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Abstract

The central theme of this thesis is the development of general methods for the modelling

of the dynamics on chaotic attractors by a coarse-grained representation constructed

through the use of embedded periodic orbits & other coherent structures. Our aim is

to develop tools for constructing two types of reduced representations of chaotic attrac-

tors: Markov-type models, and symbolic dynamics. For Markov models, we present

construction of a minimal cover of chaotic attractors of maps and high-dimensional

flows by embedded coherent structures such as periodic orbits from which a Markov

chain of the dynamics can be constructed. For the symbolic dynamics, we investigate

the utility of unstable periodic orbits for the construction of an approximate generating

partition of a chaotic attractor.

In the first section of Part 1 we present an original method by which chaotic attractors

of discrete-time dynamical systems can be covered using a small set of unstable periodic

orbits (UPOs) following an iterative selection algorithm that only chooses those UPOs

that provide additional covering of the attractor to be included into the cover. We then

show how this representation can be used to represent trajectories in the system as a

series of transition between cover elements, using which as a basis for the construction

of a Markov chain representation of the dynamics. In the second section we extend this

method to continuous-time dynamical systems, introducing methods by which covers of

high-dimensional attractors can be constructed in low dimensional projections with as

little information loss as possible, and also giving an example of how group symmetries

of the system can be dealt with.

In Part 2 we change our focus to the construction of symbolic dynamics of discrete-

time systems, presenting an extension to an existing method for the computational

construction of approximate generating partitions that increases the applicability of

the method to a wider range of systems, and also significantly improving the results for

more complex maps.
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Introduction

Periodic Orbit Theory

Periodic orbits play a fundamental role in the analysis of various types of dynamical

systems. This importance was perhaps first noticed by Poincaré who hypothesised that

any motion of a dynamical system can be approximated by those of periodic type (which

was later proven by Birkhoff[1] in 1927); this trait is especially applicable to systems

exhibiting chaotic dynamics, where it is well-proven that unstable periodic orbits must

be dense in the chaotic set[2]. This profound importance of periodic orbits to chaotic

systems led to the recent popular description by Cvitanović[3] of periodic orbits as “the

skeleton of classical and quantum chaos”.

Poincaré’s above hypothesis led to the development of the branch of dynamical systems

theory known as ‘periodic orbit theory’, which revolves around determining geometric

and dynamical properties of chaotic systems, such as natural measure, Lyapunov expo-

nents, fractal dimensions, entropies, etc. by using the properties of embedded unstable

periodic orbits (UPOs)[4]. An example of the usage of periodic orbits in the calculation

of dynamical properties of low-dimensional chaotic systems is given by Cvitanović[5]

where cycle expansions[6] are used to calculate dynamical averages such as Lyapunov

exponents, diffusion constants, and power spectra of chaotic systems.

This approach has also been shown to work well for low-dimensional attractors of high-

dimensional systems[7, 8], however when the dimensionality of the attractor is large

(several positive Lyapunov exponents) even a qualitative description of the attractor

becomes difficult, an issue we attempt to breach in Chapter 2.
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Computational Methods for Detection of Unstable Periodic Or-

bits

In recent years a considerable amount of progress has been made in locating periodic

orbits and other coherent structures in high dimensional chaotic systems. Examples in-

clude the work of López et al.[9], who presented a method for finding relative periodic

solutions for differential equations with continuous symmetries, and used this method

to find relative periodic solutions of the one-dimensional complex Ginzburg-Landau

equation; they acknowledged, however, that without modifications their method would

not be suitable for use in systems of higher dimension. Hof et al.[10] found experimental

evidence of the existence of travelling waves in turbulent pipe flow, in agreement with

the numerical studies of Faisst et al.[11] & Wedin et al.[12]. Additionally, Zoldi and

Greenside[13] used a damped-Newton method to find unstable periodic orbits in the

Kuramoto-Sivashinsky (KS) equation.

More recently, Cvitanović et al.[14] used multiple shooting and the Levenberg-Marquardt

algorithm to locate over 60 000 coherent structures in the KS equation on a periodic

domain. In this paper, Cvitanović et al.[14] claim that in comparison to the method

of Zoldi & Greenside[13], their method converges faster due to the removal of artificial

constraints (added by Zoldi & Greenside to avoid their system of equations from being

underdetermined) which is enabled by the use of the LM algorithm which solves the

system instead as an optimisation problem. It’s also worth mentioning that Zoldi &

Greenside acknowledged in their work that natural progressions to their method may

include multiple shooting.

In the case of Cvitanović et al.[14], they also acknowledged that due to the presence

of discrete and continuous symmetries, these coherent structures include not only the

traditional equilibria and periodic orbits (such as those found by Zoldi & Greenside),

but also travelling waves and relative periodic orbits[9, 14] (also known as ‘modulated

travelling waves’[15]).
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Another popular method is the stabilising transformations method first proposed by

Schmelcher and Diakonos[16] and further developed by Crofts & Davidchack[4, 17]

which revolves around finding a transformation for the system such that the unstable

periodic orbits become stable. Upon doing so, locating the periodic orbits becomes as

simple as following the dynamics until a limit cycle is reached.

Throughout this thesis, we will make extensive use of the set of over 60 000 coherent

structures for the Kuramoto-Sivashinsky equation found by Cvitanović et al.[14], as well

as sets of unstable periodic orbits for the Ikeda, Hénon, Duffing, and Standard maps

found by Davidchack et al. using the stabilising transformations method[4, 18, 19].
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1 Cover of 2-dimensional chaotic maps by embed-

ded periodic orbits

Poincaré’s aforementioned hypothesis that any motion of a dynamical system can be

approximated by those of periodic type opened a path into the previously unbreachable

territory of chaotic dynamics, and paved the way for a periodic orbit theoretical ap-

proach to the calculation of many dynamical properties & averages of such systems[5].

Despite this, few attempts have been made to expand on the true essence of this hy-

pothesis - the approximation of trajectories by periodic orbits (be it the approximation

of periodic orbits by other periodic orbits, or of non-periodic trajectories by periodic

orbits).

The main reason for the lack of exploration in this direction is down to the fact that

(unstable) periodic orbits are dense in any chaotic attractor, and so the finding of all

UPOs even up to some fixed low period was, until recently[4, 9, 14], an extremely diffi-

cult task both computationally and theoretically. Following the mantra of Cvitanović[5]

that short cycles give the overall structure of the dynamics, with longer cycles giving

quickly decaying adjustments, we proceed under the assumption that so long as we have

all periodic orbits up to a sufficiently high period then we will be able to approximate

the dynamics reasonably well. However, even by restricting our periodic orbits to those

of up to a certain period, for higher-dimensional systems the number of periodic orbits

of even lower periods can become unmanageably high.

With this in mind, for now, we will focus on the case of 2-dimensional maps exhibiting

chaotic dynamics. We propose a selection process by which only periodic orbits that

provide unique information about the dynamics in their vicinity are chosen to represent

the chaotic attractor - in other words, we will construct a cover of the attractor. We

then proceed to explore how this cover can be used to represent generic trajectories in

the attractor as a sequence of transitions between the chosen periodic orbits. Finally,

we present how this transition information can be used in order to construct a Markov
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Chain representation of the system, and how this can be used in order to rank periodic

orbits in the cover in terms of importance to the overall dynamics.

Throughout this part of the thesis we will exclusively focus the application of the

presented methods and analyses in the context of the Ikeda map (which will be defined

later) with parameters chosen such that chaotic behaviour is exhibited. Despite this,

in order to ensure generality of the presented methods we will make use of no specific

traits of the two-dimensional Ikeda map; the methods can equally be applied to maps

of any dimension.

1.1 Hausdorff Distance

In order to calculate the distance between segments of orbits (a key theme of our meth-

ods), we will make use of the directed Hausdorff distance between sets endowed with

the Euclidean norm (for simplicity). Roughly speaking, the directed Hausdorff distance

describes the distance from orbit segment A to orbit segment B as the distance between

the furthest point in A to its closest point on B - if this distance is small, it means that

A stays close to B for its whole duration; below we give a more thorough definition and

explanation.

The Hausdorff distance between sets A & B is defined asH(A,B) = max(h(A,B), h(B,A)),

where h(A,B) corresponds to the directed Hausdorff distance from A to B, and is de-

fined for a chosen norm ‖·‖ as:

h(A,B) = max
a∈A

min
b∈B
‖a− b‖

Intuitively speaking, the directed Hausdorff distance gives the supremum of the set

of distances of each element of A to their closest neighbour in B; it follows that the

undirected Hausdorff distance returns the maximum of these two suprema. In Fig. 1

we show an example of how h(A,B) 6≡ h(B,A). Due to this property, it’s worth noting

that the directed Hausdorff distance is not a distance in the strict Mathematical sense,

as it doesn’t satisfy the symmetry axiom.
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Figure 1: Directed Hausdorff distances between sets A and B.

Both the directed and undirected Hausdorff distances have a long history of use in

object & pattern recognition [e.g. 20, 21, 22]. An example of how they would be used

in such a field is as follows: Assume that you have an object with edges defined by set

A, that you wish to match to two images with edges defined by B and C (depicted in

Fig. 2). In this example h(A,B) would be relatively small as image A can be found

inside image B; however the converse isn’t true, image B cannot be found as a whole

in image A, so h(B,A) would be much larger - since h(B,A) is large, that also means

the undirected Hausdorff distance H(A,B) would be large. An example of where the

undirected Hausdorff distance would be small would be in the case of H(A,C), where

A is similar to C, and C is also similar to A.

1.2 Constructing the Cover

Before presenting the method by which we propose one can construct a cover of a

chaotic attractor by using unstable periodic orbits, a definition of what a cover is seems

prudent: For a set X with distance function d(·, ·), a closed cover Y of X is defined as

a family of closed subsets whose union covers X [23]; in other words, X ⊆
⋃
y∈Y

y, where

each y ⊆ X is closed.

In our case, we iteratively construct a cover of the attractor (the ‘set’) by ε-neighbourhoods
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(a) Image A (b) Image B (c) Image C

Figure 2: Images A, B, and C.

of certain unstable periodic orbits in the attractor (the ‘subsets’). The way these orbits

are chosen to be included in the cover is outlined below.

The selection process proceeds as follows: Let P = {pi}NPi=1 be a set of unstable pe-

riodic orbits listed in order of increasing period. Starting with the empty set as the

initial basis of the cover W = ∅, iteratively proceed through the orbits in order of pe-

riod, adding into the cover those orbits whose distance to W is above some threshold,

ε.

For i = 1, 2, . . . , NP :

W←

W ∪ {pi} if d(pi,W) > ε

W if d(pi,W) ≤ ε

(1.1)

where d(pi,W) denotes the directed Hausdorff distance between sets pi and W, given

as follows:

d(pi,W) = max
t∈{1,2,...,T pi}

min
wj∈W

τ∈{1,2,...,Twj}
‖pi(t)− wj(τ)‖ (1.2)

where T pi , Twj ∈ Z are the periods of orbits pi and wj respectively; pi is a given orbit

in set P, wj is an orbit in the cover W; and ‖·‖ is the chosen norm in the dynamical

system phase space with a given metric. What this distance gives us is the maximum

of the minimum distances of each point on pi(t) to the closest orbit in W at each time

step t; in other words, the distance from the furthest point on pi to the closest point in

set W. Intuitively speaking, we only include a new periodic orbit into the set W if it

11



explores a part of the attractor that is not yet covered by the current W.

By including orbits into the cover who satisfy d(pi,W) ≤ ε, we are effectively con-

structing a closed ε-ball around the set W that fully contains the set P, in other words:

P ⊆ Bε (W).

The choice of ε can have quite a significant effect on the resulting covering of the

attractor. For larger ε, one can expect to see a reduction in the number of elements of

the resultant cover, at the cost of potentially poorer accuracy of approximation of the

dynamics on the attractor. Conversely, for smaller ε one can expect a larger number of

cover elements, with the benefit of a more accurate approximation of the dynamics on

the attractor.

While the distance threshold ε can vary depending on the outcome one seeks (i.e. a

smaller cover set, or more accurate approximation), for the sake of consistency through-

out this section we will adopt the following way of choosing this parameter: ε will be

chosen to be 1% of the length of the lead diagonal of the rectangle bounding the attrac-

tor; in other words, 1% of the norm of the vector containing the length of the attractor

in the x and y directions. This sets the resolution of the cover, with smaller ε giving

a higher resolution (i.e. a more accurate representation) but increasing the amount of

elements in W.

1.3 Application to Ikeda Map

In order to give a concrete example of the results of the above processes, we will apply

the methods to the Ikeda-Hammel-Jones-Moloney map[24, 25] (which will henceforth

be referred to simply as the Ikeda Map):

xn+1 = a+ b(xn cosφn − yn sinφn) (1.3)

yn+1 = b(xn sinφn + yn cosφn) (1.4)
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where φn = k− η/(1 + x2n + y2n), with parameters a = 1.0, b = 0.9, k = 0.4 and η = 6.0

chosen such that the map exhibits chaotic dynamics. We will use a set that contains an

exhaustive list of unstable periodic orbits ranging from period 1 to period 20 (provided

by Davidchack et al.[26]) totalling 20,061 orbits, in order to construct the cover. As

a side note, we will exclude one of the two equilibria located at (−1.1143,−2.2857)

from this set as it lies outside of the actual attractor (on the border of the basin of

attraction), and so has no influence on the dynamics within the attractor itself; as such,

we’ll only use 20,060 of the 20,061 orbits in the set. A portrait of the attractor of the

Ikeda map can be seen in Fig. 3.

Figure 3: Portrait of the Ikeda map’s attractor.

In the construction of the cover we will choose ε as previously described, by taking

it to be 1% of the length of the main diagonal of the attractor; since the attractor

is bounded by the rectangle: xn ∈ [−0.3516, 0.7082], and yn ∈ [−2.2857, 0.8645], we

choose ε ≈ 0.0376. By applying the covering algorithm (Eq. 1.1) with this ε, our set

of 20,060 unstable periodic orbits is reduced to a cover containing only 271 orbits.
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A visualisation of the covering of the Ikeda map can be seen in Fig. 4; the points of the

20,061 unstable periodic orbits of the attractor are shown in black, and the points of

the unstable periodic orbits included in the cover are in red with their ε-neighbourhood

shown by surrounding red disks. The covering provided by using periodic orbits up to

period 5, 10, 15, and 20 (corresponding to 12, 115, 1,378, and 20,061 UPOs respectively)

are shown from left to right. By the time we reach period 20, it’s clearly observable

that the set of 20,060 periodic orbits are completely covered by the ε-neighbourhoods

of the 271 cover orbits (by construction); it’s also quite clear that there is quite a lot of

redundancy in the set, this can be most clearly seen in the rightmost subfigure of Fig. 4

where we can see some dense red areas where multiple neighbourhoods are intersecting.

The resolution of this redundancy is, however, beyond the scope of this thesis, and will

be left as a problem for future research.

Figure 4: Covering of the Ikeda map using unstable periodic orbits of period up to 5, 10, 15,

and 20 (from left to right), with the red circles corresponding to the ε-neighbourhood around

chosen cover elements.

By construction, the set P is fully contained by the closed ε-ball surrounding W. It’s

safe to assume, however, that the set P doesn’t contain every single point in the attrac-

tor, and so we will assume that in order to cover the whole attractor an ε-ball must

also be taken around P.

