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a b s t r a c t

In this work, we propose to model the
∧
Categorization/Decision experiment from Busemeyer et al. (2009)

with a Quantum-Like Bayesian Network. We also propose the representation of objects (or events) in
an arbitrary n-dimensional vector space, enabling their comparison through similarity functions. The
computed similarity value is used to set the quantum parameters in the Quantum-Like Bayesian Network
model. Just like in the work of Pothos et al. (2013), we are not restricting our model to a vector in a two-
dimensional space, but to an arbitrary multidimensional space.

In the end, we conclude that the vector representation of the contents of the images can explain the
paradoxical findings and the violations of the laws of classical probability that were found in some works
of the literature, suggesting that the contents of the images can already produce some quantum effects.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction1

Q3

The purpose of this work is to explore the applications of the2

formalisms of quantum mechanics to areas outside of physics,3

more specifically in domains regarding decision making and4

cognition.Q45

Quantum cognition has emerged as a research field that aims6

to build cognitive models using the mathematical principles of7

quantum mechanics. In this sense, psychological (and cognitive)8

models benefit from the usage of quantum probability princi-9

ples because they have many advantages over classical counter-10

parts (Busemeyer, Wang, & Shiffrin, 2015). In quantum theory,11

events are represented as multidimensional vectors in a Hilbert12

space. This vector representation comprises potentially for the13

occurrence of all events at the same time. In quantum mechan-14

ics, this property refers to the superposition principle. Under a15
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psychological point of view, a quantum superposition can be re- 16

lated to the feeling of confusion, uncertainty or ambiguity (Buse- 17

meyer & Bruza, 2012). This vector representation neither obeys 18

∧
the distributive axiom of Boolean logic nor

∧
the law of total prob- 19

ability. It also enables the construction of more general mod- 20

els that can mathematically explain cognitive phenomena such 21

as violations of the Sure Thing Principle (Khrennikov & Haven, 22

2009;Martínez-Martínez& Sánchez-Burillo, 2016),which is the fo- 23

cus of this study. Quantum probability principles have also been 24

successfully applied in many different fields of the literature, 25

namely in biology (Asano et al., 2012; Asano, Khrennikov, & Ohya, 26

2015), economics (Haven & Khrennikov, 2013; Khrennikov, 2009), 27

perception (Conte, 2008; Conte et al., 2007), jury duty (Trueblood 28

& Busemeyer, 2011), game theory (Brandenburger, 2010; Mura, 29

2005), order effects (Wang, Solloway, Shiffrin, & Busemeyer, 2014), 30

opinion polls (Khrennikov & Basieva, 2014; Khrennikov, Basieva, 31

Dzhafarov, & Busemeyer, 2014), etc. 32

Previously in the literature, Busemeyer, Wang, and Lambert- 33

Mogiliansky (2009) studied the differences between a classical 34

Markov and a quantum dynamical model in order to explain 35

some violations of the law of classical probability theory in a 36

http://dx.doi.org/10.1016/j.jmp.2016.10.004
0022-2496/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmp.2016.10.004
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
mailto:catarina.p.moreira@ist.utl.pt
mailto:andreas.wichert@ist.utl.pt
http://dx.doi.org/10.1016/j.jmp.2016.10.004


