
Local reversibility and the Calculus of Covalent

Bonding

Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

by
Stefan Kuhn

Department of Informatics
University of Leicester

2019

Local reversibility and the Calculus of Covalent Bonding

- by Stefan Kuhn
1

Abstract

We introduce a process calculus with a new action prefixing operator that allows to
model locally controlled reversibility. Since the observation of covalent bonding in
chemical reactions is the starting point of our work we call the process calculus the
Calculus of Covalent Bonding (CCB). The calculus is based on CCSK, but adds an
operator of the form (s; b), where s is a sequence of actions. Action b can only be
executed once all actions in s are done and executing it requires to undo one action
in s. By this we achieve control over when reverse actions happen without the need
of a global control or a memory. The calculus also allows spontaneous undoing and
sequences of forward and reverse actions.
We give a formal definition of the calculus using Structural Operational Semantics
rules. We also show properties of the calculus, in particular we show that it can
model out-of-causal order reversibility.
In order to demonstrate the use of our calculus we model the hydration of formalde-
hyde in water into methanediol. We use a system of four molecules, where various
paths are possible to produce the final result. These path include a range of chemi-
cal situations. Our calculus can model most of them. We also model Base Excision
Repair (BER), a bio-chemical process, on a higher level. This show that our calculus
is also useful to model more general situations than the chemical reactions it was
derived from.

Acknowledgments

I would like to thank my supervisor Dr. Irek Ulidowski for his continuous support
throughout this work. My thanks also go to my second supervisor Prof. Reiko
Heckel. All PhD students in the Department of Informatics at University of Le-
icester helped me not only with professional discussions, but also with sustaining a
great atmosphere and camaraderie in the PhD offices. I am indebted to Dr. Nils
Schlörer and the whole team at the NMR facility of the Department of Chemistry
at Universität zu Köln for help with the chemical side of this work. Of course all
remaining errors are my own.

2

Contents

List of Figures 5

1 Introduction 8
1.1 Contributions . 10
1.2 Thesis outline . 12

2 Autoprotolysis of water 14
2.1 Modelling the autoprotolysis of water 14
2.2 Chemically equivalent processes . 19
2.3 Conclusion . 24

3 Process calculi and the modelling of biochemical reactions 25
3.1 Basics of process calculi and rule-based calculi 25
3.2 Related work . 28

3.2.1 Early developments in chemistry and computer science 28
3.2.2 Process calculi for chemistry and biology 29
3.2.3 Reversibility in computer science 32
3.2.4 Reversibility and causality . 33

3.3 Chemistry in process calculi . 37
3.4 Modelling of autoprotolysis of water in process calculi 40

3.4.1 CCSK . 40
3.4.2 CCSK with execution control 43
3.4.3 CCS-R . 46
3.4.4 κ-calculus . 48
3.4.5 P Systems . 51

3.5 Conclusion . 53

4 A Calculus of Covalent Bonding 55
4.1 Definition of the calculus . 55
4.2 Properties of CCB . 70

4.2.1 Concerted actions . 79
4.3 CCB without weak actions . 81
4.4 Expressiveness . 92
4.5 Conclusion . 94

5 The hydration of formaldehyde in water 95
5.1 The most common mechanism of the reaction 96
5.2 Other paths through the reaction . 97
5.3 A CCB model of the hydration of formaldehyde in water 100

3

5.3.1 The main path through the reaction 103
5.3.2 The base-catalysed path . 106
5.3.3 The acid-catalysed path . 107
5.3.4 Other paths . 111

5.4 Conclusion . 113

6 Chemical process equivalence 116
6.1 Definition of chemical process equivalence 117
6.2 Properties of the equivalence relation 121
6.3 Chemical process equivalence in the hydration of formaldehyde 123
6.4 Behavioural equivalence . 127
6.5 Conclusion . 128

7 Base Excision Repair 129
7.1 Description of Base Excision Repair 129
7.2 Modelling BER . 130
7.3 Conclusion . 136

8 Simulation software 137
8.1 Software architecture . 137
8.2 User interfaces . 143

8.2.1 Command-line interface . 143
8.2.2 Graphical user interface . 143

8.3 Process equivalence . 150
8.4 Testing . 154
8.5 Conclusion . 155

9 Conclusion 156
9.1 Summary . 156
9.2 Evaluation of CCB . 157
9.3 Future work . 158

9.3.1 Improve chemical modelling 158
9.3.2 Other future work . 160

Appendix Record of the execution of the hydration of formaldehyde
in water using CCBsimulation 162

