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Abstract 

In the present work, we investigated current methods 

for complex fractionated atrial electrogram (CFAE) 

classification during persistent atrial fibrillation 

(persAF). Potential contributing factors concerning the 

low reproducibility of CFAE-guided ablation outcomes in 

persAF therapy have been explored, such as 

inconsistencies in automated CFAE classification 

performed by different systems, the co-existence of 

different types of atrial electrograms (AEGs), and 

insufficient AEG duration for CFAE detection. First, we 

show that CFAE classification may vary for the same 

individual, depending on the system being used and 

settings being applied. Revised thresholds are suggested 

for the indices calculated by each system to minimize the 

differences in CFAE detection performed independently 

by them. Second, our results show that some AEGs are 

affected by stepwise persAF ablation, while others remain 

unaffected by it. Different types of AEGs might correlate 

with distinct underlying persAF mechanisms. Single 

descriptors measured from the AEGs, such as sample 

entropy and dominant frequency, were not able to 

discriminate the different types of AEGs individually, but 

multivariate analysis using multiple descriptors measured 

from the AEGs can effectively discriminate the different 

types of AEGs. Finally, we show that AEG duration of 2.5 

s – as currently used by some systems – might not be 

sufficient to measure CFAEs consistently.  
 

 

1. Introduction 

Atrial fibrillation (AF) is the most common sustained 

cardiac arrhythmia found in clinical practice, 

characterized by irregular atrial mechanical function, and 

it is a leading cause of stroke [1]. Although pulmonary 

vein isolation (PVI) has been proved effective in treating 

paroxysmal AF, the identification of critical areas for 

successful ablation in patients with persistent AF 

(persAF) remains a challenge due to an incomplete 

understanding of the underlying pathophysiology of the 

arrhythmia [1]. Complex fractionated atrial electrograms 

(CFAEs) are believed to represent remodeled atrial 

substrate and are, therefore, potential targets for persAF 

ablation [2]. CFAE ablation has been accepted as an 

additional therapy to PVI to treat persAF. Inconsistent 

CFAE-guided ablation outcomes have, however, cast 

doubt on the efficacy of this approach [3]. Currently, 

clinical studies rely on automated CFAE classification 

performed by algorithms embedded in commercial 

mapping systems to identify CFAEs during persAF 

ablation. Different companies have developed algorithms 

based on different features of the atrial electrogram 

(AEG). Inconsistencies between these algorithms could 

lead to discordant CFAE classifications by the available 

systems [4]. Additionally, while studies support that some 

CFAEs truly represent local AF drivers, others suggest 

CFAEs are resultant from distant AF drivers [5,6]. 

Finally, the spatio-temporal behavior of AEGs in persAF 

remains contentious [7]. We hypothesized that these 

factors might contribute to disparities in ablation target 

identification based on AEG fractionation in persAF. This 

study investigated factors that directly influence the low 

reproducibility of CFAE-guided ablation outcomes in 

persAF therapy, such as inconsistencies in automated 

CFAE classification, the co-existence of different types of 

AEGs, and insufficient AEG duration for CFAE 

detection. 

 

2. Materials and methods 

The study population consisted of 18 persAF patients 

(16 male; mean age 56.1 ± 9.3 years; history of AF 67.2 ± 

45.6 months) referred to our institution for first time 

catheter ablation [6]. Study approval was obtained from 

the local ethics committee and all procedures were 

performed with full informed consent. 3D left atrial (LA) 



geometry was created using Ensite NavXTM (St. Jude 

Medical, St. Paul, Minnesota). PVI was performed 

followed by the creation of linear roof lines (PVI+RL) 

using a deflectable, variable loop circular mapping 

catheter (Inquiry Optima, St. Jude Medical). Bipolar 

AEGs were collected from 15 pre-determined atrial 

regions before and after LA ablation for each patient [6]. 

797 AEGs (455 before and 342 after PVI+RL) were 

recorded from the LA (sampling frequency 1.2 kHz) and 

band-pass filtered (30 – 300 Hz). 

 

2.1. Automated CFAE classification 

The two commercial systems most frequently used in 

clinical practice are the NavX and the CARTO (Biosense 

Webster, Diamond Bar, California) [4]. Those systems 

provide primary indices to assess CFAE objectively 

[NavX: CFE-Mean; CARTO: Interval Confidence Level 

(ICL)], and complementary indices to further support the 

electrophysiology procedure [NavX: CFE-StdDev; 

CARTO: Average Complex Interval (ACI), Shortest 

Complex Interval (SCI)]. There are no defined 

recommended thresholds for the complementary indices 

to characterize CFAEs. To compare both systems, the 797 

AEGs with their respective CFE-Mean and CFE-StdDev 

were exported from NavX. The ICL, ACI and SCI, as 

defined by CARTO, were calculated offline with a 

validated (100% agreement) MATLAB algorithm [4]. 

