Encoding Nearest Larger Values

Michael Hoffmann ${ }^{\text {a }}$, John Iacono ${ }^{\text {b }}$, Patrick K. Nicholson ${ }^{\text {c }}$, Rajeev Raman ${ }^{\text {a, }}$
${ }^{a}$ University Road, Leicester, United Kingdom
${ }^{b}$ New York University, School of Engineering, 6 MetroTech Center, Brooklyn, New York, United States of America
${ }^{c}$ Bell Labs, Clyde House, Blanchardstown Business and Technology Park, Dublin, Ireland

Abstract

In nearest larger value (NLV) problems, we are given an array $A[1 . . n]$ of distinct numbers, and need to preprocess A to answer queries of the following form: given any index $i \in[1, n]$, return a "nearest" index j such that $A[j]>A[i]$. We consider the variant where the values in A are distinct, and we wish to return an index j such that $A[j]>A[i]$ and $|j-i|$ is minimized, the nondirectional $N L V$ ($N N L V$) problem. We consider NNLV in the encoding model, where the array A is deleted after preprocessing.

The NNLV encoding problem turns out to have an unexpectedly rich structure: the effective entropy (optimal space usage) of the problem depends crucially on details in the definition of the problem. Of particular interest is the tiebreaking rule: if there exist two nearest indices j_{1}, j_{2} such that $A\left[j_{1}\right]>A[i]$ and $A\left[j_{2}\right]>A[i]$ and $\left|j_{1}-i\right|=\left|j_{2}-i\right|$, then which index should be returned? For the tiebreaking rule where the rightmost (i.e., largest index) is returned, we encode a path-compressed representation of the Cartesian tree that can answer all NNLV queries in $1.89997 n+o(n)$ bits, and can answer queries in $O(1)$ time. An alternative approach, based on forbidden patterns, achieves the same space bound and query time, and (for a slightly different tiebreaking rule) achieves $1.81211 n+o(n)$ bits. Finally, we develop a fast method of counting distinguish-

[^0]able configurations for NNLV queries. Using this method, we prove a lower bound of $1.62309 n-\Theta(1)$ bits of space for NNLV encodings for the tiebreaking rule where the rightmost index is returned.

Keywords: Data structures, encoding data structures, succinct data
structures.

1. Introduction

Nearest Larger Value (NLV) problems have had a long and storied history. Given an array $A[1 . . n]$ of values, the objective is to preprocess A to answer queries of the general form: given an index i, report the index or indices nearest ${ }_{5}$ to i that contain values strictly larger that $A[i]$. If no such index exists, then $A[i]$ is the maximum element in A, and we return -1 .

Berkman et al. [1] studied the parallel pre-processing for this problem and noted a number of applications, such as parenthesis matching and triangulating monotone polygons. The connection to string algorithms for both the data structuring and the pre-processing variants of this problem is since well-established.

Since the definition of "nearest" is a bit ambiguous, we propose replacing it by one of the following options in order to fully specify the problem:

- Unidirectionally nearest: the solution is the index $j \in[1, i-1]$ such that $A[j]>A[i]$ and $i-j$ is minimized.
- Bidirectionally nearest: the solution consists of indices $j_{1} \in[1, i-1]$ and $j_{2} \in[i+1, n]$ such that $A\left[j_{k}\right]>A[i]$ and $\left|i-j_{k}\right|$ is minimized for $k \in\{1,2\}$.
- Nondirectionally nearest: the solution is the index j such that $A[j]>A[i]$ and $|i-j|$ is minimized. As far as we are aware, this formulation has not been considered before.
${ }_{20}$ Furthermore, the data structuring problem has different characteristics depending on whether we consider the elements of A to be distinct (Berkman et al. considered the undirectional variant when all elements in A are distinct).

We consider the problem in the encoding model, where once the data structure to answer queries has been created, the array A is deleted. Since it is not below are tight to within lower-order terms):

- The bidirectional NLV when A contains distinct values boils down essentially to encoding a Cartesian tree, through which route $2 n+o(n)$-bit and $O(1)$-time data structures exist [3, 4].
- The bidirectional NLV for the case where elements in A need not be distinct was first studied by Fischer [7]. His data structure occupies $\lg (3+2 \sqrt{2}) n+o(n) \approx 2.544 n+o(n)$ bits of space ${ }^{2}$, and supports queries in $O(1)$ time.

In this paper, we consider the nondirectionally nearest larger value (NNLV)
${ }_{45}$ problem, in the case that all elements in A are distinct. The above results

[^1]already hint at the combinatorial complexity of NLV problems. However, the NNLV problem appears to be even richer, and the space bound appears not only to depend upon whether A is distinct or not, but also upon the specific tie-breaking rule to use if there are two equidistant nearest values to the query

Interestingly, it turns out that the tie breaking rule is important for the space bound. That is, if we count the number of distinguishable configurations of the NNLV problem for the various tie breaking rules, then we get significantly different answers. We counted the number of distinguishable configurations, for ${ }_{60}$ problem instances of size $n \in[1,12]$, and got the sequences presented in Table 1 .

Unfortunately, none of the above sequences appears in the Online Encyclopedia of Integer Sequences s^{3}. Consider the sequence generated by some arbitrary tie breaking rule. If z_{i} is the i-th term in this sequence, then $\lim _{n \rightarrow \infty} \lg \left(z_{n}\right) / n$ is the constant factor in the asymptotic space bound required to store all the

1.1. Our Contributions

Our main results are as follows. First, we present the following upper bound:

Theorem 1. Let $A[1 . . n]$ be an array containing distinct numbers. The array A can be processed to obtain an encoding data structure that occupies $1.89997 n+$ $o(n)$ bits of space, that can answer the query $\operatorname{NNLV}(A, i)$ in $O(1)$ time for any $i \in[1, n]$. Ties are resolved using rule I. At no point after preprocessing does the data structure require access to the array A.

[^2]
Table 2: Summary of results for the nearest larger value problem. The column distinct specifies whether the values are specified to be distinct or not. The column space bound indicates the type of result: "Matching Bounds" means that the bound presented is optimal to within lower order terms.

$O(1)$
$O(1)$
$O(1)$
$O(1)$
$O(1)$
${ }^{O(1)}$
(ti pace

As mentioned before, the Cartesian tree (defined later) occupies $2 n+o(n)$ bits and can solve NNLV queries. In Section 3 we describe a novel path-compressed numeric calculation bounding the worst case structure of chains in the Cartesian tree for our compression scheme (Section 4). Later, in Section 6 we show how to support operations on the "lossy" Cartesian tree, thereby proving Theorem 1 .

We also present an alternate construction, based on forbidden patterns in and also achieves a better upper bound for a different tiebreaking rule.

Theorem 2. Let $A[1 . . n]$ be an array containing distinct numbers. The array A can be processed to obtain an encoding data structure that occupies $1.81211 n+$ $o(n)$ bits of space, that can answer the query $\operatorname{NNLV}(A, i)$ in $O(1)$ time for any the data structure require access to the array A.

After discussing upper bounds, in Section 7 we discuss methods to efficiently enumerate the number of distinguishable configurations of arrays of size n with respect to NNLV queries (subject to tiebreaking rule I). Using these methods representation of a binary tree that uses $2 n+O(\lg n)$ bits (but supports no operations). To get the improved space bound of Theorem 1 we prove combinatorial properties of the NNLV problem relating to chains of degree one nodes in the Cartesian tree. These properties allow us to compress the Cartesian tree using the representation of Section 3, losing some information, but still retaining the ability to answer NNLV queries. The constant factor (1.89997) comes from a binary strings, in Section 5. This construction is simpler than that of Section 3 , $i \in[1, n]$. Ties are resolved using rule III. At no point after preprocessing does we are able to extend the row for rule I of Table 1 to $n=700$.

Using this extended table, in Section 8, we prove the following lower bound:

Theorem 3. Any encoding data structure that can answer the query $\operatorname{NNLV}(A, i)$ for any $i \in[1, n]$ (breaking ties according to rule I) must occupy at least $1.62309 n-$ $\Theta(1)$ bits, for sufficiently large values of n.

A summary of the known results for all variants of the NLV problem can be found in Table 2. We leave the variant of the NNLV problem for non-distinct
values as future work.

1.2. Other Related Work

Asano et al. 8] studied the time complexity of computing all nearest larger values in an array as well as higher dimensions, and mention applications to communication protocols. Asano and Kirkpatrick [9] considered sequential timespace tradeoffs for computing the nearest larger values of all elements in the array. When A is a random permutation, the expected effective entropy of the bidirectional NLV problem was shown to be $1.74 n+o(n)$ bits by Golin et al. 2]. Finally, Jayapaul et al. 6] studied the nearest larger value problem in two dimensional arrays.

2. Cartesian Tree Review

Given a binary tree T, let $d(v)$ denote the degree (i.e., number of children) of node v, and $p(v)$ denote the parent of v. We define the rank $r(v)$ to be the inorder rank of the node v in the binary tree T. Define the range of a node v to be the range $\left[e_{1}(v), e_{2}(v)\right]$, where $e_{1}(v)$ (resp. $\left.e_{2}(v)\right)$ is the inorder rank of the leftmost (resp. rightmost) descendant of v.

