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A flexible parametric approach to examining spatial variation in 

relative survival 

Abstract 

Most of the few published models used to obtain small-area estimates of relative survival are 

based on a generalized linear model with piecewise constant hazards under a Bayesian 

formulation. Limitations of these models include the need to artificially split the time scale, 

restricted ability to include continuous covariates, and limited predictive capacity. Here, an 

alternative Bayesian approach is proposed: a spatial flexible parametric relative survival 

model. This overcomes previous limitations by combining the benefits of flexible parametric 

models: the smooth, well-fitting baseline hazard functions and predictive ability, with the 

Bayesian benefits of robust and reliable small-area estimates. Both spatially structured and 

unstructured frailty components are included. Spatial smoothing is conducted using the 

intrinsic conditional autoregressive prior. The model was applied to breast, colorectal and 

lung cancer data from the Queensland Cancer Registry across 478 geographical areas. 

Advantages of this approach include the ease of including more realistic complexity, the 

feasibility of using individual-level input data, and the capacity to conduct overall, cause-

specific and relative survival analysis within the same framework. Spatial flexible parametric 

survival models have great potential for exploring small-area survival inequalities, and we 

hope to stimulate further use of these models within wider contexts.   

1. Introduction 

Spatial analyses of routinely collected cancer data are being increasingly used to provide 

insight to disease etiology and to inform decisions regarding health care disparities [1]. These 

analyses typically report on variation in cancer incidence and mortality [2]. While providing 

important information on diagnostic and end of life care requirements, these endpoints 

provide limited information on the effectiveness of cancer-related health care systems. Spatial 

survival analyses provide greater opportunity to assess the geographical variation in the 
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effectiveness of health services as they reflect both diagnostic and patient management 

components [3].  

Cancer survival may be reported as overall survival, where deaths from any cause are 

included, or an estimate of net survival. Net survival is the survival that would be seen if the 

cancer under study was the only possible cause of death. Net survival is estimated using 

either cause-specific survival, where the recorded cause of death determines deaths due to 

cancer, or relative survival, where deaths from any cause among patients are compared 

against background population mortality rates. When using population-based data such as 

from a cancer registry, relative survival is often the preferred method for measuring net 

survival, as the accuracy of the recorded cause of death may be uncertain [4].  

Few small-area analyses have used relative survival. Fairley et al [5] examined prostate 

cancer in a region of the UK, Cramb et al [6] examined a range of cancers across 

Queensland, Australia, and Saez et al [7] investigated breast cancer in a region of Spain. Each 

of these analyses used a generalized linear model (GLM) with a modified link function, 

piecewise constant hazards and spatial frailties within a Bayesian framework. Reliable small 

area estimates were obtained by using prior distributions which smoothed estimates across 

adjacent areas. While the GLM has been recommended for modelling relative survival [4], 

the disjointed piecewise hazards are biologically implausible. Hennerfeind et al sought to 

overcome this by using a similar model which incorporated splines to smooth the piecewise 

constant hazards [8]. However, while the use of splines has the potential to provide a better fit 

to the hazards function, the resulting calculations for this model are computationally-

intensive [8]. 

Fully parametric models have several advantages over piecewise linear approaches. For 

instance, the time scale does not need to be artificially split, it is more feasible to model 

individual-level data rather than aggregating over covariates of interest, and it is simpler to 

obtain smooth survival or hazard function predictions [9]. However, the standard parametric 

formulations, such as the Weibull, log-logistic or log-normal distributions, assume a linear 

relationship between a specific transformation of the survival function and log survival time 

[9], which often results in poorly fitting models.  

Flexible parametric models incorporate the advantages of standard parametric models with 

nonlinear functions for modelling the baseline hazard, enabling improved model fit. One 
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version of these flexible parametric models is the model proposed by Royston and Parmar 

which uses restricted cubic splines to model the log cumulative baseline hazard [9]. Nelson et 

al [10] extended this flexible parametric model to the relative survival context. However, 

these models have not been previously used for small-area survival analyses.  

The purpose of this paper is to introduce an alternative method for geographic analysis of 

cancer survival data: the spatial flexible parametric relative survival model. We extend 

Nelson’s model [10] to the spatial context by incorporating random effects that allow for 

spatial correlation between areas. This was implemented using a Bayesian framework. We 

apply this new model to three common cancers in Australia: breast cancer (high survival), 

colorectal cancer (moderate survival), and lung cancer (low survival). Our focus is on the 

practical implementation, predictive capacity and interpretability of results. In sections 2 and 

3, details of the proposed model are presented, along with the data and analyses. Model 

assessment is described in section 4, and results presented in section 5, focusing on the 

predictive options available under the flexible parametric formulation. Finally, section 6 

discusses the implications of these new models. 

