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ABSTRACT
Dwarf spheroidal galaxies of the Local Group obey a relationship between the line-of-sight
velocity dispersion and half-light radius, although there are a number of dwarfs that lie beneath
this relation with suppressed velocity dispersion. The most discrepant of these (in the Milky
Way) is the ‘feeble giant’ Crater II. Using analytic arguments supported by controlled numer-
ical simulations of tidally stripped flattened two-component dwarf galaxies, we investigate
interpretations of Crater II within standard galaxy formation theory. Heavy tidal disruption
is necessary to explain the velocity dispersion suppression which is plausible if the proper
motion of Crater II is (μα∗, μδ) = (−0.21 ± 0.09, −0.24 ± 0.09) mas yr−1. Furthermore,
we demonstrate that the velocity dispersion of tidally disrupted systems is solely a function
of the total mass-loss even for weakly embedded and flattened systems. The half-light radius
evolution depends more sensitively on orbital phase and the properties of the dark matter
profile. The half-light radius of weakly embedded cusped systems rapidly decreases produc-
ing some tension with the Crater II observations. This tension is alleviated by cored dark
matter profiles, in which the half-light radius can grow after tidal disruption. The evolution of
flattened galaxies is characterized by two competing effects: tidal shocking makes the central
regions rounder whilst tidal distortion produces a prolate tidally locked outer envelope. After
∼70 per cent of the central mass is lost, tidal distortion becomes the dominant effect and the
shape of the central regions of the galaxy tends to a universal prolate shape irrespective of the
initial shape.

Key words: galaxies: dwarf – galaxies: evolution – galaxies: fundamental parameters –
galaxies: kinematics and dynamics – Local Group – galaxies: structure.

1 IN T RO D U C T I O N

The dwarf spheroidal galaxies (dSphs) of the Local Group lie at
the extreme low-mass end of all known galaxies. As such they
present a number of challenges for any theory of galaxy formation
(Weinberg et al. 2015). Their typically high dynamical-mass-to-
light ratios (Mateo 1998) indicate the presence of massive dark
matter haloes. The velocity dispersion and half-light radius of dSphs
are approximately related as σlos ∝ R

1/2
h which can be interpreted

as all dSphs residing in a universal dark matter halo (Strigari et al.
2008; Walker et al. 2009; Wolf et al. 2010; Sawala et al. 2016)
corresponding to the smallest dark matter halo that can form and
retain stars in � cold dark matter (�CDM) galaxy formation theory
(Okamoto & Frenk 2009). From the classical dSphs, this smallest
dark matter halo has peak circular velocity Vmax ∼ 18 km s−1 with
an uncertainty/natural scatter of ∼3 km s−1 (Sawala et al. 2016).

� E-mail: jls@ast.cam.ac.uk

However, a number of dSphs (in both the Milky Way and M31)
fall significantly under this universal halo relation. The most dis-
crepant of these (in the Milky Way) is the recently discovered ‘feeble
giant’ dSph Crater II (Rh ≈ 1.1 kpc, LV ≈ 1.5 × 105 L�, Torrealba
et al. 2016). This dSph appears problematic to fit into standard
galaxy formation theory due to its extreme kinematic coldness (σ los

≈ 2.6 km s−1, Caldwell et al. 2017) compared to an expected σ los

≈ 11 km s−1. The observations of Crater II are entirely in line with
the predictions of Modified Newtonian Dynamics (MOND, σ los

≈ 2 km s−1, McGaugh 2016) in which a low velocity dispersion
(anticipated for low-luminosity dwarfs) is further suppressed by the
external field effect from the Galaxy (expected when the internal ac-
celeration is significantly smaller than the external, Milgrom 1983;
McGaugh & Milgrom 2013).

Cosmological simulations of dSphs (Sawala et al. 2016; Frings
et al. 2017; Fattahi et al. 2018) demonstrate that tidal stripping
(e.g. Hayashi et al. 2003; Peñarrubia, Navarro & McConnachie
2008; van den Bosch et al. 2018) significantly suppresses the ve-
locity dispersion producing objects similar to Crater II. A further
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consideration is possible geometric effects (e.g. Laporte, Walker
& Peñarrubia 2013; Sanders et al. 2016; Sanders & Evans 2016,
2017), as significant flattening along the line of sight (of both light
and dark matter) can suppress the line-of-sight velocity dispersion.
Thirdly, simulations show natural variance in the concentration and
maximum circular velocity of haloes hosting dSphs. Here, we inves-
tigate whether Crater II can be fit into the standard �CDM galaxy
formation picture through a combination of these effects.

We begin our investigation by detailing in Section 2 the proper-
ties of dSphs and discussing the approximate effect of shape and
tides. In Section 3, we use these properties to inspire controlled
two-component N-body simulations to thoroughly inspect the re-
lationship between mass-loss, velocity dispersion suppression, and
shape. By calibrating a simple probabilistic model using the N-body
simulations, we explore a wider range of possibilities for Crater II
putting constraints on its orbital history in Section 4. In Section 5,
we investigate the sensitivity of our conclusions to the dark and
light mass profiles, and in particular study the effects of a weak
dark matter cusp or core. In Section 6, we present conclusions and
thoughts on future observational tests that could be performed in
light of our work.

2 DWARF SPHERO IDAL PROPERTIES AND
E VO L U T I O N

2.1 Universal relation

dSphs follow a trend between the line-of-sight velocity dispersion
σ los (luminosity averaged over the whole dSph) and the half-light
major axis length Rh. Walker et al. (2010) demonstrates that the
dSphs of the MW and M31 fall on the low-mass end of the re-
lationship between circular velocity and radius traced by galaxies
over a wide mass range. Converting this relationship into σ los gives
log10 σlos = (1.271+0.15

−0.19) + 0.5 log10 Rh.
Another suggestion (Walker et al. 2009; Wolf et al. 2010) is that

all the dSphs live within a universal dark matter halo (the lowest
mass halo that admits star formation and subsequently retains the
stars). We adopt the results from Sawala et al. (2016) comparing
subhaloes in the APOSTLE simulations to the classical dSphs and
measure a mean peak circular velocity Vmax = 17.6 km s−1 with
scatter �Vmax = 3.2 km s−1 (accounting for the uncertainties and
using the dark matter-only uncertainties for Draco and Fornax for
which there are insufficient APOSTLE analogues to reliably esti-
mate the uncertainty in Vmax). Converting the circular velocity to
velocity dispersion via Vc = √

