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Chaure FJ, Rey HG, Quian Quiroga R. A novel and fully
automatic spike-sorting implementation with variable number of fea-
tures. J Neurophysiol 120: 1859–1871, 2018. First published July 11,
2018; doi:10.1152/jn.00339.2018.—The most widely used spike-sort-
ing algorithms are semiautomatic in practice, requiring manual tuning
of the automatic solution to achieve good performance. In this work,
we propose a new fully automatic spike-sorting algorithm that can
capture multiple clusters of different sizes and densities. In addition,
we introduce an improved feature selection method, by using a
variable number of wavelet coefficients, based on the degree of
non-Gaussianity of their distributions. We evaluated the performance
of the proposed algorithm with real and simulated data. With real data
from single-channel recordings, in ~95% of the cases the new algo-
rithm replicated, in an unsupervised way, the solutions obtained by
expert sorters, who manually optimized the solution of a previous
semiautomatic algorithm. This was done while maintaining a low
number of false positives. With simulated data from single-channel
and tetrode recordings, the new algorithm was able to correctly detect
many more neurons compared with previous implementations and
also compared with recently introduced algorithms, while signifi-
cantly reducing the number of false positives. In addition, the pro-
posed algorithm showed good performance when tested with real
tetrode recordings.

NEW & NOTEWORTHY We propose a new fully automatic
spike-sorting algorithm, including several steps that allow the selec-
tion of multiple clusters of different sizes and densities. Moreover, it
defines the dimensionality of the feature space in an unsupervised
way. We evaluated the performance of the algorithm with real and
simulated data, from both single-channel and tetrode recordings. The
proposed algorithm was able to outperform manual sorting from
experts and other recent unsupervised algorithms.
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INTRODUCTION

Extracellular recordings of single-neuron activity are done
by placing electrodes in brain tissue. The electrical potential
changes measured at the electrode tip reflect the spiking activ-
ity of neurons close enough to the electrode plus background

activity elicited by neurons further away from the tip (black
trace in Fig. 1A, top). In principle, the spikes fired by a neuron
recorded by a given electrode have a distinct shape. This is
mainly determined by the morphology of the dendritic tree of
the neuron, the distance and orientation relative to the record-
ing site, the distribution of ion channels, and the properties of
the extracellular medium (Gold et al. 2006). Spike-sorting
algorithms detect these spikes (Fig. 1A, top) and, using features
extracted from the waveforms, group them into clusters corre-
sponding to the putative activity of different neurons (Fig. 1A,
bottom, right) (Lewicki 1998; Quian Quiroga 2007). The
importance of spike sorting is stressed by the fact that nearby
neurons recorded from the same electrode can respond to
completely different things, and, therefore, it is crucial to know
which spike corresponds to which neuron. This is the case, for
example, in the human and the rat hippocampus, where nearby
neurons fire to unrelated concepts in the first case (De Falco et
al. 2016; Rey et al. 2015a) and to distant place fields in the
latter (Redish et al. 2001).

The simultaneous recording of a large number of electrodes,
thus accessing the activity of populations of neurons, is be-
coming an essential tool for understanding complex behaviors
and network properties in the brain (Quian Quiroga and Pan-
zeri 2009). Silicon probes have been developed in the last 10
years (Blanche et al. 2005; Buzsáki 2004; Csicsvari et al.
2003), and large multielectrode arrays with up to thousands of
electrodes are already being used for recording in retinal
patches (Litke et al. 2004), cell cultures (Lambacher et al.
2011), or brain slices (Frey et al. 2009). Furthermore, a large
number of channels is presently used to record from local
circuits in behaving animals (Berényi et al. 2014). With such
high channel count, the manual supervision of each single
channel might turn into a very time-consuming task. In addi-
tion, it is well known that the subjectivity introduced by the
human intervention creates an additional source of sorting
errors (Harris et al. 2000; Wood et al. 2004). In parallel to these
advances, there are also several cases in which single-electrode
recordings are still routinely used, with automatic implemen-
tations being critical to avoid potential subjective biases of
manual solutions. This is, for example, the case in invasive
human recordings performed with depth electrodes implanted
in patients with epilepsy (Rey et al. 2015a) or chronic implants

* F. Chaure and H. Rey contributed equally.
Address for reprint requests and other correspondence: R. Quian Quiroga,

Centre for Systems Neuroscience, University of Leicester, Leicester, LE1
7RH, United Kingdom, (e-mail: rqqg1@le.ac.uk).

J Neurophysiol 120: 1859–1871, 2018.
First published July 11, 2018; doi:10.1152/jn.00339.2018.

1859Licensed under Creative Commons Attribution CC-BY 4.0: © the American Physiological Society. ISSN 0022-3077.www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (143.210.120.167) on December 10, 2018.
 Copyright © 2018 the American Physiological Society. All rights reserved. 

http://doi.org/10.1152/jn.00339.2018
mailto:rqqg1@le.ac.uk
http://creativecommons.org/licenses/by/4.0/deed.en_US


for brain-machine interface (Homer et al. 2013). In this con-
text, the unsupervised classification of single units, both from
single-channel recordings and large-electrode arrays, has be-
come the bottleneck to fully reach the potential of extracellular
recordings (Harris et al. 2016; Rey et al. 2015b).

Many spike-sorting algorithms have been developed in the
past years (see Rey et al. 2015b for a review). Some of these
methods are based on Bayesian statistical frameworks, relying
in some cases on a Gaussian model of the distribution of the
spike waveforms (Harris et al. 2000; Rossant et al. 2016). Past
studies have shown the non-Gaussian variability of the spike
shapes and the nonstationarity of the extracellular recordings,
attributable to, for example, small electrode drifts (Fee et al.
1996; Harris et al. 2016) or the presence of bursting cells
(Henze et al. 2000), and motivated the development of non-
parametric approaches. One such method is Wave_clus (Quian
Quiroga et al. 2004), a spike-sorting algorithm that uses wave-
let decomposition to extract features of the spike waveforms
and superparamagnetic clustering (SPC) to cluster the spikes in

this feature space. However, Wave_clus and the other most
widely used algorithms are semiautomatic in practice, requir-
ing manual tuning of a first automatic solution to achieve good
performance. To tackle this problem, we analyzed the actions
typically performed by Wave_clus users to optimize spike-
sorting performance. We then implemented a set of heuristic
modifications to the algorithm to reproduce the users’ actions
in a fully automatic way. Moreover, we present an automatic
criterion for selecting the number of features, i.e., of wavelet
coefficients, to be used for clustering, given that, intuitively,
only a few features are required to separate relatively few
neurons, and more features are necessary for recordings con-
taining a larger (and in principle unknown) number of neurons.

We evaluated the performance of the proposed method using
both real and simulated single-channel and tetrode recordings.
With the simulated data from single channels, the proposed
algorithm significantly outperformed other automatic sorting
algorithms, as well as the experts’ manual solution with the
former Wave_clus implementation. With the simulated tetrode

A

B                                                      C

Fig. 1. Improvements of the proposed method. A: example of an extracellular recording from the human right entorhinal cortex. Top: black trace shows the
high-frequency content of the signal (between 300 and 3,000 Hz in this example). Neurons located more than �150 �m away from the tip of the electrode
contribute to the background noise, so their spikes cannot be detected. Closer neurons (between 50 and 150 �m away from the tip of the electrode) generate spikes
larger than the background noise, but they cannot be isolated into different units, thus being associated with the multiunit activity (cluster 1). Finally, nearby
neurons (�50 �m) have even larger spikes, and sorting algorithms allow us to assign the recorded spikes to the putative neurons that generated them (clusters
2–4). Time of occurrence of each spike is marked with a triangle associated with the 4 isolated clusters. Bottom, left: temperature map shows all the different
partitions generated by the superparamagnetic clustering. Each line is associated with the size of the kth cluster ranked by size at each temperature. The filled
circles denote the location of the clusters depicted on the right, which have been selected by an expert user who manually optimized the solution of the former
Wave_clus. B: example of the detection of the border of the superparamagnetic regime. TB was identified at T � 0.16, so the partitions at Ti � TB were discarded
(gray shaded area). C: example of the inclusion criterion where a cluster was split in 2 at a higher temperature. The overlap coefficient between the marked
clusters at T � 0.07 and the marked cluster at T � 0.06 was equal to 1, so the clusters at T � 0.07 are retained, whereas the one at T � 0.06 is discarded.
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recordings, the new algorithm also outperformed other recently
introduced methods, as quantified by the number of hits (i.e.,
correctly identified clusters) and false positives. With the real
single-channel recordings, the algorithm retrieved, in a fully
unsupervised way, ~95% of the clusters isolated by the sorting
experts while keeping a low number of false positives. When
assessed with real tetrode recordings, the new automatic algo-
rithm outperformed the experts’ manual solution with the
former Wave_clus implementation.