Suppose we are given an array $A[1 . . n]$ which stores an n element permutation π, i.e., $A[i]=\pi(i)$. The Cartesian tree of $A[1 . . n]$ is the n node binary tree T such that the root v of T has rank $r(v)=\arg \max _{i} A[i]$. If $r(v)>1$, then the left child of v is the Cartesian tree of $A[1 . . r(v)-1]$, otherwise it has no left child. If $r(v)<n$ then the right child of v is the Cartesian tree of $A[r(v)+1 . . n]$, otherwise it has no right child. Figure 1 (bottom panel) illustrates the Cartesian tree of an example array (top panel).

We require the following technical lemma about Cartesian trees:

Lemma 1. Consider a node v in a Cartesian tree T having range $\left[e_{1}(v), e_{2}(v)\right]$.
If $e_{1}(v)-1 \geq 1$ then $A\left[e_{1}(v)-1\right]>A[r(v)]$. Similarly, if $e_{2}(v)+1 \leq n$ then
$A\left[e_{2}(v)+1\right]>A[r(v)]$.

Figure 1: Top: an array containing a permutation of $\{1, \ldots, 30\}$. Middle: The tree structure of the NNLV problem. Here the parent of a node represents its NNLV, breaking ties by selecting the element on the right (rule I). Bottom: The Cartesian tree.

Proof. If v is the root of T, then $e_{1}(v)-1=0$ and $e_{2}(v)+1=n+1$, and the lemma holds trivially. Thus, suppose $p(v)$ exists. Since the Cartesian tree is binary, we have two cases: (i) $e_{1}(p(v))=e_{1}(v)$, which implies $r(p(v))=e_{2}(v)+1$ and therefore $A\left[e_{2}(v)+1\right]>A[r(v)]$; or (ii) $e_{2}(p(v))=e_{2}(v)$, which implies $r(p(v))=e_{1}(v)-1$, and therefore $A\left[e_{1}(v)-1\right]>A[r(v)]$. This proves the lemma in the case where either $e_{1}(v)-1=0$ or $e_{2}(v)+1=n+1$. Next, suppose that both $e_{1}(v)-1 \geq 1$ and $e_{2}(v)+1 \leq n$. Thus, let u be the closest ancestor of v such that $e_{1}(u) \neq e_{1}(v)$ and $e_{2}(u) \neq e_{2}(v)$. By the definition of $u, u \neq p(v)$. Consider the child of u, denoted w, that contains v in its subtree. There are two cases: (i) $e_{2}(w)=e_{2}(v)$, which implies $r(u)=e_{2}(v)+1$ and therefore $A\left[e_{1}(v)-1\right]=A[r(p(v))]>A[r(v)]$ and $A\left[e_{2}(v)+1\right]=A[r(u)]>$ $A[r(v)]$; or (ii) $e_{1}(w)=e_{1}(v)$, which implies $r(u)=e_{1}(v)-1$, and therefore $A\left[e_{1}(v)-1\right]=A[r(u)]>A[r(v)]$ and $A\left[e_{2}(v)+1\right]=A[r(p(v))]>A[r(v)]$.

NLV and Cartesian Trees. Lemma 1 is key to using the Cartesian tree for computing NLVs. Let v be a node in a Cartesian tree with range $\left[e_{1}(v), e_{2}(v)\right]$. Then the following observations are immediate:

1. If $e_{1}(v)>1$ then $e_{1}(v)-1$ is the nearest larger value to the left of $A[r(v)]$. If $e_{1}(v)=1$ then there is no larger value to the left of $A[r(v)]$.
2. If $e_{2}(v)<n$ then $e_{2}(v)+1$ is the nearest larger value to the right of $A[r(v)]$. If $e_{2}(v)=n$ then there is no larger value to the right of $A[r(v)]$.

Thus, by comparing $r(v)-e_{1}(v)$ and $e_{2}(v)-r(v)$ we can obtain $\operatorname{NNLV}(A, r(v))$ according to tie break rule I.

If $e_{1}(v)>1$, then let w be the vertex corresponding to $A\left[e_{1}(v)-1\right]$. If $e_{2}(v)<n$, then let x be the vertex corresponding to $A\left[e_{2}(v)+1\right]$. The following observations follow directly from the definition of the Cartesian tree.

1. If $e_{1}(v)=1$ and $e_{2}(v)=n$ then v is the root of the Cartesian tree.
2. If $e_{1}(v)>1$ and $e_{2}(v)=n$ then $w=p(v)$.
3. If $e_{1}(v)=1$ and $e_{2}(v)<n$ then $x=p(v)$.
4. If $e_{1}(v)>1$ and $e_{2}(v)<n$ either w or x is $p(v)$.

Assume that $e_{1}(v)>1$ and $e_{2}(v)<n$. We now argue that either w is a descendant of x, or vice versa. If not, let u be the LCA of w and x. Clearly $A[r(u)]$ is greater than both $A\left[e_{1}(v)-1\right]$ and $A\left[e_{2}(v)+1\right]$, and hence, by Lemma 1 , $A[r(u)]>A[r(v)]$. However $e_{1}(v)-1<r(u)<e_{2}(v)+1$, i.e. $r(u)$ is within the extent of v, a contradiction. Thus, we can break ties according to rules II or III as well, by seeing if $r(p(v))=e_{1}(v)-1$ or $r(p(v))=e_{2}(v)+1$.

3. A Path Based Tree Representation

Consider an arbitrary rooted binary tree T with n nodes. We next describe a path-based encoding of such a tree that occupies no more than $2 n+\Theta(\lg n)$ bits.

We identify all maximal chains $v_{1}, \ldots, v_{\ell}, v_{\ell+1}$ such that:

1. Either v_{1} is the root of T, or $d\left(p\left(v_{1}\right)\right)=2$;
2. $d\left(v_{i}\right)=1$ for $i \in[1, \ell]$, and;
3. $d\left(v_{\ell+1}\right) \in\{0,2\}$.

We refer to $v_{\ell+1}$ as the terminal of the chain. Iteratively, we remove each such maximal chain: i.e., the nodes v_{1}, \ldots, v_{ℓ} are removed from the tree. If v_{1} was the root, then $v_{\ell+1}$ is set to be the new root. Otherwise, $v_{\ell+1}$ is set to be the left (resp. right) child of $p\left(v_{1}\right)$ iff v_{1} was the left (resp. right) child of $p\left(v_{1}\right)$. We call the chain left hanging if $p\left(v_{1}\right)$ had v_{1} as a left child, and right hanging otherwise. After removing all such maximal chains, the tree T^{\prime} that remains is a full binary tree (i.e., it has no nodes of degree one) and has $n^{\prime} \leq n$ nodes. Suppose that we have removed k nodes, for some $k \in[0, n-1]$, and so $n=n^{\prime}+k$.

Suppose there are m maximal chains removed during the process just described. We now describe the representation of the original tree T.

- We store the tree T^{\prime}, which is a full binary tree and requires $n^{\prime}+O(1)$ bits to represent.
- We store a bitvector B of length n^{\prime}. Bit $B[i]=1$ iff the node v, corresponding to the i-th node in an inorder traversal of T^{\prime}, is the terminal of a removed chain. This requires $\left\lceil\lg \binom{n^{\prime}}{m}\right\rceil$ bits.
- Suppose we order the subset of nodes that are terminals by their inorder rank in T^{\prime}, and that v is the terminal ordered i-th. We refer to the chain having v as its terminal as \mathcal{C}_{i}, and its length as c_{i}. We store a bitvector L of length k, which represents the lengths of each removed chain; i.e., the values c_{1}, \ldots, c_{m}. Let $p_{i}=\sum_{j=1}^{i} c_{i}$ for $i \in[1, m]$. Then $L\left[p_{i}\right]=1$ for $i \in[1, m]$, and all other entries of L are 0 . As L is a bit sequence of length k with m one bits, it can be stored using $\left\lceil\lg \binom{k}{m}\right\rceil$ bits.
- For each chain $\mathcal{C}_{i}=\left\{v_{1}, \ldots, v_{c_{i}}\right\}$ having terminal node $v_{c_{i}+1}$, we store a bitvector Z_{i} of length c_{i}, in which $Z_{i}[j]=0$ if v_{j+1} is the left child of v_{j},
and $Z_{i}[j]=1$ otherwise. Let Z be the concatenation of each $Z_{i}, i \in[1, m]$ and is of length k. We store Z naively using k bits.

We call the above data structures, bitvectors B, L, Z and the tree T^{\prime} the path compressed representation of T. Note that to decode this and recover the tree T, we require the value of n and n^{\prime}. These can be stored using an additional $\Theta(\lg n)$ bits. By summing the above space costs, we get the following lemma.

Lemma 2. The path compressed representation of an arbitrary binary tree T completely describes the combinatorial structure of T, and can be stored using $n^{\prime}+\lg \binom{n^{\prime}}{m}+\lg \binom{k}{m}+k+\Theta(\lg n) \leq 2 n^{\prime}+2 k+\Theta(\lg n)=2 n+\Theta(\lg n)$ bits.

4. Encoding Nearest Larger Values

In this section we show how to use the path compressed tree representation to compress Cartesian trees-losing some information in the process-but still retaining the ability to answer NNLV queries. Our key observation is that chains in the Cartesian tree can be compressed to save space, as illustrated by the following lemma:

Lemma 3. Consider the set of all possible chains with c_{i} deleted nodes in a path compressed representation of a Cartesian tree, excluding chains having nodes representing array elements $A[1]$ or $A[n]$. There are exactly $c_{i}+1$ combinatorially distinct chains with respect to answering nearest larger value queries, breaking ties according to rule I.

