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Abstract. Large tropical trees store significant amounts of
carbon in woody components and their distribution plays an
important role in forest carbon stocks and dynamics. Here,
we explore the properties of a new lidar-derived index, the
large tree canopy area (LCA) defined as the area occupied by
canopy above a reference height. We hypothesize that this
simple measure of forest structure representing the crown
area of large canopy trees could consistently explain the land-
scape variations in forest volume and aboveground biomass
(AGB) across a range of climate and edaphic conditions.
To test this hypothesis, we assembled a unique dataset of
high-resolution airborne light detection and ranging (lidar)
and ground inventory data in nine undisturbed old-growth
Neotropical forests, of which four had plots large enough
(1 ha) to calibrate our model. We found that the LCA for trees
greater than 27 m (∼ 25–30 m) in height and at least 100 m2

crown size in a unit area (1 ha), explains more than 75 %
of total forest volume variations, irrespective of the forest
biogeographic conditions. When weighted by average wood
density of the stand, LCA can be used as an unbiased estima-
tor of AGB across sites (R2

= 0.78, RMSE= 46.02 Mg ha−1,
bias =−0.63 Mg ha−1). Unlike other lidar-derived metrics
with complex nonlinear relations to biomass, the relationship
between LCA and AGB is linear and remains unique across
forest types. A comparison with tree inventories across the
study sites indicates that LCA correlates best with the crown

area (or basal area) of trees with diameter greater than 50 cm.
The spatial invariance of the LCA–AGB relationship across
the Neotropics suggests a remarkable regularity of forest
structure across the landscape and a new technique for sys-
tematic monitoring of large trees for their contribution to
AGB and changes associated with selective logging, tree
mortality and other types of tropical forest disturbance and
dynamics.

1 Introduction

In humid tropical forests, tree canopies contribute dispro-
portionately to the exchange of water and carbon with the
atmosphere through photosynthesis (Goldstein et al., 1998;
Santiago et al., 2004). From a physical standpoint, canopies
are rough interfaces formed by crowns of emergent and large
trees, regularly disturbed by wind thrusts and gap dynamics.
This structurally complex boundary layer is challenging for
scaling of biogeochemical fluxes and modeling of vegetation
dynamics (Baldocchi et al., 2003). Large canopy trees are
among the first to be impacted by storms or heavy precipi-
tation (Espírito-Santo et al., 2010), drought stress (Nepstad
et al., 2007; Saatchi et al., 2013; Phillips et al., 2009) and
fragmentation (Laurance et al., 2000), potentially leading to
tree death and formation of large canopy gaps (Denslow,
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1980; Espírito-Santo et al., 2014). Several studies suggest
that forest canopies can show fractal properties that tend to
evolve from a non-equilibrium state towards a self-organized
critical state, involving gap formation and recovery (Pas-
cual and Guichard, 2005; Solé and Manrubia, 1995), with
crowns preferentially growing towards more sunlit parts of
the canopy (Strigul et al., 2008).

Over the past decade, stand-level canopy metrics have
been increasingly derived using small footprint airborne li-
dar systems (ALS), a widely used remote sensing technique
to study the structure of forests (Kellner and Asner, 2009;
Lefsky et al., 2002). Lidar-derived mean top canopy height
(MCH) is a good predictor of tropical forest aboveground
carbon content and its spatial variability (Jubanski et al.,
2013), but it does not provide information on the presence
of large trees that are important when monitoring changes
in forest biomass from logging and other small-scale dis-
turbance (Bastin et al., 2015). Moreover, different forests
with the same MCH may differ in their stem density, no-
tably of large trees, and in stand mean wood density, two
aspects that are important in constructing a robust model to
infer aboveground biomass (AGB) from lidar data (Asner et
al., 2012; Mascaro et al., 2011). Ground observations sug-
gest that stem density, basal area, height and crown size of
large tropical trees may all be good indicators of forest AGB
(Clark and Clark, 1996; Goodman et al., 2014). This implies
that including information on crown area of individual large
trees should improve carbon stock assessments, as confirmed
in temperate and boreal regions (e.g., Packalen et al., 2015;
Popescu et al., 2003; Vauhkonen et al., 2011, 2014). In trop-
ical forests, identifying and delineating crowns of large trees
is a difficult and time-consuming process due to the layered
structure of the forest canopy and overlapping crowns (Zhou
et al., 2010, but see Ferraz et al., 2016).

Here, we explore how the fractional area occupied by
crowns of large trees in a forest stand can be used as a reli-
able indicator of forest biomass across a wide range of forest
structure, climate and edaphic geographic variations. We de-
fine large tree canopy area (LCA) as a metric capturing the
cluster of crowns of large trees within a forest patch using
height and crown area measured by high-resolution airborne
lidar measurements. Precisely, LCA is the number of pixels
in the canopy height model above a reference height, and ex-
cluding the pixel clusters smaller than a reference area. Since
this metric quantifies the proportional presence of large trees,
it can be used to estimate AGB and monitor changes associ-
ated with the disturbance of large trees from mortality events
and selective logging. We first explore the properties of LCA
across a range of landscapes in the Neotropics. Next, we hy-
pothesize that LCA is a good predictive metric for the spatial
variations in AGB over a wide range of old-growth forests.

