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1 Introduction

Let k be an algebraically closed field. A potential W for a quiver Q is a possibly infinite linear
combination of cyclic paths in the complete path algebra k〈〈Q〉〉. The Jacobian algebra P(Q,W )
associated to a quiver with a potential (Q,W ) is the quotient of the complete path algebra k〈〈Q〉〉
modulo the Jacobian ideal J(W ). Here, J(W ) is the topological closure of the ideal of k〈〈Q〉〉 which
is generated by the cyclic derivatives of W with respect to the arrows of Q.

Quivers with potential were introduced in[DWZ08] in order to construct additive categorifica-
tions of cluster algebras with skew-symmetric exchange matrix. For the just mentioned categori-
fication it is crucial that the potential for Q be non-degenerate, i.e. that it can be mutated along
with the quiver arbitrarily, see [DWZ08] for more details on quivers with potentials.

In the same year, Fomin, Shapiro and Thurston gave in [FST08] a class of cluster algebras arising
from tagged triangulations of surfaces with marked points. More precisely, each triangulation T of
a surface with marked points (S,M) by tagged arcs corresponds to a cluster and the corresponding
exchange matrix is conveniently coded into a quiver Q(T). Later, a link between these papers was
established by Labardini-Fragoso in [LF09] where he associated a potential W (T) to every ideal
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triangulation T of a surface with marked points, and proved that ideal triangulations related by
a flip have QPs related by QP-mutation and if the surface has non-empty boundary, then the
corresponding Jacobian algebra is finite dimensional. Moreover, it was defined a non-degenerate
potential W (T) to every tagged triangulation and it is also compatible with flips of tagged arcs
(see [LF][Theorem 7.1] and [GLFS][Corollary 8.15]).

In the first part of this work, we study Jacobian algebras associated with tagged triangulations
of a sphere with n ≥ 5 punctures. Our main result is the following:

Theorem 1 Let (S,M) be a sphere with n-punctures, where n ≥ 5. For every tagged triangulation
T of (S,M), the Jacobian algebra P(Q(T),W (T)) is finite dimensional.

The case of a sphere with 4 punctures was studied by Barot and Geiss (in [BG12], Section 5),
the algebra associated to this surface is a tubular cluster algebra.

In the theory of cluster algebras, primitive potentials, which are a linear combination of all
the oriented chordless cycles in a quiver Q, appear in many contexts, for example in cluster tilted
algebras of Dynkin type ([DWZ08], Section 9). Also, it follows from [BT13] that cluster tilted
algebras with cyclically oriented quivers have a primitive potential (see definition of a cluster tilted
algebra in Section 4).

In the proof of our main Theorem 1, we use a particular ideal triangulation T of a sphere with
n-punctures such that the quiver associated to T is cyclically oriented but its associated potential
is not primitive.

In the second part of this work, we give a class of cyclically oriented quivers such that any
primitive potential induces a finite dimensional Jacobian algebra.

The paper is organized as follows: In Section 2, we recall some definitions of quivers with
potentials, path algebras, Jacobian algebras and ideal (tagged) triangulations of surfaces. In Section
3, we prove that every Jacobian algebra associated with a tagged triangulation of a sphere with
n ≥ 5 punctures are finite dimensional. Finally, in Section 4, we give a combinatorial description of
a quiver Q such that any of its primitive potentials induce a finite dimensional Jacobian algebra.

Remark 1 While we were finishing this manuscript, we became aware of the recent paper [Lad],
where Ladkani showed that Jacobian algebras of surfaces with an empty boundary and arbitrary
particular genus are finite dimensional algebras.

2 Preliminaries

2.1 Quivers and potentials

In this subsection, we fix notations for path algebras and complete path algebras, and recall basic
definitions of quivers with potential (cf. [DWZ08]).

Let Q be a finite quiver and k be a field. We denote by R the k-vector space kQ0 , by A the
k-vector space kQ1 and, for each nonnegative integer d by Ad the R-bimodule A⊗R · · · ⊗R A︸ ︷︷ ︸

d

.

With this notation, the path algebra of Q is the k-algebra defined as the (graded) tensor algebra

k〈Q〉 =
∞⊕
d=0

Ad

and the complete path algebra of Q is the k-vector space defined by

k〈〈Q〉〉 =
∞∏
d=0

Ad.
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Also, k〈〈Q〉〉 is a topological k-algebra with the m-adic topology, where m is the ideal
∞∏
d=1

Ad.