Proof. Consider a chain with c_{i} deleted nodes, $\left\{v_{1}, \ldots, v_{c_{i}}\right\}$, where $v_{c_{i}+1}$ is the terminal. Clearly, v_{1} represents the maximum element in the chain, and either $r\left(v_{j}\right)=e_{1}\left(v_{j}\right)$ or $r\left(v_{j}\right)=e_{2}\left(v_{j}\right)$ for each $j \in\left[1, c_{i}\right]$. This follows because since if v_{j} is in a chain it is either the left or right endpoint of the range $\left[e_{1}\left(v_{j}\right), e_{2}\left(v_{j}\right)\right]$. In turn, this implies that the range $\left[e_{1}\left(v_{1}\right), e_{2}\left(v_{1}\right)\right]$ has a deleted prefix and deleted suffix which in total contain the inorder ranks of the c_{i} deleted nodes.

The deleted nodes corresponding to this prefix (resp. suffix) appear contiguously in the array A, and form a decreasing (resp. increasing) run of values in A. the statement of the lemma), we can assert that both $A\left[e_{1}\left(v_{1}\right)-1\right]>A\left[e_{1}\left(v_{1}\right)\right]$ and $A\left[e_{2}\left(v_{1}\right)+1\right]>A\left[e_{2}\left(v_{1}\right)\right]$. Thus, for each k such that v_{k} is in the prefix we have that $A\left[e_{1}\left(v_{k}\right)-1\right]>A\left[e_{1}\left(v_{k}\right)\right]$, and we can return the nearest larger value of $r\left(v_{k}\right)=e_{1}\left(v_{k}\right)$ to be $e_{1}\left(v_{k}\right)-1$. Similarly, for each k such that v_{k} is in value of $r\left(v_{k}\right)=e_{2}\left(v_{k}\right)$ to be $e_{2}\left(v_{k}\right)+1$.

This implies that, if we know the value c_{i}, then we additionally need only know how many nodes are in the prefix in order to determine the answer to a nearest larger value query for any index represented by a deleted node. There are at most $c_{i}+1$ possible options: $\left\{0, \ldots, c_{i}\right\}$. Moreover, for an arbitrary index $i \in[1, n] \backslash\left[e_{1}\left(v_{1}\right), e_{2}\left(v_{1}\right)\right]$ the answer to a nearest larger value query cannot be in $\left[e_{1}\left(v_{1}\right), e_{2}\left(v_{2}\right)\right]$, since this range is sandwiched between larger values by Lemma 1 . Finally, consider indices in the range $\left[e_{1}\left(v_{c_{i}+1}\right), e_{2}\left(v_{c_{i}+1}\right)\right]$. Using the fact that $A\left[e_{1}\left(v_{c_{i}+1}\right)-1\right]$ and $A\left[e_{2}\left(v_{c_{i}+1}\right)+1\right]$ by are larger than all elements
Furthermore, by Lemma 1, and since $1, n \notin\left[e_{1}\left(v_{1}\right), e_{2}\left(v_{1}\right)\right]$ (by the assertion in the suffix we have that $A\left[e_{2}\left(v_{k}\right)+1\right]>A\left[e_{2}\left(v_{k}\right)\right]$, and return the nearest larger

$$
5 \mathrm{Cl}-\mathrm{Cl}
$$ in $A\left[e_{1}\left(v_{c_{i}+1}\right), e_{2}\left(v_{c_{i}+1}\right)\right]$ by Lemma 1, we can correctly answer queries for a position i in the subtree. First, we find the solution to the NNLV query within the subtree, and denote the index as j. Then, we return the nearest position to i of either $j, e_{1}\left(v_{c_{i}+1}\right)-1$, or $e_{2}\left(v_{c_{i}+1}\right)+1$, breaking ties according to rule I.

Recall that recovering a chain of c_{i} deleted nodes exactly required c_{i} bits in the path compressed tree representation. In contrast, the previous lemma allows us to get away with $\lg \left(c_{i}+1\right)$ bits: an exponential improvement. Using the above lemma, we get the following upper bound for the NNLV problem (note that, on its own, it does not allow queries to be performed efficiently).

Lemma 4. The solutions to all nearest larger value queries can be encoded using no more than $1.89997+o(n)$ bits of space.

Proof. We store the path compressed version of T, the Cartesian tree of A. However, we replace index Z, by an index Z^{\prime} consisting of $\left\lceil\lg \prod_{i=1}^{m}\left(c_{i}+1\right)\right\rceil$ bits. Z^{\prime} represents, for each deleted chain-including those that contain nodes representing $A[1]$ and $A[n]$ - the length of its deleted prefix. We explicitly store
the answers to nearest larger value queries for $A[1]$ and $A[n]$.
For the remaining $A[i], i \in[2, n-1]$ there are two options:

1. $A[i]$ is represented by a node in a deleted chain from the Cartesian tree T.

By Lemma 3 the replacement index Z^{\prime} is enough information to recover the nearest larger values for all deleted nodes, with the exception of those in chains containing the nodes representing $A[1]$ or $A[n]$. For such a chain \mathcal{C}_{i}, the information recorded in Z^{\prime} indicates a number $\Delta \in\left\{0, \ldots, c_{i}+1\right\}$. Suppose the chain $v_{1}, \ldots, v_{\ell+1}$ contains a node u representing $A[1]$. If u is in the deleted prefix, then u represents the largest element in the deleted prefix, so the only information lost by storing Δ is the nearest larger value of $A[1]$. If u is in the deleted suffix, then it represents the smallest element in the deleted suffix, and the nearest larger value can be inferred. The case where a node in the chain represents $A[n]$ is symmetric. Since we store the nearest larger values of $A[1]$ and $A[n]$ explicitly, we can therefore recover the nearest larger value of all deleted nodes.
2. $A[i]$ is represented by a node u in the Cartesian tree T^{\prime}. In this case, can infer the nearest larger value as follows. Let s_{ℓ} be the size of the $T(\operatorname{left}(u))$, which is equal to the $T^{\prime}(\operatorname{left}(u))$ plus the lengths of the chains deleted from $T^{\prime}(\operatorname{left}(u)), s_{r}$ is defined analogously for $\operatorname{right}(u)$. Then the nearest larger value is either $A\left[i-s_{\ell}-1\right]$ or $A\left[i+s_{r}-1\right]$, depending on which is closer. Ties can be broken according to rule I.

The space bound for storing the data structures described is $n^{\prime}+\lg \binom{n^{\prime}}{m}+$ $\lg \binom{k}{m}+\lg \prod_{i=1}^{m}\left(c_{i}+1\right)+O(\lg n)$ bits. This is bounded by $n^{\prime}+\lg \binom{n^{\prime}}{m}+\lg \binom{k}{m}+$ $m \lg \left(\frac{k}{m}+1\right)+O(\lg n)$ bits using Jensen's inequality. Numerical methods (see Appendix A reveal that this expression is upper bounded by $1.91975 n+\Theta(\lg n)$ bits. In the sequel we show how to improve this bound. The main idea is to replace the representation of the lengths of the chains, the data structure L, with a slightly more space efficient structure.

Since there are m chains, let σ denote the number of distinct chain sizes. We consider the sequence $\mathcal{R}=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$, letting m_{j} denote the number of
occurrences of symbol j in \mathcal{R}. Given such a sequence we use $H(\mathcal{R})$ to denote the zeroth-order empirical entropy of the sequence $\mathcal{R}{ }^{4}$ Thus, we need only store:

$$
\begin{gathered}
\sigma\lceil\lg n\rceil+n H(\mathcal{R})+O(1)= \\
\sigma\lceil\lg n\rceil+\sum_{i=1}^{\sigma}\left(m_{i} \lg \frac{m}{m_{i}}\right)+O(1) \text { bits }
\end{gathered}
$$

in order to reconstruct each c_{1}, \ldots, c_{m}.
We can also rewrite the term $\lg \prod_{i=1}^{m}\left(c_{i}+1\right)$ to get

$$
\lg \prod_{i=1}^{\sigma}(i+1)^{m_{i}}=\sum_{i=1}^{\sigma} m_{i} \lg (i+1)
$$

Combining the two sums, this gives us that the total space bound is:

$$
\begin{gathered}
n^{\prime}+\lg \binom{n^{\prime}}{m}+\sum_{i=1}^{\sigma}\left(m_{i} \lg \frac{m(i+1)}{m_{i}}\right)+\sigma\lceil\lg n\rceil+O(\lg n)< \\
n^{\prime}+\lg \binom{n^{\prime}}{m}+\sum_{i=1}^{\sigma}\left(m_{i} \lg \frac{m(i+1)}{m_{i}}\right)+O(\sqrt{n} \lg n)
\end{gathered}
$$

bits, since the number of distinct chain lengths can be at most $\Theta(\sqrt{n})$. We can then rewrite the equation, recalling $n^{\prime}=n-k, k=\sum_{i=1}^{\sigma}\left(i m_{i}\right)$, and letting $y_{i}=m_{i} / n$, and $Y=k / n$, and $y=\sum_{i=1}^{\sigma}\left(y_{i}\right)$, to get:

$$
\begin{gathered}
n-k+\lg \binom{n-k}{m}+\sum_{i=1}^{\sigma}\left(m_{i} \lg \frac{m(i+1)}{m_{i}}\right)+O(\sqrt{n} \lg n)< \\
n\left((1-Y)\left(1+H\left(\frac{y}{1-Y}\right)\right)+\sum_{i=1}^{\sigma}\left(y_{i} \lg \frac{y(i+1)}{y_{i}}\right)+o(1)\right)
\end{gathered}
$$

By numerical methods (see Appendix A, we find that this expression is upper bounded by $1.89997 n+o(n)$; a slight improvement.

