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A  decoding  approach  for  extracting  and  quantifying  information  from  ERPs  is proposed.
The  proposed  framework  extracts  more  information  than  standard  supervised  approaches.
The  method  allows  analysis  of multichannel  signals.
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Background:  Over  90 years  after  its first recording,  scalp  electroencephalography  (EEG)  remains  one  of the
most widely  used  techniques  in  human  neuroscience  research,  in particular  for  the  study  of  event-related
potentials  (ERPs).  However,  because  of  its  low  signal-to-noise  ratio,  extracting  useful  information  from
these  signals  continues  to be  a hard-technical  challenge.  Many  studies  focus  on simple  properties  of  the
ERPs  such  as  peaks,  latencies,  and  slopes  of  signal  deflections.
New  method:  To overcome  these  limitations,  we developed  the  Wavelet-Information  method  which
uses  wavelet  decomposition,  information  theory,  and  a quantification  based  on  single-trial  decoding
performance  to extract  information  from  evoked  responses.
Results:  Using  simulations  and  real  data  from  four  experiments,  we  show  that  the  proposed  approach
outperforms  standard  supervised  analyses  based  on peak  amplitude  estimation.  Moreover,  the  method
can extract  information  using  the raw  data  from  all recorded  channels  using  no  a  priori  knowledge  or
pre-processing  steps.
Comparison  with  existing  method(s):  We  show  that  traditional  approaches  often  disregard  important  fea-
tures of the signal  such  as the  shape  of  EEG  waveforms.  Also,  other  approaches  often  require  some  form

of a  priori  knowledge  for feature  selection  and  lead  to  problems  of multiple  comparisons.
Conclusions:  This approach  offers  a new  and  complementary  framework  to design  experiments  that  go
beyond  the  traditional  analyses  of ERPs.  Potentially,  it allows  a  wide  usage  beyond  basic  research;  such
as  for  clinical  diagnosis,  brain-machine  interfaces,  and  neurofeedback  applications  requiring  single-trial
analyses.
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1. Introduction

Event-related potentials (ERPs) are deflections in electrophys-
iological signals, such as electroencephalograms (EEGs), local
field potentials (LFPs) or magnetoencephalograms (MEGs), which
are triggered by external stimuli or internal cognitive processes

(Freeman and Quian Quiroga, 2013; Regan, 1989). Due to the low
signal-to-noise ratio of the ERPs, responses to several presentations
are typically averaged to cancel out the background activity and

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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mprove the visualization of the evoked responses (Dawson, 1954).
rom the average ERPs, the standard approach is then to charac-
erize the peak amplitude, latency, and topography of observed
esponses (Freeman and Quian Quiroga, 2013; Niedermeyer and
ilva, 2005). Although this traditional analysis strategy has pro-
ided useful information about responses in different brain areas
o various types of stimuli and tasks (Freeman and Quian Quiroga,
013; Regan, 1989), it disregards information that may  not be
eflected by these quantifications based on the average responses
Quian Quiroga et al., 2007; Rey et al., 2015a,b).

Previous attempts to extract information beyond the one pro-
ided by ensemble averaging have been, to a large extent, driven
y the analysis of single trial evoked responses (Deweerd, 1981;
eweerd and Kap, 1981; Quian Quiroga et al., 2007; Walter, 1968).

n this regard, the use of wavelet-based methods (Bartnik and
linowska, 1992; Quian Quiroga et al., 2001; Thakor et al., 1993) has
een particularly successful, mainly due to their ability to decom-
ose signals into multiple scales, therefore being suitable for the
nalysis of ERPs, which typically contain waveforms of multiple
requencies (Quian Quiroga, 2000). We  recently applied a wavelet
enoising implementation (Ahmadi and Quian Quiroga, 2013;
uian Quiroga and Garcia, 2003) to extract the single-trial ampli-

udes and latencies of the N170 component (a negative deflection
t ∼170 ms  after the stimulus onset in the occipitotemporal cortex)
ecorded with scalp EEG while subjects observed pictures of faces
nd cars at the threshold of awareness (Navajas et al., 2013). Using
his procedure, we were able to decode on a trial-by-trial basis the
onscious recognition of the faces by the subjects, dissociating two
ifferent response patterns, one given by single trial amplitude dif-
erences and the other one given by differences in latency jitters,
hich we could not assess from the study of the average responses.

In spite of these advances, the analysis of single trial responses
s still focused on quantifications based on the (single-trial) peak
mplitude and latency of the ERPs, and does not typically consider:
) the specific morphology of the responses (i.e., the shape of the
RP); ii) information given by the combination of features from
ifferent evoked components; iii) information that may not be rep-
esented by peak responses (e.g., a DC shift) and iv) information that
ay  be given by the combination of patterns at different recordings

ites. For example, Jongsma et al. (2006) introduced a ‘learning-
ddball’ paradigm and showed that the difference between two
RP components (the N2 and P3) was much more robust to dis-
inguish two  experimental conditions compared to each individual
RP. The problem is that finding such informative combinations
s an ad hoc process that requires exhaustive searches and may
e also prone to statistical biases, considering that an exhaustive
earch for informative combinations should be corrected for mul-
iple comparisons. In addition, as discussed above, the study of
ingle or multiple peak characteristics gives only a limited access to
nformation that might be available to dissociate between different
xperimental conditions.

In recent years, multivariate pattern analysis (MVPA) tech-
iques have been successfully applied in EEG and MEG (Cauchoix
t al., 2014; Crouzet et al., 2015; King and Dehaene, 2014;
chönauer et al., 2017). These techniques look for patterns of
eural activity considering all data available and define decision
oundaries in a neural representational space that best distin-
uish different experimental conditions to be analyzed (Bray, 2009;
axby et al., 2014). Thus, MVPA has the potential to capture the full

patiotemporal dynamic of signals like EEG (Parra et al., 2008). It
s also more sensitive than multiple univariate comparisons, and it
an be used for both, data driven exploratory analysis and hypoth-

sis driven testing (Jamalabadi et al., 2016).

Nevertheless, the number of training data points is usually small
ith respect to the dimension of the neural representational space,

nd therefore, methods for feature selection are essential to avoid
oscience Methods 296 (2018) 12–22 13

poor performance due to over-fitting the data with limited training
samples. This has been performed based on a priori information,
with the associated risk of biasing the resulting findings and even
missing important information (Bray, 2009; Parra et al., 2008; Yang
et al., 2012).