2.5σlos (Walker et al. 2010), we have
the relation

σ 2
los = 1.85V 2

max

[ rsDM

r

(
ln(1 + (r/rsDM)) − r

r + rsDM

)]
, (1)

which for small r (assuming a concentration c = 20 halo1 (Macciò,
Dutton & van den Bosch 2008) with Vmax = 17.6 km s−1 and us-
ing rh = (4/3)Rh) gives log10σ los = 1.24 + 0.5log10Rh – entirely
consistent with the results of Walker et al. (2010). For dSphs with
half-light radii close to the radius of maximum circular velocity
(such as Crater II), the predicted velocity dispersion is quite insen-
sitive to choice of concentration. However, we consider the scatter in
the concentration taken from Macciò et al. (2008) of �log10 c = 0.13
for haloes of mass ∼3 × 109 M�. We use this latter universal

1Our convention is M(< crsDM) = � 4
3 π (crsDM)3ρcrit with � = 101.1,

ρcrit = 3H 2
0 /(8πG) and H0 = 67.8 km s−1 Mpc−1

relation and assume that the relationships are followed by spher-
ical non-tidally stripped dSphs. When applied to Crater II (using
Rh = 1.1 kpc), this formula gives a velocity dispersion suppression
of ∼0.24 relative to the universal relation.

2.2 Shape

We also consider the possibility of scatter about these relationships
due to geometric effects. For simplicity, we consider ‘equally flat-
tened’ dwarf galaxies i.e. those for which the stars and dark matter
are stratified on concentric self-similar ellipsoids with axis ratios
p = b/a and q = c/a. There is some evidence for such a simplifica-
tion from simulations (Knebe et al. 2010). When viewed at standard
spherical polar angles θ and ϕ relative to the Cartesian coordinate
system defined by the principal axes, the observed velocity disper-
sion and on-sky half-light radius can be computed using simple
analytic expressions (Roberts 1962; Sanders & Evans 2016). For
the current application, it is worth considering the oblate spheroidal
case, as the observed ellipticity of Crater II is consistent with be-
ing round (ε � 0.1). When viewing an oblate spheroid ‘face-on’
(θ = 0), the measured velocity dispersion is smaller than the spheri-
cal average. For instance, if the axis ratio is q = 0.3, the suppression
factor is ∼0.67. In a more extreme case, if q = 0.1, the factor is
∼0.41. Additionally, the measured half-light radius is larger than
the spherically averaged half-light radius as the galaxy has been
stretched on the sky (and compressed along the line-of-sight). For
q = 0.3, the half-light radius is larger by a factor ∼1.5. Both of the
effects produce scatter away from any universal relation between
velocity dispersion and radius in the same sense as the discrepancy
of Crater II. However, only very extreme flattening and a fortuitous
viewing down the minor axis can produce the degree of velocity
dispersion suppression and shape of Crater II. We require a further
mechanism to contribute to the suppression.

2.3 Tidal disruption

Tidal disruption removes mass from the centre of a dwarf galaxy
producing a suppression in the velocity dispersion. The tidal radius
of a spherical galaxy with mass profile M(r) with instantaneous
orbital frequency  = dϕ/dt at radius r in a spherical Galactic
potential � is (King 1962; van den Bosch et al. 2018)

rt(r) =
( GM(rt)

2 − ∂2
r �

) 1
3
. (2)

For a galaxy on a circular orbit in a gravitational field with mass
profile MG(r) and logarithmic density slope −γ , this equates to

rt(r) =
( M(rt)

γMG(r)

) 1
3
r, (3)

On more eccentric orbits, the centrifugal term increases relative to
the force gradient but in the near radial limit, the force gradient wins
out so the denominator becomes (γ − 1). In the tidal approximation
(van den Bosch et al. 2018), in which all material outside the tidal
radius is instantaneously stripped, a galaxy with pericentric radius
rp and apocentric radius ra, will have mass ratio after a single
pericentric passage equal to

M

M0
= M(rt(rp))

M(rt(ra))
. (4)

Applying this formula repeatedly for N pericentric passages results
in severe overestimates of the mass-loss (Hayashi et al. 2003) as the
dark matter does not simply settle back to its original distribution
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Table 1. Fitting parameters for dSph properties following equation (6).
RPMN08

h is computed from the results of Peñarrubia et al. (2008) whilst the
others are calibrated to our simulations.

σ los RPMN08
h Rh (M/L) L

α −0.12 2.3 0.6 −2 1
β 0.45 0.6 0.45 −1.2 2.2

with depleted mass. Additionally, the tidal radius decreases with
increasing mass-loss. Hayashi et al. (2003) argue that once NFW
profiles become truncated they follow the law

ρ(r) = ρNFW(r)
fte

1 + (r/rte)3
, (5)

and give fits for fte and rte as a function of the ratio of the currently
bound mass to the initial mass. An improved estimate of the total
mass-loss can be obtained using this simple formalism. After each
pericentric passage, the tidal radius and hence the mass-loss at the
next pericentre is computed using equations (2) and (3) (with both
factor γ and γ − 1). The solutions must be found iteratively. As
shown by Hayashi et al. (2003), this formalism underestimates the
mass-loss from the dSph (possibly as there are energetic particles
inside the tidal radius that also become unbound) in a way that
varies with the orbital properties. The discrepancy is largest (factor
of three) for highly eccentric (e = 0.75) orbits where a superior
method for computing the mass-loss is the impulse approximation
(Aguilar & White 1986; van den Bosch et al. 2018) although its
(repeated) application is more computationally costly (Hayashi et al.
2003).

Both Hayashi et al. (2003) and Peñarrubia et al. (2008) demon-
strate that the dSph’s structural and dynamical evolution are gov-
erned solely by the cumulative mass-loss. With the total mass-loss
within the initial projected half-light radius computed by the above
method, the change in (spherical) velocity dispersion and half-light
radius are given by the expressions in Peñarrubia et al. (2008). The
ratio of each property to its initial value follows a simple relation

g(x) = 2αxβ

(1 + x)α
(6)

with x = Mi/Mi0, where Mi is the total mass within a fixed radius
Ri (for which Peñarrubia et al. 2008 uses the King radius Rc). We
transform the relations to use the total mass Mh within the initial
projected half-light radius Rh0 ≡ Rh(t = 0) and using the relations
for King radius and concentration compute the evolution of the
half-light radius (Fattahi et al. 2018). The resulting fit parameters
are given in Table 1. When discussing mass-loss, we mean the dark
plus stellar mass-loss although the dark mass is always dominant
for our purposes.

