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1 Introduction

An important strand of Robert Basmann’s early work was devoted to the estimation of

simultaneous equations (see Basmann, 1957, 1959, 1961, or 1963, to mention a few). Ex-

amples of simultaneous systems of equations in economics are the study of the domestic

and foreign demand of outputs across firms, of the consumption of different goods and

services across households, or the behavior of different workers within firms or sectors.

A host of economic problems at various levels of aggregation involves panel data and

systems of equations. Two problems which complicate the analysis of such data con-

siderably in conjunction are that data broadly speaking may be missing in the sense of

censoring or truncation and that they are cross-sectionally dependent (e.g., see Pinkse

and Slade, 1998; McMillen, 2002; Smith and LeSage, 2004; Pinkse, Slade, and Shen,

2006; Klier and McMillen, 2008; Smirnov, 2010; Conley and Topa, 2007; Case, 1992;

Wang, Iglesias, and Wooldridge, 2013; for approaches towards estimating problems with

cross-sectionally dependent binary outcome variables; or LeSage, 2000; Flores-Lagunes

and Schnier, 2012; Xu and Lee, 2015a; Xu and Lee, 2015b; LeSage and Pace, 2009; for

cross-section approaches towards a wider range of models with cross-sectionally depen-

dent, censored or truncated and other limited dependent variables). While the literature

on spatial and social-interaction models has formulated and analyzed models for systems

of equations (see, e.g., Cohen and Morrison Paul, 2004, 2007; Kelejian and Prucha, 2004;

Wang, Li, and Wang, 2014; Baltagi and Deng, 2015; Wang, Lee, and Bao, 2015), in these

approaches the structural form of the model is linear in parameters, and, except for Co-

hen and Morrison Paul (2004) and Baltagi and Deng (2015), the approaches are designed

for an analysis of cross sections of units.

The present paper proposes an approach towards estimating panel-data processes

of systems of cross-sectionally dependent data with potentially mixed continuous and

censored dependent variables. It outlines a Bayesian estimation approach, puts forward

simulations to illustrate the performance of the estimators in small samples, and provides

an application with Census-type firm-level data on manufacturers of textiles in China’s

province of Guangdong, analyzing domestic and foreign (i.e., export) demand towards
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firms.

According to the simulation exercises presented below, the Bayesian approach works

well in small samples of 500 and 1,000 cross-sectional units. Ignoring the censoring

clearly leads to a bias in the estimated parameters, according to that evidence. This

bias is aggravated in a spatial or social-interactions model relative to a model where the

reduced form of the model is a linear index, since censored observations feed back onto

the outcomes of uncensored units. Ignoring that this feedback occurs by way of the true

rather than the censored outcomes leads to a substantive parameter bias, depending on

the relative importance of the censored units in the data.

Since its gradual opening up in the 1970s and, in particular, since the country’s

entering of the World Trade Organization (WTO) in 2001, firm performance has been

soaring in China. Clearly, foreign demand through exports and foreign-firm presence

through foreign-affiliate operation in China have been drivers of this process. This pa-

per studies the linkages between domestic selling and exporting on the one hand and

among domestic versus exporting sellers on the other hand in China’s textiles produc-

tion. The analysis of the problem calls for an approach to estimate a set of mixed linear

and nonlinear seemingly unrelated or even simultaneous equations, since domestic sales

of firms are continuous, while exports are censored. Considering panel data and allowing

for correlations of the disturbances across equations calls for a panel-data systems ap-

proach. The paper proposes specifying a system of equations which is inspired by recent

theoretical work in international economics and conducts comparative static analyses

regarding the role of exogenous shocks to the system to assess the relative importance

of shocks across outcomes as well as firms.

The insights from the empirical analysis based on the data employed here may be

summarized as follows. First, there is censoring of log exports (for about 6% of the

observations). Second, the parameter estimates lead us to reject models which disregard

spatial or network effects among textiles producers. Third, there is an indication that

success at export markets positively influences domestic sales but there is no evidence of

the opposite. Fourth, the results point to the relevance of time-invariant unobservable
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factors which affect domestic and export sales of textiles producers. These results suggest

that the data at hand call for econometric models of the kind proposed and analyzed

in this paper. With this approach we identify (broadly-defined) productivity as a key

driver of both domestic and export sales of textiles and ad-valorem tariffs as the second-

most important determinant of textiles exports at the firm level in Guangdong province.

Other important factors relate to factor-market competition among all domestic sellers

and exporters and to spillovers from other domestic sellers on domestic sales and from

other exporters on export sales of a firm. The findings indicate that spatial or network

effects among firms account for up to about one-third to almost one-half of the total

impact for the median firm and some of the determinants of domestic sales and exporting.

The inter-quartile range of the total impact effects is estimated to amount to slightly

less than one-half of the effect on the median firm. This heterogeneity of the impact

effects is due to the interdependence of domestic and export selling, respectively.

The remainder of the paper is organized as follows. The subsequent section in-

troduces the econometric model for panel data with systems of mixed continuous and

limited dependent variables, Section 3 outlines the estimation procedure, and Section

4 provides some eclectic evidence on the small-sample performance of the estimation

approach. Section 5 summarizes Census-type panel data on various characteristics of

Chinese textiles manufacturers in Guangdong province, including the outcomes of in-

terest, domestic and export sales, and it reports on estimation results based on an

application of the aforementioned procedure on the respective data. The last section

concludes.

2 An econometric spatial panel-data model of a system of

mixed censored and continuous equations

Let us use indices i and t to denote firms and time periods, and let N and T denote the

unique number of firms and years in the data.

For each firm in the data, we observe log domestic sales, ydit. For exporters, we observe
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log exports, yeit. Whereas log domestic sales are continuous, log exports are censored.

These two variables may be represented as to be generated from a two-equation system

of corresponding latent variables yd∗it and ye∗it . Using a generic notation for equation

g, h ∈ {d, e}, the two equations of the latent variables are specified as

yg∗it = γgy
h∗
it + λg

∑
j∈Nt

wgijty
g∗
jt + xgitβg + ugit

= γgy
h∗
it + λgy

g∗
it + xgitβg + ugit (1)

where yg∗it is the spatial lag of the gth latent dependent variable, yh∗it denotes the latent

dependent variable of the other equation, xgit is a row vector of exogenous, explanatory

variables of the gth latent dependent variable, λg is a scalar spatial-lag parameter, γg

is a scalar parameter, βg is a conformable parameter vector, and ugit is an error term.

With left censoring at zero,1 we may define the two observed outcome variables as

ydit = yd∗it (2)

yeit = I(ye∗it ≥ 0)ye∗it . (3)

To the Bayesian econometrician, who can sample the latent continuous variables, the

problem at stake is fully characterized by two latent processes and two corresponding

equations. The corresponding system of equations is one of mixed censored and uncen-

sored, spatially correlated panel data.2

Regarding the disturbances, we assume for the generic equation g ∈ {d, e}

ugit = αgi + νgit, (4)

where αgi denotes an individual-specific, time-invariant unobserved effect and νgit the

idiosyncratic error. In what follows, we will consider αgi and νgit to be structurally

1It would be straightforward to allow the censoring point to happen at an arbitrary other value, or

to consider right censoring of the data on the dependent variable(s). However, since left censoring at

zero is the relevant case for the application below, we outline the econometric model accordingly.
2Note that under the assumptions adopted here, namely that there is (spatial or social-network)

interdependence in latent outcomes rather than observed outcomes, the difference between censoring

and truncation vanishes with Bayesian sampling of latent outcomes.
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correlated across equations. For this, let us introduce the two 2×1 vectors αi = (αdi , α
e
i )
′

and νit = (νdit, ν
e
it)
′. Both vectors are assumed to be multivariate normal each with αi

potentially having a non-zero mean and νit having mean zero, with variance-covariance

matrix

E[ζitζ
∗
it] =

 σζdζd .

σζeζd σζeζe

 for ζ ∈ {α, ν}, (5)

where ζit corresponds to either the time-invariant αi or the time-variant νit. More-

over, we assume that E[αgiα
g
j ] = 0 for all i 6= j, E[αgi ν

h
jt] = 0 for all {g, h, i, j, t}, and

E[νgisν
g
jt] = 0 for all {g, i, j, s, t}.

As is common in panel-data models featuring spatial dependence or a social-network

structure (see, e.g., Kapoor, Kelejian, and Prucha, 2007), the observations are stacked

such that i is the fast index and t the slow index. After defining the TN × TN spatial

or social-interactions weights matrix W g = (wgijt), the model for the latent variable for

equation g in (1) may be written as

yg∗ = γgy
h∗ + λgW

gyg∗ +Xgβg + ιT ⊗ αg + νg, (6)

for g, h ∈ {d, e} where yg∗, yh∗, and νg are of dimension TN × 1.3 The matrix Xg is

of dimension TN × kg and its parameter vector βg is kg × 1. The TN × TN weights

matrix W g is block-diagonal with W g = diag(W g
t ) and contains zero diagonal elements.

The off-diagonal elements of W g
t are possibly nonzero, reflecting the neighborliness or

network relations between two cross-sectional units at time t. Moreover, we assume

the elements of W g to be normalized so that the admissible parameter space of λg can

be characterized more straightforwardly. For instance, a convenient normalization is

dividing each element in W g by the corresponding sum of all elements in a row (see

Anselin, 1988; and see Kelejian and Prucha, 2010, for alternative normalizations).4 The

3Notice that we could write W gyg∗ = yg∗ instead. However, the notation in equation (6) will turn

out to be useful towards outlining the reduced form of the system of equations.
4With a time-invariant, normalized, N ×N spatial weights matrix W

g
, W g = IT ⊗W

g
, where IT is

an identity matrix of dimension T and W
g

= (wgij).
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vector αg is of dimension N × 1.

Stacking both equations for g ∈ {d, e} below one another yields the following equation

system

y∗ = (Γ⊗ ITN )y∗ + (Λ⊗ ITN )Wy∗ +Xβ +Aα+ ν, (7)

where y∗ = (yd∗′, ye∗′)′ denotes the 2TN × 1 vector of stacked latent variables. The

2TN × 2TN spatial weights matrix is given by W = diagg(W
g). The 2 × 2 diagonal

matrix of the spatial autocorrelation (or social interaction) parameters is given by Λ =

diagg(λg), and the 2× 2 matrix Γ contains the respective γ parameters off the diagonal.

