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Abstract

Nonparametric regression methods have been widely studied in functional regression analysis in the
context of functional covariates and univariate response, but it is not the case for functional covariates
with multivariate response. In this paper, we present two new solutions for the latter problem: the first is
to directly extend the nonparametric method for univariate response to multivariate response, and in the
second, the correlation among different responses is incorporated into the model. The asymptotic properties
of the estimators are studied, and the effectiveness of the proposed methods is demonstrated through several
simulation studies and a real data example.
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1 Introduction

We start with a motivating example which concerns a dataset from a quality control problem in the food
industry. The data are recorded on a Tecator Infratec Food and Feed Analyzer working in the wavelength
range 850 - 1050nm by the Near Infrared Transmission (NIT) principle. Each sample contains one of 215
finely chopped pure meat with different moisture (water), fat and protein contents. For each meat sample
the data consists of a 100 channel spectrum of absorbances and the contents of water, fat and protein. The
spectrometric curves are shown in Fig. 1. The task is to predict the three contents from the spectrometric
curves.
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Figure 1: Spectrometric curves.

The above is a typical problem in functional data analysis. Functional data concerns data which are
collected as curves, surfaces or measurements varying over a continuum. With the fast advances of technolo-
gies functional data have become more and more prevalent in a large number of fields, such as environment,
medicine, finance, industry and social science. Consequently functional data analysis has received increasing
attention, particularly after the work of Ramsay and Silverman (1997, 2005) was published.

For functional data analysis two main streams of methodogies exist in the literature: functional paramet-
ric methods and functional nonparametric methods. Ramsay and Silverman (1997, 2005) studies in details
a number of functional parametric models, which have been further extended and developed by many re-
searchers. Ferraty and Vieu (2003, 2004, 2006) first introduces nonparametric methods for functional data
analysis with functional covariates and univariate scalar response. It is followed by a number of further
developments, such as the functional Nadayara-Watson (NW) estimator (Ferraty et al, 2007), the functional
k-nearest neighbour estimator (Burba et al, 2009), the functional local linear estimator (Barrientos-Marin
et al, 2010), the distance-based local linear estimator (Boj et al, 2010).

Nonparametric modelling has also been proposed for other types of functional data analysis. For instance,
Matsui et al. (2008) illustrates the association between multiple scalar responses and functional predictors
by using the Gaussian basis function. The problem with multivariate response variables and functional
covariates based on the L1-median regression estimation is described by Chaouch and Läıb (2013). Wang
and Chen (2015) proposes the formulation of the covariance function for the multi-response Gaussian process
regression. Xiang et al. (2013) studies the multivariate nonparametric regression analysis in the context of
longitudinal data. Ferraty et al. (2011, 2012) and Lian (2012) consider the problem of functional regression
where both the responses and the explanatory variables are functions.

In this paper, we develop two new solutions for functional regression problem with functional covariates
and multivariate response variable. The first solution is to directly extend the nonparametric method for
univariate response to multivariate response with different bandwidths for different responses. In the second
solution, the correlation among different responses is taken into account and incorporated into the model. Our
methods utilize the kernel function with an automatic bandwidth selection by cross-validation procedure and
semi-metrics as a measure of the proximity between functional data. The rate of almost complete convergence
of the methods is studied. And the effectiveness of the proposed methods is demonstrated through several
simulation studies and a real data example.
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The rest of the paper is organised as follows. Section 2 presents the model and the estimators. In Section
3, some theoretical properties such as the rate of almost complete convergence are discussed. In Section 4,
the effectiveness of the proposed methods is illustrated through several simulation studies and a real data
example. Section 5 concludes the paper.

2 Model and Estimation

Let (Xi, Yi)i=1,...,n be n pairs of samples independently and identically distributed as (X , Y ) and valued in
f ×Rq, where f is an infinite-dimensional space equipped with a semi-metric d(·, ·). Yi = (yi1, ..., yiq)

t is the
q-dimensional response variable and Xi is the functional predictor. The general framework of the functional
regression can be defined by:

Yi = r(Xi) + εi, i = 1, ..., n, (1)

where r(·) is an unknown nonlinear operator, and εi is independent random errors with E[εi|Xi] = 0.
Therefore, the objective is to estimate the nonlinear operator r(χ) = E[Y |X = χ] for a given value X = χ ∈ f .
By the nonparametric kernel method, the regression estimator can be expressed as:

r̂(χ) =
n∑

i=1

ωi(χ)Yi, (2)

where ωi(χ) is the weights.
In this paper, we propose two methods for the estimation of the weights ωi(χ). Firstly, we extend

the method for univariate scalar response case to the multivariate case but using different bandwidths for
different components of the response. This method is denoted by MRD and given as follows:

ωi(χ) = (

n∑

i=1

ω̆i)
−1/2ω̆i(

n∑

i=1

ω̆i)
−1/2,

where

ω̆i =




ai11 0 0 . . . 0
0 ai22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . aiqq



,

and
ai11 = K

(
h1

−1d (χ,Xi)
)

ai22 = K
(
h2

−1d (χ,Xi)
)

...

aiqq = K
(
hq

−1d (χ,Xi)
)
.

HereK(·) is the kernel function, and h1, h2, ..., hq are the bandwidths for different components of the response.
In the second method (denoted by MRC), we take the correlations between different components of the

response variable into account and use different bandwidths for different components.
Since (Xi, Yi), i = 1, ..., n, are independent and identically distributed, we can define

V =




V11 V12 . . . V1q

V21 V22 . . . V2q

...
...

. . .
...

Vq1 Vq2 . . . Vqq



= Cov(Yi|Xi).
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Therefore, V is the q × q covariance matrix of Yi, where the diagonal elements give the variances of each
component of the response and the off-diagonal elements give the covariances among different components.

Now let V̂ be an estimate of V , i.e. the sample covariance matrix of Yi, and define

KiH = diag{K(h−1

l d(Xi, χ)), l = 1, 2, ..., q},

and
ω̂i = (K

−1/2
iH V̂K

−1/2
iH )−1.

Then in the second method the weights ωi(χ) are given by

ωi(χ) = (
n∑

i=1

Wi)
−1/2ω̂i(

n∑

i=1

Wi)
−1/2,

where Wi is a diagonal matrix containing the row sums of the matrix ω̂i.
It is noted that we need a q-dimensional bandwidth vector H = (h1, . . . , hq) to allow different degrees

of smoothing in different components of the response. In practice, the bandwidth is critical to achieving
accurate results. Ferraty and Vieu (2004, 2006), Ferraty et al. (2007) and Burba et al. (2009) use the cross-
validation procedure for selecting bandwidths. Similarly, we can also select bandwidth by cross-validation
procedure. Let

CVl(hl) =
1

n

n∑

i=1

(yil − r̂l,−i(Xi))
2, l = 1, ..., q

and
CV (H) = CV1(h1) + CV2(h2) + ...+ CVq(hq),

where r̂l,−i(·) is the estimate of rl(·) without the ith sample. Therefore, the optimal bandwidths can be
determined by minimising CV (H).

3 Asymptotic properties

Let x be a given point in f , and denote by B(x, h) the closed ball of centre x and radius h, namely:

B(x, h) = {x′ ∈ f : d(x, x′) 6 h}.

The model requires that the probability of X is such that there exists a non-decreasing function φx such that:

(H1) ∃(C1, C2), ∀x ∈ f , ∀ε > 0,

0 < C1φx(ε) 6 P (X ∈ B(x, ε)) 6 C2φx(ε) < ∞.

And the joint distribution of (X , Y ) needs to satisfy:

(H2) ∃C3, ∀r > 1, E(‖Y ‖r|X ) < C3r! < ∞.

(H3) ∃C4, ∃b > 0, ∃γ > 0, ∀x, x′ ∈ f ,
‖r(x) − r(x′)‖ 6 C4d

b(x, x′).

In addition, we also need the following technical conditions on the kernel function and the bandwidth.

(H4) The kernel function has to be such that:

(i) K is a bounded and Lipschitz continuous function with support [0, 1), and if K(1) = 0 it has to
fulfill, together with φx(·), the conditions:
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(ii) ∃(C5, C6) > 0, such that −∞ < C5 6 K ′

iH 6 C6 < 0.

(iii) ∃C7 > 0, ∃γ0 > 0, ∀γ < γ0, ∫ γ

0

φx(u)du > C7γφx(γ).

(H5) The bandwidth h is a positive sequence such that:

lim
n→∞

h = 0 and lim
n→∞

logn

nφx(h)
= 0.