To explain the factor 0.24 velocity dispersion suppression ob-
served in Crater II solely from tidal disruption, we require Crater
II to have lost ∼95 per cent of its central total mass. This level of
mass-loss only suppresses the half-light radius by a factor ∼0.7 so
the net effect is to move Crater II downwards in the σ los against Rh

plane. Such analytic arguments suggest that, given Crater II started
life on the universal dSph relation, its current observables can be
explained by heavy tidal mass-loss. Non-sphericity aids in suppres-
sion of velocity dispersion but cannot account for the entirety of the
effect.

3 C ONTROLLED N- B O DY SI M U L AT I O N S

We have suggested possible formation pathways for Crater II. We
now turn to constructing a number of N-body simulations for the
evolution of Crater II that more accurately reflect the effects of
flattening and tidal disruption.

3.1 Setup

We consider a set of Plummer stellar profiles (denoted with �)
embedded in NFW dark matter haloes (denoted by DM). Both stars
and dark matter follow the truncated double-power-law density law

ρi(r) ∝ r−γi

(
1 + (r/rsi)

αi

)−(βi−γi )/αi

sech(r/rt), (7)

where we choose (α, β, γ )DM = (1, 3, 1) for an NFW profile and (α,
β, γ )� = (2, 5, 0). Although the surface brightness profiles of several
classical dSphs (most notably Fornax) are well fit by King (1962)
profiles, the majority are well approximated by Plummer profiles
(e.g. Sculptor). For the ultrafaint dSphs, the data are too poor to
distinguish between these profiles. Additionally, Peñarrubia et al.
(2009) has demonstrated that, after some tidal stripping, the surface
profiles of simulations tend to appear more Plummer like. However,
it should be noted that a weakly cusped profile projects to a cored
profile. The dark matter profile is specified by the concentration
c = 20 (Macciò et al. 2008) and the choice of scale radius rsDM. We
choose to work with a universal dark matter profile for dSphs with a
maximum circular velocity of 20 km s−1 (Walker et al. 2009; Sawala
et al. 2016) resulting in a dark matter scale radius of rsDM = 1.45 kpc.
To specify the stellar profile, we define a segregation parameter
(Peñarrubia et al. 2008) as

s ≡ rsDM/rs�. (8)

We adopt a simple relation between the stellar mass and
mass-to-light ratio (Mateo 1998; Fattahi et al. 2018) of
MDM(< rh, �)/(M�/2) = 200(105M�/M�)0.4 (assuming a stellar-
mass-to-light ratio of 1).2 The tidal radius rt is computed using
equation (3) at the initial orbital radius (assuming the dark matter
in the dwarf galaxy dominates and choosing γ = 2).

With these choices, our density models are completely specified
up to the choice of s. We also consider oblate models specified by
the flattening parameter q where r2 ≡ q2/3(R2 + (z/q)2). To construct
dynamical equilibria corresponding to these distributions, we spec-
ify the constant anisotropies as βDM = 0 and β� = −0.2 (a weak
tangential bias is necessary to produce a cored Plummer profile in a
cusped central potential, see An & Evans 2006). The corresponding
distribution functions (assuming sphericity) are computed numeri-
cally (Cuddeford 1991) and NDM dark matter particles and N� star
particles are sampled. Flattening is introduced by rescaling the spa-
tial coordinates of the model and adjusting the velocities to satisfy
the tensor-virial theorem (Dehnen 2009). All models are then run for
35−45 orbital time units in a Made-to-Measure algorithm (Dehnen
2009) using the coefficients of a potential-density basis function
expansion (Zhao 1996). Note we do not fix the kinematics, so the
anisotropy is allowed to vary away from the initial guess model.
Dark matter and stars are run separately in their combined poten-
tial decomposed using the basis function expansion. The results are
stacked, scaled to physical units and shifted to the initial orbital

2We have also run a simulation with 10 times the stellar mass than this
relation predicts, which produces very similar results to a simulation using
this relation.
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phase-space location. We do not rotate the flattened model such that
it is initially aligned with the Milky Way disc.

3.1.1 Orbital properties

We place our model dwarf galaxies on plausible Crater II orbits.
From Torrealba et al. (2016), the distance is 117.5 ± 1.1 kpc
whilst Caldwell et al. (2017) find the line-of-sight velocity as
87.5 ± 0.4 km s−1. There is considerable uncertainty on the proper
motion of Crater II. Caldwell et al. (2017) model the variation
of the line-of-sight velocities across Crater II to obtain an es-
timate of the proper motion as (μα∗, μδ) = (−0.18 ± 0.16,
−0.14 ± 0.19) mas yr−1 (although this variation is entirely degen-
erate with any internal dSph rotation, if present). We consider the
possible orbits of Crater II in the Milky Way potential from McMil-
lan (2017). We ignore the effects of dynamical friction which is
anticipated to be negligible for a halo with virial mass 1 × 109 M�.
Due to its measured line-of-sight velocity it is impossible for Crater
II to be on low-eccentricity orbits with e � 0.4. Although our
potential contains an axisymmetric disc component, Crater II pri-
marily orbits in regions of the Galaxy where the (model) potential
is spherical and so its orbital motion is nearly completely deter-
mined by the magnitude of the transverse velocity. We parametrize
this using the magnitude of the proper motion |μ|3 relative to the
Galactic standard of rest i.e. |μ| = 0 produces a near radial orbit
and the corresponding proper motion of Crater II would be (μα∗,
μδ) = (−0.206, − 0.241) mas yr−1 (due entirely to the solar reflex
motion). We rewind the orbit for 13.7 Gyr and place the equilibrium
galaxy at the last apocentre encountered.

3.1.2 Simulation

The dwarf galaxy is evolved forwards using GRIFFIN – a paral-
lelized N-body code (Dehnen 2000, 2002) using a fast multipole
method based on Dehnen (2014). We adopt a softening length
according to the prescription in Dehnen (2001) for a Hernquist
sphere of N particles modified by the factors given in the GYRFAL-
CON manual for a P1 kernel and scaled to r−2 for an NFW model:
ε = 0.048rsDM(N/105)−0.23. We use individual time-steps ensuring
that the time-step is not greater than 0.2

√
ε/ai or 0.2

√
�i/ai . For

small numbers of particles, the central potential produced by the
dark matter and experienced by the stars has considerable numer-
ical noise causing the stellar profile to broaden, settling to s = 1.
Choosing NDM = N� = 4 × 105 produces a s = 5 dwarf galaxy that
does not evolve significantly over time (simulations of more segre-
gated dwarf galaxies (e.g. s = 10) with higher numbers of particles
would be necessary for understanding e.g. Draco II, Segue 1, or
Grus II). This choice produces energy conservation to 0.1 per cent
over a Hubble time for an isolated s = 2 galaxy and total energy
conservation to�0.5 per cent relative to the initial internal energy of
the dSph (defined by W/2 where W is the internal potential energy).
Additionally, we have run a test with NDM = N� = 4 × 106 and s = 2
on the most eccentric orbit we consider and find the evolution of
half-light radius, central mass and velocity dispersion are very sim-
ilar to the simulations with fewer particles except when the dwarf
galaxy is nearly completely destroyed when the central mass-loss is
overestimated in the simulation with fewer particles. Additionally,

3In a slight abuse of notation, |μ| denotes the magnitude of the on-sky proper
motion vector.