MATERIALS AND METHODS

Former Wave_clus Implementation

Our new method is based on the former MATLAB implementation
of Wave_clus, introduced in Quian Quiroga et al. (2004). As with
other spike-sorting methods, this algorithm has four main steps,
including filtering, detection, feature extraction, and clustering (Rey et
al. 2015b). Zero-phase filtering is done by using a second-order
bandpass elliptic filter in the range of 300–3,000 Hz. Spike detection
is performed by setting a threshold as

Thr � 5�n, with �n � median� �x�
0.6745� (1)

where x is the bandpass filtered signal (Rey et al. 2015b). An example
of a signal filtered for detection and thresholding is shown in Fig. 1A,
top. For each detected spike, 64 samples are saved for further analysis,
aligned to their maximum at data point 20. To avoid spike misalign-
ments attributable to low sampling, spike maxima location is refined
by using cubic spline-interpolated waveforms with 320 samples. After
realignment, the waveforms are downsampled back to 64 points.

Feature extraction is done using a four-scale multiresolution de-
composition with a Haar wavelet, resulting in 64 wavelet coefficients
associated with each detected spike. To assess the ability of each
coefficient to separate different clusters, the algorithm uses a Lilliefors
test (a normality test based on the Kolmogorov-Smirnov test), retain-
ing the 10 most significant ones. To minimize the effect of outliers in
the test, only values within three standard deviations are considered
for each coefficient. For tetrode recordings, the spikes detected at each
channel were concatenated. Then, if Nch channels are used with 64
samples per spike, there will be a total of Nch*64 wavelet coefficients,
from which Wave_clus picks the Nch*10 most significant ones.

Finally, a nonparametric clustering is performed in the feature
space using SPC. SPC is an unsupervised approach in which the
grouping of points into clusters depends on nearest-neighbor interac-
tions (Blatt et al. 1996, 1997). SPC generates a family of solutions as
a function of a parameter called the temperature, which is the key
parameter to determine how clusters are split (Domany et al. 1999). In
analogy with models in statistical mechanics, at low temperatures, all
data points are highly correlated and are therefore grouped into a
single or relatively few clusters. On the other hand, at high tempera-
tures, the correlations are too weak, and clusters break up into many
groups with very few members in each group. At a certain temperature
range between these two extremes, natural clusters appear (i.e., the
superparamagnetic regime), and only points corresponding to data
from relatively high-density regions are grouped. With SPC, for each
temperature a different data partition is generated, resulting in a
“temperature plot” (Fig. 1A, bottom, left). Wave_clus uses a range of
temperatures from 0 to 0.25 in increments of 0.01, where each
temperature is labeled as Ti, with i � {0, ..., 25}. At each temperature,
clusters are sorted in decreasing order with respect to their size; thus,
at temperature Ti the largest cluster is denoted as C1

Ti, the second
largest as C2

Ti, etc.
In Wave_clus, clusters are automatically identified according to a

thresholding procedure based on their size. The idea is that, as the

temperature is increased, new clusters appear. Wave_clus selects the
highest temperature where at least one of the sorted clusters Ci

Tn

increases its size a minimum number of spikes (parameter N_inc)
(Quian Quiroga et al. 2004). At this temperature, the cluster that
increased its size by at least N_inc spikes and all the clusters with a
larger size are selected. The parameter N_inc is introduced to avoid
overclustering, i.e., choosing a very high temperature at which data is
grouped into many clusters with a few members each. Once the
clusters have been identified, a template-matching procedure is used
to assign the remaining unclassified waveforms. For each cluster, the
centroid (mean waveform) and a measure of its total variance, �T, are

computed, where �T � ��
i�1

64

var�xi�, with var�xi� denoting the

variance at the i-th sample across the waveforms of a given cluster.
Each spike is then assigned to the cluster with the smallest Euclidian
distance to its centroid, as long as this distance is smaller than 3�T

(waveforms with a larger distance to the centroid are considered to be
noise).

New Wave_clus Implementation

To improve the former implementation of Wave_clus, we propose
the use of heuristic modifications that are inspired by the actions that
are usually taken by experts to optimize the automatic solution given
by the previous implementation. The main limitation of the previous
automatic implementation is that a single temperature is chosen for
clustering, and, in many cases, there are clusters appearing at different
temperatures. The rationale of the new implementation is to choose all
putative clusters from the different temperatures in the temperature
plot (peak selection step) and then get rid of false positives by
avoiding double detections (inclusion criterion) (as the same clusters
may appear at different temperatures) and also avoiding overcluster-
ing at large temperatures (regime border detection). A final improve-
ment is the introduction of an automatic criterion to select a variable
number of features (i.e., wavelet coefficients) for clustering.

Finally, we also included some improvements in the implementa-
tion of the algorithm to reduce the computing time. Specifically, we
used a MEX implementation of the MATLAB function filtfilt for the
detection process and eliminated time-consuming “for loops” in the
interpolation procedure for spike detection and the wavelet decompo-
sition of the detected waveforms (using optimized matrix manipula-
tions). The codes and documentation of the new sorting implementa-
tion are available on GitHub (https://github.com/csn-le/wave_clus).

Peak selection in the temperature plot. We first select every cluster
Ci

Tn, where its size |Ci
Tn| is increased by at least N_inc spikes as the

temperature is increased from Tn�1 to Tn, i.e.,

�Ci
Tn� � �Ci

Tn�1� � N _ inc, with �Ci
T�1� � 0 (2)

To consider other relevant members of a partition at temperature Tn

in which cluster Ci
Tn has been selected by the peak criterion, all

clusters with a larger size (i.e., all clusters Cj
Tn with j � i) are also

selected.
Regime border detection. The end of the superparamagnetic regime

is normally associated with an abrupt decrease of the principal cluster
as we transition from C1

TB�1 to C1
TB, with the appearance of several

small clusters (overclustering). However, in some cases, before reach-
ing the end of the regime, there is an abrupt decrease in the principal
cluster in conjunction with the appearance of a large new and relevant
cluster, typically being the second largest (C2). For this reason, we
first define the largest increment at a certain temperature as LITi

�

max��Cj
Ti� � �Cj

Ti�1��, for j � 1. We then find the temperature TB as the
minimum Ti fulfilling the condition
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TB � min�Ti �for which
�C1

Ti� � LITi

�C1
Ti�1�

	 Thr _ border (3)

with Thr_border being a threshold parameter (we used a value of 0.4
in our implementation, although we have seen that the results are not
changed for 0.25 � Thr_border � 0.45). This way, when the ratio is
small, the principal cluster is largely split beyond what could have
been related with a new cluster (associated with the increment LI).

Inclusion criterion. We first define the overlapping coefficient

Oi,j
Tn,Tm �

�Ci
Tn � Cj

Tm�
min��Ci

Tn�, �Cj
Tm��

(4)

This coefficient ranges between 0, if the clusters are completely
different (i.e., they do not share any spike), and 1, when they are the
same, or one of them is a subset of the other. To avoid considering the
same cluster of spikes twice (from different temperature partitions), if
the value of Oi,j

Tn,Tm is not lower than a constant kO, only the cluster at
the higher temperature is kept. In our implementation, we chose
kO � 0.9. We also observed that the performance of the algorithm is
not affected by this parameter choice in a wide range of values (we
verified this for kO between 0.50 and 0.95).

Feature selection criterion. In the new implementation, we intro-
duced an automatic data-driven selection of the relevant features to be
used for clustering. For each wavelet coefficient, the Lilliefors test
returns a test statistic ks_stat. The coefficients with large values of
ks_stat tend to be associated with multimodal distributions and rep-
resent the ones that should be selected for clustering. First, we sort the
set of ks_stat values in ascending order, leading to the sequence
{ks_stat_sorted}. We empirically found that this sequence tends to
increase exponentially. We introduce a smooth estimate of the first
derivative of the sequence by computing a difference quotient through
a sliding window with a span of 10 samples (i.e., the first quotient is
(ks_stat_sorted(10)–ks_stat_sorted(1)) / 10), normalizing by the num-
ber of coefficients and the maximum value of ks_stat. Then, we look
for the first point where the estimate is �1 for three consecutive
samples. This is an estimate of the point colloquially referred to as
“the knee of the exponential,” which is indeed where the radius of
curvature reaches its minimum. Finally, all the coefficients to the right
of the estimated knee are selected, i.e., those where ks_stat �
ks_stat_sorted(knee). Examples of the criterion can be seen in Fig. 2
and Fig. 7A.