The regressors are subsumed in the 2TN ×k matrix X = diagg(X
g) with corresponding

k×1 parameter vector β = (βg), where k =
∑

g∈{d,e} k
g. The unobserved, time-invariant

heterogeneity of the cross-sectional units is subsumed in the 2N×1 vector α = (αg), and

the innovations are subsumed in the 2TN × 1 vector ν = (νg). The other matrices are

defined as follows: A = I2⊗ ιT ⊗ IN , with ιT being a column vector of ones of dimension

T , and ITN being an identity matrix of dimension TN . The operator ⊗ denotes the

Kronecker product.

Based on this notation, the reduced form of the system of equations in (7) can be written

as

y∗ = L−1(Xβ +Aα+ ν),

with L = (I2TN − (Γ ⊗ ITN ) − (Λ ⊗ ITN )W ) ≡

 Ldd Lde

Led Lee

, where Ldd = ITN − λdW d,

Lee = ITN − λeW e, Lde = −γdITN and Led = −γeITN . Notice that the case of a spa-

tial seemingly unrelated system of equations is covered by this expression, as only the

off-diagonal elements of Γ would then be zero, and in turn both Lde and Led would be

0TN×TN .
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3 Estimation

3.1 Bayesian MCMC in general

Standard simultaneous systems of equations can be estimated by maximum likelihood

(see, e.g., Haavelmo, 1944; Hood and Koopmans, 1953; among others), two-stage least

squares (see Basman 1957, 1959; Theil, 1958) or Bayesian methods (see Zellner, 1971;

or Drèze and Richard, 1983, for an overview).

The equation system of interest to this paper is characterized by three types of de-

pendencies: cross-sectional dependence among the individual units due to spatial (or

network) interactions and the presence of Wy∗ in equation (7); cross-equation depen-

dence due to the presence of y∗ on the right-hand side of (7); and cross-equation depen-

dence through the assumptions about the time-invariant and time-variant unobservables

in (5). Furthermore we have a mixed-system where one equation is linear whereas the

other one is censored.

In particular, the presence of Wy∗ as a determinant of y∗ precludes the estimation

of the model parameters by the maximum likelihood estimator, in particular, for large

samples.5 Moreover, the censoring of the data in one equation does not permit an anal-

ysis of the model by customary instrumental-variables generalized-method-of-moments

estimators which are designed for problems where the data are fully observed.6

To account for the different forms of interdependence and the non-linearity of some of

the dependent variables, we follow a Bayesian Markov-chain Monte Carlo (MCMC) ap-

proach which has been used in earlier work mainly to study single-equation, cross-section-

data, unlimited and limited-dependent-variable models (see, for example, LeSage, 2000;

LeSage and Pace, 2009; Parent and LeSage, 2012, who analyze a univariate linear spatial

dynamic random effects model. Also, Baltagi, Egger, and Kesina, 2016, who analyze a

bivariate probit panel-data model with spatial or social network interactions). None of

5This is due to the interdependence of the units in the reduced form of the model.
6Clearly, either ignoring Wy∗ on the right-hand side of the model or replacing it by Wy (i.e., using

censored rather than true values of the outcome) would lead to biased parameter estimates.
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this work considers the case of simultaneous equations with cross-sectional dependence,

limited dependent variables, and panel data, which is the focus of the present paper.

With Bayesian MCMC simulation, the posterior distribution of all parameters is

estimated by combining prior information on them with the likelihood for the respective

model. Each parameter is sampled sequentially from its conditional distribution – either

by Gibbs or Metropolis Hastings sampling, depending on the nature of the conditional

distribution of the sampled parameter (see the next subsections for details).

Bayesian MCMC simulation is suitable for simultaneous equation systems with cross-

sectional dependence as the one described in the previous section for several reasons.

First, it avoids calculating and evaluating multidimensional integrals as they occur in

maximum-likelihood models with spatial or social network interactions. Second, with

Bayesian MCMC estimation, the treatment of limited-dependent-variable models is facil-

itated. Utilizing the approach of Albert and Chib (1993) for non-spatial, cross-sectional,

univariate probit models and LeSage (2000) and LeSage and Pace (2009) for spatial,

cross-sectional, univariate and multivariate probit models, the latent variables of non-

linear dependent variables may be introduced as additional parameters to the model.

Compared to maximum-likelihood estimation, this simplifies the estimation as condi-

tioning on latent variables yields simpler conditional distributions than not doing so.7

In particular, this data-augmentation approach of Bayesian MCMC estimation facili-

tates the computation of moments and the associated confidence intervals of the effects

of exogenous explanatory variables on outcome.

Let us use the following convention for the notation in this section. Let us subsume

all parameters in θ = {β, λg, γg,Σν , y
∗, α, µα, Vα} for g ∈ {d, e}, where β = (β′d, β

′
e)
′ and

y∗ = (yd∗′, ye∗′)′. The variance-covariance matrix of the idiosyncratic errors is denoted

by Σν . The vector µα and the matrix Vα relate to the conditional distribution of α

and will be described in more detail in the subsequent subsections. Using y = (yd′, ye′)′

7For example, in the application below, we fully observe log domestic sales of textile producers in

China while their log exports are censored from below at zero. However, one could imagine more general

circumstances of bigger systems of equations with truncation as well as censoring.
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to denote the vector of observed dependent variables, the joint posterior distribution is

given by

p(θ|y,X,W )

∝ p(y|y∗, X,W )p(y∗|β, λg, γg,Σν , α, µα, Vα, X,W )

p(β)p(γg|λg)p(λg)p(Σν)p(α|µα, Vα)p(µα)p(Vα).

The first expression in the second line relates the observed dependent variables to their

latent counterparts, the second expression represents the likelihood of the model, and

the third line denotes the priors. The expression for the joint posterior distribution

turns out to be intractable as such. Therefore, we calculate the conditional distributions

for all model parameters given the data and the other parameters, which we denote by

θ`|θ−θ` . In what follows, we will use the convention to denote posterior distributions by

an overline and prior distributions by an underline.

3.2 Prior distributions and likelihood

Using N and W to denote the normal and Wishart distributions, we specify the prior

distributions for β and Σν as

β ∼ N (β, V β) where β = 0k×1 and V = Ik · 1e12, (8)

Σ−1
ν ∼ W(V −1

Σν
, vΣν ) where V −1

Σν
= I2 and vΣν = 2, (9)

where the above assumptions imply a very diffuse (or uninformative) prior about the

elements of β and also a relatively diffuse prior about the elements of Σν . The time-

invariant, unobserved heterogeneity captured by α = (α′d, α
′
e)
′, is modelled by means

of a hierarchical structure, whereby all elements αi = (αdi, αei)
′ utilize a distribution,

which has some parameters in common, which we label as hyper-parameters and which

are drawn in a previous step and utilized when drawing αi. These hyper-parameters are

the associated mean µα and the variance-covariance matrix Vα, which have the following
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priors:

µα ∼ N (µ
µα
, V µα) where µ

µα
= 02×1 and V µα = I2 (10)

V −1
α ∼ W(V −1

V α, vV α) where V −1
V α = I2 and vV α = 2. (11)

By this choice, the priors for the elements in α are relatively diffuse.

The prior distributions for γg and λg exhibit also a hierarchical structure of the form

γg|λg ∼ U(−1 + |λg|, 1− |λg|), (12)

λg ∼ U(−1, 1), (13)

reflecting dependence of the spatial-lag (or social-interaction) parameters λg and the

parameters on the endogenous variables γg to ensure identifiability of the system.8

As all of the aforementioned priors are relatively uninformative, in calculating the

posterior distribution relatively little weight is placed on the priors and much on the data.

The joint distribution of y∗ is given by

y∗ ∼ N (µy∗ ,Ωy∗), (14)

with

µy∗ = L−1(Xβ +Aα)

Ωy∗ = L−1(Σν ⊗ ITN )L−1′,

where µ and Ω are partitioned as µ =

 µd

µe

 and Ω =

 Ωdd Ωde

Ωed Ωee

.

The likelihood stated in terms of the latent variables y∗ is given by

p(y∗|θ,X,W ) =
|L|

(2π)2TN/2|Σ|TN/2
exp

[
−1

2
tr
(
BΣ−1

ν

)]
,

where tr denotes the trace and B is a 2× 2 matrix containing the elements

bdd = (Lddyd∗ + Ldeye∗ −Xdβd − ιT ⊗ αd)′(Lddyd∗ + Ldeye∗ −Xdβd − ιT ⊗ αd),
8Clearly, this identifiability eventually requires putting exclusion restrictions on the variables in X

across the equations in the system. The associated conditions are standard in models with systems of

equations (see Kelejian and Prucha, 2004).
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bde = (Lddyd∗ + Ldeye∗ −Xdβd − ιT ⊗ αd)′(Ledyd∗ + Leeye∗ −Xeβe − ιT ⊗ αe),

bed = (Ledyd∗ + Leeye∗ −Xeβe − ιT ⊗ αe)′(Lddyd∗ + Ldeye∗ −Xdβd − ιT ⊗ αd),

bee = (Ledyd∗ + Leeye∗ −Xeβe − ιT ⊗ αe)′(Ledyd∗ + Leeye∗ −Xeβe − ιT ⊗ αe).

3.3 Conditional distributions

Conditional distribution of β

The conditional distribution of β given the other parameters is

β|θ−β ∼ N (β, V β), (15)

where

β = V β
(
X ′
(
Σ−1
ν ⊗ ITN

)
(Ly∗ −Aα) + V −1β

)
,

V β =
(
X ′
(
Σ−1
ν ⊗ ITN

)
X + V −1

)−1
.

Accordingly, we may apply Gibbs sampling to draw values for β.

