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Abstract

In this thesis our goal is to develop the equivariant version of Hochschild coho-

mology. In the equivariant world there is given a group G which acts on objects.

First naive object which can be considered is a G-algebra, that is, an associative

algebra A on which G acts via algebra automorphisms. In our work we consider

two more general situations. In the first case we develop a cohomology theory

for oriented algebras and in the second case we develop a cohomology theory for

Green functors.
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Chapter 1

Introduction

Homological algebra is a relatively young branch of mathematics, which was first
used in algebraic topology in the early 20th century. During the period 1940-
1955, homological algebra had become an independent branch of algebra. In 1956,
Cartan and Eilenberg published their book entitled "Homological Algebra" [3],
which was truly a revolution in the subject. Cartan and Eilenberg’s book yet
remains a main book of reference, and the subject became standard course mate-
rial at many universities. They used derived functors, defined via projective and
injective resolutions of modules to define and explore the cohomology theories for
groups, associative algebras and Lie algebras. Nowadays, homological algebra is a
fundamental tool in many areas of mathematics.

One of the main application of homological algebra is the classical cohomology of
associative algebras invented by Hochschild [10] in 1945. It is a particular case of
general machinery developed by Cartan and Eilenberg. Let A be an associative
k-algebra and let M be an A-A-bimodule. The low dimensional groups (n ≤2)
have well known interpretations of classical algebraic structures such as derivations
and extensions. Moreover, Gerstenhaber [6] observed that the second Hochschild
cohomology group of a finite dimensional algebra H2(A,A) has a close connection
to the deformation theory of A, that is, if H2(A,A) = 0 then all deformations of
A are trivial. By the work of A. Connes in 80’s the Hochschild cohomology plays
an important role in so called noncommutative differential geometry.

Our goal is to developed the equivariant version of Hochschild cohomology. In the
equivariant world there is given a group G which acts on objects. The first naive
object which can be consider is a G-algebra, that is, an associative algebra A on
which G acts via algebra automorphisms.
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Introduction 2

In our work we consider two more general situations. In the first case we consider
an oriented algebra.

Let G be a group and ε : G → {±1} be a group homomorphism. An oriented
algebra is an associative algebra A equipped with a G-module structure

(g, a) 7→ ga,

satisfying the conditions
g(a+ b) = ga+ gb

gha = g(ha)

g(ab) =

{
gagb if ε(g) = +1,
gbga if ε(g) = −1.

g(1) = 1.

Hence oriented algebras are more general than G-algebras as well as algebras with
involutions.

In the second case we consider a Green functor.

The theory of Mackey functors was originally initiated by Green [7] in the early
1970’s and later developed by numerous authors in the last four decades (J. Green
[13], A. Dress [4], P. Webb [21]). The notion of Mackey functors associated to a
finite group G are a standard tool for studying representations of a finite group
and its subgroups.

There are at least three equivalent definitions of Mackey functors for a group G.
The first definition which is due to Green [7] is based on the poset of subgroups of
G. The second definition which is due to Dress [4] uses the category of G-sets. The
third one is given by Thévenaz and Webb in [20]. They define Mackey functors as
modules over the Mackey algebra.

Roughly speaking, a Green functor for a finite group G over the commutative
ring R is a Mackey functor with a compatible ring structure. More specifically,
there are two equivalent definitions of Green functors. The first definition which
is due to Green [7] relies on the poset of subgroups of G. The second definition
is analogous to the Dress definition of Mackey functors which is based on the
category of G-sets, and is detailed in [2].
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Roughly, there are analogies between Mackey functors and abelian groups as fol-
lows:

Mack(G)←→ Ab,

Green functors←→ ring with unit,

modules over a Green functor A←→ modules over a ring R,

⊗, HOM←→ ⊗, Hom.

In fact, if G is trivial, then Mackey functors and Green functors are nothing than
ordinary abelian groups and rings.

1.1 Thesis outline

In Chapter 2, we give a brief overview of some of the fundamental terminologies of
homological algebra and deformation theory. The material of this chapter is taken
from [19], [15], [22], [3], [9] and [5]. We start section 1 by giving several basic
definitions and basic properties of chain complexes. Then in section 2, we give
the definition of homotopy of chain complexes and some of its basic properties. In
section 3, we outline the construction of the derived functors Extn and Torn using
projective and injective resolutions. In section 4, we provide a short overview of
the homology and cohomology of groups. Then in section 5, we remind the reader
of the Hochschild homology and cohomology groups of an associative algebras. In
section 6, we look at spectral sequences. The last section of Chapter 2 provides
an overview of the deformation theory.

Chapter 2 only provides familiar background material which will be required later.
It does not contain any original work. The original work can be found in the
remaining chapters of the thesis.

In Chapter 3, we introduce oriented algebras. We start Chapter 3 by stating and
defining some notations for the standard chain complexes associated to groups and
associative algebras. We also introduce a bicomplex which we will use through the
whole Chapter 3. The main references for this part of the chapter 3 is [22]. We
then define oriented algebras and give some examples. In section 2, we describe
the construction relies on the possibility to mix standard chain complexes com-
puting group and associative algebra cohomologies. In section 3, we extend the
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well-known fact that the second Hochschild cohomology classifies the singular ex-
tensions of associative algebras to oriented algebras. In section 4, we prove some
important results about such cohomologies. In the last section of Chapter 3 we
extend the deformation theory of associative algebras due to Gerstenhaber [6] to
oriented algebras.

In Chapter 4, we study the Hochschild cohomology of Green functors. Throughout
this chapter, we restrict attention to the case when G is a cyclic group Cp of prime
order p and for the general case see chapter 5. In section 1, we give the definitions of
G-Mackey functors and provide some examples. Then in section 2, we provide the
definitions of G-Green functors and present some examples. In section 3, we give
a detailed description of Cp-Mackey functors, Cp-tensor product and Cp-HOM.
In section 4, we provide a detailed description of Cp-Green functors and modules
over Cp-Green functors and we end this section by extending the definitions of
Hochschild homology and Hochschild cohomology to Cp-Mackey functors. Finally,
we extend the well-known fact that the second Hochschild cohomology classifies
the singular extensions of associative algebras to Cp-Green functors in section 5.
We finish this chapter by extending the deformation theory of associative algebras
due to Gerstenhaber [6] to Cp-Green functors.

The aim of Chapter 5 is to generalise the results of Chapter 4 to an arbitrary finite
group G.



Chapter 2

Preliminaries

In this chapter, we provide familiar background material that is necessary for
understanding what comes later. The material in this section can be found in
many good books, including [19], [15], [22], [3], [9] and [5].

2.1 Chain Complexes of R-modules

The terminologies of complexes originally began in algebraic topology. Com-
plexes have been utilised in several branches of mathematics giving us different
(co)homology theories. In this section, we present some concepts concerning chain
complexes. The main references for this section are [19], [15] and [22].

Definition 2.1.1. [22] A chain complex (C,d) of R-modules is a family {Cn, dn}n∈Z
of R-modules Cn and R-module maps dn : Cn −→ Cn−1 such that dn−1 ◦ dn = 0

for all n ∈ Z. The maps dn are called the differential maps or boundary maps.
The n-cycles are the elements of kernel of dn : Cn −→ Cn−1, denoted by Zn. The
n-boundaries are the elements of image of dn+1 : Cn+1 −→ Cn, denoted by Bn.
Note that the condition dn−1 ◦ dn = 0 indicates that Bn ⊂ Zn for all n ∈ Z. The
nth-homology module of C is defined by

Hn(C) = Zn/Bn.

Definition 2.1.2. [22] Dually, a cochain complex (C,d) of R-modules is a family
{Cn, dn}n∈Z of R-modules Cn and R-module maps dn : Cn −→ Cn+1 such that
dn+1 ◦ dn = 0 for all n ∈ Z. The maps dn are called the differential maps or

5
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coboundary maps. The n-cocycles are the elements of kernel of dn : Cn −→ Cn+1,
denoted by Zn. The n-coboundaries are the elements of image of dn−1 : Cn−1 −→
Cn, denoted by Bn. Note that the condition dn+1 ◦ dn = 0 means that Bn ⊂ Zn

for all n ∈ Z. The nth-cohomology module of C is defined by

Hn(C) = Zn/Bn.

Definition 2.1.3. [22] Let (C,d) and (D,d′) be two chain complexes. Then a chain
map f : (C, d) −→ (D, d′) is a family of R-modules homomorphisms {fn : Cn −→
Dn}n∈Z such that fn−1 ◦ dn = d′n ◦ fn for all n ∈ Z. That is, the last condition
means that the following diagram commutes.

· · · // Cn+1
dn+1 //

fn+1

��

Cn

fn
��

dn // Cn−1 //

fn−1

��

· · ·

· · · // Dn+1
d′n+1

// Dn
d′n

// Dn−1 // · · ·

Similarly, let (C,d) and (D,d′) be two cochain complexes. Then a cochain map f :

(C, d) −→ (D, d′) is a family of R-modules homomorphisms {fn : Cn −→ Dn}n∈Z
such that fn+1 ◦ dn = d′n ◦ fn for all n ∈ Z. That is, the last condition means that
the following diagram commutes.

· · · // Cn−1 dn−1
//

fn−1

��

Cn

fn

��

dn // Cn+1 //

fn+1

��

· · ·

· · · // Dn−1
d′n−1

// Dn

d′n
// Dn+1 // · · ·

Definition 2.1.4. [22] A sequence

· · · −→ Cn+1
fn+1−−→ Cn

fn−→ Cn−1 −→ · · ·

of R-modules and R-module maps is said to be exact at Cn if Ker(fn) = Im(fn+1).
The sequence is said to be exact if it is exact at all Cn.

Similarly, a sequence

· · · −→ Cn−1 fn−1

−−−→ Cn fn−→ Cn+1 −→ · · ·

of R-modules and R-module maps is said to be exact at Cn if Ker(fn) = Im(fn−1).
The sequence is said to be exact if it is exact at all Cn.
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Definition 2.1.5. [22] A short exact sequence is a sequence

0 −→ A
f−→ B

g−→ C −→ 0

where f is a monomorphism, g is an epimorphism and Ker(g) = Im(f).

Definition 2.1.6. [22] A short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

is called split if there exists a map h : C −→ B such that gh = idC.

Example 2.1.7. Let
0 −→ A

i−→ B
p−→ C −→ 0

be a short exact sequence of R-modules. The sequence is split if B = A⊕ C up to
isomorphism.

The following theorem is one of the fundamental results on chain complexes and
the proof can be found in [22].

Theorem 2.1.8. Let
0 −→ A

f−→ B
g−→ C −→ 0

be a short exact sequence of chain complexes. Then there exist natural maps ∂ :

Hn(C) −→ Hn−1(A), called connecting homomorphisms, such that

· · · g−→ Hn+1(C)
∂−→ Hn(A)

f−→ Hn(B)
g−→ Hn(C)

∂−→ Hn−1(A)
f−→ · · ·

is an exact sequence.
Similarly, if

0 −→ A
f−→ B

g−→ C −→ 0

is a short exact sequence of cochain complexes, then there are natural maps ∂ :

Hn(C) −→ Hn−1(A) such that

· · · g−→ Hn−1(C)
∂−→ Hn(A)

f−→ Hn(B)
g−→ Hn(C)

∂−→ Hn+1(A)
f−→ · · ·

is an exact sequence.

Definition 2.1.9. [22] A bicomplex (or double complex) is a family {Cp,q} of
modules together with a horizontal differential dh : Cp,q −→ Cp−1,q and a vertical
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differential dv : Cp,q −→ Cp,q−1 such that dh ◦ dh = dv ◦ dv = dvdh + dhdv = 0 for
all p, q ∈ Z. It is useful to draw the bicomplex as a lattice:

...
...

...

C02

dv

OO

dh // C12
dh //

dv

OO

C22

dv

OO

dh // · · ·

C01

dv

OO

dh // C11
dh //

dv

OO

C21

dv

OO

dh // · · ·

C00

dv

OO

dh // C10
dh //

dv

OO

C20

dv

OO

dh // · · ·

where each column and each row is a chain complex and each square anticommutes.

Similarly, a bicomplex (or double complex) is a family {Cp,q} of modules together
with a horizontal differential dh : Cp,q −→ Cp+1,q and a vertical differential dv :

Cp,q −→ Cp,q+1 such that dh ◦ dh = dv ◦ dv = dvdh + dhdv = 0 for all p, q ∈ Z. It
is useful to draw the bicomplex as a lattice:

...
...

...

C02

dv

OO

dh // C12
dh //

dv

OO

C22

dv

OO

dh // · · ·

C01

dv

OO

dh // C11
dh //

dv

OO

C21

dv

OO

dh // · · ·

C00

dv

OO

dh // C10
dh //

dv

OO

C20

dv

OO

dh // · · ·

where each column and each row is a cochain complex and each square anticom-
mutes.

Definition 2.1.10. [22] The total complexes Tot(C) = Tot
∏

(C) and Tot⊕(C) of
a chain complex C are defined by

Tot
∏

(C)n =
∏

p+q=n

Cp,q and Tot⊕(C)n =
⊕
p+q=n

Cp,q.

The differential maps are given by d = dh + dv. We note that if C is bounded then
Tot

∏
(C) = Tot⊕(C), especially if C is a first quadrant bicomplex. We denoted the

homology modules of the bicomplex (C) by Hn(Tot(C)).
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Similarly, the total complexes Tot(C) = Tot
∏

(C) and Tot⊕(C) of a cochain com-
plex C are defined by

Tot
∏

(C)n =
∏

p+q=n

Cp,q and Tot⊕(C)n =
⊕
p+q=n

Cp,q.

The differential maps are given by d = dh + dv. We note that if C is bounded then
Tot

∏
(C) = Tot⊕(C), especially if C is a first quadrant bicomplex. We denoted the

cohomology modules of the bicomplex (C) by Hn(Tot(C)).

2.2 Chain Homotopies

In this section, we state the definition of the homotopy of chain complexes and
present some of its properties. The main reference for this section is [22].

Definition 2.2.1. [22] A chain map f : C −→ D is said to be null-homotopic if
there are maps tn : Cn −→ Dn+1

· · · // Cn+1
dn+1 // Cn

tn||
fn
��

dn // Cn−1 //

tn−1||

· · ·

· · · // Dn+1
d′n+1

// Dn
d′n

// Dn−1 // · · ·

such that
f = d′Dt+ tdC

The maps {tn} are called a chain contraction of f.

Definition 2.2.2. [22] Two chain maps f and g : C −→ D are chain homotopic,
written f ' g, if f − g is null homotopic, that is, there are maps tn : Cn −→ Dn+1

such that
f − g = d′Dt+ tdC .

Chain homotopy is an equivalence relation.

Definition 2.2.3. [22] A map f : C −→ D is a chain homotopy equivalence if
there exists a map h : D −→ C such that hf ' 1C, fh ' 1D.

Lemma 2.2.4. If f and g are chain homotopic, then they induce the same maps
Hn(C) −→ Hn(D).
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2.3 Derived Functors

Let R be a ring. A standard method of computing derived functors between
categories of R-modules is by applying the functor to a resolution and then take
the (co)-homology of the obtaining complex. In this section, we study derived
functors. We define projective and injective modules, left derived functors, right
derived functors, Ext and Tor functors. The following materials can be found in
[22], [15], [19] and [3].

2.3.1 Projective and injective modules

In this subsection, we will state the definitions of the Projective and injective
modules and present some properties.

Definition 2.3.1. [19] An R-module P is projective if for any epimorphism g :

N −→ M and any map f : P −→ M , there exists a map h : P −→ N such that
f = g ◦ h.

P
∃h

~~
f
��

N g
//M // 0

The proof of the following result is in [19].

Proposition 2.3.2. Let P be an R-module. The following are equivalent:

1. P is projective.

2. If
0 −→ A

f−→ B
g−→ C −→ 0

is exact, then

0 −→ HomR(P,A)
f∗−→ HomR(P,B)

g∗−→ HomR(P,C) −→ 0

is also exact.

3. Every short exact sequence 0 −→ A
f−→ B

g−→ P −→ 0 splits.

The proof of the following result is in [19].
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Lemma 2.3.3. A direct sum of R-modules
⊕

i∈I Pi is projective if and only if each
Pi is projective.

There is a dual definition, obtained by reversing all the arrows and swapping
surjective and injective.

Definition 2.3.4. [19] An R-module I is injective if for any monomorphism f :

N −→ M and any map g : N −→ I, there exists a map h : M −→ I such that
g = h ◦ f .

0 // N
f //

g
��

M

∃h~~
I

The proof of the following result is in [19].

Proposition 2.3.5. Let I be an R-module. The following conditions are equiva-
lent:

1. I is injective.

2. If
0 −→ A

f−→ B
g−→ C −→ 0

is exact, then

0 −→ HomR(C, I)
g∗−→ HomR(B, I)

f∗−→ HomR(A, I) −→ 0

is also exact.

3. Every short exact sequence 0 −→ I
f−→ B

g−→ C −→ 0 splits.

The proof of the following result is in [19].

Lemma 2.3.6. A direct product of R-modules
∏

i∈I Ii is injective if and only if
each Ii is injective.

The proof of the following result is in [19].

Proposition 2.3.7. Every R-module M can be embedded in an injective R-module.
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2.3.2 Projective and injective resolutions

In this subsection, we will define projective and injective resolutions and present
some properties.

Definition 2.3.8. [19] Let M be a R-module. A projective resolution P = {Pj} of
M is an exact sequence of R-modules

· · · −→ P2
d2−→ P1

d1−→ P0
θ−→M −→ 0.

such that all Pj are projective for all j ≥ 0.

The proof of the following lemma is in [22].

Lemma 2.3.9. Every R-module M has a projective resolution.

The proof of the following important theorem is in [22].

Theorem 2.3.10. Let P be a projective resolution of a module M and Q be a
projective resolution of a module N. Then there is a chain map f : P −→ Q

making the completed diagram commute.

· · · // P2
d2 //

f2
��

P1
d1 //

f1

��

P0

f0
��

µ //M //

θ
��

0

· · · // Q2 d2
// Q1 d1

// Q0 π
// N // 0

Definition 2.3.11. [19] Let M be a R-module. An injective resolution I = {Ij}
of M is an exact sequence of R-modules

0 −→M
λ−→ I0

d0−→ I1
d1−→ I2 −→ · · · .

such that all Ij are injective for all j ≥ 0.

The proof of the following lemma is exactly dual to that of lemma 2.3.9.

Lemma 2.3.12. Every R-module N has an injective resolution.

The proof of the following important theorem is exactly dual to that of theorem
2.3.10.
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Theorem 2.3.13. Let I be an injective resolution of a module N and H be an
injective resolution of a module M. Then there is a cochain map f : H −→ I

making the completed diagram commute.

0 //M λ //

ε
��

H0 d0 //

f0

��

H1

f1
��

d1 // H2 d2 //

f2
��

· · ·

0 // N
δ
// I0

d0
// I1

d1
// I2

d2
// · · ·

2.3.3 Left derived functors

In this subsection, we construct the Left derived functors and present its properties.
The construction proceeds as follows.
Let A, B be commutative rings, and A-mod, B-mod denote the category of A-
modules and B-modules, respectively. Let F : A-mod −→ B-mod be a right exact
covariant additive functor. Let M be an A-module and

P −→M −→ 0

be a projective resolution for M. Then, by applying F to P we obtain a sequence
of B-modules

· · · −→ F (P2) −→ F (P1) −→ F (P0) −→ 0.

Definition 2.3.14. [3] The nth left derived functor of F, denoted by LnF , is
defined by

LnF (M) = Hn(F (P))

for n ≥ 0.

Note that LnF is independent of the choice of projective resolution of M and we
always obtain L0F (M) ∼= F (M) since F (P1) −→ F (P0) −→ F (M) −→ 0 is exact.
Moreover, if M is projective then LnF (M) = 0 for n > 0.
The proof of the following theorem is in [22].

Theorem 2.3.15. The functors LnF are additive.

Theorem 2.3.16. Let
0 −→ A −→ B −→ C −→ 0

be a short exact sequence of modules. Then there are connecting morphisms

Ln+1F (C) −→ LnF (A)
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such that

· · · −→ L2F (C) −→ L1F (A) −→ L1F (B) −→ L1F (C) −→ F (A) −→ F (B) −→ F (C) −→ 0.

is a long exact sequence.

For the proof of the above theorem, see [19].

2.3.4 Right derived functors

In this subsection, we construct the Right derived functors and present its prop-
erties.
The construction proceeds as follows.
Let A, B be commutative rings, and A-mod, B-mod denote the category of A-
modules and B-modules, respectively. Let F : A-mod −→ B-mod be a left exact
covariant additive functor. Let M be an A-module and

0 −→M −→ I

be an injective resolution for M. Then, by applying F to I we obtain a sequence
of B-modules

0 −→ F (I0) −→ F (I1) −→ F (I2) −→ · · · .

Definition 2.3.17. [3] The nth right derived functor of F, denoted by RnF , is
defined by

RnF (M) = Hn(F (I))

for n ≥ 0.

Note that RnF is independent of the choice of injective resolution of M and we
always obtain R0F (M) ∼= F (M) since 0 −→ F (M) −→ F (I0) −→ F (I1) is exact.
Moreover, if M is injective then RnF (M) = 0 for n > 0.
The proof of the following theorem is in [19].

Theorem 2.3.18. The functors RnF are additive.

The proof of the following theorem is similar to that of theorem 2.3.16.
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Theorem 2.3.19. Let
0 −→ A −→ B −→ C −→ 0

be a short exact sequence of R-modules. Then there are connecting morphisms

RnF (C) −→ Rn+1F (A)

such that

0 −→ F (A) −→ F (B) −→ F (C) −→ R1F (A) −→ R1F (B) −→ R1F (C) −→ R2F (A) −→ · · · .

is a long exact sequence.

