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Abstract13

We present the first principal component analysis of Jupiter’s far-ultraviolet au-14

roras, in order to identify the most repeatable sources of variation in the auroral mor-15

phology. We show that the most recurrent source of variance is emission just poleward16

of the statistical oval on the dawn side. Further significant repeatable sources of vari-17

ance are localised expansions of the main emission on the dawn or dusk sides and pole-18

ward emission near noon and along the dusk side. We go on to show using a DBSCAN19

clustering analysis that the most significant auroral components form six repeatable au-20

roral morphological classes. One class, exhibiting bright main and poleward dusk emis-21

sions, occurs solely during solar wind compressions. This presents an important new tool22

for diagnosing magnetospheric compressions at Jupiter.23

1 Introduction24

The Hubble Space Telescope (HST) has revealed Jupiter’s FUV auroras to exhibit25

a complex morphology with a number of different components, including the main au-26

roral emission, low latitude patches and arcs, and variable polar emissions (e.g. Grodent,27

Clarke, Waite Jr, et al., 2003; Grodent, Clarke, Kim, et al., 2003; Clarke et al., 2004, 2009;28

Nichols, Clarke, Gérard, Grodent, & Hansen, 2009; Nichols, Clarke, Gérard, & Grodent,29

2009; Radioti et al., 2009; Dumont et al., 2015; Bonfond et al., 2008; Gray et al., 2016;30

Bonfond et al., 2017; Nichols et al., 2017; Grodent et al., 2018). Briefly, the satellite foot-31

prints are magnetically linked to the Galilean satellites, the main emission (ME) is thought32

to be driven by breakdown of corotation of iogenic plasma in the middle magnetosphere33

and associated magnetosphere-ionosphere coupling current system, while the high-latitude34

polar emissions map to the outer magnetosphere and magnetotail. The main emission35

is occasionally superimposed by bright patches thought to be associated with plasma in-36

jections in the middle magnetosphere, and the dawn side of the main emission is on oc-37

casion observed to brighten to very high intensities in events known as ‘dawn storms’.38

Immediately poleward of the main emission, usually most evident on the dawn side, is39

a dark polar region, and poleward of this lies a highly dynamic region of transient emis-40

sion known as the ‘swirl’ region. A dynamic and sometimes extremely bright region near41

noon known as the ‘active’ region, and poleward of the main emission on the dusk side42

lie polar dusk arcs, which are most evident when the magnetosphere is compressed by43

the solar wind. An example image of Jupiter’s auroras as obtained by the Space Tele-44
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Figure 1. Plot showing (a) an example of an unprojected image with a 10×10◦ graticule

overlaid; (b) the same image projected onto a latitude-longitude grid, presented on an equal area

azimuthal Lambert projection with System III longitudes labelled, a 10×10◦ graticule in grey,

and the (Nichols et al., 2017) statistical oval shown in red; and (c) the resulting co-added image

for this interval processed as discussed in the text. Also shown are the time of the observation

and the ML value.

scope Imaging Spectrograph (STIS) onboard HST, indicating many of the principle au-45

roral features, is shown in Fig. 1a.46

The behaviour of these various individual auroral components has been discussed47

extensively previously, e.g. in the aforementioned studies, but it is also interesting to con-48

sider the auroral morphology as a whole, as has been explored by e.g. Clarke et al. (2009);49

Nichols, Clarke, Gérard, Grodent, and Hansen (2009); Nichols et al. (2017); Grodent et50

al. (2018), for example in relation to the response of the magnetosphere to changes in51

the conditions in the interplanetary medium. The response of Jupiter’s auroras to the52

solar wind is complex; metrics such as auroral power are of limited use. For example,53

while the auroral power from some pre-defined regions (e.g. poleward of the ME on the54

–3–



manuscript submitted to JGR: Space Physics

dusk side) vary with interplanetary conditions, in general auroral power exhibits only55

weak correlation with interplanetary parameters (Nichols et al., 2017). Hence, a more56

nuanced discussion of the variation of the complex auroral morphology is warranted. Vari-57

ations in Jupiter’s overall auroral morphology have been discussed qualitatively; for ex-58

ample Grodent et al. (2018) (hereafter G18) divided the morphology of the auroras ob-59

served over the first few months of the Juno mission into six families A-F based on a qual-60

itative description of the overall state of the auroras. Such analysis is very helpful for61

providing magnetospheric context for analysis of in situ spacecraft data, and a natural62

question arises as to whether a more objective quantitative technique can be used to iden-63

tify different morphological families. The aim of this paper is to address this question64

using the first application of machine learning methods to the study of outer planetary65

auroras. Specifically, we employ Principal Component Analysis (PCA) and Density-Based66