2. Model Formulation 

Relative survival partitions the total mortality rate (overall hazard, ℎ(𝑡)) into that resulting 

from the disease of interest (excess hazard, λ(𝑡)) and that due to other causes (expected 

hazard (ℎ∗(𝑡), estimated from population mortality rates) [9]. This is also known as an 

additive hazards model since it can be expressed as: 

ℎ(𝑡) = ℎ∗(𝑡) + λ(𝑡)                                         (1) 

The relative survival function for an individual with covariate vector x can be represented as: 

ln(-ln R(t;x)) = ln(Λ(t)) = ln(Λ0(t)) + xβ,                          (2) 

where R(t;x) is the relative survival function, Λ(t) is the cumulative excess hazard, which is 

the integrated form of λ(𝑡) in (1), Λ0(t) is the cumulative baseline excess hazard (the 

cumulative excess hazard when all covariates are 0) and β= 𝛽1, … , 𝛽𝐾 and represents the 

vector of coefficients relating to covariates x.  

The log cumulative baseline excess hazard (ln⁡(Λ0(𝑡)) is modelled via restricted cubic splines 
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[11] as a function of log time. When at least one interior knot is specified, the spline includes 

a constant term, 𝛾0, a linear function of log time with parameter 𝛾1, and for each interior knot 

m=1,…,M, a basis function,⁡𝑧𝑚(𝑡), with parameter 𝛾𝑚+1, as follows: 

ln(Λ0(𝑡)) = 𝛾0 + 𝛾1 ln(𝑡) + 𝛾2𝑧1(𝑡) + ⋯+ 𝛾𝑀+1𝑧𝑀(𝑡).                   (3) 

The cubic basis functions 𝑧1(𝑡), … , 𝑧𝑀(𝑡) are calculated as: 

𝑧𝑚(𝑡) = (ln(𝑡) − 𝑘𝑚)+
3 −

𝑘max−𝑘𝑚

𝑘max−𝑘min
(ln(𝑡) − 𝑘min)+

3 − (1 −
𝑘max−𝑘𝑚

𝑘max−𝑘min
) (ln(𝑡) − 𝑘max)+

3      (4) 

with M interior knots 𝑘1, … , 𝑘𝑀 and two boundary knots (𝑘min and 𝑘max), as per Royston and 

Lambert [9]. The + subscript indicates that negative values are truncated at zero. Note that if 

no interior knots are specified, (3) will revert to a standard Weibull model with ln(Λ0(𝑡)) =

𝛾0 + 𝛾1ln(𝑡). 

When this model is implemented in Stata (via stpm2 [12]) or R (via package ‘flexsurv’ [13]), 

the number and location of knots must be pre-selected along with data relating to the 

population-based expected hazard. The number of interior knots may be selected using 

measures of fit such as the Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC) or graphical plots of model fit. The two boundary knots 𝑘min, 𝑘max are 

placed at the smallest and largest uncensored log survival-times, respectively. The default for 

these models is to position interior knots using empirical centiles of the distribution of log 

event times, which allows data to be more closely modelled in regions of greater data density 

[9]. For example, 1 interior knot is positioned at the median, 2 interior knots are positioned at 

the 33rd and 67th centiles, 3 interior knots are positioned at the 25th, 50th and 75th centile, and 

so on. Maximum likelihood is used to estimate the spline parameters and the log hazard 

ratios. Log-likelihood functions are maximised using the Newton Raphson technique [10].  

We introduce the spatial flexible parametric relative survival model by extending Nelson’s 

model in (2) with the cumulative baseline excess hazard specified as in (3) to include 

additional spatial frailty terms. Using notation similar to that used by Gelman and Hill [14], 

suppose the ith individual with covariate 𝑥𝑖 lives in area j (represented as j[i]), then the log 

cumulative hazard can be written as follows:  

ln (Λ(𝑡; 𝐱𝑖; 𝑢𝑗[𝑖]; 𝑣𝑗[𝑖])) = 𝛾0 + 𝛾1 + 𝛾2𝑧1(𝑡) +⋯+ 𝛾𝑀+1𝑧𝑀(𝑡) + x𝑖β + 𝑢𝑗[𝑖] + 𝑣𝑗[𝑖]   (5)      
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where 𝑢𝑗[𝑖] and 𝑣𝑗[𝑖] are random effects representing the spatial and uncorrelated 

heterogeneity, respectively, in j=1,…J areas. The 𝑣𝑗[𝑖] terms receive independent normal 

distributions and the 𝑢𝑗[𝑖] are assumed to follow an intrinsic conditional autoregressive 

distribution [15]. 

A Bayesian framework was used to enable the smoothing of estimates over regions. Since the 

additional complexity of priors and hyperpriors precludes an analytical solution, Markov 

Chain Monte Carlo (MCMC) sampling was used to obtain estimates.  

