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Abstract The relationship between satellite land surface temperature (LST) and ground-based
observations of 2 m air temperature (T2m) is characterized in space and time using >17 years of data. The
analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer
series, which has been produced within the European Space Agency GlobTemperature project (http://www.
globtemperature.info/). Global LST-T2m differences are analyzed with respect to location, land cover,
vegetation fraction, and elevation, all of which are found to be important influencing factors. LSTnight (~10 P.M.
local solar time, clear-sky only) is found to be closely coupled with minimum T2m (Tmin, all-sky) and the two
temperatures generally consistent to within ±5°C (global median LSTnight-Tmin = 1.8°C, interquartile
range = 3.8°C). The LSTday (~10 A.M. local solar time, clear-sky only)-maximum T2m (Tmax, all-sky) variability is
higher (global median LSTday-Tmax = �0.1°C, interquartile range = 8.1°C) because LST is strongly influenced
by insolation and surface regime. Correlations for both temperature pairs are typically >0.9 outside of the
tropics. The monthly global and regional anomaly time series of LST and T2m—which are completely
independent data sets—compare remarkably well. The correlation between the data sets is 0.9 for the globe
with 90% of the CDR anomalies falling within the T2m 95% confidence limits. The results presented in this
study present a justification for increasing use of satellite LST data in climate and weather science, both as an
independent variable, and to augment T2m data acquired at meteorological stations.

Plain Language Summary Surface temperatures over land have traditionally been measured at
weather stations. There are many parts of the globe where there are very few stations, for example across
much of Africa and Antarctica, leading to gaps in surface temperature datasets, affecting our understanding
of how surface temperatures are changing, and the impacts of extreme events (e.g. heat waves). Satellites can
provide temperature observations across the globe. However, satellites measure how hot the land surface
temperature (LST; including the uppermost parts of e.g. trees, buildings) are to touch, whereas weather
stations measure the air temperature just above the surface (T2m). Additionally, satellite LST data may only
be available in cloud-free conditions. This paper describes a comparison between T2m and a new 17-year LST
dataset. It demonstrates that LST and T2m are often strongly related, particularly at night, but the exact
relationship depends on location, land surface type, vegetation and elevation. A time-series analysis shows
that the change in LST and T2mwith time is remarkably similar; giving confidence in the T2m trends reported
elsewhere in the climate change literature, as these datasets are independent. The results of this study
demonstrate that LST can usefully augment T2m observations in climate and weather science.

1. Introduction

Land surface temperature (LST)—the temperature of the land surface rather than that of the near-surface air—
is a key surface parameter in driving boundary layer processes and has recently been proposed in the 2016
Global Climate Observing System Implementation Plan as a new essential climate variable [GCOS, 2016]. LST
observations aremost readily available fromspaceborne radiometers that operate at infrared (IR) ormicrowave
(MW)wavelengths offering complete global coverage at spatial scales ranging froma few tens ofmeters (IR) to
a few tens of kilometers (MW), with a temporal frequency of around twice per month to once every 15 min.

Applications for satellite-derived LST are now widely reported in the literature. Examples include using LST to
evaluate land surface models [Koch et al., 2016], improve the performance of numerical weather prediction
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models [Singh et al., 2016], diagnose surface response to dry spells [Folwell et al., 2016], assess drought
[Karnieli et al., 2010; Mühlbauer et al., 2016], characterize urban heat islands [Azevedo et al., 2016; De Ridder
et al., 2012; Dousset et al., 2011; Hu and Brunsell, 2013], and to estimate near-surface air temperature in the
absence of meteorological stations [Chen et al., 2014; Good, 2015; Kilibarda et al., 2014]. Operational LST data
sets are now available from several sensors, some of which extend for more than a decade in length. This
includes LST data sets from the widely used Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard the polar-orbiting Terra (2000–present) and Aqua (2002–present) platforms [Wan, 2013, 2014]
and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat
Second Generation platforms (2005–present) [Trigo et al., 2008; Freitas et al., 2010, Freitas et al., 2013].

Use of satellite LST within the climate community, however, has not yet become widespread, and there are
very few examples in the literature where LST has been used to investigate climatic temperature change
[Jiménez-Muñoz et al., 2013; Jin, 2004;Oku et al., 2006]. One of themain obstacles to this has been the absence
of long-term, high-quality, stable LST climate data records (CDRs). Another barrier has been a lack of under-
standing of what satellite LSTs represent and how this relates to the near-surface air temperature measured
at weather stations (T2m), which has traditionally been the variable of choice over land in assessing surface
temperature response to climate change [Caesar et al., 2006; Hansen et al., 2010; Jones et al., 2012; Smith
et al., 2008] and evaluating climate models [Box and Rinke, 2003; Kiktev et al., 2003; Kharin et al., 2005].
However, in contrast, the use of satellite observations of sea surface temperature (SST)—which are similar
in principle to satellite LST observations—in climate science is well established [e.g., Good et al., 2007;
Høyer and Karagali, 2016; Rayner et al., 2003]; Reynolds et al., 2002] and SST CDRs already exist for some sen-
sors [Casey et al., 2010; Merchant et al., 2012; Merchant et al., 2014].

Following the success of satellite SST CDRs, increasing user interest in satellite LST data sets, lengthening
satellite records, and improvements to LST retrieval techniques, LST data providers have naturally started
to look toward generating CDRs. One such initiative includes creating the first multidecadal LST CDR from
the Meteosat first- and second-generation geostationary satellite series, which has provided reliable thermal
IR observations over Europe, Africa, and parts of South America since the early 1980s [Duguay-Tetzlaff et al.,
2015]. There has also been movement toward creating a long-term MW LST record, which could provide LSTs
back to 1987 using data from the Special Sensor Microwave/Imagers [Prigent et al., 2016]. MW LSTs have the
benefit of providing LST observations in all nonprecipitating conditions, whereas IR LSTs are limited to cloud-
free scenes. However, the accuracy and spatial resolution of IR LSTs are superior to MW LSTs, making them
more suitable for many applications.

The most accurate satellite LST data sets are derived from sensors that have two or more thermal IR channels;
these channels typically include the “split-window” channels, which are located at approximately 11 and
12 μm. This enables an improved atmospheric correction to be made compared with single-channel IR retrie-
vals, as atmospheric attenuation varies with wavelength [Dash et al., 2002; Li et al., 2013]. One such sensor
that provided this capability is the Along-Track Scanning Radiometer (ATSR), which had unprecedented
radiometric accuracy and stability (section 2.1) and a record length that exceeds 20 years. Together with a
very stable orbit with little temporal drift (per sensor), these factors make the ATSR series a desirable target
for generation of an LST CDR. The first ATSR LST CDR has been produced within the framework of the
European Space Agency’s (ESA) GlobTemperature project (http://www.globtemperature.info/), and it is ver-
sion 1.0 of this data set that is analyzed in this study.

The analyses presented here comprise two aspects. First, the worldwide LST-T2m differences are character-
ized by comparing the ATSR CDR with in situ T2m observations, in both point-station and in gridded form.
Several studies now exist in the literature where the LST-T2m relationship is explored through the analysis
of satellite LST observations and coincident ground-based observations of T2m [e.g., Hachem et al., 2012;
Mildrexler et al., 2011; Sohrabinia et al., 2014; Urban et al., 2013; Vancutsem et al., 2010]. A few studies also
examine this relationship using ground-based observations of both LST and T2m [e.g., Gallo et al., 2011;
Good, 2016]. However, these studies have tended to be focused, for example, on specific geographical
regions [Hachem et al., 2012; Sohrabinia et al., 2014; Urban et al., 2013; Vancutsem et al., 2010] or stations
[Gallo et al., 2011; Good, 2016,], or a particular aspect of the LST-T2m relationship. For example, Mildrexler
et al. [2011] present an analysis of the global relationship between the annual maximum LST and T2m using
7 years of data fromMODIS/Aqua, which has a local solar overpass time of ~1:30 P.M. More recently, Lian et al.
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[2017] used 12 years of MODIS/Aqua data to analyze the global relationship between maximummonthly T2m
(Tmax) and monthly maximum LST.

This study complements previous studies by providing new information on the relationship between data
sets for LST and T2m—including the relationship between nighttime LST (LSTnight) and Tmin—on a global
scale as a function of land cover type, vegetation fraction, and elevation. This study is based on ~17 years
of data from the ATSR, which has not yet been used to study the LST-T2m relationship in detail.

The second part of this paper looks at the temporal evolution of the global mean LST compared to the
equivalent T2m time series, which has not been addressed in the existing literature. Previous studies analyzing
LST time series are scarce and tend to be limited to specific geographical regions and focus only on LST. For
example, Jiménez-Muñoz et al. [2013] analyze 13 years of LST data fromMODIS and ERA-Interim skin tempera-
tures over the Amazon, while Oku et al. [2006] analyze 7 years of LST acquisitions from the Geostationary
Meteorological Satellite 5 over the Tibetan Plateau.