We have implemented the automatic feature selection criterion in
all cases, except for the real single-channel recordings from the human
hippocampus (see below), given that, in this case, we wanted to
compare the automatic sorting with the actions taken by the expert
sorters (who did the sorting with a fixed number of wavelet
coefficients).

Real Data Sets

Single channel recordings in the human medial temporal lobe. We
used recordings in the human medial temporal lobe of five patients
implanted with depth electrodes for epilepsy diagnosis (Quian
Quiroga et al. 2008). Each electrode probe had a total of nine
microwires at its end, eight active recording channels, and one
reference. The differential signal from the microwires was amplified
by a 64-channel Neuralynx system, filtered between 1 and 9,000 Hz
and sampled at 28 kHz.

This data set was sorted with the former Wave_clus implementation
(i.e., with a fixed number of 10 wavelet coefficients), which was then
manually optimized by an expert. It should be highlighted that we do
not have ground truth with such real data. However, the first goal of
the new method is to automatically replicate the steps manually done
by the expert to optimize the sorting outcomes. Therefore, the expert’s
solution was taken as the desired solution to assess the performance of
the novel implementation introduced in this work. In other words, the

goal with this data set was to fully automatize the manual optimization
process to bypass the need of the user’s intervention. A total of 200
recordings from the human medial temporal lobe were used (each ~15
min long), where at least two clusters were identified.

Using the same temperature plot for the expert sorters and the
automatic implementation, we could quantify whether the latter se-
lected the same clusters (peaks in the temperature plot) as the expert
sorters. The true positive rate (TPR) was computed as the ratio
between the number of clusters identified by the algorithm that
corresponded to a cluster selected by the expert and the total number
of clusters identified by the expert. In addition, the false positive rate
(FPR) was calculated by counting the number of clusters identified by
the algorithm in the temperature plot that did not correspond to a
cluster selected by the expert, divided by the maximum number of
false positives generated over all recordings, algorithms and N_inc
values. This way, for each algorithm and N_inc value (ranging from
10 to 60 in steps of 5), we computed the TPR and FPR of the real data
set, allowing us to construct receiver operating characteristic (ROC)
curves. In addition, we quantified for each ROC curve the area under
the curve (AUC) as a measure of performance of each algorithm.

Tetrodes. We also evaluated the performance of the algorithm with
tetrode recordings. A tetrode recording from a locust was kindly
provided by Ofer Mazor and Gilles Laurent (Perez-Orive et al. 2002).
Moreover, we used a set of 20 recordings with tetrodes implanted in
4 patients with intractable epilepsy, using the same procedures as
reported in Quian Quiroga et al. (2008). Although we do not have
ground truth with real data, the solutions from the different algorithms
were analyzed by an expert, who assessed whether clusters corre-
sponded to different single units based on spike shape differences and
standard criteria, such as cross-correlation of spike times and the
presence of refractory period violations.

Fig. 2. New criterion for feature extraction applied on the data set Sim2. Left:
number of selected wavelet coefficients is shown for each simulation, with the
simulations being sorted according to the number of simulated single units.
There is a clear correlation between the number of chosen coefficients and the
number of simulated units (Spearman correlation, 
 � 0.42, p ~10�5). Right:
3 particular examples are shown, depicting the sequence of ks_stat, i.e., the
statistic associated with the Lilliefors test. The shaded gray area covers the
coefficients that were selected on each particular example. Notice the change
in the slope of the curve at the point marked by the vertical dashed line.
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Simulated Data Sets

Single-channel simulations. Two different publicly available sim-
ulated data sets were used to evaluate the performance of the proposed
method against ground truth. The first one (Sim1) was introduced in
Quian Quiroga et al. (2004) (available at http://www.vis.caltech.edu/
~rodri/Wave_clus/Simulator.zip), and it comprises four simulations,
each with three different neurons, under different levels of back-
ground noise. The second set (Sim2) was presented in Pedreira et al.
(2012) (available at https://www135.lamp.le.ac.uk/hgr3/), and it in-
cludes several simulations done with a varying number of neurons,
ranging from 2 to 20. The rationale for using up to 20 neurons was to
test the performance of the algorithm in challenging scenarios, espe-
cially considering the fact that current spike-sorting algorithms tend to
detect fewer neurons than they should, based on anatomical and
physiological considerations (Henze et al. 2000; Pedreira et al. 2012).
In addition, three independent experts performed manual supervision
on this set optimizing the results obtained with the former implemen-
tation of Wave_clus. We averaged their performance to get a single
“Expert” score per simulation.

All the simulated waveforms were clustered using the two different
Wave_clus implementations, and the number of hits and false posi-
tives were quantified as in Pedreira et al. (2012) and Niediek et al.
(2016). A selected cluster was considered as a hit when �50% of its
spikes were correctly identified. Choosing other definitions (i.e.,
considering �70 or 80% of the spikes) gave qualitatively similar
results. Selected clusters that were not a hit were labeled as false
positives. Missed clusters were calculated as the number of simulated
units minus the number of hits. The multiunit clusters were not
considered in the hit calculations but were considered false positives
if �50% of their spikes came from the multiunit.

With single-channel recordings, we compared the performance of
our algorithm to the one given by other recently proposed methods.
For performance comparison with other algorithms, we used Klusta
(Rossant et al. 2016; version February 2017) and Combinato (Niediek
et al. 2016; version April 2018). In particular, Klusta is an improved
implementation of the former Klustakwik (Harris et al. 2000), a
spike-sorting algorithm that extracts waveform features through prin-
cipal component analysis and uses a Gaussian mixture model to
perform the clustering of the data. Some of its detection parameters
were modified from their default values to achieve a detection
performance comparable to the one with Wave_clus. Particularly,
we used filter_low � 300, filter_high � 3,000, threshold_strong-
_std_factor � 4, threshold_weak_std_factor � 3.8, extract_s_be-
fore � 24, and extract_s_after � 40. Its default number of princi-
pal components used for feature extraction is 3. However, we
observed in our simulations that a larger number of hits was
achieved with 10 (p ~10�3), without differences in terms of the
number of false positives, so the results we show for Klusta are
based on 10 principal components. Combinato is a recently intro-
duced algorithm that also uses SPC for clustering the data but
includes an iterative reclustering of large clusters. As the authors
tested Combinato with the same simulated data set we used here,
we chose the set of parameters reported in their paper.

Tetrodes. We created a set of simulated tetrode recordings using
Neurocube (Camuñas-Mesa and Quian Quiroga 2013), a hybrid mod-
eling approach that uses a detailed compartmental model to simulate
the contribution of neurons near the recording electrode, and previ-
ously recorded spike shapes to generate the background noise (with
their amplitude scaled inversely to the squared distance between the
neuron and the recording site). To simulate multiunit activity (with
detailed neuron models; 1:4 ratio between interneurons and pyramidal
neurons), we used 8% of active neurons located between 60 and 150
�m away from the tetrode (using a density of 300,000 neurons/mm3),
with their spike time intervals drawn from an exponential distribution
(mean � 3 Hz). A certain number of pyramidal single units (ranging
from 11 to 20) were randomly placed between 10 and 40 �m away

from the tetrode with their spike time intervals drawn from an
exponential distribution (mean � 3 Hz). The diameter of the elec-
trodes comprising the tetrode was of 20 �m, with 40-�m spacing.
Each simulation was 15 min long. Waveforms generated by multiunit
neurons that had a peak larger than five times the standard deviation
of the noise and were �1 ms from the spike of a single unit were
subtracted from the signal to reduce the level of closely overlapping
spikes. Following spike detection, the spikes associated with the
multiunit activity represented between 50% and 70% of the total
number of detected spikes, which is consistent with what is typically
observed in real data.

Performance was assessed with the same criteria of hits and false
positives used with the single-channel data set. We compared our
results with other recently proposed algorithms that were specifically
developed to sort multichannel recordings, MountainSort (Chung et
al. 2017; version 0.11.6), Kilosort (Pachitariu et al. 2016; version
February 2018), and SpyKING CIRCUS (Yger et al. 2018; version
0.6.4). We also included Klusta, for which we used the same param-
eters as in the single-channel simulated set. For the other algorithms,
we used their default parameters (in SpyKING CIRCUS, we enabled
“auto-mode merging” as suggested for a fully automatic implemen-
tation and did not use the spatial whitening option, as it led to a large
decrease in detection performance).