Conditional distribution of α

The conditional distribution of the 2N × 1 vector α is

α|θ−α ∼ N (α, V α),

where

α = V α
(
A′
(
Σ−1
ν ⊗ ITN

)
(Ly∗ −Xβ) + (V −1

α ⊗ IN )(µα ⊗ ιN
)
),

V α =
(
A′(Σ−1

ν ⊗ ITN )A+ V −1
α ⊗ IN

)−1
,

which are based on the hyper-parameters µα and Vα. The latter are drawn as

µα|θ−α ∼ N (µα, V µα),

using

µα = V µα

(
(V −1
α ⊗ ι′N )α+ V −1

µα
µ
α

)
,

V µα
=

(
NV −1

α + V −1
µα

)−1
,
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and

V −1
α |θ−α ∼ W(V Vα , vVα),

with

vVα
= v +N,

V Vα = (M + V Vα
)−1,

and the 2 × 2 matrix M = (mgh) containing the elements mgh = (αg − ιNµgα)′(αh
′ −

ιNµ
h′
α ), where ιN is an N × 1 vector of ones. All of these parameters have known distri-

butions. Accordingly, we apply Gibbs sampling, drawing the hyper-parameters µα and

Vα first and then using those in drawing the elements of α.

Conditional distribution of Σν

The conditional distribution of the 2× 2 matrix Σ−1
ν is given by

Σ−1
ν |θ−Σ−1

ν
∼ W(V Σν , vΣν ),

with

vΣν = vΣν
+ TN,

V Σν
= (B + V Σν

)−1,

which is of the Wishart form. Therefore, we use Gibbs sampling for drawing the

respective parameters.

Conditional distributions of λg and γg

The conditional distributions of λg and γg for g ∈ {d, e} are given by

λg|θ−λg ∝ |L|exp
[
−1

2
tr
(
BΣ−1

ν

)]
, (16)

γg|θ−γg ∝ |L|exp
[
−1

2
tr
(
BΣ−1

ν

)]
, (17)
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where |L| = |(ITN − λdW
d)(ITN − λeW

e) − γdγeITN |. These distributions have an

unknown form and therefore a Metropolis-Hastings sampling procedure is applied. Since

we use the same approach for drawing λg|θ−λg and γg|θ−γg , it is sufficient to outline it

exemplarily for λg|θ−λg . Following LeSage and Pace (2009), a proposal candidate λgc is

drawn by λgc = λg + cλg ·N(0, 1) , with λg denoting the previous value and cλg a tuning

parameter. We only use proposal candidates that are in the admissible parameter range.

Using (16), and {λg, λgc}, an acceptance probability is calculated to decide whether

keeping λg or using the new candidate λgc. The tuning parameter cλg is adapted to

ensure an acceptance probability between 40% and 60%.

Conditional distribution of ye∗

In the application in Section 5 below, yd represents the (log of) domestic sales, which are

fully observed for all firms and time periods. Thus, yd∗ = yd, and we do not have to take

draws for this dependent variable. In contrast, ye∗, which represents the (log of) exports

are not fully observed but censored for some percentage of the observations from below

at zero. We calculate the conditional distribution of ye∗ using the joint distribution in

equation (14) as

ye∗|θ−ye∗ ∼ N (µye∗ ,Ωye∗), (18)

with

µye∗ = µe + Ωed(Ωdd)−1(yd − µd),

Ωye∗ = Ωee − Ωed(Ωdd)−1Ωde.

We draw the censored values of log export sales from a truncated multivariate normal,

which is truncated from the right at zero using the method suggested by Geweke (1991).
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4 Simulation analysis

4.1 Simulation design

Before turning to the applications, we provide some evidence on the applicability of the

proposed estimation routine in small to medium-sized samples of N ∈ {500; 1, 000} and

T = 3. Specifically, we provide evidence of two types of systems each of which consists of

two equations, one corresponding to a panel tobit and one to a linear panel-data model.

In one case, we consider the case of a seemingly-unrelated-regression error structure,

where Γ is a 2× 2 matrix of zeros (SUR), and in another case, we consider the case of a

simultaneous system of equations (SSE). Since both types of models contain a spatial lag

of the dependent variable to account for cross-sectional spillovers among firms, we will

refer to them as SSUR and SSSE in this section. For each type of model, we consider

two parameter configurations regarding {λ1;λ2}, namely {0.4; 0.4} and {0.1; 0.3}.

For each model and configuration, we generate an N × N raw weights matrix W0

which has a wrap-around structure of a neighbors before and a neighbors behind every

unit i in a row, where a = 10. Hence, for the 11-th cross-sectional unit, all units

1, ..., 10 and all units 12, ..., 21 are neighbors; for the first unit, units 2, ..., 11 and units

N − 10, ..., N are neighbors; and for the N -th unit, units N − 11, ..., N − 1 as well as

units 1, ..., N are neighbors; etc.

We employ three exogenous variables {Xg1
it ;Xg2

it ;Xg3
it } which we generally draw iden-

tically and independently from univariate normal distributions with mean zero and vari-

ance two. Their coefficients are set to βg1 = (1, 1, 1)′, βg2 = (1, 1, 1)′, βg3 = (1, 1, 1)′.

We draw the elements of the 2× 1 vector νit independent of {Xg1
it ;Xg2

it ;Xg3
it } and of

αgi and identically and independently within equation g from a bivariate normal with

νit ∼ N(02×1,Σν) where Σν =

2 1

1 2

. Similarly, we draw the elements of the 2 × 1

vector αi identically and independently within equation g from a bivariate normal with

αi ∼ N(µα,Σα) with Σα =

 2 0.8

0.8 2

. With a few exceptions, we set µα = (1.5; 2.5)′.

However, to assess the importance of the relative amount of censored observations in the
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data on y2, we allow µα2 to vary in Design 1.

For the sake of better readability, we summarize the parameters for the SSUR and

the SSSE models under the different designs in Table 1. In each case, we generate one

Markov chain of 30,000 parameter draws with 5,000 burn-ins and a thinning rate of 10

(i.e., using every 10−th draw after discarding the burn-in draws). In the next subsection,

we report the results obtained from each of those Markov chains.

In all designs, we consider the case where one outcome is fully observed whereas a

second one is censored, where the fraction of censored values is reported in the notes of

each table. In the table, we report the posterior mean and standard deviation for each

parameter. The terms mα1 and mα2 refer to the averages across the thinned Monte Carlo

draws of the draw-specific averages of the posterior α1 and α2, respectively. Similarly,

{sα11, sα12, sα22} correspond to the averages across Monte Carlo draws of the draw-

specific posterior variance terms of {α1, α2}.

We assess the validity of the thinned chains for statistical inference by way of

Geweke’s (1992) test.9

4.2 Simulation results

We present the results for the four combinations of N and {λ1;λ2} for the SSUR model

in Tables 2-6 and for the SSSE model in Tables 7-9. The findings from these simulations

can be summarized as follows.

– Tables 2-6 about here –

First of all, the simulation results in Tables 2-6 indicate that the SSUR model works

well in samples of 500 and even more so in ones of 1,000 cross-sectional units. As

expected, the parameters can be estimated at greater precision with a larger sample of

1,000 than with a smaller one of 500 cross-sectional units. Tables 2-5 are all based on

Design 1. However, in Tables 2-4 we vary the fraction of censored observations in y2

9This test splits the sample of the MCMC draws after thinning and discarding burn-in draws into

three parts and tests the equality of the sample means based on the first 20% and the last 50% of the

draws of the chain.
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by changing µα = (1.5; 2.5)′ as used in Tables 2 and 5-9 to µα = (1.5; 4)′ in Table 3

(low degree of censoring; see the respective table footnote) and µα = (1.5; 1)′ in Table 4

(high degree of censoring; see the respective table footnote). According to these results,

the routine works well, especially for a sample size of 1,000 cross-sectional units for all

considered degrees of censoring.

Table 5 is an interesting benchmark case which Table 2 should be compared with.

While the censored values of y2 are drawn in Table 2, they are set at zero in Table 3,

so that y2 instead of y∗2 is used in estimation. The results in Table 5 clearly indicate

that ignoring the fact that some of the information on outcome y2 is censored leads to

parameter bias (e.g., consider the point estimates of {β21, β22, β23} or of λ2 in the case

of N = 1, 000. Hence, addressing the missing information in a suitable way as in Table 2

is particularly relevant with interdependent data (such as ones on spatial units of social

networks).

– Tables 7-9 about here –

The results for the SSSE models in Tables 7-9 suggest that, given everything else,

the estimation of simultaneous-equations models of the proposed kind, where we permit

γ1 6= 0 and γ2 6= 0, leads to a change in the signal-to-noise ratio so that one would wish

to have a somewhat larger number of cross-sectional units available. This can be seen

from the point estimates of λ1 and λ2, e.g., in Table 7, in particular for the smaller

sample. However, overall, the estimator appears to work quite well, and small-sample

problems tend to vanish even in panel data-sets with moderately-large cross-sections.

5 Empirical analysis of firms’ domestic sales and exports

in China’s textiles industry

In the course of the 1990s and certainly since the country’s accession to the World Trade

Organization in 2001, China has become a key player on global textiles markets. Apart

from easier access to foreign markets through lower tariffs abroad and access to foreign

capital in China, spillovers through contact with foreign textile producers on export
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markets as well as local technology spillovers among producers in China appear to be

important determinants of supply of and demand for China’s textiles products.

In the present paper, we focus on textiles sales of firms in Guangdong province which

is located on the coast of south-eastern China. According to the census of 2014, the

province is the most populous one in China with almost 110 million people, accounting

for almost eight percent of China’s population. The major settlements in the province

are its administrative capital, Guangzhou, and the economic hub of Shenzhen both of

which feature among the most populous cities in China. With the fourth-highest average

per-capita income among all the provinces, Guangdong is also the largest one in terms

of GDP in China. The manufacture of textiles is among the most significant economic

activities in Guangdong province.

Trade is very important to Guangdong. It has numerous economic and technological

development zones in place – most but not all of them in Guangzhou, Huizhou, Shenzhen,

and Zhuhai. Many of these zones provide easy access to global markets, and they lead to

a clustering of the emergence of firms in space, stimulating spillovers among firms. Much

of the export activity and of production in general is situated in or in close neighborhood

to the Pearl River Delta, for which the Port of Guangzhou – the largest port in South

China – serves as the key economic and transport nod.

In the remainder of this section, we will introduce the data-set used in the present

paper, report on descriptive statistics of the variables employed, and summarize the

associated regression results.

5.1 Firm-level census panel data on textiles producers in Guangdong

province

We employ panel data on domestic sales and exports of textiles producers in Guangdong

province over the period 2004-2007. During that time span, approximately 8.5% of

total sales in the Chinese textiles industry are produced in Guangdong. However, of

all domestic textiles sales by Chinese producers, firms in Guangdong contribute only

6%, while their exports account for about 14% of China’s export volume in the textiles
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sector, indicating the province’s strong orientation towards export markets. All over

China’s manufacturing, foreign capital (ownership) is concentrated in exporting firms.

