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Abstract. In this paper, we present a novel segmentation framework for
glandular structures in Hematoxylin and Eosin stained histology images,
choosing poorly differentiated colon tissue as an example. The proposed
framework’ target is to identify precise epithelial nuclei objects. We start with
staining separate to detect all nuclei objects, and deploy multi-resolution mor-
phology operation to map the initial epithelial nuclei positions. We proposed a
new bag of words scheme using sparse random feature to classify epithelial
nuclei and stroma nuclei objects to adjust the rest nuclei positions. Finally, we
can use the boundary of optimized epithelial nuclei objects to segment the
glandular structure.
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1 Introduction

Motivation: In this paper, we address the problem of segmenting challenging glan-
dular structures in colon histology images. Glandular structures are important for the 
diagnosis of several epithelial cancers. Glands in epithelial tissue, which are difficult to 
be differentiated from other tissues, normally consist of lumen structure surrounded by 
epithelial nuclei objects at the boundary, which can be used as a strong cue for the 
extraction of glandular structures [1, 2]. This problem becomes more significant while 
there are other tissue constituents, such as stroma nuclei and cytoplasm, around the 
glands.



Related Work: Existing methods for glandular structure segmentation can be cate-
gorised into texture and structure based method. In texture approaches, Farjam et al. [3]
used Gaussian filters to extract texture features from glandular structures. For structural
approaches, Naik et al. [4] used a level set method to segment lumen areas in a gland.
Nguyen et al. [5] employed the prior knowledge about glandular constituents in order
to extract glandular regions. Gunduz-Demir et al. [6] proposed object graphs for the
segmentation of glandular structures.

Contributions: In this work, we propose a novel framework to segment glandular
structures in Hematoxylin and Eosin (H&E) stained histology images, choosing colon
tissue as an example. The proposed framework starts with nuclei identification. We
deploy a color-deconvolution method to find the nuclei position. Then, a multi-
resolution morphology operation is investigated to interpret the epithelial nuclei spatial
distribution. In this study, we assume that epithelial nucleus cannot be fully separated
from stromal nucleus. Therefore, we deploy a sparse random features based Bag of
words model to classify these nucleus. Finally, we use the boundary of epithelial nuclei
for the final segmentation.

2 Sparse Random Matrix Optimization

Recently, random projection feature has shown promise for complex classification [7,
8]. It uses random matrix to project high level features to low dimension with the
promise of core features preserved. A simple example is illustrated in Fig. 2, which
shows the reconstruction of an ideal texture map based on random projection. The
reconstruction results from different dimensions of projection are shown in Fig. 2(b),
(c) and (d), respectively. With random projection, the original ideal texture is well
reconstructed.

Based on the principle of distance preservation [9], Gaussian random matrix [9] and
sparse random matrices [10, 11] have been sequentially proposed for random projec-
tion. Although significant progress has been made, the Gaussian random matrix and
sparse random matrices still have prominent limitations: Gaussian random matrix
causes highly computing for its dense distribution and it is difficult to construct
Gaussian distribution via hardware, on the other hand the sparser matrix tends to yield
weaker distance preservation. It has been proven that the irrelevance of matrices col-
umn vector is highly related to the projecting performance. In this paper, we use the
angle between matrix neighbor column vectors to indicate the projecting performance.
The first row of Table 1 is the minimum and maximum angles of the matrix, and the
second row is the difference value of the minimum and maximum angles. The dif-
ference value is smaller the projecting performance is better. From Table 1, the random
matrix and sparse random matrix are better than Gaussian random matrix.

Table 1. Parameters comparison under three random matrices

Gaussian random matrix Sparse random matrix Very sparse random matrix

71.42/107.34 81.04/100.93 82.04/110.93
35.92 19.89 28.89
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Furthermore, we propose a new method to optimize sparse random matrix. Firstly,
we build an empty matrix U, the length of U is kk, is k signal length and k is positive
integer. Secondly, we generate uniform random value to U from the range of 0 and 1.
Thirdly, we recursively scan every value, if the value is larger than 5=6, the value is
reset as “1.732”, if the value is smaller than 1=6, the value is reset as “–1.732”, other
values are reset as “0”. Fourthly, calculate the angle column by column, if the angle is
small than threshold, assemble the corresponding column to a new d � k matrix.
Specifically, the optimize algorithm is to form a new matrix by selecting the column
vectors which angle is small than threshold. The new matrix not only satisfy RIP
theorem but also to achieve irrelevance of matrices column vector.

Figure 3 shows the signal recover ability based on six random matrices. All opti-
mization method based curves are the right side of the original method based curves,
which means the signal recover ability of optimization methods are more useful than
basic ones. Meanwhile, the ability of Gaussian and sparse random matrices are almost
the same. To achieve the convenience of hardware design, we use optimization sparse
random matrix in this paper.

