the results of background subtraction for detecting static and foreground regions

and, using a novel segmentation algorithm, the former were then classified as being abandoned or

removed [22]. Human detection and tracking are also employed in order to reduce false positives.

In other work [23], Fan et al. proposed representing abandoned objects alerts by relative attributes,

e.g., staticness, foregroundness and abandonment. A ranking function, learnt using low-level

spatial and temporal features, was used to determine the relative strengths of these attributes. Their

system outperformed other state-of-the-art techniques in terms of precision for the PETS2006 and

AVSS-AB datasets.

Another scenario that has been extensively investigated is that of crowd analysis for security
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and/or safety purposes. As has been noted in [24], techniques developed for non-crowded sce-

narios tend to fail in crowded scenes. As such, research has focused on addressing those issues,

e.g., occlusion and complex collective behaviours, unique to crowds. Idrees et al. proposed iden-

tifying prominent individuals within a crowd that are relatively easy to track, and then using the

concept of neighbourhood motion occurrence to determine the behaviour of individuals within the

crowd [25]. Zhou et al. presented a new mixture model of dynamic pedestrian agents to learn

collective behaviour patterns of pedestrians in crowded scenes [26]. In [27], Yi et al. developed a

technique for detecting stationary foreground regions by applying sparse constraints along spatial

and temporal dimensions to produce a 3D stationary map. This is then used to detect four types of

stationary group behaviours; gathering, relocating, joining and dispersing.

All of the previous work reviewed thus far, assumed prior knowledge of the actions, i.e., they

were pre-defined. A more complex problem is the detection of unknown or unusual actions. Leach

et al reported on an unsupervised context-aware approach which takes into account scene and

social contexts to detect anomalous behaviour [28]. Static and dynamic agents were used by Cho

and Kang to model individual and group behaviours as a BoVs [29]. Kittler et al. surveyed the area

of anomaly detection and proposed the use of context for anomaly detection in video sequences

[30].

2.2. Event Reasoning

In this section we review related work on composite event recognition and reasoning, which

is the focus of the work reported herein. Composite events have greater semantic meaning to

end-users than atomic events, and are high-level semantic interpretations from a set of atomic

events [5]. They are not easily identifiable using image features, but, rather, by recognition of their

composing events [31].

There are two major approaches to composite event recognition, classification and inference.

In the former, one approach is to use actions, scenes and objects as semantic attributes for their

classification. Chen et al. [32] started with the identification of candidate concepts for an event by

firstly crawling Flickr to search for images with tags related to keywords in the event description.

WordNet was then used to filter out noisy tags and each concept verified based on the visual
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cohesiveness of the images associated with it. This was followed by building a concept visual

model using a Support Vector Machine classifier. They found that their approach outperformed

others based on low-level visual features for a supervised event modelling task. Li et al. [33]

proposed decomposition of a video sequence into short-term segments, which were modelled by

a dictionary of attribute dynamics templates using a binary dynamic system. It is common to see

probabilistic approaches applied to the recognition of atomic events, due to their limited ability

of modelling interrelations between events in both space and time, and representing structural

information in event composition.

Inference-based approaches to composite event recognition usually involve development of an

event modelling and reasoning mechanism. Composite events consist of a set of atomic events that

occur over a considerable time-span and that may have a partial ordering or be concurrent. Thus,

one of the main AI-based approaches to composite event recognition is to infer them by reasoning

about atomic events. Works on visual event modelling and reasoning tend to follow two major

trends; declarative and probabilistic.

In declarative approaches, descriptive templates are used to model events, such as context-free

grammar [34] and Petri-Nets [35]. Ryoo and Aggarwal [36] used context-free grammar to model

interactions of primitive actions and to recognise composite activities for multi-subject scenarios.

Petri-Nets are used as a formalism to model complex logical temporal and spatial relations in

event composition [37]. These are derived from semantic descriptions of events in video event

ontology languages such as VERL. Recently, ontologies, a semantic web technique, have been

used to automate the representation of composite events [38]. In [39], an event ontology for rep-

resenting complex spatio-temporal events by a composition of simpler ones was proposed. The

hierarchy includes primitive events, single-thread composite events and multi-thread composite

events. Inferences are made in a bottom-up fashion. Declarative approaches work satisfactorily

when describing event semantics. However, major drawbacks include an inability to handle mul-

tiple subjects and fragility to uncertainty in sensor measurements, which frequently exist in real

applications.

In probabilistic approaches, such as HMMs [6], Dynamic Bayesian Networks [40], and multi-

agent methods [41, 42], models are constructed to represent events. While these demonstrate
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impressive robustness to uncertainty in video analytics, they do not define semantically meaning-

ful sub-events. Thus, it is not easy to describe the composition of an event at a semantic level.

Though DBNs are more general than HMMs, by considering dependencies between several ran-

dom variables, the temporal model is still usually Markovian, as is the case for HMMs [5]. Their

models can only handle sequential activities and fail to describe complex relations between sub-

events. Consequently, they often lack flexibility; hence it is difficult to apply them to dynamic

problems in real applications [43].

Recently hybrid approaches have emerged that combine declarative and probabilistic proper-

ties. These tend to combine the rich representation ability of declarative approaches with the un-

certainty reasoning mechanism of probabilistic approaches. Stochastic grammars [44] have been

used for parking lot surveillance in [45]. Tran et al. [43] applied Markov logic networks (MLNs)

to probabilistically infer events in video surveillance where noise and missing observations are

serious problems. First-order logic production rules are used to represent common sense domain

knowledge. A weight is associated to each rule to indicate their confidence. In [46], Kanaujia et al.

also proposed the use of MLNs for recognising complex events over a sensor network consisting

of four cameras. In their approach, rather than use a single Markov network (MN) for represent-

ing all activities, they explicitly partitioned the MN into multiple activity specific networks. They

addressed the issue of uncertainty, due to the noisy sensor data and video analytic errors, by gener-

ating predicates with an associated probability. Semantic information extracted at each level from

the lowest level visual processing is propagated to sub-event detection by each MLN engine and

then to a higher-level complex event module to recognise complex events. To tackle the problem

of recognising coordinated events in challenging videos with cluttered background and occlusion,

Brendel et al. [47] proposed the formulation of probabilistic event logic (PEL) for representing

temporal constraints among events. Lavee et al. [31] introduced a certainty score to Petri Nets to

cope with uncertain event observations.

Though the majority of previous declarative and probabilistic approaches have been applied

to single subject scenarios, a few have tackled the more difficult problem of event recognition in

multi-subject videos. Among them, attention has focused on recognising events from understand-

ing the interactions between subjects. These works presume that low-level video analytics can
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provide sufficient information for the detection of simple semantic events, which often appears

untrue in real world applications.

The approach proposed in this paper fits in the hybrid group and focuses on multi-subject

video applications. Our solution is different from previous hybrid approaches in several ways.

Firstly, we adopt the Dempster-Shafer (DS) theory of evidence [48, 49] to handle uncertainty in

event recognition, from observations, to event detection and inference. Imperfect information fre-

quently occurs in real world applications. For example, in bus surveillance, when a person enters

the bus the camera detects a face and classifies it as female with a certainty of 75%. However,

the remainder does not imply that the face is male with a 25% certainty, rather it is deemed to

be unknown because the gender classification analysis does not have enough information to dis-

tribute the remaining 25% to male or female. In contrast, with probability theory such information

can only be represented as p( f emale) ≥ 0.75 and p(male) ≤ 0.25, which is difficult to use for

reasoning. Furthermore, the propagation and combination mechanisms of DS theory are superior

for composing complex events from simple sub-events and atomic events detected from noisy ob-

servations. Hierarchical network templates are used to model the structural semantics of complex

event composition. Similar to [36] ,we use Allen’s temporal interval relation modelling [50] to

represent temporal relations between events; however, we go further and deduce the association of

events with different subjects in a multi-subject scene. One of challenges for event recognition in

multi-subject videos is that video analytics often results in errors, such as missed detections, and

broken tracks due to occlusion. To address this, we develop constraint rules, using the temporal

relationships between events, and use conflict factors of Dempster’s combination rule to measure

conflict in event combinations, enabling us to associate events to a particular subject. Part of the

current manuscript has been published in conference proceedings [50, 51].

3. Preliminaries

In this section, we introduce the main concepts of reasoning under uncertainty and temporal

relation representation, which we have relied upon in developing our proposed approach.
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3.1. Dempster-Shafer Theory of Evidence

The fundamental technique of evidential reasoning that this work uses is the Dempster-Shafer

theory of evidence (DS theory), which originated from Dempster’s work [48] and further extended

by Shafer [49]. DS theory is a generalisation of traditional probability theory and describes the

propositional space of possible situations for a given problem by a finite, non-empty set called

the frame of discernment, denoted as Θ. Uncertainty related to propositions of the problem is

represented by a mass function over the power set 2Θ: the set of all subsets of Θ.

Definition 1. The mapping 2Θ → [0, 1] is a basic belief assignment, also called a mass function

m, satisfying: (1) m(∅) = 0; (2)
∑

A⊆Θm(A) = 1.

A mass value can be committed to a subset, A, of Θ with either single or multiple elements. All

A are called focal elements if m(A) > 0, where m(A) is attributed to A and only A. Due to lack of

information this mass value cannot be further distributed amongst specific elements in A, which

makes mass functions different with probability functions. When m(Θ) = 1 and m(A) = 0 for

all A , Θ, the mass function represents total ignorance, called a vacuous mass function. When

all focal elements of a mass function are singletons, the mass function is reduced to a probability

function.

When two frames of discernmentΘG andΘH hold relations described by an evidential mapping

Γ∗, the mass function occurring on ΘG can be projected to ΘH via Γ∗ as follows [51].

mΘH (H j) =
∑

i

mΘG (gi) f (gi → H j) (1)

Γ∗ : ΘG → 22ΘH×[0,1] assigns an element gi ∈ ΘG to a set of subset-mass pairs in the following

way:

Γ∗(gi) = ((Hi1, f (gi → Hi1)), . . . , (Him, f (gi → Him)))

where Hi j ⊆ ΘH, i = 1, . . . , n, j = 1, . . . ,m, and f : ΘG × ΘH → [0, 1] satisfying (a) Hi j , ∅,

j = 1, . . . ,m; (b)
∑m

j=1 f (gi → Hi j) = 1; (c) Γ∗(ΘG) = ((ΘH, 1)).