2 C. Moreira, A. Wichert / Journal of Mathematical Psychology xx (xxxx) xxx–xxx

∧
categorization experiment. Participants were presented with a set1

of digitally modified images of faces. Then, they had to first to2

categorize the face as Good or Bad and then perform the decision3

to either Withdraw or Attack. In the end, the proposed quantum4

dynamical model was able to accommodate the violations of5

the laws of classical probability theory by fitting the quantum6

parameters. This work demonstrated that quantum theory could7

be applied to build more general models to explain paradoxical8

situations found in cognitive psychology. More recently, more9

experiments to investigate the impact of quantum interference10

effects under the
∧
categorization experiment have been performed11

in the work of Wang and Busemeyer (2016).12

In the present work, we propose an alternative way to accom-13

modate the paradoxical findings detected in the experiments of14

Busemeyer et al. (2009) and Townsend, Silva, Spencer-Smith, and15

Wenger (2000) that takes only into account the contents of the im-16

ages and their vector similarities. The current work makes use of a17

Quantum-Like Bayesian model, initially introduced in the work of18

Moreira and Wichert (2014), and later developed in the works of19

Moreira and Wichert (2015a,b, 2016). The similarity is used to fit20

quantum interference parameters in the Quantum-Like Bayesian21

Network model. The main advantage of the proposed Quantum-22

Like Bayesian Network towards other cognitive models is its pre-23

dictive nature and its scalability. By scalability we mean that the24

network structure of the proposed model is able to model more25

complex decision scenarios (scenarios that are
∧
modelled with sev-26

eral random variables). Moreover, through the representation of27

objects (or events) by their contents, one is able to perform vector28

similarities in an n-dimensional vector space and compute quan-29

tum parameters.30

Approaching this categorization/decision experiment under a31

quantum probabilistic point of view is also important for several32

reasons (Pothos & Busemeyer, 2013). For instance, in the work33

of Pothos and Busemeyer (2009), the authors showed that a34

classical Markov model could not explain the violations to the35

Sure Thing Principle found in the experiment. Of course, one36

could always model a Markov model with extra hidden states37

and
∧
parameterizations to model these violations. However, this38

would lead to an exponential increase in complexity. Quantum39

probability theory is important for this reason. The geometric40

representation of events, which is present in quantum probability,41

does not exist in a classical setting. The main advantage of this42

geometrical representation is the ability of allowing the rotation43

from one basis into another in order to
∧
contextualize events and44

interpret events, providing great flexibility to decision-making45

systems.46

2. Overview of probabilistic graphical models47

In this section, we introduce the concepts of classical and48

Quantum-Like Bayesian Networks.49

2.1. Classical Bayesian Networks50

A classical Bayesian Network can be defined by a directed51

acyclic graph structure in which each node represents a different52

randomvariable froma specific domain and each edge represents a53

direct influence from the source node to the target node. The graph54

can represent independence relationships between variables, and55

each node is associated with a conditional probability table56

that specifies a distribution over the values of a node given57

each possible joint assignment of values of its parents (Koller &58

Friedman, 2009).59

The full joint distribution (Russel & Norvig, 2010) of a Bayesian60

Network, where X is the list of variables, is given by:61

Pr(X1, . . . , Xn) =

n
i=1

Pr(Xi|Parents(Xi)). (1)62

The formula for computing classical exact inferences on 63

Bayesian Networks is based on the full joint distribution (Eq. (1)). 64

Let e be the list of observed variables and let Y be the remaining un- 65

observed variables in the network. For some query X , the inference 66

is given by: 67

Pr(X |e) = αPr(X, e) = α


y∈Y

Pr(X, e, y)

 (2) 68

where α =
1

x∈X
Pr(X = x, e)

. 69

The summation is over all possible y, i.e., all possible combina- 70

tions of values of the unobserved variables y. The α parameter cor- 71

responds to the normalization factor for the distribution Pr(X |e) 72

(Russel & Norvig, 2010). This normalization factor comes from 73

some assumptions that are made in Bayes rule. 74

2.2. Quantum-Like Bayesian Networks 75

A more recent work from Moreira and Wichert (2014) 76

suggested defining the Quantum-Like Bayesian Network in the 77

same manner as in the work of Tucci (1995), replacing real 78

probability numbers by quantum probability amplitudes. 79

In this sense, the quantum counterpart of the full joint 80

probability distribution corresponds to the application of Born’s 81

rule to Eq. (1). An interesting discussion about the foundations of 82

Born’s rule can be found in the article of Deutsch (1988). 83

Pr(X1, . . . , Xn) =


N
i=1

ψ(Xi|Parents(Xi))


2

. (3) 84

The general idea of a Quantum-Like Bayesian network is 85

that, when performing probabilistic inference, the probability 86

amplitude of each assignment of the network is propagated and 87

influences the probabilities of the remaining nodes. In otherwords, 88

every assignment of every node of the network is propagated until 89

the node representing the query variable is reached. Note that, 90

by taking multiple assignments and paths at the same time, these 91

trails influence each other and produce interference effects. 92

The quantum counterpart of the Bayesian exact inference 93

formula corresponds to the application of Born’s rule to Eq. (2), 94

leading to: 95

Pr(X |e) = α


y

N
x=1

ψ(Xx|Parents(Xx),e,y)


2

. (4) 96

Expanding Eq. (4), it will lead to the quantum interference 97

formula: 98

Pr(X |e) = α

 |Y |
i=1


N
x

ψ(Xx|Parents(Xx),e,y=i)


2

+ 2 · Interference

 99

Interference =

|Y |−1
i=1

|Y |
j=i+1


N
x

ψ(Xx|Parents(Xx),e,y=i)


·


N
x

ψ(Xx|Parents(Xx),e,y=j)