LST is a challenging parameter to estimate from satellite observations, owing to the variation and uncertainty
in surface emissivity and atmospheric attenuation, which must be known precisely to retrieve LST accurately
[Dash et al., 2002; Li et al., 2013]. The accuracy of current operational IR-based data sets is typically 1–3°C
[Duguay-Tetzlaff et al., 2015; Freitas et al., 2013; Trigo et al., 2008;Wan, 2014], which is considerably lower than
for IR SST retrievals that can achieve accuracies of close to 0.1°C [Embury et al., 2012]. The spatial heterogene-
ity of LST and land T2m is high, particularly during the day owing to differential solar heating, vegetation tran-
spiration, and surface turbulence. As a result, variations of several °C between neighboring stations and
across single-satellite pixels are observed [Good, 2015; Yan et al., 2010]. These are important factors to
consider when comparing satellite LSTs with station-based T2m estimates, as they will lead to inherent differ-
ences of up to a few °C.

Previous studies show that LST and T2m are generally well coupled, with correlation coefficients that usually
exceed 0.6 and very often 0.8. LST and T2m are most tightly coupled over highly vegetated surfaces and when
insolation is low, for example, under full cloud cover, at night or at high latitudes during winter, spring, and
autumnmonths. In these cases, LST and T2m may differ by only 1–2°C. In contrast, LST can exceed T2m by sev-
eral °C when insolation is high and vegetation cover is low to moderate [Good, 2016; Hachem et al., 2012;
Mildrexler et al., 2011; Sohrabinia et al., 2014; Urban et al., 2013; Vancutsem et al., 2010]. In extreme conditions,
for example, under clear skies during the middle part of the day at low latitudes over nonvegetated surfaces,
the LST-T2m temperature difference may approach or even exceed 20°C [Good, 2016; Mildrexler et al., 2011].
Even in these cases, LST and T2m remain coupled albeit with much greater changes in LST for a given change
in T2m. It is this coupled relationship that has led to the recent abundance of studies that attempt to use satel-
lite LSTs to help infill gaps in current T2m data sets [Benali et al., 2012; Chen et al., 2014; Good, 2015; Kilibarda
et al., 2014; Janatian et al., 2016; Oyler et al., 2015; Parmentier et al., 2015; Zhang et al., 2011].

The focus of this study is on the spatial and temporal relationship between LST and T2m on a global scale. The
analysis of a >17 year satellite LST record presented here will demonstrate the potential for using LST in cli-
mate science, particularly in augmenting information from traditional meteorological T2m observations. (Data
from the first 4 years of the ATSR record are not analyzed here owing to ongoing calibration issues.) Section 2
introduces the data sets used in the study, while section 3 summarizes the methods used in analyzing the
data. The results of the study are presented in sections 4 to 6, and their implications discussed in section 7.
The main conclusions of the study are summarized in section 8.

2. Data

A summary of the data sets used in this study is provided in Table 1. Further details are presented in the
following subsections.

2.1. GlobTemperature CDR

The GlobTemperature CDR comprises observations from the Along-Track Scanning Radiometer (ATSR) series
[Llewellyn-Jones et al., 2001; Smith et al., 2012]. The ATSR was designed to make accurate observations of sea
surface temperature (SST) with channels located within the visible to infrared part of the electromagnetic
spectrum, including the split-window channels at approximately 11 and 12 μm for surface temperature

Journal of Geophysical Research: Atmospheres 10.1002/2017JD026880

GOOD ET AL. GLOBAL ANALYSIS OF T2M AND SATELLITE LST 9187



retrieval. The instrument design benefits from an exceptionally stable onboard calibration system with two
onboard blackbody targets, and Stirling-cycle cooled detectors, enabling radiometric accuracy of its
infrared channels of better than 0.05°C [Smith et al., 2012]. The ATSR was equipped with dual-viewing
capability allowing nominally the same point on the Earth’s surface to be viewed through two different
atmospheric path lengths albeit with slightly differing spatial footprints. For SST retrieval, this is used to
improve the correction for atmospheric effects [Zavody et al., 1995]. The ATSR had a swath width of
approximately 500 km, achieving all-sky global coverage in 3 days.

ATSR-1 was launched onboard the European Space Agency’s first Earth Remote Sensing (ERS-1) satellite in
July 1991, with ATSR-2 following onboard ERS-2 in April 1995. The third ATSR, the Advanced ATSR (AATSR),
was launched in March 2002 onboard ESA’s Envisat satellite, which unfortunately ceased communications
on 8 April 2012, bringing an end to the ATSR mission. The AATSR is succeeded by the Sea and Land
Surface Temperature Radiometer (SLSTR), which was launched onboard ESA’s Sentinel-3 satellite in
February 2016. The overpass time of the ATSR series was approximately 10:00 A.M./P.M. (AATSR) to
10:30 A.M./P.M. (ATSR-1; ATSR-2) local solar time. SLSTR also has a local overpass time of 10:00 A.M./P.M.

An operational LST retrieval scheme was first introduced for the AATSR and is described by Prata [2002, and
references therein]. The operational algorithm is a nadir-only split-window retrieval. The forward view (at
~55° from nadir) is not usually used for LST owing to difficulties in accounting for emissivity dependency
on view angle, and LST anisotropy (the observed LST for some surfaces depends on zenith and azimuth
observation angles), as well as the collocation issues arising from the spatial mismatch between the forward
and nadir footprints noted earlier . A modified version of this algorithm, described in Ghent [2012], with
improved retrieval coefficients and auxiliary data sets, enhanced cloud masking, and full uncertainty budget,
has been implemented within ESA’s GlobTemperature project to create a long-term LST data set based on
the latter two ATSR instruments (http://www.globtemperature.info/). The CDR is a homogenized version of
this data set, providing monthly average global fields of clear-sky LSTday and LSTnight in which a consistent
algorithm and cloud detection method is applied to observations from both sensors. Version 1 of the CDR
includes only ATSR-2 and AATSR, owing to ongoing calibration issues with parts of the ATSR-1 record.

Table 1. Data Sets Used in This Study

Data Set (Version Number) Coverage Data Type
Spatial
Resolution

Temporal
Resolution

Record
Start

Record
Stop Variables Citation

ATSR CDR (v1) Global land and ice
(clear-sky only)

Satellite 0.05° Monthly August
1995a

March
2012a

LST DayLST Night Ghent [2012]

CRUTEM4 (V4.4.0.0) Global (incomplete) Station 5.0° Monthly Jan
1856

ongoing Tmean anomaly Jones et al.
[2012]

CRU TS (v3.23) Global land
(except Antarctica)

Station 0.5° Monthly Jan
1901

Dec
2014

Tmean TmaxTmin Harris et al.
[2014]

GHCN-M (v 3.3.0.20160130.qca) Global (station time
series)

Station Point Monthly Jan
1730

ongoing Tmean TmaxTmin Lawrimore
et al. [2011]

MODIS (MOD11C3, v6) Global land and ice
(clear-sky only)

Satellite 0.05° Monthly Feb
2000

ongoing LST DayLST night Wan
[2013, 2014]

ERA-Interim Global (all surfaces) Reanalysis ~80 km 6-hourly Jan
1979

Ongoing Instantaneous
skin

temperature

Dee et al.
[2011]

Copernicus/Geoland-2
Fractional Vegetation
Cover (v1.0)

Global (clear-sky
land only)

Satellite 1/112° 10-day
composite

Jan
1999

Dec
2012

Fractional
vegetation

cover

Baret et al.
[2013];

Camacho
et al. [2013]

LC CCI (v1.6) Global land and ice. Satellite 300 m N/A Jan
1998

Dec
2012

Landcover type Bontemps et al.
[2012];

Poulter et al.
[2015]

SRTM (v1) Global Satellite 30 m N/A 2000 2000 Elevation Farr and
Kobrick
[2000];

Rodriguez
et al. [2005]

aJanuary–June 1996 and January–June 2001 are not included in the analysis as these are incomplete months in the CDR (see text).
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Uncertainty information is provided within the CDR at 0.05° resolution, accounting for instrument noise,
systematic retrieval uncertainties, and surface related components. Surface parameters in the LST retrieval
are constrained using the Cooperative Institute for Meteorological Satellite Studies emissivity data set
[Hulley et al., 2015], with coefficient fitting to an extended GlobCover land cover classification [Arino et al.,
2007]. The uncertainty in the coefficient fitting due to emissivity is 0.01°C, with an additional surface
uncertainty component related to fractional vegetation auxiliary data. Emissivity and land cover
classification monthly composites are compiled from high-resolution satellite data at 100–300 m
resolution, providing global coverage, maximizing the information on surface spatial variability whilst
minimizing data gaps due to persistent cloud.

Owing to the 30 min difference in overpass time between ATSR-2 and AATSR, ATSR-2 LSTs in the CDR are
adjusted to account for this difference, as LST can change substantially in 30 min, particularly when insolation
is high. For LSTday, this is essentially a cooling correction for ATSR-2, while for LSTnight, the correction will
usually have a small warming effect. The corrections are derived empirically from the LST differences during
ATSR-2/AATSR overlap period (June 2002 to May 2003 inclusive) on a monthly basis for both LSTday and
LSTnight on the output 0.05° grid. For 0.05° cells where this LST difference cannot be estimated directly
(e.g., due to cloud), and there is a gap in the output grid, the correction is derived from cells with the same
land cover within a 10° × 10° tile. The errors associated with implementing this correction are likely to be
larger for day time (~0.5°C) compared with nighttime (~0.2°C) owing to the strong dependency of LST on
insolation. AATSR is used in preference to ATSR-2 in this study where records from both sensors are present
due to the lower radiometric noise levels associated with AATSR brightness temperature compared with
those of ATSR-2 [Smith et al., 2012].

