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Abstract
Lie algebras and groups equipped with a multiplicationμ satisfying some compatibil-
ity properties are studied. These structures are called symmetric Lie μ-algebras and
symmetric μ-groups respectively. An equivalence of categories between symmetric
Lie μ-algebras and symmetric Leibniz algebras is established when 2 is invertible in
the base ring. The second main result of the paper is an equivalence of categories
between simply connected symmetric Lieμ-groups and finite dimensional symmetric
Leibniz algebras.
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1 Introduction

One of the leading motivations for introducing Leibniz algebras by Loday was an
intriguing possibility to define some mythical objects, which he named coquecigrues
(after Rabelais). Those should stand in the same relation to groups, as Leibniz algebras
are to Lie algebras. See [4, Section 11] for details, or [5, Section 5] for further details
and possible consequences for algebraic K-theory, etc.

Recently the second author looked into his very old file of papers and discovered
our notes written in 1995 and entitled “The first step to coquecigrue: the grin”, as well
as unpublished notes by Ronco [9] written about the same time, where among other
results our Corollary 6 is stated.
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Reading these notes after 24 years, we think they still are of some interest. The
present paper essentially consists of those notes of ours, with the addition of present
Sect. 6.

The aim of this work is to extend the classical correspondence between Lie groups
and Lie algebras to a bit wider class, namely between so called Lie μ-groups and
symmetric Leibniz algebras.

In Sect. 2 we introduce symmetric Leibniz algebras and state some of their prop-
erties that we will need.

In Sect. 3 we define the closely related symmetric Lie μ-algebras, and in Sect. 4
we prove that upon inverting 2 they become equivalent to symmetric Leibniz algebras
(Theorem 11).

In Sect. 5, group side counterparts of these structures enter, under the name of
symmetric μ-groups (�μ-groups for short). We exhibit there some of their properties
parallel to those for symmetric Leibniz algebras.

In Sect. 6 we consider the straightforward analogs of Lie groups for �μ-groups
and prove the analog of the classical equivalence between Lie algebras and simply
connected Lie groups—Corollary 19 describes an equivalence between the category of
finite dimensional symmetric Leibniz algebras and simply connected Lie �μ-groups.

Section 7 recasts our results in terms of the formalism of [1].We describe the theory
of symmetric Leibniz algebras as a linear extension of the theory of Lie algebras. We
also describe theories of symmetric Leibniz algebras and symmetric μ-groups as
pullbacks of diagrams of simpler theories.

Let us finish the introduction with acknowledging very useful advice of the referee
which helped to improve the paper a lot.

2 Symmetric Leibniz algebras

We fix a commutative ring K. All modules and tensor products are taken over K. The
category ofmodules is denoted byMOD and the category of Lie algebras byLIE.We
identify modules with abelian Lie algebras, so we have the inclusionMOD ⊂ LIE.

Leibniz algebras are a generalization of Lie algebras. Importance of these algebras
was realized by Jean-Louis Loday, see [3, Section 10.6]. Recall that a (right) Leibniz
algebra is a module L, equipped with an operation [−,−] : L⊗L → L such that the
right Leibniz identity holds:

[x, [y, z]] = [[x, y], z] − [[x, z], y]. (1)

We refer the reader to [5–7,10] for more on Leibniz algebras, Leibniz homology,
Leibniz representations and conjectures about coquecigrue. For other conjectures for
Leibniz algebras and Leibniz homology see [12,13].

The category of Leibniz algebras is denoted by LB. Recall that in any Leibniz
algebra one has identities

[x, [y, y]] = 0, [x, [y, z]] + [x, [z, y]] = 0, (2)
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which are direct consequences of the right Leibniz identity (1).
An exact sequence

0 → L1
i−→L p−→L2 → 0

of Leibniz algebras and Leibniz algebra homomorphisms is called abelian if L1 is an
abelian Leibniz algebra. Moreover it is called central if Im(i) is a central subalgebra
of L, that is

[i(a), x] = 0 = [x, i(a)]

hold for all x ∈ L and a ∈ L1.
Let L be a Leibniz algebra. The submodule of L generated by elements of the form