 · cos(θi − θj). (5) 100

In the end, we need to normalize the final scores that are com- 101

puted to achieve a probability value, because we do not have the 102

constraints of double stochasticity operators. In classical Bayesian 103

inference, normalization of the inference scores is also necessary 104
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due to assumptions made in Bayes rule. The normalization factor1

corresponds to α in Eq. (5).2

Note that, in Eq. (5), if one sets (θi−θj) toπ/2, then cos(θi−θj) =3

0, which means that the quantum Bayesian Network collapses to4

its classical counterpart. That is, they can behave in a classical way5

if one sets the interference term to zero. Moreover, in Eq. (5), if6

the Bayesian Network has N binary random variables, we will end7

up with 2N free quantum θ parameters. Approaches to tune those8

parameters under a Quantum-Like BayesianNetwork approach are9

still an open research question.10

In the next section, we will propose a vector representation11

that takes into account vector similarities in order to compute12

the quantum θ parameters required to perform inferences in13

Quantum-Like Bayesian Networks.14

3. A vector similarity model to extract quantum parameters15

Over the current literature, quantum parameters must be16

assignedmanually to obtain a prediction in order to accommodate17

fallacies. In this work, we attempt to extend the paradigm of18

Quantum-Like Bayesian Networks to be predictive by representing19

events (in this case, images) asn-dimensional vectors anduse these20

vector similarities to find the quantum θ parameters. This vector21

representation is similar to the approach proposed in the work22

of Pothos, Busemeyer, and Trueblood (2013), where the authors23

represent a person’s beliefs/actions in an n-dimensional vector24

space and the similarity between the vectors is measured by a25

projection operator, which corresponds to the computation of the26

squared length of the projected vector.27

The reader might be thinking why we should expect that the28

θ parameter computed from the similarities of vectors should29

correspond to the interference term in the Quantum-Like Bayesian30

Network. In the book of Busemeyer and Bruza (2012), it is stated31

that the θ parameter that arises in quantum interference effects32

corresponds to the phase of the angle of the inner product between33

the projectors of two random variables. They also state that34

the inner product provides a measure of similarity between two35

vectors (where each vector corresponds to a superposition of36

events). If the vectors are unit length, then the Cosine Similarity37

collapses to the inner product. Also, in the work of Trueblood,38

Pothos, and Busemeyer (2014), the authorsmention that similarity39

is understood to be a function of the distance between two40

concepts in a psychological space. Given all these relations, we41

can assume that the similarities computed between two vectors42

representing the images of faces can be used to set quantum43

interference parameters, since they are both computing the inner44

product between two random variables and, consequently, we can45

assume a mathematical equivalence between the θ parameters46

computed from similarities and the quantum θ parameters47

corresponding to the interference terms in the quantum Bayesian48

model.49

3.1. Using Cosine Similarity to determine quantum parameters50

Cosine Similarity is a metric that measures the similarity51

between two n-dimensional vectors through the cosine that they52

share between them. It is a widely used metric in several research53

fields, specially in Information Retrieval (van Rijsbergen, 2004).54

Given two n-dimensional vectors A and B, the Cosine Similarity55

measure is given by:56

cosine_sim(A, B) = cos(θ) =
A.B

∥A∥ ∥B∥
=

N
i=1

AiBi
n

i=1
A2
i

n
i=1

B2
i

. (6)57

Fig. 1. Vector normalization to obtain quantum destructive interferences.

Whenmapping an image into an n-dimensional space, since the 58

pixels of the images are always positive numbers between 0 and 1 59

(or between 0 and 255, depending on which scale), these vectors 60

will always share a similarity angle: cos (θ) ∈ [0, 1]. This implies 61

that when using this value in the quantum interference term in 62

the Quantum-Like Bayesian Network inference formula (Eq. (5)), 63

we will notice that the quantum probabilities will converge (or 64

will be very close) to the classical probability. In the previous work 65

of Yukalov and Sornette (2011), the authors noticed that, in order 66

to accommodate the violations to the Sure Thing Principle, it was 67

required that the quantum interference term
∧
be negative. In this 68

sense, we applied a
∧
normalization to the vector representation 69

of the images of the faces such that the new re-scaled vectors 70

belong to the interval cos

θ ′


∈ [−1, 0]. By doing this, we are re- 71

scaling the vectors such that they cover the negative part of the 72

vector space and to enable the occurrence of destructive quantum 73

interferences. The re-scaling formula applied corresponds to the 74

Min–Max
∧
Normalization formula, which is widely used in many 75

different research fields, specially in Information Retrieval (van 76

Rijsbergen, 2004). Note that the applied renormalization also 77

enables constructive interferences. The renormalization spans 78

the entire vector space producing both negative and positive 79

interferences for each image representation. In this article, we 80

focused on the destructive interferences, because to accommodate 81

violations to the Sure Thing Principle
∧
these types of interferences 82

(Yukalov & Sornette, 2010) are necessary. 83

Yi = MinMaxNorm(Xi) 84

=
Xi − min(X)