When all the f (gi → Hi j) are either 1 or 0, an evidential mapping Γ∗ becomes a multi-valued

mapping Γ : ΘG → 2ΘH . A mass function from frame ΘG can be translated to frame ΘH as [52]:

m(H j) =
∑
Γ(gi)=H j

m(gi) (2)

10



where gi ∈ ΘG, H j ⊆ ΘH.

One advantage of DS theory is that it provides a mechanism of aggregating multiple pieces

of evidence from different sources. When mass functions m1 and m2 are obtained from two in-

dependent sources over the same frame of discernment Θ, the consensus mass function m can be

obtained by fusing them using Dempster’s rule of combination as follows.

m(C) = (1 − k)−1
∑

A∩B=C

m1(A)m2(B) (3)

where k =
∑

A∩B=∅m1(A)m2(B) , 1, is considered to be a conflict factor that numerically measures

the degree of conflict between two pieces of evidence. When k = 0, two pieces of evidence are

completely consistent. When k = 1, the two are completely inconsistent. The combination rule is

both commutative and associative.

It is common that information provided by a source may not be completely credible. To reflect

the reliability of the source, a discount rate r ∈ [0, 1] is introduced in [49]. The original mass

function m from a source is discounted:

mr(A) =


(1 − r)m(A), A ⊂ Θ

r + (1 − r)m(Θ), A = Θ.
(4)

For decision making, Smets [53] proposed the pignistic transformation of mass functions.

Definition 2. Assume that there exists mass function m(A), A ⊆ Θ. For every element g of Θ, the

pignistic probability, denoted BetP, can be calculated:

BetP(g) =
∑
g∈A

m(A)
|A| (5)

where |A| is the number of elements of Θ in A.

The pignistic probability is the DS counterpart of the subjective probability that would quantify

the agent’s beliefs according to the Bayesians [54].

3.2. Temporal Relations

Allen proposed a method for modelling temporal relations in [55, 50] that enables the rep-

resentation of multiple subjects’ actions over a period of time extending from the present to the
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future. In Allen’s model, temporal information is represented by intervals than points. In this

way, real-world events taking place over a time interval can be handled within the same modelling

framework as instantaneous events, by treating the latter as occurring over a time interval with the

same start and end time. The time of an event can be relative to a reference point rather than being

absolute. To describe temporal correlations between two event instances that take place within two

time intervals respectively, Allen defined thirteen relations as depicted in Table 1.

Table 1: The Allen’s thirteen interval temporal relations on IX = [IXa, IXb] and IY = [IYa, IYb]

Interval relation Symbol Inverse Endpoint relations

IX before IY b a IXa < IYa, IXa < IYb, IXb < IYa, IXb < IYb

IX meets IY m mi IXa < IYa, IXa < IYb, IXb = IYa, IXb < IYb

IX overlaps IY o oi IXa < IYa, IXa < IYb, IXb > IYa, IXb < IYb

IX starts IY s si IXa = IYa, IXa < IYb, IXb > IYa, IXb < IYb

IX during IY d di IXa > IYa, IXa < IYb, IXb > IYa, IXb < IYb

IX finishes IY f fi IXa > IYa, IXa < IYb, IXb > IYa, IXb = IYb

IX equal IY eq eq IXa = IYa, IXa < IYb, IXb > IYa, IXb = IYb

Allen’s temporal model will allow us to enforce constraints in our event inference for both

continuous and discrete events.

4. METHODOLOGY

This section describes our system for uncertain atomic event management from multiple sen-

sors and composite event inference. The system is proposed in the context of video-surveillance

for public transport platforms.

4.1. System Outline

The main purpose of video surveillance is to provide situational awareness of a specific place

over a period of time. In this context, therefore, an event is an observation (or collection of

observations) that has semantic meaning. An event can be simple or complex depending on the

level of relevant semantic information provided. To distinguish these two different concepts, we
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Figure 1: System of intelligent event management for video surveillance

call the former an atomic event and the latter a composite event. An atomic event can be directly

detected using video analytics and/or sensors. Atomic events can then be aggregated to generate

composite events which are more semantically meaningful.

Our system is composed of two main stages, shown in Fig. 1, and integrates computer vision

techniques with knowledge representation and reasoning mechanisms. In the first stage, human

subjects are detected and video analytics are then generated in order to provide low-level semantic

components such as “a female face has been detected” and “a person has moved from the door

towards the gang-way”. The second stage is designed to recognise significant events based on

a semantic hierarchy obtained from domain knowledge. At this level, the events of interest are

recognised based on the information derived at the lower-level with varying degrees of belief.

First stage modules has been previously developed and presented [56]. In this paper, we con-

centrate on investigating event inference processing at the upper level of the proposed system.

4.2. Event Inference Procedure

Knowledge is the main drive behind the proposed event inference approach. Our knowledge

base contains frameworks for representing uncertain events, spatio-temporal relations and event

network models, which facilitate atomic event detection, event association and composite event
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Figure 2: Event inference components

recognition, Fig. 2. Event inference starts by deriving atomic events from the outputs of the

computer vision analysis modules. Once atomic events are detected, the event association aims to

make the correct association of atomic events to specific subjects. Composite event recognition

then is performed on the detected atomic events associated to a single subject. The final outputs

of the process are the subjects with the composite events they have undertaken. In the following

subsections we will describe the proposed methods for the event inference processing.

4.3. Event Representation

Uncertainty is intrinsic to event recognition. Video sensors cannot provide complete informa-

tion of an evolving scenario over time. In other words, the video analysis modules have certain

limitations with respect to providing correct visual information about a scene. During informa-

tion processing, there is uncertainty in representing the relations between two events of interest.

Nevertheless, an intelligent event management system should be able to represent and infer useful

information in the presence of uncertainty.

We first define a formal representation of atomic events.

Definition 3. In our event inference system, an atomic event E is represented by a tuple:

E = (eType, oID, date, time, location, source, reliaR, vFrame,m)

where eType is the descriptor of an event, e.g. “Female Boards the bus”; oID is the identity
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number, assigned by a video analytics module or sensor, for the detected event, e.g. “track id

12”; date is the date of the observed event; time is the time-stamp for the observed event; location

presents location information, e.g. “at seat 3” and “a trajectory”; source denotes the source from

which the event was detected; reliaR is the degree of reliability of the source; vFrame is the frame

of discernment that holds all its values; and m is a mass function on vFrame.

As previously mentioned, in a multi-subject environment, each event, be it atomic or compos-

ite, belongs to only one subject. Therefore, to provide a generic framework for the multi-subject

scenario that encompasses both atomic and composite events, we introduce the concept of an event

node which is defined as follows:

Definition 4. An event node n is a tuple:

n = (eType, pID, level, oID, date, time, location, source, reliaR, vFrame,m)

where eType, oID, date, time, location, source, reliaR, vFrame and m have the same meaning as

those in an atomic event; pID represents the identity number of the subject who is responsible for

the occurrence of the event; level indicates whether the event is Atomic or Composite.

From the above definition, it can be seen that there are two sorts of event nodes, distinguished

by level, either be atomic or composite. For the first type, an event node is an atomic event,

except that the event node has an additional element pID. For the second type, an event node

represents an event deduced from atomic events and/or composite events. pID is kept for the same

subject through the full sequence and associated to all the event nodes that the subject generates.

Therefore, a composite event node has the same pID as the atomic/composite events that it consists

of. Its date and time cover the period from the first event starts until the last event ends. For a

composite event node, oID, location, source and reliaR are omitted.

4.4. Composite Event Modelling

To represent the hierarchical structure of the relationships between composite and atomic

events, and the video analytic outputs, we propose an evidential network model for event com-

position. [57, 58].
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Definition 5. An evidential event network (EEN) is a graph of an upside-down tree EEN =

(ND, EG, MM), where:

- ND = {n1, ..., nN} is a set of event nodes;

- EG is a set of directional lines over ND, each of which represents the connection between

the nodes at two consecutive layers;

- MM is a set of multi-valued mappings Γ, each of which describes compatibility relations be-

tween the node at the layer where a line starts and the node at the layer where the connection

line ends.

Figure 3: A simple example of the general layout of evidential event networks: s1 - s5 represent sources that provide

evidence on atomic events; AE1 - AE4 represent event nodes at atomic level; CE1 and CE2 are the event nodes at

composite level.

Fig. 3 shows the layout of an example EEN, EEN = (ND, EG, MM) where

ND = {AE1, AE2, AE3, AE4, CE1, CE2},

EG = {AE1 −→ CE1, AE2 −→ CE1, AE3 −→ CE2, AE4 −→ CE2, CE1 −→ CE2},

MM = {Γ : AE1→ CE1,Γ : AE2→ CE1,Γ : AE3→ CE2,Γ : AE4→ CE2,Γ : CE1→ CE2}.

On an EEN the nodes are categorised into three levels. The top level contains a root node, and

at the bottom level we have many leaf nodes. Between these two levels, the middle level consists
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of several sub-layers. Over the three levels, there exist two types of nodes that are characterised by

the level at which a node sits. A leaf node at the bottom level can be an atomic event, such as AE1

in Fig. 3, which is detected by a sensor, e.g. a seat pressure sensor, or a video analytics module,

e.g. face detection and a tracker. A leaf node is always connected to the start of an edge. At the

other end of the edge, we have nodes from the middle level, such as CE1 in Fig. 3. Middle level

nodes are composite events, derived from the connected atomic event nodes. Composite event

nodes at this sub-level may be further connected together in order to form composite events at

higher sub-layers. On the topmost level of the EEN tree, there is a composite event node that is

formed by atomic and/or composite event nodes below, containing the events of interest to the end

users.

The hierarchical structure of an EEN reveals semantic relations between events, which are the

foundation of evidential event composition and inference developed below. This paradigm also

helps in preventing redundancy by reusing the recognised atomic and composite events across

EENs.

Uncertainty associated with each node is defined as a mass function m. For an atomic event,

denoted as a leaf node of the EEN, the mass value can be estimated from the accuracy of the com-

puter vision detection module which is its source. For a composite event, the mass distribution can

be derived through a composite event inference process as detailed in the following sub-section.