As such, to ensure that the whole attractor C is covered we must henceforth deal

with a set that covers C ⊆ Bε (P). Using the fact that by construction P ⊆ Bε (W), the

14



following must hold true:

C ⊆ Bε (P) ⊆ Bε (Bε (W)) = B2ε (W) (1.5)

and so by taking a closed 2ε-ball around W we can ensure that the whole attractor is

now covered.

An illustration of the covering provided by Bε (W) and B2ε (W) can be seen in Fig.

5; in red are the ε and the 2ε balls surrounding W respectively, and in black are the

points of the chaotic attractor that were generating by taking a long (approximately

109 time steps) trajectory in the attractor, which represent the above described set C.

By focusing our attention on the bottom of the attractor in each case, it’s clear to see

that indeed Bε (W) doesn’t cover the whole of C, an issue which is resolved by using

B2ε (W).

Figure 5: Here in red we show the ε-ball surrounding W (left), and the 2ε-ball surrounding

W (right); in black are the points of the chaotic attractor of the Ikeda map.

With this in mind, we will instead use 2ε in the following applications of the cover W.
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1.4 Shadowing

Now that we’ve reduced P to the set W, whose 2ε-neighbourhood provides at least the

same covering of the chaotic attractor as the ε-neighbourhood of P, it is possible to

represent any trajectory in the attractor as a sequence of transitions between nearby

elements (i.e. within 2ε distance) of W.

As a starting point we will first seek to create such a representation in the case of

periodic orbits in the attractor that don’t belong to W (i.e. in P\W), after which we

will generalise this method to represent any trajectory in the attractor in a similar

manner.

Finding such a sequence of transitions can be done in a multitude of ways (discussed

in more detail on page 45); the simplest such way being for some pi ∈P\W finding

the closest wi ∈W to each point on pi. This method can however, produce sequences

that jump frequently between different cover elements; as we would like a more natural

representation with less frequent jumps, and smoother transitions. An example of this

is the itinerary produced by applying the above shadowing scheme to the period 10

orbit p78 6∈W: w6 (2) → w36 (1) → w17 (4) → w36 (1) → w6 (2), where wi (ti) → wj

corresponds to a transition from wi to wj with a ti waiting time before transitioning.

Taking into account the periodicity of the orbit, this period 10 orbit of the above de-

scribed Ikeda map requires 4 transitions each with relatively short waiting times (time

spent on the orbit before transitioning, shown in brackets). While this result may seem

acceptable, for longer trajectories this problem becomes more apparent.

In order to try to resolve this issue, we sought an algorithm that prioritises longer

close approaches over short but closer approaches. The best solution to this problem

would require solving a minimisation problem to minimise the number of segments (all

of which must be within 2ε distance), however for long trajectories the computation

times may become prohibitively large; as such, we will assume a näıve, greedy approach

where we start from a given point and proceed forward, finding the cover element that
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stays within 2ε distance for the longest (hence greedy). This will unfortunately make

the result dependant upon starting point, at the benefit of reducing computation times

significantly; the true benefit of this particular algorithm will become clear in the second

part of the thesis where we will discuss the application of this method to projections of

higher-dimensional attractors of chaotic flows.

Starting with W̃0 = W, our proposed näıve, segment-based algorithm for shadowing of

a periodic orbit or trajectory is as follows:

1. Starting from x0 = ( x0y0 ), find W̃0 ⊇ W̃1 =
{
w ∈ W̃0 | d(x0, w) ≤ 2ε

}
.

2. Repeat this process, finding W̃i−1 ⊇ W̃i =
{
w ∈ W̃i−1 | d(xi−1, w) ≤ 2ε

}
.

3. When k is found such that W̃k = ∅, label the segment ϕ1 = {xj, j ∈ [0, k − 1]}

by the index j of wj ∈ W̃k−1. In the case that W̃k−1 contains multiple orbits,

label the segment by the lowest period orbit in W̃k−1.

4. Repeat this process starting from xk, until the whole trajectory is labelled.

Intuitively speaking, starting from a given point, this algorithm finds the periodic orbit

in W that stays within 2ε distance of this point for the longest, labelling the segment

by the index of the periodic orbit. This process is then repeated until the whole tra-

jectory is labelled. In the case of p78, the itinerary obtained from this algorithm is:

w6 (5) → w17 (5); compared to the aforementioned closest-distance shadowing which

required 4 transitions for this orbit we see a marked shift towards longer shadowing

with fewer jumps.

To give another example, we will look at the first orbit not included into W by the

covering algorithm, the period-9 orbit p54. Using the näıve segment-based shadowing

algorithm we can represent p54 as the transitions between three different cover ele-

ments, with itinerary: w24 (4) → w21 (3) → w17 (2). In Fig. 6 we can see how each of

the points on the trajectory p54 (shown as blue crosses, with each point in the itinerary

numbered accordingly) are within 2ε-distance (shown by circles) of the relevant point
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in the itinerary.

This figure gives an illustration of how our algorithm should be working: points 1

and 2 are both within 2ε-distance of w24 and w17, however points 3 & 4 are within

2ε-distance of w24 but not w17, and so w24 is chosen to represent the first 4 points. This

also brings to light one of the drawbacks of the algorithm, since the orbit is periodic

there are actually 7 points in a row within 2ε-distance of w24: 7, 8, 9, 1, 2, 3 & 4,

however points 8, & 9 are labelled by w17 as it’s a shorter orbit than w24; if we were to

change the starting point of the shadowing instead to point 7, we would get a different

(and arguably better) shadowing of our trajectory, requiring only two cover elements.

Resolving this is an issue that will be left for future research, as we would first like to

present the results in this simple case of shadowing before making such improvements.

18



Figure 6: Shadowing of p54 (blue crosses) by w24 (red), w21 (green), and w17 (orange). Labels

1-9 to the top right of each point represent the order of the points in the itinerary.

This procedure isn’t restricted to only periodic orbits, it can equally be applied to any

chaotic trajectory. By applying this process to a long trajectory in the attractor and

observing the transitions and waiting times between cover elements we hope to be able

to gain insight into the workings of the chaotic attractor; such a representation of the

dynamics lends itself quite handily to a Markov-type model, as we will discuss in the

following section.

1.5 Markov Chain Model

Given a finite set of states S = {s1, s2, . . . , sn}, a finite-state Markov chain describes

the process by which the system jumps from state to state by the associated transition

probability matrix, A. In order to be considered a Markov chain, the Markov property

must be satisfied. This property stipulates that the probability Aij of transitioning

from the current state si to the state sj must be independent of the previous states,

also known as memorylessness [27].

As a consequence of the Markov property, the waiting times of a discrete-time Markov

chain should follow a geometric distribution[28, 29], as this is the only discrete proba-

bility distribution that has the memoryless property[30]; similarly, for continuous-time

Markov chains (which we will deal with in the next part of the thesis), the waiting

times should follow an exponential distribution, being the only continuous probability

distribution with the memoryless property[30]. As such, when ascertaining the ap-

propriateness of a transition-based process for representation as a Markov chain, the

distribution of waiting times is a good place to begin.

As the result of the previously described shadowing algorithm is precisely given as

the set of waiting times on each cover element and the transition to the next cover

element it makes sense to model our dynamics by a Markov chain; specifically, as we
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have a finite number of cover elements, and are working with a discrete-time map, we

will use a discrete-time finite-state Markov chain. Assuming that the memoryless prop-

erty holds (which we will check later), such a model will allow us to gain more detailed

information about the dynamics of the system under the shadowing regime with our

given cover.

1.5.1 Construction

The construction of a Markov chain approximation for 2-dimensional maps is a rela-

tively simple task for two reasons: generating and shadowing long orbits in 2-dimensions

is extremely fast, and since maps are discrete by nature we can use a simple discrete

Markov chain. By performing shadowing on a long piece of trajectory, started from a

random point within the attractor, we reduce the trajectory to a set of waiting times

(the duration of the stay on a given cover element) and transitions from the current

cover element to the next; the transition matrix for the Markov chain can be con-

structed quite simply using these transitions and waiting times. Using the shadowing

data on the long trajectory, the diagonal elements of the transition matrix Aii can be

set as the sum of waiting times on each cover element wi; the non-diagonal elements

Aij will be the sum of all occurrences when the shadowing changes from wi to wj. It’s

worth noting that such a matrix will have all positive elements. Upon completion of

this process the matrix should be normalised to be right-stochastic, in other words such

that all rows sum to 1,
∑

j Aij = 1.

To give a hypothetical example, if we were to perform shadowing on a trajectory started

from a random point in the attractor using a cover of two elements for 6 time steps with

the resultant itinerary: w2 → w2 → w2 → w1 → w2 → w1, we would begin the con-

struction of our transition matrix A by increasing A2,2 by the number of self-transitions

from our starting point, in other words A2,2 = 2. Next, as we see a transition from w2

to w1 we would set A2,1 = 1; similarly, for the next transition we would set A1,2 = 1.

Following this is a transition back from w2 to w1, so for our final step we would increase

A2,1 by 1 giving A2,1 = 2. In other words, A = ( 0 1
2 2 ). Finally, we must normalise A to
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ensure that the rows sum to 1, giving A =
(

0 1
1
2

1
2

)
.

By using our cover W to shadow a trajectory started from a random point in the

attractor of duration 1.9× 108 (compared to the 3,297 total time of cover elements) we

computed the 271 × 271 transition matrix A: a sparse matrix with around 74% zero

elements.

1.5.2 Properties

In order to represent the transition data accurately by a finite-state Markov chain, the

Markov property (also known as memorylessness) must be satisfied; roughly speaking,

memorylessness means that the next state of the system depends only upon the current

state, and not any previous states. The easiest way to check whether observed data

satisfies this property is by checking whether or not the frequency of the waiting times

(in our case the amount of time the shadowed trajectory stays each cover element before

transitioning) follow a geometric distribution. Fig. 7 shows the distribution of waiting

times for our system with the waiting times on the horizontal axis, and their log-scaled

frequencies on the vertical axis.

Were the distribution to be geometric, we’d expect a log-scaled frequency plot to de-

crease linearly; while this is not the case for waiting times below 5, for the waiting times

above 5 we do indeed see the behaviour expected of a geometric distribution[28, 29].

These first few waiting times that don’t fit the pattern are likely in part an artefact of

our greedy shadowing algorithm that avoids creating segments with short waiting times.

The main factor that affects the segments with short waiting times not following the

geometric distribution however, is the fact that we’re dealing not with a stochastic sys-

tem but with a deterministic chaotic dynamical system, and so there is in fact memory

in the system. Due to the combination of sensitive dependence on initial conditions of

chaotic dynamics and rounding errors, after a certain time all memory of where the tra-

jectory came from will be lost, as this initial error will be propagated exponentially fast;
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an example of this in the context of the Ikeda attractor can be seen in Fig. 8 where the

distance between two points initially separated by machine precision of ε = 2−52 grows

exponentially until approximately the 71st iterate at which point the distance stops

growing exponentially and begins to resemble noise. The time it takes to reach this

point is determined by the maximum Lyapunov exponent of the system. As such, while

there is memory in the system, due to rounding error this memory is extremely limited,

and so on longer time scales the dynamics can be approximated with a stochastic pro-

cess. This particular issue is discussed in detail in many different contexts, including

research into distinguishing chaotic processes from stochastic processes/noise[31, 32],

and also in the context of the applicability of Markov models to chaotic systems[33, 29].

Figure 7: Log-Scaled Frequency of Waiting Times.

As these segments with short waiting times constitute a relatively small portion of the

total time (approximately 10%), we can proceed relatively safely under the assumption

that our data can be suitably represented by a Markov model on longer time scales.
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Figure 8: Propagation of distance between two points initially separated by machine precision

ε = 2−52 over successive iterates of the Ikeda map.

One of the fundamental properties of Markov chains is that of ergodicity. A finite-state

Markov chain is considered to be ergodic if it’s possible to reach any state from any

other state (in any number of steps)[34] (i.e. ∀ i, j ∃ t ∈ N : At
ij > 0). By considering

the transition matrix A of the Markov chain in the context of a directed graph[35],

it’s possible to determine ergodicity of the Markov chain by finding the number of con-

nected components in the graph - if this number is one, the graph is fully connected,

and hence the Markov chain is ergodic. Using MATLAB’s graphconncomp command

A, we determined that the Markov Chain defined by A is fully connected (having only

one connected component), and so it is indeed ergodic.

1.5.3 Stationary Distribution

Another useful piece of information that we can gain from the transition matrix is the

stationary distribution of the Markov chain. The stationary distribution of the tran-

sition matrix A is the row vector π such that πA = π, i.e. the left eigenvector of

A corresponding to eigenvalue 1. Such a stationary distribution exists and is unique

for every ergodic finite-state Markov chain[34] (which as stated earlier A is). Since

π gives the probability of being at any wi at any given point in time, by sorting the

values of π we can effectively rank the cover elements in order of importance (in the
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sense that a cover element is more important if the probability of being there is higher).

Calculation of π can be done in two ways. The first is through the power method,

by finding n such that An = An−1, taking π to be any row of A; the second is by

calculating the left eigenvector of the matrix of A corresponding to eigenvalue 1, and

rescaling it such that
∑
π = 1 (with all πi > 0, since they must be non-zero probability

values (due to ergodicity)). We first calculated π using the former method, requiring

iterating up to n = 608 in order to calculate π to MATLAB’s machine precision; for

comparison we then calculated the left eigenvector using [~,D,W]=eig(A), and selecting

the column of W corresponding to D(i,i)=1, transposing (from column to row vector),

and then dividing by a factor of 14.18. As expected, both of the resulting row vectors

were identical.

To give a visualisation of how π can be used to rank the states of our Markov chain,

Fig. 9 shows each πi relative to the mean (µπ = 1
271
≈ 0.00369), along with horizontal

lines depicting one standard deviation (σ(π) ≈ 0.0022) above and below the mean .

Judging by eye alone we can see that w223 is clearly ranked highest in importance,

with a probability of over 1.4% at almost 5 standard deviations above the mean. By

contrast, w1, w2, w4, & w124 rank lowest with more than 1.6 standard deviations below

the mean, which corresponds to a probability of around 0.005%.
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Figure 9: πi of each cover element i, with the middle red line corresponding to the mean µπ

and the thin red lines corresponding to the one standard deviation above and below the mean

respectively (µπ ± σ(π)).

In Fig. 10 the probabilities πi are sorted in descending order, with si being the cor-

responding list of sorted indices. By taking the cumulative sum of these probabilities

(sorted in descending order), we can see how many orbits in W are required to shadow

varying percentages of the dynamics on the attractor (results can be seen in Table 1).

From this we can glean information such as that the system spends over 50% of its time

on less than 30% of the orbits in W.
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Cumulative Sum 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of Orbits 10 23 38 56 78 102 130 163 203 271

Percent of Orbits 3.7% 8.5% 14% 20.7% 28.8% 37.6% 48% 60.1% 74.9% 100%

Table 1: Number of orbits in W required to account for varying amounts of the dynamics.

Figure 10: Distribution of probabilities of π, sorted in descending order.

1.5.4 Mean First Passage Time

While the stationary distribution gives the long-time probability distribution of being

in each state at any given time, for a more short-term measure of the dynamics of the

Markov chain we will turn to the measure known as the Mean First Passage Time.