[x, x], x ∈ L is denoted by Lann. It is a two-sided ideal of L [6]. The quotient L/Lann

is a Lie algebra, denoted by LLie and called the Liezation of L. The functor L �→ LLie
is the left adjoint to the inclusion LIE ⊂ LB [6]. The inclusion MOD ⊂ LB also
has a left adjoint functor, which is given by L �→ Lab := L/[L,L]. The module Lab
is known as the abelization of L.
Lemma 1 Let L be a Leibniz algebra satisfying the left Leibniz identity:

[[x, y], z] = [x, [y, z]] − [y, [x, z]]. (3)

Then one has

i) [[x, x], y] = 0,
ii) [[x, y], z] + [[y, x], z] = 0,
iii) [[x, y], z] + [z, [x, y]] = 0,
iv) [[y, z], x] = [[x, z], y] − [[x, y], z],
v) [[[a, b], c], d] = [[[d, c], a], b]−[[[d, c], b], a]−[[[d, a], b], c]+[[[d, b], a], c],
vi) 2 [[x, y], [x, y]] = 0.

Proof Take x = y in the equality (3) to obtain i). The identity ii) is a formal conse-
quence of i). Relation iii) can be obtained by addition of the identities (1) and (3). To
show iv) one uses iii) and then the equality (1):

[[y, z], x] = −[[x, [y, z]] = [[x, z], y] − [[x, y], z].

Relation v) can be deduced from iv), if one puts y = [a, b], z = c, x = d and then
uses the equality (1):

[[[a, b], c], d] = [[d, c], [a, b]] − [[d, [a, b]], c]
= [[[d, c], a], b] − [[[d, c], b], a] − [[[d, a], b], c] + [[[d, b], a], c].

In order to prove vi) we take a = d = x and b = c = y in v):

[[[x, y], y], x] = [[x, y], x], y] − [[x, y], y], x] − [[[x, x], y], y] + [[[x, y], x], y].
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By the identity i) the third summation vanishes, and we get

2[[[x, y], y], x]] = 2[[[x, y], x], y].

Now vi) can be obtained using the identity (1):

2[[x, y], [x, y]] = 2[[[x, y], x], y] − 2[[[x, y], y], x] = 0.

��
Definition 2 A Leibniz algebra is symmetric, if it satisfies the left Leibniz identity (3)
and

[[x, y], [x, y]] = 0. (4)

By definition we have all identities proved in Lemma 1. Moreover, by vi) of the same
Lemma, if two-torsion inL is zero, then the condition (4) in Definition 2 is redundant.

Let SLB be the category of symmetric Leibniz algebras. It is obvious that Lie
algebras are exactly those symmetric Leibniz algebras forwhich the identity [x, x] = 0
holds. In particular we have inclusions LIE ⊂ SLB ⊂ LB.

Let L be a symmetric Leibniz algebra. Then by Lemma 1 we have

[L,Lann] = 0 = [Lann,L].

Thus one has a central extension of Leibniz algebras

0 → Lann → L → LLie → 0.

We will need the second divided power �2V of a module V [11]. Recall that �2V
is generated as a module by elements of the form x [2], x ∈ V . These generators must
satisfy the following relations

(x + y + z)[2] − (x + y)[2] − (x + z)[2] − (y + z)[2] + x [2] + y[2] + z[2] = 0,

(kx)[2] = k2x [2].

Here k ∈ K and x, y, z ∈ V . We set

x · y = (x + y)[2] − x [2] − y[2].

In this notations we have

x · x = 2x [2].

It follows from the definition that x · y is bilinear and symmetric on x and y. If V
is a free module, then �2V fits in the short exact sequence

0 → �2V
i−→V⊗2 → �2V → 0, (5)
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where i(x [2]) = x ⊗ x . Observe that i(x · y) = x ⊗ y + y ⊗ x .
Recall also that if 2 is invertible in K, then the map V⊗2 → �2(V ) given by

x ⊗ y → x · y yields an isomorphism Sym2(V ) ∼= �2(V ). Here and elsewhere Sym2

denotes the second symmetric power.

