Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee

Evelien M. Adriaenssens^{1,24}, Mart Krupovic², Petar Knezevic³, Hans-Wolfgang Ackermann⁴, Jakub Barylski⁵, J. Rodney Brister⁶, Martha R. C. Clokie⁷, Siobain Duffy⁸, Bas E. Dutilh^{9,10}, Robert A. Edwards¹¹, Francois Enault^{12,13}, Ho Bin Jang¹⁴, Jochen Klumpp¹⁵, Andrew M. Kropinski^{16,*}, Rob Lavigne¹⁷, Minna M. Poranen¹⁸, David Prangishvili², Janis Rumnieks¹⁹, Matthew B. Sullivan¹⁴, Johannes Wittmann²⁰, Hanna M. Oksanen^{18,21}, Annika Gillis²² and Jens H. Kuhn²³

¹Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom

^{2.}Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris, France

³. Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

⁴.L'Institut de biologie intégrative et des systems, Université Laval, Quebec, Canada

⁵ Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznan, Poland

⁶ National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA

^{7.}Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK

^{8.}Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, USA

⁹ Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands

^{10.}Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands

^{11.}Departments of Computer Science and Biology, San Diego State University, San Diego, USA

^{12.}Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France

^{13.}CNRS UMR 6023, LMGE, Aubière, France

^{14.}Department of Microbiology, The Ohio State University, Columbus, USA

^{15.}Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland

¹⁶ Departments of Food Science, Molecular and Cellular Biology and Pathobiology, University of Guelph, Guelph, Canada

^{17.}Laboratory of Gene Technology, KU Leuven, Leuven, Belgium

^{18.}Department of Biosciences, University of Helsinki, Helsinki, Finland

^{19.}Latvian Biomedical Research and Study Center, Riga, Latvia

^{20.}Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany

^{21.}Institute of Biotechnology, University of Helsinki, Helsinki, Finland

^{22.}Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium

^{23.}Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, USA

^{24.}Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa

*Correspondence to: Andrew M. Kropinski, Phage.Canada@gmail.com

The prokaryotic virus community is represented at the International Committee on Taxonomy of Viruses (ICTV) by the Bacterial and Archaeal Viruses Subcommittee. Since our last report [8], the committee composition has changed, and a large number of taxonomic proposals (TaxoProps) were submitted to the ICTV Executive Committee (EC) for approval.

1. New appointments

The committee has been enlarged through the additions of Drs. J. Rodney Brister (Chair— Molecular Typing), Ho Bin Jang (Member), Petar Knezevic (Chair—ICTV *Inoviridae* Study Group), Hanna M. Oksanen (Chair—ICTV *Corticoviridae* Study Group), and Minna M. Poranen (Chair—ICTV *Cystoviridae* Study Group). In addition, Dr. Mart Krupovic has taken over the Chairmanship of the ICTV *Plasmaviridae* Study Group.

2. Future of the order*Caudovirales*

With the dramatic increase in the number of characterized tailed bacterial and archaeal viruses, it is becoming increasingly clear that the order *Caudovirales* (and the three included families *Myoviridae*, *Siphoviridae* and *Podoviridae*) can no longer sustain the huge genetic diversity within this virus group [5] and has to be adequately reorganized. Indeed, taxonomic hurdles with this and some other expansive groups of viruses, prompted ICTV to explore the possibi-lity of introducing additional taxonomic levels. Initial ideas and plans were presented to the microbial viruses community at the 2016 EMBO conference "Viruses of Microbes IV" (Liverpool, UK). Currently, the Bacterial and Archaeal Viruses Subcommittee is examining the consistency of the order *Caudovirales* on the example of a diverse group of phages currently classified in the subfamily *Spounavirinae* [2, 6, 7, 9, 12]. We applied a range of complementary DNA and protein sequence analysis tools as well as phylogenetic methods to the analysis of 93 *Bacillus, Enterococcus, Listeria*, and *Staphylococcus* phages

with large genomes (≈110–160 kb). A manuscript describing our findings is in preparation, and the appropriate TaxoProps will be submitted.