Spatial Clustering of Applications with Noise (DBSCAN) techniques to objectively iden-67

tify classes of auroral morphology and determine whether there exists a relation between68

auroral class and interplanetary conditions.69

Machine learning methods often rely on techniques to reduce the dimensionality70

of a problem, i.e. to reduce the number of independent features to be analysed, in or-71

der to facilitate computational tractability. Principal component analysis achieves this72

by decomposing a data set into an orthogonal basis set that reveals the covariance within73

the data (Jolliffe, 2002). Hence, a data set of images (classically, pictures of faces for ap-74

plication to facial recognition) can be reduced from a series of independent pixels to a75

much smaller subspace of principal components that represent most of the variation within76

the images (Turk & Pentland, 1991). The PCA technique has been recently employed77

to study a number of different aspects of the terrestrial magnetosphere (Kim et al., 2012;78

Cousins et al., 2015; Milan et al., 2015, e.g.). Images of the Earth’s auroras have been79

studied using supervised deep learning classifiers (e.g. Clausen & Nickisch, 2018; Yang80

et al., 2019), and while that paradigm was useful for that much larger data set, here we81

employ the unsupervised DBSCAN clustering algorithm (Ester et al., 1996) to identify82

clusters within the projections provided by PCA. We find that this classifier successfully83

identifies repeatable morphological classes, and we associate one with solar wind com-84

pression regions. This presents an important new tool for diagnosing magnetospheric com-85

pressions at Jupiter.86
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2 Data and Analysis87

2.1 Hubble Space Telescope Data88

We consider HST/STIS images of Jupiter’s northern auroras, initially focusing on89

those images obtained during the Juno approach phase in 2016 as the interval for which90

there exists an extended set of accompanying interplanetary observations against which91

to compare the auroral classes. This program and the data reduction has been discussed92

previously (Nichols et al., 2017), and an example unprojected image extracted from the93

timetag data with a 100 s integration time is shown in Fig. 1a. The corresponding Lam-94

bert equal area azimuthal map projection, as viewed with 180◦ System-III longitude ori-95

ented toward the bottom is shown in Fig. 1b, along with the Nichols et al. (2017) sta-96

tistical main oval shown in red. The PCA technique requires input vectors to be inde-97

pendent of one another. While the polar auroras in particular exhibit changes on timescale98

of tens of seconds (e.g. Grodent, Clarke, Kim, et al., 2003), the auroral morphology as99

a whole is often broadly unchanged during the course of one 45 minute period of visi-100

bility during each HST orbit. The morphology does, however, change from one Earth101

day to the next, representing over 2 jovian rotations. In order to both remove noise due102

to short term variability and produce independent images, we co-add projected images103

extracted with 100 s time resolution to build up average intensity maps for each orbit.104

The planet rotates during each 45-min exposure, such that parts of the auroral region105

rotate into or out of view. In order to analyse as much auroral region as possible while106

avoiding the introduction of artefacts owing to this changing visibility, we rotate each107

projection by 23◦ westward such that the most equatorward extent of the oval (around108

160◦ System-III) is toward the bottom, modestly clip the top edge of each projected im-109

age, and only employ those images with central meridian longitudes (CML) between 140◦110

and 180◦. However, we note that this CML criterion imposes a rather strict CML bias111

in our image selection, and while for simplicity below we discuss features that are ‘dawn-112

ward’ or ‘duskward’ it should be borne in mind that such features are also present over113

a limited range of longitudes in these images. The overall aim of the PCA technique is114

to reduce the dimensionality of the problem. Each clipped map projection grid comprises115

