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Abstract 
Background. Information on the pathophysiological differences between heart failure (HF) with 
reduced (HFrEF) versus HF with preserved (HFpEF) ejection fraction is needed 
Aims. Establish biological pathways specifically related to HFrEF and HFpEF.  
Method. We performed a network analysis to identify unique biomarker correlations in HFrEF 
and HFpEF using 92 biomarkers from different pathophysiological domains (e.g. inflammation, 
immune response, metabolic response) in a cohort of 1544 HF patients. Data were independently 
validated in 804 patients with HF. Networks were enriched with existing knowledge on protein-
protein interactions and translated into biological pathways uniquely related to HFrEF, HFmrEF 
and HFpEF.   
Results. In the index cohort (mean age 74 years, 34% female), 718(47%) patients had HFrEF 
(left ventricular ejection fraction[LVEF]<40%) and 431(27%) patients had HFpEF(LVEF≥50%). 
8(12%) correlations were unique for HFrEF and 6(9%) unique to HFpEF. Central proteins in 
HFrEF were NT-proBNP, growth-differentiation factor-15(GDF15), interleukin-1 receptor type 
1(IL1RL1) and activating transcription factor(ATF2), while central proteins in HFpEF were 
integrin subunit beta-2(ITGB2) and Catenin beta-1(CTNNB1). Biological pathways in HFrEF 
were related to DNA binding transcription factor activity, cellular protein metabolism and 
regulation of nitric oxide biosynthesis. Unique pathways in patient with HFpEF were related to 
cytokine response, extracellular matrix organization and inflammation. Biological pathways of 
patients with HFmrEF were in between HFrEF and HFpEF.  
Conclusion. Network analysis showed that biomarker profiles specific for HFrEF are related to 
cellular proliferation and metabolism, while biomarker profiles specific for HFpEF are related to 
inflammation and extracellular matrix reorganization.  
 
Clinical Trial: EudraCT 2010-020808-29 
 
Keywords: HFpEF; HFrEF: network analysis; pathophysiology; biomarkers 
 
Condensed abstract: Pathophysiological differences between patients with heart failure (HF) 
with reduced (HFrEF) and preserved (HFpEF) are unclear. The present study used network 
analyses based on 92 biomarkers to identify unique biological mechanisms in patients with 
HFrEF and HFpEF. Our results suggest that biological processes in HFrEF are associated with 
DNA binding transcription factor activity, cellular protein metabolism and regulation of nitric 
oxide, while biological processes in HFpEF are associated with cytokine response, extracellular 
matrix organization and inflammation. The results of this study stress the pathophysiological 
heterogeneity between HFrEF and HFpEF and suggest a personalized treatment approach for 
these patients.  
 
Abbreviations 
BIOSTAT-CHF: A systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure 
GDF15: growth differentiation factor 15 
HF: heart failure 
HFmrEF: heart failure with a mid-range ejection fraction 
HFpEF: heart failure with a preserved ejection fraction 
HFrEF: heart failure with a reduced ejection fraction 
IL1RL1: Interleukin-1 receptor-like type 1 
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ITGB2: integrin subunit beta 2 
LVEF: left ventricular ejection fraction 
NYHA: New York heart association 
NT-proBNP: N-terminal B-type natriuretic peptide 
PLAUR: plasminogen urokinase receptor 
MRA: mineralocorticoid receptor antagonist 
STAT1: Signal transducer and activator of transcription 1 
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Introduction 

Heart failure (HF) with a reduced (HFrEF) and preserved (HFpEF) ejection fraction were 

originally considered as two extremes of the same disease. However, where ACE-inhibitors, 

angiotensin receptor blockers and mineralocorticoid receptor antagonists are associated with 

improved clinical outcome in patients with HFrEF (1–3), no such benefit was seen in patients 

with HFpEF (4–6). It is currently considered that the underlying pathophysiology is different 

between HFrEF and HFpEF (7–11).  

The current paradigm on the underlying pathophysiology of HFpEF suggests that a pro-

inflammatory state is responsible for stiffening of the heart muscle and increased filling 

pressures (7). Indeed, Paulus et al. suggested that the plethora of comorbidities that usually affect 

patients with HFpEF causes low-level inflammation, which affects the coronary vascular 

endothelium and reduces nitric oxide bioavailability. His hypothesis suggests that this directly 

affects the cardiomyocyte and causes cellular hypertrophy as well as cardiac stiffening (7, 12). 