Probability distributions were placed on each parameter, with Gaussian distributions 

expressed as N(mean, variance) as follows:  

     𝛾𝑝~N(0, 10
6) where p=0,…,P and P=M + 1 where M is the maximum number of 

interior knots 

        𝛽~N(0, 106) 

𝑢𝑗|𝐮−𝐣 = N(𝜇̅𝑗 ,
𝜎𝑢
2

𝑛𝑗
) where 𝜇̅𝑗 is the average of the neighboring regions of area j 

     𝐮−𝐣 = (𝑢1, … 𝑢𝑗−1, 𝑢𝑗+1, … , 𝑢𝐽) 

        𝑣𝑗~N(0, 𝜎𝑣
2) 

       𝜎𝑢~Uniform(0.01,20) 

       𝜎𝑣~Uniform(0.01,20) 

Hyperpriors were provided as a uniform distribution on the standard deviation [16]. A 

popular choice to encourage the influence of the data is to use vague prior distributions, and 

here most model parameters were given vague normal distributions, except for u, as the 

spatially structured term. The intrinsic CAR distribution [15] prior specified on u locally 

smooths the data across neighbors (𝑛𝑗=number of neighbors of region j), defined as areas 

with first-order contiguity (adjacent boundaries). As Queensland has many small islands 

(which have no adjacent boundaries), these areas had their default neighborhood structure 

adjusted to incorporate nearby areas.  
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Although (5) results in proportional hazards, alternative formulations are possible, including 

proportional odds models. The equivalent to (5) under proportional odds is: 

logit (1 − 𝑅(𝑡; 𝐱𝑖; 𝑢𝑗[𝑖]; 𝑣𝑗[𝑖])) = logit(1 − 𝑅0(𝑡)) + x𝑖β + 𝑢𝑗[𝑖] + 𝑣𝑗[𝑖]                 (6) 

where 𝑅(𝑡; 𝐱𝑖; 𝑢𝑗[𝑖]; 𝑣𝑗[𝑖]) represents relative survival for individual i in area j given 

covariates 𝑥𝑖 , 𝑅0(𝑡) is the baseline relative survival function, the relative survival when all 

covariates equal zero and other terms are as before. Note that logit(1 − 𝑅0(𝑡))⁡is modelled as 

a restricted cubic spline just as for the log cumulative baseline hazard in (3). 

In a slight abuse of notation but to simplify exposition we write 𝑅(𝑡; 𝐱𝑖; 𝑢𝑗[𝑖]; 𝑣𝑗[𝑖]) as 𝑅(𝑡𝑖). 

The resulting contribution to the log-likelihood for the ith individual when allowing for late 

entry at 𝑡0𝑖 can then be written as: 

ln 𝐿𝑖 = 𝛿𝑖ln⁡{ℎ
∗(𝑡𝑖) + 𝜆(𝑡𝑖)} + ln 𝑆∗(𝑡𝑖) + ln𝑅 (𝑡𝑖) − ln 𝑆∗(𝑡0𝑖) − ln 𝑅 (𝑡0𝑖)             (7) 

where 𝛿𝑖 is a death indicator with 0 representing censored and 1 representing death, ℎ∗(𝑡𝑖) 

and 𝜆(𝑡𝑖) are as specified in (1), 𝑆∗(𝑡𝑖) is the expected survival at the time of death or 

censoring and 𝑆∗(𝑡0𝑖) is the expected survival during the time period prior to the time period 

of interest (as no model parameters are included in these terms, they can be excluded when 

maximising the likelihood), 𝑅(𝑡𝑖) is the relative survival from (6), and 𝑅(𝑡0𝑖) is the relative 

survival before the time period of interest. As the models use the cumulative form, the excess 

hazard 𝜆(𝑡𝑖) is obtained as the first derivative of ln(Λ(t)). Further details are available in 

Appendix A. 

 

The choice of proportional hazards or proportional odds may be determined using the same 

measures as for choosing the number of knots (AIC, BIC or graphical plots of model fit), 

often in conjunction with the interpretability of estimates and audience needs. Hazard ratios 

may be easier to interpret due to their widespread use, but the proportional odds model 

assumes hazard ratios decrease as time from diagnosis increases, which is often sensible for 

cancer prognostic effects. 

3. Data and Analysis 
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Breast (ICD-O3 C50), colorectal (ICD-O3 C18-C20,C218) and lung (ICD-O3 C33-C34) 

cancer data for patients aged <90 years diagnosed from 1997 to 2011 were obtained from the 

Queensland Cancer Registry (QCR), a population-based registry that covers the entire state of 

Queensland [17]. The QCR conducts routine data linkage with the Australian National Death 

Index to determine the survival status of all cancer patients. Ethical approval was obtained 

from the Queensland Health Central Office Human Research Ethics Committee 

(HREC/09/QHC/25). 

The following variables collected by the QCR have been recognized as important prognostic 

indicators for both breast [18] and colorectal [19] cancers: patient age, sex, tumor stage at 

diagnosis (these are all included within the covariate matrix), and geographical region of 

residence at diagnosis (incorporated into the random effects). No treatment information is 

available from the QCR. 

The geographic regions used were 478 Statistical Local Areas (SLAs), defined under the 

Australian Bureau of Statistics’ Australia Standard Geographic Classification (ASGC) [20]. 