432×240 pixels of size ∼ 140 km, thus consisting of a total of 103,680 elements, or ‘fea-116

tures’. Because we are interested in the broad morphology of each image we can reduce117

the number of elements even before applying PCA by simply rebinning each average im-118

age with a factor of 2 reduction in the number of pixels on each axis, such that the re-119
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binned pixels are ∼ 280 km in size. This reduces the dimensionality by a factor of 4 with-120

out losing much information regarding the broad auroral morphology. The resulting co-121

added image for the example shown in Fig. 1a,b is shown in Fig. 1c, and the overall re-122

sult is a set of 29 (defining m = 29) images of size 216 × 120 (thus with n = 25, 920123

elements).124

2.2 Principal Component Analysis125

Each image is flattened to form an n-dimensional vector I. It is standard practice126

in machine learning applications to mean-centre and normalise the data set in some form.127

For each vector I we subtract the mean image and divide by the image standard devi-128

ation. All vectors are then stacked to form a two dimensional n×m matrix X. The co-129

variance matrix Σ of X is then calculated as Σ = 1
mXTX, where XT is the transpose130

of X. Eigendecomposition of the covariance matrix Σ is then performed, yielding (for131

m < n) m n-element eigenvectors Ai and their corresponding eignenvalues λi. The eigen-132

vectors Ai, termed eigenimages, are the principal components of the data set, with those133

corresponding to the largest eigenvalues describing the directions in n-space which con-134

tain the greatest variation in the data set. Physically, they describe morphological fea-135

tures consistently present in the data set. The 16 most significant eigenimages are shown136

in Fig. 2, while the proportion of the variance explained, given by λi/
∑m

j=1 λj , is shown137

by the circles in Fig. 3. The cumulative variation explained is shown by the solid line.138

It is evident that the first eigenimage A1 corresponds to ∼21% of the variation in the139

data set, while the first 11 eigenimages together explain around ∼80% of the variation.140

A commonly-used criterion to determine how many components to keep is the Scree test141

(Cattell, 1966), which retains any eigenvector whose eigenvalue rises above a straight line142

fitted to the lower eigenvalues, as shown by the dashed line in Fig. 3. In our case the first143

∼ 11 eigenvalues should be considered significant.144

Turning back to the eigenimages shown in Fig. 2, we first note that the plots rep-145

resent variation from the mean by either red (positive) or blue (negative) colours, and146

the contribution of each eigenimage to any given image may be either positive or neg-147

ative. It is evident first that around a fifth of the variance in the data set is explained148

by emission poleward of the statistical oval on the dawn side (for positive contribution),149

or a lack of emission in that region relative to the main emission on the dusk side (for150

negative contribution). Hence, an image with a positive A1 contribution exhibits emis-151
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(a) 0.2141 (b) 0.1435 (c) 0.1080 (d) 0.0669

(e) 0.0604 (f) 0.0493 (g) 0.0408 (h) 0.0371

(i) 0.0299 (j) 0.0287 (k) 0.0276 (l) 0.0217

(m) 0.0212 (n) 0.0189 (o) 0.0160 (p) 0.0156

Figure 2. Plot showing the first 16 eigenimages labelled Ai along with the corresponding

proportion of the variance explained. Red and blue colours show positive and negative values,

respectively. The statistical oval is shown in green.

sion either moved or expanded poleward on the dawn side, and an image with negative152

A1 would present a well-defined dark polar region. To a lesser extent, eigenimage A1153

contributes poleward patchy emission, either in the active region near noon and down154

the dusk side for positive contribution or further poleward for negative, along with an155

equatorward arc on the dusk side. Eigenimage A2 contributes emission localised on the156

dawn side mostly equatorward of the statistical oval for positive contribution, and more157

longitudinally extended emission on the poleward side of the statistical oval plus pole-158

ward emission on the dusk side for negative. Eigenimage A3 contributes mostly equa-159

torward patchy emission (positive) or emission on or poleward of the main emission (neg-160

ative). We finally highlight eigenimage A4, which contains patchy emission on or pole-161

ward of the statistical oval on the dusk side (postive) or a patch of emission significantly162

poleward toward noon (negative). In all four of these eigenimages there is a difference163

in the sign or magnitude of the contribution to the dawn and dusk sides of the poleward164

auroras, indicating independence of behaviour, thus possibly suggesting an asymmetric165

auroral response to driving mechanisms. Further eigenimages contribute smaller scale166

features that are increasingly less significant to the overall data set, such as patchy emis-167
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Figure 3. Plot showing the proportion of the variance explained for each component (circles).

