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Abstract
Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from
quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope
probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by
metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm
incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that
choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon
sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic
Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane
formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as
Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade
choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of
methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a
new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship
between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment.

Introduction

Coastal saltmarsh sediments represent a highly productive
environment, which are predominantly anaerobic and
characterized by a high rate of carbon cycling [1]. These
sediments represent a significant source of natural methane
emissions, resulting from the degradation of organic matter,
facilitated by the microorganisms inhabiting these sedi-
ments. It has been estimated that between 35 and 90% of the
methane production in intertidal mudflats and saltmarshes
originates from trimethylamine (TMA) [2, 3]. Quaternary
amines are precursors of TMA and are ubiquitous in marine
microbes, where they act as osmolytes and essential cellular
components. Along with the common marine osmolyte
glycine betaine (GBT), choline has been identified as an
important precursor of TMA [2, 4]. Choline is a widely
distributed component of membrane lipids and is essential
for the formation of polar membrane lipids (such as phos-
phatidylcholine) in all eukaryotes and some bacteria [5].
Standing concentrations of choline have not been assessed
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in saltmarsh sediments due to the lack of a suitable method,
however the concentrations of TMA range from low
nanomolar (nM) in oceanic samples to low micromolar
(mM) in marine and coastal sediments [6–8]. In marine and
coastal systems, cycling of quaternary amines, such as
choline, leads to atmospheric fluxes of methylated amines
and methane, both of which are important climate-active
trace gases [2, 7, 8].

In anaerobic marine and coastal sediments, methano-
genesis is a key final step in organic matter degradation.
However, the key microbes and the metabolic pathways
responsible for methanogenesis from choline are yet to be
established. Early studies have focused on the competition
between sulphate reducers and methanogens, since sulphate
reducers can utilize hydrogen and acetate at much lower
concentrations, therefore outcompeting methanogens occu-
pying the same environmental niche [3, 9, 10]. Hence it
was thought that methanogens could only thrive in
anaerobic sediments depleted of sulphate or utilize alter-
native non-competitive substrates, such as TMA [2, 4, 11].
Indeed, many methanogens isolated from these sediments,
notablyMethanococcoides of the family Methanosarcinales
[11, 12], are able to use non-competitive substrates such as
TMA, but not acetate, formate nor H2/CO2 for methano-
genesis. These methylotrophic methanogens are known to
form strong interactions with bacterial choline degraders
[13, 14]. The bacterial choline-to-TMA degradation path-
way, through a choline-TMA lyase (encoded by cutC), was
only elucidated recently and we now know that cutC is
widely distributed in many marine and coastal sediments
[15–17]. It is therefore likely that methanogenesis from
choline in anaerobic saltmarsh sediments requires the cou-
pling of the bacterial degradation of choline, with sub-
sequent methanogenesis from TMA. However, whether or
not TMA is indeed a key intermediate in choline-dependent
methanogenesis in saltmarsh sediments warrants investiga-
tion. Indeed, very recently, direct demethylation of choline
for methanogenesis has been identified in Methano-
coccoides and Methanolobus strains [18–21], although
TMA was the preferred substrate over choline and direct
demethylation of choline only occurred in the absence of
TMA in Methanococcoides sp. AM1 [21].

DNA-SIP (stable-isotope probing) is a powerful tool to
link microbial identity to metabolic function, through the
incorporation of a 13C label into the DNA of active
microbes, in a culture-independent manner [22]. This
technique has recently been applied in several studies to
understand biogeochemical cycles in saltmarsh sediments
[23–25]. Combining DNA-SIP with shotgun metagenomics
and metagenomic binning to retrieve bins from 13C-labelled
heavy DNA, offers the unique opportunity to uncover the
metabolic potentials that are encoded by population gen-
omes from metabolically active microbes [26–28]. In this

study, we have used DNA-SIP with 13C2-labelled choline,
followed by amplicon sequencing of 16S rRNA genes, to
reveal the active microbial populations responsible for
choline degradation. Furthermore, we used metagenomics
to retrieve microbial genomes from 13C-labelled DNA and
demonstrated that methanogenesis from choline in Stiffkey
saltmarsh sediments is a two-step process, involving bac-
terial degradation of choline to TMA by Pelobacter, using
the choline-TMA lyase pathway, followed by methano-
genesis from TMA by the methylotrophic Archaea
Methanococcoides.

Materials and methods

Sampling and microcosm set-ups

Sediment samples were collected from a pond at Stiffkey
saltmarsh, Norfolk, UK (latitude 52.96, longitude 00.93)
using an acrylic corer on 15/04/2014. The sediment core
was transported to the laboratory and stored at 4 °C
overnight, until microcosm incubations were set up. The
sediment core was then sectioned into discrete layers
and the most active, anaerobic 4–6 cm layer was used for
analysis.

