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Abstract
The Human Genome Variation Society (HGVS) variant nomenclature is widely used to describe

sequence variants in scientific publications, clinical reports, and databases. However, the HGVS

recommendations are complex and this often results in inaccurate variant descriptions being

reported. The open-source hgvs Python package (https://github.com/biocommons/hgvs) provides

a programmatic interface for parsing, manipulating, formatting, and validating of variants accord-

ing to the HGVS recommendations, but does not provide a user-friendlyWeb interface. We have

developed a Web-based variant validation tool, VariantValidator (https://variantvalidator.org/),

which utilizes the hgvs Python package and provides additional functionality to assist users who

wish to accurately describe and report sequence-level variations that are compliant with the

HGVS recommendations. VariantValidator was designed to ensure that users are guided through

the intricacies of theHGVSnomenclature, for example, if the usermakes amistake, VariantValida-

tor automatically corrects themistake if it can, or provideshelpful guidance if it cannot. In addition,

VariantValidator has the facility to interconvert genomic variant descriptions inHGVSandVariant

Call Format with a degree of accuracy that surpasses most competing solutions.
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1 INTRODUCTION

The Human Genome Variation Society (HGVS) nomenclature for the

description of human sequence variants (den Dunnen et al., 2016)

is widely adopted by scientific journals and variant databases and

is endorsed by professional organizations (Deans, Fairley, den Dun-

nen, & Clark, 2016; Richards et al., 2015; Tack, Deans, Wolstenhome,

Patton, & Dequeker, 2016). As high-throughput sequencing has

becomemore common, HGVS recommendations have evolved to com-

municate a plethora of new variants to the scientific and health-

care communities (Taschner & den Dunnen, 2011). This has resulted

in some aspects of the nomenclature being somewhat difficult to

comprehend and use, for experts and non-experts alike, and so has

resulted in many instances of inaccurate communication of variant

data. Consequently, high-quality user-friendly tools are required to

help investigators validate variant descriptions to ensure that the
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described variant is valid and consistent with the predicted pheno-

typic effect. There is also a need for high-quality tools that can convert

high-throughput sequence variation descriptions (e.g., the Variant Call

Format [VCF] https://github.com/samtools/hts-specs) (Danecek et al.,

2011) into accurate descriptions of each variant using HGVS nomen-

clature with respect to all relevant reference sequences (i.e., genomic

reference sequences and transcript reference sequences), and vice

versa.

Mutalyzer (Wildeman, van Ophuizen, den Dunnen, & Taschner,

2008) already provides a Web interface for constructing, validating,

and transforming sequence variant descriptions. Mutalyzer is a pow-

erful and widely used tool but it cannot comprehensively validate all

variants that comply with the HGVS nomenclature. For example, its

primary Name Checker interface cannot validate sequence variants

described in the context of chromosomal DNA reference sequences,

for example, NC_000017.10:g.48275363C>A (GRCh37). Mutalyzer's
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Position Converter will accept NC_000017.10:g.48275363C>A

and map the variant base position to relevant transcript descrip-

tions. However, it does not attempt to validate the stated refer-

ence base against the reference sequence, that is, it will accept

the syntactically correct, but data-incorrect, variant description

NC_000017.10:g.48275363G>A (rather than C>A) and map it to

NM_000088.3:c.589C>T rather thanG>T. In addition,Mutalyzer lacks

the ability to validate intronic variantswith respect to coding sequence

(transcript) reference sequences, for example, NM_000088.3:c.589-

1G>T, because it lacks the facility to map transcripts to the genome

and back again.

The Ensembl Variant Effect Predictor (VEP) (McLaren et al.,

2016) provides much of the necessary functionality required to map

sequence variant descriptions in the VCF format to the HGVS format.

However, VEP currently cannot handle sequence mismatches that

often occur between genome reference sequences and the corre-

sponding aligned RefSeq transcript sequences, for example, chromo-

somal variant NC_000001.11:g.216046439A>C (GRCh37) returns

the HGVS transcript description NM_206933.2:c.6317T>G and

predicted protein description NP_996816.2:p.Ile2106Arg, whereas

the valid descriptions should be NM_206933.2:c.6317C>G and

NP_996816.2:p.(Thr2106Arg). VEP will therefore return inaccurate

transcript and protein HGVS descriptions when there exist sequence

discrepancies between the transcript and genomic sequences.