It is noted that this set of assumptions are different from the case of functional covariate with univariate
response and when both explanatory and response variables are functional, because of the different band-
widths for the different components of the response variable.

The rate of convergence of r̂(x) is stated in Theorem 3.1. As mentioned before, this is the first outcome of
this type in a nonparametric functional regression setting when the covariate is functional while the response
is multivariate with different bandwidths for each component.

Result B1: Define
KiH = diag{K(h−1

l d(xi, x)), l = 1, 2, ..., q},
then, ∃(C8, C9) > 0 such that

C8φx(h) 6 E[‖KiH‖] 6 C9φx(h).

This result is apparent when K(1) > 0 and can be extended to the continuous kernel, satisfying H4 as shown
in Lemma 4.4 in Ferraty and Vieu (2006).

Theorem 3.1 Under the hypotheses H1−H5, we have:

‖r̂(x)− r(x)‖ = O(hb) +Oa.co.



√

logn

nφx(h)


 .

Proof For i = 1, .., n, we define

∆i =
(K

−1/2
iH V̂K

−1/2
iH )−1

E‖(K−1/2
1H V̂K

−1/2
1H )−1‖

.

Note that H1, H4 and Result B1, ensure that E‖(K−1/2
1H V̂K

−1/2
1H )−1‖ > 0.

Let r̂1(x) and r̂2(x) be the following quantities:

r̂1(x) =
1

n

n∑

i=1

∆i

and

r̂2(x) =
1

n

n∑

i=1

Yi∆i.

Then r̂(x) = r̂2(x)r̂
−1

1 (x). Our proof depends on the decomposition:

r̂(x) − r(x) =
{
(r̂2(x)− Er̂2(x)) − (r(x) − Er̂2(x))

}
r̂−1

1 (x)

− r(x)
{
r̂1(x)− 1

}
r̂−1

1 (x).

Theorem 3.1 will be true providing both the following Lemma 3.2 and Lemma 3.3 can be proved. However,
the second part of Lemma 3.3 is addressed directly by using part (i) of Lemma 3.3 when Yi = 1 in combination
with part (i) of Proposition A.6 in Ferraty and Vieu (2006).
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Lemma 3.2 Under H3, H4, and H5 we have:

‖r(x) − Er̂2(x)‖ = O(hb).

Proof Model (1) allows us to directly write:

‖r(x) − Er̂2(x)‖ = ‖r(x) − E(Y1∆1)‖
= ‖r(x) − E[E(Y1∆1 | X1)]‖
= ‖r(x) − E[E(Y1 | X1)∆1]‖
= ‖r(x) − E(r(X1)∆1)‖
6 E[‖r(x) − r(X1)‖‖∆1‖],

and by using H3, this becomes:

‖r(x) − Er̂2(x)‖ 6 E[db(x,X1)‖∆1‖].

Therefore, with the hypothesis H1 and Result B1, and since ‖∆1‖ = 1, ∃C > 0, such that

‖r(x) − Er̂2(x)‖ 6 Chb.

The above inequality yields the proof, since C does not depend on x.

Lemma 3.3 We have:

(i) Under assumptions H1−H5 we have:

‖r̂2(x)− Er̂2(x)‖ = Oa.co.

(√
logn

nφx(h)

)
.

(ii) Under assumptions H1, H4, and H5, we have:

‖r̂1(x)− 1‖ = Oa.co.

(√
logn

nφx(h)

)
.

Proof The idea of this proof is based on using a Bernstein-type exponential inequality. In fact:

P
(
‖r̂2(x) − Er̂2(x)‖ > ǫ

)
= P

( 1
n
‖

n∑

i=1

(Yi∆i − E(Yi∆i)‖ > ǫ
)
,

and we have to offer that it exists ǫ0 > 0 such that:

∑

n∈N∗

P
( 1
n
‖

n∑

i=1

(Yi∆i − E(Yi∆i)‖ > ǫ0

√
logn

nφx(h)

)
< ∞.

Therefore, applying Corollary A.8 − ii in Ferraty and Vieu (2006) gives the exponential inequality with
Zi = Yi∆i − EY1∆1. We first need to show that:

∃C10 > 0, ∀m = 2, 3, ..., ‖E(Y1∆1 − EY1∆1)‖m ≤ C10φx(h)
−m+1. (3)
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• We first prove that for m ≥ 2 :
E‖Y1∆1‖m = O(φx(h)

−m+1). (4)

For this, we write :
E‖Y1∆1‖m ≤ E[E[‖Y1‖

m |X1]‖∆1‖m].