Lemma 3 i) LetL be a symmetric Leibniz algebra. Then there is awell-defined linear
map σ : �2(Lab) → L given by

σ(x̄ [2]) = [x, x].

ii) One has an exact sequence

�2(Lab)
σ−→L → LLie → 0

of Leibniz algebras and Leibniz algebra homomorphisms, where �2(Lab) is con-
sidered as an abelian Leibniz algebra. Moreover Im(σ ) is a central subalgebra of
L.

Proof i) For any x, y, z ∈ L we have

[x + [y, z], x + [y, z]] = [x, x] + [x, [y, z]] + [[y, z], x] + [[y, z], [y, z]]
= [x, x].

Here we used iii) and vi) of Lemma 1. Thus σ is well-defined.
ii) Comparing the definitions we see that Im(σ ) = Lann and hence the result. ��

Recall that a Leibniz algebra L is perfect if L = [L,L].
Corollary 4 Any perfect symmetric Leibniz algebra is a Lie algebra.

Proof In this case Lab = 0. Hence L → LLie is an isomorphism thanks to the part ii)
of Lemma 3. ��
Recall that [15] the free Lie algebra Lie(V ) generated by a free module V has a natural
grading

Lie(V ) = Lie1(V ) ⊕ Lie2(V ) ⊕ Lie3(V ) ⊕ · · · ,

where Lien(V ) is spanned by all n-fold commutators of elements of V . For n = 1 and
n = 2 we have Lie1(V ) = V and Lie2(V ) = �2V .

Recall also that [6] the free Leibniz algebra Leib(V ) generated by a module V is
also graded:

Leib(V ) = V ⊕ V⊗2 ⊕ V⊗3 ⊕ · · · ,

where the bracket on Leib(V ) is uniquely defined by the rule:

[ω, v] = ω ⊗ v.
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Here ω ∈ V⊗n , n ≥ 1, v ∈ V . In particular the map

πn : V⊗n → Lien(V )

given by

v1 ⊗ · · · ⊗ vn �→ [[[v1, v2], · · · vn−1], vn]

defines a surjective graded homomorphism of Leibniz algebras

π : Leib(V ) → Lie(V ),

which clearly induces an isomorphism (Leib(V ))Lie ∼= Lie(V ). It is also clear that the
map π is an isomorphism in degree 1.

Our next goal is to describe the free symmetric Leibniz algebra SymLeib(V ) gen-
erated by V . Clearly the homomorphism π has the following decomposition

Leib(V )
� 1−−→SymLeib(V )

� 2−−→Lie(V ),

where � 1 and � 2 are surjective Leibniz algebra homomorphisms.

Proposition 5 Let V be a free module. Then for L = SymLeib(V ), one has a central
extension of Leibniz algebras:

0 → �2(Lab)
σ−→L → LLie → 0.

Proof Since the defining relations of Leibniz and symmetric Leibniz algebras are of
degree 3, the free Leibniz and symmetric Leibniz algebras have the same components
in degree 1 and 2, which are respectively V = Lab and V⊗2. Thus injectivity of σ

follows from the exact sequence (5). The rest follows from Lemma 3. ��
Corollary 6 The free symmetric Leibniz algebra SymLeib(V ) is a graded module

SymLeib(V ) =
⊕

n≥0

SymLeibn(V ).

Moreover, the map

� 1
n : V⊗n → SymLeibn(V )

is an isomorphism when n = 1, 2, while the map

� 2
n : SymLeibn(V ) → Lien(V )

is an isomorphism, when n ≥ 3. Thus we have

SymLeib(V ) = V ⊕ V⊗2 ⊕ Lie3V ⊕ Lie4V ⊕ · · · .

123



Lie theory for symmetric Leibniz algebras

This result in the same period (i.e. around 1995) was obtained independently by
Ronco [9] when K is a field of characteristic �= 2.

3 Symmetric Lie �-algebras

We now introduce the notion of symmetric Lie μ-algebra, or, for short, Lie �μ-
algebra. The strange terminology stems from the fact that we actually aim at general
Lie μ-algebras, to be investigated in [2], of which the symmetric Lie μ-algebras are a
particular case.