Microcosm set-up for DNA-SIP experiments were car-
ried out as previously described by Neufeld et al. [29] using
13C2 choline (the two carbons in the acetyl group of choline
was labelled with 13C, Sigma-Aldrich). Six sets of triplicate
microcosms were used, consisting of 5 g of sediment, 20 ml
of sea salts and an initial concentration of 5 mM choline
(time point 0; T0). Microcosms were divided equally
between 12C and 13C choline addition (18 each). Choline
and TMA concentrations were monitored twice a day. Upon
choline depletion one set of triplicate microcosms were
sacrificed for 12C and 13C choline amended microcosms
(time point 1, 166.5 h; T1) and an additional 5 mM 12C or
13C choline was provided to the remaining microcosms.
This process of sacrifice and choline addition was repeated
(time point 2, 214.5 h; T2). The remaining triplicate
microcosms were sacrificed when the third addition of
choline was depleted (time point 3, 261 h; T3).

Ion-exchange chromatography and gas
chromatography

The concentrations of choline and TMA were determined
twice a day using ion exchange chromatography (IC) on an
881 Compact IC Pro (Metrohm, Herisau, Switzerland) as
described previously [30]. 100 μl aliquots of liquid medium
from each microcosm was filter-sterilized with a 0.2 μm
pore size centrifuge filter and diluted tenfold in MillQ water
prior to IC-analysis.
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Methane concentration in the head-space of the micro-
cosms was monitored daily. Gas chromatography (GC) was
carried out to quantify methane, using an Agilent 6890 FID
instrument with a Porapak Q column with N2 carrier gas
flowing at 20 ml min−1. The temperature set up was
as follows: injector 150 °C, column 125 °C and detector
200 °C. An injection volume of 100 µl was used for all
measurements. Methane concentrations were determined by
peak area against a set of standards of known concentrations
covering the measured range.

DNA extraction and gradient fractionation

DNA was extracted from ~500 mg of sample from the
sacrificed microcosms, using the Fast DNA soil extraction
kit (MP Bioscience, UK) according to the manufacturer’s
instructions. DNA was extracted from the unamended
sediment (T0), and the sacrificed microcosm sediments
obtained at 166.5 h (T1), at 214.5 h (T2) and at 261 h after
choline addition (T3). DNA concentrations were estimated
using a spectrophotometer (NanoDrop ND-1000) and found
to be in a range of 150–200 ng/μl. Aliquots of DNA (3 μg of
DNA, 15–20 μl) were subjected to ultracentrifugation in
CsCl. After centrifugation, between 12 and 13 CsCl frac-
tions were collected by piercing the top and the bottom of
the tube using a 23-Gauge needle. The density of each
fraction was measured using a digital refractometer and
DNA was recovered using polyethylene glycol as described
previously [29].

Amplicon sequencing of 16S rRNA genes

Microbial community analyses of the 16S rRNA gene
amplicons were performed using unfractionated DNA from
T0, T1, T2 and T3 and DNA extracted from SIP gradient
heavy and light fractions. The primers used for amplifying
the 16S rRNA genes were designed to amplify both Bac-
teria and Archaea [31]. Amplicon sequencing of the 16S
rRNA gene was carried on an Illumina Miseq platform, as
described by Caporaso et al. [31], on the fractionated T0
‘heavy’ and ‘light’ fractions, and for T1, T2 and T3, both
12C and 13C, heavy and light fractions. As a control against
amplification of DNA originating from the laboratory and
the DNA extraction kit, we ran nuclease-free water through
the soil DNA extraction kit and Illumina PCR steps, refer-
red to as the negative control. Multiplex 515F/806R paired-
end 16S rRNA bacterial and archaeal community sequen-
cing primers described by Caporaso et al. [31] were used.

16S rRNA gene amplicon reads were joined, de-multi-
plexed, trimmed and filtered. Singletons and chimeras were
removed, reads were normalized and Operational Taxo-
nomic Unit (OTU) binning was performed using the open-

source bioinformatics pipeline Quantitative Insights Into
Microbial Ecology (QIIME), MacQIIME version 1.8.0 [31].
Sequences were joined using fastq-join [32], singletons
were removed, then the sequences were trimmed (240 bp)
and quality filtered (maximum expected error threshold of
0.5) using USEARCH [33]. UCHIME was used for chimera
detection and removal, with the Broad Microbiome Utilities
‘Gold.fa’ reference database [34]. For rarefaction analysis,
approximately-maximum-likelihood phylogenetic trees
were constructed using FastTree 2.1.3 [35]. OTU binning
was performed with the UCLUST method with a cut off of
97% sequence identity using the RDP Classifier 2.2 against
the Greengenes 13_8 dataset [33, 36, 37]. The QIIME
processing yielded sequences of 240 bp, rarefied to a
sequencing depth of 36,372 reads per sample (normalized to
the smallest sample).

