
Automating Proofs with State Machine
Inference

Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

by

Thomas Glenn Gransden
Department of Informatics

University of Leicester

November 2016

Abstract
Automating Proofs with State Machine Inference

by Thomas GRANSDEN

Interactive theorem provers are tools that help to produce formal proofs in a semi-
automatic fashion. Originally designed to verify mathematical statements, they can
be potentially useful in an industrial context. Despite being endorsed by leading math-
ematicians and computer scientists, these tools are not widely used. This is mainly
because constructing proofs requires a large amount of human effort and knowledge.
Frustratingly, there is limited proof automation available in many theorem proving sys-
tems.

To address this limitation, a new technique called SEPIA (Search for Proofs Us-
ing Inferred Automata) is introduced. There are typically large libraries of completed
proofs available. However, identifying useful information from these can be difficult
and time-consuming. SEPIA uses state-machine inference techniques to produce de-
scriptive models from corpora of Coq proofs. The resulting models can then be used
to automatically generate proofs. Subsequently, SEPIA is also combined with other
approaches to form an intelligent suite of methods (called Coq-PR3) to help automat-
ically generate proofs. All of the techniques presented are available as extensions for
the ProofGeneral interface.

In the experimental work, the new techniques are evaluated on two large Coq datasets.
They are shown to prove more theorems automatically than compared to existing proof
automation. Additionally, various aspects of the discovered proofs are explored, in-
cluding a comparison between the automatically generated proofs and manually created
ones. Overall, the techniques are demonstrated to be a potentially useful addition to the
proof development process because of their ability to automate proofs in Coq.

iii

Acknowledgements
You would not be reading this thesis were it not for the support of my supervisors
Dr Neil Walkinshaw and Professor Rajeev Raman. They have allowed me the free-
dom to pursue many of the ideas presented within this thesis. They have also provided
many interesting and stimulating discussions on the topic. I must also thank them both
for supporting (both financially and personally) my progress through the ICT Pioneers
competition. Finally, I am grateful to the EPSRC and the College of Science and Engi-
neering for funding my research through a PhD studentship.
I am also grateful to my examiners Dr Tom Ridge and Professor Alan Bundy. They
made numerous comments during the viva that helper improve the overall presentation
of this thesis. I also thank them for their enthusiasm for the technique and the questions
asked during the viva.
Over the last few months, my work colleagues Rob, Paul, Kevin, Chris, George and Neil
have offered encouragement and laughter in (roughly) equal measure. I am thankful for
all of the support that has been offered, especially during my write-up. Although all of
the beatings at lunchtime table tennis have been demoralising.
The next people I must thank are my in-laws - Carole, Martin, Tom and Les. Although
they had no real idea what this research was about, their support and love throughout
has been greatly appreciated. I think they now realise that this work has been slightly
more involved than just fixing computers!
My Nana deserves more thanks than I can ever say in this thesis. Her constant support
and love throughout my life has shaped the person that I am today. Despite anything
that has happened to her, she always manages to put everyone before herself. I hope
that I have made her proud by completing this thesis.
Last but not least, I must thank my wife Charlotte. From the moment we met she has
always been supportive of everything I have done, and actively encouraged me to take
this position 4 years ago. Throughout everything that has happened since we have been
together, she has been right there by my side. She gives me the strength and passion to
work hard, and everything I do in life I do it for her.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Outline of this thesis . 3
1.4 Publications . 4

2 Background and Related Work 7
2.1 Introduction . 7
2.2 Interactive Theorem Proving . 7
2.3 Machine Learning . 10

2.3.1 Basic machine learning process 10
2.3.2 Types of machine learning . 11

Supervised learning . 11
Unsupervised learning . 11

2.4 Combining learning and proving . 12
2.4.1 Hierarchical Proof Patterns . 12
2.4.2 Library search mechanisms . 13

Identifying useful facts in a proof library 14
Identifying families of similar theorems 15

2.4.3 Linking with ATP’s . 17
2.4.4 Automated tactic formation 19

Jamnik et al’s approach for Ωmega 20
Duncan’s approach for Isabelle 21

2.4.5 Learning in ATP Systems . 24
2.5 State Machine Inference . 25

2.5.1 Traces . 25
2.5.2 Finite State Machines and Extended Finite State Machines . . . 27
2.5.3 State Machine Inference Algorithms 27

vii

Finite State Machine Inference 28
Extended State Machine Inference 30

2.6 Conclusions . 36

3 Inferring State Machines from Proof Tactics 39
3.1 Introduction . 39
3.2 Inferring models from Coq proofs . 40

3.2.1 Motivating Example . 41
3.2.2 Proof Trace Generation . 42
3.2.3 Using proof traces in model inference 43

3.3 Qualitative comparison of inferred models 45
3.3.1 Inferring an FSM from ListNat 45
3.3.2 Inferring an EFSM from ListNat 48

3.4 Manual application of models . 48
3.4.1 Example 1: ListNat . 48
3.4.2 Example 2: Le and Lt . 49

3.5 Implementation . 50
3.6 Related approaches . 52
3.7 Conclusions . 54

4 Automating Proofs with Inferred Models 55
4.1 Introduction . 55
4.2 SEPIA Proof Search Algorithm . 55

4.2.1 Auxiliary functions and data structures 56
4.2.2 Algorithm description . 57

Checking progress of applied tactics 58
Extending with heuristics . 60

4.3 The SEPIA ProofGeneral plugin . 60
4.3.1 System design and benefits . 61
4.3.2 ProofGeneral interface for Coq 62
4.3.3 Communication between SEPIA and Coq 63

4.4 Using the SEPIA plugin . 64
4.5 Conclusions . 68

5 Extensions to SEPIA 71
5.1 Introduction . 71

5.1.1 Motivating Examples . 72
5.2 ML4PG revisited . 74

viii

5.3 The Coq-PR3 algorithm . 75
5.3.1 Obtaining hypotheses from Coq proofs 76
5.3.2 Modifying proof trace generation in Coq-PR3 77
5.3.3 Enhancing proof search in Coq-PR3 80

Auxiliary functions . 80
Algorithm description . 81

5.4 Integrating Coq-PR3 into ProofGeneral 82
5.5 Examples . 84

5.5.1 More descriptive proof traces 84
5.5.2 Reducing state space . 85

5.6 Conclusions . 86

6 Evaluation 89
6.1 Introduction . 89

6.1.1 Research Questions . 89
6.2 Methodology . 90

6.2.1 Data Sets . 90
6.2.2 Attempting proofs with SEPIA 91
6.2.3 Comparing with existing Coq automation 91
6.2.4 Properties of discovered proofs 92
6.2.5 Measuring the success of Coq-PR3 93

6.3 Results . 93
6.3.1 RQ1: Does SEPIA prove Coq theorems automatically? 94
6.3.2 RQ2: Is SEPIA more effective than existing Coq automation? . 95
6.3.3 RQ3: Are there "interesting" properties of the proofs discovered? 97
6.3.4 RQ4: Does Coq-PR3 improve upon SEPIA? 99

6.4 Conclusions . 102

7 Conclusions and Future Work 105
7.1 Overall summary . 105
7.2 Conclusions . 106
7.3 Future Work . 107

A Source Code Listings 111
A.1 NodeInformation class . 111
A.2 Sample NodeInformation comparator 111

Bibliography 113

ix

List of Tables

1.1 Statistics from interactive proof developments 2

2.1 ML4PG Feature Table Example . 16

3.1 Original proof and proof trace for an example lemma 43

5.1 Comparison of SEPIA and ML4PG 74

6.1 Number of theorems proven by SEPIA 94
6.2 Comparison of SEPIA and various automated Coq tactics 95
6.3 Proofs found per-technique . 96
6.4 Number of theorems proven by Coq-PR3 99
6.5 Number of additional proofs discovered by Coq-PR3 100
6.6 Shorter proofs and new tactic sequences discovered by Coq-PR3 101

xi

List of Figures

2.6 Set of example traces and generated PTA 29
2.7 Inferred FSM from calculator traces 30
2.9 Graphical representation of classifier for add 34
2.10 Inferred EFSM from calculator traces 35

3.2 Initial fragment of PTA inferred from ListNat 44
3.3 PTA and inferred EFSM for ListNat traces. 46
3.4 FSM inferred from ListNat . 47
3.6 EFSM inferred from Le.v and Lt.v 51
3.7 Grammar for Coq proof structure . 52

4.1 Looping transition . 58
4.4 SEPIA Plugin Overview . 61
4.5 Stage 1: State the theorem . 65
4.6 Stage 2: Open any additional theories 66
4.7 Stage 3: Invoke SEPIA . 67
4.8 Stage 4: Paste proof into proof script 68

5.1 Fragment of inferred model from failed proof attempt 72
5.3 Coq proof and extracted hypothesis 77
5.4 Proof script and HTML representation 78
5.5 Comparison of SEPIA and Coq-PR3 proof traces 79
5.6 Coq-PR3 menu option in ML4PG . 82
5.7 Recycling proof patterns with Coq-PR3 83
5.8 Fragment of semantic model . 85
5.9 Reduced state machine inferred from seq theory 86

6.1 Comparing new and reused proofs . 98

xiii

Chapter 1

Introduction

1.1 Motivation

Computer-assisted proof is a technique dating back to at least the 1960’s. The process
can be described as completing mathematical proofs with (at least partial) help from a
computer. An interactive theorem prover (or proof assistant) is one such tool to help
with this process. Given a statement expressed in the underlying logic of the tool, a
proof is found via a man-machine collaboration. Producing so-called “formal proofs”
generates a reproducible proof that can be verified automatically on a computer.

Many mathematical theorems have had proofs verified using interactive systems1.
Gonthier has successfully used Coq to verify proofs of the Four-Color (Gonthier, 2008)
and Feit-Thompson (Gonthier et al., 2013) theorems. Hales recently completed his
multi year effort to provide a formal proof of the Kepler conjecture using Isabelle (Nip-
kow, Wenzel, and Paulson, 2002) and HOL Light (Harrison, 2009), whilst Mizar (Nau-
mowicz and Korniłowicz, 2009) has the largest library of formal mathematics.

A popular application of interactive theorem proving is to prove the correctness of
computer systems. Correctness is typically defined as showing that a design meets a
specification. Recent advances mean it is also possible to reason directly about the
underlying code. Since the infamous 1994 Pentium IV bug, Intel (and others) now use
proof assistants to help verify floating point algorithms (Harrison, 2006). More recently,
safety critical systems have been formally verified. Isabelle has been used to verify the
correctness of the seL4 microkernel (Klein et al., 2014), whilst Coq has been used to
prove the CompCert C compiler correct (Leroy, 2009).

The success of recent large-scale proof developments has shown that interactive
theorem proving is a potentially valuable technique – and one that can have a significant
impact in both mathematics and industry. One aspect that isn’t shown in these success
stories is the scale of the proof effort required to complete the proofs. For a large
proof development, there are typically thousands of intermediate proofs that need to be

1see Wiedijk’s list of 100 mathematical theorems (Wiedijk, 2008) for further information

1

2 Chapter 1. Introduction

completed, and this process can take many years. Table 1.1 gives an overview of some
measurements of effort from 5 large proof efforts (Obua et al., 2014):

Development Lines of Proof People Years

Flyspeck 325,000 16 2003 – 2015

seL4 kernel 200,000 17 2004 – 2009

Feit-Thompson Theorem 170,000 15 2006 – 2012

Four-Color Theorem 60,000 1 2000 – 2005

CompCert compiler 42,000 3 2005 – 2008

TABLE 1.1: Statistics from interactive proof developments

Clearly, there is a need for more automated support during proof development. The
underlying logics used within proof assistants are expressive, and this impacts on the
amount of automation available. Nevertheless, many approaches are available that try
to automate proofs whenever possible. With the help of these approaches, each theo-
rem prover usually has a significant library of ‘exemplar’ proofs available – where the
correct reasoning has been applied. There are often too many proofs to study manually,
however computers now have good potential for learning useful knowledge from large
amounts of data.

This thesis examines the application of machine learning techniques to successful
proof examples. By learning how previous proofs were completed, it is hoped that the
learned knowledge can be applied to other proofs automatically. The SEPIA technique
is introduced, a novel application of model inference techniques to the domain of the-
orem proving. Existing proofs are modelled using state machines, and the resulting
models can be used to automatically generate proofs.

1.2 Contributions

The main original contributions of this thesis are:

1. The automatic translation of Coq proof scripts into a format suitable for inferring
models from.

2. The application of model inference techniques to produce descriptive models of
proof corpora.

3. A proof search algorithm that forms the basis of a ProofGeneral plugin that can
automatically generate Coq proofs using the inferred models.

Chapter 1. Introduction 3

4. A suite of tools called Coq-PR3, that form an intelligent machine learning envi-
ronment for Coq.

1.3 Outline of this thesis

Chapter 2 - Background and Related Work. This chapter presents an overview of
the associated literature. Firstly, the notion of interactive theorem proving is intro-
duced, and a suitable theorem prover is selected as a basis for this thesis. Then, the area
of machine learning is introduced, along with the technique of state machine inference.
Finally, existing work on applying machine learning to the domain of interactive theo-
rem proving is described.

Chapter 3 - Inferring State Machines from Proof Tactics. This chapter describes
the process of modelling proof tactics. Firstly, some desirable properties of a model
are considered, before state machines are selected as a formalism satisfying the criteria.
Finally, the process of inferring Extended Finite State Machines from existing proof
examples is shown. For some small case studies, is it demonstrated that manual inspec-
tion of the models can lead to proofs being identified.

Chapter 4 - Automating Proofs with Inferred Models. This chapter demonstrates
possible ways of using the inferred models automatically. A proof search algorithm
is defined that takes inferred models and produces Coq proofs. This is followed by a
description of the SEPIA extension for ProofGeneral. Finally, a demonstration of the
plugin shows how proofs can automatically be generated.

Chapter 5 - Extensions to SEPIA. An extension to the basic SEPIA approach is de-
scribed. To achieve this, SEPIA is augmented with an additional level of machine
learning using the ML4PG (Komendantskaya, Heras, and Grov, 2013) approach. The
resulting suite of machine learning tools for Coq is called Coq-PR3. The benefits of
combining the two tools are described, before demonstrating how Coq-PR3 can auto-
matically generate Coq proofs.

Chapter 6 - Evaluation of SEPIA. This chapter evaluates the SEPIA and Coq-PR3

approaches. Two Coq datasets are used as a basis for comparing SEPIA with other
automated proof methods. A discussion of human and computer generated proofs is
also included. Finally, the enhancements described in Chapter 5 are also evaluated. The
results provide a number of insights into the approach, and highlight avenues for future

4 Chapter 1. Introduction

research.

Chapter 7 - Conclusions and Future Work. This chapter presents a summary of the
work completed. Directions for future work are also considered with respect to the
evaluation.

1.4 Publications

Some of the work contained in this thesis has been published at international confer-
ences. The material that makes up the SEPIA approach (i.e. the work contained in
Chapters 3 and 4) has appeared in the following two conference papers:

• Thomas Gransden, Neil Walkinshaw, and Rajeev Raman (2014). “Mining State-
Based Models from Proof Corpora”. In: Intelligent Computer Mathematics.
Ed. by Stephen M. Watt et al. Vol. 8543. Lecture Notes in Computer Science.
Springer, pp. 282–297

• Thomas Gransden, Neil Walkinshaw, and Rajeev Raman (2015). “SEPIA: Search
for Proofs Using Inferred Automata”. In: Automated Deduction - CADE-25. Ed.
by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer
Science. Springer, pp. 246–255

The description of the Coq-PR3 technique (described in Chapter 5) is based on the
original paper that is in preparation:

• Thomas Gransden, Ekaterina Komendantskaya, Neil Walkinshaw, Chris Warbur-
ton, and Jonathan Heras (2016). “Revisit, Reuse, Recycle your Coq Proofs: To-
wards an Intelligent Interactive Proof Environment”. In: Journal of Automated

Reasoning. In preparation

Various aspects of this work have also been presented at the Automated Reasoning
Workshops in Dundee and Birmingham. The two short abstracts and posters are:

• Thomas Gransden (2013). “Boosting Automated Reasoning by Mining Existing
Proofs”. In: 20th Automated Reasoning Workshop (ARW)

• Thomas Gransden (2015). “Combining ML4PG and SEPIA”. in: 22nd Auto-

mated Reasoning Workshop (ARW)

Chapter 1. Introduction 5

The work described in this thesis was also selected to be a finalist in the EPSRC ICT
Pioneers Competition in 2015. The competition aims to recognize the most exceptional
research in ICT based subjects. SEPIA was selected as a finalist in the Information
Overload category 2.

There are also two openly-available software tools available to download:

• SEPIA is available at https://bitbucket.org/tomgransden/sepia

• Coq-PR3 is available at https://bitbucket.org/tomgransden/coqpr3

2A news article about this competition can be found at https://www.epsrc.ac.uk/newsevents/
news/ukictpioneers2015winners/

https://bitbucket.org/tomgransden/sepia
https://bitbucket.org/tomgransden/coqpr3
https://www.epsrc.ac.uk/newsevents/news/ukictpioneers2015winners/
https://www.epsrc.ac.uk/newsevents/news/ukictpioneers2015winners/

Chapter 2

Background and Related Work

2.1 Introduction

The work presented in this thesis spans the areas of theorem proving and machine learn-
ing. Therefore, an overview of these areas is necessary, along with providing any def-
initions required for the material presented in subsequent chapters. Firstly, the area of
theorem proving is introduced, along with a description of Coq - the theorem prover that
forms the basis for the work in this thesis. Then, an overview of machine learning is
provided, before highlighting previous combinations of learning and theorem proving.
Finally, the rest of the chapter focusses on state machine inference – the technique that
the forms the basis of subsequent chapters contained in this thesis.

2.2 Interactive Theorem Proving

Interactive Theorem Provers (or proof assistants) are software tools that assist humans
with the development of formal proofs. A formal proof is a logical argument that con-
firms the truth of some statement. The proof is built in a stepwise manner, where each
small step can be verified with the help of a computer to ensure the reasoning is correct.

LISTING 2.1: A example interactive Proof

1 Theorem nat_add_comm : f o r a l l n m : na t , n + m = m + n .
2 P r o o f .
3 i n t r o s .
4 i n d u c t i o n n .
5 s i m p l .
6 t r i v i a l .
7 s i m p l .
8 r e w r i t e IHn .
9 t r i v i a l .

10 Qed .

7

8 Chapter 2. Background and Related Work

The technique presented in the subsequent chapters focusses on the Coq theorem
prover (Bertot and Castéran, 2004), a proof assistant that uses the Calculus of Induc-
tive Constructions. To demonstrate the main ideas behind interactive theorem proving,
examples using Coq will be shown. A proof begins in Coq with the user stating a propo-
sition (see Definition 2.2.1). In Listing 2.1, the proposition has been stated in Line 1.

Definition 2.2.1. Propositions A proposition is an assertion expressed using logic. A
proposition can be true, false or referred to as a conjecture – where the truth of the
statement is yet to be established.

To decide if a proposition is true, a proof can be constructed and verified. Proof
assistants such as Coq can be used to construct a proof. Proof assistants are built upon
a small kernel – this contains a set of rules from which proofs can be constructed.
Trusting the overall result means trusting the proof kernel. They are typically small so
that the underlying code can be manually checked.

The proof assistant maintains a proof state (see Definition 2.2.2). When generating
a proof, the user inspects the proof state, and decides how to proceed. The aim is to
take the subgoal contained in the proof state and refine it into something more easily
provable. This process continues until all subgoals have been proven.

Definition 2.2.2. Proof state A proof-state contains a context and a subgoal to prove.
The context includes existing proofs, definitions and assumptions. The subgoal is the
proposition that the user is trying to prove.

To aid with this process, proof assistants provide tactics (see Definition 2.2.3). There
are various different commands available, depending on the action the user wishes to
perform. Tactics provide an action to perform on the proof state (e.g. induction, rewrite)
and usually some arguments. The arguments may refer to some already defined fact, or
relate to a local assumption. In Listing 2.1, the tactics are applied in Lines 3-9.

Tactics were first introduced by Milner et al. (Gordon, Milner, and Wadsworth,
1979) to ease the process of finding a proof. The idea is that a tactic splits a goal into
zero or more subgoals – this process repeats until no more subgoals are generated. Indi-
vidual tactics can be combined using tacticals to form more complex tactics. A theorem
prover can have many tactics associated with it, and many also require arguments to
work properly. For instance, when performing inductive proofs the user must specify
which variable to perform induction on (see Line 4 in Listing 2.1). These complications
mean that finding a proof manually can still be a time consuming task.

Definition 2.2.3. Tactics A tactic is applied to a subgoal, to decompose it into 0 or more
subgoals. Tactics are used to try and prove a proposition by using elements from the
context e.g. definitions, assumptions and previously proven facts.

Chapter 2. Background and Related Work 9

LISTING 2.2: Underlying CIC proof term

nat_add_comm =
fun n m : n a t =>
n a t _ i n d (fun n0 : n a t => n0 + m = m + n0) (plus_n_O m)
(fun (n0 : n a t) (IHn : n0 + m = m + n0) =>
e q _ i n d _ r (fun n1 : n a t => S n1 = m + S n0)
(plus_n_Sm m n0) IHn) n
: f o r a l l n m : na t , n + m = m + n

The theorem proving process involves applying tactics until no more subgoals re-
main. If this occurs, then a proof has been discovered and the proposition becomes a
theorem (see Definition 2.2.4). In Listing 2.1, the proof is stored in Line 10 using the
Qed command.

Definition 2.2.4. Theorems A theorem refers to a proposition that has a proof attached
that uses mathematics and logic to establish the truth of the proposition.

Proof assistants include a pre-defined set of automated tactics. These can be used to
discharge subgoals without the user having to formulate the correct commands manu-
ally. An examples of this includes the tauto tactic in Coq that can solve goals that are
in the form a propositional tautology. This performs the necessary steps to discharge
the subgoal automatically.

The user interacts with the system in terms of subgoals and tactics. Underneath
this level, tactics are actually constructing proof-terms. Before the proof is accepted,
the Coq kernel takes the proof term and verifies that it passes the typing rules provided
by CIC. Directly producing proof terms is difficult, so the tactics allow this process to
be done at a higher level that a human can understand more easily. The proof term
extracted from the earlier proof example is shown in Listing 2.2.

A typical proof development involves the creation of theories (see Definition 2.2.5).
Theories can contain groups of definitions and proofs about a particular concept. The-
ories are portable – they can be distributed to other people who can inspect the proofs
and verify them by replaying the theory through the proof assistant.

Definition 2.2.5. Theory A theory is a collection of definitions and theorems. They
are usually represented within a file, and can be imported during proof development,
allowing the user to access these facts during other proofs.

Although a useful technique, interactive theorem proving is not without its draw-
backs. The main limitation preventing more widespread use of proof assistants is the

10 Chapter 2. Background and Related Work

lack of effective automation available. Even trivial properties will usually require hu-
man effort to identify the tactics necessary to construct a proof. The work in this thesis
presents techniques that can be used to automatically formulate the necessary com-
mands during proof attempts.

2.3 Machine Learning

This section aims to provide a general overview of machine learning - many standard
textbooks are available that cover the topic in much more depth (Mitchell, 1997; Hastie,
Tibshirani, and Friedman, 2009). Machine learning is using a computer to learn knowl-
edge without being explicitly programmed to do so. The overall process of machine
learning can be summarized as follows by Mitchell:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T , as measured by P, improves with experience E.

The goal of machine learning is to build or utilise algorithms to learn from data. The
process usually involves creating generalizable models that give accurate predictions,
or to find patterns.

2.3.1 Basic machine learning process

The first stage of machine learning is to have a dataset of observations that will be
used to learn from. A dataset can be thought of as a table, where the rows are each
observation (aka measurement, data point, etc), and the columns for each observation
represent the features of that observation and their values. Features can be thought of as
a set of properties that can describe an observation. For instance, if the dataset contained
information about the weather on a particular day, then possible features could include
the amount of sunlight, whether it was raining or not, and how humid it was.

When using machine learning, a dataset is usually split into two subsets. These
subsets are called the training and test datasets. Once these data subsets are created
from the dataset, a predictive model or classifier is trained using the training data. The
resulting models accuracy is then evaluated using the test data. Machine learning uses
algorithms to automatically model and find patterns in data, usually with the goal of
predicting some target output or response - the typical outputs of machine learning
algorithms are discussed below.

Chapter 2. Background and Related Work 11

2.3.2 Types of machine learning

Machine learning is split into two main categories that represent the type of learning
that occurs - "supervised" and "unsupervised". Both techniques can be valuable and
which one is chosen depends on the circumstances – what kind of problem is being
solved, how much time is allotted to solving it, and what kind of data is available to
learn from.

Supervised learning

In supervised learning, each observation in the dataset is associated with a class label.
This represents the outcome of a particular observation. For instance, gathering weather
data the possible set of class variables could be {sunny,rainy,cloudy}. The goal of
supervised learning is to predict the class for an unseen example - using the knowledge
learned from the training data.

To demonstrate the basics of supervised learning, consider having a set of data per-
taining to some football team – e.g. Leicester City. Each row of the dataset contains
information about one game in the history of Leicester City. Features include who the
opponent was, when the game was played, in which stadium the game was played. In
addition, there could be more specialised features about attack (e.g. number of shots on
target) and defence (e.g. number of saves made).

In the case of supervised learning, the overall aim could be to use this data to predict
if Leicester will win or lose against a certain team during a given game. For the sake of
this example the output of the machine learning algorithm will be a yes or no answer
about whether Leicester will win or not and not determine the probability of such a
result occurring. Since the training data contains a history of wins and losses against
certain teams at stadiums, it is possible to leverage supervised learning to create a model
that is able to make a prediction when given features of a match not in the training data.

Unsupervised learning

Continuing with the football example from the previous section, the other category of
learning is unsupervised learning. Suppose that the aim is to find patterns in the his-
toric data and learn something that wasn’t already known, or group the team in certain
ways throughout history. To do this, an unsupervised machine learning algorithm is run
against the training data that clusters (groups) the data automatically, and then performs
an analysis of the generated clusters. Importantly, the data used for unsupervised learn-
ing is unlabelled – meaning there is no explicit class variable recorded (the purpose of
unsupervised learning isn’t to predict a particular outcome).

12 Chapter 2. Background and Related Work

Using an unsupervised learning algorithm on the football match dataset, the output
will be groups (clusters) of football matches. With some manual analysis, one may
find that these automatically generated clusters seemingly identify certain patterns that
might not have been known before running the algorithm. These may include:

• A certain player having a prolific scoring record against a particular team

• Goals being scored in a certain timeframe within a game

• Negative results being achieved against teams higher up in the league table.

