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Abstract

An adaptive algorithm, based on residual type a posteriori indicators of errors measured in
L∞(L2) and L2(L2) norms, for a numerical scheme consisting of implicit Euler method in time and
discontinuous Galerkin method in space for linear parabolic fourth order problems is presented.
The a posteriori analysis is performed for convex domains in two and three space dimensions for
local spatial polynomial degrees r ≥ 2. The a posteriori estimates are then used within an adaptive
algorithm, highlighting their relevance in practical computations, which results into substantial
reduction of computational effort.

1 Introduction

Fourth order parabolic equations and corresponding initial-boundary value problems appear in the
modelling in areas as diverse as biology, phase-field modelling and image processing to name a few. In
most cases of practical interest one has to resort to numerical methods for their solution, due to complex
geometry and/or the presence of non-linearities.

During the last five decades, finite element methods (FEMs) have been widely used to numerically
solve fourth order elliptic or parabolic problems; see, e.g., [4, 15, 12, 16, 18, 10, 33] and the references
therein for earlier works. There are, generally speaking, three families of FEMs developed for fourth
order problems: conforming, mixed and non-conforming. The classical conforming methods (see, e.g.,
[15] and the references therein) require the construction of complicated elements with a number of
degrees of freedom devoted to ensuring C1-continuity across the element interfaces. This results into
limitations in the applicability of conforming methods on general, possibly irregular, meshes [36] and
their non-trivial extensions to dimensions three (or higher). Mixed methods (see, e.g., [12, 16] and
the references therein), whereby the fourth order operator is first transformed into a system of second
order operators are widely used in practice, but they require very careful treatment in the imposition
of essential and natural boundary conditions. Non-conforming methods for fourth order problems were
first presented by [4] and then further developed in [18, 10, 33, 20] and other works. The key idea in
non-conforming methods is the use of penalties to ensure convergence into the natural energy space of
the variational problem, despite finite element basis functions being either just continuous (C0-interior
penalty procedures; see, e.g., [18, 10]) or completely discontinuous (discontinuous Galerkin interior
penalty procedures; see, e.g., [4, 33, 20, 21]).

Adaptive FEMs based on a posteriori error estimates has been an active field of research in recent
years, especially for second order elliptic and parabolic problems. For the case of fourth order elliptic
problems a posteriori error estimators and indicators have been developed, e.g., in [14, 38, 1, 34, 6,
13, 8, 27, 24]. A posteriori bounds and adaptive algorithms for parabolic fourth order problems are
far less developed in the literature. For instance, the development of adaptive algorithms based on
various types of a posteriori indicators for the Cahn-Hilliard fourth order parabolic problem can be
found in [31, 22, 5]. Error control for variational methods for fourth order parabolic equations has
been predominantly focused to space-discrete mixed or conforming formulations. The recent work [31]
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deals with goal-oriented error estimation for the fully discrete Cahn-Hilliard problem. Therefore, the
development of adaptive algorithms based on a posteriori estimators for fully discrete methods for fourth
order parabolic problems is still largely an unexplored area.

Advances in a posteriori error analysis of fully discrete schemes with non-conforming spatial dis-
cretizations of second order parabolic problems have been recently presented [19, 25]. In [25], an adap-
tive algorithm based on the derived a posteriori estimates is also considered. Local residual a posteriori
error bounds for semi-discrete conforming and mixed spatial discretizations ffor the Cahn-Hilliard prob-
lem and the Hele-Shaw flow are presented in [22]. Finally, a posteriori error estimates in an L2(H2)-type
norm and adaptive algorithms for fully discrete schemes with discontinuous Galerkin methods for fourth
order problems are proposed in [39]. The derivation of reliability bounds in [39] is based on the elliptic
reconstruction framework of Makridakis and Nochetto [32]; we also refer to [29, 25] for some relevant
extensions.

This work is concerned with the derivation of a posteriori error estimates in weaker than L2(H2)-
norms and their use within an adaptive algorithm for a class of discontinuous Galerkin interior penalty
methods for a fully discrete approximation of the problem:

ut + ∆2u = f in Ω× (0, T ], (1)

u = ∇u · n = 0 in ∂Ω× (0, T ] and (2)

u = u0 in Ω× {0} (3)

with Ω ⊂ Rd, d = 2, 3 a convex polygonal domain with boundary ∂Ω. More specifically, we derive a
posteriori error estimators for the error measured in L∞(L2) and L2(L2) norms for a numerical scheme
consisting of discontinuous Galerkin method in space and simple backward-Euler time-stepping for the
problem (1) - (3). The a posteriori analysis is performed for convex domains (as is usual for these norms)
in two and three space dimensions for local spatial polynomial degrees r ≥ 2. To enable the optimality
of the a posteriori estimators in the L∞(L2) and L2(L2) norms, the elliptic reconstruction framework
is employed. Moreover, the L2(L2)-norm analysis employs a special test function construction inspired
from the a priori analysis of FEMs for wave problems in [2]. Somewhat surprisingly, the use of this
special testing, in conjunction with the elliptic reconstruction, results into the derivation of L2(L2)-norm
a posteriori estimators via a standard energy argument. The efficiency of the a posteriori estimators
is assessed numerically. The reliability bounds are used within two variants of a space-time adaptive
algorithm. The adaptive algorithm is able to achieve the same error reduction with far fewer degrees
of freedom compared to uniform meshes, thereby highlighting the relevance of the derived a posteriori
estimates in practical computations. The simple model problem (1) - (3) appears to be sufficient in
highlighting some of the challenges in the error estimation and adaptivity of finite element methods for
more complex fourth order parabolic problems. It appears that the derived a posteriori bounds and the
respective adaptive algorithms can be modified in a straightforward fashion to include the original dG
method of Baker [4] and C0-interior penalty methods [18, 10].

The remaining of this work is organised as follows. In Section 2, notation is introduced and some
standard results needed in the subsequent analysis are recalled. The discontinuous Galerkin (dG)
method for the biharmonic problem, along with the derivation of posteriori error bounds for the dG
approximation of the biharmonic problem in L2-norm are derived in Section 3. The respective fully
discrete scheme for the parabolic model problem (1) - (3) is given in Section 4, while Section 5 contains
the derivation of residual type a posteriori estimates of errors in L∞(L2) and L2(L2) norms for the
fully discrete scheme. The efficiency and reliability of the a posteriori estimators is tested on a range of
uniform meshes in Section 6. The adaptive algorithm utilizing the a posteriori estimates in a series of
numerical experiments are also presented in Section 6. Some concluding remarks regarding the results
and possible extensions are given in Section 7.