RESULTS

Description of the New Sorting Implementation

The key advantage of the new Wave_clus implementation is
that it automatically selects clusters from different tempera-
tures. This allows identifying units with different firing rates
and spike shape characteristics that differ in their density and
location within the feature space. To illustrate this point, Fig.
1A shows a segment of real data (high-pass filtered), in which
the spikes associated with different units can be observed. On
the basis of the different data partitions generated by the SPC
algorithm, which are shown in the temperature plot in Fig. 1A,
bottom, left, an expert user selected four clusters (3 single units
and 1 multiunit) at different temperatures. To achieve this
automatically, a three-step procedure was used (see MATERIALS

AND METHODS for details). First, putative clusters were selected
at different temperatures. It should be noted that a similar idea
of finding peaks at different temperatures in the temperature
plot has also been introduced in Niediek et al. (2016). Second,
peaks from very high temperatures were eliminated to avoid
overclustering. Figure 1B shows an example of the identifica-
tion of TB, with the gray shaded area indicating all the tem-
peratures that are disregarded and which may have contributed
with spurious peaks. Third, the algorithm quantified the over-
lap between pairs of clusters to avoid double counting when
considering the same spikes at different temperatures. Figure
1C shows an example with three peaks, which in this case were
obtained because the larger cluster at T � 0.06 was split in two
at T � 0.07. The overlapping coefficient between the clusters
at both temperatures was equal to 1 in both cases, thus
correctly showing that these three peaks correspond to the
same cluster split in two; therefore, the clusters at T � 0.07
were retained, and the one at T � 0.06 was discarded.

A final improvement compared with the former implemen-
tation is that the new algorithm automatically selects the
number of relevant features (i.e., wavelet coefficients) to be
used for clustering. Previously, we selected a fixed number of
coefficients, 10 out of a total of 64 wavelet coefficients, which
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are the ones differing the most from a Gaussian distribution,
according to the Lilliefors test. Figure 2 shows the number of
coefficients selected with the proposed method on each simu-
lation of data set Sim2 (see MATERIALS AND METHODS). This data
set comprises five simulations with N single units, with N
ranging from 2 to 20. We observe that the number of selected
coefficients increases with the number of neurons in the sim-
ulation (Spearman correlation, 
 � 0.42, p ~10�5). In other
words, with few neurons, relatively few coefficients will be
enough to separate the associated clusters, but, as more neurons
are present in a recording, it is necessary to consider more
coefficients. However, if we use all 64 coefficients, we will
also consider those that capture just noise, thus decreasing
clustering performance (see below). The proposed criterion
automatically selects the coefficients in a data-driven way.
Three particular examples can be seen in the inset of the figure,
showing the dynamics of the statistic of the Lilliefors test and
the estimated knee of the exponential (see MATERIALS AND

METHODS), from which all coefficients to the right were se-
lected.

Performance with Real Single-Channel Recordings

We first evaluated the performance of the new method with real
data collected from recordings in the human medial temporal lobe
(see MATERIALS AND METHODS). The data set comprises 200 record-
ings with at least two units identified by an expert user. We used
N_inc values from 10 to 60 in steps of 5. This way, as shown in
Fig. 3A, we could compute an ROC curve for each sorting
implementation we tested (see MATERIALS AND METHODS).

With the former Wave_clus implementation (dashed line),
increasing N_inc led to an increase of the TPR, with a reduc-
tion of the FPR, until N_inc � 25; then the TPR stabilized at
75–80%. When the proposed peak selection method was in-
cluded (dashed line), low values of N_inc were associated with
high TPRs but also with high FPRs. Increasing N_inc reduced
the number of false positives (at the expense of also reducing
the TPR) although the FPR remained relatively large compared
with the former Wave_clus implementation. The addition of
the inclusion criterion led to the ROC being shifted to the left
(dashed line) but with a reduction in the TPR (although still
with TPRs 10% higher than with the former Wave_clus imple-
mentation) attributable to overclustering. Finally, the addition
of the regime border detection reduced the chance of overclus-
tering (solid line), boosting the TPR an extra 5% while main-
taining low FPRs. Figure 3B shows the statistics on the AUC
associated with the different sorting implementations. An AUC
closer to 1 is related to a better performance. The addition of
each of the proposed improvements leads to a significant
increase in the AUC and the new implementation, including
the peak selection, inclusion, and regime border detection
criteria gave the best performance. In Fig. 3C, we further
evaluated the contribution of each step in terms of the number
of total errors, i.e., misses � false positives. From the former
Wave_clus implementation, the addition of the peak selection
alone actually led to a significant worsening of the performance
attributable to the high number of false positives generated
(notice how the ROC in Fig. 3A is shifted to the right).
However, when the inclusion criterion was also added, the
number of errors dropped significantly, outperforming both
peaks and the former Wave_clus implementation. Finally, the

further addition of the regime border detection led to a further
improvement in performance, with the resulting new imple-
mentation exhibiting a significantly lower number of errors
than any of the other alternatives.
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Fig. 3. Performance of the proposed improvements with a real data set. A: for
each algorithm implementation, the parameter N_inc took values from 10 to 60
in steps of 5 (as N_inc is increased, we moved on the figure from right to left).
In each case, the true and false positive rates were computed, allowing us to
plot mean and SE across the 200 recordings analyzed. For the inclusion
criterion, we used kO � 0.9, and the border of the superparamagnetic regime
was computed using Thr_border � 0.4. The new Wave_clus implementation
(solid line) includes the peak selection, inclusion, and regime border detection
criteria. The black oval marks its performance with N_inc � 20, which is the
final value chosen for the new implementation. B: mean and standard error of
the mean of the area under the curve (AUC) across the 200 recordings. Paired
sign tests were used to evaluate the statistical difference across implementa-
tions. C: mean and standard error of the mean of the total number of errors (i.e.,
misses � false positives) across the 200 recordings. Paired sign tests were used
to evaluate the statistical difference across implementations.
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This data set allowed us to evaluate the performance of the
improvements associated with the actions taken by the experts
and to assess the contribution of each of them. As a result, we
found that, by choosing N_inc � 20 with the new implemen-
tation, we automatically detected almost 95% of the clusters
manually detected by the expert sorters with an average of less
than one false positive. This represents a 15% increase in TPR
with a similar low FPR compared against the former Wave_
clus implementation.

Performance with Simulated Single-Channel Recordings

Results with data set Sim1. The advantage of using simu-
lated data is that it provides ground truth to evaluate the
performance of a spike-sorting implementation. First we used
the data set introduced in Quian Quiroga et al. (2004), in which
three neurons were simulated in each recording with different
waveforms (in the simulations named “Easy” waveforms were
very different from each other, whereas in the ones labeled
“Difficult” they were very similar) and with different levels of
background noise. For each simulation, we evaluated the num-
ber of hits (see MATERIALS AND METHODS) with the former and
new Wave_clus implementations using a variable number of
wavelet coefficients (with the new implementation using the
peak selection, inclusion, and regime border detection criteria

introduced in Description of the New Sorting Implementation).
Table 1 shows that, as shown in Quian Quiroga et al. (2004),
the former Wave_clus implementation using 10 wavelet coef-
ficients was able to cluster all three simulated units in all but
one case (the hardest one in terms of noise level and waveform
similarity). However, when no dimensionality reduction was
performed, i.e., when all 64 wavelet coefficients were used, the
performance dropped significantly (former 10 wavelet coeffi-
cients vs. 64 wavelet coefficients, paired sign test, P � 0.008).
This drop is particularly evident for the cases with large noise
levels, as several coefficients captured noise features, compro-
mising the performance of the clustering algorithm. The new
implementation exhibited a similar performance with 10 wave-
let coefficients and also showed an analogous drop in perfor-
mance when all 64 wavelet coefficients were used (new 10
wavelet coefficients vs. 64 wavelet coefficients, paired sign
test, P � 0.016). Finally, when the selection of a variable
number of wavelet coefficients was used, the performance was
the same as with 10 wavelet coefficients. As discussed below,
this is due to the fact that, for a relatively low number of
neurons, 10 wavelet coefficients already resulted in nearly
optimal performance.