Table 2. Orbital properties of our simulations. rp, ra are the pericentre and
apocentre, Tr the radial period and rt(rp) the tidal radius at pericentre.

| μ|
(mas yr−1) rp (kpc) ra (kpc) Tr (Gyr)

rt(rp)
(kpc)

0.05 4.99 130 1.64 0.139
0.1 13 131 1.75 0.636
0.17 28.4 135 1.99 1.79
0.25 52 146 2.48 3.53

the central shapes of the dwarf galaxies can be overestimated by
axis ratio differences of at most 0.1 in the smaller simulation.

Our models are defined by three parameters: the segregation s,
the flattening q, and the magnitude of the proper motion |μ| relative
to the proper motion that produces no transverse velocity at the
current time (i.e. that produced by the solar reflex). We consider a
small grid of these parameters given by

(i) s = 0.5, 1, 2,
(ii) q = 1, 0.3,
(iii) |μ| = 0.05, 0.1, 0.17, 0.25 mas yr−1.

In Table 2, we give the properties of the four orbits considered.

3.2 Analysis

At each stored time-step (approximately every 300 Myr), we find the
centre of the remnant dwarf spheroidal using the bound centre
method described in the GYRFALCON manual. This method seeks the
most bound particle (ignoring the velocities) along with its K = 512
nearest neighbours and computes the phase-space centre by aver-
aging the K/8 most bound weighted by their energy. We remove all
unbound particles and recompute the potential of all particles and
the new centre, iterating until number of bound particles changes
by less than 20. For the stars and dark matter separately, we diag-
onalize the reduced moment of inertia tensor (computed iteratively
using an ellipsoidal radius) to find the axis ratios and principal axes
of the entire distribution. We find the velocity dispersions of the
stars along each of the principal axes. We also compute the density
associated with each particle using a kernel density estimate and
split the particles ordered by density into at most 30 bins of at least
30 particles, for each of which we compute axis ratios and the prin-
cipal axes from the moment of inertia. We compute a Plummer fit to
the on-sky distribution of the stellar remnant (finding the half-light
major axis length Rh and the observed ellipticity ε) and its projected
velocity dispersion σ los (using velocities projected on to the vector
from the observer to the centre of the galaxy to remove the perspec-
tive rotation produced by the bulk motion of the galaxy). Finally,
we find the bound mass fractions (both total M/M0 and within the
original half-light radius Mh/Mh0).

3.3 Dynamical evolution

In Fig. 1, we show the fraction of remaining mass in the simulations
(both total and inside the initial half-light radius). Both total and
central mass are discontinuous around pericentric passage (particu-
larly for small |μ|) reflecting the impulsive nature of tidal stripping.
However, between pericentric passages the total mass smoothly de-
clines, whilst the mass within the half-light radius is approximately
constant, demonstrating that the central material remains ‘protected’
between pericentres. We also observe that there is increased mass-
loss for the flattened set of simulations although the difference is
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Figure 1. Tidal mass-loss: the left set of panels show the total bound dark
matter mass normalized to the initial mass (black spherical, red flattened)
whilst the right shows the mass within the initial half-light radius for s = 2
Rh = 1

2 rsDM (and inside rsDM for the s = 1 spherical model in purple).
Each row corresponds to a different proper motion of Crater II today in the
Galactocentric rest frame (from top |μ| = (0.05, 0.1, 0.17, 0.25) mas yr−1).
The solid lines with large symbols show the predicted mass-loss from the
tidal approximation formalism of Hayashi et al. (2003) (inside 1

2 rsDM for
the right-hand panels). Green triangles show the results of equation (3), blue
circles using (1 − γ ) in the denominator and cyan square using equation
(2). Faint lines show repeated application of initial mass-loss. Grey vertical
lines mark pericentric passages.

smaller for the simulations with more radial orbits. The tidal mass-
loss using the analytic formalism presented in Section 2.3 is shown
with the blue line. For more tangential orbits (|μ| = 0.25 mas yr−1,
e ≈ 0.5), the analytic prediction accurately gives both the total and
central mass-loss [although as found by Hayashi et al. (2003) equa-
tion (3) slightly underestimates the total mass-loss]. For more radial
orbits, the analytic prediction grossly overestimates the degree of
tidal stripping. From the s = 2 simulations, we compute the mass
fraction remaining per pericentric passage as a function of |μ| which
is well approximated by4

Mh/Mh0 = 1 − exp(−|μ|/0.11 mas yr−1). (9)

4Another fitting function which could be used for a wider array of possible
orbits is Mh/Mh0 = 1/(1 + (ra/rp)/16)1.2 (parameters are 11 and 1.2 for the
s = 1 simulations) but we have not tested this on orbits not consistent with
Crater II.

Figure 2. Evolution of projected velocity dispersion and half-light radius
with central mass remnant. Each panel displays the results from each time-
step of the simulations (initial time-step outlined) with s = 0.5, 1, 2 coloured
by |μ| (triangles are initially flattened models and circles spherical). The
black lines show the tracks from Peñarrubia et al. (2008), the dashed black
from our approximate tracks, and the grey band the expected relationship if
all dSphs live within similar dark matter haloes (Vmax = (17.6 ± 3) km s−1

and c = 20). The black point shows the observations of Crater II.

Using the s = 1 simulations changes the scale to 0.14 mas yr−1 and
similarly 0.17 mas yr−1 for the s = 0.5 simulations. We further ran a
simulation with |μ| = 0.42 mas yr−1 and s= 2 to check the validity
of our approximation for orbits that put Crater II near pericentre
today. Our approximation gives 2 per cent mass-loss per pericen-
tric passage whilst we find 4 per cent from the simulations, so our
approximation will not bias our later results.