For instance, 48% of China’s manufacturing exporters (and 20% of all manufacturers)

were partly foreign owned in 2004-2007. However, 70% of Guangdong’s manufacturing

exporters (and 44% of all manufacturers) were partly foreign owned over the same time

span. All of this suggests that Guangdong is a province of primary interest to study

domestic and export performance of firms, in particular, in the textiles sector.

We refer to the dependent variables used in the subsequent empirical analysis as log

domestic salesit (or ydit) and log exportsit (or yeit), respectively. Log exports sales are

censored at zero.10

We generally employ lagged determinants as adjusting supply occurs with some lag.

Accordingly, exogenous independent variables range from 2004 to 2006 and the corre-

sponding dependent variables are measured in 2005-2007. For each producer, we know

the exact geographical location, which permits determining the distance to other pro-

ducers and whether a producer is located in the Pearl River Delta or not. Moreover, we

know the density of all firms as well as of textiles producers – in particular of domestic

sellers versus exporters of any goods and of textiles – in the same zip code. For all pro-

ducers, we observe their overall employment, the wage costs per employee, the interest

rate paid for capital, the material costs, the value added per employee as a crude mea-

sure of productivity, and the share of foreign capital in all capital invested in a firm. By

the association with a specific textiles subsector,11 we may also compute the weighted

average tariff rate applied to China’s exports abroad, where the weights (China’s over-

all exports by subsector, destination country and year) and partner country tariffs are

10In the data, censoring may occur due to mis-reporting or non-reporting of small export volumes,

due to indirect exporting of small export quantities through whole salers, etc. It is well known that

countries impose thresholds for the requirement of reporting exports to statistical offices and not all

textiles producers report positive exports. See Wakelin (1998) or Berthou and Fontagné (2008) for

estimating firm-level exports with censored regression models.
11Our data set consists of firms from two subsectors: Textile processing and textile manufacturing.

These consist of 24 4-digit subsectors, which we based our merge with the tariff rates on.
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available from the World Bank’s WITS database.12

All variables are in logs except for the interest rate – the ratio of interest expenditures

and total debt for the same textiles subsector and year –, the binary indicator for the

location in the Pearl River Delta, the share of domestic market sellers of any products

among all firms in the same zip code, the share of domestic sellers in all textiles producers

in the same zip code, the share of export market sellers of any products among all firms

in the same zip code, and the share of exporters in all textiles producers in the same zip

code.

Firm size (employmentit−1), productivityit−1, and cost variables (wage per worker

it−1, materials per workerit−1, and interest rateit−1) capture aspects of technology at the

level of the firm. On the contrary, the firm number variables (number of all firms in zip

codeit−1, number of all textile firms in zip codeit−1, share of domestic market sellers in

all firms in zip codeit−1, share of domestic market sellers in all textile producers in zip

codeit−1, share of exporters in all firms in zip codeit−1, and share of exporters in all textile

producers in zip codeit−1) capture aspects of the market environment (the required labor

pool, the potential of competition as well as of spillovers). Fixed time effects in each

equation reflect aspects of domestic and foreign demand potential, and the ad-valorem

tariffit−1 captures foreign-market access costs. Finally, the foreign capital shareit−1

captures another aspect of foreign-market access costs (and, possible, of technology

transfer).

Factor costs, productivity and profitability (both of which are captured by the vari-

able value added per employee as used here), and the economic and geographical envi-

ronment are standard determinants of firm overall sales (see, e.g., Baltagi, Egger, and

Kesina, 2016, for evidence on China) as well as exports (see Kneller and Pisu, 2005;

Greenaway and Kneller, 2007).13 However, a customary assumption introduced by the-

12In a sector such as textiles, which does neither involve large-scale import activity of intermediate

products nor large-scale final-product competitive imports from elsewhere by China, it seems natural to

focus on the role of import tariffs abroad on Chinese exports. However, in other sectors, this is not the

case, as has been demonstrated by Van Biesebroeck and Yi, 2012.
13Defever, Heid, and Larch (2015) showed that, across all industries, Chinese firms tend to enter
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oretical work that most of the empirical literature relies upon is that individual firms

are atomistic (see Eaton and Kortum, 2002; Melitz, 2003; Kneller and Yu, 2016), so

that shocks to individual operations do not induce effects on other firms. The spillover

(or spatial- or network-lag) terms introduced by the presence of (Λ ⊗ ITN )Wy∗ among

the explanatory variables in the proposed empirical model means that individual firms

are important-enough so that shocks to them induce effects on other firms in the geo-

graphical neighborhood (e.g., through literal productivity spillovers, effects on market

power, or factor flows across firms). Hence, empirical evidence of Λ being nonzero would

challenge this assumption. Though based on different econometric methods than the

ones applied here, some exemplary earlier work suggests that firms are indeed not op-

erating independently of each other (see, e.g., Smarzynska Javorcik, 2004, for evidence

from Lithuania; the findings in Greenaway and Kneller, 2008, for the United Kingdom

indicate that the presence of other exporting firms in the neighborhood induces positive

effects on a firm’s propensity to export; the evidence in Manova and Yu, 2016, and

Manova, Wei, and Zhang, 2015, for China suggests that firms are related to each other

through processing and multinational relationships). Another customary assumption in-

troduced by the same theoretical work that most of the empirical literature relies upon

is that – conditional on firm-level productivity, market power, and factor costs – any

change in the success on export markets is irrelevant for success of the same firm on

domestic markets and vice versa. The presence of (Γ ⊗ ITN )y∗ in the empirical model

permits a departure from this hypothesis, and evidence of Γ to be non-zero would be a

challenge for the respective theoretical assumption. Again, some exemplary earlier work

suggests that also firms’ non-exporting outcomes may benefit from their exports (see,

e.g., Berman, Berthou, and Héricourt, 2011; Wang, Wei, Liu, Wang, and Lin, 2014).

We collect all of the explanatory variables into the two vectors Xd
it and Xe

it for

domestic sales and exports, respectively. Both Xd
it and Xe

it include: employmentit−1;

export markets in a contagious way, which is consistent with the theoretical results and the evidence

in Albornoz, Calvo Pardo, Corcos, and Ornelas, 2012. However, this issue is only loosely related to

the interest in this paper, which is about spatial and network effects among the export sales anywhere

abroad versus domestic sales anywhere in China of Chinese textiles producers.
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productivityit−1; wage per workerit−1; materials per workerit−1; interest rateit−1; number

of all firms in zip codeit−1; number of all textile firms in zip codeit−1; and fixed time

effects for 2006 and 2007. Only Xd
it additionally includes: share of domestic sellers in all

firms in zip codeit−1; and share of domestic sellers in all textile producers in zip codeit−1.

And only Xe
it includes: share of exporters in all firms in zip codeit−1; share of exporters in

all textile producers in zip codeit−1; ad-valorem tariffit−1; and foreign capital shareit−1.

Altogether, our study includes 630 textiles producers which are scattered across 288

zip codes. Table 10 summarizes main features of the dependent and the independent

variables.

– Table 10 about here –

According to the table, (log) domestic sales are on average slightly higher than (log)

exports. The zip code specific variables indicate the concentration of firms in some zip

code areas. Textiles producers are more strongly oriented towards export markets than

firms on average in Guangdong province. The numbers in the table suggest that, for

the years 2005-2007, the share of textiles exporters in all textiles producers in the data

is much larger than the share of exporters in all firms in the same 288 zip codes where

textiles producers are located. Conversely, the share of domestically selling textiles

producers in all textiles producers in the data is smaller than the share of domestic

sellers in all manufacturing firms in the same zip codes and years. More than 80% of the

textile producers in the data are located within the Pearl River Delta which points to

some geographical concentration of firms in this area, and provides easy access to export

markets. A foreign capital share of 0.647 for those textile producers and years indicates

a relatively high presence of foreign firms, at least as partial owners, in Guangdong’s

textile sector.

5.2 Estimation results

In this subsection, we present results based on a number of different econometric models,

all of which consider censoring in log exports ye. Table 11 presents the results of single-

equation models, where yd and ye are estimated as separate, univariate, spatial models
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with ye being censored and yd being not. Tables 12 and 13 contain the SSUR (assuming

that both γd = 0 and γe = 0) and SSSE models.

– Table 11-13 about here –

Since the reduced forms of the estimated models are nonlinear for potentially two

important structural reasons, namely that domestic sales and exporting may have an

impact on each other and that the success of textile firms at the domestic and the foreign

market may depend on the one of other firms, the parameters in Tables 11-13 should

not be interpreted. Therefore, we refrain from such a detailed discussion here and focus

on a comparison of the results in the tables by way of impact effects in the subsequent

subsection. However, we can point out a few general findings here.

First, the posterior means of σνde are −0.758 (with standard deviation 0.069) for

SSUR in Table 12, and −2.168 (with standard deviation 0.214) for SSSE in Table 13.

This suggests that efficiency gains can be had from estimating the two equations jointly,

rather than estimating them separately as in Table 11.

Second, all the specifications in Tables 11-13 point to an interdependence in both

domestic sales and exports (with λ̂g being generally positive and statistically significant

from zero). These results suggest that there are positive spillovers among both domestic

sellers and exporters which are potentially related to the understanding of consumer

markets and to productivity.

Third, firm-specific effects appear to be quite important, according to the estimates

m̂αd and m̂αe as well as the associated variances σ̂αdd and σ̂αee. This suggests that one

should not ignore the presence of producer-specific unobserved attributes in estimation.

Fourth, a comparison of the results of SSUR and SSSE in Tables 12 and 13, respec-

tively, leads to the conclusion that an increase in export sales has, on average, positive

repercussions on a textile producer’s domestic sales but not vice versa: γd is estimated

with a posterior mean of γ̂d = 0.178 and an associated small standard deviation of 0.019,

while γe is estimated with a posterior mean of γ̂e = 0.042 with a large standard deviation

of 0.114. This suggests that the SSUR model is rejected against the SSSE model. We
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devote the subsequent subsection to a discussion of the parameter estimates by way of

impact estimates based on the reduced form of the SSSE model.