VEP is also currently unable to validate some of the syntactically

simple HGVS description types, for example, inversions, such as

NM_000088.3:c.591_593inv.

The hgvs Python package (Hart et al., 2015) has several distinct

advantages over Mutalyzer: (a) variants are validated in the context

of the specified reference sequence; (b) intronic variants, with respect

to coding sequences, can be mapped to corresponding chromoso-

mal sequences and the reference base validated at the chromosomal

sequence level; (c) tools are provided tomap variationwithin one tran-

script to other transcripts that overlap the same genomic coordinates.

However, the hgvs Python package does not provide a user-friendly

interface, and it does not currently possess the functionality to process

non-HGVS formatted variant descriptions such as VCF (Danecek et al.,

2011) or the pseudo-VCF format (e.g., 11-5248232-T-A), which is used

by ExAC (https://exac.broadinstitute.org/) (Lek et al., 2016), VarSome

(https://varsome.com/), and other related resources.

Wehavebuilt a simple and intuitiveWeb interface,VariantValidator

(https://variantvalidator.org/), which harnesses and automates the key

components of the hgvs Python package (Hart et al., 2015). We have

also incorporated additional functionality such that VariantValidator is

able to accuratelymapbetween theHGVSandVCF sequence variation

description formats, enabling rapid transformation of high-throughput

sequence data generation into HGVS-compliant variant descriptions.

Unlike any of the aforementioned tools, VariantValidator adheres fully

to the current HGVS guidelines in regard to the description of intronic

variants with respect to a transcript reference sequence. Variant-

Validator produces complete descriptions in the format <genomic

reference sequence> (<transcript reference sequence>):c.<position>

<observed variation>; for example, NG_007400.1(NM_000088.3):

c.589-1G>T (http://varnomen.hgvs.org/bg-material/refseq/). Finally,

VariantValidator has been designed to provide users with informative

guidance relating to any variant-description errors, which may have

been detected, rather than terse error messages.

2 METHODS

The VariantValidator interface is deployed on an Apache 2.0 HTTP

server using mod_wsgi (https://github.com/GrahamDumpleton/mod_

wsgi) and is written in Python using the Flask micro-framework

(http://flask.pocoo.org/). At the time of writing, VariantValidator is

limited to the functionality provided in hgvs Python package version

1.0.0a1 (https://github.com/biocommons/hgvs) and Universal Tran-

script Archive (UTA) version uta_20170707 (https://github.com/bio

commons/uta/). To ensure optimal performance, VariantValidator

benefits from a local installation of uta_20170707 and is programmed

such that sequences (nucleotide or amino acid) are recovered from a

locally installed version of SeqRepo (https://github.com/biocommons/

biocommons.seqrepo). VariantValidator uses several MySQL look-up

tables containing: (a) RefSeq Transcript IDs (NM_ or NR_), current

transcript name, HGNC gene symbol, corresponding gene symbol

used by UTA (e.g., the previous UTA build (uta_20170117) used the

gene symbol LEPRE1, which was actually updated by HGNC to P3H1

in December 2014); (b) coordinate-based mappings (chromosome

number, start position, end position) of RefSeqGene (NG_) sequences

to chromosomal sequences (NC_) for both genome builds GRCh37

and GRCh38; (c) LRG reference sequence IDs and LRG transcript

reference sequence IDs with their associated RefSeqGene IDs or Ref-

Seq transcript IDs respectively; (d) and RefSeq Transcript ID, HGNC

ID, current gene symbol, current gene name, and coordinate-based

mappings of the transcripts to genome builds GRCh37 and GRCh38.

The lookup tables were compiled and are updated on a monthly

basis by custom Python scripts. The required data are downloaded

directly fromNCBI (https://ftp.ncbi.nih.gov/refseq/H_sapiens/), HGNC

(http://ftp.ebi.ac.uk/pub/databases/genenames/new/tsv/hgnc_compl

ete_set.txt) and UCSC (https://genome.ucsc.edu/cgi-bin/hgTables).