Definition 7 A symmetric Lieμ-algebra is a pair (m, μ), wherem is a Lie algebra and
μ : m ⊗ m → m is a multiplication, such that the following identities hold

i) xy = yx ,
ii) x(yz) = 0 = (xy)z,
iii) x{y, z} = 0,
iv) {xy, z} = 0.

Here {−,−} denotes the Lie bracket on m and xy = μ(x ⊗ y).

The first two identities show that the pair (m, μ) is a commutative, associative nilpotent
algebra of class two. Conversely, any such algebra can be seen as a Lie �μ-algebra
with trivial bracket.

Any Lie algebra can be considered as a Lie �μ-algebra with zero multiplication
xy = 0. In particular any module has the structure of a Lie �μ-algebra with trivial
bracket and trivial multiplication. Such Lie �μ-algebras are called abelian Lie �μ-
algebras.

A Lie �μ-ideal of a Lie �μ-algebra m is a submodule a such that [m, a] ⊂ a and
ma ⊂ a. Moreover a is a central �μ-ideal if [m, a] = 0 = ma.

It follows from iv) of Definition 7 that submodule Im(μ) is a central ideal of m.
The quotient algebra is denoted by g = mLie and is called the Liezation of m. The
abelization of the Lie �μ-algebram is the module gab and is denoted bymAB in order
to distinguish it from mab which is the abelization of the underlying Lie algebra. The
last object has a canonical structure of a commutative, associative nilpotent algebra
of class two, because by the identity iii) Lie commutator [m,m] is an ideal of the
underlying commutative algebra.

Lemma 8 For a �μ-algebra m the product μ : m ⊗ m → m factors through
Sym2(mAB) yielding an exact sequence of �μ-algebras

Sym2(mAB)
μ′
−→m → g → 0,

where g = mLie, μ′(x̄ � ȳ) = xy and Sym2(mAB) is considered as abelian Lie �μ-
algebra. Here x̄ denotes the class of x ∈ m in mAB. Furthermore Im(μ′) is a central
�μ-ideal of m.
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Proof By our construction we have an exact sequence:

m ⊗ m
μ−−→m → g → 0.

Let us use identities of Definition 7. By the identity i) the map μ factors through
Sym2(m). Next, by the identity ii) it further factors through Sym2(mLie). It follows
from the identities iii) that this map factors through the second symmetric power of
abelization mAB and hence the result. ��

A Lie algebra g is called �μ-rigid if the only �μ-algebra structure on it is the
trivial one: xy = 0, x, y ∈ g.

Corollary 9 Let m be a Lie algebra, z be the center of m and h = m/[m,m].
i) Any �μ-algebra structure on m is determined by the linear map Sym2(h) → z,

given by x̄ � ȳ �→ xy, x, y ∈ m.
ii) Starting with a linear map 	 : Sym2(h) → z, define xy := 	(x̄ � ȳ), x, y ∈

m. This multiplication on m satisfies all conditions of Definition 7 except ii). If
additionally z ⊂ [m,m] then this multiplication defines a �μ-algebra structure
on m.

iii) A Lie algebra m is �μ-rigid if either m is perfect, or the center of m is trivial.

Proof i) is a weak form of Lemma 8. ii) is trivial, while iii) is immediate from i). ��
As an illustration of Corollary 9 we can takem to be the Heisenberg Lie algebra of

dimension 2k + 1, with basis x1, . . . , xk , y1, . . . , yk, z such that {xi , yi } = z for all
i = 1, . . . , k and other nontrivial brackets being zero. Choose a subset I ⊂ {1, . . . , k}
and define a �μ-algebra structure by

xi z = zxi = yi z = zyi = zz = 0,

xi yi = yi xi =
{
z if i ∈ I ,

0 if i /∈ I ,

xi y j = y j xi = 0, i �= j .

Proposition 10 Let Lie�μ(V ) be the free Lie�μ-algebra freely generated by amodule
V . Then themapμ′ from the Lemma 8 is injective and hence one has a central extension
of Lie �μ-algebras:

0 → Sym2(V )
μ′
−→Lie�μ(V ) → Lie(V ) → 0.