To overcome all these issues, we here propose a new MVPA
method with an efficient dimensionality reduction step, allowing
us to study the data recorded from all the electrodes without requir-
ing a priori information. We  call this the Wavelet-Information (WI)
method. Based on an algorithm we  recently proposed to extract
information in time patterns of spike trains (Lopes-dos-Santos
et al., 2015), the new method involves: i) decomposing individual
responses with wavelets and using information theory (Shannon,
1948) to automatically identify a subset of coefficients carrying
information about the stimuli or conditions (classes); ii) using these
coefficients to train a classifier to predict classes and iii) quantifying
information about the stimulus classes in the ERP responses based
on the cross-validated performance of the classifier. This way, the
method automatically extracts brain activity patterns that contrast
different conditions/stimuli defined in the experimental design.

We validated the method using one simulated dataset and four
different experimental datasets, and show that it gives significantly
more information compared to the one provided by the study of sin-
gle trial peak amplitudes, as used by Navajas et al. (2013). Moreover,
we show that the method can be used to compute joint information
from many channels in a completely unsupervised way, alleviating
caveats and limitations that are inherent to the standard approach
of a priori selecting regions of interests for the analysis. In fact,
these selections tend to be hypothesis-driven and based on previ-
ous findings (thus limiting the possibility of new discoveries), and
are typically mandatory in order to reduce the complexity of the
computations and to avoid statistical issues due to multiple com-
parisons. Finally, we show that from the multichannel results it is
possible to localize the times and electrodes providing informative
patterns, and that the method does not show a deterioration of
performance when increasing the number of channels, something
that is common in classic information estimation approaches due
to an increase of the dimensionality and complexity of the problem
(Quian Quiroga and Panzeri, 2009).

2. Materials and methods

2.1. Simulated data

We used simulated evoked potentials in order to illustrate the
advantages of wavelet decomposition with respect to peak analyses
(Fig. 1). We  created a response pattern for each of four hypothet-
ical stimuli. The waveforms of Stimulus 1, 2 and 3 consisted of a
Gaussian waveform with a particular amplitude, latency and stan-
dard deviation (which relates to its frequency components). The
pattern in Stimulus 4 was generated by a combination of two Gaus-
sians. Considering a sampling rate of 256 Hz for the simulations,
responses were 500-ms long. For each stimulus, 100 single trials
were simulated. For each single trial, the Gaussian components
were generated with a random jitter (±5 ms,  uniformly distributed)
and added to a background activity generated by EEG surrogates
constructed from a real resting-state EEG recording (i.e. surrogate
realizations keeping the amplitude and frequency distribution of
a real EEG recording, including typical components such as alpha
rhythms), as in previous works (Ahmadi and Quian Quiroga, 2013;
Quian Quiroga and Garcia, 2003). The mean signal to noise ratio in

each trial was set to 0.33 (power of the background noise was  3
times larger than the power of the patterns). Fig. 1A displays three
examples of single trials for each stimulus (top), along with the
average responses across 100 simulated trials (bottom).
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Fig. 1. Peak analysis versus wavelet-based feature extraction. (A) Examples of single trials simulated for four hypothetical stimuli (classes), as labelled; along with average
traces  for each stimulus (100 trials each). (B) Confusion matrices for decoders trained with peak amplitudes (left) and peak amplitudes and latencies (right) when classifying
the  100 trials per stimulus generated in A. Pseudocolors denote proportion of trials from a given class (rows) assigned to a given class (columns) by the decoder. Decoding
performance of each classifier is displayed in the top right corner of each confusion matrix. (C) Left panel shows the estimated information of each wavelet coefficient. The
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.2. Experimental data

We  used 4 datasets to test the proposed method. Three of them
onsist of EEG recordings: Dataset 1 and 2 come from Visual and
uditory Oddball paradigms, respectively, previously reported in

Ahmadi and Quian Quiroga, 2013); and Dataset 3 comes from a face
erception experiment, presented in (Navajas et al., 2013). Dataset

 consists of local field potentials (LFPs) recorded from microelec-
rodes implanted in the medial temporal lobe (MTL) of humans
uring conscious recognition of visual stimuli (Quian Quiroga et al.,
008; Rey et al., 2014).

.2.1. Dataset 1: visual oddball
ERPs were recorded following a reversal of colors of a checker-

oard pattern. Two stimuli were used: the Non-Target stimulus
as presented in 80% of the trials (pseudorandomly selected) and

onsisted simply of a color reversal of checks; and the Target stim-
lus (the oddball) was presented in the remaining 20% of the trials
nd consisted of color reversals plus a half-check diagonal displace-
ent. The presentation of pattern reversals was 1-s long and the

nter stimulus interval varied pseudorandomly between 2 and 2.2 s.
ubjects were instructed to fixate on a small red circle in the center
f the screen and indicate the presence of the target stimulus by
ressing a key. In total, 10 subjects responded to 250 trials in 14
essions.

The EEG data was continuously recorded using 64 electrodes
laced according to the 10/10 system (also known as MCN  sys-
em, which stands for modified combinatorial nomenclature), band
ass filtered between 0.1 Hz and 100 Hz and sampled at 256 Hz. The
verage across all channels was used as reference. In addition, tri-
ls with eye movements, blinks, and other artifacts were rejected
ffline by visual inspection.

.2.2. Dataset 2: auditory oddball
In this experiment, the Non-Target (also presented in 80% of the
rials) and Target stimuli consisted of 2000-Hz and 1000-Hz tones,
espectively. Nine subjects were instructed to press a key when-
ver they heard any of the stimuli (n = 9 sessions). Each stimulus
as presented for 100 ms  and the inter stimulus interval varied
sion matrix for the WI  method using the same dataset as in B. (D) Performance with
p panel) and the number of wavelet coefficients selected (bottom panel). Default

 this figure legend, the reader is referred to the web  version of this article.)

pseudorandomly between 1.5 and 1.7 s. As in the Visual Oddball
experiment, subjects were instructed to fixate at a small red circle
in the center of the screen. EEG recording acquisition and pre-
processing was similar to the one described for Dataset 1.