The most significant current limitations of the hgvs Python pack-

age at this stage are: (a) some classes of complex variation, for exam-

ple, predicting the effect at the protein level of nucleotide inversions

(however, we have incorporated supporting code into VariantValida-

tor to overcome this issue); and (b) some RefSeqGene sequences and

historic versions of some transcripts are either absent from UTA,

or they are not mapped to a particular genome build (most usu-

ally GRCh37). This is a result of relevant historical mapping datasets

being unavailable from NCBI for these sequences. However, signif-

icant efforts are being made to develop a robust protocol to map

the absent sequences accurately to genome builds GRCh37 and

GRCh38.

VariantValidator has some limitations in that it does not yet

implement the full functionality of the hgvs Python package. For

example, there is no support for the output of variant descriptions

in the context of Ensembl transcripts (Aken et al., 2017) using the

Genebuild alignment method. This decision is based on the HGVS

variant nomenclature recommending the use of NCBI RefSeq (O'Leary
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https://variantvalidator.org/
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et al., 2016) and LRG (Dalgleish et al., 2010; MacArthur et al., 2014)

reference sequences (http://varnomen.hgvs.org/bg-material/refseq/).

However, VariantValidatorwill accept the input of variant descriptions

with respect to Ensembl transcript sequences if a sequence-identical

RefSeq transcript reference sequence is available. Requests to imple-

ment missing functionality and bug reports can be submitted to the

VariantValidator administrator by clicking the “Contact admin” link at

the top right corner of theWeb page. In addition, if errors are detected

during the processing of input variation descriptions, VariantValidator

automatically contacts admin via email and the associated bug is

quickly rectified.

3 RESULTS AND DISCUSSION

3.1 What is the purpose of VariantValidator?

The hgvs Python package is a powerful tool for: (a) validating HGVS

variant descriptions; (b) mapping variation between different refer-

ence sequence types (e.g., chromosome, gene and transcript reference

sequences); (c) formatting (i.e., normalizing or shuffling) descriptions of

variants in stretches of repetitive sequence so that they fully comply

with HGVS nomenclature guidelines. Although the hgvs Python pack-

age is intended as a foundation for tool developers, many users would

prefer to access it through a simple and intuitive Graphical User Inter-

face (GUI). VariantValidator provides a Web-based GUI for the hgvs

Python package.

During the development of VariantValidator we set several key

objectives: (a) the interface must be clean, concise, and easy to read;

(b) the application must guide users in HGVS nomenclature compli-

ance, providing clear recommendations, prompts, and warnings where

required; (c) mapping variants between reference sequences should

be automated and the results displayed to the user on a single clearly

laid outWeb page; (d) the applicationmust provide additional features

that are unavailable in the hgvs Python package so that the user is pro-

videdwith awide range of useful information; for example, the conver-

sion of c. HGVS variant descriptions into the VCF format, up to date

HGNCgene symbols (Yates et al., 2017) and transcript descriptions; (e)

links that enable the user to access relevant external data, for exam-

ple, NCBI RefSeq records and aggregated data resources, for example,

VarSome (https://varsome.com/) (as discussed below).

VariantValidator provides users with an alternative to the com-

monly used Mutalyzer Web-based software. It was specifically

designed to provide users with functionality that Mutalyzer is unable

to provide, including: (a) automated validation of intronic variants with

respect to transcript reference sequences and assembly of HGVS-

compliant intronic c. variant descriptions; (b) the ability to appropri-

ately re-format specific variant descriptions such that they cross into

intronic sequence, and remain fully compliant with HGVS recommen-

dations; (c) the ability to map sequence variation at the chromosomal

level to all relevant transcripts; (d) the ability to accept and process

non-HGVS variant descriptions such as VCF and hybrid HGVS:VCF

variantdescriptions; (e) helpfulwarnings and,whereappropriate, auto-

mated “hand-holding,” which guides the user through the complexities

of the HGVS nomenclature. These functions are discussed below. In

addition to the standardbatchvalidation tool inVariantValidator, there

is also a tool that converts variant data from VCF files and feeds them

directly into the batch validation tool. We currently implement a fair

usagepolicy limiting thebatch tools towardprocessing20,000variants

in a single job.However, we are in the process of streamlining the batch

tool and intend to relax this restriction as soon as possible.