max(X)− min(X)
. (newmax − newmin)+ newmin. (7) 85

Eq. (7) transforms a value Xi to Yi, which fits in the range 86

[newmin, newmax]. Fig. 1 illustrates the re-scaling process. 87

This vector representation of images (and events) also opens a 88

new direction for the exploration of semantic similarities between 89

concepts (Moreira & Wichert, 2015a,b). 90

Under the quantum mechanics point of view, quantum 91

parameters that arise from interference effects represent the shift 92

of energy waves. Under a quantum cognitive perspective, through 93

this vector representation, they can be interpreted as correlations 94

between events (beliefs) and the semantic relationships that they 95

share between them. 96

In the next section, we present the experiment fromBusemeyer 97

et al. (2009) and show how to apply the Quantum-Like Bayesian 98

Network with the proposed vector similarity model in order to 99

accommodate and predict violations to the Sure Thing Principle. 100

4. Empirical application of the Quantum-Like model to the 101

categorization–decision experiment 102

In this section, we show how the Quantum-Like Bayesian 103

Network model can be applied to predict the results obtained in 104

the empirical experiments of Busemeyer et al. (2009). 105
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Fig. 2. Example of Wide faces used in the experiment of Busemeyer et al. (2009).

Fig. 3. Example of Narrow faces used in the experiment of Busemeyer et al. (2009).