Remark 2 An important topological property of k〈〈Q〉〉 with the m-adic topology, for this work, is
the following:

A sequence (xn)n∈N of elements of k〈〈Q〉〉 converges if and only if for every d ≥ 0, the sequence

(x
(d)
n )n∈N does, and

lim
n→∞

xn =
∑
d≥0

lim
n→∞

x(d)n ,

where x
(d)
n denotes the degree-d component of xn.

Remark 3 Throughout this work, we will use the following notation for paths. Let Q be a finite
quiver. For an arrow α of Q, we denote by s(α) its source and by t(α) its target. A path of length
n, with n > 0, from a source a to a target c is a sequence of arrows (a | α1, α2, . . . , αn | c) with αi
an arrow of Q for all i, where 1 ≤ i ≤ n, such that s(α1) = a, t(αn) = c and t(αi) = s(αi+1) for
all i such that i ≤ i < n. Such a path is briefly denoted by α1α2 . . . αn.

Notice that the elements of k〈〈Q〉〉 are (possibly infinite) k-linear combinations of paths in Q.
Denote by k〈〈Q〉〉cyc the k-subspace of k〈〈Q〉〉 whose element are k-linear combinations of cycles

in Q.

Definition 1 [DWZ08, Definition 3.1]

– A potential W is any element of the k-subspace k〈〈Q〉〉cyc.
– For every arrow a in Q1, we define the cyclic derivative ∂a as the continuous k-linear map

k〈〈Q〉〉cyc → k〈〈Q〉〉

acting on paths by

∂a(a1 · · · ad) =
d∑
k=1

δaakak+1 · · · ada1 · · · ak−1

– The Jacobian ideal J(W ) of a potential W is the closure of the ideal

I(W ) = 〈∂a(W ) | a ∈ Q1〉

in k〈〈Q〉〉.
– The Jacobian algebra P(Q,W ) is the quotient k〈〈Q〉〉/J(W ).

2.2 Triangulations of surfaces

In this subsection, we review some facts concerning triangulations of surfaces (cf. [FST08]).

Definition 2 [FST08, Definition 2.1] A bordered surface with marked points is a pair (S,M), where
S is a connected oriented 2-dimensional Riemann surface with a (possibly empty) boundary and
M is a finite and non-empty set of points in S, called marked points, such that there is at least one
marked point on each connected component of the boundary of S.

The set P of marked points in the interior of S are called punctures.

In this paper, we study spheres with n punctures, n ≥ 5, due to the following definitions, in
order to avoid surfaces that cannot be triangulated or there is only one triangulation, we need to
exclude:
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– spheres with one or two punctures;
– unpunctured or once-punctured monogons;
– unpunctured digons; and
– unpunctured triangles

Definition 3 [FST08, Definition 2.2 and 2.4] A (simple) arc γ in (S,M) is a curve in S such that:

– the endpoints of γ are marked points in M ;
– γ does not intersect itself, except that its endpoints may coincide;
– γ is not contractible into M or into the boundary of S;
– γ does not cut out an unpunctured monogon or an unpunctured digon.

Two arcs are compatible if there are arcs in their respective isotopy classes whose relative
interiors do not intersect.

An arc whose endpoints coincide is called a loop.

Definition 4 [FST08, Definition 2.6] An ideal triangulation of (S,M) is any maximal collection
of pairwise compatible arcs whose relative interiors do not intersect each other.

The arcs of the triangulation cut the surface S into ideal triangles. The three sides of an ideal
triangle do not have to be distinct, i.e., we allow self-folded triangles.

γ

Fig. 1: Self-folded ideal triangle

An easy calculation shows that any ideal triangulation of a sphere with n punctured consists
of 3n arcs.

3 Jacobian algebras arising from a sphere with n-punctures

The algebra arising from a sphere with punctures was studied for first time by Barot and Geiss in
[BG12]. They prove that the tubular cluster algebra of type (2,2,2,2) corresponds to a sphere with
4-punctures (see definition of a cluster tilted algebra in Section 4). In this section, we study the
Jacobian algebras arising from a sphere with n-punctures, where n ≥ 5.

