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Abstract 

This paper experimentally investigates a new technique for measuring the modal amplitude distribution, sound 

power transmission and radiation, and far field directivity of the broadband noise from hard walled ducts. The 

innovative aspect of this method is that it only requires the measurements of the two-point complex coherence 

function between the acoustic pressures at two closely spaced points on the duct wall. This method is therefore 

very useful when direct measurements of sound power and directivity are not possible. This paper describes 

detailed measurements of the sound power spectrum and coherence function from a hard walled circular duct 

excited at one end by a diffuse sound field. The other open end is terminated within an anechoic chamber with 

which to measure the radiated sound field at 11 microphones distributed over a polar arc. Measurements of the 

complex coherence were made at the duct and used to infer the sound power spectrum and far field directivity. 

This paper demonstrates generally good agreement between direct measurements of sound power and directivity 

and those inferred from the coherence function. The method is restricted to broadband noise in large ducts in the 

frequency range where many modes are able to propagate and the modal amplitudes are mutually uncorrelated.  

Keywords: duct acoustics, modal amplitude distribution, complex coherence, far field directivity, sound power 

radiation 

Nomenclature 

     = Duct radius 

  
         = Normalised mean square mode amplitude distribution for positive and negative propagating 

modes 

     = Speed of sound 

        = Schroeder frequency 

     = Acoustic wavenumber 

     = Acoustic pressure 

      = Distance along duct of measurement  

      = In-duct microphone separation distance 

     = Duct area 

       = Pressure amplitude of mode  
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L    = Length of duct 

     = Total number of propagating modes at a particular frequency  

 
2

rR     = Energy reflection coefficient 

     = Far-field radial position from centre of the duct 

       = Pressure Power Spectral Density at the duct wall 

       = Pressure Cross Spectral Density at the duct wall 

       = Pressure Power Spectral Density of far-field radiation 

        = Frequency-dependent source strength  

 
2

T     = Energy transmission coefficient 

       = Reverberation time 

     = Source room volume 

           = Transmitted power 

      = Cuton ratio 

     = Polar co-ordinate of far-field observer 

     = Density of air 

     = Angular frequency 

      = Non-dimensional frequency  

       = Complex coherence function 

      = Sound power factors  

( ̂ )    = Hanning window function 

 

1. Introduction 

Ducts, also known as waveguides, are able to efficiently transmit noise over large distances, which 

may then radiate from the end of the duct. Common examples are ventilation/exhaust ducts, 

automotive silencers, and turbofan aero-engines. Often one wishes to determine the far field 

directivity and sound power radiating from the duct open end, either as an index of transmission loss 

to assess the performance of silencer, or as a means of scaling the total noise level for predicting 

community noise annoyance. 

In the case of an exhaust duct and a turbofan engine, for example, locating microphones in the far 

field is difficult. In the case of turbofan engines very large anechoic facilities are needed. Without 

these facilities, therefore, an alternative technique the far-field directivity and sound power may be 

inferred from in-duct acoustic pressure measurements. In-duct measurement techniques have been 

developed using microphone arrays to localise the broadband sources in the duct [1-3] using acoustic 

imaging methods, such as beamforming. Measurement techniques have also been developed to 
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estimate the far-field directivity from acoustic pressure measurements made on the duct wall based on 

a decomposition of the sound field into its propagating modal components. The amplitudes of each 

mode are first determined by a microphone phased array. Next the pattern of individual mode 

propagating to the far-field is predicted by the amplitude of the corresponding in-duct mode.  

Measurement techniques for the modal decomposition of tonal noise in the duct has been developed in 

the early 1970’s [4] by inverting a matrix of modal response functions based on a modal propagation 

model. The modal decomposition of broadband noise is more problematic however since the mode 

amplitudes are partially coherent and all modes are potentially excited. In a typical aero-engine duct, 

for example, the number of propagating modes can easily exceed 100 at the blade passing frequency. 

One current method to determine the amplitude of each mode requires a large microphone array in the 

duct comprising many rings of microphones. In general, at least as many microphones as modes are 

required to deduce all mode amplitudes. Researchers at Boeing [5] developed a circumferential row 

array with a large number of microphones to evaluate sound pressure as a function of azimuthal 

wavenumber or spinning mode order. Later, researchers at Boeing [6] designed more sophisticated 

ring arrays in the inlet, inter-stage and bypass sections of an aero-engine duct to decompose the 

acoustic pressure at the wall sound pressure level into spinning modes. However, neither work 

attempted to relate the in-duct modal decomposition to the far-field sound radiation. Enghardt et al. [7, 

8] has recently proposed an in-duct measurement technique to decompose the broadband sound field 

into its constituent modes at a maximum frequency corresponding to about 150 propagating modes. 

No attempt was made to predict the far field radiation, however. Another method [9] is based on an 

axial array of microphones along the duct wall. Conventional beamforming was applied to the array to 

estimate the mode amplitude distribution versus the modal propagation angle, which was then used to 

infer both the total sound power and far field directivity. However, this method requires many 

microphones arranged along a long length of duct (many acoustic wavelengths). 