The mean first passage time is the average time required to go from a given state to

another given state for the first time, and was defined for an N -state discrete Markov

chain by Kemeny & Snell[36] as the matrix M, where:

M = (I − Z + EZdg)D (1.6)
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where I is the N ×N identity matrix, E is the N ×N matrix of ones, D is the diagonal

matrix with elements Dii = 1
πi

, and Z is the fundamental matrix (where Zdg is the

matrix containing only the diagonal elements of Z), defined as:

Z = (I −A + Π)−1

where Π is the matrix with each row equal to the stationary distribution π.

In the resultant matrix M, element Mij corresponds to the mean time required to

reach wj from wi for the first time, the mean first passage time from wi to wj, and Mii

corresponds to the mean time required to return to wi from wi for the first time, the

mean first return time for wi.

In order to try to find useful patterns from M, we define mj as the (N − 1)x1 col-

umn vector containing the jth column of M with the diagonal element Mjj excluded.

By calculating the relative distance of each element i of mj to the mean m̄j given by

dij = (mi
j − m̄j)/m̄j, we can search for pairs in M that have uncharacteristically large

or small mean first passage times. (Note: When converting the (i, j) values from m to

M one must take care to account for the fact that the diagonal elements of M were

removed in order to calculate m).

For example, using the transition matrix A and stationary distribution π for the Ikeda

map as calculated above, we can calculate the matrix M with relative ease using Eq.

1.6. By calculating the above distances dij for each (i, j) we found examples of orbits

with mean first passage times significantly below the mean for that column. For ex-

ample, M124,256 ≈ 975, compared to m̄256 ≈ 1623; intuitively this means that starting

from most orbits would require an average of approximately 1623 time steps in order to

reach w256 for the first time, however when starting from w124 it only takes an average

of 975 time steps to reach w256. This example, along with many others can be seen

in Fig. 11 where on the horizontal axis is the index j of mj, and on the vertical axis

is dij; the dimension corresponding to index i has been collapsed for easier viewing.
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The previously described point M124,256 can be seen in the bottom right of the image

(indicated by a red circle) with d124256 ≈ −0.4.

Figure 11: Relative distance of mi
j from mean m̄j for each i, j. Dimension i has been collapsed

for ease of viewing, and so all mi
j are shown in the jth column.

By isolating points with large (positive or negative) relative distances from the mean,

we can potentially find pairs of cover elements between which there is some kind of

dynamical link, opening another avenue for future exploration.

1.6 Summary & Future Work

In this part of the thesis we presented a method by which one may cover a chaotic

attractor of a discrete-time dynamical system by a subset of a larger set of periodic

orbits, whilst providing the same amount of covering as the larger set.

Using this, we proceeded to present a method by which the dynamics of any trajectory

on the attractor can be coarse-grained to a set of transitions between the elements of

the aforementioned cover, also known as shadowing, in line with Poincaré’s vision of

approximating any motion of a dynamical system by those of periodic type.
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We then presented an example of one of the potential applications of this new rep-

resentation of the dynamics in the form of a discrete (in time and state) Markov chain

model, using this model to calculate the stationary distribution in the context of the

ergodic Markov chain given by the Ikeda map which allowed us to rank the cover ele-

ments in order of importance in the long-term dynamics of the system. Following this,

we calculated the mean first passage time between each pair of states of this Markov

chain which gave us insight into the short-term dynamics of the system, providing ex-

amples of pairs of states that have irregularly high or low mean first passage times,

opening a new avenue for exploration.

Future work will involve finding methods by which any redundancy in the cover can

be reduced, experimenting with the effects that different shadowing algorithms have,

exploring further the applications of the Markov chain model of the dynamics, and

exploration into other alternative applications of our method.

Before doing so, however, it would be prudent to first test the goodness of the approx-

imation of the attractor given by the Markov chain model, for example by comparing

the mean-first passage times and probabilities of being on each cover element at any

given time given by the stationary distribution to real data obtained from trajectory

segments in the attractor.

In a similar vain to Diego[37], it’s worth mentioning that the Markov model presented

here isn’t intended to be a perfect representation of the dynamics, however it may be

possible to use it in order to uncover more general information about the system.

This sentiment is further echoed by the word of warning mentioned in [38]:

“. . . As a result, unlike the near-equilibrium processes of traditional thermo-

dynamics, complex systems do not forget their initial conditions: they carry

their history on their backs (Prigogine, Spring 1995, U. S. Naval Academy).

Their origin constrains their trajectory.”
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2 Cover of high-dimensional chaotic flows with sym-

metries by embedded coherent structures

In this section we extend the methods described in the previous section to the case

of chaotic attractors of flows. We present a method by which the dynamics of high-

dimensional systems can be reduced to a cover constructed in a lower-dimensional

projection with as little loss of information as possible; we also present an example of

a system with symmetries, and show how it’s possible to construct a cover for such a

system.

In the construction of the cover in the previous part of the thesis, the set P contained

only equilibria and unstable periodic orbits. In the case of systems with symmetries, the

set P of interesting features of the system may also include such structures as travelling

waves, relative periodic orbits, pre-periodic orbits, etc. Such features will henceforth

be referred to as coherent structures.

2.1 Preliminaries

Throughout this part of the thesis we will almost exclusively focus on the application of

our methods and analyses in the context of the Kuramoto-Sivashinsky equation[39, 40],

with parameters chosen such that chaotic behaviour is exhibited. We make every ef-

fort, however, to ensure that the methods presented make no use of specific traits of the

Kuramoto-Sivashinsky equation, so that they can be applied in the contexts of other

systems.

Due to the presence of discrete & continuous symmetries in the Kuramoto-Sivashinsky

Equation, we will calculate distance in a symmetry-reduced projection where all points

related by the group symmetries are mapped to the same point; as such, coherent struc-

tures such as travelling waves and relative periodic orbits map to simple equilibria and

periodic orbits respectively. To construct such a space, we will project the system dy-

namics from the full state space onto a subspace which is invariant under the symmetry
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transformations of the system. Such a projection can reduce the dimensionality of the

system considerably, allowing for much faster computations.

In order to calculate the distance between segments of orbits we will make extensive

use of the Hausdorff Distance between sets, which was described in full detail in section

1.1, endowed with the Euclidean norm. Roughly speaking, this distance will describe

the distance between two segments as the distance between the two furthest points on

the segments - and so if this distance is small, then that means that the two segments

stay close for all time.

The use of this particular distance measure is especially important to our methods

as we will later deal with low-dimensional projections of the system with phase infor-

mation removed through the symmetry reductions described above. By calculating the

distance between segments of orbits rather than points, we can in a sense get back some

of the information that is lost through the symmetry reduction and dimension reduction.

The reason for this is roughly as follows: as lower and lower dimensional projections of

the space are taken, it becomes harder to tell whether or not two points are close to

one another in the full phase space. By instead taking the distance between segments

of orbits rather than individual points, due to the sensitivity to initial conditions of

chaotic dynamics, two segments that stay close for a long time in the projection must

also be close in the full phase space.

2.2 Constructing the Cover

The cover of potentially high-dimensional flows can be constructed in precisely the same

manner as was shown for 2-dimensional maps in section 1.2, the only differences being

that we will now deal with a system with continuous time, and that our set P may now

contain not only unstable periodic orbits, but also other types of coherent structures.

The selection process proceeds as follows: Let P = {pi}NPi=1 be a set of coherent struc-
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tures listed in the order of increasing complexity (e.g., equilibria followed by periodic

orbits & relative periodic orbits of increasing period). Starting with the empty set as

the initial basis of the cover W = ∅, iteratively proceed through the structures in order

of complexity, adding into the cover those structures whose distance to W is above some

threshold, ε.

For i = 1, 2, . . . , NP :

W←

W ∪ {pi} if d(pi,W) > ε

W if d(pi,W) ≤ ε

(2.1)

where d(pi,W) denotes the directed Hausdorff distance between coherent structure pi

and the set of coherent structures W, given as follows:

d(pi,W) = max
t∈[0,T pi ]

min
wj∈W

τ∈[0,Twj ]

‖pi(t)− wj(τ)‖ (2.2)

where T pi and Twj are the periods of coherent structures pi and wj respectively, pi is a

given coherent structure in set P, wj is a coherent structure in the cover W, pi(t) corre-

sponds to t time of the coherent structure, and ‖·‖ is the chosen norm in the dynamical

system phase space with a given metric.

In the case of coherent structures with no period (e.g. equilibrium, travelling wave

solutions), the distance of Eq. 2.2 is reduced to:

d(pi,W) = min
wj∈W

τ∈[0,Twj ]

‖pi − wj(τ)‖ (2.3)

In the following sections, we will present the construction and analysis of such a cover

in the context of the chaotic attractor of the Kuramoto-Sivashinsky equation. As such,

we will first proceed by introducing this equation and its properties.

2.3 Kuramoto-Sivashinsky Equation

The Kuramoto-Sivashinsky equation[39, 40] provides a description of the flutter of a

flame front on a one-dimensional spatially periodic domain, and is one of the simplest
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nonlinear PDEs that exhibit spatiotemporally chaotic behaviour[14]. The KS equation

is defined as follows:

ut = −uxxxx −
1

2

(
u2
)
x
, x ∈

[
−L

2
, L
2

]
, t ≥ 0 (2.4)

with the spatially periodic boundary condition: u(x+ L, t) = u(x, t).

Throughout this thesis we follow in the footsteps of Cvitanović et al.[14] who chose to

use system size L = 22 due to the structurally stable chaotic attractor observed for

this system size. Due to the aforementioned spatial periodicity, it’s convenient to work

instead with the Fourier representation of the solutions of (2.4), given by:

u(x, t) =
+∞∑

k=−∞

ak(t)e
2πkx
L (2.5)

where ak ∈ C and a−k = a∗k (since u(x, t) must be real). This Fourier representation

allows us to rewrite the solution of u(x, t) defined by the PDE (2.4) in terms of the

Fourier coefficients ak in (2.5), as the infinite set of ODEs:

ȧk = (q2k − q4k)ak − i
qk
2

+∞∑
m=−∞

amak−m, qk =
2πk

L
(2.6)

where a0(t) = 0 for all t due to Galilean invariance[14].

This representation allows for solutions to the truncated version of the Fourier se-

ries (2.5) to be found. For the system size under consideration (L = 22), Cvitanović

et al.[14] posited that due to the damping caused by the uxxxx term of Eq. 2.4 (which

in turn causes ak to drop off fast for large k) taking truncations to the Fourier series

of between 16 and 128 complex modes gives accurate solutions. Due to the fact that

a0 = 0, this can be reduced further to 15 modes; as such, in our below applications we

will deal exclusively with the Fourier series of Eq. 2.6 truncated at the 15th mode.

2.3.1 Symmetries

The Kuramoto-Sivashinsky equation (2.4) has both translational and reflective symme-

tries. Due to the translational symmetry, if u(x, t) is a solution, then so is u(x + `, t)
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for ` ∈
[
−L

2
, L
2

]
; similarly, the reflectional (anti-)symmetry relates u(x, t) to −u(−x, t).

In terms of the effect of these symmetries on the Fourier coefficients, the translational

symmetry relates the point represented by the complex Fourier coefficients a to the

points g(`)a for ` ∈
[
−L

2
, L
2

]
where g(`) = diag(eiqk`), corresponding to a rotation of

each mode in the complex plane by the angle k`
L

; the reflective symmetry simply relates

a to −a∗[14].

These symmetries allow for a more diverse range of coherent structures; in addition

to the traditional coherent structures, equilibria and periodic orbits, we also have their

symmetry-group related counterparts relative equilibria, relative periodic orbits, and

pre-periodic orbits.

Relative equilibria are solutions where u(x, t) is translationally equivalent to u(x, τ)

for all τ , and can also be thought of as travelling waves; due to the reflective symmetry,

these relative equilibria come in pairs (travelling in opposite directions). Relative peri-

odic orbits are solutions where there exists some τ (the orbit’s period) such that u(x, 0)

is translationally equivalent to u(x + `, τ), for non-zero `; it’s also possible to have

relative periodic orbits with translation and reflection, i.e. there exists some τ such

that u(x, 0) is equivalent to −u(−x− `, τ), this type of orbit is known as a pre-periodic

orbit ; this name comes from the fact that by repeating this orbit twice we get a relative

periodic orbit without reflection, and so it is pre-periodic to a relative periodic orbit of

period 2τ .

For a more thorough description of these symmetries and coherent structures, see Cvi-

tanović et al.[14].

2.4 Application to the KSE

In order to put this method into practice, one must first have a set of coherent structures

for their chosen system. In our case, we used the set of approximately 60,000 coherent

structures of the Kuramoto-Sivashinsky Equation found by Cvitanović et al.[14]; this
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set contains 3 equilibrium solutions (not including the trivial solution, u(x, t) = 0), 2

travelling wave solutions, and relative periodic orbits and pre-periodic orbits ranging

from period 10 to 200, all of which are stored up to the 15th complex Fourier mode

with step size h = 0.25.

As we are dealing with a representation of a continuous-time flow on a computer, we

must instead work with a discrete-time approximation of the original flow. In our case,

we will be working with coherent structures stored discretely in such a way that after

the initial point there’s a fixed interval of h = 0.25 between each successive time step.

As such, in calculations such as the directed Hausdorff distance of Eq. 2.2 which rely

on the time parameter t (and τ) these parameters don’t in fact lie in the continuous

space, but are finitely represented as: t0 = 0, t1 = 0 + h, · · · .

In practice, the time step h = 0.25 is rather large, and as the distance d(·, ·) of Eq. 2.2

relies explicitly on this time step, the accuracy of the results is therefore affected. As

such, for the sake of accuracy we will in all cases throughout this section apply piecewise

cubic Hermite interpolation between each set of h = 0.25 spaced points, adding an ad-

ditional 5 time steps between each set of points (giving a h of effectively 0.25
5+1

= 0.0417);

this will be done through the use of MATLAB’s built-in pchip function.

Typically, trajectories of the KSE are viewed in terms of x, t, and u(x, t); an example

of a typical trajectory within the attractor can be seen in Fig. 12 where x ∈
[
−L

2
, L
2

]
,

t ∈ [0, 200], and where the colours represent the value of u(x, t) (with blue to red indi-

cating low to high values of u). As we’ll be dealing with a symmetry-reduced truncated

Fourier representation of the KSE, it will be convenient to instead view trajectories as

in Fig. 13 - that is, in terms of the magnitude of the two most expanding Fourier modes

(which will be discussed later).
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Figure 12: Trajectory segment of duration 200 started from a random point in the attractor,

depicted in the full state space. The figures from left to right represent times in the respective

intervals [0, 50], [50, 100], [100, 150], and [150, 200].

Figure 13: Trajectory segment of duration 200 started from a random point in the attractor

(the same point as in Fig. 12), projected in the space spanned by the magnitude of the two

leading Fourier modes.
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A visualisation of the first 10 coherent structures can be seen in Fig. 14, where the

three equilibria are represented by a black cross, the two travelling wave solutions are

represented by red asterisks, and the five shortest relative periodic orbits (with periods

ranging from approximately 10 to 33) are represented by the different colour lines.

Figure 14: Visualisation of the first 10 coherent structures in 2 dimensions.

2.4.1 Model Reduction

Calculating distances in such high-dimensional systems can quickly become a compu-

tationally unwieldy task. As such we will focus a large part of our analysis on how far

we can reduce the dimensionality of the system with as little loss of information as pos-

sible. In other words, we will explore how well covers constructed in lower dimensional

projections cover the ‘full’ 15-dimensional system.