Network analysis is a tool to gain novel insights in disease pathways and 

pathophysiology by studying protein-protein (biomarker-biomarker) correlations (9, 10, 13). By 

enriching experimentally found protein biomarker networks with knowledge based protein-

protein interactions, empirically found correlations can be placed in the context of known 

pathways (14, 15).  We therefore performed a network analysis enriched by knowledge-based 

interactions to uncover biological mechanisms that are unique for patients with HFrEF and 

HFpEF.  

Methods 

Patient population 
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We studied patients from the BIOSTAT-CHF project, which is described elsewhere (16–

20). In brief, BIOSTAT-CHF includes two cohorts of patients with HF included in Scotland and 

Europe. The aim of the BIOSTAT-CHF study was to characterize biological pathways related to 

response/no-response to guideline-recommended pharmacological therapy for HF. Therefore, 

patients had to be sub-optimally treated at inclusion. We used the Scottish cohort of the 

BIOSTAT-CHF study as our primary study cohort and the European cohort of the BIOSTAT-

CHF study as our validation cohort because this was a less selected population. The Scottish 

cohort consisted of 1738 patients from 6 centers in Scotland, UK. Patients were required to be 

≥18 years of age, diagnosed with HF and were previously admitted with HF requiring diuretic 

treatment. Biomarkers were measured in 1707 of the total of 1738 patients. From these patients, 

echocardiography was available in 1544 patients. We validated our findings in the European 

cohort of the BIOSTAT-CHF study, which originally consisted of 2516 patients with HF from 

69 centers in 11 European countries. Inclusion criteria for the European cohort include: patients 

with >18 years of age, having symptoms of new-onset or worsening HF, confirmed either by a 

LVEF of ≤40% or BNP and/or NT-proBNP plasma levels >400 ng/L or >2,000 ng/L, 

respectively. Because of this difference in inclusion criteria for patients with LVEF >40%, we 

excluded all patients with HFrEF and an NT-proBNP level of <2,000 ng/L or patients with 

HFrEF and no available NT-proBNP levels (Online Figure 1). In total, the European cohort 

consisted of 808 patients with HF with biomarkers available in all patients. All patients needed to 

be treated with loop diuretics but had not been previously treated with an ACEi/ARBs and/or 

beta-blocker or they were receiving ≤50% of the target doses of these drugs at the time of 

inclusion and anticipated initiation or up-titration of ACEi/ARBs and beta-blockers. 



7 

Patients in both cohorts had to be sub-optimally treated with ACEi/ARBs and/or beta-

blockers, and anticipated initiation or uptitration of ACEi/ARBs and beta-blockers to ESC 

recommended target doses (21). Furthermore, all patients were enrolled with worsening signs 

and symptoms of HF as both in-patients or from out-patient clinics (16). To adequately 

characterize biomarker profiles in patients with HFrEF and HFpEF, we investigated biomarker 

profiles unique to patients with HFrEF and HFpEF, which showed no overlap with HFmrEF. 

HFrEF was defined as having an LVEF of <40%, HFmrEF was defined as having an LVEF of 

40-49% and HFpEF was defined as having an LVEF of ≥50%.  

Clinical and biomarker measurements 

Medical history, current use of medication and a physical examination were all recorded 

at baseline. Standard echocardiography was strongly recommended, but not mandatory for study 

inclusion. In the combined cohorts, more than 80% of echocardiography were performed within 

1 year before inclusion, with more than 70% of echocardiographies performed within 3 months. 

The timing of echo was similar across HFrEF, and HFpEF in both the Scottish and European 

cohort.  

A large biomarker panel with 92 biomarkers from a wide range of pathophysiological 

domains were measured in the Scottish and European cohorts. An overview of biomarkers and 

their pathophysiological function are presented in Online Table 1. Assay characteristics are 

presented in Online Table 2. 92 proteins were measured using a high-throughput technique 

using the Olink Proseek® Multiplex CVD III96X96 kit, which measures cardiovascular-related 

proteins simultaneously in 1μl plasma samples (22). The kit uses a proximity extension assay 

(PEA) technology, where 92 oligonucleotide-labeled antibody probe pairs are allowed to bind to 

their respective target present in the sample. PEA is a homogeneous assay that uses pairs of 
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antibodies equipped with DNA reporter molecules. When binding to their correct targets, they 

give rise to new DNA amplicons each ID-barcoding their respective antigens.. The amplicons are 

subsequently quantified using a Fluidigm BioMark™ HD real-time PCR platform. Four internal 

controls and two external controls (in triplicate) are included in the assay. All information 

regarding the study population was blind to the laboratory operators. 