3. Taxonomy of prokaryotic viruses found in GenBank

Genome sequences of prokaryotic viruses are accumulating in public sequence databases, such as GenBank, at an increasing rate. Oftentimes, these sequences are being deposited without or with only minimal taxonomy descriptions. To appropriately classify these viruses, the Subcommittee adopted a holistic approach with the first-line discriminator being DNA sequence identity (calculated using NCBI BLASTN [3, 10] or Gegenees BLASTN [1]) of the genome in question to those of previously classified viruses. Next, overall protein identity was calculated using Gegenees TBLASTX for large datasets and CoreGenes 3.5 [11] for smaller sets. Lastly, phylogenetic analyses of one to three conserved phage proteins, often including the large subunit of the terminase and major capsid proteins or DNA-replicationassociated proteins, were carried out using maximum-likelihood method as implemented at Phylogeny.fr [4]. The changes described here were formalized and submitted in more than 80 ICTV TaxoProps for consideration by the ICTV EC (http://www.ictvonline.org). One new archaeal virus family (Tristromaviridae), six new bacteriophage subfamilies (Ounavirinae [Salmonella phage FelixO1], Sepvirinae [Escherichia phage 933 W], Arquatrovirinae [Streptomyces phage R4], Bclasvirinae [Mycobacterium phage Acadian], Mclasvirinae [Mycobacterium phage Pipefish] and Pclasvirinae [Mycobacterium phage Fishburne]), and 88 new genera including 249 species are covered in these proposals (Table 1). These proposals were submitted to the ICTV EC in 2016 for approval. In addition, another 70 phages and one archaeal virus belonging to existing genera were classified. Of particular note is a fundamental reorganization of the family Inoviridae by Petar Knezevic, Chair of the Inoviridae Study Group, who has rearranged the two existing genera (Inovirus and *Plectovirus*), created five new genera and 17 new species, reassigned 12 previously approved species, and deleted 29 species.

Family	Subfamily	New genus	Type species	Number of new species in genus (total number of species in genus)
Inoviridae		Fibrovirus	Vibrio virus fs1	1 (2)
Inoviridae		Habenivirus	Ralstonia virus RSM1	3
Inoviridae		Lineavirus	Salmonella virus Ike	0 (2)
Inoviridae		Saetivirus	Vibrio virus fs2	1 (2)
Inoviridae		Vespertiliovirus	Spiroplasma virus R8A2B	1 (3)
Myoviridae	Ounavirinae	Ea214virus	Erwinia virus Ea214	1 (2)
Myoviridae	Ounavirinae	Mooglevirus	Citrobacter virus Moogle	2
Myoviridae	Ounavirinae	Suspvirus	Escherichia virus	2

Table 1. Taxonomy proposals (TaxoProps) describing new taxa (families, subfamilies, genera)submitted to the ICTV Executive Committee in 2016

Family	Subfamily	New genus	Type species	Number of new species in genus (total number of species in genus)
			SUSP1	
Myoviridae	Spounavirinae	Tsarbombavirus	Bacillus virus TsarBomba	2
Myoviridae	Tevenvirinae	Jd18virus	Klebsiella virus JD18	2
Myoviridae	Tevenvirinae	Kp15virus	Klebsiella virus KP15	5
Myoviridae	Tevenvirinae	Moonvirus	Citrobacter virus Moon	2
Myoviridae		Abouovirus	Brevibacillus virus Abouo	2
Myoviridae		Agrican357virus	Erwinia virus Ea35-70	5
Myoviridae		Arv1virus	Arthobacter virus ArV1	2
Myoviridae		Elvirus	Pseudomonas virus EL	0 (1)
Myoviridae		Jimmervirus	Brevibacillus virus Jimmer	2
Myoviridae		M12virus	Sinorhizobium virus M12	3
Myoviridae		Marthavirus	Arthrobacter virus Martha	4
Myoviridae		Msw3virus	Edwardsiella virus MSW3	2
Myoviridae		Rsl2virus	Ralstonia virus RSL2	2
Myoviridae		Rslunavirus	Ralstonia virus RSL1	1
Myoviridae		Sep1virus	Staphylococcus virus SEP1	2
Myoviridae		Spn3virus	Salmonella virus SPN3US	1
Podoviridae	Autographivirinae	Fri1virus	Acinetobacter virus Fri1	7
Podoviridae	Autographivirinae	Kp32virus	Klebsiella virus KP32	6
Podoviridae	Autographivirinae	Pradovirus	Xylella virus Prado	3
Podoviridae	Picovirinae	Cp1virus	Streptococcus virus Cp1	1
Podoviridae	Sepvirinae	Nona33virus	Escherichia virus 933 W	5
Podoviridae	Sepvirinae	Pocjvirus	Shigella virus POCJ13	2
Podoviridae	Sepvirinae	Tl2011virus	Escherichia virus TL2011	4
Podoviridae		Ea92virus	Erwinia virus Ea9-2	2
Podoviridae		Kf1virus	Edwardsiella virus KF1	1
Podoviridae		Kpp25virus	Pseudomonas virus KPP25	2
Podoviridae		Luz7virus	Pseudomonas virus	2