One potential use of unsupervised learning is for the purposes of anomaly detection.
If a certain data point isn’t part of any particular cluster, there may be some underly-
ing reason for this. However, the erroneous data point wouldn’t be noticed until after
running an unsupervised algorithm on the data.

2.4 Combining learning and proving

In the context of theorem proving the machine learning problem can be categorized as
follows (using Mitchells definitions from Section 2.3). Assume the task T is to prove
theorems automatically. The experience E will be previously proven theorems available
from proof libraries and other user contributions. Finally, the performance measure P

might be the improvement on the percentage of theorems proven automatically.
This section begins by describing possible ways of learning from interactive proofs.

Then some existing approaches that have applied machine learning to the domain of in-
teractive proofs are reviewed. Firstly, a collection of tools to identify useful information
in proof libraries are reviewed. The next set of tools use this discovered information to
guide automated provers in the search for a proof. Finally, the automatic formation of
proof tactics using machine learning is discussed.

2.4.1 Hierarchical Proof Patterns

When applying learning techniques to interactive theorem proving, it is important to
consider exactly what to learn from. According to Grov et al. an interactive proof
is a complex structure that can be categorized by three distinct levels (Grov, Komen-
dantskaya, and Bundy, 2012) – the proof tree, the subgoals and the tactic applications.
Each of these possible levels may be useful for discovering patterns in proofs and gen-
eralizing the patterns to automate other proofs.

Looking at the level of tactics, a successful proof will always use a finite number
of tactics, and this property makes them appealing when considering them as possible

Chapter 2. Background and Related Work 13

candidates for learning. Additionally, a number of tactic combinations may bear a proof
for a particular goal, and vice versa, different goals may be proven by the same sequence
of tactics. However, tactics usually require complex arguments in order to be applied
successfully. Learning from the level of tactics alone means that any information about
the proof state is lost.

Another possible view of a proof is looking at the subgoal changes over the course
of a proof. As discussed later in this chapter, choosing features from subgoal structures
can be extremely useful for many purposes in theorem proving. Learning from this level
also has limitations – any information about how the goal was produced along with the
overall proof structure is lost. Additional considerations when learning from this level
include whether to include context information or the goal in isolation.

Finally, the more canonical representation of a proof is to consider the proof tree.
This representation shows the overall proof flow by showing relations between subgoals
and tactic applications. As with the other levels, it may be the case that similarities in
the proof tree can be discovered, whereas there are no evident patterns in the other
levels. The limitation with this approach is that the proof trees can vary dramatically in
complexity and size, and so selecting and extracting features may be difficult without
pre-processing.

There is clearly a wide scope for applying machine learning to theorem proving,
and there are naturally many unanswered questions that arise from such research. For
instance, is there any particular level that is "best" for learning from proofs, and how
to generalise after identifying patterns within a proof corpora. The rest of this section
looks at some applications that learn from the different levels of proofs, and how they
generalise the acquired knowledge.

2.4.2 Library search mechanisms

Interactive Theorem Provers typically have large libraries of existing proofs associated
with them. The size of these libraries can easily reach thousands of lemmas and defini-
tions, and for a user it can be difficult to know what is contained in these libraries. The
Mizar Mathematical Library (Naumowicz and Kornilowicz, 2009) is one of the largest
collections of formalized proofs; containing over 56000 theorems and 11000 defini-
tions1. Other collections of proofs such as Isabelle’s Archive of Formal Proofs also run
into the thousands of facts (Blanchette et al., 2015). One set of tools to help identify
facts contained within these libraries are search mechanisms.

1Obtained from http://mmlquery.mizar.org/

http://mmlquery.mizar.org/

14 Chapter 2. Background and Related Work

Identifying useful facts in a proof library

Typically searches are symbolic, meaning that the user enters some sort of pattern and
the search mechanism matches against the input pattern. Search mechanisms are useful
as they save the user from manually searching through proof libraries. Typical queries
that these methods try to answer might be:

• Identify existing facts that contain a certain predicate.

• Search for existing facts that match a particular pattern.

• Find rewrite rules that match a specified pattern.

• Find theorems in a particular theory.

• Find theorems with a name matching the query.

As an example of how these tools work, consider the following example of symbolic
fact search in Coq. The SearchAbout method takes as input a predicate and returns all
loaded facts related to the predicate. This is done by simply looking at each theorem and
definition, and checking whether the predicate is contained within it or not. In Listing
2.3, a user is searching for existing facts related to the "less than or equal to" operator
(named le in Coq).

LISTING 2.3: Using SearchAbout command in Coq

(∗ S ea rc h f o r f a c t s r e l a t e d t o l e s s t h a n ∗)
Coq > SearchAbout l e .

l e _ n : f o r a l l n : na t , n <= n
le_S : f o r a l l n m : na t , n <= m −> n <= S m
. .
min_l : f o r a l l n m : na t , n <= m −> min n m = n
min_r : f o r a l l n m : na t , m <= n −> min n m = m

As the output in Listing 2.3 shows, the search returns a list of all known facts con-
taining the le operator. It is then up to the user to decide if any of these facts are useful
to them during a proof attempt. For a widely used predicate, there may be hundreds of
results returned. Another use of this information is to save redundancy - if a theorem
has already been defined in a library, there is no need to derive another proof of the
same property.

A typical interactive proof will rely on a number of previously proven facts. The-
ories are built in an incremental nature, with later proofs ideally making extensive use

Chapter 2. Background and Related Work 15

of earlier ones. Naturally, as the size of the development increases, the availability of
existing facts also grows to a level that is hard to process manually. Symbolic search
methods can only search if the patterns are known in advance. Machine learning tech-
niques can be used to identify existing facts that may be useful in proving some new,
arbitrary goal without knowing exactly what to look for.

The Mizar Proof Advisor is one of the earliest examples of using machine learning
to identify promising facts in the Mizar Mathematical Library (Urban, 2005). The goal
of the proof advisor is to answer the following query: Given a goal and a large body
of knowledge, identify previously defined facts that may be useful in proving the goal.
The technique uses the level of subgoals as a basis for machine learning. The desired
output is a list of MML theorems that are ordered in terms of their chance of being
useful in the current proof.

For each target (MML theorem), the aim is to categorize it by its features. The
selected features are the predicates ("constructors" in Mizar terminology) that appear
within the theorem statement, plus any other theorems/definitions that were used in the
proof. This leads to an extremely large feature space: over 33,000 previously proven
theorems being categorised by 40,000 references and 7,000 features. The SNoW Learn-
ing Architecture (Carlson et al., 1999) is used as it can learn efficiently in domains with
large feature spaces and numerous targets.

The Mizar Proof Advisor was evaluated by Urban on 33,527 examples from the
Mizar Mathematical Library (Urban, 2005). The corpus being split into 10 equally
large sets. Over 10 runs, SNoW was trained on nine of the sets, with the remaining
set being used to evaluate the predictions output from the system. Given each example,
SNoW outputs the list of hints that have been evaluated as useful. These facts that
were actually used in the MML proof are compared with the list of hints. The results
produced from the proof advisor are encouraging – for an unseen goal the system will
typically output 70% of the necessary facts within the first 100 suggestions.

Identifying families of similar theorems

Another application of learning from proof libraries is to use clustering techniques to
produce proof families – groups of proofs that are similar based on their features. This
is the approach taken in the Machine Learning for Proof General (ML4PG) system
(Komendantskaya, Heras, and Grov, 2013). ML4PG is used with the Coq theorem
prover, and also aims to provide statistical proof hints during the current proof attempt.
However, the learning process is very different from the proof advisors described pre-
viously.

16 Chapter 2. Background and Related Work

ML4PG aims to provide groups of theorems whose proof structure contains similar-
ities. These groups are then shown to the user who can inspect the proof structure and
formulate their own proof strategy from them. In the other tools such as Mizar Proof
Advisor, the output is a set of existing theorems that could potentially be applied during
proof attempts. Various possible uses of the ML4PG outputs are possible (Heras and
Komendantskaya, 2014), such as multi-team proof development, and detecting common
proof patterns in a large development.

ML4PG extracts features from Coq propositions and proofs, and can learn from all
three of the levels described earlier – the proof tree, the subgoals and the tactic level.
Features are captured by analysing the tactics entered by the user, and the proof state
resulting from each tactic application. Interestingly, unlike the previous approaches the
size of the feature vector is set at 30.

Fixing the size of feature vectors at 30 inevitably means that longer proofs cannot
be captured within one feature vector. ML4PG implements the proof patch method
– this means that features of one large proof are captured by analysing smaller proof
fragments. Each feature vector can handle statistics from 5 consecutive lines of the
proof. Accordingly, features from subgoals 1-5 are stored in one feature vector, 6-10 in
another etc. An example of the feature extraction table is shown in Table 2.1.

TABLE 2.1: ML4PG Feature Table Example

tactics N tactics arg type tactic arg is hyp? top symbol n subgoals

g1 intros 1 nil nil forall 0
g2 induction 1 nat Hyp equal 2
g3 simpl 1 nil nil equal 0
g4 trivial 1 nil nil equal 0
g5 simpl 1 nil nil equal 0

The feature vectors are passed to clustering algorithms in either the Weka frame-
work (Witten and Frank, 2005) or MATLAB. The output of these tools are families of
theorems that have been deemed similar based on highly correlated feature vectors. The
user can then look at the clusters of theorems and extract a proof strategy from the most
closely correlated theorems.

One downside of the proof advisor approaches is that the resulting output is still left
to the user for analysis. Being given a related family of proofs or a set of suggestions
to apply is useful but only if the user knows how to interpret such information. The
next set of methods in this chapter take the output from tools such as the Mizar Proof
Advisor and try to use them as a basis for automated theorem proving.

Chapter 2. Background and Related Work 17

2.4.3 Linking with ATP’s

One line of research has been the combination of higher-order interactive provers with
first-order automated provers. Proofs can be constructed automatically by providing an
interface between interactive and automated provers. Although a simple idea in prac-
tice, there are many hurdles to overcome regarding the exchange of information be-
tween two very different systems. The renowned system of this kind is Sledgehammer
for Isabelle HOL (Meng, Quigley, and Paulson, 2006).

Sledgehammer is a tool that can discharge interactive proof goals by harnessing the
combined power of automated tools such as ATPs and SMT/SAT solvers. For a given
interactive proof obligation, Sledgehammer heuristically selects a number of relevant
facts (axioms, definitions, theorems) from the many thousands that may be loaded into
the current session. The goal and selected facts are then converted into an ATP problem.

This means having a knowledge base (the selected facts) and some statement that is
to be proven (in this case the interactive goal). The tools that Sledgehammer interfaces
with can be run in parallel, all attempting to find a proof. If one of the automatic tools
finds a proof, the facts used are given back to Isabelle and the proof is reconstructed
within Isabelle’s logic.

Due to the success of Sledgehammer, systems of this kind are now commonly re-
ferred to as "hammer" systems. Other "hammer" systems are also available – namely
HOL(y)Hammer for HOL Light and MizAR for Mizar. As Blanchette et al. describe
(Blanchette et al., 2016), hammer systems typically have (some of the following) three
main features:

1. The premise selector (as discussed earlier) selects the most promising existing
facts to use to discharge the current goal

2. The translation module constructs an ATP problem from the chosen premises and
the current goal

3. The reconstruction module post-processes the ATP proof into a format that the
interactive system will accept.

The translation module and reconstruction modules aren’t exposed to machine learn-
ing, and so this discussion focuses on the enhancement of premise selection. In the
original Sledgehammer implementation, the way premises were selected is based on
the Meng-Paulson (Meng and Paulson, 2009) relevance filer (MePo for short). This
was a simple approach that used symbol based matching in order to select relevant
facts.

18 Chapter 2. Background and Related Work

When Sledgehammer is invoked on a particular goal, MePo selects n facts based
from the thousands of Isabelle theorems and definitions available. The process is itera-
tive and begins with a set of relevant symbols (initially the higher-order constants and
fixed variables from the goal). The following two steps are performed iteratively until
n facts have been selected:

1. Compute each fact’s score in terms of relevant and irrelevant symbols with the
following calculation - r/(r+ i) where r is the number of relevant symbols and i

the number of irrelevant symbols.

2. Select all facts with a perfect score and additionally some of the remaining top
scoring facts, and add all their symbols to the set of relevant symbols.

Within the implementation of MePo, there are additional constraints that affect the
scoring calculations. For instance, local facts are preferred to global ones, and rare
symbols are more heavily weighted than common ones. This means that MePo is better
placed to select good facts when the goal contains rare symbols as opposed to more
common ones.

Despite its relatively simple relevance filtering mechanism, Sledgehammer per-
formed well on an empirical evaluation called the Judgement Day benchmarks (Böhme
and Nipkow, 2010). When originally performed, Sledgehammer proved 45% of 1240
Isabelle theorems (selected from 7 distinct Isabelle developments). More recently, with
the improvements of Sledgehammer linking with SMT solvers and the enhancements
of the various ATP systems, the success rate is more like 64% (Blanchette et al., 2012).

Machine learning has successfully been applied to improve the selection of relevant
facts – and in turn improves the success rates of Sledgehammer further. The MaSh
(Machine Learning for Sledgehammer) technique aims to improve the original MePo
filter by utilising machine learning (Blanchette et al., 2016) to select the relevant facts.
Additionally, a successful premise selection tool is obtained by combining MePo and
MaSh.

Each Isabelle fact has an associated feature set that can be extracted. Some possible
features used in MaSh are variables, constants and the theory containing the particular
fact. These features are also weighted, giving preference to certain feature classes. The
aim of MaSh is to predict which facts are useful for proving a particular Isabelle goal.
The main source of this information can be gleaned from inspecting the proof terms. A
proof term stores all of the dependencies – the facts used to obtain the proof.

MaSh is made up of three main commands – learn, relearn and query. MaSh
can learn a new fact and its proof. It is also possible for MaSh to forget an existing proof

Chapter 2. Background and Related Work 19

for a fact and relearn a new one. Finally, the query command takes a goal’s parents,
features and produces a set of hints that could be useful for proving the goal.

The learning algorithm that MaSh uses is a weighted version of Naive Bayes. MaSh
computes the estimated relevance of a fact by taking into account the number of proofs
in which a fact occurs. It also computes the number of proofs associated with the
features of the fact. The implementation is faster than standard Naive Bayes as only
the features that describe the current goal need to be considered rather than all possible
features.

MaSh was evaluated on the same Judgement Day benchmark suite that the original
implementation of Sledgehammer. MaSh improves the success rate to 69.8%. Even
such a modest percentage gain represents a portion of proofs that no longer needed
any human assistance. This demonstrates that machine learning for premise selection
purposes can lead to increased automated proof success.

Other hammer systems have also been successfully implemented for other theorem
provers. The HOL(y)Hammer tool for the HOL Light theorem prover recently man-
aged to prove 39% of 14000 lemmas from the Flyspeck development (Kaliszyk and
Urban, 2014). Similarly, the MizAR tool (Kaliszyk and Urban, 2013) can discharge
around 40% of the theorems in the Mizar Mathematical Library completely automati-
cally. Overall, these methods enhance the usage of automated theorem provers by doing
the necessary filtering of facts when constricting an ATP problem for a given interactive
proof obligation.

2.4.4 Automated tactic formation

So far, all of the approaches have used features from the lemma statements and subgoal
sequences as features for learning. Instead of learning from what was proven, we now
examine a selection of approaches that try and learn from how a theorem was proven.
Specifically, they take examples of commands applied in existing proofs and try to
produce more generalized versions of these commands that can be applied elsewhere.
These techniques are the ones most closely related to the work presented in this thesis.

There exist some automated tactics and decision procedures available in some theo-
rem provers that try to automate proofs. For classes of problems that fall into decidable
fragments of logic, proofs can be discharged automatically. Examples of these include
Presburger arithmetic (proved using Isabelle’s presburger tactic) and propositional
logic (proved using Coq’s tauto tactic).

Other types of automated tactics try to combine primitive steps with the aim of
finding proofs. These typically rely on databases of existing theorems being available,
and work by trying to apply these existing facts. Because they only try a small number

20 Chapter 2. Background and Related Work

of atomic tactics they are not very powerful, but can be used to finish off proofs by
performing routine reasoning after the expert has written the bulk of the proof.

Some theorem provers such as Coq and Isabelle provide the L tac (Delahaye, 2000)
and Eisbach (Matichuk, Wenzel, and Murray, 2014) languages respectively. These are
languages that allow custom tactics and proof methods to be expressed and used within
proof developments. In Coq, the CompCert development makes extensive use of custom
L tac tactics. The main reason for using custom-tactics is to avoid extensive duplication
within a proof development, to write the proof procedure once and invoke it automati-
cally on other goals. However, it is still up to human experts who ultimately decide how
to write a custom tactic.

The need for more powerful automated tactics to be available has led to a strand
of research that tries to learn from existing tactic applications and automatically form
further useful tactics. Tactics are suitable for learning due to their availability (there
are many thousands of examples available) and the fact that they contain knowledge
entered by an expert. There are two existing approaches that aim to learn from tactic
applications with the resulting knowledge being used to automate other proofs.

Jamnik et al’s approach for Ωmega

The first approach (Jamnik et al., 2003), proposed by Jamnik et al. was used to for-
mulate proof methods for the Ωmega proof planning system. Proof planning (Bundy,
1988) is an approach to theorem proving which uses proof methods rather than low
level logical inference rules to find a proof of a given theorem. A proof method spec-
ifies a general reasoning pattern that can be used in a proof, and typically represents a
combination of atomic rules of inference.

Proof planning systems search for a proof plan of a theorem which consists of ap-
plications of several methods. An object level logical proof may be generated from the
execution of a successful proof plan. Proof planning is a powerful technique because it
often dramatically reduces the search space, since the search is done on the level of ab-
stract methods rather than on the level of several inference rules that make up a method.
Therefore, typically, there are fewer methods than inference rules explored in the search
space.

Jamnik et al. show how a proof planning system can learn new tactics automatically
given a typically small number of well chosen examples of related proofs of theorems.
This is a significant improvement, since examples exist typically in abundance, while
the extraction of methods from these examples can be considered as a major bottleneck
of the proof planning methodology. The idea is that the system starts with learning

Chapter 2. Background and Related Work 21

simple proof methods. As the database of available proof methods grows, the system
can learn more complex proof methods.

Given two (or more) examples of Ωmega tactics, Jamnik et al use a method to find
the least general generalization of the given set of examples. The aim is to find the
smallest pattern (i.e. the least number of tactics), that is also the most specific. To
demonstrate the algorithm used by Jamnik et al., consider having the following two
sequences (representing Ωmega tactics) – e1 = [a,a,a,a,b,c] and e2 = [a,a,a,b,c].

Each sequence is firstly split into sublists of all possible lengths plus the rest of the
list. These are referred to as pattern lists – for e1 the first two are {[[a],[a],[a],[a],[b],[c]],
[[a,a],[a,a],[b,c]]. . . }. Similarly for e2 the first two are {[[a],[a],[a],[b],[c]], [[a,a], [a,b],
[c]]. . . }. If there is any branching in the examples (i.e. a tactic creating 2 or more
sugboals), then this process repeats until no branching occurs.

For every example and pattern list, the next step looks for sequential repetitions
of the same elements. Exponents are used to denote the number of repetitions, which
reduces the size of the patterns. For e1 this step introduces the following exponents:
{[[a]4,[b],[c]], [[a,a]2, [b,c]] . . . }. In the case of e2 the following exponents can be
introduced: {[[a]3,[b],[c]], [[a,a], [a,b], [c]], . . . }.

The algorithm then looks for matches in the same position where the pattern is the
same but differs only by the exponent. In the example sequences, there is such a match
in the first position of the pattern - [a]4 from e1 and [a]3 from e2. If no matches are
found, the examples can be generalised by adding a choice operator. In the case that
there are matches, if the exponents are different then they can be replaced with a star
operator meaning to apply the step one-or-more times. If the exponents are the same,
they stay as a constant.

By performing these steps, a possible generalisation of the two example sequences
is [[a]*, [b], [c]]. If more than one generalisation remains at the end of the process, then
the smallest one is chosen. If there are still multiple ones, the least general one of these
is selected. The approach has been demonstrated to be useful on a number of examples,
where the proofs are from a similar family.

Duncan’s approach for Isabelle

The second approach (Duncan, 2008) applies machine learning techniques to the Is-
abelle theorem prover . The first stage of the process is the extraction of relevant data
from Isabelle proofs. Then, patterns within the corpora of proofs are identified based
on the number of occurrences of particular tactic applications. Finally, the discovered
patterns are used to form custom Isabelle tactics that can be applied to other theorems.

22 Chapter 2. Background and Related Work

Given a corpora of Isabelle proofs, the first stage of Duncan’s approach is to process
and extract the relevant information from the proofs. To do this, Isabelle allows the
proof term to be extracted from a completed Isabelle proof. This tree structure contains
all of the steps used to find the proof.

Once the proof term has been obtained, an appropriate amount of abstraction must
be decided upon. Proof terms contain a large amount of extra information such as
variable instantiations, the other theorems applied and the direction in which they were
applied. In order to understand different abstractions, the structure of an Isabelle tactic
application must be defined. At the time of Duncan’s work, Isabelle used a style of
proof called "apply-style". Listing 2.4 shows a simple apply-style proof in Isabelle.

LISTING 2.4: An Isabelle apply-style proof

theorem e x I : P x ==> ∃ x . P x
a p p l y (u n f o l d Ex_def)
a p p l y (r u l e a l l I)
a p p l y (r u l e impI)
a p p l y (e r u l e a l l E)
a p p l y (e r u l e mp)
a p p l y a s s u m p t i o n
done

In an apply-style step, each application typically has a method (such as rule, erule)
that specifies how a particular theorem should be applied. This is then followed with
the name of the rule to be applied (e.g. allI, mp). Various abstractions are now possible
based on this information, for instance one abstraction could be to capture the rule name
only. If this was chosen, the the proof above would be stored as [Ex_def, allI, impI, allE,
mp, assumption].

However, by leaving out the method there is extra search required when actually
applying these steps to a proof therefore another abstraction is to include this - [unfold
Ex_def, rule allI, rule impI, erule allE, erule mp, assumption]. Other possible abstrac-
tions include the rule name and position in the proof - [beginning Ex def, beginning
allI, middle impI, middle allE, end mp, end assumption]. Two abstractions that Duncan
decided would work best were the rule name only, and rule name and method. If a proof
contained branching, then this is removed by linearising the proofs and remembering
the branching points.

The learning process then identifies commonly occurring patterns of tactics within
the chosen proof library. Markov Models can calculate the probability of something
happening based on previous occurrences. The type of model used is a Variable Length

Chapter 2. Background and Related Work 23

Markov Model (VLMM) (Ron, Singer, and Tishby, 1996). Being able to handle vari-
able length data is important due to differing proof lengths. A VLMM is trained on the
sequences of tactics extracted in the previous step.

The model is used to assign a probability to each possible combination of two or
more consecutive steps in a proof. For instance, a proof [a,b,c,d] would garner prob-
abilities for [a,b], [a,b,c], [a,b,c,d], [b,c], [b,c,d] and [c,d]. If a probability exists for a
given sequence of tactics, then the probability is updated with the frequency that the
pattern occurs.

At the end of the learning process, each possible sequence of tactics has a probability
assigned to it. A threshold can be chosen that disregards any tactic sequence that doesn’t
meet the threshold. The remaining tactic sequences are the ones that can be deemed as
commonly occurring within the selected corpus of proofs.

The final step of the approach is to combine these commonly occurring tactic se-
quences into new tactics. All of the discovered sequences are placed into an initial
population. Then, at random two sequences are chosen and considered as candidates
for combining into a new tactic. There are various operators that can be used to combine
pairs of patterns. For instance, assume that two patterns P1 and P2 are being considered.
The possible combinations that can occur are the following:

• Macro formation - If P1 is a complete subset of P2 (or vice versa), then the smaller
pattern is considered to be a macro. For example, if P1 is the smaller pattern, then
it is assigned a macro ID (say macro1). The occurrence of P1 in P2 is replaced
by macro1.

• Plus introduction - If P1 and P2 differ by a repeating step, then a plus operation
can be introduced. For instance, if P1=[a,b,c,c,d] and P2=[a,b,c,c,c,d] then the
resulting tactic will be [a,b,c+,d], where the plus operator denotes one or more
applications of that step.

• ∨ introduction - P1 and P2 are search for a potential ∨ introduction. Both patterns
must begin and end the same. The different middle part forms a possible choice
of tactics to apply.

• ∧ (re)-introduction - Finally, if none of the combinations have worked so far, a ∧
introduction can be considered. All steps which resulted in branching are known
from the pattern discovery stage. All steps in P1 and P2 until a branching step is
reached must be the same.

24 Chapter 2. Background and Related Work

If no combinations can be performed, the pair of tactic sequences are passed back
and another pair is selected. The process iterates until a predetermined number of itera-
tions have been performed. If P1 and P2 were combined in some way, they are removed
from the population and the newly formed tactic takes their place.

A manual evaluation of the learned tactics showed that around 32% of the theorems
in the evaluation could have at least one learned tactic applied to them. This is not
to say that a complete proof could be found using the tactic. Additionally, there are
additional considerations such as extra tactic arguments that weren’t included in the
learning process. The applicability of the tactics were also evaluated in an automated
experiment.

The newly formed tactics were evaluated on a selection of Isabelle/HOL proofs by
means of an automated prover augmented with the tactics. On theorems of varying
complexity, the automated prover managed to prove more theorems than simply using
Isabelle automated tactics. The evaluation focused on a very small selection of elemen-
tary Isabelle proofs, so the learned tactics were by their very nature simple combinations
of Isabelle tactics.

The tactics did improve on the number of theorems proven automatically in Isabelle.
However the time taken to prove theorems expectedly goes up, as Isabelle is trying these
newly discovered tactics too. The technique excelled at proving simple theorems, but
faltered as the complexity of the theorem increases. Overall, the results demonstrate
that learning from tactics could be an encouraging area to pursue further.

Both Jamnik et al. and Duncan take the discovered proof patterns and generalize
them into more widely applicable proof methods that can be used to prove theorems
automatically. Although a promising strand of research, both approaches have their
limitations. The tactics that Duncan discovered contain very primitive Isabelle tactics,
and therefore the complexity of theorems that can be proven is low. The patterns dis-
covered by Jamnik et al. are useful – however they require a good manual selection of
similar proofs. This means that the approach is only useful when proving theorems that
belong to the same family of proofs e.g. group theory, set theory.

