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A family of space- and time-optimised prefactored compact schemes are developed 
that minimise the computational cost for given levels of numerical error in wave 
propagation phenomena, with special reference to aerodynamic sound. This work extends 
the approach of Pirozzoli [1] to the MacCormack type prefactored compact high-order 
schemes developed by Hixon [2], in which their shorter Padé stencil from the pre-
factorisation leads to a simpler enforcement of numerical boundary conditions. An explicit 
low-storage multi-step Runge–Kutta integration advances the states in time. Theoretical 
predictions for spatial and temporal error bounds are derived for the cost-optimised 
schemes and compared against benchmark schemes of current use in computational 
aeroacoustic applications in terms of computational cost for a given relative numerical 
error value. One- and two-dimensional test cases are presented to examine the effective-
ness of the cost-optimised schemes for practical flow computations. An effectiveness up to 
about 50% higher than the standard schemes is verified for the linear one-dimensional 
advection solver, which is a popular baseline solver kernel for computational physics 
problems. A substantial error reduction for a given cost is also obtained in the more 
complex case of a two-dimensional acoustic pulse propagation, provided the optimised 
schemes are made to operate close to their nominal design points.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Challenges in modelling wave generation and propagation phenomena

Models for the propagation of waves in a continuum are developed across the full spectrum of physical sciences, in-
cluding aeroacoustics, where increasingly stringent aircraft noise regulations [3,4] promote the development of accurate and 
affordable methods for predicting aerodynamically generated noise. Enhanced Computational Aeroacoustic (CAA) schemes 
are sought that can model sound generation and its propagation as part of the industrial design process, where predic-
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tions of accuracy compatible with the design specifications are required at an affordable cost, produced within specific 
time-constraints, earlier in the design process, using multi-processor computer clusters.

Computational aeroacoustic schemes that model sound generation and propagation with one simulation typically face 
a number of challenges. In aeroacoustics, modelling trailing edge noise is an example of where this approach is used. 
Small-scale flow structures, of the size of the boundary layer thickness, cross a trailing edge, where they experience large-
amplitude fluctuations in momentum. The interaction generates small-amplitude acoustic pressure perturbations of long 
wavelength, compared to the boundary layer thickness. These radiate at the speed of sound, which is much larger than the 
flow structure mean convection speed.

In a direct computational aeroacoustic simulation of the trailing edge problem, the computational domain size scales 
with the long wavelength of the acoustic pressure perturbation whereas the spatial discretisation scales with the size of the 
small flow structures. This separation of length scales results in large sized computational meshes. Furthermore, supporting 
large-amplitude localised momentum fluctuations and small-amplitude acoustic perturbations in the same solution requires 
numerical schemes with low dispersion and low dissipation characteristics, to prevent the low-amplitude acoustic signal 
from being distorted and/or suppressed by the flow solver numerical viscosity.

1.2. Prefactored compact finite-difference schemes

Different aeroacoustic problems exhibit different flow physics. Therefore no single algorithm is available to model all 
problems with adequate resolution and accuracy. Low Mach number acoustically active flows typically involve capturing 
complex features that are nevertheless computationally smooth, that is, these features do not involve any sharp change 
in the flow state, such as from a shock. In these circumstances, it is computationally advantageous to use higher than 
second-order (high-order) schemes that can achieve exponential (e−aN ) convergence rates by increasing the order of the 
scheme as opposed to algebraic (N−b) convergence rates by increasing the spatial mesh refinement, where N is the number 
of degrees of freedom and a and b are positive real numbers. Several numerical methods for aeroacoustics have emerged in 
the last two decades [5–7] with attendant applications documented in four proceedings of the Computational Aeroacoustic 
(CAA) workshops on benchmark problems [8–10]. Lele [11] pioneered the use of Padé type compact and explicit optimised 
schemes in aeroacoustics. This work highlighted the requirement for special near-boundary treatment, driven by the longer 
finite-difference stencils used in these high-order methods. Hixon [2] introduced in 1996 a prefactorisation method to reduce 
the non-dissipative central-difference stencil length of the compact schemes to two lower-order biased stencils which have 
easily solvabe matrices of reduced size. The advantages of these schemes over traditional compact schemes arise from 
their reduced stencil length and the independent nature of the resultant factorised matrices. By reducing the stencil length 
of the compact schemes, the prefactorisation method reduces the depth of the boundary frame over the perimeter of 
the computational domain where ad-hoc boundary stencils are required. This simplifies the specification of the boundary 
conditions [12]. Ashcroft and Zhang [13] extended the prefactorisation method to a broader class of compact schemes using 
a more general derivation strategy, which combines Fourier analysis with the notion of a numerical wavenumber. This class 
of optimised prefactored schemes exhibits better wave propagation characteristics than the standard prefactored compact 
ones.

1.3. Optimisation of the numerical methods

Several finite-difference explicit and compact methods are now available for solving wave propagation problems in a low 
Mach number flow. It is typical to involve a high performance computer cluster for such a computation, where the cost of 
the computation is important. It is therefore of interest to develop and implement an optimisation strategy for the com-
putational cost, based on an acceptable level of numerical accuracy of the results. The issue of computational efficiency of 
finite-difference schemes has been investigated in detail by Colonius and Lele [7] and by Spisso and Rona [14]. These authors 
considered the dispersive and dissipative characteristics of several types of spatial discretisation. The error associated with 
the approximate time integration is usually considered separately from the spatial error. Spatial and temporal errors com-
bine in finite-difference time-marching schemes to determine the overall numerical accuracy of the solution. Pirozzoli [1]
developed in 2007 a general strategy for the analysis of finite-difference schemes for wave propagation problems, trying 
to involve time integration in the analysis in a natural way. The analysis of the global discretisation error has shown the 
occurrence of two approximately independent sources of error, associated with the discretisation in space and in time. The 
performance improvement of the global scheme can be achieved by trying to separately minimise the two contributions. 
The analysis leads to logical and simple criteria for deriving optimised space- and time-discretisation schemes, based on 
the concepts of spatial and temporal resolving efficiencies. Such efficiencies are achievable by a careful design of the space-
and time-discretisation schemes, as well as by an appropriate choice of the grid spacing and of the time step. This analysis 
points towards substantial savings in computational resources.

1.4. Obtaining and testing optimised prefactored compact schemes

The objectives of the present work are to extend the computational cost optimisation method of Pirozzoli [1] to prefac-
tored compact schemes, assess by numerical experiment the actual computational cost of the newly developed optimised 
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schemes, and verify that the desired level of numerical accuracy of the solution is achieved. This work advances the state of 
the art by presenting a stencil optimisation procedure for prefactored compact time-marching schemes that minimises the 
computational cost for a given numerical error level and spatial and temporal resolving efficiencies [15]. Furthermore, this 
work gives a first confirmation of the performance of spatial and temporal error estimators in prefactored compact finite-
difference schemes coupled with the Runge–Kutta time integration by numerical experiment. Finally, this work provides a 
first verification of the predictive performance of a computational cost estimator of simple formulation, showing that this 
linearly relates to the actual computational time recorded in numerical experiments on a high performance computer. The 
impact of these three contributions is substantial. It enables tailoring the spatial and the temporal coefficients of the pref-
actored compact finite-difference time-marching schemes to obtain aeroacoustic predictions within computational cost and 
numerical error bounds. This contributes towards decreasing the uncertainty in computational aeroacoustic predictions for 
practical engineering and physical sciences applications, leading to a more optimal and reliable design solution.

1.5. Paper outline

The paper is organised as follows: in Section 2, the theory of the cost-optimisation of Pirozzoli [1], based on the op-
timisation of the computational cost for a given error level, is reviewed and the approximate decoupling of the spatial 
and temporal errors is introduced. The de-coupled errors are used in Section 3 to obtain a new family of prefactored 
cost-optimised schemes, with three different levels of numerical accuracy. In this section, the algebraic symmetry prop-
erties of the prefactorised stencils from Hixon [2] are used to define a new spatial differentiation for the cost-optimised 
compact schemes that is prefactored. The spatial differentiation is coupled with a Runge-Kutta time integration that is cost-
optimised to a matching level of accuracy by the cost-optimisation process of Bernardini and Pirozzoli [16]. The theoretical 
performance of the optimised coupled schemes is then investigated for a range of cost levels. Numerical tests in both one 
and two spatial dimensions are reported in Section 4, to compare the numerical accuracy achieved by the computational 
schemes against the design values from Section 3. Section 4 also addresses whether the analytic cost function used for the 
cost-optimisation is a good representation of CPU time recorded during the actual computations. Section 4 investigates the 
performance gain achieved by the optimised schemes versus their non-optimised counterparts. A discussion of the extension 
of the proposed schemes to nonlinear and higher dimensional problems, as well as to those with non-periodic boundary 
conditions, is given in Section 5 and, finally, conclusions from the current work and future perspectives are presented in 
Section 6.