5.3 Impact effects of regressors

Let us consider the effects of a change in a single element of xit, namely covariate xk,it,

which may be part of Xd only, of Xe only, or of both of them. It will be useful to refer to

a one-standard-deviation change in this covariate, which is scaled by the corresponding

parameter estimate, β̂dk in equation d and β̂ek in equation e, by ∆̂d
k and ∆̂e

k, both of

which are scalars. Moreover, let us define the vectors of equation-to-equation estimated

direct effects, d̂gh,d, of effects on others, d̂gh,o, of effects from others, d̂gh,f , and of total

effects, d̂gh,t, as

d̂gh,dk = diag[L−1
gh (∆̂hk)⊗ ITN ], (19)

d̂gh,ok = [L−1
gh (∆̂hk)⊗ ITN ]ιTN − d̂gh,dk , (20)

d̂gh,fk = [L−1
gh (∆̂hk)⊗ ITN ]′ιTN − d̂gh,dk , (21)

d̂gh,tk = d̂gh,dk + d̂gh,fk , (22)

where a superscript {gh, l} with any vector d̂k indicates a subvector pertaining to effects

of type l ∈ {d, o, f, t} of a shock in the exogenous explanatory variable k in equation of

outcome h ∈ {d, e} on outcome g ∈ {d, e}. Averages of such impact effects have been

proposed in different types of models with spatial or network interactions in LeSage and

Pace (2009). Notice that the elements of d̂gh,lk vary across the observations it, depending

on these observations’ location and economic geography in the textiles sector. In the

above expressions, L−1
gh denotes the gh-th block of L−1. Whenever g = h, the effects

pertain to within-outcome responses, whereas for g 6= h they pertain to across-outcome

responses.

– Tables 14-15 about here –

Tables 14 and 15 summarize moments of the distribution of the impact effects of a

one-standard-deviation increase in an explanatory variables (which enters only one or
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both equations) at a time on log domestic sales and log exports, respectively. As to

the moments of these distributions, we generally report the minimum (Min), the 25-th

percentile (p25 ), the 50-th percentile (p50 ), the 75-th percentile (p75 ), the Maximum

(Max ), and the average (Avg).14 The horizontal organization of the tables is such that

own-outcome effects, d̂gg,lk , are followed by cross-outcome effects, d̂gh,lk . Vertically, every

table contains the impact effects for those determinants at the top, which enter both

equations, followed by the equation-specific ones. The normalization of the shocks to

one standard deviation permits a quantitative comparison of the estimates both across

tables as well as across entries within a table.

In the subsequent discussion, we focus, for the sake of brevity, on shocks on log

productivityit−1 (as a common determinant of log domestic salesit and log exportsit) and

on the share of domestic market sellers in all firms in zip codeit−1, the share of domestic

market sellers in all textile producers in zip code it−1, the share of exporters in all firms

in zip codeit−1, the share of exporters in all textile producers in zip codeit−1, the log

ad-valorem tariffit−1, and the foreign capital shareit−1 (as equation-specific determinants

of the considered outcomes). The corresponding effects may be summarized as follows:

First, among all the impact-effect estimates the variability of the direct effects and

of the effects on others is relatively small, while the effects from other producers is

relatively large. This is largely owed to the row normalization of the weights matrix

W . Accordingly, the variance in the (own- and cross-equation) total effects largely flows

from the variability of the impact effects from other firms.

Second, what we call a positive shock on productivity (in a broad sense, as it includes

changes in total-factor productivity as well as in prices) tends to lead to a shift away from

selling abroad to selling in China. The signs of the impact effects differ across the blocks

in the tables. For example, positive direct effects on domestic sales across all moments

in the distribution in the left block of Table 14 (the own-equation effects) go hand in

14In general, these moments are evaluated at the posterior mean of the respective parameter estimates

β̂dk and β̂ek. Clearly, computing the standard deviations of these moments across the draws in the Monte

Carlo chain is straightforward. We refrain from reporting these standard deviations (as estimates of the

standard errors) due to space constraints.
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hand with negative direct effects on export sales across all moments in the distribution

in the left block of Table 15. The cross-equation effects in the right block of results in

Tables 14 and 15 differ in sign from the own-equation effects in the respective left block,

and they are quite sizable, at least for domestic sales. For instance, more than one-half

of the total effect on the median producer in Table 14, which is estimated at 0.423, is

undone by the effect on export sales which induces an impact on log domestic sales of

−0.251. This covariate induces the largest impact effects among all the determinants

included in the models.

The impact-effect estimates of the share of domestic market sellers in all firms in zip

codeit−1 on log domestic sales and of the share of export market sellers in all firms in zip

codeit−1 on log export sales are negative. In contrast, the ones of the share of domestic

market seller in all textile producers in zip codeit−1 on log domestic sales and of the

share of exporters in all textile producers in zip codeit−1 on log export sales are positive.

These results suggest that there are positive spillovers (arguably from learning about the

market) from other sellers with the same orientation (domestic selling and exporting),

while a greater presence of domestic sellers and exporters in general tend to weaken the

outcomes of textiles producers, probably through greater competition for factors and

less competitive pressure in other sectors than in textiles. In general, such effects are

stronger for exporting than for domestic selling, and the (factor-market) competitive

effects from all sellers of the same type are stronger than the positive spillover effects

from other textiles producers which are domestically selling (in Table 14) or exporting

(in Table 15) across all moments of the distribution of impact effects.

Third, in comparison to other explanatory variables, a shock in the log ad-valorem

tariff rateit−1 in the same textiles sub-sector as firm i induces the second-largest impact

effect on log exports in absolute value, according to Table 15. Finally, a higher foreign-

capital shareit−1 raises the level of exports, but the impact is relatively modest, at least

in this sector and province, in comparison to other determinants of log exports.
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6 Conclusions

This paper conducts an analysis of the determinants of domestic and export sales of

individual textiles producers in Guangdong province over the years 2004-2007. Features

of the data, evidence of spatial and network effects among Chinese producers in earlier

work, and evidence of learning from exporting in earlier work on firms call for an econo-

metric model, which permits analyzing a panel-data system of simultaneous equations

with cross-sectionally (or spatially) dependent outcomes of which some are censored and

others are not.

We outline an estimation approach based on Bayesian Markov-chain Monte Carlo

simulation. We conduct simulations which suggest that this approach can be used in

small to moderately-large samples of 1,000 cross-sectional units or less.

The application suggests that all features of the econometric model which we account

for are important: time-invariant heterogeneity in terms of unobservables must not be

ignored; export success boosts domestic sales; domestic sales success of other firms and

export success of other firms induce positive spillovers on domestic sellers and exporters

of textiles, respectively.

One advantage of the utilized MCMC approach is its flexibility in allowing for various

forms of interdependence and the treatment of non-linear models in a unified framework.

Analyzing systems with multiple non-linear equations can be simplified by formulating

a latent variable model representation and drawing the unobserved values.

Future work in this context may be devoted to incorporating other forms of cross-

sectional correlation such as the presence of spatial or social-network interdependence in

unobservables as captured by the disturbances. Moreover, future work might consider

time-wise interdependence of the data in somewhat longer panels than studies here, e.g.,

through the presence of time lags of latent variables on the right-hand side of the model

or a serial correlation of the disturbances.15

15E.g., the importance of time-wise dependence in data has been addressed in Basmann (1985), Bas-

mann, Richardson, and Rohr (1974a, 1974b).
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Berthou, A., Fontagné, L., 2008. The Euro and the intensive and extensive margins of

trade: Evidence from French firm level data. CEPII Working Paper, No. 2008-06.

Case, A., 1992. Neighborhood influence and technological change. Regional Science

and Urban Economics 22(3), 491–508.

Cohen, J.P., Morrison Paul, C.J., 2004. Public infrastructure investment, interstate

spatial spillovers, and manufacturing cost. Review of Economic and Statistics

86(2), 551–560.

Cohen, J.P., Morrison Paul, C.J., 2007. Higher order spatial autocorrelation in a system

of equations: The impacts of transportation infrastructure on capital asset values.

28



Journal of Regional Science 47(3), 457–478.

Conley, T.G., Topa, G., 2007. Estimating dynamic local interactions models. Journal

of Econometrics 140(1), 76–96.

Defever, F., Heid, B., Larch, M., 2015. Spatial exporters. Journal of International

Economics 95(1), 145–156.
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Table 1: Overview of simulation designs - True parameter values

SSUR SSUR SSSE SSSE SSSE
Design 1 Design 2 Design 3 Design 4 Design 5

β11 1.000 1.000 1.000 1.000 1.000
β12 1.000 1.000 1.000 1.000 1.000
β13 1.000 1.000 1.000 1.000 1.000

β21 1.000 1.000 1.000 1.000 1.000
β22 1.000 1.000 1.000 1.000 1.000
β23 1.000 1.000 1.000 1.000 1.000

λ1 0.400 0.100 0.400 0.100 0.400
λ2 0.400 0.300 0.400 0.300 0.400

γ1 - - -0.100 -0.100 -0.300
γ2 - - 0.100 0.100 0.100

σν11 2.000 2.000 2.000 2.000 2.000
σν12 1.000 1.000 1.000 1.000 1.000
σν22 2.000 2.000 2.000 2.000 2.000

mα1
1.500 1.500 1.500 1.500 1.500

mα2
2.500 2.500 2.500 2.500 2.500

sα11
2.000 2.000 2.000 2.000 2.000

sα12 0.800 0.800 0.800 0.800 0.800
sα22 2.000 2.000 2.000 2.000 2.000

Table 2: SSUR Design 1 - the fraction of censored observations in y2 is medium,
N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value

β11 1.000 0.980 0.019 0.480 1.015 0.013 0.262
β12 1.000 0.989 0.018 0.322 0.998 0.013 0.386
β13 1.000 1.030 0.019 0.562 1.008 0.013 0.796

β21 1.000 0.995 0.024 0.464 1.005 0.015 0.599
β22 1.000 0.975 0.024 0.484 1.010 0.015 0.625
β23 1.000 1.001 0.025 0.701 1.024 0.015 0.508

λ1 0.400 0.373 0.031 0.660 0.395 0.021 0.414
λ2 0.400 0.335 0.136 0.484 0.386 0.081 0.605