Clearly, we get from the assumption H2 that:

E‖Y1‖m = E[E[‖Y1‖m|X ]] < Cm! < ∞,

which implies that:

E‖Y1∆1‖m ≤ E[E[‖Y1‖m|X1]‖∆1‖m]

6 Cm!E‖∆1‖m.

By applying H4 and Result B1, we get:

C5

φx(h)m−1
6 E‖∆1‖m 6

C6

φx(h)m−1
,

then, we get:
E‖Y1∆1‖m = O(φx(h)

−m+1). (5)

• Furthermore, we utilize the Newton’s binomial expansion and get:

‖Y1∆1 − E(Y1∆1)‖m =

m∑

k=0

Ck,m‖Y1∆1‖k‖E[Y1∆1]‖m−k(−1)m−k,

where

Ck,m =
m!

k!(m− k)!
,

which implies that

E‖Y1∆1 − E(Y1∆1)‖m 6 C

m∑

k=0

Ck,mE‖Y1∆1‖k‖r(x)‖m−k

≤ C max
k=0,1,2,...,m

k!φx(h)
1−k,

where C is a real positive constant. Because φx(h) tends to zero when n goes to infinity, it becomes
the case that:

E‖Y1∆1 − E(Y1∆1)‖m = O((φx(h))
1−m).

Therefore, we can apply Corollary A.8− ii in Ferraty and Vieu (2006) with a2 = φx(h)
−1.

Subsequently, we have un = (a2 logn / n) = logn / (nφx(h)) → 0 as n → ∞, by using assumptions H4
and H5.

And the second part of the theorem is directly derived from part one by taking Yi = 1, and we get the result:

‖r̂1(x) − 1‖ = Oa.co.

(√
log x

nφx(h)

)
.

Theorem 3.1 shows that the estimator r̂(x) is consistent in terms of almost complete convergence. It
also states the rate of pointwise almost complete convergence. As discussed in Ferraty and Vieu (2006), this
mode of convergence is stronger than almost sure convergence and convergence in probability, and the links
of almost complete convergence with other modes of convergence are also shown in the above reference.
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4 Numerical examples

The main aim of this section is to demonstrate the usefulness of the methodologies through simulated and
real data examples.

4.1 Simulation studies

Example 1. We first consider the following regression model:

Yi = r(Xi) + εi, i = 1, 2, ..., n = 215.

The functional predictor is generated by

Xi(tj) = ai cos(2tj) + bi sin(4tj) + ci(t
2
j − πtj +

2

9
π2), (6)

where 0 = t1 < t2... < t100 = π are equispaced points, ai, bi and ci are independently drawn from a uniform
distribution on [0, 1], and n represents the sample size. Fig. 2 shows the simulated 215 curves for one
replication.

0 20 40 60 80 100

−
2

−
1

0
1

2
3

t

x
(t

)

Figure 2: A sample of 215 simulated curves.

The multivariate response is simulated via the following steps.

1. Construct two regression function operators r1 and r2, each for one output. The two nonlinear operators
r1 and r2 are defined as follows:

{
r1(Xi) =

∫ π

0
t cos(t)(X ′

i (t))
2dt+ ηi + γi,

r2(Xi) =
∫ π

0
[t cos(t)(4bi cos(4t)− ai sin(t)) + ci(2t− π)2]dt+ ηi + γi + ωi,
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where X ′(t) denotes the first derivative of X (t), ηi is a real-valued continuous variable following a
standard normal distribution, γi is a discrete-valued variable drawn from a Bernoulli distribution, and
ωi is a real-valued continuous variable from an exponential distribution with rate parameter 1.

2. Generate two sets of random errors {ε1i}i=1,...,n and {ε2i}i=1,...,n:

(
ε1i
ε2i

)
∼ N2

([
0
0

]
,

[
(σ1)

2 ρσ1σ2

ρσ1σ2 (σ2)
2

])
,

where σ1 = 1, σ2 = 2, and we consider two cases for ρ: ρ = 0.9 (Case I) and ρ = 0.1 (Case II).