It is well known that finite-dimensionality of Jacobian algebra, with non-degenerate potential,
is preserved by mutations (see [DWZ08][Proposition 6.4]), if (S,M) is not a closed surface with
exactly one puncture, then any two tagged triangulations of (S,M) are related by a sequence of
flips (see [Mos88], [FST08][Proposition 7.10]) and that any two tagged triangulations related by
a flip have quivers with potentials related by QP-mutation (see [LF], [GLFS]). Thus, in order to
prove the Theorem 1, it is enough to prove that there exists a tagged triangulation T such that
the Jacobian algebra P(Q(T),W (T)) is finite dimensional. For that reason, we give a particu-
lar ideal triangulation with that property. Recall that ideal triangulations correspond to tagged
triangulations with non-negative signature.

Consider the ideal triangulation T and the quiver Q(T) depicted in Figure 2. For notational
convenience we label the punctures on the north and south poles with pn+1 and pn+2, so we will
consider the sphere with (n+2)-punctures, where n ≥ 3. The labels we have assigned to the arrows
in Figure 2 will be kept throughout the paper.
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pn+2

pn+1

p1 p2

pn

α1αn−1

αn

β1 δ1

β2 δ2

δ2n−1δ2n

δ2(n−1)−1

δ2(n−1)

β2(n−1)−1

β2(n−1)

β2n
β2n−1

Fig. 2: Quiver associated with the ideal triangulation T

For each puncture pi ∈ P in the sphere, we choose a non-zero scalar xi ∈ k. By [LF09, Definition
23], the potential W (T) associated with the ideal triangulation T and according to the label in the
arrows of the quiver in Figure 2 is:

W (T) = xn+1α1 . . . αn + xn+2δ2n−1δ2n . . . δ1δ2

+
∑n
i=1 αiβ2i−1β2i +

∑n
i=1(−xi−1)αiδ2i−1δ2i

Remark 4 Observe that the quiver Q(T) is the opposite quiver of the one Labardini-Fragoso works
with.

Before we prove Theorem 1, we establish some useful identities in the Jacobian algebra PP (Q(T),W (T)).

Lemma 1 The following identities hold in the Jacobian algebra P(Q(T),W (T)):

β2i−1β2iδ2(i−1)−1δ2(i−1) = xi−1β2i−1β2(i−1)β2(i−1)−1β2(i−1) (1)

= (xi−1/xi)δ2i−1δ2iβ2(i−1)−1β2(i−1) (2)

= x−1i δ2i−1δ2iδ2(i−1)−1δ2(i−1) (3)

for every i = 1, . . . , n

Proof Let Λ be the Jacobian algebra P(Q(T),W (T)). Since

∂αi−1
(W (T)) = β2(i−1)−1β2(i−1) + xn+1αi . . . αi−2 − x−1i−1δ2(i−1)−1δ2(i−1),

then in Λ we have the identity

β2i−1β2iδ2(i−1)−1δ2(i−1) = xn+1xi−1β2i−1β2iαi . . . αi−2

+xi−1β2i−1β2iβ2(i−1)−1β2(i−1).

Observe that ∂β2i−1
(W (T)) = β2iαi, then the first term on the right hand is in the Jacobian

ideal, therefore

β2i−1β2iδ2(i−1)−1δ2(i−1) = xi−1β2i−1β2iβ2(i−1)β2(i−1)−1β2(i−1)
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This establishes the first identity. The second identity can be proved in a similar fashion and
is left to the reader. Let us show the third identity. By the relations induced by ∂αi−1(W (T)), we
have:

β2i−1β2iδ2(i−1)−1δ2(i−1) = −xn+1αi+1 . . . αi−1δ2(i−1)−1δ2(i−1)

+x−1i−1δ2i−1δ2iδ2(i−1)−1δ2(i−1)

Denote by ρ the term αi+1 . . . αi−2αi−1δ2(i−1)−1δ2(i−1). Notice that ρ is a path of length n+ 1.
We claim that ρ is in the Jacobian ideal.

Using ∂δ2(i−1)
(W (T)), we have the following identity

αi−1δ2(i−1)−1 = xi−1xn+2δ2(i−2)−1δ2(i−2) . . . δ1δ2 . . . δ2(i−1)−1.

Then, replacing αi−1δ2(i−1)−1 in ρ, we have

ρ = xn+2xi−1αi+1 . . . αi−2δ2(i−2)−1δ2(i−2) . . . δ1δ2 . . . δ2(i−1)−1δ2(i−1).