As mentioned above, using large arrays of microphones have the disadvantage that they occupy a 

large space, which is not always available as well as being costly since it requires good quality 

microphones with stable phase characteristics as well as a data acquisition system comprising a large 

number of channels.  To overcome these difficulties a new method has recently been developed by 

Joseph et al. [10, 11] in which the mode amplitude distribution, transmitted and radiated sound power, 

and far field directivity can be estimated from measurements of only the complex coherence function 

between the acoustic pressure at two closely spaced positions at the duct wall. The method makes a 

number of crucial assumptions about the sound field, which have so far not been validated 

experimentally. This paper presents an experimental investigation into the accuracy and validity of 

this two microphone method and validate experimentally some of the main simplifying assumptions 

behind the technique. 
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2. Measurement theory 

Before discussing the experimental method and measurement procedure we first outline the theory 

underlying the measurement principle. A fuller derivation of the underlying theory is presented in the 

Appendix and the detailed theoretical development presented in [Ref 10, 

https://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p949.pdf]. 

 

2.1 Mode amplitude distribution 

The theory in Ref. [10] includes the effects of a uniform mean flow. Here the effects of flow are 

ignored for consistency with the no-flow measurements presented in Sections 3 and 4.  

 

Above its cutoff frequency, at a single (angular) frequency a single mode propagating along the 

duct of pressure amplitude 
mnA  is described by  

     iie e mnkxt

mn mn mnp ,x A
    y y             (1) 

In this equation the superscript “+” and “-” refers to the modes propagating in the positive (away from 

the source) and negative x directions (towards the source), respectively, m and n denote the usual 

mode indices of the propagating azimuthal mode and radial mode respectively, y = (r,) is a position 

vector on the duct cross sectional area with radial and azimuthal coordinates r and ,  mn y  denotes 

the modal shape function with the normalisation property,    
21 d 1mn

A
A A  y y  where A is the 

duct cross sectional area, and k c  is the free space wavenumber and c is the sound speed. Of 

central importance in Eq. (1) is the parameter mn , which we shall call the modal cut-on ratio, given 

by, 

  
2

1mn mn k                       (2) 

where mn is a set of eigenvalues that are characteristic of the duct cross section such that the 

corresponding mode shape functions mn, defined by    2 2 0mn mn   y , also satisfy the duct-

wall boundary conditions. In a hard wall duct, mn  takes the values nmn mj a   where mnj  denotes 

the n
th
 stationary value of the Bessel function of order m. The cut-on ratio mn  is central in what 

follows and takes values between 0mn   precisely at the modal cutoff frequency mn mnc    , 

and tends to 1mn   as mn/   , corresponding to modes well above cuton.  

https://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p949.pdf


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 
 

The significance of the cuton ratio to duct acoustics, or its related quantity cuton ratio

 
-1

21- = /mnα k κ , was highlighted in the work of Rice [12] and Joseph et al. [13]. It is an important 

quantity in duct acoustics since different modes with the same cuton ratio have similar transmission 

and radiation characteristics, Rice [12]. Cuton ratio is uniquely related to the angle mn through 

cosn nm mα   [14], with which the mode propagates along the duct relative to the axis. It has also been 

shown that mn  equals to the angle radiated most strongly to the far field (the angle of the main lobe), 

Rice [12]. Lastly, it has been shown that the mode amplitude distribution for many physical source 

distributions is a smoothly varying function of mn . 

 

2.2 Simplifying assumptions 

To develop the main theoretical relationships underlying the measurement principle investigated in 

this paper, we further make the following simplifying assumptions about the multi-mode broadband 

sound field: 

(1) Mode amplitudes are statistically uncorrelated. 

 

(2) The mean square pressure mode amplitude 
mnA  in Eq. (1) can be written in the separable 

form, 

      
2

2

mn mnE A S a  

     (3) 

where S() is a frequency-dependent source term and  2

mna 
 is a normalised, non-

dimensional, frequency-independence mode amplitude distribution function of the cuton ratio 

. The separability assumption of Eq. (3) is met. Rice [12] and more recently Joseph et al. [10] 

have shown that this is a valid assumption for a broad class of physically important mode 

amplitude distribution functions such as spatial distributions of monopoles, dipoles and the 

case where each mode has identical energy. 

 

(3) The excitation frequency is sufficiently high to ensure that there are a sufficient number of 

modes so that its distribution versus  may be approximated as a continuous function. This is 

believed to be correct for 10ka  , where a is the duct radius.  

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

6 
 

2.3 Fourier Transform relation between mode amplitude distribution and wall 

pressure coherence function 
 

By applying the simplifying assumptions listed above, in the Appendix we derive a Fourier Transform 

relationship between the mean square mode amplitude distribution  2a  as a function of  and the 

complex coherence function  12
ˆ   

   
1

2

12

1

e d
ˆiˆ a     







   ,     2 i

12

0

1
e d

2

ˆˆ ˆa      





                        (4a, b) 

where ̂  is the non-dimensional frequency ˆ x / c   ,   now varies between -1 and 1, such that 

the positive and negative going mode amplitude distribution,  2

mna 
, in Eq. (3) is replaced by a 

single distribution  2a   with positive-going modes identified by positive  values and negative 

going modes identified with negative values of , i.e,   

 
   

   

2 2

2 2

a a

a a

 

 







 
    
 

 

0

0








                                                           (5) 

and the complex coherence function  12
ˆ   is defined by 

 
 

   
12

12

11 22

ˆS
ˆ  

ˆ ˆS S


 

 
         2

120 1ˆ                                     (6) 

where  12
ˆS   is the acoustic pressure Cross Spectrum Density (CSD) between the two measurement 

positions, and  11
ˆS   and  22

ˆS   are the acoustic pressure Power Spectral Densities (PSD) 

measured at the two microphones.  