Remark 2.3.20. If F is a contravariant right or left exact functor, then we can
construct left or right derived functors in a similar way. The only difference is
that the left derived functors are computed by using an injective resolution, whilst
the right derived functors are computed by using a projective resolution.

2.3.5 Ext and Tor

In this subsection, we present the most common examples of derived functors
which are the functors Extn and Torn. We deal with Torn first.

Definition 2.3.21. [3] Let R be a ring and let N be a left R-module. The functor
F (−) = −⊗R N is a covariant additive right exact functor. For n ≥ 0 we define

TorRn (−, N) = Ln(−⊗R N).

We state a few basic properties of these functors:

1. One has TorR0 (−, N) ∼= (−⊗R N).

2. For any projective module M we have TorRn (M,N) = 0 for n 6= 0.

3. If 0 −→ M
′ −→ M −→ M

′′ −→ 0 is an exact sequence of R-modules, then there
is a long exact sequence.
· · · −→ Tor2(M

′
, N) −→ Tor2(M,N) −→ Tor2(M

′′
, N) −→

−→ Tor1(M
′
, N) −→ Tor1(M,N) −→ Tor1(M

′′
, N) −→

−→ (M
′ ⊗R N) −→ (M ⊗R N) −→ (M

′′ ⊗R N) −→ 0.
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Definition 2.3.22. [3] Let R be a ring and let M be a right R-module. The functor
F (−) = M ⊗R − is a contravariant additive right exact functor. For n ≥ 0 we
define

TorRn (M,−) = Ln(M ⊗R −).

Similarly, we state a few basic properties of these functors:

1. One has TorR0 (M,−) ∼= (M ⊗R −).

2. For any projective module N we have TorRn (M,N) = 0 for n 6= 0.

3. If 0 −→ N
′ −→ N −→ N

′′ −→ 0 is an exact sequence of R-modules, then there is
a long exact sequence.
· · · −→ Tor2(M,N

′
) −→ Tor2(M,N) −→ Tor2(M,N

′′
) −→

−→ Tor1(M,N
′
) −→ Tor1(M,N) −→ Tor1(M,N

′′
) −→

−→ (M ⊗R N
′
) −→ (M ⊗R N) −→ (M ⊗R N

′′
) −→ 0.

Next, we deal with Extn.

Definition 2.3.23. [3] Let R be a ring and let M be a left R-module. The functor
F (−) = HomR(M,−) is a covariant additive left exact functor. For n ≥ 0 we
define

ExtnR(M,−) = Rn(HomR(M,−)).

We state a few basic properties of these functors:

1. One has Ext0R(M,−) ∼= HomR(M,−).

2. For any injective module N we have ExtnR(M,N) = 0 for n 6= 0.

3. If 0 −→ N
′ −→ N −→ N

′′ −→ 0 is an exact sequence of R-modules, then there is
a long exact sequence.
0 −→ HomR(M,N

′
) −→ HomR(M,N) −→ HomR(M,N

′′
) −→

−→ Ext1(M,N
′
) −→ Ext1(M,N) −→ Ext1(M,N

′′
) −→

−→ Ext2(M,N
′
) −→ Ext2(M,N) −→ Ext2(M,N

′′
) −→ · · · .

Definition 2.3.24. [3] Let R be a ring and let N be a left R-module. The functor
F (−) = HomR(M,−) is a contravariant additive left exact functor. For n ≥ 0 we
define

ExtnR(−, N) = Rn(HomR(−, N)).
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We state a few basic properties of these functors:

1. One has Ext0R(−, N) ∼= HomR(−, N).

2. For any injective module M we have ExtnR(M,N) = 0 for n 6= 0.

3. If 0 −→ M
′ −→ M −→ M

′′ −→ 0 is an exact sequence of R-modules, then there
is a long exact sequence.
0 −→ HomR(M

′′
, N) −→ HomR(M,N) −→ HomR(M

′
, N) −→

−→ Ext1(M
′′
, N) −→ Ext1(M,N) −→ Ext1(M

′
, N) −→

−→ Ext2(M
′′
, N) −→ Ext2(M,N) −→ Ext2(M

′
, N) −→ · · · .

We record a few observations relating ⊗ and Hom of complexes, starting with
relations between ⊗ and Hom on the category of R-modules. For R-modules L,
M , and N , we have an adjunction

Hom(L⊗M,N) ∼= Hom(L,Hom(M,N)).

We also have a natural homomorphism

Hom(L,M)⊗N −→ Hom(L,M ⊗N),

and this is an isomorphism if either L or N is a finitely generated projective
R-module. Again, we have a natural map

Hom(L,M)⊗Hom(L′,M ′) −→ Hom(L⊗ L′,M ⊗M ′),

which is an isomorphism if L and L′ are finitely generated and projective or if L
is finitely generated and projective and M = R.

2.4 Group Homology and Cohomology

Homology and cohomology are concepts that are utilised in many areas of algebra
and topology. Historically, the terminologies of homology and cohomology were
first used in a topological sense. Algebraically, we can define the homology and
cohomology via derived functors, for examples the Tor and Ext functors. In this
section, we present several basic definitions and basic properties of group homology
and cohomology. The following material can be found in [22] and [9].



Preliminaries 18

2.4.1 Definitions via Ext and Tor groups

We start by giving the basic algebraic objects of group (co)homology which are
group rings and modules over group rings.

Definition 2.4.1. [9] Let G be a group. The group ring ZG is the free Z-module
with elements of G as basis and with multiplication determined by the multiplication
in the group G. Thus, elements of ZG are formal sums

∑
g∈G

δgg,

where δg ∈ Z, and where δg = 0 for all but finitely many g ∈ G, and the formula
of multiplication of two general elements is given by

(
∑
g∈G

δgg)(
∑
h∈G

ϑhh) =
∑
g,h∈G

(δgϑh)gh.

Definition 2.4.2. [9] Let A be Z-module. Then, A may be regarded as a ZG-
module with trivial action, i.e. ga = a for all g ∈ G and for all a ∈ A.

Definition 2.4.3. [22] Let A be ZG-module. The invariants AG of A are the
elements of the Z-submodule,

AG = {a ∈ A| ga = a for all g ∈ G, and a ∈ A}.

The coinvariants AG of A are elements of the quotient Z-module,

AG = A/(ga− a | g ∈ G, a ∈ A).

The proof of the following important result is in [22].

Lemma 2.4.4. Let A be a ZG-module. Then, there are isomorphisms

AG ∼= Z⊗ZG A

and
AG ∼= HomZG(Z, A).

Definition 2.4.5. [22] Let G be a group and let A be ZG-module. The n-th
homology group of G with coefficients in A is the value at A of the n-th left derived
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functors:
Hn(G;A) = Ln(−G)(A);

by the lemma above,
Hn(G;A) ∼= TorZGn (Z, A).

Similarly, The n-th cohomology group of G with coefficients in A is the value at A
of the n-th right derived functors:

Hn(G;A) = Rn(−G)(A);

by the lemma above,
Hn(G;A) ∼= ExtnZG(Z, A).

In particular, H0(G;A) = AG and H0(G;A) = AG.

Definition 2.4.6. [22] The augmentation ideal of ZG is the kernel τ of the ring
homomorphism α : ZG −→ Z such that

α(
∑
g∈G

δgg) =
∑
g∈G

δg.

Definition 2.4.7. Let G be a finite group. We define the norm element N of the
group ring ZG by the sum

N =
∑
g∈G

g.

2.4.2 Cyclic groups

In this subsection, we compute explicitly the (co)homology of cyclic groups.

2.4.2.1 Calculation

Let G = Cm be the cyclic group of order m with generator ρ. The norm in ZCm
is the element N = 1 + ρ + ρ2 + · · · + ρm−1. So 0 = ρm − 1 = (ρ − 1)N in ZCm.
We can form the free resolution of the trivial Cm-module Z

Z θ←− ZCm
ρ−1←−− ZCm

N←− ZCm
ρ−1←−− ZCm

N←− · · · .
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Indeed, since Z · N = (ZCm)Cm and τ = {a ∈ ZCm : Na = 0}, there are the
following exact sequences

0←− Z ·N N←− ZCm ←− τ ←− 0

and
0←− τ

ρ−1←−− ZCm ←− Z ·N ←− 0.

We obtain the periodic free resolution of Z by splicing these sequences together.

0 0

��

0 0

��
Z ·N

__

��

Z ·N
��

__

0 Zoo ZCmθoo ZCm
ρ−1oo

ρ−1��

ZCm

__

Noo ZCm
ρ−1��

ρ−1oo · · ·

__

Noo

τ

__

��

τ

__

��
0 0

__

0 0

__

For any Cm-module A we then apply − ⊗ZCm A and HomZCm(−, A) and taking
homology and cohomology, we find the following result:

Theorem 2.4.8. If A is a Cm-module for the cyclic group Cm, then

Hn(Cm;A) =


A/(ρ− 1)A if n = 0

ACm/NA if n is odd
{a ∈ A : Na = 0}/(ρ− 1)A if n is even

Hn(Cm;A) =


ACm if n = 0

{a ∈ A : Na = 0}/(ρ− 1)A if n is odd
ACm/NA if n is even

Example 2.4.9. If A = Z, then we find that

Hn(Cm;Z) =


Z if n = 0

Z/m if n is odd
0 if n is even

Hn(Cm;Z) =


Z if n = 0

0 if n is odd
Z/m if n is even
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2.4.3 The Bar Resolution

In this subsection, we will describe a particular resolution called the bar resolution.
Consider Z as ZG-module with trivial action of G. We shall now describe the
following exact sequences of ZG-modules.

0←− Z θ←− B0
d1←− B1

d2←− B2 ←− · · · (*)

and
0←− Z θ←− Bu

0
d1←− Bu

1
d2←− Bu

2 ←− · · · (**)

where the first exact sequence is called normalised bar resolution and the second
exact sequence is called unnormalised bar resolution. Here B0 and Bu

0 are ZG
and the map θ is given by

ZG −→ Z

g −→ 1.

For n > 0, Bu
n is the free ZG-module generated by symbols [g1 ⊗ · · · ⊗ gn] with

gi ∈ G, while Bn is the free ZG-module generated by symbols [g1| · · · |gn] with
gi ∈ G− {1}.

Definition 2.4.10. [22] Define the differential d : Bu
n −→ Bu

n−1 (for n > 0) by

dn([g1 ⊗ · · · ⊗ gn]) = g1[g2 ⊗ · · · ⊗ gn]

+
n−1∑
i=1

(−1)i [g1 ⊗ · · · ⊗ gigi+1 ⊗ · · · ⊗ gn]

+ (−1)n[g1 ⊗ · · · ⊗ gn−1].

Similarly, we define the differential d : Bn −→ Bn−1 (for n > 0) by

dn([g1| · · · |gn]) = g1[g2| · · · |gn]

+
n−1∑
i=1

(−1)i [g1| · · · |gigi+1| · · · |gn]

+ (−1)n[g1| · · · |gn−1].

Example 2.4.11.

d[g1] = g1[ ]− [ ]

d[g1|g2] = g1[g2]− [g1g2] + [g1]
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d[g1|g2|g3] = g1[g2g3]− [g1g2|g3] + [g1|g2g3]− [g1|g2]

2.4.3.1 Homology

Let A be a right ZG-module. Then, Hn(G;A) is the homology of the following
chain complex by applying A⊗ZG − to the sequence (*)

0 −→ A⊗ZG B0
d0−→ A⊗ZG B1

d1−→ A⊗ZG B2 −→ · · ·

In particular, we have that H1(G;Z) is the quotient of the free abelian group on
the symbols [g], g ∈ G, with relations that [1] = 0 and [f ] + [g] = [fg] for all
f, g ∈ G. Thus, H1(G;Z) = G/[G,G].

2.4.3.2 Cohomology

Let A be a left ZG-module. Then, Hn(G;A) is the cohomology of the following
chain complexes by applying HomZG(−, A) to the sequences (*) and (**)

0 −→ HomZG(B0, A)
d0−→ HomZG(B1, A)

d1−→ HomZG(B2, A) −→ · · ·

0 −→ HomZG(Bu
0 , A)

d0−→ HomZG(Bu
1 , A)

d1−→ HomZG(Bu
2 , A) −→ · · · .

An n-cochain is a set map f : Gn = G × · · · × G −→ A, denoted by Cn(G;A),
and we see that the elements of HomZG(Bu

n, A) are just Cn(G;A). A cochain f is
normalised if f(g1, · · · ) = 0 whenever some gi = 1, where these elements are in
HomZG(Bn, A). The differential df is given by

(dnf)(g0, · · · , gn) = g0f(g1, · · · , gn)

+
n−1∑
i=1

(−1)i f(g1, · · · , gigi+1, · · · gn)

+ (−1)nf(g0, · · · , gn−1).

The n-cochains where dnf = 0 are called n-cocycles, denoted by Zn(G;A) =

Kerdn, and the n-cochains dnf are called n-coboundaries, denoted by Bn(G;A) =

Imdn−1. Thus, Hn(G;A) = Zn(G;A)/Bn(G;A).

Example 2.4.12. We have that

H1(G,A) = Z1(G,A)/B1(G,A)
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where

Z1(G,A) = {f : G −→ A | f(ab) = af(b)+f(a), for all a, b ∈ G} = Der(G,A),

is the derivations of G in A, and

B1(G,A) = {f : G −→ A, a ∈ A | f(g) = ga− a} = PDer(G,A),

is the Principal derivations of G in A.

Example 2.4.13. We have that

H2(G,A) = Z2(G,A)/B2(G,A)

where

Z2(G,A) = {f : G×G −→ A | af(a, c)− f(ab, c) + f(a, bc)− f(a, b) = 0}

and

B2(G,A) = {f : G×G −→ A | f(a, b) = ag(b)− g(ab) + g(a), g : G −→ A}.

2.4.4 H2 and Extensions

In this subsection, we show that H2 classifies equivalence classes of group exten-
sions.

Definition 2.4.14. [22] A group extension E of G by A is a short exact sequence

E : 0 −→ A −→ B
γ−→ G −→ 1

such that A is an abelian group.

Definition 2.4.15. [22] An extension E : 0 −→ A −→ B
γ−→ G −→ 1 is called split if

there is a section α : G −→ B such that γ ◦ α = idG.

Definition 2.4.16. [22] Two extensions E1 and E2 are equivalent if there exists
a group homomorphism ϕ : B1 −→ B2 such that

E1 : 0 // A // B1
//

ϕ

��

G // 1

E1 : 0 // A // B2
// G // 1
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is commutative.

Given such a section α : G −→ B such that α(1) is the identity elements of B and
γα(g) = g for all g ∈ G. Both α(gh) and α(g)α(h) are elements of B mapping to
gh ∈ G, thus their difference lies in A. we thus define

[g, h] = α(g)α(h)(α(gh))−1.

Definition 2.4.17. [22] The set function [ ] : G×G −→ A defined above is called
the factor set depending on B and α.

Definition 2.4.18. [22] A normalised 2-cocycle is a function [ ] : G × G −→ A

satisfying the following conditions:

1. [g, 1] = [1, g] = 0 for all g ∈ G.

2. x[y, z]− [xy, z] + [x, yz]− [x, y] = 0 for all x, y, z ∈ G.

The proof of the following lemma is in [22].

Lemma 2.4.19. Let A be a G-module. A set function [ ] : G×G −→ A is a factor
set if and only if it is a normalised 2-cocycle, that is, an element of Z2(G,A).

The proof of the following lemma is in [19].

Lemma 2.4.20. Let E1 be an extension of G by A with based section α1 : G −→
B1, and let [ ] be the factor set depending on α1. If E2 is an equivalent extension,
then there exists a based section α2 : G −→ B2 of E2 such that the factor set
determined by α2 is [ ].

The proof of the following lemma is in [19].

Lemma 2.4.21. Given an extension 0 −→ A −→ B
γ−→ G −→ 0, two different factor

sets [ ]1 and [ ]2, corresponding to choices α1 and α2 of based sections respectively,
differ by a 2-coboundary.

The above lemmas show that there is a well-defined map ψ from the set of the
equivalence classes of extensions, denoted by E(G,A) to H2(G;A).
The proof of the following lemma is in [22].
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Lemma 2.4.22. Two extensions of G by A with section maps αi : G −→ Bi yield
the same factor set are equivalent.

The proof of the following lemma is in [9].

Lemma 2.4.23. The map ψ from the set of the equivalence classes of extensions
E(G,A) to H2(G;A) is surjective.

The proof of the following lemma is in [9].

Lemma 2.4.24. The map ψ from the set of the equivalence classes of extensions
E(G,A) to H2(G;A) is injective.

The main result in this subsection is the following theorem.

Theorem 2.4.25. There is a one-to-one correspondence between the classes of
extensions E(G,A) and the cohomology group H2(G,M).

Proof. We have already known that the map ψ is well-defined, and lemmas 2.4.5
and 2.4.6 say that ψ is bijective. This proves the theorem.

2.5 Hochschild Homology and Cohomology

In 1945, Hochschild introduced the Hochschild cohomology groups of an associa-
tive algebra [10]. Hochschild cohomology of associative algebras is important in
many branches of mathematics, for example ring theory, commutative algebra,
representation theory, group theory, and topology. The low dimensional groups
(n ≤ 2) have well known interpretations of classical algebraic structures such as
derivations and extensions. The main reference for this section is [22].
Let k be a commutative ring, A be an associative k-algebra. An A-A-bimodule
over A is a k-module M which is both a left module and right module in such
away that (am)a

′
= a(ma

′
) for a, a′ ∈ A and m ∈M .

2.5.1 Hochschild homology and cohomology of associative

algebras

In this subsection, we give directly the definitions of Hochschild homology and
cohomology of associative algebras.
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Definition 2.5.1. [22] The Hochschild homology Hn(A,M) of A with coefficients
in M is the homology of the following chain complex Cn(A,M):

0←−M
δ0←−M ⊗ A δ1←−M ⊗ A⊗ A δ2←− · · ·

where the boundary map

δn : M ⊗ A⊗n −→M ⊗ A⊗n−1

is given by

δn(m⊗ a1 ⊗ · · · ⊗ an) = (ma1 ⊗ a2 ⊗ · · · ⊗ an)

+
∑

0<i<n

(−1)i(m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+ (−1)n(anm⊗ a1 ⊗ · · · ⊗ an−1).

Hence, Hn(A,M) = Hn(Cn(A,M)) where Cn(A,M) = M ⊗ A⊗n.

Example 2.5.2. (The 0-Hochschild homology).
The boundary map

δ0 : M ⊗ A −→M

is the k-submodule [M,A] of M generated by the elements ma − am, where a ∈ A
and m ∈M . Thus, H0(A,M) ∼= M/[M,A].

Definition 2.5.3. [22] The Hochschild cohomology Hn(A,M) of A with coeffi-
cients in M is the cohomology of the following cochain complex Cn(A,M):

0→M
δ0−→ Hom(A,M)

δ1−→ Hom(A⊗2,M)
δ2−→ · · ·

where the coboundary map

δn : Hom(A⊗n,M) −→ Hom(A⊗n+1,M)

is given by

δn(f)(a1, · · · , an+1) = a1f(a2, · · · , an+1)

+
∑

0<i<n+1

(−1)if(a1, · · · , aiai+1, · · · , an+1)

+ (−1)n+1f(a1, · · · , an)an+1.



Preliminaries 27

Hence, Hn(A,M) = Hn(Cn(A,M)) where Cn(A,M) = Hom(A⊗n,M).

Example 2.5.4. (The 0-Hochschild cohomology).
We have that

H0(A,M) = ker(δ0)

= {m ∈M, δ0(m)(a) = am−ma = 0, ∀a ∈ A.}

In particular, H0(A) = Z(A) the center of A.

Example 2.5.5. (The first Hochschild cohomology).
We have that

H1(A,M) = ker(δ1)/im(δ0)

where

ker(δ1) = {f ∈ Hom(A,M) | δ1(f)(a, b) = af(b)− f(ab) + f(a)b = 0, ∀a, b ∈ A}

= Der(A,M)

are the derivations of A in M, and

im(δ0) = {f ∈ Hom(A,M) : f = δ0(m), m ∈M}

= {fm ∈ Hom(A,M), m ∈M : f(a) = am−ma}

= PDer(A,M)

are the principal derivations of A in M. Then H1(A,M) ∼= Der(A,M)/PDer(A,M).

Example 2.5.6. (The second Hochschild cohomology).
We have that

H2(A,M) = ker(δ2)/im(δ1)

where

ker(δ2) = {f : A⊗ A −→M | δ2(f) = 0}

= {f : A⊗ A −→M | af(b, c)− f(ab, c) + f(a, bc)− f(a, b)c = 0}

and

im(δ1) = {f : A⊗ A −→M | f = δ1(g), g ∈ Hom(A,M)}

= {f : A⊗ A −→M | f(a, b) = ag(b)− g(ab) + g(a)b, g ∈ Hom(A,M)}.
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2.5.2 H2 and Extensions

In this subsection, we show that H2 classifies equivalence classes of Hochschild
extensions.

Definition 2.5.7. [22] Let A be a k-algebra, M be an A-A-bimodule. A Hochschild
extension E of A by M is a short exact sequence

E : 0 −→M
φ−→ B

γ−→ A −→ 0

where γ is an epimorphism of algebras and φ is a monomorphism of k-modules
such that

φ(γ(b) ·m) = b · φ(m),

φ(m · γ(b)) = φ(m) · b,

∀b∈B, m∈M.

Definition 2.5.8. [22] A Hochschild extension E : 0 −→ M
φ−→ B

γ−→ A −→ 0 is
called split if there is a section α : A −→ B such that γ ◦ α = idA.

Definition 2.5.9. [22] Two extension E1 and E2 are equivalent if there exists a
morphism of algebras ϕ : B1 −→ B2 such that

E1 : 0 //M // B1
//

ϕ

��

A // 0

E2 : 0 //M // B2
// A // 0

is commutative.