2. Optimisation of finite-difference schemes for wave propagation phenomena

2.1. Compact finite-difference schemes

By performing a Taylor’s expansion of a smooth function f :R →R, its derivatives can be shown to satisfy the following 
relations

Q∑
j=−P

α j
∂ f

∂x
(x + jh) = 1

h

S∑
j=−R

a j f (x + jh) +O
(
hn) , (1)

where P , Q , R and S are non-negative integers, such that (R + S) ≥ 1, P ≤ R , Q ≤ S and h > 0. Consider now a set of 
uniformly spaced nodes indexed by i along the R axis, as shown in Fig. 1, where xi = (i − 1)h, for 1 ≤ i ≤ N and h =
L/ (N − 1). Letting f i = f (xi), then finite difference approximations f ′

i of the first order derivatives ∂ f
∂x (xi) can be found 

using the (R + S + 1) stencil:

Q∑
j=−P

α j f ′
i+ j = 1

h

S∑
j=−R

a j f i+ j. (2)

Selecting P = Q = 0 gives an explicit scheme, while other choices yield implicit schemes, otherwise known as Padé or com-
pact schemes. Formally, from Eq. (1), the approximations f ′

i have a truncation error of O
(
hn
)

and standard techniques seek 
to choose coefficients α j and a j that give the largest possible n for a given stencil width. For brevity, CP Q R S is the nota-
tion used to denote compact schemes. Of particular interest in CAA is the numerical error in the wave-like propagation of a 
single Fourier component of f (x). A monochromatic wave of wavelength λ and wavenumber k has the scaled wavenumber 
κ = kh with support −π ≤ κ ≤ π . Upon expanding f as a Fourier series, each Fourier coefficient satisfies Eq. (1) and, ig-
noring the contributions from the higher order terms, the scaled pseudo-wavenumber of the scheme Eq. (2) can be defined 
by

κ̄(κ) = 1

i

∑S
j=−R a jei jκ∑Q α jei jκ

. (3)

j=−P



A. Rona et al. / Journal of Computational Physics 328 (2017) 66–85 69
Fig. 1. Variation of the discrete function f i = f (xi) along a uniformly discretised streamwise length L.

If κ̄ = κ could be achieved over the entire wavenumber range, then the finite difference estimate of f ′
i by Eq. (2) would 

have spectral accuracy. In practice, the discrepancies between κ and κ̄ increase as κ → π , driven by the analytical form 
of the Padé approximation by which κ̄ = 0 at κ = π . κ̄ is, in general, complex valued and its real part corresponds to 
a dispersive error, while its imaginary part is related to a dissipative error. In computational aeroacoustics, where distur-
bances are transmitted over large distances, it is important to minimise the dissipative error. Selecting R = S , Q = P and 
letting a j be antisymmetric and αk be symmetric produces a scheme with zero dissipation. These central schemes are here-
inafter denoted by CR Q . This desirable property is included in the current work by restricting the stencil optimisation to 
tridiagonal compact schemes (P = Q = 1) with a five point stencil (R = S = 2) i.e., C12 schemes. In this case, the scaled 
pseudo-wavenumber is a real value given by

κ̄(κ) =
∑2

j=1 2a j sin( jκ)

1 + 2α1 cos( jκ)
. (4)

This work shows the optimisation of the prefactored compact stencils on the one parameter family of C12 schemes given 
by

⎧⎪⎪⎨
⎪⎪⎩

α0 = 1,

a0 = 0,

a1 = −a−1 = 1
3 (α1 + 2),

a2 = −a−2 = 1
12 (4α1 − 1).

(5)

The choice α1 = 1/3 yields the sixth-order C12 scheme. The analysis in this article is, in principle, extensible to more 
general CP Q R S compact schemes.

2.2. Runge–Kutta time stepping

The semi-discretisation of a general conservation law by means of finite differences gives rise to a non-autonomous 
system of ordinary differential equations of the form

dU

dt
= F(U(t), t), (6)

U(t0) = U0, (7)

where U represents the vector containing the solution values at spatial nodes. The solution can be time-marched from t = tn

to t = tn + �t by means of an explicit p-stage, two level Runge-Kutta scheme, which is formulated as

U(0) = Un, (8)

U(l) = Un + βl�tF(U(l−1)), l = 1, . . . , p, (9)

Un+1 = U(p), (10)

where the coefficients βl can be determined to achieve a given formal order of accuracy by means of a Taylor expansion, or, 
for example, to minimise dissipation and phase errors [17,18]. Assuming F(U) = AU, where A is linear, the scheme can be 
rewritten as

Un+1 = Un +
p∑

j=1

(�t)pγ j ApUn, (11)

where γ j = 

p
l=p− j+1βl . This work uses the 4-stage Runge-Kutta scheme with γ1 = 1, γ2 = 1/2 and γ3 and γ4 as free 

parameters. Setting γ3 = 1/3! and γ4 = 1/4! yields a formally 4th order accurate scheme.
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2.3. Linear advection equation analysis

2.3.1. The one dimensional single-scale problem
The one dimensional linear advection equation (LAE)

∂u

∂t
+ c

∂u

∂x
= 0, u (x,0) = u0 (x) , (12)

where c is the wave speed, is a simple platform for developing and testing appropriate schemes for more complicated, multi-
dimensional, multi-variable problems. Imposing the sinusoidal monochromatic initial condition u0 (x) = û0eikx on infinite 
and periodic domains gives rise to the solution u (x, t) = û0ei(−ωt+kx) , where the angular frequency ω and the wavenumber 
k are related by the dispersion relation ω = ck.

For the p-stage Runge-Kutta scheme defined in Eq. (11) and the compact scheme from Eq. (1), the amplification factor 
r (κ,σ ) from one time level to the next can be obtained [19] as

r (κ,σ ) = 1 +
p∑

j=1

γ j (−iσ κ̄ (κ)) j , (13)

where σ = c�t/h is the Courant number and j = 1, . . . , p. In the case of null spatial error, i.e., if κ̄ = κ , the amplification 
factor is

rt (z,γ ) = 1 +
p∑

j=1

γ j (−iz) j , (14)

where z = σκ and γ = {γ j
}p

j=1. The stability limit zs is then given by the following condition:

zs = max
{

z | ∣∣rt (z̄,γ )
∣∣≤ 1 ∀z̄,0 < z̄ ≤ z

}
. (15)

Let uh (·, ·) denote an approximation to u (·, ·). Following the work of Pirozzoli [1], the relative error in the L2-norm across 
one wavelength is defined as

E = ‖uh (·, T ) − u (·, T )‖2

‖u0 (·)‖2
, (16)

where the norm of any scalar function w is defined as

‖w‖2 =
⎛
⎝1

λ

x0+λ∫
x0

|w (x) |2 dx

⎞
⎠

1/2

,

and λ = 2π/k is the wavelength. It can then be shown [1] that, to a good approximation,

E ≈ (ckT )
|r (k,σ ) − e−iσκ |

σκ
≡ Ea, (17)

which is accurate up to a term of order E2
a/2. In the results that follow, Ea � 1, hence E2

a/2 � Ea � 1. The error ap-
proximation Ea is likely to hold up to large κ values, at which numerical stability limits prevent the scheme from being 
operated.

2.3.2. Multi-dimensional single-scale problem
For a problem in d space dimensions, the cost Cd of its numerical solution, in terms of floating point operations, can be 

shown by dimensional arguments [7] to scale as

Cd ∝ pNop

(
T

�t

)(
L

h

)d

, (18)

where (L/h)d is the number of points in the domain, Nop is the required number of operations per mesh node that depends 
on the scheme used to approximate the spatial derivatives, p is the number of Runge-Kutta stages and T /�t is the number 
of time steps.

Consider, for instance, the cost of solving Eq. (12) in d dimensions using the spatial discretisation of Fig. 1. For L 
 h, 
N = (L + h) /h ≈ L/h and Nd ≈ (L/h)d is the number of unknowns ui to be evaluated at time T . The solution is time-
marched to time T in �t time steps by Eqs. (8)–(10), which requires T /�t applications of the p-stage Runge-Kutta scheme 
of Section 2.2 per unknown. Evaluating the l-th Runge-Kutta stage in Eq. (9) requires d additions and 1 multiplication, or 



A. Rona et al. / Journal of Computational Physics 328 (2017) 66–85 71
d +1 floating point operations (FLOPS) per unknown, for a given F (U). F (U) is estimated as cf ′
i , with f ′

i from Eq. (2), in each 
dimension d. Equation (2) is a linear algebraic system of type Ax = b with A banded. By the lower-upper-decomposition 
of A, f ′

i is computed by five additions and four multiplications, or nine FLOPS, per unknown away from the domain bound-
aries i = 1 and i = N , for P = Q = 1 and R = S = 2 [7]. Reducing R = S to 1 lowers the FLOPS required to six [7]. The 
aggregate number of operations to compute one Runge-Kutta l stage per mesh node is Nop = (d + 1) + d (9 + 1) with the 
C12 scheme. Therefore, the complexity of solving the linear system of equations, Eq. (12), in d dimensions by the C12 finite-
difference scheme coupled to a p-stage Runge-Kutta integration is p (11d + 1) T �t−1Nd FLOPS, as represented by Eq. (18). 
The prefactorisation of C12 in Section 3.2 reduces Nop but the complexity remains of the same order of N .

The low-storage Runge-Kutta method of Section 2.2, at each stage l, requires the storage of O
(
3Nd

)
floating point 

numbers, which determines the baseline computer memory requirement. Additional memory storage is typically used in 
the parallel implementation of compact schemes, for instance by slab decomposition [20], compared to their equivalent 
explicit schemes.

By introducing the non-dimensional groups ckT and kL, which are, respectively, measures of the number of wavelengths 
travelled by a wave in time T and the number of wavelengths contained in the computational domain L, the normalised 
error e and the normalised cost cd are obtained

e (κ,σ ) ≡ Ea

ckT
= |r (k,σ ) − e−iσκ |

σκ
, (19)

cd (κ,σ ) ≡ Cd

(ckT ) (kL)d
= pNop

1

σκd+1
. (20)

The normalised error represents the numerical error incurred in advecting the wave u (x, t) over one period. Similarly, the 
normalised cost represents the cost of advecting u (x, t) in one dimension over the same period.