2.4.5 Learning in ATP Systems

To complete this section, it makes sense to briefly mention the benefits that machine
learning has brought to automated theorem proving systems. Previously, premise se-
lection methods have been discussed that aim to narrow the search space by limiting
the facts in the knowledge base. Machine learning has also helped to enhance the ac-
tual proof search procedures that are used in ATP tools. ATP systems often have many

Chapter 2. Background and Related Work 25

parameters available that the user can choose prior to a proof attempt being made. A
specific choice of parameters is called a search strategy.

The choice of strategy can ultimately be the difference between finding a proof or
not. The challenge, given some new problem is to learn which strategy should be used.
MaLeS (Kühlwein and Urban, 2015) is a tool that can help with this problem. Imple-
mented for the E, LEO-II and Satallax provers, MaLeS is able to help prove around
8% more problems than using the prover with its default settings. In addition to simply
selecting a the best potential strategy, MaLeS can provide a strategy schedule - that is a
set of strategies to run along with a runtime associated with each strategy.

Another interesting area is the creation of strategies using machine learning. The
Blind Strategymaker (Urban, 2013) is the BliStr tool for the E theorem prover (Schulz,
2013) that automatically formulates useful strategies for a given problem. Similar work
by Bridge (Bridge, Holden, and Paulson, 2014) also studies the problem of selecting
a good proof strategy for a given problem. The difference between Bridge’s work and
Blind Strategymaker is that Bridge selects from already known effective strategies, the
BliStr tool formulates new strategies.

2.5 State Machine Inference

The SEPIA technique presented in this thesis an the extension of an existing approach
called MINT (Walkinshaw, Taylor, and Derrick, 2015). MINT has previously been
applied successfully to infer models of software behaviour from samples of execution
traces. MINT automatically generates state machine models of software components
based on examples of their behaviour. This section provides an overview of the neces-
sary definitions and the main steps involved in inferring a state machine from example
sequences.

2.5.1 Traces

Behavioural model inference techniques such as MINT require example executions of
the system under inspection. These are recorded within a generic format called a trace.
Traces consist of sequences of events which are made up of a label and (optionally)
some variable values. The formal definition of a trace is shown in Definition 2.5.1.

Definition 2.5.1. Events and Traces. An event is a tuple (l,v), where l is the name of a
function/method and v is a mapping from parameter variables for l to concrete values.
A trace is a finite sequence of events, written as ((l0,v0), . . .(ln,vn)).

26 Chapter 2. Background and Related Work

To demonstrate what an event could look like, consider a calculator program that
permits the usual simple numerical operations. One possible event could be invoking
the add method that takes 2 arguments and adds them together. A potential encoding
of the event could be (add, (num1=4, num2=4)). According to Definition 2.5.1, the
label l is add, and the 2 variable values are num1=4 and num2=4. Usually, when there
is no ambiguity, the variable names can be omitted – leaving the event as follows:
add,4,4.

The assumption with techniques such as MINT is that interactions with the system
under inspection can be characterised in terms of particular labels and variable values.
If this is possible, then traces can be extracted from the system that aim to demonstrate
its behaviour. In the case of the calculator program, one particular trace could be a
sequence of calls from when the calculator is turned on until it is turned off again. Such
an example trace is shown in Listing 2.5.

LISTING 2.5: Example trace from calculator program

t u r n _ o n
add , 4 , 4
d i s p l a y , 8
div , 8 , 2
d i s p l a y , 4
mult , 4 , 1 0
d i s p l a y , 4 0
t u r n _ o f f

Ultimately, the choice of precisely what to record in the trace is dependent on the
user and system being analysed. There are various abstractions possible depending on
what exactly is being recorded. For example, the event may be a function being called,
whilst the variables could be its parameters or return value. Models of more complex
systems may record methods that were called along with the value of global variables
at that particular point of the execution.

As with any other machine learning technique, the overall value and accuracy of the
end result is dependent on the data provided as input. The selection of input data should
be as complete as possible. For instance, when modelling software systems, getting a
set of traces that execute the full range of permitted operations will lead to much more
useful models being inferred than from an incomplete set of traces.

Another factor is the encoding used to record the traces. This includes selecting
which methods to track, and which data values to record (such as inputs, return values
and global variables). The choice of encoding is largely down to the system being
modelled, and for what the purpose of the inferred model will be used.

Chapter 2. Background and Related Work 27

2.5.2 Finite State Machines and Extended Finite State Machines

Sets of traces contain a wealth of information about a system. The control aspect of
the program is provided by the sequences of events that occur, whilst the data within
a system is represented by the variables associated with each event. There are many
different approaches available to model such information.

In terms of analysing the underlying data state of a system, tools such as Daikon
(Ernst et al., 2007) are available that can output pre- and post-conditions. To understand
the sequential behaviour of a system, the archetypical model is a Finite State Machine.
The definition of a Finite State Machine is provided in Definition 2.5.2.

Definition 2.5.2. Finite State Machine. A Finite State Machine (FSM) can be defined
as a tuple (S,s0,F,L,T). S is a set of states, s0 ∈ S is the initial state, and F ⊆ S is the
set of final states. L is defined as the set of labels. T is the set of transitions, where each
transition takes the form (a, l,b) where a,b ∈ S and l ∈ L.

Although valuable, an FSM only provides a view of one aspect of the system – the
sequential control. Software behaviour arises from the interplay between the control
and the associated data. This has led to the creation of models that can combine control
and data into a single model.

One such model is an Extended Finite State Machine (Cheng and Krishnakumar,
1993). Intuitively, an EFSM adds a memory to a conventional FSM model. The tran-
sitions between states are not only associated with a label, but also with a guard that
specifies conditions that must hold with respect to variables held within the memory.
For instance, a transition can place constraints on which parameters can be used with a
function, or only permit a function to be called when a global variable is over a certain
threshold. A formal definition of an EFSM is shown in Definition 2.5.3.

Definition 2.5.3. Extended Finite State Machine. An Extended Finite State Machine
(EFSM) is a tuple (S,s0,F,L,V,∆,T) where S, s0, F and L are defined as in a conven-
tional FSM. V represents the set of data states, where a single instance v represents a
set of concrete variable assignments as defined in Definition 2.5.1. The data guard set
∆ is the set of data guards, where each guard δ takes the form (l,v, possible), where
l ∈ L, v ∈V and possible ∈ {true, f alse}. The set of transitions T is an extension of the
conventional FSM version, where transitions take the form (a, l,δ ,b) where a,b ∈ S,
l ∈ L and δ ∈ ∆.

2.5.3 State Machine Inference Algorithms

So far, the concept of a trace and a state machine have been introduced. The missing
part of the process is how the resulting state machine is inferred from a set of traces.

28 Chapter 2. Background and Related Work

The underlying idea is to take the set of traces and generalise them into a descriptive
model. MINT uses a process called state-merging (Walkinshaw et al., 2013; Wieczorek,
2017) to do this.

Finite State Machine Inference

To begin with, the algorithm for conventional FSM inference is described as the EFSM
version builds upon this. The FSM version accepts a set of traces (as in Definition
2.5.1) however the data values aren’t taken into account, as FSM’s do not incorporate
data. Therefore, the resulting state machine will show possible sequencing of the labels
only. Various state-merging algorithms exist that are all based on the same underlying
steps, shown in Algorithm 1.

Input: Traces
Output: An FSM consistent with Traces

1 infer (Traces) begin
2 (S,s0,F,L,T)← generatePTA(Traces)
3 while (s1,s2)← choosePairs((S,s0,F,L,T) do
4 (S,F,T)← merge(S,F,T,s1,s2)
5 end
6 return (S,s0,F,L,T)
7 end

8 merge(S,F,T,s1,s2) begin
9 S← S\{s1};

10 F ← F \{s1};
11 T ← changeSources(s1out ,s2,T);
12 T ← changeDestinations(s1in,s2,T);
13 while (s3,s4)← findNonDeterminism(S,T) do
14 (S,F,T)← merge(S,F,T,s3,s4);
15 end
16 return (S,F,T)
17 end

Algorithm 1: FSM State Merging Algorithm

Lines 1-2 The first stage of the algorithm takes a set of traces and forms the most
specific possible FSM. This is called a Prefix Tree Acceptor (PTA), and is a tree-shaped
state machine that accepts exactly the sequences in Traces. Sequences with the same
prefix share the same path from the initial state in the PTA up to the point in which
they diverge. Figure 2.6 shows an example PTA for the calculator program. The first
and third traces share the same path from the intiial state through to the state labelled
number 3, then their paths diverge as the first trace calls the add method, whilst the
third trace calls display.

Chapter 2. Background and Related Work 29

(a) Example Traces (b) Prefix Tree Acceptor

trace

turn_on

mult 4 2

add 0 4

add 4 4

display 8

turn_off

trace

turn_on

add 1 1

display 2

turn_off

trace

turn_on

mult 1 1

add 0 1

display 1

turn_off

trace

turn_on

mult 2 0

display 0

turn_off

0

1

turn_on

initial

2

mult

7

add

3

add

12

display

8

display

4

add

10

display

13

turn_off

5

display

11

turn_off

6

turn_off

9

turn_off

FIGURE 2.6: Set of example traces and generated PTA

Lines 3-5 The main loop of the algorithm attempts to generalize the PTA into a
state-machine that fully describes the possible sequences of labels that could feasibly
happen when running the system (in this case the calculator program). The challenge of
state merging is to identify pairs of states that are equivalent and to merge them. Given
the PTA, the process iteratively selects pairs of states and merges them. When no more
equivalent pairs of states are found, the process has converged to the final state machine.

30 Chapter 2. Background and Related Work

In order to deem if two states are equivalent, an equivalence score must be com-
puted. Pairs of states are selected either naively or through heuristics such as Blue-
Fringe (Lang, Pearlmutter, and Price, 1998), and their score is computed. The score
takes into account the number of transitions in the outgoing paths that share the same
labels. Finally, the pair of states with the highest score is suggested as the most likely
to be equivalent and is returned by the choosePairs function.

Line 8 After a pair of states (s1 and s2) have been selected as merge candidates, they
are provided to the merge function. In addition, merge takes the set of states S, the set
of final states F and the set of transitions T . The purpose of merge is to modify the
state machine to take into account that s1 has been merged into s2.

Lines 9-12 The set of states S and final states F are modified to remove s1. Fol-
lowing this, the underlying transition system is modified to redirect any incoming or
outgoing transitions associated with s1. All incoming transitions into s1 are redirected
to make s2 their destination. Any outgoing transitions from s1 are changed to make s2

their new source state.
Lines 13-15 Finally, the resulting transition system is checked for non-determinism

and removed if encountered. This is done by recursively merging the targets of non-
deterministic transitions. This process repeats until there are no more non-deterministic
transitions within the state-machine. This results in an automaton that defines at most
one transition for each state and each input symbol.

The main loop of Algorithm 1 repeats until there are no more pairs of states that can
be merged. When this occurs, the inferred state machine is returned. For the example
calculator traces, the inferred FSM is shown in Figure 2.7.

0 1turn_oninitial

add
 mult

5display 6turn_off

FIGURE 2.7: Inferred FSM from calculator traces

Extended State Machine Inference

The EFSM version of the algorithm (MINT) follows the same basic principles, but
there are some additional steps involved. The crucial difference from before is that the
data is also incorporated into the state-machine inference process. Therefore, there are
some preprocessing steps that occur before the model inference process. The infer

and merge functions for EFSM inference are shown in Algorithm 2.

Chapter 2. Background and Related Work 31

To extend the inference approaches beyond FSMs, and to produce EFSMs it is also
necessary to learn succinct rules of behaviour over the data parameters present in the
traces. The process that is referred to here as “data classifier inference” encompasses a
broad range of techniques that seek to identify patterns or rules between variables from
a set of observations, and to map these to a particular outcome or ‘class’. The possible
classes could be {true, f alse} if the aim is to infer whether a given set of variable values
is possible or not, or more elaborate, e.g. {playFootball, playCricket, playTennis} if
the aim is to predict an activity to play based on a set of factors.

A huge variety of techniques for classifying data have been developed in the Ma-
chine Learning domain. A part of the reason for this diversity is that techniques can
contain specific optimisations for their target domain. Amongst the hundreds of differ-
ent techniques, core techniques include Quinlan’s C4.5 Decision Trees inference algo-
rithm (Quinlan, 1993) and Bayesian inference (Russell and Norvig, 2003) techniques
such as the simple naive Bayes approach. The aim of all of these techniques is to take a
set of sample observations that map a set of variable values to their respective outcome.
The chosen algorithm is to produce a decision procedure that is able to correctly predict
the outcome for a set of unseen variable values.

Choosing a classifier inference technique depends upon a number of factors. The
choice of classifier is largely dependent on the domain in which it is being used – there
is no one choice that works best in all domains. For instance one may wish to have the
output in a human readable format, or there may be potential trade-offs between effi-
ciency and accuracy. MINT uses the Weka framework of classifier inference techniques
(Witten and Frank, 2005), and the default choice is decision trees – a classifier that is
used exclusively throughout this thesis.

Firstly, the EFSM inference algorithm takes the original set of traces and prepares
data traces from the originals. The data trace is grouped by label, and shows for each
variable configuration what the subsequent label was. This data trace is then provided
to Weka, and using the selected configuration a classifier is inferred. An example of
the data trace for the calculator traces (from Figure 2.6) is shown in Listing 2.8. Using
these data traces, the classifier serves to predict the next event in the trace (for example
which method should be called next). An example classifier for the add event in the
calculator program is shown in Figure 2.9.

Based on the four examples that formed the initial set of calculator traces, the clas-
sifier has learned rules that dictate the behaviour of the system (shown in Figure 2.9).
For the add event, the classifier suggests that if the second argument to add is less than
or equal to 1, then the subsequent event should be display. If the second argument is
greater than 1, then the future behaviour is also dependent on the first argument.

32 Chapter 2. Background and Related Work

Input: Traces
Output: An EFSM consistent with Traces

1 infer(Traces,k)begin
2 Failed← /0;
3 dataTraces← prepareDataTraces(Traces);
4 C← inferClassifiers(dataTraces);
5 (A,Vars)← generatePTA(Traces,C);
6 foreach (s1,s2) ∈ choosePairs(A,C,k)\Failed do
7 (A′,Vars′)← merge(A,(s1,s2),Vars,C);
8 if consistent(A′,C,Vars′) then
9 A← A′;

10 Vars←Vars′

11 else
12 Failed← Failed∪ (s1,s2)
13 end
14 end
15 return A
16 end

17 merge(A,s1,s2,Vars,C)begin
18 AS← AS \{s1};
19 AF ← AF \{s1};
20 AT ← changeSources(AT ,s1out ,s2);
21 AT ← changeDestinations(AT ,s1in,s2);
22 while (t1, t2)← equivalentTransitions(AT ,s2,Vars,C)) do
23 if t1dest == t2dest then
24 Vars(t2)←Vars(t2)∪Vars(t1);
25 AT ← AT \{t1}
26 else
27 (A,Vars)← merge(A,(t1dest , t2dest),Vars,C);
28 end
29 end
30 return (A,Vars)
31 end

Algorithm 2: EFSM State Merging Algorithm

Chapter 2. Background and Related Work 33

LISTING 2.8: Data traces for calculator program

t u r n _ o n c l a s s = mul t
t u r n _ o n c l a s s =add
t u r n _ o n c l a s s = mul t
t u r n _ o n c l a s s = mul t
============================
mul t num1=4 num2=2 c l a s s =add
mul t num1=1 num2=2 c l a s s =add
mul t num1=2 num2=0 c l a s s = d i s p l a y
============================
add num1=0 num2=4 c l a s s =add
add num1=4 num2=4 c l a s s = d i s p l a y
add num1=1 num2=1 c l a s s = d i s p l a y
add num1=0 num2=1 c l a s s = d i s p l a y
============================
d i s p l a y num=8 c l a s s = t u r n _ o f f
d i s p l a y num=2 c l a s s = t u r n _ o f f
d i s p l a y num=1 c l a s s = t u r n _ o f f
d i s p l a y num=0 c l a s s = t u r n _ o f f
============================
t u r n _ o f f c l a s s =n / a
t u r n _ o f f c l a s s =n / a
t u r n _ o f f c l a s s =n / a
t u r n _ o f f c l a s s =n / a

34 Chapter 2. Background and Related Work

num2

num1display

add display

num2 > 1num2 <= 1

num1 <= 1 num1 > 1
2.0

1.0 1.0

FIGURE 2.9: Graphical representation of classifier for add

Underneath each leaf in Figure 2.9 is a number. These numbers represent the total
number of paths to that leaf divided by the number of misclassified instances. In the
classifier for add, there are no misclassifications. Looking at the training data, there are
2 instances where the second argument to add is less than or equal to 1. In both these
cases, the subsequent event is display - therefore there are no misclassified instances
– the rest of the leaves also contain no misclassification.

These data-traces and generated classifiers are then used by the EFSM inference
algorithm. By incorporating this information, the transitions within the state-machine
contain constraints based on the classifiers. The rest of this section provides an overview
of the main stages of Algorithm 2.

Lines 1-5 The initial set of traces is taken and arranged into a Prefix Tree Acceptor
as before. In this PTA however, transitions are labelled not only with the name of a
function, but with the data variables values that correspond to the trace element. This
means that a pair of states (a,b) only share a prefix in the PTA if the inferred classifiers
yield identical predictions for each data-configuration in the prefix of a as they do in
b. The PTA and data classifiers are then used as a basis for state merging (similar to
Algorithm 1).

Line 6 The choosePairs function takes more parameters into account than in the
FSM inference case. k refers to an optional "minimum score" that must be achieved
before a pair of states can be deemed equivalent. This score pertains to the length of
the outgoing paths from both states. choosePairs also takes the inferred classifiers as
a parameter as these play a role in computing the score of state-pairs. Because data is
incorporated into the model a pair of states in an EFSM can only be equivalent if their
attached data values lead to the same predictions by the classifiers.

Chapter 2. Background and Related Work 35

0

1

turn_on

initial

add
((num2>1.0)&&(num1<=1.0))

 mult
((num2>0.0))

4

add
((num2<=1.0))||((num2>1.0)&&(num1>1.0))

13

mult
((num2<=0.0))

5

display

14

display

6

turn_off

15

turn_off

FIGURE 2.10: Inferred EFSM from calculator traces

Line 7 The merge function is similar to the FSM version, however it differs in the
way it detects non-determinism. Instead of identifying non-determinism by looking at
the transition labels, it also checks that the data variables are treated as equal by the
classifiers. When transitions are merged, their sets of data values are merged as well.

Lines 8-15 After a merge has been processed, the resulting model (A′) is checked
by the consistent function. This ensures that, for each transition within the merged
machine A′, the attached data variables Vars′ are consistent with the classifiers. If
consistent returns true, then the merge is accepted and the algorithm continues. If
not, the current merge is ignored and the next merge is attempted.

The EFSM inferred from the calculator traces is shown in Figure 2.10. The under-
lying data classifiers lead to a much more descriptive model being inferred than before.
The EFSM transitions contain not only a label, but also constraints on the underlying
data state. Although in this chapter the example has been simple, in practice these
descriptive models have been shown to be invaluable in the software engineering do-
main. As later chapters will show, these models can also be used effectively for theorem
proving purposes.

36 Chapter 2. Background and Related Work

2.6 Conclusions

Interactive theorem proving has been shown to be a potentially valuable technique for
verifying correctness of complex systems, and for ascertaining the truth of significant
mathematical statements. However, the wider usage of these tools remain limited. The
main reason for this is the steep learning curve required to guide the theorem prover
by specifying the required steps. There is also a varying amount of proof automation
available – meaning that the human expert is left to do the core work in finding the
proof.

Tool support is available for many purposes including library maintenance through
to proof automation. However, the level of automation available differs on a per theorem
prover basis as the logics and environments differ greatly between different systems.
The Coq theorem prover is one of the most popular tools, but suffers from little effective
proof automation when compared to similar tools such as Isabelle. Therefore, Coq is a
sensible choice as the focus of this thesis.

One promising strand of research in computer science is machine learning. This
is the process of extracting useful information from the large amounts of data that is
readily available. In the theorem proving domain, there exist large corpora of proof ex-
amples where the successful steps have been input by an expert. An interactive proof is a
highly structured piece of data (as summarised by Grov, Komendantskaya and Bundy).
Three potential levels of a proof are the commands used when finding the proof, the
subgoals generated during the proof, and the overall proof tree.

Recently, many researchers have studied applying machine learning to increase the
amount of proof automation in theorem proving. The theorem provers that have bene-
fited most from these methods are Mizar, Isabelle and HOL Light. The most successful
of these approaches have concentrated on learning from goal structures and proof trees.
A more unexplored area is the application of machine learning to tactic sequences – this
is the area that this thesis is concerned with.

A useful technique in the domain of software engineering is the process of state
machine inference. Given sequential data (e.g. executions from a software system),
state machines can be used to model the overall behaviour in terms of the sequencing
of possible events. Richer models can also take into account an underlying data state,
meaning that extremely descriptive models can be inferred.

Existing work has studied applying learning techniques to the tactic applications
within a proof (Duncan, 2008; Jamnik et al., 2003). These techniques have been shown
to be useful in situations where proofs follow the same basic reasoning pattern. During
the learning phase, the existing techniques abstract away information from the tactic
applications such as the parameters given to tactics. The work presented in this thesis

Chapter 2. Background and Related Work 37

looks to build upon these methods to improve proof automation in Coq. To achieve this,
state-machine inference techniques are applied to Coq proof corpora to model the tactic
applications.

Chapter 3

Inferring State Machines from Proof
Tactics

3.1 Introduction

This chapter introduces the first stage of the SEPIA (Searching for Proofs using Inferred
Automata) approach. Applying techniques directly to the proof tactics used to construct
a proof is one of the less explored combinations of learning and proving. Many existing
approaches require the proofs to be replayed through the theorem prover in order to
obtain the features used for machine learning.

Interactive proofs are completed by identifying a sequence of tactics that prove a
theorem. The user will have carefully made the selection of tactics and their associated
arguments to complete a proof. With varying amount of proof automation available,
this can become a difficult task. Even though there are large libraries of existing proofs
available, manually processing these to identify proof strategies is time-consuming.
SEPIA tries to address this problem by automatically producing models that provide an
overview of the tactic applications within a corpus of proofs.

The work completed in this chapter shows how Coq tactic sequences can be inferred
as state machines. This process happens without needing to interact with the theorem
prover. The resulting models can be interpreted as showing the reasoning behaviour
present in a given corpora or proofs. The models can be used to manually drive proof
attempts by suggesting to the user which tactics and arguments to apply. Some examples
show the potential benefit of using state machines for proof generation in Coq. This
chapter described work that was presented at CICM 2014 (Gransden, Walkinshaw, and
Raman, 2014).

39

40 Chapter 3. Inferring State Machines from Proof Tactics

3.2 Inferring models from Coq proofs

In Chapter 2, MINT was introduced as a way of inferring models of complex software
systems. In this chapter, the application and extension of MINT to learn from Coq
proofs is described. The inferred model provides a descriptive overview of the main
reasoning that was used in the corpora. It can be used to understand the reasoning
patterns present within a proof corpora, and be used as a basis for manual proof attempts
in Coq.

Coq was selected as the main focus of this thesis for a number of reasons:

1. Popularity - Coq is a system with a large userbase, and is arguably one of the
most widely used proof assistants. Additionally, it was the recipient of the ACM
Software Systems Award in 20131.

2. Availability of proofs - Coq has a large (over 10,000 theorems) standard library2

and various user-contributions. They are all openly available, and importantly the
tactics used in the proofs are easily accessible.

3. Proof style - Coq uses a procedural proof style that is simply a collection of tactic
applications. This makes learning and extracting the used proof steps simpler
than using other theorem provers that employ the declarative style of proof.

4. Amount of automation - Coq has less automation than some of its contemporaries
such as Isabelle, Mizar and HOL Light. Therefore, it is a good candidate to try
and improve this situation.

For MINT to be successfully applied to Coq proofs, there are some requirements
that will need to be satisfied:

• Capture tactic sequences. The model should propose sequences of tactics.
These models will then contain knowledge that can be applied during other proof
attempts. Traditional Finite State Machines (Definition 2.5.2) are a candidate to
capture the sequential aspect of the proofs.

• Encode tactic arguments. Coq tactics are made up of an action (e.g. induction,
rewrite and (usually) some arguments. The arguments may represent other facts
to apply, variable instantiations or assumptions. Any model of tactics should ide-
ally capture this information in order to be applicable to other proofs. The Ex-
tended Finite State Machine (Definition 2.5.3) can handle complex domains that
require parameters.

1http://www.sigplan.org/Awards/Software/
2https://coq.inria.fr/library/

https://coq.inria.fr/library/

Chapter 3. Inferring State Machines from Proof Tactics 41

LISTING 3.1: Progress of Coq automated tactics

1 s u b g o a l

a : n a t
============================
a ∗ O ∗ S O = O

• Ensure scalability. The model should be scalable so that (in practice) any
number of proofs can be used as input. There are situations where SEPIA will be
used to learn from proof corpora of varying sizes. Therefore the approach should
be able to infer models from any number of examples, if required.

• Be automatically searchable. The ultimate aim of this work is to automate the
proof process. To do this, the selected model is must be stored in a format that
can be automatically used during proof attempts. It must also be possible to use
this information within the Coq proof environment.

This chapter focuses on the first two requirements, whilst Chapter 4 will address the
remaining ones. The first stage of the SEPIA approach is to take existing Coq proof
scripts and convert them into a format that the state-machine inference tools can use.
Then, MINT is used to infer sequential models from the proof corpora. Finally the
models are used manually to demonstrate the possibility of generating proofs using the
information contained in the models.

3.2.1 Motivating Example

To motivate SEPIA, let us consider a typical scenario that arises during interactive proof
development. Suppose that someone is trying to prove the following conjecture in Coq
forall a: nat, a * O * S O = O. The user is stuck and wondering how to make
progress. They first invoke Coq’s collection of automated tactics.

However, these are limited in their proving capabilities and typically used for simpli-
fication. As expected, the automated tactics available in Coq fail to prove the theorem,
only being able to progress to the state shown in Listing 3.1.

The user is aware of a Coq library called ListNat that contains 70 proofs about sim-
ilar properties. Another possible approach could be to spend time manually analysing
the ListNat library to try and elicit a proof strategy. This is a time consuming approach,
and in many cases doesn’t lead to a proof being discovered.