Bibliography 174

List of Figures

2.1 Autoprotolysis of water. 14

2.2 The processes from Figure 2.3. 20

2.3 All paths for the autoprotolysis of water. 21

3.1 SOS rules for CCS. 27

3.2 Inference tree for the transition (a.0 | a.0)\{a}
τ
−→ (0 | 0)\{a}. 27

3.3 Forward SOS rules for CCSK. 41

3.4 Reverse SOS rules for CCSK. → indicates a forward transition, a
reverse transition. 42

3.5 SOS rules for multisets. 43

3.6 SOS rules for the control operator 〈〉. → indicates a forward transi-
tion, a reverse transition. 44

3.7 SOS rules for CCS-R. 47

3.8 SOS rules for CCS-R with multisets. 47

3.9 A possible modelling of the autoprotolysis of water using the κ cal-
culus. 50

3.10 A possible modelling of the autoprotolysis of water using P Systems. 52

4.1 Predicates std and fsh. 58

4.2 Forward SOS rules for CCB. 58

4.3 Functions k and keys. 59

4.4 Reverse SOS rules for CCB. 60

4.5 SOS rules for concerted actions in CCB. 60

5

LIST OF FIGURES 6

4.6 Structural congruence rule sc. 61

4.7 Reduction rules for CCB. 61

4.8 Inference tree for Example 4.3. 64

4.9 Inference tree for Example 4.4. 65

4.10 Inference tree for Example 4.7. 69

4.11 Algorithm for deciding consistency of processes. 71

4.12 SOS rules for CCBf . 82

4.13 Rearrangement algorithm. 89

5.1 Hydration of formaldehyde in water into methanediol. 95

5.2 The most common path through the hydration of formaldehyde. . . . 96

5.3 Acid-catalysed hydration of formaldehyde in water. 97

5.4 Base-catalysed hydration of formaldehyde in water. 98

5.5 Other compounds possible in the reaction of formaldehyde with water. 98

5.6 All possible reactions in a system of formaldehyde and three water
molecules. 99

5.7 The three main reaction paths in the hydration of formaldehyde. . . . 100

6.1 Function αkeys defining α conversion of key k into key l in CCB and
helper function αk, with k, l ∈ K. 118

6.2 Function αsubscripts defining α conversion of subscript k into sub-
script l in CCB and helper function αs, αsr, and αsc, with k, l ∈ S. . 119

6.3 Function s and predicate freshsubscript. 120

6.4 A full representation of the two processes P1 and P2. 124

7.1 A UDG unit whilst performing a step along a DNA strand. 131

7.2 A three base pair DNA fragment. 133

7.3 The repaired DNA fragment. 135

8.1 The main classes of the software package CCBsimulation. 142

LIST OF FIGURES 7

8.2 A record of the program CCBcommandline. 146

8.3 A screenshot of the program CCBgui. 147

8.4 Screenshots of the execution of the base excision repair in CCBsimu-
lation. 148

8.5 Screenshots of the execution of the base excision repair in CCBsimu-
lation. 149

8.6 An algorithm to rewrite a CCB process P1 into a chemically equivalent
processes P2. 153

8.7 CCBgui demonstrating chemical process equivalence of two processes. 154

9.1 Forward SOS rules of CCB-S. 160

9.2 Reverse SOS rules of CCB-S. 160

9.3 SOS rules for concerted actions of CCB-S. 161

Chapter 1

Introduction

There are many different computation tasks which involve undoing of previously

performed steps or actions. Consider a computation where the action a causes the

action b, written a < b, and where the action c occurs independently of a and b.

There are three executions of this computation that preserve causality, namely abc,

acb and cab. We note that a always comes before b. There are several conceptually

different ways of undoing these actions [117]. Backtracking is undoing in precisely

the reverse order in which they happened. So, undo b undo c undo a is the backtrack

of the execution acb. Reversing is a more general form of undoing: here actions can

be undone in any order provided causality is preserved (meaning that causes cannot

be undone before effects). For example, undo c undo b undo a is a reversal of acb

for the events a, b and c above.

There are networks of reactions in biochemistry, however, where actions are un-

done seemingly out-of-causal order. The creation and breaking of molecular bonds

between the proteins involved in the ERK (extracellular signal-regulated kinases)

signalling pathway is a good example of this phenomenon [93]. Let us assume

for simplicity that the creation of molecular bonds is represented by actions a, b, c

where, as above, a < b and c is independent of a and b. In the ERK pathway, the

molecular bonds are broken in the following order: undo a, undo b, undo c, which

seems to undo the cause a before the effect b.

In this thesis we introduce a calculus called the Calculus of Covalent Bonding (CCB)

to capture these situations. The novel features of our calculus are introduced via an

8

CHAPTER 1. INTRODUCTION 9

example of a catalytic reaction. Consider two molecules A and B that are only able

to bind if assisted by the catalyst C. We assume:

A
def
= (a; p).A′, B

def
= (b, p).B′ and C

def
= (a, b).C ′

Here, (b, p) and (a, b) are sequences of actions, which can be executed in any order.