The first projection that we will take of our system is a projection of the points on the
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attractor to a subspace in which the symmetries of the system are no longer present. In

the context of the KSE, the simplest way that this can be done is by considering only

the magnitude of the complex Fourier modes, |ak|; this projection effectively removes

the phase information of any given point in the trajectory, and so all points related

by the translational and reflective symmetries (which are represented by a complex

plane rotation and conjugation respectively) are therefore represented by a single point

in the projected space. A side-effect of taking such a projection is that two points

with different phases but matching magnitudes will be represented by the same point

in the projected space, however this projection reduces the computational complexity

of calculating distances in the attractor quite significantly. Had we not taken such

a projection, in Eq. 2.2 we would have two additional parameters on the minimisa-

tion: a binary reflection parameter, and a translation parameter that varies between

[−L
2
, L
2
][14]; additionally, all calculations would have to be done in the complex domain,

further doubling the dimensionality of calculations.

The other projection that we will make is a projection of the space from 15-dimensions

to a lower-dimensional subspace. In order to decide which dimensions an n-dimensional

projection should include, we determined the size of the chaotic attractor along each

of the Fourier modes by measuring the size of each mode, mk = maxt |ak(t)|, on a

long ergodic trajectory in the attractor, t ∈ [0, 107]. From Table 2 we can see that

for a 2-dimensional projection we should use k = 2, 3; for a 3-dimensional projection,

k = 2, 3, 4; and for a 4-dimensional projection or above simply take the first n modes.

It’s worth noting that the reason that the mk decay so quickly for larger k is due to

the damping effect of the uxxxx term of the KSE (Eq. 2.4).

To counteract the significant loss of information caused by the two above projections

throughout this section we will exclusively make use of the Hausdorff distance between

segments of orbits. By focusing on the distance between segments of orbits rather than

between individual points, due to the sensitivity to initial conditions of chaotic systems

if two segments stay close for a long time in any projection, then they must indeed be
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k 1 2 3 4 5 6 7 8

mk 0.5714 0.9807 1.2386 0.5786 0.3264 0.2238 0.0763 0.0357

k 9 10 11 12 13 14 15

mk 0.0191 0.0063 0.0027 0.0013 0.0004 0.0002 0.0001

Table 2: Size of the attractor along each Fourier mode.

close in the full phase space. By using the Hausdorff distance we can get a faithful

covering of the whole phase space with even low-dimensional projections of the system,

as our following analysis will show.

In order to both accommodate and distinguish between different n-dimensional pro-

jections of the attractor in the construction of the cover, we will modify Eq. 2.1 & 2.2

as follows:

For i = 1, 2, . . . , NP :

Wn ←

Wn ∪ {pi} if dn(pi,Wn) > ε

Wn if dn(pi,Wn) ≤ ε

(2.7)

dn(pi,Wn) = max
t∈[0,T pi ]

min
wj∈W

τ∈[0,Twj ]

‖pi(t)− wj(τ)‖n (2.8)

where ‖·‖n is the Euclidean norm in the n-dimensional projection, and Wn corresponds

to the cover constructed in the n-dimensional projection.

Before constructing the cover for the KSE, there is one final parameter to decide upon -

the distance threshold, ε. ε can be thought of as the resolution of the cover, with lower

ε values giving a higher resolution, which results in a more accurate cover containing

more cover elements; while the choice of this parameter is arbitrary, we opted to adopt

a consistent way of choosing ε based upon the ‘size’ of the n-dimensional projection of

the attractor; this approach will allow us to more easily compare the covers obtained

with various attractors. In the n-dimensional projection, we will choose εn to be 1% of

the length of the main diagonal of the hypercuboid spanned by the n largest modes kj,
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n 2 3 4 5 6 7 8

εn 1.5798 1.6825 1.7769 1.8066 1.8204 1.8220 1.8224

n 9 10 11 12 13 14 15

εn 1.8225 1.8225 1.8225 1.8225 1.8225 1.8225 1.8225

Table 3: εn

where kj = 3, 2, 4, 1, 5, 6, . . . , 15 for j = 1, . . . , n. In other words,

εn = 0.01

√√√√ n∑
j=1

m2
kj

(2.9)

The values of εn for n = 2, . . . , 15 can be seen in Table 3 (rounded to 4 d.p.), we exclude

the case where n = 1 as it makes little sense to represent trajectories in anything less

than 2 dimensions. After n = 7 we see very little increase in εn (on the order of 10−4

from 7→8, decreasing to 10−9 from 14→15), whereas the computational requirements

to compute these covers increases significantly with each added dimension, as such we

will focus the following analysis on n = 2, . . . , 7.

Having applied the algorithm described in Eq. 2.7 & 2.8 for n = 2, . . . , 7, we obtain

six different covers, W2,...,7, containing 91, 513, 747, 809, 825, and 830 coherent struc-

tures respectively; this means that by coarse graining the attractor with a resolution

parameter of 1% we can approximate every coherent structure in our set using a subset

containing only approximately 0.15-1.38% of the original coherent structures (depend-

ing on n). An example of how coherent structures not in the cover can be approximated

by those in it can be seen in Fig. 15a-15d where the first 4 coherent structures not

included in W2 are shown, along with their counterparts in W2 to whom they lie wholly

within ε2-distance of. This is a notion known as shadowing, which will be fully discussed

later; for now it suffices to say that not all coherent structures can be represented by

a single coherent structure in the cover. In fact, it’s rather peculiar that such pairs

with almost identical trajectories (in the projection) exist, and while outside the scope

of this thesis an investigation into these pairs may reveal interesting results.
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Before discussing this further we must address the issue of the dimensionality of projec-

tion, and try to understand in the case of the KSE how many dimensions are required

to cover the full 15-dimensional system with sufficient accuracy.

(a) p18 (black) & p17 (dashed, blue). (b) p20 (black) & p19 (dashed, red).

(c) p27 (black) & p26 (dashed, green). (d) p30 (black) & p28 (dashed, orange).

Figure 15: The first 4 coherent structures not included in the set W2, represented by solid,

black lines; and the structures in W2 that’re within ε2 distance of them, represented by

dashed, coloured lines.

2.4.2 Dimensionality of Projection

In order to gauge how well the 15-dimensional attractor is covered by the covers W2,...,7,

created using lower-dimensional projections of the attractor, we can check how well each
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subset P \Wn is covered by Wn in the 15-dimensional space. In other words, we want

to know how many structures pi ∈ P \Wn satisfy:

d15(pi,Wn) ≤ ε15

This approach can be seen as finding out how many of these coherent structures spend

100% of their time within ε15 distance of each cover; in order to see more detail about

how these covers perform, we will extend this approach to see how many coherent

structures spend varying fractions, m ≤ 1, of their time within ε15 distance of their

respective covers. More rigorously, we want to know for some m how many coherent

structures pi ∈ P \Wn

∃ p̃i ⊆ pi with T p̃i ≥ mT pi such that d15(p̃i,Wn) ≤ ε15. (2.10)

Intuitively speaking, if for some n a coherent structure pk satisfies the above for m = 0.5,

then pk must spend at least 50% of its period within ε15 distance of Wn.

Figure 16: Percent of structures in P\Wn that satisfy Eq. 2.10 for various m (in legend), for

each n.

The results of applying this process for each n can be seen in Fig. 16 where we cal-

culated what percent of coherent structures in P\Wn satisfy Eq. 2.10 for various m

(represented by different colours, as described in legend). For n = 2, only 0.84% of

coherent structures in P\W2 lie wholly within ε15 distance of W2, slowly increasing to

only 26.36% of structures satisfying m = 0.9. When compared to the case of n = 3,
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n = 2 is found wanting; 78.54% of structures are wholly within ε15 distance of W3,

94.96% satisfy m = 0.99, increasing steadily to 100% for m = 0.9. While this looks

promising, n = 4 offers the last significant improvement, with 99.52% of structures in

P\W4 satisfy the case m = 1, increasing to 100% for m = 0.99. By the time we reach

n = 7 100% of structures satisfy m = 1, however it seems unlikely that this minor

increase in accuracy is worth the extra computational cost of including three additional

dimensions in the projection.

From this, it seems reasonable to assume that by taking up to n = 4 we will be

able to construct a cover that faithfully covers the full 15-dimensional space. As such,

the next section will focus on the ways we can make use of such covers, with examples

given in the context of W4.

2.5 Shadowing

We saw in Fig. 15a-15d that it’s possible to approximate structures in P by those in Wn

with εn resolution. By construction, it’s possible to represent any coherent structure

in P with εn resolution by a subset of structures from Wn; in other words,

∀pi ∈ P ∃ W̃ ⊆W : dn(pi, W̃) ≤ εn

In the case of the RPOs in Figs. 15a-15d these subsets consisted of only one structure

each from W2. In a typical case, however, W̃ will contain several structures; an example

of which can be seen in Fig. 17a where 4 coherent structures from W4 are required to

fully approximate the whole trajectory of p106 with ε4 resolution.

Such an approximation isn’t limited to structures within P, one can approximate any

ergodic trajectory in the attractor in much the same way; however, while structures

in P are by construction within ε distance of the cover Wn, for general trajectories in

the attractor this may not be true. Here we will use the assumption made in section 1

that all trajectories should lie within ε distance of P - meaning that they lie within 2ε

distance of Wn.
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(a) Structures in W4 (dashed, coloured) required to approximate p106 (black, solid).

(b) Encoding of p106 by coherent structures in W4.

Figure 17: Two visualisations of the approximation of p106 by coherent structures in W4.
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An example of the shadowing of a typical trajectory in the attractor can be seen in Fig.

18a, where a segment of the trajectory of length 60 requires a subset of only 2 coherent

structures from W4 to be fully covered with 2ε4 resolution. As such, when performing

shadowing on trajectories not in P we will use instead the resolution parameter 2ε.

The next logical progression from this kind of approach is to label specifically which

points on any given trajectory are approximated by which coherent structures in the

cover; this notion, known as shadowing, allows us to reduce the dynamics of any trajec-

tory on the attractor to a series of transitions between cover elements (a notion closely

related to symbolic dynamics, the focus of the second part of this thesis). Examples

of such shadowing can be seen in Fig. 17b & 18b, where the segments of the black

trajectories from Fig. 17a & 18a are encoded by the appropriate elements of W4 (the

algorithm for the construction of such encoding will be detailed in the coming para-

graphs, for now I present these examples purely for motivational purposes).

As any given point on a trajectory may have multiple elements of Wn within 2εn

distance (due to some redundancies in the cover, which will be fully discussed in the

following sections), different shadowing algorithms may give different results. Possible

shadowing algorithms include:

1. For each point on the trajectory, choose the closest coherent structure in W to

encode that point.

2. Starting from a given point on a trajectory, choose the coherent structure in W

that stays within ε-distance of this point for the longest to encode the segment;

repeat this process with the point immediately after this segment taken as the

new starting point until the whole trajectory is encoded.

3. Given a trajectory, find the configuration of encodings that results in the least

number of segments/transitions (all of which must be within 2ε-distance of W).

Following our earlier mantra that in lower-dimensional projections segments that stay
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(a) Structures in W4 (dashed, coloured) required to approximate the trajectory (black, solid).

(b) Encoding of trajectory by coherent structures in W4.

Figure 18: Two visualisations of the approximation of a trajectory of duration 60 (started

from a random point in the attractor) by coherent structures in W4.
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close for longer are more likely to be close in the full space, as well as the intuition that

when shadowing trajectories it’s more desirable to have fewer, longer segments, algo-

rithms 2 & 3 seem to be the better choices. By comparison to algorithm 2, algorithm 1

often results in many short shadowing segments (or many transitions), which for lower

dimensional projections results in poor shadowing in the full space. The results of al-

gorithm 1 are also more sensitive to the specific choice of metric, which goes against

the fundamental idea of our approach that trajectories that are close in the full state

space will remain close for a relatively long time in any reasonable metric.

A side-by-side visualisation of the differences between algorithms 1 & 2 can be seen

in Fig. 19a & 19b respectively, where we see that the segment-based shadowing (algo-

rithm 2) encodes the whole trajectory of p113 using only 2 segments, whereas for the

same trajectory the point-based shadowing (algorithm 1) encodes the trajectory with

23 short segments of 10 different elements of W4.

(a) Point-Based Shadowing. (b) Segment-Based Shadowing

Figure 19: Encoding of p113 by coherent structures in W4 as a result of shadowing algorithm

1 (left) and 2 (right).

To give a rough idea of the difference in sensitivity of each method to the choice of

metric, we can look at the number of segments required in order to shadow p113 for

both methods. In the case of the point-based shadowing algorithm, for n = 2, . . . , 7 the
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number of required segments is: 593, 60, 25, 18, 18, 18.

By comparison, for the segment-based shadowing algorithm the number of segments

required is: 3, 3, 2, 2, 2, 2. Additionally, in the case of this algorithm, the coherent

structures used remain relatively constant for each n.

By comparison to both of these, algorithm 3 would be the ideal solution that combines

the best parts of each of the two previous algorithms: the independence of solution to

starting point of algorithm 1, and the longer segments and more intuitive results of

algorithm 2. However, due to the extra computational effort required to compute such

a solution (especially for longer trajectories) we will leave this as an avenue for further

research, and for now focus on algorithm 2. Since the second algorithm starts from a

given point (rather than optimising over the whole set), and takes the cover element

that stays close for the longest, we will refer to this algorithm as both näıve and greedy.

2.5.1 Shadowing Algorithm

The algorithm for the greedy näıve segment-based shadowing of a trajectory by coherent

structures in Wn with step size h is as follows:

1. Starting from a(0), find Wn ⊇ W̃0 = {w ∈Wn | dn(a(0), w) ≤ 2εn}.

2. Repeat this, finding W̃i−1 ⊇ W̃i =
{
w ∈ W̃i−1 | dn(a(0 + ih), w) ≤ 2εn

}
.

3. When k is found such that W̃k = ∅, label the segment {a(t), t ∈ [0, 0 + (k − 1)h]}

by the index j of wj ∈ W̃k−1. In the case that W̃k−1 contains multiple such w,

choose the least complex coherent structure (i.e. the lowest period).

4. Repeat this process from step 1, starting from a(kh), until the whole trajectory

is labelled.

Intuitively speaking, starting from a given point, this algorithm finds the coherent struc-

ture in Wn that stays within 2εn distance of this point for the longest, encoding the

segment by that structure’s index. This process is then repeated until the whole trajec-

tory is covered. The result is an itinerary of visits that the trajectory makes to structures
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within Wn. An example of this is shown in Fig. 20a where a trajectory with t ∈ [0, 22.21]

starting from a random point in the attractor is encoded by 5 different structures in W4,

giving the trajectory: w8(3.125)→ w237(4.67)→ w242(7.92)→ w70(3.54)→ w319(2.96),

where the number in brackets corresponds to the time spent at that coherent structure

before moving to the next - also known as residence time.

Fig. 20b gives a visualisation of the inner workings of the algorithm; starting from

w8, the trajectory stays within 2ε4 distance of the w8 until t = 3.125, at which point

d4(a(3.125), w8) > 2ε4, and so this shadowing segment is finalised (and can be seen in

Fig. 20a as the solid blue line segment). We then move onto w237 which stays within

2ε4 distance until t = 7.78, and so on.
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(a) Encoding of a trajectory by W4.

(b) Distance from a(t) to the chosen structure in W4. These structures are: w8, w237, w242,

w70, and w319 respectively.