3.2 The VariantValidator interface

VariantValidator provides an interface allowing validation of

genomic variants (e.g., NC_000001.10:g.150550916G>A or

NG_029146.1:g.6299C>T) or transcript variants (e.g., NM_182763.2:

c.688+403C>T). It can also validate variant descriptions in

VCF-like (pseudo-VCF) formats such as 1-150550916-G-A or

1:150550916G>A (GRCh37); and unofficial “hybrid” HGVS:VCF

formats (e.g., NC_000016.9:g.2099572TC>T is corrected to

NC_000016.9:g.2099575delC). As an illustration, consider the

variant in the MCL1 gene, NM_182763.2:c.688+403C>T, used as an

example in the original description of the hgvs Python package (Hart

et al., 2015). This can be submitted to VariantValidator as follows: (a)

type or paste the variant description into the input text box; (b) select

a genome build; (c) click Submit (Figure 1). On submission, the input

variant description is validated to ensure that: (a) it complies with the

HGVS recommendations; (b) the reported nucleotide sequence alter-

ations (e.g., deletions, duplications, substitutions, etc.) are consistent

with the reference sequence; (c) intron/exon boundary coordinates

are correct. HGVS-compliant variant descriptions are then presented

to the user in the context of all available corresponding reference

sequences. In addition, we have incorporated functions to return data

on gene-level variant descriptions (RefSeqGene) and chromosomal

locations in both HGVS format and a commonly used VCF-like format.

If validation fails, an error message, including the reason for failure, is

returnedwith guidance to the user.

The UTA (https://github.com/biocommons/uta) (Hart et al., 2015)

stores sequence alignment data accessed by hgvs but does not provide

the descriptive name of transcript reference sequences, for example,

Homo sapiens MCL1, BCL2 family apoptosis regulator (MCL1), tran-

script variant 1, mRNA. Providing this name is particularly useful if a

gene (e.g., MCL1) encodes more than one transcript variant because,

unlike the reference sequence ID (NM_021960.4), the name clearly

identifies the transcript variant (transcript variant 1) against which

variation is being reported. VariantValidator stores regularly updated

RefSeq data (see Methods) and displays the corresponding descrip-

tions of transcript reference sequences. VariantValidator determines

that NM_182763.2:c.688+403C>T refers to an intronic variant in

“Homo sapiens BCL2 family apoptosis regulator (MCL1), transcript

variant 2, mRNA.” Three well-characterized RefSeq transcripts exist

for the MCL1 gene and VariantValidator automatically maps the sub-

mitted variant to its genomic coordinates and also to any other tran-

scripts that overlap the genomic coordinates specified in the variant

description. As shown in Figure 1, we have mapped an intronic vari-

ant with respect to MCL1 transcript variant 2 mRNA to an exonic

variant inMCL1 transcript variant 1 mRNA, NM_021960.4:c.740C>T.

http://varnomen.hgvs.org/bg-material/refseq/
https://varsome.com/
https://github.com/biocommons/uta
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F IGURE 1 Mapping of variants onto alternative transcripts. Submitted variant descriptions are automatically mapped, via the selected genome
build (GRCh38), onto all other transcripts that overlap the same genomic position. In this example, NM_182763.2:c.688+403C>T,which is intronic
with respect toMCL1 transcript variant 2mRNA, is mapped to an exonic variant inMCL1 transcript variant 1mRNA, NM_021960.4:c.740C>T. The
same initial variant description alsomaps to an exonic variant inMCL1 transcript variant 3mRNA, NM_001197320.1:c.281C>T

The same initial variant description also maps to an exonic vari-

ant inMCL1 transcript variant 3 mRNA, NM_001197320.1:c.281C>T.