To this end, we assembled a collection of airborne lidar
measurements and ground inventory data at nine sites in old-
growth Neotropical forests. The lidar data provide variations
in canopy height and distribution of large trees that allow us

to address the following questions: (1) is there a single def-
inition of LCA at the landscape scale across different sites?
(2) Does the LCA metric capture variations in AGB?

2 Materials and Methods

2.1 Study sites

We studied the canopy structure at nine old-growth lowland
Neotropical forest sites that span a broad range of climatic
and edaphic conditions (Fig. S1 in the Supplement, Table 1).
All sites are located in low elevation areas (less than 500 m
above sea level) but have small-scale surface topography that
may influence the distribution of crown formations and gaps.
These forests are for the most part undisturbed terra firme
forests. Tapajós, Antimary and Cotriguaçu get the least rain-
fall, with approximately 2000 mm yr−1, while La Selva and
Chocó both receive more than 4000 mm yr−1 (Table 1).

Permanent forest-inventory plots were available for all
sites except Cotriguaçu (Table 1). Sites where tree-level in-
ventory data were available were used to estimate the stand-
level AGB, hereafter referred to as AGBinv: BCI (50 plots
of 1 ha each), Chocó (42 plots of 0.25 ha each), La Selva
(11 plots of 1 ha each), Manaus (10 plots of 0.25 ha each),
Nouragues (7 plots of 1 ha each) and Tapajós (10 plots of
0.25 ha each). In these plots, all trees with a diameter at
breast height (DBH) ≥ 10 cm have been mapped, measured
and the species identified. Trees with irregularities or but-
tresses were measured higher on the bole. Total tree height
measurements were available for a subset of these trees. The
method for calculating AGBinv from forest inventories is re-
ported in Sect. S1 of the Supplement. Four sites (BCI, La
Selva, Nouragues and Paracou) with 1 ha inventory plots,
were used as “calibration sites” to compare the LCA met-
ric and AGB. Sites with smaller plots were not used as cal-
ibration of LCA because of the probability of crowns of
large trees extending outside the plot boundary and the intro-
duction of uncertainty in estimating LCA from edge effects
(Meyer et al., 2013; Packalen et al., 2015). For this reason, all
plots smaller than 1 ha were excluded from the LCA analysis
but were used in estimating average wood density (WD) for
each site, which does not depend on plot size. Stand-averaged
WD was calculated based on the WD of all trees present in
a site, determined using the commonly used Global Wood
Density Database, and is reported in Table 1 (Chave et al.,
2009; Zanne et al., 2009). For Cotriguaçu, we used stand-
averaged WD given by Fearnside (1997) for a region cov-
ering the site. Additional plot-level data (AGBinv and mean
WD) were provided for Antimary (50 plots of 0.25 ha each),
Nouragues (27 plots of 1 ha each) and Paracou (85 plots of
1 ha each).
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Table 1. Information on forest inventory plots. The ∗ symbol indicates that a site has been used for the calibration of the LCA model. Sources:
Antimary and Cotriguaçu: (d’Oliveira et al., 2012; Fearnside, 1997), BCI: Center for Tropical Forest Science (CTFS; Condit, 1998; Hubbell
et al., 1999, 2005), Chocó: (http://bioredd.org, last access: 13 April 2016), La Selva: Carbono project (Clark and Clark, 2000), Manaus
and Tapajós: Fernando Espírito-Santo (unpublished data), Nouragues: (Réjou-Méchain et al., 2015), Paracou: (Gourlet-Fleury et al., 2004;
Vincent et al., 2012). Rainfall data from WorldClim (Hijmans et al., 2005). AGB: aboveground biomass, WD: wood density.

Site Data Plots size N plots Year Mean WD Mean AGB Annual
(ha) (g cm−3) (Mg ha−1) rainfall (mm)

Antimary (Brazil) plot level 0.25 50 2010 0.61 234 2000
BCI∗ (Panama) tree level 1 50 2010 0.56 235 2600
Chocó (Colombia) tree level 0.25 42 2013 0.60 224 6000
Cotriguaçu (Brazil) Not available – – – 0.60 – 2000
La Selva∗ (Costa Rica) tree level 1 11 2009 0.45 178 4000
Manaus (Brazil) tree level 0.25 10 2014 0.66 263 2200
Nouragues∗ (French Guiana) plot level 1 33 2012 0.66 424 3000

tree level 1 7/33
Paracou∗ (French Guiana) plot level 1 85 2009–2010 0.71 353 3000
Tapajós (Brazil) tree level 0.25 10 2014 0.62 238 1900

Table 2. Information on lidar data and locations of the nine research sites.

Site Sensor Year Returns Flight Scanning Frequency NW corner NW corner
(1 km2 images) (m−2) altitude (m) angle (◦) (kHz) lat. long.