Proof We set m = Lie�μ(V ). Since the left adjoint of the composite functor

LIE ⊂ LB
forget−−−→MOD

is the composite of corresponding left adjoint functors, we have mLie = Lie(V ). By
similar reasoning mAB ∼= V . For simplicity we identify these modules. For the map
μ′ we have
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μ′(u � v) = uv.

Here u, v ∈ V = mAB and uv ∈ m.
Any commutative, associative nilpotent algebra of class two can be considered as

a Lie �μ-algebra with trivial bracket. In particular, we can take the free such algebra
generated by V , that is

Com.Ass.Nil2(V ) = V ⊕ Sym2(V ),

where for x, y ∈ V , ω,ω1 ∈ Sym2(V ) one sets

xy := x � y ∈ Sym2(V ), xω = 0, {x, y} = 0 {x, ω} = 0, {ω,ω1} = 0.

By universal property of free Lie �μ-algebras the identity map IdV has a unique
extension c : Lie�μ(V ) → Com.Ass.Nil2(V ). For any u, v ∈ V we have

c ◦ μ′(u � v) = c(uv) = c(u)c(v) = u � v.

Thus c ◦ μ′ = IdSym2(V ) and the result follows. ��

4 The case when 2 is invertible in K

In this section we assume that 2 is invertible in K. Our goal is to prove the following
result.

Theorem 11 The categories of symmetric Leibniz algebras and Lie �μ-algebras are
isomorphic.

This a consequence of Propositions 12 and 13 below.

Proposition 12 Let L be a symmetric Leibniz algebra. We put:

2{x, y} = [x, y] − [y, x],
2xy = [x, y] + [y, x].

(Thus [x, y] = {x, y}+xy.)ThenL togetherwith operations {−,−} andμ(x, y) = xy
is a Lie �μ-algebra.

Proof First we look at the bracket {−,−}. The relation {x, x} = 0 is obvious. Since
[x,−] and [−, x] are derivations, the same is true for {x,−}. Thus {−,−} is a Lie
algebra structure.

Next about themultiplication.Obviously themap (x, y) �→ xy gives a commutative
algebra structure. We have

2[x, yz] = [x, [y, z] + [z, y]] = 0.
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Similarly

2[yz, x] = [[y, z] + [z, y], x] = 0.

Here we used the identity (2) and the identity (ii) of Lemma 1. It follows that

2x(yz) = [x, yz] + [yz, x] = 0.

Similarly

2(xy)z = [xy, z] + [z, xy] = 0.

This shows that the multiplication defines a commutative and associative algebra
structure of nilpotence degree two.

We have

4x{y, z} = [x, 2{y, z}] + [2{y, z}, x]
= [x, [y, z]] − [x, [z, y]] + [[y, z], x] − [[z, y], x].

By the relation iii) of Lemma 1 the first and third summand gives zero, same with
remaining summands. Hence 4x{y, z} = 0.

Similarly

4{xy, z} = 2[xy, z] − 2[z, xy] = [[x, y] + [y, x], z] − [z, [x, y] + [y, x]] = 0,

because of relations (2) and the identity (ii) of Lemma 1. This finishes the verification
that one really obtains a Lie �μ-algebra. ��

Proposition 13 Let m be a Lie �μ-algebra. We put

[x, y] = {x, y} + xy.

Then [−,−] defines a symmetric Leibniz algebra structure on m.

Proof For [x, y] = {x, y} + xy one has:

[[x, y], z] = {[x, y], z} + [x, y]z
= {[x, y], z} = {{x, y}, z} + {xy, z} = {{x, y}, z}

and hence both the right and left Leibniz identities are fulfilled. Checking (4) is not
necessary, as mentioned after Definition 2. ��
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5 6�-groups

In this section K = Z. The category of abelian groups is denoted by AB, while the
category of groups is denoted by GR. It is well known that the inclusion AB ⊂ GR
has the left adjoint given by T �→ Tab = T /[T , T ], T ∈ GR. The group Tab is called
the abelization of the group T .