4.1. Categorization–decision making experiment1

In the work of Busemeyer et al. (2009), the authors analysed2

the formalisms of quantum mechanics in order to describe the3

evolution of the cognitive process from the presentation of a de-4

cision problem to the actual decision. They performed an em-5

pirical experiment based on interactions between
∧
categorization6

and decision making. This experiment served as an empirical test7

to compare Classical Markov models with Quantum models. The8

experiment showed a violation of the law of probability theory9

while comparing the results between the probability of choos-10

ing a decision and the probability of making a
∧
categorization, fol-11

lowed by a decision. The authors proposed a Quantum Dynamical12

model that takes into account time evolution through the usage of13

Schrödinger’s equation and unitary operators. A recent article from14

Yearsley and Pothos (2014) makes an interesting discussion about15

the classical notion of time under a quantummechanical perspec-Q5
Q6

16

tive (see Figs. 2 and 3).17

The proposed experiment was the following. Given a set18

of images of faces, the participants had to categorize them as19

Good/Bad and had to make a decision towards that face: either to20

make an Attack or Withdraw. The Narrow faces had a 60% chance21

of belonging to the Lork group and 40% chance to the Adok group.22

The Wide faces, had a 40% chance of belonging to the Lork group23

and a 60% chance to the Adok group. Moreover, the Lork group24

is considered to be more hostile and therefore for 70% of them25

the right decision to take was to Attack. For the remaining 30%,26

the right decision was to Withdraw. For the Adok group, since27

they are considered more friendly, for 70% of the faces, the right28

decision was toWithdraw and for the remaining 30%was to Attack.29

Fig. 4 illustrates the distribution of the faces. The participants were30

divided into groups and had to perform four different tasks:31

• One group had to perform first a categorization and then make32

a decision (the ‘‘C-then-D’’ condition);33

• One group had to first make a decision and then perform a34

categorization (the ‘‘D-then-C ’’ condition);35

• One group had to just make the decision (‘‘D-Alone’’ condition);36

• One group had to just perform the categorization (‘‘C-Alone’’ 37

condition); 38

The main results obtained with this experiment are discrimi- 39

nated in Table 1. In this table, Pr(G) is the probability of a par- 40

ticipant categorizing a face as Good. Pr(A|G) is the probability 41

of a participant deciding to Attack, given that the face was cat- 42

egorized as being Good. Pr(B) is the probability of a participant 43

categorizing a face as Bad. Pr(A|B) is the probability of choosing 44

an Attack action, given that the face was categorized as Bad. To- 45

tal Prob corresponds to the total probability through the formula 46

Pr(A) Pr(A|G)+ Pr(B)Pr(A|B). Finally, Pr(A) corresponds to the to- 47

tal probability observed in the experiment. In order to verify if the 48

experiment accommodates the law of total probability, the values 49

obtained in the columns Total Prob and Pr(A) should be similar. 50

For the Wide faces, the classical law of total probability was 51

not violated since the probability of choosing an Attack action 52

alone is the same as the probability of Attack, but computed using 53

the law of total probability formula. However, when we look 54

at the results obtained with the Narrow faces, one can see that 55

these probabilities are significantly different.When computing the 56

probability of making an Attack with the law of total probability, 57

the computed probability ended up in 59%. When computing 58

the same probability is the D-Alone experiment, this probability 59

increased to 69%. This deviation in the results suggests a violation 60

to the Sure Thing Principle and leads to a violation of the law of 61

total probability. 62

Next, we present an experimental simulation of the
∧

63

categorization/decision experiment performed by Busemeyer et al. 64

(2009) using Quantum-Like Bayesian Networks and the proposed 65

vector similarity model. 66

4.2. Modelling the problem using Quantum-Like Bayesian Networks 67

The results observed in the empirical experiments of Buse- 68

meyer et al. (2009) can be represented in a Bayesian Network just 69

like it is demonstrated on the left side of Fig. 5 for Narrow faces and 70

the right side of the same figure forWide faces. In the BayesianNet- 71

work
∧
both classical probabilities (Pr(X)) and quantum probability 72

amplitudes (ψx) are specified. 73

4.3. Computation of the probability of narrow faces 74

The first step to compute Bayesian inference consists in 75

calculating the quantum version of the full joint probability 76

distribution. This corresponds to Eq. (4). From the quantum-like 77

full joint probability distribution, one can easily compute the 78

probability of Attack in the following way (using Eq. (5)). Note that, 79

in order to simplify the notation, we use the letter a instead of 80

Attack, the letter g for Good, the letter b for Bad and the letter w 81

forWithdraw. Also, theα parameter is the
∧
normalization factor and 82

corresponds to α = [Pr(Attack)+ Pr(Withdraw)]−1: 83

Prnarrow(Attack) = α
ψC=gψD=a|C=g + ψC=bψD=a|C=b

2 (8) 84

Prnarrow(Attack) = α
ψC=gψD=a|C=g

2
+

ψC=bψD=a|C=b
2 + Interf A


(9) 85

where, 86

Interf A = 2 ·
ψC=gψD=a|C=g

 ·
ψC=bψD=a|C=b

 · cos

θa,g − θa,b


. 87

In order to determine the
∧
normalization factorα, one also needs 88

to compute the probability Prnarrow(Withdraw) in the same way: 89

Prnarrow(Withdraw) = α
ψC=gψD=w|C=g + ψC=bψD=w|C=b

2 (10) 90

Prnarrow(Withdraw) = α
ψC=gψD=w|C=g

2
+

ψC=bψD=w|C=b
2 + InterfW


(11) 91

catarina
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Fig. 4. Summary of the probability distribution of the Good/Bad faces in the experiment of Busemeyer et al. (2009).

Fig. 5. Representation of the Narrow faces experiment (left) andWide faces experiment (right) in a Bayesian Network with classical probabilities and quantum amplitudes.
The classical probabilities are given by Pr(X) and the quantum amplitudes by ψx .

Table 1
Empirical data collected in the experiment of Busemeyer et al. (2009).

C-then-D D-Alone
Experiments Pr(G) Pr(A|G) Pr(B) Pr(A|B) Total prob Pr(A)

Empirical experiment (Busemeyer et al., 2009)
Wide face 0.82 0.36 0.18 0.53 0.39 0.39
Narrow face 0.19 0.43 0.81 0.63 0.59 0.69