Antimary Optech ALTM3100EA 2010–2011 10–15 500 11 70 9◦17′47.26′′ S 68◦17′15.06′′W
BCI Optech ALTM3100EA 2009 8 1000 35 70 9◦9′28.56′′ N 79◦51′18.9′′W
Chocó Optech ALTM3033 2013 4 1000 20 33 3◦57′5.71′′ N 76◦49′10.31′′W
Cotriguaçu Optech ALTM3100EA 2011 10–15 850 11 60 9◦27′8.87′′ S 58◦51′51.22′′W
La Selva Optech ALTM3100EA 2009 4 1500 20 70 10◦25′37.97′′ N 84◦1′8.76′′W
Manaus Optech ALTM3100EA 2012 10–15 850 (max) 11 60 2◦56′38.48′′ S 59◦56′12.57′′W
Nouragues Riegl LMS-Q560 2012 12 400 45 200 4◦3′10.0′′ N 52◦42′19.95′′W
Paracou Riegl LMS-280i 2009 4 120–220 30 24 5◦15′47.73′′ N 52◦56′26.96′′W
Tapajós Optech ALTM3100EA 2011 10–15 850 (max) 11 60 2◦50′53.41′′ S 54◦57′44.53′′W

2.2 Lidar data

Lidar sensors scan the vegetation vertical structure and re-
turn a three-dimensional point cloud derived from the time it
took each pulse to return to the instrument. The lidar datasets
acquired over the study sites come from discrete return li-
dar instruments and were gridded horizontally at a 1 m res-
olution using the echoes classified as either vegetation or
ground. They yield three products: a digital surface model
(DSM) corresponding to the top canopy elevation, digital ter-
rain model (DTM) corresponding to the ground elevation and
canopy height model (CHM), which is the height difference
between the DSM and the DTM. DTMs were interpolated
from a Delaunay triangulation or comparable interpolation
methods, after outliers were removed. DSMs were created
using the highest return within a cell. Lidar data over Paracou
were acquired in last return mode, causing a bias of 50 cm on
the CHM (Vincent et al., 2012). This bias is not addressed in
this study because our height increment for the determination
of optimal height thresholding is larger (1 m; see Sect. 4.3).
Data were acquired between 2009 and 2013, using relatively
similar sensors and acquisition configurations (Table 2). The

potential differences between the lidar datasets and their im-
pact on the results are addressed in the Discussion.

For each site, we selected a 1 km× 1 km (100 ha) area of
old-growth forest, oriented north–south, without any human
disturbance to the extent possible. Topography derived from
lidar data within the selected 1 km2 subset images provides
information on landscape variations that may impact the for-
est structure. Data visualization was done using ENVI ver-
sion 4.8 (Exelis; ENVI/IDL, 2010).

2.3 Computing large canopy area (LCA)

At each study site, we extracted the area of canopy that re-
lates to total area of the canopy height model above a stan-
dard height (h) threshold, or LCA(h), and explored how this
metric scales along two axes. First, we varied the thresh-
old height h with increments of 1 m, between 5 and 50 m, in
100 m by 100 m subareas (100 subareas for each site). Sec-
ond, to denoise the data, we excluded the clusters with less
than a set number of 1 m2 pixels (50, 100, 150 or 200). We
then prioritized the crown area of large trees, and filtered out
pixels that could be related to outliers or to single branches.
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http://bioredd.org


3380 V. Meyer et al.: Canopy area of large trees explains aboveground biomass variations

This method thus quantifies the area of large crowns cover-
ing a plot or larger landscape unit area, as a percentage of
covered area.

LCA maps were produced at 1 ha resolution. Pixel clus-
tering was based on the similarity of the four nearest neigh-
bors (similar results were obtained with an eight neighbor
model, results not shown here). Figure S2 summarizes the
steps taken to go from the lidar canopy height model to the
final LCA map. Processing was conducted using the IDL
software (interface description language, Exelis; ENVI/IDL,
2010).

We determined the optimal minimum canopy height
threshold calculating the coefficient of correlation between
AGBinv and LCA at the four calibration sites. This step al-
lowed us to examine if optimal height thresholds differed
from one site to the other. The goal was to find a single opti-
mal height threshold and crown size that could be applied for
LCA retrieval across closed-canopy Neotropical forests. We
also estimated AGB from lidar data locally (AGBLocal) using
a commonly used model fit relating MCH to AGBinv in each
site, to further examine the variations of LCA and AGB in all
nine sites (see Sect. S2, Table S1 in the Supplement).

2.4 Relating LCA to biomass

We tested different models to infer AGBinv from LCA,
henceforth called AGBLCA, at the four calibration sites, and
explored if adding more parameters (such as mean WD of a
site, mean WD of large trees (DBH≥ 50 cm), mean canopy
height or top percentiles of canopy height) improved the pre-
dicting power of the model. We evaluated our results by ap-
plying a jackknife validation to our regression models, based
on 1000 iterations of bootstrapping. The coefficients of cor-
relation (R2), root mean square error (RMSE) and bias (mean
difference between the expected values of AGB and the ob-
served values of AGB) are reported for the models providing
the best results. The analysis was performed using the R sta-
tistical software (R Core Team, 2014).