So atom B can do actions b and p, and atom C can do actions a and b in any

order. No other operators, e. g. for choice, are allowed inside s. This is very much

like in [27, 93]. For atom A, we use a new prefix operator (s; p).P where s is a

sequence of actions or executed actions and p is a weak action. We call these actions

weak, because, as we will see later, they are temporary and facilitate other, more

permanent, actions. How actions can work together, or synchronize, is determined

by a synchronization function γ. In our case, this is the function γ(a, a) = c,

γ(b, b) = d and γ(p, p) = q. This function produces new actions c, d and q. The

molecules A, B and C can bond by performing synchronously the matching actions

according to γ. In the (s; p) operator, which is the new feature here, p can happen

only if all actions in s have already taken place. The simple operators like (b, p) can

be considered as the new operator with the weak action p can be left out resulting

in the reduced prefix (s).P (as in B and C above). If a weak action p exists, it

brings reversibility into our model. Once p takes place, one of the executed actions

in s must be undone immediately: this is our new mechanism for triggering reverse

computation. We shall model these two almost simultaneous events as a transition

of concerted actions.1 This is a simple but realistic representation of the mechanism

of covalent bonding, the most common type of chemical bonds between atoms, hence

our calculus is called a Calculus of Covalent Bonding.

Returning to our example, we represent the system of molecules A, B and C as

((a; p).A′ | (b, p).B′ | (a, b).C ′) \ {a, b, p}

where ‘ | ’ is the parallel composition and ‘\’ the restriction as in CCS [78]. We

note that A and B cannot interact initially since γ(a, b) is not defined. But they

can both interact with C, which is represented by the following two transitions:

(a; p).A′ | (b, p).B′ | (a, b).C ′ c[1]
−−→ (a[1]; p).A′ | (b, p).B′ | (a[1], b).C ′ d[2]

−−→

(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C ′

1In chemistry a concerted reaction is defined as a reaction where all bonds are made or broken in
a single step without a reaction intermediate, also not an unstable intermediate (entry “concerted
reaction” of [85]).

CHAPTER 1. INTRODUCTION 10

where 1 and 2 are communication keys [94, 90] indicating which pairs of actions

created bonds. New communication keys are highlighted in bold. The bold markup

is not part of the syntax, it is only there to help the reader. Molecules A and B

can now do p synchronously, producing the action q. This causes immediately the

breaking of the bond c, which means undoing actions a in A and C, leaving A and

B bonded. We model such pairs of events by pairs of concerted actions:

(a[1]; p).A′ | (b[2], p).B′ | (a[1], b[2]).C ′

{q[3],c[1]}
−−−−−→ (a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C ′

The action a is bold since it has lost its communication key 1. The bond 3 on a

weak action p is unstable and thus gets promoted to a stable stronger bond on a

and p (of B), which is represented by the following rewrite:

(a; p[3]).A′ | (b[2], p[3]).B′ | (a, b[2]).C ′ ⇒ (a[3]; p).A′ | (b[2], p[3]).B′ | (a, b[2]).C ′

Finally, the catalyst dissolves the bond with B:

(a[3]; p).A′ | (b[2], p[3]).B′ | (a, b[2]).C ′ d[2]
−−→ (a[3]; p).A′ | (b, p[3]).B′ | (a, b).C ′

We note that A and B are now bonded although the synchronisation function did

not allow it to happen initially. The main consequence of this is that the bond

between a[3] and p[3] is irreversible, namely it cannot be undone. Looking at the

pattern of doing and undoing of bonds we obtain the following sequence:

c[1]d[2]q[3]c[1]d[2]

Since creation of bonds c and d causes the bond q, and since c and d are undone

whilst q is not, we have here an example of out-of-causal order computation.

1.1 Contributions

This thesis gives a formal definition of a novel calculus. This is done using Structural

Operational Semantics (SOS for short) style [95]. This includes novel SOS rules for

concerted actions and three rewrite rules that prescribe when bonds on weak actions

can be promoted to strong action bonds. The calculus models doing and undoing

of communications and does not require global control. By using the new prefixing

operator we can define within one process if a certain forward transition triggers the

CHAPTER 1. INTRODUCTION 11

undoing of a previously done action. Since this information is contained within the

definition of a process, the mechanism for undoing is purely local.

We show that out-of-causal order computation can be modelled in this calculus.

Hence, in general, the causal consistency property [26] does not hold. There are

reachable states that can only be arrived at by a mixture of forward and reverse

steps.

We compare the new calculus to existing calculi. We argue that causal consistency

holds in a restricted version of our calculus, where no weak actions are contained.

This sub-calculus with the reduced prefixing operator (s).P satisfies causal consis-

tency. Therefore the full calculus is in effect a conservative extension of a causally

consistent reversible process calculus. We show that CCB is a well behaved calculus

by proving a number of useful properties. These include a forward diamond prop-

erty and a reverse diamond property for simple transitions. We also show that we

can reach states by doing forward and reverse transitions which cannot be reached

by computing forwards alone.

We can model actual chemical reactions as well as higher-level biological processes

in CCB. We model a basic reaction, the autoprotolysis of water, containing two

molecules, with one possible forward and reverse transition. A more complicated

example is the hydration of formaldehyde in water, where a variety of transitions,

both forward and reverse, and different paths between states, are possible. We

model base excision repair (BER) as an example of a higher-level biological process.