Geocoded cancer patient residence information was assigned an SLA prior to data extraction 

using the 2006 ASGC boundary definitions. SLAs cover Queensland without gap or overlap, 

and in 2006 had populations ranging from 7 to 74,804 (median 5,723).  

The expected hazard rate (ℎ∗(𝑡) in (1)) was calculated from population and mortality data. 

Population data by 5-year age groups, sex, year and SLA were obtained from the Australian 

Bureau of Statistics [21]. Unit-record level mortality data for Queensland residents were 

obtained from the Australian Bureau of Statistics (to 2005) [22] and the Australian 

Coordinating Registry (2006-2011) [23]. The SLA boundaries provided in this mortality data 

changed over time. These were adjusted to the 2006 SLA boundaries using correspondence 

files produced by the Australian Bureau of Statistics. Population mortality estimates for each 

SLA, sex, integer age and year was calculated using sex-specific aggregated 5-year age 

groups, 5-year time periods (1997-2001, 2002-2006, 2007-2011), and over the same groups 

of SLAs used in the neighborhood structure for the CAR distribution. This smoothing 

enabled more stable population mortality estimates. 

The remoteness of each SLA was assigned based on the Accessibility Remoteness Index of 

Australia plus (ARIA+), which has five categories ranging from “Major City” to “Very 

Remote”, and is based on access to services and population sizes. 
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Three categories of tumor stage were included: Localized, Advanced and Unknown. 

Colorectal cancer stage was defined using the Dukes staging system after extracting 

information from pathology records held by the QCR [24]. Although four stage categories 

were defined, these were aggregated for increased accuracy [24].  ‘Localized’ stage cancer 

was defined as stages I and II, with ‘Advanced’ stage cancer defined as stages III and IV. 

Breast cancer stage was approximated based on information routinely collected by the QCR 

regarding tumor size, lymph node involvement and distant metastases, with ‘Localized’ stage 

equivalent to stage I, and ‘Advanced’ equivalent to stages II-IV [25]. No information was 

available on lung cancer stage. To assess the impact of stage at diagnosis on the survival 

differences between areas, separate models were run with and without the stage covariates. 

Survival was calculated using the period method [26], with the ‘at-risk’ period covering 

2002-2011. Under period analysis, all observations are left-truncated at the start of the at-risk 

period, in addition to being right-censored at the end [26]. This enables survival estimates to 

be based on more recent data, as for each cancer type included cases were the first primary 

cancer diagnosed during 1997 to 2011, and still alive during any part of 2002-2011. Data 

were censored at the 31st December 2011. 

The analysis was conducted in two stages. First several versions of the non-spatial standard 

flexible parametric model were run using stpm2 in Stata v13.1 (StataCorp LP, Texas, USA) 

to determine an appropriate transformation of the continuous variable patient age, as well as 

the preferred model form (hazards or odds) and number of pre-specified knots. These 

parameters were then used in the Bayesian spatial model, which was run with single chain 

MCMC using WinBUGS 1.4 (Imperial College and Medical Research Council, UK) 

interfaced with Stata. The first 250,000 iterations were discarded and a further 100,000 

monitored (with every 10th iteration kept, for a total of 10,000). To enable the log likelihood 

(specified in (7)) to be calculated, what is referred to as the ‘zeros trick’ [27] was employed. 

WinBUGS code for the spatial flexible parametric relative survival model is supplied in 

Appendix A. 

Age was included as a continuous variable by centering on the cancer-specific median age, 

then using fractional polynomial methods [28] in the non-spatial model to transform. A 

fractional polynomial extends a conventional polynomial by generalizing the powers to 

certain fractional and nonpositive values [29]. The Stata multivariable fractional polynomial 
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command was used (mfp), which fit different models with combinations of the default set of 

powers {-2, -1, -0.5, log, 0.5, 1, 2, 3} up to second-order fractional polynomials. For each 

cancer second-order fractional polynomials were preferred, although the transformations 

selected varied. Alternate nonlinear methods such as splines could have been used instead of 

fractional polynomials. Both are likely to give similar results, but the spline is more 

influenced by local variation as opposed to the global fractional polynomial [30]. 

The non-spatial model was also used to determine the appropriate number of pre-specified 

knots for the restricted cubic spline on the cumulative baseline hazard. Both BIC values and 

graphs of the estimated hazard and survival functions were used to select the preferred 

number of knots. The examination of graphs aimed to prevent overfitting models: if there 

were nominal differences between the plotted hazard or survival functions, then the model 

with the fewer number of knots was preferred. 

A common output from a spatial analysis is a map of the estimates of interest. Under the 

Bayesian formulation, it is possible to map not only the median estimates of excess mortality 

odds ratios (exp(𝑢𝑖 + 𝑣𝑖)), but also the probability of this ratio exceeding a certain value, 

such as 1. Thematic maps were produced using MapInfo Professional v12.5 (Pitney Bowes 

Software Inc., New York). Exceedance probability categories were defined based on standard 

80% cut-offs, with a probability of 80% and above considered very likely to be true, while a 

probability below 20% is considered very unlikely to be true. 