An example month of the GlobTemperature ATSR CDR (August 2003) is shown in Figure 1. It is notable in this
example that there are no daytime LSTs over Antarctica and no nighttime LSTs at northern high latitudes. This
is because daytime and nighttime observations are distinguished in the CDR by solar zenith angle (SZA) and
not overpass time, whereas in other satellite LST data sets daytime and nighttime at polar latitudes are
distinguished by time of day alone (and not sunlight). This results in no daytime LST field for Antarctica for
months where it is dark at 10 A.M., for example. Incompletely observed months within the ATSR record are
excluded from the CDR, which includes June and July 1995 (end of commissioning period), January–June
1996 (scan mirror failure), January–June 2001 (gyro failure), and April 2012 (8 April: end of mission).

Figure 1. An example of the ATSR CDR for August 2003. (a and c) LST night and (b and d) LST day. Some striping is evident
in the data where different orbits have contributed to the monthly average. In Figure 1c the striping is in a top left to
bottom right direction corresponding to the ascending node of the ATSR overpass. In Figure 1d the direction is top right to
bottom left, corresponding to the descending node.
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2.2. Climatic Research Unit Time
Series Monthly Gridded T2m

The Climatic Research Unit Time
Series (CRU TS; v3.23) is a gridded sta-
tion data set [Harris et al., 2014]. It
consists of monthly time series of a
number of variables, including
monthly mean (Tmean), minimum
(Tmin), and maximum (Tmax) tempera-
tures at a spatial resolution of 0.5°
latitude/longitude. While CRU TS
includes many homogenized station
records from National Meteorological
Services, it is not “specifically homo-

geneous” and should therefore be treated with caution in time series analysis [Harris et al., 2014]. For this
reason, CRU TS is only used for quantifying the spatial and seasonal relationships between LST and T2m in this
study. Unlike the CDR, the CRU TS data are “all sky” and include T2m observations under both cloud and
clear sky.

2.3. GHCN-Monthly Station T2m

CRU TS is the primary data set used in this study to characterize the spatial and seasonal LST-T2m relationship.
However, this is an interpolated data set with larger uncertainties where station density is low (Figure 2). To
verify the analysis, station observations from the Global Historical Climate Network Monthly (GHCN-M)
v3.3.0.20160130.qca data set are also used. GHCN-M is a collection of 7280 monthly station records produced
by the National Centers for Environmental Information (NCEI) in the United States. Version 3 of the “QCA”
(quality controlled adjusted) data set is used in this study, which has undergone quality control and includes
homogeneity adjustments to correct for nonclimatic changes in the station time series [Lawrimore et al.,
2011]. No additional screening of the data is carried out in this study since any data that have failed quality
checks or have too many inhomogeneities in the record are replaced by missing-data indicators in the
GHCN-M data records. GHCN-M includes monthly all-sky Tmean, Tmin, and Tmax and has been used by the
Intergovernmental Panel on Climate Change (IPCC) to quantify global land air temperature change
[Hartmann et al., 2013].

2.4. CRUTEM4 Monthly Temperature Anomalies

CRUTEM4 (V4.4.0.0) is a monthly gridded temperature anomaly data set based on global all-sky station obser-
vations [Jones et al., 2012]. The data set is produced through a collaborative effort between the Climatic
Research Unit (CRU) at the University of East Anglia and the Met Office, both in the United Kingdom. Like
GHCN-M, CRUTEM4 has been used by the IPCC to assess global land air temperature changes [Hartmann
et al., 2013]. It is an anomaly data set and represents a time series of mean monthly temperature anomalies
with respect to the 1961–1990 baseline period at a spatial resolution of 5° latitude/longitude. CRUTEM4 data
are used in the time series analysis presented in the second part of this study. The global time series of
CRUTEM4 anomalies, which is also used in this part of the study, includes the 95% confidence intervals for
uncertainty components that account for station and grid box sampling, coverage, and bias
uncertainties (http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/time-series.html).

2.5. Other Data Sets Used in the Study

The LST-T2m relationship is characterized with respect to land use, vegetation, and elevation. Land use
classifications are sourced from the ESA Land Cover Climate Change Initiative (CCI) project version 1.6 data
set (http://www.esa-landcover-cci.org/), which provides global maps at 300 m spatial resolution for three
5 year epochs: 1998–2002, 2003–2007, and 2008–2012 [Bontemps et al., 2012; Poulter et al., 2015]. The second
epoch (2003–2007) was selected for this analysis to represent the mean land cover type over the analysis
period (1995–2012). The CCI land cover types are given in Table 2.

For elevation, the Shuttle Radar Topography Mission (v1) data set was used [Farr and Kobrick, 2000; Rodriguez
et al., 2005]. This provides near-global land elevation at 30 m spatial resolution.

Figure 2. Map of CRU TS stations for the 1995–2012 period.
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Fraction of vegetation data were sourced from the Copernicus Global land service (FCOVER v1.0), which pro-
vides near-global 10 day composites at 1/112° latitude/longitude [Baret et al., 2013; Camacho et al. [2013].

Two additional LST data sets were used to verify the time series analysis in the second part of this study:
MODIS monthly LST day and LST night fields at 0.05° latitude/longitude [Wan, 2013, 2014] and 6-hourly “skin”
temperatures from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis
(ERA-Interim) [Dee et al., 2011].

3. Methods
3.1. Analysis of the LST-T2m Variability

The variability in the global LST-T2m relationship is assessed by comparing the ATSR CDR with T2m data from
CRU TS and GHCN-M. CRU TS is used in preference to CRUTEM4 owing to its higher spatial resolution (recall
that the ATSR CDR has spatial resolution of 0.05°) and availability of monthly averages of daily extreme
temperatures (Tmin and Tmax). For the CRU TS comparisons, the CDR is reprojected onto a regular 0.5° grid
separately for daytime and nighttime LSTs. For the GHCN-M comparisons, the CDR 0.05° cell nominally con-
taining the station location is used. In both cases, LSTday is compared directly with Tmax and LSTnight with Tmin.

Both the elevation and land use data sets are also resampled to 0.05 and 0.5° latitude/longitude. For eleva-
tion, the mean cell elevation is used. For land use, the dominant land cover class within each grid cell is
assigned to the cell. Comparisons between the CDR and CRU TS are only performed for 0.5° cells where
the percentage of LC CCI pixels within the cell matching the dominant land cover class is ≥80% and the frac-
tion of water in the cell is ≤20%. Similarly, comparisons between the CDR and GHCN-M are only performed for
0.05° cells that also meet these criteria, and additionally, where the LC CCI classification of the GHCN-M
station matches that of the CDR 0.05° cell. This is to ensure that the analysis is only carried out for cells
and stations that truly represent the assigned land classification.

3.2. Comparison of LST and T2m Time Series

The comparison between LST and T2m time series is performed using the CRUTEM4 data set, which is widely
used to study temporal changes in global T2m. CRUTEM4 is a 5° latitude/longitude monthly mean anomaly
data set referenced to the 1961–1990 baseline period, which is before the beginning of the ATSR CDR. To

Table 2. Land Cover CCI Surface Types (see http://maps.elie.ucl.ac.be/CCI/viewer/index.php)a

Class Legend Abbreviation Description

10 Crops (rain) Cropland, rainfed
20 Crops (irr.) Cropland, irrigated/post flooding
30 Mos. Crop (>50%) Mosaic cropland (>50%)/natural vegetation (tree, shrub, and herbaceous)
40 Mosaic nat.veg (>50%) Mosaic natural vegetation (tree, shrub, and herbaceous cover) (>50%)
50 Broad. ever. Tree cover, broadleaved, evergreen, closed to open (>15%)
60 Broad. decid. Tree cover, broadleaved, deciduous, closed to open (>15%)
70 Need. ever. Tree cover, needleleaved, evergreen, closed to open (>15%)
80 Need. decid. Tree cover, needleleaved, deciduous, closed to open (>15%)
90 Mixed tree Tree cover, mixed leaf type (broadleaved and needleleaved)
100 Mos. tree/shrub (>50%) Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
110 Mos. herb. (>50%) Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
120 Shrubland Shrubland
130 Grassland Grassland
140 Lich./mosses Lichens and mosses
150 Sparse veg. Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
160 Tree, flood-fresh/brack. Tree cover, flooded, fresh or brackish water
170 Tree, flood-saline Tree cover, flooded, saline water
180 Shrub/herb. Flood. Shrub or herbaceous cover, flooded, fresh/saline/brackish water
190 Urban Urban areas
200 Bare areas Bare areas
210 Water Water bodies
220 Perm. snow/ice Permanent snow and ice

a“Legend abbreviation” refers to the x axis labeling in Figure 8.
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facilitate like-with-like comparison, the ATSR CDR is first reprojected onto a 5° latitude/longitude grid before
calculating a monthly mean LST from the average of the monthly LSTday and LSTnight fields. This is then
converted to a time series of monthly anomalies by subtracting a monthly mean LST climatology calculated
over the August 1995 to March 2012 baseline period (excluding incomplete months in the CDR: see
section 2.1). Monthly climatology values are only calculated for cells with at least 10 years of data. Since
the mean T2m has changed substantially between the two reference periods (1961–1990 and August
1995–March 2012) [Hartmann et al., 2013], an “adjusted” version of the CRUTEM4 anomalies is also calculated
by subtracting a monthly mean T2m climatology of CRUTEM4 anomalies using the same ATSR CDR baseline
period. The result is a time series of both ATSR CDR monthly mean LST anomalies and CRUTEM4 monthly
mean T2m anomalies, both referenced to the August 1995 to March 2012 baseline period.