2 Notation and preliminaries

The standard Hilbertian Lebesgue space is denoted by L2(ω), for a domain ω ⊂ Rd, (d = 2, 3), with
corresponding inner product 〈·, ·, 〉ω and norm ‖ · ‖ω; when ω = Ω, we shall drop the subscript writing
〈·, ·, 〉 and ‖ · ‖, respectively. We also denote by Hs(ω), the standard Hilbertian Sobolev space of index
s ≥ 0 of real-valued functions defined on ω ⊂ Rd, along with the corresponding norm and seminorm
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‖ · ‖s,ω and | · |s,ω, respectively. For 1 ≤ p ≤ +∞, we also define the spaces Lp(0, T,Hs(ω)), consisting
of all measurable functions v : [0, T ]→ Hs(ω), for which

‖v‖Lp(0,T ;Hs(ω)) :=
(∫ T

0

‖v(t)‖ps,ωdt
)1/p

< +∞, for 1 ≤ p < +∞,

‖v‖L∞(0,T ;X) := ess sup0≤t≤T ‖v(t)‖s,ω < +∞, for p = +∞.
(4)

Let T be a subdivision of Ω into disjoint elements κ ∈ T . The subdivision T is assumed to be shape-
regular (see, e.g., p.124 in [15]) and is constructed via smooth mappings Fκ : κ̂ → κ with uniformly
bounded Jacobian throughout the mesh family considered, where κ̂ is the reference element. The above
mappings are assumed to be constructed so as to ensure Ω̄ = ∪κ∈T κ and that the elemental edges are
straight segments (i.e., lines or planes). Note that we also use the expression edge to mean side when
d = 3.

The broken Laplacian, ∆hu, is defined element-wise by (∆hu)|κ := ∆(u|κ) for all κ ∈ T .
For a nonnegative integer r, we denote by Pr(κ̂), the set of all polynomials of total degree at most

r, if κ̂ is the reference simplex, or of degree at most r in each variable, if κ̂ is the reference hypercube.
We consider the finite element space

Sr := {v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Pr(κ̂), κ ∈ T }. (5)

By Γ we denote the union of all (d − 1)-dimensional element edges associated with the subdivision
T , including the boundary. Further, we decompose Γ into two disjoint subsets Γ = ∂Ω ∪ Γint, where
Γint := Γ\∂Ω.

For two (generic) elements κ+, κ− ∈ T sharing an edge e = κ+ ∩ κ−, we define the outward normal
unit vectors n+ and n− on e corresponding to ∂κ+ and ∂κ−, respectively. For functions v : Ω→ R and
q : Ω→ Rd, that may be discontinuous across Γ, we define the following quantities. For v+ := v|e⊂∂κ+ ,
v− := v|e⊂∂κ− , q+ := q|e⊂∂κ+ , and q− := q|e⊂∂κ− , we set

{v} :=
1

2
(v+ + v−), {q} :=

1

2
(q+ + q−), [[v]] := q+n+ + q−n−, [q] := q+ · n+ + q− · n−;

if e ∈ ∂κ ∩ ∂Ω, these definitions are modified to {v} := v+, {q} := q+, [[v]] := v+n, [q] := q+ · n. With
the above definitions, it is easy to verify the identity∑

κ∈T

∫
∂κ

v q · nds =

∫
Γ

[[v]] · {q}ds+

∫
Γint

{v}[q] ds, (6)

with n denoting the outward normal unit vector on ∂κ, corresponding to κ.
We define the element size hκ := (µd(κ))1/d, where µd is the d-dimensional Lebesgue measure; we

collect the element sizes into the into the element-wise constant function h : Ω → R, with h|κ = hκ,
κ ∈ T and h = {h} on Γ. Also, for two (generic) elements κ+, κ− sharing an edge e := ∂κ+∩∂κ− ⊂ Γint,
we define he := µd−1(e).

As we shall be dealing with mesh adaptive algorithms below, we assume that all sequences of meshes
considered in this work are locally quasi-uniform, i.e., there exists constant c ≥ 1, independent of h,
such that, for any pair of elements κ+ and κ− in T which share an edge,

c−1 ≤ hκ+/hκ− ≤ c. (7)

Finally we recall a series of some (standard) results used throughout this work; their proofs can be
found, e.g., in [15, 17, 7, 9, 11].

Lemma 2.1 (approximation property) Let 0 ≤ m ≤ r + 1 and T be a subdivision of Ω, Ω ⊂ Rd.
Then there exists a constant Capp, independent of hκ, such that for any u ∈ Hm(Ω) and κ ∈ T , there
exists p : C(κ)→ R, with p ◦ Fκ ∈ Pr(κ) and

|u− p|j,κ ≤ Capp h
m−j
κ |u|m,κ , 0 ≤ j ≤ m. (8)
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Lemma 2.2 (inverse estimate) There exists a constant Cinv, independent of hκ, such that

|p|j,κ ≤ Cinv h
i−j
κ |p|i,κ , 0 ≤ i ≤ j ≤ 2, (9)

for all p : C(κ)→ R, with p ◦ Fκ ∈ Pr(κ).

Lemma 2.3 (trace inequality) For every u ∈ H1(κ), with κ ∈ T , there exists a constant Ctr > 0
independent of hκ such that

||u||20,∂κ ≤ Ctr(h
−1
κ ||u||20,κ + hκ|u|21,κ). (10)

Lemma 2.4 (Poincaré-Friedrichs inequality [11]) There exists a constant Cpf, independent of hκ,
such that for any u ∈ L2(Ω), with u|κ ∈ H2(κ) for all κ ∈ T , we have

||u||20,Ω + |u|21,Ω ≤ Cpf

(
|u|22,Ω + ||h−3/2[[u]]||20,Γ + ||h−1/2[∇u]||20,Γ

)
. (11)

3 Discontinuous Galerkin method for the biharmonic problem

We consider the biharmonic equation
∆2ũ = φ in Ω, (12)

with homogeneous essential boundary conditions

ũ = 0 , ∇ũ · n = 0 on ∂Ω, (13)

where n denotes the unit outward normal vector to ∂Ω and φ ∈ L2(Ω). Then the regularity of the
problem implies that ũ ∈ H4(Ω) ∩H2

0 (Ω) [26].
Upon defining the lifting operator L : S := Sr +H2

0 (Ω)→ Sr by∫
Ω

L(ν)ψ dx =

∫
Γ

(
[[ν]] · {∇ψ} − {ψ}[∇ν]

)
ds ∀ψ ∈ Sr, (14)

the (symmetric) interior penalty discontinuous Galerkin (dG) method for (12), (13) is given by:

find ũh ∈ Sr such that B(ũh, vh) = l(vh) ∀vh ∈ Sr, (15)

where the bilinear form B : S × S → R and the linear form l : S → R are given by

B(w, v) :=

∫
Ω

(
∆hw∆hv + L(w)∆hv + ∆hwL(v)

)
dx+Bp(w, v) (16)

with

Bp(w, v) :=

∫
Γ

(
σ[[w]] · [[v]] + ξ[∇w][∇v]

)
ds,

and

l(v) :=

∫
Ω

φv dx, (17)

respectively, for w, v ∈ S. The piecewise constant discontinuity penalization parameters σ, ξ : Γ → R
are given by

σ|e = σ0(h|e)−3, ξ|e = ξ0(h|e)−1, (18)

respectively, where σ0 > 0 and ξ0 > 0. To guarantee the stability of the IPDG method defined in (15),
σ0 and ξ0 must be selected sufficiently large.