Observe that ρ is a path of length 3n in Λ.
Replacing δ2(i−2)−1δ2(i−2) by the relation induced by ∂αi−2(W (T)), the path ρ is a path of

length 4n− 3. Iterating this process and using the topology of the Jacobian algebra (see Remark
2), we have that ρ is in the Jacobian ideal.

Then, β2i−1β2iδ2(i−1)−1δ2(i−1) = x−1i−1δ2i−1δ2iδ2(i−1)−1δ2(i−1). ut

Lemma 2 The following identities hold in the Jacobian algebra P(Q(T),W (T)).

αiδ2i−1δ2i = xixi−1δ2(i−1)−1δ2(i−1)αi−1 (4)

αiαi+1δ2(i+1)−1 = δ2(i−1)αi−1αi = 0 (5)

for every i = 1, . . . , n

Proof The identity (4) follows as the first two identities in Lemma 1. We prove the second one.
Notice that

∂δ2(i+1)
(W (T)) = −x−1i+1α(i+1)δ2(i+1)−1 + xn+2δ2(i)−1δ2i . . . δ2(i+1)−1,

then we have the identity

αiαi+1δ2(i+1)−1 = xi+1xn+2αiδ2i−1δ2i . . . δ2(i+1)−1δ2(i+1).

Let ρ be the path αiδ2i−1δ2i . . . δ2(i+1)−1δ2(i+1) By the identity (3) in Lemma 1 we have that ρ
is equal to

αiβ2(i)−1β2iδ2(i−1)−1 . . . δ2(i+1),

which is in the Jacobian ideal because it contains a factor αiβ2i−1 = ∂β2i
(W (T)).

Then αiαi+1δ2(i+1)−1 = 0 in P(Q(T),W (T)). ut

Lemma 3 Let ρ be a non zero path of length 5 that starts in αi or δ2i−1. If ρ does not involve
any arrow βi for i = 1, . . . , 2n, then ρ is either the path αi . . . αi+4 or δ2i−1δ2iδ2(i−1)−1δ2(i−1) in
P(Q(T),W (T)).

Proof First suppose ρ starts with δ2i−1. Then ρ is one of the following:

– δ2i−1δ2iδ2(i−1)−1δ2(i−1)δ2(i−2)−1 or
– δ2i−1δ2iαiδ2i−1δ2i = xixi−1δ2i−1δ2iδ2(i−1)−1δ2(i−1)αi−1 or
– δ2i−1δ2iαiαi+1x, where x = αi+2 or δ2(i+1)−1
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By Lemma 1, the second option is zero, and by Lemma 2, the third option is zero. Then
ρ = δ2i−1δ2iδ2(i−1)−1δ2(i−1)δ2(i−2)−1

Now suppose ρ starts with αi, then ρ is one of the following:

– αiδ2i−1δ2iαiδ2i−1 or
– αiδ2i−1δ2iδ2(i−1)−1δ2(i−1) or
– αi . . . αi+4

By the first part of Lemma 2 the first one is equal to

xixi−1δ2(i−1)−1δ2(i−1)αi−1αiδ2i−1,

and by the second part of the same Lemma, that path is zero. Finally, the path αiδ2i−1δ2iδ2(i−1)−1δ2(i−1)
by Lemma 1 is equal to

xiαiβ2i−1β2iδ2(i−1)−1δ2(i−1),

there force this path is also zero. Then ρ = αi . . . αi+4 ut

Remark 5 Notice that, since αiβ2i−1 = ∂β2i
(W (T)) and β2iαi = ∂β2i−1

(W (T)), every path in which
a path αiβ2i−1 and β2iαi appear as a factor is zero in P(Q(T),W (T)). Moreover, every path in
which at least an arrow αi and at least an arrow βi appear as factors is zero. The last assertion
follows from applying repeatedly Lemmas 1 and 2 until we obtain a factor αiβ2i−1 or β2iαi. For
example, the path δ2i−1δ2iαiδ2i−1δ2i is equivalent to xixi−1δ2i−1δ2iδ2(i−1)−1δ2(i−1)αi−1 by Lemma
2, and it is equivalent to x2ix

2
i−1β2i−1β2iβ2(i−1)−1β2(i−1)αi−1 by Lemma 1, which is a zero path.

Now, we can prove our main result.