Metagenome sequencing and binning

Metagenomic sequencing was carried out on triplicate
unfractionated time-point 0 and triplicate biological repli-
cates of fractionated 13C-labelled time-point 3 DNA from
both ‘heavy’ and ‘light’ fractions. The metagenomic
libraries were constructed using the NEBNext Ultra DNA
Library Prep Kit for Illumina (NEB, Hitchin, UK) and
NEBNext Multiplex Oligos for Illumina (Index Primers Set
1), then sequenced using the MiSeq Reagent Kit v3 with
600 cycles.

The removal of adapters and quality trimming was car-
ried out using sickle (quality > 20 average per kmer; [38]).
Reads were assembled into contigs using Megahit v1.1.2,
assigned to bins using Metabat v0.32.5 and annotated with
Prokka [39–42]. Reads were mapped against contigs using
BWA-MEM and resultant SAM and BAM files manipu-
lated with Samtools v1.6 [43, 44]. To validate the com-
pleteness of each bin (assuming each bin represents a single
organism), the percentage of the 40 core prokaryotic Clus-
ters of Orthologous Groups of proteins (COGs) identified
within each bin was calculated, based on previous approa-
ches [45–47]. Estimation of contamination in each bin was
carried out using the CheckM program [48]. Taxonomy was
first assigned for each bin using specI [49]. Secondly, for
the bins lacking a specI taxonomic assignment, blastp was
carried out using the core COGs against the NCBI
Nucleotide collection database (August 2017). Finally, for
the remaining bins with too few core genes identified, blastp
of all the contigs was carried out against the NCBI
Nucleotide collection (nt) with an Hsp e-value cut-off of
1e–30.

Read data have been submitted to the European
Nucleotide Archive (ENA) under the study accession
number PRJEB23843.
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Statistical and bioinformatics analysis

PRIMER v.6.8 (PRIMER-E, Plymouth, UK) was used for
statistical analyses of the taxonomic data [50, 51]. The
patterns of relative abundance for OTUs (16S rRNA gene
amplicons) or bins (metagenome) from each sample were
ordinated to each other using non-metric multidimensional
scaling (MDS) analysis, allowing the comparison of com-
positional similarity between samples. Resemblance matri-
ces were calculated on untransformed standardized OTU/
bin relative abundance data using Bray–Curtis similarity
analysis. MDS analysis was applied to the matrices using
the default settings in PRIMER, with Kruskal’s stress for-
mula 1, a minimum stress of 0.01 and 50 restarts. Similarity
percentage analysis (SIMPER) was used to determine the
percentage of similarity and dissimilarity between sets of
microbial communities; i.e. time-points, 12C and 13C sam-
ples and fractions. SIMPER was applied to the resemblance
matrices in PRIMER using the default settings.

To understand the relative prevalence of selected func-
tional metabolic pathways in the metagenome data, BLAST
analysis of both the binned and the un-binned metagenome
data was carried out. The representative protein sequence
queries were selected because they had proven role in
choline and TMA degradation. Additionally, a control
query for GBT degradation was selected. The functional
metabolic genes used were; cutC encoding choline-TMA
lyase [16, 52], mttB encoding the pyrrolysine-containing
TMA methyltransferase [53], and the non-pyrrolysine con-
taining GBT: corrinoid methyltransferase, mtgB [19]. After
BLAST analysis, the resultant hits were aligned with
MUSCLE 3.5 [54] and maximum likelihood phylogenetic
trees were reconstructed using PhyML 3.0 [55] with default
settings (i.e. HKY85 model of nucleotide substitutions, ts/tv
ratio= 4.00, BioNJ starting tree). This phylogenetic ana-
lysis predicted true-positive hits, based on their clustering
with representative, validated functional genes, whilst false-
positive hits (those that clustered closest to genes with
alternative functions) were rejected. The positive BLAST
hits were normalized to gene length and sample size.