Note that this formulation is inconsistent for trial and test functions belonging to the solution space
S. However, when w, v ∈ Sr, in view of (14), (16) gives

B(w, v) =

∫
Ω

∆hw∆hv dx+

∫
Γ

(
{∇∆w} · [[v]] + {∇∆v} · [[w]]

− {∆w}[∇v]− {∆v}[∇w] + σ[[w]] · [[v]] + ξ[∇w][∇v]
)

ds;

(19)
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therefore, (15) coincides with the symmetric version interior penalty method presented in [37]. For the
bilinear form B(·, ·) in (16) we have the continuity and coercivity with respect to the energy norm on S
defined by

|||w||| = (||∆hw||2Ω + ||
√
σ[[w]]||2Γ + ||

√
ξ[∇w]||2Γ)

1
2 . (20)

Lemma 3.1 ([23]) For sufficiently large σ0 > 0 and ξ0 > 0 there exist positive constants Ccont and
Ccoer, depending only on the mesh parameters such that

|B(u, v)| ≤ Ccont|||u||| |||v||| ∀u, v ∈ S and (21)

B(u, u) ≥ Ccoer|||u|||2 ∀u ∈ S . (22)

An a posteriori bound for the energy norm error of the dG method (15) for (12) – (13) has been
considered in [24]. Now, we shall present an a posteriori bound for the L2-norm error (cf. [35] for a
corresponding result for the second order problem).

Theorem 3.2 (L2-a posteriori bounds for the elliptic problem) Let ũ ∈ H4(Ω) ∩H2
0 (Ω) be the

solution of (12)–(13), ũh ∈ Sr be dG approximation (15) associated with the mesh T . Then, there exists
a positive constant C(3.2), independent of T , h, ũ and ũh, such that

‖ũ− ũh‖ ≤ E (T , ũh, φ) , (23)

where

E (T , ũh, φ) := C(3.2)

(
‖h4−λ/2(φ−∆2

hũh)‖2 + ‖h(7−λ)/2[∇∆ũh]‖2Γint
+ ‖h(5−λ)/2[[∆ũh]]‖2Γint

+
∑
e∈Γ

(
h3−λ
e

(
1 + ξ2

0

)
‖[∇ũh]‖2

+ h1−λ
e

(
1 + σ2

0

)
‖[[ũh]]‖2

) (24)

and λ := 2 (2−min{2, r − 1}).

Proof The dual problem
∆2z = ũ− ũh =: ẽ in Ω, (25)

with homogeneous essential boundary conditions z = ∇ũ · n = 0 on ∂Ω clearly satisfies ẽ ∈ L2(Ω) and,
therefore, the following regularity estimate holds

‖z‖4,Ω ≤ Creg‖ẽ‖. (26)

Using (25), integrating by parts twice, applying (6) and (14) as well as the regularity of the dual solution,
z ∈ H4(Ω), we have

‖ẽ‖2 =
∑
κ∈T

∫
κ

∆2z ẽdx =

∫
Ω

∆hz∆hẽdx−
∫

Γ

[∇ẽ]{∆z}ds+

∫
Γ

[[ẽ]] · {∇∆z}ds. (27)

By using the fact that ũ is a weak solution and integrating the term involving ∆hz∆hũh by parts, we
arrive at,

‖ẽ‖2 = B(ũ, z)−
∫

Ω

∆hz∆hũhdx+

∫
Γ

[∇ũh]{∆z}ds−
∫

Γ

[[ũh]] · {∇∆z}ds

= l(z)−
∫

Ω

z∆2ũhdx+

∫
Γint

{z}[∇∆hũh] ds−
∫

Γint

{∇z} · [[∆hũh]] ds

+

∫
Γ

[∇ũh]{∆z}ds−
∫

Γ

[[ũh]] · {∇∆z}ds.

(28)
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Using the standard orthogonal L2-projection, Π : S → Sr, of z , we can derive the following identity by
integrating by parts and using (6) and (14) as follows,

0 = l(−Πz)−B(ũh,−Πz)

=
∑
κ∈T

∫
κ

(
(φ−∆2ũh)(−Πz)− L(ũh)∆h(−Πz)

)
dx+

∫
Γint

{−Πz}[∇∆hũh] ds

−
∫

Γint

{∇(−Πz)} · [[∆hũh]] ds−
∫

Γ

(
σ[[ũh]] · [[−Πz]] + ξ[∇ũh][∇(−Πz)]

)
ds.

(29)

Using (14) in (29) and combining (28) and (29), we get

‖ẽ‖2 =‖ẽ‖2 + l(−Πz)−B(ũh,−Πz)

=

∫
Ω

(φ−∆2
hũh)(z −Πz)dx+

∫
Γint

(
{z −Πz}[∇∆ũh]ds− [[∆ũh]] · {∇(z −Πz)}

)
ds

−
∫

Γ

[[ũh]] ·
(
{∇∆(z −Πz)}+ σ0h

−3[[z −Πz]]
)

ds

+

∫
Γ

[∇(ũh)]
(
{∆(z −Πz)}+ ξ0h

−1[∇(z −Πz)]
)

ds.

(30)

The assertion then follows by applying Young’s inequality, the trace inequality (10) where appropriate,
the approximation property (8) and the regularity of the dual problem on each of the terms on the right
hand side of (30). 2

Remark 3.3 If a smooth C1 subspace of the finite element space exists, such as Argyris elements in two
dimensions, or corresponding constructions in three dimensions, it is possible to establish an a posteriori
L2 bound without dependence on penalty parameters; indeed, these terms would vanish from (30) if the
projection, Π, could be defined onto the smooth subspace of Sr.