CFAE classification was performed by NavX and 

CARTO using their default clinical thresholds (CFE-

Mean ≤ 120 ms; ICL ≥ 7) [8]. Primary and 

complementary indices from each system were optimized 

to reduce the differences in CFAE detection between 

them using receiver operating characteristic (ROC) 

curves. The agreement between both systems was 

assessed with Cohen’s kappa (κ) [9]. 

 

2.2. Different types of AEGs 

From the 797 AEGs, 207 pairs were identified as 

collected from corresponding LA regions: 207 before and 

207 after PVI+RL. Nine descriptors were measured from 

the 207 pairs of AEGs, accordingly: CFE-Mean, CFE-

StdDev, ICL, ACI, SCI [4], sample entropy (SampEn) 

[10], peak-to-peak (PP) [11], dominant frequency (DF) 

[12] and organization index (OI) [13]. Multivariate 

analysis of variance (MANOVA) and linear discriminant 

analysis (LDA) were used to test the differences between 

the AEGs before and after PVI+RL using all descriptors. 

CFAEs were defined as CFE-Mean ≤ 84 ms; ICL ≥ 4. 

 

2.3. AEG duration for CFAE detection 

Previous work has investigated different segment 

lengths to consistently characterize CFAEs using NavX, 

since this system allows for different AEG duration 

recordings (1 s to 8 s) [7]. CARTO, however inherently 

limits the AEG collection to 2.5 s, hampering the 

investigation of CFAE temporal behavior using this 

system. To overcome this limitation, consecutive 2.5 s 

AEG segments were assessed to infer about temporal 

consistency of AEG. CFAE classifications performed in 

AEGs with different segment lengths have been analyzed 

to search for the ‘optimum’ length of AEGs needed for 

identification of CFAEs. Accordingly, the 797 bipolar 

AEGs were exported from NavX with three segment 

lengths (2.5 s, 5 s and 8 s). The AEGs with 8 s duration 

were divided into three consecutive 2.5 s segments. 

CARTO’s criterion for CFAE classification (ICL, ACI 

and SCI) was applied offline to all cases. 

 

2.4. Statistical Analysis 

Nonparametric paired multiple data were analyzed 

using the Friedman test with Dunn's correction. 

Nonparametric unpaired data were analyzed using the 

Mann–Whitney test. Categorical data were expressed as 

percentages and analyzed using the two-sided Yates-

corrected Chi-square test. P≤0.05 was considered 

statistically significant. 

 

3. Results 

3.1. Automated CFAE classification 

The CFAE classifications performed by NavX and 

CARTO with their respective default thresholds for 

CFAE detection (CFE-Mean ≤ 120 ms, ICL ≥ 7, 

respectively) do not always agree (Figure 1A).  

Initially assuming CFE-Mean ≤ 120 ms as the 

reference for CFAE classification, the default threshold 

for CARTO (ICL ≥ 7) provides high specificity but poor 

sensitivity for CFAE detection (Table 1, Figure 1B). The 

optimum threshold found from the ROC curves (ICL ≥ 4) 

provides optimum sensitivity and specificity for CFAE 

detection and classification when using NavX as the 

comparator. Now, assuming ICL ≥ 7 as the reference for 

CFAE classification, the default threshold for NavX 

(CFE-Mean ≤ 120 ms) provides high sensitivity but poor 

specificity for CFAE detection (Table 1, Figure 1C).  

CFE-Mean ≤ 84 ms provides optimum sensitivity and 

specificity for CFAE detection and classification when 

using CARTO as the comparator. The results from the 

ROC curves suggest that CFE-StdDev ≤ 47 ms, ACI ≤ 82 

ms and SCI ≤ 58 ms provide optimum sensitivity and 

specificity for CFAE detection, when considering the 

agreement between CFE-Mean and ICL for CFAE 

classification (Table 1, ROC curves omitted). Using the 

default thresholds NavX classified 69±5% of the AEGs as 

CFAEs, while CARTO detected 35±5% (P<0.0001). 



Table 1. Threshold optimization for ICL, CFE-Mean, CFE-StdDev, ACI and SCI. 

AUROC = Area under ROC curve. Values in mean (±SD). **** P<0.0001. 

 

 
Figure 1: (A) Comparison of CFAE classifications 

performed by CFE-Mean and ICL for all AEGs. ROC 

curves and threshold customization for ICL (B) and CFE-

Mean (C). (D) CFAE maps (LA anterior view) performed 

by NavX (upper) and CARTO (bottom) using their 

default (left) and revised (right) thresholds [4]. 

 

With the revised thresholds, NavX classified 45±4%, 

while CARTO detected 42±5% (P<0.0001). Kappa score 

between the CFAE categorization performed by NavX 

and CARTO significantly increased (P<0.0001) from 

0.34±0.07 (marginal agreement, P<0.0001) using their 

default thresholds to 0.45±0.10 (good agreement, 

P<0.0001) with the revised thresholds, resulting in more 

similar CFAE maps (Figure 1D). 