In Fig. 2, we show the corresponding evolution of the velocity
dispersion and observed half-light radius (formally we plot the ob-
served half-light major axis length). As Peñarrubia et al. (2008)
found, the velocity dispersion follows a universal trend with central
mass irrespective of orbital history and segregation. Additionally,
for our study we have demonstrated that this track is also followed
by flattened dwarfs and weakly embedded systems (s = 0.5, 1 –
Peñarrubia et al. (2008) considered s = 2, 5, 10). However, the cor-
responding evolution of the half-light radius is not a simple function
of central mass. Peñarrubia et al. (2008) used King models for the
stars and found that both the King radius and concentration in-
creased, resulting in an initial increase in half-light radius before
a decline. We use Plummer models for the stars and find this ini-
tial increase approximately follows the track from Peñarrubia et al.
(2008) only for our most radial orbit, whilst for more circular orbits
the half-light radius declines. Fig. 2 demonstrates that the half-light
radius is not simply a function of the central mass-loss changing
between pericentric passages. The velocity dispersion rapidly de-
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creases at each pericentric passage as it is most sensitive to the
properties of the tightly bound particles. The half-light radius (as
determined from Plummer fits) however is more sensitive to the
outskirts of the galaxy. As discussed by Aguilar & White (1986)
and Peñarrubia et al. (2009), a tidal impulse produces a set of new
weakly bound particles ejected from the central regions which dy-
namically mix on longer time-scales. This results in a step in the
outer profile which steadily moves outwards altering the shape of
the best-fitting density profile over an orbital period. We have con-
firmed that we obtain similar results for the half-light radius using
King (1962) profile fits.

Turning to the σ los against Rh plane, we observe that our set of
simulations produce only a few objects consistent with Crater II
(black cross in Fig. 2). For s = 2 our simulations broadly agree with
the tidal tracks of Peñarrubia et al. (2008). However, for s= 0.5
and 1, the tidal tracks are too steep – suppression of velocity dis-
persion is accompanied by suppression of the half-light radius for
weakly embedded systems. We opt to fit an alternative track to
the relationship between Rh and Mh/Mh0 for the s = 1 simulations.
This relation is shown by the dashed line in Fig. 2 and the pa-
rameters are given in Table 1. Our relation shows that for weakly
embedded dSphs in NFW-like haloes, low velocity dispersions are
necessarily accompanied by low half-light radii. We explore the de-
pendence of this conclusion on more general dark matter profiles in
Section 5.

3.4 Shape evolution

In Fig. 3, we show the detailed shape profiles for the s = 2,
|μ| = 0.17 mas yr−1 simulations with initial c/a = 1 and c/a = 0.3.
Additionally, we show the alignment between the major axis and
the Galactocentric radial vector cos η = x̂ · r̂ (only shown where
b/a < 0.85). We notice that for the spherical model the outskirts
very rapidly become prolate b/a = c/a= 0.6 and radially aligned
with cos η ≈ 1 (cf. Barber et al. 2015). The interior (within ∼rsDM)
remains approximately spherical (c/a ∼ 0.9) and, as such, the major
axis and hence radial alignment is ill-defined. The flattening of the
prolate density contours varies approximately monotonically from
the edge of the spherical interior to the outermost radius.

For the model that starts oblate (c/a = 0.3), again we find the
outskirts become rapidly prolate (or prolate-triaxial) and radially
aligned. The interior remains oblate until pericentric passage at
which point the tides near instantaneously reshape the dSph increas-
ing the axis ratio to c/a = 0.4 at the centre but with a rounder enve-
lope. At the next pericentric passage, the rounder envelope moves
further inwards and the central axis ratio increases to c/a = 0.5. Al-
though this orbit experiences six pericentric passages (see Fig. 1),
there appear to only be three (possibly four) discrete steps in cen-
tral flattening. At the end of the simulation, the outskirts (beyond
rsDM) resemble the spherical model whilst the interior is oblate but
much rounder than at the initial time. The effects of tidal shocking
has been studied in the context of globular cluster evolution (e.g.
Gnedin & Ostriker 1997) where ‘tidal relaxation’ (〈�E2〉) oper-
ates alongside two-body relaxation to accelerate the core collapse.
It appears that tidal shocks on our flattened dwarfs have a simi-
lar effect in making the galaxy more isotropic and hence more
spherical.

In the lower panel of Fig. 3, we display the mean axis ratios
within 1

2 Rh0 and the observed on-sky axis ratio for all s = 1 and
s = 2 simulations. Mirroring the results of Peñarrubia et al. (2008),
we find that the axis ratios b/a and c/a depend solely on the mass
remnant within Rh0. All models tend towards approximately prolate

Figure 3. Tidal shape evolution: top and middle: axis ratios and alignment
of major axis with Milky Way centre (only shown where b/a < 0.85) coloured
by time for |μ| = 0.17 mas yr−1. The top row of panels is for the spherical
model, bottom the flattened model. Bottom: central (r < 1

2 Rh0) axis ratios
and on-sky axis ratio as a function of remnant mass for s = 1, 2 coloured
by |μ| with initial spherical models as circles and initial flattened models as
triangles (the 90 per cent confidence limit of Crater II 1 − ε is shown with a
black line).

figures such that at Mh/Mh0 = 0.01, b/a ∼ 0.8 and c/a ∼ 0.6. The
spherical models steadily become more prolate, whilst the initially
oblate models become rounder before connecting to the spherical
sequence around Mh/Mh0 = 0.2. For the flattened models 1 − ε

initially varies around the orbit with only fortuitous alignments
of the minor axis producing observed round figures. However, for
Mh/Mh0< 0.3, essentially all observed axis ratios are consistent with
Crater II (ε < 0.1).

From our simulations, we have a consistent picture of the evolu-
tion of a flattened satellite galaxy. There are two competing effects
driving the shape evolution: tidal shocking and tidal distortion. Tidal
shocking is most important for the protected central regions of the
cluster and acts to isotropise the velocity distribution and make the
galaxy rounder. Tidal distortion reshapes the outskirts of the galaxy
where the prolate potential produces a prolate envelope that tidally
locks. For extreme mass-loss the galaxy core becomes more vul-
nerable to tidal distortion and irrespective of the tidal shocking the
galaxy steadily becomes more prolate. We anticipate that all galax-
ies irrespective of their initial shape are driven on to this prolate
tidal distortion sequence, given sufficient mass-loss.
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4 POSSIBLE FORMATION C HANNELS FO R
CRATER II

We now combine the analytic results on flattening, tidal disruption
and the universal dSph relation with the results of our simulations
to estimate the most likely configuration of Crater II. Our model
consists of an equally flattened triaxial dSph described by the shape
parameters p = b/a and q = c/a, along with the two viewing angles
θ and ϕ. The parent spherical pre-tidally stripped dSph lies within
the scatter of the ‘universal’ relation with a dark matter concentra-
tion c and spherically equivalent half-light radii Rh0 and velocity
dispersion σ los, 0. Flattening and projection effects adjust these to
R

g

h0 and velocity dispersion σ
g

los,0. Tidal stripping is parametrized by
the mass fraction Mh/Mh0 remaining within the original half-light
radius.