The global mean time series for each 5° anomaly data set is calculated to be consistent with the averaging in
CRUTEM4 time series presented by Jones et al. [2012]. Spatial averages are calculated separately for the north-
ern (NH) and southern hemispheres (SH) by weighting each grid box by the cosine of its latitude [Jones, 1994].
The global mean value is then determined from (2NH + SH)/3, which approximates for the higher proportion
of land in the NH [Jones et al., 2012]. Two sets of comparisons are presented: a global time series where all
available data from each data set are used, and a version that uses space-time cells where both data sets
are present (“spatially matched”). The spatially matched version is included because both data sets contain
gaps, which may introduce uncertainty into the comparison. The CRUTEM4 uncertainties (section 2.3) are
included in the time series comparisons to indicate the likely range of monthly anomalies for this data set.
The equivalent uncertainty envelope for the CDR is not presented as this cannot be determined from the
uncertainty information provided in the version 1.0 data files. Retrieval uncertainties are propagated from
the 1 km pixels through to the 0.05° CDR product, but further scaling is required to facilitate like-with-like
comparison to CRUTEM4. Provision of independent uncertainty estimates in surface temperature retrieval
from satellite data is subject of active research [Bulgin et al., 2016] and as such, a rigorous methodology for
propagating these uncertainties to provide an uncertainty envelope equivalent to CRUTEM4 is
presently unavailable.

3.3. Statistical Parameters

The relationship between LST and T2 m is often explored in this study through the use of ordinary least
squares regression. For example, T2m (y axis) is plotted against LST (x axis)—a scatterplot—and the gradient
of the linear regression line fitted to the data is reported in this study as the “slope.” A slope of unity signifies
that a 1°C change in T2m equates to a 1°C change in LST, which would indicate that the two temperatures are
perfectly coupled. The response of the LST-T2m difference (y axis) with other parameters, e.g., vegetation frac-
tion (x axis), is explored in the same way. Here the reported slope is the gradient of the linear regression line
fitted to these data. P values for reported correlations and slopes are calculated using a two-tailed student T
test with P values above 0.05 considered here to indicate a result that is likely to have occurred by chance and
is therefore insignificant.

In the second part of this study, differences in the rate of change in LST and T2m over the 1995–2012 period
are assessed by calculating the trend in the LST-T2m difference time series. For this analysis, the median of
pairwise slopes [Sen, 1968] is used to calculate the trend; the 95% confidence interval on the trend is also
given. Where this interval does not encompass zero, it is assumed that there is high confidence that the
calculated trend is nonzero.

4. Results Part 1: Assessment of the LST-T2m Variability
4.1. Spatial Variation in the Relationship Between LST and T2m

Figures 3 and 4 show global maps of the mean monthly temperatures for CRU TS and the CDR averaged over
all occurrences of December/January/February (DJF), March/April/May (MAM), June/July/August (JJA), and
September/October/November (SON) from August 1995 through March 2012. Figure 3 shows the side-
by-side comparisons for Tmin and LSTnight, while Figure 4 shows Tmax and LSTday. The CDR minus CRU TS
differences are shown in Figure 5. Figure 6 presents the normalized frequency distributions of the tempera-
ture differences, based on the full time series of data.
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In general, the spatial patterns exhibited
by both sets of data are very similar, with
CRU TS and the CDR showing the same
dominant features. LSTnight and Tmin are
generally within ±5°C, although LSTnight
is typically warmer than Tmin, with
median difference for the globe for all
seasons of 1.8°C (Figure 6a). This is
expected because the nominal night
observation time for the CDR is
10:00 P.M. when LST would still be
warmer than Tmin, which typically occurs
close to sunrise [Edwards et al., 2011;
Good, 2016; Jin et al., 1997]. However,
there are notable situations where
LSTnight is cooler than Tmin, for example,
in Europe and Russia in DJF and SON
(Figure 5, left). For the mid-high-latitude
winter, colder LSTnight could be due to
snow cover [Good, 2016] or the clear-
sky sampling bias of LSTnight on cold,
clear winter nights when surface is cool-
ing more efficiently compared with
cloudy nights. LSTnight and Tmin are most
similar over tropical vegetated regions—
the role of vegetation is explored further
in the following sections.

The differences between LSTday and
Tmax are larger in magnitude with a high
degree of spatial variability, although

the median global LSTday-Tmax difference for all seasons is �0.1°C (Figure 6b). LSTday is typically cooler than
Tmax at very high latitudes, over some equatorial regions in all seasons, and at middle latitudes during winter
(Figure 5, right). These spatial patterns are very similar to those reported by Lian et al. [2017], who analyzed
differences between MODIS/Aqua maximummonthly LSTs and Tmax from CRU-TS. The tendency of LSTday to
fall below Tmax at high latitudes and during winter months can be explained by the lower insolation in these
regimes resulting in cold LSTs, whereas T2m is higher because the air has passed over warmer SSTs. LSTs that
are colder than T2m may also occur over snow-covered surfaces. Negative LST-T2m differences over equatorial
regions have been reported previously by Jin et al. [1997], who analyzemodeled LST and T2m; this is discussed
further in section 4.2. Jin et al. [1997] also observed cooler LSTs compared with T2m in winter at middle-
to-high latitudes in their simulations.

By contrast, LSTday tends to be warmer than Tmax over the dry tropics in all seasons and at middle latitudes
during the summer months. This positive difference occurs because at the 10:00 A.M. nominal observation
time of the CDR, the clear-sky insolation in these regimes is high enough to elevate LST above T2m by several
degrees, and even above Tmax [Edwards et al., 2011; Good, 2016; Jin et al., 1997]. The results for the same
analysis using GHCN-M station data illustrate the same general features (not shown).

The distributions of differences shown in Figure 6 include comparisons between the CDR LSTs and Tmean. This
indicates that in both cases, closer agreement in magnitude is obtained between LSTnight and Tmin, and
LSTday and Tmax, than the equivalent comparisons with Tmean. Both the LSTnight-Tmin and LSTnight-Tmean

distributions are approximately Gaussian.

Figure 7 shows the CRU TS versus CDR linear regression slopes (see section 3.3) and correlation coefficients
for each 0.5° cell, for the complete >17 year time series. Slopes close to unity indicate situations where a 1°C

Figure 3. Seasonal mean temperatures from (left) the CRU TS v3.23 Tmin
and (right) the CDR LST night for December/January/February (DJF),
March/April/May (MAM), June/July/August (JJA), and September/
October/November (SON). Seasonal means are calculated from data
acquired August 1995 through March 2012 (excluding January–June
1996 and January–June 2001, which are incomplete months in the CDR;
see text).
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change in LST corresponds to a 1°C
change in T2m. Thus, areas where
both the correlation and slope are
close to unity correspond to where
LST and T2m are generally well
coupled. This is observed for
LSTnight/Tmin for much of the
middle-to-high latitudes and for
LSTday/Tmax in parts of north-east
Asia. Elsewhere, slopes are generally
<0.8 although correlation coeffi-
cients still nearly always exceed 0.9
outside of the tropics. This indicates
that LST becomes increasingly war-
mer than T2m with increasing tem-
perature. For both LSTnight/Tmin and
LSTday/Tmax, the correlations and
slopes are substantially lower over the
equatorial regions, with a marked lati-
tudinal gradient in correlation toward
the equator in both hemispheres.
This is consistent with the results of
Jin et al. [1997] who also found lower
LST-T2m correlations in model simula-
tions at lower latitudes comparedwith
middle-to-high latitudes.

Both the Tmin versus LSTnight and Tmax versus LSTday slopes tend to be less than unity, indicating that the
LST-T2m difference becomes more positive with increasing temperatures. This pattern has been noted pre-
viously by Mildrexler et al. [2011], who reported an increasing difference between annual maximum LST
and T2m with increasing temperature. While the deviation from unity for Tmin /LSTnight in this study is reason-
ably small (usually within the range 0.8–1.1), the Tmax/LSTday slope is typically less than 0.7. This is consistent
with the more extreme range of LSTday-Tmax differences observed in Figure 5.