2.2.3. Dataset 3: face perception experiment
In this paradigm, trials comprised four steps: i) a fixation cross

was presented for 500–700 ms;  ii) this was  followed by a brief flash
of a face or a car presented for 57 ms;  iii) then, a mask created
with randomly shuffled pieces of different images was presented
for 443 ms  and iv) subjects reported whether or not they per-
ceived a face using two buttons of a mouse (“seen” or “unseen”
trials). In order to manipulate the visibility of the stimuli, we added
zero-mean Gaussian noise with different variance levels. A single
session was  recorded for each subject (n = 22). The noise level was
adjusted through a double-staircase procedure (Cornsweet, 1962)
that kept running throughout the experiment. Upon completion of
the experiment, we took all 250 trials where a face was presented
and selected one level of noise that led to 50/50 recognition perfor-
mance, in order to ensure that the comparison across “seen” and
“unseen” trials was  performed at constant retinal stimulation. EEG
responses were recorded using the same equipment and same elec-
trode set-up as in Datasets 1 and 2. Sampling rate was set at 256 Hz
and signals were referenced to the average and filtered between
0.1 Hz and 70 Hz. In addition, trials with eye movements, blinks,
and other artifacts were rejected offline by visual inspection.

2.2.4. Dataset 4: human LFPs
Intracranial recordings were obtained in 12 sessions from 5

patients with pharmacologically intractable epilepsy. Depth elec-
trodes were surgically implanted to determine seizure focus for
possible resection (Rey et al., 2015a,b) and their location was exclu-
sively determined by clinical criteria. Each electrode bundle had a
total of 8 active recording microwires and a local reference. Elec-
trodes were placed mainly in the medial temporal lobe (MTL), with

8 bundles placed at the hippocampus, 5 at amygdala and 5 at the
entorhinal cortex. One patient was  implanted with a total of 7
probes, whereas all remaining patients had 8 probes in total. Target
areas outside the MTL  included the temporal gyrus, the cingulate
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ortex, the supplementary motor area, the orbitofrontal cortex, and
he temporal pole.

Trials involved the presentation of pictures in pseudorandom
rder followed by a mask, consisting of randomly shuffled pieces
rom different images (Quian Quiroga et al., 2008). Each of 16 pic-
ures was presented 8 times for each of four different durations:
3 ms,  67 ms,  100 ms  and 250 ms.  The total duration of the trials
picture + mask) was 500 ms.  At the end of the trials, subjects indi-
ated if they recognized the picture by pressing left or right arrow
eys. Trials were classified as ‘recognized’ or ‘non-recognized’
ccording to these reports, with a percentage of recognized trials
cross sessions of 83.1 ± 3.6. The LFPs were constructed by filtering
he raw data between 2 and 120 Hz and then reducing the sampling
ate to 256 Hz. Epochs of 1 s after stimulus onset were extracted for
ach trial.

In this dataset, it was possible to identify single cell responses to
t least one picture in 37 different channels (Rey et al., 2014). LFPs
ecorded from electrodes with at least one responsive cell were
sed in the analysis shown in Figs. 3 and 4, and in the single channel
et in Fig. 5.

.3. Description of the WI  method

The proposed method has three main steps: i) Wavelet decom-
osition, which is a time frequency decomposition of the single trial
EG traces; ii) Wavelet coefficient selection, which aims at identify-
ng which wavelet coefficients carry meaningful information and
ii) Decoding, which classifies trials based on the selected coeffi-
ients. Thus, in general terms, the method has a feature extraction
tage (comprised by steps i and ii) and a classification stage (step
ii). These steps are discussed below in more detail.

.3.1. Wavelet decomposition
Given a signal x (t) and a wavelet function �a,b, the continuous

avelet transform (CWT) can be defined as:
X (a, b) = x, �a,b, with

a,b = |a|−1⁄2 
(
t − b

a

)
,

where <,> denotes the inner product and a and b are the scale and
ranslation parameters, respectively. The scale parameter dilates
r compresses the wavelet function, and thus, it defines which
ime scale of the signal is captured by the coefficient: dilated
avelet functions capture slow frequency components, whereas

ompressed versions capture high frequency patterns. The transla-
ion parameter shifts the wavelet function in time. In sum, wavelet
oefficients characterize features in the signal of interest by decom-
osing its activity into patterns at different times and frequency
anges.

In order to avoid redundancy, without loss of information it is
ossible to define the wavelet transform at ‘dyadic’ set of scales
nd times, defined as aj = 2j and bj,k = 2jk, respectively, where j is an
nteger that defines the scale and k is an integer that defines time
ocation (Strang and Nguyen, 1996). This dyadic wavelet transform
an be implemented in a recursively and fast algorithm, named
ultiresolution decomposition,  which decomposes the signal into a

et of detail scales and a final approximation (Strang and Nguyen,
996).

Here, we followed the same implementation as in Lopes-
os-Santos et al. (2015) using a five-scale multiresolution
ecomposition with Haar wavelets, with an approximate frequency

upport of: 64–128 Hz (D1), 32–64 Hz (D2), 16–32 Hz (D3), 8–16 Hz
D4), 4–8 Hz (D5), and 0–4 Hz (A5). The application of more complex
avelet functions (such as quadratic B-splines) failed to improve

he performance (not shown), therefore we kept the Haar mother
oscience Methods 296 (2018) 12–22 15

wavelet in the final implementation for its simplicity. At first glance,
this result seems counter-intuitive due to the square nature of the
Haar function as opposed to the smooth and sinusoidal shape of
other mother wavelets that would be more similar to the waveform
of the ERPs. However, note that, rather than providing a faithful
reconstruction of the signal (as in denoising methods), the purpose
of the decomposition here is to identify features that can show max-
imal contrast between different stimuli or conditions. In fact, Haar
wavelets have been shown to be particularly efficient for pattern
recognition applications, such as classification of spike trains and
spike sorting (see Discussion).

2.3.2. Selection of wavelet coefficients
The multiresolution decomposition does not change the dimen-

sionality of the original signal, i.e., from N data points we obtain
N wavelet coefficients. In this step, we  aim to perform an effi-
cient dimensionality reduction by automatically identifying and
selecting the coefficients that carry information about the stimu-
lus/condition to be decoded. To this end, we  computed the mutual
information between each individual coefficient and the stimu-
lus/condition, defined as (Shannon, 1948):

IS,wa,b =
∑
S,wa,b

P
(
S, wa,b

)
log2

P
(
S, wa,b

)
P (S)P

(
wa,b

) ,

where S is the set of stimuli/conditions, wa,b is the set of val-
ues of the corresponding wavelet coefficient, P(S) and P(wa,b) are
the probabilities of having stimulus S and coefficient wa,b, respec-
tively, and P(S,wa,b) is the corresponding joint probability. For each
wavelet coefficient wa,b, the probability of the response P(wa,b) was
estimated by dividing the values of wa,b into 4 equally spaced bins,
i.e. using 2 bits for quantization. Note that, at this point, we  do
not aim at accurately estimating the information of each individ-
ual coefficient; we simply need to rank them and feed the most
informative ones to the decoder algorithm.