When doing so we are able to represent different forms of reversibility, including out-

of-causal order reversibility, and computation can proceed in any direction without

external control. We present the possible (chemically valid) sequences which result

from our model and show that they cover most of the actually possible reactions.

We also explain that a large majority of reactions that our model produces are

chemically valid (see Section 5.4 for details).

We define an equivalence, which we call chemical process equivalence. This is based

on identifying actions and processes by subscripts. Swaps of such subscripts and

keys allow us to transform equivalent processes into each other. We show that this

is a useful equivalence in our calculus, since it allows us to model chemical reaction

networks realistically (see Section 6.4 for details).

We also present a software tool, which allows for the simulation of CCB processes.

It offers a command line interface and a graphical user interface, where a process

can be entered, checked for correctness, and possible transitions can be listed. The

user can then execute these and follow the evolution of the initial process. If a CCB

CHAPTER 1. INTRODUCTION 12

process is used to model a chemical system this is effectively a reaction simulation

system. Chemical process equivalence has been implemented in this software by

using a graph isomorphism as an intermediate step in establishing equivalence or

non-equivalence of two processes. This allows fast computation of such equivalences.

1.2 Thesis outline

In Chapter 2 we introduce CCB informally using a simple example, the autoprotol-

ysis of water.

Chapter 3 explains the background of the work. This includes an introduction to

process calculi, gives an overview of modelling efforts in biology and how process

calculi are used for this. We demonstrate how reversibility is handled in various

existing calculi. Finally we explain how our new calculus relates to other calculi and

biological and chemical modelling previously presented in the literature.

In Chapter 4 we give a formal definition of CCB. It is presented using Structural

Operational Semantics style semantics. We then discuss various properties that

hold in the calculus. We also define a simplified sub-calculus of CCB without weak

actions. A further sub-calculus of this is CCB without weak actions and forward-

only transitions.

We demonstrate the usefulness of our calculus in Chapter 5 by modelling the hydra-

tion of formaldehyde in water. Formaldehyde and two water molecules are modelled

as appropriate compositions of carbon, oxygen and hydrogen atoms. Then, the

molecules are composed into a process, and the computation of the process is rep-

resented by sequences of pairs of concerted actions.

In Chapter 6 we introduce an extension of our calculus with identifiable processes

and actions. We show that this can lead to syntactically different processes which are

actually equivalent. We give a definition of this equivalence, which we call chemical

equivalence.

Another example, the base excision repair (BER) mechanism for DNA repair, is

given in Chapter 7. This is a higher level example from biology where our calculus

is not used to represent chemical processes directly, but is modelling aggregated

reactions. The calculus can deal with the situations on both levels.

CHAPTER 1. INTRODUCTION 13

A simulation software for CCB is presented in Chapter 8. We describe the architec-

ture of the software as well as the user interface. We show the usage of the software

for simulating the examples in Chapters 5 and 7.

Finally in Chapter 9 we summarise the methods and achievements of this thesis.

We also describe limitations and areas for further work.

Some results presented in this thesis were published in [59, 60, 61, 58]. Specifically,

the example from Chapter 1 was used in [59, 60, 61] and the example from Chapter 2

was used in [59]. CCB was presented in [60, 61] similar to Chapter 4. A preliminary

version of Chapter 7 was printed in [58].

Chapter 2

Autoprotolysis of water

In this chapter we introduce our calculus informally, concentrating on the new gen-

eral prefixing operator (s; b).P which produces pairs of concerted actions, while

presenting an intuitive model of the autoprotolysis of water. We also use this to

introduce some chemical concepts we will use later. A more detailed justification

why this modelling is appropriate and how it relates to chemical knowledge and the

existing research will be given in Chapter 3.

2.1 Modelling the autoprotolysis of water

We consider a reaction that transfers a hydrogen atom between two water molecules.

Since the reaction takes place in water it is also known as autoprotolysis of water.

The reaction is shown in Figure 2.1. Here, O indicates an oxygen atom and H a

hydrogen atom. The lines indicate bonds. Charges on atoms are shown by ⊕ and

⊖. The meaning of the curved arrows and the dots will be explained in the next

paragraph. The reaction is reversible and it takes place at a relatively low rate,

making pure water slightly conductive.

In order to model this reaction we need to understand what it is that makes it hap-

pen. The main factor is that the oxygen atom in the water molecule is nucleophilic,

meaning it has the tendency to bond to another atomic nucleus, which would serve

O

H

H

O

H

H

O

H

H

H O

H

+ +

Figure 2.1: Autoprotolysis of water.