3 Poorly Differentiated Glandular Segmentation Framework

Figure 1 summarizes the poorly differentiated glandular segmentation framework.
Given an H&E image (Fig. 1a), nuclei locations are represented by color-
deconvolution. (Figure 1b), necessary to perform morphology operation and random
feature based classification to generate glandular contour (Fig. 1c).

3.1 Nuclei Identification

We employ a color-deconvolution method [12] to extract the Hematoxylin channel
from the image. By thresholding the Hematoxylin channel using Otsu’s threshold [13],
we obtain a binary image corresponding to the approximate locations of nuclei in the
image (Fig. 4).

(a) (b) (c)

Fig. 1. A sample colon histology image showing various components (epithelial nucleus or E,
stromal nucleus or SN, lumen or L)
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3.2 Epithelial Layer Determination

Epithelial layers are most often formed by thick and solid objects such as epithelial
nucleus. Therefore, a map describing the solidity and the connectedness of nuclei
objects is calculated using this formula :

Smap ¼ 1
Rs � smax

XRs

r¼1

Xsmax

s¼1

JsððOrðINÞÞÞ ð1Þ

(a) (b) (c) (d)

Fig. 2. Random projection based ideal texture reconstruction: (a) original 20 � 20 ideal texture
image, (b) reconstruction using 50 RP impact factors, (c) reconstruction using 100 RP impact
factors, (d) reconstruction using 150 RP impact factors.

Fig. 3. The signal recover ability based on six random matrices.

(a) (b)

Fig. 4. (a) input image, (b) staining separated image using color-deconvolution.
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Where OrðXÞ is the morphological opening of image X with a disk of radius r, Js is
a removal operator of connected components with size smaller than s. Rs is the max-
imal radius and smax the maximal connected component size. The use of these oper-
ations at different levels, i.e. with different values of r and s, agrees the variation in size
of epithelial layers. The obtained map shows epithelial layers objects with higher
solidity values than connective tissue nuclei objects (Fig. 5).

3.3 Epithelial Layer Optimization

Within the framework of RP based coding histogram coefficients in Fig. 6, for each
RIRS feature vector [14] of the image, we can use RP to produce a compact and sparse
representation, where only the entries corresponding to the same textons will have
non-zero values, while the other entries in a compact vector are zeros. Then we can
form the histogram coefficient as a new feature.

Figure 7 shows two nucleus of different classes (epithelial nuclei and stroma nuclei)
and their 400 dimension histogram features. We can see that the histogram features of
different classes are very different. For instance, in the upper two histograms, the
features around “50”, “100” and “350” show strong differences and it is convenient for
the later classification. At the same time, when texton number changes, the two his-
tograms for the same image patch also show a sufficient difference. The upper

(a)       (b)

(c)                   (d)

Fig. 5. (a)–(c) Epithelial layers identification after multi-resolution morphology operation,
(d) Nuclei objects retained are overlayed in blue (Color figure online).
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histograms are built from 9 textons and the lower histograms are constructed from 25
textons, and it is clear that the similarity of the two histograms based on 25 texton is
much lower than 9 textons based histograms, and it is easy to find more discriminating
features for classification.

4 Results and Discussion

To assess the effectiveness of our approach, the experiment was conducted on a public
dataset of poorly differentiated H&E glandular tissue sections. The dataset, provided by
Warwick university hospitals in the context of Gland Segmentation Challenge [15].

To quantitatively evaluate our segmentation results, the true positive (TP), false
positive (FP), and false negative (FN) pixels are calculated. We use two quantitative
criterions for the evaluation of our segmentation algorithm on the dataset. Table 2
shows the comparative quantitative performance of the proposed approach against 4
other methods in the literature; active contour [16], object-graphs [17], Morphology
[18], and RIRS-bow [14], based on 3 quantitative measures: the precision also referred

Fig. 6. Random projection based coding histogram coefficients. Best viewed in colour.

Fig. 7. epithelial nuclei and stroma nuclei images and their encoding histogram features (upper
histogram – 9 textons and lower histogram – 25 textons). Best viewed in colour (Color figure
online).

Table 2. Quantitative evaluation of the segmentation methods.

Method PPV TRP ACC

Active contour [16] 0.85 0.80 0.73
Object-graph [17] 0.91 0.87 0.77
Morphology [18] 0.89 0.86 0.78
RIRS-bow [14] 0.93 0.89 0.75
Proposed 0.85 0.87 0.81
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to as positive predictive value PPV = TP
TP þ FP, the sensitivity referred to as the true

positive rate TPR = TP
TP þ FN, and the accuracy ACC = TP

TP þ FP þ FN. Figure 8 is
examples of segmentation results.

5 Conclusion

This work presents a new gland segmentation approach based on gland structural
feature. This method begin with staining separation to detect nuclei objects, then
advance multi-resolution morphological operator is applied to map the initial epithelial
nuclei objects. After that, a developed sparse random feature is used to classify the rest
nuclei objects from epithelial nuclei class and stroma nuclei class. Finally, the
boundary of epithelial nuclei objects is the core clue to segment the gland.
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