2.3.3. Multi-dimensional multi-scale problems
In practice, aeroacoustic signals are composed of a number of waves of differing wavelengths. It is therefore of interest 

to extend the error and cost definitions from Eq. (19) and Eq. (20) so they apply to broadband signals, supposing these have 
a spectrum of finite width |k| ≤ k̂ and varying propagation velocities |c| ≤ ĉ. Let κ̂ = k̂h, σ̂ = ĉ�t/h, then the formulae for 
the normalised global error and the normalised global cost metric for a broadband signal can be defined as

ê
(
κ̂, σ̂

)= 1

σ̂ κ̂
max

(κ,σ )∈[0,κ̂]×[0,σ̂ ]
|r(k,σ ) − e−iσκ |, (21)

ĉd
(
κ̂, σ̂

)= pNop
1

σ̂ κ̂d+1
. (22)

The definition of the global error given in Eq. (21) is an analytical estimator of the numerical error in a given simulation, 
based on the premise that all spectral scales in the wave propagation problem make equal contributions to the signal 
power. In real-world fluid mechanic applications, state variables have non-flat spectra and the smaller scales are usually 
less energetic than the larger scales, with the implication that the error estimator defined in Eq. (21) models a ‘worst case 
scenario’.

2.4. Optimal performance for multi-scale problems

In this work, optimising the performance of a scheme is taken as minimising the computational cost for a given level of 
error, for given values of p and Nop and a given problem, i.e., for specific values of the non-dimensional groups ckT and kL. 
To do this, a target level for the relative error ε is specified in the non-dimensional form

ê
(
κ̂, σ̂

)= ε

ckT
≡ ε̃, (23)

and the optimisation consists of finding a pair of values 
(
κ∗ (ε̃) , σ ∗ (ε̃)) that minimises the cost metric and satisfies the 

stability condition Eq. (15).
An illustration of this optimisation process is depicted in Fig. 2(a), which shows iso-lines of the normalised global error 

ê
(
κ̂, σ̂

)
and normalised cost ĉ1

(
κ̂, σ̂

)
in the wavenumber-Courant number 

(
κ̂, σ̂

)
-plane, where the support is given by [

0 ≤ σ̂ ≤ σ̂max,0 ≤ κ̂ ≤ κ̂max
]
. σ̂max and κ̂max are the numerical stability limits of the specific scheme. Results are shown 

for the sixth-order compact spatial discretisation scheme coupled with the four-stage, fourth-order RK method, denoted by 
C12RK4, for which σ̂max = 1.42 and κ̂max = π . For the C12RK4 scheme, the iso-cost curves are convex whereas the iso-error
curves are concave [1]. Under such a topology, the cost minima occur at the single point of tangency between the iso-lines
and the circles in Fig. 2(a) show the ‘optimal’ working conditions for a number of relative error values.

Let

ê
(
κ̂, σ̂

)≈ max
(
ê0
(
κ̂
)
, êt
(
ẑ
))≡ êa

(
κ̂, σ̂

)
, (24)
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Fig. 2. (a) Iso-lines of normalised ‘global’ error ê (κ̂, σ̂
)

estimated by Eq. (21) (solid lines) and of normalised cost ĉ1
(
κ̂, σ̂

)
(dashed lines), for the C12RK4 

scheme; the circles indicate ‘optimal’ working conditions. (b) Iso-lines of normalised ‘global’ error function ê (κ̂, σ̂
)

estimated by Eq. (21) (solid lines) and 
of its approximation êa(κ̂, ̂σ) by Eq. (24) (dashed lines); the circles and squares indicate the respective optimised working conditions.

Table 1
Comparison between the ‘optimal’ pair (κ̂+, σ̂+) based on the global error ê

(
κ̂, σ̂

)
estimated by Eq. (21) and the optimised pair (κ̂∗, σ̂ ∗) based on its 

approximation êa
(
κ̂, σ̂

)
from Eq. (24), for the classical C12RK4 scheme.

ε̃ ê
(
κ̂, σ̂

)
êa
(
κ̂, σ̂

)
D [(κ̂+, σ̂+) , (κ̂∗, σ̂ ∗)]

κ̂+ σ̂+ κ̂∗ σ̂ ∗

1 × 10−1 2.064 0.922 2.203 0.849 0.10
1 × 10−2 1.384 0.686 1.577 0.633 0.14
1 × 10−3 0.954 0.548 1.103 0.534 0.16
1 × 10−4 0.656 0.446 0.762 0.432 0.16
1 × 10−5 0.449 0.365 0.522 0.354 0.17
1 × 10−6 0.307 0.301 0.356 0.291 0.17

be an approximation [1] of ê
(
κ̂, σ̂

)
from Eq. (21) where ê0

(
κ̂
)

is the spatial error (assuming no temporal error) and êt
(
ẑ
)

is the temporal error (assuming no spatial error). ê0
(
κ̂
)

and êt
(
ẑ
)

are given by

ê0
(
κ̂
)≡ 1

κ̂
max

0≤κ≤κ̂
|κ̄ − κ |, êt

(
ẑ
)≡ 1

ẑ
max

0≤z≤ẑ

∣∣∣∣∣∣1 +
p∑

j=1

γ j (−iz) j − e−iz

∣∣∣∣∣∣ , (25)

where ẑ = σ̂ κ̂ . êa (·, ·) enables a decoupling of the error into spatial and temporal contributions, which will lead to a 
simplification of the computations that follow. Fig. 2(b) shows a comparison of the optimised working points for the C12RK4
scheme for the same levels of error as in Fig. 2(a), when êa

(
κ̂, σ̂

)
is used in place of ê (κ,σ ). The dashed lines show the 

maximum of the spatial and temporal errors. The vertical segments are where the spatial error ê0
(
κ̂
)

is dominant and the 
dashed curves are where the temporal error êt

(
ẑ
)

is dominant. The circles correspond to the error ê
(
κ̂, σ̂

)
estimated by (21)

and the squares to its approximation êa
(
κ̂, σ̂

)
. Table 1 shows the optimised values 

(
κ̂+, σ̂+) and 

(
κ̂∗, σ̂ ∗), corresponding 

to 
(
κ̂, σ̂

)
from Eq. (21) and Eq. (24), respectively, and the relative distance between them defined by

D
[(

κ̂+, σ̂+) , (κ̂∗, σ̂ ∗)]=
[(

κ̂+ − κ̂∗

κ̂+

)2

+
(

σ̂+ − σ̂ ∗

σ̂+

)2
]1/2

. (26)

For the errors considered, there is a maximum of 17% difference in the location of the ‘optimal’ working conditions be-
tween the two error definitions. Whereas such a discrepancy has an appreciable magnitude, it still enables operating a 
finite difference time-marching scheme in the neighbourhood of its optimal design point, as verified in the propagation 
of a monochromatic wave [20]. This allows the splitting of the derivation of the cost-optimised coefficients into a spatial 
component and a temporal component.

3. Optimised compact, time-marching schemes and extension to prefactored compact schemes

3.1. Optimised compact schemes

This section describes the optimisation of compact finite-difference schemes, by which κ̂ is maximised for a given nor-
malised error level ε̃ , assuming that the time integration is exact. This is equivalent to finding the maximum resolving 
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Fig. 3. Iso-lines of ‘global’ spatial error ê0
(
κ̂
)

for the C12 scheme from Eq. (5) with varying α1. The symbols indicate the optimised working conditions. 
The dotted line indicates the locus of optimised working conditions that asymptotes to α1 = 1/3 as κ̂ → 0.

Table 2
Coefficients and resolving efficiencies of optimised spatial C12-n schemes and temporal RK4-n schemes. α = 1/3, κ̄max = 1.98 for the standard sixth-order 
C12 scheme; γ R K 4

3 = 1/6, γ R K 4
4 = 1/24, zs = 2

√
2 for the standard fourth-order RK4 scheme.

n C12-n C12 RK4-n RK4

αn
1 κ̄max κ̂n

opt κ̂ �κ̂n% γ n
3 γ n

4 zn
s ẑn

opt ẑ �ẑn%

4 0.34311986 2.03 1.121 0.762 47.1 0.16524207 0.04024863 2.8265 0.436 0.331 31.7
5 0.33783815 2.00 0.776 0.522 48.6 0.16610629 0.04111187 2.8281 0.272 0.186 46.2
6 0.33541923 1.99 0.533 0.357 49.3 0.16648569 0.04149236 2.8284 0.160 0.105 52.3

efficiency κ̂opt so that all wavenumbers κ̂ ≤ κ̂opt are resolved with an error less than ε̃ . For this purpose, the error ê0
(
κ̂
)

from Eq. (25) is used. The baseline spatial scheme is the compact C12 scheme of Eq. (5) with α1 = 1/3.
Fig. 4 gives a graphical representation of how ê0

(
κ̂
)

varies with κ for this scheme by displaying the difference between 
the exact value of κ , shown by the dotted line, and its modelled counterpart Re (κ̄ (κ)), shown by the dashed line. As the 
C12 scheme is compact, the Padé stencil imposes the constraint Re (κ̄ (κ)) = 0 at κ = π . The C12 scheme therefore exhibits 
a progressive departure from the exact relationship Re (κ̄ (κ)) = κ as κ → π that generates the error ê0

(
κ̂
)
.