Given this set of parameters, our likelihood is given by

lnL = − (σlos − σ ′
los)

2

2�2
σlos

− (Rh − R′
h)2

2�2
Rh

− ε′2

2�2
ε

− (Vmax − V ′
max)2

2�2
Vmax

, (10)

where primed quantities are computed from the model parameters
and unprimed denote observations with the �i quantities giving the
associated uncertainties [Vmax ‘observation’ is (Vmax ± �Vmax ) =
(17.6 ± 3.2) km s−1 from Sawala et al. (2016), (σlos ± �σlos ) =
(2.7 ± 0.3) km s−1, (Rh ± �Rh ) = (1.066 ± 0.084) kpc and we set
�ε= 0.05 as the ellipticity of Crater II is measured as <0.1 with
90 per cent confidence]. We adopt uniform priors on ln R

g

h0, ln σ
g

los,0,
cos θ , ϕ, and p, and use the prior on q from the analysis of Sanders
& Evans (2017) of N (0.45, 0.1) (using the notation N (μ, σ ) for
a normal distribution with mean μ and standard deviation σ ). For
log10c we use the prior N (1.3, 0.13) (Macciò et al. 2008).

Given a set of parameters, we compute the observables by first
computing the geometric factors (ellipticity ε

′
, the ratio of observed

to total velocity dispersion, and the ratio of half-light projected
major axis length to spherically equivalent half-light radius) using
equations 10–12 of Sanders & Evans (2016). These relate R

g

h0 and
σ

g

los,0 to Rh0 and σ los, 0. From equation (1) we use Rh0, σ los, 0, and c
to find V ′

max. Given Mh/Mh0, we use the tidal tracks to relate R
g

h0 and
σ

g

los,0 to R′
h and σ ′

los.
We use the possible orbital histories of Crater II to construct

the prior for Mh/Mh0. The major unknown is Crater II’s poorly
constrained proper motion. Using the compilation of dSph proper
motions from Pawlowski & Kroupa (2013) complemented with
recent proper motions from Casetti-Dinescu, Girard & Schriefer
(2018) for Sextans and Sohn et al. (2017) for Draco and Sculptor, we
find the total transverse velocity of the dSphs in the Galactocentric
rest frame has mean 175 km s−1 resulting in a dispersion in each
transverse component (assuming isotropy) of V = 140 km s−1. We
generate samples in the two transverse velocity components from
an uncorrelated Gaussian with variance V2 and integrate the orbits
backwards for times t (sampled from a uniform distribution from 0 to
13.7 Gyr and choosing the time of the earliest apocentric passage) in
the Milky Way potential from McMillan (2017). We reject samples
that imply Crater II is on first infall (|μ| � 0.46 mas yr−1), as we
have shown tidal mass-loss is essential to explain Crater II if it is
embedded in an NFW-like dark halo. Fig. 4 shows the final mass
fraction (computed using equation 9) and resulting depression in
the velocity dispersion (computed using equation 6) for our orbit
samples. The distribution of the logarithm of the final mass fraction
approximately follows a Cauchy distribution with width parameter
0.14 (using the s = 1 and s = 0.5 scales in equation 9 changes this to

0.22 and 0.35, respectively). We use this as a prior in our analysis.
Our figure also shows that the Caldwell et al. (2017) measurement
of the proper motion implies Crater II is not on first infall and to
explain Crater II’s velocity dispersion suppression purely by tidal
effects we require |μ| � 0.1 mas yr−1.

In Fig. 5, we show samples from the posterior defined by the
likelihood in equation (10) found using emcee (Goodman & Weare
2010; Foreman-Mackey et al. 2013). We observe that c/a shape
parameter approximately traces the prior. Highly flattened oblate
models viewed near face-on can account for the data with minimal
mass-loss. Rounder oblate models (c/a ∼ 0.4) can only account for
the data if Crater II has lost 90 per cent of its central dark matter.
Prolate models (b/a ∼ c/a) viewed down the major axis are per-
mitted. These models elevate the velocity dispersion, which must
be compensated by increased scatter and tidal disruption. The total
mass-loss posterior distribution differs significantly from the prior,
indicating the properties of Crater II does put constraints on its or-
bital history. The maximum required mass-loss is ∼97 per cent of
the total.

In the inset of Fig. 5, we show the contributions of (i) scatter
below the universal relation, (ii) shape, and (iii) tidal disruption to
the overall discrepancy of Crater II’s velocity dispersion. We see
that tidal disruption produces (on average) the largest suppression
of the velocity dispersion (approximately a factor 0.3) accounting
for most of the observed discrepancy. Both flattening and scatter
about the universal relation are also necessary ingredients for some
scenarios, but contribute approximately a factor 0.8 each.

Our modelling approach uses a number of simplifications that
merit validation: (i) no correlations between flattening and tidal dis-
ruption – we have found that tidal disruption is intrinsically linked
to a galaxy’s shape (Fig. 3) and highly flattened galaxies are incon-
sistent with heavy mass-loss. Our model allows such combinations,
but the observations of Crater II disfavour them. Therefore, inclu-
sion of this effect should not significantly affect the results and
(ii) we consider a static Milky Way potential – as the mass of the
early Milky Way grows, the pericentre of Crater II will tighten. Our
estimates for the proper motion magnitude |μ| can be considered
as upper limits as with a growing potential, we require more radial
orbits today to explain the level of total mass-loss.

We use the samples on the mass-loss to compute the posterior
on the proper motion magnitude |μ| in Fig. 6 (by reweighting the
orbit samples shown in Fig. 4 by the ratio of the posterior mass-
loss distribution to the prior mass-loss distribution). We find that
|μ| < 0.2 mas yr−1 for Crater II to fit into the standard �CDM
galaxy formation picture. In equatorial coordinates, this translates
to (μα∗, μδ) = (−0.21 ± 0.09, −0.24 ± 0.09) mas yr−1. The proper
motion measurement of Caldwell et al. (2017) is consistent with
this interpretation.