The cumulative variance explained is shown by the solid line, while the dotted lines indicate the

80% explained level and corresponding component number. The dashed line indicates a Scree test

line.
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sions in the swirl region, though many contain contributions associated with the main168

emission and are related to variation of the morphology of this auroral component.169

Individual auroral images I comprise projections αi along the orthonormal basis170

set Ai, and hence can be expressed by171

I =

m∑
j=1

αjAj . (1)

Each image is then associated with a set of real numbers αi which can be used to de-172

termine how the auroral morphology changes with e.g. interplanetary conditions and to173

classify the images by clustering in α-subspace. The variation of the first 8 projections174

with time are shown in Fig. 4a-h. The magnitude of each value of αi is shown, with pos-175

itive values plotted as red crosses, and negative values as blue pluses. Connecting lines176

are shown to guide the eye, and the colours indicate the interplanetary conditions as de-177

termined from inbound Juno data by Nichols et al. (2017) using their colour scheme, i.e.178

yellow indicates a deep solar wind rarefaction, cyan indicates a shallow rarefaction and179

blue represents solar wind compression with cause (coronal mass ejection, CME, or coro-180

tating interaction region, CIR) as labelled. Also indicated at the end of the interval is181

the period identified as a strong solar wind compression by Hospodarsky et al. (2017)182

from outbound Juno magnetopause and bow shock crossings, indeed observed roughly183

one solar rotation after the previous compression. The period is bound by the time of184

the first outbound magnetopause crossing but the compression event likely started a few185

hours previous to this owing to the timescale for motion of the magnetopause at a frac-186

tion of the speed of the solar wind (Cowley et al., 2007). Grey indicates that Juno was187

in the magnetosphere, such that the interplanetary conditions were not measured in situ188

during these intervals. It is first evident that all projections αi exhibit significant vari-189

ability with time, and for brevity we will explicitly discuss here the first 4 and go on to190

consider clustering of all these values below. Considering first α1 shown in Fig. 4a, dur-191

ing the interval for which there are measurements of the interplanetary conditions, there192

are 8 positive values indicating main emission expanded poleward of the statistical oval193

on the dawn side, of which 7 are in compressions. Negative α1 indicating a coherent dark194

polar region is evident at varying levels in both compressions and rarefactions. Projec-195

tion α2 shown in Fig. 4b, is strongly peaked on days 142 and 154, both days noted by196

Nichols et al. (2017) as exhibiting dawn storms, such that projection α2 is evidently a197

sensor for dawn storms. Projection α3 is strongly dominated by the presence of patchy198
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Figure 4. Plot showing (a-h) the projections αi of the images along the basis set Ai as a

function of Day of Year (DoY). Red crosses indicate positive values and blue pluses show nega-

tive values. Panel (i) show the repeatable image class identifications. The coloured background

indicate interplanetary conditions as described in the text.

equatorward emission around day 149. Projection α4 exhibits variation, but a clear fea-199

ture is a positive peak over the interval of the second compression, indicating enhanced200

poleward emission on the dusk side during this event. Negative values of α4 indicating201

enhanced poleward emission near noon occur in all solar wind conditions. Together, these202

findings are consistent with the qualitative descriptions of the behaviour the auroral mor-203

phological response to the solar wind described by Clarke et al. (2009); Nichols, Clarke,204

Gérard, Grodent, and Hansen (2009); Nichols et al. (2017).205
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2.3 Image Classification206

The above application of PCA to the auroral data set has reduced the dimension-207

ality of each image from n (= 25, 920) to ∼11 significant values of αi. These projections208

can be used to classify the images. Machine learning classifiers fall into two categories:209

supervised, meaning the algorithm is trained using a data set labelled by a human, and210

unsupervised meaning the algorithm is not given a labelled training set. The aim of this211

study is to provide an objective classification of repeatable auroral morphology, such that212

we use an unsupervised algorithm, specifically Density-Based Spatial Clustering of Ap-213

plications with Noise (DBSCAN)(Ester et al., 1996). The DBSCAN algorithm requires214

two hyperparameters, which are the minimum number of points in a cluster Nmin and215

a (here Euclidian) distance parameter ε, specifying cluster density. Briefly, core points216