The following is a group-theoretic version of Definition 7. Just as the latter, this is
a particular case of the notion of general μ-group, which we will study in [2].

Definition 14 A �μ-group is a pair (G, μ), where G is a group, not necessarily
commutative, written additively, together with a binary operation μ : G × G → G
such that:

i) xy = yx,
ii) x(yz) = 0 = (xy)z,
iii) xy + z = z + xy,
iv) x(y + z) = xy + xz.

Here xy = μ(x, y).

Obviously any commutative associative nilpotent algebra of class two is a �μ-
group. Also any group can be considered as a �μ-group with zero multiplication.

Denote the category of �μ-groups by GR�μ. Since any group has a trivial �μ-
group structure (i.e. μ = 0), we see that GR ⊂ GR�μ. The inclusion has a left
adjoint. To describe it, we fix some obvious facts.

For a �μ-group G, denote by Zgr(G) the center of the group G, that is

Zgr(G) = {x ∈ G | x + z = z + x, for all z ∈ G}.

Denote by K the subgroup of G generated by all elements of the form xy, x, y ∈ G.
By iii) K ⊂ Zgr(G). Thus K is a central subgroup of the underlying group of G and
we can consider the corresponding quotient group Ggr = G/K . Then the assignment
G �→ Ggr defines the functorGR�μ → GR, which is the left adjoint to the inclusion
GR ⊂ GR�μ. We also need the group (Ggr)ab = Ggr/[Ggr,Ggr], which is denoted
by GAB and is called the abelization of a �μ-group G.

For �μ-groups one can introduce the notion of a �μ-subgroup in an obvious
way. A �μ-subgroup H of �μ-group G is normal if it is a normal subgroup of the
underlying group and HG ⊂ H . A �μ-subgroup H is central if

a + x = x + a, and ax = 0

hold for all x ∈ G and a ∈ H . Now, it should be clear the mining of the central
extension of �μ-groups. Observe that K is a central �μ-subgroup of G.

Thanks to the condition iv), the map λx : G → G given by λx (y) = xy is a group
homomorphism for all x ∈ G. Moreover by ii) it factors through the group Ggr. Since
Im(λx ) ⊂ Zgr(G), we see that λx is a homomorphism into an abelian group Zgr(G)

and hence it factors through the abelization GAB. It follows from the condition i) that
the map μ yields a well-defined homomorphism
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Sym2(GAB) → Zgr(G); x̄ � ȳ �→ xy,

which we by abuse of notation will still be denoted by μ. Here x̄ denotes the class of
x ∈ G in GAB.

It is clear that K = Im(μ) and hence one has a natural exact sequence of�μ-groups

Sym2(GAB)
μ−→G → Ggr → 0. (6)

Moreover, Im(μ) = K is a central �μ-subgroup of G.
A group G is called�μ-rigid if the only�μ-group structure on it is the trivial one:

xy = 0, x, y ∈ G. As in the case of Lie �μ-algebras we have the following analogue
of Corollary 9.

Corollary 15 Let M be a group, Z be the center of M and H = M/[M, M].
i) Any �μ-group structure on M determines a homomorphism of abelian groups

Sym2(H) → Z, given by x̄ � ȳ �→ xy, x, y ∈ M.
ii) Starting with a linear map	 : Sym2(H) → Z, define xy := 	(x̄� ȳ), x, y ∈ M.

This multiplication satisfies all conditions of Definition 7 except ii). If additionally
Z ⊂ [M, M] then this multiplication defines a �μ-group structure on m.

iii) A group M is �μ-rigid if either M is perfect, that is M = [M, M] or the center
of M is trivial.

We omit the proof of this fact, since it goes along the same lines as the proof of
Corollary 9.

Here is someexamples basedonPart ii) ofCorollary 15.Take the dihedral group D2n
of order 4nwith generators x and y, such that 2nx = 0 = 2y and y+x+y = (2n−1)x .
One easily sees that there exists a unique �μ-algebra structure such that xy = nx ,
xx = 0 = yy. As another example, one can introduce a nontrivial�μ-group structure
on theHeisenberggroup, similar to onewhichwedescribed forHeisenbergLie algebra.
Details are left to the interested readers.