 

3.2. Different types of AEGs 

At baseline, 70% of the AEGs were classified as CFAEs, 

while 40% were classified as CFAEs after PVI+RL 

(P<0.0001). Four groups of AEGs were distinguished in 

terms of the presence of fractionation before and after 

PVI+RL (Figure 2): 45% of the AEGs that were CFAE 

before ablation remained CFAE after ablation (G1), while 

55% converted to non-CFAE (G2); 29% of the non-

CFAE prior to ablation became CFAE (G3), while 71% 

remained non-CFAE (G4). The descriptors showed poor 

correlation with each other (Spearman’s correlation, ρ; 

Figure 3), but were significantly affected by PVI+RL. 

MANOVA suggests a significant main effect of the 

groups of AEGs (1, 2, 3 and 4) on the descriptors on both 

before (F-ratio F = 12, P<0.0001) and after ablation (F = 

17, P<0.0001) datasets. LDA revealed three discriminant 

functions both before and after ablation. Prior to any 

ablation, LDA successfully discriminated 62% of the 

AEGs in group 1; 70% of group 2; 50% of group 3 and; 

64% of group 4. After PVI+RL, LDA improved, 

discriminating 97% of the AEGs in group 1; 83% of 

group 2; 5.6% of group 3 and; 46% of group 4. 

 

 
Figure 2: (A) CFAE maps before and after PVI+RL. (B) 

Illustration of the different types of AEGs. 

 

 
Figure 3: Correlations between different descriptors 

measured from the same AEG database. 

 

Classifier Thresholds Sensitivity 1-Specifivity AUROC P-Value 

CFE-Mean ≤ 120 ms 
ICLDefault ≥ 7 0.492±0.008 0.050±0.005 

0.852±0.005 **** 
ICLRevised ≥ 3.8±0.4 0.777±0.022 0.162±0.022 

ICL ≥ 7 
CFE-MeanDefault ≤ 120 ms 0.958±0.005 0.552±0.009 

0.755±0.005 **** 
CFE-MeanRevised ≤ 84.1±0.4 ms 0.807±0.010 0.362±0.006 

CFE-Mean ≤ 84 & ICL ≥ 4 CFE-StdDev ≤ 46.6±0.8 ms 0.905±0.012 0.185±0.008 0.877±0.014 **** 

CFE-Mean ≤ 84 & ICL ≥ 4 ACI ≤ 82.2±0.3 ms 0.827±0.010 0.360±0.009 0.759±0.006 **** 

CFE-Mean ≤ 84 & ICL ≥ 4 SCI ≤ 58.6±0.4 ms 0.816±0.012 0.300±0.009 0.812±0.005 **** 



3.2. AEG duration for CFAE detection 

Three types of AEGs have been identified when 

investigating the consecutive segments with the CARTO 

criteria: ‘stable CFAEs’ as AEGs with ICL ≥ 4 in all 

assessed segments; ‘stable non-CFAEs’ as AEGs with 

ICL < 4 in all assessed segments and; ‘unstable AEG’ as 

AEGs with ICL varying to and from ICL ≥ 4 to ICL < 4. 

A total of 43% AEGs were stable CFAEs, 27% were 

stable non-CFAEs, while nearly 30% were unstable 

AEGs. AEG classification within the consecutive 

segments had moderate correlation (segment 1 vs 2: 

ρ=0.74, κ=0.62; segment 1 vs 3: ρ=0.73; κ=0.62; segment 

2 vs 3: ρ=0.75; κ=0.68), and different AEG segment 

resulted in different CFAE maps (Figure 4A). AEGs with 

5 s generated AEG classification more similar to 8 s 

(ρ=0.96; κ=0.87) than 2.5 s vs 5 s (ρ=0.93; κ=0.84) and 

2.5 s vs 8 s (ρ=0.90; κ=0.78) (Figure 4B). 

 

 
Figure 4: CFAE maps for the consecutive AEG segments 

(A) and for the different segment lengths (B). 

 

4. Discussion and Conclusion 

Despite many efforts, the current form of CFAE-

guided ablation has failed to provide a definite solution 

for persAF therapy [3]. Differences in existing methods 

for automated atrial substrate identification [4], and 

insufficient understanding of the underlying mechanisms 

involved in AF initiation and perpetuation  [5] are 

contributing factors to inconsistencies in patient-specific 

persAF ablation [4]. Indeed not all AEG fractionation 

might represent AF drivers, but some fractionated AEGs 

are surrogates of critical sites for AF maintenance, and 

better characterization of these may result in better 

outcomes in persAF ablation. CFAE-guided ablation is, 

and for now will continue to be, an important procedure 

in the treatment of AF. However, a thorough re-

evaluation of the definition of CFAE is necessary in order 

to refine the identification of atrial regions responsible for 

the perpetuation of persAF. 
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