14

CHAPTER 2. AUTOPROTOLYSIS OF WATER 15

as an electrophile. This is because oxygen has a high electro-negativity, therefore it

attracts electrons and has an abundance of electrons around it. The electrons around

the atomic nucleus are arranged on electron shells, where only those in the outer

shell participate in bonding. Oxygen has four electrons in its outer shell which are

not involved in the initial bonding with hydrogen atoms. These electrons form two

lone pair of two electrons each, which can form new bonds (lone pairs are shown in

Figure 2.1 by pairs of dots). All this makes oxygen nucleophilic: it tends to connect

to other atomic nuclei by forming bonds from its lone pairs. Since oxygen attracts

electrons, the hydrogen atoms in water have a positive partial charge and the oxygen

atom a negative partial charge. The reaction starts with the oxygen atom (in one

water molecule) being attracted by a hydrogen atom in another water molecule due

to their opposite charges (this attraction is called a hydrogen bond). Due to the

nucleophilicity of the oxygen atom, a bond can form to the hydrogen atom. This

bond is formed out of the electrons of one of the lone pairs of the oxygen atom.

The curved arrows in Figure 2.1 indicate the movements of the electrons. Since

a hydrogen atom cannot have more than one bond the creation of a new bond is

compensated by breaking the existing hydrogen-oxygen bond (again indicated by a

curved arrow). When this happens, both electrons, which form the hydrogen-oxygen

bond, are left with the oxygen atom. Since a hydrogen atom consists of one electron

and one proton, it is only the proton that is transferred, so the process can be called

a proton transfer as well as a hydrogen transfer. The forming of the new bond and

the breaking of the old bond are concerted, namely they happen together without a

stable intermediate configuration. As a result we have reached the state where one

oxygen atom has three bonds to hydrogen atoms and is positively charged, repre-

sented on the right side of Figure 2.1. This molecule is called hydronium and can

be written as H3O+. The other oxygen atom bonds to only one hydrogen atom and

is negatively charged, having an electron in surplus. This molecule is a hydroxide

and can be written as OH−.

We notice the reaction is reversible: the oxygen atom, which has lost a hydrogen

atom, can pull back one of the hydrogen atoms from the other molecule, the H3O+

molecule. This is the case since the negatively charged oxygen atom is a strong nu-

cleophile and the hydrogen atoms in the H3O+ molecule are all positively charged.

Therefore, any of the hydrogen atoms can be removed, making both oxygen atoms

formally uncharged, and restoring the two water molecules. In Figure 2.1 the curved

arrows are given for the reaction going from left to right. Since the reaction is re-

versible (indicated by the double arrow) there are correspondent electron movements

when going from right to left. These are not given in line with usual conventions,

but can be inferred.

CHAPTER 2. AUTOPROTOLYSIS OF WATER 16

We shall model the hydrogen and oxygen atoms as processes H and O as follows,

where h, o are actions representing the bonding capabilities of the atoms and n, p

representing negative and positive charges, respectively. H ′ and O′ are process

constants.
H

def
= (h; p).H ′

O
def
= (o, o, n).O′

We use a general prefixing construct (s; b).P where s is a sequence of actions or

executed actions, and b is a weak action. The prefixing operator must not used (as

in the definition of O). In such a case at most one of the actions in the sequence

can be a weak action. Informally, actions in s can take place in any order and b can

happen if all actions in s have already taken place. Once b takes place, it must be

accompanied by undoing immediately one of the actions in s. The weak action in

the sequence, as we shall see later, is important for rewriting operations.

We use a synchronisation function γ which tells us which actions can combine to

produce bonds between atoms. We define γ in the style of ACP ([36], [3]), where

actions ho, np, nh, no represent the created bonds and the communication function

is a partial function γ : A×A → A. :

γ(h, o) = ho γ(n, p) = np

γ(n, h) = nh

Each water molecule is a structure consisting of two hydrogen atoms and one oxygen

atom which are bonded appropriately. We shall use subscripts to name the indi-

vidual copies of atoms and actions; for example H1 is a specific copy of hydrogen

atom defined by (h1; p).H ′
1, similarly for O1 defined as (o1, o2, n).O′

1. The atoms are

composed with the parallel composition operator “|” using the communication keys

(which are natural numbers) to combine actions into bonds. So a water molecule

is modelled by the following process, where the key 1 shows that h1 of H1 has

bonded with o1 of O1 (correspondingly for key 2). The restriction \{h1, h2, o1, o2}

ensures that these actions cannot happen on their own, but only together with their

partners, forming a bond.

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2}

The system of two water molecules in Figure 2.1 is represented by the parallel

composition of two water processes, where the restriction \{n, p} represses actions

CHAPTER 2. AUTOPROTOLYSIS OF WATER 17

n, p from taking place separately by forcing them to combine into bonds (according

to γ).

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2} |

((h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2) \ {h3, h4, o3, o4}) \ {n, p}

Following a general principle in process calculi in the style of CCB we can move the

restritions to the outside. The rule used can be written as (P | Q) \L = P \L | Q if

the actions of L are not used in Q. Applying this gives us a water molecule modelled

as follows:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) | (h3[3]; p).H ′

3 |

(h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2)) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}

Note the hi, oj, and n are not restricted: this allows us to break bonds via concerted

actions involving these actions. We will see an example of this in the next step.

Notice that we leave out the restrictions to improve readability in the following

description.