Denote by Z[S] the free abelian group generated by a set S. Similarly, denote by
Gr[S] (resp. Gr�μ[S]) the free group (resp. free �μ-group) generated by S. In these
notations we have

Lemma 16 One has the following central extension of �μ-groups.

0 → Sym2(Z[S]) μ−→Gr�μ[S] → Gr[S] → 0.

Proof ForG = Gr�μ[S], one hasGgr = Gr[S] andGAB = Z[S], by the adjoint functor
argument (see the proof of Proposition 10). Thus we can use the exact sequence (6).
We only need to show injectivity of μ.

Any commutative, associative nilpotent ring of class two can be considered as a
�μ-group. In particular, we can take the free such a ring generated by V = Z[S], that
is

Com.Ass.Nil2(Z[S]) = Z[S] ⊕ Sym2(Z[S]).

123



Lie theory for symmetric Leibniz algebras

By the universal property of free �μ-groups the identity map IdS has a unique exten-
sion

c : Gr�μ[S] → Com.Ass.Nil2(Z[S]).

We have

c ◦ μ(x � y) = c(xy) = c(x)c(y) = x � y

for all x, y ∈ S. Thus c ◦ μ = IdSym2(Z[S]) and the result follows. ��

6 Lie 6�-groups

In this section K = R. Denote by L the canonical functor from the category of Lie
groups to the category of finite dimensional Lie algebras. Recall that the restriction of
L to the subcategory of simply connected Lie groups is an equivalence of categories
[15, Theorem 2, p.152].

As Lie groups are smooth analogues of discrete groups, the following is a smooth
analogue of �μ-groups.

Definition 17 A Lie �μ-group is a smooth manifold M , equipped with a structure of
�μ-group, such that the maps

μ,+ : M × M → M, − : M → M .

are smooth.

Now we extend the functor L to Lie �μ-groups.
Let M be a Lie �μ-group with �μ-structure μ(x, y) = xy. Denote by K the

closure of the subgroup generated by elements of the form xy, x, y ∈ M . Then
G = M/K is also a Lie group. Denote by G ′ the closure of the commutator [G,G].
Then H := G/G ′ is an abelian Lie group.

Since (xy)z = 0 = x(yz) holds for all x, y, z ∈ M and μ is smooth, it follows
that μ(K , x) = 0 = μ(x, K ) for all x ∈ M . Based on this and use the identity (iv) of
Definition 14, we see thatμ factors through themapG×G → Z , where Z is the center
of M . By abuse of notations we still denote this map by μ. As we have seen in Sect. 5,
μ vanished on the commutatorsμ([G,G], x) = 0 = μ(x, [G,G]). Sinceμ is smooth
it vanishes on G ′ yielding a smooth map μ : H × H → Z which is a homomorphism
of abelian Lie groups with respect to each variables. It follows that it defines a bilinear
multiplication on corresponding Lie algebras L(H) × L(H) → L(Z) and hence the
multiplication on L(M) via

L(M) × L(M) � L(G) × L(G) � L(H) × L(H) → L(Z) ⊂ L(M).

It follows from the part ii) of Corollary 9 that this is in fact a Lie �μ-algebra structure
on L(M).
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Thus we constructed the functor

{Lie �μ-groups} L−→ {Lie �μ-algebras}.

Theorem 18 The functor L yields an equivalence between the category of simply
connected Lie �μ-groups and finite dimensional Lie �μ-algebras.

Proof We construct the functor

{f.d.Lie �μ-algebras} R−→{simply connected Lie �μ-groups}

as follows.
Let m be a Lie �μ-algebra. Denote by z the center of the underlying Lie algebra

of m. We also set g := mLie and h := mAB = gab. Then we have an exact sequence

h ⊗ h
μ−→m

p−→g → 0,

Moreover, a := Im(μ) ⊂ z is a central subalgebra of the underlying Lie algebra ofm.
From now, we assume thatm is finite dimensional. Obviously g is also finite dimen-

sional. By mentioned equivalence of categories there are simply connected Lie groups
M and G and a homomorphism of Lie groups ρ : M → G such that L(M) = m,
L(G) = g and L(ρ) = p. Obviously this can be done functorially with respect of m.
By [8, Corollary, p.40 ] the center Z of M is a normal Lie subgroup and L(Z) = z.