VariantValidator provides complete HGVS-compliant variant descrip-

tions detailing how sequence variation at the genomic level maps to

sequence variation in each overlapping transcript. VariantValidator

also automatically provides the user with a pseudo-VCF description

of the input variant description (1-150550916-G-A, GRCh37 or 1-

150578440-G-A, GRCh38—Figure 1), which enables the user to query

external data resources, for example, VarSome. If VariantValidator is

unable to recover necessary information relating to a specific tran-

script from UTA, for example, if the previous version of an updated

reference sequence is not mapped to the supported genome builds

(GRCh37 and GRCh38), reference sequences that are actually sup-

ported in UTA can be identified using the reference sequence finder

(https://variantvalidator.org/ref_finder/).

VariantValidator provides links to RefSeq sequence records

(Figure 1) and links to VarSome.com (https://varsome.com/), which

provides aggregated information on the input variant description.

3.3 Ease of use

We aim to consistently use simple workflows, for example, a three-

click workflow that allows a genomic variant correctly mapping

to genome build GRCh37 (NC_000001.10:g.150550916G>A or

1-150550916-G-A) to be projected via a transcript level variant

description (NM_182763.2:c.688+403C>T) onto genome build

GRCh38 (NC_000001.11:g.150578440G>A or 1-150578440-G-A).

This feature is particularly useful for transforming variant descriptions

from genomic data, in the VCF format, into the HGVS format for

publication and use in clinical reports and databases. Similarly, this

workflow can be used to project the data stored in publications, clin-

ical reports, and databases onto the two most recent genome builds

(GRCh37 and GRCh38). In addition, we have incorporated various

subroutines to assist inexperienced HGVS nomenclature users. For

example, when validating incorrectly reported intron/exon boundary

coordinates (e.g., NM_182763.2:c.687+404C>T), VariantValidator

performs automatic re-mapping to the nearest exon boundary and

displays the most probable valid variant description to the user (i.e.,

NM_182763.2:c.688+403C>T).
VariantValidator has additional advantages over Mutalyzer.

These include: (a) the use of the non-coding variant type (n.) is fully

compliant with HGVS recommendations; and (b) variant descrip-

tions and alignments are provided for both coding and genomic

sequences thus allowing the user to make informed decisions when

validating complex variants, such as those close to exon/intron

boundaries. To emphasize these two points, if the variant descrip-

tion NM_000089.3:c.1033_1035del (Molyneux, Starman, Byers, &

Dalgleish, 1993) is submitted to Mutalyzer, it returns the orig-

inal variant description and NM_000089.3:n.1504_1506del,

which is a description relative to the first base of the transcript.

Although Mutalyzer informs the user that this description is “Not

for use in LSDBs in case of protein-coding transcripts” it gives

the misleading impression that the description could be valid

and HGVS-compliant in other contexts. In contrast, VariantVal-

idator returns (among others) the original variant description

NM_000089.3:c.1033_1035delGTT, the corresponding genome

variant description NC_000007.13:g.94039133_94039135delTGT

(GRCh37) and a normalized (3´-shuffled) coding variant description

that maps the deletion across an exon/intron boundary relative

to the genomic DNA sequence onto which the transcript maps,

NM_000089.3:c.1035_1035+2delTGT (Figure 2).
During development testing of VariantValidator, analysis of error

logs indicated that some users were specifying HGNC gene sym-

bols, rather than valid sequence records, as sequence references

https://variantvalidator.org/ref_finder/
https://varsome.com/
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F IGURE 2 Variant descriptions at exon/intron boundaries. This illustrates how a three-base deletion in the COL1A2 gene at the junction of the
3′ end of exon 19 with the adjacent intron might be described in two different ways in the context of the RefSeq transcript reference sequence
NM_000089.3.DescriptionA shows that the threedeletedbases canbedescribed at positionNM_000089.3:c.1033_1035where thedeletedbases
are GTT, but Description B shows that the variant can be normalized and described at position NM_000089.3:c.1035_1035+2 where the deleted
bases are TGT. The latter description corresponds with the genomic variant description NC_000007.13:g.94039133_94039135delTGT. Formally,
intronic variants described in the context of a transcript reference sequence must be accompanied by a genomic reference sequence to allow full
verification of the variant. This is illustrated by Description C

for variant validation, for example, COL5A1:c.5071A>T. When

COL5A1:c.5071A>T is submitted to VariantValidator, the user is

warned that “HGVS variant nomenclature does not allow the use of a

gene symbol (COL5A1) in place of a valid reference sequence” (http://

varnomen.hgvs.org/bg-material/refseq/). VariantValidator then pro-

vides the user with valid transcript reference sequences that might

be used in the context of this variant to generate a valid description.