Now actions n in O1 and p in H3 can combine (we use the new key 5), representing

a transfer of a proton from one atom of oxygen (O2 in our model) to another one

(O1 in our model). Since a hydrogen atom consists of a proton and an electron,

and the electron stays in such a transfer, it can either be called a proton transfer or

the transfer of a (positively charged) hydrogen atoms. We show the transfer from

O2 to O1, where −→ is a transition relation denoting a reaction taking place, here a

creation of a bond (changes highlighted in bold):

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2)

−→

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3[3]; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2

CHAPTER 2. AUTOPROTOLYSIS OF WATER 18

The creation of the bond with key 5 forces us to break the bond with key 3 (between

h3 and o3) due to the property of the operator (s; b).P discussed earlier:

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2)

−→

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

These two reactions happen almost simultaneously so we represent them as a pair

of concerted actions. In line with the convention in process calculi, where the action

performed is written above the transition arrow, we write a pair of reactions above

the transition arrow, to express the concerted actions. We enclose them in {} to

indicate concerted actions.

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 | (h3[3]; p).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2)

{np[5],h3o3[3]}
−−−−−−−−→

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

We have now arrived at the state on the right hand side in Figure 2.1. There are

weak bonds between n and p (denoted by key 5) and strong bonds between hi and

oj for all appropriate i, j. Since H3 is weakly bonded to O1 and its strong capability

h3 has become available, the bond 5 gets promoted to the stronger bond, releasing

the capability p of H3. We represent this change as a rewrite denoted by ⇒ (which

is not as a transition) and we obtain the following process:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 | (h3; p[5]).H ′

3

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

⇒ ((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1) | (h3[5]; p).H ′

3)

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

Oxygen O1 is still blocked, which represents it being fully bonded (and positively

charged). Oxygen O2 has a free n capability and can remove any of the hydrogen

atoms from O1. As a result the process can reverse to its original state.

CHAPTER 2. AUTOPROTOLYSIS OF WATER 19

We show this by again transferring H3. We then execute promotion again:

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1) | (h3[5]; p).H ′

3)

| (h4[4]; p).H ′
4 | (o3, o4[4], n).O′

2

{np[3],nh3[5]}
−−−−−−−−→

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) | (h3; p[3]).H ′

3)

| (h4[4]; p).H ′
4 | (o3, o4[4], n[3]).O′

2

⇒

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) | (h3[3]; p).H ′

3)

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2

This corresponds to the original process, which we started with, after moving the

restrictions to the outside. Remember that we left out the restrictions only to

improve readability. If we re-add them we get:

((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 | (h3[3]; p).H ′

3

| (h4[4]; p).H ′
4 | (o3[3], o4[4], n).O′

2) \ {h1, h2, o1, o2} \ {h3, h4, o3, o4} \ {n, p}

We can therefore apply the movement of restrictions the reverse way we applied it

originally and get:

(((h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1) \ {h1, h2, o1, o2} |

((h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2) \ {h3, h4, o3, o4}) \ {n, p}

2.2 Chemically equivalent processes

So far we have chosen a particular hydrogen atom to transfer. It would be equally

possible to use any other hydrogen atom. Since we have marked our actions and

processes by subscript numbers, we are able to distinguish the various situations

here. Furthermore, the use of keys is arbitrary and many more syntactically different

processes can be generated by using different keys. If we disregard different keys

linking the same actions, but annotate actions and processes by subscripts, we can

distinguish the processes shown in Figure 2.3. In Figure 2.2 the processes are shown

in a graph with the possible transitions. The numbers in Figure 2.2 correspond to

those in Figure 2.3.

CHAPTER 2. AUTOPROTOLYSIS OF WATER 20

1 (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2)

2 (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 |

(h3[5]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3, o4[4], n).O′
2)

3 (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n[5]).O′
1 |

(h3[3]; p).H ′
3 | (h4[5]; p).H ′

4 | (o3[3], o4, n).O′
2)

4 (h1[1]; p).H ′
1 | (h2[5]; p).H ′

2 | (o1[1], o2, n).O′
1 |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n[5]).O′
2)

5 (h1[5]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1, o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n[5]).O′
2)

6 (h1[6]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[5], o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[5]; p).H ′

4 | (o3[3], o4[6], n).O′
2)

7 (h1[1]; p).H ′
1 | (h2[6]; p).H ′

2 | (o1[1], o2[5], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[5]; p).H ′

4 | (o3[3], o4[6], n).O′
2)

8 (h1[6]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[5], o2[2], n).O′
1 |

(h3[5]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[6], o4[4], n).O′
2)

9 (h1[1]; p).H ′
1 | (h2[6]; p).H ′

2 | (o1[1], o2[5], n).O′
1 |

(h3[5]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[6], o4[4], n).O′
2)

10 (h1[6]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[5], o2[2], n[7]).O′
1 |

(h3[7]; p).H ′
3 | (h4[5]; p).H ′

4 | (o3, o4[6], n).O′
2)

11 (h1[6]; p).H ′
1 | (h2[7]; p).H ′

2 | (o1[5], o2, n).O′
1 |

(h3[3]; p).H ′
3 | (h4[5]; p).H ′

4 | (o3[3], o4[6], n[7]).O′
2)