Results

Methanogenesis from choline involved TMA as a
key intermediate in saltmarsh sediments

We have hypothesized that methanogenesis from choline in
saltmarsh sediments is a two-step process, involving the
bacterial degradation of choline to TMA and subsequent
methane formation from TMA by methylotrophic metha-
nogens. Triplicate choline enrichment microcosms (with
13C2-labelled choline and unlabelled choline), were

monitored for choline and its metabolites using IC and
methane formation was quantified by GC. The IC data
presented in Fig. 1 showed that the addition of choline
(100 μmol) at T0 was depleted and an equivalent amount of
TMA was produced after 60 h. The released TMA was fully
degraded after a further 7 days (186 h) and approximately
two times the amount of methane was produced (202 μmol).
The time taken to degrade all the choline decreased with the
two subsequent choline additions, which were 48 and 25 h
respectively (Fig. 1). TMA was not detectable after the
second and third choline additions, suggesting a rapid
consumption by the microbial community (Fig. 1). Fol-
lowing the second choline addition, the methane production
was roughly equal to the choline degradation rate (Fig. 1).
The cumulative amount of choline after the three additions
was 300 μmol (per incubation) and the average amount of
methane produced was 469 μmol (per incubation).

Microbial community analyses of the 16S rRNA
genes from the choline-amended microcosms and
the SIP gradient fractions by amplicon sequencing

To uncover the microbial community response to choline
amendment and to uncover the microbes involved in cho-
line transformation, we sequenced the 16S rRNA genes
from both the light and heavy fractions of the DNA-SIP
microcosms over the time course experiment. Sequencing
using the Illumina Miseq platform yielded 4,806,794 reads.
OTUs were assigned to 3,353,870 sequences, with an
average sequencing depth of 74,869 reads per sample. The
QIIME processing yielded sequences of 240 bp, rarefied to
the lowest sequencing depth of 36,372 reads per sample.

Fig. 1 Choline, trimethylamine (TMA) and methane dynamics during
the microcosm incubations. Choline and TMA were determined by
ion-exchange chromatography; methane was determined by gas
chromatography. Time-points at which the microcosms were sampled
are indicated by the labels T0, T1 (166.5 h), T2 (214.5 h) and T3
(261 h). Error bars represent standard deviations from six to nine
biological replicates
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Sequencing reads were assigned to 940 OTUs at 97%
sequence identity cut-offs.

Over the SIP time course there was a progressive com-
munity shift from T0 through T1 to T2 and T3. MDS
analysis showed that T2 and T3 heavy fractions of the 13C2-
choline microcosms were significantly different from the
unlabelled microcosms, an indication that the labelling was
successful for the enriched 13C2-choline metabolizing bac-
teria (Fig. 2a). The light fractions from 13C2-microcosms
clustered closely with T0 samples (<25% dissimilar;
Fig. 2a). The negative control was most dissimilar to all
other samples (92.9–99.8%), and clustered separately from
all other samples in the MDS plot (Table 1, Fig. 2a).

The SIMPER analysis for the T1 the heavy and light
13C2-choline fractions showed these two communities had
79% dissimilarity, which increased to 96% for T2 and 93%
for T3 (Table 1), suggesting a clear separation of an active
microbial population from the community in response to
13C2-choline amendment. Yet the unlabelled 12C-choline
microcosms showed <40% dissimilarity between the heavy
and light fractions (Table 1). To determine the key OTUs
responsible for the observed dissimilarity of the microbial
communities between the heavy and light fractions, SIM-
PER analysis was applied. Data presented in Fig. 3 indicate

that there was an increase in the Archaea Methano-
coccoides, and Deltaproteobacteria (Desulfuromonas and
Pelobacter), whilst other taxa such as Epsilonproteo-
bacteria (Helicobacteraceae) and Gammaproteobacteria
declined in relative abundance after choline additions
(Fig. 3). These same taxonomic groups (i.e. Pelobacter and
Methanococcoides) also showed enrichment when much
lower levels of choline (150 μM, 1.5 mM) were added to
microcosms using the Stiffkey saltmarsh sediments
(Fig. S1).

Two Deltaproteobacteria OTUs of the Desulfur-
omonadaceae family (OTU 514001824 and OTU
958716325), classified as Pelobacter and Desulfuromonas
respectively (Fig. 4), were significantly enriched in the 13C-
choline heavy fractions which, together, accounted for
>80% reads in 13C-heavy fractions (Table S1). The SIM-
PER analysis indicated that these two taxonomic groups,
Pelobacter and Desulfuromonas OTUs, accounted for 19%
and 12%, respectively, of community shift between all
fractions and time points (Table S3). These OTUs accoun-
ted for <0.1% of the sequences in T0 samples before 13C2-
choline enrichment (Fig. 3). Methanococcoides was enri-
ched in all fractions, i.e. ‘heavy’ and ‘light’ for both 12C
and 13C-choline microcosms (Table S1).