4.5. Composite Event Inference

At the bottom level of an EEN, the atomic events as leaf nodes are detected from outputs of

sensors or video analysis modules. Information on detected atomic event nodes can be used to

deduce information on higher-level nodes of composite events by propagating and aggregating

evidence of atomic events through the network using evidential reasoning operations.

Composite event inference starts from having detected atomic events from outputs of the com-

puter vision analysis modules and moving up within an EEN. The final output of the process is the

mass function on the composite event node in concern. Algorithm 1 details the inference process.
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Algorithm 1 Evidential event inference
Input: an event network EEN, mass functions of the detected atomic events

Output: mass function cast on composite event node at the top of the EEN

1: start from composite event nodes connected by only atomic event nodes at the start of a con-

nection (so called parent and child nodes);

2: while not reach the topmost node of the EEN do

3: translate mass functions of all child nodes into their parent node using Eq. 2;

4: combine the translated mass functions using Eq. 3;

5: end while

6: output the final mass function on the topmost event node.

4.6. Event-Subject Association

In multi-subject scenarios, it is usual that several subjects may be present at the same time,

resulting in highly ambiguous video analytic output. For example, it is quite common that a single

individual is assigned several IDs in complex scenes due to split/erroneous tracks produced by

the tracking system. Intuitively arranging all detected atomic events with the same object ID

assigned by video analytics into a composite event network EEN and directly making inference

on the composite event node at EEN’s root inevitably produces errors. To solve this problem, we

propose an atomic event association method by integrating the use of temporal relation modelling

in event composition and evidential reasoning in event inference.

The event association problem can be seen as the association of all related atomic events with

an individual under observation. The problem is two-fold: (i) partitioning a set of atomic events

into different groups, and (ii) selecting the most probably set of partitions among many possible

sets.

Definition 6. For a set of atomic events Ξ = {E1, . . . , E|Ξ|}, a partitioning S = {S 1, . . . , S |S |},

satisfies:

(1) S 1 ∪ · · · ∪ S |S | = Ξ (2) S i , ∅ (3) S i ∩ S j = ∅

where i, j = 1, . . . , |S | and i , j.
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It is possible that we do not have sufficient information to justify if an atomic event belongs to

one subject or another. This results in many possible choices to group those atomic events, i.e.

we have many ways for partitioning. In the cases where several possible sets of partitions exist, a

partition set may be considered more satisfying than others and is therefore selected as the most

optimum partitioning of the atomic events.

4.6.1. Event Partitioning

Partitioning atomic events aims to identify subjects who are responsible for the occurrences of

the atomic events, in order to infer the composite events undertaken by the subjects. We investigate

the intrinsic properties of ID assignments, as well as characteristics of atomic events, in order to

determine a possible partitioning. For this purpose, we introduce two functions Φ and Ψ.

Let PID = {pID1, . . . , pIDP} be a set of subject IDs, Ξ = {E1, . . . , E|Ξ|} (|Ξ| ≥ P) be a

set of atomic events, and S = {S 1, . . . , S |S |} be a partitioning of Ξ. For Ξ, we have Ω =

{e1,¬e1, . . . , e|Ξ|,¬e|Ξ|}, a set of possible states for all the atomic events related to a subject, whereas

ei means the occurrence of event Ei concerns the subject, and ¬ei does not.

Definition 7. A function Φ that assigns a partition S i to a subject ID pIDi is defined as:

Φ(pIDi) = S i (6)

where S i ⊆ S , i = 1, . . . , |S |.

A mapping function Φ represents the one-to-one mapping relation between a subject ID and a

partition of atomic events.

Definition 8. A function Ψ that maps each subject ID pIDi onto possible states of the atomic

events is defined as follows:

Ψ(pIDi) = ωi (7)

where ωi ⊂ Ω and @E j ∈ Ξ, s.t. {e j,¬e j} ⊆ ωi.

A mapping function Ψ represents the relation between a subject ID and the occurrence/non-

occurrence states of atomic events.
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There is a relation between an event E j and the sate set {e j,¬e j} based on the two mapping

function Φ and Ψ.
E j ∈ S i ⇔ e j ∈ ωi

E j < S i ⇔ ¬e j ∈ ωi

f or any i = 1, . . . , P, j = 1, . . . , m.

From Definition 7 and 8, we can see that event partitioning is actually about deciding the

state of each atomic event in relation to a subject ID. For a subject pIDi, we can have a set of

states of the detected atomic events, where the occurrence/non-occurrence state of an atomic event

indicates that pIDi is responsible for the happening of the atomic event. The restrictions of ωi ⊂ Ω

and {e j,¬e j} * ωi for any j ∈ [1, |Ξ|] means that, for a given subject ID, either the occurrence or

non-occurrence state of an atomic event holds.

To deduce the possible state of an atomic event for a subject, we consider the occurrence

constraints on atomic events concerning the subject. For a subject, the occurrence of an atomic

event can be affected by and/or has impacts on the occurrence of other atomic events. For example,

“I am reading a book at home at 9 pm” implies that “I cannot be playing basketball at a sports

centre at 9 pm on the same day”. Identifying the state of an atomic event from the already known

states of another atomic events is called event implication. This is managed by using constraint

rules, which determine the possible state of an atomic event with regard to other atomic events in

concern.

Definition 9. A constraint rule R is expressed as a tuple

R = (S tatement, Premise,Condition,Result)

where:

Statement is the description of the constraint rule that the premise set should obey.

Premise is a set of eTypes of which atomic events are prerequisites.

Condition is a conjunction of a set of conditions on the states of some atomic events currently

hold.
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Result is a set of the states of atomic events in relation to a subject, obtained by applying

the constraint rule.

In this work, we consider three types of constraints: temporal, spatial and common knowledge.

Since atomic events happen over a period of time, the temporal relation between atomic events

usually imply their states in relation to each other. For example, a man cannot play basketball and

watch TV at the same time. Similar to temporal constraints, spatial relations between atomic events

usually implies their states. For example, a man cannot be in two separate places at the same time.

A common knowledge constraint is derived from knowledge about the domain context. Consider

a man taking a bus, he cannot exit the bus without boarding the bus first. A constraint rule can

include one, two or all three types of constraints.

Condition in the form of formula presents temporal and spatial relations of existing atomic

events. In particular Allen’s temporal relation models are used to describe temporal relations

between two event instances. We abstract the Allen’s relations in Table 1, into a small set,

{b, a, m, mi, ol, eq}, as shown in Table 2.

Table 2: Mapping of the abstract and original Allen’s interval temporal relations

Abstract relation Allen’s relation(s)

b b

a a

m m

mi mi

ol o, oi, s, si, f , f i, d, di

eq eq

Rules are pre-requisite for finding states of atomic events. Rule R is used to search for events

that violate or obey constraints of the three types. Therefore, the state of an atomic event can be

identified in relation to a subject. Upon the states of all atomic events have been determined for

each subject, the partitions of atomic events can then be obtained.

To show what an event constraint rule looks like, consider two examples from the bus journey
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scenario. Assume that the atomic events are derived from the video data. From common sense

existentialism, we can have the following rules.

Example 1. A rule, ensuring that one person cannot undertake two different events at a time that

are detected in a bus scenario, can be defined as follows:

Rule R1

Statement: a person can not undertake two events at a time;

Premise: {PB, PM, PSIT, PSTD, PE}1 is a set of event types;

Condition: Ei.Time eq E j.Time ∧ ei ∈ Ψ(pIDp);

Result: ¬e j ∈ Ψ(pIDp).

Example 2. A rule, describing that a person cannot exit a bus before having boarded the bus, can

be defined as follows:

Rule R2

Statement: a person can only exit the bus after having boarded the bus;

Premise = {PB, PE} is a set of event types;

Condition: Ei.eType = PB ∧ E j.eType = PE ∧ Ei.Time a E j.Time ∧ ei ∈ Ψ(pIDp);

Result: ¬e j ∈ Ψ(pIDp).

Based on the relevance of the events detected by the video analytics and the non-relevance of

the events obtained by the implication rule, we attempt to find the optimum partitioning for the

set of atomic events. A partitioning of the set of atomic events is to identify the persons under

observation, each partition S i ⊂ S should satisfy the following principle:

Proposition 1. Suppose PID = {pID1, . . . , pIDP} is a set of possible person IDs for a set of atomic

events Ξ = {E1, . . . , E|Ξ|} (|Ξ| > P), Ω = {e1,¬e1, . . . , e|Ξ|,¬e|Ξ|} is a set of possible states for all

atomic events in Ξ, and Ψ is a mapping function that indicates the relation between subject ID and

the states of the given atomic events, then we have:

(i) Uniqueness: @ei ∈ Ω, s.t. ei ∈ Ψ(pIDu) ∩ Ψ(pIDv)), u, v = 1, . . . , P, u , v;

(ii) Completeness: Ψ(pID1) ∪ . . . ∪ Ψ(pIDP) = Ω.

1PB - person boarding, PM - person moving, PS IT - person sitting, PS T D - person standing, PE - person exiting.
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Proof. (i) Uniqueness: Assume that ∃ek ∈ Ω, s.t. ek ∈ Ψ(pIDu)∩Ψ(pIDv), u, v = 1, . . . P, u , v,

by Definition 8, we have Ek ∈ S u and Ek ∈ S v. Thus, S u ∪ S v , ∅. It violates the definition of

Partition in Definition 6. Thus, item (i) holds.

(ii) Completeness: We first prove that (Ψ(pID1) ∪ · · · ∪ Ψ(pIDP)) ⊂ Ω.

By Definition 8, we have Ψ(pIDi) ⊂ Ω (i = 1, . . . , P). Thus, it holds.

Then, we prove that Ω ⊂ (Ψ(pID1) ∪ · · · ∪ Ψ(pIDP)).

Let S 1 ∪ · · · ∪ S P be a possible partitioning of Ξ that indicates the set of possible person IDs

PID. By Definition 6, for any Ei ∈ Ξ, we have Ei ∈ ( S 1 ∪ · · · ∪ S |S |). Moreover, for any state

x, x ∈ Ω, we have ∃Ek ∈ Ξ, such that, x ∈ {ek, ¬ek}, where Ek ∈ ( S 1 ∪ · · · ∪ S |S |). Without

losing generality, let Ek ∈ S l, S l ∈ {S 1, . . . , S P}. Then, by Definition 6, for any S h (h , l), we

have S h ∪ S l = ∅ and Ek < S h. Thus, by Definition 8, we have ek ∈ Ψ(pIDl) and ¬ek ∈ Ψ(pIDh).