Statistical analysis 

A test for trend was performed to investigate trends in baseline characteristics across 

HFrEF, HFmrEF and HFpEF. An in-depth description of the methods used for network analysis 

can be found in the Online Appendix. In brief, we performed network analysis using unique 

pairwise correlations between proteins (biomarkers) within HFrEF, HFmrEF and HFpEF. We 

retained only those biomarkers which passed the p-value cut-off point following multiple 

comparisons correction. The p-value cutoff point was based on the number of principal 

components following principal component analyses (PCA) which determined >95% of the 

variance among the biomarkers in the separate cohorts (10). A total of 51 PCs, of which the 

eigenvalues cumulatively explained >95% of the variation observed in the discovery data set 

were found. To correct for multiple comparison for inter-biomarker correlations, 0.05/

([𝑃𝑃𝑃𝑃 𝑋𝑋 𝑃𝑃𝑃𝑃 − 1]/2) was used for the adjusted P cutoff value, where PC is the number of 

principal components found. This procedure was repeated for the independent European cohort. 

Here, 50 PCs explained >95% of the variance in the biomarkers. Following, only pairwise 

correlations were retained that occurred in both the discovery as well as validating cohort. In 

sensitivity analyses, we tested whether biomarker-biomarker correlations were dependent on NT-

proBNP levels by performing separate analyses in patients with NT-proBNP levels above and 

below 2000 ng/L in the Scottish cohort. Furthermore, in additional sensitivity analyses we tested 
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whether biomarker-biomarker correlations were similar between patients with HFrEF from the 

European cohort and patients with HFrEF patients that were excluded based on missing NT-

proBNP values or NT-proBNP values below the 2000 ng/L cut off point in our European cohort. 

Lastly, as an additional sensitivity analysis, we repeated our analyses in patients with 

HFrEF/HFmrEF/HFpEF included from the out- and inpatient setting alone. To explore whether 

performing correlation analyses was suitable for our network analyses, we compared the R2 

values to mutual information values according to Steuer et al (23). Due to the difference in N of 

HFrEF, HFmrEF and HFpEF, correlations retained after a P-value cut-off point had a lower 

mean R2 compared to correlations retained in HFmrEF and HFpEF (Online Figure 1). To make 

the correlation networks comparable, an additional cutoff was applied, based on the correlation 

strength (R2). To tune the cutoff parameter, the lowest cutoff was chosen that reduces the relation 

between sample size and R2, while still retaining a reasonable number of correlations. Online 

Figure 2 shows the relation between number of correlations and sample size for six different R2 

cutoffs. Based on these observations, a cutoff of R2 > 0.2 was chosen. Following, we identified 

unique correlations between biomarkers for HFrEF and HFpEF, which showed no overlap with 

HFmrEF and enriched these using knowledge-based protein interactions from a comprehensive 

list of sources (Online Appendix). We then performed pathway overrepresentation analysis to 

examine overrepresented pathways in HFrEF and HFpEF.  

Results 

Baseline characteristics 

Baseline characteristics are presented in Table 1. Overall, patients had a mean age of 

73.7 ± 10.7 years and 34.2% were women. Out of a total of 1544 patients, 718 (47%) had 

HFrEF, 395 (26%) had HFmrEF and 431 (28%) had HFpEF. With increasing LVEF, patients 
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were older, more often female, had higher rates of diabetes, COPD, hypertension and atrial 

fibrillation on ECG and were less often on ACEi/ARB and MRA and lower levels of NT-

proBNP.  

Patients from the European cohort had higher NT-proBNP levels (5122 ng/L vs. 1334 

ng/L), other characteristics were generally comparable (Online Table 3). Differences between 

patients according to LVEF strata in the European cohort are presented in Online Table 4.  

Network analysis 

To investigate differences in biomarker profiles between HFrEF and HFpEF, pairwise 

correlations were extracted that passed a p-value cutoff point corrected for multiple comparisons. 