Definition 2.5.10. [22] The function f : A ⊗ A −→ M is called a factor set of
the Hochschild extension corresponding to the splitting α.

Definition 2.5.11. [22] A 2-cocycle is a function f : A⊗ A −→M satisfying:

xf(y, z)− f(xy, z) + f(x, yz)− f(x, y)z = 0

for all x, y, z ∈ A.

We denote the set of equivalence classes of the Hochschild extensions of A by M
by E(A,M).
The proof of the following important result is in [22].
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Theorem 2.5.12. There is a one-to-one correspondence between the classes of
Hochschild extensions E(A,M) and the Hochschild cohomology H2(A,M).

2.6 Spectral Sequences

Jean Leray introduced spectral sequences in order to compute the (co)homology
of a chain complex [12]. Spectral sequences give a fundamental computational
tool in algebra, topology and homological algebra. In this section, we give a brief
overview of spectral sequences. This material can be found in [22] and [19].

Definition 2.6.1. [19] A homology spectral sequence in the category R-mod of
R-modules consists of the following data:

1. A family {Er
pq} of R-modules for all integers p, q and r ≥ 1.

2. R-maps
drpq : Er

pq −→ Er
p−r,q+r−1

that are differentials in the sense that drdr = 0.

3. Isomorphisms between Er+1
pq and the homology of Er

?? at the spot Er
pq:

Er+1
pq
∼= Ker(drpq)/Im(drp+r,q−r+1)

There is a category of homology spectral sequences. A morphism f : E −→ E
′

is a family of R-maps f rpq : Er
pq −→ E

′r
pq in R-modules with drf r = f rdr, that is,

f r commutes with the differentials and each f r+1
pq is the map induced by f rpq on

homology.

Definition 2.6.2. [19] Dually, a cohomology spectral sequence in the category R-
mod of R-modules consists of the following data:

1. A family {Epq
r } of R-modules for all integers p, q and r ≥ 1.

2. R-maps
dpqr : Epq

r −→ Ep+r,q−r+1
r

that are differentials in the sense that drdr = 0.
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3. Isomorphisms between Epq
r+1 and the homology of E??

r at the spot Epq
r :

Epq
r+1
∼= Ker(dpqr )/Im(dp−r,q+r−1r )

There is a category of homology spectral sequences. A morphism f : E −→ E
′

is a family of R-maps fpqr : Epq
r −→ E

′pq
r in R-modules with drfr = frdr, that is,

fr commutes with the differentials and each fpqr+1 is the map induced by fpqr on
homology.

A homology spectral sequence is said to be bounded if for each n there are only
finitely many nonzero terms of total degree n in Ea

∗∗. If so, then for each p and q
there is an r0 sucg that Er

pq = Er+1
pq for all r ≥ r0. We write E∞pq for this stable

value of Er
pq.

We say that a bounded spectral sequence converges to H∗ if we are given family
of objects Hn, each having a finite filtration

0 = FsHn ⊆ · · · ⊆ Fp−1Hn ⊆ FpHn ⊆ Fp+1Hn ⊆ · · · ⊆ FtHn = Hn,

and we are given isomorphisms E∞pq ∼= FpHp+q/Fp−1Hp+q. The traditional symbolic
way of describing such a bounded convergence is like this:

Ea
pq ⇒ Hp+q.

Similarly, a cohomology spectral sequence is called bounded if there are only finitely
many nonzero terms of total degree in E∗∗a . In a bounded cohomology spectral
sequence, we write Epq

∞ for the stable value of the terms Epq
r and say the bounded

spectral sequence converges to H∗ if there is a finite filtration

0 = F tHn ⊆ · · ·F p+1Hn ⊆ F pHn · · · ⊆ F sHn = Hn

so that Epq
∞
∼= F pHp+q/F p+1Hp+q.

The proof of the following useful result is in [22].

Lemma 2.6.3.

1. If E1
pq ⇒ Hp+q and E1

pq = 0 for q > 0, then Hp = E2
p0 for all p > 0.

2. If additionally E2
p0 = 0 for p > 0, then Hp = 0 for p > 0.
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2.7 Deformation Theory

Algebraic deformation theory was introduced for associative algebras by Gersten-
haber in [6]. In this section, we describe the connection between deformation
theory and cohomology theory. All definitions and theorems in this section can be
found in [5].

LetK be a field. A one-parameter algebraic deformation of a finite dimensionalK-
algebra A, may be considered informally as a family of algebras At parameterized
by K such that A0

∼= A and the multiplicative structure of At varies algebraically
with t.

Definition 2.7.1. [5] Let A[[t]] be the K[[t]]-module of formal power series with
coefficients in the K-module A, that is, A[[t]] = A⊗K [[t]] as a module.

Now we will state the formal definition of a deformation.

Definition 2.7.2. [5] A one-parameter formal deformation of a K-algebra A is a
formal power series F =

∑∞
n=0 fnt

n with coefficients in Homk(A ⊗ A,A) and for
all a, b ∈ A, f0(a, b) = ab. The deformation A[[t]] with the multiplication defined
by F may be written as A[[t]]F or AF . If F is finite, or at least finite for each pair
(a, b) ∈ A⊗ A, the multiplication may be defined on A[t] over K[t].

Definition 2.7.3. [5] Let A be an associative K-algebra. Then the deformation
AF is called associative if

F (F (a, b), c) = F (a, F (b, c)) (2.1)

for all a, b, c in A.

If we expand both sides of the equation (2.1) and collect the coefficients of tn we
have

n∑
i=0

fi(fn−i(a, b), c) =
n∑
i=0

fi(a, fn−i(b, c)) (2.2)

Definition 2.7.4. [5] Let fn be the first non zero coefficient after f0 in the expan-
sion F =

∑
fnt

n. Then fn is called the infinitesimal of F.

Theorem 2.7.5. If F is an associative deformation of A then the infinitesimal
fn of F is a Hochschild 2-cocycle.
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Proof. Let F be an associative deformation of A and fn be the infinitesimal of F .
We may rewrite (2.1) as

f0(fn(a, b), c) + fn(f0(a, b), c) = f0(a, fn(b, c)) + fn(a, f0(b, c)).

Since f0 is the multiplication in A we will obtain

fn(ab, c) + fn(a, b)c = afn(b, c) + fn(a, bc),

or
afn(b, c)− fn(ab, c) + fn(a, bc)− fn(a, b)c = 0. (2.3)

The left hand side of (2.3) is the Hochschild coboundary of fn and therefore d2fn =

0. That is, fn ∈ Kerd2. Thus, fn is a Hochschild 2-cocycle.

For arbitrary m, equation (2.1) above may be written as

d2fm(a, b, c) =
m−1∑
i=1

fi(fm−i(a, b), c)− fi(a, fm−i(b, c)). (2.4)

The right hand side of (2.4) is the obstruction to finding fm that extends the
deformation.
The following theorem is the most important result in deformation theory and the
proof can be found in [5].

Theorem 2.7.6. The obstruction is a Hochschild 3-cocycle.

The proof of the following result is in [5].

Corollary 2.7.7. If H3(A,A) = 0 then every 2-cocycle of A may be extended to
an associative deformation of A.

2.7.1 Equivalent and trivial deformations

Given associative deformations AF and AG of A, we want to know when there is
an isomorphism AF −→ AG which keeps A fixed.

Definition 2.7.8. [5] A formal isomorphism Ψ : AF −→ AG is a k[[t]]-linear map
A[[t]]F −→ A[[t]]G that may be expressed in the form

Ψ(a) = ψ0(a) + ψ1(a)t+ ψ2(a)t2 + ψ3(a)t3 + · · ·
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where ψ0(a) = a for a ∈ A. Observe that it is enough to consider a ∈ A, since Ψ

is defined over K[[t]]. We consider that each ψn is a k-linear map A −→ A. If Ψ

is multiplication preserving, we say it is an algebraic isomorphism, that is,

G(Ψ(a),Ψ(b)) = Ψ(F (a, b))

for all a and b in A.

Definition 2.7.9. [5] We say that two deformations AF and AG are equivalent if
there exists a formal isomorphism Ψ : AF −→ AG, and we write AF ∼= AG.

Proposition 2.7.10. Two infinitesimal deformations fn and gn of F and G re-
spectively, are equivalent if they are in the same cohomlogy class. That is, they
represent the same element of H2(A,A).

The proof of the following theorem can be found in [5].

Theorem 2.7.11. If H2(A,A) = 0, then all deformations of A are isomorphic.

Definition 2.7.12. [5] A deformation AF is called a trivial deformation if AF ∼=
A. That is, F = f0.

Definition 2.7.13. [5] An algebra A is called rigid if it has only trivial deforma-
tions.

Corollary 2.7.14. If H2(A,A) = 0, then A is rigid.



Chapter 3

Cohomology of Oriented Algebras

In this chapter, we develop a cohomology theory of oriented algebras. The con-
struction is based on the possibility to mix standard chain complexes computing
group and associative algebra cohomologies. We will prove several important re-
sults about such cohomologies.

We recall some notations for the standard chain complexes associated to groups
and associative algebras. We also recall the bicomplex which we will use through
the whole chapter.

In what follows k denotes a ground commutative ring with unit. All modules and
algebras are considered over k. Furthermore, we write ⊗ and Hom instead of ⊗k
and Homk. For a group G and G-module C we let C•(G,C) denote the standard
complex computing the group cohomology. We let

Cn(G,C) =Maps(Gn, C)

and the coboundary map

∂ :Maps(Gn, C) −→Maps(Gn+1, C)

is given by

(∂α)(x1, · · · , xn+1) = x1α(x2, · · · , xn+1)

+
n∑
i=1

(−1)iα(x1, · · · , xixi+1, · · · , xn+1)

+ (−1)n+1α(x1, · · · , xn).

34
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So by the definition
Hn(G,C) = Hn(C•(G,C)).

We will say that a cochain complex

C• = C0 δ−→ C1 δ−→ C2 δ−→ · · ·

is a G-complex if each module Cn is endowed with a structure of G-module and
each boundary is a G-homomorphism. If this is the case, we let C•(G,C•) be the
total complex of the following bicomplex

...
...

...

C0(G,C2)

∂
′′

OO

∂
′
// C1(G,C2) ∂

′
//

∂
′′

OO

C2(G,C2)

∂
′′

OO

∂
′

// · · ·

C0(G,C1)

∂
′′

OO

∂
′
// C1(G,C1) ∂

′
//

∂
′′

OO

C2(G,C1)

∂
′′

OO

∂
′

// · · ·

C0(G,C0)

∂
′′

OO

∂
′
// C1(G,C0) ∂

′
//

∂
′′

OO

C2(G,C0)

∂
′′

OO

∂
′

// · · ·

The cohomology of C•(G,C•) is denoted by H•(G,C•) and is called the hyperco-
homology of G with coefficients in C•. The spectral sequences associated to this
bicomplexes have the form

1Epq
1 = Hq(G,Cp) =⇒ H∗(G,C•)

and
2Epq

2 = Hp(G,Hq(C•)) =⇒ H∗(G,C•).

Let A be an associative k-algebra. Recall that the Hochschild cohomology of A
with coefficients in a A-bimodule M is the cohomology of the following cochain
complex:

0→M
δ0−→ Hom(A,M)

δ1−→ Hom(A⊗2,M)
δ2−→ · · ·

where the coboundary map

δn : Hom(A⊗n,M) −→ Hom(A⊗n+1,M)
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is given by

δ(f)(a1, · · · , an+1) = a1f(a2, · · · , an+1)

+
∑

0<i<n+1

(−1)if(a1, · · · , aiai+1, · · · , an+1)

+ (−1)n+1f(a1, · · · , an)an+1.

Hence, Hn(A,M) = Hn(Cn(A,M)), where Cn(A,M) = Hom(A⊗n,M).
Let us also recall that for an algebra A the category of A-bimodules is isomorphic
to the category of left Ae-modules, where Ae is the enveloping algebra. As a
module one has Ae = A⊗ A, while the multiplication is defined by

(a⊗ b)(c⊗ d) = ac⊗ db.

Moreover, one has an isomorphism H∗(A,M) = Ext∗Ae(A,M), provided A is pro-
jective as a k-module.

3.1 Oriented Algebras

In this section, we define oriented algebras and provide some examples.

Definition 3.1.1. An orientation is a pair (G, ε), where G is a group and ε is a
group homomorphism

ε : G −→ {±1}

If such orientation is fixed, then we called that G is an oriented group.

Example 3.1.2.

1. Any group G can be equipped with a trivial orientation: ε(g) = 1 for all
g ∈ G.

2. For more interesting examples, we could take

(a) G = {±1} and ε = id.

(b) G = Sn and ε(σ) = sgn(σ).

Definition 3.1.3. Let G be an oriented group and A be an associative algebra.
An oriented action of (G, ε) on A is given by a map

G× A→ A,
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(g, a) 7→ ga,

such that under this action A is a G-module and

g(a+ b) = ga+ gb

gha = g(ha)

g(ab) =

{
gagb if ε(g) = +1,
gbga if ε(g) = −1.

g(1) = 1.

An oriented algebra over (G, ε) is an associative algebra equipped with an oriented
action of (G, ε) on A.

Example 3.1.4.

1. Observe that if G is equipped with a trivial orientation, then G acts on A via
algebra automorphisms, hence in this case an oriented algebra is nothing but
a G-algebra in the classical sense.

2. Another interesting example is obtained when G = {±1} and ε = id. In this
case A is nothing but an involutive algebra. Recall that an involutive algebra
is an associative algebra A together with a k-linear map

A→ A,

a 7→ a,

such that
a+ b = a+ b

ab = ba

a = a.

Definition 3.1.5. Let A and B be oriented algebras over an oriented group (G, ε).
A homomorphism of G-modules f : A→ B is called a homomorphism of oriented
algebras provided f is a homomorphism of algebras.

The oriented algebras and oriented algebra homomorphisms over an oriented group
(G, ε) form a category denoted by (G, ε)-Alg. There is an obvious forgetful functor
U : (G, ε)-Alg→ G-Mod to the category of G-modules.
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Let M be a G-module. Consider the tensor algebra

T ∗(M) = k ⊕M ⊕M⊗2 ⊕ · · · ⊕M⊗n ⊕ · · ·

Define an action of G on T ∗(M) by

g(m1 ⊗ · · · ⊗mn) =

{
gm1 ⊗ · · · ⊗ gmn, if ε(g) = +1,
gmn ⊗ · · · ⊗ gm1, if ε(g) = −1.

One checks that this action on the tensor algebra defines an oriented algebra
structure.

Lemma 3.1.6. The assignment

M 7→ T ∗(M)

defines a functor G-Mod→ (G, ε)-Alg, which is left adjoint to the forgetful func-
tor U : (G, ε)-Alg→ G-Mod.

Proof. Let A be an oriented algebra and let f : M → A be a G-module homomor-
phism. By properties of the tensor algebra the map f has a unique extension as
an algebra homomorphism T ∗(M) 7→ M , which by abuse of the notations still is
denoted by f . So

f(m1 ⊗ · · · ⊗mn) = f(m1) · · · f(mn).

Now it is clear that the extended map is compatible on G-actions and the result
follows.

3.2 Oriented Bimodules and Cohomology

Definition 3.2.1. Let A be an oriented algebra over an oriented group (G, ε).
An oriented bimodule over A is an usual bimodule X together with a G-module
structure on X such that

g(ax) =

{
gagx, if ε(g) = +1,
gxga, if ε(g) = −1,

g(xa) =

{
gxga, if ε(g) = +1,
gagx, if ε(g) = −1.
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ghx = g(hx).

It should be clear what homomorphisms of oriented bimodules are.

Let A be an oriented algebra over an oriented group (G, ε) and letX be an oriented
bimodule. For any n > 0 one defines an action of G on Hom(A⊗n, X) by

(gf)(a1, ..., an) =

{
gf(g

−1a1, ...,
g−1an) if ε(g) = +1,

(−1)
(n−1)(n−2)

2
gf(g

−1an, ...,
g−1a1) if ε(g) = −1.

In particular, for n = 1 the action is independent on the parity of ε(g).

Lemma 3.2.2. With this action the Hochschild complex

0→ X
δ0−→ Hom(A,X)

δ1−→ Hom(A⊗2, X)
δ2−→ · · ·

is a G-complex.

Proof. We have to check that the equality δn(gf) = gδn(f), holds for all f ∈
Hom(A⊗n, X) and g ∈ G. There are two cases to consider ε(g) = +1 or ε(g) = −1.
Firstly, we deal with the first case when ε(g) = +1. We have

δ(gf)(a1, · · · , an+1) = a1((
gf)(a2, · · · , an+1))

+
∑

0<i<n+1

(−1)i((gf)(a1, · · · , aiai+1, · · · , an+1))

+ (−1)n+1((gf)(a1, · · · , an))an+1

= a1
gf(g

−1a2, · · · , g
−1an+1)

+
∑

0<i<n+1

(−1)i gf(g
−1a1, · · · , g

−1ai
g−1ai+1, · · · , g

−1an+1)

+ (−1)n+1 gf(g
−1a1, · · · , g

−1an)an+1
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We also have

(gδ(f))(a1, · · · , an+1) =
g(
δ(f)(g

−1a1, · · · , g
−1an+1)

)
=

g(
g−1a1 f(g

−1a2, · · · , g
−1an+1)

)
+

∑
0<i<n+1

(−1)i
g(
f(g

−1a1, · · · , g
−1ai

g−1ai+1, · · · , g
−1an+1)

)
+ (−1)n+1

g(
f(g

−1a1, · · · , g
−1an) g

−1an+1

)
= a1

gf(g
−1a2, · · · , g

−1an+1)

+
∑

0<i<n+1

(−1)i gf(g
−1a1, · · · , g

−1ai
g−1ai+1, · · · , g

−1an+1)

+ (−1)n+1 gf(g
−1a1, · · · , g

−1an)an+1.

Next, we deal with second case when ε(g) = −1. We have

δ(gf)(a1, · · · , an+1) = a1((
gf)(a2, · · · , an+1))

+
∑

0<i<n+1

(−1)i(gf)(a1, · · · , aiai+1, · · · , an+1)

+ (−1)n+1((gf)(a1, · · · , an))an+1

= (−1)
(n−1)(n−2)

2 a1
gf(g

−1an+1, · · · , g
−1a2)

+
∑

0<i<n+1

(−1)
(n−1)(n−2)

2
+i gf(g

−1an+1, · · · , g
−1ai+1

g−1ai, · · · , g
−1a1)

+ (−1)
(n−1)(n−2)

2
+n+1 gf(g

−1an, · · · , g
−1a1)an+1

We also have

(gδ(f))(a1, · · · , an+1) = (−1)
n(n−1)

2

g(
δ(f)(g

−1an+1, · · · , g
−1a1)

)
= (−1)

n(n−1)
2

g(
g−1an+1 f(g

−1an, · · · , g
−1a1)

)
+ (−1)

n(n−1)
2

∑
0<i<n+1

(−1)i
g(
f(g

−1an+1, · · · , g
−1an−i+2

g−1an−i+1, · · · , g
−1a1)

)
+ (−1)

n(n−1)
2 (−1)n+1

g(
f(g

−1an+1, · · · , g
−1a2)

g−1a1

)
= (−1)

n(n−1)
2

gf(g
−1an, · · · , g

−1a1)an+1

+ (−1)
n(n−1)

2

∑
0<j<n+1

(−1)n+1−j gf(g
−1an+1, · · · , g

−1aj+1
g−1aj, · · · , g

−1a1)

+ (−1)
n(n−1)

2
+n+1 a1

gf(g
−1an+1, · · · , g

−1a2)

Thus, we see that δ commutes with the group action.
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Thus one can form the following bicomplex C∗G(A,X).

...
...

...

Maps(G2, X)

∂
′′

OO

∂
′
//Maps(G2, Hom(A,X)) ∂

′
//

∂
′′

OO

Maps(G2, Hom(A⊗2, X))

∂
′′

OO

∂
′
// · · ·

Maps(G,X)

∂
′′

OO

∂
′
//Maps(G,Hom(A,X)) ∂

′
//

∂
′′

OO

Maps(G,Hom(A⊗2, X))

∂
′′

OO

∂
′
// · · ·

X

∂
′′

OO

∂
′

// Hom(A,X) ∂
′

//

∂
′′

OO

Hom(A⊗2, X)

∂
′′

OO

∂
′

// · · ·

where the coboundary maps given as following:

• The coboundary of every horizontal maps ∂′ is given by:

(∂
′
α)(g1, · · · , gn, a1, · · · , an+1) = a1α(g1, · · · , gn, a2, · · · , an+1)

+
∑

0<i<n+1

(−1)iα(g1, · · · , gn, a1, · · · , aiai+1, · · · , an+1)

+ (−1)n+1α(g1, · · · , gn, a1, · · · , an)an+1.

• The coboundary of the first vertical maps is given by:

(∂
′′
f)(g1, · · · , gn+1) = g1f(g2, · · · , gn+1)

+
n∑
i=1

(−1)if(g1, · · · , gigi+1, · · · , gn+1)

+ (−1)n+1f(g1, · · · , gn).

• The coboundary of the second vertical maps when ε(g) = ±1 is given by:

(∂
′′
β)(g1, · · · , gn+1, a) = g1β(g2, · · · , gn+1,

g−1 1a)

+
n∑
i=1

(−1)iβ(g1, · · · , gigi+1, · · · , gn+1, a)

+ (−1)n+1β(g1, · · · , gn, a).
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• The coboundary of the third vertical maps when ε(g) = +1 is given by:

(∂
′′
γ)(g1, · · · , gn+1, a, b) = g1γ(g2, · · · , gn+1,

g−1 1a, g
−
1 1b)

+
n∑
i=1

(−1)iγ(g1, · · · , gigi+1, · · · , gn+1, a, b)

+ (−1)n+1γ(g1, · · · , gn, a, b).