Clearly, we have x ∈ Ψ(pIDl) ∪ Ψ(pIDh) for any h , l. So, for any occurrence state x, if x ∈ Ω,

then x ∈ (Ψ(pID1) ∪ · · · ∪ Ψ(pIDP)). Thus, item (ii) holds.

The completeness states that any atomic event shall be included in a partition. The uniqueness

means that an atomic event should be in one and only one partition.

Following Proposition 1, we obtain all the possible partitions for a set of atomic events, indi-

cating the occurrence/non-occurrence states of atomic events that each subject ID holds. The next

step is to determine which partition minimises the inferred conflict.

4.6.2. Minimum Conflict Optimisation

After obtaining a possible set of partitions for all atomic events, we can assign each partition

to a possible person ID, i.e. we have an one-to-one mapping from S = {S t
1, . . . , S

t
P} to PIDt =

{pIDt
1, . . . , pIDt

P} 2. Therefore, we can obtain a set of event nodes for each possible person ID

defined in Definition 4. Afterwards, we apply EENs introduced in 4.4 to infer all the composite

events related to each possible person ID. However, if we have more than one possible partitioning

2Since there may be more than one possible partitioning for a set of atomic events, we use the superscript t to

distinguish them.
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of the atomic events, how can we choose the best from many possibilities? In this subsection, we

will solve this problem using the conflict factor in the Dempster’s rule of combination.

After having identified all the atomic events related to a specific subject, we feed the atomic

events into the EENs and derive the composite events. This is done by aggregating atomic events

through EENs using the Dempster’s Rule of Combination as proposed in the section 4.5. When

combining atomic event evidence, the conflict factor k in Eq. 3 is a measure of the amount of

conflict between the two pieces of evidence as described below.

(1) k = 0 totally agree;

(2) 0 < k < 1 agree to some extent;

(3) k = 1 totally disagree.

We use k to select the most probable partition of object IDs. Since each composite event for

a possible person ID accompanies a degree of conflict, we need to consider the aggregation effect

during the inference process for each possible partitioning.

Definition 10. Let S t
1 ∪ · · · ∪ S t

P be a possible partitioning of the set of atomic events Ξ =

{E1, . . . , E|Ξ|} and P be the total number of persons, where for each S t
p, we have S t

p = {Eu, . . . , Ev},

each element of which relates to the pth person. We therefore calculate the aggregation effect in

terms of a conflict factor when inferring composite events for each possible person, denoted as k̂t
p:

k̂t
p =

∑L
i=1 kt

i

L
(8)

where L is the total number of the composite events inferred for the pth person. kt
i is a conflict

factor obtained from the inference of the ith composite event, as k in Eq. 3.

For a conflict factor, the smaller its value is, the more confident support evidence has. From

this we can have the definition the most probable partitioning.

Definition 11. The dth possible partitioning is the most probable one for the set of object IDs if it

satisfies d = arg mint(kt), kt =
∑P

p=1 k̂t
p.
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After finding the most possible partition for the set of subject IDs, we retain a set of person IDs

based on Definition 7 and the event nodes that have been determined to them by using Definition

4.

Algorithm 2 summarises the event association process.

5. Experiments

In this section we describe an experiment in which the ability of our system to recognise the

following four composite events is measured:

• MBTS: Male boards, moves to a seat and sits down

• FBTS: Female boards, moves to a seat and sits down

• PCS: Person changes seat

• PEX: Person exits

We compare the performance of our system to a simple rules-based approach with no reasoning

and an adapted Bayesian reasoning system.

5.1. Environmental Set-Up

For the purposes of experimental evaluation we have hired a standard one-deck bus from North-

ern Ireland translink company, and run on a section of a local road. Fig. 4a is the air-view of the

road with the red line outlining the route and S prefixed numbers in black circles marking six stops.

The researchers from the ECIT centre were recruited as passengers. The bus saloon and the seat

plan are shown in Fig. 4b and 4c. In the experimets twenty seats in the first five rows which have

been numbered C1-C20 as shown are selected to occupy.

There are two cameras, a Panasonic camera WV-NP244 (camera A) to monitor the front door

of the bus, and an AXIS M31-R camera (camera B) to monitor the saloon area. Camera A is

positioned so that it can capture a passenger’s face as s/he boards the bus. Camera B pointed at the

saloon records movements of passengers.
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Algorithm 2 Event association
Input: Ξ = {E1, . . . , E|Ξ|}, a set of atomic events;

P the number of persons;

EEN the evidential event networks;

R constraint rules;

Output: S = {S 1, . . . , S P}, a set of atomic event partitions

Begin

1: Ω = {e1,¬e1, . . . , e|Ξ|,¬e|Ξ|};

2: initialise ω1 = · · · = ωP = Ω;

3: i = 1;

4: while not reach the end of Ξ do

5: Search ω1, . . . , ωP to find all ω j that hold events satisfying the constraints on Ei;

6: if possible then

7: Delete ei or ¬ei accordingly from ω j;

8: else

9: Create the options;

10: end if

11: i + +;

12: end while

13: Find all the combinations of elements in ωt
j by proposition 1;

14: Calculate k for each combination;

15: Select ωt holding the smallest k as the association;

16: Obtain the partitioning S t from ωt;

17: Output the partitioning S t.

End
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Figure 4: Experimental Environment: (a) route with six designated stops (red-colour highlights the route, black

coloured alphabetic-numbers present bus stops) (b) bus saloon (c) seat layout (numbered seats are used in experiments)

5.2. Dataset

We captured eight sequences of varying complexity. These are summarised in Table 3.

The first sequence presents a normal bus journey and consists of a male and female boarding

the bus, moving into the saloon to a seat and sitting down. After a short period they stand up, move

back down the gangway and exit. Fig. 5 shows the example frames of sequence 1.

(a) frame 190 (b) frame 1450 (c) frame 2304

Figure 5: Example frames of sequence 1

Sequences 2-3 present a journey in which a passenger changes seat whilst the bus is moving.

This is unusual and is indicative of a passenger who may feel threatened or one who is trying
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Table 3: Properties of the eight test sequences

Sequence No. of passengers No. of Frames Sequence No. of passengers No. of Frames

1 1 male and 1 female 2556 5 1 male and 1 female 1902

2 1 male and 1 female 1733 6 2 male and 1 female 5202

3 1 male and 1 female 2667 7 2 male and 2 female 5522

4 1 male and 1 female 2662 8 3 male and 3 female 10322

to threaten another passenger. These consist of a male and female entering the saloon and then

moving along the gangway to seats and sitting down as before. After a short period one of them

stands and moves to another seat in which they sit. At the next stop, both stand up move back

down the gangway and exit. With sequence 3, the example frames of the scenario are illustrated

in Fig. 6. Sequence 2 is the sequence used for the case study in the appendices.

(a) frame 1133 (b) frame 1458 (c) frame 1672

Figure 6: Example frames of sequence 3

Sequence 4 presents a type of threatening behaviour in which one passenger loiters near an-

other who is sitting down. In this a female boards and moves to a seat and sits down at a bus stop.

The male at the next stop enters and moves to beside the seat occupied by the female and loiters

in the gangway. At the following stop the female stands up and moves to the exit and exits. The

male then follows and moves to the exit and exits. Fig. 7 shows the example frames of sequence

4.

Sequence 5 presents a more threatening behaviour in which both passengers change seat. In

this sequence the female enters the bus and moves to seat and sits down. At the next stop the male

enters the bus and moves to a seat behind the female and sits down. The female then stands up
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(a) frame 459 (b) frame 1426 (c) frame 2423

Figure 7: Example frames of sequence 4

and moves to another seat and sits down. The male stands up and moves to the seat beside the

female and sits down. The female stands up and moves to the exit and exits. The male stands up

and moves to the exit and exits the bus. The example frames of the scenario are shown in Fig. 8.

(a) frame 351 (b) frame 1110 (c) frame 1380

Figure 8: Example frames of sequence 5

Sequence 6 consists of three passengers, 2 male and 1 female. Fig. 9 shows the example

frames of the sequence. In this the female enters and moves to seat C-10 and sits down. The first

male enters and moves to beside seat C-10 and loiters in the gangway. The female stands up and

moves to seat C-3 and sits down. The male sits down in seat C-10, vacated by the female. The

second male then enters and moves to beside seat C-3 and loiters in the gangway. The female

stands up, moves to the exit and exits. The second male then sits down in seat C-3, vacated by the

female. The first male then stands up and moves to the exit and exits. The second male stands up

and moves to the exit and exits.

Sequence 7 presents a complicated sequence consisting of two males and females with several

seat changes and also loitering incidents. The scenario is illustrated with the example frames

shown in Fig. 10. In this sequence the first male boards at the first stop and moves to seat C-19
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(a) frame 1500 (b) frame 2196 (c) frame 2659

Figure 9: Example frames of sequence 6

and sits down. At the second stop, the first female enters and moves to seat C-9 and sits down.

At the third stop, the second male boards and moves to the gangway, beside seat C-9, and loiters.

The first male stands and moves to gangway. The second male moves to seat C-19 vacated by the

first male and sits down. The first male moves to seat C-1 and sits down. At the fourth stop, the

second female enters moves to seat C-2 and sits down. She then stands, moves to seat C-3 and sits

down. At the next stop, the first male stands, moves to the exit and exits. The second male stands,

moves to the exit and exits. At the last stop, the second female then stand moves to the exit and

exits. Lastly, the first female stands moves to the exit and exits.

(a) frame 2748 (b) frame 3688 (c) frame 4041 (d) frame 4187

Figure 10: Example frames of sequence 7

The final sequence, 8, is the most complicated with six people involved, three each of male and

female gender. This again involves several seat changes and loitering incidents, and also consists

of two passenger passing each other in the gangway. The first female enters, moves to seat C-11

and sits down. At the next stop, the first male enters, moves to seat C-19 and sits down. At the

following stop, the second female enters, moves to seat C-9 and sits down. At the fourth stop, the

second male enters and moves along the gangway. Meanwhile, the first female stands and exits,
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and the second male sits down in seat C-18. At the following stop, the third female enters the bus

moves to seat C-2 and sits down. The second male moves to the window seat C-17. At the fifth

stop, the third male enters and moves to the gangway. At the same time, the first male stands and

passes the third male in the gangway. The first male exits and the third male sits down in seat

C-19. At the last stop, the third female stands and exits. The second female moves to the exit

and exits, and the second male moves to the gangway. The third male stands. The second male

exits, and the third male moves to the gangway, then the exit and exits. Fig. 11 shows the example

frames in this video sequence.