A key benefit in modelling a smooth baseline function is the ability to predict smooth 

survival or hazard functions. A range of post estimation commands are available for standard 

Royston-Parmar models in Stata. To obtain further benefit from the Bayesian approach, we 

derived additional syntax to calculate the predictions at each MCMC iteration (see Appendix 

B for Stata code). This enabled us to predict survival curves with appropriate credible 

intervals for each area. Predicted survival was calculated for each SLA, sex and cancer type 

at age 60 years, and further by stage (for breast and colorectal cancers).  

4. Model Evaluation 

Convergence of MCMC chains for each parameter was assessed using trace and density plots 

[27]. Due to the large number of areas, a subsample of 20 areas that included sparsely 
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populated areas (<0.2 residents per km2) was selected for graphical monitoring of the 𝑢𝑖 and 

𝑣𝑖 terms. No parameters showed evidence of non-convergence. 

The accuracy of the posterior estimates was assessed using Monte Carlo (MC) error, 

calculated as [standard⁡deviation √No. iterations]⁄  of the exponentiated odds ratio 

estimates for each parameter of interest (𝛾𝑑, 𝛽𝑘 and 𝑢𝑖 + 𝑣𝑖). As autocorrelation may 

influence MC error values, autocorrelation for each parameter was assessed via graphical 

plots, and generally found to be negligible, except in a few instances where the random effect 

estimation for some of the smaller regions took longer. 

Sensitivity analyses [31] compared five different hyperpriors on the variance components 

𝜎𝑢
2⁡and 𝜎𝑣

2: 

Vague 

1. Gamma distribution (shape, scale) on the precision, 
1

𝜎2
~Γ(0.1,100) 

2. Uniform distribution (minimum, maximum) on the standard deviation, 

𝜎~U(0.01,20) 

3. Uniform distribution on the standard deviation, 𝜎~U(0.01,100) 

Weakly informative 

4. Uniform distribution on the standard deviation, 𝜎~U(0.01,2) 

Informative 

5. Gamma distribution on the precision, 
1

𝜎2
~Γ(1,2) 

Apart from version 5, similar estimates were obtained in each version. Examination of 

convergence trace and density plots for the four versions with comparable results indicated a 

slight preference for version 2, and for this reason results are presented based on version 2. 

Informative hyperpriors are expected to exert greater influence on the posterior, and version 5 

imposes very low probability on the standard deviation being close to 0, so estimates had 

more variation than under the other hyperpriors considered. The associated supplementary 

material provides further details on hyperprior comparisons and a subsample of plots. 

5. Results 

Based on BIC under the non-spatial model, the proportional odds formulation was preferred 

over the proportional hazards form for the three cancers examined, except for breast cancer 
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unadjusted for stage, where the hazards form was marginally preferred (Table 1). Results 

presented here use the proportional odds form.  

Although 4 interior knots were preferred for colorectal cancer based on BIC values (Table 1), 

graphs of the hazard function suggested fewer knots would suffice. The final number of 

interior knots selected was 2, 1 and 3 for breast, colorectal and lung cancers, respectively.  

The flexible parametric form fitted the data better than using a piecewise approach or 

standard log-logistic distribution (Figure 1). Small numbers are likely to influence the rapid 

increase in mortality in the smoothed hazard function as time approaches 15 years after 

diagnosis. Although only shown for breast cancer, colorectal and lung cancer also exhibited 

similar patterns.  

All models had very low MC error estimates. The maximum MC errors for any parameter 

were 0.0042, 0.0028 and 0.0029 for breast, colorectal and lung cancer, respectively (in the 

models unadjusted for tumor stage), and 0.0406 for breast and 0.0031 for colorectal cancer 

(in the models adjusted for tumor stage). MC errors within 5% of the parameter’s standard 

deviation are considered acceptable [32], and all met this criteria. 

All three cancers showed strong evidence of spatial inequalities in cancer survival after 

adjusting for age and sex (Figure 2). There was a consistent pattern of lower survival among 

remote areas, and higher survival among areas in the urban south-east corner. The probability 

of excess mortality odds ratios exceeding 1 was most definitive for lung cancer (Figure 2). 

This is partly influenced by the number of deaths, with more deaths providing greater 

precision. 

After further adjusting for stage, most breast cancer median excess mortality odds ratios were 

somewhat attenuated, and this was most clearly demonstrated by the marked reduction in the 

probability of estimates differing from 1, with fewer remote areas showing high (>80%) 

probability of excess mortality odds ratios above the Queensland average (Figure 3). In 

contrast, colorectal cancer results were much less impacted by adjustment for tumor stage 

(Figure 3).  

The median posterior predicted survival for each SLA was grouped by remoteness and cancer 

type to consider the range of survival predictions (Figure 4). Although urban areas often had 
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higher survival than remote areas, there was variation even within these groupings, and often 

the highest survival in remote areas was on par with the predicted survival in certain urban 

areas. 