We compared the new approach based on LCA to a simi-
lar approach based on MCH, which relies on information on
all pixels of an area of interest. In both cases, models were
calibrated by using field data from the four calibration sites
and their respective mean WD. This comparison is meant to
investigate if a metric based on large trees only (LCA) can es-
timate AGB similarly to a metric that uses information about
100 % of the canopy (MCH).

2.5 Detecting changes in selective logging

Forest degradation due to selective logging is difficult to
detect with conventional remote sensing techniques due to
the small scale and minor impacts on the forest canopy and
biomass compared to severe forest disturbances (e.g., fires,
storms or clearing). However, selective logging targets large
trees (Pearson et al., 2014) and thus may be detectable us-

ing LCA, provided that lidar data are available from pre- and
post-logging. Here, we use the Antimary study site that was
selectively logged after the 2010 lidar acquisition to examine
the use of LCA for detecting logging impacts on the forest
canopy and AGB. We apply the large tree segmentation ap-
proach on both the 2010 image and on a 2011 post-logging
lidar image (see Andersen et al., 2014 for details) to quantify
the logging impacts in terms of the distribution of large trees
removed from the forest and the loss of AGB.

3 Results

3.1 Inter-site comparison of landscapes and MCH

Topographic variation within the 1 km2 images ranged from
about 4 m elevation gain in a flat area of Tapajós to steep el-
evation gain of up to about 100 m in Cotriguaçu and Chocó
(Fig. S3). Top canopy height reached up to 60 m, but varies
across sites, with Chocó having the lowest MCH (24.1 m)
and Nouragues the highest (29.7 m). Forest height in Manaus
was more homogeneous than in the other sites, with a stan-
dard deviation of 6.8 m for MCH, versus 10.3 m in Paracou.
We found no relationship between topography and canopy
height, which suggests that variability in forest structure may
be due to other ecological and edaphic factors in each site.

3.2 Large canopy area index

The choice of the canopy height threshold impacted LCA
more than the minimum number of pixels per cluster (Ta-
ble S2). The difference due to the choice of the minimal
cluster size threshold was on average 1.4 %, calculated as the
mean of the difference between the smallest grain (50 pix-
els) and the largest one (200 pixels) across sites and height
thresholds. Based on this analysis, we chose to define LCA
using a minimum cluster size of 100 pixels (100 m2 for crown
area) in the remainder of this study. This corresponds to an
area of at least 10 m× 10 m or a circle of approximately
11 m in diameter, consistent with the average crown diame-
ter of large trees of the region (Bohlman and O’Brien, 2006;
Figueiredo et al., 2016; David B. Clark, unpublished data).

In contrast, the canopy height thresholds markedly im-
pacted the magnitude of LCA among sites (Figs. 1 and 2, Ta-
ble S2). As the height threshold increased, intra-site variation
in LCA(h) became apparent, showing differences in LCA as-
sociated with differences in forest structure (Fig. 1). Tapa-
jós and Nouragues stood out with more area of large trees
at the height threshold of 30 m (LCA30 m = 51 and 48 %, re-
spectively) , while Antimary and Chocó showed much lower
LCA at this height threshold (LCA30 m = 21 %; Table S2).
The steepest slopes of the LCA(h) function corresponded to
the highest sensitivity of LCA to height thresholds and the
inflection in LCA was found between 24 m in Antimary and
30 m in Nouragues (Fig. 2). The average height of the steep-
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Figure 1. Segmentation of the 1 km× 1 km images in each site using five canopy height thresholds. A minimum of 100 contiguous pixels
was used as a segmentation threshold in all cases.
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Figure 2. LCA as a function of height thresholds in the nine study
sites. The steepest slopes are between 24 m (Antimary) and 30 m
(Nouragues), with an average of 27 m across sites. Steepness of
slope was obtained by calculating the derivative of the sigmoid
models characterizing each site.

est slope was about 27 m, a value that was used as the optimal
threshold across all sites.

Regressing AGBinv and LCA at the calibration sites
(Fig. 3b) showed the best relationships corresponded to
height thresholds between 27 m (Nouragues and Paracou)
and 28 m (BCI and La Selva), with maximum coefficients
of correlation ranging between 0.5 and 0.8. The same anal-
ysis repeated using AGBLocal and LCA in the nine sites also

confirmed the earlier results that the highest coefficients of
correlation between the two metrics occurred between 23 m
(Chocó) and 30 m (Tapajós) height thresholds (Fig. 3a), ex-
plaining more than 75 % of AGB variation in each site. Based
on these results, we defined LCA as the cumulative area of
clusters of the canopy height model greater than 27 m height,
as the mean of optimal height threshold with highest R2

across sites, with clusters covering areas larger than 100 m2.