2D Stress:0.08 2D Stress:0

Sample: T0 T1 T2 T3 Similarity:
12C light

T0 light

T0 heavy

50 %

70 %12C heavy
13C light
13C heavy

-ve

T0

T1

T3
T2

T3 light

T3 heavyT0

T1
T2

T3

A B

Fig. 2 Multidimensional scaling (MDS) plots of fractionated choline
DNA-SIP samples taken before enrichment (T0) and at time-points 1
(T1), 2 (T2) and 3 (T3) incubated with either 12C-choline (12C light
and 12C heavy) or 13C2-choline (

13C light and 13C heavy). a 16S rRNA

gene amplicon data based on rarefied absolute abundance of OTUs
(97% cut-off), with an additional blank negative control (−ve) sample.
b Metagenome bins abundance, normalized to contig length and
sample size
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Metagenome sequencing of heavy isotope labelled
DNA from 13C2-choline DNA-SIP and bins

To gain a better understanding of the metabolic potential in
these enriched taxa (i.e. Pelobacter), we sequenced tripli-
cate 13C light and triplicate 13C heavy fractions of time
point 3 (T3) DNA-SIP fractions, together with the triplicate
unfractionated T0 samples. The dataset was sequenced
using an Illumina MiSeq with 2 × 300 paired-end cycles,
resulting in ~186Mb sequencing data from 11 runs. After
quality trimming and filtering, ~116Mb were mapped to
contigs. For the T0, T3 light and T3 heavy samples the
percentage of reads that mapped to contigs accounted for
49%, 65% and 80% of total reads, respectively. These
resulted in 230,960 contigs, with a minimum length cut-off
of 1 kb, which were assigned to 270 bins (Table S2).

The MDS analysis of the metagenome bins showed that
the T0 and T3 heavy fraction samples clustered closely with
themselves, with >70% similarity (Fig. 2B). The T3 light

fraction samples showed lower similarity. The T0, T3 light
and T3 heavy clusters were distinct from each other. The
MDS analysis of metagenome bins therefore agrees with the
results from amplicon sequencing data on 16S rRNA genes
in that significant enrichment of active microbes involved in
choline metabolism had occurred in the SIP microcosms.

SIMPER analyses revealed that the T3 13C-choline heavy
labelled samples were highly dissimilar to both the T0
(87%) and the T3 light samples (80%; Table 1). In agree-
ment with the 16S rRNA gene amplicon data (Table S3),
the SIMPER analyses of the metagenome revealed an
increase in the Archaea Methanococcoides between the
T0 samples and T3 light fraction samples and confirmed
enrichment of Pelobacter in the T3 heavy fraction samples
(Table S4).

The taxonomy assigned to the 270 metagenome bins was
determined to the greatest possible resolution, which varied
between class and species level (Table S2). The most pre-
valent taxonomic assignment among the 270 bins

Table 1 Dissimilarity matrix of the SIMPER analysis showing average dissimilarity between triplicate samples for 16 S rRNA gene OTUs and
metagenome bins for each time point (T0, T1, T2 and T3) and light versus heavy fractions

T0 T1 T2 T3 T0 T1 T2 T3 T1 T2 T3 T1 T2 T3

T0 43 87

T1 34

T2 54 38

T3 56 45 44

T0 35 39 53 49

T1 50 36 41 41 38

T2 71 56 32 49 67 51

T3 61 47 42 40 57 45 45

T1 33 31 51 49 33 44 68 58

T2 31 27 49 53 36 46 68 57 27

T3 34 32 53 49 38 46 69 58 27 28 80

T1 81 69 48 45 79 65 45 55 79 78 79

T2 98 88 65 63 97 86 62 73 96 96 96 44

T3 95 85 72 59 94 84 70 70 93 93 93 40 50

100 100 100 100 99 98 99 96 100 100 100 100 100 100
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(irrespective of relative abundance) was Pelobacter (40
bins), Desulfovibrio (19 bins) and Methanococcoides (13
bins; Table S2).

Functional gene profiling of the metagenomes and
microbial genomes retrieved from DNA-SIP

Although each of the metagenome bins only represents a
partial genome of the assigned species, they provided a
valuable source for mining the functional genetic potential
involved in choline degradation and methane formation.
Specifically, these bins were screened for the presence of
the metabolic genes involved in converting choline to TMA
(cutC) and TMA to methane (mttB). Data presented in
Table 2 and Table S2 revealed that cutC was indeed present
in bins that were assigned to Pelobacter (e.g. 5, 134, 174,
227 and 252). Similarly, the mttB gene was also found in

bins that were assigned to Methanococcoides (e.g. 68, 76,
117 and 267). Additionally, a complete set of proteins
(mtaA, mtaB and mtaC) required for methanogenesis from
methanol are also found in these Methanococcoides bins
(e.g. 68 and 267). Analysis of the recovered contigs con-
taining these key functional genes showed that for Bin 174
the cutC containing contig showed high gene synteny as
well as sequence similarity to Pelobacter isolates (Fig. 5).