We set A = Ker(ρ). Since p is surjective, ρ is also surjective, see part (iii) of [14,
Theorem 2, p.76]. Thus we have a short exact sequence of Lie groups

0 → A → M
ρ−→G → 0.

By the part (ii) of [14, Theorem 2, p.76] we have L(A) = a ⊂ z. Hence A is a central
subgroup of M . So A ⊂ Z . Since ρ is a fibration with fibre A the homotopy exact
sequence shows that A is connected.

Since G is simply connected, the commutator [G,G] is a closed and connected
subgroup of G with L([G,G]) = [g, g], see [8, Theorem 5.1]. It follows that H :=
G/[G,G] is a well-defined abelian Lie group with L(G/[G,G]) = h. The map
G → H is a fibration with connected fibre [G,G]. It follows that H := G/[G,G] is
a simply connected, abelian Lie group. Thus the canonical map exp : h → H is an
isomorphism. We can now form the diagram

h × h
μ

exp×exp

a

exp

H × H A.

Since the left arrow is an isomorphism of Lie groups, we obtain a smooth map H ×
H → A ⊂ Z . Now we can take the composite map
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M × M � G × G � H × H → Z ⊂ M,

to obtain the multiplication map in M . By Part ii) of Corollary 15 in this way we obtain
a �μ-group structure on M . This finishes the construction of the functor R.

Take a simply connected Lie�μ-groupM . Recall that K was defined as the closure
of the subgroup generated by xy, x, y ∈ M . It follows that K is connected and hence
G = M/K is also simply connected. Now, comparing the constructions we see that
RL(M) ∼= M .

Conversely, if m is a finite dimensional �μ-algebra, then a, which is defined as
the subspace of m generated by elements of the form xy, x, y ∈ m coincides with the
subgroup generated by the same elements. This follows from the (bi)linearity of the
product. Since A is abelian, the exponential map exp : a → A is epimorphism. From
this follows that the subgroup K ⊂ M = R(m) and A coincide and LR(m) ∼= m. ��
Corollary 19 The category of finite dimensional symmetric Leibniz algebras is equiv-
alent to the category of simply connected Lie �μ-groups.

Proof This is a direct consequence of Theorems 11 and 18. ��

7 Interpretation in language of algebraic theories

The algebraic theories corresponding to Lie, Leibniz and symmetric Leibniz K-
algebras are denoted respectively by LIEK ,LBK and SLBK .

We refer to [1] for the notion of (linear) extension of algebraic theories. Comparing
the definitions we see that Proposition 5 can be restated as

Lemma 20 One has a linear extension of algebraic theories:

0 → �2((−)ab)+ → SLBK → LIEK → 0.

Moreover if 2 is invertible in K, this extension splits.

Recall that the functor Rings → Algebraic Theories which sends the ring R to the
theory of right R-modules is full and faithful. Because of this we identify rings with
their corresponding theories of modules.

Let COMK(2) denote the algebraic theory of nilpotent commutative associative
K-algebras of class 2, that is algebras obeying the identities

xy = yx, (xy)z = 0.

Then one has a split linear extension of algebraic theories (compare [1])

0 → Sym2((−)ab)+ → COMK(2) → K → 0

If 2 is invertible in K, then �2 = Sym2 and we get the following
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Proposition 21 If 2 is invertible in K, then the diagram

SLBK LIEK

COMK(2) K.

is the pull-back diagram in the category of algebraic theories.

Quite similarly, if one denotes by GR (resp. GR�μ, AB) the algebraic theory of
groups (rep. �μ-groups, abelian groups), then as an immediate corollary of Lemma
16 we obtain the following fact

Proposition 22 The diagram

GR�μ GR

COMZ(2) AB

is the pull-back diagram in the category of algebraic theories.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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source, provide a link to the Creative Commons license, and indicate if changes were made.
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