The baseline compact C12 scheme of Eq. (5) is optimised by treating α1 as a free parameter. The new class of optimised 
schemes will be denoted as C12-n, where n represents the exponent in the target ε̃ = 10−n . Optimisation in this setting is 
a non-trivial matter. As it can be seen in Fig. 3, the optimal value 

(
αn

1, κ̂n
opt

)
of each 10−n error contour occurs at a corner 

point. The corner point for n = 5 is shown magnified in the inset of Fig. 3. Near this corner point, for each α1, there can 
be multiple values of κ̂ which lie on the desired error contour. As such, a standard local minimisation routine will not 
necessarily locate the optimum. The procedure used for estimating 

(
αn

1, κ̂n
opt

)
is as follows: for a given α1, the maximum κ̂ , 

which gives the prescribed level error, is found by utilising a number of local function solves starting at different initial 
guesses. A global pattern search algorithm, which does not require the objective function to be smooth, is then used in α1, 
which is the search domain. The resulting optimised values 

(
αn

1, κ̂n
opt

)
, for n = 4, 5 and 6 are shown as the open symbols in 

Fig. 3 and are presented in Table 2. Table 2 shows that the optimised values for α1 are above the ‘standard’ value of 1/3 for 
all error levels, asymptoting toward α1 = 1/3 as the desired error level is reduced. As ε̃ → 0 the asymptotic error analysis 
holds true and the formal order of accuracy of the scheme controls the error. Hence, the optimised coefficient tends to the 
one which maximises the formal order of accuracy, i.e., α1 = 1/3, which gives a sixth-order accurate scheme. The same 
argument can be extended to more general C P Q R S compact schemes.

Table 2 shows the maximum resolving efficiency κ̂n for a normalised error level ε̃ = 10−n , when the non-optimised C12
scheme is used. Using the cost-optimised coefficients increases the spatial resolving efficiency by �κ̂n ∼ 50% over the range 
10−6 ≤ ε ≤ 10−4, indicating a gain in spatial resolving efficiency from the spatial cost-optimisation.

3.2. Spatial differentiation by prefactored compact finite-difference schemes

In the C12 scheme of Eq. (5), the approximation of the derivatives at the nodal points requires the solution of a tridi-
agonal system of equations. In this section, following the methodology of Hixon [2], the tridiagonal system of equations is 
recast as two (upper and lower) bidiagonal systems. This gives a prefactored compact scheme. Let the derivative f ′

i be split 
into a backward component f ′B

i and a forward component f ′F
i so that

f ′
i = 1 (

f ′F
i + f ′B

i

)
. (27)
2
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Suppose that f ′B
i and f ′F are found by using, respectively, the following backward and forward finite difference formulae:

αF
0 f ′F

i + αF
1 f ′F

i+1 = 1

h

[
aF

i−1 f i−1 + aF
i f i + aF

i+1 f i+1

]
, (28)

αB−1 f ′B
i−1 + αB

0 f ′B
i = 1

h

[
aB

i−1 f i−1 + aB
i f i + aB

i+1 f i+1

]
. (29)

The coefficients (αF , αB) and (aF , aB) in Eqs. (28) and (29) are determined so that the real (dispersive) components of 
the scaled pseudo-wavenumbers of the forward and backward stencils are equal to the scaled pseudo-wavenumbers of 
the original central scheme and the imaginary (dissipative) components of the scaled pseudo-wavenumbers are equal in 
magnitude and opposite in sign. Such schemes are termed MacCormack schemes [21]. The scaled pseudo-wavenumber of 
the generic C12 scheme of Eq. (4) is given by

κ̄(κ) =
2(α1+2)

3(1+2α1)
sin (κ) + (4α1−1)

6(1+2α1)
sin (2κ)

1
(1+2α1)

+ 2α1
(1+2α1)

cos (κ)
. (30)

In a similar manner, the scaled pseudo-wavenumber of the generic forward operator f ′F
i is

Re
(
κ̄ F (κ)

)
=
(
aF

1 αF
0 − aF

0 αF
1 − aF−1α

F
0

)
sin(κ) − aF−1α

F
1 sin(2κ)

(αF
0 )2 + (αF

1 )2 + 2αF
1 αF

0 cos(κ)
, (31)

Im
(
κ̄ F (κ)

)
= − (aF

1 αF
1 + aF

0 αF
0

)− (aF
1 αF

0 + aF
0 αF

1 + aF−1α
F
0

)
cos(κ) − aF−1α

F
1 cos(2κ)

(αF
0 )2 + (αF

1 )2 + 2αF
1 αF

0 cos(κ)
, (32)

and for the backward operator f ′B
i is:

Re
(
κ̄ B(κ)

)
=
(
aB

1 αB
0 + aB

0 αB−1 − aB−1α
B
0

)
sin(κ) + aB

1 αB−1 sin(2κ)

(αB−1)
2 + (αB

0 )2 + 2αB−1α
B
0 cos(κ)

, (33)

Im
(
κ̄ B(κ)

)
= − (aB

0 αB
0 + aB−1α

B−1

)− (aB
1 αB

0 + aB
0 αB−1 + aB−1α

B
0

)
cos(κ) − aB

1 αB−1 cos(2κ)

(αB−1)
2 + (αB

0 )2 + 2αB−1α
B
0 cos(κ)

. (34)

Imposing the constraints

αF
j = αB

− j, aF
j = −aB

− j, −1 ≤ j ≤ 1

ensures that the imaginary components of the forward and backward operators are equal in magnitude and opposite in sign 
and that the real components are equal to one another. Further, imposing

1∑
j=−1

aF
j = 0

guarantees that the spatial derivatives vanish in regions of zero gradient. Finally, by matching corresponding terms between 
Eq. (31) and Eq. (30) the following system of algebraic equations is obtained⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

aF
1 αF

0 − aF
0 αF

1 − aF−1α
F
0 = 2(α1+2)

3(1+2α1)
,

−aF−1α
F
1 = 4α1−1

6(1+2α1)
,

(αF
0 )2 + (αF

1 )2 = 1
(1+2α1)

,

2αF
1 αF

0 = 2α1
(1+2α1)

,

aF
1 + aF

0 + aF−1 = 0.

(35)

The quadratic terms mean that Eq. (35) has two solutions. The lower value solution for αF
1 is selected to minimise the 

ratio αF
1 /αF

0 , so that the influence of errors at the boundaries on the interior scheme is minimised, in problems that 
require closures at the computational domain boundaries. Substituting αn

1 from Section 3.1, Table 2, for α1 in Eq. (35), the 
prefactored coefficients for the C12-n schemes are obtained. The resultant prefactored coefficients are listed in Table 3. It 
is noticeable that the standard C12 scheme appears to exhibit a greater central dominance in the stencil, as confirmed 
by the higher valued aF

0 coefficient. The coefficients in Table 3 together with Eqs. (27), (28) and (29) fully define the 
prefactored compact finite difference approximation f ′

i of the first-order spatial derivatives ∂ f /∂x in the domain interior, 
i.e., 2 ≤ i ≤ N − 1.
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Fig. 4. Dispersive characteristics of the prefactored classical C12 and cost-optimised C12-4, C12-5 and C12-6 schemes. (a) Real component of the prefactored 
compact scheme from Eq. (30). (b) Spatial error ê0 versus number of points-per-wavelength Nλ .

Table 3
Prefactored spatial discretisation coefficients of the classical C12 and optimised C12-n schemes.

C12 C12-4 C12-5 C12-6

αF
1 0.27639320 0.28431973 0.28002945 0.27807444

αF
0 0.72360679 0.71568026 0.71997054 0.72192555

aF
1 0.87939886 0.87051424 0.87520493 0.87743432

aF
0 −0.758797731 −0.74102848 −0.75040987 −0.75486864

aF−1 −0.120601132 −0.12948575 −0.12479506 −0.12256567

Fig. 4 shows the dispersive characteristics of the classical C12 and the cost-optimised C12-n schemes. Fig. 4(a) shows 
the real component of the scaled pseudo-wavenumber Re (κ̄ (κ)) of the compact scheme from Eq. (30) over the scaled 
wavenumber range 0 < κ ≤ π . The dotted line shows the exact representation κ̄ (κ) = κ and the lines with symbols the 
prefactored compact finite difference approximations using different levels of target error 10−n . Table 2 and the insert in 
Fig. 4(a) show that the maximum value of the real part of the scaled pseudo-wavenumber κ̄max does not vary significantly 
among the cost-optimised schemes and it is slightly higher for the C12-n schemes compared to the baseline scheme. Due 
to the symmetric properties of the MacCormack schemes [21], the real component of the scaled pseudo-wavenumber of 
the prefactored forward stencil from Eq. (31) is equal to the real component of the scaled pseudo-wavenumber of the 
prefactored backward stencil from Eq. (33) and is, by Eq. (27), also equal to the real part of the scaled pseudo-wavenumber 
of the original C12 scheme of Eq. (30), that is Re(κ̄(κ)) = Re(κ̄ F (κ)) = Re(κ̄ B(κ)). Hence, each line with symbols represents 
Re(κ̄(κ)) = Re(κ̄ F (κ)) = Re(κ̄ B(κ)) in Fig. 4(a).

Fig. 4(b) shows the spatial error ê0 for the classical C12 and cost-optimised C12-n schemes versus the discrete number 
of points per wavelength Nλ = 2π/κ . The classical scheme C12 displays a straight line (constant logarithmic roll-off rate) 
along the whole wavenumber spectrum. The cost-optimised schemes C12-n feature local ê0 minima of 10−n for selected 
wavenumbers at which the spatial error ê0 is reduced approximately by one order of magnitude compared to the C12
scheme. Similar spatial error-number of points per wavelengths e0 − Nλ plots with single and multiple ê0 minima are 
reported in the literature [5,11,13,22] of optimised finite-difference schemes.