Survival curves were also predicted for each SLA. To illustrate the maximum survival 

differential, the major city SLA with the highest survival is compared against the very remote 

SLA with lowest survival (Figure 5). Survival differences for breast and colorectal cancer 

increased over time, while for lung cancer the largest inequalities were observed around 2-4 

years after diagnosis, and these had diminished by 15 years (Figure 5). This is likely to reflect 

the very aggressive nature of lung cancer. The high number of deaths from lung cancer is also 

apparent by less uncertainty around the lung cancer survival estimates.  

When assessing patterns by spread of disease, there were only small differences in survival 

observed for localized breast cancers, but much poorer survival for advanced breast cancers 

in the remote SLA compared to the major city SLA (Figure 5). The maximum absolute 

differential in 5-year survival between SLAs for advanced stage breast cancers was 6.7%, 

compared to 1.3% for localized breast cancers. In contrast, colorectal cancer showed marked 

survival differences between SLAs for localized cancers (maximum 5-year survival 

difference of 4.7%) and even higher for advanced cancers (14.0%). 

6. Discussion 

We have proposed an extension to Nelson’s flexible parametric relative survival model to 

produce small-area survival estimates. This new model includes additional random effect 

components within a Bayesian framework to enable small-area smoothing. This combines the 

benefits of flexible parametric models: the smooth, well-fitting baseline hazard functions and 

predictive ability, with the Bayesian benefits of robust and reliable small-area estimates.  

The predictive ability of these flexible parametric models remains an important advantage 

over piecewise based approaches. Concepts that are relative to the average, such as the excess 

mortality odds ratio, do not provide direct information on the survival impact, which is of 

most interest to cancer patients. Quantifying survival differences provides a more intuitive 

and balanced measure of inequalities, and we are not aware of survival curves being 

produced for such small areas previously.  



13 
 

Wide variation between SLAs was observed for predicted cancer survival, and this was 

particularly noticeable for cancers diagnosed at an advanced stage. Unlike breast cancer, 

comparatively large survival differences were observed even for colorectal cancers diagnosed 

at a localized stage. This is consistent with an impact of geographical differences in the 

management that patients receive depending on where they live [33]. Treatment data is not 

routinely collected by registries, so in the absence of data this remains speculative. However, 

multiple studies suggest that colorectal cancer patients often have better outcomes when 

treated by specialist surgeons with higher case volumes [34, 35]. In Queensland, these 

specialist surgeons with high-throughput are predominantly located in the urbanized south-

east corner, which is classified as a major city region. 

Robust survival estimates in small areas are only possible by incorporating spatial smoothing 

methods. Here, Bayesian methods used priors designed to smooth across neighboring regions, 

which produced reliable estimates and predictions despite data sparseness. As per the popular 

Besag, York and Mollie (BYM) model, two random effect area-level components were 

included with different priors: an intrinsic CAR normal prior for local smoothing and a 

normal distribution for global smoothing towards the overall mean [15]. Although the BYM 

model has been shown to perform well when compared to other Bayesian disease mapping 

approaches,[36] concerns have been raised about the potential for oversmoothing [37]. 

Investigating alternative approaches, such as including a component that allows for discrete 

changes between areas [38], could be a fruitful area for future research. This may be 

particularly important if the cancers of interest are strongly linked with known infectious or 

lifestyle components with large socioeconomic differentials, as neighboring regions can have 

markedly different socioeconomic profiles.  

Although demonstrated here on relative survival, this model can easily be adjusted to model 

cause-specific or all-cause survival, broadening the diseases it can be applied to (see 

Appendix C for syntax). To interpret relative survival as net survival, conditional 

independence between mortality from the disease, and mortality due to other causes must be 

assumed [39]. For lung cancer, due to the association with smoking, this assumption is 

questionable [9]. However, due to the high mortality rate, the bias is small in practice [40]. 

One advantage then is the ease of also running a cause-specific analysis within the same 

modelling framework and comparing results. 

Royston-Parmar models can be built on a range of parametric models. For all cancers 
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examined, the odds form was either preferable or similar to hazards. Other alternative model 

formulations include probit. Both odds and probit formulations assume non-proportional 

hazards that will converge to 1 as 𝑡 → ∞, although the probit form has slightly longer tails. 

Prognostic influences on cancer often demonstrate a diminishing impact on mortality as time 

from diagnosis increases [9].  

Additional complexity could be incorporated into the models. In the current form of the 

model, the intercept contains the random effect spatial structure. This could be extended by 

incorporating random effects into the spline coefficients. Including additional temporal 

components could enable comparison of small-area variation in survival across time, or time-

varying components could also be incorporated in a straightforward manner. These time-

dependent effects can also be modelled using splines, providing a smooth, continuous hazard. 

Although in theory this is simple, the computational implementation may be challenging. 