Figure 20: Encoding of a trajectory of duration 22.21 by W4, along with the distances of each

point of the trajectory to the encoded coherent structure in W4. The different coloured and

styled segments from (b) correspond to their similarly styled counterparts in (a).
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2.6 Markov Chain Model

By using this shadowing algorithm we can reduce any trajectory in the attractor to

a relatively small set of transitions and accompanying residence times. As in the first

part of the thesis, using these transitions and residence times it’s possible to model the

data by a Markov chain, the only difference being that now that we’re dealing with

continuous in time flows we’ll instead use a finite-state continuous-time Markov Chain

(CTMC).

2.6.1 Construction

Construction of a finite-state continuous-time Markov chain is slightly more involved

than its discrete-time counterpart. In order to construct the transition probability

matrix, one must first construct the transition rate matrix (also known as the generator)

of the Markov chain. The transition rate matrix Q takes the form:

Q =


−q1 q12 q13 . . . q1n

q21 −q2 q23 . . . q2n
...

...
...

. . .
...

qn1 qn2 qn3 . . . −qn

 (2.11)

where n is the number of states.

In the 2007 review paper Generator estimation of Markov jump processes by Metzner

et al.[41] two key methods for estimation of the generator of continuous-time Markov

chains using transition data are reviewed.

The first, known as the Quadratic optimisation method, was first introduced by Crom-

melin & Vanden-Eijnden[42]. This method involves calculating an estimate for the

generator through the solution a quadratic minimisation problem using the fact that

many properties of a CTMC depend strongly on the eigenvalues and eigenvectors of its

generator[41]. One of the drawbacks of this method, however, is that if the number of

states d of the system is too high to store the tensor H ∈ Rd×d×d×d then the problem
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must first be reformulated for use with (for example) MATLAB’s quadprog as shown

in [43].

Alternatively, there is the Expectation maximisation method introduced by Holmes

& Rubin[44] which involves using data to find an estimate of the generator such that

the given continuous log-likelihood function is maximised. While Holmes & Rubin first

introduced this method as a tool for estimating a generator for continuous-time obser-

vations, Bladt & Sørensen[45] later extended the method to allow for the construction

of an approximate generator using data observed at discrete time intervals (as we have).

Metzner et al.’s[41] analysis concluded that in most cases, the difference between the

Quadratic programming and Expectation maximisation methods is negligible, with a

slight edge given to the Quadratic programming method. Were we to use the Quadratic

programming method however, due to our number of states being far too high to store

the tensor H (which would require storing a 747 × 747 × 747 × 747 variable, requir-

ing approximately 2.5TB of memory), we would have to reformulate the problem as

described in [43] to not require H to be stored explicitly. As such, for this example

we decided to use the Expectation maximisation method for the construction of the

approximate generator, due to the simplicity of construction; note, however, that for

future research purposes in this direction, outside of this example, we will endeavour to

more accurately analyse the differences between these methods (and others) and choose

which to use accordingly.

Using this method, construction of the transition rate matrix Q uses the maximum

likelihood estimates of qij defined as q̂ij =
Nij
Ri

, where Nij is the number of transitions

from state i to j, and Ri is the total time spent in state i[45]. The diagonal elements

qi are then defined as the sum of all non-diagonal elements of each row, i.e.
∑

i 6=j qij.

Note that due to the negative symbol on the diagonal of Q of Eq. 2.11, each row sums

to 0.
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Having calculated Q, the transition probability matrix A can be computed using the

matrix exponential:

At = eQt (2.12)

where At
ij corresponds to the probability of transitioning from state i to j after t

time[45]. Note that when we refer to simply A below, we are referring to the transition

probability matrix after unit time A1.

In order to construct the transition probability matrix A for our system, we first

performed shadowing on a trajectory of duration approximately 1010 using W4. By

applying the above procedure, the result is the 747× 747 matrix A.

2.6.2 Properties

As mentioned in Section 1.5, in order for a jump process to be considered Markovian,

the Markov property must be fulfilled. This property stipulates that the probability

of jumping from state i to state j depends only upon the current state, and not on

any previous states; as such, this property is also known as memorylessness. As a

consequence of this property, the frequency of waiting times of the system must fol-

low a distribution that possesses the memoryless property. In the case of continuous

probability distributions, the only distribution that has this property is the exponential

distribution[30].

In order to check whether our data can suitably be represented by a Markov chain

model, we must therefore first check that the transition-based representation of the dy-

namics that we’ve constructed through the use of the cover and shadowing algorithms

result in waiting times whose frequency distribution is at least almost of exponential

type[28, 29].

Fig. 21 shows the distribution of waiting times, with a log scale on the horizontal

axis. As in the case of the attractor of the Ikeda map in the previous part of the thesis,

due in part to the the greedy nature of the shadowing algorithm (preferring longer
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waiting times), but mainly due to the fact that the KSE isn’t a stochastic system but

a deterministic chaotic system, the exponential distribution of waiting times doesn’t

become apparent until longer waiting times. As explained previously, this is due to the

combination of rounding error and sensitivity to initial conditions causing the system

to effectively lose memory after a certain time. As these short segments constitute a

relatively small portion of the total time (around 13%), we can proceed relatively safely

under the assumption that our data can suitably be represented by a Markov model on

longer time scales.

Figure 21: Log-Scaled Frequency of Waiting Times.

In order to calculate measures such as the stationary distribution of the Markov chain,

we must first ensure that the chain is ergodic - meaning that it’s possible to reach any

state from any other state within a finite time[34]. By analysing the waiting times,

it became clear that cover elements 1-8 were not used at all during the shadowing of

the long trajectory. In the case of the equilibrium (states 1,2 & 3) and travelling wave

solutions (states 4 & 5), this is due to the fact that they lie on the outskirts of the

attractor - and so they are very seldom visited, and only for very short times. In the

case of the relative periodic orbits constituting states 6, 7, & 8, all points on these

orbits are completely covered by points from other, longer orbits; as such, the shadow-
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ing algorithm chooses the longer orbits in place of these shorter ones, as the trajectory

follows these longer orbits for more time.

By removing states 1-8 from the Markov model we reduce A to a 739 × 739 matrix,

representing an ergodic Markov chain.

One example of the potential applications of the Markov chain model is ranking cover

elements in order of importance using the stationary distribution of the Markov chain.

2.6.3 Stationary Distribution

In order to calculate the stationary distribution of the Markov chain, we will follow

precisely the same procedure as in section 1.5.3; that is, by finding the row vector π

satisfying πA = π. We do this by finding the left eigenvector of A corresponding to

eigenvalue 1 using MATLAB’s eig command (and then rescaling the vector to sum to

1).

The stationary distribution π gives the probability of being in each state at any given

time, and so by analysing these probabilities we can determine which states are most

and least important to the dynamics. Fig. 22 shows the probabilities πi for each cover

element i as deviations from the mean µπ, with one standard deviation above and be-

low the mean indicated by the red dotted lines. From this figure we get the sense that

under the current shadowing regime the shorter orbits play a generally less important

role in the dynamics. The most important cover element is w675, which has the highest

π value of around 0.86%; in contrast, the least important element is w42, with a π value

of less than 0.00022%.
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Figure 22: πi of each cover element, with the middle red line corresponding to the mean µπ

and the outer red lines corresponding to one standard deviation above and below the mean

respectively (µπ ± σ(π)).

2.7 Minimising the Cover

In section 2.2 we proposed a method by which one can construct a cover of a chaotic

attractor using coherent structures. In this section we will discuss and give examples

of redundancies present in such a cover, and provide a method by which some of these

redundancies can be reduced.

2.7.1 Redundancies

Due to the iterative nature of the construction of the cover proposed in section 2.2,

it’s possible that a coherent structure that’s included into the set early (say, wi) could

be completely covered by one added later (wj, j > i). If wj completely covers wi, and

explores some additional part of the attractor, then wi would (by construction) not

cover wj; in other words, it’s possible that:

∃ i < j (i, j ∈ [1, |W|]) : d(wi, wj) ≤ ε & d(wj, wi) > ε (2.13)

in which case, the covering provided by W\wi is the same as that provided by W
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as ε → 0. A more tangible example of this can be seen in Fig. 23 where (for W4)

w8 is completely covered by w53, which also explores additional parts of the chaotic

attractor. Since d4(w8, w53) ≤ ε4, and it’s clearly observable that d4(w53, w8) > ε4, w8

can be considered redundant in that almost no covering would be lost by removing it

from the set.

Figure 23: Example of redundancy in W4: w8 (red) is completely within ε4 distance of w53

(blue).

2.7.2 Second Pass

With this in mind we propose an additional stage to the construction of the cover of

section 2.2, a second pass, by which such redundancies can be removed from the set.

Starting with W as previously constructed, for i = 1, 2, . . . , |W|:

W←

W \ wi if d(wi,W \ wi) ≤ ε

W if d(wi,W \ wi) > ε

(2.14)

Intuitively, this second pass goes through all coherent structures in W and removes those

that have no effect on the covering of the attractor, in a sense minimising the cover.
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One drawback of this method is that by removing orbits satisfying d(wi,W \ wi) ≤ ε,

it’s possible that we may lose some of the covering provided by the ε-neighbourhood

of wi. If we denote the original cover W0, then the resulting cover after the second

pass W satisfies: Bε(W) ⊇ W0. This unfortunately means that if we wish to provide

the same covering as P we need to take B2ε(W) ⊇ Bε(W0) ⊇ P; further, if we wish to

provide the same covering of the attractor as Bε(P) (as previously), then we must take

a 3ε ball around W: B3ε(W) ⊇ B2ε(W0) ⊇ Bε(P). As such, the resolution of the cover

is further reduced by applying the second pass.

The result of applying this second pass to our previously constructed W2,...,7 using

the same ε2,...,7 as previously used (and as can be seen in Table 3) are new covers W2,...,7

containing 29, 201, 306, 333, 339, and 342 coherent structures respectively, a significant

reduction in size for each cover. In order to test if this second pass had any effect on

the covering of P\Wn, we repeated the same analysis as earlier (see Eq. 2.10), the

results of which can be seen in Fig. 24. For this minimal cover, W4 still seems like

the best choice of cover, however there has been a noticeable loss of covering for each

projection. In the case of n = 4 far fewer (approx. 75%) coherent structures satisfy

m = 1.0; all structures in P\W4 do however satisfy the case where m = 0.98, meaning

that at least 98% of each coherent structure is covered by W4 in the full space - which

is still an acceptable result for the reduction in redundancy we achieve (over 50% less

structures in W4). Using this new minimal cover we can perform precisely the same

kind of shadowing shown in section 2.5 with precisely the same algorithm, as such I

will forego any explanations or examples. The only difference between shadowing of

the old cover and the new minimal cover is that the minimal cover has fewer elements -

this fact will be useful when attempting to create a Markov-type representation of the

attractor as the transition matrix will be significantly smaller and more meaningful due

to the reduction of redundancy.

Unfortunately, this method has an additional drawback: the resulting cover is a little

counter-intuitive. Short periodic orbits are often considered to form the fundamental
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Figure 24: Percent of structures in P\Wn that satisfy Eq. 2.10 for various m (in legend), for

each n.

structure of the ‘skeleton of chaos’, with longer periodic orbits giving small refinements

to this structure[3]; as such, we would ideally like to represent trajectories in the at-

tractor by shorter coherent structures when possible. This method unfortunately puts

more emphasis on longer structures (that contain the shorter structures within them).

In the following section we propose an alternative method of constructing a cover from

scratch that removes all redundancy without any of the above outlined issues (loss in

accuracy, emphasis on longer structures).

2.8 Segment-Based Cover

In the previously created set W each element of the cover was a coherent structure from

the set P. While minimal in the sense that the same covering of the attractor as P is

given by a much smaller set of coherent structures, there may be sections of coherent

structures in W that overlap with one another, causing redundancy in the set. An

example of this can be seen in Fig. 25 where p137, p138 ∈W4 spend a significant portion

of their trajectories within very close proximity of one another (most obviously seen in

the top-right of the trajectories).

In order to reduce this redundancy, we will modify algorithm 2.1 to only include into
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Figure 25: Trajectory of p137, p138 ∈W4.

the cover the segments of the coherent structure that lie outside of ε distance, rather

than including the whole coherent structure. This method unfortunately opens up the

possibility of our new cover being composed of disjoint singletons from various coherent

structures which is undesirable as we’re trying to find qualitative characteristics of the

system in terms of finding patterns or behaviours that may be dynamically important;

as such, we’ll add the constraint that in order for a segment to be included in the cover

W it must spend at least duration τ outside ε distance of W. Due to the dynamical

importance of equilibria and travelling waves, we’ll automatically include them into the

set, despite the aforementioned constraint.

In order to formulate the new segment-based cover construction algorithm with more

rigour, we must first define a segment of a coherent structure of at least length τ . We

will define φij, the jth segment of coherent structure pi, as follows:

φij =
{
ai(t) ∈ {pi} , t ∈ [ti,j0 , t

i,j
1 ] : ti,j1 − t

i,j
0 ≥ τ

}
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Within any structure many (let us say Nφ) such segments exist, with this number de-

pending on the time step h of the discretisation of the continuous-time dynamics, the

period of the structure in question, and the choice of τ ; however, we’re only interested

in choosing the segments that stay outside ε distance of W in such a way that the points

immediately preceding and following the segment are within ε distance of W - in other

words, we only want to choose the (connected) portion of the coherent structure that’s

not covered by W.

Starting with W =
⋃Ne
i=1 pi, where Ne is the number of equilibrium & travelling wave

solutions, the algorithm is as follows:

For i = Ne + 1, . . . , NP , j = 1, . . . , Nφ:

W←


W ∪ {φji} if


d(φji ,W) > ε

d(ai(t
i,j
0 − h),W ) ≤ ε

d(ai(t
i,j
1 + h),W ) ≤ ε

W

(2.15)

For our initial tests of the new algorithm, we used the same 4-dimensional projection as

in the previous sections, using the same ε4, and we’ll arbitrarily choose τ = 5 (roughly

half of the duration of the shortest relative periodic orbit). Using these parameters we

obtained a cover containing 646 segments from 533 different coherent structures. The

total time of the elements of the new segment-based cover is approximately 4,623.5,

less than 10% of the 49,177 time-span of the coherent structure-based cover created in

the previous sections.

The first example of a coherent structure from P that is only partially included into W

using the new algorithm is p8; in Fig. 26 the red segment of p8 is within ε distance of

W (in black), and so only the cyan segment is included into the cover.
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Figure 26: Comparison of p8 to p1,...,7, all of which are included in W. Black crosses represent

equilibria/travelling waves, black curves represent segments of orbits included in W, the red

segment corresponds to the segment of p8 within ε distance of W, and the cyan segment

corresponds to the segment of p8 outside ε distance of W.

The first coherent structure to not be included in the cover is p18, a relative periodic

orbit of period 36.2058. As seen in Fig. 27, all but a few small sections of duration < τ

are within ε distance of p12, p15 ∈W, and so no segments from this orbit are included

in W.
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Figure 27: Comparison of p18 to p12, p15 ∈W.

Creating a cover in such a way will undoubtedly reduce the amount of points needed to

cover the attractor, at the cost of losing the simplicity and intuitiveness of representing

parts of the attractor simply by whole coherent structures.