• The coboundary of the third vertical maps when ε(g) = −1 is given by:

(∂
′′
γ)(g1, · · · , gn+1, a, b) = g1γ(g2, · · · , gn+1,

g−1 1b, g
−
1 1a)

+
n∑
i=1

(−1)iγ(g1, · · · , gigi+1, · · · , gn+1, a, b)

+ (−1)n+1γ(g1, · · · , gn, a, b).

The homologies of the total complex are denoted by Hn
G(A,X) where n > 0. We

will also need the following double complex C̃∗G(A,X) that is obtained by deleting
the first column and reindexing.

...
...

Maps(G2, Hom(A,X)) ∂
′
//

∂
′′

OO

Maps(G2, Hom(A⊗2, X))

∂
′′

OO

∂
′
// · · ·

Maps(G,Hom(A,X)) ∂
′
//

∂
′′

OO

Maps(G,Hom(A⊗2, X))

∂
′′

OO

∂
′
// · · ·

Hom(A,X) ∂
′

//

∂
′′

OO

Hom(A⊗2, X)

∂
′′

OO

∂
′

// · · ·

The homologies of the total complex of C̃∗G(A,X) are denoted by H̃n
G(A,X) where

n > 0. These groups fit in the following exact sequence:

0 // H0
G(A,X) // H0(G,X) // H̃0

G(A,X)

// H1
G(A,X) // H1(G,X) // H̃1

G(A,X)

// H2
G(A,X) // H2(G,X) // H̃2

G(A,X) // · · ·
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3.3 Classification of Singular Extension of Oriented

Algebras

It is a well-known fact that the second Hochschild cohomology classifies the sin-
gular extensions of associative algebras [22]. Here we obtain a similar result for
oriented algebras.

Definition 3.3.1. Let A be an oriented algebra over an oriented group (G, ε).
Moreover, let X be an oriented bimodule over A. A singular extension of A by X
is a k-split short exact sequence of G-modules

0→ X
i−→ B

p−→ A −→ 0

where B is also an oriented algebra over an oriented group (G, ε). Furthermore,
p is a homomorphism of oriented algebras and i is homomorphism of G-modules
such that

i(x1)i(x2) = 0,

i(x)b = i(xp(b)),

bi(x) = i(p(b)x),

for all x, x1, x2 ∈ X, b ∈ B.

Theorem 3.3.2. Let A be an oriented algebra over an oriented group (G, ε).
Moreover, let X be an oriented bimodule over A. Then, there is a one-to-one
correspondence between equivalence classes of extensions of A by X and H̃1

G(A,X).

Before giving the proof, one can observe that H̃1
G(A,X) = Z̃1

G(A,X)/B̃1
G(A,X),

where Z̃1
G(A,X) is the collection of pairs (α, β), where α ∈Maps(G,Hom(A,X))

and β ∈ Hom(A⊗2, X) satisfying the following conditions:

α(gh, a) = gα(h, g
−1a) + α(g, a),

a1α(g, a2)−α(g, a1a2)+α(g, a1)a2 =

{
β(a1, a2)− gβ(g

−1a1,
g−1a2), if ε(g) = +1,

β(a1, a2)− gβ(g
−1a2,

g−1a1), if ε(g) = −1,

a1β(a2, a3)− β(a1a2, a3) + β(a1, a2a3)− β(a1, a2)a3 = 0.
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Observe that the last equality simply says that β is a Hochschild 2-cocycle. More-
over, (α, β) ∈ B̃1

G(A,X) if and only if there exists γ ∈ Hom(A,X) such that

β(a1, a2) = a1γ(a2)− γ(a1a2) + γ(a1)a2

and
α(g, a) = gγ(g

−1a)− γ(a).

Proof. Let us start with a singular extension as above. To simplify the notation
we will assume that X is a submodule of B and i(x) = x. Choose a linear map
s : A −→ B such that ps = idA. One defines

α ∈Maps(G,Hom(A,X))

and
β ∈ Hom(A⊗2, X)

by
α(g, a) = s(a)− gs(g

−1a) (3.1)

and
β(a1, a2) = s(a1)s(a2)− s(a1a2). (3.2)

We claim that (α, β) ∈ Z̃1
G(A,X). By the classical argument β is a Hochschild

2-cocycle [22]. Next, we have

gα(h,g
−1

a) + α(g, a) = g(s(g
−1

a)− hs(h
−1g−1a)) + s(a)− gs(g

−1

a)

= gs(g
−1

a)− ghs(h
−1g−1

a) + s(a)− gs(g
−1

a)

= s(a)− ghs(h
−1g−1

a)

= α(gh, a)

(3.3)

To obtain the reminder equations, we have to consider two cases. If ε(g) = +1 we
have form (3.1)

s(a1a2) = gs(g
−1

a1
g−1

a2) + α(g, a1a2)

= g(s(g
−1

a1)s(
g−1

a2)− β(g
−1

a1,
g−1

a2))) + α(g, a1a2)

= gs(g
−1

a1)
gs(g

−1

a2)− gβ(g
−1

a1,
g−1

a2) + α(g, a1a2)
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and from (3.2) we also have

s(a1a2) = s(a1)s(a2)− β(a1, a2)

= (gs(g
−1

a1) + α(g, a1))(
gs(g

−1

a2) + α(g, a2))− β(a1, a2)

= gs(g
−1

a1)
gs(g

−1

a2) + a1α(g, a2) + α(g, a1)a2 − β(a1, a2)

Comparing these expressions we see that

a1α(g, a2)− α(g, a1a2) + α(g, a1)a2 = β(a1, a2)− gβ( g
−1

a1,
g−1

a2). (3.4)

By replacing g−1a1 = b1 and g−1a2 = b2 in (3.4) we have

gb1α(g, gb2)− α(g, gb1
gb2) + α(g, gb1)

gb2 = β(gb1,
gb2)− gβ(b1, b2) (3.5)

Similarly, if ε(g) = −1 and from (3.1) we have

s(a1a2) = gs(g
−1a2

g−1a1) + α(g, a1a2)

= g(s(g
−1a2)s(

g−1a1)− β(g
−1a2,

g−1a1)) + α(g, a1a2)

= gs(g
−1a1)

gs(g
−1a2)− gβ(g

−1a2,
g−1a1) + α(g, a1a2)

and from (3.2) we also have

s(a1a2) = s(a1)s(a2)− β(a1, a2)

= (gs(g
−1a1) + α(g, a1))(

gs(g
−1a2) + α(g, a2))− β(a1, a2)

= gs(g
−1a1)

gs(g
−1a2) + a1α(g, a2) + α(g, a1)a2 − β(a1, a2)

Comparing these expressions we see that

a1α(g, a2)− α(g, a1a2) + α(g, a1)a2 = β(a1, a2)− gβ(g
−1a2,

g−1a1) (3.6)

By replacing g−1a1 = b2 and g−1a2 = b1 in (3.6) we have

gb2α(g, gb1)− α(g, gb2
gb1) + α(g, gb2)

gb1 = β(gb2,
gb1)− gβ(b1, b2) (3.7)

Hence, we show that in fact (α, β) ∈ Z̃1
G(A,X).

Conversely, starting with (α, β) ∈ Z̃1
G(A,X) one can define B = X ⊕A where the

multiplication is given by

(x1, a1)(x2, a2) = (x1a2 + a1x2 + β(a1, a2), a1a2)
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and
g(x, a) = (gx− α(g, ga), ga)

We claim thatB satisfies all properties of oriented algebra and defines an extension.
Firstly, we have

g(0, 1) = (g0− α(g, g1), g1)

= (−α(g, 1), 1)

= (0, 1)

Since α is normalised. Next, for x1, x2 ∈ X and a1, a2 ∈ A, we have

g((x1, a1) + (x2, a2)) = g(x1 + x2, a1 + a2)

= (gx1 + gx2 − α(g, ga1 + ga2),
ga1 + ga2)

and

g(x1, a1) + g(x2, a2) = (gx1 − α(g, ga1),
ga1) + (gx2 − α(g, ga2),

ga2)

= (gx1 + gx2 − α(g, ga1)− α(g, ga2),
ga1 + ga2)

Therefore, from definition of α it follows that

g((x1, a1) + (x2, a2)) = g(x1, a1) + g(x2, a2).

Then, if ε(g) = +1 we have

g((x1, a1)(x2, a2)) = g(x1a2 + a1x2 + β(a1, a2), a1a2)

= (gx1
ga2 + ga1

gx2 + gβ(a1, a2)− α(g, ga1
ga2),

ga1
ga2)

and

g(x1, a1)
g(x2, a2) = (gx1 − α(g, ga1),

ga1)(
gx2 − α(g, ga2),

ga2)

= (gx1
ga2 − α(g, ga1)

ga2 + ga1
gx2

− ga1α(g, ga2) + β(ga1,
ga2),

ga1
ga2)

Therefore, from (3.5) it follows that

g((x1, a1)(x2, a2)) = g(x1, a1)
g(x2, a2).
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Similarly, if ε(g) = −1 we have

g((x1, a1)(x2, a2)) = g(x1a2 + a1x2 + β(a1, a2), a1a2)

= (ga2
gx1 + gx2

ga1 + gβ(a1, a2)− α(g, ga2
ga1),

ga2
ga1)

and

g(x2, a2)
g(x1, a1) = (gx2 − α(g, ga2),

ga2)(
gx1 − α(g, ga1),

ga1)

= (gx2
ga1 − α(g, ga2)

ga1 + ga2
gx1

− ga2α(g, ga1) + β(ga2,
ga1),

ga2
ga1)

Therefore, from (3.7) it follows that

g((x1, a1)(x2, a2)) = g(x2, a2)
g(x1, a1).

Finally, for x ∈ X and a ∈ A, we have

gh(x, a) = (ghx− α(gh,gh a),gh a)

and

g(h(x, a)) = g(hx− α(h, ha), ha) = (ghx− gα(h, ha)− α(g,gh a), gha).

Comparing these expression we have that

gh(x, a) = g(h(x, a)) if and only if α(gh, gha) = gα(h, ha) + α(g, gha).

But this follows from (3.3) by replacing a by ghb. Thus one obtains an inverse map
from the cohomology to extensions.

3.4 Enveloping algebra, cohomology and Ext

Let A be an oriented algebra over an oriented group (G, ε). We let (A,G)-Bim
be the category of all oriented bimodules. As we will see soon this is an abelian
category with enough projective and injective objects. This follows from Lemma
3.4.1 below, which says that the category of oriented bimodules (A,G)-Bim is
isomorphic to the category of left modules over an algebra (A,G)e-Mod, where
(A,G)e is the following associative algebra, called the enveloping algebra of an
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oriented algebra A. As a module it is A ⊗ k[G] ⊗ A, while the multiplication is
given by

(a⊗ g ⊗ b)(c⊗ h⊗ d) =

{
a gc⊗ gh⊗ gdb, if ε(g) = +1,

a gd⊗ gh⊗ gcb, if ε(g) = −1.

Where a, b, c, d ∈ A and g, h ∈ G.

Lemma 3.4.1. The above formula defines an associative algebra structure on
(A,G)e. Moreover, one has an isomorphism of categories (A,G)-Bim ∼ (A,G)e-
Mod.

Proof. To show that (A,G)e is an associative algebra we have to check only the
associativity property:

((a⊗ g ⊗ b)(c⊗ h⊗ d))(u⊗ k ⊗ v) = (a⊗ g ⊗ b)((c⊗ h⊗ d)(u⊗ k ⊗ v)).

Indeed, there are four cases to considered. First case if ε(g) = +1 and ε(h) = +1

we have

((a⊗g⊗b)(c⊗h⊗d))(u⊗k⊗v) = (a gc⊗gh⊗gdb)(u⊗k⊗v) = a gc ghu⊗ghk⊗ ghv gdb.

and

(a⊗g⊗b)((c⊗h⊗d)(u⊗k⊗v)) = (a⊗g⊗b)(c hu⊗hk⊗hvd) = a gc ghu⊗ghk⊗ ghv gdb.

Second case if ε(g) = +1 and ε(h) = −1 we have

((a⊗g⊗b)(c⊗h⊗d))(u⊗k⊗v) = (a gc⊗gh⊗gdb)(u⊗k⊗v) = a gc ghv⊗ghk⊗ ghu gdb.

and

(a⊗g⊗b)((c⊗h⊗d)(u⊗k⊗v)) = (a⊗g⊗b)(c hv⊗hk⊗hud) = a gc ghv⊗ghk⊗ ghu gdb.

Third case if ε(g) = −1 and ε(h) = −1 we have

((a⊗g⊗b)(c⊗h⊗d))(u⊗k⊗v) = (agd⊗gh⊗gcb)(u⊗k⊗v) = a gd ghu⊗ghk⊗ ghv gcb.
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and

(a⊗ g ⊗ b)((c⊗ h⊗ d)(u⊗ k ⊗ v)) = (a⊗ g ⊗ b)(c hv ⊗ hk ⊗ hud)

= a g(hud)⊗ ghk ⊗ g(chv)b

= a gd ghu⊗ ghk ⊗ ghv gcb.

Last case if ε(g) = −1 and ε(h) = +1 we have

((a⊗g⊗b)(c⊗h⊗d))(u⊗k⊗v) = (agd⊗gh⊗gcb)(u⊗k⊗v) = a gd ghv⊗ghk⊗ ghu gcb.

and

(a⊗ g ⊗ b)((c⊗ h⊗ d)(u⊗ k ⊗ v)) = (a⊗ g ⊗ b)(c hu⊗ hk ⊗ hvd)

= a g(hvd)⊗ ghk ⊗ g(chu)b

= a gd ghv ⊗ ghk ⊗ ghu gcb.

Thus, we show that (A,G)e is an associative algebra. To show the last assertion,
it suffices to observe that if X is an oriented bimodule, then the formula

(a⊗ g ⊗ b)x := a(gx)b

defines a left (A,G)e-module structure on X and vice versa.

Let A be an oriented algebra over an oriented group (G, ε). Then the map Ae →
(A,G)e, given by a⊗ b 7→ a⊗ 1⊗ b is an algebra homomorphism. Since

(a⊗ 1⊗ b)(1⊗ g ⊗ 1) = a⊗ g ⊗ b

it follows that (A,G)e as a left Ae-module is free with the basis {1⊗ g⊗ 1|g ∈ G}.
As a consequence of this fact we will prove the following result.

Lemma 3.4.2. Let X be a an injective oriented bimodule, then X is also injective
as an usual bimodule.

Proof. Let Y be an usual bimodule. Then X is a left (A,G)e-module and Y is a
left Ae-module. Hence we will have isomorphism

Hom(A,G)e((A,G)e ⊗Ae Y,X) = HomAe(Y,X)
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Since (A,G)e is free Ae-module, the left hand side is an exact functor on Y , hence
the right hand side is also an exact functor on Y . Thus X is injective as a Ae-
module.

It is clear that A itself is an oriented bimodule, thus also a left (A,G)e-module.
Explicitly, one has

(a⊗ g ⊗ b)c = agcb, a, b, c ∈ A, g ∈ G.

This particular bimodule plays an important role, thanks to the following Theo-
rem.

Theorem 3.4.3. Let A be an oriented algebra over an oriented group (G, ε). As-
sume A is projective as a k-module. Then for any oriented bimodule X one has a
natural isomorphism

H∗G(A,X) = Ext∗(A,G)e(A,X).

Proof. By the well-known axiomatic characterization of the Ext-groups [22], we
need to verify the following three properties:

i) There is an isomorphism H0
G(A,X) = Hom(A,G)e(A,X).

ii) For any short exact sequence of oriented bimodules

0→ X1 → X → X2 → 0

there is a long cohomological sequence

0→ H0
G(A,X1)→ H0

G(A,X)→ H0
G(A,X2)→ H1

G(A,X1)→ · · ·

iii) If X is an injective oriented bimodule, then Hn
G(A,X) = 0, for n > 0.

To see i), one can observe that

H0
G(A,X) = {x ∈ X | gx = x and ax = xa a ∈ A, g ∈ G}.

Next, one defines the map

χ : Hom(A,G)e(A,X)→ H0
G(A,X)
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by χ(f) = f(1) = x, where f : A → X is an oriented bimodule homomorphism.
We claim that f(1) = x ∈ H0

G(A,X). One can observe that

f(gb) = gf(b)

af(b) = f(ab)

f(b)a = f(ba).

∀b ∈ A. By taking b = 1 and f(1) = x, we have

f(g1) = gf(1) =⇒ f(1) = gx =⇒ x = gx

and

af(1) = f(a)

f(1)a = f(a)

}
=⇒ af(1) = f(1)a =⇒ ax = xa.

Hence, χ is a well-defined homomorphism.

Conversely, one defines

θ : H0
G(A,X)→ Hom(A,G)e(A,X)

by
θ(x) : A→ X

θ(x)(a) = ax

where x ∈ H0
G(A,M) and a ∈ A. We need to verify the following three conditions:

θ(x)(ga) = g(θ(x)(a))

θ(x)(ab) = a(θ(x)(b))

θ(x)(ab) = (θ(x)(a))b.

We have

θ(x)(ga) = g(θ(x)(a))

⇒ gax = g(ax)

⇒ gax = gagx

⇒ gax = gax
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since gx = x.
Similarly,

θ(x)(ab) = a(θ(x)(b))

⇒ abx = a(bx)

⇒ abx = abx.

Finally,

θ(x)(ab) = (θ(x)(a))b

⇒ abx = (ax)b

⇒ a(bx) = a(xb)

since bx = xb. Hence, the map θ is the inverse of χ.

To see ii), one can observe that projectivity over k implies that one has an exacts
sequence of bicomplexes

0→ C∗G(A,X1)→ C∗G(A,X)→ C∗G(A,X2)→ 0

and the result follows.

To see iii), one can observe that one of the spectral sequence associated to the
double complex C∗G(A,X) has the form

Epq
2 = Hp(G,Hq(A,X)) =⇒ Hp+q

G (A,X)

In the case, when X is an injective object in the category of oriented bimodules
the group Hq(A,X) vanishes provided q > 0, thanks to Lemma 3.4.2. Hence
H∗G(A,X) = H∗(G,H0(A,X)). Next, we can assume that X = Hom((A,G)e, I),
where I is an injective k-module. In this case

H0(A,X) ∼= Hom(k[G]⊗ A, I) ∼= Hom(k[G], Hom(A, I))

where the first isomorphism assigns to an element α ∈ H0(A,X) the element
β ∈ Hom(k[G]⊗A, I) given by β(g, a) = α(1, g, a). ThusH0(A,X) is an coinduced
G-module. Hence Hn(G,H0(A,X)) = 0 if n > 0 and the result follows.
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One easily checks that the map

µ : A⊗ A→ A, a⊗ b 7→ ab,

is an epimorphism of (A,G)e-modules, where A⊗A is considered as a left (A,G)e-
module by

(a⊗ g ⊗ b)(c⊗ d) =

a gc gdb, if ε(g) = +1,

a gd gcb, if ε(g) = −1.

We let I(A,G) be the kernel of µ.

Proposition 3.4.4. Let A be an oriented algebra over an oriented group (G, ε).
Assume A is projective as a k-module. Then for any oriented bimodule X one has
a natural isomorphism

H̃∗G(A,X) = Ext∗(A,G)e(I(A,G), X).

Proof. As in the proof of Theorem 3.4.3 we have to check that the functors
H̃∗G(A,−) satisfy three properties:

1) They coincide with Hom(A,G)e(I(A,G),−).

2) They form an exact and connected sequence.

3) In positive dimensions they vanish on injective objects.

One can observe that the property 2) is obvious, the property 3) follows from the
exact sequence

0→ H0
G(A,X)→ H0(G,M)→ H̃0

G(A,X)→ H1
G(A,X)→ H1(G,X)→ · · ·

and the fact that the groups H i
G(A,X) and H i(G,X) both vanishes for i > 0 and

injective X, thanks to Theorem 3.4.3 and Lemma 3.4.2.

To show the property 1) one can observe that both functor in the question are
left exact. Hence it suffices to consider only injective X. In that case our exact
sequence has the form

0→ H0
G(A,X)→ H0(G,X)→ H̃0

G(A,X)→ 0.
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On the other hand we have a short exact sequence of bimodules

0→ I(A,G)→ A⊗ A→ A→ 0,

which gives

0→ Hom(A,G)e(A,X)→ Hom(A,G)e(A⊗ A,X)→ Hom(A,G)e(I(A,G), X)→ 0.

The first term is isomorphic to the group H0
G(A,X) by Theorem 3.4.3, while the

second term is isomorphic to HomG(k,X) = H0(G,X). Thus the third term is
isomorphic to H̃0

G(A,X). Hence the result.

3.5 Deformation of Oriented Algebras

The aim of this section is to extend the deformation theory of associative algebras
due to Gerstenhaber [6] to oriented algebras.

Definition 3.5.1. Let A be an oriented algebra over an oriented group (G, ε). A
one parameter formal deformation of A is a pair (Ψ,Φ), where

Ψ =
∞∑
i=0

ψit
i and Φ =

∞∑
i=0

φit
i

are formal power series with ψn ∈ Hom(A⊗A,A) and φn ∈Maps(G,Hom(A,A)).
One requires that for all n > 0 the following identities hold

(i) ψ0(a, b) = ab and φ0(g, a) = ga,

(ii)
∑

i+j=n ψi(ψj(a, b), c) =
∑

i+j=n ψi(a, ψj(b, c)),

(iii) φn(gh, a) =
∑

i+j=n φi(g, φj(h, a)),

(iv)
∑

i+j=n φi(g, ψj(a, b)) =


∑

i+j+k=n ψi(φj(g, a), φk(g, b)) if ε(g) = +1,∑
i+j+k=n ψi(φj(g, b), φk(g, a)) if ε(g) = −1.