Model averaging over different numbers of knots could be investigated, although given the 

similarity of functions once the number of knots reaches a certain threshold, unlikely to 

influence results. Allowing the number of knots to be determined within the Bayesian model 

would also be possible, but the insight into the model behavior and sensitivity obtained from 

comparing different numbers of knots was advantageous. 

Perhaps the greatest disadvantage is the computational intensity of using MCMC analysis for 

these models. There is some theoretical justification for a long run of a single chain [41], and 

although we discarded 250,000 iterations in the results presented, convergence was achieved 

at far fewer iterations for most parameters. Although the time to run the entire 350,000 

iterations was only slightly longer than the previous piecewise MCMC-based approaches 

used for small-area analyses (~8 hours on a high quality computer), even using a reduced 

number of iterations it is substantially longer than producing estimates analytically in Stata or 

R. Also, as the number of knots increased, computational time further increased. Using an 

MCMC approximation method such as INLA (Integrated Nested Laplace Approximation) 

[42] could overcome this difficulty. 

In conclusion, these flexible parametric survival models have great potential for exploring 

spatial and spatio-temporal survival inequalities, and we hope to stimulate further 

development and application of these models within wider contexts.  
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Appendix A: WinBUGS code 

WinBUGS code for the breast cancer spatial flexible parametric relative survival model including age 

(as a centered, continuous, transformed variable) and tumor stage. The ‘zeros trick’ is used to specify 

a general likelihood. By setting the observed data to a set of zeros, then a Poisson(c[i]) observation of 

0 has a likelihood of exp(-c[i]), and here c[i]= - log(L[i]) (with a constant included to ensure the value 

is positive). 

For further details on the components of the likelihood expression see Equation 7. 

Note that haz=ℎ∗(𝑡𝑖) = population mortality for each individual’s age group, sex and year , 

N=number of data rows (individual-level observations), Nsla=number of areas, and 

sumNumNeigh=the overall sum of each area’s number of neighbors.  

Input data (in addition to the above) are: 

rcs=restricted cubic spline terms (the associated number = number of internal knots minus one). This 

is computed externally in Stata prior to running in WinBUGS (as are s0rcs and drcs). 

s0rcs= restricted cubic spline terms (delayed entry) 

drcs=first derivative of restricted cubic spline terms 

agec=transformed continuous, centered age values 

stage=values representing tumor stage 

slano=area id number 

d=death indicator variable (0=censored, 1=death) 

t0=late entry indicator variable (0=no late entry, 1=late entry) 

t=time survived until death or censoring 
 

model { 

 K <-10000 

 

 for(i in 1:N) { 

     stage2[i]<- equals(stage[i], 2)   

     stage3[i]<- equals(stage[i], 3) 

 

 zeros[i]<-0 

eta[i]<-gamma[1]+gamma[2]*rcs1[i]+gamma[3]*rcs2[i]+gamma[4]*rcs3[i]+beta[1]*agec1[i] 

+beta[2]*agec2[i]+beta[3]*stage2[i]+beta[4]*stage3[i]+u[slano[i]]+v[slano[i]] 

 

eta0[i]<-gamma[1]+gamma[2]*s0rcs1[i]+gamma[3]*s0rcs2[i]+gamma[4]*s0rcs3[i]+beta[1]*agec1[i] 

+beta[2]*agec2[i]+beta[3]*stage2[i]+beta[4]*stage3[i]+u[slano[i]]+v[slano[i]] 

   

 dsp[i]<-gamma[2]*drcs1[i]+gamma[3]*drcs2[i]+gamma[4]*drcs3[i] 

 

 lnL[i]<- d[i]*log((haz[i])+(1/t[i])*max(dsp[i]*exp(eta[i]),0.00001)/(1 + exp(eta[i]))) +  

log(pow((1+exp(eta[i])),-1)) + (log(1+exp(eta0[i]))*t0[i]) 

 c[i]<- -lnL[i]+K 
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 zeros[i]~dpois(c[i]) 

} 

 

#Prior Distributions 

#CAR prior for spatial random effect 

 u[1:Nsla] ~ car.normal(adj[], weights[], num[], tauu)   

 for (k in 1:sumNumNeigh) {weights[k] <- 1 . 

  

#Normal prior for uncorrelated heterogeneity term 

 for (i in 1:Nsla) { 

 v[i]~dnorm(0,tauv) 

 } 

   

 # Other priors           

     tauu<- pow(sigmau,-2) 

 tauv<- pow(sigmav,-2) 

 sigmau~dunif(0.01,20) 

 sigmav~dunif(0.01,20) 

 varucon <-1/tauu 

 varv<-1/tauv 

 varumarginal<-sd(u[])*sd(u[]) 

 fracspatial<-varumarginal/(varumarginal+varv) 

 

for(j in 1:4){ 

beta[j]~dnorm(0,0.001) 

} 

for(j in 1:4){ 

gamma[j]~dnorm(0,0.001) 

} 

 

} 

Appendix B: Survival calculations 

Stata syntax for predicted survival calculations 

*Breast cancer by stage survival predictions at age 60 years 

set more off 

*Calculate transformed age values at age 60 years (as age is centered, median=0 but represents 59 

years) 

  scalar a1=(((1+39)/10)^.5)-1.978965433 

  scalar a2=(((1+39)/10)^2)-15.33743848 

 scalar list 

*Loop over each area 
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forvalues i=1/478{ 

*Skipped steps to read in and organise data, but have 10,000 rows with results from WinBUGS 

(gamma, beta, u, v) and input data to WinBUGS from Stata (rcs1, rcs2) for ~50 time points, 

producing a total of ~500,000 rows of data. 