We have run our analysis using the mass-loss relation from equa-
tion (9) calibrated to the s = 1 and s = 0.5 simulations. This results
is very small changes in 1σ confidence interval on equatorial proper
motion to 0.1 and 0.11 mas yr−1, respectively. Additionally, we have
run our analysis using the flatter tidal tracks from column 3 of Table
1. This results in an increased initial half-light radius for Crater II
but the estimate of the proper motion is unchanged.

Our results also suggest the ‘accretion’ time of Crater II is
(8 ± 3) Gyr, and the initial dynamical-mass-to-light ratio and
luminosity were log10((M/L)0/(M�/L�)) = (1.4 ± 0.4) and
log10(L/L�) = (6.9 ± 0.8) (we have calibrated these relations us-
ing the s = 1 simulations and give the fitting function parameters in
Table 1). This last result seems slightly in tension with the observed
metallicity of Crater II of [Fe/H] = −2 dex (Caldwell et al. 2017),
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Figure 4. Possible orbital histories of Crater II: in the left-hand panel we show the distribution of total mass-loss within the stellar half-light radius along with
an approximate fit using a Cauchy distribution. The middle panel shows the magnitude of the proper motion vector (in the Galactic standard of rest) against
total time coloured by final to initial velocity dispersion. The final panel shows a different projection. The black line with grey bands show the proper motion
measurement from Caldwell et al. (2017) (with the point estimate given by the grey line). The horizontal green band shows the estimate of Crater II’s velocity
dispersion suppression.

Figure 5. Posterior samples for four model parameters: the shape param-
eters b/a and c/a, one of the viewing angles θ (angle relative to the minor
axis) and the mass-loss fraction. The blue lines show the adopted priors.
Inset: Contributions of the three effects to the total suppression of the ve-
locity dispersion of Crater II. In purple we show the total ratio of the true
velocity dispersion to its expected dispersion. The three other histograms
show the individual effects of natural scatter about the universal relation due
to different dark matter halo properties, the shape, and the tidal disruption.

whereas the initial luminosity suggests Crater II was comparable to
Fornax which has a metallicity of [Fe/H] = −1 dex (McConnachie
2012). However, Fornax appears to have an extended star formation
history with a steady increase in metallicity from [Fe/H] = −1.5 dex
∼10 Gyr ago (de Boer et al. 2012). It is therefore plausible that
heavy tidal disruption stifled extended star formation in Crater II
suppressing the metallicity.

5 W E A K LY C U S P E D O R C O R E D DA R K
H A L O E S

Our choice of a stellar Plummer profile embedded in an NFW
halo is somewhat arbitrary. More physically, one might expect that

Figure 6. Posterior distribution on proper motion magnitude in Galactocen-
tric rest frame (blue) alongside the measurement from Caldwell et al. (2017)
(green). For the observations of Crater II to be consistent with �CDM we
require its observed Galactocentric rest-frame proper motion to be less than
0.2 mas yr−1.

dissipation causes baryons to concentrate more than their host dark
matter halo and subsequent star formation will only occur from the
densest baryons. Therefore, the initial stellar profile should be more
concentrated than the dark matter profile. Subsequent collisionless
evolution affects both the light and dark matter equally so a cored
dark matter profile would be accompanied by a cored stellar profile.
These arguments would suggest that the inner stellar profile traces
the dark matter (more exactly, our argument suggests that the radius
containing a fraction f of the stars is less than or equal to the radius
containing f of the dark matter for all f). We have found that Crater II
could once have had a luminosity of around 107M�. At these stellar
masses, stellar feedback may weaken the central cusp and lead to
an altered tidal evolution. For the brighter dSphs like Sculptor or
Fornax, modelling of data sets of discrete radial velocities does
show strong preference for cored dark halo profiles (e.g. Amorisco
& Evans 2012; Amorisco, Agnello & Evans 2013). However, the
APOSTLE simulations (Sawala et al. 2016) manage to reproduce
the observed Local Group properties without any stellar feedback
model producing cored from dark matter cusps. In this section, we
explore how the variations in the stellar and dark profiles could alter
our conclusions.
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Figure 7. Observed properties of tidally disrupted dSphs with varying equal
inner stellar (γ �) and dark matter (γ DM) density slope (blue γ = 0.1, green
γ = 0.5, red γ = 0.7, and purple γ = 1). The left-hand panel shows the
evolution of the projected velocity dispersion (triangles) and half-light radius
(circles). Overplotted in black are the predictions for the projected velocity
dispersion from the central mass-loss. Pericentric passages are shown by
grey lines. The right-hand panel is a version of the bottom panel of Fig. 2
with this set of models and the s = 1 spherical models of Section 3 shown
in grey.

Weaker cusped models have been explored by Frings et al. (2017),
who find that Crater II can be explained by an initially weaker dark
matter cusp (central logarithmic density slope ∼0.6) which produces
a broadened stellar profile when placed on a highly eccentric orbit.
However, such cored tidal evolution tracks (e.g. Errani, Peñarrubia
& Tormen 2015) appear inconsistent with the observed dSph rela-
tionship between dark matter mass and stellar mass. In the extreme
case where mass follows (cored) light, the mass-to-light ratio does
not evolve whilst the stellar mass decreases. If a cored dSph starts
on the mass-to-light ratio versus stellar mass relation followed by
all the dSphs, heavy tidal disruption will move it off the relation,
whereas disruption of cuspy dSphs produce tracks that align with
the observed relation (Peñarrubia et al. 2008).

We run a further four simulations with s = 1, |μ| = 0.1 mas yr−1,
and c/a = 1 but varying the inner dark and stellar slopes
γ DM = γ � = (0.1, 0.5, 0.7, 1). We set the mass within 1.3r� (approx-
imately the 3D half-mass radius) to be equal to that for the Plummer
embedded in NFW models of Section 3 and recompute the initial
tidal radius. We show the results of the time evolution of the pro-
jected velocity dispersion and the half-light radius for the models
in Fig. 7. We find that the central velocity dispersion is insensitive
to details of the stellar and dark profiles and solely a function of the
central mass-loss. As in Fig. 2, the evolution of the half-light radius
is a more complicated function of the profile details. We find that the
γ DM= 1 simulations mirror the tracks traced by our original simula-
tions (modulo a small difference in initial half-light radius) leading
us to conclude that the details of the stellar profile are unimportant.
We find that more cored dark matter profiles produce a ballooning of
the stellar radius after pericentric passage. This is possibly because,
for a fixed energy injection, stars are allowed to stray further in a
cored potential. This results in the more cored galaxies following a
steeper path in the σ los against Rh plane. However, naturally cored
profiles are less resilient to the tidal field such that the simulation
with γ DM = 0.1 only lasts two pericentric passages. This though
may alleviate some of the tension of our previous simulations with
Crater II. If Crater II was initially a weakly embedded system with
a weaker dark matter cusp, tidal disruption will primarily act to re-
duce the velocity dispersion, whilst still retaining a large half-light
radius. In this picture however, Crater II has only recently been

accreted, meaning that it should be more closely associated with its
shed material and potentially other systems if part of a group infall.