Figure 4 shows the number of automatically selected coef-
ficients for each simulation. First, the easy simulations have
more coefficients selected than the difficult ones; i.e., as the
waveforms are easier to separate, more coefficients give infor-
mation that differentiates between the different waveforms.
Note that, for each set of simulations with varying degrees of
noise, more coefficients were selected for the cases with
relatively low noise levels (i.e., simulations labeled n05).
Particularly, for the simulations “Easy1” (performed with 8
different levels of noise), there was a strong correlation be-
tween noise level and the number of coefficients selected
(Spearman correlation, 
 � 0.96, p ~10�4). The other simula-
tions have only four levels of noise, which is not sufficient to
properly estimate the correlation. This trend can be explained
by the fact that, when the noise level is low, several coefficients
capture differences between spike shapes, whereas, with larger
noise levels, more coefficients capture noise features that do
not contribute to the separation of clusters and are therefore
(correctly) not selected. Importantly, the new implementation
with a variable number of wavelet coefficients has no a priori
upper bound on the number of coefficients selected. However,
Table 1 and Fig. 4 show that the number chosen did not go too
high for the high noise conditions, preventing the drop of
performance observed when all coefficients were selected (64
wavelet coefficients).

Results with Data Set Sim2

Data set Sim1 consisted of three simulated neurons of
different spike shapes and with varying levels of noise. To test
the performance of the algorithm in more challenging scenar-
ios, we also used the data set Sim2, which consisted of 95
simulations, each with 2 to 20 neurons (see MATERIALS AND

METHODS). Three independent experts performed a manual
optimization of the solution provided by the former implemen-
tation of Wave_clus. Figure 5, A and C, shows the performance
of the algorithms in terms of hits and misses. As expected, the
experts significantly improved the performance over the auto-
matic solution from the former Wave_clus implementation,

Table 1. Performance of the proposed implementation with the
simulated data set Sim1

Former
Wave_clus New Implementation

No. of
coefficients No. of coefficients

Simulation 10 64 10 64 variable

Easy1_noise005 3 3 3 3 3
Easy1_noise010 3 3 3 3 3
Easy1_noise015 3 3 3 3 3
Easy1_noise020 3 3 3 3 3
Easy1_noise025 3 3 3 3 3
Easy1_noise030 3 3 3 3 3
Easy1_noise035 3 2 3 3 3
Easy1_noise040 3 1 3 1 3
Easy2_noise005 3 3 3 3 3
Easy2_noise010 3 3 3 3 3
Easy2_noise015 3 3 3 3 3
Easy2_noise020 3 1 3 1 3
Diffi1_noise005 3 3 3 3 3
Diffi1_noise010 3 3 3 3 3
Diffi1_noise015 3 2 3 0 3
Diffi1_noise020 3 0 3 0 3
Diffi2_noise005 3 3 3 3 3
Diffi2_noise010 3 2 3 2 3
Diffi2_noise015 3 2 3 1 3
Diffi2_noise020 2 0 2 0 2

Each row denotes a simulation of 3 different neurons with different levels of
background noise. When the waveforms were different enough, they are
labeled as “Easy,” whereas, when they were similar, they were labeled as
“Difficult.” The peak amplitude of each spike was normalized to 1, and the
standard deviation of the background noise was varied from 0.05 to 0.20 (or
0.40 for “Easy1”). The table shows the number of neurons (up to 3) correctly
detected in each case. In the former Wave_clus implementation, the perfor-
mance with 64 wavelet coefficients (WC) was significantly worse than with 10
WC (paired sign test, P � 0.008). The same behavior was also seen with the
new implementation with a fixed number of WC (10 WC vs. 64 WC, paired
sign test, P � 0.016), but no difference was seen between the new implemen-
tation with 10 or variable number of WC.
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which suffered from the selection of a single temperature in the
temperature plot. When we used a fixed number of wavelet
coefficients (10), the unsupervised performance of the pro-
posed method was not significantly different (both in terms of
misses and false positives) to the one obtained by the experts
(with the former Wave_clus implementation), thus showing
that the ad hoc improvements introduced to mimic the expert’s
actions were successful to deliver a fully unsupervised algo-
rithm. It should be noticed that using only the peak selection
step (without the inclusion and regime border detection) sig-
nificantly deteriorated the performance of the algorithm be-
cause of a large number of false positives (as was the case with
the real data presented in Fig. 3). Conversely, when the new
implementation included the new feature selection criterion
(i.e., using a variable number of wavelet coefficients), a further
significant increase in the number of hits was achieved, out-
performing the results obtained by the experts. In fact, the
performance obtained by the experts saturates at ~8 hits,
whereas the new algorithm managed to correctly isolate an
average of 14 out of 20 simulated neurons from a single
channel. Moreover, the use of variable coefficients led to

significant improvements over the case with 10 wavelet coef-
ficients, in terms of both misses (2 to 10, p ~10�3; 11 to 20, p
~10�12) and false positives (2 to 10, not significant; 11 to 20,
p ~10�3).

Comparison to Other Single-Channel Algorithms

Figure 5 also shows the comparison of performance with
other recently introduced algorithms, Klusta and Combinato
(see MATERIALS AND METHODS). All the different implementa-
tions were statistically compared using paired sign tests. As the
simulations contained more neurons, there was also more room
for differentiating the performance between algorithms. For
this reason, Fig. 5, C and D, compare the performance (using
paired sign tests) separating the cases with a small (2 to 10) and
large (11 to 20) number of neurons. When we compared the
performance of Klusta and the experts, Klusta showed more
hits in the set 11 to 20 (p ~10�4). In turn, Combinato showed
no significant differences in the number of hits compared with
the experts (although P � 5.4 � 10�2 in the set 11 to 20).
Klusta and Combinato showed similar performance, with
Klusta being better in the set 11 to 20 (P � 2.3 � 10�2). The
new implementation of Wave_clus with a variable number of
wavelet coefficients gave a further significant increase in the
number of hits, outperforming all other methods with both
small and large number of neurons (Fig. 5C).

We next considered false positives. As shown in Fig. 5, B
and D, Klusta and Combinato showed a significant increase in
the number of false positives compared with all other algo-
rithms, regardless of whether the number of simulated neurons
was small or large. In the set 11 to 20, the new Wave_clus
implementation achieved a significantly smaller number of
false positives than all other algorithms, with reductions of
�50% compared with Klusta and Combinato.

Finally, we analyzed the computational cost of the different
algorithms by using recordings with 20,000 spikes (	1%).
Combinato detected 13,500 spikes, whereas the other algo-
rithms detected 15,000 (in all cases, nearly all the single-unit
spikes were detected). Combinato showed larger computing
times than the former Wave_clus implementation. This is
mainly due to the fact that every cluster identified with �1,000
spikes was subjected to a second run of SPC. The new
Wave_clus with 10 wavelet coefficients (i.e., including the
steps to get a fully automatic implementation and the improve-
ments used for spike interpolation and wavelet decomposition)
led to a large drop in computing time (~20 s on average). When
the new feature extraction was included, computing times were
increased by 6 s on average but were still smaller than those
from the former Wave_clus and Combinato. The difference
with the new implementation with 10 wavelet coefficients is
fully accounted for by the time taken by SPC to cluster the
spikes in a higher dimensional space (in this set, an average of
20 wavelet coefficients was used in the new Wave_clus).
However, the small additional computing time was accompa-
nied by a reduction of misses and false positives by almost
50%. Compared with Klusta and Combinato, reductions in
misses and false positives were even larger and with less
computing time. It should be noticed that, if recordings with
more spikes were used, the computing time will not increase
much because 20,000 spikes can be used for clustering with

Fig. 4. Selected wavelet coefficients for each simulation in the simulated
data set Sim1. Each row represents a simulation with a given level of noise
(e.g., E1_n10 depicts the simulation from the set “Easy1” with a noise level
of 10). The number of selected coefficients is reduced as the noise level is
increased. Particularly, for the simulations Easy1, created with 8 different
noise levels, there was a significant correlation (Spearman correlation,

 � 0.96, p ~10�4).
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SPC, and the remaining ones can be assigned afterward by
template matching.

Performance with Real Tetrode Recordings

Results with an example tetrode recording in the locust. We
evaluated the performance of the proposed algorithm using real
data recorded with tetrodes. Figure 6A shows the seven clusters
isolated by the proposed algorithm from a tetrode recording in
a locust, which displays clear differences in the spike shapes in
the different channels. In contrast, the former automatic Wave-
_clus implementation only isolated two clusters, whereas fol-
lowing manual supervision it was possible to isolate six clus-
ters (C5 and C7 remained merged in this case). Only 20
wavelet coefficients were automatically selected in the pro-
posed implementation, in contrast to the 40 selected in the
former implementation. Therefore, the 20 additional coeffi-
cients can be carrying information about noise, preventing the
SPC from separating clusters C5 and C7.