One of the key issues with creating such a cover is the selection of parameter τ -

higher values of which lead to more loss of covering of the attractor. A preliminary

analysis showed that for a long trajectory, the amount of the trajectory within 2ε4

distance of the covers using τ = 0, 1, 2, 3, 4, 5 was 100%, 100%, 100%, 99.99%, 99.95%,

and 99.89% respectively - all still within reasonably acceptable ranges. It however re-

mains to be seen how the covering of this low-dimensional projection will work in the

15-dimensional space.

In order to capture the benefit of higher τ values (the creation of a cover formed by long

segments), and of lower τ values (covering of more of the attractor), an algorithm that

starts with high τ which then repeats with increasingly lower τ values upon completion

could give desirable results. This algorithm would at first try to cover the attractor
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with as long segments as possible, and then slowly fill in the attractor with segments of

decreasing duration where necessary. This method would provide a nice middle ground

between the original method and the segment-based covering in terms of intuitiveness

(prioritising long segments over shorter), covering (would cover the whole attractor as

in the original method), and redundancy (no redundancy, as with the segment-based

covering).

For now, this segment-based cover is provided as a concept to motivate further de-

velopment of the covering algorithm. The analysis and further development of this

method will be left to future research.

2.9 Summary & Future Work

In this part of the thesis we extended the previously presented method for covering

chaotic attractors of maps to the case of high-dimensional continuous systems with

symmetries.

We presented a method by which both the symmetries and the dimension of the system

can be reduced in the construction of the cover, using the Hausdorff distance between

trajectories in order to reduce the adverse effects of the dimension and symmetry re-

ductions.

Using the shadowing algorithm introduced in the previous part of the thesis, we shad-

owed a long trajectory in a Kuramoto-Sivashinsky chaotic attractor using the cover

created in the 4-dimensional projection, and used this data to construct a Markov

model of the dynamics. As motivation, we gave an example of how the Markov model

can be used (the stationary distribution).

Finally, we presented two methods by which it’s possible to further minimise the cover,

reducing redundancies.
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Future work will involve improving the selection of lower-dimensional projections of

the space. For example, by using dimensionality reduction techniques such as principal

component analysis or linear discriminant analysis, rather than the current method of

choosing the leading Fourier modes. Other further steps could include exploring differ-

ent shadowing algorithms and their effects, refining and analysing the segment-based

covering algorithm, and further exploring the properties and potential applications of

the Markov chain model of the dynamics. Additionally, we hope to find alternative

ways to reduce the redundancies in the cover (with fewer drawbacks the second pass

algorithm).
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3 Construction of approximate generating partitions

of chaotic systems by embedded periodic orbits.

Symbolic dynamics is a tool developed for the purpose of analysing dynamical systems

through the discretisation of the state space into partitions through which it is possible

to identify trajectories in the system not by a set of points, but instead by a sequence

of transitions between these partitions (each of which is given a unique label, known as

a symbol). If a partition is constructed such that each unique trajectory is associated

with a unique symbol sequence, then such a partition is known as a generating parti-

tion[46].

To give an example of how symbolic dynamics and generating partitions can look,

Fig. 28 shows the symbolic dynamics given by a generating partition of the Hénon map

found by Grassberger et al.[47] in their 1985 paper, and which is also corroborated by

our method (which is to be discussed later). Here, the generating partition is given by

the boundary between the red and cyan regions which correspond to symbols 0 and

1 respectively, with the black points being the points on the chaotic attractor of the

Hénon map for the parameters a = 1.4 & b = 0.3 (which will be introduced in more

detail later). In white are the four points of a period 4 orbit on the attractor, going

in order from the point labelled 1 this trajectory would be given the binary symbol

sequence 0100 - a much simpler representation than the 8 real numbers that would

otherwise be required to represent the trajectory. Due to the periodicity of this partic-

ular orbit, the sequence 0100 can be repeated infinitely in both directions to give the

representation of the whole orbit: . . .01000100 . . ..

To be more precise, a generating partition creates a conjugacy between the (invert-

ible) map xn+1 = f(xn) and the shift operator σ(S); here, S corresponds to the bi-

infinite symbol sequence S = . . . s−2s−1 · s0s1s2 . . . where each si corresponds to a

specific symbol, the points after the · correspond to the points obtained by iterat-

ing the map forwards (starting from the current point’s symbol s0), and the points
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before the · correspond to the points obtained by iterating the map backwards (us-

ing the inverse). By applying the shift operator σ to S, we get the shifted sequence:

σ(S) = . . . s−2s−1s0 · s1s2 . . ., where if s0 corresponds to some x0, s1 has a direct cor-

respondence to x1 = f(x0)[48]. In the context of the example above, if we have the

sequence S = . . .0100 · 01000100 . . . then σ(S) = . . .01000 · 1000100 . . ..

Figure 28: Generating partition of the Hénon map depicted as the boundary between the re-

gion corresponding to symbol 0 (red) and symbol 1 (cyan), with the black points corresponding

to the points on the attractor of the Hénon map, and the white crosses corresponding to the

points of a period 4 orbit on the attractor.

The construction of generating partitions has a long history, despite which a general

method of construction of generating partitions is only known for one-dimensional maps,

and uniformly hyperbolic systems of any dimension[49]. In the case of non-hyperbolic

systems of dimension greater than one, no general method for the construction of them
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is yet known; over the past century however, various approaches have been adopted in

order to construct generating partitions of a small set of low-dimensional systems.

This history (arguably[50]) began with Hadamard’s 1898 paper Les surfaces à courbu-

res opposées et leurs lignes géodésique[51], with his analysis of geodesic flows in which

he gave codings for the closed geodesics. This idea was further developed by Morse in

1921[52], and later became the titular topic of Morse & Hedlund’s 1938 paper entitled

simply Symbolic dynamics [53] where symbolic dynamics are treated in a very abstract

sense.

In recent years, the construction of generating partitions of symbolic dynamics has

led researchers in the field to branch in many different directions.

For example, in the 1985 paper Generating partitions for the dissipative Hénon map[47],

Grassberger & Kantz use primary tangencies between stable and unstable manifolds in

order to find generating partitions of the Hénon map for two different sets of parame-

ters. As the images or pre-images of the primary tangencies are also good candidates for

partition boundaries, they acknowledge that their choice of generating partition isn’t

unique. Following this same method, Giovannini & Politi in their 1991 paper[54] find

a generating partition of a Poincaré section of the Duffing attractor.

Unstable periodic orbits have also been a key focus in determining generating par-

titions, primarily due to the finding that in order for a partition to be considered

generating all periodic orbits must have a unique symbol sequence[55]. Two examples

of the different approaches using this information are given by Lefranc et al. in their

1994 paper[56] and Davidchack et al. in their 2000 paper[26]. Where Lefranc et al. use

topological analysis on information extracted from UPOs to create symbolic dynamics

of up to 2-dimensional maps, Davidchack et al. present a numerical approach in which

they use UPOs in order to iteratively build an approximate generating partition. In

their paper, Davidchack et al. confirm that their method works for the well-known
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Hénon map, and also present a thereunto unknown generating partition of the Ikeda-

Hammel-Jones-Moloney map; in theory, this method isn’t restricted to systems of a

specific dimension provided the data of the UPOs of the system.

Numerical approaches using experimental data that don’t rely on unstable periodic

orbits also appeared. An example of which is Hirata et al.’s 2004 paper in which they

present a new method which they call Symbolic shadowing [57]; this method relies on

solving a minimisation problem using an iterative algorithm in which they tesselate the

state space with so-called representatives. They apply their method to precisely the

same systems as in Davidchack et al.[26], obtaining the same partitions despite using a

fundamentally different method.

Due to the significant advantages of analysing systems in their symbol space (in terms

of speed, memory usage, and robustness to noise), the application of symbolic dynamics

can be found throughout the experimental sciences, including the fields of: astrophysics,

fluid dynamics, biology, medicine, chemistry, engineering, computer science, and data

mining. A thorough review of the applications in each of these fields can be found in

Daw et al.’s 2002 review paper, A review of symbolic analysis of experimental data[46].

3.1 Motivation

In this part of the thesis we strive to extend the method of the construction of ap-

proximate generating partitions presented by Davidchack et al.[26] to a wider class of

systems. In their paper, Davidchack et al. apply their method to the case of a Hénon

and Ikeda map. While the method as described in this paper gives good results for these

two maps, for more complicated maps a few obstacles must be overcome in order to con-

struct good symbolic dynamics. One such obstacle is that in their method, the number

of symbols required must be given a priori, and so for systems for which the number of

symbols required isn’t known the method may construct more partitions than necessary.

The results of the application of the method of Davidchack et al.[26] don’t necessarily
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always give a clear divide between symbol sets; depending on the attractor, isolated

points and regions can appear that on observation seem to be labelled with the wrong

symbol. As such, when we talk about aiming to construct good symbolic dynamics,

we mean that we wish to construct partitions that are as well-connected as possible,

without any disconnected points or sub-regions.

Our objective is thus to overcome these obstacles, and provide motivation for future

research in this direction. In order to do so, we will make use of the available sets of

periodic orbits detected by Crofts & Davidchack using the stabilising transformations

approach[4]; in particular, of two Hénon maps, an Ikeda map, two Duffing attractors,

and the Standard map. A description of each of these maps and their corresponding

sets of unstable periodic orbits is given below.

3.2 Maps

Throughout this part of the thesis we will make use of the sets of unstable periodic orbits

for the Hénon, Ikeda, Duffing, and Standard maps that were found by Davidchack et

al. using the stabilising transformations method[4, 18, 19].

Hénon Map

The Hénon map is given by:

xn+1 = a− x2n + byn

yn+1 = xn

(3.1)

and was first defined by Hénon in his 1976 paper[58] A Two-dimensional Mapping with

a Strange Attractor. In this paper, we will focus on two different sets of parameters.

Hénon I. The first, a = 1.4 & b = 0.3 is the classic set of parameters defined by

Hénon[58] as forming a chaotic attractor. The portrait of this attractor can be seen in
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Fig. 29. For this set of parameters we have a set of 1, 614 UPOs ranging from period

1 to period 20.

Figure 29: Portrait of the Hénon map’s attractor for parameters a = 1.4, b = 0.3.

Hénon II. The second set of parameters we will use, a = 1 & b = 0.54 also exhibit

chaotic behaviour, and the portrait of the attractor in this case can be seen in Fig. 30.

For this set of parameters we have a set of 1, 250 UPOs ranging from period 1 to period

29.

Figure 30: Portrait of the Hénon map’s attractor for parameters a = 1, b = 0.54.
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Both of these sets of parameters were used by Grassburger & Kantz in their 1985

paper[47] Generating Partitions for the Dissipative Hénon map. Their results will form

a good point of comparison for the results obtained in this thesis.

Ikeda Map

The Ikeda-Hammel-Jones-Moloney map[24, 25] (henceforth referred to simply as the

Ikeda Map) is given by:

xn+1 = a+ b(xn cosφn − yn sinφn)

yn+1 = b(xn sinφn + yn cosφn)
(3.2)

where φn = κ− η/(1 + x2n + y2n).

In order to present our results in the same context as Davidchack et al.[26], we will

use the canonical choice of parameters of the Ikeda map for which there is a chaotic

attractor: a = 1, b = 0.9, κ = 0.4, & η = 6. We will also use the same set of UPOs for

this map that was used by Davidchack et al.[26] which contains 20, 061 UPOs ranging

from period 1 to period 20. A portrait of the chaotic attractor exhibited by the map

for these parameters can be seen in Fig. 31.
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Figure 31: Portrait of the Ikeda map’s attractor for parameters a = 1, b = 0.9, κ = 0.4, η = 6.

Duffing Attractor

The Duffing flow is given by the system of ODEs:

x′ = y

y′ = −δy + βx− x3 + γ cos(ft)
(3.3)

As we are focusing only on two-dimensional maps in this part of the thesis, we will use

the Poincaré section of the flow which is constructed by taking the solution of Eq. 3.3

when the phase ft is a multiple of π, and inverting the co-ordinates (x, y)→ (−x,−y)

(consistent with the construction used in Giovannini & Politi[54]).

Duffing I. As in Giovannini & Politi’s 1991 paper Homoclinic tangencies, generat-

ing partitions and curvature of invariant manifolds [54] we will take the parameters as:

δ = 0.25, β = 1, γ = 0.4, & f = 1. For this map we will use a set of 7, 757 UPOs
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ranging from period 1 to period 20. The portrait of the chaotic attractor of this map

can be seen in Fig. 32.

Figure 32: Portrait of the Poincaré section of the Duffing map’s attractor for parameters

δ = 0.25, β = 1, γ = 0.4, f = 1.

Duffing II. In addition to the above, we will also experiment with a slightly fuller (in

that it’s ‘more 2-dimensional’) form of the Duffing map, with parameters: δ = 0.02,

β = 0, γ = 34, & f = 1. For this map we have a set of 4, 276 UPOs ranging from period

1 to period 20. The portrait of the map for this set of parameters can be seen in Fig.

33; note that throughout this section we will use square axes for ease of visualisation

of the attractor, but in reality the range of the y-direction is much larger than that of

the x-direction.
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Figure 33: Portrait of the Poincaré section of the Duffing II attractor for parameters δ = 0.02,

β = 0, γ = 34, f = 1, using square axes.

Standard Map

The standard map is given by:

xn+1 = yn

yn+1 = −xn + 2yn − α cos(yn)mod 2π
(3.4)

As we wish to present our results in the same context as Christiansen & Politi[59], we

will use α = 6. The portrait of the chaotic attractor of this map can be seen below in

Fig. 34, where the points of periodic orbits up to period 9 are plotted; note that due

to the modulo 2π in the equation of the map, the map is periodic of period 2π in both

the x & y directions (representing dynamics on a torus), and so Fig. 34 can be tiled

infinitely in either direction.
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Figure 34: Portrait of the Standard map’s attractor for α = 6.

For this map we have a set of 50, 499 periodic orbits ranging from period 1 to period 9.

3.3 DLBD Method

The method devised by Davidchack, Lai, Bollt, & Dhamala[26] (henceforth referred

to as the DLBD method) uses unstable periodic orbits of the Hénon and Ikeda maps

in order to construct approximate generating partitions of these attractors. The key

underlying principles of this method are that in order for a partition to be generating,

all periodic orbits must have a unique symbol sequence[55], and that periodic points

in close proximity to one another should be encoded with the same symbol (excluding

those near the partition boundary).

Using the former principle, the method starts by assigning different symbols to each

fixed point; it then proceeds through the periodic orbits in order of ascending period

assigning to each point the symbol to the symbol set to which the point is closest. After

all points of a given period are assigned a symbol, a check is performed to make sure
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that no orbit has neither a periodic substring, nor the same symbol sequence as another

orbit of the same period.

In the case of the former, the point which is closest to another symbol set is relabelled.

The above check is then repeated; if this relabelling causes no further conflicts then the

procedure continues, if another conflict is created then this relabelling is undone and

the next closest candidate is relabelled (and so on).

In the case of the latter, points on both orbits are taken into consideration, and the

single point that’s closest to another symbol is relabelled. If this relabelling solves the

conflict and causes no further conflicts, the procedure continues; if another conflict is

created, then this relabelling is undone and the next closest candidate is relabelled (and

so on).

Assuming that we have a finite set of n symbols: S = {S1, S2, . . . , Sn}, where Si is

the set containing all periodic orbit points assigned to symbol i, the proximity from a

point x to a symbol set Si is defined as follows[26]:

Z(i)(x) =
∑
xk∈Si

|x− xk|−2 (3.5)

(note that this choice of proximity function is not unique, and we will later experiment

with alternatives).