3.3 Variation of AGB derived from LCA

AGBinv was found to depend linearly on LCA (Eq. 1), with
a better coefficient of correlation and RMSE than a power
law fit (R2

linear = 0.59, RMSElinear = 62.53 Mg ha−1, vs.
R2

power = 0.54, RMSEpower = 65.38). Although this model
was unbiased (biascross_val = 0.16 Mg), there were clear dif-
ferences among study sites (Fig. 4a, Table 3). These differ-
ences were largely explained by landscape-scale differences
in WD, an important factor representing the influence of
species composition on the spatial variation in AGB. Since
AGB depends on DBH, H and WD (see Chave et al., 2014),
average wood volume can be computed approximately as
the ratio of AGB divided by the average WD (Fig. 4b). The
linear relationship between LCA and wood volume yielded
an estimate of the average total volume of forests indepen-
dently of the site characteristics, through Vol= a LCA+ b.
Adding more parameters did not improve the performance
of the model, except when using WD as a normalizing fac-
tor. The two models we retained are therefore of the form of
Eqs. (1) and (2):
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Figure 3. Distribution of R2 between tree height thresholds used to determine LCA and AGBLocal in the nine 1 ha subareas (a) and distri-
bution of R2 between tree height thresholds and AGBinv in 1 ha inventory plots of the four calibration sites (b). All optimal thresholds are
between 23 and 30 m. The average maximal height threshold is 27 m.

Table 3. Coefficients R2, RMSE and bias for the models used to estimate AGBLCA without and with wood density (WD) as a weighting
factor (m_LCA and m_LCA_wd, respectively). cross val. represents cross validation.

Model Equation a b R2 RMSE Bias R2 RMSE Bias
cross val. cross val. cross val.

m_LCA AGB= aLCA+ b (Eq. 1) 3.56 136.91 0.59 62.53 0.0 0.58 63.26 0.16
m_LCA_wd AGB= (aLCA+ b)×WD (Eq. 2) 4.47 270.27 0.78 46.02 −0.76 0.77 46.47 −0.63

AGBLCA = a LCA+ b, (1)
AGBLCA = (a LCA+ b) × WD, (2)

where WD is the mean wood density of a site. The coeffi-
cients of the models, as well as their respective coefficients
of correlation, RMSE and bias from training data and cross-
validation are reported in Table 3.

For AGB estimation, the model based on LCA weighted
by WD gives the best result by bringing R2 up to 0.78 and
RMSE down to 46.02 Mg ha−1 (Fig. 4b, c, Table 3, Eq. 2),
with AGBinv and AGBLCA falling around a one-to-one line
in Fig. 4c. At all sites, RMSE values are between 20.87 and
42.22 Mg, except Nouragues, where RMSE remains large
(71.21 Mg) due to high biomass and several outliers from the
linear relation. The relationship between LCA and other met-
rics derived from ground data, such as Lorey’s height or basal
area, are presented in Sect. S3 and Table S4.

3.4 LCA vs. MCH approach

Finally, we compared these results to AGB estimated using
a similar approach based on MCH (AGBMCH) for the cal-
ibration plots (Fig. 5a), and we also compared AGBLCA to
AGBMCH in all nine sites, using LCA and MCH of the 1 km2

images (Fig. 5b).

Both methods perform similarly (R2
MCH= 0.80,

RMSEMCH= 42.52 Mg ha−1, biascross_val=−0.21 Mg ha−1;
Table S3), showing that relying on a fraction of the lidar
information performs as well as using a metric depending
on information from all pixels. However, Fig. 5 also shows
that the LCA method tends to overestimate AGB compared
to the MCH method (bias= 9.66 Mg ha−1), especially in La
Selva, BCI, Cotriguaçu and Manaus.

3.5 AGB changes from logging

The impacts of logging on the distribution of large trees and
changes in AGB was detected by simply deriving the LCA
index from pre- and post-logging lidar data acquired in 2010
and 2011, respectively, in Antimary (Fig. 6). Difference in
LCA between the two dates (2010–2011; Fig. 6a) at 1 ha grid
cell resolution captured the areas of largest changes in the
few months following logging (logging took place between
June and November 2011, lidar data were collected in late
November 2011). The LCA approach was able to detect an
approximately 17 % decrease in LCA, from a mean LCA of
34.8 % in 2010 to 29.2 % in 2011.

The changes were also captured in the frequency distribu-
tion of large canopy trees before and after logging (Fig. 6b)
and the differences in the spatial distribution (Fig. 6c and d).
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Figure 4. Relationship between AGBinv and LCA (a), AGBinv normalized by averaged wood density (WD) (b) and AGBinv vs. AGBLCA
estimated with the LCA_wd model (c). The black line represents the one-to-one line. Normalizing AGB by averaged wood density (WD)
brings the data from different sites closer to a common fit.

These changes in LCA correspond to a biomass loss of
15.2 Mg ha−1 when integrated in Eq. (2) and were of the
same magnitude as the planned selectively logging removal
rate (12–18 Mg ha−1 or 10–15 m3 ha−1 of timber volume;
Andersen et al., 2014). As a comparison, the MCH model
led to an estimated biomass loss of 19 Mg ha−1. The differ-
ence in the lidar index (1LCA) at the native resolution of
1 m (Fig. 6e) was able to capture both the location of all large
trees removed from the forest stand and partial regeneration
and gap filling that occurred in the forest between the two
dates.