In conclusion, we find that variations in the stellar profile within
a fixed dark matter potential do not alter the conclusions of the
previous section. However, cored dark matter profiles produce a
significantly steeper tidal track. For cored profiles, we still require
significant (∼90 per cent) mass-loss to explain Crater II’s velocity
dispersion, but the associated half-light radius is more consistent
with that of Crater II.

6 C O N C L U S I O N S

We have explored routes for dSphs to possess suppressed velocity
dispersion, with a particular application to the recently discovered
Crater II.5 Our conclusions are as follows:

(i) We have confirmed the tidal evolutionary tracks of Peñarrubia
et al. (2008) for cusped dark matter profiles and extended their
applicability to flattened (axis ratios 0.3) and weakly embedded
systems (rsDM = rs�, 0.5rs�). We find that the weakly embedded
and flattened systems follow the expected tidal tracks in velocity
dispersion. However, weakly embedded systems produce slightly
different tracks of half-light radius with mass-loss. The half-light
radius is significantly suppressed, producing a flatter track in the
velocity dispersion versus half-light radius plane (irrespective of the
details of the stellar profile). This is problematic for the observations
of Crater II which, within standard galaxy formation theory, is
expected to be a weakly embedded system but is only marginally
consistent with the cusped simulations. This tension is eased if the
central dark matter cusp of Crater II is weakened. More cored dark
matter profiles follow similar tidal tracks in velocity dispersion but
their half-light radii can increase between pericentric passages with
more cored profiles showing a larger increase.

(ii) We have demonstrated that there are two competing effects
driving the shape evolution of flattened dwarf galaxies. Tidal shock-
ing causes the central regions to become rounder whilst tidal distor-
tion generates a prolate tidally locked envelope. Initially spherical
systems are driven to gradually weakly prolate/triaxial structures
through tidal distortion whilst initially flattened systems are tidally
shocked to rounder distributions before heavy total mass-loss causes
tidal distortion to effect the inner regions. The central axis ratios are
solely functions of the initial shape central total mass-loss (irrespec-
tive of orbital history) and the flattened and spherical evolutionary
sequences converge after ∼70 per cent total mass-loss. At late times,
a heavily tidally disrupted system is approximately prolate-triaxial
(axis ratios 0.8 and 0.6) independent of the initial shape.

(iii) Although both shape and variation in the ‘universal’ halo
aid in explaining Crater II’s velocity dispersion, the dominant effect
has to be significant tidal stripping. We estimate Crater II has lost
∼90 per cent of its initial central mass and as such needs to be on
a reasonably eccentric orbit for multiple pericentric passages. The
proper motion of Crater II today must be (μα∗, μδ) = (−0.21 ± 0.09,
−0.24 ± 0.09) mas yr−1 for the results to fit into standard galaxy
formation theory.

5The code and notebooks used for analysing the simulations and generating
the figures in this paper are made available at https://github.com/jls713/Cr
aterII.
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6.1 Observational prospects

We close by discussing briefly the observational tests that our study
suggests. A measurement of the line-of-sight depth of Crater II
would be informative for two reasons: (i) we have shown that
highly oblate systems can have suppressed velocity dispersions
so we would like to assess the importance of this effect and (ii)
shape correlates with tidal evolution so a highly flattened system
suggests little tidal evolution. Currently, no dSphs have line-of-
sight depth measurements as these are very challenging observa-
tions. However, as Crater II is a large system it is perhaps a good
candidate for such a measurement (although it has few stars). As-
suming Crater II is spherical, we expect a magnitude width of
�M = (5/ln 10)Rh/D = 0.02 mag. We might optimistically be able
to measure the width of the horizontal branch to this degree of ac-
curacy although we require highly reliable models (Gratton et al.
2010).

The best test of the theory presented here is a robust measurement
of Crater II’s proper motion using astrometric data from the Gaia
mission (Gaia Collaboration 2016). Crater II has a number of giant
stars, (g − r) = 0.8, at r = 18.4. Using the final Gaia data set,
it should be possible to measure the proper motions of these stars
accurate to 0.08 mas yr−1 (computed using the PYGAIA package).
With proper motion measurements of multiple member stars, it will
be possible to rule out heavy tidal disruption if the mean proper
motion |μ| > 0.2 mas yr−1. However, if |μ| < 0.2 mas yr−1, this
would confirm tidal disruption as a likely cause of the velocity
dispersion suppression of Crater II .

A further useful observation is the tangential velocity (or proper
motion) dispersion. Assuming sphericity, Crater II should have a
proper motion dispersion of 5 μas yr−1. A significantly oblate figure
(e.g. axis ratio 0.3) will have a larger tangential dispersion (by
∼68 per cent). Such an accurate observation seems beyond the reach
of Gaia. However, longer baseline observations may probe down
to this accuracy. For instance, Massari et al. (2018) have recently
used the ∼12 yr baseline between Hubble Space Telescope and
Gaia observations of 15 stars in Sculptor (significantly brighter
than Crater II, L ∼ 3 × 106L� but at a similar distance 84 kpc)
to measure the tangential dispersions accurate to ∼4 km s−1. The
internal velocity dispersion can be measured significantly more
accurately than the mean tangential velocity as it is insensitive to
uncertainties in the zero-point.

Finally, with proper motion filtering using Gaia, it will be possible
to search for extra-tidal material for many dSphs. The prediction
here is that Crater II has lost ∼70 per cent of its stellar component,
so we anticipate a significant associated tidal stream. If Crater II
has a cored dark matter profile, the stellar material must have been
stripped within the last one or two pericentric passages so should be
more closely spatially associated with Crater II. For a cusped dark
matter profile, the material could have been stripped over multiple
pericentric passages and will be more dispersed making its detection
more difficult. Spectroscopic association (e.g. Chen et al. 2017) may
be useful in such cases.
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