Results with tetrode recordings in the human hippocampus.
We next analyzed a set of tetrode recordings in the human
hippocampus. Figure 6B shows one example from that set, in
which the new Wave_clus implementation was able to isolate
10 clusters. The former automatic Wave_clus led to two clus-
ters of poorly isolated units (one with “small” spikes and
another with “large” spikes); following manual supervision it
was possible to increase the number of isolated clusters to

seven. The new implementation automatically selected 57
wavelet coefficients, with the 17 additional coefficients allow-
ing Wave_clus to isolate more clusters. Figure 6C presents the
analysis over all 20 tetrode recordings. Although it is not
possible to have ground truth with this data, we observe that
the new implementation led to a larger number of identified
putative single units (according to an expert’s opinion), not
only in comparison to the former automatic Wave_clus imple-
mentation, but also with respect to the former implementation
optimized using manual supervision (but still using a fixed
number of features). This latter difference can be attributed to
the automatic selection of a variable number of wavelet
coefficients.

Performance with simulated tetrode recordings. To quantify
performance with tetrodes, we created 10 simulations includ-
ing between 11 and 20 single units (see MATERIALS AND METH-
ODS). The top part of Fig. 7A shows a diagram of the simulated
tetrode, in which each electrode had a 20-�m diameter with a
separation of 40 �m between them. Figure 7A, bottom, shows
the sequence of sorted values of the statistic ks_stat obtained
from the Lilliefors test for the simulation with 11 single units.
A total of 72 coefficients were automatically selected, which
enabled the new Wave_clus to correctly isolate all 11 units
without any false positives (the waveforms for the resulting
clusters are shown in Fig. 7B).
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Fig. 5. Performance of the proposed algorithm with the simulated data set Sim2 (single channel). A: number of hits as a function of the number of simulated
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Wave_clus was used in its automatic form and followed by manual supervision by an expert sorter. The curve for the new implementation with a fixed number
of 10 wavelet coefficients (WC) is largely overlapping with the one from the experts. The new proposed method was also compared with Klusta, using 10
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for false positives. C: means and SE of misses for each algorithm. The analysis was done for the subsets with a small (2 to 10) and large (11 to 20) number of
neurons. Paired sign tests were used to evaluate the statistical difference across implementations. All the implementations showed better performance than the
unsupervised former Wave_clus, whereas the proposed algorithm with a variable number of wavelet coefficients was significantly better than all other
implementations. D: same as C but for false positives. Significant differences were found in the subset with a small number of neurons when compared with
Klusta and Combinato, but, with more neurons, the proposed algorithm with a variable number of wavelet coefficients was significantly better than all other
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has smaller computing times than Klusta and Combinato while achieving a much better performance, both in terms of hits and false positives.

1867NEW UNSUPERVISED SPIKE SORTING

J Neurophysiol • doi:10.1152/jn.00339.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (143.210.120.167) on December 10, 2018.
 Copyright © 2018 the American Physiological Society. All rights reserved. 



Comparison to other algorithms. To compare the perfor-
mance of the different algorithms with the simulated data set,
we analyzed the number of hits/misses and false positives, as
previously done for the single-channel data set. All algorithms
detected a similar number of spikes, capturing above 90% of

the ones generated by the single units. Figure 7C shows that the
proposed algorithm had a significantly lower number of misses
compared with Klusta, SpyKING CIRCUS, and Kilosort (P �
0.002, P � 0.004, and P � 0.039, respectively) and a similar
performance compared with MountainSort (the difference was

A                                                                          B

C

Fig. 6. Performance of the proposed algorithm with real data from tetrodes. A: in a tetrode recording from a locust, the proposed algorithm was able to isolate
7 clusters (which were associated to putative single units according to an expert’s opinion; see MATERIALS AND METHODS for details). Spikes for each class on
each recording channel are overlaid (total number of spikes per cluster shown in brackets), with the thick black line representing the mean waveform and the
lighter ones associated with the SE. Horizontal dashed lines represent the voltage y � 0. Ticks on the x-axis are placed every 10 samples, whereas the separation
in the y-axis is 1.0, 0.5, 0.2, and 1.0 for channels 1 to 4 (in arbitrary units). B: in a tetrode recording from the human hippocampus, the proposed algorithm was
able to isolate 10 clusters. Ticks on the x-axis are placed every 20 samples, whereas the separation in the y-axis is 50 �V for all channels. C: analysis of a set
of 20 tetrode recordings in the human hippocampus showed that the proposed algorithm was able to isolate significantly more putative units than the former
implementation, even when followed by manual supervision by expert sorters. Means 	 SE and boxplots (median 	 1st/3rd quartiles) are shown, as well as the
results from paired sign tests. Inset: number of clusters isolated on each recording by the new automatic and former manual implementations.
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not significant). However, as shown in Fig. 7D, differences
with MountainSort and with all other algorithms were signif-
icant when considering the number of false positives. To
quantify the overall performance, we computed the total num-
ber of errors. Figure 7E shows that the proposed algorithm had
significantly fewer errors than all other algorithms (with at
least half the number of errors compared with the algorithm
with the second-best performance). Interestingly, there were no
significant differences between MountainSort, Kilosort, and
SpyKING CIRCUS (P � 0.34).

DISCUSSION

We presented a fully automatic method that performed
significantly better than a former Wave_clus implementation
and also compared with other recently proposed unsupervised
algorithms. Most of the modifications introduced were actually
inspired by the actions performed by experts optimizing the
automatic solutions given by the former implementation. In
addition, we introduced a criterion for selecting a variable

number of wavelet coefficients, which allowed discriminating
more units but keeping a low number of features when a small
number of units was present in the recording or when the
background noise was high. In fact, using all the coefficients
under low signal-to-noise ratios poses a problem for clustering
methods in high-dimensional spaces, which is associated with
the “curse of dimensionality” (Bishop 2006). Importantly, the
improved performance achieved by the new dimensionality
reduction was done with an effective implementation that led
to computing times that where smaller than those of other
algorithms.

Using data from real single-channel recordings, the new
algorithm successfully detected, in a fully unsupervised way,
~95% of the clusters obtained by expert sorters, who manually
optimized the solution of the former Wave_clus implementa-
tion. This was accomplished while maintaining a low number
of false positives. When tested with single-channel simulated
data, the new implementation with 10 wavelet coefficients
achieved the same performance as the one from the expert

A                                           B

C                                       D                                 E

Fig. 7. Performance of the proposed algo-
rithm with the simulated tetrode data set. A:
diagram of the simulated tetrode is shown on
the top; each electrode had a 20-�m diame-
ter, with a 40- �m separation between them.
On the bottom, the coefficient selection for
the simulation with 11 single units is shown
(same conventions as in Fig. 2). In this case,
a total of 72 coefficients were selected. B:
results from the exemplar simulation with 11
single units are shown, as they were all prop-
erly isolated by the new implementation of
Wave_clus. Spikes for each class on each
recording channel are overlaid (total number
of spikes per cluster shown in brackets), with
the thick black line representing the mean
waveform and the lighter ones associated
with the SE. Ticks on the x-axis are placed
every 20 samples, whereas the separation in
the y-axis is 50 �V for all channels. C: mean
and SE of misses for each algorithm. Paired
sign tests were used to evaluate the statistical
difference across algorithms. D: same as C
but with false positives. The proposed algo-
rithm with a variable number of wavelet
coefficients was significantly better than all
other implementations. E: total number of
errors, i.e., misses � false positives, for the
different algorithms. The new Wave_clus
showed significantly fewer errors than all
other algorithms, with an average of less than
half the number of errors of the second best.
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sorters, showing that the modifications introduced accom-
plished a successful automatization. However, when the vari-
able number of wavelet coefficients was used, the proposed
algorithm was able to correctly detect more than the eight
neurons identified by expert sorters using the former Wave-
_clus (while maintaining a low number of false positives). The
performance with the new Wave_clus implementation was also
significantly better than the one obtained with the algorithms
Klusta and Combinato.