Here g, h ∈ G and a, b, c ∈ A. The last three identities can be expressed as

Ψ(a,Ψ(b, c)) = Ψ(Ψ(a, b), c),
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Φ(gh, a) = Φ(g,Φ(h, a)),

Φ(g,Ψ(a, b)) =

Ψ(Φ(g, a),Φ(g, b)) if ε(g) = +1,

Ψ(Φ(g, b),Φ(g, a)) if ε(g) = −1,

which shows that A[[t]] becomes an oriented k[[t]]-algebra. If for fixed m > 1 there
are given ψn ∈ Hom(A⊗ A,A) and φn ∈ Maps(G,Hom(A,A)) for n = 0, · · · ,m
satisfying above identities for n = 0, · · · ,m, then we say that there is given an
m-deformation. For m = 1, we have

aψ1(b, c) + ψ1(a, bc) = ψ1(ab, c) + ψ1(a, b)c,

φ1(gh, a) = gφ1(h, a) + φ1(g,
ha),

gψ1(a, b) + φ1(g, ab) =

 gaφ1(g, b) + φ1(g, a) gb+ ψ1(
ga, gb) if ε(g) = +1,

gbφ1(g, a) + φ1(g, b)
ga+ ψ1(

gb, ga) if ε(g) = −1,

In this case we say there is given an infinitesimal deformation.

Definition 3.5.2. Two deformations (Ψ,Φ) and (Ψ′,Φ′) are equivalent if there
exists a formal power series Ω =

∑∞
n=0 ωnt

n, with properties

(i) ωn ∈ Hom(A,A), n ≥ 0,

(ii) ω0(a) = a, a ∈ A,

(iii)
∑

i+j=n ωi(ψ
′
j(a, b)) =

∑
i+j+k=n ψi(ωj(a), ωk(b)),

(iv)
∑

i+j=n ωi(φ
′
j(g, a)) =

∑
i+j=n φi(g, ωj(a)).

Here n > 0, a ∈ A and b ∈ B. The last two equations can be express also
as Ω(Ψ′(a, b)) = Ψ(Ω(a),Ω(b)) and Ω(Φ′(g, a)) = Φ(g,Ω(a)). In other words, Ω

defines an isomorphism of oriented k[[t]]-algebras (Ψ,Φ) → (Ψ′,Φ′). In a same
way one can define under what condition two m-deformations are equivalent.

Lemma 3.5.3. i) Let (Ψ,Φ) be a one parameter formal deformation of an oriented
algebra A. Assume n > 0 is a natural number such that ψi = φi = 0 for 0 < i < n.
Then the pair (ψn, ξn) is a 1-cocycle in C̃∗G(A,A), where

ξn(g, a) = φn(g, g
−1

a)

In particular (ψ1, ξ1) is a 1-cocycle in C̃∗G(A,A).
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ii) There is a one-to-one correspondence between the equivalence classes of in-
finitesimal deformations of an oriented algebra A and H̃1

G(A,A).

Proof. The part ii) easily follows from i). To prove i), we observe that these
equations gives

ψn(a, b)c+ ψn(ab, c) = aψn(b, c) + ψn(a, bc)

φn(gh, a) = gφn(h, a) + φn(g, ha).

gψn(a, b) + φn(g, ab) =

 gaφn(g, b) + φn(g, a) gb+ ψn( ga, gb) if ε(g) = +1,

gbφn(g, a) + φn(g, b) ga+ ψn( gb, ga) if ε(g) = −1.

Next, we have

ξn(gh, a) = φn(gh, h
−1g−1a)

= gφn(h, h
−1g−1a) + φn(g, h h

−1g−1a)

= gξn(h, g
−1a) + φn(g, g

−1a)

= gξn(h, g
−1a) + ξn(g, a).

Finally, we have

gψn(a, b) =

 gaξn(g, gb) + ξn(g, ga) gb+ ψn( ga, gb)− ξn(g, gagb) if ε(g) = +1,

gbξn(g, ga) + ξn(g, gb) ga+ ψn( gb, ga)− ξn(g, gbga) if ε(g) = −1.

Hence, the pair (ψn, ξn) is a 1-cocycle in C̃∗G(A,A).



Chapter 4

Hochschild Cohomology of Green

Functors for Cyclic Groups of Prime

Order

The aim of this chapter is to develop the Hochschild cohomology theory of G-
Green functors. We start this chapter by providing definitions and examples of
G-Mackey functors and G-Green functors. Throughout this chapter, R denotes a
commutative ring and G denotes a finite groups.

4.1 G-Mackey Functors

There are several equivalent definitions of G-Mackey functors for a finite group
G. In this section, we will state two definitions of G-Mackey functors. The first
definition is due to Green [7].

Definition 4.1.1. A G-Mackey functor M consists of a collection of abelian
groups M(H) together with transfer maps trHK : M(K) −→ M(H) and restriction
maps resHK : M(H) −→ M(K) for all subgroups K < H ≤ G, and conjugation
maps cx,H : M(H) −→M(xH) for x ∈ G, such that the following axioms hold:

1. If T ≤ K ≤ H, then trHKtrKT = trHT and resKT resHK = resHT .

2. If x, y ∈ G and H ≤ G, then cy,xHcx,H = cyx,H .

57
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3. If x ∈ G and for all subgroups K ≤ H, then cx,Htr
H
K = tr

xH
xKcx,K and

cx,Kres
H
K = res

xH
xKcx,H . Furthermore, cx,H = Id if x ∈ H.

4. (Mackey axiom) for all subgroups T,K ≤ H

resHT tr
H
K =

∑
x∈[T\H/K]

trTT∩xKcx,Tx∩Kres
K
Tx∩K .

Definition 4.1.2. A morphism f from a Mackey functor M to a Mackey functor
N consists of a collection of morphism of group homomorphisms fH : M(H) −→
N(H), for H ≤ G, such that if K ≤ H and x ∈ G, the squares

M(H)
fH // N(H)

M(K)
fK

//

trHK

OO

N(K)

trHK

OO
M(H)

resHK
��

fH // N(H)

resHK
��

M(K)
fK

// N(K)

M(H)

cx,H

��

fH // N(H)

cx,H

��
M(xH)

fxH

// N(xH)

are commutative.

The second definition is given by Dress [4]. Let Ĝ be the category of finite G-sets.

Definition 4.1.3. A G-Mackey functor M for the finite group G is a pair of
functors (M∗,M

∗) from Ĝ to Ab the category of abelian groups, such that the
following properties hold:

1. M∗(X) = M∗(X) = M(X) for any G-set X.

2. M∗ is covariant and M∗ is contravariant.

3. If X and Y are finite G-sets, and if iX and iY are the respective inclusion
maps from X and Y to their disjoint union X tY , then the maps M∗(iX)⊕
M∗(iY ) and M∗(iX)⊕M∗(iY ) are mutual inverse R-module isomorphisms:

M(X)⊕M(Y )
(M∗(iX)⊕M∗(iY ))−−−−−−−−−−→M(X t Y )

(M∗(iX)⊕M∗(iY ))−−−−−−−−−−−→M(X)⊕M(Y )

4. If
X

f //

g
��

Y

u
��

S v
// T
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is a pullback diagram of finite G-sets, then we have the following commutative
diagram in Ab.

M(X)
M∗(f) //M(Y )

M(S)
M∗(v)

//

M∗(g)

OO

M(T )

M∗(u)

OO

For a map f : X −→ Y of finite G-sets, we call M∗(f) = f∗ a transfer map and
M∗(f) = f ∗ a restriction map. We writeMack(G) for the category of G-Mackey
functors.

Webb shows that these definitions are equivalent in [21].

4.1.1 Examples

In this subsection, we give two common examples of G-Mackey functors.

Example 4.1.4. The simplest example of a G-Mackey functor is the fixed point
G-Mackey functor. Let M be a group with an action of G. We will denote the
fixed point G-Mackey functor of M by M , and we define M by:

M(H) = MH = {m ∈M |h ·m = m for all h ∈ H}

= The subgroup of H-fixed points in M.

For all subgroups K of H, the restriction map resHK : MH −→ MK is simply
inclusion of fixed points, and we define the transfer map trHK : MK −→MH by the
formula:

trHK(m) =
∑
g∈G

g ·m.

Example 4.1.5. The most significant example of a G-Mackey functor is the Burn-
side G-Mackey functor, B. For all subgroups H of G, we define B(H) to be the
Grothendieck group on the set of isomorphism classes of the category of finite
H-sets, denoted by Ĥ, and therefore,

B(H) = {[H]; H ∈ Ĥ},

such that the addition is given by disjoint union, [U ] + [V ] = [U q V ]. Moreover,
for all subgroups K of H, the transfer map trHK : B(K) −→ B(H) is given by
trHK([V ]) = [H ×K V ] and the restriction map resHK : B(H) −→ B(K) is given by
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resHK([U ]) = [ψKU ] where ψK is the restriction functor from Ĥ to K̂. The action
of G is trivial.

4.2 G-Green Functors

In this section, we provide two equivalent definitions of G-Green functors. The
first is a constructive definition similar to definition 4.1.1 of a G-Mackey functor.

Definition 4.2.1. A G-Mackey functor A is a G-Green functor if the following
axioms hold:

1. A(H) is a ring for each subgroup H of G.

2. If K ≤ H are subgroups of G, and x ∈ G, then all restriction maps resHK :

A(H) −→ A(K) and all conjugation maps cx,H : A(H) −→ A(xH) are ring
homomorphisms.

3. A satisfies Frobenius relations: If K ≤ H are subgroups of G then

trHK(a) · b = trHK(a · resHK(b))

b · trHK(a) = trHK(resHK(b) · a)

for all a ∈ A(K) and b ∈ A(H).

Furthermore, a G-Green functor A is commutative if every A(H) is a commutative
ring.

A morphism f from the Green functor A to the Green functor B is a morphism
of Mackey functors such that, for any subgroup H of G, the morphism fH is a
morphism of rings.

The second is the category theoretic definition analogue of the Dress definitions
of Mackey functors [2]. The two definitions are equivalent [2].

Definition 4.2.2. Let R be a commutative ring. A G-Green functor A over R
for the finite group G is a G-Mackey functor endowed for any G-sets X and Y
with bilinear maps

A(X)× A(Y ) −→ A(X × Y )

denoted by (a, b) −→ a× b, such that the following properties hold:
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1. (Bifunctoriality) If f : X −→ X1 and g : Y −→ Y1 are morphisms of
G-sets, then the following diagrams

A(X)× A(Y )
× //

A∗(f)×A∗(g)
��

A(X × Y )

A∗(f×g)
��

A(X1)× A(Y1) ×
// A(X1 × Y1)

A(X)× A(Y )
× // A(X × Y )

A(X1)× A(Y1) ×
//

A∗(f)×A∗(g)

OO

A(X1 × Y1)

A∗(f×g)

OO

are commutative.

2. (Associativity) If X, Y and Z are G-sets, then the following diagram

A(X)× A(Y )× A(Z)
eA(X)×(×) //

(×)×eA(Z)

��

A(X)× A(Y × Z)

×
��

A(X × Y )× A(Z) ×
// A(X × Y × Z)

is commutative, up to identifications (X×Y )×Z ' X×Y ×Z ' X×(Y ×Z)

3. (Unitarity) If ? denotes the G-set with one element, then there exists an
element τ ∈ A(?), such that for any G-set X and for any x ∈ A(X)

A∗(lX)(x× τ) = x = A∗(kX)(τ × x),

where lX is the bijective projection from X × ? to X and kX is the bijective
projection from ? × X to X. We will write Green(G) for the category of
G-Green functors.

4.2.1 Examples

In this subsection, we give two common examples of G-Green functors.

Example 4.2.3. A fixed point G-Green functor is a fixed point G-Mackey functor
M if we can extend the group M to have a ring structure that is equipped with the
action of G. In particular, we need that g · (ab) = (ga) · (gb) and g1 = 1 for all
g ∈ G and a, b ∈M .
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Example 4.2.4. The Burnside G-Mackey functor inherits the structure of a G-
Green functor. For all subgroups H of G, we will define B(H) to be the Grothendieck
group on the set of isomorphism classes of the category of finite H-sets, where ad-
dition is given by disjoint union, [U ] + [V ] = [U q V ] and multiplication is given
by the Cartesian product, [U ][V ] = [U ×V ]. The multiplicative unit is the isomor-
phism class of the single point set [H/H]. The direct product of H-sets converts
B(H) into a ring, such that all restriction maps are ring homomorphisms. Trans-
fer and restriction form a G-Green functor structure on B.

Remark 4.2.5. From now on we restrict our attention to the case when G = Cp

and for general case see chapter 5.

4.3 Cp-Mackey Functors

In this section, we will provide a detailed description of Cp-Mackey functors, Cp-
tensor product and Cp-HOM.

Definition 4.3.1. A Cp-Mackey functor M consists of abelian groups A = M(e)

and B = M(Cp), together with an action c of Cp on A by group maps, group
homomorphism tr

Cp
e : A −→ B, and group homomorphism res

Cp
e : B −→ A such

that the following relations hold.

1. cpg,e = 1.

2. trCp
e cg,e(a) = tr

Cp
e (a).

3. cg,eres
Cp
e (b) = res

Cp
e (b).

4. resCp
e (tr

Cp
e (a)) = a+ cg,e(a) + c2g,e(a) + · · ·+ cp−1g,e (a).

We will describe a Cp-Mackey functor by the following diagram:

B

res
Cp
e

{{
A

c

YY

tr
Cp
e

;;
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4.3.1 Cp-Tensor products of Cp-Mackey Functors

In this subsection, given Cp-Mackey functors M and N , we will build a Mackey
functor diagram for M ⊗N .

Definition 4.3.2. Let M and N be Cp-Mackey functors describe by the following
diagrams:

M(Cp)

res
Cp
e

~~
M(e)

c

UU

tr
Cp
e

>>
N(Cp)

res
Cp
e

~~
N(e)

c

UU

tr
Cp
e

>>

then we define M ⊗N by the following digram:

M(e)⊗N(e)⊕M(Cp)⊗N(Cp)/ ∼

res
Cp
e

~~
M(e)⊗N(e)

c=c⊗c

UU

tr
Cp
e

>>

1. The ∼ is given by the following relations:

a⊗ trCp
e (y) ∼ resCp

e (a)⊗ y

and
trCp
e (x)⊗ b ∼ x⊗ resCp

e (b)

for all a ∈M(Cp), b ∈ N(Cp), x ∈M(e) and y ∈ N(e).

2. The action is given by c(x⊗ y) = cx⊗ cy. Moreover, cp = id.

3. We denote the elements in the quotient by the classes [a ⊗ b] and [x ⊗ y],
where a⊗ b ∈M(Cp)⊗N(Cp) and x⊗ y ∈M(e)⊗N(e).

4. The restriction map resCp
e is a homomorphism. That is,

resCp
e ([a⊗ b]) = resCp

e (a)⊗ resCp
e (b).
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5. We define the restriction map by following formula:

resCp
e ([x⊗ y]) = x⊗ y + cg,e(x)⊗ cg,e(y) + · · ·+ cp−1g,e (x)⊗ cp−1g,e (y).

6. We define the transfer map by trCp
e (x⊗ y) = [x⊗ y].

4.3.2 Cp-HOM (A,B)

Let Mack(G) be the category of Cp-Mackey functors. Recall that a morphism
f ∈ HomMack(G)(A,B) inMack(G) consists of a pair (fCp , fe) of homomorphisms
of abelian group such that (fCp , fe) commute with the transfer, restriction and
conjugation maps. We can visualize f with the following commutative diagram:

A(Cp)
fCp //

res
Cp
e

��

B(Cp)

res
Cp
e

��
A(e)

fe
//

tr
Cp
e

BB

B(e)

tr
Cp
e

BB

Now, we are ready to define Cp-HOM(A,B).

Definition 4.3.3. We define Cp-HOM(A,B) with the following digram:

HomMack(G)(A,B)

R

~~
Hom(A(e), B(e))

c

UU

T

>>

such that the following holds:

1. HomMack(G)(A,B) = { (fCp , fe) homomorphisms of abelian group from A to
B }.

2. Hom(A(e), B(e)) = { collection of homomorphisms of abelian group from
A(e) to B(e) }.
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3. We define the action of Cp on Hom(A(e), B(e)) by a general construction
given as follows. Let V and W be G-modules. Then, the action of G on
Hom(V,W ) is given by

xϕ : V −→ W

(xϕ)(v) = xϕ(x−1v)

Where ϕ ∈ Hom(V,W ), x ∈ G and v ∈ V .

4. We define the restriction map R by R(fCp , fe) = fe.

5. We define the transfer map T : Hom(A(e), B(e)) −→ HomMack(G)(A,B) as
follows. let ψ : A(e) −→ B(e) be a homomorphism of abelian groups. Then,
we need to define T (ψ) to be a morphism of Mackey functors from A to B.
That is, from the commutative diagram:

A(Cp)
α //

resA

��

B(Cp)

resB

��
A(e)

β
//

trA

BB

B(e)

trB

BB

we define T (ψ) by
α(a) = trBψresA(a)

and

β(x) = ψ(x) + cψ(cp−1x) + · · ·+ cp−1ψ(cx) =
∑
i+j=p

ciψ(cjx)

where a ∈ A(Cp) and x ∈ A(e).

4.4 Cp-Green Functors

In this section, we will provide a detailed description of Cp-Green functors and
modules over Cp-Green functors.

Definition 4.4.1. A Cp-Mackey functor A is a Cp-Green functor if the following
axioms hold:
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1. A(Cp) and A(e) are rings.

2. The restriction maps resCp
e : A(Cp) −→ A(e) and the conjugation maps

c : A(e) −→ A(e) are ring homomorphisms.

3. A satisfies Frobenius relations: If e ≤ Cp are subgroups of Cp then

trCp
e (a) · b = trCp

e (a · resCp
e (b))

b · trCp
e (a) = trCp

e (resCp
e (b) · a)

for all a ∈ A(e) and b ∈ A(Cp).

We display the Cp-Green functor with the following diagram.

A(Cp)

res
Cp
e

~~
A(e)

c

UU

tr
Cp
e

>>

Definition 4.4.2. A Cp-Mackey functorM is amodule over the Cp-Green functor
A if the following axioms hold:

1. The modules M(e) and M(Cp) have the structure of an A(e)-module and an
A(Cp)-module, respectively.

2. If e ≤ Cp are subgroups of Cp, a ∈ A(Cp), m ∈ M(Cp), x ∈ A(e) and
u ∈M(e), then

resCp
e (a ·m) = resCp

e (a) · resCp
e (m)

and
c(x · u) = c(x) · c(u).

3. Frobenius relations: If x ∈ A(e) and m ∈M(Cp), then

trCp
e (x) ·m = trCp

e (x · resCp
e (m))

and
if a ∈ A(Cp) and u ∈M(e), then

a · trCp
e (u) = trCp

e (resCp
e (a) · u).
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Remark 4.4.3. A Mackey functor has a close connection to induction theorems in
representation theory, see [4] and [7].

4.4.1 Hochschild Homology of Cp-Mackey Functors

In this subsection, we will extend the definition of Hochschild homology to Cp-
Mackey functors.

Definition 4.4.4. Let A be a Cp-Green functor and M be a bimodule over the
Cp-Green functor A. Then, the Hochschild homology of a Cp-Mackey functor
which is again a Cp-Mackey functor is the homology of the following diagram of
chain complexes:

M(Cp)

res
Cp
e

��

{
M(e)⊗A(e)

⊕
M(Cp)⊗A(Cp)

}/ ∼
d
′
0oo

res
Cp
e

��

{
M(e)⊗A(e)⊗A(e)

⊕
M(Cp)⊗A(Cp)⊗A(Cp)

}/ ∼
d
′
1oo

res
Cp
e

��

d
′
2oo

M(e)

tr
Cp
e

@@

M(e)⊗ A(e)
d0

oo

tr
Cp
e

CC

M(e)⊗ A(e)⊗ A(e)
d1

oo

tr
Cp
e

CC

d2
oo

where the boundary maps are given as follows:

1. The boundary dn of the lower complex is given by:

dn(m⊗ x1 ⊗ · · · ⊗ xn) = (m⊗ r1 ⊗ r2 ⊗ · · · ⊗ rn)

+
∑

0<i<n

(−1)i(m⊗ r1 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn)

+ (−1)n(rnm⊗ r1 ⊗ · · · ⊗ rn−1).

2. The boundaries d′n of the upper complex are given by:

(a) d′0(m⊗ a⊕ u⊗ x) = ma− am+ tr
Cp
e (ux− xu).

(b) d
′

1(m⊗ a⊗ b⊕ u⊗ x⊗ y) = ma⊗ b−m⊗ ab+ bm⊗ a

+ [ux⊗ y]− [u⊗ xy] + [yu⊗ x].

(c) d
′

2(m⊗ a⊗ b⊗ c⊕ u⊗ x⊗ y ⊗ z) = ma⊗ b⊗ c−m⊗ ab⊗ c

+m⊗ a⊗ bc− cm⊗ a⊗ b

+ [ux⊗ y ⊗ z]− [u⊗ xy ⊗ z]

+ [u⊗ x⊗ yz]− [zu⊗ x⊗ y].
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For all m ∈M(Cp), a, b and c ∈ A(Cp), u ∈M(e) and x, y and z ∈ A(e). Hence,

Hn(A,M) = Hn(Cn(A,M)) =

{
HnCp

(CnCp
(A,M)),

Hne(Cne(A,M)),

where Cn(A,M) = M ⊗ A⊗n.

4.4.2 Hochschild Cohomology of Cp-Mackey Functors

The definition of Hochschild cohomology can be extended to Cp-Mackey functors
as discussed in this subsection.

Definition 4.4.5. Let A be a Cp-Green functor and M be a bimodule over the
Cp-Green functor A. Then, the Hochschild cohomology of a Cp-Mackey functor
which is again a Cp-Mackey functor is the cohomology of the following diagram of
cochain complexes:

M(Cp)
b
′
0 //

res
Cp
e

��

HomMack(A,M)
b
′
1 //

R

��

HomMack(A⊗ A,M)
b
′
2 //

R

��
M(e)

b0
//

tr
Cp
e

@@

Hom(A(e),M(e))
b1

//

T

@@

Hom(A(e)⊗ A(e),M(e))
b2

//

T

@@

where the coboundary maps are given as follows:

1. The coboundary bn of the lower complex is given by:

bn(fe)(x1, · · · , xn+1) = x1fe(x2, · · · , xn+1)

+
∑

0<i<n+1

(−1)ife(x1, · · · , xixi+1, · · · , xn+1)

+ (−1)n+1fe(x1, · · · , xn)xn+1.