Since single trial recordings are typically noisy, we  estimated
the information carried by each component based on sub-ensemble
average realizations. Specifically, we computed the mutual infor-
mation based on 200 sub-ensemble averages from each condition,
each of them constructed by averaging 30 randomly selected trials
(with replacement) from the respective conditions. The 25 coeffi-
cients with the largest estimated information were further used for
decoding (see Fig. 1C). Importantly, the whole selection of coeffi-
cients is strictly performed without taking into account the trial
that will be decoded by the classifier in order to avoid upward bias
in the classification performance (see below).

2.3.3. Decoding
We  used a uniform-prior naive Bayesian decoder in order to

assign single trials to different conditions. The inputs to the clas-
sifier were the selected wavelet coefficients, as described in the
previous step. To avoid overfitting, we used a leave-one-out cross-
validation procedure: we classified each trial at a time, using the
remaining trials to compute the sub-averages for information esti-
mation and coefficient selection. Therefore, when classifying a
given trial, all the information used to train the classifier comes
from other trials. Decoding performance was defined as the pro-
portion of trials correctly classified.

In Dataset 1 and 2, we  trained classifiers to distinguish between
the presentation of Target and Non-Target stimuli, using 1-s win-
dows after stimulus onset of the EEG signals. This task typically

elicits a P300 response, so we used the occipital electrode O1 and
central electrode Cz for Datasets 1 and 2, respectively (unless stated
otherwise), as in previous works (Ahmadi and Quian Quiroga,
2013). In Dataset 3, we  trained classifiers to predict the conscious
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erception of faces by the subjects based on 500-ms EEG responses
fter stimulus onset. We  used electrode PO8, unless stated other-
ise, since this channel elicited stronger N170 responses in this

xperiment (Navajas et al., 2013).

.3.4. Single trial peak detection
We  compared the information provided by the WI  method to the

ne obtained with an analogous implementation but using the sin-
le trial peak amplitudes for decoding. For obtaining the single trial
eak amplitudes we used a previously proposed wavelet denoising

mplementation that has been shown to improve the extraction of
ingle trial components of ERPs (Quian Quiroga and Garcia, 2003).
his method identifies coefficients related to the ERPs, by compar-
ng the post-stimulus wavelet coefficients with the distribution of
aseline values, and then reconstructs the single trial traces from
hese coefficients (Ahmadi and Quian Quiroga, 2013).

For the oddball data, before computing ensemble averages, the
ndividual trials were detrended as this improved further the sin-
le trial peak estimation. No detrending was used with the WI
ethod. To classify trials as Target and Non Target we  used the

ingle trial peak amplitude of the P3 response, which is the com-
onent that clearly separates both conditions in the ERP averages
Polich, 2007). The single trial P3 amplitude was defined as the local

aximum between 350 and 700 ms  (visual oddball) and 200 and
00 ms  (auditory oddball) after stimulus onset.

For the face perception experiment we used the amplitude of the
enoised single trial N170 component, defined as the local min-

mum between 120 and 200-ms after the stimulus onsets, as in
Navajas et al., 2013), to decode whether the subject recognized a
ace or not. Due to the use of a local reference for the LFP data, the
olarity of the ERP varied (we observed a positive peak in 65% of the
ases and a negative peak in the remaining 35%) and we therefore
efined peak amplitude as the maximum/minimum between 150
nd 350 ms  after stimulus onset, for the positive/negative average
RP responses.

.3.5. Multichannel WI  implementation
In order to use more than one channel for decoding, we:  i)

stimated the information of the wavelet coefficients from each
hannel individually, ii) ranked the coefficients from all channels
n terms of their information, and iii) selected the 25 most infor-

ative coefficients from this pool. Note that, we did not force the
ecoder to use coefficients from every channel, instead, we  always
elected the best coefficients regardless of their spatial distribution.
or each dataset, we compared results using all channels with the
nes obtained from the a priori most informative channel, which
as used to evaluate single channel performance in Figs. 3 and 4.
e also compared results with an a priori selection of 8 informative

hannels (based on the literature and proximity to the selected sin-
le channel): the midline electrodes (Oz, Cz, Pz, Fz, FCz, CPz, POz and
Fz) for the oddball datasets; the occipitotemporal channels (PO8,
8, PO7, P7, O1, TP7, O2 and TP8) for the face perception dataset
nd the set of responses in the 8 microwires coming from the same
undle for the LFP dataset.

For the Dataset 4, channel aggregation was used for the sta-
istical analysis in Fig. 5. The 37 single channels analyzed, came
rom 24 bundles in 12 different sessions. Then, in order to per-
orm the paired sign tests between the different sets of channels
1 channel, 8 channels, all channels), the median performance (per
undle/session) was computed on the set with more elements. For

xample, the 37 performances obtained in the single channel case
ere converted into 12 (to compare with the all channels case for

ach session) by computing the median performance across all the
ingle channels within each session.
oscience Methods 296 (2018) 12–22

2.3.6. Assessment of statistical significance
To assess the statistical significance of the decoding perfor-

mances, we  rerun the method 100 times after randomly shuffling
the trial classes. Thus, we use performances obtained from the
“shuffled” data (surrogates) to construct a null hypothesis distribu-
tion of performance. Hence, we  regard the proportion of shuffled
performances above the original performance as its p-value (i.e.,
the probability that the observed performance was obtained by
chance).