4 Discussion

4.1 Inter-site comparisons

Cross-site studies on the structure of tropical forests have led
to significant advances in our understanding of tropical for-
est ecology (Gentry, 1993; Phillips et al., 1998; ter Steege
et al., 2006). They have also yielded important insights into
new techniques to predict carbon stocks across regions (e.g.,
Asner and Mascaro, 2014). Comparison of sites in terms
of MCH derived for the study sites confirms that there is
a strong regional variation in AGB with respect to canopy
height, and that east Amazonian sites tend to have much taller
trees than central and western Amazonian sites. This was al-
ready apparent in the canopy height maps produced by the
GLAS sensor (Lefsky, 2010; Saatchi et al., 2011; Simard et
al., 2011). Comparing sites in terms of LCA showed a similar
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Figure 5. AGBMCH vs. AGBLCA in the plots of the four calibration sites (a), and AGBMCH vs. AGBLCA in the 1 km2 images of the nine
sites (b). The black line represents the one-to-one line.

pattern of larger trees, being relatively more present in east-
ern Amazonia, notably in the French Guiana sites and Tapa-
jós. Our most southwestern site was Antimary, in the state
of Acre (Brazilian Amazon). However, this site does not rep-
resent forests in the western Amazon or the Amazon–Andes
gradients with relatively lower WD (Baker et al., 2004) and
more fertile volcanic soils impacting the forest structure and
dynamics (Quesada et al., 2011). The site in Chocó is also
unique in its characteristics because of extremely wet condi-
tion and potential disturbance (e.g., selective logging). Addi-
tional lidar and ground measurements will allow validating
the performance of the LCA in representing the AGB varia-
tions in the western Amazon region.

4.2 Physical interpretation of LCA

In this study, we introduced a simple structural metric that
captures the proportion of area covered by large trees over
the landscape (> 1 ha) and explained 78 % of the variation in
average forest volume and biomass when weighted by WD
in four sites of old-growth Neotropical forests. LCA can-
not separate the crown areas of individual trees. However,
it is adapted for large-scale monitoring of forest volume and
biomass change, as it is a robust and readily accessible met-
ric. For individual tree separation, complex and more com-
putationally intensive approaches are available (Ferraz et al.,
2016).

In estimating LCA from lidar data, we examined the spa-
tial clustering properties of LCA and found that the minimum
cluster size was less important than the threshold of canopy
height, as long as the analysis focused on the relative covered
area instead of the density of large trees. We found that us-
ing the percentage of the area covered by large canopy trees
is an efficient way of overcoming the problem of individ-

ual crown segmentation in lidar data. LCA is related to how
trees reaching the forest canopy (above a certain height) fill
the space and how this characteristic may follow a spatially
invariant scaling across tropical forests (West et al., 2009).

Clusters smaller than 100 m2 add only a small fraction
(1.7 % on average) to LCA values across sites. Including
these clusters in LCA would not impact the performance of
the model (similar R2, RMSE and bias) and would allow
us to skip the final steps of the LCA retrieval (see Fig. S2).
However, since these pixels either represent single branches
reaching above 27 m or the tip of a tree crown, they have no
meaning in terms of our LCA metric and do not represent
large trees.

LCA provides information on the presence of large trees
in a study area, which other metrics such as MCH cannot
do. It is an important point, considering that large trees are
often the most affected by natural disturbance and targeted
by logging companies.

4.3 Correlation between LCA and AGB

The distribution of R2 between LCA and AGB for (Fig. 3)
is such that the maximum difference in R2 between a thresh-
old of 25 and 30 m is approximately 0.1, a negligible value.
Hence, AGB retrieval by LCA is relatively insensitive to the
height threshold. For most sites, except Antimary, we found
a height threshold such that LCA explains about 80–90 % of
the variation in AGB or total volume of the forests for each
site (60–70 % when compared with ground plots; Fig. 3). Us-
ing a height threshold of 27 m for all sites reduced the R2 by
0.04 on average (max= 0.08) compared to the optimal height
threshold for each site.

Potential differences in MCH among sites are due to foot-
print size, scan angle and return density (Disney et al., 2010;
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Figure 6. Detection of changes in forest structure from selective logging in the Antimary study area showing (a) the difference between
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(e) difference of the two segmented areas showing the extent of the logging impact on large trees in addition to natural changes in forest
structure from changes in canopy gaps from tree falls and tree growth.

Hirata, 2004; Hopkinson, 2007; Table 2). However, these ef-
fects are generally smaller than the 1 m increment that we
used to determine the optimal height thresholds of LCA. As
a result, LCA estimation, and therefore AGB inferred from
LCA, should depend little on instrument, acquisition and
processing (Table 2). This is an important finding given the
increasing variety of airborne lidar sensors, and also given
the pre- and post-processing methods available for monitor-
ing tropical forest structure and AGB. However, determining
whether the 27 m threshold holds for the LCA calculation
across the tropics would require a validation at more study
studies across continents.