Remark 3.4 It is interesting to note that the a posteriori error bound of (23) reflects the suboptimal
L2-norm error convergence of the dG method when quadratic polynomials are applied. Similar behaviour
is observed theoretically and numerically in [23] and in [37] in the context of the a priori error analysis
of the same method.

4 DG method for the parabolic problem

Throughout the remaining of this work, we shall denote by u the weak solution of the problem (1)–(3)
in variational form: find u ∈ H1(0, T ;H4(Ω) ∩H2

0 (Ω)) such that

〈ut, φ〉+B(u, φ) = 〈f, φ〉 ∀φ ∈ H2
0 (Ω),

u = u0 ∈ L2(Ω) in Ω× {0}.
(31)

We consider a subdivision of the time interval (0, T ] to be the family of intervals {(tn−1, tn] ; n =
1, . . . , N , with t0 = 0, tn−1 ≤ tn and tN = T} , with local time-step λn := tn − tn−1. Associated
with this time-subdivision, let Tn, n = 0, . . . , N , be a sequence of meshes which are assumed to be
compatible, in the sense that for any two consecutive meshes Tn−1 and Tn, Tn can be obtained from
Tn−1 by locally coarsening some of its elements and then locally refining some (possibly other) elements.
The finite element space corresponding to Tn will be denoted by Sr,n and the respective dG bilinear
form by Bn(·, ·). The backward Euler-dG method for approximating (31) is then given by: for each
n = 1, . . . , N , find

Un ∈ Sr,n such that 〈U
n − Un−1

λn
, V 〉+Bn(Un, V ) = 〈f̃n, V 〉 ∀V ∈ Sr,n, (32)

where f̃0(·) := f(·, 0) and f̃n(·) for n = 1, . . . , N is a piecewise polynomial of degree p in time L2-
projection in time of the source function f . In practice, it suffices to take p = 0 to achieve a first-
order-in-time convergent method. We also set U0 := Π0u0, with Π0 : L2(Ω) → Sr,0 is the orthogonal
L2-projection operator onto the finite element space Sr,0.
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5 A posteriori bounds for the parabolic problem

We shall derive a posteriori error bounds for the backward Euler-dG method (32) measured in L∞(L2)-
and L2(L2)-norms. To this end, we shall employ an energy argument (with carefully defined test
functions) in conjunction with the elliptic reconstruction technique [32, 29, 25].

We begin by extending the sequence {Un}n=1,...,N of numerical solutions into a continuous piecewise
linear function of time

U(0) = Π0u0 and U(t) :=
t− tn−1

λn
Un +

tn − t
λn

Un−1 (33)

for t ∈ (tn−1, tn] and n = 1, . . . , N . Further, the discrete elliptic operator An : Sr,n → Sr,n is defined by

for φ ∈ Sr,n, 〈Anφ, χ〉 = Bn(φ, χ) ∀χ ∈ Sr,n. (34)

We now give definitions of the estimators involved in the estimation of the parabolic part of the
error. Estimators at time step n are denoted by ∞, n subscript and 2, n subscript will be used for the
cases of L∞(L2)- and L2(L2)-bounds presented below, respectively.

Definition 5.1 (estimators for the parabolic error) We define the coarsening or mesh-change es-
timators by

γ∞,n :=
1

λn
‖(I −Πn)Un−1‖2, γ2,n := ‖(I −Πn)Un−1‖2

+

n−1∑
i=1

‖(Πi −Πi−1)U i−1‖2
, (35)

the time-error evolution estimators by

η∞,n := ‖gn − gn−1‖2λn, η2,n := ‖gn − gn−1‖2λ2
n +

n−1∑
i=1

λ2
i ‖gi − gi−1‖2, (36)

gn := AnUn −Πnf̃n + f̃n; the data approximation error in time estimators by

β∞,n :=

∫ tn

tn−1

‖f̃n − f‖2dt, β2,n := λn

∫ tn

tn−1

‖f̃n − f‖2dt, (37)

and an additional space estimator given by

η̃∞,n := E
(
T̂n, Un − Un−1, gn − gn−1

)2

, (38)

where T̂n := Tn ∩ Tn−1 finest common coarsening of Tn and Tn−1 for each n = 1, . . . , N .

Using the notation above, we are ready to state the main result.

Theorem 5.2 (a posteriori bound) Let u ∈ L2(0, T ;H4(Ω) ∩ H2
0 (Ω)) be the solution of (31), U

be the approximation obtained by the dG method (32) and defined by (33). Then there exist positive
constants C∞ and C2, independent of Tn, h, u and U , for any n = 1, . . . , N such that

‖e‖L∞(0,T ;L2(Ω)) ≤ C∞

(
‖e(0)‖ +

(
N∑
n=1

(γ∞,n + η∞,n + β∞,n)λn

) 1
2

+

(
N∑
n=1

η̃∞,n

) 1
2

+ max
0≤n≤N

{E (Tn, Un, gn)}

)
(39)

‖e‖L2(0,T ;L2(Ω)) ≤ C2

(
‖e(0)‖ +

(
N∑
n=1

(γ2,n + η2,n + β2,n) λn

) 1
2

+

(
N∑
n=1

E (Tn, Un, gn)
2
λn

) 1
2
)
. (40)
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The proof of this theorem will be the content of the remaining of this section, split into a number of
intermediate results.

We begin by defining the elliptic reconstruction ωn ∈ H2
0 (Ω), of Un to be the solution of the elliptic

problem
Bn(ωn, v) = 〈gn, v〉 ∀v ∈ H2

0 (Ω) (41)

where, as above, gn := AnUn − Πnf̃n + f̃n. We note that under the assumptions on the domain
Ω, we also have ωn ∈ H4(Ω). We also extend the elliptic reconstruction into a continuous piecewise
linear-in-time function

ω(t) :=
t− tn−1

λn
ωn +

tn − t
λn

ωn−1 (42)

for t ∈ (tn−1, tn] and n = 1, . . . , N . Finally, we introduce the error decomposition

e := U − u = ρ− ε, where ε := ω − U, and ρ := ω − u, (43)

where ρ and ε are understood as the parabolic and elliptic error, respectively, and we set εn := ε(tn).

Lemma 5.3 (Error identity) For all t ∈ (tn−1, tn], n = 1, 2, . . . , N , we have

〈ρt, v〉+Bn(ρ, v) = 〈εt, v〉+ 〈(I −Πn)Ut, v〉+
t− tn

λn
〈gn − gn−1, v〉+ 〈f̃n − f, v〉, (44)

for any v ∈ H2
0 (Ω), with I denoting the identity mapping.