Family	Subfamily	New genus	Type species	Number of new species in genus (total number of species in genus)
			LUZ7	
Podoviridae		Prtbvirus	Brucella virus Pr	2
Podoviridae		Una961virus	Helicobacter virus 1961P	3
Siphoviridae	Arquatrovirinae	Camvirus	Streptomyces virus phiCam	2
Siphoviridae	Arquatrovirinae	Likavirus	Streptomyces virus Lika	9
Siphoviridae	Arquatrovirinae	R4virus	Streptomyces virus R4	2
Siphoviridae	Bclasvirinae	Acadianvirus	Mycobacterium virus Acadian	2 (3)
Siphoviridae	Bclasvirinae	Coopervirus	Mycobacterium virus Cooper	5 (10)
Siphoviridae	Bclasvirinae	Pipefishvirus	Mycobacterium virus Pipefish	1 (4)
Siphoviridae	Bclasvirinae	Rosebushvirus	Mycobacterium virus Rosebush	1 (2)
Siphoviridae	Mclasvirinae	Bongovirus	Mycobacterium virus Bongo	0 (1)
Siphoviridae	Pclasvirinae	Fishburnevirus	Mycobacterium virus Fishburne	4 (5)
Siphoviridae	Pclasvirinae	Phayoncevirus	Mycobacterium virus Phayonce	1
Siphoviridae		Ab18virus	Pseudomonas virus Ab18	3
Siphoviridae		Amigovirus	Arthrobacter virus Amigo	1
Siphoviridae		Bennievirus	Arthrobacter virus Bennie	9
Siphoviridae		Bernal13virus	Mycobacterium virus Bernal13	1
Siphoviridae		Cronusvirus	Rhodobacter virus RcCronus	1
Siphoviridae		Decurrovirus	Arthrobacter virus Decurro	1
Siphoviridae		Demosthenesvirus	Gordonia virus Demosthenes	3
Siphoviridae		Eiauvirus	Edwardsiella virus eiAU	1
Siphoviridae		Gaiavirus	Mycobacterium virus Gaia	1
Siphoviridae		Gilesvirus	Mycobacterium virus Giles	1
Siphoviridae		Gordonvirus	Arthrobacter virus Gordon	2

Family	Subfamily	New genus	Type species	Number of new species in genus (total number of species in genus)
Siphoviridae		Gordtnkvirus	Gordonia virus GordTnk2	1
Siphoviridae		Harrisonvirus	Paenibacillus virus Harrison	1
Siphoviridae		Jenstvirus	Brevibacillus virus Jenst	1
Siphoviridae		Jwxvirus	Achromobacter virus JWX	2
Siphoviridae		Kelleziovirus	Arthrobacter virus Kellezio	2
Siphoviridae		Laroyevirus	Arthrobacter virus Laroye	1
Siphoviridae		Marvinvirus	Mycobacterium virus Marvin	2
Siphoviridae		Mudcatvirus	Arthrobacter virus Mudcat	2
Siphoviridae		Np1virus	Pseudomonas virus NP1	2
Siphoviridae		P12002virus	Polaribacter virus P12002L	2
Siphoviridae		P12024virus	Nonlabens virus P12024S	2
Siphoviridae		Pa6virus	Propionibacterium virus PA6	57
Siphoviridae		PaMx74virus	Pseudomonas virus PaMx74	2
Siphoviridae		Patiencevirus	Mycobacterium virus Patience	0(1)
Siphoviridae		Pepy6virus	Rhodococcus virus Реруб	2
Siphoviridae		Pis4avirus	Aeromonas virus pIS4A	1
Siphoviridae		Rdjlvirus	Roseobacter virus RDJL1	2
Siphoviridae		Rer2virus	Rhodococcus virus RER2	1
Siphoviridae		Send513virus	Mycobacterium virus Send513	2
Siphoviridae		Smoothievirus	Gordonia virus Smoothie	4
Siphoviridae		Soupsvirus	Gordonia virus Soups	1
Siphoviridae		Tankvirus	Arthrobacter virus Tank Tsukamurolla virus	1
Siphoviridae		Tin2virus	Tsukamurella virus TIN2	3
Siphoviridae		Titanvirus	Rhodobacter virus	2