We found no high R-squared values with low mutual information values, which suggests that 

Pearson correlation analyses is suitable (Online Figure 3). We studied unique correlation for 

HFrEF and HFpEF, which showed no overlap with HFmrEF. These pairwise comparisons reflect 

potential interacting proteins within HFrEF and HFpEF. In total, 65 biomarker correlations 

passed the p-value cutoff point in HFrEF, HFmrEF and HFpEF in both the Scottish and 

European cohort (Figure 1). Of these, 45 biomarker correlations passed the p-value cut-off point 

in HFrEF and could be successfully validated in the European cohort. Of these 45 significant 

correlations, 8 were unique to HFrEF alone (Figure 1). Patients with HFpEF showed 40 

significant correlations that could be successfully validated, out of the total of 40 correlations, 6 

were exclusive to HFpEF (Figure 1). There was considerable overlap between HFrEF, HFmrEF 

and HFpEF with a total of 27 significant correlations that were shared. In sensitivity analyses, 

biomarker-biomarker correlations were independent of timing of echocardiography and similar 

in both patients with NT-proBNP levels below and above 2000 ng/L. Furthermore, we found that 

biomarker-biomarker correlations were similar in patients with HFrEF who were excluded in the 
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European cohort because of missing NT-proBNP or NT-proBNP values below 2000 ng/L 

compared to HFrEF patients included. Lastly, sensitivity analyses restricted to in- or outpatients 

did not affect our results. 

Results of the network analyses for HFrEF and HFpEF are presented in Figure 2 and 3. 

The size of the node (hub) is related to the centrality and importance of the hub in the particular 

network. In other words, biomarkers that form large hubs within a network can be considered 

biologically more important compared to biomarkers that are smaller hubs. Network analysis 

showed that main hubs in HFrEF were NT-proBNP, GDF15 and IL1RL1 (Figure 2A). In 

HFpEF, no clear hubs were observed among the unique correlations between the measured 

biomarkers (Figure 3A).  

Knowledge based enrichment of network analysis 

We enriched the experimentally found networks with protein-protein associated based on 

various independent databases as described in the Online Appendix. By including knowledge-

based data-analysis the cyclic AMP-dependent transcription factor ATF2 became an additional 

hub in HFrEF (Figure 2B). When adding knowledge-based interactions to the biomarker 

networks in HFpEF, integrin subunit beta 2 (ITGB2) and Catenin beta-1, became prominent hubs 

in HFpEF (Figure 3B). In the enriched networks of HFmrEF, we found that plasminogen 

urokinase receptor (PLAUR), Signal transducer and activator of transcription 1 (STAT1), 

Transcription factor AP-1 (JUN) and IL-1B were possible hubs (Online Figure 4). 

Translation into biological pathways 

The proteins found in our network analysis which was enriched by existing knowledge on 

biomarker interactions, were translated into biological pathways that were typically related to 

HFrEF and HFpEF (Figure 4). The top 10 overrepresented pathways in HFrEF were 
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characterized by processes relating to DNA binding transcription factor activity, phosphorylation 

of peptidyl-serine, cellular protein metabolic processes as well as the regulation in nitric oxide 

biosynthetic processes. In contrast, the top 10 overrepresented pathways in patient with HFpEF 

were characterized by inflammatory processes, including cytokine response, extracellular matrix 

organization as well as response to lipopolysaccharides and inflammation. In HFmrEF, the top 

10 upregulated pathways were related to neutrophil degranulation, leucocyte migration and DNA 

binding transcription factor activity (Online Figure 5). 

Discussion 

This is the first study using a comprehensive knowledge-based network analysis 

approach to characterize differences in circulating biomarker signatures among patients with 

HFrEF, HFmrEF and HFpEF. Overall, there was an important overlap between protein-protein 

correlations in HFrEF, HFmrEF and HFpEF. This suggests that a large proportion of these 

protein-protein correlations belong to common pathways related to HF. However, we also found 

distinct differences, which are summarized in Figure 5. Our findings show that pathways 

specifically up regulated in patients with HFrEF were related to cellular growth and metabolism. 

Pathways that were specifically up regulated in patients with HFpEF were related to 

inflammation and extracellular matrix reorganization.  

Network analysis of unique biomarker correlations in HFrEF showed that NT-proBNP, 

GDF15 and IL1RL1 were central hubs. NT-proBNP is associated with cardiac stretch and  was 

previously found to be a specific hub in network analyses in HFrEF in two independent studies 

(9, 10). GDF15 was previously found to be associated with more adverse outcomes in HFrEF 

(24, 25). Furthermore, results of our study show that IL1RL1 is a potential hub in patients with 

HFrEF. In patients with HFmrEF, IL1-B was a hub suggesting that IL1 inhibition in these 
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patients might be worth investigating. Network analysis in HFpEF showed a more diffuse 

combination of biomarker correlations with no specific central hubs. This is in line with earlier 

studies, which suggested that HFpEF might be more heterogenous than HFrEF (26, 27). The 

majority of biomarkers found in HFpEF were related to inflammation, which is a hallmark of the 

underlying pathophysiology of HFpEF (7). After adding knowledge-based protein-protein 

interactions to our experimentally found networks, we observed that ATF2 was an important 

additional hub in HFrEF. ATF2 is a protein involved in cardiac hypertrophy triggered by TGF-β. 