3. Results

3.1. Illustration of the method

Standard techniques for the study of ERPs focus on their ampli-
tude and latency, missing information in the waveform of the
responses. This issue is illustrated in Fig. 1 with simulated datasets
(see Materials and Methods). The simulated responses to Stimulus
1 and 2 (red and green, respectively) have similar peak laten-
cies and amplitudes; whereas the ones to Stimulus 3 and 4 (blue
and magenta, respectively) present slightly smaller amplitudes and
longer latencies. Thus, by design, peak information (latency and
amplitude) can only distinguish Stimulus 1 and 2 from 3 and 4.
Decoding results can be visualized as confusion matrices, where
each entry denotes the probability of a trial from a given class i
(rows) being classified as class j (columns). Thus, perfect decoding
leads to a matrix with ones in the main diagonal. Fig. 1B shows the
confusion matrices obtained from the decoder, trained with peak
amplitudes (left) or with peak amplitudes and latencies (right).
Notice that peak amplitude decoding shows a performance above
chance (37.7% vs. 25%), but with many trials being misclassified.
This shows that, although peaks of Stimulus 1 and 2 are higher
than the ones from Stimulus 3 and 4 (on average), this information
could not be retrieved on a single trial basis. The decoding perfor-
mance increases (up to 60.5%) when both the single trial amplitude
and latency are considered (Fig. 1B, right), given that the decoder
can now distinguish between the early (stimulus 1 and 2) and the
late peaks (Stimulus 3 and 4). However, the decoder still could not
distinguish between the stimuli in each of these two  subsets. This is
consistent with the average responses (bottom of Fig. 1A), where it
is clear that (by construction) Stimulus 1 and 2 and Stimulus 3 and
4 can only be distinguished based on the shape of the responses.
In the example presented here, the WI  method leads to a much
higher decoding performance (96.2%, right panel in Fig. 1C). This is
because wavelet coefficients captured information not only about
the peak amplitudes and latencies, but also about the shape of the
ERPs (Fig. 1C left).

Finally, we used the simulated dataset to evaluate the robust-
ness of the method with respect to the parameters used for the
selection of wavelet coefficient: number of bits for quantization
when estimating information of individual wavelet coefficients,
number of sub-ensemble averages and trials per average (see 2.3.2
section for more details), and number of selected wavelet coeffi-
cients. When evaluating the performance for a certain parameter,
the remaining ones were fixed to their default value: 2 bits for
quantization, 200 sub-ensemble averages of 30 trials each, and
25 wavelet coefficients. We  found that the performance was only
affected by less than 2% within a wide range of values for the num-
ber of sub-ensemble averages (50–400) and trials per sub-average
(10–50). Furthermore, increasing quantization resolution by more
than 2 bits (i.e. dividing values in more than 4 bins) did not increase

performance (Fig. 1D, top). Notice that the purpose of this estima-
tion is to identify informative coefficients rather than accurately
estimating the mutual information between the coefficients and
stimuli/conditions. Finally, we evaluated the number of wavelet
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oefficients selected (Fig. 1D, bottom). We  found that performance
ecreased when a small number of coefficients was  used, but by
sing at least 1/8 of the total number of coefficients led to a good
nd stable performance. Overall, the method is robust with respect
o the choice of parameters as long as extreme values for the param-
ters are avoided.

.2. Performance with real data

The example shown in Fig. 1 is based on synthetic data. To eval-
ate the performance of our algorithm on real data, we  applied the
I  method to three EEG datasets (Visual Oddball, Auditory Odd-

all, and Face Perception) and one LFP dataset (see Methods for
etails about the experimental designs). Each dataset consists in
wo experimental conditions, and the objective is to decode them
ith the highest possible performance. In Fig. 2, we plot the ERPs

licited by the two experimental conditions that will be compared.
ata in Fig. 2 comes from representative participants: on each
ataset, we selected the sessions that led to median performance
sing the WI  method. Fig. 3A shows the decoding performance
or these selected sessions. Actual performances are indicated by
rrows and the histograms show the null distribution of decod-
ng performances obtained from surrogated data (see Methods).
ote that, for these examples, decoding performances were above

he null distribution in all datasets (p < .01). In fact, the WI  method
howed significant decoding performance in the vast majority of
essions in all datasets. In both the Auditory (n = 9 sessions) and
isual Oddball (n = 14 sessions) datasets, this was the case for all
essions (p < .01 for all cases). For the Face Perception dataset, the
ecoding performance of our method was above the entire null
istribution (p < .01) in 14 out of 22 sessions (63.64%), and in one
articipant, the observed decoding performance was  close to sig-
ificance (p = .06). With the LFP dataset, 19 out of 37 cases (51.35%)
resented a performance above the entire null distribution (p < .01),
nd 22 cases (59.49%) exhibited a performance above the 95th per-
entile of the distribution (p < .05).

Fig. 3B shows the decoding performances from all sessions and
atasets (vertical axis) against the mean performance of their cor-
esponding null distributions (horizontal axis). Note that virtually
or every session, the WI  performance was above the one expected
y chance (i.e. nearly all entries are above the diagonal, marked
ith a dashed line). Fig. 3C shows the average decoding perfor-
ances, which for all datasets were significantly larger than the

nes of the shuffled surrogates (paired sign test; p = 3.9 × 10−3,
 ∼ 10−4, p ∼ 10−7, p ∼ 10−8, for the Auditory and Visual Oddball,
ace Perception and LFPs datasets, respectively).

When applied to surrogated data, the WI  method often led to
 performance above 50%. This can be observed by looking at the
orizontal axis in Fig. 3B, where most data points are above 50%. In
rinciple, this could imply that our method has an intrinsic upward
ias of classification. Alternatively, it could simply reflect that our
atasets have an unbalanced number of trials on each class. In fact,
he only dataset that has approximately equal number of trials
er class supports this second alternative (Face perception dataset,
lack crosses in Fig. 3B). To confirm that our method does not have
n intrinsic upward bias of classification, we subsampled the class
ith largest number of trials in unbalanced examples and recom-
uted the null distribution using surrogated data. Using a balanced
umber of trials per class, we found that our method led to a sur-
ogate performance close to 50%.

.3. Comparison with single trial peak amplitude decoding
So far, we have shown that the WI  method leads to above-
hance decoding performance in both synthetic and real data. Using
imulations, we also observed that the WI  method outperformed
oscience Methods 296 (2018) 12–22 17

the standard approach of analyzing peak amplitudes and laten-
cies (Fig. 1B, C). However, this was  expected, as the shape of the
synthetic ERPs provided additional information by construction
(Fig. 1A). Here, we ask if this is also the case in real data. We  com-
pared decoding performances obtained with the WI  method to the
ones obtained using single trial peak amplitude estimation. We
have not used the single-trial latency data as, in our 4 datasets,
latencies did not improve decoding performance when compared
to using only peak amplitudes. The left panel of Fig. 4 displays per-
formances obtained by the WI  method against the ones obtained
with the peak detection method (see Methods) for all sessions in the
4 datasets. The WI  method provides a higher decoding performance
in virtually all cases (nearly all entries above the diagonal). Panels
on the right display the mean performances for each dataset and
method. For all four datasets, the WI  method significantly outper-
formed the peak detection method (paired sign test; p ∼ 10−4 for
the Visual Oddball, p = 3.9 × 10−3 for the Auditory Oddball, p ∼ 10−7

for the Face Perception dataset, and p ∼ 10−10 for the LFPs). This is
despite the WI  method attained these results in a fully unsupervised
way, whereas the peak amplitudes estimation always involved at
least one supervised step. For example, the experimenter needs
to know a priori on each dataset the spatio-temporal distribu-
tion of the relevant ERPs (e.g. right occipito-temporal cortex in
the 150–200 ms  for the Face Perception dataset). Furthermore, to
efficiently extract the single-trial peak amplitudes, signals often
require pre-processing steps such as detrending the data. In fact,
we observed that skipping this step led to a decrease in decoding
performance of between 5 and 10% in the two Oddball datasets.
No such preprocessing steps were necessary when using the WI
method.