The two imaginary components of scaled pseudo-wavenumber of the prefactored forward and backward stencils, re-
spectively from Eqs. (32) and (34), are equal in magnitude and opposite in sign and they cancel each other out by the 
summation in Eq. (27), to give a dissipation-free scheme.

3.3. Cost-optimised Runge-Kutta time integration

The optimisation approach of Section 3.1 is herein extended to the Runge-Kutta time integration schemes of Eqs. (8)–(10). 
Assuming a zero spatial differentiation error, values for the coefficients γ j are sought that maximise the temporal resolving 
efficiency ẑopt(ε̃) for a given value of the normalised error ε̃

ẑopt = max{z̃ : êt(z̃,γ ) ≤ ε̃},
under the following stability constraint

ζ ẑopt(ε̃) ≤ zs, (36)
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Fig. 5. (a) γ3 and γ4 coefficients and corresponding temporal resolving efficiency ẑ for the classical RK4 and the cost-optimised RK4-n schemes for a range 
of target error levels ε̃ = 1 × 10−n . (b) Stability footprints for the classical and cost-optimised RK4 time integration schemes. Line patterns as in Fig. 4.

where zs is the stability limit defined in Eq. (15). The factor ζ ≥ 1.1 has been introduced to guarantee a greater stability 
margin beyond the range of well resolved angular frequencies z. The four-stage, fourth-order RK scheme is selected as the 
baseline temporal solver. To preserve formal second-order time integration accuracy, let γ1 = 1 and γ2 = 1/2. This leaves 
two free parameters γ3, γ4 to be determined from ζ ẑopt.

To find optimal values for differing levels of target error ε̃ = 1 × 10−n , a global pattern search algorithm similar to 
the one in Section 3.1 is used, in which an additional nonlinear constraint is incorporated to satisfy Eq. (36). In this case, 
ζ = 1.1 was found heuristically to provide a good balance between performance and stability. The results are plotted in 
Fig. 5(a). These show that the cost-optimised time integration schemes have smaller values of coefficients γ3 and γ4 than 
the classical fourth-order accurate RK scheme, indicated by the discontinuous lines. As the level of normalised target error 
ε̃ = 1 × 10−n decreases, the corresponding cost-optimised coefficients γ n

3 and γ n
4 , shown by the lines with symbols, tend 

asymptotically to γ RK4
3 and γ RK4

4 , respectively. The reason for this is the same as for the spatial scheme. For ε̃ → 0, the 
formal order of accuracy of the scheme determines the error and the optimised coefficients tend to the ones that maximise 
the highest formal order of accuracy, which is four in this case. For finite values of ε̃ , by optimising γ n

3 and γ n
4 , Fig. 5(a) 

shows that the RK4-n schemes consistently achieve a higher temporal resolving efficiency ẑn
opt than the resolving efficiency 

ẑRK4 = max
[
z̃ : ẽt

(
z̃,γ

)≤ ε̃
]
, with γ j = 1/ j!, achieved by the classical RK4 scheme for the same target error ε̃ = 1 × 10−n .

Fig. 5(b) shows the stability footprints from the Von-Neumann analysis [19] for the classical RK4 and the temporal 
cost-optimised RK4-n, n = 4, 5, 6 schemes. The stability footprints are the locus of points in the C complex plane where 
the amplification factor from Eq. (14) is equal to unity |rt = 1|, in case of null spatial error. It is shown that the stability 
footprints for the temporal cost-optimised schemes do not differ too much from the classical non-optimised RK4 scheme. 
The temporal cost-optimised schemes have a slightly larger footprint than the classical one in the left half-side of the 
complex plane. The larger increment is obtained for n = 4.

The coefficients of the optimised RK4-n schemes γ n
3 , γ n

4 , their respective temporal resolving efficiencies ẑn and the 
stability limits zn

s from Eq. (15) are listed in the Table 2. The stability limits zn
s of the temporal cost-optimised schemes, 

which are the intercepts of the stability footprints with the Im(z)-axis of the complex plane in Fig. 5(b), are marginally 
lower than the corresponding limit of the classical RK4 scheme, which is zs = 2

√
2. Using the cost-optimised coefficients 

increases the temporal resolving efficiencies between approximately 30% and 50% over the range 10−6 ≤ ε̃ ≤ 10−4, indicating 
a gain in temporal resolving efficiency from the temporal cost-optimisation.

3.4. Theoretical performance of the cost-optimised schemes

Sections 3.2 and 3.3 considered the potential benefits of cost optimisation in solving ordinary differential equations in 
space and in time, respectively. This section explores combining C12-n and RK-n schemes in a single numerical procedure, 
denoted C12RK4-n, to solve the partial differential equation Eq. (12). The limitation on the maximum value of the Courant 
number σmax for the class of cost-optimised C12RK4-n schemes is given by

σmax = zs

max
κ∈(0,π)

κ̄ (κ)
, (37)

which depends on both the spatial and temporal discretisation. Table 4 reports the σmax values for n = 4, 5, 6.
Fig. 2(a) has shown that, given a target level of normalised error ê(κ̂, σ̂ ), it is possible to determine the optimal working 

conditions (κ̂+, σ̂+) that give the smallest normalised cost ĉ1(κ̂, σ̂ ) and Fig. 2(b) has shown that the normalised approxi-
mate error êa(κ̂, σ̂ ) can be used in place of ê(κ̂, σ̂ ) for computing the estimations (κ̂∗, σ̂ ∗) of (κ̂+, σ̂+), which are listed in 
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Fig. 6. Error estimated by Eq. (24) as a function of ĉ1 for C12RK4-n schemes, one-dimensional implementation. Symbols indicate
(
κ̂∗, σ̂ ∗) values.

Table 4
Theoretical performance of cost-optimised schemes C12RK4-n for different target errors in one dimensional space and comparison with the standard 
C12RK4 scheme. σmax = 1.428 for the C12RK4 scheme.

Scheme êa σmax ĉ∗
1 ĉ∗

1(C12RK4) �ĉ1(%) êa(C12RK4) �êa

C12RK4-4 10−4 1.392 73.65 142.67 48.45 4.98 × 10−4 79.92
C12RK4-5 10−5 1.414 170.63 370.19 53.91 6.48 × 10−5 84.57
C12RK4-6 10−6 1.421 422.36 963.55 56.17 7.28 × 10−6 86.26

Table 1. Following the same procedure, the normalised cost ĉ1(κ̂∗, σ̂ ∗) of operating the C12RK4 and the C12RK4-n schemes 
for different levels of normalised approximate error êa(κ̂, σ̂ ) were determined and the results reported in Fig. 6. For each 
C12RK4-n scheme, the symbols denote the normalised cost ĉ1(κ̂∗, σ̂ ∗) of operating this scheme at the normalised approx-
imate error êa(κ̂

∗, σ̂ ∗) = 10−n , which is the design error level of the C12RK4-n scheme. Fig. 6 confirms that, for each 
C12RK4-n scheme, the design level of error 10−n of its spatial differentiation C12-n and temporal integration RK4-n con-
stituents is retained once the spatial differentiation and temporal integration are coupled together in one partial differential 
equation solver.

Whereas it is encouraging to notice that the C12RK4-n schemes retain their design error level based on the approxima-
tion êa(κ̂

∗, σ̂ ∗) at their design point, it is of interest to discuss the error trend away from the êa = 10−n level, in comparison 
with the conventional C12RK4 scheme. All C12RK4-n schemes exhibit a rate of convergence higher than the C12RK4 scheme 
up to their respective design error levels. Thereafter, the C12RK4-n schemes exhibit a êa plateau with increasing ĉ1, followed 
by a convergence rate that is lower than that of C12RK4. The êa trend is monotonically decreasing for all schemes. The vari-
able error roll-off of the C12RK4-n schemes offers some advantages and limitations in computational physics applications. 
The monotonicity of the numerical error indicates that the scheme can be operated with confidence in wavenumber band-
width limited problems knowing the design error will not be exceeded. This indicates that each optimised scheme could 
be expected to perform well when operated close to its design point. The variable error roll-off rate, however, prevents the 
implementation of classical roll-off rate checks for mesh convergence computations, as constant error roll-off rates exhibit 
only at a normalised cost ĉ1 about two orders of magnitude higher than the scheme’s optimal operating point. This cost 
difference is likely to amount to an onerous mesh resolution in a practical computation, the rate of convergence of which 
requires testing by alternative means.

Table 4 shows the computational cost ĉ∗
1 required by each of the C12RK4-n schemes to achieve their design level of 

error êa = 10−n . This is then compared with the corresponding cost ĉ∗
1(C12RK4) required by the standard C12RK4 scheme 

to obtain the same level of error; the percentage improvement �ĉ1, based on the cost ĉ∗
1(C12RK4) of the classical scheme, 

is between 48% and 56% and increases with decreasing error level. In addition, the smallest error êa(C12RK4) achieved by 
the standard scheme for the estimated computational costs ĉ∗

1 is reported in Table 4 and the percentage numerical error 
reduction �êa , based on the error êa(C12RK4) of the classical scheme, is seen to be in the region of 80% for all the optimised 
schemes.