A previous experimental study found that suppression of ATF2, attenuated left ventricular 

hypertrophic response (28). In HFpEF, we observed that ITGB2 and catenin-beta were important 

hubs. Previous studies show that ITBG2 is involved in chronic inflammatory processes and 

endothelial dysfunction (29). In addition, an experimental study showed that catenin-β levels 

were increased in dahl salt-sensitive rats when they developed a HFpEF phenotype (30). This 

suggests that particularly catenin-β could be a protein of interest in HFpEF. The knowledge-

based enrichment of our networks was performed using combined data from various publicly 

available bioinformatic repositories which together provide a comprehensive data source on all 

known protein-protein interactions. The combination of these resources reduced overall bias in 

our enrichment. Yet, without knowledge-based enrichment, HFpEF did not show meaningful 

hubs. This suggests that the overall pathophysiology of HFpEF is more heterogenous compared 

to HFrEF. 

The last step in our analysis was to perform pathway over-representation analysis of the 

proteins found in our knowledge enriched networks. Results showed that in HFrEF, biological 

processes were related to sequence-specific DNA binding, phosphorylation of peptidyl-serine 

and proliferation of smooth muscle cells. Taken together, these processes are all related to cell 



14 

proliferation. Furthermore, biological pathways related to protein kinase B signaling and MAPK 

cascade were also enriched. Both protein kinase B signaling and MAPK  are related to cell 

proliferation and an increase in metabolism (32,33). In contrast, biological processes in HFpEF 

related to inflammation, integrin signaling and extracellular matrix organization (33). These data 

confirm earlier findings regarding HFpEF, but also allows future studies to focus on protein-

protein interaction within certain existing pathways such as integrin mediated signaling and 

extracellular matrix organization (7). Biological pathways upregulated in patients with HFmrEF 

were in between patients with HFrEF and HFpEF. This is in line with a previous study which 

suggested that biomarker profiles of patients with HFmrEF are in between patients with HFrEF 

and HFpEF (34). Our approach might be used to identify HFmrEF patients with a HFrEF-like 

biomarker profile that could derive more benefit from guideline directed treatment. 

This study has several clinical implications. First of all, results of this study provide 

biological context for the presence of clearly distinct syndromes, which may potentially explain 

the divergent response to HF therapy. Secondly, processes of cardiac stress response and cell 

proliferation are enriched in patients with HFrEF, while processes related to inflammation are 

enriched in HFpEF. Particularly ATF2 could be a potential novel treatment target in HFrEF, 

while ITGB2 and catenin-beta could be novel treatment targets for HFpEF, which deserves 

further study.  

There are several limitations to this study. First of all, echocardiography was not 

performed at inclusion. Nevertheless, sensitivity analysis showed that the timing of echo did not 

influence biomarker levels across HFrEF and HFpEF. Furthermore, we were able to validate our 

findings in an independent cohort, significantly reducing the potential impact of this limitation. 

Unfortunately, there were missing values for NT-proBNP in our validation cohort. This might 
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have introduced a potential bias in our European cohort because these patients had to be 

excluded. In contrast to our Scottish cohort, our European cohort had patients with both HFrEF 

and HFpEF with an NT-proBNP value >2000 ng/L. This is a limitation, because it might inflate 

the type II error. However, this is also a particular strength of this study since protein-protein 

correlations as well as differences in biomarker levels found for HFrEF and HFpEF in this study 

are relatively stable throughout the disease severity spectrum. Lastly, patients in BIOSTAT-CHF 

were sub-optimally treated which might introduce potential bias. 