Proof Firstly, from (41) and (34) we have

Bn(ωn, v)− 〈f̃n, v〉 = Bn(Un,Πnv)− 〈Πnf̃n,Πnv〉. (45)

Also, using the method (32) and the definition of the L2-projection we deduce

〈Ut, v〉 = 〈(I −Πn)Ut, v〉+ 〈Ut,Πnv〉 = 〈(I −Πn)Ut, v〉 − (Bn(Un,Π
nv)− 〈Πnf̃n,Πnv〉). (46)

For the elliptic reconstruction error we also have,

Bn(ω − ωn, v) =
t− tn

λn
〈gn − gn−1, v〉. (47)

Lastly, for the terms on the left hand side of (44), we compute

〈et, v〉+Bn(ρ, v) = 〈Ut, v〉+Bn(ω, v)− (〈ut, v〉+Bn(u, v)) = 〈Ut, v〉+Bn(ω, v)− 〈f, v〉. (48)

Using (45), (45), and (47) in (48), along with the identity e = ρ− ε completes the proof.
2

The a posteriori bounds (39) and (40) will be derived by selecting special test functions v in the
energy identity (44) above, along with estimation of the terms on the right-hand side of (44). More
specifically, we consider the following two test functions, ṽ := ρ for the L∞(L2) case, and

v̄(t, ·) :=

∫ T

t

ρ(s, ·)ds, t ∈ [0, T ], (49)

for the L2(L2) case; this choice is motivated by Baker [3], who used a similar construction for the proof
of a priori bounds for the second order wave problem. The latter test function has most notably the
following properties:

v̄ ∈ H4(Ω) ∩H2
0 (Ω) as ρ ∈ H4(Ω) ∩H2

0 (Ω) a.e. in [0, T ],

v̄(T, ·) = 0 = ∆v̄(T, ·), ∇v̄(T, ·) = 0, and

v̄t(t, ·) = −ρ(t, ·), a.e. in [0, T ].

(50)

8



Next, we consider two auxiliary functions which are needed in the consequent proofs. More specifi-
cally, on each interval t ∈ (tn−1, tn], for n = 1, . . . , N , we define

G̃(t) := (I −Πn)U + ψn, with ψn := −(I −Πn)Un−1 + ψn−1, ψ0 := 0, (51)

and

G(t) :=
λn
2

(
t− tn

λn

)2

(gn − gn−1) + θn, with θn := −λn
2

(gn − gn−1) + θn−1, θ0 = 0. (52)

We note that, for each n = 1, . . . , N , we then have G̃(tn) = ψn, G(tn) = θn,

G̃t(t) := (I −Πn)Ut, and Gt(t) :=
t− tn

λn

(
gn − gn−1

)
. (53)

The following estimates will be used in the proof of Theorem 5.2.

Lemma 5.4 Let τ ∈ (0, T ]. Then, we have∫ τ

0

〈G̃t, ρ〉 dt ≤
N∑
n=1

‖(Πn − I)Un−1‖ max
0≤t≤T

‖ρ‖ (54)

∫ τ

0

〈Gt, ρ〉 dt ≤
N∑
n=1

λn‖gn − gn−1‖ max
0≤t≤T

‖ρ‖ (55)∫ τ

0

〈f̃n − f, ρ〉 dt ≤
∫ τ

0

‖f̃n − f‖dt max
0≤t≤T

‖ρ‖. (56)

Proof The proofs of these estimates are immediate via Cauchy-Schwarz-in-space and Hölder-in-time
inequalities.

2

In the following three lemmata, we prove bounds for the corresponding terms to the ones in Lemma
5.4 when testing with v̄ given in (49).

Lemma 5.5 With the above notation, we have

N∑
n=1

∫ tn

tn−1

〈(I−Πn)Ut, v̄〉 dt ≤
N∑
n=1

(
λn‖(I −Πn)Un−1‖2

+λn‖
n−1∑
i=1

(Πi −Πi−1)U i−1‖2
) 1

2
(∫ tn

tn−1

‖ρ‖2dt
) 1

2

.

(57)

Proof Recalling the definition of G̃, an integration by parts with respect to time gives

N∑
n=1

∫ tn

tn−1

〈(I−Πn)Ut, v̄〉 dt =

N∑
n=1

[
〈G̃(t), v̄(t)〉

]tn
tn−1

+

N∑
n=1

∫ tn

tn−1

〈G̃,−v̄t〉 dt =

N∑
n=1

∫ tn

tn−1

〈G̃,−v̄t〉 dt. (58)

We recall the properties of v̄ in (50) and we estimate theright-hand term further:

N∑
n=1

∫ tn

tn−1

〈G̃,−v̄t〉 dt ≤
N∑
n=1

(∫ tn

tn−1

‖G̃‖2 dt
) 1

2
(∫ tn

tn−1

‖ρ‖2 dt
) 1

2

. (59)

The assertion then follows by estimation of the time integral of ‖G̃‖2:∫ tn

tn−1

‖G̃‖2dt ≤ λn‖(I −Πn)Un−1‖2 + λn‖ψn−1‖2, (60)

and noting that ψn−1 =
∑n−1
i=1 (Πi −Πi−1)U i−1.

2
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Lemma 5.6 With the above notation, we have

N∑
n=1

∫ tn

tn−1

t− tn

λn
〈gn − gn−1, v̄〉 dt ≤

N∑
n=1

(
λ3
n‖gn − gn−1‖2+λn‖

n−1∑
i=1

λi
2

(gi − gi−1)‖2
) 1

2(∫ tn

tn−1

‖ρ‖2dt
) 1

2

.

(61)

Proof Recalling the definition of G, an integration by parts with respect to time gives

N∑
n=1

∫ tn

tn−1

t− tn

λn
〈gn − gn−1, v̄〉dt =

N∑
n=1

∫ tn

tn−1

〈G,−v̄t〉 dt. (62)

We recall the properties of v̄ in (50) and estimate the right-hand side further:

N∑
n=1

∫ tn

tn−1

〈G,−v̄t〉 dt ≤
N∑
n=1

(∫ tn

tn−1

‖G‖2 dt
) 1

2(∫ tn

tn−1

‖ρ‖2 dt
) 1

2

. (63)

The assertion then follows by estimation of the integral of ‖G‖2:∫ tn

tn−1

‖G‖2dt ≤ λ3
n‖gn − gn−1‖2 + λn‖θn−1‖2 (64)

and noting that θn−1 =
∑n−1
i=1 −

λi
2

(gi − gi−1).
2

Lemma 5.7 With the above notation, we have

N∑
n=1

∫ tn

tn−1

〈f̃n − f, v̄〉 dt ≤ Capp

N∑
n=1

(∫ tn

tn−1

λ2
n‖f̃n − f‖2dt

)1/2(∫ tn

tn−1

‖ρ‖2dt
)1/2

. (65)