Let space-only optimised schemes be denoted by C12RK4-Sn, where the standard RK4 scheme is used with the space 
optimised schemes of Section 3.1, and time-only optimised schemes be denoted by C12RK4-Tn, where the standard C12
spatial discretisation is combined with the temporal optimised schemes of Section 3.3; consistently, n represents the expo-
nent of the error level. Fig. 7 shows a comparison between the fully-optimised C12RK4-5 scheme and the C12RK4-S5 and 
C12RK4-T5 ones. The symbols and the corresponding vertical dotted lines show the smallest normalised cost ĉ1 required 
by each scheme to give a normalised error êa = 10−5. The values of ĉ1 are ĉ5

1 = 170.63, ĉS5
1 = 265.52 and ĉT5

1 = 254.11, re-
spectively for the C12RK4-5, C12RK4-S5 and C12RK4-T5 schemes. To achieve an error of 10−5, the fully optimised C12RK4-5 
scheme, represented by a dashed line with circles, shows a cost advantage of 32.9% and 35.7% over the C12RK4-T5 and 
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Fig. 7. Comparison of the error estimated by Eq. (24) among the C12RK4-5, C12RK4-T5 and C12RK4-S5 schemes. Symbols indicate
(
κ̂∗, σ̂ ∗) values.

C12RK4-S5 schemes, respectively. Similar results hold for other error levels n, but these are omitted from Fig. 7 for clarity. 
These results highlight the advantages that can be achieved by using a scheme fully optimised in both space and time.

4. Numerical experiments

This section presents a series of numerical examples to highlight the improvement in computational efficiency that is 
attainable by using cost-optimised prefactored schemes. The classical C12RK4 and the cost-optimised C12RK4-n scheme of 
Secs. 3.2 and 3.3 are used to solve the governing equations. Periodic boundary conditions are used at the computational 
domain boundaries. The numerical experiments reported in this work were performed on the High Performance Computer 
cluster Alice at the University of Leicester. The cluster is an assembly of 208 pairs of 2.6 GHz CPUs with 64 GB RAM per 
node pair. The tests were run as scalar computations on one dedicated computer core with its own dedicated memory, 
isolated from the remainder of the hardware to prevent other jobs running concurrently on the cluster from affecting the 
assessment of the computational cost.

4.1. Polychromatic wave

In the first numerical example, the one-dimensional LAE (Eq. (12)) is solved on the interval (0, 1) with c = 1, periodic 
boundary conditions u(0, t) = u(1, t) at t > 0, and the initial condition u(x, 0) = ∑4

j=1 sin(2( j+1)πx). The solution is a 
polychromatic wave with k̂ = 32π . For a given theoretical cost level ĉ1, a simulation is run with the optimal Courant 
numbers σ̂ ∗ and the optimal pseudo-wavenumbers κ̂∗ found in Section 3.4. Once an approximate solution uh(x, t) has been 
computed, the normalised relative numerical error ē is calculated. Here, ē is given by

ē2 = 1

(ck̂T )2

∑N−1
i=1 (uh(xi, T ) − u(xi, T ))2∑N−1

i=1 (u(xi,0))2
, (38)

where N is the number of nodes in the computational domain. ē represents an approximation to E/(cκ̂T ) due to there being 
only a finite number of points at which the solution is available. However, tests where ē was replaced by an error computed 
using a coarse grained solution yielded negligible changes to the results, except where very few points per wavelength were 
utilised. These results indicate that ē is not affected by spurious numerical integration effects.

Fig. 8(a) and Fig. 8(b) show, respectively, the iso-lines of the theoretical global approximate error function êa(·, ·) and the 
iso-lines of the numerical error ē(·, ·) for the C12RK4-4 scheme with (κ̂, σ̂ ) ∈ [0,1.5] × [0,1]. The iso-lines of the numerical 
error ē(·, ·) reported in Fig. 8(b) were calculated according to Eq. (38), with c = 1, k̂ = 32π , T = 1 and the non-uniform 
(κ̂, σ̂ ) discretisation used by Spisso [20]. The locus of optimal points (κ̂∗, σ̂ ∗) and the design point (κ̂4

opt, σ̂ 4
opt) for the 

C12RK4-4 scheme are overlaid on both figures by using, respectively, the thick (magenta in the web version) line and the 
filled (magenta in the web version) circle. The a posteriori computed numerical error ē(κ̂, σ̂ ) of Eq. (38) is dependent on the 
wavenumber spectrum of the problem being solved. Still, the comparison between Fig. 8(a) and Fig. 8(b) shows that there is 
a strong correlation between the theoretical error êa(κ̂, σ̂ ) and the computed numerical error ē(κ̂, σ̂ ) for this polychromatic 
wave propagation problem.

There are two branches of the locus of optimal points (κ̂∗, σ̂ ∗). The design point (κ̂4
opt, σ̂ 4

opt) lies on the right hand 
branch. The discontinuity in the locus of optimal points is due to the non-monotonicity of the approximate spatial error 
function êa(·, ·) as κ̂ increases from 0.75 to 1.2 for a fixed σ̂ < 0.58, as shown in Fig. 8(a) by the contour error labels 
over the range 0.75 < κ̂ < 1.2. The non-monotonic error variation is lower in magnitude than the error change outside this 
region, as indicated by the packing of the contour lines in Fig. 8(a), so that this region can be regarded as featuring an error 
plateau. In practice, by increasing the cost above that given by the design point, the theoretical error initially plateaus, until 
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Fig. 8. Polychromatic wave: (a) Iso-lines of global approximate error êa(κ̂, ̂σ) for the C12RK4-4 scheme and (b) iso-lines of polychromatic wave numerical 
error. The iso-lines are equally spaced on a log-scale and the levels shown are the exponent of 10. Thick (magenta in the web version) lines indicate the 
locus of optimal (κ∗, σ ∗) for the C12RK4-4 scheme, while the open circle corresponds to (κ̂4

opt, ̂σ 4
opt).

the jump from the right to the left branch occurs. Thereafter, it monotonically decays with the reduction of both κ̂ and σ̂
as shown in Fig. 6.

Fig. 8(b) follows essentially the same main trend as Fig. 8(a). Interestingly, for (κ̂, σ̂ ) ∈ [1, 1.2] × [0, 0.5] there is a valley 
where the computed numerical error is significantly lower than the theoretical predictions. The presence of the valley is 
due to the actual numerical error ē being the sum of local errors associated with the different harmonics which comprise 
the solution, while the error estimate êa is the maximum error over the entire wavenumber range using the worst case 
assumptions of Eq. (25).

Fig. 9(a) plots the numerical error ē against cost ĉ1, using the same optimal conditions 
(
κ̂∗, σ̂ ∗) as in Fig. 6, for the 

optimised schemes C12RK4-n (lines with symbols) and the standard C12RK4 scheme (solid lines), at a non-dimensional time 
T = 1 and overlays the theoretical results (dotted lines) from Fig. 8(a). The normalised numerical errors ē

(
κ̂∗, σ̂ ∗) computed 

a posteriori compare very favourably with the approximate error estimates êa
(
κ̂∗, σ̂ ∗). Each of the optimised schemes gives a 

significant computational cost reduction over the C12RK4 scheme close to its design level of error, as indicated by the open 
symbols lying left of the dashed line, although the maximum cost reduction is seen at error levels slightly below the design 
level of error. The approximate error êa

(
κ̂∗, σ̂ ∗) in Fig. 9(a) is shown to be consistently of the same order of magnitude as 

the a posteriori numerical error ē
(
κ̂∗, σ̂ ∗) over the normalised cost range 2 × 101 ≤ ĉ1 ≤ 4 × 103. More specifically êa ≥ ē. 

This is a desirable feature, as it indicates that êa can be used as an upper bound indicator for the normalised error for the 
application of a cost optimised prefactored compact scheme to multi-scale linear advection problems. It implies that the 
numerical solution will not exceed an acceptable level of numerical error ē = 10−n that is arbitrarily set by the numerical 
modeller selecting a specific C12RK4-n scheme. By construction, from Eq. (21), ê and its approximation êa represent the 
maximum normalised error over the wavenumber and Courant number range 

[
0, κ̂

]× [
0, σ̂

]
. This implicitly attributes the 

same importance to all the (κ,σ ) scales over this range [1], whereas the most energetic scales in a wave propagation 
problem may differ from the ones associated to the normalised error maximum ê from Eq. (21), which typically lie towards 
the upper limit κ̂ of the wavenumber range, as shown in Fig. 4(a). For instance, in the propagation of broadband noise, 
the sound intensity spectrum decays at higher wavenumbers and frequencies so that propagation errors that occur at these 
scales have a modest impact on the overall sound pressure level prediction. ê and its approximation êa therefore represent 
the worst case scenario of the most energetic scale in a multi-scale wave propagation problem being also the scale of 
maximum normalised propagation error ê in Eq. (21), from which êa ≥ ē.

Fig. 9(a) also shows that, for each of the C12RK4-n schemes, there is a discrepancy between the numerical errors and 
the theoretical predictions in Fig. 9(a) near its design level of error ε̃ = 10−n . In this region, the theoretical error êa is 
larger than the numerical error ē. This trend is explainable by considering the right-hand branch of the (κ̂∗, σ̂ ∗) locus in 
Fig. 8(b), moving from right to left. Using the C12RK4-4 scheme near to its design point, the locus of optimal points begins 
to enter the valley of low error, thus ē diverges from êa due to this valley not being present in Fig. 8(a). As the locus of 
points ‘climbs’ back out of the valley, ē increases with cost until once again êa ≈ ē. A similar discussion applies to both the 
C12RK4-5 and C12RK4-6 curves in Fig. 9(a).