(a) frame 3358 (b) frame 3554 (c) frame 5917 (d) frame 6054

Figure 11: Example frames of sequence 8

5.3. Video Processes

For detecting passengers boarding and gender recognition we employ a camera pointing at the

door of the bus. The well-known Jones and Viola face detector is then applied to the acquired

video. The output of this is then input to a face-based gender classifier. This, firstly, projects the

face image onto a subspace derived using a principal component analysis of a training data set of

face images. The resulting feature is input to a support vector machine that has been trained on

approximately two thousand male and female face images. The resulting output is the probability

of the face as being either female or male (Fig. 12a and 12b).

For monitoring movements of passengers we employ a 3d tracker that consists of three stages.

Firstly, we apply the poselet detector to detect instances of humans in the video on a frame-by-

frame basis. These detections are then linked together to form tracks using a hierarchical linear

assignment procedure. In the first level, detections are linked on a frame-to-frame basis by linear

assignment. The resulting tracklets are then subsequently linked into tracks by a second level of
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(a) (b)

Figure 12: Gender classification

linear assignment (see [56] for further details). Fig. 13a shows an example of a male and a female

being tracked and their corresponding tracks projected into real-world space, Fig.13b.

(a) (b)

Figure 13: Outputs of the tracker: (a) image with tracker bounding boxes over the person in the scene (b) the corre-

sponding trackplots in real-world coordinates

For sitting and standing detection a 3D tracker is used to estimate the shoulder level of an

individual in real world space. When a passenger boards the bus, the passenger is inferred to be

standing and the 3d tracker outputs the passengers shoulder height. For subsequent frames the

ratio of the current measured shoulder height versus the original height on boarding is calculated.

If at any point after boarding the ratio goes below a threshold of 0.8, we infer that the passenger

has sat down. Whilst sitting, if the ratio goes above 0.95 we infer that the passenger has just stood.

These thresholds were empirically determined through trial and error. Fig. 14 shows an example
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of sitting and standing being detected.

Figure 14: Sitting and Standing detection

5.4. Evaluation

To evaluate the performance of our system in terms of the association of events with personal

IDs and composite event recognition, we use two measurements. The first of these is the accuracy

of the event association, A, which is given by

A =
CAE

NAE

where CAE is the number of atomic events in a sequence correctly associated with a personal ID,

and NAE is the total number of atomic events in the sequence. The second is the accuracy of the

composite event recognition, R, given by

R =
1

NCE

NCE∑
i=1

Ii

where Ii equals one if the ith recognised composite event in the sequence matches the ground truth,

and zero if not, and NCE is the total number of composite events in the sequence.

For the purposes of this each sequence is manually ground truthed both in terms of its atomic

events and its composite events. Fig. 15 shows the manual ground truth for sequence 5. From

the table we can see that both male and female have nine atomic events each consisting of the
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Figure 15: Manual ground truth for sequence 5.

sequence: PB, PM, PSIT, PSTD, PM, PSIT, PSTD, PM and PE. Similarly, these correspond to

three composite events: MBTS(FBTS), PCS and PEX. Each sequence was then input to our system

and the corresponding atomic events, their associated person IDs and the recognised composite

events output were recorded. Comparison of these against the ground truth enabled us to calculate

both A and R for each sequence.

5.5. Results and Analysis

Table 4 shows the variation in A with sequence number. Clearly, the event association works

very well for almost all the sequences apart from 8, almost above 90% on A for each sequence.

The last column in Table 5 shows the R values obtained for each sequence with our evidential

reasoning system. The event recognition achieves 100% of R for five sequences, 90% for one

sequence and 83% for three sequences, lower than 50 % for one sequence.

Analysis reveals that for sequences 5 and 7 the R values were less than 100%. For sequence 5

there lacked sitting detections and tracking. This resulted in the PM and PSIT atomic events being
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Table 4: Association results for the evidential reasoning system

sequence
number of atomic events

A (%)
Ground Truth Evidential Reasoning System

seq1 12 12 100

seq2 15 15 100

seq3 15 15 100

seq4 6 6 100

seq5 18 16 89

seq6 21 21 100

seq7 24 21 88

seq8 39 24 62

Table 5: Recognition results for rule-based approach, Bayesian approach, and our evidential reasoning approach

sequence
number of composite events (R)

Ground Truth rule-based Bayesian reasoning Evidential Reasoning

seq1 4 3(75%) 4(100%) 4(100%)

seq2 5 4(80%) 2(40%) 5(100%)

seq3 5 2(40%) 5(100%) 5(100%)

seq4 2 0(0%) 2(100%) 2(100%)

seq5 6 5(83%) 4(67%) 5(83%)

seq6 7 3(43%) 7(100%) 7(100%)

seq7 10 1(10%) 7(70%) 9(90%)

seq8 13 2(15%) 5(38%) 6(46%)
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incorrect and undetected, which in turn resulted in the composite event MBTS being incorrect.

This sequence contains six composite events, the resulting R value was 83%. For sequence 7 there

were two atomic events being missed in association to a passenger resulting a composite event,

PCS, being undetected. Overall, the sequence contains ten composite events which explains the

value of 90% for R.

The sequence for which the system performed most poorly was 8, the six person scenario, with

a value of R = 46%. Interestingly, this was also the sequence for which A was lowest at 62%. The

ground truth and the system output for this sequence are shown in the tables in Fig. 16.

Figure 16: Ground truth and system output for sequence 8.

Here we can see from the ground truth table that there are in total thirteen composite events:

FBTS11 and PEX for person P1; MBTS19 and PEX for person 2; FBTS9 and PEX for person P3;

MBTS18, PCS17, and PEX for person P4; FBTS2 and PEX for person P5; MBTS19 and PEX

for person P6. However, only six of the events are correctly recognised, i.e. R=6/13=46%. In
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Table 6: ten atomic events detected for sequence 8

Event idx Event ID Event title Start frame End frame StartX StartY EndX EndY

E121 -67 gender 3835 3835 0 0 0 0

E122 786 movement id 786 3839 3857 -70 145 -71 144

E123 796 movement id 796 3879 3900 -69 138 -68 138

E124 797 movement id 797 3880 3892 73 130 80 131

E125 808 movement id 808 3911 3919 72 110 70 108

E126 826 movement id 826 3954 3964 73 117 74 116

E127 829 movement id 829 3962 4154 26 -205 27 -195

...

E139 -72 Seat Sensor ON 10 4123 4123 0 0 0 0

the case of the composite event PEX, only for person 6, it is correctly recognised; for others, the

composite event was mistakenly mixed up, that is the PEX of P1 was mistakenly assigned to P4,

P2 to P1, P3 to P5, P4 to P3, and P5 to P2. Also for person 2 the composite event PCS6 was

incorrectly recognised, namely the male was mistakenly recognised as sitting in seat 6 when in

fact he had already exited the bus. The most serious mistakes were made on person P4. For the

person the composite event MBTS18 was incorrectly recognised, the composite event PCS17 was

not detected in addition to mistakenly assigned composite event PEX. To understand this, Table 6

shows a segment of eighteen atomic events that were detected: From table 6 we can see that event

E127 is of type PM, in fact corresponding to the male moving up the Gangway towards seat 18,

and the female moving back to the exit and exiting. On the left side of Fig. 17 are two images

taken from sequence 8 which are a snapshot of the atomic event. Also shown in Fig. 17 right side,

are the corresponding track on ground floor, for the PM event E127.
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Figure 17: Sequence 8 - top-left: image of male moving close to seat 18; bottom-left: image of female moving away

from seat 11, towards the bus door; right: trajectory corresponding to PM event E127 detected by a tracker - TRACK

829.

The partitioning at this point is as follows:

ω1 = {e1,¬e2,¬e3, e4,¬e5,¬e6, e7, e8, e9,¬e10,¬e11, e12,¬e13, e14, . . . , e16,

¬e17, e18,¬e19, . . . ,¬e22, e23,¬e24,¬e25, e26, e27,¬e28,¬e29, e30, . . . , e35,

¬e36, e37,¬e38, e39, e40,¬e41, . . . ,¬e43, e44,¬e45, e46,¬e47, e48, e49,¬e50, . . . ,¬e76,

e77, e78,¬e79, . . . ,¬e86, e87,¬e88, e89,¬e90, e91,¬e92, e93, e94, e95,¬e96, e97,

¬e98,¬e99, e100,¬e101, . . . ,¬e105, e106,¬e107, e108,¬e109, e110,¬e111, . . . ,¬e113,

e114, . . . , e117,¬e118, e119, ,¬e120, . . . ,¬e123, e124, e125, e126}

ω2 = {¬e1, . . . ,¬e27, e28, e29,¬e30, . . . ,¬e46, e47,¬e48, . . . ,¬e51, e52, e53,¬e54, . . . ,¬e67,

e68,¬e69, . . . ,¬e74, e75,¬e76, . . . ,¬e126}
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ω3 = {¬e1, . . . ,¬e53, e54,¬e55, e56,¬e57, e58,¬e59, e60, . . . , e67,¬e68, . . . ,¬e70,

e71, . . . , e73,¬e74, . . . ,¬e81, e82,¬e83,¬e84, e85, e86,¬e87, . . . ,¬e95,

e96,¬e97, . . . ,¬e100, e101, e102,¬e103, e104, e105,¬e106, . . . ,¬e108, e109,¬e110,

e111, . . . , e113,¬e114, . . . ,¬e119, e120,¬e121, e122, e123,¬e124, . . . ,¬e126}

ω4 = {¬e1, . . . ,¬e120, e121,¬e122,¬e123,¬e124, . . . ,¬e126}

When E127 is detected the system has ruled out partitions ω2, ω3 it should be assigned. As its

starting half satisfies partition ω4, the ending half satisfies partition ω1, the system fails to assign

it to any of them. Subsequently at E139 the system incorrectly assigns to ω4. Furthermore, the

system fails to correctly assign events to partitions ω1 and ω4. Another similar mixed tracker at

E214, a type of PM, coresponding to person P2 moving to the exit and person P5 staying on seat 2,

results more incorrectly recognised composite events. For this type of incorrect atomic events, the

system can not reason to correct assignments. However, when more atomic events are detected,

the system can revise the beliefs of assigning them, therefore correct partitions previously made.