 

Note that, whilst Eqs. (4a and b) were derived for circular hard walled duct, it is completely general 

and applies to all hard walled prismatic ducts since in their derivation the modal shape functions are 

replaced by their average values at the duct wall.  

 

2.4  Far field directivity 

Knowledge of the mode amplitude distribution versus  is sufficient to determine the PSD,  ff  S ,  , 

of the far field sound pressure radiated from the open end of the duct versus polar radiation angle  
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measured relative to the duct axis [12, 13]. In the absence of flow the cuton ratio  is related to the 

propagation angle through  = cos. Using this result and that the angle of the main radiation lobe of 

far field directivity equals  in Ref. [12], it is shown in Ref. [10] that  ff  S ,   can be deduced from 

the coherence function  12
ˆ   from the equation,  

 
 

 
   

11

d 0 π / 2
ff  S ,

  ,       
S

 
 


                                                (7) 

where d() is the non-dimensional frequency-independent directivity function 

   
2

i cos

12

0

1
d cos e d

8π

ˆa
ˆ ˆ     

R

     


 
  

 
                                      (8) 

The expression on the right hand side of Eq. (8) is an integral over ̂  and therefore the normalised 

directivity function is predicted to be independent of frequency, which is a consequence of making the 

separability assumption of Eq. (3).  

 

2.5  Sound power radiation 

The mode amplitude distribution versus  is sufficient to determine exactly the sound power 

transmitted along the duct for both positive W  and negative going set of modesW  . Joseph et al. [10] 

has shown that the sound power transmitted may be computed directly from the complex coherence 

function. In the absence of flow, the result in Ref. [10] reduces to,    

 

 11

4 W c
 

S A

 









                                                         (9) 

where    is a frequency-independent constant factor determined from the coherence function, 

according to 

   12

0

Ω dˆ ˆ ˆ    


                                                          (10) 

In the absence of flow and reflections, sound power is transmitted from left to right away from the 

source and  Ω ̂
 is given by, 

 
 i

2

e 1 i 1
Ω

ˆ ˆ  
ˆ  

ˆ

 





 

                                                   (11) 
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The far field directivity and transmitted (and hence radiated) sound powers will be estimated in 

Sections 2.4 and 2.5 from Eqs. (7) and (8) respectively using coherence measurements made on the 

wall of a rigid walled duct excited at one end by a diffuse sound field. The estimates will be compared 

against direct measurements of directivity and radiated sound power by way of validation of this new 

two-microphone method.  

 

3. Experimental methodology 

This section describes the experimental arrangement used to validate the measurement theory outlined 

in Section 2. In order to validate this new measurement technique, acoustic pressure measurements 

were made of the broadband sound field at two closely spaced positions on the wall of the duct and at 

11 microphones in the far field of the duct open end.  Complex coherence measurements made at the 

two duct wall positions were used in Eqs. (7, 8) and (9, 10) to deduce the far field directivity and 

sound power respectively. These estimates were then compared against direct measurements from the 

11 far field measurements.  

 

3.1 Equipment and set-up 

A schematic of the experimental set up is shown in Figure 1. A circular duct manufactured from hard 

plastic of 0.2m internal radius (a) and 4.34m in length (L) was located through the wall separating a 

reverberation chamber (on the right) and an anechoic chamber (on the left). The sound field 

transmitted along the duct and subsequently radiated from the open end was generated by 4 high-

powered loudspeakers positioned in the corners of the reverberation chamber, driven by independent 

broadband random signals to generate a broadband diffuse sound field (above the Schroeder 

frequency). The random sound field impinging on the open of the duct was then transmitted through 

the duct. Some of this sound field is reflected back into the duct with the rest being radiated into the 

anechoic chamber on the other side.  

The coherence function at the duct wall were measured using two electret microphones separated by a 

distance ∆x, with the distance of the microphone closest to the open end in the source room at a 

distance xD, as shown in Figure 1. Eleven ½ inch Bruel and Kjaer microphones were equally spaced 

along a polar arc between i = 0° and 100° from the duct axis, at a constant radius R of 2.5m from the 

end of the duct,  were used to measure the directivity and sound power from the duct. The directly 

measured directivity and sound power were then compared against that predicted based on 

measurements of the in-duct complex coherence function from Eqs. (7, 8) and (9, 10) respectively. 
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Figure 1: Schematic of the experimental set-up with the duct located between the wall separating the 

reverberation chamber (left) and anechoic chamber (right). Sources in the reverberation chamber excited the 

duct which is then measured on the duct wall and in the far field of the anechoic chamber.  