BLAST analysis of the key genes in the functional
metabolic pathways against the unassembled metagenome
reads revealed an increase in the two expected pathways
involved in methanogenesis from choline (Fig. 6). The cutC
gene was detected at very low levels (<0.05 hits per million
reads) in both the T0 and T3 light metagenome samples, but
we detected 12.4 hits per million reads in the T3 heavy
samples. Phylogenetic analysis of the cutC genes extracted
from the T3 heavy metagenome samples showed that

Pelobacter

Fig. 3 Relative abundance of the top 9 taxonomically assignments as identified by similarity percentage analysis (SIMPER). a 16S rRNA gene
amplicon OTUs. b Metagenome bins
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the majority (~60%) of the cutC sequences originated
from Pelobacter. The mttB gene was also detected at low
levels (<0.4 hits per million reads) in the T0 samples,
then increased to 2.8 in T3 light and 17.6 hits per million
reads in T3 heavy samples. Phylogenetic analyses of mttB
sequences retrieved from these metagenomes confirmed that
they were from Methanococcoides. Interestingly, our ana-
lyses of the nonpyrrolysine-containing GBT methyl-
transferase mtgB gene, which is responsible for the direct
demethylation of GBT [19], showed little variation in
abundance (0.2–0.8 hits per million reads) between T0 and
T3 samples.

Discussion

Coastal saltmarshes represent a significant natural source of
methane in the global methane budget. Our understanding
of the key microbes and metabolic pathways responsible for
methanogenesis by microbial populations inhabiting these
sediments is still very limited. In this study, we have shown
that the Deltaproteobacteria genera Pelobacter and the
Archaea, Methanococcoides were the predominant species
involved in methanogenesis from Stiffkey saltmarsh sedi-
ments. These microbes were identified through a combi-
nation of DNA-SIP, high-throughput sequencing analyses

NC 011146 Geobacter bemidjiensis

U96917.1 Geobacter bremensis

AY187306.1 Geobacter humireducens

U41561.1 Geobacter chapellei

NR 074975.1 Pelobacter propionicus

X70954.1 Pelobacter propionicus

AF223382.1 Geobacter thiogenes

NC 010814 Geobacter lovleyi

U28173 Geobacter hydrogenophilus

AF335183.1 Geobacter grbicium

L07834.1 Geobacter metallireducens

NC 002939 Geobacter sulfurreducens

U96918 Geobacter pelophilus

NR 029238.1 Pelobacter acetylenicus

OTU 514001824

X79413 Pelobacter carbinolicus

U41562.1 Pelobacter venetianus

OTU 958716325

NR 121678.1 Desulfuromonas acetoxidans

AY835390.1 Desulfuromonas svalbardensis

NR 026407.1 Desulfuromonas thiophila

U49748 Desulfuromonas chloroethenica

U23140 Desulfuromonas acetexigens

NR 114607.1 Desulfuromonas michiganensis

AY187304.2 Geopsychrobacter electrodiphilus

NR 043214.1 Desulfuromusa ferrireducens

X79415 Desulfuromusa succinoxidans

NR 044032.1 Pelobacter seleniigenes

NR 029275.1 Desulfuromusa kysingii

NR 104786.1 Pelobacter massiliensis

NR 026154.1 Pelobacter acidigallici

NR 026479.1 Malonomonas rubra

NR 026175 Desulfuromusa bakii
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Fig. 4 Neighbour-joining phylogenetic tree of 16S rRNA genes of
Desulfuromonadaceae. Sequence alignment was carried out using the
ClustalW program based on partial 16S rRNA genes (1320 bp) from
representative species from the Geobacteraceae and Desulfur-
omonadaceae families and the two most prevalent OTUs derived from
amplicon sequencing of 16S rRNA genes from the choline DNA-SIP
heavy fractions (OTU 514001824 and OTU 958716325). Sedimenta-
tion selenatireducens and Desulfoluna spongiiphila were used as the

outgroup to root the tree. The percentage of replicate trees in which the
associated taxa clustered together in the bootstrap test (500 replicates)
are shown next to the branches. Only bootstrap values greater than
50% are shown. The evolutionary distances were computed using the
Maximum Composite Likelihood method in the MEGA7 package
[62]. The scale bar indicates evolutionary distance in mutations per
residue
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of the 16S rRNA genes, and 13C-enriched metagenomics,
on which binning and subsequent reconstruction of the
metagenome bins was performed.