5.6. Comparison

A simple rule-based approach is chosen as the based line for comparison. In [59] Ma et al.

proposed a rule based approach to inferring events of interest by applying rules to combine existing

events. Their method employs inference rules to capture new situations, than modifying custom

code, hence ensuring a flexible solution for evolving situations. It was initially developed for

handling single subject scenarios. It was then adapted by the introduction of linking rules to

work on multiple subject environments. The rules are used to link atomic events derived from

video analytics by measuring the distance in space or time between two atomic events. Though

their inference rules consider imprecision of atomic events derived from video anayltics, both

inference rules and linking rules make the assumption that the occurrence of each atomic event

can be observed, which is not always true considering imperfect video anayltics, in particular in

a dynamic environment such as on a moving bus platform. When linking atomic events, their

involvements in composite event inference are not considered at all. Our evidential reasoning

approach powers with the functionality for handling these problems.
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We employ DS theory to represent uncertainty in event modelling and event reasoning. DS the-

ory is the generalised form of probability theory. We therefore make a comparison with Bayesian

approach, by adapting the evidential reasoning system with probabilities instead of mass functions,

in recognising composite events from the set of atomic events associated to a person. Bayesian

approach lacks abilities of handling the problem of incomplete information in event reasoning.

The R values obtained for each sequence with the rule-based approach and Bayesian approach

are shown in the third and fourth columns respectively, together with those by our evidential

reasoning system, in Table 5.

6. Conclusions

In this paper, we propose a novel approach for detection and recognition of composite events on

video sequences where multiple subjects present. First, video-analytics and senor measurements

are generated in the shape of events. Second, event association and composition are performed

by combining the techniques of temporal relation representation, DS theory of evidence and hi-

erarchical network modelling. Our approach can be used to correctly recognise composite events

while separating atomic events of multiple subjects with the ability of handling the uncertainty in

the video analytics.

Our framework has been evaluated on a real bus environment. The results show the promising

performance of the proposed framework. Comprehensive tests on more video data collected from

applications and comparison against state-of-art techniques are being performed as future work.
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Appendix A. Constraint Rules

Table A.1: List of rules for partitioning

Golden rule: R0

Statement: An atomic event can not be carried out by more than one person.

Premise: Ei.eType ∈ {PB, PM, PS IT, PS T D, PE}

Condition: Ei ∈ S m ∧ ei ∈ ωm

Result: Ei < S n, ¬ei ∈ ωn, n , m

Constraint rule: R1

Statement: If only one person presents in a period of time, all atomic events can

only be undertaken by the person.

Premise: Ei.eType ∈ {PB, PM, PS IT, PS T D, PE}

Condition: S = S 1 ∧ Ω = ω1

Result: Ei ∈ S 1, ei ∈ ω1

Constraint rule: R2

Statement: A person can only aboard a bus once in a period of time.

Premise: Ei.eType ∈ {PB} ∧ E j.eType ∈ {PB}

Condition: Ei ∈ {S m} ∧ ei ∈ ωm

Result: E j < S m, ¬e j ∈ ωm

Constraint rule: R3

Statement: A person can only hold one track at a time

Premise: Ei.eType ∈ {PM}, E j.eType ∈ {PM}

Condition: Ei.time ol E j.time ∧ Ei ∈ S m ∧ ei ∈ ωm

Result: E j ∈ S n, e j ∈ ωn, n , m

Constraint rule: R4

Statement: One person can only appear at one place at a time.

Premise: Ei.eType, E j.eType ∈ {PB, PM, PS IT, PS T D, PE}

Condition: Ei.location , E j.location ∧ Ei.time ol E j.time ∧ Ei ∈ S m ∧ ei ∈ ωm
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Table A.1: List of rules for partitioning

Result: E j ∈ S n, e j ∈ ωn, n , m

Constraint rule: R5

Statement: Two atomic events with the same object ID are carried out by a same

person.

Premise: Ei.eType, E j.eType ∈ {PB, PM, PS IT, PS T D, PE}

Condition: Ei.oID = E j.oID∧ Ei ∈ S m ∧ ei ∈ ωm

Result: E j ∈ S m, e j ∈ ωm

Constraint rule: R6

Statement: Any atomic event happens before a person boards the bus is carried out

by other persons.

Premise: Ei.eType ∈ PB, E j.eType ∈ {PB, PM, PS IT, PS T D, PE}

Condition: E j.time b Ei.time ∧ Ei ∈ S m

Result: E j ∈ S n, e j ∈ ωn, n , m

Constraint rule: R7

Statement: Any atomic event happens after a person has exited the bus is carried

out by other persons.

Premise: Ei.eType ∈ PE, E j.eType ∈ {PB, PM, PS IT, PS T D, PE}

Condition: E j.time a Ei.time ∧ Ei ∈ S m

Result: E j ∈ S n, e j ∈ ωn, n , m

Constraint rule: R8

Statement: One person can not carry out two different atomic events at a time.

Premise: Ei.eType, E j.eType ∈ {PB, PM, PS IT, PS T D, PE}

Condition: E j.time ol Ei.time ∧ Ei.eType , E j.eType ∧ Ei ∈ S m

Result: E j ∈ S n, e j ∈ ωn, n , m
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Appendix B. Case Study

To help illustrate how our system works, we describe here an application scenario. In this

scenario, two subjects, Alice and Bob, take a bus journey. The bus is a standard single deck bus

used for public transport. For recording, two cameras are deployed, one pointing at the front door

of the bus, the other at the saloon.

Scenario 1. At a bus stop, Bob boards the bus and moves to a seat on a middle row, and sits down

(Fig. B.1a). Alice boards the bus at the next stop and moves to a window seat on the first row,

left-hand side, and sits down (Fig. B.1b). Whilst Bob stands up and moves to the seat next to Alice

and sits down (Fig. B.1c). At the following stop, Alice stands up and moves to the door and alights

the bus (Fig. B.1d). Then Bob stands up and moves to the exit and exits the bus.

(a) (b)

(c) (d)

Figure B.1: Four instances of the scenario sequence: (a) female enters (b) female seats and male stands up, moves (c)

male and female seated (d) female exits
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For the purposes of our application scenario, we are interested in the following atomic events:

PB = “male or female boards bus”, PM = “person moves from X to Y”, PSIT = “person sits”,

PSTD = “person stands” and PE = “person exits”. The composite events we want to infer from

atomic events are: PBTS=“person boards bus and transits to seat”, PCS=“person changes seat”,

and PEX=“person exits bus”.

Appendix B.1. Atomic Event Detection

An atomic event E is represented by tuple (eType, oID, date, time, location, source, reliaR,

vFrame, m) as in Definition 3. eType is the type of the atomic event, such as PB and PM. oID is

the identify number assigned by detection. date is the date on which the atomic event has detected.

time is an interval of its starting time and ending time. location is the context of spaces the atomic

event has covered. source shows which analytic module has provided the detection. reliaR is the

reliability of the source. vFrame is the frame of discernment that holds all values that an atomic

event of the type can have. For the four types of atomic events, we have

PB : vFrame = {MB, FB};

PM : vFrame = {MS 1, . . . , MS 20, MGW, MDR};

PS IT : vFrame = {S IT1, . . . , S IT20, ¬S IT };

PS T D : vFrame = {S T D1, . . . , S T D20, ¬S T D};

PE : vFrame = {EX,¬EX}.

m is the mass function obtained from a detection.

For the first type of atomic events we employ a camera pointing at the door of the bus. The

well-known Jones and Viola face detector is then applied to the acquired video. The output of this

is then input to a face-based gender classifier. The resulting output is the probability of the face as

being either male or female. Thus, for example, we might have p(male) = 0.7 and p( f emale) =

0.3. Based on our training classification accuracy, the module is deemed to have a reliability of r
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= 0.9. Thus, from Eq. 4 we obtain the corresponding mass distribution,

m({male}) = 0.7 ∗ 0.9 = 0.63, m({ f emale}) = 0.3 ∗ 0.9 = 0.27,

m(Θ) = 1 − m({male}) − m({ f emale}) = 0.1.

As the camera is pointing at the entrance, when we detect a male or female face in its field-of-view,

we infer from this either MB or FB, respectively.

m({MB}) = 0.63, m({FB}) = 0.27, m(Θ) = 0.1.

For the PM event we employ a 3d tracker onto the acquired video from the camera pointing at

the saloon of the bus. The output of the tracker is a trajectory from which we determine the start-

point and the end-point. We then calculate the distance from these points to several schematic

locations nearby. These schematic locations consist of all seats, gangway, and door exit. We then

use the distance of the tracker to a two closest schematic locations to calculate the mass values for

the PM event. For example, for a tracker the distances of its endpoint to the two closest schematic

locations, seat 5 and 6, are calculated as dist(seat5) = 78 and dist(seat6, gangway) = 26. The

corresponding mass functions are then given by

m({MS 5}) = 26/104 ∗ 0.8 = 0.2,

m({MS 6, MGW}) = 78/104 ∗ 0.8 = 0.6, m(Θ) = 0.2

where the reliability of 0.8 is derived from the accuracy measurements of the tracker as reported

in [56].

For the PSIT and PSTD events a 3D tracker is used to estimate the shoulder level of an individ-

ual in real world space. The resulting output is sitting if the shoulder level goes below a threshold,

otherwise standing. PSIT and PSTD are paired together. That means, for example, if there is a

SIT9, there should be a STD9 afterwards. Based on our training accuracy, the module is deemed

to have a reliability of r = 0.9. Thus, from Eq. 4 we obtain the corresponding mass distribution,

m({S IT9}) = 1.0 ∗ 0.9 = 0.9, m(Θ) = 1 − m({S IT9}) = 0.1.
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From the outputs of video analytics, twenty-six atomic events are detected for the sequence of

scenario 1. The details of oID, eType, time in the format of an interval [Start frame, End frame],

and mass function m, are given in Table B.1. For simplicity, the details of date, location, source,

reliaR are not listed. vFrame has given at the beginning of this sub-section.