4.2. Variability in LST-T2m Differences by Land Cover Classification

Figure 8 shows the characteristics of the CDR-CRUT TS relationship as a function of land cover classification.
The positive LSTnight-Tmin difference and slope of slightly less than unity reported in section 4.1 seems reason-
ably consistent across all surface types (Figures 8a and 8b). The proximity of the slopes to unity—all but one
are between 0.88 and 1.1—and high correlation coefficients (Figure 8c) indicate a close coupling between
LSTnight and Tmin for most land cover types, which is consistent with the maps in section 4.1 and with findings
reported in previous studies examining the LST-T2m relationship [e.g., Good, 2016, Zhang et al., 2011].

As inferred from Figures 4–7, the relationship between LSTday and Tmax is more complex and dependent on
surface regime. The variability in LSTday-Tmax, both within and between surface types, is much higher than for
LSTnight-Tmin (Figure 8a), also indicated by the slightly lower correlation coefficients (Figure 8c). The slope of
the Tmax versus LSTday relationship is lower than for Tmin versus LSTnight (Figure 8b), reflecting the depen-
dence of LST on insolation, increasing the LSTday-Tmax difference at higher solar elevations, and therefore
at higher surface temperatures. A notable feature of Figure 8 is that the LSTday-Tmax difference tends to be
negative over the forested land cover types (classes 50–80), which by definition represent some of the more
vegetated surfaces. Healthy vegetation actively transpires, losing surface heat to the overlying atmosphere
[Sun et al., 2015], thus reducing LST relative to T2m. Greater surface roughness over vegetation also increases
turbulent mixing, which also aids transfer of heat from the surface to the overlying air. Cooler LSTs are gen-
erally associated with increased vegetation density, and LST and T2m are often close in areas of dense vege-
tation [Jin and Dickinson, 2010;Mildrexler et al., 2011]. Negative LSTday-Tmax differences are also characteristic

Figure 4. As for Figure 3 but for (left) the CRU TS v3.23 Tmax and (right) the
CDR LST day.
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of the lichens and mosses and per-
manent snow and ice classes, which
occur at high latitudes and therefore
lower solar elevation and colder
LSTs. Positive LSTday-Tmax differences,
on the other hand, occur over shrub-
land, grassland, and bare area classes.
The bare area class in particular is
associated with low latitudes, where
the high insolation and lack of vege-
tation can result in extremely high
LSTs that are well above Tmax, even
at 10 A.M. local time [e.g., see Good,
2016] (Figure 1).

The same analysis using GHCN-M sta-
tions in place of CRU TS presents very
similar results (not shown), although
the number of land cover types
represented is lower. Usefully, this
finer-scale analysis enables the com-
parison of LST and T2m over urban
areas, which was not possible at the
0.5° spatial scale of CRU TS. For this
surface type, based on 394 stations,
a median difference of 2.1°C (inter-
quartile range: 4.1°C) for LSTnight
minus Tmin and 3.0°C (interquartile
range: 6.7°C) for LSTday minus Tmax is
obtained. The nature of the relation-

ship over this surface, and its similarity to some of the less vegetated classes, is expected given that urban areas
are often very sparsely vegetated. However, it should be noted that turbulent fluxes are likely to be more effi-
cient coupling T2m and LST over urban areas owing to increased surface roughness in this regime compared
with sparsely vegetated surfaces [Stull, 2015, pg 700]. There is a weak dependence of the urban LST-T2m rela-
tionship with latitude (not shown), where the sign of the differences becomes slightly more negative, and the
variability increases toward the higher latitudes, probably reflecting the variation in insolation with latitude.

Both the GHCN-M and CRU TS analyses suggest substantially lower correlations and slopes between LST and
T2m over the broadleaved evergreen tree cover class (class 50). This class represents the equatorial forests and
is spatially consistent with the low-correlation/low-slope regions evident in Figure 7. Although LST and T2m
tend to be close in these areas (Figure 5 and also see Mildrexler et al. [2011]), the temperatures are poorly
correlated because the diurnal range of both LSTs and T2m is typically small with little seasonality [Good,
2016; Jin and Dickinson, 2010]. The influence of vegetation on the LST-T2m relationship is discussed further
in the following section.

4.3. Variability in LST-T2m Differences With Vegetation Fraction

Figure 9 shows the variation in LST-T2m difference with vegetation fraction for different ranges of SZA at solar
noon. While the presentation of the results approximates high-to-low latitude from top to bottom, SZA was
used to partition the results so that seasonal variability is also taken into account.

The general pattern of results is consistent with, e.g., Mildrexler et al. [2011], indicating that LST and T2m
become increasingly close with increasing fractional vegetation cover (FVC). Over full vegetation cover
(FVC = 1) the difference between them tends to be a degree or so above zero for LSTnight/Tmin except at
SZAs ≥65° and a few degrees below zero for LSTday/Tmax. (The y intercept for full vegetation cover is simply
the sum of the intercept and 10 times the slope since the maximum value of FVC is 1.) For both temperature
pairs, the intercept becomes increasingly positive and the slope becomes increasingly negative (except for

Figure 5. (left) CDR LST night minus CRU TS v3.23 Tmin differences and
(right) CDR LST day minus CRU TS v3.23 Tmax differences for December/
January/February (DJF), March/April/May (MAM), June/July/August (JJA), and
September/October/November (SON). Seasonal means are calculated from
data acquired August 1995 through March 2012.
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LSTnight/Tmin for SZA ≥65°) with decreasing SZA. This is more marked for the LSTday/Tmax analysis compared
with LSTnight/Tmin, again indicating the dependency of LST on insolation. The results suggest that for well-
vegetated surfaces (e.g., FVC > 0.8), LSTnight/LSTday may provide a reasonable proxy for Tmin/Tmax for all
ranges of SZA for some applications. For regimes where the SZA is above 45°, Tmin/Tmax is reasonably well
approximated by LSTnight/LSTday except for sparsely vegetated and bare surfaces (e.g., FVC < 0.2).

Figure 6. Normalized distributions of the CDRminus CRU TS differences for (a) LSTnight-Tmin (solid line) and LSTnight-Tmean
(dotted line) and (b) LSTday-Tmax (solid line) and LSTday-Tmean (dotted line). The histograms are calculated from data
acquired August 1995 through March 2012. The 5th (C05), 25th (C25), 50th (C50), 75th (C75,) and 95th (C95) centiles of the
LSTnight-Tmin (Figure 6a) and LSTday-Tmax (Figure 6b) differences are shown on each panel.

Figure 7. Maps showing spatial variability in the LST-T2m relationship. (left column) The Tmin versus LST night relationship
and (right column) Tmax versus LST day. (top row) The slopes (regression of T2m as a function of LST) and (bottom row)
correlation coefficients are plotted for each 0.5° grid cell. Correlations/slopes where the P value is>0.05 are excluded from
the maps (gray). There are no negative slopes/correlation coefficients.
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4.4. Variability in LST-T2m Differences by Elevation

Figure 10 illustrates the variation in LST-T2m relationship with elevation, which has received little attention in
previous studies. LSTnight-Tmin differences appear to be quite stable, while LSTday-Tmax differences have a
general tendency to increase with increasing elevation. For both temperature comparisons, there is a clear
decrease in both the slope and correlation coefficient with increasing elevation indicating a de-coupling of

Figure 8. Characteristics of the differences between temporally and spatially collocated CDR and CRU TS observations by
land cover type, where the dominant land cover class is present in ≥80% of the grid cell. The x axis indicates the land cover
class (Table 2). (a) The 5/95th centiles (whiskers), 25/75th centiles (box), and median (horizontal line within the box)
CDR-CRU TS difference; (b) the slope of the CRU versus CDR relationship; (c) the correlation coefficient; and (d) the number
of grid cells analyzed. Matchups where the fraction of water in the grid cell is>20% have been excluded from the analysis.
All correlations/slopes have a P value ≤0.05. Note that the number of stations for the permanent snow or ice land cover
class has been reduced by a scaling factor of 10 (multiply bar by 10 for correct number).
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the LST-T2m relationship at altitude. The effect is more marked for the LSTday-Tmax comparison. This may, at
least in part, be due to the fact that all-sky T2m are being compared with clear-sky LSTs. However, at high
altitude, it is possible for LST to be elevated by heat from the Sun, while T2m may be cooler because of the
temperature lapse rate and exchange with the surrounding free air. This was also noted by Good [2016],
who analyzed ground-based observations of all-sky LST and T2m at 19 of the Atmospheric Radiation
Measurement program sites, including two at high elevations. The equivalent analysis using GHCN-D
stations demonstrates very similar results (not shown), although the dropoff in correlation with increasing
elevation is perhaps slightly less apparent, which probably reflects the lack of very high-altitude stations.