 

 

Figure 2: Photograph of the experimental set-up within the large anechoic chamber. 

Figure 2 shows the experimental setup within the anechoic chamber. The duct can be seen passing 

through right hand side wall of the anechoic chamber with the circular array of far-field microphones 

located at the same height as the duct axis. 

Pre-amplification of the in-duct electret microphones and far-field Brüel & Kjaer microphones (red 

and pink dots respectively in Figure 1 were provided by in-house amplifiers. The loudspeakers were 

driven by independent random broadband signals produced by four Brüel & Kjaer Type 1405 Noise 

Microphone array
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Generators. The signal from each generator was passed through separate channels of a Yamaha P2160 

power amplifier and out through four separate EV T251+ Trapezoidal Stage System loudspeakers.  

 

In order to ensure that the duct was excited by a diffuse field, the excitation frequency was chosen to 

be above the Schroeder frequency for the source room calculated from 602000schf T / V , where V 

= 101.2m
3
 is the source room volume and 60T  is the reverberation time of 0.62s. The corresponding 

Schroeder frequency for the source room schf  is about 150Hz, which is well below most of the 

frequency range of interest. Previous work [13] has shown that excitation of the sound field within a 

duct exited by a diffuse field provides a good approximation to the case where each acoustic mode has 

identical sound power (the so called, ‘equal energy per mode’ sound field). In this case the mode 

amplitudes are predicted to vary as    
12a , 0  


   and the radiation directivity predicted to 

vary as   cosffS ,     . These predicted results will be compared against the measurements in 

Section 4. 

 

3.2 Measurement procedure 

Acoustic pressure data at the in-duct and far field microphones were acquired simultaneously at a 

sampling frequency of 50 kHz for a duration of 10s. For a sound field with perfectly uncorrelated 

mode amplitudes E{    mn m nA A   }=0 for m m ,n n   , Eq. (4a) predicts that the coherence 

function, and hence inferred mode amplitude distribution function, are independent of the microphone 

separation distance ∆x and position xD within the duct. To assess the validity of this assumption the in-

duct acoustic pressure measurements were made using pairs of microphones at varying distances xD 

along the duct and at different separation distances ∆x. The location of the microphone pair xD was 

varied between xD =0.5m to xD =3m with xD =0 m situated at the source room end of the duct. The 

separation distance between the microphones was varied between ∆x =0.01m and 0.1m in increments 

of 0.01m.  

 

A number of tests were made to assess the diffuseness of the source room sound field by traversing a 

microphone around it. Deviations in pressure around the source room were less than about 3dB 

thereby confirming that it has an acceptable degree of diffuseness. A simple test was also undertaken 

to assess the degree of modal correlation within the duct by comparing the pressure spectra at a single 

microphone at various circumferential positions around the duct wall. Deviations in spectra were 

limited to a few dB, which also confirms the high degree of de-correlation between the mode 

amplitudes.  
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3.3 Data analysis methodology 

The far field directivity  ff  S ,   (Pressure PSD versus angle) and radiated sound power spectral 

density  W   were measured using 11 far-field microphones in the anechoic chamber, as shown in 

Figure 2. The sound power was calculated assuming axi-symmetry of the sound field and by a discrete 

integration of the far field intensity given by  

 
 11

2

1

2 sin
ff   i

i i

i

S ,
W R      

c

 
  



                                                (12)  

where i  is the angular separation distance between the i
th
 microphone pair.  

 

4. Experiment results and discussion 

4.1  Characteristics of the in-duct and far field sound field 

Before assessing the accuracy of the two-microphone method for deducing the transmitted sound 

power and far field directivity, we first assess the characteristics of the in-duct and far field sound 

field. Figures 3(a) and (b) show simultaneous measurements of the PSD of the acoustic pressure on 

the duct wall and at the far field microphone at 0° to the duct axis, respectively, plotted against non-

dimensional duct-based frequency ka up to ka = 10. Shown on these figures (as vertical green lines) 

are the first 10 axial resonance frequencies 
Ax ,nf  assuming an open-open pipe where an end correction 

of 0.6a is assumed at each end, and hence are given by  2 0.6Ax,nf nc L   a   where n is an integer 

and L is the duct length. Also shown on these figures (as vertical red lines) are the first 8 non-

dimensional modal cuton frequencies mna , with the lowest of ka = 1.84 delineating the frequency 

range between purely plane wave propagation, ka < 1.84, and higher order modes ka > 1.84.  
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(a) In duct pressure spectrum 

 

(b) Far field pressure spectrum 

Figure 3: Comparison of standing waves and cuton modes in the pressure spectra of in-duct and far-field 

 

Both spectra are observed to be highly oscillatory with a sharp peak occurring in both spectra at the 

frequencies Ax ,nf at which axial resonance occurs. The peaks in the far field spectra in Figure 3(a) also 

correspond to peaks in the in-duct spectra in Figure 3(b). These frequencies correspond to axial 

resonance frequencies at which the plane wave amplitude increase to very high levels in both in-duct 

and far field. Differences in in-duct and far field levels are of course observed at ka < 0.5, where the 

reflection coefficient at the open end is very high. At frequencies above the first cuton frequency ka = 

1.84, both spectra exhibit considerable levels of oscillation, which is partly due to the very narrow 

frequency bandwidth used in the analysis to resolve the low frequency spectral peaks. No distinct 

behaviour can be observed at the modal cuton frequencies indicated by the red lines. 