3.4. Combining information from multiple channels

Next, we studied if the WI  method could be applied to data com-
ing from multiple channels. For this, we calculated the information
in the wavelet coefficients for each channel separately and ranked
all wavelet coefficients together. Then, we took a selection of the
most informative coefficients from all channels. The rationale of
this procedure was to evaluate whether information from chan-
nels other than the one selected a priori could improve decoding
performance. Fig. 5A shows the performance of the method for
each dataset when using one channel (as before), when using a
selection of 8 channels (see Methods), and when all channels were
used. Fig. 5B shows, for all sessions and datasets, the single-channel
decoding performance against the performance obtained using all
channels.

In principle, adding more channels could lead to a decrease
in decoding performance due to an increase in the complexity
of the data, a well-studied phenomenon known as the “curse of
dimensionality”. However, increasing the number of data points by
64-fold did not lead to a decay in performance of the WI  method.
On the contrary, we  observed that, with increasing number of
channels, performance remained flat in two  datasets (top panels
in Fig. 5A), and in the two  other datasets performance increased
(bottom panels in Fig. 5A). This is because our method performs
an efficient dimensionality reduction by selecting only the most
informative wavelet coefficients before the decoding step.

In the two Oddball paradigms, the presentation of an infrequent
stimulus (i.e., the target) triggers a slow positive deflection in the
EEG signal at >300 ms.  This is a large global potential, that can be
well-represented with a single central electrode (see top panels in
Fig. 2). In fact, because this response is presumably the only neural

process that distinguishes target from non-target sensory stimuli,
adding more channels can only provide information that is redun-
dant with the one obtained from a central channel. Consistent with
these observations, we found no significant changes in performance
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Fig. 2. Description of datasets. Representative examples from each dataset used, as labelled. ERPs (mean ± SEM) from stimuli/conditions to be decoded are shown. Number
of  trials averaged on each trace are displayed in brackets.
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isplayed in different colors, as labelled. (C) Each panel shows the actual performan
ame  as in A and B. Actual performances are significantly higher than mean shuffled
or  the auditory and visual oddball, face perception and LFPs datasets, respectively)

hen considering more channels both in the Visual and Auditory
ddball paradigms.

In the Face Perception dataset, we observed a significant
ncrease in performance with increasing number of channels
paired sign tests, single vs. 8 channels p ∼ 10−4, single vs. all chan-
els p ∼ 10−7, and 8 vs. all channels p ∼ 10−4). Previous studies
ave argued that an occipito-temporal EEG component, the N170,
riggers face perception (Rossion, 2014). Although this compo-
ent is stronger in the right hemisphere, it can also be detected

n contralateral channels (Rossion et al., 2003). We  believe that
ace-selective neural sources from the left hemisphere could have
ontributed to the increase in decoding performance observed

etween the single-channel and 8-channel sets. Moreover, slight
ap misplacements and subject-to-subject variability might lead
o individual differences in the location of the N170 peak activa-
ions, which can only be captured when taking a larger selection
d mean shuffling performances (mean ± SEM) of a dataset. Color codes used are the
rmances in all datasets (paired sign test; p = 3.9 × 10−3, p ∼ 10−4, p ∼ 10−7, p ∼ 10−8,

of channels. However, one intriguing aspect of our data is that we
observed a substantial increase in performance, compared to the
8-channel set, when we considered all channels together. In prin-
ciple, this could be attributed to face-selective neural processes
outside the occipito-temporal cortex. Alternatively, it could reflect
that other occipito-temporal electrodes that were not selected in
the 8-channel set provided all the remaining information. To disam-
biguate these possibilities, we considered a larger set in which we
included the 8-channel selection used before and 3 other occipito-
temporal sites (P9, P10, and Iz, leading to a total of 11 channels).
Using these 11 channels led to a significant increase in performance
compared to the original 8-channel set (paired sign test, p ∼ 10−4),

even to match the one obtained with the 64-channel set (p = 0.19).
Thus, occipito-temporal electrodes alone could achieve the same
performance as the whole electrode set. This finding provides fur-
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ee  text for details on how LFP performances were paired). Color codes are same a
horizontal axis) or all channels (vertical axis) were used.

her support to the view that face perception is triggered by activity
n the occipito-temporal cortex.

The LFP dataset is based on intracranial recordings with depth
lectrodes mostly located in the MTL. However, several electrodes
ere placed in areas such as the temporal gyrus, the orbitofrontal

ortex, the cingulate cortex, among others (see Methods for details).
e  found that using 8 channels did not change performance com-

ared to using a single channel, but using all channels led to a
ignificant increase (paired sign tests, single vs. 8 channels p = 1, sin-
le vs. all channels p = 0.0117, 8 vs. all channels p = 0.0063). Due to
he nature of our recordings, the single and 8-channel datasets were
ll located in the same area of the MTL. Therefore, all electrodes in
he 8-channel set might have provided redundant information to
lassify the two experimental conditions. This is indeed consistent
ith our previous findings showing global LFP deflections in the

TL  for recognized stimuli (Rey et al., 2014). When using the entire

ataset, information from other brain regions became available to
ur classifier, and this might explain why we observed an increase
n decoding performance.
significantly different (paired sign tests, p = 0.012 and p = 6.3 × 10−3, respectively;
 (B) Performance of all sessions/responses from all datasets when a single channel