An alternative approach could be to use SEPIA to infer a model from the proofs in
ListNat. Then, the resulting model could be used to try to generate a proof. Although

42 Chapter 3. Inferring State Machines from Proof Tactics

still manual work, the inferred model presents plausible proof strategies that are present
in the ListNat corpora that could be applicable to other theorems. This chapter inves-
tigates if it is possible to infer models from a proof corpus such as ListNat and use
these models to prove other properties not in the corpus.

3.2.2 Proof Trace Generation

A typical tactical proof script3 contains many theorems, along with the sequence of
proof steps that the expert user entered to complete the proof. Each proof step has the
basic structure: proo f _method params where proo f _method refers to a Coq command
(e.g. rewrite, apply, intros) and params constitutes the (optional) parameters
provided to the Coq command. These parameters may refer to many different entities
such as existing lemmas, rewrite rules or may be related to variables in the goal.

MINT requires a text file containing one or more traces. In the context of software
engineering, an individual trace corresponds to a sample execution of a system. The
format is sequential by nature as they contain the functions called during the execution
of the program. When analysing programs, there exist tools that can automatically pro-
duce traces in the required format. However, in the case of interactive proofs, a process
is required to convert the Coq proof scripts into a sequential trace format. For us, a
proof forms one trace, where the trace contains the sequence of tactics (and arguments)
used. A proof trace can be defined as follows (based on Definition 2.5.1):

Definition 3.2.1. Proof trace. An event is a tuple (t, p), where t is the name of a Coq
tactic and p is a string of parameters given to the tactic. A proof trace is a finite sequence
of events, written as ((t0, p0), . . .(tn, pn)).

As shown in Table 3.1, the encoding of Coq proofs is a straightforward translation.
With respect to the tuple of tactics and parameters (t, p), the proo f _method would
correspond to t whilst the parameters params are assigned to p. Importantly, anything
following the proo f _method is considered to be included in the parameters. So each
proo f _method either has no parameters or a string containing anything that followed
it. If a proof method doesn’t have any parameters provided to it, this is indicated by p

being left as an empty string.
Coq allows individual tactics to be chained together using a ; operator. Whereas

individual tactics are always applied to the current subgoal only, the semicolon operator
allows a different way of applying tactics. Consider having two Coq tactics – t1 and
t2. The combined tactics t1;t2 has the effect of running t1 on the current subgoal
and then running t2 on each generated subgoal. The semicolon is considered one of

3Although this work concentrates on Coq, the method in principle can be applied to other ITPs.

Chapter 3. Inferring State Machines from Proof Tactics 43

TABLE 3.1: Original proof and proof trace for an example lemma

(a) Proof Script (b) Trace

Lemma ex : (n*m = O)->(n=O)\/(m=O).
intros.
induction n.
tauto.
simpl in H.
right.
assert (m <= O); try omega.
rewrite <- H.
auto with arith.
Qed.

Event e Label l Parameters p
e0 intros 〈p = “”〉
e1 induction 〈p = “n”〉
e2 tauto 〈p = “”〉
e3 simpl 〈p = “in H”〉
e4 right 〈p = “”〉
e5 assert 〈p = “m≤ 0;”〉
e6 try 〈p = “omega”〉
e7 rewrite 〈p = “← H”〉
e8 auto 〈p = “with arith”〉

the most fundamental building blocks of effective proof automation (Chlipala, 2011),
resulting in more readable proof scripts.

SEPIA must take into account when tactics have been combined using the semi-
colon operator. The obvious choice here is to split a combined tactic into its individual
components. Importantly, the semicolon usage must be recorded within the trace. As
Table 3.1 shows, line 7 of the proof contains two tactics separated using the semicolon.
In the trace, e5 and e6 capture these tactics. The semicolon is added at the end of the
parameter string to denote that this particular tactic should be considered part of a com-
bination. This information is obeyed by the proof search algorithm described in Chapter
4.

The concrete implementation details of the proof trace generation is described later
in this chapter. For now, it is enough to understand that it is possible to convert Coq
proof scripts into a format used by state-machine inference tools. The next focus is on
how these traces are used to infer models, and how such models can be used during
proof attempts.

3.2.3 Using proof traces in model inference

This section shows how the MINT technique can be used to derive sequential mod-
els from proofs. These descriptive models not only describe the possible sequences of
proof steps, but also the necessary parameter values associated with these proof steps.
Although previous work on inferring FSM’s and EFSMs has focussed on program ex-
ecution traces, they also appear to be well suited to the domain of interactive proofs
where we want to capture the interplay between control (tactics) and data (parameters).

Having converted one or more Coq theories into the necessary trace format, MINT
can be used to generate a model. To begin with data classifiers are inferred that, for each

44 Chapter 3. Inferring State Machines from Proof Tactics

0

12

induction
((p==a))||((p==n))||

((p==l))

1

intro
((p==l))||((p==m))||
((p==H))||((p==n))

23

simpl

25

trivial

14

intros

17

induction
((p==m))

49

intro
((p==a))

initial

FIGURE 3.2: Initial fragment of PTA inferred from ListNat

proo f _method, produce a function that uses the parameters to predict the subsequent
tactic to be applied. An example data classifier can be seen in Figure 3.3(a) for the
induction proof method (generated from ListNat).

The data classifier is interpreted as follows: if the parameters params are equal to
n,a or l, then the subsequent proof method to be applied should be simpl. If params

is equal to m then the following proof method should be trivial. The data models
produced are reasonably simple because of the chosen trace encoding.

Once the data classifiers have been generated, the set of proof traces is arranged as
a prefix tree. The prefix tree itself is a valid and usable state machine – however it is
not practical to use because it only permits exactly the tactic sequences contained in the
traces. The tree for this example4 is shown in Figure 3.3(b).

To demonstrate what the prefix-tree (see Chapter 2) looks like when modelling Coq
proofs, Figure 3.2 shows an enlarged initial fragment of the PTA generated from the
ListNat traces. Recall from Chapter 2 that in a prefix tree with data, paths share the
same prefix if their attached data values lead to the same prediction being suggested by
the classifiers. This can be seen when considering paths that contain the induction

tactic.
In the situations where a, n or m are used as parameters for induction, the sub-

sequent tactic to apply is determined to be simpl. In the remaining case where the
parameter is m, the next tactic is trivial. This behaviour can also be observed as ex-
pected in the PTA. The transition from state 0 to 12 shows that the three arguments that
lead to a simpl tactic all share the same path in the PTA. Conversely, the transition
from state 0 to 17 contains the other induction trace. It should be pointed out that the
numbers annotating each state in the EFSM are merely there to facilitate descriptions.

Each transition in the prefix tree is associated with a tactic with the parameter values
that correspond to that transition. The inference challenge for the merging algorithm is
to select compatible pairs of states to be merged. These states should have similar

4The labels are unreadable, but the purpose is merely to give an intuition of what the tree might look
like, and to illustrate the ensuing state merging challenge.

Chapter 3. Inferring State Machines from Proof Tactics 45

outgoing paths, and should not entail the merging of states that are incompatible and
should not raise contradictions with the inferred data classifiers (as discussed in Section
2). MINT accomplishes this using the EFSM algorithm from Chapter 2.

The final EFSM is shown in Figure 3.3(c). The constraints on the transitions detail
the parameter configurations that are associated with each transition. The model is de-
terministic; for any state there is never more than one outgoing transition for a given
combination of label and variable configuration. Unlike other EFSM inference tech-
niques, MINT uses the data as part of the inference process rather than for annotation.
This helps to keep the models concise.

3.3 Qualitative comparison of inferred models

MINT is capable of inferring different types of model (FSMs or EFSMs respectively)
depending on whether it is configured to use data or not. This section highlights their
benefits and limitations when applied to a corpus of Coq proofs. For familiarity the
ListNat library is used again. First a conventional FSM is inferred (i.e. a model
without data), before an EFSM is inferred from the same proofs.

3.3.1 Inferring an FSM from ListNat

When only considering the tactics applied (without considering the tactic arguments),
the standard FSM algorithm in MINT is used. The algorithm is essentially the same as
the ESFM version, however no data classifiers are inferred, so the inference algorithm
ignores the tactic parameters. The resulting FSM can be seen in Figure 3.4. The key
strength of this model is its conciseness. The entire contents of the ListNat traces (all
70 of them) can be compacted into a state machine containing 3 states and 12 transitions.

Though concise, there are downsides to inferring FSMs from Coq proofs. The
model only provides a partial overview of the reasoning behaviour present within the
proofs. For instance, under what circumstances should a particular tactic be applied?
There is also no guidance on what parameters to provide to the tactics.

Nevertheless, for providing a quick overview of the possible sequencing of tactics
when constructing a proof, an FSM can be useful. However, for the purposes of actually
completing proofs using the inferred models, a more descriptive model containing the
tactic arguments is needed. Otherwise, it is left to the user to guess the correct argu-
ments – someone unfamiliar with Coq may not have this knowledge. For this reason,
we consider the usage of MINT to infer EFSM’s from proofs instead of conventional
FSMs.

46 Chapter 3. Inferring State Machines from Proof Tactics

MODEL FOR:induction
J48 pruned tree

(p = n): simpl
(p = a): simpl
(p = m): trivial
(p = l): simpl

0

10
induction/1

((p0 = n)||(p0 = a)||(p0 = l))

57induction/1
((p0 = m))

7intro/1
()

44intros/3

1

intro
()

15

intros
()

52

intros/2

11
simpl

()

93
rewrite/1

()

73

trivial
()

58
trivial

()

8simpl
()

17

intro/1
()

45

induction/1
((p0 = m))

33
rewrite/2

()

64

simpl
()

2

rewrite/1
()

16
rewrite/2

()

119

simpl
()

24

rewrite/1
()

53

rewrite/1
()

34

rewrite/1
()

3
rewrite/2

()

5

rewrite/1
()

66

simpl
()

4
trivial

6

trivial

9trivial

18
intro/1

()

70

rewrite/2
()

40

rewrite/1
()

12

trivial
() 13

simpl
()

22
rewrite/1

()

14

trivial
()

30

intro/1
()

23trivial

89

rewrite/2
()

31

rewrite/2
()

38
simpl

()

21

trivial

25
rewrite/1

()

97

simpl
()

27

rewrite/2
()

29

trivial

39trivial

19

rewrite/2
()

41
rewrite/1

()

20trivial

26trivial

28trivial

32trivial

35
rewrite/2

()

72
trivial

36

rewrite/2
()

37
trivial

42

simpl
() 43trivial

46

trivial
()

47
rewrite/1

() 48

rewrite/1
() 49

rewrite/2
() 50

rewrite/1
() 51trivial

54

rewrite/1
()

55

simpl
() 56trivial

59
intro/1

()

91
simpl

()

60

rewrite/1
()

(a) Data rules for induction (b) Prefix tree

0

intros
 rewrite

((p==app_nil_l2))
 rewrite

((p==aux10))||((p==H))||
((p==O_minus))||((p==mulSn))
||((p==addSn))||((p==addnCA))

||((p==aux7))||((p==mulnS))
||((p==plus_Sn_m))||((p==<- plus_n_Sm))

 intro
((p==a))

 intro
((p==l))||((p==m))||((p==H))||((p==n))

 case

33

simpl
 rewrite

((p==aux12))
||((p==<- mult_n_O))||((p==<- plus_n_O))

||((p==IHn))||((p==<- mult_O_n))
||((p==IHl))||((p==aux11))

||((p==<- andb_false_r))||((p==<- IHn))
||((p==<- IHa))||((p==IHm))

35

trivial

10

induction
((p==a))||((p==n))||((p==l))

44

induction
((p==m))

initial

trivial
 rewrite

((p==aux10))||((p==H))
||((p==O_minus))||((p==mulSn))
||((p==addSn))||((p==addnCA))

||((p==aux7))||((p==mulnS))
||((p==plus_Sn_m))||((p==<- plus_n_Sm))

 intro
((p==l))||((p==m))||((p==H))||((p==n))

102

rewrite
((p==aux12))||((p==<- mult_n_O))
||((p==<- plus_n_O))||((p==IHn))
||((p==<- mult_O_n))||((p==IHl))

||((p==aux11))||((p==<- andb_false_r))
||((p==<- IHn))||((p==<- IHa))

||((p==IHm))

89

simpl

trivial
 simpl

 rewrite
((p==aux10))||((p==H))

||((p==O_minus))||((p==mulSn))
||((p==addSn))||((p==addnCA))

||((p==aux7))||((p==mulnS))
||((p==plus_Sn_m))||((p==<- plus_n_Sm))

trivial

103

trivial

90

trivial

(c) Inferred EFSM

FIGURE 3.3: PTA and inferred EFSM for ListNat traces.

Chapter 3. Inferring State Machines from Proof Tactics 47

0

induction
 trivial
 intros
 simpl
 intro

64

rewrite 83

case

initial

intros
 simpl

trivial
 rewrite

simpl

FIGURE 3.4: FSM inferred from ListNat

48 Chapter 3. Inferring State Machines from Proof Tactics

3.3.2 Inferring an EFSM from ListNat

As shown in Figure 3.3(c), the EFSM inferred from ListNat is slightly larger. Though
larger, the model is still reasonably compact considering there are 70 proofs. A more
diverse selection of proofs would probably lead to a larger model still.

The value of the EFSM is that it makes explicit the circumstances under which
certain paths through the model should be followed. The machine contains several
examples that demonstrate how the same tactic with different parameters can lead to
different paths through the model. This information is not present in the standard FSM.

For the purposes of trying to derive proofs from the inferred model, the EFSM ap-
pears to be a suitable choice. Full Coq commands can be derived from the model by
selecting a tactic, then an appropriate parameter as suggested on the transitions within
the model. The command can then be applied to Coq, and transitions from the sub-
sequent state can be analysed and applied. As will be shown later, the models can be
used manually to derive proofs (and Chapter 4 will attempt to automate this process).
The rest of this thesis focusses exclusively on using EFSM’s for the purposes of proof
development.

3.4 Manual application of models

To demonstrate the potential for using EFSM’s to develop proofs in Coq, some exam-
ples are presented. Firstly, the motivating example from the beginning of this chapter is
revisited. Then, a second small example is considered.

3.4.1 Example 1: ListNat

We revisit the motivating example, where the user was trying to prove the following:
forall a:nat, a * O * S (O) = O.

They have already tried the automated tactics, which in this case didn’t help to prove
this statement. Instead, they chose to infer an EFSM from the ListNat theory. Figure
3.3(c) shows the EFSM inferred from the proofs in ListNat.

It is possible to trace a path through the inferred model manually. To accomplish
this, the user steps through the machine, considering for each state the constraints that
are attached to each transition. Each transition can be converted into Coq commands
and input into Coq. If the proof step was successfully applied, then that particular path
in the model can be explored further.

For the example, one possible path through the model to prove the lemma would be
the following sequence of proof steps:

Chapter 3. Inferring State Machines from Proof Tactics 49

intro a. rewrite <- mult_n_O. trivial.

By running the proof steps above in Coq, the model inferred by SEPIA has yielded
the proof steps required to prove the theorem. It is important to highlight that not all
paths within a model represent a proof. For any given theorem, a majority of suggested
tactics may not be applicable. Instead, the model represents a search space, where the
search objective amounts to finding a suitable path through the model.
As a reference, the theorem was proven by a human using the following sequence of
tactics:

intros. rewrite <- mult_n_O. rewrite <- mult_O_n. trivial.

Interestingly, the proof found by using the EFSM was one step shorter by omitting
the second rewrite tactic. Additionally, the sequence found from traversing the EFSM
was not (at least not in its entirety) amongst the proofs in ListNat. The tactic sequence
was only found as a result of inferring an EFSM. This is one major benefit of infer-
ring models from proofs – the process of generating the model can identify previously
unseen links between tactics that might not be spotted manually. These new tactic se-
quences play an important role in automating proofs. This idea is studied further in the
evaluation (Chapter 6).

3.4.2 Example 2: Le and Lt

As another example, consider the following example that could arise during the proof
process. A user is trying to prove the following theorem in Coq:

forall n m p:nat, p + n <= p + m -> n <= m

As usual, the automated tactics within Coq are invoked. Unfortunately, they are
unable to prove the example theorem, and can only advance the proof to the state shown
in Listing 3.5:

LISTING 3.5: Progress of Coq automated tactics

1 s u b g o a l

n : n a t
m : n a t
p : n a t
H : p + n <= p + m
============================
n <= m

50 Chapter 3. Inferring State Machines from Proof Tactics

For this example, the user selects two theories from the Coq standard library called
Le.v and Lt.v that prove elementary properties of the≤ and < operators. In total, there
are 40 proofs contained within these theories. SEPIA is used to infer a model from the
proofs in Le.v and Lt.v. This provides a model containing possible combinations of
tactics that may be useful in other proofs. There are 23 states and 37 edges within the
model (shown in Figure 3.6). The model produced by SEPIA can be taken and used
manually in order to find a proof.

A possible path through the EFSM can be traced and the example theorem is proven
using the tactics intros m n diff. elim diff; auto with arith. The discov-
ered proof is particularly interesting for two reasons. Firstly, SEPIA has proposed a se-
quence of proof steps that has managed to prove something that Coq’s automated tools
could not. Secondly, the sequence of tactics (and parameters) is new; it is not contained
within Le.v or Lt.v.

Finding the proof was not necessarily a simple process. Given the model, it required
a manual analysis of the outgoing tactics from each state. The user is left to use their
own intuition and knowledge, using the EFSM to guide them towards a proof. Although
difficult, this will be addressed by adding in automation later in Chapter 4.

3.5 Implementation

This section provides an overview of how SEPIA converts Coq proofs into a format
that MINT can use for model inference. There are no existing methods available to
extract tactic sequences from Coq proofs. Therefore, new functionality has been created
that takes Coq proof scripts and converts them into proof traces. This process is done
automatically and generates a text file containing the proof traces.

For each theory provided, the first step is to simply extract the proofs and disregard
anything else such as definitions or comments. Understanding the basic structure of
Coq proof scripts is essential attempting to parse them. Gallina, the input language of
Coq (Bertot and Castéran, 2004) defines an extensive grammar to ensure proof scripts
are constructed correctly. The most relevant parts of the grammar for parsing proof
scripts is in Figure 3.7:

A valid sentence within the Gallina language (Bertot and Castéran, 2004) contains
an assertion followed by its corresponding proof that has been constructed. Proofs in
Coq are started with the Lemma or Theorem commands, followed by an identifier, and
finally a term (the theorem statement). For the purposes of proof trace generation, none
of this information is used within the trace. In Listing 3.8 this information corresponds
to the first two lines.

Chapter 3. Inferring State Machines from Proof Tactics 51

0
au

to
 in

du
ct

io
n

 a
pp

ly
 si

m
pl

47

in
tro

s
((p

==
m

 L
e)

)||
((p

==
m

 n
 d

iff
))

 in
tro

((p
==

H
';)

)

31

de
str

uc
t

((p
==

1;
))

1

ex
ac

t

34

sp
lit

4re
d

55

in
tro

s
((p

==
;))

||(
(p

==
H

1)
)

41in
tro

s
((p

==
n

m
;))

26Pr
oo

f

10in
tro

((p
==

;))

13

in
tro

s
((p

==
n

m
 H

;))

in
iti

al

el
im

((p
==

Le
;))

||
((p

==
(le

_l
t_

or
_e

q
n

m
);)

)||
((p

==
di

ff;
))

48

el
im

((p
==

(le
_o

r_
lt

n
m

);)
)

sim
pl

 su
bs

t

35

in
tro

s
((p

==
;))

||(
(p

==
H

1)
)

5

in
tro

s
((p

==
n

H
))

27

in
tro

s
((p

==
n

m
 L

t L
e;

))

56

ab
su

rd
((p

==
(0

 =
 0

);)
)

42

pa
tte

rn

11co
nt

ra
di

ct
io

n

ap
pl

y

16

de
str

uc
t

((p
==

H
 a

s [
 |m

' H
];)

)

6

ch
an

ge

28ex
ac

t

el
im

((p
==

H
;))

au
to

ap
pl

y
 a

bs
ur

d
((p

==
(S

 m
' <

=
m

');
))

ap
pl

y

49

gs

el
im

((p
==

Le
;))

||
((p

==
(le

_l
t_

or
_e

q
n

m
);)

)||
((p

==
di

ff;
))

57tri
vi

al

F
IG

U
R

E
3.

6:
E

FS
M

in
fe

rr
ed

fr
om

Le
.v

an
d
Lt

.v

52 Chapter 3. Inferring State Machines from Proof Tactics

〈sentence〉 ::= 〈assertion〉 〈proof 〉

〈assertion〉 ::= 〈assertion_keyword〉 〈ident〉 : 〈term〉.

〈assertion_keyword〉 ::= Theorem | Lemma

〈proof 〉 ::= Proof. ... Qed.
| Proof. ... Defined.
| Proof. ... Admitted.
| Proof. ... Save.

FIGURE 3.7: Grammar for Coq proof structure

LISTING 3.8: Proof Script to demonstrate parsing in SEPIA

Lemma map_app : f o r a l l l l ’ , map (l ++ l ’)
= (map l)++(map l ’) .
P r o o f .
i n d u c t i o n l ; s i m p l ; a u t o .
i n t r o s ; r e w r i t e IHl ; a u t o .
Qed .

The next part identifies the end of proof. Looking at the grammar, the proof is ter-
minated by either Qed, Defined, Save or Admitted. In SEPIA, the implementation
works by identifying lines of the theory that are between the Lemma or Theorem key-
words, and the terminating commands. For each proof, this results in providing a string
that contains the proof steps used. To demonstrate what SEPIA has identified at this
stage, consider the theorem in Listing 3.8.

Everything between the theorem statement and the terminating command (in this
case Qed.) is stored in a string. For this example "induction l; simpl; auto.

intros; rewrite IHl; auto." is stored. As described earlier, the semi-colon oper-
ator can be used to form a general sequence of tactics. Any general sequences are split
into their individual components. This results in a trace containing 6 elements being
created for the example. Importantly, the usage of the semi-colon is recorded within the
parameters. The trace generated for the example theorem is shown in Listing 3.9.

3.6 Related approaches

As discussed in Chapter 2, there are existing techniques such as Duncan (Duncan, 2008)
and Jamnik et al. (Jamnik et al., 2003) who learn from tactic sequences. SEPIA also

Chapter 3. Inferring State Machines from Proof Tactics 53

LISTING 3.9: Example proof trace

t r a c e
i n d u c t i o n l ;
s i m p l ;
a u t o
i n t r o s ;
r e w r i t e IHl ;
a u t o

falls into this category by inferring finite state machine models from Coq tactic se-
quences. There are however some important differences between SEPIA and these al-
ternatives. The learning process in SEPIA differs from that used in existing approaches.

In both approaches there is a process of abstracting away information from the proof
sequences. In Jamnik et al. the tactic arguments are taken away during the learning
process, and re-instantiated during the application of the generated proof methods. In
Duncan’s work, various different abstractions are studied, many of them losing some
aspect of the proof steps such as the direction in which to apply the tactic or the tactic
arguments themselves. SEPIA doesn’t require any additional abstractions to be made,
both the tactic and the arguments are included within the actual learning process.

In Jamnik et al. there is the notion of a well-chosen example. This means that by
learning from manually chosen groups of proofs, then similar ones can be discharged
using the learned tactics sequences. This works well, but only for families of similar
proofs that have been manually identified. SEPIA can be used in a more general purpose
manner - any collection of proofs can be learned from, and applied to theorems from
other domains.

The approach presented by Duncan has some probabilistic elements to it. Tactics
are formed from commonly occurring tactic sequences that appear within a corpus of
proofs. Although in simple cases this can be useful, the fact that a particular tactic se-
quence occurs often doesn’t mean it can be applied to a lot of other theorems. SEPIA
doesn’t discriminate based on probabilities and it learns from all tactic sequences pro-
vided.

Finally, there are differences in the way that SEPIA learns from the existing proofs.
SEPIA treats proofs as static – there is no interaction needed with the theorem prover.
Everything is treated as a simple sequence of tactics, and the theory is processed com-
pletely textually. In reality, a proof has a branching structure – tactics are applied and
create multiple subgoals. Both Jamnik et al. and Duncan have to replay the proofs
through the theorem prover firstly to acquire the branching structure. This has impli-
cations on the speed of the technique. Treating proof scripts textually allows SEPIA to

54 Chapter 3. Inferring State Machines from Proof Tactics

proceed to the learning process immediately with only simple pre-processing required.

3.7 Conclusions

This chapter has shown how state-based models can be derived from a corpus of inter-
active proofs. These state machines have proven to be useful as they can reduce large,
complex proof files into a more manageable, concise representation. The descriptive
models not only show a user the possible sequencing of proof methods (which is valu-
able enough information on its own), but also help to suggest the parameters that may
be useful in completing a proof.

By making two simplifying assumptions about Coq proofs, it becomes possible to
quickly infer descriptive models from a corpus of proofs. The first assumption is that
a proof is a sequence of tactic applications. In reality, the tactics construct a proof tree
– however to generate the proof traces this constraint is ignored. The EFSM inference
technique only accepts sequential data, so if the branching structure was considered the
proofs would have to be linearized in a manner similar to Duncan’s approach (Duncan,
2008). This is a possible item of future work to see if linearizing the proofs leads to
better models being inferred. The second simplification is the Coq proof scripts are
treated completely textually, leading to information about the tactic arguments being
lost. They are simply replayed statically – this potential limitation will be addressed in
Chapter 5.

Clearly, this approach is only viable on small collections of examples. In practice,
a proof developer might not necessarily want to manually execute a model. One could
argue that this approach is no more desirable than manually searching the proof library.
However, the example above has shown that SEPIA can discover new links that might
not have been spotted from simply analysing the library. The fact that proofs can be
found by using SEPIA in this way suggests that if the process could be automated then
it could be a useful addition to the proof process.

A small case study demonstrated that the models can be used to derive new proofs.
The case study also showed that, in comparison to existing proofs, the EFSM based
ones can be shorter than hand-crafted ones. This demonstrates the potential of using
state machine inference for theorem proving. The natural progression of this work is
to automate this process. This means that no human interaction is currently needed,
so there is no need to manually interpret and use the models. SEPIA must be able to
interact with the theorem proving tool, and should also be part of the user interface. The
next chapter shows how this can be achieved.

Chapter 4

Automating Proofs with Inferred
Models

4.1 Introduction

The previous chapter demonstrated that EFSMs can be used manually to generate proofs
in Coq. Although useful for small examples, the models inevitably become larger as
the corpus size increases. Therefore, it is unrealistic to assume that a user would want
to manually use a large inferred model to identify a proof. For the technique to be more
appealing to a wider audience, the approach must be as automated as possible.