Conclusions 

Biological pathways unique to HFrEF are associated with increased metabolism and 

cellular hypertrophy. A potential novel target for HFrEF is ATF2. Biological pathways unique to 

HFpEF are related to inflammation, neutrophil degranulation and integrin signaling. Potential 

novel treatment targets in HFpEF are IGTB2 and catenin-beta. These profound dissimilarities in 

the underlying biological processes emphasizes the need for distinct drug development programs 

in HFrEF and HFpEF.  
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Clinical perspectives 

Competency in medical knowledge: Pathophysiological differences between patients with heart 

failure (HF) with reduced (HFrEF) and preserved (HFpEF) are unclear. Results from this study 

suggest that patients with HFrEF and HFpEF have distinct differences in key pathophysiological 

processes. We found that biological processes in HFrEF were associated with DNA binding 

transcription factor activity, cellular protein metabolism and regulation of nitric oxide, while 

biological processes in HFpEF are associated with cytokine response, extracellular matrix 

organization and inflammation. This suggests that a personalized treatment in patients with 

HFpEF is warranted focusing on inflammation as a central pathophysiological tenet.  

Translational outlook: biomarker-based network analyses might help identify novel disease 

mechanisms and possible novel pathophysiological treatment targets. Although these targets 

might not directly be translatable to novel drugs, results of network analyses can inform further 

experimental studies to identify possible causal and mechanistic associations.   



17 

References 

1. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and 

treatment of acute and chronic heart failure. Eur. J. Heart Fail. 2016;18:891–975. 

2. McMurray JJV, Packer M, Desai AS, et al. Angiotensin–Neprilysin Inhibition versus Enalapril 

in Heart Failure. N. Engl. J. Med. 2014;371:993–1004. 

3. McMurray JJ, Östergren J, Swedberg K, et al. Effects of candesartan in patients with chronic 

heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme 

inhibitors: the CHARM-Added trial. Lancet 2003;362:767–771. 

4. Massie BM, Carson PE, McMurray JJ, et al. Irbesartan in Patients with Heart Failure and 

Preserved Ejection Fraction. N. Engl. J. Med. 2008;359:2456–2467. 

5. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for Heart Failure with Preserved 

Ejection Fraction. N. Engl. J. Med. 2014;370:1383–1392. 

6. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart 

failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 

2003;362:777–781. 

7. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: 

comorbidities drive myocardial dysfunction and remodeling through coronary microvascular 

endothelial inflammation. J. Am. Coll. Cardiol. 2013;62:263–71. 

8. Tromp J, Van Der Pol A, Klip IT, et al. Fibrosis marker syndecan-1 and outcome in patients 

with heart failure with reduced and preserved ejection fraction. Circ. Hear. Fail. 2014;7:457–462. 

9. Tromp J, Khan MAF, Mentz RJ, et al. Biomarker Profiles of Acute Heart Failure Patients 

With a Mid-Range Ejection Fraction. JACC Hear. Fail. 2017;5:507–517. 

10. Tromp J, Khan MAF, Klip IjT, et al. Biomarker Profiles in Heart Failure Patients With 



18 

Preserved and Reduced Ejection Fraction. J. Am. Heart Assoc. 2017;6:e003989. 

11. Sanders-van Wijk S, van Empel V, Davarzani N, et al. Circulating biomarkers of distinct 

pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection 

fraction. Eur. J. Heart Fail. 2015;17:1006–14. 

12. Borlaug BA. The pathophysiology of heart failure with preserved ejection fraction. Nat. Rev. 

Cardiol. 2014;11:507–15. 

13. Sharma A, Demissei BG, Tromp J, et al. A network analysis to compare biomarker profiles 

in patients with and without diabetes mellitus in acute heart failure. Eur. J. Heart Fail. 

2017;19:1310–1320. 

14. Felgueiras J, Silva JV, Fardilha M. Adding biological meaning to human protein-protein 

interactions identified by yeast two-hybrid screenings: A guide through bioinformatics tools. J. 

Proteomics 2017. 

15. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE v2.0: enhancing 

meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res. 

2017;45:D408–D414. 

16. Voors AA, Anker SD, Cleland JG, et al. A systems BIOlogy Study to TAilored Treatment in 

Chronic Heart Failure: rationale, design, and baseline characteristics of BIOSTAT-CHF. Eur. J. 

Heart Fail. 2016;18:716–26. 

17. Ouwerkerk W, Voors AA, Anker SD, et al. Determinants and clinical outcome of uptitration 

of ACE-inhibitors and beta-blockers in patients with heart failure: A prospective European study. 

Eur. Heart J. 2017;38:1883–1890. 

18. Bayes-Genis A, Voors AA, Zannad F, Januzzi JL, Mark Richards A, Díez J. Transitioning 

from usual care to biomarker-based personalized and precision medicine in heart failure: call for 



19 

action. Eur. Heart J. 2017;133:226–231. 