 

One of the objectives of this paper is to use the two microphone method to deduce the far field 

radiation from in-duct coherence measurements. Before applying this method to the measured in-duct 
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pressure data we first assess the relationship between the in-duct and far field pressure spectrum by 

plotting in Figure 4, and the transmission coefficient (=0) defined here as the scaled ratio 

between the radiated pressure spectrum  0ff  S ,  at  = 0 to the duct axis and the in-duct pressure 

spectrum  11S   at the duct wall, 

 
 

 

2

2

11

2 0
0

ff   ,

a

S
,

S

R  
 



 
        (13) 

 

which may be interpreted as a non-dimensional efficiency factor between the in-duct pressure 

spectrum, including reflections, and the far field pressure spectrum. 

 

Figure 4: Transmission coefficient (=0) versus ka 

 

At ka values greater than about 1 the scaled ratio oscillates about 0dB. At ka less than about 1, the far 

field pressure spectrum relative to the in-duct pressure spectrum drops sharply. To explain this 

behaviour consider the spectrum of transmitted sound, which can be expressed in terms of the 

spectrum of the pressure  iiS   incident upon the open end of the duct and the plane wave energy 

transmission coefficient  
2

T   as 

 
 

 
22iiS

W a T
c


                                                         (14) 

where  
2

T   is the ratio of pressure PSD incident upon the open end and that transmitted 

immediately on the other side. The radiated sound power spectrum can also be expressed in terms of 

the power spectrum of the radiated pressure at the microphone at polar angle  = 0° by assuming that 
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at these low frequencies ka < 1, the sound radiates omni-directionally in the forward arc over the area 

2R
2
, where R is the distance of the microphone from the duct open end (=2.5m), in the form, 

 
  2

0
2

ff  S ,
W R

c




           (ka < 1)                                        (15) 

A single microphone in the duct detects the sum of the incident and reflected pressure from the end. 

Neglecting interference between the incident and reflected pressures, the measured pressure PSD in 

the duct  11S   is related to the incident pressure spectrum by      
2

11 1ii rS RS    
  

, 

 
2

rR   is energy reflection coefficient, and therefore       2

11 1ii rRS S   . Combining 

Equations (14) and (15) gives the following expression for the in-duct to far-field transmission 

coefficient in terms of  
2

rR   and  
2

T  , 

     
2 2

1+ rT R   
  

                                                  (16) 

Following Levine and Schwinger [15], the energy transmission coefficient in the frequency limit for a 

flanged duct is    
2 2

T ka   (ka < 0.5) and by energy conservation the energy reflection coefficient 

equals    
2 2

1rR ka   . In the low ka limit, therefore, 

     
2 2

2ka ka  
 

                   (17) 

In Figure 4 the efficiency factor  1010log      is plotted as a dashed line for ka values less than 1. 

This function appears to provide a good approximation to the general behaviour of the far field to in-

duct pressure ratio in the low ka limit. At these low frequencies, therefore, most of the sound is 

reflected back into the duct with comparatively little sound power being radiated to the far field. 

 

4.2 Complex coherence function 

The underlying assumption of the two-microphone method is the assumption that the frequency 

dependent mode amplitude can be written as the product of a purely frequency-dependent source term 

and a non-dimensional mode amplitude distribution, i.e.       
2

2

mn mnE A S a  

 . A 

consequence of making this assumption is that the complex coherence function is only a function of 

the non-dimensional frequency ˆ x / c   , as indicated in Eq. (4a) and explained more fully in Ref. 

[10]. We now test this assumption on the measured in-duct pressure data by computing the magnitude 
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and phase of the complex coherence function up to a maximum frequency of 25kHz at the three 

microphone separation distances of ∆x = 0.03, 0.07 and 0.10m located arbitrarily at xD =1.5m along 

the duct. The magnitude and phase of the coherence are plotted against ̂  in Figure 5 (a) and (b) 

respectively. Note that ka/̂  = a/∆x. Good collapse of the measured coherence magnitude and phase 

are observed over the frequency range ̂  < 14 where the spectra overlap. The jump in the phase 

spectrum for ∆x = 0.07m in the frequency range ̂ > 7 arise due to 2 phase unwrapping issues. The 

main assumption made in the measurement technique therefore appears to be valid in the test to 

within 10% for ̂  < 5 and 20% at high frequencies reasonably valid in this test. 

 

(a) coherence magnitude  

  

 

(b) coherence phase 

Figure 5: Comparison of the coherence at different microphone separations 
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A notable feature of Figure 5 (a) is the slow rate of decay of the coherence function with increasing 

frequency for ̂  up to about 6. Above this frequency the coherence function remains roughly flat with 

an average value of about 0.7 over the frequency range shown and beyond. The reason for this 

behaviour is mostly likely due to the presence of strong axial standing waves in the pipe rig even 

though the phase spectrum in Figure 5(b) is indicative of waves propagating away from the source. 