Family	Subfamily	New genus	Type species	Number of new species in genus (total number of species in genus)
			RcTitan	
Siphoviridae		Vegasvirus	Paenibacillus virus Vegas	1
Siphoviridae		Vendettavirus	Gordonia virus Vendetta	1
Siphoviridae		Wildcatvirus	Mycobacterium virus Wildcat	1
Siphoviridae		Woesvirus	Gordonia virus Woes	3
Siphoviridae		Ydn12virus	Streptomyces virus YDN12	2
Tristromaviridae		Alphatristromavirus	Pyrobaculum filamentous virus 1	1 (2)

Notes

Acknowledgements

The committee would like to thank Dr. Igor Tolstoy (NCBI) for making available unpublished data on the structure of the NCBI viral database, and Dr. Graham Hatfull (University of Pittsburgh) for permitting us to use Actinobacteriophage Database electron micrographs in this year's taxonomy proposals. The authors thank Laura Bollinger (NIH/NIAID Integrated Research Facility at Fort Detrick, Frederick, MD, USA) for editing this paper.

Compliance with ethical standards

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the US Department of Health and Human Services or of the institutions and companies affiliated with the authors.

Funding

This work was funded in part through Battelle Memorial Institute's prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272200700016I. A subcontractor to Battelle Memorial Institute who performed this work is: J.H.K., an employee of Tunnell Government Services, Inc. B.E.D. was supported by the Netherlands Organization for Scientific Research (NWO) Vidi Grant 864.14.004. R.A.E was supported by grant MCB-1330800 from the National Science Foundation. J.R.B. was supported by the Intramural Research Program of the National Institutes of Health, National Library of Medicine. R.L. is a member of the phagebiotics research community, supported by FWO Vlaanderen. M.M.P. was supported by the Academy of Finland (272507 and 250113). A.G. was supported by the National Fund for Scientific Research (FNRS). H.M.O. was supported by University of Helsinki funding for Instruct research infrastructure, a Landmark ESFRI project. E.M.A was funded by project funding from the National Environmental Research Council (NERC, UK) and a Postdoctoral Fellowship from the Claude Leon Foundation (South Africa).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

- 1. Ågren J, Sundström A, Håfström T, Segerman B (2012) Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One 7:e39107
- 2. Barylski J, Nowicki G, Goździcka-Józefiak A (2014) The discovery of phiAGATE, a novel phage infecting *Bacillus pumilus*, leads to new insights into the phylogeny of the subfamily *Spounavirinae*. PLoS One 9:e86632
- Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:W29–33 (Web Server issue)
- Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469
- 5. Iranzo J, Krupovic M, Koonin EV (2016) The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing. MBio. doi:10.1128/mBio.00978-16
- 6. Klumpp J, Lavigne R, Loessner MJ, Ackermann H-W (2010) The SPO1-related bacteriophages. Arch Virol 155:1547–1561
- Klumpp J, Schmuki M, Sozhamannan S, Beyer W, Fouts DE, Bernbach V, Calendar R, Loessner MJ (2014) The odd one out: *Bacillus* ACT bacteriophage CP-51 exhibits unusual properties compared to related *Spounavirinae* W.Ph. and Bastille. Virology 462–463:299–308
- Krupovic M, Dutilh BE, Adriaenssens EM, Wittmann J, Vogensen FK, Sullivan MB, Rumnieks J, Prangishvili D, Lavigne R, Kropinski AM, Klumpp J, Gillis A, Enault F, Edwards RA, Duffy S, Clokie MRC, Barylski J, Ackermann H-W, Kuhn JH (2016) Taxonomy of prokaryotic viruses: update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 161:1095–1099
- 9. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM (2009) Classification of *Myoviridae* bacteriophages using protein sequence similarity. BMC Microbiol 9:224
- 10. NCBI Resource Coordinators (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44(D1):D7–D19

- 11. Turner D, Reynolds D, Seto D, Mahadevan P (2013) CoreGenes3.5: a webserver for the determination of core genes from sets of viral and small bacterial genomes. BMC Res Notes 6:140
- 12. Uchiyama J, Maeda Y, Takemura I, Gamoh K, Matsuzaki S, Daibata M (2012) Analysis of deoxynucleosides in bacteriophages φEF24C and K and the frequency of a specific restriction site in the genomes of members of the bacteriophage subfamily *Spounavirinae*. Arch Virol 157:1587–1592