3. Compute the corresponding response variables:

Y1i = r1(Xi) + ε1i, Y2i = r2(Xi) + ε2i, i = 1, 2, ..., n.

We divide the 215 samples into two subsets: the first 160 are used for building the model, and the
remaining 55 are used for prediction to assess the performance of the models. We compare the two proposed
methods (MRC and MRD) with the independent response (IR) method where the two responses are modelled
independently, based on the criterion of the root mean square prediction error defined as

RMSPE =
√
MSE, MSE =

1

55

215∑

i=161

(yi − ŷi)
2.

The optimal bandwiths in MRC model and MRD model are determined by using a cross-validation
procedure, that is, by minimising CV (H) = CV1(h1)+CV2(h2). While this minimisation is time-consuming,
we see in our simulation studies that the optimal bandwidths for MRC, MRD and IR are quite close to each
other, therefore, to simplify the computation we instead use a two-step CV procedure as done in Xiang et
al. (2013): we first determine the individual bandwidths (h1,0, h2,0) independently, then determine the two
bandwidths by minimising CV (H) in a small neighbourhood of (h1,0, h2,0). In all the models considered,
the Epanechnikov kernel function and semi-metric based on the second derivative are used. The above is
repeated 10 times and the results are shown in Table 1. From Table 1, it can be seen that in case I, the
MRC model performs better than the MRD model and IR model, while the MRD model performs slightly
better than the IR model. On the other hand, neither MRC nor MRD are better than the IR method for
Case II. This means that when the correlation is strong among different components of the response, the
multivariate methods perform better than the independent model, even when the covariance is ignored in
the model.

Table 1: Average RMSPE comparison between MRC, MRD and IR models based on ten replicated simula-
tions.

RMSPE
Case Components MRC MRD IR
I 1 1.0041 1.0044 1.0210

2 1.9678 1.9909 1.9937

II 1 1.0257 1.0381 1.0263
2 2.1027 2.1440 2.0700

Example 2. In the second example we generate the functional predictor by

Xi(tj) = ai(tj − 0.5)2 + bi, i = 1, 2, . . . , n = 100, (7)
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where 0 = t1 < t2... < t100 = 1 are equispaced points, ai and bi are independently drawn from a uniform
distribution on [0, 1], and n represents the sample size. Fig. 3 shows the simulated 100 curves from one
replication.

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2

Figure 3: A sample of 100 simulated curves.

The regression functional operators r1 and r2 are constructed by




r1(Xi) =

∫ π/2

0
X ′

i (t)dt,

r2(Xi) =
∫ π/2

0
|X ′

i (t)| log|X ′

i (t)|dt.

The other settings including the random errors are the same as in Example 1.
We also divide the samples into two subsets: the training set contains the first 75 units and the testing set

includes the remaining 25 units. We compare the two proposed models, the MRC and MRD models, with the
IR model. The bandwiths are determined in the same way as before. The results based on 10 replications are
reported in Table 2. These results confirm the conclusion of Example 1 that when the correlation is strong
among different components of the response, the multivariate methods perform better than the independent
model, whilst all the three methods give essentially the same results when the correlation is weak.
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Table 2: Average RMSPE comparison between MRC, MRD and IR models based on ten replicated simula-
tions.

RMSPE
Case Components MRC MRD IR
I 1 0.9900 0.9908 0.9936

2 1.9750 1.9758 1.9858

II 1 1.0150 1.0154 1.0114
2 1.9047 1.9049 1.9046

Example 3. We now consider another simulated example where the time points are randomly collected
and the error term follows a multivariate t-distribution.

We generate the functional predictor by

Xi(tj) = ai cos(t) + bi sin(t) +Wi, i = 1, 2, ..., 215, (8)

where 0 = t1 < t2... < t100 = π are uniformly sampled in [0, π], ai, bi and Wi are independently drawn from
a uniform distribution on [0.2, 1.5]. Fig. 4 shows the simulated 215 curves from one replication.

0 20 40 60 80 100

0
1

2
3

4
5

t

x
(t

)

Figure 4: A sample of 215 simulated curves.