where,1

InterfW = 2 ·
ψC=gψD=w|C=g

2

·
ψC=bψD=w|C=b

 · cos

θw,g − θw,b


.3

The computation of the probabilities for the Wide faces is4

performed in an analogous way, but using the Quantum-Like5

Bayesian Network in Fig. 5.6

In the next section, we present with more detail how quantum7

interference terms were computed using the images of the dataset8

in the experiments of Busemeyer et al. (2009) and the proposed9

similarity measure.10

4.4. Computing quantum interference terms11

The quantum interference terms were obtained through vector12

similarities using a dataset of images of faces. The dataset used in13

our simulations is the same used in the experiments of Busemeyer14

et al. (2009), and it consists
∧
of 17 digitally modified Narrow15

faces (shape of face narrowed and lips enhanced) and 17 digitally16

modified Wide faces (shape of face widen and lips thick).17

The images of the dataset used in the experiments of Busemeyer18

et al. (2009) were in
∧
greyscale. That is, they are represented by19

three matrices containing pixel information for the RGB
∧
colour20

scheme. In order to represent an image in an n-dimensional vector,21

it was required to convert the images into black and white to keep22

the main information of the image simple. This means that the23

image is represented by a single matrix in which the pixels are24

either 0 or 1. We made this conversion in order to obtain two25

different types of images: one that enhances the thickness of the26

lips and other features of the face (such as eyes and nose), and27

another one that diminishes the impact of these features. Fig. 628

shows an example of the conversion of the main dataset image 29

into binary (black/white) imageswith the features either enhanced 30

or reduced. The main motivation of doing this was to test if the 31

content information of the image played any role in finding the 32

quantum θ parameters. 33

In the work of Busemeyer et al. (2009), the authors randomly 34

considered a set of faces
∧
to be categorized as Good or as Bad 35

according to some digitally modified features. In our work, since 36

we did not have access to the information of which faces were 37

classified as Good or as Bad, we decided to perform a simulation 38

similar to the work of Busemeyer et al. (2009). For each simulation 39

performed, we created several samples of this dataset, in which 40

we randomly selected 70% of the Narrow faces to be considered 41

Bad and 30% to be considered Good, just like it was already 42

presented in Fig. 4. In the same way, we randomly selected 70% 43

of the Wide faces to be Good and 30% to be Bad. For each image 44

of the dataset, we converted the black/white face images into 45

n-dimensional vectors. From this, we measured the similarity 46

between every single image of the dataset with each of the 47

faces that were classified as Bad and each of the images that 48

were classified as Good. This would represent the categorization 49

performed by each participant: given a face, he/she would have to 50

categorize it as either Good or Bad. The similarity was computed 51

through the Cosine Similarity function (Eq. (6)). The computed 52

value was used to set the quantum interference terms in the 53

Quantum-Like Bayesian Network and the final probability of the 54

participant deciding to Attackwas computed through Eq. (5). In the 55

experiment performedbyBusemeyer et al. (2009), this information 56

was randomly assigned to each face of the dataset, and based on 57

that information, they measured the probability of a participant 58

answering the questions correctly. So, each face a priori already 59

had a classification attached to it. We simulated this classification 60

catarina
Sticky Note
but using the Quantum-Like Bayesian Network on the right side of Fig. 5.
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Fig. 6. Conversion of a dataset image into a binary image. Conversion with a small
∧
threshold (left). Conversion with a high

∧
threshold (right).

Fig. 7. Impact of the threshold when converting an image into a binary image.
∧
Threshold ranges from 0.2 (left) to 0.8 (right).