The user-corrected variant description must then be submitted to

VariantValidator to determine whether or not it is, in fact, valid.

3.4 Validation of intronic variationwith respect

to transcript reference sequences

HGVS nomenclature recommendations provide guidance on how

to describe intronic sequence variation with respect to transcript

(coding DNA) reference sequences, for example, the imaginary variant

NM_012345.6:c.88+2T>G. Indeed, the guidelines acknowledge that

describing intronic splice site variants in this way provides an imme-

diate indication of the location of the variant. However, since RefSeq

transcript reference sequences do not contain intronic sequence, it

is impossible to directly verify in this example description that the

reference base at the+2 position is actually a T.
The practicality of validating an intronic variant that is reported

in the context of a transcript reference sequence is well illustrated

by the sequence variant NM_022356.3:c.2055+18G>A (Willaert

et al., 2009). Mutalyzer cannot validate the variant description in this

format even though it is compliant with the HGVS nomenclature.

The solution is to specify the variant in the context of the corre-

sponding RefSeqGene reference sequence, NG_008123.1, but there

are three transcript variants (NM_022356.3, NM_001146289.1,

and NM_001243246.1.) for the P3H1 gene encoding protein iso-

forms, which differ at their C-terminal ends. Mutalyzer warns the

user that three transcripts are found for the gene and asks the user

to select one of the three from “001, 002, 003.″ The user must

then compile a new variant description that specifies the transcript

to which the variant description refers. For the example P3H1

http://varnomen.hgvs.org/bg-material/refseq/
http://varnomen.hgvs.org/bg-material/refseq/
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TABLE 1 Mutalyzer transcript designations do not correspondwith
the RefSeq transcript sequence definitions

RefSeq accessions and
versions for P3H1 gene
transcripts

RefSeq sequence
definitions

Mutalyzer
transcript
designations

NM_022356.3 Homo sapiens prolyl
3-hydroxylase 1
(P3H1), transcript
variant 1, mRNA.

LEPRE1_v003

NM_001146289.1 Homo sapiens prolyl
3-hydroxylase 1
(P3H1), transcript
variant 2, mRNA.

LEPRE1_v002

NM_001243246.1 Homo sapiens prolyl
3-hydroxylase 1
(P3H1), transcript
variant 3, mRNA.

LEPRE1_v001

variant, the required working description for Mutalyzer becomes

NG_008123.1(LEPRE1_v003):c.2055+18G>A. Two issues should

be noted. The cached version of NG_008123.1 at Mutalyzer, at the

time of writing, is date-stamped 29-May-2014, which predates the

change of gene symbol for this gene by HGNC from LEPRE1 to P3H1

in December 2014. This explains why Mutalyzer designates the

three transcripts as LEPRE1_v001, LEPRE1_v002, and LEPRE1_v003

rather than as P3H1_v001, P3H1_v002, and P3H1_v003. The more

confusing aspect of this scheme is that the numeric parts of these

three transcript designations do not correspond with the transcript

variant numbers assigned by RefSeq to the three transcript sequences

(Table 1). Instead, they are derived from the sequential order in

which the three transcript variants are annotated in the RefSeqGene

record NG_008123.1. VariantValidator does, however, provide sup-

port for users who attempt to validate variant descriptions in the

formats similar to NG_008123.1(LEPRE1_v003):c.2055+18G>A
or NG_008123.1:c.2055+18G>A where a RefSeqGene refer-

ence sequence is being used inappropriately for c. positions that

should be annotated with respect to a coding-DNA sequence.