This chapter describes a technique to automate the process of searching the inferred
models. To achieve this, a proof search algorithm is designed that searches the inferred
state machine automatically. The algorithm interacts with Coq by executing the tactics
encoded within the model. If a proof is identified, the tactics are provided to the user
who can simply add them to their proof development. The algorithm forms a key part
of the SEPIA plugin – an extension to ProofGeneral that allows one-click invocation of
the proof search.

The chapter begins by describing the proof search algorithm in detail. Then, the
integration of SEPIA into the ProofGeneral environment is demonstrated. Finally, a
walkthrough of the tool shows SEPIA identifying proofs automatically. The work com-
pleted within this Chapter is described in a paper presented at CADE-25 (Gransden,
Walkinshaw, and Raman, 2015).

4.2 SEPIA Proof Search Algorithm

This section describes the overall process of automating the search for proofs using
inferred models. Before describing the proof search algorithm (Algorithm 3), some
necessary auxiliary functions are introduced. Following this, the algorithm is described

55

56 Chapter 4. Automating Proofs with Inferred Models

Input: Theorem statement T , State Machine M
Output: Coq tactic sequence to prove T
Data:

1 toVisit← /0
2 root← createNewNodeIn f ormation(/0,getRoot(M))
3 toVisit← toVisit.add(root)
4 while toVisit is not empty do
5 current← toVisit.getNext()
6 incomingTactics← current.getIncomingPath()
7 stateNum← current.getNode()
8 for (f rom, label, params, to) ∈ getOutgoingTransitions(M,stateNum) do
9 tacticSequence← incomingTactics+(label, params)

10 (proven,madeProgress)← executeCoqCommand(tacticSequence)
11 if proven then
12 return tacticSequence
13 else
14 if madeProgress then
15 newPath← createNewNodeIn f ormation(tacticSequence, to)
16 toVisit.push(newPath)
17 end
18 end
19 resetToInitialState()
20 end
21 end
22 return /0

Algorithm 3: SEPIA Proof Search Algorithm

in depth. As input, it takes a Coq theorem statement that requires proving and an in-
ferred state machine (inferred using the techniques from Chapter 3). As output, the
algorithm may produce a Coq command that can be used to prove the theorem.

4.2.1 Auxiliary functions and data structures

The SEPIA algorithm contains some auxiliary methods and data structures that require
explanation.

root and newPath variables The algorithm must know which state to visit next in
the machine, along with the sequence of tactics that led to that state being encountered.
In SEPIA, the NodeInformation structure stores these two pieces of information. Al-
gorithm 3 uses variables called root and newPath, which are instances of NodeInforma-
tion. A source code listing for NodeInformation is shown in Appendix A.

Chapter 4. Automating Proofs with Inferred Models 57

createNewNodeInformation function During the proof search, some new instances
of NodeInformation need to be created. This function takes two arguments – a state
within the model and a list of incoming tactics that led to the state being encountered.
Calling this function results in a new NodeInformation being created that stores the
tactics and the state.

getOutgoingTransitions function When the proof search visits a state within the
machine, the outgoing transitions are explored and the tactics applied to the proof state.
This function takes the state machine and the current state. It returns the set of outgoing
edges from the state.

executeCoqCommand function The proof search algorithm constructs Coq com-
mands and applies them to an instance of Coq. In return, the method reports back one
of three different possibilities. Either the command proved the theorem, or it may have
made some progress. Finally, the applied tactics may have caused an error.

resetToInitialState function This function sets the proof state back to the origi-
nal by issuing the Restart command to Coq. This method is important because the
proof search algorithm stores the next state and path of tactics that led to it (using the
NodeInformation class).

4.2.2 Algorithm description

Lines 1-3 The SEPIA algorithm first sets up the environment and any variables. An
instance of Coq is created that has states the theorem to be proven. A data structure
called toVisit stores instances of the NodeInformation class defined earlier. Ini-
tially, toVisit is empty. In practice, precisely what this data structure is depends on
the type of search being performed.

If depth-first search is being used, toVisit is a stack and conversely using breadth
first search it is a queue. SEPIA implements both of these search types – defaulting to
breadth-first search. Using the createNewNodeInformationmethod, a NodeInformation
object is created and added to toVisit. This contains the root state of the machine, and
an empty incoming path (as there were no tactics applied to arrive at the initial state).

Lines 4-7 The iterative proof search begins by checking if toVisit is empty. If it is,
then there are no more viable paths to explore within the model and an empty list of tac-
tics is returned. Otherwise, the main loop is entered as further exploration of the model
is possible. A variable current stores the next NodeInformation instance retrieved

58 Chapter 4. Automating Proofs with Inferred Models

from toVisit. Other variables, stateNum and incomingTactics store the incoming
tactic path and state number from the current.

Lines 8-10 From the state currently being examined (stateNum), any outgoing tran-
sitions are obtained from the state machine. On each transition, there is a tactic and
argument, along with a source (f rom) and destination (to). A Coq command is con-
structed by pairing a tactic and an argument, and appending this to the incoming tactic
sequence to the current state. The resulting command is sent to Coq and the response is
then checked.

Lines 11-18 If the theorem was proven, then the successful command is returned to the
user. If the tactic was applied and made progress (see below), then a new NodeInformation

is constructed newPath that contains the applied tactic sequence and the destination
state of the transition. Then newPath is added to the toVisit data structure for further
investigation later on during the proof search.

Line 19 When the tactic sequence has been evaluated the proof state is reset. This is
done by using the ResetToInitialState function described earlier.

Checking progress of applied tactics

When SEPIA sends a command to Coq, it also appends the Coq progress tactical
(Bertot and Castéran, 2004) to the front of it. When investigating a particular path
through a model, the aim is to only explore subsequent states whilst progress is being
made. To demonstrate why this is important, consider the following example of a poten-
tial looping state. It is entirely possible that SEPIA may propose a model that contains
a state that has looping transitions (see Figure 4.1).

FIGURE 4.1: Looping transition

It happens that tactics such as simpl tactic (among others) don’t report an error
when no changes are made to the proof state. In this case, the proof search will simply
continue searching around the loop (as no error message was given by Coq). To demon-
strate this, the example in Listing 4.2 shows the difference between using progress and
not.

Chapter 4. Automating Proofs with Inferred Models 59

LISTING 4.2: Progress in Coq

1 s u b g o a l

============================
f o r a l l a : na t , a + 0 = a

demo < s i m p l .
1 s u b g o a l

============================
f o r a l l a : na t , a + 0 = a

demo < s i m p l .
1 s u b g o a l

============================
f o r a l l a : na t , a + 0 = a

c o n t i n u e s

By repeatedly applying simpl (mimicking the loop displayed in Figure 4.1), the
search would simply keep going. This is because the algorithm believes that the tactic
was applied successfully. In reality, there are no changes being made to the underlying
proof state so there is little point in applying the tactic any more. Now consider Listing
4.3 that shows the same example but with the progress tactical being used.

LISTING 4.3: Using the Progress tactical

1 s u b g o a l

============================
f o r a l l a : na t , a + 0 = a

demo < p r o g r e s s s i m p l .
E r r o r : F a i l e d t o p r o g r e s s .

This time, the proof search halts as Coq reports that no progress was made. SEPIA
identifies that an error occurred and will stop searching down that particular path. This
improves the efficiency of the proof search, as only paths that are genuinely making a
difference to the proof state are processed further.

60 Chapter 4. Automating Proofs with Inferred Models

Extending with heuristics

As well as using standard algorithms to traverse the model, the SEPIA approach sup-
ports the definition of heuristics that could be used during proof search. This could be
a useful addition as the standard search algorithm (Algorithm 3) doesn’t include any
information that can be obtained from the proof state.

Easily obtained information from the proof context could be, for example the num-
ber of subgoals or hypotheses. The length of the incoming path of tactics applied so
far could also be considered. By influencing the proof search with this information, the
proof search algorithm could select paths based on these properties and explore those
first. This idea of proof search heuristics are described as future work in Chapter 7

4.3 The SEPIA ProofGeneral plugin

Previously, models were inferred from Coq proofs and presented to the user. These
were then used manually to derive proofs – this involves the user interpreting a model
and issuing the suggested steps to Coq. However, by using Algorithm 3, this process
can be automated. The remaining task is to make this approach usable during interactive
proof development.

To allow SEPIA to be used during proof development, there are some technical
obstacles that must be addressed. Firstly, a user interface must be designed to allow
the user to invoke SEPIA. Secondly, SEPIA needs to be able to interact with Coq. This
involves being able to send commands to Coq, and also receive the response.

The rest of this section is structured as follows: firstly, the overall design and ben-
efits of implementing SEPIA as a Coq plugin are summarised. Then, ProofGeneral is
introduced as it forms the basis for the SEPIA plugin. Finally, the process of allowing
SEPIA to communicate with Coq is described.

Chapter 4. Automating Proofs with Inferred Models 61

4.3.1 System design and benefits

Coq Theories

Trace
Generator

Proof Trace MINT model
inference

State
Machine

Proof
Search

Begin

Coq Proof

Conjecture

TacticResponse

SEPIA

FIGURE 4.4: SEPIA Plugin Overview

Figure 4.4 provides a high level overview of how the components of SEPIA combine
to form a usable plugin. It obscures any information about the user interface for now,
rather displaying the overall behaviour from starting the process to finding a proof.
SEPIA begins with the user selecting the theories that they wish to use for model in-
ference. Then, using the methodology from Chapter 3 a set of proof traces are inferred
from the selected theories. Finally, the proof search algorithm (Algorithm 3) is used
after a model has been inferred. There are numerous benefits that could make such a
plugin attractive for a proof developer:

Adaptivity SEPIA is iterative, meaning that as more proofs are discovered they can
be incorporated into future cycles of the process. This could lead to more accurate
models being inferred – forming a virtuous loop. This ability to adapt is a major benefit
over existing automated tactics that typically try a fixed set of basic tactics and facts.

Automation Aside from providing the initial set of theories from which to infer a
model, the user is not prompted for any other input. In addition, the process runs in the

62 Chapter 4. Automating Proofs with Inferred Models

background and alerts the user if a proof is discovered. The user then adds the proof
steps into their own proof development. As will be demonstrated in Chapter 6, SEPIA
can discover proofs in a matter of seconds.

Shorter proofs The automatic nature of the proof search means that there are many
choices of algorithms available. When searching the model, there is a possibility of
finding shorter proofs contained within the model (if they exist). When compared with
human derivations of the same theorems, the proofs that SEPIA finds may be shorter.
The running example from Chapter 3 has already demonstrated this.

New proof sequences The state-merging process (see Chapter 2) can result in models
that suggest sequences of tactics that weren’t in the initial set of proofs. These aren’t
necessarily intuitive and may not be spotted from manual scrutiny of the library. Never-
theless, they contain valid sequences of Coq commands that can be used to prove Coq
theorems.

4.3.2 ProofGeneral interface for Coq

Coq is a process that uses a traditional read-eval-print loop (REPL) to take commands
from the user. It evaluates the command and reports back whether it was successful or
not. The downside of such a primitive approach is that a proof development typically
spans many files, and there usually needs to be many theories open at once. Therefore,
it is desirable to add a user interface layer to help users maintain this information during
proof development.

There are many different user interfaces available – these include both web based
and ones that can be run locally. For SEPIA to be useful to proof developers, it must
be able to be invoked during proof attempts. The most widely used interface is Proof-
General (Aspinall, 2000). This is a generic emacs interface that can work with multiple
popular proof assistants such as Coq and Isabelle. Clearly it is desirable that SEPIA
integrates within an existing environment instead of creating one especially for the pur-
poses of this work.

ProofGeneral allows users to create and embed their own plugins within an instal-
lation. SEPIA takes advantage of this by implementing a simple plugin that allows
the model inference tool to be invoked automatically from within a proof development.
ProofGeneral provides a number of convenient mechanisms from a SEPIA perspective,
meaning that a new environment doesn’t need to be written from scratch.

Chapter 4. Automating Proofs with Inferred Models 63

Firstly, SEPIA can work with multiple Coq theories. These can be provided to
SEPIA and used to infer proof traces from (see Figure 4.4). ProofGeneral allows mul-
tiple Coq files to be opened and manipulated within the same instance. Therefore, it is
trivial to use emacs functions to retrieve the opened theories. ProofGeneral is also able
to invoke external processes – the SEPIA executable is in Java format, so it needs to be
run from the command line.

SEPIA interacts with an instance of Coq during the proof search. When the user has
stated a theorem, an instance of Coq is created that exactly mirrors what the user can see
in ProofGeneral. SEPIA interacts with the newly generated Coq instance. This means
that if SEPIA finds a proof, the sequence of tactics can be copied into ProofGeneral.

A final benefit of using ProofGeneral is that it is extensible and used with numerous
theorem provers. In the future SEPIA may be extended to other theorem proving sys-
tems. Having this basic infrastructure in place means that extending should be a trivial
process.

4.3.3 Communication between SEPIA and Coq

SEPIA handles communication to and from an instance of Coq. This means that tactics
need to be sent to the theorem prover and the response must be provided back to SEPIA.
The core implementation of SEPIA is written in Java, whilst Coq is a command line
executable (originally programmed in OCaml). Therefore, some careful consideration
is needed to get the two tools interacting.

The Coq executable can be launched from Java using the standard Java API meth-
ods. This provides a convenient mechanism for invoking and interacting with programs
such as Coq. In the ProofGeneral plugin, when the user calls SEPIA an instance of Coq
is loaded that mirrors the state that ProofGeneral is currently in.

Once a tactic has been sent to Coq, SEPIA pauses and waits for a response. Coq
provides reasonably verbose output, so it is easy to check the result of the tactic appli-
cation. A simple helper class handles the parsing of the Coq response. There are three
possible responses that SEPIA checks for. Firstly, there is SUCCESS, which is received
if Coq says the theorem is proven. Secondly, there is OK which means that the tactic
was successfully applied but didn’t prove the theorem. Lastly, there is ERROR, which
signifies that the tactic wasn’t applicable to the proof state or some error was output by
Coq.

SEPIA reads the output from Coq and scans for keywords in order to decide what
the status should be. In the case of SUCCESS, this is chosen when the response from
Coq contains Proof completed or No more subgoals. The two success messages
are from different versions of Coq so SEPIA checks for both. An ERROR status is given

64 Chapter 4. Automating Proofs with Inferred Models

when the response contains a line beginning with the Coq keyword Error. Finally,
the OK status is given in all other circumstances when a tactic was applied successfully
to the proof state without error. This mechanism is used in Algorithm 3 to monitor
whether tactics were successfully applied.

4.4 Using the SEPIA plugin

To conclude this section, the SEPIA plugin is demonstrated. Firstly, the user can begin
their proof development in the usual way. As an example, consider trying to prove the
following theorem: forall n m p:nat, p + n <= p + m -> n <= m. The theo-
rem has been stated, and the existing Coq automation has been invoked. These tactics
were unable to identify a proof for the example. Figure 4.5 demonstrates what the user
can see after applying the automated tactics.

Chapter 4. Automating Proofs with Inferred Models 65

FIGURE 4.5: Stage 1: State the theorem

There are two theories from the Coq standard library containing proofs of similar
properties. In order to use these files with SEPIA, they must be opened in ProofGeneral.
The user opens up these theories and then returns to their current theory. ProofGeneral
is able to list any opened files with a simple call to the buffer-list method. Any
buffers that don’t end with the Coq theory file extension (.v) are ignored. Figure 4.6
shows the list of buffers that are open. SEPIA uses any Coq theories that are currently
opened.

66 Chapter 4. Automating Proofs with Inferred Models

FIGURE 4.6: Stage 2: Open any additional theories

A proof attempt can now begin by invoking SEPIA. The plugin adds an addi-
tional menu item to ProofGeneral that allows SEPIA to be configured. The new menu
item contains the following options allowing various aspects of the proof search to be
changed by the user:

• Prove current lemma - this option is selected to begin an automated proof at-
tempt using SEPIA

• Search type - a selection of searches can be chosen including breadth-first and
depth-first.

• MINT Options - For advanced users, some parameters for the MINT tool (Walkin-
shaw, Taylor, and Derrick, 2015) can be configured. These include selecting the
state-merging strategy used, and the score (k) used to determine if two states are
equivalent.

• Search limits - This allows the proof search to be aborted after a specified number
of tactics have been evaluated within the model.

• Timeout - This tells SEPIA to stop the search after a specified number of seconds.
This provides an alernative to using search limits.

If the user doesn’t select any additional configuration options, they are left as their
default values. These tell SEPIA to use a breadth-first search for 30 seconds. For this
example, everything is left to the default values. MINT is left untouched and uses its
standard configuration of state merging and k-value.

Chapter 4. Automating Proofs with Inferred Models 67

After setting any configuration options, the user then clicks the Prove Current Lemma
button to begin a proof attempt. Figure 4.7 shows that a new buffer appears called
sepia-output. This displays any information that is output from the proof search.
Green text indicates that a proof was discovered, red text denotes that no proof was
found.

At the bottom of the SEPIA output window, the user is provided with some lightweight
statistics about the proof attempt. It shows the number of tactics applied during the
search, and how long the inference and search took. For the example theorem, 3650
tactics were applied and the overall running time (model-inference and search) took 4
seconds to identify a proof.

FIGURE 4.7: Stage 3: Invoke SEPIA

For the example theorem, some green text is displayed. This means that SEPIA has
proposed a sequence of tactics to prove the theorem. All the user has to do is copy the
tactic sequence into their proof development and run Coq to verify the steps. As shown
in Figure 4.8, SEPIA has successfully proven the theorem. Interestingly, the proof that
SEPIA found was a new combination of tactics not seen in Le.v or Lt.v.

68 Chapter 4. Automating Proofs with Inferred Models

FIGURE 4.8: Stage 4: Paste proof into proof script

4.5 Conclusions

This chapter has demonstrated an automatic proof search algorithm that can execute
inferred EFSMs within Coq. A plugin that uses the proof search algorithm has been
implemented within the ProofGeneral environment. The extension allows users to se-
lect Coq theories, infer models from them, and use the inferred models as a basis for
automated proof generation. Aside from selecting the theories to use, the approach is
completely automatic. The idea will be fully evaluated later on in Chapter 6.

A walk-through of the tool demonstrated that SEPIA can prove theorems that weren’t
solved by previously available automated tactics in Coq. This is a major improvement
over existing proof automation that is typically limited in the steps that are attempted.
Instead of a user studying the model and manually applying the tactics (as shown in
Chapter 3), the algorithm achieves this automatically. Ultimately, this means that a
model can be searched in a much quicker time than a manual derivation.

The proofs that SEPIA identifies are interesting for a number of reasons. Firstly,
as shown in Chapter 3 the proofs can be shorter than a typical human derivation. One

Chapter 4. Automating Proofs with Inferred Models 69

interesting aspect of the discovered proofs is that the model inference techniques can
identify new links between different parts of Coq proofs. This was demonstrated by
the example from the previous section. Because of the underlying model inference
algorithms, SEPIA may suggest entirely new sequences of tactics that weren’t present
in the original corpus.

Although SEPIA has been demonstrated to be useful at automating proofs, it does
have some limitations. The next chapter looks at scenarios where SEPIA is unable to
produce proofs, and tries to identify the underlying reasons why a proof wasn’t found.
To try and address these issues, additional learning steps are introduced to improve
SEPIA further.

Chapter 5

Extensions to SEPIA

5.1 Introduction

In the previous chapters, SEPIA has been shown to be a promising approach for au-
tomating proofs within Coq. Tactic applications used in existing proofs can be modelled
using state-machines, and the resulting models provide a targeted search space that is
used during proof attempts. This chapter proposes that additional machine learning can
improve the approach further, overcoming some of the limitations that arise from the
design choices made in SEPIA.

By taking complete theories of Coq proofs, SEPIA infers a model from every proof
within the input set. This can lead to large state machine being inferred, that could take
a long time to search through. Secondly, SEPIA parses the proof script without any
interaction with Coq. Although effective, this choice can limit the applicability of the
inferred models. To overcome these limitations, SEPIA is augmented with additional
learning steps.

These limitations can be addressed by utilising proof clustering techniques from
ML4PG (Komendantskaya, Heras, and Grov, 2013). The addition of the proof cluster-
ing forms a suite of machine learning tools1 called Coq-PR3. The name derives from
three operations that can be performed on Coq proofs – revisiting, reusing and recycling
proofs. These will be elaborated on later in Section 5.4.

The chapter begins by describing two scenarios that show potential weaknesses in
the SEPIA approach. Then, the ML4PG technique is recapped – focussing on potential
areas where it could improve SEPIA. The main algorithm of Coq-PR3 is described
before looking at the corresponding plugin for ProofGeneral. Finally, the examples are
revisited to show how Coq-PR3 can prove additional theorems to SEPIA.

1The Coq-PR3 ProofGeneral extension is available for download from https://bitbucket.org/
tomgransden/coq-pr-3

71

https://bitbucket.org/tomgransden/coq-pr-3
https://bitbucket.org/tomgransden/coq-pr-3

72 Chapter 5. Extensions to SEPIA

5.1.1 Motivating Examples

There are two choices made for the original design of SEPIA that can potentially cause
limitations to the technique. These are demonstrated with the help of two examples. The
underlying reasons why these situations arise are discussed, along with how additional
machine learning can help to address them.

Example 1 - Trace encodings Consider trying to prove the following theorem forall

n m: nat, n + S m = S n + m. Assume that there is a set of proofs and a model
has been inferred from them (the initial fragment is shown below in Figure 5.1). Using
the existing SEPIA proof search algorithm (see Algorithm 3), the theorem isn’t proven.
After investigating the proof search in more detail, it becomes clear why the attempt
was unsuccessful.

FIGURE 5.1: Fragment of inferred model from failed proof attempt

induction
((p==l))||((p==a)) trivial auto

initial

intros

The proof search begins in the initial state of the model, and with the theorem stated
in Coq. Taking the leftmost transition first, there are two Coq commands that are for-
mulated from this transition – induction l and induction a. Neither of these can
be applied to the proof state, so this path isn’t explored further.

Moving to middle transition, there is the trivial tactic, that takes no additional
arguments. When this tactic is applied an error is returned (recall that SEPIA uses
the progress tactical) suggesting that no progress was made. Finally, exploring the
rightmost transition attempts to apply auto. The result is the same as before – no
progress was made. There are no more states in the model available to search, so the
proof search fails.

Chapter 5. Extensions to SEPIA 73

It is important to consider why such a proof attempt failed. The automatic tactics
failing is not something that can be prevented – either they will make progress or not.
The interesting part of this example is the transition labelled induction. The appli-
cation failed because there were two very specific suggestions for arguments – these
variables appeared in proofs that the EFSM was inferred from. The tactic application
failed because the example theorem contains only n and m. The transition within the ma-
chine states that induction should be performed on a or l – neither of these are present
within the current theorem.

This scenario arises a lot during SEPIA proof attempts, and is caused by the cho-
sen way of encoding proof traces. By enhancing the information contained within the
traces, this situation may be overcome. The enhancements to proof trace generation
will be described later on in this chapter.

Example 2 - Size of the inferred models SEPIA works by taking one or more Coq
theories, and inferring a model from every theorem within the input set. There is no
relevance filtering (Meng and Paulson, 2009; Kaliszyk and Urban, 2015) that takes
place. This naturally means that the inferred models can grow to be extremely large
(depending on the proofs used as input). To demonstrate this, consider the following
example that uses a theory from the Ssreflect proof development (Gonthier, 2005).

A user has invoked SEPIA to try and prove the following theorem about sequences:
take_size s : take (size s) s = s. The seq theory in Ssreflect contains 393
other proofs about sequences, so SEPIA infers a model from all of these. The resulting
model contains 88 states and over 250 transitions. SEPIA manages to prove the theo-
rem, however there may be improvements that can be made to reduce the size of the
inferred model.

The reality of inferring from large collections of proofs is that only a handful of
the tactic applications may actually useful in any given proof attempt. A large number
of paths through an inferred model simply aren’t applicable to a particular theorem.
A potential solution to circumvent this situation is to identify which theorems may be
useful to infer a model from. By doing this, the models become smaller and more easily
searchable within a given time constraint.

By reducing the size of the model (but hopefully preserving the ability to prove the
theorem), there can be improvements to the proof search. There will typically be far
fewer paths to explore, meaning there are fewer interactions with Coq needed. Also,
using a smaller model there could be improvements to the time needed to search the
model.

74 Chapter 5. Extensions to SEPIA

5.2 ML4PG revisited

ML4PG (Komendantskaya, Heras, and Grov, 2013) is a tool for Coq that uses clus-
tering techniques to identify similarities between Coq theorems and definitions. It has
successfully been used in a variety of situations (Heras and Komendantskaya, 2014;
Heras and Komendantskaya, 2013) to aid proof development. Ultimately, it is used to
present proof patterns to the user who can then formulate a proof manually. In Chapter
2, the theory behind ML4PG was described. This section attempts to identify potential
ways it can help address the limitations from the previous section.

ML4PG can be invoked in two different modes depending on the situation. Firstly,
it can take large proof libraries and cluster them to provide groups of similar theorems.
Secondly, ML4PG can be invoked during a proof attempt to gather the most similar
theorems to the current one being proven. Both of these modes will be exploited by
Coq-PR3.

SEPIA ML4PG

Aim Automatic proof generation Provide hints to user
Type of learning Model inference Coq object clustering
User interface ProofGeneral ProofGeneral
Output usage Manual/Automatic Manual
Learning process Static Dynamic

TABLE 5.1: Comparison of SEPIA and ML4PG

Table 5.1 provides a comparison of SEPIA and ML4PG. The two tools are both
ProofGeneral extensions, but have differing aims. SEPIA focusses on automatic proof
generation using model inference techniques. ML4PG uses proof clustering methods to
produce proof hints for the user. To achieve this, ML4PG dynamically learns from
proofs by interacting with Coq to extract features, whereas SEPIA treats the proof
scripts completely statically.

Despite having numerous differences, the two tools can potentially complement
each other. Consider the two limitations of SEPIA described earlier. By utilising the
functionality provided by ML4PG, the new Coq-PR3 technique can use the best of both
approaches to prove theorems in Coq.