Table 5 reports the performance of the C12RK4-n schemes benchmarked against the C12RK4 scheme at their respective 
design points and confirms quantitatively that ē � êa . For each optimised scheme operating at its design point, the numerical 
error ē is slightly below the corresponding design level of error ε̃ . Table 5 also reports the percentage cost reduction 
�ĉ1 over the standard C12RK4 scheme in achieving the same numerical error level ē attained by each optimised scheme 
operated at its design point. This cost reduction varies from 50% to 60% and it increases with n. Similarly, the percentage 
error reduction �ē achieved by each optimised scheme over the C12RK4 scheme for the same cost ĉ∗ is over 80%.
1
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Fig. 9. Polychromatic wave: (a) Computed numerical error (lines with symbols) as a function of one-dimensional cost function ĉ1, overlaid with theoretical 
predictions (dotted lines). (b) Numerical error as a function of normalised CPU time tCPU for the classical C12RK4 and optimised C12RK4-n schemes. 
(c) Normalised CPU time tCPU compared with theoretical cost, in one- and two-space dimensions.

Table 5
Polychromatic wave: performance of cost-optimised schemes at their design points (κ̂n

opt, ̂σ n
opt) and comparison with the standard C12RK4 scheme. �ĉ1(%)

and �e(%) indicate the percentage cost and error reduction with respect to the C12RK4 scheme.

Scheme ē ĉ∗
1 ĉ∗

1(C12RK4) �ĉ1(%) ē(C12RK4) �ē(%)

C12RK4-4 6.443 × 10−5 74.376 170.56 56.39 4.706 × 10−4 86.31
C12RK4-5 7.702 × 10−6 171.7987 412.19 58.32 6.332 × 10−5 87.84
C12RK4-6 9.565 × 10−7 424.136 981.3 56.78 7.191 × 10−6 86.71

Fig. 9(b) shows the normalised numerical error ē against the normalised computational time tCPU, at the same (κ̂∗, σ̂ ∗) as 
in Fig. 9(a). Here, to be consistent with Eq. (20), tCPU = TCPU/((ck̂T )(k̂L)), where TCPU is the CPU time used by the simulation 
in seconds. Computations were carried out on a machine with an Intel Xeon Ivy Bridge CPU running at 2.6 GHz and the 
computational time was averaged over 100 runs per (κ̂∗, σ̂ ∗) pair to ensure the consistency of the results. Qualitatively, 
Fig. 9(b) is very similar to Fig. 9(a). This indicates that ĉ1 is a good pseudo-variable for the normalised CPU time; this is 
confirmed in Fig. 9(c), where the normalised CPU time, tCPU, is plotted against ĉ1 for the C12RK4-5 scheme and shows 
ĉ1 ∝ tCPU. The computations were repeated for the C12RK4-4 and C12RK4-5 schemes and the constant of proportionality 
was found to be the same for all three schemes. Using the tCPU ∝ ĉ1 relationship from Fig. 9(c), each optimised scheme 
offers the same (percentage) reduction in CPU time over the C12RK4 scheme as the �ĉ(%) reported in Table 5.

4.2. One-dimensional Gaussian pulse

The second sample application of the C12RK4-n schemes is derived from Test case B from [16]. A numerical solution is 
sought for the one-dimensional LAE equation Eq. (12) over the domain [−100, 100], with c = 1, periodic boundary condi-
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Fig. 10. One-dimensional Gaussian pulse: (a) Numerical error as a function of one-dimensional cost function ĉ1 with error estimates êa overlaid (dotted 
lines) and (b) detail in the vicinity of the C12RK4-4, C12RK4-5 and C12RK4-6 design points.

Table 6
One-dimensional Gaussian pulse: performance of cost-optimised schemes at their operating points (κ̂n

opt, ̂σ n
opt) and comparison with standard C12RK4 

scheme. �ĉ1(%) and �ē(%) indicate the percentage cost and error reduction with respect to the C12RK4 scheme.

Scheme ē ĉ∗
1 ĉ∗

1(C12RK4) �ĉ1(%) ē(C12RK4) �ē(%)

C12RK4-4 6.784 × 10−5 74.677 88.29 15.42 9.954 × 10−5 31.85
C12RK4-5 7.7647 × 10−6 173.227 218.78 20.82 1.365 × 10−5 43.12
C12RK4-6 8.2525 × 10−7 424.245 554.45 23.48 1.573 × 10−6 47.54

tions, and the initial condition u(x, 0) = 1
2 e−(x/3)2

. The solution has a broadband Fourier decomposition and provides a good 
test of the C12RK4-n schemes applied to a broadband signal. The characteristic length scale for this problem is λ = 6, which 
corresponds to k̂ = π/3. For a given cost level ĉ1, the optimal Courant number σ̂ ∗ and the optimal pseudo-wavenumber κ̂∗
have been selected from Fig. 6 for êa = 10−4, 10−5 and 10−6. These set the spatial and temporal discretisations (h and �t) 
for the application of the cost optimised schemes. Fig. 10 plots the normalised numerical error ē, computed using Eq. (38), 
against cost ĉ1 for each of the optimised schemes C12RK4-n and the standard C12RK4 scheme at the final time T = 100. In 
Fig. 10, all optimal operating points of the C12RK4-n schemes, denoted by the open symbols, lie to the left of the dashed 
line, therefore, numerical solutions with the same level of normalised numerical error ē can be obtained for a lower com-
putational cost than by using the C12RK4 scheme. In this case, the reduction in computational cost ĉ1 obtained by using 
the optimised schemes is not as large as in the polychromatic wave test case, but there is still a clear advantage in us-
ing the optimised schemes at their respective design points. This is better appreciated in the enlargement of Fig. 10(b) in 
the vicinity of ē = 1 × 10−6 and ē = 1 × 10−5. Table 6 shows a comparison between the optimised schemes C12RK4-n, 
n = 4, 5, 6, operating at their design points and the standard C12RK4 scheme. Table 6 confirms that, when operating at 
their design points, all optimised schemes require a 15% to 25% lower cost than the C12RK4 scheme to achieve the same 
normalised numerical error ē. Similarly, when the optimised schemes are operated at their design point, they offer between 
a 30% and 50% reduction in normalised numerical error for the same normalised cost ĉ∗

1 when compared with the C12RK4 
scheme.

Notwithstanding the positive outcome from this broadband wave propagation test, which points to a consistent per-
formance advantage of the C12RK4-n schemes over the C12RK4 scheme, this performance advantage is significantly 
lower than that predicted by the theory in Table 4. The background of this lower performance gain is explored by 
reporting in Fig. 10, by the dotted lines, the approximate normalised error êa(κ̂, σ̂ ) versus the normalised cost ĉ1
for the C12RK4-6 and C12RK4 schemes. Plots of the approximate normalised error for the other optimised schemes 
are omitted for clarity. Recall that Fig. 4(a) indicates an increase in dispersion with increasing wavenumber. Given 
that the Gaussian pulse has a definite roll-off at high wavenumbers, êa(κ̂, σ̂ ) overestimates ē, as shown by the dot-
ted curves lying above the continuous and discontinuous line in Fig. 10. The approximate errors can be considered 
to be upper bound estimates for ē because êa assumes the error is generated at all wavenumbers ≤ κ̂ whereas, in 
a physical problem, some wavenumbers may have comparatively negligible energy levels and make a negligible con-
tribution to the actual error ē. Given that the baseline a posteriori normalised numerical error is lower than êa , a 
more modest reduction in cost ĉ1 to achieve ē = 10−n appears to be a reasonable outcome by the use of a C12RK4-n
scheme.
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Fig. 11. Two-dimensional Gaussian pulse: (a) Theoretical errors as a function of ĉ2 for space–time optimised schemes. (b) Numerical errors as a function of 
cost ĉ2.

4.3. Linearised Euler Equations

The last test case is the application of the same optimised schemes from Section 2 to a broadband two-dimensional 
linear wave propagation problem, which is governed by the Linearised Euler Equations (LEE) in two-dimensions. The two-
dimensional normalised LEE equations, in non-conservative form, are

∂U

∂t
+ A0

∂U

∂x
+ B0

∂U

∂ y
= 0, (39)

where

U =

⎡
⎢⎢⎣

ρ
u
v
p

⎤
⎥⎥⎦ , A0 =

⎡
⎢⎢⎣

Mx 1 0 0
0 Mx 0 1
0 0 Mx 0
0 1 0 Mx

⎤
⎥⎥⎦ , B0 =

⎡
⎢⎢⎣

M y 0 1 0
0 M y 0 0
0 0 M y 1
0 1 0 M y

⎤
⎥⎥⎦ , (40)

with Mx the Mach number in the x-direction and M y the Mach number in the y-direction. In this example Mx = M y = 0
and Eq. (39) is solved in the non-dimensional spatial domain (−100, 100)2 with the initial conditions

U0 =

⎡
⎢⎢⎣

e− ln(2)(x2+y2)/9

0
0

e− ln(2)(x2+y2)/9

⎤
⎥⎥⎦ (41)

that represent an initially quiescent medium perturbed by a two-dimensional Gaussian pulse. Mx = M y = 0 is used for 
consistency with the numerical example presented in [1]. Periodic boundary conditions are applied at the computational 
domain perimeter and the solution is time-advanced to the non-dimensional time T = 40 at which the pulse, which travels 
at the speed of sound, has yet to reach the perimeter, which therefore remains unperturbed. The initial condition of Eq. (41)
has characteristic wavenumber k̂ = π (ln 2)1/2 /3.