Proof As f̃n is the L2-projection of f in time, we have

N∑
n=1

∫ tn

tn−1

〈f̃n − f, v̄〉dt =

N∑
n=1

∫ tn

tn−1

〈f̃n − f, v̄ − ζn〉dt, (66)

for the lowest order time approximation ζn(·) := λ−1
n

∫ tn
tn−1 v̄(t, ·)dt of v̄. With the approximation

property of ζn in time, we deduce∫ tn

tn−1

‖v̄ − ζn‖2dt ≤ C2
appλ

2
n

∫ tn

tn−1

‖v̄t‖2dt, (67)

and recalling that v̄t = −ρ, the Cauchy-Schwarz inequality implies

N∑
n=1

∫ tn

tn−1

〈f̃ − f, v̄〉dt ≤ Capp

N∑
n=1

(∫ tn

tn−1

λ2
n‖f̃n − f‖2dt

)1/2(∫ tn

tn−1

‖ρ‖2dt
)1/2

. (68)

2

To complete a posteriori error bounds in Theorem 5.2, we also need the following two lemmata in
which the elliptic error terms ε and εt are estimated by fully computable residuals.

Lemma 5.8 Let ε be as in (43). Then, we have∫ T

0

‖ε‖2 dt ≤ 2λN
3
E(TN , UN , gN ) +

N−1∑
n=1

4λn
3
E (Tn, Un, gn)

2
(69)
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Proof Noting that ((t− tn−1)/λn)2 ≤ 1
3 and ((tn − t)λn)2 ≤ 1

3 , we have

∫ T

0

‖ε‖2dt ≤
N∑
n=1

2λn
3

(
‖εn‖2 + ‖εn−1‖2

)
. (70)

The assertion then follows by Theorem 3.2.
2

Lemma 5.9 Let ε be as in (43) and τ ∈ [0, T ]; then, we have∫ τ

0

〈εt, ρ〉dt ≤
N∑
n=1

E(T̂n, Un − Un−1, gn − gn−1) max
0≤t≤T

‖ρ‖, (71)

where T̂n := Tn ∩ Tn−1 denotes the finest common coarsening of Tn and Tn−1, n = 1, . . . , N .

Proof We have εt(t) = (εn − εn−1)/λn, for t ∈ (tn−1, tn] and n = 1, . . . , N . Denoting τ := tr+1/2 and
r := max{k : tk ≤ τ, k = 1, . . . , N}, we then have

∫ τ

0

〈εt, ρ〉dt =

r+1/2∑
n=1

∫ tn

tn−1

1

λn
〈εn − εn−1, ρ〉dt ≤ max

0≤t≤T
‖ρ‖

r+1/2∑
n=1

‖εn − εn−1‖. (72)

We now observe that the finite element function z̃ in the proof of Theorem 3.2 can be selected from
a subspace of Sr: in particular, we can select the finite element subspace corresponding to the finest
common coarsening mesh T̂n, for n = 1, . . . , N . Then, following completely analogous argument as in
the proof of of Theorem 3.2, we can arrive to the bound

‖εn − εn−1‖ ≤ E
(
T̂n, Un − Un−1, gn − gn−1

)
,

which already yields the result.
2

Remark 5.10 Note that the following simpler alternative bound for the term in Lemma 5.9 is also
possible, ∫ τ

0

〈εt, ρ〉dt ≤
N∑
n=0

E (Tn, Un, gn) max
0≤t≤T

‖ρ‖. (73)

This bound shifts the emphases from the finest common coarsening mesh, T̂n, in Lemma 5.9 to the
elliptic estimators acting on meshes at each time step only which can be of practical importance when
implementing adaptive algorithms based on the estimators.

Proof of Theorem 5.2 To conclude the proof, we estimate the left-hand side of (44) in each case of
the test functions: v̄ to derive L2(L2)-norm a posteriori bound and ρ for the L∞(L2)-norm bound. First
we deal with the L2(L2) case; we start by integrating (44) by parts in time,∫ T

0

〈et, v̄〉+B(ρ, v̄)dt =

∫ T

0

〈e,−v̄t〉dt+ [〈e, v̄〉]T0 −
∫ T

0

B(v̄t, v̄)dt

=

∫ T

0

〈ρ, ρ〉dt−
∫ T

0

〈ε, ρ〉dt− 〈e(0), v̄(0)〉 −
∫ T

0

1

2

d

dt
B(v̄, v̄)dt

=

∫ T

0

‖ρ‖2dt−
∫ T

0

〈ε, ρ〉dt− 〈e(0), v̄(0)〉+
1

2
B(v̄(0), v̄(0)).

(74)

We also have
〈e(0), v̄(0)〉 ≤ ‖e(0)‖‖v̄(0)‖ ≤ ‖e(0)‖CpfB(v̄(0), v̄(0)). (75)
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Using (74) and (75) in (44) after integration over each interval (tn−1, tn] and summation with respect
to n, we get,

‖ρ‖2L2(0,T,L2(Ω)) ≤ ‖e(0)‖2+

N∑
n=1

∫ tn

tn−1

(
〈ε, ρ〉+〈(I−Πn)Ut, v̄〉+

t− tn

λn
〈gn−gn−1, v̄〉+〈f̃n−f, v̄〉

)
dt. (76)

The bound (40) now follows upon using the triangle inequality

‖e‖L2(0,T,L2(Ω)) ≤ ‖ρ‖L2(0,T,L2(Ω)) + ‖ε‖L2(0,T,L2(Ω)),

Young’s inequality and Lemmata 5.5, 5.6, 5.7 and 5.8.
For the L∞(L2)-norm case, upon testing with v = ρ, we deduce for the left-hand side of (44) by

integrating by parts to some τ ∈ [0, T ],∫ τ

0

〈et, ρ〉+B(ρ, ρ)dt = ‖ρ(τ)‖2 − ‖ρ(0)‖2 −
∫ τ

0

〈εt, ρ〉dt+

∫ τ

0

B(ρ, ρ)dt. (77)

Choosing τ such that ‖ρ(τ)‖ = max0≤t≤T ‖ρ‖, using the triangle inequality, ‖ρ(0)‖ ≤ ‖e(0)‖ + ‖ε(0)‖,
and (77) in (44), we get,

‖ρ‖2L∞(0,T,L2(Ω))+

∫ τ

0

B(ρ, ρ)dt ≤ ‖e(0)‖2+‖ε(0)‖2+

∫ τ

0

(
〈εt, ρ〉+〈G̃t, ρ〉+〈Gt, ρ〉+〈f̃n−f, ρ〉

)
dt (78)

where G and G̃ are given by (52) and (51). The bound (39) follows again using triangle inequality

‖e‖L∞(0,T,L2(Ω)) ≤ ‖ρ‖L∞(0,T,L2(Ω)) + ‖ε‖L∞(0,T,L2(Ω)), (79)

Lemmata 5.4 and 5.9 as well as max0≤t≤T ‖ε‖ ≤ max0≤t≤T E (Tn, Un, gn).
2

We note that a posteriori bounds in the L2(H2)-norm of the error have been already considered
in [39], along with their application within an adaptive algorithm. The L2(H2)-norm theoretical and
numerical results appear to be of the expected order of convergence; they are omitted here for brevity.