12 (h1[6]; p).H ′
1 | (h2[7]; p).H ′

2 | (o1[5], o2, n).O′
1 |

(h3[5]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[6], o4[4], n[7]).O′
2)

13 (h1[6]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[5], o2[2], n[7]).O′
1 |

(h3[5]; p).H ′
3 | (h4[7]; p).H ′

4 | (o3[6], o4, n).O′
2)

14 (h1[6]; p).H ′
1 | (h2[8]; p).H ′

2 | (o1[5], o2[7], n).O′
1 |

(h3[5]; p).H ′
3 | (h4[7]; p).H ′

4 | (o3[6], o4[8], n).O′
2)

Figure 2.2: The processes from Figure 2.3. Restrictions are left out for clarity and
possible differences due to keys used are ignored.

CHAPTER 2. AUTOPROTOLYSIS OF WATER 21

1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

o 1

o 1
o 1

o 1
o 1

o 1
o 1

o 1o 1
o 1

o 1
o 1

o 1o 1
o 1o 1

o 1

o 2

o 2

o 2
o 2

o 2

o 2
o 2

o 2
o 2

o 2
o 2o 2

o 2
o 2

o 2

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
1

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
2

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
3

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

h
4

F
ig

u
re

2.
3:

A
ll

p
at

h
s

fo
r

th
e

au
to

p
ro

to
ly

si
s

of
w

at
er

.
T

h
e

n
u

m
b

er
s

co
rr

es
p

on
d

to
th

e
p

ro
ce

ss
es

sh
ow

n
in

F
ig

u
re

2.
2.

S
om

e
tr

an
si

ti
on

s
re

q
u

ir
e

ch
an

ge
s

of
ke

y
s.

CHAPTER 2. AUTOPROTOLYSIS OF WATER 22

From a chemical point of view there are only two possible configurations, namely a

system of two water molecules (processes 1, 6, 7, 8, 9, and 14 in Figure 2.3) and a

system of one H3O
+ and one HO− molecule (processes 2, 3, 4, 5, 10, 11, 12, and 13

in Figure 2.3). Processes 6, 7, 8, and 9 have two hydrogen atoms swapped between

the oxygen atoms, and process 14 has all hydrogen atoms swapped between the

oxygen atoms.

In order to model this equality in our calculus, we need two operations, which we

discuss informally here. Firstly, we must be able to change a key in the process to

some other fresh key. The new key must not be used in the process so far. For

example, in Figure 2.2 process 5 is:

(h1[5]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1, o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n[5]).O′
2)

From this process we can transition to process 6 in Figure 2.2. This would happen

by the following transition and promotion:

(h1[5]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1, o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n[5]).O′
2)

{np[6],h4n[4]}
−−−−−−−−→⇒

(h1[5]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[6], o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[3], o4[5], n).O′
2)

On the other hand, Figure 2.2 tells us that process 6 is actually as follows (this was

derived by a transition from process 3, which leads to process 6 as well):

(h1[6]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[5], o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[5]; p).H ′

4 | (o3[3], o4[6], n).O′
2)

If we swap keys 5 and 6, these processes are syntactically identical (swapping is a

short name for changing both keys to the other key via a third variable to avoid

conflicts). Clearly this is possible, since as long as keys link the same actions,

their naming is arbitrary. Figure 2.3 implies several such changes in order for the

transitions to be valid.

Secondly, we can also disregard subscripts (which were introduced to distinguish

copies of atoms of the same type). Informally we can say that if we remove the

subscripts on the actions and process names and change keys accordingly, then only

CHAPTER 2. AUTOPROTOLYSIS OF WATER 23

two processes can be distinguished. In Chapter 6 we will call this chemical process

equivalence. To demonstrate this we use processes 1 and 14. Process 1 is

(h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[1], o2[2], n).O′
1 |

(h3[3]; p).H ′
3 | (h4[4]; p).H ′

4 | (o3[3], o4[4], n).O′
2

and becomes (with keys and order of processes unchanged):

(h[1]; p).H ′ | (h[2]; p).H ′ | (o[1], o[2], n).O′ |

(h[3]; p).H ′ | (h[4]; p).H ′ | (o[3], o[4], n).O′ (1)

Process 14 is

(h1[6]; p).H ′
1 | (h2[8]; p).H ′

2 | (o1[5], o2[7], n).O′
1 |

(h3[5]; p).H ′
3 | (h4[7]; p).H ′

4 | (o3[6], o4[8], n).O′
2)

and becomes (with keys 6, 8, 5, 7 being changed to 1, 2, 3, 4 respectively and the

two processes representing oxygen atoms being swapped)

(h[1]; p).H ′ | (h[2]; p).H ′ | (o[1], o[2], n).O′) |

(h[3]; p).H ′ | (h[4]; p).H ′ | (o[3], o[4], n).O′ (2)

As we can see the resulting processes (1) and (2) are syntactically identical.