4.4 LCA relation to ground measurements

The relation between LCA derived from lidar and the ground
measurements can be further investigated by converting the
27 m height threshold into equivalent DBH values, using a
height–diameter relationship. In the absence of a local DBH–
height relation at each site, we made use of the following
equation (Chave et al., 2014):

ln(H)= 0.893−E+ 0.760× ln(D)

− 0.0340× (ln(D))2, (3)

where E is a measure of environmental stress for each site
that potentially impacts the tree allometry. The correspond-
ing DBH values fall around 35–55 cm, except for Chocó,

where the best coefficient of correlation is reached with a
DBH threshold of 29 cm (Fig. S4). The average minimum
DBH to assign for the definition of large trees that repre-
sent variations in AGB is below 50 cm. By choosing a DBH
threshold of 50 cm for old-growth undisturbed forests, the
LCA model for estimating biomass can have an approximate
analog in inventory data. This comparison suggests that the
LCA model can also be adjusted with the average WD of
trees lager than 50 m, allowing a much faster ground data
collection of calibrating the LCA model for different sites
(Sect. S4).

A limit to how much LCA can explain variations in AGB
relates to forest structure and the AGB of small trees. The
lower range of biomass estimation for the LCA model, asso-
ciated with the intercept for LCA equal to zero, ranged be-
tween 122 Mg ha−1 in La Selva and 192 Mg ha−1 in Paracou
(Fig. 7a). This lower range identified with the intercept of the
LCA–AGB linear model can be interpreted as the AGB asso-
ciated with all trees smaller than 27 m height (approximately
all trees with DBH < 50 cm). Note that the differences be-
tween sites are due to differences in their mean WD and not
the volume of trees (see Eq. 2 and Fig. 4). Similarly, the con-
tribution of small trees to the total biomass in the ground in-
ventory ranges between around 100 and 200 Mg ha−1, except
in Paracou (261 Mg ha−1; Fig. 7b). AGB estimation based
on LCA in these sites cannot go under 100 Mg ha−1 or over
500 Mg ha−1. This is not a limitation of the model because
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Figure 7. Relationship between LCA and AGBLCA (a) and relationship between AGBinv of large trees (> 50 cm DBH) and total AGBinv (b).
In both cases, the intercepts represent the contribution of small trees to total AGB. Note that Manaus and Nouragues overlap because they
have the same mean wood density (WD), as well as Chocó and Cotriguaçu.

LCA is designed to provide AGB estimates for forests reach-
ing at least 27 m in mean canopy height, and such forests gen-
erally exceed 100 Mg ha−1 in AGB. Also, the upper thresh-
old of 500 Mg ha−1 is consistent with upper values found
globally at 1 ha scale (Brienen et al., 2015; Slik et al., 2013).
A recalibration of the method should be envisaged in sec-
ondary and highly degraded forests.

4.5 LCA as AGB estimator

The correlation of LCA to AGBinv suggests that a lidar-based
approach can lead to the estimation of AGB at the landscape
scale and give useful information on the presence of large
canopy trees and their distribution, extending the analysis of
large trees in plot-level inventory-based studies (Bastin et al.,
2015; Slik et al., 2013).

Therefore, LCA can explain the variations in total forest
volume without any ancillary data about the forest or the
landscape. Most bias in conversion of LCA to AGB, how-
ever, can be corrected across landscapes and sites by scaling
the LCA–AGB relationship with average WD at the land-
scape scale. Our model can therefore potentially be applied
to a wide range of forest types, provided that there is infor-
mation about WD of the study area in the literature.

Wood density has been shown to be a key element of allo-
metric models of AGB estimation (Baker et al., 2004; Brown
et al., 1989; Chave et al., 2004; Nogueira et al., 2007). If WD
is assumed to be constant across DBH classes, the mean WD
at the plot scale can readily be used to scale LCA to biomass.
However, if the WD of large trees is smaller or larger than
the average WD, (e.g., in BCI and Chocó: Sect. S4, Fig. S5),
the use of mean WD to scale LCA may introduce a slight
bias in biomass estimation. A difference in mean WD of

0.1 g cm−3 would introduce a bias of ±10 % in the biomass
estimation when using our model. We found that using mean
WD of large trees or basal-area-weighted WD instead can
give slightly better results and could circumvent the differ-
ences in size distribution of the WD (Sect. S4). Instead we
could rely on the WD of large trees only. This would make
the collection of ground data easier and cost effective for
biomass estimation, because trees ≥ 50 cm DBH only repre-
sent 5–10 % of the stems of a plot (Sect. S4, Fig. S6). Focus-
ing on the WD of dominant or hyper-dominant species could
also be an alternative approach for future use of lidar-derived
LCA for large-scale biomass estimation (Fauset et al., 2015;
ter Steege et al., 2013). In the absence of information on WD
from the literature, modeled WD could potentially be used,
but would give greater errors. These errors should be taken
into account when reporting on the uncertainty in the results.

4.6 LCA and MCH

The comparison of LCA and MCH metrics showed that both
performed similarly in estimating AGB, highlighting the im-
portance of large canopy trees to estimate biomass. The dif-
ferences between the two methods in estimating AGB show
that two methods can have similar performance in terms of
R2 and RMSE and nonetheless lead to different estimations,
with LCA giving higher AGB estimations in some sites. The
choice of a metric is therefore crucial to estimate AGB, espe-
cially when estimating the changes in biomass (see Sect. 4.7).