2. The boundaries b′n of the upper complex are given by:

(a)

{
b
′
0(m)(a) = am−ma.
b
′
0(m)(x) = x · resCp

e (m)− resCp
e (m) · x.

(b)

{
b
′
1(fCp)(a, b) = afCp(b)− fCp(ab) + fCp(a)b.

b
′
1(fe)(x, y) = xfe(y)− fe(xy) + fe(x)y.
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(c)

{
b
′
2(fCp)(a, b, c) = afCp(b, c)− fCp(ab, c) + fCp(a, bc)− fCp(a, b)c.

b
′
2(fe)(x, y, z) = xfe(y, z)− fe(xy, z) + fe(x, yz)− fe(x, y)z.

For all m ∈M(Cp), a, b and c ∈ A(Cp), u ∈M(e) and x, y and z ∈ A(e). Hence,

Hn(A,M) = Hn(Cn(A,M)) =

{
Hn
Cp

(Cn
Cp

(A,M)),

Hn
e (Cn

e (A,M)),

where Cn(A,M) = Cp-HOM(A⊗n,M).

4.5 Classification of Singular Extension of Cp-Green

Functors

It is a well-known fact that the second Hochschild cohomology group classifies the
singular extensions of associative algebras[22]. Here we obtain a similar result for
Cp-Green functors.

Definition 4.5.1. Let A be a Cp-Green functor and M be an A-bimodule. A
singular extension E of A by M is an exact sequence of Mackey functors

E : 0 −→M
i−→ B

j−→ A −→ 0,

where B is a Cp-Green functor, j is a homomorphism of Cp-Green functors and i
is a homomorphism of Cp-Mackey functors such that the following two sequences:

0 −→M(Cp)
iCp−−→ B(Cp)

jCp−−→ A(Cp) −→ 0

and
0 −→M(e)

ie−→ B(e)
je−→ A(e) −→ 0

are singular extensions of the ring A(Cp) by M(Cp) and the ring A(e) by M(e).

Definition 4.5.2. A singular extension E : 0 −→ M
i−→ B

j−→ A −→ 0 is called
M-split if there is an abelian group homomorphisms:

sCp = s(Cp) : A(Cp) −→ B(Cp)

and
se = s(e) : A(e) −→ B(e)
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such that

1. jCp ◦ sCp = idA(Cp) and je ◦ se = idA(e).

2. sCp and se must be compatible with transfer, restriction and conjugation maps
in the following sense:

(a) resB ◦ sCp = se ◦ resA.

(b) trB ◦ se = sCp ◦ trA.

(c) cB ◦ se = se ◦ cA.

Definition 4.5.3. Let A be a Cp-Green functor and M be an A-bimodule. A
Cp-Green 2-cocycle Z2

Cp
(A,M) of A with values in M is a pair (fCp , fe), where

fCp : A(Cp)× A(Cp) −→M(Cp)

and
fe : A(e)× A(e) −→M(e)

are bilinear maps, satisfying the following conditions:

1. xfCp(y, z) + fCp(x, yz) = fCp(xy, z) + fCp(x, y)z.

2. afe(b, c) + fe(a, bc) = fe(ab, c) + fe(a, b)c.

3. cM(fe(a, b)) = fe(cA(a), cA(b)).

4. resM(fCp(x, y)) = fe(resA(x), resA(y)).

5. fCp(trA(a), x) = trM(fe(a, resA(x))).

6. fCp(x, trA(a)) = trM(fe(resA(x), a)).

Proposition 4.5.4. If (fCp , fe) is Cp-Green 2-cocycle, then one can construct a
Cp-Green functor BfCp ,fe

as follows:

1. BfCp
(Cp) = M(Cp)⊕ A(Cp) as an associative ring with multiplication

(u, x)(v, y) = (uy + xv + fCp(x, y), xy).

2. Bfe(e) = M(e)⊕ A(e) as an associative ring with multiplication

(m, a)(n, b) = (mb+ an+ fe(a, b), ab).
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3. cB(m, a) = (cM(m), cA(a)).

4. trB(m, a) = (trM(m), trA(a)).

5. resB(u, x) = (resM(u), resA(x)).

We can describe the Cp-Green functor BfCp ,fe
with the following diagram.

BfCp
(Cp)

resB

~~
Bfe(e)

cB

UU

trB

@@

Proof. We need to verify that BfCp ,fe
satisfies all axioms of a Cp-Green func-

tor. Observe that BfCp
(Cp) and Bfe(e) are associative rings since fCp and fe are

2-cocycles. Next, we need to check that the conjugation map cB is a ring homo-
morphism. That is, for (m, a) and (n, b) be elements in Bfe(e) we have

cB((m, a) · (n, b)) = cB(mb+ an+ fe(a, b), ab)

= (cM(m) · cA(b) + cA(a) · cM(n) + cM(fe(a, b)), cA(a) · cA(b)).

We also have

cB(m, a) · cB(n, b) = (cM(m), cA(a)) · (cM(n), cA(b))

= (cM(m) · cA(b) + cA(a) · cM(n) + fe(cA(a), cA(b)), cA(a) · cA(b)).

Hence, from condition 3 in definition 4.5.3 it follows that cB is a ring homomor-
phism. Similarly, we need to check that the restriction map resB is ring homo-
morphism. That is, for (u, x) and (v, y) be elements in BfCp

(Cp) we have

resB((u, x) · (v, y)) =resB(uy + xv + fCp(x, y), xy)

=(resM(u) · resA(y) + resA(x) · resM(v)

+resM(fCp(x, y)), resA(x) · resA(y)).

We also have

resB(u, x) · resB(v, y) =(resM(u), resA(x)) · (resM(v), resA(y))

=(resM(u) · resA(y) + resA(x) · resM(v)

+fe(resA(x), resA(y)), resA(x) · resA(y)).
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Therefore, from condition 4 in definition 4.5.3 it follows that resB is a ring homo-
morphism. Finally, we need to check that BfCp ,fe

satisfies the Frobenius relations.
That is, for (m, a) be an element in Bfe(e) and (u, x) be an element in BfCp

(Cp)

we have

trB(m, a) · (u, x) = (trM(m), trA(a)) · (u, x)

= (trM(m) · x+ trA(a) · u+ fCp(trA(a), x), trA(a) · x).

We also have

trB((m, a) · resB(u, x)) = trB((m, a) · (resM(u), resA(x)))

= trB(m · resA(x) + a · resM(u)

+ fe(a, resA(x)), a · resA(x))

= (trM(m · resA(x)) + trA(a · resM(u))

+trM(fe(a, resA(x))), trA(a · resA(x))).

Hence, from the definition of Cp-Green functors, definition of modules over Cp-
Green functors and condition 5 in definition 4.5.3 it follows that:

trB(m, a) · (u, x) = trB((m, a) · resB(u, x)).

Likewise, from the definition of Cp-Green functors, definition of modules over Cp-
Green functors and condition 6 in definition 4.5.3 it follows that:

(u, x) · trB(m, a) = trB(resB(u, x) · (m, a)).

Definition 4.5.5. Let A be a Cp-Green functor and M be an A-bimodule. We
define Ext(A,M) to be the set of equivalence classes of M-split extensions of A
by M .

Definition 4.5.6. Let A be a Cp-Green functor and M be an A-bimodule. We
define

C1
Cp

(A,M) =

(hCp , he)

∣∣∣∣∣∣∣∣
∀x ∈ A(Cp), resM(hCp(x)) = he(resA(x))

∀a ∈ A(e), cM(he(a)) = he(cA(a))

∀a ∈ A(e), trM(he(a)) = hCp(trA(a))

 ,

where hCp : A(Cp) −→ M(Cp) and he : A(e) −→ M(e). Moreover, there exists a
map ∂ : C1

Cp
(A,M) −→ Z2

Cp
(A,M) such that ∂(hCp , he) = (δhCp(x, y), δhe(a, b)),
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where δhCp(x, y) = xhCp(y)− hCp(xy) + hCp(x)y and δhe(a, b) = ahe(b)− he(ab) +

he(a)b.

Definition 4.5.7. Let A be Cp-Green functor andM be an A-bimodule. We define
the second Hochschild cohomology by

H2
Cp

(A,M) = coker ∂.

Theorem 4.5.8. Let A be a Cp-Green functor,M be an A-bimodule and Ext(A,M)

be the set of equivalence classes ofM-split extensions of A byM . There is a one-to-
one correspondence between the elements of Ext(A,M) and those of H2

Cp
(A,M).

Proof. To prove the theorem, we are going to follow these steps.
Step 1. Show that there is a well-defined map from Ext(A,M) to H2

Cp
(A,M).

Step 2. Show that there is a well-defined map from H2
Cp

(A,M) to Ext(A,M).
Step 3. Show that these two maps are inverse to each other.
Step 1. Consider a singular extension

E : 0 −→M
i−→ B

j−→ A −→ 0

and let
sCp : A(Cp) −→ B(Cp)

and
se : A(e) −→ B(e)

be an abelian group homomorphisms such that

jCp ◦ sCp = idA(Cp)

and
je ◦ se = idA(e).

Then, for every x, y ∈ A(Cp) and a, b ∈ A(e), there exists a uniquely determined
element fCp(x, y) ∈M(Cp) and fe(a, b) ∈M(e) such that

sCp(x)sCp(y) = sCp(xy) + iCpfCp(x, y). (4.1)

and
se(a)se(b) = se(ab) + iefe(a, b). (4.2)
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For x, y, z ∈ A(Cp),

sCp(x)(sCp(y)sCp(z)) = sCp(x)(sCp(yz) + iCpfCp(y, z))

= sCp(x)sCp(yz) + sCp(x)iCpfCp(y, z)

= sCp(xyz) + iCpfCp(x, yz) + sCp(x)iCpfCp(y, z).

(4.3)

and

(sCp(x)sCp(y))sCp(z) = (sCp(xy) + iCpfCp(x, y))sCp(z)

= sCp(xy)sCp(z) + iCpfCp(x, y)sCp(z)

= sCp(xyz) + iCpfCp(xy, z) + iCpfCp(x, y)sCp(z).

(4.4)

Thus, multiplication in B(Cp) is associative which follows from (4.3) and (4.4)
that:

xfCp(y, z)− fCp(xy, z) + fCp(x, yz)− fCp(x, y)z = 0

showing that fCp is a 2-cocycle. Similarly, for a, b, c ∈ A(e),

se(a)(se(b)se(c)) = se(a)(se(bc) + iefe(b, c))

= se(a)se(bc) + se(a)iefe(b, c)

= se(abc) + iefe(a, bc) + se(a)iefe(b, c).

(4.5)

and

(se(a)se(b))se(c) = (se(ab) + iefe(a, b))se(c)

= se(ab)se(c) + iefe(a, b)se(c)

= se(abc) + iefe(ab, c) + iefe(a, b)se(c).

(4.6)

Thus, multiplication in B(e) is associative which follows from (4.5) and (4.6) that:

afe(b, c)− fe(ab, c) + fe(a, bc)− fe(a, b)c = 0

showing that fe is a 2-cocycle. Next, we know that the conjugation map cB :

B(e) −→ B(e) is a ring homomorphism and by applying cB to equation (4.2) we
have

cB(se(a)se(b)) = cB(se(ab) + iefe(a, b))

⇒ cB(se(a))cB(se(b)) = cB(se(ab)) + cB(iefe(a, b))

⇒ se(cA(a))se(cA(b)) = se(cA(ab))) + ie(cM(fe(a, b)))
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⇒(((((
(((se(cA(a)cA(b)) + ��iefe(cA(a), cA(b)) =((((

((((se(cA(a)cA(b)) + ��ie(cM(fe(a, b)))

⇒ fe(cA(a), cA(b)) = cM(fe(a, b)).

Similarly, we know that the restriction map resB : B(Cp) −→ B(e) is a ring
homomorphism and by applying resB to equation (4.1) we have

resB(sCp(x)sCp(y)) = resB(sCp(xy) + iCpfCp(x, y))

⇒ resB(sCp(x))resB(sCp(y)) = resB(sCp(xy)) + resB(iCpfCp(x, y))

⇒ se(resA(x))se(resA(y)) = se(resA(xy)) + ie(resM(fCp(x, y)))

⇒
((((

((((
((

se(resA(x)resA(y)) + ��ie(fe(resA(x), resA(y)))

=
((((

((((
(((

se(resA(x)resA(y))) + ��ie(resM(fCp(x, y)))

⇒ fe(resA(x), resA(y)) = resM(fCp(x, y)).

Furthermore, from (4.1) we have

sCp(y)sCp(x) = sCp(yx) + iCpfCp(y, x)

⇒ iCpfCp(y, x) = sCp(y)sCp(x)− sCp(yx).

Now, by substituting y = trA(a) in the above equation we have

iCpfCp(trA(a), x) = sCp(trA(a))sCp(x)− sCp(trA(a) · x)

⇒ iCpfCp(trA(a), x) = trB(se(a))sCp(x)− sCp(

Frobenius relation︷ ︸︸ ︷
trA(a · resA(x)))

⇒ iCpfCp(trA(a), x) =

Frobenius relation︷ ︸︸ ︷
trB(se(a) · resB(sCp(x)))−trB(se(a · resA(x)))

⇒ iCpfCp(trA(a), x) = trB(se(a) · se(resA(x)))− trB(se(a · resA(x)))

⇒ iCpfCp(trA(a), x) = trB

from (4.2)︷ ︸︸ ︷
(se(a · resA(x)) + iefe(a, resA(x)))−trB(se(a · resA(x)))

⇒ iCpfCp(trA(a), x) =
((((

((((
(((

trB(se(a · resA(x))) + trB(iefe(a, resA(x)))−
((((

((((
(((

trB(se(a · resA(x)))

⇒��iCpfCp(trA(a), x) =��iCp(trM(fe(a, resA(x))))

⇒ fCp(trA(a), x) = trM(fe(a, resA(x))).

Similarly, from (4.1) we have

⇒ iCpfCp(x, y) = sCp(x)sCp(y)− sCp(xy).
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Now, by substituting y = trA(a) in the above equation we have

iCpfCp(x, trA(a)) = sCp(x)sCp(trA(a))− sCp(x · trA(a))

⇒ iCpfCp(x, trA(a)) = sCp(x)trB(se(a))− sCp

Frobenius relation︷ ︸︸ ︷
(trA(resA(x) · a))

⇒ iCpfCp(x, trA(a)) =

Frobenius relation︷ ︸︸ ︷
trB(resB(sCp(x) · se(a)))−trB(se(resA(x) · a))

⇒ iCpfCp(x, trA(a)) = trB(se(resA(x) · se(a)))− trB(se(resA(x) · a))

⇒ iCpfCp(x, trA(a)) = trB

from (4.2)︷ ︸︸ ︷
(se(resA(x) · a)) + iefe(resA(x), a)−trB(se(resA(x) · a))

⇒ iCpfCp(x, trA(a)) =
(((

((((
((((

trB(se(resA(x) · a)) + trB(iefe(resA(x), a))−
(((

((((
((((

trB(se(resA(x) · a))

⇒��iCpfCp(x, trA(a)) =��iCp(trM(fe(resA(x), a)))

⇒ fCp(x, trA(a)) = trM(fe(resA(x), a)).

Hence, fCp and fe ∈ Z2
Cp

(A,M) satisfy all conditions in definition 4.5.3. Let

s
′

Cp
: A(Cp) −→ B(Cp)

and
s
′

e : A(e) −→ B(e)

be two abelian homomorphisms and let

gCp : A(Cp)× A(Cp) −→M(Cp)

and
ge : A(e)× A(e) −→M(e)

be the 2-cocycles corresponding to choices of s′Cp
and s′e. Then,

jCp ◦ sCp(x) = x = jCp ◦ s
′

Cp
(x)

and
je ◦ se(a) = a = je ◦ s

′

e(a)

for every x ∈ A(Cp) and a ∈ A(e), and so there exists C1
Cp

(A,M)
∂−→ Z2

Cp
(A,M)

such that
s
′

Cp
(x) = iCphCp(x) + sCp(x) (4.7)
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and
s
′

e(a) = iehe(a) + se(a), (4.8)

where hCp : A(Cp) −→ M(Cp), he : A(e) −→ M(e), x ∈ A(Cp) and a ∈ A(e).
Now, for x, y ∈ A(Cp) and by substituting (4.7) in (4.1) we have

iCpfCp(x, y) + s
′

Cp
(xy)− iCphCp(xy) = (s

′

Cp
(x)− iCphCp(x))(s

′

Cp
(y)− iCphCp(y))

⇒ iCpfCp(x, y) + s
′

Cp
(xy)− iCphCp(xy) = s

′

Cp
(x)s

′

Cp
(y)− s′Cp

(x)iCphCp(y)

− iCphCp(x)s
′

Cp
(y) +

=0︷ ︸︸ ︷
iCphCp(x)iCphCp(y)

⇒ iCpfCp(x, y) +
�
��

��
s
′

Cp
(xy)− iCphCp(xy) =

�
��

��
s
′

Cp
(xy) + iCpgCp(x, y)

− s′Cp
(x)iCphCp(y)− iCphCp(x)s

′

Cp
(y)

⇒ δhCp(x, y) = gCp(x, y)− fCp(x, y) = xhCp(y)− hCp(xy) + hCp(x)y

so that fCp and gCp differ by a 2-coboundary. Likewise, for a, b ∈ A(e) and by
substituting (4.8) in (4.2) we have

iefe(a, b) + s
′

e(ab)− iehe(ab) = (s
′

e(a)− iehe(a))(s
′

e(b)− iehe(b))

⇒ iefe(a, b) + s
′

e(ab)− iehe(ab) = s
′

e(a)s
′

e(b)− s
′

e(a)iehe(b)

− iehe(a)s
′

e(b) +

=0︷ ︸︸ ︷
iehe(a)iehe(b)

⇒ iefe(a, b) +��
��s

′

e(ab)− iehe(ab) =��
��s

′

e(ab) + iege(a, b)

− s′e(a)iehe(b)− iehe(a)s
′

e(b)

⇒ δhe(a, b) = ge(a, b)− fe(a, b) = ahe(b)− he(ab) + he(a)b

so that fe and ge differ by a 2-coboundary. Therefore, we show that there exists a
well-defined map from Ext(A,M) to H2

Cp
(A,M).

Step 2. Let [fCp ] and [fe] ∈ H2
Cp

(A,M), where fCp and fe ∈ Z2
Cp

(A,M). Then,
we define the Cp-Green functor BfCp ,fe

as in Proposition 4.5.4. Therefore, the
extension associated to fCp and fe is the extension

EfCp ,fe
: 0 −→M

i−→ BfCp ,fe

j−→ A −→ 0,

where j is a homomorphism of Cp-Green functors and i is a homomorphism of
Cp-Mackey functors. Now, we need to show that [EfCp

] and [Efe ] are independent
of the choices of fCp and fe. In other words, if [fCp ] = [gCp ] ⇔ fCp = gCp + δhCp

and [fe] = [ge]⇔ fe = ge + δhe.
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Two extensions EfCp
and EgCp

are equivalent if and only if there exists a commu-
tative diagram

0 //M(Cp)
iCp // BfCp

(Cp)
jCp //

αCp

��

A(Cp) // 0

0 //M(Cp)
i
′
Cp

// BgCp
(Cp)

j
′
Cp

// A(Cp) // 0

with αCp a homomorphism of rings. The commutativity of this diagram implies
that

αCp(u, x) = (u+ hCp(x), x)

for hCp ∈ C1
Cp
(A,M). The fact that αCp is a ring homomorphism gives the following

equation,

αCp((u, x)(v, y)) = αCp(uy + xv + fCp(x, y), xy)

= uy + xv + fCp(x, y) + hCp(x, y), xy)
(4.9)

and

αCp(u, x)αCp(v, y) = (u+ hCp(x), x)(v + hCp(y), y)

= uy + hCp(x)y + xv + xhCp(y) + gCp(x, y), xy)
(4.10)

Hence, from (4.9) and (4.10) we obtain

fCp(x, y)− gCp(x, y) = xhCp(y)− hCp(x, y) + hCp(x)y = δhCp(x, y)

that is, fCp−gCp is a 2-coboundary. Conversely, if fCp−gCp is a 2-coboundary, then
EfCp

and EgCp
are equivalent. Likewise, two extensions Efe and Ege are equivalent

if and only if there exists a commutative diagram

0 //M(e)
ie // Bfe(e)

je //

αe

��

A(e) // 0

0 //M(e)
i
′
e

// Bge(e)
j
′
e

// A(e) // 0

with αe a homomorphism of rings. The commutativity of this diagram implies
that

αe(m, a) = (m+ he(a), a)
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for he ∈ C1
Cp
(A,M). The fact that αe is a ring homomorphism gives the following

equation,

αe((m, a)(n, b)) = αe(mb+ an+ fe(a, b), ab)

= mb+ an+ fe(a, b) + he(a, b), ab)
(4.11)

and

αe(m, a)αe(n, b) = (m+ he(a), a)(n+ he(b), b)

= mb+ he(a)b+ an+ ahe(b) + ge(a, b), ab)
(4.12)

Hence, from (4.11) and (4.12) we obtain

fe(a, b)− ge(a, b) = ahe(b)− he(a, b) + he(a)b = δhe(a, b)

That is, fe − ge is a 2-coboundary. Conversely, if fe − ge is a 2-coboundary, then
Efe and Ege are equivalent. Moreover, we need to check that the following diagram
commutes:

0 //M(Cp)

resM

��

iCp // BfCp
(Cp)

αCp

��

jCp //

resB

��

A(Cp) //

resA

��

0

0 //M(Cp)

resM

��

i
′
Cp // BgCp

(Cp)
j
′
Cp //

resB

��

A(Cp) //

resA

��

0

0 //M(e)

trM

HH

ie // Bfe(e)

trB

II

αe

��

je // A(e)

trA

HH

// 0

0 //M(e)

trM

HH

i
′
e

// Bge(e)

trB

II

j
′
e

// A(e)

trA

HH

// 0

It suffices to check that resB ◦ αCp(u, x) = αe ◦ resB(u, x). We have

resB ◦ αCp(u, x) = resB(u+ hCp(x), x) = (resM(u) + resM(hCp(x)), resA(x))
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and

αe ◦ resB(u, x) = αe(resM(u), resA(x)) = (resM(u) + he(resA(x)), resA(x)).