DNA-SIP and amplicon sequencing analyses clearly
showed that the Desulfuromonadaceae, particularly Pelo-
bacter and Desulfuromonas were virtually exclusively
found in the 13C heavy fractions, suggesting that these
obligate anaerobes incorporated heavy carbon from the
13C2-choline into their DNA. Indeed, cultivated repre-
sentatives of Pelobacter have previously been isolated from
various marine and coastal sediments and can grow on
choline while producing TMA [56, 57]. This was further
supported by subsequent analyses of the retrieved popula-
tion genomes that were assigned to Pelobacter (5, 134, 174,
227 and 252), showing the presence of cutC and associated
genes involved in the choline-TMA lyase pathway (Table 2,
Fig. 5). Desulfuromonas isolates such as Desulfuromonas
acetoxidans [58] and Desulfuromonas svalbardensis [59],
on the other hand, are not known to grow on choline and no
cutC homologues were found in the genomes of the two
aforementioned strains. Yet, our data presented in Fig. 3
appears to support the role of as-yet uncultivated novel
Desulfuromonas strains in these sediments in choline
degradation. However, it is also likely that Desulfuromonas
was labelled through cross-feeding of 13C-acetate released
by Pelobacter. Indeed, both Pelobacter carbinolicus and
Pelobacter acetylenicus constitutively expressed an acet-
aldehyde dehydrogenase, converting acetaldehyde to

acetate in pure culture or co-culture with a methanogen
[60]. Interestingly, a significant proportion of cutC
sequences retrieved from the 13C-heavy metagenomes are
classified as Desulfovibrio salexigens (Fig. 6). Furthermore,
several metagenome-assembled bins related to this
sulphate-reducing bacterium were also found although the
SpecI matches of these bins were <90% identical to those of
Desulfovibrio salexigens (Table S2). However, the 16S
rRNA gene amplicon sequencing indicated that Desulfovi-
brio (Family Desulfovibrionaceae) was not abundant (<1%)
in this saltmarsh sediment and our SIMPER analyses did
not support their role in contributing to community shift
during choline SIP incubations (Fig. 3, Table S1). Clearly,
the role of Desulfuromonas and Desulfovibrio in choline
degradation warrants further investigation.

Amplicon sequencing of 16S rRNA genes showed that
Methanococcoides were also enriched over time, however,
they showed no preferential enrichment in the heavy 13C
fractions compared to either the light fractions or the heavy
fractions from the 12C-choline control microcosms (Fig. 3).
Methanococcoides cannot use acetate and therefore could
not incorporate 13C label from the acetyl group of 13C2-
choline [14]. They can, however, use TMA for methano-
genesis [14]. TMA, a metabolite of bacterial choline
degradation [16, 17], was indeed found in our choline-
amended microcosms (Fig. 1). We therefore postulate that
the enrichment of Methanococcoides in these microcosms
was due to their growth on TMA generated by bacterial

Table 2 Selected bins containing homologues of functional genes (cutC and mttB) involved in choline-dependent methanogenesis

Bin
no.

Taxonomy Length
(bp)a

Genome
completeness

Top BLASTp hit of CutC or
MttB and identity (%)

Relative abundance

T0 T3
light

T3
heavy

174 Pelobacter cabinolicus [30S ribosomal protein
S5, 96%]

2,471,953 48% cutC Pelobacter
carbinolicus

93 0.02 0.01 0.29

134 Pelobacter cabinolicus [30S ribosomal protein
S2, 80%]

2,898,805 15% cutC Desulfobacteraceae 70 0.01 0.03 0.91

105 Desulfobacter curvatus [30S ribosomal protein
S12, 99%]

1,645,370 68% cutC Desulfoluna
spongiiphila

80 0.02 0.03 0.75

162 Desulfobacter postgatei [50S ribosomal protein
L14, 98%]

1,431,515 30% cutC Sporomusa silvacetica 72 0.01 0.03 0.56

14 Desulfobacter vibrioformis [50S ribosomal
protein L16, 96%]

3,502,099 15% cutC Desulfosporosinus
acidiphilus

79 0.01 0.13 0.82

145 Desulfovibrio salexigens [30S ribosomal protein
S2, 98%]

3,824,891 40% cutC Desulfoluna
spongiiphila

79 0.02 0.03 0.6

260 Desulfuromonas acetoxidans [30S ribosomal
protein S2, 72%]

1,754,599 13% cutC Desulfoluna
spongiiphila

74 0.03 0.03 0.36

68 Methanococcoides burtonii [50S ribosomal
protein L1, 96%]

1,493,633 28% mttB Methanococcoides
vulcani

71 0.01 1.35 0.54

267 Methanococcoides burtonii [50S ribosomal
protein L1, 91%]

1,836,990 38% mttB Methanosarcina 52 0.02 0.9 0.64

aOnly show bins of length >1 millon bp
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choline degradation. To further support our hypothesis, our
analyses of the population genomes retrieved from meta-
genomics sequences showed the presence of mttB, TMA-
methyltransferase, a key gene involved in methanogenesis
from TMA, in Methanococcoides bins (Table 2).