Proof (Proof of Theorem 1) Since finite-dimensionality of Jacobian algebras is invariant under
mutations (cf. [DWZ08, Corollary 6.6]), flips of tagged arcs are compatible with mutations of
quivers with potentials (cf. [LF, Theorem 7.1] and [GLFS][Corollary 8.15]) and any two tagged
triangulations of (S,M) are related by a sequence of flips (cf. [FST08][Proposition 7.10]), it is
enough to show that P(Q(T),W (T)) is finite dimensional, where T is the triangulation in Figure
2. We shall prove that every path of length at least 2n+ 2 belongs to the Jacobian ideal J(W (T)).

Let ρ be a path of length at least 2n+2. Without loss of generality we can assume that ρ starts
with β2n−1 or δ2n−1. Denote by Qρ the set of arrows of the path ρ. By Remark 5, it is enough to
analyze when Qρ ⊂ Q(T)1 \ {α1, . . . , αn} or Qρ ⊂ Q(T)1 \ {β1, . . . , β2n}.

Consider the first case. Without loss of generality we can assume that ρ starts with β2n−1 or
δ2n−1. Then by Lemma 1,

ρ = xδ2n−1δ2n . . . δ1δ2δ2n−1δ2nρ
′,

where ρ′ is the rest of the path ρ and x ∈ k is the product certain scalars xj , because we can always
change a factor β2i−1β2iδ2(i−1)−1δ2(i−1) or β2i−1β2iβ2(i−1)−1β2(i−1) or δ2i−1δ2iβ2(i−1)−1β2(i−1) by
δ2i−1δ2iδ2(i−1)−1δ2(i−1).

Hence, by the relation induced of the partial derivative

∂δ2(W (T)) = xn+2δ2n−1δ2n . . . δ1 + x1α1δ1,

we have that
ρ = −xx1α1δ1δ2δ2n−1δ2nρ

′.

Then by Lemma 1 the path ρ is zero in P(Q(T),W (T)).
Now suppose Qρ ⊂ Q(T)1 \ {β1, . . . , β2n}. By Lemma 3, the only non zero factor of length 5

is αi . . . αi+4 or δ2i−1 . . . δ2(i−2)−1. Then we can assume that ρ = δ2n−1δ2n . . . δ1δ2δ2n−1δ2nρ
′ or

ρ = α1 . . . αnα1 . . . αnρ
′. But we have already proof that the first option is a zero path. The second

one using the relation induced by ∂α1(W (T)), we have:

ρ = x2n+1x
2
1α1δ1δ2α1δ1δ2ρ

′

that it is zero by Lemma 2. ut
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4 Potentials in a class of cyclically oriented Quivers

In this section, we construct finite dimensional Jacobian algebras from quivers with certain com-
binatorial characteristics.

First we recall the definition of primitive potential (c.f [DWZ08], Section 9) and cyclically
oriented quivers.

Definition 5 ([BT13], Definition 3.1) A walk of length p in a quiver Q is a (2p+ 1)-tuple

w = (x0, α1, x1, α2, . . . , xp−1, αp, xp)

such that for all i we have xi ∈ Q0, α ∈ Q1 and {s(αi), t(αi)} = {xi, xi−1}. The walk w is oriented
if either s(αi) = xi−1 and t(αi) = xi for all i or s(αi) = xi and t(αi) = xi−1 for all i. Furthermore,
w is called a cycle if x0 = xp. A cycle of length 1 is called a loop. We often omit the vertices and
abbreviate w by α1 · · ·αp. An oriented walk is a path.

A cycle c = (xp, α1, x1, α2, . . . , xp−1, αp, xp) is called non-intersecting if its vertices x1, . . . , xp
are pairwise distinct. A non-intersecting cycle of length 2 is called 2-cycle. If c is a non-intersecting
cycle then any arrow β ∈ Q \ {α1, . . . , αp} with {s(β), t(β)} ⊆ {x1, . . . , xp} is called a chord of c.
A cycle c is called chordless if it is non-intersecting and there is no chord of c.

A quiver Q without loops and 2-cycles is called cyclically oriented if each chordless cycle is
oriented. Note that this implies that there are no multiple arrows in Q. A quiver without oriented
cycles is called acyclic and an algebra whose quiver is acyclic is called triangular.

Definition 6 Let Q be a quiver. A primitive potential S is a lineal combination of every oriented
chordless cycle in Q with non-zero scalars.

Buan, Marsh, Reineke, Rieten and Todorov introduced in [BMR+06] a cluster category CA
associated to a hereditary algebra A and proved that CA is endowed with a cluster-tilting object.
The endomorphism algebra of a cluster-tilting object is called cluster tilted algebra and it was
proven in [Kel11] by Keller that any cluster tilted algebra is a Jacobian algebra.