5. Results Part 2: Comparison of LST and T2m Time Series
5.1. Spatially Averaged Time Series Comparisons

The time series of CDR monthly mean anomalies is shown in Figure 11a, together with the equivalent time
series from CRUTEM4. The CRUTEM4 global time series is provided with lower and upper 95% confidence

Figure 9. Variation in CDR minus CRU TS differences with vegetation fraction, for (a) LSTnight-Tmin and (b) LSTday-Tmax for
SZA > 65° (i.e., high latitudes), (c) LSTnight-Tmin and (d) LSTday-Tmax for 45° ≥ SZA < 65°, (e) LSTnight-Tmin and (f) LSTday-
Tmax for 20° ≥ SZA< 45°, and (g) LSTnight-Tmin and (h) LSTday-Tmax for SZA< 20° (i.e., low latitudes). “SZA” refers to the SZA
value at solar noon—see text.
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intervals, which are displayed as shading on the plot. The CDR and CRUTEM4 time series show remarkable
agreement, with the ATSR CDR providing useful independent verification of the CRUTEM global monthly
T2m anomaly time series. The correlation between the adjusted CRUTEM4 time series (i.e., referenced to
August 1995 to March 2012 baseline) and the CDR is 0.76 (p < 0.01), with 166 of the 188 CDR data points
(88%) falling within the CRUTEM4 uncertainties (blue shading in Figure 11).

Both data sets suffer from spatial gaps. For example, much of Africa and Antarctica are regularly missing from
CRUTEM4, while the ATSR data set does not provide monthly observations under persistent cloud. With this in
mind, Figure 11b shows the same time series but for global averages using only cells where both data sets have
observations in that month. The correlation increases to 0.87 (p < 0.01) for this spatially matched time series.

The difference between the time series of anomalies is shown in Figure 11c. The linear trend of this differ-
enced time series is negative (e.g., -0.17°C/decade for the spatially matched comparison, 95% confidence

Figure 10. As Figure 8 except showing the variation in the LST-T2m relationship with elevation. The x axis shows the eleva-
tion range of the data plotted (in meters).
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range� 0.22 to�0.11), implying that the two data sets may not exhibit the same rate of temperature change
with time. While this apparent differencemight seem surprising, it should be regarded with caution given the
short time series (<18 years). This analysis uses version 1.0 of the ATSR CDR, and part of the motivation of this
study is to assess the temporal consistency of the time series, particularly as there may be residual
inhomogeneities caused by the transition from ATSR-2 to AATSR, for example, due to the change in
overpass time of the sensors (as discussed in later sections).
5.1.1. Analysis of the CDR-CRUTEM4 Differenced Time Series
Figure 11 suggests that the ATSR-2 portion of the time series, which ends in April 2002, is noisier and the
CDR-CRUTEM4 differences more positive compared with those of the AATSR (from May 2002). Figure 12
shows the median CDR minus CRUTEM4 anomaly differences, for the whole time series, by season and by
sensor. Results are shown for the globe and for different geographical regions (Table 3). For nearly all regions,
the CDR-CRUTEM4 differences are clearly more positive for ATSR-2 compared with AATSR; for the globe (spa-
tially matched cells), the median CDR minus CRUTEM4 difference is 0.07°C for ATSR-2 and�0.10°C for AATSR.
This could account for the overall negative trend in the CDR-CRUTEM4 time series, since ATSR-2 preceded
AATSR. The median difference for the whole series for most regions is slightly negative, reflecting the longer
AATSR record. There is some seasonal variation in the median differences, although no clear pattern is
evident, other than perhaps an increased clustering of the differences around zero in DJF and SON.

Figure 13 shows similar graphics but for the trends of the CDRminus CRUTEM4 time series; in this case, trends
that are not statistically different from zero (see section 3.3) are indicated by an unfilled symbol. Table 3
provides the numerical values of the trends for the whole time series, together with the correlation coeffi-
cients between the CDR and CRUTEM4 time series for each region. For the spatially matched comparisons,
all regions with significant trends (i.e., not statistically different from zero) for mean LST are negative although
the magnitude is variable, ranging between �0.43 (South Asia) to �0.17 (Globe) °C/decade. When consider-
ing the sensor-partitioned results, there are some small differences between the trends, with the ATSR-2 time
series trends tending to be slightly more negative than AATSR. However, the confidence in these results is

Figure 11. Time series of globally averaged monthly anomalies (°C) for the CDR and CRUTEM4 data set. The results for the
“unadjusted” CRUTEM4 data correspond to the original CRUTEM4 anomalies (baseline 1961–1990). The “adjusted”
CRUTEM4 data are the anomalies rereferenced to the August 1995 to March 2012 baseline period. The CDR anomalies are
also referenced to this period. (a) Averages using all available data points for each data set. (b) Averages using only cells
where both data sets are present. (c) The respective CDR minus CRUTEM4 differences where all corresponds to the data
shown in Figure 11a and “Match” to the data shown in Figure 11b. The 95% confidence interval for the difference trends are
indicated on the plot. The shading represents the total uncertainties associated with the CRUTEM4 time series (sourced
from http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/index.html).

Journal of Geophysical Research: Atmospheres 10.1002/2017JD026880

GOOD ET AL. GLOBAL ANALYSIS OF T2M AND SATELLITE LST 9200

http://www.metoffice.gov.uk/hadobs/crutem4/data/diagnostics/index.html


lower than for the full time series given the even shorter record length (<10 years), as emphasized by the
large number of regional trends that are not statistically different from zero (unfilled symbols in Figure 13).

The evidence presented in Figures 11–13 suggests that there may be some discrepancy between the ATSR-2
and AATSR portions of the CDR. A likely source of this discrepancy is in the overpass time correction that is
applied to the ATSR-2 CDR LSTs to align them with the AATSR overpass, which is 30 min earlier (section 2.1).
LST can change by several °C in 30 min particularly around the 10 A.M. nominal overpass time of the CDR
[Good, 2016; Jin and Dickinson, 2010]; thus, this correction is likely to introduce errors into the ATSR-2 LSTs.
These errors could be the cause of the variation in the median CDR-CRUTEM4 anomaly difference between
ATSR-2 and AATSR (Figure 12) and the apparently higher noise in the ATSR-2 portion of the time series
(Figure 11c).

Figure 12. Summary of the median CDRminus CRUTEM4 anomaly differences for regions with central latitude (a) 60–90°N,
(b) 30–60°N, (c) 0–30°N, and (d) �30 to 0°N. Results are shown for all seasons and sensors (all), by season (DJF/MAM/JJA/
SON), and by sensor (ATSR2 and AATSR). The results are for spatially matched grids only. Antarctica is excluded from the
analysis owing to the very small number of data points in this region.

Table 3. Relationships Between Time Series of Anomalies From CRUTEM4 (Adjusted to 1995–2012 Baseline) and the CDRa

R (All Data)
R (Spatially
Matched)

Trend (All Data)
(°C/Decade)

Trend (Spatially Matched)
(°C/Decade)

Region Name Min Lat Max Lat Min Lon Max Lon Mean Night Mean Night Mean Night Mean Night

Globe �90 90 �180 180 0.76 0.83 0.87 0.90 �0.15 (�0.02) �0.17 �0.08
Europe 30 70 �15 40 0.95 0.95 0.95 0.96 �0.10 �0.06 (�0.08) (�0.05)
North America 50 70 �170 �50 0.94 0.94 0.94 0.94 (�0.12) (�0.08) �0.17 (�0.11)
USA 30 50 �130 �50 0.93 0.93 0.93 0.93 (�0.04) (�0.06) (�0.05) (�0.05)
Central America 10 30 �130 �60 0.69 0.82 0.71 0.83 �0.27 �0.10 �0.25 �0.09
South America �60 10 �85 �30 0.76 0.85 0.77 0.86 �0.10 (0.01) (�0.05) (0.00)
North Africa 0 30 �20 60 0.78 0.88 0.77 0.89 �0.26 �0.15 �0.24 �0.14
South Africa �40 0 �20 60 0.58 0.77 0.58 0.76 �0.34 �0.08 �0.32 (�0.04)
Australasia �50 �10 110 180 0.76 0.80 0.78 0.85 �0.15 (�0.03) (�0.10) (0.01)
South Asia �15 30 60 155 0.56 0.81 0.70 0.87 �0.49 �0.14 �0.43 �0.12
Central Asia 30 50 40 145 0.93 0.95 0.93 0.95 �0.25 �0.12 �0.22 �0.11
North Asia 50 70 40 180 0.94 0.95 0.95 0.96 (0.06) (0.03) (0.03) (0.03)
Arctic 70 90 �180 180 0.82 0.84 0.90 0.93 (�0.22) (�0.18) (�0.14) �0.24

a“Trend” indicates the trend of the differenced time series (CDR minus CRUTEM4) with time. Results are for spatially averaged time series using all grid cells
available for each data set (“all data”) and only grid cells that are available in both data sets ( spatially matched), and separately using the mean LST time series
(“mean’), and LSTnight only (“night’). Results in brackets indicate trends that are not statistically different from zero (see section 3.3). Antarctica is excluded from the
analysis owing to the very small number of data points in this region. R is the correlation coefficient.
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The uncertainty in the ATSR-2 CDR LST temporal correction will naturally be larger where insolation is higher,
especially where vegetation cover is low, as this is where LST changes most rapidly. While there was no clear
pattern in the seasonal median differences (Figure 12), there does appear to be a tendency of the JJA trends
in theNH regions to be slightly more negative (Figures 13a–13c). For the lower latitude NH regions (Figure 13c),
this tendency also appears in MAM. If these more negative trends correspond to more warm-biased ATSR-2
anomalies, this would support the hypothesis that the ATSR-2 LST temporal correction is at least partly
responsible for the relative lack of warming in the CDR compared with CRUTEM4, as this is also consistent
with regimes with higher insolation, and therefore potentially larger errors in the LST temporal correction.