Table B.1: List of atomic events

Event oID eType Start frame End frame Mass function

E1 -2 PB 55 55 m({MB}) = 0.81,m(Θ) = 0.19

E2 3 PM 194 259 m({MS 14}) = 0.43,m({MS 11,MGW}) = 0.37,m(Θ) = 0.2

E3 -4 PB 769 769 m({MB}) = 0.09,m({FB}) = 0.81,m(Θ) = 0.1

E4 14 PM 894 906 m({MDR}) = 0.72,m({MS 3,MGW}) = 0.08,m(Θ) = 0.2

E5 -5 PSIT 896 896 m({S IT2}) = 0.9,m(Θ) = 0.1

E6 -6 PSTD 927 927 m({S T D2}) = 0.9,m(Θ) = 0.1

E7 -7 PSIT 948 948 m({S IT2}) = 0.9,m(Θ) = 0.1

E8 18 PM 948 950 m({MS 4}) = 0.64,m({MS 3,MGW}) = 0.16,m(Θ) = 0.2

E9 -8 PSIT 950 950 m({S IT4}) = 0.9,m(Θ) = 0.1

E10 18 PM 950 1062 m({MS 4}) = 0.45,m({MS 8}) = 0.35,m(Θ) = 0.2

E11 20 PM 961 1062 m({MS 3,MGW}) = 0.62,m({MS 4}) = 0.18,m(Θ) = 0.2

E12 -9 PSTD 977 977 m({S T D2}) = 0.9,m(Θ) = 0.1

E13 -11 PSIT 1062 1062 m({S IT3}) = 0.9,m(Θ) = 0.1

E14 18 PM 1062 1361 m({MDR}) = 0.55,m({MS 3,MGW}) = 0.25,m(Θ) = 0.2

E15 20 PM 1062 1359 m({MS 3,MGW}) = 0.58,m({MS 4}) = 0.22,m(Θ) = 0.2

E16 44 PM 1170 1184 m({MS 7,MGW}) = 0.64,m({MS 8}) = 0.16,m(Θ) = 0.2

E17 -13 PSTD 1359 1359 m({S T D4}) = 0.9,m(Θ) = 0.1

E18 20 PM 1359 1577 m({MDR}) = 0.54,m({MS 3,MGW}) = 0.26,m(Θ) = 0.2

E19 -15 PE 1370 1370 m({EX}) = 0.8,m(Θ) = 0.2

E20 66 PM 1428 1438 m({MS 9}) = 0.47,m({MS 13}) = 0.33,m(Θ) = 0.2

E21 68 PM 1445 1455 m({MS 9}) = 0.49,m({MS 13}) = 0.31,m(Θ) = 0.2

E22 -16 PSIT 1448 1448 m({S IT5}) = 0.9,m(Θ) = 0.1

E23 82 PM 1516 1531 m({MS 9}) = 0.45,m({MS 13}) = 0.35,m(Θ) = 0.2

E24 -19 PSTD 1578 1578 m({S T D5}) = 0.9,m(Θ) = 0.1

E25 -18 PSTD 1578 1578 m({S T D3}) = 0.9,m(Θ) = 0.1

E26 -20 PE 1586 1586 m({EX}) = 0.8,m(Θ) = 0.2
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Appendix B.2. Evidential Event Networks

Three categories of composite events are concerned: Male/Female Boards bus and Transits

to Seat x(PBTS: MBTS/FBTS), Person Changes Seat (PCS), Person Exits bus (PEX). Composite

events are consisted of atomic events. For the case study, we can construct three evidential event

networks: EENPBTS , EENPCS and EENPEX, presenting the hierarchical structures of the composite

events with their atomic events. Fig. B.2a∼B.2c illustrate three EEN respectively.

(a) PBTS (b) PCS (c) PEX

Figure B.2: Three evidential event networks

By Definition 5, we have EENPBTS=(NDPBTS , EGPBTS , MMPBTS ), EENPCS=(NDPCS , EGPCS ,

MMPCS ), and EENPeX=(NDPEX, EGPEX, MMPEX). ND is a set of event nodes, NDPBTS=={AE1,

AE2, AE3, CE1}, NDPCS={AE2, AE3, CE2}, NDPEX={AE2, AE4, CE3}. An atomic event node

is same as an atomic event in Appendix B.1, except that it has attribute pID indicating to whom

it concerns, level telling it is an atomic event (or a composite event for a composite event node).

For eample, AE1.pID = 1, AE1.level = ‘atomic′. For a composite event node, its date is same as

its children at the atomic level, and its time interval is decided by the start time of the first child

node and the end time of the last child node. oID, location source and reliaR are not required for

an composite event node. For the case study, the details of atomic events have been given above.
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The frame of discernment for a composite event node is as follows.

PBTS : vFrame = {MBTS 1, . . . , MBTS 20, MBTGW,

FBTS 1, . . . , FBTS 20, FBTGW, ¬PBTS }

PCS : vFrame = {PCS 1, . . . , PCS 20, ¬PCS }

PEX : vFrame = {PEX, ¬PEX}

Each arc of EG in an evidential event network represents the relationship between one node

to another, which can be represented by a multivalued mapping in MM. Table B.2 shows the

multivalued mappings for the case study.

Table B.2: List of multi-valued mappings

Relationship multivalued mapping

AE1→ CE1 Γ({MB}) = {MBTS 1, . . . , MBTS 20, MBTGW},
Γ({FB}) = {FBTS 1, . . . , FBTS 20, FBTGW}, Γ(ΘAE1) = ΘCE1

AE2→ CE1 Γ({MS 1}) = {MBTS 1, FBTS 1}, . . . Γ({MS 20}) = {MBTS 20, FBTS 20},

Γ({MGW}) = {MBTGW, FBTGW}, Γ({MDR}) = {¬PBTS }, Γ(ΘAE2) = ΘCE1

AE3→ CE1 Γ({S IT1}) = {MBTS 1, FBTS 1}, . . . Γ({S IT20}) = {MBTS 20, FBTS 20},
Γ({¬S IT }) = {¬PBTS }, Γ(ΘAE3) = ΘCE1

AE2→ CE2 Γ({MS 1}) = {PCS 1}, . . . Γ({MS 20}) = {PCS 20},

Γ({MGW}) = {¬PCS }, Γ({MDR}) = {¬PCS }, Γ(ΘAE2) = ΘCE2

AE3→ CE2 Γ({S IT1}) = {PCS 1}, . . . Γ({S IT20}) = {PCS 20},
Γ({¬S IT }) = {¬PCS }, Γ(ΘAE3) = ΘCE2

AE2→ CE3 Γ({MS 1}) = {¬PEX}, . . . Γ({MS 20}) = {¬PEX},
Γ({MGW}) = {¬PEX}, Γ({MDR}) = {PEX}, Γ(ΘAE2) = ΘCE3

AE4→ CE3 Γ({EX}) = {PEX}, Γ({¬EX}) = {¬PEX}, Γ(ΘAE4) = ΘCE3

Appendix B.3. Atomic Event Association

Now twenty-six derived atomic events are going to be partitioned into two groups, which are

associated to two passengers respectively. Let Ξ = {E1, . . . , E26} andΩ = {e1, ¬e1, . . . , e26, ¬e26}.

The goal of event association is to have S = S 1 ∪ S 2, S 1 ∩ S 2 = ∅, that also means to have
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ω1 ⊂ Ω and ω2 ⊂ Ω, satisfying Proposition 1. The association goes through: partitioning Ξ by

applying the constraint rules, and if more than two partitionings arises, optimisation by selecting

the most probable partitioning with a minimum conflict factor.

With domain knowledge, we have constraints to guide the association of the atomic events.

The specific constraints being applied to the scenario example are listed in Table A.1 of Appendix

A.

Stage 1 - Partitioning

Start from E1 until E26; Golden Rule R0 always applies;

(1-2) E1.eType = PB, E2.eType = PM

Condition: S = S 1

Apply: R1

Results: e1, e2 ∈ ω1

Partitioning:

ω1 = {e1, e2, e3, ¬e3, . . . , e26, ¬e26}

(3) E3.eType = PB

Condition: E3.eType = PB; e1, e2 ∈ ω1

Apply: R2 and R6

Results: initialise ω2 = Ω, e3 ∈ ω2, ¬e3 ∈ ω1; ¬e1, ¬e2, ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, e4, ¬e4, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e4, . . . , e26, ¬e26}

(4) E4.eType = PM

Condition: ω = ω1∪ω2; E4.eType = PM, E4.location− E2.location > τlocation, E4.location −

E3.location < τlocation, e2 ∈ ω1, e3 ∈ ω2

Apply: R3

49



Results: ¬e4 ∈ ω1, e4 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, ¬e4, e5, ¬e5, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, e5, ¬e5, . . . , e26, ¬e26}

(5) E5.eType = PS IT

Condition: ω = ω1 ∪ ω2; E5.eType = PM, E5.location − (E2, E4).location > τlocation,

e2 ∈ ω1, e3 ∈ ω2

Apply: R4

Results: ¬e5 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1, e2, ¬e3, ¬e4, ¬e5, e6, ¬e6, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, e6, ¬e6, . . . , e26, ¬e26}

(6) E6.eType = PS T D

Condition: ω = ω1 ∪ ω2; E6.eType = PS T D, E6.location = E5.location, e5 < (ω1 ω2

Apply: R4

Results: ¬e6 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1, e2, ¬e3, ¬e4, ¬e5, ¬e6, e7, ¬e7, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, e7, ¬e7, . . . , e26, ¬e26}

(7) E7.eType = PS IT

Condition: same as in (5)

Apply: R4

Results: ¬e7 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1, e2, ¬e3, ¬e4, ¬e5, ¬e6, ¬e7, e8, ¬e8, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, ¬e8, . . . , e26, ¬e26}
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(8) E8.eType = PM

Condition: ω = ω1∪ω2; E8.eType = PM, E8.location− E2.location > τlocation, E8.location −

E4.location < τlocation, e2 ∈ ω1, e4 ∈ ω2

Apply: R4

Results: ¬e8 ∈ ω1, e8 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, ¬e4, ¬e5, . . . , ¬e8, e9, ¬e9, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, ¬e9, . . . , e26, ¬e26}