σν11 2.000 1.928 0.088 0.857 2.007 0.062 0.172
σν12 1.000 0.940 0.081 0.667 1.051 0.053 0.294
σν22 2.000 2.319 0.372 0.855 2.084 0.134 0.202

mα1
1.500 1.560 0.094 0.520 1.552 0.062 0.534

mα2
2.500 2.636 0.503 0.460 2.512 0.327 0.590

sα11
2.000 1.751 0.105 0.703 2.044 0.083 0.199

sα12 0.800 0.670 0.091 0.453 0.794 0.068 0.778
sα22 2.000 1.938 0.146 0.408 2.070 0.094 0.640

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.155 for N = 500 and 3, 000 and 0.156 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 3: SSUR Design 1 - the fraction of censored observations in y2 is low,
N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value

β11 1.000 0.996 0.019 0.451 1.013 0.013 0.470
β12 1.000 0.970 0.019 0.306 1.001 0.013 0.849
β13 1.000 1.000 0.019 0.728 0.987 0.013 0.334

β21 1.000 0.995 0.021 0.591 0.974 0.017 0.510
β22 1.000 1.000 0.022 0.188 1.036 0.016 0.478
β23 1.000 0.993 0.022 0.983 0.994 0.016 0.263

λ1 0.400 0.388 0.033 0.285 0.422 0.027 0.361
λ2 0.400 0.353 0.130 0.317 0.379 0.118 0.864

σν11 2.000 2.046 0.091 0.342 1.974 0.063 0.470
σν12 1.000 1.074 0.083 0.189 1.008 0.055 0.407
σν22 2.000 2.358 0.491 0.106 2.273 0.433 0.636

mα1
1.500 1.559 0.100 0.455 1.518 0.076 0.536

mα2
4.000 4.307 0.827 0.340 4.274 0.776 0.631

sα11 2.000 2.095 0.120 0.189 1.926 0.080 0.595
sα12 0.800 0.657 0.095 0.326 0.926 0.067 0.240
sα22

2.000 1.864 0.154 0.920 2.116 0.125 0.774

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.060 for N = 500 and 3, 000 and 0.050 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 4: SSUR Design 1 - the fraction of censored observations in y2 is high,
N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value

β11 1.000 1.021 0.020 0.806 1.003 0.013 0.805
β12 1.000 1.003 0.020 0.173 1.014 0.013 0.495
β13 1.000 0.991 0.020 0.793 1.007 0.014 0.373

β21 1.000 1.067 0.029 0.109 1.003 0.019 0.694
β22 1.000 1.050 0.030 0.437 1.022 0.018 0.370
β23 1.000 1.056 0.030 0.215 1.027 0.019 0.796

λ1 0.400 0.380 0.030 0.419 0.385 0.021 0.441
λ2 0.400 0.335 0.115 0.464 0.341 0.090 0.548

σν11 2.000 2.026 0.094 0.731 2.052 0.065 0.162
σν12 1.000 0.968 0.090 0.113 1.112 0.061 0.939
σν22 2.000 2.429 0.167 0.219 2.175 0.110 0.479

mα1
1.500 1.651 0.095 0.382 1.647 0.062 0.619

mα2
1.000 1.049 0.181 0.438 1.144 0.167 0.765

sα11
2.000 2.437 0.129 0.674 1.933 0.083 0.524

sα12 0.800 1.085 0.113 0.222 0.708 0.069 0.392
sα22 2.000 2.037 0.179 0.376 1.989 0.107 0.166

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.346 for N = 500 and 3, 000 and 0.335 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 5: SSUR Design 1 - the fraction of censored observations in y2 is medium
and no drawing of y2 occurs, N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value

β11 1.000 0.982 0.019 0.841 1.026 0.014 0.595
β12 1.000 0.987 0.019 0.443 1.001 0.014 0.117
β13 1.000 1.031 0.020 0.144 1.005 0.014 0.688

β21 1.000 0.827 0.025 0.432 0.853 0.021 0.551
β22 1.000 0.811 0.027 0.657 0.847 0.019 0.360
β23 1.000 0.843 0.033 0.139 0.857 0.018 0.883

λ1 0.400 0.371 0.043 0.384 0.392 0.034 0.264
λ2 0.400 0.256 0.279 0.362 0.306 0.262 0.391

σν11 2.000 1.934 0.087 0.705 2.011 0.065 0.917
σν12 1.000 0.842 0.108 0.454 0.860 0.071 0.694
σν22 2.000 3.329 1.822 0.978 3.188 1.707 0.385

mα1 1.500 1.565 0.124 0.425 1.560 0.094 0.229
mα2 2.500 3.177 0.955 0.234 3.086 0.970 0.393
sα11

2.000 1.748 0.107 0.780 2.041 0.083 0.090
sα12

0.800 0.536 0.090 0.867 0.687 0.068 0.371
sα22

2.000 1.246 0.191 0.606 1.363 0.178 0.252

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.155 for N = 500 and 3, 000 and 0.156 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 6: SSUR Design 2 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value

β11 1.000 0.999 0.019 0.764 0.968 0.014 0.772
β12 1.000 0.973 0.019 0.706 0.991 0.013 0.869
β13 1.000 1.002 0.020 0.490 1.003 0.013 0.962

β21 1.000 1.000 0.025 0.498 1.007 0.017 0.793
β22 1.000 1.000 0.024 0.423 1.013 0.016 0.766
β23 1.000 1.010 0.026 0.332 0.994 0.016 0.900

λ1 0.100 0.081 0.043 0.132 0.077 0.029 0.874
λ2 0.300 0.249 0.160 0.814 0.282 0.087 0.531

σν11 2.000 2.043 0.092 0.392 1.964 0.063 0.651
σν12 1.000 1.071 0.083 0.754 0.981 0.054 0.687
σν22 2.000 2.347 0.396 0.327 2.248 0.131 0.789

mα1 1.500 1.561 0.090 0.238 1.580 0.057 0.984
mα2 2.500 2.659 0.518 0.712 2.553 0.305 0.521
sα11

2.000 2.098 0.118 0.995 2.007 0.080 0.241
sα12

0.800 0.650 0.095 0.756 0.835 0.068 0.261
sα22

2.000 1.817 0.154 0.666 2.032 0.102 0.904

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.180 for N = 500 and 3, 000 and 0.181 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 7: SSSE Design 3 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value

β11 1.000 0.992 0.019 0.390 0.988 0.014 0.947
β12 1.000 1.018 0.020 0.113 1.016 0.014 0.121
β13 1.000 1.008 0.019 0.679 1.015 0.014 0.376

β21 1.000 1.021 0.023 0.770 1.005 0.015 0.254
β22 1.000 1.040 0.023 0.696 0.978 0.015 0.912
β23 1.000 1.001 0.021 0.227 0.998 0.016 0.389

λ1 0.400 0.448 0.029 0.982 0.387 0.021 0.155
λ2 0.400 0.346 0.031 0.231 0.371 0.021 0.761

γ1 -0.100 -0.101 0.012 0.535 -0.116 0.009 0.544
γ2 0.100 0.102 0.014 0.951 0.101 0.009 0.460

σν11 2.000 1.902 0.089 0.126 2.009 0.066 0.319
σν12 1.000 0.950 0.081 0.615 0.937 0.057 0.204
σν22 2.000 2.102 0.108 0.416 2.030 0.073 0.726

mα1
1.500 1.422 0.083 0.993 1.661 0.060 0.159

mα2
2.500 2.760 0.148 0.345 2.614 0.101 0.671

sα11
2.000 2.250 0.119 0.769 2.150 0.088 0.512

sα12 0.800 0.866 0.104 0.587 0.923 0.074 0.512
sα22 2.000 2.061 0.133 0.913 2.207 0.096 0.915

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.156 for N = 500 and 3, 000 and 0.136 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 8: SSSE Design 4 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value
β11 1.000 0.993 0.019 0.974 0.987 0.013 0.542
β12 1.000 1.020 0.020 0.230 1.015 0.014 0.456
β13 1.000 1.010 0.019 0.685 1.015 0.014 0.146

β21 1.000 1.010 0.023 0.747 1.005 0.016 0.258
β22 1.000 1.039 0.023 0.785 0.974 0.016 0.183
β23 1.000 0.994 0.022 0.806 0.996 0.016 0.914

λ1 0.100 0.168 0.038 0.856 0.080 0.028 0.967
λ2 0.300 0.237 0.035 0.371 0.276 0.024 0.420

γ1 -0.100 -0.101 0.012 0.621 -0.115 0.010 0.638
γ2 0.100 0.100 0.014 0.721 0.099 0.009 0.398

σν11 2.000 1.904 0.091 0.377 2.004 0.066 0.502
σν12 1.000 0.939 0.080 0.881 0.928 0.057 0.765
σν22 2.000 2.079 0.108 0.109 2.005 0.070 0.651

mα1
1.500 1.426 0.078 0.463 1.652 0.054 0.706

mα2
2.500 2.770 0.141 0.434 2.584 0.096 0.306

sα11
2.000 2.254 0.123 0.131 2.143 0.085 0.773

sα12 0.800 0.861 0.105 0.822 0.907 0.072 0.633
sα22 2.000 2.021 0.132 0.600 2.186 0.097 0.900

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.193 for N = 500 and 3, 000 and 0.173 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.



Table 9: SSSE Design 5 - N = 500 and N = 1, 000

N = 500 N = 1, 000
True Mean Std.dev GT Mean Std.dev GT

p-value p-value

β11 1.000 0.993 0.019 0.449 0.987 0.014 0.506
β12 1.000 1.020 0.020 0.717 1.014 0.014 0.979
β13 1.000 1.009 0.019 0.515 1.014 0.013 0.319

β21 1.000 1.022 0.023 0.206 1.006 0.015 0.109
β22 1.000 1.045 0.023 0.189 0.981 0.016 0.844
β23 1.000 1.004 0.023 0.812 0.997 0.016 0.529

λ1 0.400 0.447 0.028 0.690 0.391 0.020 0.274
λ2 0.400 0.342 0.031 0.832 0.375 0.023 0.868

γ1 -0.300 -0.296 0.012 0.312 -0.315 0.009 0.518
γ2 0.100 0.103 0.014 0.764 0.100 0.009 0.216

σν11 2.000 1.887 0.090 0.440 2.001 0.067 0.434
σν12 1.000 0.951 0.080 0.105 0.943 0.058 0.685
σν22 2.000 2.121 0.108 0.516 2.037 0.072 0.658

mα1
1.500 1.463 0.064 0.700 1.636 0.048 0.825

mα2
2.500 2.764 0.138 0.827 2.588 0.103 0.909

sα11
2.000 2.265 0.123 0.329 2.149 0.087 0.611

sα12 0.800 0.876 0.105 0.959 0.918 0.072 0.754
sα22 2.000 2.070 0.133 0.881 2.202 0.095 0.928

Notes: The total number of observations TN and the fraction of censored observations on y2 are 1, 500
and 0.165 for N = 500 and 3, 000 and 0.143 for N = 1, 000. GT p-value denotes the p-value of the
Geweke (1992) test.