are defined as being surrounded by at least Nmin points within distance ε, and reach-217

able points are connected to core points via unbroken paths between points of no longer218

than ε. Core and reachable points are defined as being within a cluster, and all other219

points are considered noise. In this exploratory study with a small number of samples,220

we consider a cluster to contain ≥ 2 images, for which we note the algorithm is then equiv-221

alent to a hierarchical clustering algorithm. Parameter ε can be chosen freely, and, as222

is standard in machine learning applications, the optimal value is obtained via a hyper-223

parameter grid search. We executed the clustering algorithm on the 11 significant pro-224

jections αi using values of ε between 0.1 and 1 with 0.05 increments, and have adopted225

the value which yields the most clusters, i.e. ε = 0.40. This results in 6 clusters, which226

we identify with image classes, and 5 noise points.227

The classes thus defined for each image are shown in Fig. 4i, numbered 1-6, and228

the normalised images I grouped by class are shown in Fig. 5. A prototype image I for229

each class, obtained using the mean values of αi for each class in Eq. 1 with j = 1 . . . 11230

is shown in Fig. 6. Qualitatively, Class 1 shown in Figs. 5a and 6a exhibits broad, low231

latitude, dim-to-medium intensity ME on the dawn side, brighter and narrower ME on232

the dusk side, and modestly active polar emission separated from the main emission by233

a wide, well-defined dark polar region, along with an equatorward arc on the dusk side.234

Image Class 2 shown in Figs. 5b and 6b exhibits narrow, brighter ME on the dawn side235

with bright patches along the post-noon ME, and some polar emission. Class 3 in Figs. 5c236

and 6c is characterised by narrow, brighter ME on the dawn side, relatively bright po-237

lar emission on the dusk side. The principal feature of Class 4 shown in Figs. 5d and 6d238
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Figure 5. Plot showing the individual images grouped into the identified morphological

classes as labelled. The DoY is shown for each image.

(a) 1 (b) 2 (c) 3

(d) 4 (e) 5 (f) 6

Figure 6. Plot showing class prototype images created using the mean projection values αi

for each cluster as labelled.

is relatively bright emission on and poleward of the ME on the dusk side. Image Class239

5 shown in Figs. 5e and 6e exhibits very bright emission along the length of the dawn-240

side ME, sightly poleward of the statistical oval, and emission throughout the dusk side241

polar region. Finally, Class 6 shown in Figs. 5f and 6f is a dawn storm exhibiting extremely242

bright and expanded ME on the dawn side. It is worth noting that a number of these243

classes can be mapped roughly onto G18’s families, i.e. we suggest Class 1 corresponds244

most closely to G18’s family A, our Class 2 to G18’s family B, our Class 4 to G18’s fam-245

ily F, and our Class 5 to G18’s families C or E. The classification system thus success-246

fully identifies a variety of repeatable morphologies.247
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We consider now the occurrence of these image classes over time and with inter-248

planetary conditions, as shown in Fig. 4i. We note that the classes are broadly distributed249

over the observing interval, such that even the two classes (3 and 6) comprising only two250

images are not contiguous in the observing sequence, indicating recurring morphologies.251

During the intervals in which interplanetary data is available, the classes that occur in252

both compression and rarefactions are Classes 1 and 4, while the classes that occur solely253

in compressions are Classes 5 and 6. Dawn storms are known to occur independently of254

the solar wind, such that the only class which is not a dawn storm and which occurs solely255

during interplanetary compressions is Class 5. Given the time scale for solar wind com-256

pression of the magnetopause, it is likely that the image obtained on DoY 196, also iden-257

tified as Class 5, was also obtained under solar wind compression conditions. Classes 2258

and 3 occur only when Juno was in the magnetosphere, such that their association with259

solar wind conditions is unknown. However, both occurences of Class 3 were close to ob-260

served compression conditions and it is hence possible, though not conclusive, that this261

class is also associated with solar wind compressions.262

To assess this association of Class 5 with interplanetary compressions, we have also263

examined the only other HST data set that satisfies our CML criteria and for which an264

extended concurrent interplanetary data is available, i.e. that obtained with the Advanced265

Camera for Surveys during the New Horizons flyby in 2007 (Clarke et al., 2009; Nichols,266