Barot and Trepode gave in [BT13] an explicit description of the minimal relations in cluster
tilted algebras with cyclically oriented quivers, and it follows from this result that the potential
associated with this kind of algebras is primitive.

In [Ami09] Amiot introduced a cluster category C(Q,W ) associated to a quiver with potential
(Q,W ), and she proved that when the Jacobian algebra P(Q,W ) is finite dimensional, the category
C(Q,W ) is endowed with a cluster-tilting object whose endomorphism algebra is isomorphic to
P(Q,W ). In these context, the endomorphism algebra of a cluster-tilting object is called 2-Calabi-
Yau tilted algebra.

Observe that the quiver Q(T) in Figure 2 is cyclically oriented, however the potential W (T) is
not primitive, showing that the previous result does not extend to any Jacobian algebras. Another
example of similar behavior are Jacobian algebras arising from the usual tetrahedron triangulation
T1 of the sphere (S,M), with |M |= 4. Consider the quiver with potential (Q(T1),W (T1)t) of T1,
where

W (T)t =
3∑
1

αiβiγi + α1α2α3 + δ1δ2δ3 + γ1β5δ2 + β6β3δ1 + tδ3β4β1,

and t ∈ C ∪ (0, 1]. Observer that Q(T1) is a cyclically oriented quiver (see Figure 3) and W (T1)t
is a primitive potential, but Λ1 = P(Q(T1),W (T1)1) is an infinite dimensional algebra and the
corresponding potential W1 is degenerate [GLFS][Section 9.9]. If t 6= 0, then the Jacobian algebras
Λt are finite-dimensional and tame [GLFS] of tubular type [BG12].

Definition 7 ([BT13], Definition 3.3) A path γ which is anti-parallel to an arrow η in a quiver
Q is a shortest path if the full subquiver generated by the induced oriented cycle ηγ is chordless.
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• • •

• •

•

γ1 β5

α1

α2

β1

β3

α3 β6

β4

δ2

δ3 δ1

Fig. 3: Quiver of the usual tetrahedron triangulation T1 triangulation of an sphere with 4 marked
points

A path γ = (x0
γ1−→ x1

x−→2→ · · · → xL) is called shortest directed path if there exists no arrow
xi → xj in Q with 1 ≤ i + 1 < j ≤ L. A walk γ = (x0 x1 x2 · · · xL) is called a
shortest walk if there is no edge joining xi with xj with 1 ≤ i+ 1 < j ≤ L and (i, j) 6= (0, L) (we
write a horizontal line to indicate an arrow oriented in one of the two possible ways).

Definition 8 Let Q be a cyclically oriented quiver such that for any arrow α there are at most
2 shortest path anti-parallel to α and c = β0β1 . . . βL an oriented chordless cycle. We construct a
sequence of triples (αn, ρn, ρ

′
n) ∈ Q1 × k〈Q〉 × k〈Q〉, n ∈ N ∪ {0}, in the following way:

Step 0 We denote by α0 the arrow β0 and by ρ′0 the path β1 . . . βL. If there exists a shortest path
ρ0 anti-parallel to α0 different to ρ′o, then the first element of the sequence is (α0, ρ0, ρ

′
0).

Otherwise, the sequence is constant to the element (α0, 0, ρ
′
0).

Step 1 We denote by α1 the arrow in the path ρ0 such that t(α0) = s(α1) and by ρ′1 the shortest path
anti-parallel to α1 in α0ρ0. If there exists a shortest path ρ1 anti-parallel to α1 different to ρ′1,
then the second element of the sequence is (α1, ρ1, ρ

′
1). Otherwise, (αn, ρn, ρ

′
n) = (α1, 0, ρ

′
1) for

each n ≥ 1.
Step 2 We denote by α2 the arrow in the path ρ1 such that s(α1) = t(α2) and by ρ′2 the shortest path

anti-parallel to α2 in α1ρ1. If there exists a shortest path ρ2 anti-parallel to α2 different to ρ′2,
then the third element of the sequence is (α2, ρ2, ρ

′
2). Otherwise, (αn, ρn, ρ

′
n) = (α2, 0, ρ

′
2) for

each n ≥ 2.
...