Table 10: Descriptive statistics

Mean Std.dev Min Max

Domestic sales (in logs) 10.350 1.732 2.590 14.610
Exports (in logs) 10.109 2.976 0 14.590
Wage per worker (in logs) 2.632 0.453 0.194 5.162
Interest rate 0.029 0.088 0.000 0.773
Materials per worker (in logs) 4.624 0.909 0.593 7.218
Productivity (in logs) 4.969 0.819 2.637 7.501
Employment (in logs) 5.586 0.982 2.565 8.731
Pearl River Delta 0.832 0.374 0 1
Number of all firms in zip code (in logs) 3.861 1.228 0 5.935
Number of all textile firms in zip code (in logs) 2.211 1.251 0 4.635
Share of domestic market sellers in all firms in zip code 0.811 0.151 0.250 1
Share of domestic market sellers in all textile producers in zip code 0.780 0.202 0.143 1
Share of exporters in all firms in zip code 0.528 0.194 0 1
Share of exporters in all textile producers in zip code 0.723 0.237 0 1
Ad-valorem tariff (in logs) 0.048 0.012 0.041 0.100
Foreign capital share 0.647 0.450 0 1



Table 11: Spatial univariate regression results for domestic sales and exports

Mean Std.dev GT
p-value

Dependent variable: Domestic sales
βd
Wage per worker (in logs) -0.066 0.061 0.935
Interest rate -0.260 0.305 0.209
Materials per worker (in logs) -0.126 0.089 0.105
Productivity (in logs) 0.226 0.102 0.112
Employment (in logs) 0.056 0.020 0.411
Pearl River Delta -0.104 0.130 0.846
Number of all firms in zip code (in logs) -0.002 0.027 0.962
Number of all textile firms in zip code (in logs) -0.003 0.027 0.573
Share of domestic market sellers in all firms in zip code -0.744 0.365 0.345
Share of domestic market sellers in all textile producers in zip code -0.017 0.255 0.168

λd 0.370 0.048 0.124

σνdd 0.737 0.030 0.770

mαd 6.515 0.496 0.124
sαdd 2.126 0.065 0.252

Dependent variable: Exports
βe
Wage per worker (in logs) 0.413 0.152 0.111
Interest rate 1.990 0.818 0.912
Materials per worker (in logs) 0.589 0.235 0.408
Productivity (in logs) -0.641 0.265 0.145
Employment (in logs) 0.247 0.071 0.463
Pearl River Delta -0.190 0.197 0.885
Number of all firms in zip code (in logs) -0.122 0.090 0.564
Number of all textile firms in zip code (in logs) 0.006 0.089 0.467
Share of exporters in all firms in zip code -1.636 0.528 0.263
Share of exporters in all textile producers in zip code 0.247 0.425 0.482
Ad-valorem tariff (in logs) -15.966 7.260 0.324
Foreign capital share 0.277 0.131 0.572

λe 0.480 0.075 0.663

σνee 7.534 0.315 0.243

mαe 5.200 0.760 0.651
sαee 1.778 0.253 0.239

Notes: All regressors are one period lagged. We include year dummies. GT p-value denotes the p-value of the Geweke (1992)
test.



Table 12: Domestic sales and exports - SSUR results

Mean Std.dev GT
p-value

βd
Wage per worker (in logs) -0.072 0.045 0.727
Interest rate -0.175 0.296 0.315
Materials per worker (in logs) -0.094 0.058 0.896
Productivity (in logs) 0.153 0.067 0.940
Employment (in logs) 0.017 0.017 0.872
Pearl River Delta -0.020 0.055 0.914
Number of all firms in zip code (in logs) -0.015 0.026 0.757
Number of all textile firms in zip code (in logs) 0.006 0.025 0.204
Share of domestic market sellers in all firms in zip code -0.219 0.156 0.778
Share of domestic market sellers in all textile producers in zip code -0.017 0.115 0.477

βe
Wage per worker (in logs) 0.458 0.137 0.244
Interest rate 2.042 0.827 0.892
Materials per worker (in logs) 0.569 0.231 0.661
Productivity (in logs) -0.627 0.262 0.730
Employment (in logs) 0.233 0.063 0.905
Pearl River Delta -0.124 0.177 0.525
Number of all firms in zip code (in logs) -0.113 0.086 0.508
Number of all textile firms in zip code (in logs) 0.007 0.086 0.448
Share of exporters in all firms in zip code -1.788 0.538 0.950
Share of exporters in all textile producers in zip code 0.258 0.432 0.809
Ad-valorem tariff (in logs) -16.476 7.280 0.365
Foreign capital share 0.261 0.118 0.375

λd 0.511 0.041 0.115
λe 0.506 0.104 0.885

σνdd 0.730 0.029 0.677
σνde -0.758 0.069 0.764
σνee 7.530 0.318 0.230

mαd
5.063 0.420 0.118

mαe 4.952 1.051 0.892
sαdd

2.163 0.063 0.481
sαde

0.101 0.122 0.411
sαee

1.783 0.256 0.150

Notes: All regressors are one period lagged. We include year dummies. GT p-value denotes the p-value of the Geweke (1992)
test.



Table 13: Domestic sales and exports - SSSE results

Mean Std.dev GT
p-value

βd
Wage per worker (in logs) -0.144 0.059 0.340
Interest rate -0.494 0.366 0.391
Materials per worker (in logs) -0.211 0.088 0.365
Productivity (in logs) 0.304 0.100 0.271
Employment (in logs) -0.008 0.020 0.110
Pearl River Delta 0.036 0.066 0.823
Number of all firms in zip code (in logs) 0.002 0.030 0.799
Number of all textile firms in zip code (in logs) 0.010 0.031 0.286
Share of domestic market sellers in all firms in zip code -0.373 0.177 0.782
Share of domestic market sellers in all textile producers in zip code 0.091 0.126 0.197

βe
Wage per worker (in logs) 0.454 0.148 0.451
Interest rate 2.033 0.815 0.811
Materials per worker (in logs) 0.570 0.237 0.969
Productivity (in logs) -0.658 0.269 0.737
Employment (in logs) 0.190 0.059 0.965
Pearl River Delta -0.180 0.168 0.873
Number of all firms in zip code (in logs) -0.102 0.082 0.457
Number of all textile firms in zip code (in logs) 0.039 0.085 0.173
Share of exporters in all firms in zip code -1.558 0.484 0.421
Share of exporters in all textile producers in zip code 0.748 0.368 0.536
Ad-valorem tariff (in logs) -17.624 6.749 0.886
Foreign capital share 0.127 0.094 0.259

λd 0.405 0.047 0.801
λe 0.348 0.103 0.723

γd 0.178 0.019 0.801
γe 0.042 0.114 0.771

σνdd 1.259 0.093 0.768
σνde -2.168 0.214 0.867
σνee 7.661 0.369 0.921

mαd
4.371 0.494 0.726

mαe
6.096 1.691 0.472

sαdd
2.121 0.083 0.706

sαde
-0.240 0.270 0.616

sαee
1.785 0.258 0.128

Notes: All regressors are one period lagged. We include year dummies. GT p-value denotes the p-value of the Geweke (1992)
test.



Table 14: Effects estimates of one std.dev. increase in explanatory variables - domestic sales

ddd,d ddd,o ddd,f ddd,t dde,d dde,o dde,f dde,t

Wage per worker Min -0.068 -0.046 -0.078 -0.144 0.037 0.056 0.011 0.048
p25 -0.066 -0.046 -0.056 -0.122 0.037 0.060 0.047 0.085
p50 -0.066 -0.046 -0.045 -0.111 0.038 0.060 0.058 0.095
p75 -0.066 -0.046 -0.037 -0.104 0.038 0.060 0.073 0.111
Max -0.066 -0.044 -0.009 -0.074 0.041 0.060 0.105 0.142
Avg -0.066 -0.046 -0.046 -0.112 0.038 0.060 0.060 0.097

Interest rate Min -0.043 -0.029 -0.049 -0.091 0.032 0.049 0.009 0.041
p25 -0.042 -0.029 -0.035 -0.077 0.032 0.051 0.041 0.073
p50 -0.042 -0.029 -0.028 -0.070 0.032 0.052 0.050 0.082
p75 -0.042 -0.029 -0.024 -0.065 0.033 0.052 0.063 0.095
Max -0.042 -0.028 -0.005 -0.047 0.035 0.052 0.090 0.123
Avg -0.042 -0.029 -0.029 -0.071 0.032 0.051 0.051 0.084

Materials per worker Min -0.200 -0.136 -0.228 -0.422 0.094 0.143 0.027 0.121
p25 -0.194 -0.135 -0.164 -0.357 0.095 0.151 0.119 0.216
p50 -0.193 -0.135 -0.131 -0.325 0.095 0.151 0.146 0.242
p75 -0.193 -0.135 -0.109 -0.303 0.095 0.152 0.186 0.280
Max -0.193 -0.128 -0.025 -0.218 0.103 0.152 0.266 0.361
Avg -0.194 -0.135 -0.135 -0.329 0.095 0.151 0.151 0.246

Productivity Min 0.251 0.167 0.033 0.283 -0.107 -0.158 -0.275 -0.374
p25 0.251 0.175 0.142 0.394 -0.099 -0.158 -0.193 -0.291
p50 0.252 0.176 0.171 0.423 -0.099 -0.157 -0.152 -0.251
p75 0.252 0.176 0.213 0.464 -0.098 -0.157 -0.124 -0.224
Max 0.260 0.177 0.297 0.549 -0.098 -0.148 -0.028 -0.126
Avg 0.252 0.175 0.175 0.427 -0.099 -0.157 -0.157 -0.256