To give an example in the context of the Ikeda map, the equilibrium point (0.5328, 0.2469)

is assigned the symbol 1, and the second equilibrium point (1.1143,−2.2857) is assigned

the symbol 2. After this, we calculate the Z-values for each point of period two to each

of the two symbol sets, assigning to each point the symbol with the highest Z-value

(corresponding to lowest distance); this, however, results in both of the period two

points being assigned the symbol 1. As such, we compare the Z-values of each point

to the other symbols, choosing to relabel the point to symbol with the highest corre-

sponding Z-value. In this case, since we only have two symbols, we choose to relabel

the point (0.5098,−0.6084) to 2, as it has a Z(2) value of 0.3146 compared to the point

(0.6216, 0.6059)’s Z(2) value of 0.1162.
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Figure 35: Results of applying the above method to the UPOs of the Ikeda map up to period

20.

By proceeding in this fashion, the code only has to change 17 points in order to encode

all points up to period 20 (a total of 373, 006 points) in such a way that the each UPO

is encoded by a unique symbol string. The result of this process can be seen in Fig. 35,

where points belonging to symbol 1 are coloured red, and points belonging to symbol 2

are coloured cyan. While the generating partition itself isn’t obtained from this process,

its position can be approximated by the position of the two differently coloured symbol

sets. By including orbits of higher period in the construction of the symbolic dynamics,

the accuracy of the approximation can be improved.

Another example of where this method works well is the Hénon I map where the results

of applying this process to UPOs of up to period 20 (Fig. 36) match well with the

generating partition obtained by Grassberger & Kantz[47], despite being constructed

through very different means. There is however one period-13 point in the cyan region

that is mislabelled which can be seen more clearly in the zoomed-in plot on the right

of Fig. 36.
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Figure 36: Constructed symbolic dynamics of the Hénon map’s attractor for parameters

a = 1.4, b = 0.3 along with zoomed in sub-plot around mislabelled point.

An example of where this method doesn’t work so well is the Hénon map for the

slightly different parameters: a = 1, b = 0.54, henceforth referred to as Hénon II, for

which we will use UPOs of up to period 29. It’s clear from observation of Fig. 37

alone that the symbol sets created by the DLBD algorithm don’t allow for any good

(connected) partitions between the red and cyan regions due to the interlacing of symbol

sets towards the middle of the attractor. Grassberger & Kantz’s 1985 paper[47] showed

that a simply connected generating partition does indeed exist for this attractor, and so

in our research we use this example to motivate the further improvement of the DLBD

method.
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Figure 37: Constructed symbolic dynamics of the Hénon map’s attractor for parameters a = 1,

b = 0.54.

All of the three above examples have been well-researched, and so the number of re-

quired symbols was known in advance. In general, this may not be the case (for example

in the case of the Duffing II and Standard map which we will discuss later). As we hope

to make our method as general as possible, changes must be made to the algorithm in

order to accommodate such circumstances.

3.4 Dynamic Addition of Symbols

To address this problem, we must modify the method in order to add additional sym-

bols when required.

Assuming that the set of UPOs of a given period n is complete, the minimum number

of symbols m required to represent all UPOs of period n can be determined by cal-

culating the number of circular permutations of length n with repetition - that is, the

number of ways a set of objects can be arranged in order to create a sequence of length

n, including repetition of objects. For example, if we have the alphabet of 2 symbols

1,2, the number of ways they can be arranged to form a sequence of length 4 is 6:

1111, 2222, 1222, 2111, 1212, 1221
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Sequences that are the same after some rotation, such as 1222 → 2122 shouldn’t be

included in this count, as they represent the same circular permutation of objects.

The solution of the problem of finding this number was first solved by Major Percy

A. MacMahon in his 1892 memoirs[60], and was later explained with more clarity in

Rosen et al.’s 1999 Handbook of discrete and combinatorial mathematics [61]. The num-

ber of circular permutations of length n where the elements are chosen from an alphabet

of size m is defined by Rosen et al.[61] as:

∑
k|n

1

k

∑
d|k

µ(d)mk/d

 (3.6)

where µ is the Möbius function given by Rosen et al. as[61]:

µ(d) =


1 if d = 1

(−1)k if d = p1p2p3 . . . pk, i.e. the product of k distinct primes.

0 if d is divisible by the square of a prime.

(3.7)

Indeed, in the case of the previous example with m = 2 symbols and n = 4 elements,

the result of Eq. 3.6 is 6.

In the context of symbolic dynamics, however, this particular formulation doesn’t quite

fit. In order for the symbolic dynamics to be well-defined, a UPO of period n may not

have any periodic substrings. In the case of the above example 1111 & 2222 both have

periodic substrings of period 1, given by 1 & 2 respectively; additionally, 1212 has a

periodic substring of period 2, given by 12. As such, for this m and n we desire the

outcome of our modified Eq. 3.6 to be 3, corresponding to the sequences: 1222, 2111,

1221.

Performing such a modification is thankfully quite simple, requiring only the adjust-

ment of the outermost sum of Eq. 3.6. Instead of summing over all k|n, we will instead
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only take the case k = n, resulting in the new expression:

1

n

∑
d|n

µ(d)mn/d (3.8)

with µ defined as previously. Evaluation this expression for m = 2 and n = 4 results

in the expected answer of 3 cyclic permutations.

In order to make use of this method for the purpose of dynamically adding symbols, the

problem must be reformulated a bit. In our case, we don’t seek the number of cyclic

permutations, but instead we seek to find the smallest m such that the number of cyclic

permutations is greater or equal to the number of UPOs of period n. In other words:

mn = min

m :
1

n

∑
d|n

µ(d)mn/d ≥ Nn

 (3.9)

where Nn is the number of UPOs of period n. Using this, if mn is greater than the

number of symbols used in the previous step, then a new symbol must be added. In

order to determine how to add the new symbol, we will choose the point in the set

of points given by all UPOs of period n that is furthest (for example in terms of the

Z-distance in Eq. 3.5) from the current existing symbols as the first point of the new

symbol. After adding this new symbol, the construction of the symbolic dynamics can

proceed as normal.

This addition to the DLBD method allows us to extend the applications to maps whose

numbers of required symbols isn’t known a priori. For example, in the case of the

Duffing map with parameters δ = 0.25, β = 1, γ = 0.4, & f = 1 (henceforth referred

to as Duffing I) there is only one equilibrium; as there is one UPO of period 2 at least

2 symbols are required, and so without the above modification the algorithm wouldn’t

be able to proceed past period 1.

Upon reaching period 2, the algorithm recognises that the number of permutations
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(a) Points of UPOs of the Duffing I attractor of period 1 (in red), and period 2 (in black).

(b) The leftmost point of period 2 is assigned to the new symbol 2 (cyan), and the rightmost

is assigned to symbol 1.

Figure 38: Encoding of points of the period 2 UPO of the Duffing I attractor.

possible with 1 symbol isn’t enough, and so it chooses the point furthest from the sym-

bol set 1 (in this case meaning furthest from the equilibrium), and assigns it to the new

symbol set 2. This process can be seen visually in Fig. 38. In Fig. 38a the equilibrium

point (symbol set 1) is shown in red, and the two points of the period 2 orbit are in

black. As the leftmost point of the period 2 UPO is furthest from the symbol set 1, it

is assigned the new symbol 2 (in cyan, as seen in Fig. 38b). The process then continues

as normal, with the remaining point being assigned to symbol 1 before moving onto

the next period.

When reaching period 3 a similar situation occurs, and so a third symbol is added.

After this, no more symbols are required for the UPOs of up to period 20, and so the

algorithm proceeds as described in the previous section. The results of this process
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can be seen in Fig. 39. While on the whole these results seem good, the small strip of

green in the otherwise red region doesn’t result in such a clear-cut partition between the

symbol sets as the generating partition constructed by Giovannini & Politi[54], which

we will later show is achievable by making further modifications to the DLBD method.

Figure 39: Constructed symbolic dynamics of Duffing I’s attractor, using UPOs of up to

period 20.

For the alternative set of parameters of the Duffing map δ = 0.02, β = 0, γ = 34,

f = 1, (henceforth referred to as Duffing II) two more symbols are also required. The

resulting symbolic encodings aren’t quite as nice as in the previous case, as seen in Fig.

40, with many points being disconnected from their symbol sets.
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Figure 40: Constructed symbolic dynamics of Duffing II’s attractor, using UPOs of up to

period 20.

The disconnected points and regions shown in the previous two examples and the Hénon

II attractor of the previous section give us motivation for making further improvements

to the method. Over the next few sections we will experiment with different proximity

kernels and other modifications to the DLBD method to the end of obtaining good

partitions with as few disconnected points and regions as possible.

3.5 Normalisation of Z.

One such modification that can be made in order to improve the connectedness of the

results is through the normalisation of the proximity kernel of Eq. 3.5:

Z(i)(x) =
∑
xk∈Si

|x− xk|−2
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As the proximity kernel above simply sums the distance |x− xk|−2 over all points in

the symbol set, sets with more points will likely return higher Z-values for different x.

This effect can result in sets that are assigned more points early on expanding quickly,

with sets that are assigned few points early on barely growing at all.

By normalising Z(i)(x) with respect to the number of elements in Si,

Ẑ(i)(x) =
1

|Si|
∑
xk∈Si

|x− xk|−2 (3.10)

this issue can be alleviated. To give a concrete example of the effect that this can have

on the outcome, we will take the Hénon II attractor as an example. By using the DLBD

method up to UPOs of period 7, we get the approximated generating partition shown

in Fig. 41. In this figure, the red region corresponds to the basin of symbol 1 (i.e.

the points x where Z(1)(x) > Z(2)(x)), and the cyan region corresponds to the basin

of symbol 2; the black dots correspond to points of UPOs of period ≤ 7 which have

already been assigned symbols; the black circles correspond to points on the UPOs of

period 8 which have yet to be assigned a symbol.

Figure 41: Basin of symbols 1 (red) and 2 (cyan) using: Z of Eq. 3.5 (left), Ẑ of Eq. 3.10

(right).

The left plot shows what happens in the case of the DLBD method without normali-

sation of Z. From this we can see that (especially on the left) the red region extends

much further south than one might expect, despite having no points (black dots) in
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the vicinity. This is due to the fact that symbol 1 has more points, and so it in a

sense overpowers symbol 2. The right plot shows the effect of normalising Z, and using

instead Ẑ. The end result of using these two different distance functions can be seen in

Fig. 42; while there are still a couple of mislabelled points, the resulting symbol sets

obtained by using Ẑ over Z are more well-connected, which makes the positioning of

the generating partition much clearer.

Figure 42: Resulting symbol sets of Hénon II using: Z of Eq. 3.5 (left), Ẑ of Eq. 3.10 (right).

In terms of the effect that using Ẑ has on the Ikeda map and Hénon I attractor used

in Davidchack et al.’s[26], the results remain largely the same. In the case of the Ikeda

map, there’s no difference at all in the labelling of any of the points on UPOs up to

period 20. In the case of the Hénon I attractor two points are labelled differently; from

Fig. 43 it can be seen that the two changes from 1 (red) to 2 (cyan) result in a clearer,

more connected partition.
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Figure 43: Resulting symbol sets of Hénon I using: Z of Eq. 3.5 (left), Ẑ of Eq. 3.10 (right).

Differences in assigned symbols are represented by black circles. (This figure is zoomed in

around the changes, for ease of viewing).

In the case of the Duffing I attractor, we can see quite a substantial change between

the resulting symbol sets (Fig. 44). Overall we see symbol 1 (red) ceding some of its

coverage to symbols 2 (green) and 3 (blue), with symbol 3 seeing a slight extension

towards the left; and symbol 2 expanding all the way south, and replacing its coverage

of the upper fold with coverage only of the bend; we also see at least one green point

that is still mislabelled (slightly above the bend).
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Figure 44: Resulting symbol sets of Duffing I using: Z of Eq. 3.5 (top), Ẑ of Eq. 3.10

(bottom).

In the case of the Duffing II attractor we also see slight improvements in connectedness,

but there are still too many disconnected regions for the results to be considered an

acceptable approximation of a generating partition.
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3.6 Staggered Construction

Even when using the normalised proximity kernel Ẑ, the problem of isolated points and

regions being mislabelled is still apparent in the more complex Duffing attractors. This

issue is in part due to the fact that at the beginning of the construction of the partition

the number of points is relatively low, and so some of the points may be assigned a

symbol that is inconsistent with the labelling of higher-period points. As the algorithm

doesn’t currently allow for the relabelling of lower period points, these points then go

on to become isolated from their symbol set, or can even go on to develop into larger

isolated regions of points isolated from their symbol set.

In order to alleviate this problem, we devised a staggered method of the construction of

symbol sets. The method is largely the same as the DLBD method, with the addition

that once a period is complete we recalculate all previous periods using the current

period’s data, and repeat this process until convergence before continuing.

The staggered method assigns symbols to periods 1 and 2 as normal; and for periods

n = 3 onwards we apply the following process:

1. Compute symbol sets for period n using data of symbols for orbits of period 1 to

n− 1 (as usual).

2. Recompute the symbols for UPOs of period 2 to n − 1 using the symbol sets of

period n as a basis.

3. Recompute the symbol set for period n using the newly calculated symbol sets of

period 1 to n− 1 as a basis.

4. Repeat the above two steps until the symbol set of period n converges before

moving on to period n+ 1.

This repetition until convergence was introduced in the hope of reducing the number of

isolated points. Fig. 45 shows a comparison between the results of the DLBD method

and the staggered construction method in the context of Duffing I; the circled points

on the top subfigure represent the differences between the results of the two methods.
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In this example the staggered method seems to work well in ridding the encoding of

mislabelled points, as hoped.

Figure 45: Resulting symbol sets of Duffing I using Ẑ with the DLBD method (top) &

staggered method (bottom). The differences between the sets are represented by black circles

in the top subfigure.

In the case of the Duffing II attractor, the results unfortunately aren’t as promising (Fig.

46). The changes made to the lower half of the attractor seem to give better partitioning

overall, with the red region transformed into a more consolidated region; however as a

result the top half of the attractor seems to have suffered, with a green region appearing

91



in the middle of the blue domain, and the partition boundaries between each of the

symbols becoming less clear.

Figure 46: Resulting symbol sets of Duffing II using Ẑ with the DLBD method (left) &

staggered method (right).

3.7 Gaussian Proximity Kernel

Thus far, the proximity kernels that we’ve used have been relatively slowly decaying

with respect to the distance between the point x and the points in the symbol set,

denoted by xk in Eqs. 3.5 & 3.10. In order to increase the connectedness of symbol

sets, we sought a faster decaying proximity kernel; by giving points that are much closer

a much higher score, a heavier focus is put on the local neighbourhood around each

given point - reducing the probability of an isolated point being mislabelled.

The new function that we experimented with was the Gaussian-inspired kernel:

Z̃(i)(x) =
∑
xk∈Si

exp

(
−|x− xk|2

2σ2

)
(3.11)

where σ is a parameter to be determined, corresponding to the width of the Gaussian

kernel. By increasing σ the width of the bell curve is increased, this increase in width

corresponds to a decrease in gradient of the curve, which in turn decreases the sensitiv-

ity of the Z-value to the distance |x− xk|. In other words the higher the σ value, the
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less local the behaviour of the method becomes.