19. Ferreira JP, Rossignol P, Machu J-L, et al. Mineralocorticoid receptor antagonist pattern of 

use in heart failure with reduced ejection fraction: findings from BIOSTAT-CHF. Eur. J. Heart 

Fail. 2017;19:1284–1293. 

20. Voors AA, Ouwerkerk W, Zannad F, et al. Development and validation of multivariable 

models to predict mortality and hospitalization in patients with heart failure. Eur. J. Heart Fail. 

2017. 

21. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the Diagnosis and 

Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2016;37:2129–2200. 

22. Assarsson E, Lundberg M, Holmquist G, et al. Homogenous 96-Plex PEA Immunoassay 

Exhibiting High Sensitivity, Specificity, and Excellent Scalability Hoheisel JD, editor. PLoS One 

2014;9:e95192. 

23. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: Detecting and 

evaluating dependencies between variables. Bioinformatics 2002;18:S231–S240. 

24. Chan MMY, Santhanakrishnan R, Chong JPC, et al. Growth differentiation factor 15 in heart 

failure with preserved vs. reduced ejection fraction. Eur. J. Heart Fail. 2016;18:81–88. 

25. Sharma A, Stevens SR, Lucas J, et al. Utility of Growth Differentiation Factor-15, A Marker 

of Oxidative Stress and Inflammation, in Chronic Heart Failure: Insights From the HF-ACTION 

Study. JACC Hear. Fail. 2017;5:724–734. 

26. Shah SJ, Katz DH, Selvaraj S, et al. Phenomapping for novel classification of heart failure 

with preserved ejection fraction. Circulation 2015;131:269–79. 

27. Kao DP, Lewsey JD, Anand IS, et al. Characterization of subgroups of heart failure patients 

with preserved ejection fraction with possible implications for prognosis and treatment response. 



20 

Eur. J. Heart Fail. 2015;17:925–35. 

28. Lim JY, Sung JP, Hwang HY, et al. TGF-β1 induces cardiac hypertrophic responses via 

PKC-dependent ATF-2 activation. J. Mol. Cell. Cardiol. 2005;39:627–636. 

29. Ducat A, Doridot L, Calicchio R, et al. Endothelial cell dysfunction and cardiac hypertrophy 

in the STOX1 model of preeclampsia. Sci. Rep. 2016;6:19196. 

30. Kamimura D, Uchino K, Ishigami T, Hall ME, Umemura S. Activation of Peroxisome 

Proliferator-activated Receptor γ Prevents Development of Heart Failure With Preserved 

Ejection Fraction; Inhibition of Wnt-β-catenin Signaling as a Possible Mechanism. J. 

Cardiovasc. Pharmacol. 2016;68:155–161. 

31. Wende AR, O’Neill BT, Bugger H, et al. Enhanced Cardiac Akt/Protein Kinase B Signaling 

Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function 

via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes. Mol. Cell. Biol. 

2015;35:831–846. 

32. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: Signaling components, 

nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta - Mol. Cell Res. 

2011;1813:1619–1633. 

33. Israeli-Rosenberg S, Manso AM, Okada H, Ross RS. Integrins and Integrin-Associated 

Proteins in the Cardiac Myocyte. Circ. Res. 2014;114:572–586. 

34. Tromp J, Voors AA, Lam CSP. Heart failure with mid-range ejection fraction: causes and 

consequences. Eur. J. Heart Fail. 2018;20. 

 

  



21 

Figure Legends 

Figure 1: Venn diagram with unique protein-protein correlations in HFrEF HFmrEF and 

HFpEF. In total, 6 unique protein-protein correlations were identified in HFpEF, while 8 unique 

protein-protein correlations were identified in HFrEF.  

Figure 2:  Network analysis depicting unique protein-protein correlations in HFrEF (A) with 

knowledge-based interactions (B). Orange nodes are derived from data and blue nodes are 

knowledge-based correlations. The size of the node corresponds to the betweenness-centrality, 

which signified the importance of the node in the network. The larger the node, the more 

important it is to the network. The edges (dotted lines) between the nodes represent the 

correlation coefficient which is either positive (red) or negative (blue) for empirically derived 

correlations (orange nodes). In case of knowledge-based nodes (blue), the line signifies a 

protein-protein interaction.  

Figure 3: Network analysis depicting unique protein-protein correlations in HFpEF (A) with 

knowledge-based interactions (B). Orange nodes are derived from data and blue nodes are 

knowledge-based correlations. The size of the node corresponds to the betweenness-centrality, 

which signified the importance of the node in the network. The larger the node, the more 

important it is to the network. The edges (dotted lines) between the nodes represent the 

correlation coefficient which is either positive (red) or negative (blue) for empirically derived 

correlations (orange nodes). In case of knowledge-based nodes (blue), the line signifies a 

protein-protein interaction.  