6 Numerical Experiments

For t ∈ [0, 1] and Ω := (0, 1)2, we consider two benchmark problems for which u0 and f are chosen so
that the exact solution u of problem (31) coincides with one of the following solutions:

u1(x, y, t) = sin(πt) 102 sin2(πx) sin2(πy)e−10(x2+y2), (80)

u2(x, y, t) = sin(20πt) sin2(πx) sin2(πy)e−10(x2+y2). (81)

Solutions u1 and u2 are both smooth but u2 oscillates much faster where as u1 exhibits greater space
dependency of the error. They are defined so as to emphasize different aspects of the estimators at
hand. Similar examples have been studied elsewhere, for example in [39] in the context of L2(H2)-norm
a posteriori estimators; see also [29, 30, 25] for similar examples in the context of second order problems.

For the numerical experiments, the library FEniCS (http://fenicsproject.org/) was used. For
each of the examples, we compute the solution of (32) using quadratic simplicial finite element spaces
and with interior penalty parameters σ0 = ξ0 = 20 in (18), which is sufficient to guarantee stability of
the numerical scheme. The interior penalty parameters have a known effect on the effectivity indices,
cf., [39, 28].

We study the asymptotic behavior of the indicators by setting all constants appearing in Theorem
5.2 equal to one. We monitor the evolution of the values and the experimental order of convergence
of the estimators and the error as well as of the effectivity index over time on a sequence of uniformly
refined meshes with hκ,i := 2−i/2−1, i = 1, . . . , 5, κ ∈ T with fixed time steps λ ≈ maxκ h

3
κ and

λ ≈ maxκ h
2
κ. To this end, we define experimental order of convergence (EOC) of a given sequence of

positive quantities a(i) defined on a sequence of meshes of size h(i) by

EOC(a, i) =
log(a(i+ 1)/a(i))

log(h(i+ 1)/h(i))
, (82)
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the accumulated coarsening or mesh change estimators by

Ecoarsen,∞,m :=
( m∑
n=1

γ∞,nλn
) 1

2

and Ecoarsen,2,m :=
( m∑
n=1

γ2,nλn

) 1
2

, (83)

accumulated time error evolution estimators by

Etime,∞,m :=
( m∑
n=1

(η∞,n + β∞,n)λn +

m∑
n=1

η̃∞,n
) 1

2

and Etime,2,m :=
( m∑
n=1

(η2,n + β2,n)λn

) 1
2

, (84)

accumulated space error estimators by

Espace,∞,m := max
0≤n≤N

{E (Tn, Un, gn)} and Espace,2,m :=
( m∑
n=1

E (Tn, Un, gn)
2
λn

) 1
2

, (85)

and the inverse effectivity index

IEIm =
‖e‖L∞(0,tm;L2(Ω))

Etime,∞,m + Espace,∞,m
or IEIm =

‖e‖L2(0,tm;L2(Ω))

Etime,2,m + Espace,2,m
, (86)

for the case L∞(L2) and L2(L2), respectively. The IEI conveys the same information as the (standard)
effectivity index and has the advantage of relating directly to the constants appearing in Theorem 5.2.

The results of numerical experiments on uniform meshes, depicted in Figures 1 - 4, indicate that the
error estimators are reliable and also efficient which can be seen from the effectivity index behaviour
and the EOC of the error and the time and space estimators for both L2(L2)- and L∞(L2)-norm a
posteriori bounds.

To further evaluate practical aspects of the derived a posteriori estimators, they are incorporated
within in two adaptive algorithms; these are outlined in pseudocode as follows

ImplicitTimeStepControl
Input: U0, f,TOLtime,min,TOLtime,TOLspace, . . .

TOLcoarse, λ0, t0, T, . . .
T0, ξrefine,SpaceAdaptivity, . . .
InitialSpaceAdaptivity

{ Initial condition interpolation and mesh refinement }
(U0, T0):=InitialSpaceAdaptivity(U0, f, T0, ξrefine).
{Initialize.}
Set: n = 1, λn = λn−1.
While (tn ≤ T )

Set: Etime := TOLtime + 1
While (Etime > TOLtime)

tn := tn−1 + λn
Set: Tt := Tn
(Un, Tn) := SpaceAdaptivity(Un−1, . . .

f,TOLspace,TOLcoarse, . . .
λn, tn, T, Tn−1, ξrefine)

compute Etime .
if (Etime > TOLtime) then
{Shorten timestep.}
λn := λn/2
Set: Tn := Tt

endif
End While
λn+1 := λn ∗ 2
n := n+ 1

End While
Output: Un

ExplicitTimeStepControl
Input: U0, f,TOLtime,min,TOLtime,TOLspace, . . .

TOLcoarse, λ0, t0, T, . . .
T0, ξrefine,SpaceAdaptivity, . . .
InitialSpaceAdaptivity

{ Initial condition interpolation and mesh refinement }
(U0, T0):=InitialSpaceAdaptivity(U0, f, T0, ξrefine).
{Initialize.}
Set: n = 1, λn = λn−1 and tn = tn−1 + λn.
While (tn ≤ T )

(Un, Tn) := SpaceAdaptivity(Un−1, . . .
f,TOLspace,TOLcoarse, . . .
λn, tn, T, Tn−1, ξrefine)

compute Etime .
if (Etime > TOLtime) then

λn+1 := λn/
√

2
elseif (Etime < TOLtime,min) then

λn+1 := λn ∗
√

2
endif
tn+1 := tn + λn
n := n+ 1

End While
Output: Un

where SpaceAdaptivity (and InitialSpaceAdaptivity) are performed using a standard Dörfler
marking strategy expressed in pseudocode as follows
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SpaceAdaptivity
Input: Un−1, f,TOLspace,TOLcoarse, τn, tn, T, Tn−1, ξrefine
Set: Tn := Tn−1.
Tn := SpaceCoarsening(Un−1,TOLcoarse, τn, Tn)
{Refinement}
compute local elliptic estimators, (LocalEstn,κ)κ∈Tn .
sum up local estimators and set Sumtotal :=

∑
κ∈Tn LocalEstn,κ, and compute Espace.