Although our method is cross-validated with a leave-one-
out approach (see Methods), we addressed the possibility that
introducing more inputs to the decoder might lead to higher
performances by chance. The first hint that this is not the case
comes from the two Oddball datasets, where we  did not observe
such an increase (top panels in Fig. 5A). However, to provide fur-
ther evidence that our method is not biased when using multiple
inputs, we performed an additional control analysis. This anal-
ysis is based on the Face Perception dataset, as it showed the
largest increase in performance with increasing number of chan-
nels. We  shuffled the labels of the two experimental conditions,
and recomputed the decoding performance with the same sets
of channels used in this section (8 channel selection, and whole
dataset). We repeated this procedure 24 times, and found that
the mean decoding performance was  consistent with chance level:

50.2% ± 0.2% (mean ± SEM) for the 8-channels set and 50% ± 0.2%
for the 64-channels set. Therefore, the observed increase in per-
formance cannot be attributed to any bias in the algorithm for
high-dimensional data.
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.5. Spatiotemporal distribution of information

As described in the previous section, considering multiple chan-
els can add valuable information to distinguish experimental
onditions from the ERPs. However, to get further insights about
he brain processes involved in such conditions, we  would like to
now when and where this information comes from. Here, we show
ow this can be achieved on the face perception dataset, where
e observed significant increases in decoding performance when

onsidering larger sets of channels. In the multichannel implemen-
ation, selected wavelet coefficients may  be associated with any
hannel, and will have a specific time support (i.e. the time spanned
y the wavelet function). Because different coefficients might be
elected for each trial in the leave-one-out protocol, we quanti-
ed the information provided by each coefficient by measuring
he relative number of times that each coefficient was  selected by
ur method. Then, we calculated the mean selection rate of the
oefficients associated to each electrode at a given post-stimulus
ime (i.e., coefficients from that channel with time span includ-
ng the given post-stimulus time). Fig. 6A shows the grand average
across subjects) results of this analysis. Note that for a given elec-
rode, each post stimulus sample point has 6 associated wavelet
oefficients (one for each decomposition scale); thus, each point in
ig. 6A refers to a selection rate averaged across 6 coefficients. As
xpected, coefficients from the PO8 electrode with a time span of
170 ms  showed the highest selection rate. Complementing this

nformation, in Fig. 6B (top panel) we show the average proportion
f trials in which each individual coefficient from electrode PO8
as selected, along with the average of ERP traces for unseen and

een conditions across all subjects (bottom panel). Rows indicate
ecomposition levels (time scale) and the horizontal axis denotes
ime. Note that the most selected coefficients came from scale
4, especially the one with a time support between 125 ms  and
87.5 ms,  consistent with the N170 literature (Bentin et al., 1996;
ossion, 2014; Rousselet et al., 2007). Furthermore, this analysis
hows that no information in the first 125 ms  was ever used by the
lassifier, indicating that small differences in the ERPs during this
ime window (e.g., ∼100 ms  positive peak) were not informative at

 single-trial level.

. Discussion

For several decades, ERPs have been routinely used both in clin-
cal practice and in cognitive neuroscience. The standard approach
s to elicit ERPs upon different conditions − different type of stim-
li, different perceptual or cognitive responses, etc. − and then
ontrast responses to identify components that give a differential
ignal, thus being related to the process under study. Due to the low
mplitude of the ERPs compared to the background EEG, these com-
onents are typically visualized after ensemble averaging and are
hen characterized in terms of their amplitude, latency and topog-
aphy. Although this approach has provided major advances in our
nderstanding of normal and pathological brain function (Freeman
nd Quian Quiroga, 2013; Niedermeyer and Silva, 2005), it is prone
o miss, or even disregard a priori, relevant information. For exam-
le, the right occipitotemporal N170 response has been largely used
o characterize brain processes related to face processing, as faces
licit a larger N170 compared to pictures of cars or other objects
Rossion, 2014). But could other ERP patterns, or combination of
atterns, reflect face processing and contribute additional informa-
ion to differentiate between these conditions? Could the activity

n other electrodes, besides the ones traditionally explored based
n a priori hypotheses, give valuable information?

For example, it might be possible to quantify differences in the
hape of the ERPs by taking the area instead of the peak amplitude;
oscience Methods 296 (2018) 12–22

to combine information of different peaks (e.g. taking peak-to-
peak amplitudes); or to systematically explore all recording sites
seeking for statistical differences across conditions. However, these
approaches have two main caveats. First, they are ad-hoc and very
time consuming, as the search and quantification of optimal pat-
terns has to be done by hand on a case-by-case basis (and different
optimizations will likely need to be used for different electrodes).
Second, a systematic search for patterns and combination of pat-
terns in different recording sites leads to statistical biases, as the
obtained results need to be corrected for multiple comparisons.

In this study we proposed a new method, the WI  method, to
extract information from ERPs. The power of the method relies on
the fact that: i) the wavelet transform provides a multi-resolution
decomposition of ERPs, ii) the selection of wavelet coefficients
produces a dimensionality reduction that captures the meaning-
ful patterns, and iii) decoding provides a natural quantification of
information. Compared to the standard analysis of peak ampli-
tudes and latencies described above, WI  has several advantages.
First, it is completely unsupervised, so it does not require any
tuning to capture information of specific patterns. Furthermore,
the performance of the method does not depend on preprocess-
ing steps, such as detrending and filtering. Second, patterns that
are not necessarily reflected in features of single peaks or combi-
nations of peaks are naturally captured by subsets of informative
wavelet coefficients that are then fed into the decoding algorithm.
In fact, the method has the potential to capture other temporal
patterns, such as DC shifts, baseline crossings, etc. Third, the effi-
ciency of the dimensionality reduction achieved by the selection of
wavelet coefficients provides a natural way  to combine information
from multiple channels, without running into issues due to multi-
ple comparisons, or computational problems that would be critical
when analyzing high dimensional signals, what is also known as the
‘curse of dimensionality’ (Quian Quiroga and Panzeri, 2009). Fourth,
the decoding approach gives a straightforward and objective quan-
tification of information based on the single-trial ERP responses.
Importantly, performance should not be evaluated only on the clas-
sification accuracy but also on its significance (Jamalabadi et al.,
2016). Accordingly, in this current study we used permutation tests
to assess statistical significance. Finally, the proposed method can
be used to analyze any continuous neural recording, so besides
scalp EEG and LFPs, it can be easily applied to intracranial EEG and
MEG.