The first limitation of SEPIA was that proof-trace generation simply parsed the
proof scripts without interacting with Coq. ML4PG takes a different approach, replay-
ing each proof through Coq to generate features. These features are then passed to
clustering algorithms in order to identify similarities between Coq objects. There is a

Chapter 5. Extensions to SEPIA 75

Input: A Coq theorem T , A corpus of Coq proofs Proo f s
Output: A tactic sequence to prove T

1 suggestions← getSimilarT heorems(T,Proo f s,Granularity)
2 (clusters,hypotheses)← gatherProo f LibraryIn f ormation(Proo f s,Granularity)
3 Tr← /0
4 for p ∈ suggestions do
5 Tr← Tr∪ toProo f Trace(p,hypotheses,clusters)
6 end
7 M← in f erModel(Tr,suggestions)
8 solution← per f ormProo f Search(M,T,Clusters)
9 return solution

Algorithm 4: Integrating proof clustering and model-inference

possibility that augmenting some of this functionality into the proof trace generation
could produce better trace encodings.

The second limitation was the lack of relevance filtering within SEPIA. ML4PG
could trivially be employed as a relevance filter for the model-inference part of SEPIA.
Instead of inferring a model from every proof provided, ML4PG could be invoked to
make suggestions about which theorems could be most useful to use during model
inference.

The rest of this section looks at how the two tools (SEPIA and ML4PG) can comple-
ment each other. The resulting combination – Coq-PR3 – provides a new proof search
approach that combines model inference and proof clustering. Additionally, the user
benefits from being to invoke each tool individually.

5.3 The Coq-PR3 algorithm

Coq-PR3 is the combination of the state-machine inference techniques from SEPIA, and
the proof clustering methods from ML4PG. The main steps of the algorithm that powers
Coq-PR3 is described in Algorithm 4. As input, it takes a set of Coq proofs (Proo f s)
and a theorem to prove (T). As output, a Coq command that proves the theorem will
be provided if one was found. The main steps of the algorithm are described before the
changes to proof trace generation and proof search are described.

Line 1 - Identify similar theorems Coq-PR3 will be invoked once the user has stated
a conjecture in Coq. The first stage of the process is to use the proof clustering algo-
rithms to suggest similar theorems to the theorem. The number of suggestions provided
is controlled by the specified granularity parameter. If this is low, then a larger set of
suggestions is provided. Increasing the granularity reduces the number of suggestions
to only provide the most closely related ones to the current theorem.

76 Chapter 5. Extensions to SEPIA

Line 2 - Gather information from the proof corpus The previous step identified the
most similar theorems to the current theorem. Coq-PR3 must also identify the groups
of theorems that are most related to each other across the whole corpus of proofs.
Therefore, the proof clustering algorithm is invoked using the complete set of proofs
(Proo f s). Again, the granularity parameter controls the overall size and precision of
the clusters.

To enable proof clustering, features are extracted dynamically from Coq proofs.
This involves replaying every step through Coq to identify the necessary features. Using
this feature extraction mechanism provides the ability to inspect the internal hypothe-
ses. The proof clustering algorithm stores how the hypotheses change between tactic
applications. Section 5.3.1 shows an example of hypotheses extraction.

Lines 3-6 - generate proof traces The next step is to generate the proof traces. In
Coq-PR3, the traces are enhanced using information from the clusters and hypotheses
that were extracted earlier. By extending the proof trace generation process, it is pos-
sible to encode extra information within the traces. This allows better identification of
precisely what a tactic argument refers to. The updated proof-trace generation process
is described fully in Section 5.3.2.

Line 7 - infer the model Once the proof traces have been generated, the EFSM is
inferred. The underlying model inference algorithms in MINT are unchanged. How-
ever, the main difference in Coq-PR3 is that the model is not inferred from all of the
proofs. Instead, the suggestions are fed into the model-inference, meaning that only
these theorems should be used to infer a model from.

Lines 8-9 - Search the model Because the format of the proof traces has been modi-
fied, the proof search algorithm must be adapted to accommodate this. The fundamental
approach is the same as the algorithm used in SEPIA (see Algorithm 3). However, the
clusters generated earlier are also provided to the search process to enhance the num-
ber of choices for possible tactic arguments. The changes made to the proof search are
described in Section 5.3.3.

5.3.1 Obtaining hypotheses from Coq proofs

As tactics are applied to the proof state, the context is maintained by Coq. This contains
hypotheses that can be used to prove the current subgoal. Tactic arguments may refer to
facts available within the context. Everything contained within the context has a name

Chapter 5. Extensions to SEPIA 77

and an associated statement. In Listing 5.2, the context is everything above the line,
with the subgoal displayed below the line.

LISTING 5.2: Coq proof state

1 s u b g o a l
n : n a t
m : n a t
============================
n + S m = S n + m

The feature extraction technique used in ML4PG is able to produce a hypotheses
list for each theorem it processes. This simply outputs the variable names that were in
scope at each step of the proof. The actual statement that the variable refers to isn’t
important for the purposes of Coq-PR3 and is ignored. Figure 5.3 demonstrates the
hypotheses list for an example theorem called two_power_nat_pos.

(a) Proof Script (b) Hypotheses

Lemma two_power_nat_pos :
forall n : nat, two_power_nat n > 0.

Proof.
induction n.
rewrite two_power_nat_O.
omega.
rewrite two_power_nat_S.
omega.
Qed.

("two_power_nat_pos"
(nil
nil
nil
("n" "IHn")
("n" "IHn")))

FIGURE 5.3: Coq proof and extracted hypothesis

The output should be interpreted as a list that shows how the context changes after
tactics are applied to the proof state. Before any tactics have been applied, the context
is empty (nil). After applying induction n, the context is still empty. Similarly, after
applying rewrite two_power_nat_pos the context remains empty. Applying the Coq
automated omega tactic solves the base case of this proof and leaves the step case.
The context now contains n and IHn. The application of rewrite two_power_nat_S

leaves the context unchanged, before omega finishes the proof.

5.3.2 Modifying proof trace generation in Coq-PR3

To generate proof traces in Coq-PR3, the raw proof script isn’t suitable on its own, and
some additional input is required. The main difficulty when parsing the proof script
is identifying what constitutes a tactic parameter and what is simply Coq syntax. In

78 Chapter 5. Extensions to SEPIA

SEPIA, everything after the tactic was simply stored as a string. However, Coq proof
scripts can be converted into HTML, providing a more structured format. Consider
the following proof – shown in both proof script and HTML format (tidied up into a
readable format):

(a) Proof Script (b) HTML Format

Lemma two_power_nat_pos :
forall n : nat, two_power_nat n > 0.
Proof.
induction n.
rewrite two_power_nat_O.
omega.
rewrite two_power_nat_S.
omega.
Qed.

Lemma
two_power_nat_pos :
forall
n :
nat,
two_power_nat
n > 0.
induction
n.
rewrite
two_power_nat_O.
omega.
rewrite
two_power_nat_S.
omega.

FIGURE 5.4: Proof script and HTML representation

Using the HTML structure, it becomes much simpler to identify what constitutes the
arguments and what is the Coq syntax. All potentially useful information is contained
within tags. These either describe that the enclosed object is a Coq keyword,
a Coq tactic or a variable – it is these variables that are of interest to Coq-PR3. All
syntactical information is contained outside of these tags.

In Coq-PR3, the proof traces should be as descriptive as possible, adding extra
meaning to what the tactic arguments actually represent. For instance, is the argument
another theorem, a hypothesis or does it occur in the theorem statement. Using this
newly obtained information it becomes possible to assign placeholders for tactic argu-
ments based on information obtained previously. The two placeholders that Coq-PR3

uses are <local> and <ext-fact >.

Incorporating local variables To demonstrate using the <local> placeholder, con-
sider the Coq proof that has been used throughout this section (see Figure 5.3). The
first tactic in the example proof is induction n. In the original proof trace generation,
this was simply recorded as the proof method induction and the parameter as "n".
The resulting transition within the EFSM can then only be re-applied if there happens
to be some variable named n in the subgoal (in the same manner as the first motivating
example).

Chapter 5. Extensions to SEPIA 79

Imagine that the proof trace generation is looking at the first line of the example
proof – induction n. Using the hypotheses generated by ML4PG, the context is
checked to see the state immediately before induction n was applied. In this case,
it was empty so the theorem statement is examined for possible variables. There is a
matching variable that came from the original statement – n.

This can then be encoded in the trace as follows: the proof method is induction
and the parameters are stored as "<local>". This can be understood by the proof search
algorithm as "apply induction on some variable in the context/subgoal". The proof
search algorithm can use this guidance to make a choice about how to apply the tactic
based on the proof attempt at the time.

Incorporating External facts Coq-PR3 can also provide a placeholder for external
facts – allowing the proof search to try similar theorems. In the example proof, con-
sider the second tactic application – rewrite two_power_nat_O. In SEPIA, the proof
method is stored in the trace as rewrite and the arguments are two_power_nat_O.
This means that the tactic is only applicable if there is a suitable proof state to rewrite
using the specified theorem.

As an example, the clusters provided by ML4PG suggest that there are 12 similar
facts to two_power_nat_O. These could also be applied during a proof attempt. This
is encoded in the proof trace as follows: the proof method is rewrite and the pa-
rameters are <ext-fact two_power_nat_O. The <ext-fact> placeholder should be
understood as "try using the suggested fact, but also try the replacements available".

Comparing proof-trace encodings Using the enhanced proof trace generation for
Coq-PR3, the example theorem gets encoded as shown in Figure 5.5(b). As a compar-
ison, Figure 5.5(a) shows the same theorem encoded using the proof trace format from
Chapter 3. The main fundamental difference is that Coq-PR3 incorporates placeholders
within the proof trace. These are used and instantiated later during the proof search.

(a) SEPIA proof trace (b) Coq-PR3 proof trace

trace
induction n
rewrite two_power_nat_0
omega
rewrite two_power_nat_S
omega

trace
induction <local>
rewrite <ext-fact two_power_nat_0>
omega
rewrite <ext-fact two_power_nat_S>
omega

FIGURE 5.5: Comparison of SEPIA and Coq-PR3 proof traces

80 Chapter 5. Extensions to SEPIA

Input: Theorem statement T , State Machine M, Proof Clusters PC
Output: Coq tactic sequence to prove T

1 toVisit← /0
2 root← createNewNodeIn f ormation(/0,getRoot(M))
3 toVisit← toVisit.add(root)
4 while toVisit is not empty do
5 current← toVisit.getNext()
6 incomingTactics← current.getIncomingPath()
7 stateNum← current.getNode()
8 for (f rom, label, params, to) ∈ getOutgoingTransitions(M,stateNum) do
9 for possibleInstantation ∈ enumeratePossibilities(params,PC) do

10 tacticSequence← incomingTactics+(label, possibleInstantiation)
11 (proven,madeProgress)← executeCoqCommand(tacticSequence)
12 if proven then
13 return tacticSequence
14 else
15 if madeProgress then
16 newPath← createNewNodeIn f ormation(tacticSequence, to)
17 toVisit.push(newPath)
18 end
19 end
20 resetToInitialState()
21 end
22 end
23 end
24 return /0

Algorithm 5: Coq-PR3 Proof Search Algorithm

5.3.3 Enhancing proof search in Coq-PR3

The final modification required for the Coq-PR3 approach is to the proof search al-
gorithm. Although mostly similar to the one used in SEPIA (Algorithm 3), there are
some changes necessary. These are because the proof traces now contain placeholders,
and these are instantiated by the proof search algorithm. A new auxiliary function is
described, before the changes to the proof search algorithm are described.

Auxiliary functions

Algorithm 5 uses the same auxiliary functions as before. However there is one addi-
tional function required. The enumeratePossibilities function takes a parameter
string, and performs any instantiations of the placeholders contained within it. The
function returns a set of strings that constitute all of the possible instantiations of the
parameters.

Chapter 5. Extensions to SEPIA 81

If the parameters don’t contain <local> or <ext-fact>, then the original string
is simply returned as it can be applied to Coq without any additional processing. If
the parameter contains a <local> placeholder, then Coq-PR3 inspects the current proof
context and subgoal and obtains the names of any variables present. Then, for each
variable an instantiated Coq command is constructed and added to the set of strings to
return.

Similarly, if the parameter contains an <ext-fact> placeholder, the clusters are
used to lookup alternatives to the original fact. Again, these are all used to instantiate
the placeholder and added to the set to return. In the case that the parameters contain
more than one placeholders, then the Cartesian product of the possible instantiations is
returned.

Algorithm description

Lines 1-7 The Coq-PR3 algorithm follows the same basic process as the SEPIA imple-
mentation. An instance of Coq is created that has stated the conjecture to be proven. A
data structure called toVisit stores instances of the NodeInformation (see Chapter
4). Initially, toVisit is initialised to be empty, however a NodeInformation object is
created and added to toVisit that contains the root state of the machine, and an empty
incoming path. The proof search enters the main loop and begins exploring from the
root of the inferred machine.

Lines 8-10 From the current state, the outgoing transitions are obtained. On each tran-
sition, there is a tactic and argument. The modified proof trace format for Coq-PR3

means that the parameters may contain placeholders that can be instantiated during the
proof search. This step of the algorithm takes the parameters from an outgoing tran-
sition, and checks for the presence of <local> or <ext-fact> placeholders. This is
done by the enumeratePossibilities function described earlier.

For each of the possible instantiations obtained from enumeratePossibilities, a Coq
command is constructed. This uses the incoming tactic sequence as a prefix, and the
tactic with (possibly) instantiated argument. The resulting command is sent to Coq and
the response is then checked.

Lines 11-20 If the Coq command proved the theorem, then the tactic sequence is re-
turned. If the command made progress, then the destination state of the applied com-
mand and the tactic sequence is added to toVisit for further exploration. After the
command has been examined, the proof state is reset back to the initial state. In the
case that the model cannot be explored further, then an empty sequence is returned.

82 Chapter 5. Extensions to SEPIA

FIGURE 5.6: Coq-PR3 menu option in ML4PG

5.4 Integrating Coq-PR3 into ProofGeneral

Coq-PR3 has been designed to provide proof developers access to a suite of intelligent
tools for Coq. There are three different use cases for Coq-PR3 that a user may wish to
invoke. These possible uses of Coq-PR3 are:

• Revisiting proofs - use ML4PG to identify proof-patterns in a library of proofs,
and manually formulate a proof using the generated clusters.

• Re-using proofs - use SEPIA (described in Chapters 3 and 4) to generate a state-
machine that can automatically prove theorems.

• Recycling proofs - combine both techniques using Algorithms 4 and 5 to explore
theories and automatically prove theorems.

In order to revisit or reuse proofs, the user can navigate to the menu of the respec-
tive tool (either ML4PG or SEPIA). In the case that the user wants to try to recycle
proof patterns, a new menu item for Coq-PR3 has been created. The overall process of
recycling proofs using Coq-PR3 is displayed in Figure 5.7.

Chapter 5. Extensions to SEPIA 83

Coq Theories

Feature Extraction

Proof ClustersHypotheses

Model Inference

State Machine

Coq Theorem Prover

Conjecture

FIGURE 5.7: Recycling proof patterns with Coq-PR3

The additional Coq-PR3 menu that allows the user to invoke the proof search al-
gorithm (Algorithm 5). There are numerous steps to perform – these can be done in-
dividually or combined into one fully automated step. In order to recycle proofs with
Coq-PR3 the following steps must be performed:

1. Extract and save data from chosen theories – There will typically be other
theories that the user will have open in ProofGeneral. These need to have their
features extracted in order for ML4PG to cluster the proofs. The information for
each theory is extracted – both features and hypotheses – and stored for usage
later.

2. Extract info upto theorem – Using the current theory, there may be theorems
that are already defined before the current one. This step extracts the features and
hypotheses from these theorems. This data is also stored for usage later on in the
process.

3. Identify similar theorems – Using all of the proofs that have had their features
extracted (using the previous two steps) ML4PG is used to identify the most sim-
ilar theorems to the current one.

4. Generate clusters for selected libraries – ML4PG is used to generate the clus-
ters from all of the proofs selected by the user. These are provided to the proof

84 Chapter 5. Extensions to SEPIA

trace generation process, and are used as alternative tactic arguments during proof
search.

5. Invoke model inference – Finally, the model inference from SEPIA is invoked.
The suggestions from step 3 are used to tell SEPIA which proofs to infer a model
from. The proof traces are generated using the hypotheses (steps 1 and 2) and
clusters (step 4) generated in earlier steps (1) of the algorithm. After the model
has been inferred, it is searched using the proof search algorithm.

The output uses the same mechanism as SEPIA – an output window opens and pro-
vides information about the proof search. If a proof is discovered, the user is provided
with the tactics to paste into their proof development. If a proof wasn’t discovered, the
user can choose to invoke the process again with different settings (e.g. by changing the
granularity or the model inference parameters).

Each tool can be configured using their respective menu. SEPIA can be configured
using the menu item described in Chapter 4. The existing implementation of ML4PG
has a menu item that allows the granularity and clustering algorithm to be configured.

5.5 Examples

To demonstrate the benefits of the Coq-PR3 approach, the examples described at the
start of this chapter are revisited.

5.5.1 More descriptive proof traces

The enhanced models that Coq-PR3 produces can be searched automatically, instanti-
ating the transitions where appropriate. Transitions within the inferred state machines
now contain placeholders telling the proof search what certain tactic arguments are - a
local variable, or referring to a fact that can be replaced with information from the proof
clusters.

Consider the example proof from earlier in this section where SEPIA attempted to
prove forall m n:nat, n + S m = S n + m. The proof search failed because there
were suggestions in the model to perform induction on variables l or a. However, in
the target theorem there were no such variables - only n and m. Using the new Coq-
PR3 trace format and proof search algorithm, the same initial fragment of the model is
shown in Figure 5.8.

Chapter 5. Extensions to SEPIA 85

induction
((p==<local>)) trivial auto

initial

intros

FIGURE 5.8: Fragment of semantic model

Using the search algorithm (Algorithm 5) the semantic model is searched (in this
case a breadth-first manner). The leftmost transition is investigated first. This time, the
proof search finds a <local> placeholder and instead of trying concrete suggestions, it
searches the current proof state.

If the search finds any local variables or variables within the subgoal, it attempts
to use them. Two such variables are found within the subgoal (the context is empty at
this point): n and m. Two Coq tactics are constructed and applied to the proof state –
induction n and induction m. This time, the proof can progress past the initial state
because each of these tactics made progress instead of failing to be applied.

After being able to explore the model further, Coq-PR3 eventually reports back that
a proof was found for the example theorem. The proof discovered was induction n.

intros. trivial. intros. simpl. auto. Although a simple example, the
benefits of Coq-PR3 immediately become clear. The initial limitation of the proof trace
encodings in SEPIA has been overcome. This happens by allowing the proof search to
instantiate the tactic arguments, instead of trying hard coded arguments.

5.5.2 Reducing state space

The next example looks at how using the proof pattern recycling methods of Coq-PR3

can reduce the size of the inferred models. In the second motivating example from the
start of this chapter, SEPIA was being used to prove the take_size theorem. Using
393 other proofs, a very large model was inferred and searched.

By using the recycling function in Coq-PR3, the overall size of the model can be
reduced dramatically. Asking ML4PG for suggestions similar to take_size yields 33
other theorems. Instead of inferring a model from the whole theory of proofs, Coq-PR3

86 Chapter 5. Extensions to SEPIA

FIGURE 5.9: Reduced state machine inferred from seq theory

uses these suggestions to infer the model. Figure 5.9 shows the inferred EFSM. This
time, the EFSM has 13 states and much fewer transitions to explore.

Coq-PR3 identifies the following proof from the EFSM - by elim: s => //=

x s –>. Although a fairly trivial example, this demonstrates the potential benefits of
using relevance filtering to identify the best theorems to infer a model from.

5.6 Conclusions

This chapter has introduced the Coq-PR3 technique – providing a suite of intelligent
tools for proof development. As the combination of two existing tools, the user can
benefit from each one individually as well as in conjunction with each other. In order
to obtain proof clusters and hints, ML4PG is used. To utilise model inference for au-
tomatically proving theorems, SEPIA can be invoked. However the main contribution
of this chapter is a novel approach that combines both to automatically prove theorems
in Coq. The underlying algorithm that powers Coq-PR3 has been described, along with
modifications needed to improve the SEPIA approach.

Chapter 5. Extensions to SEPIA 87

The Coq-PR3 approach has been implemented as a ProofGeneral plugin. A de-
scription of the main features of this plugin has been provided. There are three main
functions that a user can perform using the plugin. Revisiting and re-using proofs in-
vokes ML4PG and SEPIA as individual tools with no interaction between each other.
A third way to use Coq-PR3 allows the proof patterns from both tools to be recycled for
the purposes of automated proof generation in Coq.

The combined approach addresses some limitations of both SEPIA and ML4PG.
The design choices of SEPIA mean that the inferred models were potentially too spe-
cific. This means that the tactics contained within the model could only be applied in
specific situations. By combining with ML4PG, the models become more generally
applicable. Additionally, by employing ML4PG as a relevance filter, the overall size of
the models can be reduced but theorems can still be proven.

In terms of ML4PG, the original output produced by the tool had to be used manu-
ally. When combining with SEPIA, this restriction is lifted as a model can be inferred
from the suggestions that ML4PG produces. Overall, both tools have been by form-
ing Coq-PR3 from the two different approaches. Crucially, the combination has the
potential to prove more theorems automatically than before.

Chapter 6

Evaluation

6.1 Introduction

The previous chapters have described two techniques designed for proving theorems
automatically in Coq. SEPIA uses state-machines to model existing Coq proofs. The
resulting models can be searched automatically by executing the tactics encoded within
the model. Coq-PR3 combines SEPIA with a proof clustering tool (ML4PG) to try and
address some limitations of the SEPIA technique. Both techniques have been imple-
mented as plugins for ProofGeneral that are used for automated proof generation in
Coq.

Up to this point, the tools have been demonstrated on smaller case studies. In this
chapter, the two techniques are rigorously evaluated on a selection of existing Coq
proofs. Two large well-known Coq datasets are used as a basis for the evaluation.
These provide a diverse selection of proofs to evaluate both SEPIA and Coq-PR3 on.
Various research questions arise that will (when answered) address various aspects of
the techniques, and provide an indication about whether the tools could be useful in
practice. In addition to the techniques being evaluated based on their ability to prove
theorems, the proofs discovered by the tools are also investigated.

The chapter begins by defining the research questions that this evaluation will at-
tempt to answer. The two datasets used throughout this evaluation are also discussed.
Following this, for each question an associated experiment and methodology is de-
scribed. Finally, the results from the experiments are presented and discussed.

6.1.1 Research Questions

The effectiveness of the two techniques presented in this thesis can be measured in
terms of the following research questions:

• RQ1 - Is SEPIA able to prove theorems automatically in Coq?

89

90 Chapter 6. Evaluation

• RQ2 - Does SEPIA complement the existing automated tactics that are available
in Coq?

• RQ3 - Are there any interesting properties about the proofs that SEPIA discovers?

• RQ4 - Does the Coq-PR3 approach enhance SEPIA by proving additional theo-
rems?

6.2 Methodology

There are numerous experiments that have been conducted in this evaluation. To ob-
tained answers to the above research questions, four experiments have been designed.
This section describes the methodology used in each experiment, and what the results
will potentially indicate about SEPIA and Coq-PR3. Two datasets are used throughout
to maintain consistency between the experiments. These are described in further detail
below.

6.2.1 Data Sets

To evaluate SEPIA and Coq-PR3, two diverse Coq proof developments are used. There
were many properties of the datasets that made them appealing to use. Ssreflect and
CompCert were selected due to their size, varying complexity, subject matter and input
language. Additionally, the two datasets use different proof languages . Some additional
details are given below.

• Ssreflect core library1 The Ssreflect library (Gonthier, 2005) contains a selection
of theory files covering basic mathematical concepts. There are 1389 theorems
contained in 8 theory files. The proofs are written in a variation of the standard
Coq dialect called Srefelect, and is a language that allows small-scale reflection.
This is a style of proof adopted by Gonthier et al in their developments of the
Four Color and Odd Order theorem proofs.

• CompCert2 The CompCert development (Leroy, 2009) contains proofs that cer-
tify that a C compiler doesn’t introduce any errors during compilation. As such,
there is a varied selection of theories and proofs available. There are 69 theo-
ries containing 3248 theorems in total. This proof development uses the standard
Gallina (Bertot and Castéran, 2004) input language for Coq.

1http://ssr.msr-inria.inria.fr/doc/ssreflect-1.5/
2http://compcert.inria.fr/doc/index.html

Chapter 6. Evaluation 91

6.2.2 Attempting proofs with SEPIA

The aim of the first research question is to investigate whether SEPIA is able to prove
theorems in Coq. In order to estimate the usefulness of SEPIA, consider the follow-
ing situation: given some existing proofs, can these be used by SEPIA to prove new
properties that aren’t part of the initial collection. This experiment helps to evaluate the
SEPIA proof search algorithm (Algorithm 3), and is performed on a per-theory basis
(using the theories from both datasets described earlier).

To obtain results for this experiment, k-folds cross validation can be used (Kohavi,
1995). For each theory, the proofs within are partitioned into k non-overlapping sets.
SEPIA invokes MINT (Walkinshaw, Taylor, and Derrick, 2015) to infer a model from
k− 1 sets of proofs, and uses the model to try and prove the theorems within the re-
maining set. This process repeats until each set has been used exactly once as the set of
theorems to be proven.

As described in Chapter 4, some aspects of the proof search can be configured.
For this evaluation, the inferred model is allowed to be searched for a maximum of 60
seconds. This is a reasonable period of time, and a realistic amount of time that a user
might be willing to wait for a result. The type of search performed is a breadth-first
search. This was chosen so that SEPIA proposes shorter proofs contained within the
models.

This evaluation uses the leave-one-out variant of cross validation. This is equivalent
to setting k to be the number of theorems contained within the theory (as the dataset is
split into k partitions). This has the effect that all other theorems within a theory are
used to infer a model from. This mirrors the standard implementation of SEPIA, where
all of the theorems the user selected are used during model inference.

The results obtained from this result will demonstrate the potential for SEPIA to
be used for automatic proof generation. The success of this experiment will also jus-
tify whether state-machine inference is a potentially useful technique in the context of
theorem proving. Additionally, when Coq-PR3 is evaluated, the results from the corre-
sponding experiment can be compared to see whether Coq-PR3 improves upon SEPIA.

6.2.3 Comparing with existing Coq automation

Coq provides a number of automated tactics and decision procedures that may be in-
voked during a proof attempt (Bertot and Castéran, 2004). Although not designed to
prove theorems that are highly complex, they can nevertheless discharge some trivial
statements. Also, if a problem falls into a specific class of problems (e.g. propositional

92 Chapter 6. Evaluation

logic), then these tactics may be able to fully discharge the theorem. The main tactics
that are considered in this evaluation are:

• auto/eauto: performs simple proof search, applying previously defined facts.
However, they both use a very small subset of Coq’s tactics.