The procedure of Section 2 is used to estimate the optimal values (κ̂∗, σ̂ ∗) which give the smallest error estimate ê, 
from Eq. (21), for a given cost estimate ĉ2, from Eq. (22), for the C12RK4 and C12RK4-n, n = 4, 5, 6 schemes. Fig. 11(a) 
shows the resulting cost-error trends, using the same notation as Fig. 6. The open symbols represent the estimated optimal 
operating points (κ̂opt, σ̂opt) of each scheme and indicate a good cost-advantage potential where the C12RK4-n schemes 
work at these spatial and temporal discretisation level. A quantitative comparison in the predicted performance between 
the standard C12RK4 scheme and each of the cost-optimised C12RK4-n schemes is presented in Table 7, for the optimal 
values (κ̂opt, σ̂opt). All optimised schemes are predicted to provide more than 60% reduction in cost �ĉ2 to achieve the same 
magnitude of normalised numerical error as the C12RK4 scheme. Furthermore, all optimised schemes are predicted to give 
about an 80% reduction in normalised numerical error �êa compared to the C12RK4 scheme for the same computational 
cost estimate ĉ∗

2. Comparing �ĉd and �êa values between Tables 4 and 7 shows that these error and cost reductions 
from using C12RK4-n schemes at their respective optimal operating points are predicted to increase in two-dimensional 
applications.

These cost and error reduction estimates are verified a posteriori by solving numerically the two-dimensional Gaussian 
pulse propagation problem of Eqns. (39), (41). The baseline solution is provided by the C12RK4 scheme used on a uniform 
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Fig. 12. Propagation of a two-dimensional acoustic pulse on an unbounded domain at non-dimensional T = 40, fixed σ = 0.05.

Table 7
Theoretical performance of cost-optimised schemes for different target errors in two dimensional space.

Scheme ε̃ ĉ∗
2 ĉ∗

2(C12RK4) �ĉ2(%) êa(C12RK4) �êa(%)

C12RK4-4 10−4 65.69 187.19 64.91 6.215 × 10−4 83.91
C12RK4-5 10−5 219.98 708.56 68.95 7.557 × 10−5 86.77
C12RK4-6 10−6 792.86 2699.30 70.63 8.238 × 10−6 87.86

Table 8
Two-dimensional Gaussian pulse: performance of cost-optimised schemes at their design point (κ̂n

opt, ̂σ n
opt) and comparison with the standard C12RK4 

scheme. �ĉ2(%) and �ē(%) indicate the percentage cost and error reduction with respect to the C12RK4 scheme.

Scheme ē ĉ∗
2 ĉ∗

2(C12RK4) �ĉ2(%) ē∗(C12RK4) �ē(%)

C12RK4-4 7.581 × 10−5 66.93 97.85 31.61 1.449 × 10−4 47.67
C12RK4-5 8.297 × 10−6 221.72 352.74 37.14 1.850 × 10−5 55.16
C12RK4-6 8.540 × 10−7 799.93 1317.42 39.28 2.020 × 10−6 57.73

spatial mesh with h = 0.25 in both coordinate directions and σ = 0.05. Figs. 12(a) and 12(b) show a comparison between 
the numerical approximation and the analytical solution of the two-dimensional propagation of the acoustic pulse at the 
non-dimensional computational time T = 40. There is no appreciable azimuthal distortion of the wave, showing that the 
numerical solution does not suffer from any appreciable degradation from the wave front not being orthogonal to the mesh.

Equivalently, solutions are obtained using the C12RK4-n schemes with spatial and temporal discretisation corresponding 
to their (κ̂n

opt, σ̂ n
opt) design points. From these solutions, the a posteriori normalised numerical error ē at T = 40 is computed 

as

ē2 = 1

(ck̂T )2

∑N−1
j=1

∑N−1
i=1 (ρh(xi, y j, T ) − ρ(xi, y j, T ))2∑N−1

j=1

∑N−1
i=1 (ρ(xi, y j,0))2

, (42)

where N is the number of nodes in each coordinate direction and each (xi , y j) is a coordinate of a node in the mesh. The 
normalised numerical error computed a posteriori is shown in Fig. 11(b). Each component of the solution is a broadband 
signal that spans the full wavenumber spectrum. Thus, similarly to the one-dimensional Gaussian pulse propagation prob-
lem of Section 4.2, the numerical results from the cost-optimised schemes do not show the same reduction in cost over 
the C12RK4 scheme as the theoretical results. Nonetheless, qualitatively, the numerical errors show a similar trend to the 
theoretical results in Fig. 11(a). At its design point (κ̂n

opt, σ̂ n
opt), each C12RK4-n scheme shows a reduction in cost compared 

with the C12RK4 scheme and with the other C12RK4-n schemes to achieve the same level of normalised numerical error ē. 
Indeed, Table 8 shows that each cost-optimised scheme gives a reduction in normalised cost �ĉ2 of over 30%, when operat-
ing at its design point (κ̂n

opt, σ̂ n
opt), compared to the standard C12RK4 scheme. In addition, the optimised schemes operated 

at their design points give approximately a 50% reduction in error �ē over the standard C12RK4 scheme for the same cost 
ĉ∗

2(C12RK4).
Finally, Fig. 9(c) confirms that in two-dimensions the cost function ĉ2 is a good pseudo-variable for the normalised 

CPU-time tCPU = TCPU/((ck̂T )(k̂L)2).
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5. Applicability of cost-optimised schemes to three-dimensional and to non-linear problems

The present work has dealt only with the optimisation of interior compact finite difference schemes and the understand-
ing of their wave propagation properties in unbounded, periodic, one- and two-dimensional domains. Most real flow physics 
problems are further complicated by boundary condition effects, three-dimensionality, and non-linearity.

A preliminary assessment of the impact on the stability and accuracy of the prefactored cost-optimised schemes when 
coupled with high-order boundary closures is given in [20]. The baseline solver coupled with high-order boundary closures 
is shown to be stable [20]. The L2-norm error between the analytical reference solution and the numerical prediction 
obtained from the C12RK4 scheme using a CFL number of O

(
10−2

)
was shown to match the sixth-order roll-off predicted 

by the truncation error of Eq. (1). Future efforts will focus on designing suitable boundary closures for the optimised 
schemes.

Preliminary solutions of three-dimensional linear wave propagation problems have been obtained using the C12RK4 
scheme. The results show that the C12RK4 scheme coupled with a buffer zone at the through-flow boundaries is able to 
model the rotor-stator interaction in a three-dimensional turbomachinery geometry, producing engineering accurate aeroa-
coustic predictions [23].

The proposed method is expected to encounter some difficulties when applied to multi-dimensional systems of equations 
with differing wave speeds. In such cases, the overall solution error, in a linear setting, can be estimated from a weighted 
average of the errors associated with each wavenumber.

It is expected that the present analysis may also give some benefits for weakly non-linear problems, because the leading 
order effects due to variable wave speed and multiple flow scales are naturally accounted for. A rigorous assessment of this 
statement is made difficult by the lack of appropriate explicit closed-form solutions and further efforts are required in these 
directions [1]. Non-linear problems can lead to the wavenumber spectrum of the solution varying with time. As such, it is 
worth considering an adaptive algorithm that can detect the changes in wavenumber and modify the mesh spacing and time 
steps accordingly. In conclusion, for real flow physics problems, the cost-optimised schemes are expected to retain some 
advantage over the non-optimised ones, even though the actual improvement may be less than the theoretical prediction 
reported in Section 4.

6. Conclusion

A class of optimised prefactored schemes have been developed based on fully spatio-temporal a priori error estimates. 
The following procedure can be outlined in order to achieve the best performance for a given physical problem in which 
a typical maximum wavelength (and associated wavenumber k̂), a typical maximum propagation speed ĉ, and final time 
T can be identified: i) given the allowed error tolerance ε , the corresponding normalised error level is determined ε̃ =
ε/(ĉ k̂ T ); ii) the most efficient prefactored space- and time-discretisation scheme is selected among the optimised ones 
herein proposed upon inspection of the respective cost vs. error plots, as given for instance in Fig. 2; iii) for the selected 
scheme, optimal values of the scaled wavenumber (κ̂∗(ε̃)) and of the Courant number (σ̂ ∗(ε̃)) are determined; iv) optimal 
values of the grid spacing and of the time step are finally determined according to h∗(ε̃) = κ̂∗(ε̃)/k̂, �t∗(ε̃) = σ̂ ∗(ε̃) h∗(ε̃)/ĉ.

A theoretical performance analysis shows the clear superiority of optimised schemes over classical CAA schemes, espe-
cially if high-fidelity approximations are sought in multiple space dimensions. The proposed cost reduction is, according 
to Eq. (22), more effective in higher dimensions, due to the exponent of κ̂ being d + 1. The theory suggests that a cost 
reduction of over 75% is possible in three dimensions when using the C12RK4-n schemes, with n = 4, 5, 6, compared with 
a maximum of 56% and 70% in one- and two-dimensions, respectively. Numerical experiments convincingly support the 
above statements, showing a cost reduction for a given error level of O(50%) for one-dimensional monochromatic wave 
propagation and of about 20% for a two-dimensional acoustic pulse propagation. This feature, coupled with simplicity in the 
enforcement of numerical boundary conditions imparted by pre-factorisation, makes the present class of schemes especially 
promising for carrying out computations of long-range acoustic propagation. It is important to note that the favourable 
properties of space-and-time optimised schemes depend sensitively on the choice of the mesh size and time step, which 
should be sufficiently close to the nominal optimal point of operation. It is an open issue whether the same features also 
carry on to the fully non-linear regime (i.e. turbulent flow) and to flow cases in which no a priori estimate is given for the 
bulk flow properties (i.e. length and time scales).
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