Step i We denote by αi the arrow in the path ρi−1 such that
– t(βi) = s(βi+1) if i is even or;
– s(βi) = t(βi+1) if i is odd.

and by ρ′i the shortest path anti-parallel to αi in αi−1ρi−1. If there exists a shortest path ρi
anti-parallel to αi different to ρ′i, then the element i+1 of the sequence is (αi, ρi, ρ

′
i). Otherwise,

(αn, ρn, ρn) = (αi, 0, ρ
′
i) for each n ≥ i.

The sequence {(αn, ρn, ρ′n)}n∈N∪{0} is called cyclic sequence of c. We say that the cyclic sequence
{(αn, ρn, ρ′n)}n∈N∪{0} is finite if there exists m ∈ N such that (αn, ρn, ρn) = (αm, 0, ρ

′
m) for every

n ≥ m.

Remark 6 Consider the quiver Q in Figure 3, which is associated to a triangulation of a sphere
with 4 punctures. Observe that the cyclic sequence of any oriented chordless cycle in Q is infinite,
because there are exactly two shortest paths anti-parallel to each arrow of Q.

In the following theorem, we give combinatorial conditions on a quiver Q that guarantee the
finite-dimensionality of the Jacobian algebra that results from taking a primitive potential on Q.
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Theorem 2 Let Q be a cyclically oriented quiver such that:

i) for any arrow α there are at most 2 shortest path anti-parallel to α;
ii) the cyclic sequence of any oriented chordless cyclic c is finite.

If W is a primitive potential of Q, then the Jacobian algebra P(Q,W ) is a finite dimensional
algebra.

Proof (Proof of Theorem 2) Let

W =
∑

c

min. cycle

xcc

be a primite potential. It is enough to show that any non-intersecting oriented cycle c is zero in
P(Q,W ). To fix notation denote by

c = (x1
β0→ x2

β1→ . . . xL−1
βL→ x1).

Suppose c is chordless, then by hypothesis the cyclic sequence {(αn, ρn, ρ′n)}n∈N∪{0} of c is
finite. Let m ∈ N be the minimal number such that (αn, ρn, ρ

′
n) = (αm, 0, ρ

′
m) for every n ≥ m.

Then we have
∂αn(W ) = xcnρn + xcn−1ρ

′
n

for every n = 1, . . . ,m− 1 and
∂αm

(W ) = xcm−1
ρ′m

because there is only one shortest path anti-parallel to αm.
By construction of the cyclic sequence of c we have that ρ′0 = β1 . . . βL and ρ0 are shortest

paths anti-parallel to α0, then β1 . . . βL = −xc0

xc
ρ0 in P(Q,W ), therefore,

c = α0β1 . . . βL

= −xc0
xc
α0ρ0 (6)

Recall that ρ′1 is the shortest path anti-parallel of α1 in the cycle α0ρ0, then

c = −xc0
xc
ρ′1α1.

Repeating this process for each triple of sequence we have

c =

Å
−xc0
xc

ãÅ
−xc1
xc0

ã
ρ1α1 =

xc1
xc
ρ1α1

=
xc1
xc
α2ρ

′
2

=

Å
xc1
xc

ãÅ
−xc2
xc1

ã
α2ρ2 = −xc2

xc
α2ρ2

= −xc2
xc
ρ′3α3

...

=

®xcm−1

xc
ρm−1αm−1 if m− 1 is odd

−xcm−1

xc
αm−1ρm−1 if m− 1 is even

(7)

Since ρ′m is the shortest path anti-parallel to αm in the cycle ρm−1αm−1 or αm−1ρm−1, the
expression 7 can be rewritten in the following way:
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c =

®xcm−1

xc
αmρ

′
m if m− 1 is odd

−xcm−1

xc
ρ′mαm if m− 1 is even

(8)

Then c = 0 in P(Q,W ) because ρ′l is in the Jacobian ideal J(W ). Therefore any oriented
chordless cycle is zero in P(Q,W ).

Suppose c is non-chordless, then there exists a chord β1 : xi → xj with vertex in c such that
c1 = γ1βj+1 . . . βi is a oriented chordless cycle. Consider j the minimal number of the subset
{0, 1, 2, . . . , L − 1} such that c1 is a oriented chordless cycle and there is not a chord in the path
β1 . . . βj . Denote by i0 = j, i1 = i and by c̃1 the walk which is obtained by replacing the path
βi0+1 . . . βi1 by the arrow γ1 in the cycle c, namely,

c̃1 = (x0
β1→ x1

β2→ · · ·
βi0→ xi0

γ1←− xi1
βi1+1−→ . . . xn−1

βn→ x0).