• tauto: a propositional tautology solver that can discharge goals that fall within
this class.

• trivial: a limited version of auto, designed to handle subgoals that could contain
equalities.

• firstorder: an experimental tautology solver for subgoals containing first-order
inductive definitions.

Many of these tactics can be controlled with the help of additional parameters. Hint
databases are collections of previously defined facts (theorems, definitions) that are
grouped together by domain (e.g. sets). The user can specify which hint databases
to provide to these automated tactics. Initially, the tools only invoke a basic core of
facts. In this evaluation, where hint databases can be specified, the automated tactics
are allowed access to all available hint databases, plus the theorems that SEPIA infers
a model from.

Some of the automated tactics in Coq may also be specified with a search depth.
The default search depth (set to 5) is used throughout these experiments. Another fac-
tor to consider is the time allowed for the automated tactics to prove the theorem. Coq
provides a timeout command that allows a limit to be specified. As standard through-
out this chapter, a timeout of 60 seconds is used for both the automated tactics and
SEPIA/Coq-PR3 proof search algorithms.

6.2.4 Properties of discovered proofs

So far, the experiments described capture the number of theorems proven by SEPIA.
Although this provides a lot of information about the effectiveness of the technique, it
doesn’t examine the proofs that SEPIA produces. This evaluation delves deeper and
examines the proofs that were discovered automatically by SEPIA. Specifically, any
interesting properties about the automated proofs are investigated.

The evaluation uses Coq datasets that have already been completed by a team of
experts. Therefore, there is access to the hand-curated proofs that have been completed.
One simple consideration is to analyse the length of the SEPIA proof compared to

Chapter 6. Evaluation 93

the manually crafted proof. Specifically, did SEPIA discover a shorter proof than the
existing manually created one.

The second aspect of this experiment looks at the discovered proofs in relation to the
proofs used to infer the model. In Chapter 2, the process of state-merging was described.
The main result of using these algorithms is that the state machines produced are a
generalisation of the input sequences. Crucially this means that in addition to allowing
all tactic sequences that were available initially, the model may well suggest unseen
sequences of tactics that weren’t present in the initial traces. In this thesis, these are
referred to as "new" tactic sequences.

6.2.5 Measuring the success of Coq-PR3

As with the SEPIA experiment, this evaluation is performed on a per-theory basis.
For each theorem, the similar ones are obtained from the proof clustering algorithms.
Then, a model is inferred from the suggestions produced by ML4PG instead of using
all theorems. Again, the resulting model is searched automatically for 60 seconds using
breadth-first search.

An additional parameter used in this experiment is the granularity setting in ML4PG.
This is used to control the size and precision of the clusters generated. Using g = 1
leads to a few large and general clusters being produced, whereas g = 5 generates many
smaller and more precise clusters. To see if varying this parameter has any effect on the
overall technique, the granularities utilised are g = {1,3,5}.

As with SEPIA, the proofs that Coq-PR3 produces are evaluated based on whether
they are shorter than the human generated proof, or if they contain a new sequence of
tactics. The Coq-PR3 approach was designed to enhance the original SEPIA approach.
Therefore, the number of additional proofs that Coq-PR3 produces are presented. Ide-
ally, to show that Coq-PR3 is a useful technique it should prove theorems that weren’t
proven by SEPIA. Also, the technique should retain the overall benefits of SEPIA such
as using new sequences of tactics and identifying shorter proofs.

6.3 Results

The rest of this chapter focusses on presenting the results from running the experiments.
These experiments provide potential answers to the research questions defined at the
start of this chapter. By the end of this evaluation, the overall effectiveness of SEPIA
and Coq-PR3 will become clearer.

94 Chapter 6. Evaluation

6.3.1 RQ1: Does SEPIA prove Coq theorems automatically?

Table 6.1 presents the results for the experiment described in Section 6.2.2. The li-
brary name and the size (number of theorems) are displayed under the Library and Size
columns respectively. The column headed SEPIA shows the number of theorems that
SEPIA proved automatically.

TABLE 6.1: Number of theorems proven by SEPIA

Library Size SEPIA

Ssreflect 1389 430 ≈ 31%
CompCert 3248 420 ≈ 13%

Total 4637 850 ≈18%

Looking at each dataset as a whole in Table 6.1, 31% (430 out of 1389) of the
theorems in Ssreflect were proven with SEPIA. In CompCert, SEPIA managed to prove
13% (420 out of 3248) completely automatically using SEPIA. Overall, on all of the
theorems evaluated, using SEPIA yielded a proof for 850 of them – corresponding to a
success rate of 18%.

This experiment was run using individual theories – therefore the results will nat-
urally differ dramatically on a per-theory basis. In CompCert, there were 19 theories
where SEPIA failed to find a single proof. On investigation, this can be explained by
various factors. Firstly, many of these theories contained less than 10 theorems within
them. Therefore, there is a small selection of data available to infer a model from. A
second reason is that in some of the larger theories, the search was still in progress when
the 60 second limit was reached.

In Ssreflect, there were no theories where SEPIA was unable to find a proof. The
lowest success rate within an individual theory was 18% in the fintype theory. Apart
from 6 proof attempts that exhaustively searched the complete automaton, all of the
other proof attempts were still in progress when the 60 second timeout was reached.

The highest success rates within individual theories were between 40% and 50% in
both datasets. In the ssrbool theory from Ssreflect, nearly 50% of the theorems were
proved by SEPIA. This is partly due to the relatively simple subject matter contained
within the theory. In CompCert, SEPIA proved 43% of the theorems in the Ordered

theory – where many proofs were discharged using the same sequence of tactics.
Another interesting aspect of the proof attempts is to look at the overall time needed

to find a proof. This takes into account the model inference time plus the (up to) 60
seconds of proof search. In Ssreflect, the longest time needed to find a proof was 1
minute 15 seconds, and the shortest was under 1 second. In CompCert, the longest

Chapter 6. Evaluation 95

time to find a proof was 40 minutes and 9 seconds. This was in the Memory theory,
that contained over 300 theorems, many containing long proofs. The model inference
algorithms required a long time to infer a model from the proofs within this theory. The
shortest time needed to find a proof in CompCert was again under a second.

The average time needed to identify a proof can be calculated from adding the model
inference time and the (up to) 60 seconds used to search the model. The average proof
attempt time in Ssreflect was just under 2 seconds. This is helped by the relatively
small pool of tactics used in Ssreflect, and the typically short proofs. In CompCert,
on average a proof was found after 44 seconds of effort (model inference plus search).
This increase in time over Ssreflect can be explained by CompCert being a much more
diverse library of proofs, with little common reasoning patterns and a larger pool of
tactics used.

The results from this experiment show that SEPIA is a promising technique for
proof automation in Coq. Given a set of proofs, SEPIA is able to infer a model, and use
this as a basis for automated proof generation. The models contain sequences of tactics
to apply in Coq. In many cases the overall process is reasonably quick at obtaining a
proof. In any proof development, being able to prove 18% of the theorems automatically
signifies a large reduction in the amount of human effort required.

6.3.2 RQ2: Is SEPIA more effective than existing Coq automation?

Table 6.2 shows the results for the experiment defined in Section 6.2.3. For each proof
development, the name and number of theorems is in the column headed Library and
SIze respectively. The automated Coq tactics used in this experiment are grouped to-
gether under the column Coq-Tactics.

TABLE 6.2: Comparison of SEPIA and various automated Coq tactics

Library Size SEPIA Coq-Tactics

Ssreflect 1389 430 155
CompCert 3248 420 120

Total 4637 850≈18% 275 ≈6%

In the CompCert development, the built-in Coq tactics managed to prove 120 the-
orems. This corresponds to a success rate of approximately 4% across the whole de-
velopment. In Ssreflect, the tactics managed to prove around 11% of the theorems.
Overall, using all of the theorems used in this evaluation, the automated tactics proved
275 Coq theorems, leading to a success rate of just over 6%.

96 Chapter 6. Evaluation

In comparison, SEPIA managed to prove nearly three times as many theorems in
SSreflect and nearly four times as many in CompCert. Overall, 18% of the theorems
within this evaluation has a proof discovered by SEPIA. This represents a significant
gain over existing automation within Coq. These results are not entirely surprising – as
already established the Coq tactics are typically limited in which tactics they can try. In
comparison, SEPIA is able to try a larger pool of tactics as any set of proofs could be
input into the model inference.

An interesting question not answered by the raw data is the overlap between SEPIA
and the Coq automation. For instance, are there theorems that the automated tools
proved but SEPIA was unable to find a proof. Conversely, how many proofs did SEPIA
derive that the Coq tactics didn’t. Table 6.3 takes the data from Table 6.2 and shows the
number of proofs found exclusively by either technique, plus the number of theorems
proven by both.

In Table 6.3, the number of proofs that SEPIA exclusively discovered are shown
in the column headed SEPIA. Similarly, the number of proofs discovered only by the
automated tactics are under the column named Coq-Tactics. Finally, the number of
proofs discovered by both techniques are in the final column headed Both.

TABLE 6.3: Proofs found per-technique

Library SEPIA Coq-Tactics Both

Ssreflect 306 31 124
CompCert 324 24 96

Total 630 55 220

In Ssreflect, the Coq tactics managed to prove 31 theorems that SEPIA was unable
to prove, and 24 in CompCert. The number of theorems proved by both techniques
totalled 220 across both datasets – 124 in Ssreflect and 96 in CompCert. This means
that when disregarding the theorems that both techniques proved, SEPIA automatically
proves 630 theorems that weren’t proven by existing techniques.

These results demonstrate that SEPIA enhances the existing proof automation avail-
able within Coq. There are situations where SEPIA may be unable to prove a theorem,
but the automated tactics can. This demonstrates that the user should invoke existing
automation before calling SEPIA. However, there are a vast majority of cases (nearly
75%) where SEPIA discovers a proof when the existing automation couldn’t.

Chapter 6. Evaluation 97

6.3.3 RQ3: Are there "interesting" properties of the proofs discov-
ered?

The next experiment studies the actual proofs that SEPIA discovered, using the method-
ology described in Section 6.2.4. Specifically, the experiment attempts to draw some
comparisons between the SEPIA generated proofs and the original hand-curated proofs
available within the Ssreflect and CompCert proof developments. Alama et al. have
completed an evaluation of ATP proofs, comparing them to human created proofs
(Alama, Kühlwein, and Urban, 2012). The main observation was that machines can
generally find simpler proofs than humans – for instance use fewer steps, or need fewer
dependencies.

There are two sets of criteria that this evaluation uses to compare the proofs. Firstly,
the length of the human and automated proofs are compared to see if the automated
proofs are shorter. Secondly, the discovered proof is evaluated against the theory used
to infer the model. The proof steps are checked to see if they were present within an
existing proof, or SEPIA has proposed a "new" sequence of tactics. The experiments
used SEPIA in breadth-first search mode – so it is reasonable to expect that the proofs
found may be shorter than human derivations. If there is a large proportion of new tactic
sequences, then this justifies the choice of state-machine inference.

In Ssreflect, 26 of the proofs that SEPIA discovered were shorter than the corre-
sponding human derivation. The Ssreflect set of tactics are designed to help write
shorter proofs, so the chances of identifying shorter proofs in this dataset is limited.
It is more than likely the case than many of the proofs are already as short as they can
be, thanks to the design of the language and the expertise of the user who completed
the proofs.

In CompCert, SEPIA managed to discover a much larger proportion of shorter
proofs. Out of the 420 proofs that SEPIA found, 238 of them were shorter than the
corresponding human proof, and 38 were longer. This corresponds to just over 55% of
the proofs being shorter. To explain this, it is likely that SEPIA had access to a diverse
set of proofs that it was able to use to produce the shorter derivations. It may also be the
case that the CompCert development wasn’t refactored at all. Also, the combination of
state merging algorithms and a breadth-first search means SEPIA was able to identify
these shorter proofs.

The next aspect of this experiment was to look at the number of new proofs found
using SEPIA. For each proof SEPIA discovered, it was compared to the proofs that
were used to infer the model. A new proof is defined as one that contains a sequence of
tactics that wasn’t contained within the original set of proofs. This usually means that
the discovered tactic sequence is pieced together from fragments of different proofs.

98 Chapter 6. Evaluation

Otherwise, a proof is "reused” in the sense that the discovered tactic sequence can be
found within the proof library.

compcert msets ssreflect

56.43%
43.57%

0

100

200

300

400

19.43%

80.57%

0

100

200

300

400

16.28%

83.72%

0

100

200

300

400

1

count

fa
ct
or
(1
) Type of Proof Found

novel

reused

compcert msets ssreflect

56.43%
43.57%

0

100

200

300

400

19.43%

80.57%

0

100

200

300

400

16.28%

83.72%

0

100

200

300

400

1

count

fa
ct
or
(1
) Type of Proof Found

novel

reused

FIGURE 6.1: Comparing new and reused proofs

For each dataset, Figure 6.1 shows the proportion of new and reused proofs. The
results show that SEPIA is able to reuse existing proofs effectively, but also identify
many new combinations of tactics. This benefit further backs up the potential of using
EFSMs in theorem proving.

In CompCert, over 50% of the proofs found by SEPIA constituted new combina-
tions of tactics. The diverse nature of the development means there are many cases
where there are no common reasoning patterns, and many different tactic sequences are
used. These new tactic sequences represent examples where there were links between
different proofs that were identified during model inference.

In Ssreflect, there were a lot more re-used tactic sequences, and less than 20% of
the proofs discovered constituted new sequences. This is partly due to the fact that the
Ssreflect theories prove theorems about more general concepts such as sequences and
natural numbers. Many of these proofs will typically use the same common reasoning
pattern. Therefore, there is less diversity within the corpus and less chance of combining
steps from different proofs.

Potential proof refactoring application The results from this section suggest an in-
teresting application of SEPIA – proof refactoring. This experiment has shown that it
is possible to automatically run SEPIA on a theory and get a list of suggestions regard-
ing shorter and new derivations. This can be thought of as a way of refactoring proof
scripts. Refactoring is a popular technique in software engineering and can be described
as changing code without changing the functionality. In the case of interactive proofs,
this loosely equates to changing the proof without changing the conjecture.

Chapter 6. Evaluation 99

Proof refactoring is an area that has received moderate attention, although recently
the field has become more aware of the idea. Aspinall and Kaliszyk defined the idea of
formal proof metrics (Aspinall and Kaliszyk, 2016). These are a set of measurements
that are used to monitor and compare proof developments. They start by looking at
common object-oriented programming metrics and define corresponding ones for for-
mal proofs. This work forms a useful baseline for further exploratory work into this
area.

Another approach defined by Whiteside et al. is proof-script refactorings (Whiteside
et al., 2011). By again drawing comparisons to software engineering, it is possible
to define refactorings that can preserve the semantics of a proof script but improve
its readability and maintainability. Examples of possible refactorings include simple
operations such as rename a lemma, through to more complex ones that safely delete
unused theorems and facts.

The two approaches mentioned here demonstrate that there is a use in theorem prov-
ing for automated tools inspired by software engineering methods. SEPIA also has a
place within this set of tools by providing means of analysing the existing proofs and
suggesting other derivations. A possible mode (in addition to the proof mode) could be
for SEPIA to automatically suggest a list of changes that can be reviewed manually.

6.3.4 RQ4: Does Coq-PR3 improve upon SEPIA?

The final experiment (defined in Section 6.2.5) studies the Coq-PR3 proof pattern recy-
cling approach described in Chapter 5. Table 6.4 shows the number of theorems that
were proven by each configuration of Coq-PR3 – g stands for granularity in the col-
umn headers. Results for each value of granularity used are shown in their respective
column.

TABLE 6.4: Number of theorems proven by Coq-PR3

Library Size Coq-PR3 (g=1) Coq-PR3 (g=3) Coq-PR3 (g=5)

Ssreflect 1389 329 336 335
CompCert 3248 247 249 246

Total 4637 576 585 581

In terms of the number of proofs found, Table 6.4 shows that all configurations of
Coq-PR3 lead to proofs being discovered automatically. Interestingly, using Coq-PR3

leads to fewer theorems being proven than when using SEPIA (see Table 6.1). To a
degree this is to be expected – Coq-PR3 restricts the number of theorems that a model is
inferred from. However, it could be that the proof clustering algorithms used in ML4PG

100 Chapter 6. Evaluation

don’t produce optimal clusters of Coq proofs. However, the true measure of success of
Coq-PR3 is the number of additional proofs that were discovered using the technique –
compared to using SEPIA.

Table 6.5 shows the number of additional proofs that Coq-PR3 found (i.e theorems
that SEPIA didn’t prove in earlier experiments). Each configuration of granularity is
shown in its respective column The final column headed provides the number of addi-
tional proofs discovered when using any of the granularity choices.

TABLE 6.5: Number of additional proofs discovered by Coq-PR3

Library Coq-PR3 (g=1) Coq-PR3 (g=3) Coq-PR3 (g=5) Any

Ssreflect 28 26 26 30
CompCert 78 72 92 141

Total 106 98 118 171

For Ssreflect, using g = 1 led to 28 additional theorems being proven that SEPIA
was unable to. Using g = 3 led to 26 being proven, whilst g = 5 also led to 26 additional
proofs. Of course, these is some overlap between these results, there were 30 theorems
in total (across all granularities) that Coq-PR3 proved that SEPIA was unable to.

Similarly, in CompCert g = 1 led to 78 additional theorems being proven. The
granularity setting g = 3 led to 72 additional proofs, whilst g = 5 led to 92 additional
proofs being discovered. Disregarding the overlap in these examples means that 141
additional theorems were proven using Coq-PR3. Between the two datasets used, Coq-
PR3 discovered an additional 171 proofs, meaning an extra 3% of the theorems were
proven using Coq-PR3.

When compared to SEPIA, the average time taken to find a proof (model inference
time plus search) was under 2 seconds for all choices of granularity. This is similar to
the performance of SEPIA. In CompCert, using g = 1 meant that a proof was found
on average in around 5 seconds. Using g = 3 led to a proof being discovered after 3
seconds of effort. Finally, g = 5 led to a proof being found after 2 seconds on average.
These results demonstrate that Coq-PR3 will generally find a proof in much less time
than SEPIA. This is due to the time reduction in both model inference and the search of
the reduced model.

There is no clear setting of granularity that produces the "best" results. Although
some theorems are proven by all three configurations, each setting has some theorems
that were uniquely proven only by that particular granularity. In practice, it would be
advisable for a user to invoke Coq-PR3 using the smallest clusters first, then change the
granularity when needed.

Chapter 6. Evaluation 101

The additional proofs that Coq-PR3 discovered were also compared to the ones
found by the automated Coq tactics (see the earlier experiment). In CompCert, of the
141 additional theorems proven by Coq-PR3, only 2 were able to be proven by the
Coq tactics. In Ssreflect, all 30 additional proofs were ones that weren’t proven by the
Coq tactics. These results are encouraging, and demonstrate the additional benefits that
Coq-PR3 brings. Furthermore, Coq-PR3 and SEPIA both provide a complement to the
automation already available within Coq.

The final aspect of this experiment is to ensure that Coq-PR3 retains the main bene-
fits of SEPIA. The proofs are compared in the same manner as earlier. They are checked
for new tactic sequences, and whether they are shorter than the corresponding human
derivations. Table 6.6 shows the number of new and shorter proofs (when compared to
the library proofs) found per granularity configuration.

TABLE 6.6: Shorter proofs and new tactic sequences discovered by Coq-
PR3

Library Coq-PR3 (g=1) Coq-PR3 (g=3) Coq-PR3 (g=5)

Ssreflect
17 shorter

6 new
16 shorter

4 new
16 shorter

5 new

CompCert
86 shorter
197 new

81 shorter
187 new

45 shorter
199 new

In Ssfreflect, these proportions of new and shorter proofs matches what was seen in
earlier experiments. There is limited chance of finding shorter proofs due to the nature
of the tactic language, and the subject matter of the proofs. In CompCert, the results
really demonstrate that Coq-PR3 preserves the useful benefits of the original SEPIA
technique. A large proportion of the proofs found using Coq-PR3 consisted of new
tactic sequences, whilst roughly a quarter of the Coq-PR3 proofs were shorter than the
manually created derivations.

The results from this experiment are encouraging, and demonstrate that the Coq-
PR3 technique does enhance SEPIA. The main aim of Coq-PR3 is to prove theorems
that may not be proven by SEPIA due to the underlying design choices. An additional
171 theorems were proven using the methods provided within Coq-PR3 – meaning that
between the two tools presented in this thesis, 22% of the theorems within the evaluation
have been proved automatically.

102 Chapter 6. Evaluation

6.4 Conclusions

This section defined a set of research questions and experiments that were used to eval-
uate SEPIA and Coq-PR3. Using two large and diverse Coq datasets (Ssreflect and
CompCert), the two tools were fully evaluated to assess their potential for automatic
proof generation in Coq. The results obtained within this chapter are particularly en-
couraging.

SEPIA is an approach that uses state-machine inference techniques to generate state-
machine models from Coq proof corpora. These state machines are useful as they can
transform a proof library into a more concise representation. Furthermore, the models
can be searched automatically in an attempt to formulate proofs. These models have
been shown to be reasonably accurate, as they are able to prove 18% of the theorems
used in this evaluation.

Coq provides some simple automation in the form of tactics and decision proce-
dures. SEPIA was compared to these tools to see how many theorems they can prove.
These tactics are typically limited by the possible steps that they try, and are more
suited to discharging trivial subgoals. The evaluation demonstrated that SEPIA could
discharge a large number of theorems that these automated tactics couldn’t. The over-
lap between the techniques was considered, and it was shown that SEPIA provides a
complementary technique to what is already provided in Coq.

The proofs that SEPIA discovered were also evaluated within this chapter. There
were two main "interesting" properties considered. Firstly, was SEPIA able to identify
shorter proofs than the corresponding human derivations. Secondly, did SEPIA propose
a new sequence of tactics that wasn’t present within the corpus, or did it simply reuse
existing proofs. The results demonstrated that SEPIA produced a shorter proof in just
under a third of cases. Similarly, just over a third of the proofs that SEPIA discovered
were new sequences of Coq tactics.

The final experiment looked at the additional benefits that Coq-PR3 brings over us-
ing SEPIA alone. By enhancing SEPIA with additional machine learning, an additional
171 theorems were proven. This justifies the choices made when designing Coq-PR3.
Crucially, the benefits that SEPIA brings (such as shorter and new proofs) are retained
within Coq-PR3. All but two of the theorems that Coq-PR3 proved were outside the
scope of the existing automated tools within Coq.

Overall, the results presented within this evaluation demonstrate the potential of
SEPIA and Coq-PR3. The aim was to show that SEPIA is able to prove theorems in
Coq, and that the enhancements provided by Coq-PR3 can improve the results further.
In addition, several additional benefits of using the tools have been shown – for in-
stance the inferred models produced by SEPIA proposing completely new sequences of

Chapter 6. Evaluation 103

tactics.

Chapter 7

Conclusions and Future Work

This chapter presents the conclusions and future work arising from the techniques pre-
sented within this thesis. Section 7.1 summarises the research and its outcomes. Section
7.2 discusses the conclusions drawn from the presented research. Finally, Section 7.3
described the various avenues of future work.

7.1 Overall summary

The work in this thesis introduces new techniques that combine learning and theorem
proving. Firstly, the SEPIA technique is described, that uses state-machine inference
techniques to generate models from Coq proofs. These models summarise the tactic
applications present within a corpus of proofs. The inferred models can then be used
manually or automatically to generate proofs. Then, additional machine learning is
used to form Coq-PR3 – a suite of intelligent tools for Coq. To summarise, each chapter
contained the following work:

• Chapter 2 introduced the areas of theorem proving and machine learning. Pre-
vious combinations of these areas were summarised. Then, the area of state-
machine inference was described in detail, as it forms the basis of the rest of the
work within this thesis.

• Chapter 3 covered the first stage of the SEPIA process. This involves taking Coq
proofs and turning them into a format that can be used by model inference algo-
rithms. The MINT model inference technique (Walkinshaw, Taylor, and Derrick,
2015) is then used to infer models from the proof traces. Finally, some case stud-
ies demonstrated how the models could be used manually to derive proofs.

• Chaper 4 introduced an algorithm that can search the inferred models as prove
theorems automatically in Coq. This algorithm forms the basis of a plugin for

105

106 Chapter 7. Conclusions and Future Work

ProofGeneral (Aspinall, 2000) that allows SEPIA to be invoked during proof at-
tempts. The plugin is demonstrated with an example – showing the complete
process of using SEPIA to prove a Coq theorem.

• Chapter 5 studied potential improvements to the SEPIA technique by adding
additional machine learning. The ML4PG proof clustering technique (Komen-
dantskaya, Heras, and Grov, 2013) is combined with SEPIA to form Coq-PR3 –
an intelligent suite of tools that can be used within ProofGeneral. The resulting
combination addresses some limitations of the original SEPIA technique.

• Chapter 6 presented the evaluation of SEPIA and Coq-PR3. The results indicated
that SEPIA and Coq-PR3 are useful tools that are able to prove theorems automat-
ically in Coq. They also complement existing Coq automated tactics by proving
a larger selection of theorems than before.

7.2 Conclusions

The potential uses of proof assistants such as Coq span both mathematics and industry.
Despite their championing by computer scientists and mathematicians, they remain a
tool used in niche scenarios instead of being applied more widely. The large proof
developments to date have shown that although practical, there is a heavy reliance on
human interaction to complete the proofs manually.

This thesis set out to investigate the potential use of state-machine inference to infer
models from interactive proofs. The overall aim was to use information from existing
proofs as a basis to automate further proof attempts. The work completed led to the
creation of a set of techniques that combine theorem proving and machine learning for
the purposes of proof exploration and automation.

The first technique – SEPIA – allows proof developers to select a collection of Coq
proofs, and obtain a descriptive model of the tactics used. These models can then be
used manually to help the user formulate a proof in Coq. Additionally, thanks to a
ProofGeneral extension, SEPIA is able to communicate with Coq. This enables the
automatic search of the inferred models, meaning that proof attempts can be automated
using the inferred model as a search space.

The proofs discovered using SEPIA are interesting for two reasons. Firstly, when
compared to human derivations the automated proofs may typically be shorter. Sec-
ondly, the underlying model inference algorithms produce state-machines that contain
tactic sequences that weren’t present in the initial corpus of proofs. These new se-
quences were shown to be useful in proving theorems in Coq.