5. Forbidden Patterns

In this section we describe a simpler approach to upper-bounding the number of distinguishable configurations of the NNLV problem, based on forbidden

[^3]patterns. As described in the previous section, the aim is, given an input array A, to come up with a new array A_{0}, such that using the Cartesian tree T_{0} of A_{0} to compute NNLVs using the above approach will give the same answer as for A. Our goal is to ensure that this new Cartesian tree T_{0} will be more compressible. The general approach is to consider the encodings of the modified 25 Cartesian trees as strings over an alphabet, then argue that certain substrings are forbidden in these encodings, and count the number of strings that exclude these substrings to upper-bound the number of modified Cartesian trees.

5.1. Forbidding Zig-Zags

Say that a degree 1 node is an turn if it is the right child of its parent, and it has a left child, or it is the left child of its parent and it has a right child (we take the root as being the left child of an imaginary super-root). It is a non-turn otherwise. Consider the encoding of a node of a binary tree where a turn is encoded as $b=01$, a non-turn is encoded using $c=10$ and degree 2 nodes and leaves are encoded $d=11$ and $a=00$ respectively. For any binary tree T, let $\mathcal{E}(T)$ be the sequence of symbols that give the encoding of the nodes of the T, visiting the nodes of T in depth-first order. Overloading notation, for any array A containing distinct items, we use $\mathcal{E}(A)$ to denote $\mathcal{E}(T)$ where T is the Cartesian tree of A. We now claim:

Lemma 5. Given any array A of size n, if $\mathcal{E}(A)$ has a subsequence of the form $b c^{k} b$ for some $k \geq 0$, then there is an array A_{0} such that in $\mathcal{E}\left(A_{0}\right)$, the above subsequence is replaced by cbc ${ }^{k}$, such that all NNLV queries on A and A_{0} return the same answer, except possibly for $\operatorname{NNLV}(1)$ and $\operatorname{NNLV}(n)$.

Proof. We first consider the case where the indices in A representing the given subsequence are $1>i_{1}, \ldots, i_{k+2}>n$. Assume without loss of generality that the node corresponding to i_{1} has only a right child and let i_{0} be the parent of i_{1} (i_{0} always exists, since i_{1} cannot be the root: the root cannot be a degree 1 node unless it is at position 1 or n). We make the following observations (see Figure 2):

Figure 2: Diagrammatic representation of Lemma 5

1. i_{1}, \ldots, i_{k+1} have only a right child (since i_{2}, \ldots, i_{k+1} are non-turn nodes).
2. i_{k+2} has only a left child.
3. $i_{j+1}=i_{j}+1$ for $j=1, \ldots, k$.
4. $i_{0}=i_{k+1}+1$.
5. $i_{k}<i_{k+1}-1$.

Clearly, $A\left[i_{j}\right]>A\left[i_{j+1}\right]$ for $j=0, \ldots, k$. Thus, we have:
6. $\operatorname{NNLV}\left(A, i_{j}\right)=i_{j-1}$ for $j=2, \ldots, k+1$
7. $\operatorname{NNLV}\left(A, i_{1}\right)=i_{1}-1$, since $i_{0}-i_{1} \geq 3$.
8. $\operatorname{NNLV}\left(A, i_{k+2}\right)=i_{0}$, since $i_{k+2}-i_{k+1}>1$.

Thus, we can create a new array A_{0} such that $A\left[i_{1}\right]<A_{0}\left[i_{k+2}\right]<A\left[i_{0}\right]$ and $A[j]=A_{0}[j]$ for all $j \neq i_{k+2}$. It is easy to verify that all NNLV answers in A_{0} are the same as in A.

Now suppose that i_{1} is the root of the Cartesian tree. For it to be a turn, it must be the case that i_{1} only has a right child (recall that the root is the left child of its imaginary parent). Then $i_{1}=1$, and furthermore, $i_{k+2}=n$. In
A_{0}, the only NNLV answers that change will be for 1 and n. A similar argument of its parent in this case $\operatorname{NNLV}(1)(\operatorname{NNLV}(n))$ is the only answer that changes.

5.2. Forbidding a Turn Before a Leaf

Lemma 6. Given an array A of size n, if $\mathcal{E}(A)$ has a subsequence of the form ba, then there is an array A_{0} such that in $\mathcal{E}\left(A_{0}\right)$, the above subsequence is replaced by ca, such that all NNLV queries, except possibly on positions 1 and n on A_{0} return a correct answer for A, using Rule III for tiebreaking (break ties to larger).

Proof. First consider the case that the nodes labelled b and a correspond to the indices $1<i$ and $i+1<n$. In this case, we have the following observations.

- The parent of i must be $i+2$.
- $i+1$ has two equidistant larger values, i and $i+2$, and $\operatorname{NNLV}(A, i+1)=i+2$ since $A[i+2]>A[i]$.
- Observe that $i-1$ must be an ancestor of i meaning $A[i-1]>A[i]$, and hence $\operatorname{NNLV}(A, i)=i-1$.

In A_{0}, we exchange the values $A[i]$ and $A[i+1]$. Now $\operatorname{NNLV}\left(A_{0}, i+1\right)=i+2$ as before. $A_{0}[i]$ now has two equidistant larger values, $i-1$ and $i+1$, since $A_{0}[i-1]=A[i-1]>A[i]=A_{0}[i+1], \operatorname{sonNLV}\left(A_{0}, i\right)=i-1$ as before.

The case that b is $i+1<n$ and a is $i>1$ is symmetric. Finally, it can be verified that if i or $i+1$ is one of the boundary elements $A[1]$ or $A[n]$, the only possibilites where $\operatorname{NNLV}\left(i, A_{0}\right) \neq \operatorname{NNLV}(i, A)$ are the cases $i=1$ or $i=n$.

5.3. Counting Strings with Forbidden Sub-Patterns

Overview. We apply the transformations on A repeatedly until the patterns $b a$ and $b c^{*} b$ do not exist. We upper-bound the number of distinct modified 30 Cartesian trees by the number of distinct strings over the alphabet $\{a, b, c, d\}$

Figure 3: Automata for all strings over $\{a, b, c, d\}$ excluding $b c^{*} b$ (left), and both $b c^{*} b$ and $b a$ (right). The initial state is 1 and the final states are 1,2 , and 3 in each case.
that exclude just the pattern $b c^{*} b$ and that exclude both $b c^{*} b$ and $b a$. To count the number of strings with forbidden sub-patterns, we use the transfer matrix approach [12. In this approach, we first create a DFA with states s_{1}, \ldots, s_{k} that accepts exactly those strings which do not have any forbidden substrings M, which is a $k \times k$ matrix where the (i, j)-th entry is the number of distinct symbols that label a transition from s_{i} to s_{j}. It is not hard to see that the (i, j)-th entry of $\sum_{i=0}^{\infty}(M z)^{i}=(I-M z)^{-1}$, where z is a formal variable, is the generating function for the number of distinct strings that lead from s_{i} to s_{j}. Summing up the $(1, j)$-th entries of $(I-M z)^{-1}$ for all final states j gives the required generating function.

In our case, the generating functions will be rational functions of the form $P(z) / Q(z)$ where P and Q are polynomials. To obtain asymptotic upper bounds on the coefficient of z^{n} we use the following:

Theorem 4 (Rational Expansion Theorem[12]). If $R(z)=P(z) / Q(z)$ is the generating function for the sequence $\left\langle r_{n}\right\rangle$, where $Q(z)=\left(1-\rho_{1} z\right)(1-$ $\left.\rho_{2} z\right) \ldots\left(1-\rho_{\ell} z\right)$, and the numbers $\left(\rho_{1}, \ldots, \rho_{\ell}\right)$ are distinct, and if $P(z)$ is a polynomial of degree less than ℓ, then $r_{n}=\sum_{i=1}^{\ell} a_{i} \rho_{i}^{n}$ for constants a_{1}, \ldots, a_{ℓ}.