Both MCH and LCA–AGB models performed relatively
poorly in high biomass plots of the Nouragues study area,
by underestimating biomass values greater than 500 Mg ha−1

(Figs. 4 and 5). To explain the underestimation, we per-
formed three tests. (1) We examined the differences in the
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ground estimated biomass values with and without tree
height and found no significant impact in reducing the ef-
fect of underestimation. (2) We tested the hypothesis that
the height threshold used for LCA estimation across sites
was not suitable for the Nouragues study site and dismissed
the hypothesis because 27 m was found to be the optimum
threshold for Nouragues plots. (3) We examined the errors
in the lidar estimation of forest height and found that except
for an extremely high AGBinv of 617 Mg ha−1, the four other
high biomass outliers are all located in the 6 ha Pararé plot
located on a very steep topography. The lidar DTM of this
area shows an average within-plot elevation range of 90 m.
Ground detection on steep terrain can be erroneous, depend-
ing on the lidar point density and the view angle, causing
large area interpolation errors for DTM development and sig-
nificant error in canopy height measurements (Leitold et al.,
2015). Other factors that may affect the underestimation of
AGB by LCA or MCH in the Nouragues site may be due
to the presence of forest patches with clusters of large trees
and overlapping crown areas. It is also possible that the rela-
tionship between AGB and LCA is not linear for very high
AGB values. This could be tested in the future with a larger
number of sites with very high biomass.

4.7 LCA and forest degradation

Although LCA and MCH may perform similarly in capturing
the forest biomass variations and changes, the use of LCA in
detecting forest degradation and logging is more straightfor-
ward because of its relation to large trees. The LCA approach
was able to accurately detect changes in forests after logging
by locating where the large trees are extracted. Our estimate
of biomass change from the LCA approach was higher than
the biomass loss of 9.1 Mg ha−1 reported by another study
using the 25th percentile height above ground as the lidar
metric for biomass estimation (Andersen et al., 2014). It can
be expected that relying on the 25th percentile height met-
ric for biomass estimation would place more emphasis on
the lower part of the canopy (understory) that is either less
damaged or has gone through some level of regeneration af-
ter logging. Models based on LCA or MCH, on the other
hand, may be more realistic for estimating AGB changes be-
cause they capture the changes in large trees and upper forest
canopy structure that contain most of the biomass and are
directly impacted by logging and biomass removal.

The higher biomass loss estimation from the MCH model
(19 Mg ha−1) again shows how different metrics can lead to
different results. Here, three methods based on three differ-
ent lidar metrics yielded results that differed by more than
twofold. LCA could become an important tool to detect for-
est degradation, in particular selective logging, considering
that large trees are targeted by logging companies.

4.8 Future applications of LCA

The LCA definition in our study relies on the high-resolution
information of forest height, allowing for the detection of
crown area of large canopy trees. Can a similar measure be
derived from large footprint lidar observations such as the fu-
ture NASA spaceborne lidar mission GEDI (Global Ecosys-
tem Dynamic Investigation)? GEDI will not provide spa-
tially continuous data on forest height, but its footprint size
(∼ 25 m) and dense sampling may be adequate to develop
statistical indicators of large trees over the landscape.

Similarly, future spaceborne radar missions could also pro-
vide useful information to retrieve large canopy areas. The
synthetic aperture radar (SAR) tomographic observations of
the European Space Agency (ESA) Biomass mission will
provide wall-to-wall imagery of canopy profile that could be
converted to LCA over the landscape (Le Toan et al., 2011).
Preliminary research based on airborne TomoSAR measure-
ments has already shown that backscatter power at about
30 m above the ground, with sensitivity to the distribution of
large trees, explained the variation in AGB over Nouragues
and Paracou plots better than the backscatter power related
to the lower part of the canopy (0–15 m; Minh et al., 2016;
Rocca et al., 2014). Future research on exploring the use of
an equivalent radar index product from Biomass height or
tomography measurements at a height threshold (e.g., 27 m)
may provide a potential algorithm to map the area of large
trees and estimate forest volume and biomass changes across
the landscape.

5 Conclusions

We introduce LCA as a new lidar-derived index to capture
the variations in large trees and total volume and biomass
across landscapes that remain spatially and regionally invari-
ant. The importance of LCA is in its relevance to the struc-
ture and ecological characteristics of large trees in filling the
canopy space and their unique contribution in determining
the total volume and biomass of forests. Unlike other lidar-
derived metrics, LCA is linearly related to total AGB after
being weighted by average WD. This linear relationship re-
mains unique across different forest types, making the LCA
model broadly applicable. The comparison of the LCA in-
dex with ground plots suggests that DBH > 50 cm is a more
reliable threshold to quantify the number and distribution of
large trees in undisturbed old-growth tropical forests and in
capturing the variations in the total AGB across landscapes
and regions. The results of our study may encourage further
research in the use of lidar data for detecting the distribution
of larger trees in tropical forests for ecological and conserva-
tion studies.
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