 

The coherence measurements presented in Figure 5 were repeated at different positions xD along the 

duct and found to have comparatively little effect on the results, and are therefore not shown here.  

 

4.3  Mode amplitude distribution 

In this section we use the coherence functions plotted in Figure 5 measured at the three microphone 

separation distance x = 0.03, 0.07 and 0.10m to estimate  2a   in the duct. The non-dimensional 

normalised mean square amplitude distribution  2a  deduced from Eq. (4b) is plotted in Figure 6 (a) 

versus  for the three separation distances.  

             

(a) without window function                                           (b) with window function 

             (equivalent to a rectangular window)                   

Figure 6: Modal amplitude distribution against the cuton ratio for different microphone separations 

 

In Figure 6 (a) the amplitudes of the modes with positive corresponding to the modes propagating 

away from the source, are typically 10dB above those of the modes propagating in the opposite 

direction. However, the mode amplitude distribution observed in this figure appears to be rather 

oscillatory whose peaks and troughs are affected by the microphone separation distance x. The 

reason for these oscillations in the amplitude spectrum is because the magnitude of the coherence 

function has not sufficiently decayed over the (non-dimensional) frequency range of the measurement. 
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This upper non-dimensional frequency limit max̂  is related to the maximum frequency fmax of the 

frequency spectrum (equal to half the sampling frequency) through ̂ max = 2fmax x/c. The separation 

distance x should therefore be sufficiently large to ensure that the coherence function due to the 

acoustic field has decayed to sufficiently low levels so that it is fully captured by the spectrum.  

 

If the coherence function has not decayed to sufficiently small levels at the maximum frequency ̂ max, 

as in this case, the Fourier Transform relationship of Eq. (4b) for the mean square mode amplitude 

distribution becomes strongly influenced by windowing effects so that it may be written in the form, 

     2 i

12

0

1
e d

2

ˆˆ ˆ ˆa       




 
                         (18) 

 where (̂ ) is a window function. The oscillations observed in Figure 6 (a) are therefore the result of 

applying the rectangular window function ( ̂ )=1 for ̂  < ̂ max. To minimize this rectangular 

windowing effect, ( ̂ ) was replaced by a Hanning window. The Hanning window is one half the 

Hann function,     0.5 1 cos 2 max
ˆ ˆ ˆ      , ̂  =[0, max̂ /2]. The effect on the three mode 

amplitude distributions obtained for different x by applying the Hanning window in Eq. (18) is 

shown in Figure 6(b) alongside the mode amplitude distribution estimate obtained without windowing. 

The mode amplitude spectrum in this Figure6 (b) is much less oscillatory than that in Figure 6 (a).  

 

In Figure 6 (a) and (b), for modes propagating away from the source α ≥ 0 the estimate of the mode 

amplitude distribution is reasonably consistent for the three separation distances x, with variations 

being less than about 3dB for  values greater than 0.2. For  values less than 0.2, associated with 

modes close to cutoff. The estimates deviate considerably more than 3dB. These modes radiate more 

strongly in the sideline directions. However, the estimate of the mode amplitude distribution for α < 0 

appears to be highly sensitive to separation distance since these are most strongly affected by the 

sidelobe behaviour of the window function (̂ ).  

 

4.4  Far-field directivity 

In this section we compare the far field pressure directivity measurements obtained by the 11 

microphones shown in Figure 2 with that obtained from the in-duct coherence measurement in Eq. 

(8). A comparison of the directly measured far field directivity at the typical frequency of f = 6.6kHz 

(ka=24.5) with that inferred from the Eq. (8) with x = 0.03m is shown in Figure 7 (a). The latter is 
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shown as the blue solid curve which can be seen to contain a number of spurious side lobes. These are 

a direct consequence of the rectangular windowing effect discussed in Section 4.3 above.  

 

 

                                              

a. without window                                                    b. with window 

(equivalent to a rectangular window)          

Figure 7: Estimated directivity with and without window, at x = 0.03m 

 

As for the mode amplitude distribution in Figure 6(a) these spurious oscillations can be largely 

suppressed by the introduction of a window function ( ̂ ). Eq. (8) for non-dimensional directivity 

then becomes, 

     
2

i cos

12

0

1
cos e d

8π

ˆa
ˆ ˆ ˆd      

R

      


 
  

 
                              (19) 

The corresponding directivity estimate obtained using a Hanning window function is shown in 

Figure 7(b). The spurious oscillations observed with no window function applied in Figure 7(a) are 

now supressed and the agreement with the measured directivity is much improved. 

 

Further comparisons between the directly measured directivity and that inferred from Eq. (19) is 

shown in Figure 8 at the three frequencies of 2.875kHz, 6.625kHz and 12.125kHz, representative of 

the low, middle and high frequency parts of the spectrum, and at the three separation distances of x = 

0.03m, 0.07m and 0.1m. A consequence of the separability assumption of Eq. (3) is that the 

normalised directivity d() function is predicted to be independent of frequency. Comparison of the 

directly measured directivity functions shown as the red curve in Figure 8, and that from Eq. (19) with 

Hanning window applied, demonstrates that this conclusion allows for predictions of the far field 

directivity that is generally within 10dB of the measured directivity, although much better in many 
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cases (within 5dB). The most significant exception to this conclusion is at the highest frequency f = 

12.1kHz where a small peak is observed in the directivity function at about 20 to the duct axis, which 

is not predicted by the two-microphone method. Agreement between direct and inferred directivity 

estimate is poorest at the highest frequency f = 12.1kHz. 