Results. Let $f_{n}\left(g_{n}\right)$ for $n \geq 1$ denote the number of distinct strings of length n over the alphabet $\{a, b, c, d\}$ that exclude just the pattern $b c^{*} b$ (exclude both $b c^{*} b$ and $b a$, respectively). The automata that accept all strings over $\{a, b, c, d\}$ excluding $b c^{*} b$, and both $b c^{*} b$ and $b a$ are shown in Figure 3 The corresponding transfer matrices are below:

$$
M_{1}=\left(\begin{array}{lllll}
3 & 1 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 1 \\
2 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right), \quad M_{2}=\left(\begin{array}{lllll}
3 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

We obtain $\left(I-M_{1} z\right)^{-1}$ as:

$$
\left(\begin{array}{ccccc}
\frac{1-z}{z^{2}-4 z+1} & \frac{-(z-1) z}{z^{2}-4 z+1} & \frac{z^{2}}{z^{2}-4 z+1} & \frac{z^{3}}{-4 z^{3}+17 z^{2}-8 z+1} & \frac{(z-1) z^{2}}{(4 z-1)\left(z^{2}-4 z+1\right)} \\
\frac{2 z}{z^{2}-4 z+1} & \frac{3 z^{2}-4 z+1}{z^{2}-4 z+1} & \frac{z-3 z^{2}}{z^{2}-4 z+1} & \frac{z^{2}(3 z-1)}{(4 z-1)\left(z^{2}-4 z+1\right)} & \frac{z\left(3 z^{2}-4 z+1\right)}{-4 z^{3}+17 z^{2}-8 z+1} \\
\frac{2 z}{z^{2}-4 z+1} & \frac{2 z^{2}}{z^{2}-4 z+1} & \frac{-2 z^{2}-3 z+1}{z^{2}-4 z+1} & \frac{z\left(2 z^{2}+3 z-1\right)}{(4 z-1)\left(z^{2}-4 z+1\right)} & \frac{2 z^{3}}{-4 z^{3}+17 z^{2}-8 z+1} \\
0 & 0 & 0 & \frac{1}{1-4 z} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{1-4 z}
\end{array}\right)
$$

Adding together the entries in positions $(1,1),(1,2)$, and $(1,3)$ we get that $F(z)=\frac{1-z-(z-1) z+z^{2}}{z^{2}-4 z+1}=\frac{1}{z^{2}-4 z+1}$ is the generating function for $\left\langle f_{n}\right\rangle$. The roots of $z^{2}-4 z+1$ are $2+\sqrt{3}$ and $2-\sqrt{3}$ giving $\rho_{1}=1 /(2+\sqrt{3})<0.27695$ and $\rho_{2}=1 /(2-\sqrt{3})<3.73206$. From this we use Theorem 4 to conclude that $\lg f_{n}=n \lg 3.73206+o(n)=1.89997 n+o(n)$.

We remark that the constant achieved via the above calculation is strikingly similar to that of Lemma 4. We have been unable to determine whether the bounds achieved by the two approaches are indeed equal, or just matching up to five decimal places.

Similarly $\left(I-M_{2} z\right)^{-1}$ equals:

$$
\left(\begin{array}{ccccc}
\frac{z-1}{z^{3}-2 z^{2}+4 z-1} & \frac{(z-1) z}{z^{3}-2 z^{2}+4 z-1} & \frac{z^{2}}{-z^{3}+2 z^{2}-4 z+1} & \frac{z^{3}}{4 z^{4}-9 z^{3}+18 z^{2}-8 z+1} & \frac{-2(z-1) z^{2}}{(4 z-1)\left(z^{3}-2 z^{2}+4 z-1\right)} \\
\frac{-z(z+1)}{z^{3}-2 z^{2}+4 z-1} & \frac{-3 z^{2}+4 z-1}{z^{3}-2 z^{2}+4 z-1} & \frac{z(3 z-1)}{z^{3}-2 z^{2}+4 z-1} & \frac{z^{2}-3 z^{3}}{4 z^{4}-9 z^{3}+18 z^{2}-8 z+1} & \frac{2 z\left(3 z^{2}-4 z+1\right)}{(4 z-1)\left(z^{3}-2 z^{2}+4 z-1\right)} \\
\frac{-2 z}{z^{3}-2 z^{2}+4 z-1} & \frac{-2 z^{2}}{z^{3}-2 z^{2}+4 z-1} & \frac{z^{2}+3 z-1}{z^{3}-2 z^{2}+4 z-1} & \frac{-z\left(z^{2}+3 z-1\right)}{(4 z-1)\left(z^{3}-2 z^{2}+4 z-1\right)} & \frac{4 z^{3}}{4 z^{4}-9 z^{3}+18 z^{2}-8 z+1} \\
0 & 0 & 0 & \frac{1}{1-4 z} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{1-4 z}
\end{array}\right)
$$

From which we get that $G(z)=\frac{z-1+(z-1) z+z^{2}}{z^{3}-2 z^{2}+4 z-1}=\frac{-1}{z^{3}-2 z^{2}+4 z-1}$. Solving for $z^{3}-2 z^{2}+4 z-1=0$ we get that $\rho_{1}<3.51155$, and that ρ_{2} and ρ_{3}, both of which are complex, have magnitude <0.53365. From this we use Theorem 4 to conclude that $\lg g_{n}=n \lg 3.51155+o(n)=1.81211 n+o(n)$.

6. Data Structures

To accomplish the goal of supporting operations, we use a technical modification of the mini-micro tree decomposition presented by Farzan and Munro 10 which can be stated as follows:

Lemma 7 (Theorem 1 [10]). For any parameter $k>1$, a tree with n nodes can be decomposed into $\Theta\left(\frac{n}{k}\right)$ subtrees of size at most $2 k$, which are pairwise disjoint aside from their roots. With the exception of edges branching from the root of a subtree, there is at most one edge from a non-root node in a subtree to

We also make use of the succinct binary tree data structure of Davoodi et al. 4] that supports the following operations in $O(1)$ time, and represents an arbitrary binary tree using $2 n+o(n)$ bits:

1. select_inorder (T, i) : return the node u in T having inorder number i.
2. subtree_size (T, u): Return the size of the subtree rooted at node u in T.
3. parent (T, u) : Return the parent node of u in T.
```
Algorithm 1 Computing \(\operatorname{NNLV}(A, i)\).
    if \(i=1\) or \(i=n\) then
        return explicitly stored answer for \(A[1]\) or \(A[n]\).
    else
        \(\ell \leftarrow\) subtree_size(left(select_inorder \((i))\) )
        \(r \leftarrow\) subtree_size(right(select_inorder \((i))\) )
        if \(\ell<r\) and \(i-\ell-1 \geq 1\) then
            return \(i-\ell-1\)
        else if \(i+r+1 \leq n\) then
            return \(i+r+1\)
        else
            return \(-1(A[i]\) is the maximum, and has no NNLV)
        end if
    end if
```

4. $\operatorname{left}(T, u)$ (resp. $\operatorname{right}(T, u))$: return node u 's left (resp. right) child in T.

We are now ready to prove Theorem 2. We note that the same machinery can be applied to prove Theorem 1, almost verbatim, except we replace the forbidden pattern representation with that of Lemma 4

Proof. Given the array A, we obtain an array A_{0} as described in Sections 5.1 and 5.2. We create the Cartesian tree T_{0} of A_{0}, and seek to represent T_{0} in $1.81211 n+o(n)$ bits so that NNLV queries can be answered in $O(1)$ time.

We now present a straightforward modification of the succinct binary tree representation of Davoodi et al. [4. The representation of Davoodi et al. applies Lemma 7 to decompose the tree into $O(n / \lg n)$ micro-trees of with at most $\left\lceil\frac{\lg n}{k}\right\rceil$ nodes, for some constant $k \geq 8$. Apart from the space needed to represent the micro-trees, the space usage of their representation is $o(n)$ bits.

Our objective is to replace the encoding of the micro-trees with one based on Sections 5.1 and 5.2 For each micro-tree μ of ν nodes, we create $\mathcal{E}(\mu)$ as a string of length ν over the alphabet $\{a, b, c, d\}$ as above. Observe that patterns
that are forbidden in $\mathcal{E}\left(T_{0}\right)$ are also (essentially) forbidden in $\mathcal{E}(\mu)$. The only exception is that a degree 1 or 2 node v in μ may have its children in another micro-tree. Then v is a leaf of μ, and if its parent is a degree 1 turn node, then a forbidden pattern may appear in $\mathcal{E}(\mu)$. However, this can happen only for nodes which have their children in another micro-tree, and there is at most one such node by Lemma 7 The information needed to store the modifications to $\mathcal{E}(\mu)$ so that $\mathcal{E}(\mu)$ now has no forbidden patterns takes at most $O(\lg \nu)=O(\lg \lg n)$ bits, which is negligible summed over all micro-trees since the number of micro-trees is $O(n / \lg n)$.

The representation of $\mathcal{E}(\mu)$ is as a pointer into a table that stores all possible trees whose encodings have no forbidden patterns; this pointer clearly takes $1.81211 \cdot \nu+O(1)$ bits. The representations of all micro-trees take $1.81211 \cdot n+$ ${ }_{435} O(n / \lg n)$ bits. Since the encoding of each micro-tree takes at most $(\lg n) / 4+$ $O(1)$ bits, operations on nodes inside a micro-tree can be done in $O(1)$ time by table-lookup, as in 4. Finally, the algorithm to answer the NNLV query is presented in Algorithm 1. and uses only operations supported by the representation of Davoodi et al. [4].

7. Exact Enumeration of Distinguishable Configurations

In this section we count the distinguishable configurations with respect to NNLV queries. We obtain recursive formulae for the precise numbers of distinguishable configurations. The values calculated by these formulae will also improve the lower bound as indicated in Theorem 3 .

In total we define six sequences. Of these, Γ is the sequence that counts the number of distinguishable configurations of the NNLV problem; the others are auxiliary sequences. We will use the notation of a chain of nearest neighbours for a list of numbers L_{1}, \ldots, L_{n} where the nearest neighbour of L_{i} is L_{i+1}. Further, we use the term distinguishable configurations of $A[l \ldots r]$ for some l, r when configurations can be distinguished by asking the queries $\operatorname{NNLV}(i)$ for $i=l, \ldots, r$.