Thus, from definition 4.5.6 it follows that: resB◦αCp(u, x) = αe◦resB(u, x). There-
fore, we show that there exists a well-defined map from H2

Cp
(A,M) to Ext(A,M).

Step 3. Let fCp and fe be 2-cocycles. Then, we define the multiplications on
BfCp

(Cp) and Bfe(e) as follows:

(u, x)(v, y) = (uy + xv + fCp(x, y), xy)

and
(m, a)(n, b) = (mb+ an+ fe(a, b), ab)

where u, v ∈ M(Cp), x, y ∈ A(Cp), m,n ∈ M(e) and a, b ∈ A(e). The 2-cocycle
property of fCp and fe show that the multiplications on BfCp

(Cp) and Bfe(e) are
associative. Thus, BfCp

(Cp) and Bfe(e) are associative rings. We define the maps

iCp : M(Cp) −→ BfCp
(Cp)

ie : M(e) −→ Bfe(e)

jCp : BfCp
(Cp) −→ A(Cp)

je : Bfe(e) −→ A(e)

as follows:
iCp(u) = (u, 0)

ie(m) = (m, 0)

jCp(u, x) = x

je(m, a) = a

where iCp and ie are homomorphisms of Cp-Mackey functors and jCp and je are
homomorphisms of Cp-Green functors and the sequence

EfCp ,fe
: 0 −→M

i−→ B
j

�
s
A −→ 0
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is exact. For x ∈ A(Cp) and a ∈ A(e), choose sCp(x) = (0, x) and se(a) = (0, a).
Then, for x, y ∈ A(Cp) ,

sCp(x)sCp(y) = (0, x)(0, y) = (fCp(x, y), xy)

= (fCp(x, y), 0) + (0, xy)

= iCp(fCp(x, y)) + sCp(xy).

Similarly, for a, b ∈ A(e),

se(a)se(b) = (0, a)(0, b) = (fe(a, b), ab)

= (fe(a, b), 0) + (0, ab)

= ie(fe(a, b)) + se(ab).

The choices sCp and se thus give the 2-cocycles fCp and fe.

Conversely, suppose that

E : 0 −→M
i−→ B

j−→ A −→ 0

is an extension and let fCp and fe be the 2-cocycles obtained from this extension.
We must show that the extension

EfCp ,fe
: 0 −→M

i−→ BfCp ,fe

j−→ A −→ 0

associated to fCp and fe is equivalent to the given one. Indeed, E and EfCp ,fe

are equivalent if there exists a homomorphism θfCp ,fe
: BfCp ,fe

−→ B making the
following diagram commute:

0 //M
i // B

j
// A

soo // 0

0 //M
i

// BfCp ,fe

θfCp
,fe

OO

j
// A // 0

Now, the commutativity of this diagram implies that

θfCp
(u, x) = iCp(u) + sCp(x)

and
θfe(m, a) = ie(m) + se(a)
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where u ∈ M(Cp), x ∈ A(Cp), m ∈ M(e) and a ∈ A(e). Therefore, it remains to
check that θfCp

and θfe are ring homomorphisms. Let (u, x) and (v, y) be elements
in B(Cp),

θfCp
((u, x) · (v, y)) = θfCp

(uy + xv + fCp(x, y), xy)

= iCp(uy) + iCp(vx) + iCp(fCp(x, y)) + sCp(xy)

= iCp(u)sCp(y) + sCp(x)iCp(v) + sCp(x)sCp(y)

and

θfCp
(u, x) · θfCp

(v, y)) = (iCp(u) + sCp(x))(iCp(v) + sCp(y))

=

=0︷ ︸︸ ︷
iCp(u)iCp(v) +iCp(u)sCp(y) + sCp(x)iCp(v) + sCp(x)sCp(y).

Hence, θfCp
is a ring homomorphism. Likewise, let (m, a) and (n, b) be elements

in B(e),

θfe((m, a) · (n, b)) = θfe(mb+ an+ fe(a, b), ab)

= ie(mb) + ie(an) + ie(fe(a, b)) + se(ab)

= ie(m)se(b) + se(a)ie(n) + se(a)se(b)

and

θfe(m, a) · θfe(n, b)) = (ie(m) + se(a))(ie(n) + se(b))

=

=0︷ ︸︸ ︷
ie(m)ie(n) +ie(m)se(b) + se(a)ie(n) + se(a)se(b).

Thus, θfe is a ring homomorphism. This proves the theorem.

4.6 Deformation of Cp-Green Functors

The aim of this section is to extend the deformation theory of associative algebras
due to Gerstenhaber [6] to obtain a similar result for Cp-Green functors.

Definition 4.6.1. Let A be a Cp-Green functor. A one parameter formal defor-
mation of A is a collection (ΨCp ,Ψe,Φe, R, T ), where

ΨCp =
∞∑
i=0

ψiCp
ti
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Ψe =
∞∑
i=0

ψiet
i

Φe =
∞∑
i=0

c(ai)t
i

R =
∞∑
i=0

resCp
e (a′i)t

i

T =
∞∑
i=0

trCp
e (ai)t

i

are formal power series with ψnCp
∈ Hom(A(Cp)⊗A(Cp), A(Cp)), ψne ∈ Hom(A(e)⊗

A(e), A(e)), c : A(e) −→ A(e), resCp
e : A(Cp) −→ A(e) and trCp

e : A(e) −→ A(Cp).
One requires that for all n > 0 the following identities hold

(i) ψ0Cp
(a′, b′) = a′b′ and ψ0e(a, b) = ab,

(ii)
∑

iCp+jCp=nCp
ψiCp

(ψjCp
(a′, b′), c′) =

∑
iCp+jCp=nCp

ψiCp
(a′, ψjCp

(b′, c′)),

(iii)
∑

ie+je=ne
ψie(ψje(a, b), c) =

∑
ie+je=ne

ψie(a, ψje(b, c)),

(iv) c(ψne(a, b)) = ψne(c(a), c(b)),

(v) resCp
e (ψnCp

(a′, b′)) = ψne(res
Cp
e (a′), res

Cp
e (b′)),

(vi) ψnCp
(tr

Cp
e (a), b′) = tr

Cp
e (ψne(a, res

Cp
e (b′))),

(vii) ψnCp
(b′, tr

Cp
e (a)) = tr

Cp
e (ψne(res

Cp
e (b′), a)).

Here a, b, c ∈ A(e) and a′, b′, c′ ∈ A(Cp). The last six identities can be expressed
as

ΨCp(a′,ΨCp(b′, c′)) = ΨCp(ΨCp(a′, b′), c′),

Ψe(a,Ψe(b, c)) = Ψe(Ψe(a, b), c),

Φe(Ψe(a, b)) = Ψe(Φe(a),Φe(b)),

R(ΨCp(a′, b′)) = Ψe(R(a′), R(b′)),

ΨCp(T (a), b′) = T (Ψe(a,R(b′))),

ΨCp(b′, T (a)) = T (Ψe(R(b′), a)),

which shows that ACp,e[[t]] becomes a k[[t]]-Green functor. If for fixed m > 1 there
are given ψnCp

∈ Hom(A(Cp) ⊗ A(Cp), A(Cp)), ψne ∈ Hom(A(e) ⊗ A(e), A(e)),
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c : A(e) −→ A(e), resCp
e : A(Cp) −→ A(e) and tr

Cp
e : A(e) −→ A(Cp) for n =

0, · · · ,m satisfying above identities for n = 0, · · · ,m, then we say that there is
given an m-deformation. For m = 1, one also says that there is an infinitesimal
deformation.

Definition 4.6.2. Two deformations (ΨCp ,Ψe,Φe, R, T ) and (Ψ′Cp
,Ψ′e,Φ

′
e, R

′, T ′)

are equivalent if there exist a formal power series ΩCp =
∑∞

n=0 ωnCp
tn and Ωe =∑∞

n=0 ωnet
n, with properties

(i) ωnCp
∈ Hom(A(Cp), A(Cp)) and ωne ∈ Hom(A(e), A(e)), n ≥ 0,

(ii) ω0Cp
(a′) = a′ and ω0e(a) = a, a′ ∈ A(Cp) and a ∈ A(e),

(iii)
∑

iCp+jCp=nCp
ωiCp

(ψ′jCp
(a′, b′)) =

∑
iCp+jCp+kCp=nCp

ψiCp
(ωjCp

(a′), ωkCp
(b′)),

(iv)
∑

ie+je=ne
ωie(ψ

′
je(a, b)) =

∑
ie+je+ke=ne

ψie(ωje(a), ωke(b)).

Here n > 0, a′ ∈ A(Cp), a ∈ A(e), b′ ∈ B(Cp) and b ∈ B(e). The last two
equations can be expressed also as ΩCp(Ψ′Cp

(a′, b′)) = ΨCp(ΩCp(a′),ΩCp(b′)) and
Ωe(Ψ

′
e(a, b)) = Ψe(Ωe(a),Ωe(b)). In other words, ΩCp and Ωe define an isomor-

phism of k[[t]]-Green functors (ΨCp ,Ψe,Φe, R, T ) → (Ψ′Cp
,Ψ′e,Φ

′
e, R

′, T ′). In a
same way one can define under what condition two m-deformations are equiva-
lent.

Corollary 4.6.3. i) Let (ΨCp ,Ψe,Φe, R, T ) be a one parameter formal deformation
of a Cp-Green functor A. Assume n > 0 is a natural number such that ψi = 0

for 0 < i < n. Then the pair (ψnCp
, ψne) is a 2-cocycle in Cn(A,A). In particular

(ψ1Cp
, ψ1e) is a 2-cocycle in Cn(A,A).

ii) There is a one-to-one correspondence between the equivalence classes of in-
finitesimal deformations of Cp-Green functors A and H2

Cp
(A,A).

Proof. The part ii) easily follows from i). To prove i), we observe that these
equations gives

ψnCp
(a, b)c+ ψnCp

(ab, c) = aψnCp
(b, c) + ψnCp

(a, bc),

ψne(a, b)c+ ψne(ab, c) = aψne(b, c) + ψne(a, bc),

c(ψne(a, b)) = ψne(c(a), c(b)),
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resCp
e (ψnCp

(a′, b′)) = ψne(res
Cp
e (a′), resCp

e (b′)),

ψnCp
(trCp

e (a), b′) = trCp
e (ψne(a, res

Cp
e (b′))),

ψnCp
(b′, trCp

e (a)) = trCp
e (ψne(res

Cp
e (b′), a)).

Hence, the pair (ψnCp
, ψne) is a 2-cocycle in Cn(A,A).



Chapter 5

Hochschild Cohomology of G-Green

Functors

The aim of this chapter is to generalise the results of chapter 4 to an arbitrary
finite group G. Throughout this chapter, R denotes a commutative ring and G

denotes a finite group.

5.1 G-Tensor products of G-Mackey Functors

We will construct a Mackey functor diagram M ⊗ N for G-Mackey functors M
and N in this section.

Definition 5.1.1. Let M and N be G-Mackey functors in the sense of Green’s
definition. Then, we define M ⊗N as follows. For all subgroups H of G:

(M ⊗N)(H) =
⊕
K≤H

M(K)⊗N(K)/ ∼ .

1. The ∼ is given by the following relations:

a⊗ trKL (y) ∼ resKL (a)⊗ y

trKL (x)⊗ b ∼ x⊗ resKL (b)

for L ≤ K ≤ H, a ∈M(K), b ∈ N(K), x ∈M(L) and y ∈ N(L).

2. We denote the element in (M ⊗ N)(H) by the class [a ⊗ b], where a ⊗ b ∈
M(K)⊗N(K).

86
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3. The action is given by

cx,H([a⊗ b]) = [cx,H(a)⊗ cx,H(b)]

where x ∈ G.

4. We define the restriction map resHK : (M ⊗ N)(H) −→ (M ⊗ N)(K) by
resHK([a ⊗ b]) = resHK(a) ⊗ resHK(b) for a ⊗ b ∈ M(K) ⊗ N(K) and for all
subgroups L and K in H

resHK([m⊗ n]) =
∑

x∈[L\H/K]

x · ([m⊗ n])

for all m⊗ n ∈M(K)⊗N(K).

5. We define the transfer map as follows:

trHK([a⊗ b]) = [a⊗ b]

for all a⊗ b ∈M(K)⊗N(K).

5.2 G-HOM (A,B)

Let Mack(G) be the category of G-Mackey functors. Recall that a morphism
f ∈ HomMack(G)(A,B) inMack(G) consists of a family of group homomorphisms
fH : A(H) −→ B(H) for all subgroups H of G, such that if K ≤ H and x ∈ G,
the squares

A(H)
fH // B(H)

A(K)
fK

//

trHK

OO

B(K)

trHK

OO
A(H)

resHK
��

fH // B(H)

resHK
��

A(K)
fK

// B(K)

A(H)

cx,H

��

fH // B(H)

cx,H

��
A(xH)

fxH

// B(xH)

are commutative.

Definition 5.2.1. Let A and B be G-Mackey functors in the sense of Green’s
definition. Then, we define G-HOM(A,B) as follows. For all subgroups H of G:

HOM(A,B)(H) = HomMack(H)(Res
G
HA,Res

G
HB).
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1. Hence any element f in HOM(A,B)(H) corresponds to a collection of mor-
phisms fK : A(K) −→ B(K), for K ≤ H.

2. The action of G on HOM(A,B)(H) is given by

(xf)K(m) = xfK(x−1m)

for K ≤ H, x ∈ G and m ∈ A(K).

3. We define the restriction map RH
K : HOM(A,B)(H) −→ HOM(A,B)(K)

by RH
K(fK) = fL, for L ≤ K ≤ H.

4. We define the transfer map THK : HOM(A,B)(K) −→ HOM(A,B)(H) to
be a morphisms in HOM(A,B)(H). That is, let fL : A(L) −→ B(L) be a
collection of morphisms in HOM(A,B)(K). Then from the commutativity
of HOM(A,B)(H) we define THK (fL) by

αK(a) = trBfLresA(a)

and for all subgroups L and K in H

βK(m) =
∑

x∈[L\H/K]

xfL(x−1m)

for a and m ∈ A(K).

Remark 5.2.2. For example, we have

HOM(A,B)(e) = Hom(A(e), B(e))

= {group homomorphism from A(e) toB(e)}.

The proof of the following result is in [2].

Proposition 5.2.3. Let M, N and P be Mackey functors for the group G. Then
there exists an isomorphism

HOM(M ⊗N,P ) ' HOM(N,HOM(M,P ))

natural in M, N and P.
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5.3 Hochschild (Co)Homology of G-Mackey Func-

tors

The definition of Hochschild (co)homology can be extended to G-Mackey functors
as discussed in this section.

Definition 5.3.1. Let A be a G-Green functor and M be a bimodule over the
G-Green functor A. Then, for every subgroup H of G, the Hochschild homology
of a G-Mackey functor which is again a G-Mackey functor is the homology of the
following chain complex:

M(H)
d0←−
⊕
K≤H

M(K)⊗ A(K)/ ∼ d1←−
⊕
K≤H

M(K)⊗ A(K)⊗ A(K)/ ∼ d2←− · · ·

before given the boundary map, we denote by

iq : M(K)⊗ A(K)⊗q −→M(K)⊗ A(K)⊗q/ ∼

the canonical map where q > 0. The boundary map is given by

dq−1 ◦ iq(m⊗ a1 ⊗ · · · ⊗ aq) = (m⊗ a1 ⊗ a2 ⊗ · · · ⊗ aq)

+
∑
0<i<q

(−1)i(m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ aq)

+ (−1)q(aqm⊗ a1 ⊗ · · · ⊗ aq−1).

Hence,
Hn(A,M) = Hn(Cn(A,M)),

where Cn(A,M) = (M ⊗ A⊗n)(H).

Example 5.3.2.

1. d0 ◦ i1(m⊗ a) = ma− am.

2. d1 ◦ i2(m⊗ a⊗ b) = ma⊗ b−m⊗ ab+ bm⊗ a.

3. d2 ◦ i3(m⊗ a⊗ b⊗ c) = ma⊗ b⊗ c−m⊗ ab⊗ c+m⊗ a⊗ bc− cm⊗ a⊗ b.

Definition 5.3.3. Let A be a G-Green functor and M be a bimodule over the G-
Green functor A. Then, for every subgroup H of G, the Hochschild cohomology
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of a G-Mackey functor which is again a G-Mackey functor is the cohomology of
the following of cochain complex:

M(H)
b0−→ HomMack(H)(Res

G
HA,Res

G
HM)

b1−→ HomMack(H)(Res
G
HA⊗A,ResGHM)

b2−→ · · ·

where the coboundary map is given by

bn(fK)(a1, · · · , an+1) = a1fK(a2, · · · , an+1)

+
∑

0<i<n+1

(−1)ifK(a1, · · · , aiai+1, · · · , an+1)

+ (−1)n+1fK(a1, · · · , an)an+1.

Hence,
Hn(A,M) = Hn(Cn(A,M)),

where Cn(A,M) = G-HOM(A⊗n,M)(H) and for K ≤ H.

Example 5.3.4.

1. b0(m)(a) = am−ma.

2. b1(fK)(a, b) = afK(b)− fK(ab) + fK(a)b.

3. b2(fK)(a, b, c) = afK(b, c)− fK(ab, c) + fK(a, bc)− fK(a, b)c.

5.4 Classification of Singular Extension of G-Green

Functors

It is a well-known fact that the second Hochschild cohomology classifies the sin-
gular extensions of associative algebras [22]. Here we obtain a similar result for
G-Green functors.

Definition 5.4.1. Let A be a G-Green functor and M be an A-bimodule. A sin-
gular extension E of A by M is an exact sequence of Mackey functors

E : 0 −→M
i−→ B

j−→ A −→ 0,

where B is a G-Green functor, j is a homomorphism of G-Green functors and i
is a homomorphism of G-Mackey functors such that for all subgroups H of G the
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following sequences:

0 −→M(H)
iH−→ B(H)

jH−→ A(H) −→ 0

are singular extensions of the ring A(H) by M(H).

Definition 5.4.2. A singular extension E : 0 −→ M
i−→ B

j−→ A −→ 0 is called
M-split if for all subgroups H of G there exist a group homomorphism:

sH = s(H) : A(H) −→ B(H)

such that

1. jH ◦ sH = idA(H).

2. sH must be compatible with transfer, restriction and conjugation maps in the
following sense:

• resBH
K
◦ sH = sK ◦ resAH

K
,

• trBH
K
◦ sK = sH ◦ trAH

K
,

• cBK
◦ sK = sK ◦ cAK

,

for K ≤ H.

Definition 5.4.3. Let A be a G-Green functor and M be an A-bimodule. Then,
for all subgroups H of G, a H-Green 2-cocycle Z2

H(A,M) of A with values in M
is a collection of bilinear maps

fH : A(H)× A(H) −→M(H)

such that for K ≤ H, the following conditions hold:

• xfH(y, z) + fH(x, yz) = fH(xy, z) + fH(x, y)z.

• cMK
(fK(a, b)) = fK(cAK

(a), cAK
(b)).

• resMH
K

(fH(x, y)) = fK(resAH
K

(x), resAH
K

(y)).

• fH(trAH
K

(a), x) = trMH
K

(fK(a, resAH
K

(x))).

• fH(x, trAH
K

(a)) = trMH
K

(fK(resAH
K

(x), a)).
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Proposition 5.4.4. Let fH be a H-Green 2-cocycle, then one can construct a
G-Green functor BfH as follows. For all subgroups H of G:

• BfH (H) = M(H)⊕ A(H) as an associative ring with multiplication

(u, x)(w, y) = (uy + xw + fH(x, y), xy).

• cBK
(u, x) = (cMK

(u), cAK
(x)).

• trBH
K

(u, x) = (trMH
K

(u), trAH
K

(x)).

• resBH
K

(u, x) = (resMH
K

(u), resAH
K

(x)).

for K ≤ H.

Proof. We need to verify that BfH satisfies all axioms of a G-Green functor. Ob-
serve that BfH (H) is an associative ring since fH is a 2-cocycle. Next, we need to
check that the conjugation map cBK

is a ring homomorphism. That is, for (m, a)

and (n, b) be elements in BfK (K) we have

cBK
((m, a) · (n, b)) = cBK

(mb+ an+ fK(a, b), ab)

= (cMK
(m) · cAK

(b) + cAK
(a) · cMK

(n)

+ cMK
(fK(a, b)), cAK

(a) · cAK
(b)).

We also have

cBK
(m, a) · cBK

(n, b) = (cMK
(m), cAK

(a)) · (cMK
(n), cAK

(b))

= (cMK
(m) · cAK

(b) + cAK
(a) · cMK

(n)

+ fK(cAK
(a), cAK

(b)), cAK
(a) · cAK

(b)).