Chapter 7. Conclusions and Future Work 107

The second technique – Coq-PR3 – incorporates additional learning using proof
clustering techniques from ML4PG. By doing this, some of the limitations in the orig-
inal SEPIA technique are addressed. Coq-PR3 has also been implemented as a Proof-
General extension, providing the user a full suite of machine learning tools for Coq. The
suite allows the user to invoke SEPIA and ML4PG as individual tools, or as a combined
proof search algorithm that uses the benefits of both tools.

The evaluation demonstrated SEPIA and Coq-PR3 on two large Coq proof devel-
opments – Ssreflect (Gonthier, 2005) and CompCert (Leroy, 2009). The results high-
lighted numerous benefits of the approaches. The new techniques can prove more theo-
rems than existing Coq automated tactics. In addition, the experiments showed that the
Coq-PR3 technique can bring additional benefits over using SEPIA on its own.

The novelty of the approaches, combined with the evaluation results has suggested a
large amount of future work. The various components of SEPIA and Coq-PR3 can all be
explored further. In terms of the state machine inference, there are interesting avenues
for including negative data and designing custom state-merging algorithms. To improve
the theorem proving side, various enhancements could be made by making the search
procedure more intelligent or investigating the addition of more machine learning.

Overall, this thesis has introduced two useful tools to help prove theorems auto-
matically in Coq. They enhance the level of proof automation available in Coq. Aside
from providing the initial set of theories, the approaches work completely automatically
– taking the theories, learning from them and applying the learned knowledge during
proof attempts. By improving the level of proof automation, theorem provers such as
Coq might one day be used more widely to produce dependable IT systems. Also, in
mathematics new discoveries could be found in the future using proof assistants.

7.3 Future Work

This thesis has led to the creation of SEPIA and Coq-PR3 – these are approaches to
automate proofs in Coq using machine learning techniques. The novelty of this work
means that there are many opportunities for future work. In conjunction with the eval-
uation in Chapter 6 the main areas for improvement and further research are described
below.

Searching the models Chapter 3 demonstrated that the inferred state machines are
stored as directed graphs. This means that standard graph traversal algorithms can be
used to search the model during a proof attempt. However, when dealing with diverse
proof corpora the inferred models invariably become extremely large. Standard graph

108 Chapter 7. Conclusions and Future Work

traversals will still exhaustively search the model regardless of size, however there may
be more intelligent ways of searching a model. Heuristic search techniques (Pearl,
1984; Russell and Norvig, 2010) can help in scenarios such as these.

One aspect that could be harnessed whilst searching the model is information about
the proof state at a given point. The proof search interacts with Coq, but currently only
logs if the tactic made progress or not. By incorporating other information into the
search, more informed choices about which paths through the model are most promis-
ing. Such information could include the number of subgoals at a given point, amount
of information in the context or the overall structure of the current subgoal.

Premise selection for SEPIA Given a library of proofs, SEPIA will be invoked us-
ing all of the exemplar proofs available. This can lead to a large state machine being
inferred, with a large amount of redundant information being captured. The main av-
enue of future work here is to look at techniques for identifying fruitful examples. We
have already shown how Coq-PR3 combines SEPIA with proof clustering approaches.
However, there are library search mechanisms and dependency analysis (Alama, Ma-
mane, and Urban, 2012; Kaliszyk, Mamane, and Urban, 2014) techniques that may also
provide useful suggestions.

Domain specific state merging In Chapter 3, the state merging process is described.
Currently, off-the-shelf algorithms are applied and are successful. Another direction
of future work could be to look at how state-merging algorithms work and devise an
approach that is specifically for the domain of interactive proofs. States are merged
based on their outgoing behaviour (in the current case these are the subsequent tactics
applied) – it may be possible to incorporate extra information from the proof state into
this process.

Incorporating negative data Proof attempts generate a lot of failed derivations – tac-
tics that were tried but unsuccessful, or sequences of tactics that led to a dead end. One
possible avenue would be to incorporate this information back into the model inference
process (Walkinshaw, Derrick, and Guo, 2009). Proof traces can be grouped by whether
they were successful or not. By incorporating this into the model inference, the models
could become more accurate, as they will not allow sequences of tactics that were un-
successful. A well known result from Gold suggests that the inference of languages is
greatly helped with the inclusion of negative examples (Gold, 1967).

Experimenting with different classifiers MINT is connected with Weka, a suite of
over 100 machine learning algorithms. For all of the experiments and work completed

Chapter 7. Conclusions and Future Work 109

so far, the J48 decision tree learner has been used, as the early experiments were en-
couraging. However, it may be the case that other classifiers may perform better in the
domain of theorem proving. Additionally, Weka allows custom classifiers to be created.
An interesting avenue of future work could be investigating this idea further. Some
changes would been to be made so that the inferred models can be annotated with the
output from other classifiers. Additionally, there are many features of interactive proofs
that could be used to create a custom classifier for the theorem proving domain.

Application to other theorem provers In this work, Coq has been the main focus
owing to its popularity but also the lack of effective automation available. Other the-
orem provers such as Isabelle (Nipkow, Wenzel, and Paulson, 2002) provide stronger
automation. One possible avenue of work would be to compare SEPIA with more es-
tablished tools such as Sledgehammer (Meng, Quigley, and Paulson, 2006). The SEPIA
approach is generic and is (in principle) applicable to any tactical theorem prover. The
actual model inference task remains the same, regardless of the theorem proving lan-
guage. However, to extend SEPIA there are 2 problems regarding input/output that
must be overcome. The first is how to convert the raw proof script into a proof trace.
Secondly, SEPIA must be able to interact with a running instance of the theorem prover.

One challenging aspect of applying SEPIA to other provers is the input language
(Harrison, 1996) of the theorem prover. They can be grouped into procedural and
declarative. Procedural input is slightly easier to use as it typically constitutes the ap-
plication of proof tactics. Declarative languages are representative of natural language,
where it is much harder to elicit the underlying proof steps used due to the extra noise
involved. One theorem prover that is similar to Coq is Lean (de Moura et al., 2015) –
this could be a useful theorem prover to port the SEPIA technique to as it uses a similar
syntax.

Using SEPIA for proof refactoring The experiments in Chapter 6 showed that the
techniques were effective at taking a collection of proofs and identifying shorter or dif-
ferent derivations. The idea of automatically refactoring proofs is an interesting one,
and has so far had moderate attention. Whiteside et al. propose a series of proof script
refactorings (Whiteside et al., 2011) that aim to tidy up the structure of interactive proof
scripts. However, they do not actually make changes to the proofs themselves. As-
pinall and Kaliszyk have also investigated various proof metrics (Aspinall and Kaliszyk,
2016). These metrics can be used to compare proof developments or investigate refac-
torings. SEPIA could be deployed in a theory analysis mode that provides automated
suggestions for shorter and different proofs that the proof developer could then use if
required.

Appendix A

Source Code Listings

This Appendix contains source code listings for various parts of the SEPIA implemen-
tation.

A.1 NodeInformation class

Listing A.1 shows the code for the NodeInformation class. This was described in
Chapter 4, and is used to keep track of information during the proof search.

A.2 Sample NodeInformation comparator

The code in Listing A.2 shows a potential comparator that can be used during heuristic
search. In this case, it compared two NodeInformation objects and sorts them based
on the number of subgoals.

LISTING A.2: Simple SEPIA heuristic

p u b l i c c l a s s S i m p l e S u b g o a l H e u r i s t i c implements
Comparator < NodeIn fo rma t ion > {

@Override
p u b l i c i n t compare (N o d e I n f o r m a t i o n o1 ,
N o d e I n f o r m a t i o n o2) {

i f (o1 . s u b g o a l s < o2 . s u b g o a l s) re turn −1;

i f (o1 . s u b g o a l s > o2 . s u b g o a l s) re turn 1 ;

re turn 0 ;
}

}

111

112 Appendix A. Source Code Listings

LISTING A.1: NodeInformation class in SEPIA
p u b l i c c l a s s N o d e I n f o r m a t i o n {

/ / S t a t e t o v i s i t n e x t i n t h e machine
p r i v a t e I n t e g e r node ;

/ / The incoming pa th (i f any)
p r i v a t e L i n k e d L i s t < S t r i n g > i n c o m i n g P a t h ;

/ / D e f a u l t c o n s t r u c t o r
p u b l i c N o d e I n f o r m a t i o n () {

i n c o m i n g P a t h = new L i n k e d L i s t < S t r i n g > () ;
}

p u b l i c vo id s e t I n c o m i n g P a t h (L i n k e d L i s t < S t r i n g > i p) {
i n c o m i n g P a t h . ad dA l l (i p) ;

}

p u b l i c vo id se tNode (I n t e g e r n) {
node = n ;

}

p u b l i c I n t e g e r getNode () {
re turn node ;

}

p u b l i c L i n k e d L i s t < S t r i n g > g e t I n c o m i n g P a t h () {
re turn i n c o m i n g P a t h ;

}

Bibliography

Alama, Jesse, Daniel Kühlwein, and Josef Urban (2012). “Automated and Human Proofs
in General Mathematics: An Initial Comparison”. In: Logic for Programming, Artifi-

cial Intelligence, and Reasoning: 18th International Conference, LPAR-18, Mérida,

Venezuela, March 11-15, 2012. Proceedings. Ed. by Nikolaj Bjørner and Andrei
Voronkov. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 37–45.

Alama, Jesse, Lionel Mamane, and Josef Urban (2012). “Dependencies in Formal Math-
ematics: Applications and Extraction for Coq and Mizar”. In: Intelligent Computer

Mathematics. Ed. by Johan Jeuring et al. Vol. 7362. Lecture Notes in Computer
Science. Springer, pp. 1–16.

Aspinall, David (2000). “Proof General: A Generic Tool for Proof Development”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Susanne
Graf and Michael Schwartzbach. Vol. 1785. Lecture Notes in Computer Science.
Springer, pp. 38–43.

Aspinall, David and Cezary Kaliszyk (2016). “Fundamental Approaches to Software
Engineering: 19th International Conference, FASE 2016, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings”. In: ed. by Perdita Stevens
and Andrzej Wąsowski. Berlin, Heidelberg: Springer Berlin Heidelberg. Chap. To-
wards Formal Proof Metrics, pp. 325–341.

Bertot, Yves and Pierre Castéran (2004). Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions. Springer.
Blanchette, Jasmin et al. (2015). “Mining the Archive of Formal Proofs”. In: Conference

on Intelligent Computer Mathematics (CICM 2015). Ed. by M. Kerber. Vol. 9150.
Invited paper, pp. 3–17.

Blanchette, Jasmin et al. (2016). “Hammering towards QED”. In: Journal of Formalized

Reasoning 9.1, pp. 101–148. ISSN: 1972-5787.
Blanchette, Jasmin Christian et al. (2012). “More spass with isabelle”. In: International

Conference on Interactive Theorem Proving. Springer, pp. 345–360.
Böhme, Sascha and Tobias Nipkow (2010). “Automated Reasoning: 5th International

Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings”. In:
ed. by Jürgen Giesl and Reiner Hähnle. Springer Berlin Heidelberg. Chap. Sledge-
hammer: Judgement Day, pp. 107–121.

113

114 BIBLIOGRAPHY

Bridge, James P., Sean B. Holden, and Lawrence C. Paulson (2014). “Machine Learn-
ing for First-Order Theorem Proving”. In: Journal of Automated Reasoning 53.2,
pp. 141–172.

Bundy, Alan (1988). “The use of explicit plans to guide inductive proofs”. In: 9th In-

ternational Conference on Automated Deduction: Argonne, Illinois, USA, May 23–

26, 1988 Proceedings. Ed. by Ewing Lusk and Ross Overbeek. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 111–120.

Carlson, A. et al. (1999). The SNoW Learning Architecture. URL: http://cogcomp.
cs.illinois.edu/papers/CCRR99.pdf.

Cheng, Kwang Ting and A. S. Krishnakumar (1993). “Automatic Functional Test Gen-
eration Using the Extended Finite State Machine Model”. In: Proceedings of the

30th International Design Automation Conference. DAC ’93. Dallas, Texas, USA:
ACM, pp. 86–91.

Chlipala, Adam (2011). Certified Programming with Dependent Types. http://adam.
chlipala.net/cpdt/. MIT Press. URL: {http://adam.chlipala.net/cpdt/}.

de Moura, Leonardo et al. (2015). “The Lean Theorem Prover (System Description)”.
In: Automated Deduction - CADE-25. Ed. by Amy P. Felty and Aart Middeldorp.
Vol. 9195. Lecture Notes in Computer Science. Springer, pp. 378–388.

Delahaye, David (2000). “A Tactic Language for the System Coq”. In: Proceedings of

the 7th International Conference on Logic for Programming and Automated Rea-

soning. LPAR’00. Reunion Island, France: Springer-Verlag, pp. 85–95. ISBN: 3-
540-41285-9.

Duncan, Hazel (2008). “The use of data mining for the automated formation of tactics”.
PhD thesis. University of Edinburgh.

Ernst, Michael D. et al. (2007). “The Daikon system for dynamic detection of likely
invariants”. In: Science of Computer Programming 69.1–3. Special issue on Exper-
imental Software and Toolkits, pp. 35 –45.

Gold, E. Mark (1967). “Language identification in the limit”. In: Information and Con-

trol 10.5, pp. 447–474.
Gonthier, Georges (2005). A computer-checked proof of the four colour theorem.
— (2008). “Formal proof–the four-color theorem”. In: Notices of the AMS 55.11, pp. 1382–

1393.
Gonthier, Georges et al. (2013). “A Machine-Checked Proof of the Odd Order Theo-

rem”. In: Interactive Theorem Proving. Ed. by Sandrine Blazy, Christine Paulin-
Mohring, and David Pichardie. Vol. 7998. Lecture Notes in Computer Science.
Springer, pp. 163–179.

http://cogcomp.cs.illinois.edu/papers/CCRR99.pdf
http://cogcomp.cs.illinois.edu/papers/CCRR99.pdf
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
{http://adam.chlipala.net/cpdt/}

BIBLIOGRAPHY 115

Gordon, Michael J. C., Robin Milner, and Christopher Wadsworth (1979). “Edinburgh
LCF: A Mechanized Logic of Computation”. In: Lecture Notes in Computer Science

78. Springer-Verlag.
Gransden, Thomas (2013). “Boosting Automated Reasoning by Mining Existing Proofs”.

In: 20th Automated Reasoning Workshop (ARW).
— (2015). “Combining ML4PG and SEPIA”. In: 22nd Automated Reasoning Work-

shop (ARW).
Gransden, Thomas, Neil Walkinshaw, and Rajeev Raman (2014). “Mining State-Based

Models from Proof Corpora”. In: Intelligent Computer Mathematics. Ed. by Stephen
M. Watt et al. Vol. 8543. Lecture Notes in Computer Science. Springer, pp. 282–297.

— (2015). “SEPIA: Search for Proofs Using Inferred Automata”. In: Automated De-

duction - CADE-25. Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture
Notes in Computer Science. Springer, pp. 246–255.

Gransden, Thomas et al. (2016). “Revisit, Reuse, Recycle your Coq Proofs: Towards an
Intelligent Interactive Proof Environment”. In: Journal of Automated Reasoning. In
preparation.

Grov, Gudmund, Ekaterina Komendantskaya, and Alan Bundy (2012). “A Statistical
Relational Learning Challenge - extracting proof strategies from exemplar proofs”.
In: ICML’12 worshop on Statistical Relational Learning.

Harrison, John (1996). “Proof Style”. In: Types for Proofs and Programs: International

Workshop TYPES’96. Ed. by Eduardo Giménex and Christine Paulin-Mohring. Vol. 1512.
Lecture Notes in Computer Science. Springer, pp. 154–172.

— (2006). “Floating-Point Verification Using Theorem Proving”. English. In: For-

mal Methods for Hardware Verification. Ed. by Marco Bernardo and Alessandro
Cimatti. Vol. 3965. Lecture Notes in Computer Science. Springer, pp. 211–242.

— (2009). “HOL Light: An Overview”. In: Proceedings of the 22nd International Con-

ference on Theorem Proving in Higher Order Logics, TPHOLs 2009. Ed. by Stefan
Berghofer et al. Vol. 5674. Lecture Notes in Computer Science. Munich, Germany:
Springer-Verlag, pp. 60–66.

Hastie, Trevor J., Robert John Tibshirani, and Jerome H. Friedman (2009). The elements

of statistical learning : data mining, inference, and prediction. Springer series in
statistics. New York: Springer.

Heras, Jónathan and Ekaterina Komendantskaya (2013). “ML4PG in Computer Alge-
bra Verification”. In: Intelligent Computer Mathematics: MKM, Calculemus, DML,

and Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8-12,

2013. Proceedings. Ed. by Jacques Carette et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 354–358.

116 BIBLIOGRAPHY

Heras, Jónathan and Ekaterina Komendantskaya (2014). “Recycling Proof Patterns in
Coq: Case Studies”. In: Mathematics in Computer Science 8.1, pp. 99–116.

Jamnik, Mateja et al. (2003). “Automatic Learning of Proof Methods in Proof Plan-
ning”. In: Logic Journal of IGPL 11.6, pp. 647–673.

Kaliszyk, Cezary, Lionel Mamane, and Josef Urban (2014). “Machine Learning of Coq
Proof Guidance: First Experiments”. In: SCSS 2014 - 6th International Symposium

on Symbolic Computation in Software Science. Ed. by Temur Kutsia and Andrei
Voronkov. Vol. 30. EPiC. EasyChair, pp. 27–34.

Kaliszyk, Cezary and Josef Urban (2013). “MizAR 40 for Mizar 40”. In: CoRR abs/1310.2805.
URL: http://arxiv.org/abs/1310.2805.

— (2014). “Learning-Assisted Automated Reasoning with Flyspeck”. In: Journal of

Automated Reasoning 53.2, pp. 173–213.
— (2015). “Learning-assisted theorem proving with millions of lemmas”. In: Journal

of Symbolic Computation 69. Symbolic Computation in Software Science, pp. 109
–128.

Klein, Gerwin et al. (2014). “Comprehensive Formal Verification of an OS Microker-
nel”. In: ACM Transactions on Computer Systems 32.1, 2:1–2:70.

Kohavi, Ron (1995). “A Study of Cross-validation and Bootstrap for Accuracy Esti-
mation and Model Selection”. In: Proceedings of the 14th International Joint Con-

ference on Artificial Intelligence - Volume 2. IJCAI’95. Montreal, Quebec, Canada:
Morgan Kaufmann Publishers Inc., pp. 1137–1143.

Komendantskaya, Ekaterina, Jónathan Heras, and Gudmund Grov (2013). “Machine
Learning in Proof General: Interfacing Interfaces”. In: Proceedings 10th Interna-

tional Workshop On User Interfaces for Theorem Provers, UITP 2012, Bremen,

Germany, July 11th, 2012. Ed. by Cezary Kaliszyk and Christoph Lüth. Vol. 118.
EPTCS, pp. 15–41.

Kühlwein, Daniel and Josef Urban (2015). “MaLeS: A Framework for Automatic Tun-
ing of Automated Theorem Provers”. In: Journal of Automated Reasoning 55.2,
pp. 91–116.

Lang, Kevin J., Barak A. Pearlmutter, and Rodney A. Price (1998). “Results of the Ab-
badingo One DFA Learning Competition and a New Evidence-Driven State Merg-
ing Algorithm”. In: Proceedings of the 4th International Colloquium on Grammat-

ical Inference. ICGI ’98. London, UK, UK: Springer-Verlag, pp. 1–12.
Leroy, Xavier (2009). “Formal Verification of a Realistic Compiler”. In: Commun. ACM

52.7, pp. 107–115. ISSN: 0001-0782.
Matichuk, Daniel, Makarius Wenzel, and Toby Murray (2014). “An Isabelle Proof

Method Language”. In: Interactive Theorem Proving: 5th International Conference,

http://arxiv.org/abs/1310.2805

BIBLIOGRAPHY 117

ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,

July 14-17, 2014. Proceedings. Ed. by Gerwin Klein and Ruben Gamboa. Cham:
Springer International Publishing, pp. 390–405.

Meng, Jia and Lawrence C. Paulson (2009). “Lightweight relevance filtering for machine-
generated resolution problems”. In: Journal of Applied Logic 7.1. Special Issue:
Empirically Successful Computerized Reasoning, pp. 41 –57.

Meng, Jia, Claire Quigley, and Lawrence C. Paulson (2006). “Automation for interac-
tive proof: First prototype”. In: Inf. Comput. 204.10, pp. 1575–1596.

Mitchell, Thomas M. (1997). Machine Learning. 1st ed. New York, NY, USA: McGraw-
Hill, Inc.

Naumowicz, Adam and Artur Korniłowicz (2009). “A Brief Overview of Mizar”. In:
Theorem Proving in Higher Order Logics: 22nd International Conference, TPHOLs

2009, Munich, Germany, August 17-20, 2009. Proceedings. Ed. by Stefan Berghofer
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 67–72.

Naumowicz, Adam and Artur Kornilowicz (2009). “A Brief Overview of Mizar”. En-
glish. In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer et al.
Vol. 5674. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 67–
72.

Nipkow, Tobias, Markus Wenzel, and Lawrence C. Paulson (2002). Isabelle/HOL: A

Proof Assistant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag. ISBN:
3-540-43376-7.

Obua, Steven et al. (2014). “ProofPeer: Collaborative Theorem Proving”. In: CoRR

abs/1404.6186. URL: http://arxiv.org/abs/1404.6186.
Pearl, Judea (1984). Heuristics: Intelligent search strategies for computer problem solv-

ing. Addison-Wesley.
Quinlan, J. Ross (1993). C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.
Ron, Dana, Yoram Singer, and Naftali Tishby (1996). “The power of amnesia: Learning

probabilistic automata with variable memory length”. In: Machine Learning 25.2,
pp. 117–149.

Russell, Stuart J. and Peter Norvig (2003). Artificial Intelligence: A Modern Approach.
2nd ed. Pearson Education.

— (2010). Artificial Intelligence: A Modern Approach. 3rd ed. Pearson Education.
Schulz, Stephan (2013). “System Description: E 1.8”. In: Proc. of the 19th LPAR, Stel-

lenbosch. Ed. by Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312.
LNCS. Springer.

http://arxiv.org/abs/1404.6186

118 BIBLIOGRAPHY

Urban, Josef (2005). “MPTP – Motivation, Implementation, First Experiments”. In:
Journal of Automated Reasoning 33.3, pp. 319–339.

— (2013). “BliStr : The Blind Strategymaker”. In: CoRR abs/1301.2683. URL: http:
//arxiv.org/abs/1301.2683.

Walkinshaw, Neil, John Derrick, and Qiang Guo (2009). “Iterative Refinement of Reverse-
Engineered Models by Model-Based Testing”. In: FM 2009: Formal Methods: Sec-

ond World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceed-

ings. Ed. by Ana Cavalcanti and Dennis R. Dams. Springer Berlin Heidelberg.
Walkinshaw, Neil, Ramsay Taylor, and John Derrick (2015). “Inferring extended finite

state machine models from software executions”. In: Empirical Software Engineer-

ing, pp. 1–43.
Walkinshaw, Neil et al. (2013). “STAMINA: a competition to encourage the develop-

ment and assessment of software model inference techniques”. In: Empirical Soft-

ware Engineering 18.4, pp. 791–824.
Whiteside, Iain et al. (2011). “Towards Formal Proof Script Refactoring”. In: Intelligent

Computer Mathematics. Ed. by James H. Davenport et al. Vol. 6824. Lecture Notes
in Computer Science. Springer, pp. 260–275.

Wieczorek, Wojciech (2017). Grammatical Inference - Algorithms, Routines and Ap-

plications. Vol. 673. Studies in Computational Intelligence. Springer.
Wiedijk, Freek (2008). “Formal proof – getting started”. In: Notices of the AMS 55.11,

pp. 1408–1414.
Witten, Ian H. and Eibe Frank (2005). Data Mining: Practical Machine Learning Tools

and Techniques. 2nd edition. San Francisco: Morgan Kaufmann.

http://arxiv.org/abs/1301.2683
http://arxiv.org/abs/1301.2683

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Outline of this thesis
	Publications

	Background and Related Work
	Introduction
	Interactive Theorem Proving
	Machine Learning
	Basic machine learning process
	Types of machine learning
	Supervised learning
	Unsupervised learning

	Combining learning and proving
	Hierarchical Proof Patterns
	Library search mechanisms
	Identifying useful facts in a proof library
	Identifying families of similar theorems

	Linking with ATP's
	Automated tactic formation
	Jamnik et al's approach for mega
	Duncan's approach for Isabelle

	Learning in ATP Systems

	State Machine Inference
	Traces
	Finite State Machines and Extended Finite State Machines
	State Machine Inference Algorithms
	Finite State Machine Inference
	Extended State Machine Inference

	Conclusions

	Inferring State Machines from Proof Tactics
	Introduction
	Inferring models from Coq proofs
	Motivating Example
	Proof Trace Generation
	Using proof traces in model inference

	Qualitative comparison of inferred models
	Inferring an FSM from ListNat
	Inferring an EFSM from ListNat

	Manual application of models
	Example 1: ListNat
	Example 2: Le and Lt

	Implementation
	Related approaches
	Conclusions

	Automating Proofs with Inferred Models
	Introduction
	SEPIA Proof Search Algorithm
	Auxiliary functions and data structures
	Algorithm description
	Checking progress of applied tactics
	Extending with heuristics

	The SEPIA ProofGeneral plugin
	System design and benefits
	ProofGeneral interface for Coq
	Communication between SEPIA and Coq

	Using the SEPIA plugin
	Conclusions

	Extensions to SEPIA
	Introduction
	Motivating Examples

	ML4PG revisited
	The Coq-PR3 algorithm
	Obtaining hypotheses from Coq proofs
	Modifying proof trace generation in Coq-PR3
	Enhancing proof search in Coq-PR3
	Auxiliary functions
	Algorithm description

	Integrating Coq-PR3 into ProofGeneral
	Examples
	More descriptive proof traces
	Reducing state space

	Conclusions

	Evaluation
	Introduction
	Research Questions

	Methodology
	Data Sets
	Attempting proofs with SEPIA
	Comparing with existing Coq automation
	Properties of discovered proofs
	Measuring the success of Coq-PR3

	Results
	RQ1: Does SEPIA prove Coq theorems automatically?
	RQ2: Is SEPIA more effective than existing Coq automation?
	RQ3: Are there "interesting" properties of the proofs discovered?
	RQ4: Does Coq-PR3 improve upon SEPIA?

	Conclusions

	Conclusions and Future Work
	Overall summary
	Conclusions
	Future Work

	Source Code Listings
	NodeInformation class
	Sample NodeInformation comparator

	Bibliography