1. $\mathcal{A}=\left\{\alpha_{n}\right\}_{n \in \mathbb{N}}$. Let $A[0 \ldots n+1]$ be an array of $n+2$ numbers such that $A[0]$ and $A[n+1]$ are greater than $A[i]$ for all $1 \leq i \leq n$. Then α_{n} is the number of distinguishable configurations of $A[1 \ldots n]$. Figure 7 (first row) denotes the conditions for \mathcal{A} graphically.
2. $\mathcal{B}=\left\{\beta_{n}\right\}_{n \in \mathbb{N}}$. Let $A[0 \ldots n]$ be an array of $n+1$ numbers such that $A[0]>A[i]$ for all $1 \leq i \leq n$. Then β_{n} is the number of distinguishable configurations of $A[1 \ldots n]$. Figure 7 (second row) denotes the conditions for \mathcal{B} graphically.
3. $\mathcal{B}^{\text {rev }}=\left\{\beta_{n}^{\text {rev }}\right\}_{n \in \mathbb{N}}$. Let $A[1 \ldots n+1]$ be an array of $n+1$ numbers such that $A[n+1]>A[i]$ for all $1 \leq i \leq n$. Then $\beta_{n}^{\text {rev }}$ is the number of distinguishable configurations of $A[1 \ldots n]$.
4. $\Gamma=\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}$. Let $A[1 \ldots n]$ be an array of n numbers. Then β_{n} is the number of distinguishable configurations of $A[1 \ldots n]$. Figure 7 (third row) denotes the conditions for Γ graphically.
5. $\Delta=\left\{\delta_{n, m}\right\}_{n, m \in \mathbb{N}}$. Let $A[0 \ldots n+m+1]$ be an array of $n+m+2$ numbers such that $A[0]>A[i]$ for all $1 \leq i \leq n ; A[n+m+1]>A[i]$ for all $1 \leq i \leq n+m ; A[n]>A[i]$ for all $n+1 \leq i \leq n+m$; and there exists a chain of nearest neighbours from $A[n]$ to $A[0]$ without including $A[n+m+1]$. Then $\delta_{n, m}$ is the number of distinguishable configurations of $A[1 \ldots n]$. Figure 7 (fourth row) denotes the conditions for Δ graphically.
6. $\Delta^{\mathrm{rev}}=\left\{\delta_{n, m}^{\mathrm{rev}}\right\}_{n, m \in \mathbb{N}}$. Let $A[-m \ldots n+1]$ be an array of $n+m+2$ numbers such that $A[n+1]>A[i]$ for all $1 \leq i \leq n ; A[-m]>A[i]$ for all $-m+1 \leq i \leq n ; A[1]>A[i]$ for all $-m+1 \leq i \leq 0$; and there exists a chain of nearest neighbours from $A[1]$ to $A[-m]$ without including $A[n+1]$. Then $\delta_{n, m}^{\mathrm{rev}}$ is the number of distinguishable configurations of $A[1 \ldots n]$.

All sequences share that they count the number of distinguishable configurations of $A[1 \ldots n]$. In the special case of $n=0$ the array $A[1 \ldots n]$ is of length

Figure 4: Overview of conditions for each sequence
zero. No queries can be made that distinguishes between any two configura- tions. Hence the number of distinguishable configurations is 1 and in particular $\alpha_{0}=\beta_{0}=\beta_{0}^{\mathrm{rev}}=\delta_{0, m}=\delta_{0, m}^{\mathrm{rev}}=1$ for $m \in \mathbb{N}$.

We first prove some auxiliary lemmas.

Lemma 8. Let $A[0 \ldots n+1]$ be an array of $n+2$ numbers such that $A[0]>A[i]$ for all $1 \leq i<(n+1) / 2$ and $A[n+1]>A[j]$ for all $1 \leq j \leq n$. Then α_{n} is the number of distinguishable configurations of $A[1 \ldots n]$.

Proof. Any array of $n+2$ numbers that satisfy the condition for sequence \mathcal{A} also satisfies the condition of this lemma. Hence there are at least α_{n} distinguishable configurations of $A[1 \ldots n]$ where A satisfies the condition of this lemma. Lets assume there exist an array $A[0 \ldots n+1]$ of $n+2$ numbers that satisfies the condition of this lemma and its configuration of $A[1 \ldots n]$ is distinguishable from all conditions of $\bar{A}[1 \ldots n]$ within an array \bar{A} that satisfy the condition of sequence \mathcal{A}. We now consider the array $A^{\prime}[0 \ldots n+1]$ defined by $A^{\prime}[i]=A[i]$ for all $1 \leq i \leq n+1$ and $A^{\prime}[0]=A[n+1]+1$. So A^{\prime} satisfies the condition of sequence \mathcal{A} and A^{\prime} configuration of $A^{\prime}[1 \ldots n]$ must distinguishable A^{\prime} s configuration of $A[1 \ldots n]$. As both arrays are the same apart from $A^{\prime}[0]>A[0]$ there must exists an $1 \leq j \leq n$ which nearest neighbour in A^{\prime} is $A[0]$ and in A it is not $A[0]$. So $A[0]<A[j]<A^{\prime}[0]$. Since A satisfies the condition of this lemma $j \geq(n+1) / 2$. This is contradiction as any such position is not closer to $A^{\prime}[0]$ than to $A^{\prime}[n+1]$, in $A^{\prime}[j]$ nearest neighbour cannot be $A^{\prime}[0]$. Hence by weakening the condition of sequence \mathcal{A} to the condition of this lemma does not

Figure 5: β_{n} sequence step
create further distinguishable configuration on $A[1 \ldots n]$.
A similar approach will give following lemma.

Lemma 9. Let $A[0 \ldots n+1]$ be an array of $n+2$ numbers such that $A[0]>A[i]$ for all $1 \leq i \leq n$ and $A[n+1]>A[j]$ for all $(n+1) / 2 \leq j \leq n$. Then α_{n} is the number of distinguishable configurations of $A[1 \ldots n]$.

Now we give the formulae for each sequence.
Lemma 10. $\beta_{n}=\sum_{i=1}^{n} \alpha_{i-1} \beta n-i$
Proof. Let $A[0 \ldots n]$ be an array satisfying the condition of sequence \mathcal{B}. Further let $A[i]$ be the highest number in $A[1 \ldots n]$. Then $A[0]$ has no nearest neighbour in A. The nearest neighbour of $A[i]$ is $A[0]$. The nearest neighbours of $A[1]$ to $A[i-1]$ must lie within the subarray $A[0 \ldots i]$ which also satisfies the condition sequence \mathcal{A}. Similarly the the nearest neighbours of $A[i+1]$ to $A[n]$ must lie with the subarray $A[i \ldots n]$, which satisfies the condition of sequence \mathcal{B}. Hence, the number of distinguishable configuration of $A[1 \ldots n]$ is $\alpha_{i-1} \beta_{n-i}$.

For any $1 \leq i \leq n, A[i]$'s nearest neighbour is $A[0]$ and there does not exists a number $A[j]$ with $j>i$ such that $A[j]$'s nearest neighbour is $A[0]$. Hence all configurations for one value of i are distinguishable from configurations of different value of i.

Summing up all distinguishable configuration for all possible values of i gives the above formula of β_{n}.

Following the structure of the proof of Lemma 10 one can show that $\beta_{n}^{\text {rev }}=$ $\sum_{i=1}^{n} \beta_{i-1}^{\mathrm{rev}} \alpha n-i=\sum_{i=1}^{n} \alpha_{i-1} \beta_{n-i}^{\mathrm{rev}}$. Since $\beta_{0}^{\mathrm{rev}}=1=\mathcal{B}_{0}^{\mathrm{rev}}$ we have the following lemma.

Figure 6: γ_{n} sequence step possible values of i gives the above formula of γ_{n}

Lemma 13. $\quad \delta_{n, m}=\sum_{i=1}^{\min (m, n)} \alpha_{i-1} \delta_{(n-i, i+m)}$
Proof. As given by the conditions of the sequence Δ there exists a chain of nearest neighbours from $A[n]$ to $A[0]$. So let i be the distance of the $A[n]$ to its nearest neighbour. Then there exists a chain of nearest neighbours from $A[n-i]$ to $A[0], A[n-i]$ is greater than any number between $A[n-i+1]$ to $A[n+m]$, and also $A[n+m+1]$ remain higher than all number in $A[1 \ldots n]$. Hence there are $\delta_{n-i, m+i}$ distinguishable configuration for $A[1]$ to $A[n-i]$. The subarray $A\left[n-i+1 \ldots n\right.$ satisfy the condition of \mathcal{A}. So every i there are $\alpha_{i-1} \delta_{n-i, i+m}$ distinguishable configurations. Building the sum of over all possible values of i give the formula of $\delta_{n, m}$.

Following the same structure as used in the proof of Lemma 13 one can show that $\delta_{n, m}^{\text {rev }}=\sum_{i=1}^{\min (m-1, n)} \alpha_{i-1} \delta_{(n-i, i+m)}^{\mathrm{rev}}$. Since $\delta_{0, m}^{\mathrm{rev}}=1=\Delta_{0, m}^{\mathrm{rev}}$ for all $m \in \mathbb{N}$ we have the following lemma.