A good performance of the proposed algorithm was also
observed with real and simulated data from tetrode record-
ings and was significantly better than the one obtained with
several recently introduced algorithms designed for multi-
channel recordings: Klusta, MountainSort, Kilosort, and
SpyKING CIRCUS. In addition, the implementation of
Wave_clus is modular, in the sense that the feature extrac-
tion and clustering steps are decoupled. Therefore, it is
possible, for example, to maintain the proposed method to
select wavelet coefficients, while replacing SPC with a
different clustering algorithm, such as the ones used by
MountainSort (Chung et al. 2017) or SpyKING CIRCUS
(Rodriguez and Laio 2014). Alternatively, a different
method for feature extraction might be introduced while
maintaining the SPC and the steps introduced here to pro-
vide a fully automatic solution.

Although the new implementation of Wave_clus showed
good performance with real data, there is still room for im-
provement. When one performs long-term recordings, the sta-
bility of the spike waveforms can be affected by different
causes, such as electrode drifts or changes in the recording
conditions. Different solutions have been proposed to tackle
this issue (Rey et al. 2015b). In fact, Combinato (Niediek et al.
2016) offers a novel approach to reliably track neurons over
long periods of time, and it is a subject of further investigation
to develop and compare different methodologies to optimally
track neurons over days. Another problem observed in real
data is due to overlapping spikes (Ekanadham et al. 2014;
Franke et al. 2015; Rey et al. 2015b). This issue is normally
diminished by simultaneously recording from different
channels located close to each other (so that the overlap is
not seen in all of them). The new Wave_clus implementation
could be used in this context, although further research is
required to find a good way of grouping the information
from different channels and then properly combining the
results. Finally, quality metrics can be incorporated to the
sorting algorithm (Harris et al. 2016; Joshua et al. 2007; Rey
et al. 2015b), and spatial preprocessing can be considered
for large electrode arrays (Huang and Miller 2005; Musial et
al. 2002).

The development of automatic and reliable spike-sorting
algorithms is becoming critical, given that, within the next 10
years, we will likely witness the number of recording sites
going up to thousands (Alivisatos et al. 2013; Stevenson and
Kording 2011). The amount and complexity of the data to be
produced by the next generation of probes are too large to be
handled by researchers in a supervised way. In this context, the
only viable option to fully take advantage of technological
developments is to accompany them with the development of
easy-to-use and properly validated tools for fully automatic
spike sorting (Einevoll et al. 2012; Harris et al. 2016). In this
respect, we have here presented a fully automatic algorithm

that, not only matched, but also outperformed the performance
of supervised algorithms and outperformed the performance of
previously proposed unsupervised implementations.

ACKNOWLEDGMENTS

We thank Ofer Mazor and Gilles Laurent for kindly providing exemplary
multichannel recordings.

GRANTS

This research was supported by the Medical Research Council (G1002100)
and the Human Frontiers Research Program.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

F.C. and H.G.R. analyzed data; F.C., H.G.R., and R.Q.Q. interpreted results
of experiments; F.C. and H.G.R. prepared figures; F.C. and H.G.R. drafted
manuscript; F.C., H.G.R., and R.Q.Q. edited and revised manuscript; F.C.,
H.G.R., and R.Q.Q. approved final version of manuscript; H.G.R. and R.Q.Q.
conceived and designed research; R.Q.Q. performed experiments.

REFERENCES

Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisse-
roth K, Donoghue JP, Fraser SE, Lippincott-Schwartz J, Looger LL,
Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid
C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL,
Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X. Nanotools
for neuroscience and brain activity mapping. ACS Nano 7: 1850–1866,
2013. doi:10.1021/nn4012847.

Berényi A, Somogyvári Z, Nagy AJ, Roux L, Long JD, Fujisawa S, Stark
E, Leonardo A, Harris TD, Buzsáki G. Large-scale, high-density (up to
512 channels) recording of local circuits in behaving animals. J Neuro-
physiol 111: 1132–1149, 2014. doi:10.1152/jn.00785.2013.

Bishop CM. Pattern Recognition and Machine Learning. New York: Springer,
2006.

Blanche TJ, Spacek MA, Hetke JF, Swindale NV. Polytrodes: high-density
silicon electrode arrays for large-scale multiunit recording. J Neurophysiol
93: 2987–3000, 2005. doi:10.1152/jn.01023.2004.

Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of data. Phys
Rev Lett 76: 3251–3254, 1996. doi:10.1103/PhysRevLett.76.3251.

Blatt M, Wiseman S, Domany E. Data clustering using a model granular
magnet. Neural Comput 9: 1805–1842, 1997. doi:10.1162/neco.1997.9.8.
1805.

Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci 7:
446–451, 2004. doi:10.1038/nn1233.

Camuñas-Mesa LA, Quian Quiroga R. A detailed and fast model of
extracellular recordings. Neural Comput 25: 1191–1212, 2013. doi:10.1162/
NECO_a_00433.

Chung JE, Magland JF, Barnett AH, Tolosa VM, Tooker AC, Lee KY,
Shah KG, Felix SH, Frank LM, Greengard LF. A fully automated
approach to spike sorting. Neuron 95: 1381–1394.e6, 2017. doi:10.1016/j.
neuron.2017.08.030.

Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Barthó P, Wise
KD, Buzsáki G. Massively parallel recording of unit and local field
potentials with silicon-based electrodes. J Neurophysiol 90: 1314–1323,
2003. doi:10.1152/jn.00116.2003.

De Falco E, Ison MJ, Fried I, Quian Quiroga R. Long-term coding of
personal and universal associations underlying the memory web in the
human brain. Nat Commun 7: 13408, 2016. doi:10.1038/ncomms13408.

Domany E, Blatt M, Gdalyahu Y, Weinshall D. Superparamagnetic cluster-
ing of data: application to computer vision. Comput Phys Commun 121:
5–12, 1999. doi:10.1016/S0010-4655(99)00267-2.

Einevoll GT, Franke F, Hagen E, Pouzat C, Harris KD. Towards reliable
spike-train recordings from thousands of neurons with multielectrodes. Curr
Opin Neurobiol 22: 11–17, 2012. doi:10.1016/j.conb.2011.10.001.

1870 NEW UNSUPERVISED SPIKE SORTING

J Neurophysiol • doi:10.1152/jn.00339.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (143.210.120.167) on December 10, 2018.
 Copyright © 2018 the American Physiological Society. All rights reserved. 

https://doi.org/10.1021/nn4012847
https://doi.org/10.1152/jn.00785.2013
https://doi.org/10.1152/jn.01023.2004
https://doi.org/10.1103/PhysRevLett.76.3251
https://doi.org/10.1162/neco.1997.9.8.1805
https://doi.org/10.1162/neco.1997.9.8.1805
https://doi.org/10.1038/nn1233
https://doi.org/10.1162/NECO_a_00433
https://doi.org/10.1162/NECO_a_00433
https://doi.org/10.1016/j.neuron.2017.08.030
https://doi.org/10.1016/j.neuron.2017.08.030
https://doi.org/10.1152/jn.00116.2003
https://doi.org/10.1038/ncomms13408
https://doi.org/10.1016/S0010-4655(99)00267-2
https://doi.org/10.1016/j.conb.2011.10.001


Ekanadham C, Tranchina D, Simoncelli EP. A unified framework and
method for automatic neural spike identification. J Neurosci Methods 222:
47–55, 2014. doi:10.1016/j.jneumeth.2013.10.001.

Fee MS, Mitra PP, Kleinfeld D. Variability of extracellular spike waveforms
of cortical neurons. J Neurophysiol 76: 3823–3833, 1996. doi:10.1152/jn.
1996.76.6.3823.

Franke F, Pröpper R, Alle H, Meier P, Geiger JRP, Obermayer K, Munk
MHJ. Spike sorting of synchronous spikes from local neuron ensembles. J
Neurophysiol 114: 2535–2549, 2015. doi:10.1152/jn.00993.2014.

Frey U, Egert U, Heer F, Hafizovic S, Hierlemann A. Microelectronic
system for high-resolution mapping of extracellular electric fields applied to
brain slices. Biosens Bioelectron 24: 2191–2198, 2009. doi:10.1016/j.bios.
2008.11.028.

Gold C, Henze DA, Koch C, Buzsáki G. On the origin of the extracellular
action potential waveform: a modeling study. J Neurophysiol 95: 3113–
3128, 2006. doi:10.1152/jn.00979.2005.

Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsáki G. Accuracy of
tetrode spike separation as determined by simultaneous intracellular and
extracellular measurements. J Neurophysiol 84: 401–414, 2000. doi:10.
1152/jn.2000.84.1.401.