by randomizing the dataset 100 times and considering different1

faces to be either Good or Bad according to the percentages used2

in the original study. The mean value of the probabilities for each3

simulation was computed. Originally, it was this randomization4

that was the cause of the occurrence of the levels of uncertainty5

in the study of Busemeyer et al. (2009), leading to a violation of6

the laws of probability theory. In other words, one can see this7

uncertainty as a cause for the emergence of quantum interference8

effects. In the same way, we use the differences between the9

contents of the images, when compared to an image that was10

previously classified as either Good or Bad (since we do not know11

which classificationswere attributed to each face), in order to raise12

uncertainty and to measure the quantum effects. Note that some13

readers might think that the quantum interference effects occur14

due to the fact that two images can be incompatible. However,15

one should take into account that incompatibility only means that16

you have to represent each of the questions (under a quantum-17

like point of view) in different basis, it does not mean that the two18

images are incompatible (in the experiment, people answered two19

incompatible questions about the same image).20

4.5. The impact of the conversion threshold21

Also, in this experiment, we wanted to verify how the conver-22

sion of the images
∧
influences the probabilities of an Attack action23

under the Narrow faces. We varied the conversion threshold from24

[0.2, 0.8]. Fig. 7 shows an example of how the images vary accord-25

ing to the conversion threshold.26

For each threshold, we analysed their respective probability27

distributions using histograms.We also fitted a normal probability28

distribution curve in order to check if the frequency of the29

occurrence of choosing the action Attack is distributed around the30

mean value. This will play an important role in choosing which31

is the best conversion threshold that describes the probability32

distribution of our data. Figs. 8–14 show the histograms of the33

experiments for each threshold with their respective normal34

density probability distributions.35

Regarding this model, a legitimate question that one can pose36

is concerned with the assumption that the angles computed37

through vector similarities can be used as quantum interference38

terms. The answer to this concern can be addressed by taking39

into account how the dataset was built. In the experiment of40

Pothos and Busemeyer (2009), the authors performed digital41

modifications in the dataset in order to enhance the properties 42

that they wanted participants to perceive during the experimental 43

setup: (1) enhance the narrowness or wideness of the shape of 44

the faces and (2) enhance the lips making them more thick for 45

narrow faces or thinner for wide faces. By doing these digital 46

modifications in the dataset, the authors were already introducing 47

some kind of categorization in the images of the faces: narrow 48

faces tend to be part of the Lork group, which have a higher 49

probability to be aggressive; and wide faces tend to be part of 50

the Adok group, which are more friendly. By manipulating the 51

images pixels, the authors were already encoding some kind of 52

semantical/psychological information. By comparing the image 53

vector information between a face categorized as Goodwith a face 54

categorized as Bad, we are measuring the phase of the angle of the 55

inner product between the projectors of two randomvariables, and 56

this is precisely the definition of quantum interference term given 57

in the book of Busemeyer and Bruza (2012). Moreover, the usage 58

of vector similarities in order to represent quantum interferences 59

has been already applied in previous literature, such as in thework 60

of Pothos et al. (2013), where the author represents concepts in a 61

multidimensional vector space and measures similarities between 62

them. 63

From these histograms, one can observe that the probability 64

distribution of Figs. 8 and 13 is a little skewed. That is, the highest 65

occurrence of the probability of choosing the Attack action is 66

shifted either to the left or to the right of the mean value of 67

the distribution. On the other hand, the histograms that better 68

describe the data by a normal distribution fit are
∧
Figs. 10–12. 69

Note that, in the end, for each threshold image, the mean values 70

are located between 0.64 and 0.65. This means that, the choice of 71

the conversion threshold of the images does not have a significant 72

impact on the final outcome of the results. However, there are 73

some thresholds that lead to a probability distribution closer 74

to a normal density probability function (which is the case of 75

Figs. 10–12). For this reason, we chose the threshold that leads to 76

the higher mean value of choosing an Attack action. In this case, 77

Fig. 10, which corresponds to a conversion threshold of 0.4, that is, 78

a threshold that slightly diminishes the features of the images. In 79

Fig. 15, it is illustrated how the probabilities are distributed for the 80

100 samples tested using a conversion threshold of 0.4. 81

4.6. Results and discussion 82

The results obtained after running the simulations described in 83

the above sections are presented in Table 2. In the experiments 84

catarina
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Table 2
Results from the application of the Quantum Like Bayesian Network (QLBN) model to the categorization/decision experiment and comparison with the Quantum Dynamical
model (QDM) proposed in the work of Busemeyer et al. (2009).

Literature Pr(Attack) observed Pr(Attack) classical probability Pr(Attack) QDM Error QDM Pr(Attack) QLBN Error QLBN

Narrow faces 0.69 0.59 0.74 5.00% 0.65 4.00%
Wide faces 0.39 0.39 0.39 0.00% 0.35 4.00%

Fig. 8. Distribution of the probability of Attack through all simulations for a
threshold of 0.2.

Fig. 9. Distribution of the probability of Attack through all simulations for a
threshold of 0.3.

performed by Busemeyer et al. (2009), only the Narrow faces1

experiment presented a violation to the Sure Thing Principle. The2

Wide faces experiment presented the same results as the classical3

probability, so no violations occurred.4

In the previous work of Busemeyer et al. (2009), the authors5

present a Quantum Dynamical Model (QDM) model to perform6

quantum time evolution. This model requires the creation of a7

doubly stochastic matrix, which represents the rotation of the8

Fig. 10. Distribution of the probability of Attack through all simulations for a
threshold of 0.4.

Fig. 11. Distribution of the probability of Attack through all simulations for a
threshold of 0.5.

participants’ beliefs (it can be favouring an Attack action or a 9

Withdraw action). The double stochasticity is a requirement in 10

order to preserve unit length operations and to obtain a probability 11

value that does not require
∧
normalization. The time evolution of 12

the model simulates the participants’ deliberation process, until 13

a final decision is reached, and is modelled using
∧
Schrö

∧
dinger’s 14

Equation. To obtain the observed results depicted in Table 2, the 15
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Fig. 12. Distribution of the probability of Attack through all simulations for a
threshold of 0.6.

Fig. 13. Distribution of the probability of Attack through all simulations for a
threshold of 0.7.

authors had to fit the parameters of their model to this outcome.1

In the end, the QuantumDynamical Model proposed in Busemeyer2

et al. (2009) obtained an error percentage 5.00% for the Narrow3

faces and 0.00% for the Wide faces experiment. Note that the4

Quantum Dynamical Model fits three parameters in order to5

estimate four data points (the first four entries of Table 1).6

With the proposed Quantum-Like Bayesian Network together7

with the geometric representation of events, wewere able to build8

a quantum-like model that has a predictive nature. In a way, we9

also make use of quantum interference effects in order to explain10

the violations to the Sure Think Principle. The proposedmodel also11

has a predictive nature since the parameter fitting of the quantum12

model is found by geometric similarities. By predictive we mean13

that the model does not require any a priori knowledge about the14

Fig. 14. Distribution of the probability of Attack through all simulations for a
threshold of 0.8.

Fig. 15. Probability distribution of the 100 simulations performedwhen converting
a
∧
greyscale image into a binary one with a threshold of 0.4.

outcome of the experiment in order to accommodate the violations 15

to the Sure Thing Principle. 16

In the proposed model, the contents of the images (the pixels) 17

are represented in an n-dimensional vector space. From this 18

representation, we computed the geometric similarity between 19

them through the usage of the cosine similarity measure. Since 20

the contents of the images (pixels) are always positive (ranging 21

between 0 and 1), it was required to
∧
renormalize this information 22

in order to obtain quantum interference effects. Taking into 23

account this
∧
normalization in the computation of the final 24

quantumprobabilities, one could predict the observed results with 25

an error percentage of 4.00%. This preliminary result suggests that 26

there could be a relation between quantum parameters with the 27

semantic and geometric representation of events. We are aware 28

that this is just a preliminary conclusion, and more experiments 29

in this direction need to be conducted. In what concerns the Wide 30

faces, no violations to the Sure Thing Principlewere reported, since 31

the probability of Attack in the D-Alone condition was the same 32

as the one computed using the law of total probability. In this 33

case, the proposed model was able to predict the result with an 34

error percentage of also 4.00%. In the end, the proposed similarity 35

model tends to be more effective in decision scenarios that violate 36
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the Sure Thing Principle. Moreover, the Quantum-Like Bayesian1