Lemma 15. Let $r=\left\lfloor\frac{2 n+1}{3}+1\right\rfloor$ and $l=\left\lfloor\frac{r}{2}\right\rfloor$ then

$$
\begin{aligned}
\alpha_{n}= & \sum_{k=l}^{r-1} \alpha_{k-1} \alpha_{n-k}+ \\
& \sum_{i=1}^{l-1} \sum_{j=r}^{n} \alpha_{i-1} \alpha_{j-i-1} \alpha_{n-j}+ \\
& \sum_{i=1}^{l-1} \sum_{j=r}^{n} \sum_{k=2 i+1}^{i+\left\lfloor\frac{j-i+1}{2}\right\rfloor-1} \sum_{p=2 k-i+1}^{\min (j, 2 k)} \alpha_{i-1} \alpha_{n-j} \alpha_{k-i-1} \alpha_{p-k-1} \delta_{j-p, p}+ \\
& \sum_{i=1}^{l-1} \sum_{j=r}^{n} \sum_{k=i+\left\lfloor\frac{j-i+1}{2}\right\rfloor}^{2 j-1-n} \sum_{p=\max (i, 2 k-n)}^{2 k-j} \alpha_{i-1} \alpha_{n-j} \alpha_{j-k-1} \alpha_{k-p-1} \delta_{p-i, n-p}+ \\
& \sum_{j=r}^{n} \alpha_{n-j} \delta_{j-1,1}
\end{aligned}
$$

Proof. The setting of α_{n} splits into five disjoint cases, see Figure 7. Each of them corresponds to a line in the formula of α_{n}. We use i for the rightmost position that has $A[0]$ as its nearest neighbour and j for the leftmost position that has $A[n+1]$ as its nearest neighbour. As we break ties to the right, j must always exists but i must not. Further we split $A[1 \ldots n]$ in three roughly evenly sized parts: First third $A[1 \ldots l-1]$, the middle third $A[l \ldots r-1]$ and the last third $A[r \ldots n]$ with $r=\left\lfloor\frac{2 n+1}{3}+1\right\rfloor$ and $l=\left\lfloor\frac{r}{2}\right\rfloor$.

We first identify three cases that cover all configurations and do not share any configurations. We later split case 2 into three separate sub-case and reach our five cases as given in the formula.

- Case 1: Either i or j lies in middle third.
- Case 2: The position i lies in the first third and j lies in the last third.
- Case 3: The position j in the last third and i does not exists.

From the definitions the cases have disjoint configurations. To show all configuration are covered by the three cases one has to show that there are no
configurations with i in last third or j in the first third. As the nearest neighbour of $A[i]$ is $A[0]$ it must be strictly closer to $A[0]$ than to $A[n+1]$ as both of them are higher than $A[i]$ and we break ties to the right. As $r=\left\lfloor\frac{2 n+1}{3}+1\right\rfloor \geq$ $\frac{2 n+1+1}{3}>\frac{n+1}{2} \geq\lfloor n+1\rfloor 2$ any position in the last third cannot have $A[0]$ as its ${ }_{570}$ nearest neighbour. Similarly for the first third, as $l-1=\lfloor r\rfloor 2-1<\frac{2 n+1+3}{6}=$ $\frac{n}{3}+\frac{1}{2} \leq \frac{n+1}{2}$ a number in the first third cannot have $A[n+1]$ as its nearest neighbour.

We will now go through each case and justify the corresponding part in the formula of α_{n}.

Case 1. We first assume $A[i]$ lies in the middle third. Note that this does not mean $A[i]$ is highest number among $A[1 \ldots n]$, but it is higher than any $A[1]$ to $A[i-1]$. Also it is higher than any $A[i+1]$ to $A[i+i]$. If one shows that $i+i$ is at least $\lfloor(n+1+i) / 2\rfloor-1$ by Lemma 8 the number of distinguishable configuration will be $\alpha_{i-1} \alpha_{n-i}$. So

$$
\begin{gathered}
i+i \geq\lfloor(n+1+i) / 2\rfloor-1 \\
\Leftarrow 3 i \geq n \\
\Leftarrow 3\left\lfloor\frac{r}{2}\right\rfloor \geq \frac{3 r-3}{2} \geq \frac{3\left(\left\lfloor\frac{2 n+1}{3}+1\right\rfloor\right)-3}{2} \leq \frac{2 n+1+3-3}{2}>n+\frac{1}{2}
\end{gathered}
$$

If we assume $A[j]$ lies in the middle third, by a similar argument and by the Lemma 8 the number of distinguishable configuration is $\alpha_{j-1} \alpha_{n-j}$.

So the number of all distinguishable configurations covered by case 1 is $\sum_{k=l}^{r-1} \alpha_{k-1} \alpha_{n-k}$.

Case 2. So $A[i]$ lies in the first third and $A[j]$ lies in the last third. $A[i]$ or $A[j]$ must the be the highest value among $A[1 \ldots n]$. However the other does not have to be the second highest. We first assume that $A[i]$ and $A[j]$ are the highest and second highest values (case 2a). This gives $\sum_{i=1}^{l-1} \sum_{j=r}^{n} \alpha_{i-1} \alpha_{j-i-1} \alpha_{n-j}$ distinguishable configurations.

In case 2 b , we count the additional configuration to the case 2 a , when $A[j]$ is highest and $A[i]$ is not the second highest value in among $A[1 \ldots n]$. In order to have a configuration that has not yet been counted in case 2 a there must exists
an $A[k]>A[i]$ with $i<k<j$ such that $A[k]$ nearest neighbour is not $A[i]$ but it would be so if $A[i]$ would have been the second highest. The number $A[k]$ must lie further away from $A[i]$ then $A[i]$ is from $A[0]$ as $A[i]$'s nearest neighbour is $A[0]$. Also $A[k]$ must be closer to $A[i]$ then to $A[j]$. Hence the range for k is from $2 i+1$ to $i+\left\lfloor\frac{j-i+1}{2}\right\rfloor-1$. In a single configuration there might multiple numbers that satisfy the condition of $A[k]$. To avoid double counting of configuration we assume that $A[k]$ is the furthest left of such numbers and hence count the configuration in between $A[i]$ and $A[k]$ by α_{k-i-1}. We now consider $A[p]$ the nearest neighbour of $A[k]$. The number $A[k]$ must be closer to $A[i]$ than to $A[p]$ as it other wise never has $A[i]$ as its nearest neighbour independent of the value of $A[i]$. Hence $2 k-i+1 \geq p$. As $A[p]$ is $A[k]$'s nearest neighbour, $A[p]$ must be less or the same distance away from $A[k]$ than $A[k]$ is from $A[0]$, as otherwise $A[0]$ is $A[k]$'s nearest neighbour. Also it must not lie to the right of $A[j]$. Hence $p \leq \min (j, 2 k)$. From $A[p]$ onwards there must be a chain of nearest neighbours to $A[j]$. Hence the number of configuration for case 2 b are

$$
\sum_{i=1}^{l-1} \sum_{j=r}^{n} \sum_{k=2 i+1}^{i+\left\lfloor\frac{j-i+1}{2}\right\rfloor-1} \sum_{p=2 k-i+1}^{\min (j, 2 k)} \alpha_{i-1} \alpha_{n-j} \alpha_{k-i-1} \alpha_{p-k-1} \delta_{j-p, p}
$$

The case 2 c is equivalent to case 2 b with $A[i]$ being the highest number and $A[j]$ not being the second highest number in $A[1 \ldots n]$. The reasoning concerning the range for k and p are similar and lead to $k \geq i+\left\lfloor\frac{j-i+1}{2}\right\rfloor, j-k \geq n-j+1$, $k-p<n+1-k, p \geq i$ and $k-p>j-k$ Hence all configuration of case 2c are

$$
\sum_{i=1}^{l-1} \sum_{j=r}^{n} \sum_{k=i+\left\lfloor\frac{j-i+1}{2}\right\rfloor}^{2 j-1-n} \sum_{p=\max (i, 2 k-n)}^{2 k-j} \alpha_{i-1} \alpha_{n-j} \alpha_{j-k-1} \alpha_{k-p-1} \delta_{p-i, n-p}
$$

Case 3. There is no number that has $A[0]$ as it's nearest neighbour. So there is a chain of nearest neighbours from $A[1]$ to $A[j]$. The number of configuration for $A[1 \ldots j]$ is $\delta_{n-j, 1}$ and for $A\left[j+1 \ldots n\right.$ is α_{n-j}. The total number of configuration of case 3 is

$$
\sum_{j=r}^{n} \alpha_{n-j} \delta_{j-1,1}
$$

By adding up the formulae for each case we obtain the formula for α_{n}.

Figure 7: α_{n} sequence step

We were unable to give a closed-form solution for γ_{n}. We have, however, computed them up to $n=700$. Figure 7 shows the ratios of $\gamma_{n} / \gamma_{n-1}$ and $\alpha_{n} / \alpha_{n-1}$, and 2_{n}^{k} where k_{n} is lower bound of bytes obtained by using the formula, as given in Section 8, with the values of γ_{n} and α_{n}. Up to the computed values the ratios for Γ and \mathcal{A} are monotonic increasing.

8. Lower Bound

The main idea of the lower bound is to show that for a given n, there are many configurations of A that can be distinguished by NNLV queries. To do this, we reuse the sequence definitions for both α_{n} and γ_{n} from the previous section: α_{n} can be considered to be a restricted input to the NNLV problem

Figure 8: The ratios of consecutive values for sequence Γ and $\mathcal{A}, 2$ to the power of the lower bound of bytes.
that is padded with two additional entries $A[0]=\infty$ and $A[n+1]=\infty$.
For an n element array, we use α_{n} to denote the number of different configurations for the NNLV problem on restricted inputs, and γ_{n} to denote the number of solutions to NNLV, both subject to tie breaking rule I. We present both sequences in Table 3 for some values of n and up to $n=700$.