The two regression functional operators r1 and r2 are defined as: for i = 1, ..., 215
{
r1(Xi) =

1

100

∫ π

0
X 2

i (t)dt,

r2(Xi) =
1

100

∫ π

0
X ′

i (t)Xi(t)dt,

where X ′(t) denotes the first derivative of X (t). The response variables are given by

Y1i = r1(Xi) + ε1i, Y2i = r2(Xi) + ε2i, i = 1, 2, ..., 215,
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where the error term (ε1i, ε2i)
t follows a bivariate t-distribution with the degrees of freedom ν = 3 and the

covariance matrix
ν

ν − 2

[
(σ1)

2 ρσ1σ2

ρσ1σ2 (σ2)
2

]
,

where σ1 = 1, σ2 = 2, and we consider two cases for ρ: ρ = 0.9 (Case I) and ρ = 0.2 (Case II).
The same experiment procedure as in the first example is then conducted, and the average RMSPEs based

on 10 repetitions by the three models are reported in Table 3. The results further confirm the conclusion
of the previous two examples, that is, when the correlation is strong the MRC model significantly improves
the prediction accuracy compared with the MRD and IR models, whilst all the three methods have similar
performance when the correlation is weak.

Table 3: Average RMSPE comparison between the MRC, MRD and IR models based on ten replicated
simulations.

RMSPE
Case Components MRC MRD IR
I 1 1.6195 1.6360 1.6373

2 3.0334 3.0884 3.0663

II 1 1.4706 1.4689 1.4735
2 3.0142 3.0004 3.0161

4.2 Real data example

We now demonstrate the effectiveness of the proposed methods using a real data example - the spectrometric
data.

Spectrometric data is a well known example in functional data analysis, and several implementations
have been undertaken using different models; see, for example, Ferraty and Vieu (2003, 2006), Ferraty et
al. (2007), Benhenni et al. (2007), and Burba et al. (2009). The data comes from quality control, and can
be found at http://lib.stat.cmu.edu/datasets/tecator. It concerns a sample of finely chopped pieces of meat.
For each meat sample, the data consists of a 100-channel absorbance spectrum with a wavelength range
between 850-1050nm (see Ferraty and Vieu (2006) for more details). The goal of spectrometric analysis is
to determine the proportion of specific chemicals’ content because the analysis by chemistry programming
would take a lot more time and be more expensive. For this particular data, we want to predict fat, water
and protein content simultaneously using the spectrometric curves as shown in Fig. 1.

In this analysis, the response variable Yi are the percentages of fat, water and protein content in each
piece of meat and the predictor is the spectrometric curves. We split the original sample into two subsets:
the learning sample includes the first 160 units, and the testing sample consists of the last 55 units. The
sample correlations between fat and water, between fat and protein and between water and protein are
-0.9881, -0.8604 and 0.8145, respectively. The measure of performance for different methods is achieved by
calculating the root mean square prediction error in the testing sample. The results are reported in Table 4.

From Table 4, it can be clearly seen that the two new multivariate methods (MRC and MRD) perform
better than the independent model. Compared to the independent method, their RMSPE values are smaller
across two components of the response variable (fat and water) whilst all the three methods give quite
similar results for protein. This suggests that the multivariate methods are more accurate by modelling all
the response components simultaneously.
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Table 4: RMSPE comparison between MRC, MRD and IR models.

RMSPE
Components MRC MRD IR

Fat 2.144 2.147 2.317
Water 1.957 1.970 2.068
Protein 1.603 1.606 1.602

5 Conclusion

This paper proposes two new methods for nonparametric functional regression when the covariate is func-
tional and the response is multivariate. The first solution is to directly extend the nonparametric method
for univariate response to multivariate response with different bandwidths for different responses, and in
the second solution the correlation among different responses is taken into account and incorporated into
the model. The rate of almost complete convergence is presented under certain conditions. The numerical
examples presented in the paper suggest that our methods can perform well, especially when the correlation
between different components of the response is strong.

It is noted that when we choose different bandwidths for different components of the response by a cross-
validation procedure, our numerical results perform reasonably well. Xiang et al. (2013) mentioned that
the bandwidths chosen by this approach usually have a large variability. Therefore, the research is needed
to provide a framework for a simple procedure to choose the bandwidths, and our method may not be
particularly suitable for high-dimensional multivariate functional data because of the complexity in choosing
different bandwidths for different components. Furthermore, applying the proposed methodologies to other
functional regression estimators, such as the k-nearest neighbour kernel estimator (Burba et al, 2009) and
functional local linear kernel estimator (Benhenni et al, 2007), is also one of the candidates for future work.
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