Alternative methods have applied principal components analy-
sis (PCA) to capture the variance of both latency and morphology
of single-trial ERP waveforms (Hu et al., 2011). However, PCA lacks
temporal resolution and a priori information is required to define
a time window for the estimation of the latency and amplitude of
each ERP component on each single trial. In addition, PCA captures
the direction of largest variability, which is not necessarily the same
as the one of maximum separability (Quian Quiroga et al., 2004).
Other methods linearly combine information from multiple sensors
into a single channel that can be analyzed with conventional meth-
ods, such as temporal filtering, trial averaging, and frequency power
analysis (Parra et al., 2005), but constraints need to be applied in
order to select the weights in the linear combination. Moreover, by
linearly combining multiple channels we would miss the opportu-
nity of extracting different features from different channels.

The proposed method also presents some advantages when
compared to other MVPA techniques. In particular, Schönauer et al.
(2017) do not provide a feature selection step, although they pro-
pose to “condition” the data with pre-processing steps before
applying a classification method. Other MVPA methods are applied

across all electrodes for each time bin, providing a time course of
decoding performance (Cauchoix et al., 2014, 2016; Crouzet et al.,
2015; King and Dehaene, 2014). However, this poses the problem
of multiple comparison across individual time points that needs
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Fig. 6. Tracking information fed to the decoders. (A) Average probability of selecting coefficients for classification in each of the 64 available channels at given post-stimulus
times  (indicated on the top of each head in ms). Plots show averages across all subjects. (B) Top panel displays the selection rate of each coefficient in electrode PO8. Each
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o be addressed, and prevents from combining information across
ifferent time bins. Our feature selection process based on the
utual information between each wavelet coefficient and the stim-

lus/condition allow us to reduce the dimensionality of all the data
time x frequency x electrodes) in a natural way.

In this work, we used a fixed number of wavelet coefficients to
epresent ERPs. However, one could employ a data-driven approach
o define the set of coefficients to be used. For example, coeffi-
ients could be ranked by information and then iteratively added to
he selected set until their joint information saturates. Importantly,
n order to prevent biases this whole feature selection procedure

ust be based only on the training set. We  tested this approach
n our simulated dataset and found no differences in performance,
ut with a significant increase in the computational cost. Still, this
pproach has the potential to lead to better performances in some
atasets with a large number of channels with redundant infor-
ation. A MATLAB implementation of our method is available at

ttps://www2.le.ac.uk/centres/csn/software, where the user can
hoose between both implementations.

We  have shown with simulated data that WI  gives information
eyond the one provided by the amplitude and latency of evoked
omponents. In this case, by construction, four different stimulus
lasses could be differentiated based on the shape (but not the
mplitude) of the responses, something that was  captured by the
I method. We  also evaluated the performance of WI  with four real

atasets and showed that it gave significantly more information
bout the different conditions tested (target vs. non-target stimulus
or the oddball datasets, and recognized vs. non-recognized for the
ther two datasets) compared to the one provided by the amplitude
f the ERPs. The increase in performance when increasing the num-
er of channels analyzed occurred in spite of the abovementioned
act that the increase in the dimensionality of the problem tends
o diminish the ability to extract information from the data. In fact,
here is typically a compromise when estimating information from
eal data: on the one hand, increasing the dimensionality of the data
dds more information but, on the other hand, it impoverishes the
bility to extract information (Quian Quiroga and Panzeri, 2009).
he key feature of WI  to avoid this problem is the dimensionality
eduction achieved by selecting a set of informative coefficients.

Using a similar approach with spike train recordings we  have

reviously shown that, contrary to other standard information
stimation methodologies, the extracted information kept increas-
ng when increasing the resolution used to bin the data, the
e spanned in the horizontal axis along their corresponding time support in order to
n conditions across all subjects. Traces denote mean and shaded areas denote SEM.

length of the response considered, or the number of neurons
(Lopes-dos-Santos et al., 2015). Furthermore, the dimensional-
ity reduction achieved with a selection of informative wavelet
coefficients provided significantly better results than other dimen-
sionality reduction approaches, such as PCA or taking the time
bins with largest information (without using wavelets) (Lopes-dos-
Santos et al., 2015). The main difference between the current WI
implementation and the one we  previously proposed to extract
information from spike trains is that the signal to noise ratio of the
single trial ERP data is much lower compared to the one of spike
trains and we  therefore have to use sub-ensemble averages (instead
of single trial traces) to estimate the information of the wavelet
coefficients. More generally, the approach of selecting wavelet coef-
ficients to extract information is reminiscent of a strategy used for
spike sorting, namely, distinguishing spikes from different neurons
based on their shapes (Quian Quiroga, 2012). In this case, the iden-
tity of the spikes is unknown a priori and it is therefore not possible
to estimate information; however, a selection of wavelet coeffi-
cients having a multimodal distribution (i.e. reflecting information
from more than one cluster of spikes) has shown to provide signifi-
cantly better results than taking other ad-hoc spike features or PCA
(Quian Quiroga et al., 2004).

Our method can easily deal with a large amount of data and
number of channels. The fact that we  can consider altogether the
data in the whole response window, in all channels, in an unbi-
ased way, and without multiple comparison issues, allows us to
extract information beyond the one typically sought in hypothesis
driven analyses, that focus on specific channels, time windows, and
stereotypical responses. Moreover, the method can cope with sub-
ject by subject variabilities arising from variability in the precise
location of the ERP sources or from misplacements in the recording
sites. The ability to extract this information despite these variabil-
ities is important for applications such as brain machine interface
and neurofeedback. However, the proposed method is far from a
black box approach, as it is possible to retrieve which specific infor-
mation is associated with the obtained decoding performance. In
particular, as shown in Fig. 6, the distribution of selected wavelet
coefficients across subjects gives insights about the spatial location,
scales (frequency bands), and time windows of the neural activity
carrying relevant information to discriminate the different classes

that are being contrasted in the experiment. In our dataset, our
findings were consistent with the N170 potential associated to face
perception, in terms of location, time, and frequency content.
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Walter, D.O., 1968. A posteriori Wiener filtering of average evoked responses.
Electroencephalogr. Clin. Neurophysiol. 27 (Suppl), 61+.

Yang, Z., Fang, F., Weng, X., 2012. Recent developments in multivariate pattern
2 V. Lopes-dos-Santos et al. / Journal o

.1. Conclusions

In summary, we have presented a new unsupervised approach
o analyze ERP recordings and extract (and localize) information
hat differentiates the conditions under study. This method not only
xtracts more information compared to other standard methods,
ut also opens possibilities of new paradigms and analyses that are
ot constrained, and potentially biased, by specific a priori hypothe-
es on how the evoked responses should look like, and where and
hen they should be searched for.
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