While (Espace > TOLspace)
sort (LocalEstn,κ)κ∈Tn in descending order, set Q := ∅.
Set: Sum = 0.
While ((Sum < ξrefine ∗ Sumtotal) and (κ ∈ Tn))
{Dörfler marking }

Sum := Sum + LocalEstn,κ
if (Sum < ξrefine ∗ Sumtotal)

Mark κ for refinement; Q := {κ} ∪Q.
End While
Refine all elements in Q to obtain new mesh Tn.
Solve InUn−1.
Solve (32) for Un with ΠnUn−1,Πnfn, τn and tn on Tn.
compute local elliptic estimators, (LocalEstn,κ)κ∈Tn .
sum up local estimators and set Sumtotal :=

∑
κ∈Tn LocalEstn,κ, and compute Espace.

End While
Output: Un, Tn

The refinement ratio 0 < ξrefine ≤ 1 and the tolerances TOLspace > 0,TOLspace > 0 and TOLcoarse > 0
are predefined quantities. The value of ξrefine := 0.75 was used throughout the experiments in adaptive
algorithms. Note that the coarsening tolerance, TOLcoarse, (as well as the tolerance for the alternative
space estimator in L∞ case of Remark 5.10) had to be determined experimentally for given space and
time tolerances and depending on an example.

The results of experiments with adaptive algorithms as well as a comparison between the two algo-
rithms, are detailed in Figures 6-8 where we monitor time step size, accumulated degrees of freedom and
error evolution in comparison to the uniform approach leading to the desired tolerance. The results of
these test cases imply substantial reduction in degrees of freedom by both adaptive algorithms in order
to reach the same error tolerance as compared with the uniform approach. This implies a potential
efficiency gain in solving PDE problems addressed in this work.

The estimators presented here are found to be suitable for both adaptive time stepping algorithms
due to their good separated scaling properties in time and in space. The numerical results appear to be
less sensitive to mesh change, compared to the same adaptive algorithms based on the L2(H2)-norm a
posteriori error estimators presented in [39]. For instance, terms involving (gn−gn−1) which is sensitive
to mesh change (coarsening as well as refinement) scale down sufficiently fast with the a posteriori
estimators presented in this work, resulting to robust error reduction in an adaptive algorithm.

Finally, we note that the considerably more computationally efficient ExplicitTimeStepControl
algorithm (due to absence of time step searching step) was found to reach desired error tolerances (even
though this is not guaranteed in general) in these numerical experiments.

7 Concluding remarks

Residual type a posteriori estimates of errors measured in L∞(L2)- and L2(L2)-norms for a numerical
scheme consisting of implicit Euler method in time and discontinuous Galerkin method of local poly-
nomial degrees r ≥ 2 in space for linear parabolic fourth order problems in space dimensions 2 and 3
are presented. Numerical experiments confirming the practical efficiency and reliability of the a poste-
riori estimators are also presented, along with the use of these a posteriori estimator within adaptive
algorithms. It appears that the derived a posteriori bounds and the respective adaptive algorithms can
be modified in a straightforward fashion to the original dG method of Baker [4] and to the C0-interior
penalty methods of [18, 10]. Moreover, second order operators can be included in the present analysis,
as was done in [39]. An extension of these results to nonlinear fourth order parabolic equations remains
a future challenge.
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Figure 1: Example (80) with solution u1, L2 estimators and error.
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(a) Example (80) solution with fixed time step λ ≈ h2. Inverse effectivity index is asymptotically tending towards value
0.004.
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(b) Example (80) solution with fixed time step λ ≈ h3. Inverse effectivity index is asymptotically tending towards value
0.004.
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Figure 2: Example (80) with solution u1, L∞ estimators and error.
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(a) Example (80) solution with fixed time step λ ≈ h2. Inverse effectivity index is asymptotically tending towards value
between 0.005 and 0.006.
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(b) Example (80) solution with fixed time step λ ≈ h3. Inverse effectivity index is asymptotically tending towards a value
near 0.005.
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Figure 3: Example (81) with solution u2, L2 estimators and error.
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(a) Example (81) solution with fixed time step λ ≈ h2. Inverse effectivity index is asymptotically tending towards value
0.004.
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(b) Example (81) solution with fixed time step λ ≈ h3. Inverse effectivity index is asymptotically tending towards value
0.004.
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Figure 4: Example (81) with solution u2, L∞ estimators and error.
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(a) Example (81) solution with fixed time step λ ≈ h2. Inverse effectivity index is asymptotically tending towards value
between 0.005 at the start of the interval but then drops sharply as time estimator starts to emphasize the IEI behaviour.
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(b) Example (81) solution with fixed time step λ ≈ h3. Inverse effectivity index is asymptotically tending towards a value
around 0.005. Note the improvement on the IEI behaviour as the time step is refined.
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Figure 5: Example (80) with solution u1, adaptive algorithms based on L2 estimators.
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(a) ExplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L2 error tolerance
≈ 0.26. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.
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(b) ImplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L2 error tolerance
≈ 0.26. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.

Figure 6: Example (80) with solution u1, adaptive algorithms based on L∞ estimators.
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(a) ExplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L∞ error tolerance
≈ 0.37. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.
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(b) ImplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L∞ error tolerance
≈ 0.37. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.
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Figure 7: Example (81) with solution u2, adaptive algorithms based on L2 estimators.
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(a) ExplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L2 error tolerance
≈ 0.0026. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 0.2 0.4 0.6 0.8 1

! t

Adaptive
Uniform

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 0.2 0.4 0.6 0.8 1

acc. DOFs

Adaptive
Uniform

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 0.2 0.4 0.6 0.8 1

Error

Adaptive
Uniform

(b) ImplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L2 error tolerance
≈ 0.0026. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.

Figure 8: Example (81) with solution u2, adaptive algorithms based on L∞ estimators.
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(a) ExplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L∞ error tolerance
≈ 0.0037. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.
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(b) ImplicitTimeStepControl algorithm in comparison to the uniform approach converging to the L∞ error tolerance
≈ 0.0037. Depicted from the left are: timestep length, accumulated degrees of freedom and error evolution over time.
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