 

 

Figure 8: Directivity comparison at different frequencies for different microphone separations  

 

Agreement is also poor at the lowest frequency f = 2.8kHz, corresponding to ka = 10.5 where there 

are approximately 26 modes propagating. At this frequency, therefore, there may be not sufficient 
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number of modes to justify approximating the modal sum to an integral. Agreement is poor in the 

sideline directions for x = 0.1m, which is consistent with the high sensitivity of the mode amplitude 

estimate shown in Figure 6(b) for the near cutoff modes  ~ 0, which radiate mostly strongly in the 

sideline directions, since  = cos.   

 

4.5 Sound power spectrum 

In this section we compare in Figure 9 the spectrum of sound power obtained by direct integration of 

the far field sound intensity (assuming axi-symmetry) in Eq. (12) and that estimated from the 

coherence function in Eqs. (9 & 10).  In order to reveal the low frequency behaviour ka < 1 where 

strong reflections from the open end are observed in Figure 4, the window length for the spectrum 

estimated was increased to 2
13

 samples corresponding to 0.16s and therefore a frequency resolution of 

6.1Hz. However, this increase frequency resolution has led to a highly oscillatory coherence function 

and therefore spectral density of sound power. The sound power spectra are therefore shown in third 

octave bands expressed as centre-frequency ka values.   

 

Figure 9: Comparison of the calculated (∆x = 0.07m) and measured far-field sound power PSD  

 

The sound power comparison is generally within about 3dB at ka greater than about 10 and within 

5dB at ka values greater than 1. However at very low frequencies, ka < 1, the sound power estimated 

from the coherence function is significantly over-estimated due to high sound pressure levels S11(ω) in 

the duct caused by the high plane wave reflection coefficient at these low frequencies (as shown in 

Figure 9).   
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5. Conclusions  

This paper describes measurements of the complex coherence function made at two microphones on 

the wall of a rigid duct excited at one end by a highly reverberant sound field. The coherence function 

measurements is used in a new measurement method to infer the far field directivity and radiated 

sound power spectra. These directivity and sound power spectral estimates were compared against the 

measurements obtained by direct measurements from 11 far-field microphones in an anechoic 

chamber. The directivity estimates were shown to be within 10dB in all cases and better than 5dB in 

most cases investigated. Sound power estimates, which is effectively an average value of the 

directivity estimate, was found to be within 3dB of the directly measured value at frequencies ka 

greater than about 10.  

The technique is shown to break down at very low frequencies ka < 1 where reflections back into the 

duct are significant. Agreement is also poorer at ka values less than about 10 (where there are less 

than about 30 propagating modes) where the mode amplitude distribution versus  can no longer be 

regarded as a continuum and the modal sum replaced by an integral.  

In conclusion, therefore, the two microphone method has been validated under laboratory conditions 

for the case of zero Mach number. Further work is needed to establish the validity of the method for 

realistic sources, such as fan, and in the presence of a mean flow.  
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Appendix: Fourier Transform relationship between mean square mode 

amplitude distribution and complex coherence function 

 

The acoustic pressure cross spectrum between two points separated axially along the duct wall

 a r a, y , where a is the duct radius, at axial distances x1 and x1 + ∆x, may written as 

 

      12 1 2 1 1E *

a a aS , ,x ,x p ,x p ,x x
T




  y y y             (A1) 

 

For incoherent excitation of the sound field we treat the mode amplitudes as uncorrelated random 

variables so that  E 0*

mn m nA A     for m m ,n n   . We further assume that the same mode 

propagating in opposite directions are also uncorrelated such that     E 0
*

mn mnA A    , 

consequently based on     iie e mnkxt

mn mn mnp ,x A
    y y (Eq. (1)), we can get, 
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12 E E e
k x k xmn mn
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S , , x A e A
 

   
 

    
  

y y       (A2) 

 

Work by Rice [12], and more recent work by Joseph et al. [13], have shown that there are a physically 

important class of source distributions for which the relative mode amplitude distribution is 

independent of frequency and only a function of the cut off ratio mn . Well known examples include a 

uniform distribution of monopole sources, axial dipole sources and equal energy per mode [13]. In 

these, and many other source distributions, we may write (note that this equation is same as Eq. (3)),  

 

      
2

2E mn mnA S a  

                                                    (A3) 

 

where  S   is the frequency-dependent source strength with dimensions of pressure squared per unit 

frequency and  2

mna 
 specifies the relative distribution of non-dimensional mean square mode 

amplitudes, which depends only on mn . The assumption of the separability of   E
2

mnA   into a 

purely frequency–dependent term  S  and a mode distribution term  2

mna   (which controls the 
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spatial variation of the sound field) is central to the validity of the technique. The split between the 

two terms is also essentially arbitrary. We define  2

mna   with the normalization property of 

   2 2 1mn mn

m,n

a a  
  
  . We now denote the amplitude of waves propagating against the 

direction of flow (i.e., reflected modes in this case) by negative argument α so that (note that this 

equation is same as Eq. (5))  