Hence, from condition 2 in definition 5.4.3 it follows that cBK
is a ring homo-

morphism. Similarly, we need to check that the restriction map resBH
K

is ring
homomorphism. That is, for (u, x) and (v, y) be elements in BfH (H) we have

resBH
K

((u, x) · (v, y)) =resBH
K

(uy + xv + fH(x, y), xy)

=(resMH
K

(u) · resAH
K

(y) + resAH
K

(x) · resMH
K

(v)

+resMH
K

(fH(x, y)), resAH
K

(x) · resAH
K

(y)).
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We also have

resBH
K

(u, x) · resBH
K

(v, y) =(resMH
K

(u), resAH
K

(x)) · (resMH
K

(v), resAH
K

(y))

=(resMH
K

(u) · resAH
K

(y) + resAH
K

(x) · resMH
K

(v)

+fK(resAH
K

(x), resAH
K

(y)), resAH
K

(x) · resAH
K

(y)).

Therefore, from condition 3 in definition 5.4.3 it follows that resBH
K

is a ring
homomorphism.

Finally, we need to check that BfH satisfies the Frobenius relations. That is, for
(m, a) be an element in BfK (K) and (u, x) be an element in BfH (H) we have

trBH
K

(m, a) · (u, x) = (trMH
K

(m), trAH
K

(a)) · (u, x)

= (trMH
K

(m) · x+ trAH
K

(a) · u+ fH(trAH
K

(a), x), trAH
K

(a) · x).

We also have

trBH
K

((m, a) · resBH
K

(u, x)) = trBH
K

((m, a) · (resMH
K

(u), resAH
K

(x)))

= trBH
K

(m · resAH
K

(x) + a · resMH
K

(u)

+ fK(a, resAH
K

(x)), a · resAH
K

(x))

= (trMH
K

(m · resAH
K

(x)) + trAH
K

(a · resMH
K

(u))

+trMH
K

(fK(a, resAH
K

(x))), trAH
K

(a · resAH
K

(x))).

Hence, from the definition of G-Green functors, definition of modules over G-Green
functors and condition 4 in definition 5.4.3 it follows that:

trBH
K

(m, a) · (u, x) = trBH
K

((m, a) · resBH
K

(u, x)).

Likewise, from the definition of G-Green functors, definition of modules over G-
Green functors and condition 5 in definition 5.4.3 it follows that:

(u, x) · trBH
K

(m, a) = trBH
K

(resBH
K

(u, x) · (m, a)).

Definition 5.4.5. Let A be a G-Green functor and M be an A-bimodule. We
define Ext(A,M) to be the set of equivalence classes of M-split extensions of A
by M .
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Definition 5.4.6. Let A be a G-Green functor and M be an A-bimodule. For all
subgroups H of G we define

C1
H(A,M) =

 hH

∣∣∣∣∣∣∣∣
∀x ∈ A(H), resMH

K
(hH(x)) = hK(resAH

K
(x))

∀a ∈ A(K), cMK
(hK(a)) = hK(cAK

(a))

∀a ∈ A(K), trMH
K

(hK(a)) = hH(trAH
K

(a))

 ,

where hH : A(H) −→M(H) and K ≤ H. Moreover, there exists a map

∂ : C1
H(A,M) −→ Z2

H(A,M)

such that ∂(hH) = (δhH(x, y)), where

δhH(x, y) = xhH(y)− hH(xy) + hH(x)y.

Definition 5.4.7. Let A be G-Green functor and M be an A-bimodule. Then, for
all subgroups H of G, we define the second cohomology by

H2
H(A,M) = coker ∂.

Theorem 5.4.8. Let A be a G-Green functor,M be an A-bimodule and Ext(A,M)

be the set of equivalence classes of M-split extensions A by M . There is a one-to-
one correspondence between the elements of Ext(A,M) and those of H2

H(A,M).

Proof. To prove the theorem, we are going to follow these steps.
Step 1. Show that there is a well-defined map from Ext(A,M) to H2

H(A,M).
Step 2. Show that there is a well-defined map from H2

H(A,M) to Ext(A,M).
Step 3. Show that these two maps are inverse to each other.
Step 1. Consider a singular extension

E : 0 −→M
i−→ B

j−→ A −→ 0

and let
sH : A(H) −→ B(H)

be an abelian group homomorphism such that

jH ◦ sH = idA(H).
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Then, for every x, y ∈ A(H), there exists a uniquely determined element fH(x, y) ∈
M(H) such that

sH(x)sH(y) = sH(xy) + iHfH(x, y). (5.1)

For x, y, z ∈ A(H),

sH(x)(sH(y)sH(z)) = sH(x)(sH(yz) + iHfH(y, z))

= sH(x)sH(yz) + sH(x)iHfH(y, z)

= sH(xyz) + iHfH(x, yz) + sH(x)iHfH(y, z).

(5.2)

and

(sH(x)sH(y))sH(z) = (sH(xy) + iHfH(x, y))sH(z)

= sH(xy)sH(z) + iHfH(x, y)sH(z)

= sH(xyz) + iHfH(xy, z) + iHfH(x, y)sH(z).

(5.3)

Thus, multiplication in B(H) is associative which follows from (5.2) and (5.3)
that:

xfH(y, z)− fH(xy, z) + fH(x, yz)− fH(x, y)z = 0

showing that fH is a H-Green 2-cocycle. Next, we know that the conjugation map
cBK

: B(K) −→ B(K) is a ring homomorphism and by applying cBK
to equation

(5.1) we have

cBK
(sK(a)sK(b)) = cBK

(sK(ab) + iKfK(a, b))

⇒ cBK
(sK(a))cBK

(sK(b)) = cBK
(sK(ab)) + cBK

(iKfK(a, b))

⇒ sK(cAK
(a))sK(cAK

(b)) = sK(cAK
(ab))) + iK(cMK

(fK(a, b)))

⇒(((((
((((

(
sK(cAK

(a)cAK
(b)) +��iKfK(cAK

(a), cAK
(b)) =((((

(((
(((

sK(cAK
(a)cAK

(b)) +��iK(cMK
(fK(a, b)))

⇒ fK(cAK
(a), cAK

(b)) = cMK
(fK(a, b)).

Similarly, we know that the restriction map resBH
K

: B(H) −→ B(K) is a ring
homomorphism and by applying resBH

K
to equation (5.1) we have

resBH
K

(sH(x)sH(y)) = resBH
K

(sH(xy) + iHfH(x, y))

⇒ resBH
K

(sH(x))resBH
K

(sH(y)) = resBH
K

(sH(xy)) + resBH
K

(iHfH(x, y))

⇒ sK(resAH
K

(x))sK(resAH
K

(y)) = sK(resAH
K

(xy)) + iK(resMH
K

(fH(x, y)))

⇒
(((

((((
(((

((
sK(resAH

K
(x)resAH

K
(y)) +��iK(fK(resAH

K
(x), resAH

K
(y)))

=
(((

((((
(((

(((
sK(resAH

K
(x)resAH

K
(y))) +��iK(resMH

K
(fH(x, y)))
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⇒ fK(resAH
K

(x), resAH
K

(y)) = resMH
K

(fH(x, y)).

Furthermore, from (5.1) we have

sH(y)sH(x) = sH(yx) + iHfH(y, x)

⇒ iHfH(y, x) = sH(y)sH(x)− sH(yx).

Now, by substituting y = trAH
K

(a) in the above equation we have

iHfH(trAH
K

(a), x) = sH(trAH
K

(a))sH(x)− sH(trAH
K

(a) · x)

⇒ iHfH(trAH
K

(a), x) = trBH
K

(sK(a))sH(x)− sH(

Frobenius relation︷ ︸︸ ︷
trAH

K
(a · resAH

K
(x)))

⇒ iHfH(trAH
K

(a), x) =

Frobenius relation︷ ︸︸ ︷
trBH

K
(sK(a) · resBH

K
(sH(x)))−trBH

K
(sK(a · resAH

K
(x)))

⇒ iHfH(trAH
K

(a), x) = trBH
K

(sK(a) · sK(resAH
K

(x)))− trBH
K

(sK(a · resAH
K

(x)))

⇒ iHfH(trAH
K

(a), x) = trBH
K

from (5.1)︷ ︸︸ ︷
(sK(a · resAH

K
(x)) + iKfK(a, resAH

K
(x)))−trBH

K
(sK(a · resAH

K
(x)))

⇒ iHfH(trAH
K

(a), x) =
(((

((((
(((

((
trBH

K
(sK(a · resAH

K
(x))) + trBH

K
(iKfK(a, resAH

K
(x)))

−
((((

((((
((((trBH

K
(sK(a · resAH

K
(x)))

⇒��iHfH(trAH
K

(a), x) =��iH(trMH
K

(fK(a, resAH
K

(x))))

⇒ fH(trAH
K

(a), x) = trMH
K

(fK(a, resAH
K

(x))).

Similarly, from (5.1) we have

⇒ iHfH(x, y) = sH(x)sH(y)− sH(xy).

Now, by substituting y = trAH
K

(a) in the above equation we have

iHfH(x, trAH
K

(a)) = sH(x)sH(trAH
K

(a))− sH(x · trAH
K

(a))

⇒ iHfH(x, trAH
K

(a)) = sH(x)trBH
K

(sK(a))− sH

Frobenius relation︷ ︸︸ ︷
(trAH

K
(resAH

K
(x) · a))

⇒ iHfH(x, trAH
K

(a)) =

Frobenius relation︷ ︸︸ ︷
trBH

K
(resBH

K
(sH(x) · sK(a)))−trBH

K
(sK(resAH

K
(x) · a))

⇒ iHfH(x, trAH
K

(a)) = trBH
K

(sK(resAH
K

(x) · sK(a)))− trBH
K

(sK(resAH
K

(x) · a))

⇒ iHfH(x, trAH
K

(a)) = trBH
K

from (5.1)︷ ︸︸ ︷
(sK(resAH

K
(x) · a)) + iKfK(resAH

K
(x), a)−trBH

K
(sK(resAH

K
(x) · a))

⇒ iHfH(x, trAH
K

(a)) =
((((

((((
((((trBH

K
(sK(resAH

K
(x) · a)) + trBH

K
(iKfK(resAH

K
(x), a))
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−
((((

(((
((((

(
trBH

K
(sK(resAH

K
(x) · a))

⇒��iHfH(x, trAH
K

(a)) =��iH(trMH
K

(fK(resAH
K

(x), a)))

⇒ fH(x, trAH
K

(a)) = trMH
K

(fK(resAH
K

(x), a)).

Hence, fH ∈ Z2
H(A,M) satisfy all conditions in definition 5.4.3. Let

s
′

H : A(H) −→ B(H)

be an abelian homomorphism and let

gH : A(H)× A(H) −→M(H)

be the 2-cocycle corresponding to choices of s′H . Then,

jH ◦ sH(x) = x = jH ◦ s
′

H(x)

for every x ∈ A(H), and so there exists C1
H(A,M)

∂−→ Z2
H(A,M) such that

s
′

H(x) = iHhH(x) + sH(x) (5.4)

where hH : A(H) −→ M(H) and x ∈ A(H). Now, for x, y ∈ A(H) and by
substituting (5.4) in (5.1) we have

iHfH(x, y) + s
′

H(xy)− iHhH(xy) = (s
′

H(x)− iHhH(x))(s
′

H(y)− iHhH(y))

⇒ iHfH(x, y) + s
′

H(xy)− iHhH(xy) = s
′

H(x)s
′

H(y)− s′H(x)iHhH(y)

− iHhH(x)s
′

H(y) +

=0︷ ︸︸ ︷
iHhH(x)iHhH(y)

⇒ iHfH(x, y) +���
�

s
′

H(xy)− iHhH(xy) =���
�

s
′

H(xy) + iHgH(x, y)

− s′H(x)iHhH(y)− iHhH(x)s
′

H(y)

⇒ δhH(x, y) = gH(x, y)− fH(x, y) = xhH(y)− hH(xy) + hH(x)y

so that fH and gH differ by a 2-coboundary. Therefore, we show that there exists
a well-defined map from Ext(A,M) to H2

H(A,M).

Step 2. Let [fH ] ∈ H2
H(A,M), where fH ∈ Z2

H(A,M). Then, we define the
H-Green functor BfH as in Proposition 5.4.4. Therefore, the extension associated
to fH is the extension

EfH : 0 −→M
i−→ BfH

j−→ A −→ 0,
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where j is a homomorphism of H-Green functors and i is a homomorphism of H-
Mackey functors. Now, we need to show that [EfH ] is independent of the choices
of fH . In other words, if [fH ] = [gH ]⇔ fH = gH + δhH .
Two extensions EfH and EgH are equivalent if and only if there exists a commu-
tative diagram

0 //M(H)
iH // BfH (H)

jH //

αH

��

A(H) // 0

0 //M(H)
i
′
H

// BgH (H)
j
′
H

// A(H) // 0

with αH a homomorphism of rings. The commutativity of this diagram implies
that

αH(u, x) = (u+ hH(x), x)

for hH ∈ C1
H(A,M). The fact that αH is a ring homomorphism gives the following

equation,

αH((u, x)(v, y)) = αH(uy + xv + fH(x, y), xy)

= uy + xv + fH(x, y) + hH(x, y), xy)
(5.5)

and

αH(u, x)αH(v, y) = (u+ hH(x), x)(v + hH(y), y)

= uy + hH(x)y + xv + xhH(y) + gH(x, y), xy)
(5.6)

Hence, from (5.5) and (5.6) we obtain

fH(x, y)− gH(x, y) = xhH(y)− hH(x, y) + hH(x)y = δhH(x, y)

that is, fH − gH is a 2-coboundary. Conversely, if fH − gH is a 2-coboundary,
then EfH and EgH are equivalent. Moreover, we need to check that the following
diagram commutes:



Hochschild Cohomology of G-Green Functors 99

0 //M(H)

res
MH

K

��

iH // BfH (H)

αH

��

jH //

res
BH
K

��

A(H) //

res
AH
K

��

0

0 //M(H)

res
MH

K

��

i
′
H // BgH (H)

j
′
H //

res
BH
K

��

A(H) //

res
AH
K

��

0

0 //M(K)

tr
MH

K

HH

iK // BfK (K)

tr
BH
K

HH

αK

��

jK // A(K)

tr
AH
K

HH

// 0

0 //M(K)

tr
MH

K

HH

i
′
K

// BgK (K)

tr
BH
K

HH

j
′
K

// A(K)

tr
AH
K

HH

// 0

It suffices to check that resBH
K
◦ αH(u, x) = αK ◦ resBH

K
(u, x). We have

resBH
K
◦ αH(u, x) = resBH

K
(u+ hH(x), x) = (resMH

K
(u) + resMH

K
(hH(x)), resAH

K
(x))

and

αK◦resBH
K

(u, x) = αK(resMH
K

(u), resAH
K

(x)) = (resMH
K

(u)+hK(resAH
K

(x)), resAH
K

(x)).

Thus, from definition 5.4.6 it follows that: resBH
K
◦ αH(u, x) = αK ◦ resBH

K
(u, x).

Therefore, we show that there exists a well-defined map fromH2
H(A,M) to Ext(A,M).

Step 3. Let fH be 2-cocycle. Then, we define the multiplications on BfH (H) as
follows:

(u, x)(v, y) = (uy + xv + fH(x, y), xy)

where u, v ∈M(H) and x, y ∈ A(H). The 2-cocycle property of fH show that the
multiplication on BfH (H) is associative. Thus, BfH (H) is an associative ring. We
define the maps

iH : M(H) −→ BfH (H)

jH : BfH (H) −→ A(H)

as follows:
iH(u) = (u, 0)
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jH(u, x) = x

where iH is homomorphisms of H-Mackey functors and jH is homomorphisms of
H-Green functors and the sequence

EfH : 0 −→M
i−→ B

j

�
s
A −→ 0

is exact. For x ∈ A(H), choose sH(x) = (0, x). Then, for x, y ∈ A(H) ,

sH(x)sH(y) = (0, x)(0, y) = (fH(x, y), xy)

= (fH(x, y), 0) + (0, xy)

= iH(fH(x, y)) + sH(xy).

The choice sCp thus give the 2-cocycle fH .

Conversely, suppose that

E : 0 −→M
i−→ B

j−→ A −→ 0

is an extension and let fH be the 2-cocycle obtained from this extension. We must
show that the extension

EfH : 0 −→M
i−→ BfH

j−→ A −→ 0

associated to fH is equivalent to the given one. Indeed, E and EfH are equivalent
if there exists a homomorphism θfH : BfH −→ B making the following diagram
commute:

0 //M i // B
j

// A
soo // 0

0 //M
i

// BfH

θfH

OO

j
// A // 0

Now, the commutativity of this diagram implies that

θfH (u, x) = iH(u) + sH(x)
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where u ∈ M(H) and x ∈ A(H). Therefore, it remains to check that θfH is ring
homomorphism. Let (u, x) and (v, y) be elements in B(H),

θfH ((u, x) · (v, y)) = θfH (uy + xv + fH(x, y), xy)

= iH(uy) + iH(vx) + iCp(fH(x, y)) + sH(xy)

= iH(u)sH(y) + sH(x)iH(v) + sH(x)sH(y)

and

θfH (u, x) · θfH (v, y)) = (iH(u) + sH(x))(iH(v) + sH(y))

=

=0︷ ︸︸ ︷
iH(u)iH(v) +iH(u)sH(y) + sH(x)iH(v) + sH(x)sH(y).

Hence, θfH is a ring homomorphism. This proves the theorem.

5.5 Deformation of G-Green Functors

The aim of this section is to extend the deformation theory of associative algebras
due to Gerstenhaber [6] to obtain a similar result for G-Green functors.

Definition 5.5.1. Let A be a G-Green functors. For all subgroups H of G, a one
parameter formal deformation of A is a collection (ΨH ,ΦK , R

H
K , T

H
K ), where

ΨH =
∞∑
i=0

ψiH t
i,

ΦK =
∞∑
i=0

cK(ai)t
i,

RH
K =

∞∑
i=0

resHK(a′i)t
i,

THK =
∞∑
i=0

trHK(ai)t
i,

are formal power series with ψnH
∈ Hom(A(H) ⊗ A(H), A(H)), cK : A(K) −→

A(K), resHK : A(H) −→ A(K) and trHK : A(K) −→ A(H), for K ≤ H.

One requires that for all n > 0 the following identities hold

(i) ψ0H (a′, b′) = a′b′,
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(ii)
∑

iH+jH=nH
ψiH (ψjH (a′, b′), c′) =

∑
iH+jH=nH

ψiH (a′, ψjH (b′, c′)),

(iii) cK(ψnK
(a, b)) = ψnK

(cK(a), cK(b)),

(iv) resHK(ψnH
(a′, b′)) = ψnK

(resHK(a′), resHK(b′)),

(v) ψnH
(trHK(a), b′) = trHK(ψnK

(a, resHK(b′))),

(vi) ψnH
(b′, trHK(a)) = trHK(ψnK

(resHK(b′), a)),

Here a, b ∈ A(K) and a′, b′, c′ ∈ A(H). The last five identities can be expressed as

ΨH(ΨH(a′, b′), c′) = ΨH(a′,ΨH(b′, c′)),

ΦK(ΨK(a, b)) = ΨK(ΦK(a),ΦK(b)),

RH
K(ΨH(a′, b′)) = ΨK(RH

K(a′), RH
K(b′)),

ΨH(THK (a), b′) = THK (ΨK(a,RH
K(b′))),

ΨH(b′, THK (a)) = THK (ΨK(RH
K(b′), a)),

which shows that A[[t]] becomes a k[[t]]-Green functors. If for fixedm > 1 there are
given ψnH

∈ Hom(A(H)⊗ A(H), A(H)), cK : A(K) −→ A(K), resHK : A(H) −→
A(K) and trHK : A(K) −→ A(H) for n = 0, · · · ,m satisfying above identities for
n = 0, · · · ,m, then we say that there is given an m-deformation. For m = 1, one
also says that there is an infinitesimal deformation.

Definition 5.5.2. Two deformations (ΨH ,ΦK , R
H
K , T

H
K ) and (Ψ′H ,Φ

′
K , R

′H
K , T

′H
K)

are equivalent if there exists a formal power series

ΩH =
∞∑
n=0

ωnH
tn,

with properties

(i) ωnH
∈ Hom(A(H), A(H)), n ≥ 0,

(ii) ω0H (a′) = a′, a′ ∈ A(H),

(iii)
∑

iH+jH=nH
ωiH (ψ′jH (a′, b′)) =

∑
iH+jH+kH=nH

ψiH (ωjH (a′), ωkH (b′)).

Here n > 0, a′ ∈ A(H) and b′ ∈ B(H). The last equation can be expressed also as

ΩH(Ψ′H(a′, b′)) = ΨH(ΩH(a′),ΩH(b′)).
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In other words, ΩH defines an isomorphism of k[[t]]-Green functors

(ΨH ,ΦK , R
H
K , T

H
K )→ (Ψ′H ,Φ

′
K , R

′H
K , T

′H
K).

In a same way one can define under what condition two m-deformations are equiv-
alent.

Corollary 5.5.3. i) Let (ΨH ,ΦK , R
H
K , T

H
K ) be a one parameter formal deformation

of a G-Green functors A. Assume n > 0 is a natural number such that

ψiH = 0, for 0 < i < n.

Then ψnH
is a 2-cocycle in Cn(A,A). In particular ψ1H is a 2-cocycle in Cn(A,A).

ii) There is a one-to-one correspondence between the equivalence classes of in-
finitesimal deformations of a G-Green functors A and H2

H(A,A).

Proof. The part ii) easily follows from i). To prove i), we observe that these
equations gives

ψnH
(a, b)c+ ψnH

(ab, c) = aψnH
(b, c) + ψnH

(a, bc),

cK(ψnK
(a, b)) = ψnK

(cK(a), cK(b)),

resHK(ψnH
(a′, b′)) = ψnK

(resHK(a′), resHK(b′)),

ψnH
(trHK(a), b′) = trHK(ψnK

(a, resHK(b′))),

ψnH
(b′, trHK(a)) = trHK(ψnK

(resHK(b′), a)).

Hence, ψnH
is a 2-cocycle in Cn(A,A).
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