Next we discuss how to the values in Table 3 to derive a lower bound. Consider an array of length n, for n sufficiently large. Without loss of generality, we assume that a parameter $\ell \geq 1$ divides $n-2$ and that $\frac{n-2}{\ell}$ is odd. Let D_{i} denote the i-th odd block, and E_{i} denote the i-th even block. Locations $A[1]$ and $A[n]$ are assigned values $n-1$ and n, respectively. Odd block D_{i} is assigned values $[(i-1) \ell+1, i \ell]$, and can be arranged in one of α_{ℓ} configurations, to form an instance of a restricted input. Suppose there are λ odd blocks. Even block E_{i} will be assigned values from $[(\lambda+i-1) \ell+1,(\lambda+i) \ell]$, and arranged in one of the γ_{ℓ} configurations of the NNLV problem.

Our claim is that each even (resp. odd) block can be assigned any of the γ_{ℓ} (resp. α_{ℓ}) possible configurations, without interference from other blocks. To see this, consider that for each even block we have assigned values so that-with

n	γ_{n}	α_{n}
0	1	1
1	1	1
2	2	2
3	5	4
4	14	9
5	40	22
6	116	55
7	341	142
8	1010	378
9	3009	1015
10	9012	2768
50	2.60634×10^{23}	1.76356×10^{22}
200	1.23839×10^{97}	2.13372×10^{95}
400	3.14284×10^{195}	2.71590×10^{193}
700	1.49191×10^{343}	7.37685×10^{340}

Table 3: The calculated values of γ_{n} and α_{n} for some selected values of n.
the exception of the maximum element - the nearest larger value to all elements must be within the same block. This follows since the adjacent odd blocks contain strictly smaller values than those in any even block. Moreover, for odd blocks, the values immediately to the left and right of the block are strictly larger than any values in the block. Thus, we can force the global solution to the NNLV problem on the entire array into at least $\left(\gamma_{\ell} \alpha_{\ell}\right)^{\frac{n-2}{2 \ell}}$ distinct structures. This implies that $\lg \gamma_{n}$ is at least $\frac{(n-2)}{2 \ell} \lg \left(\gamma_{\ell} \alpha_{\ell}\right)$: selecting $\ell=700$ yields the lower bound of Theorem 3

9. Conclusions

We have introduced the encoding NNLV problem, and have noted its combinatorial richness. Using a novel path-compressed representation of Cartesian trees, we gave a space-efficient NNLV encoding that supports queries in $O(1)$ time. Determining the effective entropy of NNLV, and to consider the other NNLV variants (such as for arrays of non-distinct values), is an open problem. Finding ways to apply NNLV encodings to compressed suffix trees, as Fischer [7] did for his bidirectional NLV encoding, would also be interesting.

We conclude with a final remark about the sub-optimality of our approaches for representing an NNLV tree. To show that these data structures are suboptimal, consider the following two example arrays:

$$
[10,12,8,9,1,7,3,4,2,6,5,13,11] \text { and }[10,12,7,9,1,6,3,4,2,8,5,13,11]
$$

Both of these arrays have different cartesian trees which contain no degree one nodes, however they both have the same NNLV tree under the three tie-breaking rules. This indicates that any strategy which focuses only on degree one nodes in the Cartesian tree is unlikely to achieve optimal bounds, whatever they may be.

References

${ }_{635}^{63}$ [1] O. Berkman, B. Schieber, U. Vishkin, Optimal doubly logarithmic parallel algorithms based on finding all nearest smaller values, J. Algorithms 14 (3)
(1993) 344-370. doi:10.1006/jagm.1993.1018

URL http://dx.doi.org/10.1006/jagm.1993.1018
[2] M. J. Golin, J. Iacono, D. Krizanc, R. Raman, S. R. Satti, S. M. Shende, Encoding 2d range maximum queries, Theor. Comput. Sci. 609 (2016) 316327. doi:10.1016/j.tcs.2015.10.012.

URL http://dx.doi.org/10.1016/j.tcs.2015.10.012
[3] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range minimum queries on static arrays, SIAM Journal on Computing 40 (2) (2011) 465-492.
_ [4] P. Davoodi, G. Navarro, R. Raman, S. Rao, Encoding range minima and top-2 queries, Phil. Trans. R. Soc. A 372 (2016) (2014) 1471-2962.
URL https://lra.le.ac.uk/handle/2381/28856
[5] J. Fischer, V. Mäkinen, G. Navarro, Faster entropy-bounded compressed suffix trees, Theor. Comput. Sci. 410 (51) (2009) 5354-5364.
${ }_{\square}$ [6] V. Jayapaul, S. Jo, R. Raman, V. Raman, S. R. Satti, Space efficient data structures for nearest larger neighbor, J. Discrete Algorithms 36 (2016) 6375. doi:10.1016/j.jda.2016.01.001.

URL http://dx.doi.org/10.1016/j.jda.2016.01.001
[7] J. Fischer, Combined data structure for previous- and next-smaller-values, Theor. Comput. Sci. 412 (22) (2011) 2451-2456. doi:10.1016/j.tcs. 2011.01.036.

URL http://dx.doi.org/10.1016/j.tcs.2011.01.036
[8] T. Asano, S. Bereg, D. G. Kirkpatrick, Finding nearest larger neighbors, in: S. Albers, H. Alt, S. Näher (Eds.), Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, Vol. 5760 of Lecture Notes in Computer Science, Springer, 2009, pp. 249-260. doi:10.1007/978-3-642-03456-5_17.
URL http://dx.doi.org/10.1007/978-3-642-03456-5_17
[9] T. Asano, D. G. Kirkpatrick, Time-space tradeoffs for all-nearest-largerneighbors problems, in: F. Dehne, R. Solis-Oba, J. Sack (Eds.), Algorithms and Data Structures - 13th International Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, Vol. 8037

- of Lecture Notes in Computer Science, Springer, 2013, pp. 61-72. doi: 10.1007/978-3-642-40104-6_6. URL http://dx.doi.org/10.1007/978-3-642-40104-6_6
[10] A. Farzan, J. I. Munro, A uniform paradigm to succinctly encode vari■ ous families of trees, Algorithmica 68 (1) (2014) 16-40. doi:10.1007/ s00453-012-9664-0.
[11] R. Raman, V. Raman, S. S. Rao, Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, ACM Transactions on Algorithms 3 (4).
[12] P. Flajolet, R. Sedgewick, Analytic Combinatorics, 1st Edition, Cambridge University Press, New York, NY, USA, 2009.

Appendix A. Mathematica Code

In this section we present Mathematica code for numerical maximization that leads to the bounds presented in Lemma 4 . The following snippet produces first bound discussed in the Lemma:

```
h[x_] := x*Log2[1/x] + (1-x) * Log2[1/(1-x)]
f[m_, k_]:= 1-k + (1-k)*h[m/(1-k)] + k*h[m/k] + m*Log2[k/m+1]
NMaximize[ { Re[f[m, k]],
    k > $MachineEpsilon, m > $MachineEpsilon,
    m<k,k<1},
    {k, m}, {MaxIterations->100000, Method->{"RandomSearch"}}]
```

685 The second bound is slightly more involved, and involves optimizing over a vector to determine the values of y_{i} that maximize the entropy of the chains. Through experimentation, we determined that $y_{i}=0$ for all $i>15$ (hence setting $\sigma=15$ below).

```
Sigma = 15;
g[m_, k_]:=
    1-(Sum[m[[i]]*i, {i,1,k}]) +
    (1-(Sum[m[[i]]*i, {i,1,k}])) *
    h[(Sum[m[[i]], {i,1,k}]) / (1-(Sum[m[[i]]*i, {i,1,k}]))] +
    Sum[m[[j]]*Log2[(Sum[m[[i]], {i,1,k}])/m[[j]]], {j,1,k}] +
        Sum[m[[j]]*Log2[j+1], {j,1,k}];
yArr = Array [Unique[y],{Sigma}]
NMaximize[{ Re[g[yArr,Sigma]],
    And@@Table[yArr[[i]]>=$MachineEpsilon, {i,Sigma} ] &&
    (Sum[yArr[[i]], {i,1,Sigma}]) <
    1 - (Sum[yArr[[i]] * i, {i,1,Sigma}])},
    yArr, {MaxIterations->100000, Method->{"RandomSearch"}}]
```


[^0]: ${ }^{2}$ A preliminary version appeared in the Proceedings of the 26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015).

 Email addresses: mh55@leicester.ac.uk (Michael Hoffmann), iacono@nyu.edu (John Iacono), pat.nicholson@nokia.com (Patrick K. Nicholson), r.raman@leicester.ac.uk (Rajeev Raman)

[^1]: ${ }^{1}$ More details: given any array with non-distinct elements for the unidirectional problem, we first reduce the values of the elements to their ranks (allowing ties). We then tweak the values so that the rightmost of each duplicated value x is $x+\varepsilon$ for some $\varepsilon \in(0,1)$. We then reduce ε by some positive amount such that it is remains positive, and repeat this step until all elements are distinct.
 ${ }^{2}$ We use $\lg x$ to denote $\log _{2} x$.

[^2]: ${ }^{3}$ https://oeis.org/

[^3]: ${ }^{4}$ Overloading notation, if x is a probability instead of a sequence of symbols, we use $H(x)$ to denote the standard binary entropy of x : $x \lg \left(\frac{1}{x}\right)+(1-x) \lg \left(\frac{1}{1-x}\right)$.