Harris KD, Quian Quiroga R, Freeman J, Smith SL. Improving data quality
in neuronal population recordings. Nat Neurosci 19: 1165–1174, 2016.
doi:10.1038/nn.4365.

Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsáki G.
Intracellular features predicted by extracellular recordings in the hippocam-
pus in vivo. J Neurophysiol 84: 390–400, 2000. doi:10.1152/jn.2000.84.1.
390.

Homer ML, Nurmikko AV, Donoghue JP, Hochberg LR. Sensors and
decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng
15: 383–405, 2013. doi:10.1146/annurev-bioeng-071910-124640.

Huang Y, Miller JP. Phased array processing for spike discrimination.
Neurocomputing 65–66: 507–516, 2005. doi:10.1016/j.neucom.2004.10.
037.

Joshua M, Elias S, Levine O, Bergman H. Quantifying the isolation quality
of extracellularly recorded action potentials. J Neurosci Methods 163:
267–282, 2007. doi:10.1016/j.jneumeth.2007.03.012.

Lambacher A, Vitzthum V, Zeitler R, Eickenscheidt M, Eversmann B,
Thewes R, Fromherz P. Identifying firing mammalian neurons in networks
with high-resolution multi-transistor array (MTA). Appl Phys, A Mater Sci
Process 102: 1–11, 2011. doi:10.1007/s00339-010-6046-9.

Lewicki MS. A review of methods for spike sorting: the detection and
classification of neural action potentials. Network 9: R53–R78, 1998. doi:
10.1088/0954-898X_9_4_001.

Litke AM, Bezayiff N, Chichilnisky EJ, Cunningham W, Dabrowski W,
Grillo AA, Grivich M, Grybos P, Hottowy P, Kachiguine S, Kalmar RS,
Mathieson K, Petrusca D, Rahman M, Sher A. What does the eye tell the
brain? Development of a system for the large-scale recording of retinal
output activity. IEEE Trans Nucl Sci 51: 1434–1440, 2004. doi:10.1109/
TNS.2004.832706.

Musial PG, Baker SN, Gerstein GL, King EA, Keating JG. Signal-to-noise
ratio improvement in multiple electrode recording. J Neurosci Methods 115:
29–43, 2002. doi:10.1016/S0165-0270(01)00516-7.

Niediek J, Boström J, Elger CE, Mormann F. Reliable analysis of single-
unit recordings from the human brain under noisy conditions: tracking
neurons over hours. PLoS One 11: e0166598, 2016. doi:10.1371/journal.
pone.0166598.

Pachitariu M, Steinmetz N, Kadir S, Carandini M, Harris KD. Kilosort:
realtime spike-sorting for extracellular electrophysiology with hundreds of
channels (Preprint). bioRxiv 061481, 2016. doi:10.1101/061481.

Pedreira C, Martinez J, Ison MJ, Quian Quiroga R. How many neurons can
we see with current spike sorting algorithms? J Neurosci Methods 211:
58–65, 2012. doi:10.1016/j.jneumeth.2012.07.010.

Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G.
Oscillations and sparsening of odor representations in the mushroom body.
Science 297: 359–365, 2002. doi:10.1126/science.1070502.

Quian Quiroga R. Spike sorting. Scholarpedia 2: 3583, 2007. doi:10.4249/
scholarpedia.3583.

Quian Quiroga R, Panzeri S. Extracting information from neuronal popula-
tions: information theory and decoding approaches. Nat Rev Neurosci 10:
173–185, 2009. doi:10.1038/nrn2578.

Quian Quiroga R, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering. Neural Comput
16: 1661–1687, 2004. doi:10.1162/089976604774201631.

Quian Quiroga R, Mukamel R, Isham EA, Malach R, Fried I. Human
single-neuron responses at the threshold of conscious recognition. Proc Natl
Acad Sci USA 105: 3599–3604, 2008. doi:10.1073/pnas.0707043105.

Redish AD, Battaglia FP, Chawla MK, Ekstrom AD, Gerrard JL, Lipa
P, Rosenzweig ES, Worley PF, Guzowski JF, McNaughton BL,
Barnes CA. Independence of firing correlates of anatomically proximate
hippocampal pyramidal cells. J Neurosci 21: RC134, 2001. doi:10.1523/
JNEUROSCI.21-05-j0004.2001.

Rey HG, Ison MJ, Pedreira C, Valentin A, Alarcon G, Selway R, Rich-
ardson MP, Quian Quiroga R. Single-cell recordings in the human medial
temporal lobe. J Anat 227: 394–408, 2015a. doi:10.1111/joa.12228.

Rey HG, Pedreira C, Quian Quiroga R. Past, present and future of spike
sorting techniques. Brain Res Bull 119, Pt B: 106–117, 2015b. doi:10.1016/
j.brainresbull.2015.04.007.

Rodriguez A, Laio A. Machine learning. Clustering by fast search and find
of density peaks. Science 344: 1492–1496, 2014. doi:10.1126/science.
1242072.

Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem
AB, Grosmark A, Belluscio M, Denfield GH, Ecker AS, Tolias AS,
Solomon S, Buzsáki G, Carandini M, Harris KD. Spike sorting for large,
dense electrode arrays. Nat Neurosci 19: 634–641, 2016. doi:10.1038/nn.
4268.

Stevenson IH, Kording KP. How advances in neural recording affect data
analysis. Nat Neurosci 14: 139–142, 2011. doi:10.1038/nn.2731.

Wood F, Black MJ, Vargas-Irwin C, Fellows M, Donoghue JP. On the
variability of manual spike sorting. IEEE Trans Biomed Eng 51: 912–918,
2004. doi:10.1109/TBME.2004.826677.

Yger P, Spampinato GL, Esposito E, Lefebvre B, Deny S, Gardella C,
Stimberg M, Jetter F, Zeck G, Picaud S, Duebel J, Marre O. A spike
sorting toolbox for up to thousands of electrodes validated with ground truth
recordings in vitro and in vivo. eLife 7: e34518, 2018. doi:10.7554/eLife.
34518.

1871NEW UNSUPERVISED SPIKE SORTING

J Neurophysiol • doi:10.1152/jn.00339.2018 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (143.210.120.167) on December 10, 2018.
 Copyright © 2018 the American Physiological Society. All rights reserved. 

https://doi.org/10.1016/j.jneumeth.2013.10.001
https://doi.org/10.1152/jn.1996.76.6.3823
https://doi.org/10.1152/jn.1996.76.6.3823
https://doi.org/10.1152/jn.00993.2014
https://doi.org/10.1016/j.bios.2008.11.028
https://doi.org/10.1016/j.bios.2008.11.028
https://doi.org/10.1152/jn.00979.2005
https://doi.org/10.1152/jn.2000.84.1.401
https://doi.org/10.1152/jn.2000.84.1.401
https://doi.org/10.1038/nn.4365
https://doi.org/10.1152/jn.2000.84.1.390
https://doi.org/10.1152/jn.2000.84.1.390
https://doi.org/10.1146/annurev-bioeng-071910-124640
https://doi.org/10.1016/j.neucom.2004.10.037
https://doi.org/10.1016/j.neucom.2004.10.037
https://doi.org/10.1016/j.jneumeth.2007.03.012
https://doi.org/10.1007/s00339-010-6046-9
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1109/TNS.2004.832706
https://doi.org/10.1109/TNS.2004.832706
https://doi.org/10.1016/S0165-0270(01)00516-7
https://doi.org/10.1371/journal.pone.0166598
https://doi.org/10.1371/journal.pone.0166598
https://doi.org/10.1101/061481
https://doi.org/10.1016/j.jneumeth.2012.07.010
https://doi.org/10.1126/science.1070502
https://doi.org/10.4249/scholarpedia.3583
https://doi.org/10.4249/scholarpedia.3583
https://doi.org/10.1038/nrn2578
https://doi.org/10.1162/089976604774201631
https://doi.org/10.1073/pnas.0707043105
https://doi.org/10.1523/JNEUROSCI.21-05-j0004.2001
https://doi.org/10.1523/JNEUROSCI.21-05-j0004.2001
https://doi.org/10.1111/joa.12228
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1126/science.1242072
https://doi.org/10.1126/science.1242072
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/nn.4268
https://doi.org/10.1038/nn.2731
https://doi.org/10.1109/TBME.2004.826677
https://doi.org/10.7554/eLife.34518
https://doi.org/10.7554/eLife.34518