For each map different σ values are suitable, due to the varying sizes of the dimen-

sions of each attractor. In the case of the Duffing I attractor through trial and error we

found that for the staggered method of the previous section σ values in the range of 0.02

to 0.1 give good results. Of particular interest are the two cases σ ∈ [0.02, 0.022] and

σ ∈ [0.023, 1]; in each of these two cases we see two different possible generating par-

titions being constructed, with the transition somewhere in the interval (0.022, 0.023].

Two archetypal examples of the different regimes can be seen in 47, with the top sub-

figure being a result of using σ = 0.02, and the bottom subfigure using σ = 0.03.
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Figure 47: Resulting symbol sets of Duffing I using σ = 0.02 (top) & σ = 0.03 (bottom).

In both cases clear partitioning between the different symbol sets without any isolated

points or regions is present. Despite the fact that the above two estimates of generating

partitions are slightly different to the results found by Giovannini et al.[54], it’s probable

that those found by Giovannini et al. are either images or pre-images of those found

by our method.
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Figure 48: Resulting symbol sets of Duffing II using σ = 0.34 (left), using normalised space

coordinates with σ = 0.02 (right).

The results for Duffing II are unfortunately not as promising as for the previous set of

parameters when directly applied, as seen left sub-figure of Fig. 48 where σ = 0.34 is

used. While in general the divisions between the partitions has become clearer, there

are still far too many isolated points being mislabelled to make a clear judgement of

the boundaries of the generating partition.

By adding the additional step of first normalising the spatial coordinates to a (shifted)

unit square before applying the method, we get the more promising results shown in

the right sub-figure with σ = 0.02. In this case, there are only a very small handful of

isolated points, with the boundaries between the partitions being extremely clear.

3.8 Approximate Generating Partitions

In order to more clearly visualise the partitioning of the attractor provided by the mod-

ified DLBD algorithm it’s possible to use the proximity kernel in conjunction with the

resultant symbolic encoding of each periodic point in order to plot the basin of each

symbol. By calculating the Z-score of each point in (and around) the attractor and

assigning to each point the symbol with the highest score, we can get a clearer view of

the partition boundaries of each of the maps.
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In the case of the attractor of the Ikeda map, by using σ = 0.05 we get the follow-

ing partitioning:

Figure 49: Partitioning of the Ikeda attractor using σ = 0.05.
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In the case of the Hénon I attractor using σ = 0.09, we get the following partitioning:

Figure 50: Partitioning of the Hénon I attractor using σ = 0.09.
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In the case of Hénon II attractor with σ = 0.07:

Figure 51: Partitioning of the Hénon II attractor using σ = 0.07.
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In the case of Duffing I with σ = 0.02:

Figure 52: Partitioning of the Duffing I attractor using σ = 0.02.

And Duffing I with the alternative parameter σ = 0.03:

Figure 53: Partitioning of the Duffing I attractor using σ = 0.03.
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Finally, in the case of Duffing II using normalised co-ordinates with the parameter

σ = 0.02:

Figure 54: Partitioning of the Duffing II attractor using σ = 0.02 with spatial co-ordinates

normalised to a unit square.

Until now, no partitioning of the Duffing II attractor has been given, and so we present

this 3-symbol partition as a new result.

3.9 Standard Map

In this section we present the results of the implementation of the above methods in or-

der to attempt to locate a generating partition of the standard map which Christiansen
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& Politi discussed in their 1995 paper Generating partition for the standard map[59].

Using the method of homoclinic tangencies they found a partition with seven sym-

bols using which all periodic orbits (in their set of approximately 30, 000) up to period

9 were uniquely coded, with the exception of one period 6 orbit and four period 8 orbits.

The standard map is formulated by Christiansen & Politi as follows:

xn+1 = yn

yn+1 = −xn + 2yn − α cos(yn)mod 2π
(3.12)

with parameter α = 6. As we wish to present our results in the framework, we will

also assume this parameter value; additionally, we will also consider periodic orbits up

to period 9, however our set of periodic orbits contains 50, 499 orbits - approximately

20, 000 more orbits than Christiansen & Politi’s set.

In Eq. 3.12, the modulo 2π results in the map being periodic with period 2π in both

the x & y directions. Before applying our method, we must be sure to account for this

periodicity in the distance function. This can be done by making a slight modification

to the calculation of the norm:

|x− xk|2 =
∑
i

(x(i) − x
(i)
k )2 (3.13)

where x(i) corresponds to the ith component of the vector x. In the case where any

x(i) − x
(i)
k > π, the shortest distance between the two components can be found by

instead using the symmetry-related point x(i)−2π - meaning that in this case one should

replace the above with x(i)−x
(i)
k −2π. Similarly, in the case where x(i)−x

(i)
k < −π, the

component’s sum should be increased by 2π, resulting in the new sum: x(i)−x
(i)
k + 2π.
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Figure 55: Resulting symbol sets using σ = 0.021.

By applying this tweak to the distance Ẑ of Eq. 3.11, we can safely apply the above

staggered method to the set of 50, 499 periodic orbits of this map, ranging from period

1 to 9. After some trial and error, we found that the value σ = 0.021 gives the best

overall results. Using this method with σ = 0.021 we get an encoding that uses only

5 symbols (compared to Christiansen & Politi’s[59] 7 symbols) to uniquely encode all

50, 042 orbits up to period 9. Unfortunately, the results of our method don’t provide

such clear partition boundaries at this stage, but at the very least we see the main

partition boundaries starting to form (Figs. 55 & 56). We hope that with further

research the method will be able to provide as clear partitions for the standard map as

it does for those discussed previously.
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Figure 56: Resulting symbol sets using σ = 0.021; the original [0, 2π]2 cell has been tiled

to create a 2 × 2 grid of size [0, 4π]2, allowing us to see the behaviour across the periodic

boundaries.

3.10 Summary & Future Work

In this part of the thesis we first presented the method of approximation of generat-

ing partitions using periodic orbits developed by Davidchack et al.[26], and highlighted

some limitations & pitfalls of the method, namely the inability to add more symbols

when necessary, and drawbacks of the proximity kernel Z of Eq. 3.5.

The inability to add new symbols meant that this method could only effectively be
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applied to systems whose required number of symbols was known a priori - an ex-

tremely prohibitive limitation. In order to resolve this issue we added an extra step to

the DLBD method which, before moving on to the next period, calculated the num-

ber of symbols required by calculating the possible number of circular permutations

with repetition using the current number of symbols - if this number is smaller than

the number of UPOs of the given period, more symbols are added until the issue is

resolved. This addition allows the DLBD method to be applied to a much broader set

of systems, which we demonstrated by applying the method to the Duffing map for two

different sets of parameters.

In the case of the attractors of the Hénon & Ikeda maps presented in Davidchack et

al.’s paper[26], the symbol sets given by the method are (as one would hope) completely

connected with no isolated points of regions. Unfortunately, in the case of the Hénon

map for the second set of parameters and the Duffing map for both sets of parameters,

this wasn’t the case; many isolated points and regions were observed, resulting in sym-

bol sets that weren’t completely connected.

In an attempt to resolve this we experimented with a slight modification of the proxim-

ity function Z in which we normalise the Z-value of a point to a given symbol set by the

number of points with that symbol, we called this new function Ẑ. This normalisation

was done in order to stop the symbol sets that were assigned more points in the early

periods from expanding far beyond the region of eventual convergence of the partition

boundary, which often led to the creation of isolated points and regions. This new

proximity function saw success with the Hénon II and Duffing I attractors, resulting in

symbol sets that were almost completely connected, with only one or two points being

mislabelled.

In order to deal with these mislabelled points, we introduced a staggered method of

construction, which (roughly speaking) repeats the DLBD method for each period until

convergence before continuing. The aim of this method was to fix mislabelled points
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in early periods before they have the chance to propagate, causing more points to be

mislabelled later on. In the case of Hénon II and Duffing I, all of the mislabelled points

were indeed corrected, as hoped.

In the case of Duffing II, neither the use of Ẑ nor the use of the staggered method

displayed good results. As such, we decided to try a new proximity function that fo-

cused on more local behaviour. To this end, we chose to use the Gaussian-inspired

proximity function Z̃ of Eq. 3.11 with which the proximity score exponentially decays

with increasing distance. Combining this new function with the staggered method re-

sulted in further improvements to Duffing I, with two different generating partitions

being given for different parameter values σ of Z̃.

Duffing II however didn’t initially see such great success with the new proximity func-

tion Z̃ in combination with the staggered method. By taking the additional step of

first normalising the spatial coordinates such that the attractor lies within a unit square

before applying these methods resulted in a very well-connected set of distinct symbol

regions, by which an approximate generating partition could be inferred. Until now, no

generating partition for this attractor has been given, and so we present this 3-letter

symbolic encoding as a new & original result.

As a final step, we applied this method to the Standard map, after first ensuring that

the norm | · | accounted for the periodic boundaries. In the paper by Christiansen &

Politi[59], they give a 7-letter encoding of the attractor. Interestingly, the application of

our method results in an encoding that requires only 5 symbols; unfortunately however,

our results have several mislabelled points & isolated regions.

Our immediate plans for future research in this direction will primarily focus on improv-

ing the partitioning provided for the standard map, with the hope of revealing a new

partition requiring only 5 symbols. To this end we will focus our research on alternative

proximity kernels, further tweaking the staggered method, and developing a second pass
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that will go through the symbol sets obtained through the staggered method once more

and try to further reduce the number of mislabelled points.

Another area of focus will be the application of our method to higher-dimensional

chaotic attractors. Despite the fact that all of the examples presented in this section

were of 2-dimensions, given a set of periodic orbits this method can be applied without

modification to maps of any dimension; as seen in this section, however, further changes

may need to be made in order to ensure that the partitions given for such maps are as

good as one would hope (for example to the proximity kernel).

In the long term, we plan on adapting the methods presented by Patil & Cusumano[62]

for use with embedded coherent structures. Their method revolves around applying Hi-

rata et al.’s[57] symbolic shadowing method to a large set of initially random partitions,

and then choosing the partition that minimises the so-called Lempel-Ziv complexity[63]

in order to select the best partition. By implementing a similar process to our algorithm,

it may be possible to further improve the resulting partitions for more complicated at-

tractors.
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4 Concluding Remarks

Throughout this thesis we presented two methods for the coarse-graining of chaotic

attractors into partitions using unstable periodic orbits and other coherent structures.

The first method we introduced involved the construction of a finite cover of chaotic

attractors, and was presented in the context of discrete-time maps (Chapter 1), and

high-dimensional continuous-time flows with symmetries (Chapter 2). By constructing

such a cover, we showed that it’s possible to reduce the dynamics of trajectories in the

attractor to a series of transitions between elements of the cover, known as shadowing.

By then performing shadowing on a long trajectory segment in the attractor, we were

able to construct a Markov chain representation of the dynamics of the system under

the given shadowing regime.

As this method makes no usage of the periodicity of the structures being used to create

the cover, it’s equally applicable to any system for which there exists a large enough

data set of trajectories, including data for which the underlying equations determining

the dynamics are unknown. This opens the possibility for the method to not only be

used with chaotic dynamical systems in an abstract sense, but also with experimental

data of potentially high-dimensional processes.

Future research could focus on resolving some of the limitations of this method. For ex-

ample, due to the redundancies in the cover when performing shadowing at each point

there are many options to choose from, and so the dynamics encoded within the Markov

chain may be heavily influenced by different choices of shadowing regime. Addition-

ally, in the case of flows, choosing the n leading Fourier modes for the n-dimensional

projection may not be the optimal choice of projection; it may be preferable to instead

use other dimensionality reduction techniques such as principal component analysis or

linear discriminant analysis in order to choose the directions of projection. If this is

the case, then it may be possible to construct better covers with fewer dimensions in
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the projection, potentially increasing the accuracy whilst also decreasing computation

times. Further research into the Markov chain representation of the dynamics is also

needed, beyond the toy examples given in the concluding sections of Chapters 1 & 2;

if constructed correctly, the Markov chain representation could become a powerful tool

for determining various properties of the underlying systems.

The second method we presented (Chapter 3) was an extension of the algorithm of

Davidchack et al.[26] which constructed approximate generating partitions of chaotic

attractors of discrete-time dynamical systems using unstable periodic orbits. By in-

troducing a series of modifications to this method we removed the necessity of pre-

determining the number of partitions and also significantly improved the results for

more complex maps. One of the key results of this section was the construction of

a well-connected approximation of a generating partition of the so-called Duffing II

map, for which until now to the best of our knowledge no generating partition has

been found. Following this, we applied our method to the Standard map for which an

approximate generating partition was found by Christiansen & Politi[59], for which we

had mixed results; our partition successfully encoded all orbits up to period 20 unlike

that of Christiansen & Politi[59] using 2 less symbols, however our partitions weren’t

well-connected, with many isolated points and regions.

By dedicating further research into different distance functions or other modifications

of the method it should be possible to further improve the approximation given for sys-

tems such as the Standard map, for which finding a connected approximate generating

partition using only 5 symbols would be a significant discovery. Since the presented

method does not rely on the two-dimensional nature of the chaotic attractors, it can

be equally well applied to higher-dimensional maps, which could be another direction

of future research.

108



Two examples of related fields that it may be interesting to apply the methods pre-

sented in this thesis to are chaos control and random number generation.

In terms of chaos control, the methods of Chapters 1 & 2 may be a good fit. The

control of chaos revolves around the stabilisation of a trajectory in the system by locat-

ing a nearby unstable periodic orbit to the trajectory, and applying pertubations (either

in discrete intervals[64] or continuously[65]) to the control parameter of the system such

that the unstable periodic orbit becomes stable, resulting in the trajectory being pulled

to the newly-stable periodic orbit. By using such a cover it may be possible to simplify

the process of finding the closest unstable periodic orbit for control by using the rep-

resentative subset provided by the cover in a lower-dimensional projection of the full

space.

The fast generation of random numbers is extremely important for many applications,

notably in cryptography and Monte-Carlo methods. Recently, the use of chaos in the

generation of random numbers has received much attention from the research com-

munity. A brief review of the use of chaos to general random numbers is given by

Stojanovski et al.[66], along with their own generation method. While clearly not a

new idea, we believe that by using such a cover as in Chapter 1 & 2, or by using the

symbolic dynamics of Chapter 3 it may be possible to find a new, novel way of gener-

ating random numbers.

Additionally, in the field of chaotic dynamics & periodic orbit theory itself, by carefully

selecting a representative subset of unstable periodic orbits of the system it may be pos-

sible to find accurate estimates for properties of the attractor (such as the Lyapunov

exponents, fractal dimension, and natural measure) using this small subset of periodic

orbits rather than having to find and use all of them up to a given period, as in [67].
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[3] Predrag Cvitanović. Periodic orbits as the skeleton of classical and quantum chaos.

Physica D: Nonlinear Phenomena, 51(1):138–151, 1991.

[4] Jonathan Crofts and Ruslan Davidchack. Efficient detection of periodic orbits in

chaotic systems by stabilizing transformations. SIAM Journal of Scientific Com-

puting, 28(4), 2006.
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and geometric probability laws. Sankhyā: The Indian Journal of Statistics, Series

A, pages 244–251, 1979.

[31] M Cencini, M Falcioni, E Olbrich, H Kantz, and Angelo Vulpiani. Chaos or noise:

Difficulties of a distinction. Physical Review E, 62(1):427, 2000.
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