To verify that the negative CDR minus CRUTEM4 trends are a result of inhomogeneities in the ATSR CDR
rather than an actual difference in rate of temperature change in the two data sets, the analysis presented
in Figures 12 and 13 has been repeated using ERA-Interim reanalysis skin temperatures in place of
CRUTEM4. ERA-Interim does not assimilate satellite LST data so the CDR and ERA-Interim are independent.
To do this, the ERA-Interim data were aggregated from 6-hourly instantaneous skin temperatures to monthly
mean anomalies, relative to the same baseline period (August 1995 to March 2012). The results are remark-
ably similar to the analysis using CRUTEM4 (not shown). The correlation between the CDR and ERA-Interim
anomalies is high (r = 0.81, p < 0.01), with a median difference across the whole time series of �0.01°C and
a root-mean-square difference of 0.20°C. The median global anomaly difference is positive for the ATSR-2 por-
tion of the CDR (0.03°C) and negative for the AATSR portion (�0.06°C), while the linear trend of the CDRminus
ERA Interim time series is �0.11°C/decade (confidence interval: �0.16 to �0.06). The trend for the global
ATSR-2 CDR minus ERA Interim difference is �0.30 (confidence interval: �1.25 to �0.80), while for the
AATSR CDR-ERA Interim, no significant trend is detected (0.06°C/decade, confidence interval: �0.05 to 0.17).

The similarity between the CDR-CRUTEM4 and CDR-ERA-Interim comparisons strongly suggests that
while the month-to-month variability in anomalies between the three data sets is in remarkably close agree-
ment, the CDR v1.0 contains some nonclimatic artifacts. Performing the same analysis using MODIS-Terra
LSTs is less informative regarding the stability of the ATSR-2/AATSR transition (not shown) because this com-
parison includes only 21 months of ATSR-2 data from the CDR. For the global analysis, none of the mean
monthly CDR minus MODIS trends are statistically different from zero, which suggests that the CDR (mostly
AATSR) and MODIS generally agree on the rate of change of LST between February 2000 and March 2012.

The results reported above analyze themeanmonthly CDR LST, which is calculated from an average of LSTday
and LSTnight. A comparison with GHCN-M, which provides temporally homogeneous station-based

Figure 13. As for Figure 12 but showing the trend of the CDR minus CRUTEM4 time series. Results denoted by an unfilled
symbol indicate where trends are not statistically different from zero.
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observations of Tmin and Tmax (section 2.3), enables a separate assessment of the stability of the CDR LSTday
and LSTnight. The time series at each station is compared directly with the CDR time series for the 0.05° cell
nominally containing the station location. The mean LSTnight-Tmin trend is found to be �0.05°C/decade
(n = 2122 stations), while the mean LSTday-Tmax trend is �0.36°C/decade (n = 2200 stations). The more
strongly negative trend for the LSTday-Tmax result indicates that most of the discrepancy between the CDR
and other temperature time series is due to LSTday. This is evidence that further supports the hypothesis
that the overpass correction is introducing errors into the ATSR-2 CDR LSTs, since such errors would be
more prevalent during the day, because of the dependency of LST on insolation.

Figure 14 shows the CDR and CRUTEM4 time series, but this time excluding LSTday from the analysis (i.e.,
CRUTEM4 mean monthly temperature anomalies compared with monthly CDR LSTnight anomalies). This time
series is notably more stable and less noisy than the equivalent time series in Figure 11, which is based on the
mean monthly LST and therefore includes LSTday. The percentage of CDR anomalies that fall within the
CRUTEM4 uncertainties for the adjusted time series has risen to 90%. A linear trend in the differenced time
series (Figure 14c) is now undetectable using all data (�0.02°C/decade, confidence interval: �0.06 to 0.02),
and amuch smaller negative trend is present only in the spatially matched data (�0.08°C/decade, confidence
interval: �0.11 to �0.04). The anomaly correlations with the CRUTEM4 adjusted time series have also
increased to 0.83 and 0.90 for “all” and spatially matched data, respectively. Table 3, which provides the cor-
relation coefficients and differenced time series results for different geographical regions, indicates that the
improved agreement between CRUTEM4 and LSTnight anomalies persists in all regions. Other than in the
Arctic, the trends of the difference time series become less negative and/or not statistically different from
zero, indicating that the agreement between the CDR and CRUTEM4 is stronger when LSTday is not included
in the analysis.

5.2. Analysis of Grid-Cell Time Series

Figure 15 shows the relationship between the CRUTEM4 and CDR LSTnight time series for each 5° grid cell.
LSTday has been excluded from this analysis given the results presented in section 5.1. For most of the globe,
the cell-based trends of the differenced time series (CDR minus CRUTEM4) are not statistically different from
zero (indicated with an “X” in Figure 15a). Cells with both positive and negative tendencies are present,
reflecting the lack of any clear linear trend in the global differenced time series shown in Figure 14.
Figure 15b implies that there may be some regional variation in the median CDR minus CRUTEM4

Figure 14. As for Figure 11 but excluding LSTday data from the CDR time series (i.e., using only LSTnight).
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anomalies. For example, the CDR anomalies tend to be warmer in Australia, while for much of Asia and North
America, the CDR anomalies are cooler. However, the pattern is again generally heterogeneous.

A more consistent pattern is observed in the CRUTEM4 versus CDR slopes (Figure 15c) and correlation
coefficients (Figure 15d) that reassuringly bear close resemblance to Figure 7, which shows the equivalent
comparisons with CRU TS. Both correlations and slopes approach unity at mid-to-high latitudes and are
significantly less than one over the tropics. The correlation coefficients are slightly lower for the
CRUTEM4 comparison. This is expected, as the data presented in Figure 15 are anomalies rather than
actual temperatures (CRU TS: Figure 7), so they have a smaller range and are therefore more sensitive
to small variations (noise). Nevertheless, the strength of the correlations and proximity of the slopes to
unity outside of the tropics suggest that both LST actual temperatures and anomalies are well aligned with
T2m in these regions.

Figure 15. Maps showing the temporal relationship between (adjusted) CRUTEM4 and the CDR LSTnight anomalies (both
referenced to the 1995–2012 baseline period). (a) The grid box trends of the CDR-CRUTEM4 anomaly differences, (b) the
median difference in anomalies, (c) the slopes of the CDR versus CRUTEM anomalies, (d) the CDR versus CRUTEM4 anomaly
correlations, and (e) the number of matched data points in each grid cell. Cells where the trends are not statistically dif-
ferent from zero in Figure 15a and slopes with p > 0.05 in Figure 15c are overlaid with an X.
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6. Case Study: Europe in August 2003

Figure 16 shows the temperature anomalies from the CDR and CRU TS data sets during August 2003; the first
half of this month is characterized by an extreme heat wave that affected much of Europe. The CRU TS data
have been used in preference to CRUTEM4 here owing to its higher spatial resolution and availability of Tmin

and Tmax data, which can be compared directly with the LSTnight and LSTday, respectively. It should be noted
that since only monthly data are analyzed here, the results are not intended to provide full characterization of
the August 2003 heat wave event.

The two data sets share many similar features. Both data sets show warm anomalies over much of Europe,
which are particularly strong for LSTday/Tmax; the presence of elevated daytime and nighttime tempera-
tures in this month is consistent with previous studies on the August 2003 heat wave event [Dousset
et al., 2011; García-Herrera et al., 2010]. The magnitude of the anomalies is more extreme for LST than
for T2m. For LSTday this is likely to reflect the clear-sky-only data acquisition. For the LSTnight/Tmin

Figure 16. Temperature anomalies (°C) for the August 2003 European heave wave for (left column) LST night/Tmin and
(right column) LST day/Tmax. Both the (top row) CDR and (middle row) CRU TS anomalies are referenced to the August
1995 to March 2012 baseline period—both are shown at a spatial resolution of 0.5°. The bottom row shows the difference
between the two, with the location of the CRU TS stations overlaid (filled black circles).
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comparison, this is expected because LSTnight is acquired at ~10 P.M. local solar time, when temperatures
are still influenced by day time heating, whereas Tmin typically occurs just before dawn. Therefore, as
evident in Figure 16, the LSTnight anomaly pattern shares features with both the Tmin and Tmax

anomaly patterns.

The bottom two panels in Figure 16 show the CDR-CRU TS anomaly difference maps, with the locations of the
CRU TS stations overlaid as black filled circles. CRU TS has larger uncertainties where station density is low;
therefore, one might anticipate larger CDR-CRU TS differences in these areas. While the general pattern does
not fully support this, most of the largest CDR-CRU TS differences do occur in station voids, for example,
South-West France (LSTnight-Tmin only), eastern France, Central Germany (LSTday-Tmax only), and northern
Scandinavia/North-West Russia (Murmansk province). It is also notable from Figure 16 that the satellite data
present a great deal more spatial structure and detail in the temperature variability than CRU TS.