Metagenomic sequencing of the 13C-enriched DNA and
binning of the metagenomic data not only provided a better
understanding of the metabolic potential of the key func-
tional microbes identified by SIP, Desulfuromonadaceae
(e.g. Pelobacter) and Methanococcoides, but also provided

Fig. 5 Alignment of the cutC-homologue containing contig from the 13C choline enriched bin 174 with the closest genome matches—Pelobacter
acetylenicus and Pelobacter carbinolicus
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Fig. 6 Analyses of functional gene abundance in the un-binned
metagenome datasets obtained from saltmarsh sediments before (T0)
and after choline DNA-SIP (L-, light and H-, heavy fractions of T3).
The cutC gene encodes a choline-TMA lyase ([17, 16]). mttB encodes
a pyrrolysine-containing TMA methyltransferase [63, 64] and mtgB
encodes a non-pyrrolysine glycine betaine (GBT) methyltransferase
responsible for direct demethylation of GBT to dimethylglycine
(DMG) and methane [19]. Relative abundance was achieved by nor-
malizing to the length and abundance of the recA gene. Note that the

normalized mttB counts are not exclusive to methanogens and a
complete separation of bacterial pyrrolysine-containing mttB from
their archaeal counterparts through phylogeny analysis was not pos-
sible [64]. The pie charts give a breakdown of the phylogeny of the
hits against a reference tree for cutC or mttB, and the size of the pie
charts reflects relative abundance of sequences retrieved from the
metagenomes. The cutC sequences grouped with either Pelobacter (P.
acetylenicus and P. carbinolicus) or Desulfovibrio salexigens whereas
the archaeal mttB sequences clustered within Methanococcoides
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an opportunity to elucidate major pathway for methanogen-
esis from choline in the sediments. There are several possible
routes for choline transformation to methane in anaerobic
sediments (Fig. 7): (1) direct demethylation of choline to
methane (the enzyme responsible has yet to be characterized
[11, 21]); (2) TMA formation from choline followed by
methanogenesis from TMA, or (3) demethylation of GBT to
methane. The occurrence of TMA during the anaerobic
degradation of choline in our microcosms (Fig. 1) suggests
that direct choline demethylation was not the dominant route
for methanogenesis. Instead, our data suggest that choline
was initially converted to TMA, which then served as the
substrate for methanogenesis. TMA formation from choline
can be achieved through either a choline-TMA lyase enco-
ded by cutC or, alternatively, GBT as the intermediate
(Fig. 7). We, however, did not observe any significant
accumulation of GBT in the microcosms although the
method is capable of quantifying GBT, TMA and choline

simultaneously [61]. To further support our hypothesis, we
compared the relative abundance of key metabolic genes in
the un-amended salt-marsh sediment and after choline
enrichment. The relative capacity of the microbial commu-
nity to degrade choline to TMA and subsequently TMA to
methane markedly increased after SIP incubations, as evi-
denced by a substantial increase in relative abundance of
both cutC (choline to TMA) and mttB (TMA to methane)
(Fig. 6). In contrast, the relative abundance of mtgB,
encoding the GBT methyltransferase responsible for direct
demethylation of GBT [19], was more abundant before
enrichment and showed no response to choline amendment
in microcosms, suggesting that GBT was not a major inter-
mediate in methanogenesis from choline.

Using a combination of DNA-SIP with 13C2-labelled
choline, 16S rRNA gene sequencing and metagenome
sequencing we have identified Deltaproteobacteria, of the
genera Pelobacter as the major choline-utilizers and TMA

Fig. 7 Currently known pathways for methanogenesis from choline.
Choline can be converted to trimethylamine (TMA) by either a bac-
terial choline-TMA lyase (encoded by cutC [17, 16]) or indirectly
through glycine betaine (GBT) as the intermediate. Methanogenesis
from TMA by methanogenic Archaea requires the key enzyme,

pyrrolysine-containing TMA methyltransferase encoded by mttB [53].
Direct demethylation of choline and GBT can also support methano-
genesis and the GBT methyltransferase (mtgB) has been identified very
recently [19, 21] whereas genes responsible for direct choline deme-
thylation to methane have not yet been identified [20, 21]
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producers, whilst the methanogenic Archaea Methano-
coccoides was also enriched and involved in methane for-
mation from TMA. Metagenome and metabolite data
showed a significant enrichment in the choline degradation
pathway via TMA to methane and a correlating intermediate
release of TMA and a final accumulation of methane in the
choline enrichment microcosms. This all indicated that a
syntrophic relationship between Bacteria and Archaea was
the dominant route for methanogenesis from choline in
Stiffkey saltmarsh sediments.
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