Since c̃1 is a non-oriented cycle, then c̃1 is non-chordless, because Q is a cyclically oriented
quiver, then there exists a chord γ2 : xi3 → xi2 such that c2 = γ2βi2+1 . . . βi3 is oriented chordless
cycle and there is not a chord in the path βi1+1 . . . βi2 .

Let c̃2 be the walk which is obtained by replacing the path βi2+1 . . . βi3 by the arrow γ2 in the
walk c̃1, namely,

c̃2 = (x0
β1→ x2 · · ·

βi0→ xi0
γ1←− xi1

βi1+1−→ · · ·
βi2→ xi2

γ2←− xi3
βi3+1−→ . . . xn−1

βn→ x1)

which is again not oriented and therefore not chordless, then exists a chord γ3 : xi5 → xi4 , with
the same properties of the arrows γ1 and γ2, and a oriented chordless cycle c3 = γ3βi3+1 . . . βi4
and a walk c̃3.

Observe that the vertex of the arrows γi are elements of an increasingly smaller subset of
{0, 1, . . . , L − 1}, then there is a natural number r such that c̃r is oriented chordless cycle and in
particular s(γi) = t(γi+1) for every i = 1, . . . , r.

Then

∂γ2(W ) = xc1βi2+1 . . . βi3 + xc2γ1γk . . . γ3

where xc, x
′
c ∈ k, therefore c can be rewritten as the following

− xc2
xc1

β1 . . . βi0γ1γk . . . γ3βi3+1 . . . βi4 . . . βn = −xc2
xc1

β1 . . . βi0γ1γk . . . c3 . . . βn (9)

Then c is a zero path, because c3 is oriented chordless cycle. ut

Remark 7 Given a 2-acyclic quiver Q satisfying the combinatorial conditions stated in Theorem 2
and given a primitive potential W on Q, the authors do not known if (Q,W ) is non-degenerate.

Acknowledgments

The second author thanks Professor Michael Barot for discussing some central ideas for this article.
She thanks Professor Christof Geiss for pointing out some important results on surfaces with non-
empty boundary. She also thanks Daniel Labardini-Fragoso for clarifying ideas of his article [LF09].
We thank Daniel Labardini-Fragoso for his helpful comments and suggestions given in a preliminary
version of this article. We also thank Ignacio Garcia for helping us with the figure of the sphere.
The author was partially supported by a CONICET doctoral fellowship.



12 Sonia Trepode, Yadira Valdivieso-Dı́az

References

Ami09. Claire Amiot. Cluster categories for algebras of global dimension 2 and quivers with potential. Ann.
Inst. Fourier (Grenoble), 59(6):2525–2590, 2009. CODEN AIFUA7. ISSN 0373-0956. URL http:

//aif.cedram.org/item?id=AIF_2009__59_6_2525_0.
BG12. Michael Barot and Christof Geiss. Tubular cluster algebras I: categorification. Math. Z., 271(3-4):

1091–1115, 2012. ISSN 0025-5874. URL http://dx.doi.org/10.1007/s00209-011-0905-8.
BMR+06. Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov. Tilting theory

and cluster combinatorics. Adv. Math., 204(2):572–618, 2006. CODEN ADMTA4. ISSN 0001-8708. URL
http://dx.doi.org/10.1016/j.aim.2005.06.003.

BT13. Michael Barot and Sonia Trepode. Cluster tilted algebras with a cyclically oriented quiver. Comm.
Algebra, 41(10):3613–3628, 2013. ISSN 0092-7872. URL http://dx.doi.org/10.1080/00927872.2012.

673665.
DWZ08. Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky. Quivers with potentials and their representations.

I: Mutations. Selecta Math. (N.S.), 14(1):59–119, 2008. CODEN SMATF6. ISSN 1022-1824. URL
http://dx.doi.org/10.1007/s00029-008-0057-9.

FST08. Sergey Fomin, Michael Shapiro, and Dylan Thurston. Cluster algebras and triangulated surfaces. Part
I. Cluster complexes. Acta Math., 201(1):83–146, 2008. CODEN ACMAA8. ISSN 0001-5962. URL
http://dx.doi.org/10.1007/s11511-008-0030-7.

GLFS. Christof Geiss, Daniel Labardini-Fragoso, and Jan Schröer. The representation type of Jacobian algebras.
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