7. Discussion: Using Satellite LSTs to Augment T2m Observations

LST observed at IR wavelengths represents the temperature of the top fewmicrometers of the Earth’s surface.
From space, this corresponds to an “ensemble directional radiometric temperature,” which is the aggregate
of all radiometric surface temperatures within the satellite field of view in the direction of observation [Dash
et al., 2002; Norman & Becker, 1995; Li et al., 2013]. Over dense vegetation, a satellite-observed LST may
approximate to the canopy temperature. This is not the same as the ambient air temperature measured at
weather stations at ~2 m above the Earth’s surface, which has traditionally been used in climate and weather
applications. In addition to this geophysical difference, satellite IR LST data are also limited to cloud-free
scenes, whereas station-based T2m estimates are all sky. The clear-sky bias of satellite IR data is known to
affect long-term observations of upper tropospheric humidity, for example [John et al., 2011], so it is natural
to anticipate this may also be an issue for IR LST.

Despite these fundamental differences, the results presented here and in other studies demonstrate that
satellite LST and T2m are strongly related, with LST and T2m closest at night, or under cloud [Gallo et al.,
2011; Good, 2015; Good, 2016; Mildrexler et al. [2011]; Sohrabinia et al., 2014]. The relationship between
LSTnight and Tmin—which are usually observed when solar heating is absent—should be less affected but
not completely free from clear-sky bias because the surface cools more efficiently at night under clear skies
compared with cloudy skies, leading to higher sampling of colder LSTs occurring in these conditions. The
results presented in this study support this and show that the monthly CDR LSTnight data are particularly well

aligned with monthly Tmin and even Tmean, in both actual temperatures and anomalies. For applications that

can tolerate an uncertainty of up to 5°C, LSTnight could provide a reasonable proxy for Tmin for locations with-

out ground-based observations. Where more accurate Tmin data are required, estimates may be obtained

through simple models that predict Tmin from satellite data and other parameters, such as those proposed
by Benali et al. [2012], Good [2015], etc.

The comparison between LSTday and Tmax presented in this study suggests LSTday may also provide
useful new temperature data. In areas of very dense vegetation, LSTday and Tmax can be close (within
a few °C). Over more sparsely vegetated and bare surfaces LSTday can exceed Tmax by much more than
this (up to >10°C), such that LSTday may not be a viable direct proxy for Tmax. Satellite T2m models can
also play a role here to provide more accurate estimates of Tmax. LSTday may also be biased by the
clear-sky sampling, implied by the more extreme anomalies present during the August 2003
European case study introduced in section 6. However, the time series analysis of anomalies over
different regions discussed in section 5.1 does not seem to show any clear-sky bias effects, which
suggests that spatial averaging of anomalies may reduce the problem. However, the dependency of
LSTday on insolation clearly causes problems in generating a temporally homogeneous LST product
from sensors with different overpass times.

Given that IR satellite data offer near-complete global coverage, particularly if composited in time, there is a
clear role for the use of LST data in climate and weather applications. A further benefit of satellite data over
ground-based T2m observations is in instrumental and methodological consistency: a single instrument with
a single retrieval methodology can potentially provide a globally consistent product, whereas in situ data are
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collected using different instruments at each site using different practices (e.g., observation times). A satellite
data archive can also be reprocessed—for example, using an improved retrieval or calibration technique—in
a consistent way, whereas in situ data often comewithmissing or erroneousmetadata, so that applying retro-
spective corrections or improvements can be problematic. Lastly, satellite data are often available in very
near real time, which enables a quick response time to monitoring events. For example, LST from SEVIRI is
provided operationally by EUMETSAT within 2 h of acquisition. Some international station T2m data, on the
other hand, can take several days to weeks to be received by data producers, delaying the output of gridded
data sets for monitoring. A major limitation of satellite LST data—particularly polar orbiting—is that they
provide clear-sky “snapshots” in time. For the ATSR CDR, this time is at 10:00 A.M./P.M., which is a limiting
factor for studies that require knowledge of maximum andminimum surface temperatures that usually occur
at other times of the day. Nevertheless, this study suggests that the ATSR data can still provide useful infor-
mation, particularly where the station network is sparse. It is highly unlikely that satellite LST data will ever
replace conventional T2m observations. However, the benefits of a synergistic approach seem clear, using
multivariate station measurements as a complementary observing array that is essential to ensure adequate
understanding of uncertainties in LST.

8. Conclusions and Outlook

This paper presents a comparison between a new >17 year, monthly satellite LST data set derived from the
ATSR series and ground-based observations of T2m. The LST-T2m difference is characterized in space, by sea-
son, land cover type, vegetation fraction, and elevation. (Note that some of these influencing factors may cov-
ary, but this is not addressed here and each influence is considered separately in this study.) LSTnight is
typically warmer than Tmin (global median = 1.8°C), as expected given the ~10 P.M. local solar time satellite
overpass and typical near-dawn timing of Tmin. LSTnight is highly correlated (>0.9) and has a near one-to-one
relationship with Tmin outside of the tropics. The LSTnight-Tmin interquartile range is 3.8°C, indicating that
LSTnight is often close in magnitude. This strong coupling means that for some applications, LSTnight may pro-
vide a reasonable proxy for Tmin. The LSTday-Tmax variability is higher (median = �0.1°C, interquartile
range = 8.1°C) and more extreme: LSTday tends to be higher than Tmax when insolation is higher but can also
be cooler, e.g., at high latitudes during winter months, or over snow or ice. LSTday and Tmax are not as well
coupled as LSTnight/Tmin, but actual temperature correlations are still typically >0.9 at mid-to-high latitudes.

The LST-T2m difference depends strongly on vegetation fraction and land cover type, particularly for LSTday/
Tmax. The largest positive LST-T2m differences occur over bare surfaces: both LSTnight and LSTday tend to be
warmer than Tmin and Tmax, respectively, and the difference increases with decreasing solar zenith angle
(higher insolation). LST-T2m differences approach zero with increasing vegetation fraction. LSTday is typically
cooler than Tmax over fully vegetated surfaces owing to surface cooling by evapotranspiration, with negative
LSTday-Tmax differences observed frequently for the forested land cover types. In contrast, LSTnight tends to be
slightly warmer than Tmin for nearly all surface types—again, this is attributed to the 10 P.M. local solar time
overpass of the ATSR.

LSTnight-Tmin differences are stable with varying elevation. However, the LST-T2m coupling weakens with
increasing elevation, evidenced by lower correlation coefficients and regression slopes (T2m versus LST).
This is particularly apparent for LSTday-Tmax.

The CDR global time series shows remarkable agreement with CRUTEM4, with a correlation between the
anomaly data sets of up to 0.9 for the globe, with up to 90% of the CDR anomalies falling within the
CRUTEM4 T2m uncertainties. This gives useful verification of the CRUTEM4 monthly anomalies since the CDR
is a completely independent data set. However, the time series analysis presented here suggests that the
CDR is not free from errors arising from nonclimatic effects and there is a discrepancy between the ATSR-2
and AATSR portions of the CDR, resulting in an inhomogeneous time series. This is attributed to the overpass
time correction applied by the data set providers to align the ATSR-2 data with the AATSR overpass time,
which is 30 min earlier. The LSTnight time series appears more stable than the LSTday time series, which is
expected given the dependency of LST on insolation.

LST anomalies appear to be surprisingly well connected to T2m anomalies in space and time. Grid-box
(5° lat/lon) correlations between the CDR and CRUTEM time series are typically >0.7 and very often
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>0.8 outside of the tropics. An analysis of the August 2003 European anomaly maps shows that LST
anomalies quite closely resemble the equivalent T2m and may add information where in situ observations
are sparse. The LST maps also show more detail and structure, which will be useful where high resolution
information is needed.

Although the ATSR ceased operations in 2012, the analysis presented here is relevant to the ATSR successor,
SLSTR, which was launched in 2016, and other IR imagers such as MODIS and SEVIRI. It is hoped that this study
will provide some of the foundation for use of LST data in climate applications. The results of this study sug-
gest that the ATSR CDR LSTnight may be useful for time series analysis of LST, but that LSTday is not temporally
stable enough for this application, at least prior to the AATSR. However, the ATSR CDR LSTday data are still
useful for other applications where temporal stability is less critical, for example, where a climatology of
LST is required for knowledge of the “typical” (background) surface temperature for a particular scene, for
informing gridded estimates of T2m, or the study of surface fluxes through the analysis LST-T2m differences.
The next release of the ATSR CDR will include the uncertainties associated with the temporal correction
applied to the ATSR-2 LSTs to account for the difference in ATSR-2/AATSR observation time, which should
enable users to make better use of these data. It is implausible that LST will replace T2m as the surface tem-
perature variable of choice over land for many applications, since it represents a different physical quantity
and has a comparatively short record length. However, it seems clear that it offers benefits both where LST
is the relevant variable and in augmenting T2m data from meteorological stations, particularly in data-sparse
regions or where a high level of spatial detail is required.
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