When NG_008123.1(LEPRE1_v003):c.2055+18G>A is submit-

ted, VariantValidator warns “NG_:c.PositionVariation descriptions

should not be used unless a transcript reference sequence has

also been provided e.g. NG_(NM_):c.PositionVariation: For addi-

tional assistance, submit NG_008123.1:c.2055+18G>A to Vari-

antValidator.” When NG_008123.1:c.2055+18G>A is submitted,

VariantValidator automatically provides the user with the avail-

able transcripts to which the original variant description may have

been mapped (e.g., NG_008123.1(NM_022356.3):c.2055+18G>A
(Homo sapiens prolyl 3-hydroxylase 1 (P3H1), transcript variant

1, mRNA.), with the caveat that the provided variant descrip-

tion must be subsequently submitted to VariantValidator to

determine whether it is valid. Describing an intronic sequence

variant as NG_008123.1(NM_022356.3):c.2055+18G>A makes

good practical sense. It reveals that the variant is intronic (c.f.

NG_008123.1:g.24831G>A) and defines both the RefSeqGene and

RefSeq sequences in the context of which the variant is described.

In contrast, the Mutalyzer transcript designation (LEPRE1_003, or

P3H1_003) coveys no absolute (or immediately understandable)

identifier for the transcript sequence. Describing variants in the joint

context of a transcript and genomic reference sequences is a feature of

HGVS nomenclature version 15.11. There will be instances where no

RefSeqGene reference exists for a gene, for example, HOXD12, at the

time of writing, but intronic variants can be validly described for such

genes in the context of genome and transcript reference sequences,

for example, NC_000002.11(NM_021193.3):c.574+1G>A (http://

varnomen.hgvs.org/bg-material/refseq/). VariantValidator uses this

convention when recommending variant descriptions with the caveat

that if a RefSeqGene sequence record is available, it should take

precedence over the chromosomal record. Mutalyzer does not adopt

a fallback position for describing intronic variation when there is

no RefSeqGene record, thus it cannot describe or validate intronic

sequence variants for approximately 75% of genes with protein-

coding or non-coding transcripts. Not only does VariantValidator use

the chromosomal sequence as its reporting fallback position, it also

clearly states when RefSeqGene records are not available.

3.5 Validation andmapping of chromosomal

variants to underlying genes and transcripts

In contrast to Mutalyzer Name Checker (https://mutalyzer.nl/name-

checker), VariantValidator will validate variant descriptions

with respect to chromosomal reference sequences, for example,

NC_000017.10:g.48275363C>Aor 17-48275363-C-A (GRCh37), and

is particularly useful when validating descriptions in VCF files gener-

ated by NGS data analysis programs. This allows users to accurately

map a chromosomal sequence variant to all overlapping genes and

transcripts and automatically generate fully HGVS-compliant variant

descriptions with respect to each. The Mutalyzer Position Converter

does perform a similar function but does not actually validate the

input variant description, meaning that mistyped descriptions are not

identified. In addition, the Position Converter can produce variant

mappings that report positions that lie distant from the reference

sequences in the context of which they are reported. For example, the

COL1A1 variant NC_000017.10:g.48275363C>A is correctly mapped

by Position Converter to COL1A1 gene and transcript records, but also

to LOC1005065: XR_109403.1:n.570-4413C>A. There is no gene cor-

responding to LOC1005065 and XR_109403.1 is a retired sequence

that corresponds to the former predicted locus LOC100506522. Vari-

antValidator only maps variants to locations in fully validated RefSeq

transcripts for which there is supporting biological evidence (NM_ and

NR_) genes (NG_) and chromosomes (NC_), which are included in the

UTA.

3.6 Features in VariantValidator that are additional

to the underlying hgvs Python package

The VariantValidator Web interface provides simultaneous auto-

mated validation and mapping to all relevant reference sequences

and displays the data in a single view. This cannot be achieved using

hgvs from the programming interface, so VariantValidator provides

a level of functionality and detail to users that hgvs alone cannot

provide.