(9) E9.eType = PS IT

Condition: ω = ω1 ∪ ω2; E8.eType = PM, E9.eType = PS IT , E8.time = E9.time,

E8.location = E9.location; ¬e8 ∈ ω1, e8 ∈ ω2

Apply: R4

Results: ¬e9 ∈ ω1, e9 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e9, e10, ¬e10, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e10, . . . , e26, ¬e26}

(10) E10.eType = PM

Condition: ω = ω1 ∪ ω2; E8.oID = E10.oID, ¬e8 ∈ ω1, e8 ∈ ω2

Apply: R5

Results: ¬e10 ∈ ω1, e10 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e11, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, e11, ¬e11, . . . , e26, ¬e26}

(11) E11.eType = PM

Condition: ω = ω1 ∪ ω2; E11.eType = PM; E2.eType = PM, E2.location = E11.location;
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E10.eType = PM, E10.time ol E11.time; e2 ∈ ω1, e10 ∈ ω2

Apply: R4 and R5

Results: e11 ∈ ω1, ¬e11 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, e12, ¬e12, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, e12, ¬e12, . . . , e26, ¬e26}

(12) E12.eType = PS T D

Condition: same as in (6)

Apply: same as in (6)

Results: ¬e12 ∈ ω1, ¬e12 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e13, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, e13, ¬e13, . . . , e26, ¬e26}

(13) E13.eType = PS IT

Condition: ω = ω1 ∪ ω2; E11.eType = PM, E13.eType = PS IT , E11.time = E13.time,

E11.location = E13.location; e11 ∈ ω1, ¬e11 ∈ ω2

Apply: R4

Results: e13 ∈ ω1, ¬e13 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, e14, ¬e14, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e14, . . . , e26, ¬e26}

(14) E14.eType = PM

Condition: same as in (10)

Apply: R5
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Results: ¬e14 ∈ ω1, e14 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e15, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, e15, ¬e15, . . . , e26, ¬e26}

(15) E15.eType = PM

Condition: ω = ω1 ∪ ω2; E15.oID = E11.oID, e11 ∈ ω1, ¬e11 ∈ ω2

Apply: R5

Results: e15 ∈ ω1, ¬e15 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, e16, ¬e16, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e15, e16, ¬e16, . . . , e26, ¬e26}

(16) E16.eType = PM

Condition: ω = ω1∪ω2; (E16, E15, E16).eType = PM, (E14, E15).time ol E16.time, e15 ∈ ω1,

e14 ∈ ω2

Apply: R3

Results: ¬e16 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, e17, ¬e17, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e15, ¬e16, e17, ¬e17, . . . , e26, ¬e26}

(17) E17.eType = PS T D

Condition: ω = ω1 ∪ ω2; E17.eType = PS T D, E9.eType = PS IT , E17.location =
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E9.location, ¬e9 ∈ ω1, e9 ∈ ω2

Apply: R4

Results: ¬e17 ∈ ω1, e17 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, ¬e17, e18, ¬e18, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13, e14,

¬e15, ¬e16, e17, e18, ¬e18, . . . , e26, ¬e26}

(18) E18.eType = PM

Condition: same as in (15)

Apply: R5

Results: e18 ∈ ω1, ¬e18 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, ¬e17, e18,

e19, ¬e19, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e15, ¬e16, e17, ¬e18, e19, ¬e19, . . . , e26, ¬e26}

(19) E19.eType = PE

Condition: ω = ω1 ∪ ω2; E19.eType = PE, E18.eType = PM, E18.time olE19.time,

E17.eType = PM, E17.location − E19.location < τ; e18 ∈ ω1, e17 ∈ ω2

Apply: R4

Results: ¬e19 ∈ ω1, e19 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, ¬e17,

e18, ¬e19, e20, ¬e20, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e15, ¬e16, e17, ¬e18, e19, e20, ¬e20, . . . , e26, ¬e26}
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(20) E20.eType = PM

Condition: ω = ω1 ∪ ω2; E20.eType = PM, E18.eType = PM, E18.time olE20.time,

E19.eType = PE; e18 ∈ ω1, e19 ∈ ω2

Apply: R3 and R7

Results: ¬e20 ∈ (ω1, ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, ¬e17, e18,

¬e19, ¬e20, e21, ¬e21, . . . , e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e15, ¬e16, e17, ¬e18, e19, ¬e20, e21, ¬e21, . . . , e26, ¬e26}

(21-24) (E21, E23).eType = PM, E22.eType = PS IT , E24.eType = PS T D

Condition: same as in (20)

Apply: R3 and R7

Results: (¬e20, . . . , ¬e24) ∈ (ω1, ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, ¬e17, e18,

¬e19, . . . , ¬e24, e25, ¬e25, e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e15, ¬e16, e17, ¬e18, e19, ¬e20, . . . , ¬e24, e(25), ¬e25, e26, ¬e26
}

(25) E25.eType = PS T D

Condition: ω = ω1 ∪ ω2; E25.eType = PS T D, E13.eType = PS IT , E25.location =

E13.location, e13 ∈ ω1, E19.eType = PE, e19 ∈ ω2

Apply: R4 and R7

Results: e25 ∈ ω1, ¬e25 ∈ ω2
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Partitioning:

ω1 =
{
e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, ¬e17, e(18),

¬e19, . . . , ¬e24, e25, e26, ¬e26}

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e13,

e14, ¬e15, ¬e16, e17, ¬e18, e19, ¬e20, . . . , ¬e25, e26, ¬e26}

(26) E26.eType = PE

Condition: ω = ω1∪ω2; E26.eType = PE, E25.eType = PS T D, E25.location−E26.location <

τlocation, e25 ∈ ω1, E19.eType = PE, e19 ∈ ω2

Apply: R7

Results: e26 ∈ ω1, ¬e26 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14, e15, ¬e16, ¬e17, e18,

¬e19, . . . , ¬e24, e25, e26}

ω2 =
{¬e1, ¬e2, e3, e4, ¬e5, ¬e6, ¬e7, e8, e9, e10, ¬e11, ¬e12, ¬e(13),

e14, ¬e15, ¬e16, e17, ¬e18, e19, ¬e20, . . . , ¬e26}

In this scenario, there is no multiple partitionings raised. Therefore, the optimisation does not

apply.

The final results of atomic event association are as follows.

S = S 1 ∪ S 2,

S 1 = {E1, E2, E11, E13, E15, E18, E25, E26},

S 2 = {E3, E4, E8, E9, E10, E14, E17, E19}.
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ω = ω1 ∪ ω2,

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11, ¬e12, e13, ¬e14,

e15, ¬e16, ¬e17, e18, ¬e19, . . . , ¬e24, e25, e26} ,

ω2 = {¬e1, ¬e2, e3, e4, ¬e5, . . . , ¬e7, e8, e9, e10,

¬e11, . . . , ¬e13, e14, ¬e15,¬e16, e17, ¬e18, e19,

¬e20, . . . , ¬e26} .

Appendix B.4. Composite Event Recognition

Now the atomic events associated to a passenger are going to be transferred to the evidential

event networks and to infer the composite events.

Passenger 1 has associated with the atomic event set {E1, E2, E11, E13, E15, E18, E25, E26}.

E2.eType = PM, E11.eType = PM, E2.mend ∩ E11.mstart = MS 14, E11.starttime ≫ E2.endtime,

E2.startlocation , E2.endlocation, E25.eType = PS T D, E11.startlocation , E11.endlocation,

E11 indicates that a composite event ends and another starts. E25.eType = PS T D, E25 is used as a

point that ends a composite event and starts another composite event. E15 and E18 take place be-

tween E13 and E25, their evidence support E13 staying at seat 3. Thus E15 and E18 don’t contribute

to inference of the composite events.

E1 and E2 become the nodes at the lower-level in the network EENPBTS as shown in Fig.B.2a,

are used to infer the composite event CE1 : PBTS as the node at the higher-level. E26 is in the

network EENPEX, Fig.B.2c, and is going to infer CE3 : PEX.

The inference of composite event CE1 starts at translating the mass functions of the nodes

at the lower-level into the node at the higher-level, and then combine these together. On the

combined mass function, BetP on each single element is calculated. The final decision is made on

the element with the highest BetP.

On the event network CE1: PBTS,

(i) mE1 and mE2 are transferred onto CE1 by using Eq. 2 and applying the multivalued mappings
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in Table B.2. Therefore, we have m1 and m2 along vacus m3 as follows.

m1({MBTS 1, ......, MBTS 20,MBTGW}) = mE1({MB}) = 0.81; m1(Θ) = mE1(Θ) = 0.19.

m2({MBTS 14, FBTS 14}) = mE2({MS 14}) = 0.43;

m2({MBTS 11, MBTGW, FBTS 11, FBTGW}) = mE2({MS 11, MGW}) = 0.37;

m2(Θ) = mE2(Θ) = 0.2.

m3(Θ) = mE3(Θ) = 1.

(ii) Combining (m1 ⊕ m2) ⊕ m3 by Eq. 3, We have m:

m({MBTS 14}) = 0.35; m({MBTS 11,MTGW}) = 0.30;

m({MBTS 1, . . . , MBTS 20, MBTGW}) = 0.16; m({MBTS 14, FBTS 14}) = 0.08;

m({MBTS 11, MBTGW, FBTS 11, f BTGW}) = 0.07; m(Θ) = 0.04.

(iii) From m, we can calculate BetP by Eq. 5:

BetP({MBTS 14}) = 0.40; BetP({MBTS 11}) = 0.18;

BetP({FBTS 14}) = 0.04; BetP({FBTS 11}) = 0.02.

With the highest BetP({MBTS 14}), we reach the decision that composite event MBTS14: the

male boards the bus and transits to sit on seat 14, is inferred.

On the event network CE2 : PCS , E11 and E13 are used to infer CE2. The same steps are

gone throught to reach the decision that composite event PCS3: the person changes to seat 3, with

BetP({PCS 3}) = 0.92, is inferred.

On the event network CE3 : PEX, E25 as AE5 is used to infer CE3. The decision is that

composite event PEX: the person exits the bus with BetP({PEX}) = 0.9, is inferred.

The same procedure applies to passenger 2 with the associated atomic event set {E3, E4, E8,

E9, E10, E14, E17, E19}. The composite events inferred are FBTS4: the female boards the bus and

transits to sit on seat 4, PEX: the person exits the bus.
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