did not obtain very significant error rates when compared to the2

Quantum Dynamical Model. This means that the proposed model3

tends to have a similar performancewhen compared to state of the4

art models with the advantage of being able to estimate quantum5

interference parameters. This makes the model general, scalable6

and predictive.7

Regarding scalability, it is well known that the computational8

costs of performing probabilistic inferences in Bayesian Networks9

grow with the number random variables (Koller & Friedman,10

2009). That is why, for very complex decision scenarios, ap-11

proximative methods are used in order to perform probabilis-12

tic inferences (Murphy, 2012). Bayesian Networks are decision13

support systems that are used very frequently to model complex14

decision scenarios such as BioInformatics, in which many scenar-15

ios include dealing with an exponential number of genes (Zou16

& Conzen, 2005), medical decision support, where Bayesian net-17

works are used to compute the probability of a patient having can-18

cer given several conditions (Kahn, Roberts, Shaffer, & Haddawy,19

1997), spam filters, in which the probability of some textual con-20

tent being considered spam is computed (Sahami, Dumais, Hecker-21

man, & Horvitz, 1998), etc. This is whatwemean by generalization.22

BayesianNetworks arewidely accepted structures in the literature,23

because they can deal with a big number of random variables and24

be applied in different decision scenarios.25

5. Conclusion and final discussion26

In this work, we propose to model the
∧
Categorization/Decision27

experiment from Busemeyer et al. (2009) with a Quantum-Like28

Bayesian Network. We also propose the representation of objects29

(or events) in an arbitrary n-dimensional vector space, enabling30

their comparison through similarity functions. The computed31

similarity value is used to set the quantum parameters in the32

Quantum-Like Bayesian Network model. Just like in the work of33

Pothos et al. (2013), we are not restricting our model to a vector34

in a multidimensional psychological space, but to an arbitrary35

multidimensional space.36

The reason of choosing to address this problem through a37

Quantum-Like Bayesian Network approach, is because Bayesian38

Networks can model more complex decision scenarios very easily.39

They can generalize to more complex decision scenarios due to40

its network structure and compute probabilistic inferences more41

efficiently than, for instance, quantum projection-based models.42

In a quantum projection approach, this would be intractable43

with the increase of the number of random variables with the44

complexity of the decision scenario. However, in the quantum45

cognition literature, there is not much data available with more46

than two random variables. For this reason, we cannot verify47

the effectiveness of the proposed Bayesian network under more48

complex scenarios. The only thing we can do is to perform49

experiments with the available data.50

An interested reader might also think how can the proposed51

Quantum-Like Bayesian Network be applied in other types of52

quantum cognition problems such as order effects. In social53

sciences and behaviour research, order effects
∧
are a kind of54

problem that consists in asking two consecutive questions in55

different order and obtaining a different answer for the same56

questions. That is, the context of the previous question influences57

the answer of the second question. Very generally speaking, we58

would say that there is a possibility to represent such problems59

due to the acyclic nature of the Bayesian Network. This means60

that, when performing probabilistic inferences, the information61

trails in the network tend to be directional, so this opens a door in62

∧
modelling problems related to order effects. More research studies63

under this direction are necessary in order to verify this approach.64

The results of the simulations of the experiment of Busemeyer 65

et al. (2009) demonstrated that the proposed method is general 66

and was able to reproduce the experimental observations of the 67

violations of the Sure Thing principlewith a small error percentage. 68

We are aware that this is just a preliminary result and more 69

experiments and studies are needed towards this direction in order 70

to verify the applicability of this type of modelling in decision 71

problems that are violating the Sure Thing Principle. 72

In the end, in this model we are assuming that the similarities 73

computed between two vectors representing the images of faces 74

can be used to set quantum interference parameters, since they 75

are both computing the inner product between two random 76

variables and, consequently, there is a mathematical equivalence 77

between the θ parameters computed from similarities and the 78

quantum θ parameters corresponding to the interference terms 79

in the Quantum-Like Bayesian Network model. This assumption 80

comes from the book of Busemeyer and Bruza (2012), where it is 81

stated that the θ parameter that arises in quantum interference 82

effects corresponds to the phase of the angle of the inner product 83

between the projectors of two random variables. They also state 84

that the inner product provides a measure of similarity between 85

two vectors (where each vector corresponds to a superposition of 86

events). If the vectors are unit length, then the Cosine Similarity 87

collapses to the inner product. Given all these relations, we 88

can assume that the similarities computed between two vectors 89

representing the images of faces can be used to set quantum 90

interference parameters. 91
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