http://varnomen.hgvs.org/bg-material/refseq/
http://varnomen.hgvs.org/bg-material/refseq/
https://mutalyzer.nl/name-checker
https://mutalyzer.nl/name-checker
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VariantValidator provides users with additional functionality, not

discussed above, that enhances the outputs that can be achieved using

hgvs alone. For example, to ensure that variants can be validated in the

context of recently created RefSeqGene sequences, VariantValidator

retrieves RefSeqGene records, where possible, that are not present

in the UTA database. It then maps sequence variation with respect to

coding reference sequences via chromosomal coordinates to the Ref-

SeqGene coordinates. Similarly, VariantValidator uses lookup tables to

match LRG and LRG transcript reference sequences with their corre-

sponding RefSeqGene and RefSeq transcript sequences respectively,

thus VariantValidator provides support for users wishing to validate

variant descriptions with respect to LRG reference sequences. Simi-

lar logic is applied for users wishing to input variant descriptions with

respect to Ensembl transcript reference sequences with the caveat

that VariantValidator will not output variant descriptions relating to

Ensembl transcript reference sequences.

The ability to format intronic variant descriptions in the form

NG_008123.1(NM_022356.3):c.2055+18G>A is not intrinsic to the

hgvs Python package and has been developed specifically for Vari-

antValidator. This is also true of the ability to map inversions within

coding reference sequences to predicted protein sequence variation.

This requires extracting the coding sequence, generating a variant

coding sequence, translating both sequences, and finally comparing

the protein sequences to extract a description of the predicted pro-

tein sequence variation. We have also developed some of the basic

VariantValidator-specific functions to provide additional features such

as: (a) the generation of pseudo-VCF format variant descriptions;

(b) integration of output from VarSome.com, which provides an align-

ment tool that displays variation at the sequence level along with

aggregated data relevant to the submitted variant; (c) tools to extract

variant data from VCF files and pseudo-VCF variant descriptions and

re-format the VCF calls into variant descriptions that can be handled

by thehgvsPythonpackage; (d) a fully automatedbatch validation tool;

and (e) VariantValidator generates a series of custom error messages

such that users are informed that VariantValidator automatically cor-

rects errors made by the user when it is able to do so, or provide infor-

mative information such that the user can correct their own mistakes

when VariantValidator is unable to do so. These features allow Vari-

antValidator to access and supplement the wide range of tools pro-

vided by the hgvs Python package. VariantValidator can, therefore,

provide users with a clean, concise and user-friendly Web interface

that enables responsive validation of sequence variants.

3.7 Mutalyzer features not supported by

VariantValidator

Although VariantValidator offers an alternative to Mutalyzer, it does

not yet provide the full range of functionality thatMutalyzer currently

offers, for example, a HGVS name generator (https://mutalyzer.nl/

name-generator); a description extractor (https://mutalyzer.nl/descr

iption-extractor); and a function to convert amino acid substitu-

tions into likely nucleotide substitutions (https://mutalyzer.nl/back-

translator).

Although the hgvs Python package functions allow all common

variant types to be parsed into the necessary formats to be handled

by its functions, a key strength of the package is its ability to map

sequence-level variation between different reference sequences.

In the current build of the hgvs Python package (1.0.0a1), two par-

ticular variant types are currently not well supported with respect

to mapping. Gene conversions can be validated with respect to

sequence-level variation and HGVS compliance. However, they

cannot yet be mapped between reference sequences or mapped

into theoretical protein sequence variation descriptions. In this

respect, VariantValidator is only slightly less capable than Mut-

alyzer that can validate the syntax of a conversion description (e.g.,

NM_000088.3:c.4_64conNM_004006.1:c.123_171), but not project

the variant to other reference sequence contexts. However, we intend

to address this deficiency in a future release of VariantValidator.

3.8 Plans for further development

The hgvs Python package and UTA are undergoing continuing devel-

opment and we may consider expanding VariantValidator to provide

support for additional specific types of sequence variation and refer-

ence sequence types in the future. Proper future support for inversions

might allowus to use native hgvsPythonpackage functions rather than

our own customcode. Similarly, support for gene conversionswould be

a desirable feature. However, the desire to properly support inversions

and conversionmust be set against the fact that instances of such vari-

ant types are relatively rare.We are currently re-developing our batch

analysis tools (batch validator and vcf2hgvs) to enhance their perfor-

mance so that results are returned to our users more quickly.
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