Clarke, Gérard, Grodent, & Hansen, 2009). During that interval, New Horizons observed267

the forward shock of a compression on DoY 53, and entered the magnetosphere shortly268

after on DoY 56. An MHD model of the projected solar wind (Zieger & Hansen, 2008)269

predicted a second forward shock to occur between DoY 63 and 66. We projected the270

HST images obtained in this program onto the basis set Ai obtained above and then iden-271

tified the images as belonging to a particular class if the Euclidian distance between the272

resulting αi and the class mean was less than ε. Example results are shown in Fig. 7a-273

f, which are evidently qualitatively similar to the prototypes shown in Fig. 6. We also274

show in Fig. 7g the classes plotted versus UT as in Fig. 4i for the interval with New Hori-275

zons data, along with an indication of the solar wind conditions using a similar colour276

scheme. The time of the observed solar wind forward shock and magnetopause crossing277

are also labelled, along with an indication of the uncertainty interval of the arrival of the278

second forward shock as discussed by Nichols, Clarke, Gérard, Grodent, and Hansen (2009)279

(lighter blue region labelled FS2). It is worth noting that the only occurrences of Class280
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5 are in the first compression or not long after New Horizons left the solar wind while281

it was under compression conditions, or in the interval during which the second forward282

shock was expected to impinge on the planet. We thus conclude that identification of283

an auroral image as Class 5 is a satisfactory diagnostic of solar wind compressions. Class284

3 also occurs during the second forward shock interval, consistent with the above dis-285

cussion regarding its possible association with the solar wind, but again not conclusive.286

3 Conclusions287

We have presented the first application of machine learning techniques to the study288

of outer planetary auroral emissions, and have examined their response to interplane-289

tary conditions. We used Principal Component Analysis to show that the most recur-290

rent source of variance of Jupiter’s auroral emission is aurora (or the lack of it) poleward291

of the statistical oval on the dawn side. Further significant repeatable sources of vari-292

ance are localised expansions of the ME on the dawn or dusk sides and poleward emis-293

sion near noon and along the dusk side. The dawn and dusk sides of the poleward au-294

roral emission evidently vary independently, suggestive of an asymmetric response to driv-295

ing mechanisms. The individual identified components respond differently to interplan-296

etary conditions, e.g. of the 8 occasions when the most significant component contributes297

poleward-expanded main emission on the dawn side, and poleward emission in the ac-298

tive region and along the dusk side, 7 are during solar wind compressions. A component299

contributing significant poleward dusk emission also strongly peaks during a solar wind300

compression. We then showed using a DBSCAN clustering analysis that, together, the301

most significant components form 6 repeatable auroral morphological classes, each with302

a different pattern of auroral intensities. For example, we identified one morphological303

class (6) with dawn storms, and a further class (5) with solar wind compressions. This304

class, which presents very bright, modestly poleward emission along the length of the305

dawnside main emission and emission throughout the dusk side polar region is the only306

(non-dawn storm) class to be observed solely during interplanetary compressions. This307

does not preclude the occurence of other classes during compressions, but it does strongly308

suggest that the occurence of this particular morphological class is indicative of a com-309

pressed magnetosphere. We tested this assertion using HST observations obtained dur-310

ing the New Horizons flyby and found this class only occurred either during a compres-311

sion or within the uncertainty of a compression region onset. This study thus provides312
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Figure 7. Plot showing (a-f) example images from the 2007 HST program identified for each

image class, and (g) the image classes identified versus DoY in 2007 for the New Horizons inter-

val. The solar wind rarefaction interval is indicated in cyan. The vertical dashed line labelled

FS1 indicates the time of observation of a forward shock, the dot-dashed line labelled MP in-

dicates where New Horizons entered the magnetosphere, and the blue in between indicates the

observed solar wind compression. The grey region indicates where New Horizons was in the mag-

netosphere, and the lighter blue region labelled FS2 indicates the uncertainty interval for the

arrival of a second forward shock.

a proof-of-concept that such machine learning techniques are a useful new tool for di-313

agnosing solar wind conditions at Jupiter, and analysis of the morphology of Jupiter’s314

complex auroras and their response to magnetospheric drivers. In a future study we plan315

to apply such methods to the much larger data set obtained during the Juno mission.316
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