Employment Min -0.007 -0.005 -0.008 -0.015 0.033 0.050 0.010 0.042
p25 -0.007 -0.005 -0.006 -0.013 0.033 0.053 0.042 0.075
p50 -0.007 -0.005 -0.005 -0.012 0.033 0.053 0.051 0.084
p75 -0.007 -0.005 -0.004 -0.011 0.033 0.053 0.065 0.098
Max -0.007 -0.005 -0.001 -0.008 0.036 0.053 0.093 0.126
Avg -0.007 -0.005 -0.005 -0.012 0.033 0.053 0.053 0.086

Pearl River Delta Min 0.014 0.009 0.002 0.016 -0.013 -0.019 -0.034 -0.046
p25 0.014 0.010 0.008 0.022 -0.012 -0.019 -0.024 -0.036
p50 0.014 0.010 0.010 0.024 -0.012 -0.019 -0.019 -0.031
p75 0.014 0.010 0.012 0.026 -0.012 -0.019 -0.015 -0.027
Max 0.014 0.010 0.017 0.031 -0.012 -0.018 -0.003 -0.015
Avg 0.014 0.010 0.010 0.024 -0.012 -0.019 -0.019 -0.031

Number of all firms Min 0.003 0.002 0.000 0.003 -0.025 -0.036 -0.063 -0.086
in zip code p25 0.003 0.002 0.002 0.004 -0.023 -0.036 -0.044 -0.067

p50 0.003 0.002 0.002 0.005 -0.023 -0.036 -0.035 -0.058
p75 0.003 0.002 0.002 0.005 -0.023 -0.036 -0.028 -0.051
Max 0.003 0.002 0.003 0.006 -0.022 -0.034 -0.007 -0.029
Avg 0.003 0.002 0.002 0.005 -0.023 -0.036 -0.036 -0.059

Number of all textile Min 0.012 0.008 0.002 0.014 0.009 0.013 0.002 0.011
firms in zip code p25 0.012 0.008 0.007 0.019 0.009 0.014 0.011 0.020

p50 0.012 0.008 0.008 0.020 0.009 0.014 0.013 0.022
p75 0.012 0.008 0.010 0.022 0.009 0.014 0.017 0.026
Max 0.012 0.008 0.014 0.026 0.009 0.014 0.024 0.033
Avg 0.012 0.008 0.008 0.020 0.009 0.014 0.014 0.023

Continued on next page



Table 14 continued: Effects estimates of one std.dev. increase in explanatory variables - domestic sales

ddd,d ddd,o ddd,f ddd,t dde,d dde,o dde,f dde,t

Share of domestic market Min -0.059 -0.040 -0.068 -0.125
sellers in all firms in p25 -0.057 -0.040 -0.048 -0.106
zip code p50 -0.057 -0.040 -0.039 -0.096

p75 -0.057 -0.040 -0.032 -0.090
Max -0.057 -0.038 -0.007 -0.065
Avg -0.057 -0.040 -0.040 -0.097

Share of domestic market Min 0.018 0.012 0.002 0.020
sellers in all textile p25 0.018 0.013 0.010 0.028
producers in zip code p50 0.018 0.013 0.012 0.030

p75 0.018 0.013 0.015 0.033
Max 0.019 0.013 0.021 0.040
Avg 0.018 0.013 0.013 0.031

Notes: The columns denote the within-equation direct effects, ddd,d, effects on others, ddd,o, effects from others, ddd,f , and total
effects, ddd,t, and the across-equation direct effects, dde,d, effects on others, dde,o, effects from others, dde,f , and total effects, dde,t of
one-standard deviation changes of the regressors. The rows contain the minimum, the 25-th, 50-th, and 75-th percentile, maximum,
and average for each effect.

Table 15: Effects estimates of one std.dev. increase in explanatory variables - exports

dee,d dee,o dee,f dee,t ded,d ded,o ded,f ded,t

Wage per worker Min 0.209 0.110 0.022 0.230 -0.003 -0.004 -0.008 -0.011
p25 0.209 0.115 0.094 0.304 -0.003 -0.004 -0.005 -0.008
p50 0.209 0.115 0.112 0.321 -0.003 -0.004 -0.004 -0.007
p75 0.209 0.115 0.139 0.348 -0.003 -0.004 -0.004 -0.006
Max 0.214 0.116 0.191 0.400 -0.003 -0.004 -0.001 -0.004
Avg 0.209 0.115 0.115 0.324 -0.003 -0.004 -0.004 -0.007

Interest rate Min 0.180 0.095 0.019 0.199 -0.002 -0.003 -0.005 -0.007
p25 0.180 0.099 0.081 0.262 -0.002 -0.003 -0.003 -0.005
p50 0.180 0.099 0.097 0.277 -0.002 -0.003 -0.003 -0.004
p75 0.181 0.100 0.120 0.300 -0.002 -0.003 -0.002 -0.004
Max 0.185 0.100 0.165 0.345 -0.002 -0.003 -0.001 -0.002
Avg 0.180 0.099 0.099 0.280 -0.002 -0.003 -0.003 -0.005

Materials per worker Min 0.528 0.278 0.055 0.584 -0.009 -0.013 -0.023 -0.031
p25 0.529 0.291 0.239 0.769 -0.008 -0.013 -0.016 -0.024
p50 0.530 0.292 0.285 0.814 -0.008 -0.013 -0.013 -0.021
p75 0.530 0.292 0.353 0.883 -0.008 -0.013 -0.010 -0.019
Max 0.543 0.293 0.484 1.015 -0.008 -0.012 -0.002 -0.010
Avg 0.530 0.291 0.291 0.821 -0.008 -0.013 -0.013 -0.021

Productivity Min -0.563 -0.304 -0.502 -1.052 0.011 0.016 0.003 0.014
p25 -0.550 -0.303 -0.366 -0.915 0.011 0.017 0.013 0.024
p50 -0.550 -0.303 -0.295 -0.845 0.011 0.017 0.016 0.027
p75 -0.549 -0.302 -0.248 -0.798 0.011 0.017 0.021 0.032
Max -0.548 -0.289 -0.057 -0.605 0.012 0.017 0.030 0.041
Avg -0.550 -0.302 -0.302 -0.852 0.011 0.017 0.017 0.028

Employment Min 0.185 0.097 0.019 0.204 -0.000 -0.000 -0.001 -0.001
p25 0.185 0.102 0.083 0.269 -0.000 -0.000 -0.001 -0.001
p50 0.185 0.102 0.100 0.285 -0.000 -0.000 -0.000 -0.001
p75 0.186 0.102 0.123 0.309 -0.000 -0.000 -0.000 -0.001
Max 0.190 0.103 0.169 0.355 -0.000 -0.000 -0.000 -0.000
Avg 0.185 0.102 0.102 0.287 -0.000 -0.000 -0.000 -0.001

Continued on next page



Table 15 continued: Effects estimates of one std.dev. increase in explanatory variables - exports

dee,d dee,o dee,f dee,t ded,d ded,o ded,f ded,t

Pearl River Delta Min -0.069 -0.037 -0.062 -0.129 0.001 0.001 0.000 0.001
p25 -0.068 -0.037 -0.045 -0.113 0.001 0.001 0.001 0.001
p50 -0.068 -0.037 -0.036 -0.104 0.001 0.001 0.001 0.002
p75 -0.067 -0.037 -0.030 -0.098 0.001 0.001 0.001 0.002
Max -0.067 -0.035 -0.007 -0.074 0.001 0.001 0.002 0.002
Avg -0.068 -0.037 -0.037 -0.105 0.001 0.001 0.001 0.002

Number of all firms Min -0.130 -0.070 -0.115 -0.242 0.000 0.000 0.000 0.000
in zip code p25 -0.126 -0.070 -0.084 -0.210 0.000 0.000 0.000 0.000

p50 -0.126 -0.070 -0.068 -0.194 0.000 0.000 0.000 0.000
p75 -0.126 -0.069 -0.057 -0.183 0.000 0.000 0.000 0.000
Max -0.126 -0.066 -0.013 -0.139 0.000 0.000 0.000 0.000
Avg -0.126 -0.069 -0.069 -0.196 0.000 0.000 0.000 0.000

Number of all textile Min 0.048 0.025 0.005 0.053 0.001 0.001 0.000 0.001
firms in zip code p25 0.048 0.027 0.022 0.070 0.001 0.001 0.001 0.001

p50 0.048 0.027 0.026 0.074 0.001 0.001 0.001 0.001
p75 0.048 0.027 0.032 0.081 0.001 0.001 0.001 0.002
Max 0.050 0.027 0.044 0.093 0.001 0.001 0.001 0.002
Avg 0.048 0.027 0.027 0.075 0.001 0.001 0.001 0.001

Share of exporters in all Min -0.316 -0.170 -0.282 -0.590
firms in zip code p25 -0.308 -0.170 -0.205 -0.513

p50 -0.308 -0.170 -0.166 -0.473
p75 -0.308 -0.169 -0.139 -0.447
Max -0.307 -0.162 -0.032 -0.339
Avg -0.308 -0.169 -0.169 -0.478

Share of exporters in all Min 0.181 0.096 0.019 0.200
textile producers in p25 0.182 0.100 0.082 0.264
zip code p50 0.182 0.100 0.098 0.279

p75 0.182 0.100 0.121 0.303
Max 0.186 0.101 0.166 0.348
Avg 0.182 0.100 0.100 0.282

Ad-valorem tariff Min -0.217 -0.117 -0.194 -0.406
p25 -0.212 -0.117 -0.141 -0.353
p50 -0.212 -0.117 -0.114 -0.326
p75 -0.212 -0.116 -0.095 -0.308
Max -0.211 -0.111 -0.022 -0.233
Avg -0.212 -0.117 -0.117 -0.329

Foreign capital share Min 0.058 0.031 0.006 0.064
p25 0.058 0.032 0.026 0.085
p50 0.058 0.032 0.031 0.090
p75 0.058 0.032 0.039 0.097
Max 0.060 0.032 0.053 0.112
Avg 0.058 0.032 0.032 0.090

Notes: The columns denote the within-equation direct effects, dee,d, effects on others, dee,o, effects from others, dee,f , and total
effects, dee,t, and the across-equation direct effects, dde,d, effects on others, dde,o, effects from others, dde,f , and total effects, dde,t of
one-standard deviation changes of the regressors. The rows contain the minimum, the 25-th, 50-th, and 75-th percentile, maximum,
and average for each effect.
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