 

   

   

2 2

2 2

a a

a a

 

 







 
    

 

 

0

0








                 (A4) 

 

In the high frequency limit (ka = ωa/c > 10 has been found to be sufficient), we may treat  2a   as a 

continuous variable so that the discrete summation over  2

mna   in Eqs. (A2, A3) may be replaced 

by an integration over α. The normalization condition of    2 2 1mn mn

m,n

a a  
  
   may therefore 

be written as    
1

2

1

d 1a n  


 , where n (α) the modal density function is introduced to take 

account the distribution of modes across their range of  α- values, defined by, 

 

 
   

lim 0

N N
n



  





 



,    

1

1

d 1n  


      (A5) 

 

where N(α) is the number of modes with ‘α’ values of between -1 and α, and N is the total number of 

propagating modes at frequency ka, i.e.,  
1

1
dN  


   . Rice [12] has shown that in a cylindrical 

duct with uniform mean flow, the total number of propagating modes N takes the high-frequency 

limiting value,  
2

1
2 ka , ka  .  Following Rice [12], and re-expressed in terms of cuton ratio 

α by Joseph et al.
 
[13], the high-ka asymptotic density function  n   is given by  n   ,                              

and this equation indicates a scarcity of modes that are just cut-on ( 0  ) compared with a higher 

population of modes that are well cut on, ( 1  ). 

 

Simplifications to Eq. (A2) for the pressure cross spectrum at the duct wall are obtained by replacing 

 2

mn ay  by its average value at the duct wall
 
[13], averaged over all values of mode indices m and n,  
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   2 2 2mn
mn

  a ay y .    (A6)  

 

Taking the average incurs greatest error for modes with the largest m values whose values of 

 2

mn ay  are concentrated at the duct wall. These modes are comparatively scarce, however (with m 

= 0 having the largest number of radial modes and hence being most common), and hence the 

approximation of Eq. (A6) introduces negligible error compared with the exact calculation of Eq. 

(A2). Substituting Eq. (A3) for  
2

mnA  , and taking the high frequency limit in the sense of 

   
1

2

1

d 1a n  


 , leads to an integral expression for the pressure cross spectrum  12 aS , , x y  

between two microphones separated axially by a distance ∆x at the duct wall  a a,y  involving 

only the cutoff ratio and the frequency-dependent source strength,  

 

 
 

   
1

12 2

1

2 e d
ˆa i

ˆS ,
a n

ˆS


  




  
y

,           (A7) 

 

which is a function only of the non-dimensional frequency, ̂  

 

ˆ x / c                                            (A8) 

 

Note that the source term  ˆS S   has also been written as a function of ̂  which is permissible 

since S is a source term and therefore unrelated to ∆x and so there is no difficulty in non-

dimensionalising the source frequency ω with respect to this arbitrary distance.  

 

A consequence of making the separability assumption of Eq. (A3) is that the cross spectrum is only a 

function of the non-dimensional frequency ̂ . Thus, cross spectra measured at the duct wall for 

different separation distances ∆x, plotted against ̂ , should collapse provided that this separability 

assumption is met. This property therefore provides a simple test of the validity of Eq. (A3). In 

practice, however, the coherence measurement will be affected by non-acoustic pressure contributions 

from flow noise at the microphones. In practice, therefore, steps should be taken to minimize 

contamination by flow noise by, for example, recessing the microphones into the duct wall. 

 

Moreover, the source strength  ˆS   can be interpreted as the high frequency noise pressure spectrum 

averaged over the duct cross sectional area, per mode. Joseph et al.
 
[13] has shown that, in the high 

frequency limit, the pressure PSD averaged over the duct cross section,  ˆS  , is half the pressure 
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Power Spectral Density (PSD) measured at the duct wall  11 a
ˆS , y , i.e.,     11 2a

ˆ ˆS , S  y ,   and 

substituting this into (A7) leads to,  
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             (A9) 

 

In Eq. (A9), and all future results, the dependence on ya is dropped since it is now understood that all 

measurements are made at the duct wall. 

 

Finally we make the approximation that    11 22
ˆ ˆS S   and hence      11 11 22

ˆ ˆ ˆS S S   , since 

∆x is usually very small (typically a few centimeters), and set the upper limit of integration to infinity 

(since  2 0a    for 1    corresponding to cutoff modes). The final result is, 
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                      (A10) 

 

Equation (A10) represents a Fourier Transform relationship between α– weighted normalized mode 

amplitude distribution function  2a   and the complex coherence function

       12 12 11 22
ˆ ˆ ˆ ˆS S S     , (  

2

120 1ˆ   ). The mean square mode amplitude distribution, 

with the normalization property of     2 2 1mn mn

m,n

a a  
  
  , may therefore be readily deduced 

from the inverse Fourier Transform of the complex coherence function. 
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