*Calculate predictions 

* Loop over to generate results by stage, coded here as 0=localized, 1=advanced 

forvalues s=0/1{ 

preserve 

gen stage=`s’ 

*Log odds of the probability of an event  

gen double h_`i'=gamma_1+(gamma_2*rcs1)+(gamma_3*rcs2)+(beta_1*a1)+(beta_2*a2) 

+(beta_3*stage)+u_`i'+v_`i' 

 *Survival function (odds formulation) 

 gen double s_`i'=(1+(exp(h_`i')))^-1 

* Calculate median and 80% credible interval values 

collapse (p50) h50_`i'=h_`i' s50_`i'=s_`i' (p10) h10_`i'=h_`i' s10_`i'=s_`i' (p90) h90_`i'=h_`i' 

s90_`i'=s_`i', by(_t) 

 save _sf`s’_`i', replace 

 list _t s* if _n==_N 

restore 

} 

} 

 

Appendix C: Modeling alternate survival estimates 

The following shows the key Stata syntax and WinBUGS code to obtain alternative types of 

flexible parametric survival estimates. 

 

It assumes the death variable is coded as 1 for the specific cancer death, 2 for all other deaths. 

 

Relative survival  

Stata syntax 

*Include all deaths from any cause 

* Use period approach  

stset exit, enter(time mdy(1,1,2002)) exit(time mdy(12,31,2011)) /// 
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 origin(dxdate) failure(death==1,2) id(id) scale(365.24) 

 

*Run the model 

xi:mfp, select(0.05): stpm2 agec i.sex i.stage, df(2) scale(odds) bhazard(haz) nolog 

 

WinBUGS code 

*The log-likelihood  

lnL[i]<- d[i]*log((haz[i])+(1/t[i])*max(dsp[i]*exp(eta[i]),0.00001)/(1 + exp(eta[i]))) + 

log(pow((1+exp(eta[i])),-1)) + (log(1+exp(eta0[i]))*t0[i]) 

 

Cause-specific survival 

Stata syntax 

*Only include deaths attributed to the specific cancer 

* Use period approach  

stset exit, enter(time mdy(1,1,2002)) exit(time mdy(12,31,2011)) /// 

 origin(dxdate) failure(death==1) id(id) scale(365.24) 

 

*Run the model.  

xi:mfp, select(0.05): stpm2 agec i.sex i.stage, df(2) scale(odds) nolog 

 

WinBUGS code 

*The log-likelihood  

lnL[i]<- d[i]*log(max(dsp[i]*exp(eta[i]),0.00001)/(1 + exp(eta[i]))) +    

log(pow((1+exp(eta[i])),-1)) + (log(1+exp(eta0[i]))*t0[i]) 

 

Overall survival (This is not an estimate of net survival) 

Stata syntax 

*Include all deaths from any cause 

* Use period approach  

stset exit, enter(time mdy(1,1,2002)) exit(time mdy(12,31,2011)) /// 

 origin(dxdate) failure(death==1,2) id(id) scale(365.24) 
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The Stata model and WinBUGS log-likelihood is identical to cause-specific survival. 
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Table 1: Variations in BIC values by model form and number of internal knots 

 Unadjusted for tumour stage Adjusted for stage 

# knots Breast Colorectal Lung Breast Colorectal 

PH      

0 43280 72198 42385 41227 67116 

1 43284 71747 40391 41234 66727 

2 43231* 71702 40294 41170 66667 

3 43237 71690 40175 41178 66654 

4 43244 71669 40183 41187 66624 

5 43251 71673 40197 41195 66625 

6 43261 71681 40201 41204 66636 

7 43265 71686 40195 41206 66639 

PO      

0 43286 71942 40431 41055 66754 

1 43294 71698 40300 41059 66627 

2 43245 71654 40281 41004* 66580 

3 43251 71632 40112* 41013 66555 

4 43259 71612* 40113 41021 66525* 

5 43266 71617 40127 41030 66530 

6 43276 71625 40135 41038 66539 

7 43280 71630 40135 41040 66543 

BIC=Bayesian Information Criterion; PH=Proportional Hazards; PO=Proportional Odds 

Notes: An asterisk denotes the lowest BIC value for each model, bolded values are the selected 

choice.  

BIC values are comparing the non-spatial model versions in Stata. 

 