Figure 4: Pathway over-representation analysis showing biological processes unique to HFrEF 

(red) and HFpEF (green). The Y-axis signifies the top 10 overrepresented biological processes in 

HFrEF and HFpEF. + stands for “positive regulation of” in a name of a given GO term. The X-
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axis is the -log10 of the p-value; the larger the bar, the more significant is the over presentation 

of that particular biological process.  

Figure 5: Concept figure describing the main findings of this study.  
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Table 1: Baseline characteristics of the Scottish cohort across LVEF categories. 

 
HFrEF HFmrEF HFpEF 

 N 718 395 431 p-value-trend 

Demographics         
Age (years) 72.0 (10.9) 74.9 (10.0) 76.2 (9.9) <0.001 
Female sex (%) 188 (26.2%) 137 (34.7%) 187 (43.4%) <0.001 
BMI (kg/m2) 28.2 (6.0) 28.9 (5.9) 30.0 (6.8) <0.001 
SBP (mmHg) 122.7 (21.3) 127.3 (22.3) 129.9 (23.3) <0.001 
DBP (mmHg) 69.8 (12.3) 68.5 (13.1) 68.0 (13.7) 0.006 
NYHA class     
Class I 6 (0.8%) 5 (1.3%) 4 (0.9%) <0.001 
Class II 337 (46.9%) 160 (40.6%) 136 (31.6%) 

 Class III 300 (41.8%) 176 (44.7%) 206 (47.8%) 
 Class IV 75 (10.4%) 53 (13.5%) 85 (19.7%) 
 LVEF (%) 30.1 (7.3) 43.7 (2.8) 57.3 (6.0) <0.001 

Heart rate (bpm) 73.9 (16.5) 72.3 (16.4) 75.0 (15.8) 0.172 
Comorbidities n (%)         
Anemia 316 (44.4%) 142 (36.0%) 199 (46.4%) 0.001 
Diabetes mellitus  212 (29.6%) 133 (34.0%) 158 (36.9%) 0.009 
COPD  110 (15.5%) 61 (15.6%) 110 (25.6%) <0.001 
Hypertension  363 (50.8%) 249 (63.2%) 293 (68.0%) <0.001 
PVD 144 (20.5%) 88 (23.0%) 116 (27.7%) 0.007 
Stroke 117 (16.5%) 84 (21.5%) 84 (19.6%) 0.138 
Atrial fibrillation on ECG 199 (27.7%) 136 (34.4%) 162 (37.6%) <0.001 
PCI 132 (18.5%) 80 (20.5%) 74 (17.3%) 0.713 
CABG 137 (19.1%) 86 (21.8%) 62 (14.4%) 0.089 
Laboratory          
NT-proBNP (ng/L) 1672 (667, 4615) 1209.5 (428.0, 2942.0) 1062 (392, 2820) <0.001 
eGFR (mL/min/1.73 m²) 59.8 (43.3, 77.4) 59.7 (42.1, 76.6) 58.4 (42.0, 76.0) 0.310 
Urea (mmol/L) 8.6 (6.7, 12.3) 8.6 (6.6, 11.2) 8.6 (6.4, 11.7) 0.289 
Hemoglobin (g/dL) 13.6 (4.9) 13.5 (6.6) 13.1 (7.6) <0.001 
Medication n (%)         
ACEi/ARB 538 (74.9%) 274 (69.4%) 268 (62.2%) <0.001 
Beta-blocker 570 (79.4%) 293 (74.2%) 257 (59.6%) <0.001 
MRA 295 (41.1%) 109 (27.6%) 85 (19.7%) <0.001 
Diuretics 712 (99.2%) 391 (99.0%) 425 (98.6%) 0.375 
Abbreviations: ACEi, ACE-inhibitor; ARB, angiotensin-receptor blocker; BMI, body mass 
index; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; 
DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; LBBB, left bundle 
branch block; LVEF, left ventricular ejection fraction; LVH, left ventricular hypertrophy; MRA, 
mineralocorticoid receptor antagonist; NYHA, New York heart association; NT-proBNP, N-
terminal pro B-type natriuretic peptide; PCI, percutaneous coronary intervention;  PVD, 
peripheral vascular disease; SBP, systolic blood pressure. 
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