We will elaborate on these further in Chapter 6, for now we notice that the subscripts

allow us to distinguish cases which would otherwise be written identically. On the

other hand, the naming of keys has no semantic meaning. Overall there are two

possible states in a system of two oxygen atoms and four hydrogen atoms if keys

and subscripts are disregarded completly, 14 different states if subscripts are taken

into account (these states are shown in Figure 2.3), and an infinite number of states

if keys from N are considered different.

Example 2.1. Note that in water the n of O1 can combine with the p of one of

its hydrogen atoms, say H1. Due to the property of the operator (h1[1]; p).H ′
1, this

must be followed immediately by breaking the bond 1 on h1 with O1, giving

((h1; p[5]).H ′
1 | (h2[2]; p).H ′

2 | (o1, o2[2], n[5]).O′
1)) \ {h1, h2, h3, o1, o2}.

CHAPTER 2. AUTOPROTOLYSIS OF WATER 24

Now the system is converted to a system which is equivalent to the original formu-

lation of water by promoting the bond 5 to a strong bond:

((h1[5]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[5], o2[2], n).O′
1)) \ {h1, h2, h3, o1, o2}

So our calculus allows a reaction which does not change the actual state of the

system. We have replaced the original key 1 with a new key 5, but we will see in

Chapter 6 that this change is not indicating an actual change in the system.

Remark 2.1. It should be noted that there are two types of bonding modelled

here. Firstly, we have the initial bonds where two atoms contribute an electron

each. Secondly, the dative or coordinate bonds are formed where both electrons

come from one atom (an oxygen atom in this case). Both are covalent bonds, and

once formed they cannot be distinguished. Specifically, in the oxygen atom with

three bonds all bonds are the same and no distinction can be made. If one of

the bonds is broken by a deprotonation (as in the autoprotolysis of water) the two

electrons are left behind and they form a lone pair. If the broken bond was not

previously formed as a dative bond, the electrons changed their “rôle”. This is done

in our modelling by promoting the bond from the n action to the o action. For the

hydrogen atom we have a similar situation: Once the proton transfer has happened,

the new bond is the same as the old one, so we perform the promotion. We can have

only one bond at a time on the hydrogen atom, therefore we need the ; operator to

model this situation, whereas the oxygen atom can have two or three bonds, so we

model all bonds as a multiset.

2.3 Conclusion

We have seen in this chapter that we can model a simple covalent chemical reaction

with our new calculus. The main feature of the new calculus is a new prefix operator

(s; b).P . Whilst we have not yet given a formal definition we could already see the

possibilities of the calculus and some challenges we may encounter when working

with it.

Chapter 3

Process calculi and the modelling

of biochemical reactions

In this chapter we first provide the basics of process calculi and rule-based systems

to set the foundations for further discussions. We then provide a literature review

focusing on the issues outlined in Chapter 1. After reviewing the literature we

discuss how our approach is different to what has been done so far. In order to

understand the differences better we model the reaction from Chapter 2 in various

calculi.

3.1 Basics of process calculi and rule-based calculi

In Chapter 2 we used a certain syntax to model a network of chemical reactions. This

was based on process calculi without providing an exact definition of the concepts

of process calculi and other modelling options. Therefore, we give an introduction

into process calculi here and contrast them with rule-based systems. We explain

process calculi using Calculus of Communicating Systems (CCS) [79, 78]. The basic

concepts are similar in other flavours of process calculi.

The basic entities of CCS are agents or processes (we will generally use the term

process here). Processes offer actions (also called channels in some process calculi

[80], p. 27) to perform. If two processes are composed in parallel and the actions

on two processes match, the processes can do a synchronisation. A process with an

action ready to perform is written as a.P . If it is in parallel with a process where

25

CHAPTER 3. PROCESS CALCULI AND REACTIONS 26

a is ready, these processes can sychronize. The overall system is then performing a

transition.

Formally, the syntax of CCS is as follows, where P and Q are typical process terms:

P ::= 0
∣

∣

∣ S|S
def
= P

∣

∣

∣ a.P
∣

∣

∣ P + Q
∣

∣

∣ P |Q
∣

∣

∣ P [a/b]
∣

∣

∣ P \L, L ⊂ A

0 is a deadlocked process, which can do nothing. S is a member of the set of process

identifiers or constants PI, which have a defining equation S
def
= P . A term a.P is

the prefixing operator. a is a member of set L, where L = A ∪A. A is the infinite

set of action names typically ranged over by a, b, c... and A is the set of co-names

typically ranged over by a, b, c... P + Q indicates a choice to execute one of two

processes. P | Q represents two processes in parallel. Processes P [a/b] and P \L

represent P with a relabelling [a/b] or restriction \L applied to it.

Example 3.1. We use an example to demonstrate the execution of a CCS process.

Our process is defined as:

(a.0 | a.0)\{a}

We have two processes in parallel. Both have an action ready to perform, shown by

the use of the prefix. Since the actions a is the co-name of a, the two processes can

synchronise. The restriction prevents a and a from happening on their own, so a

must always be part of a synchronisation. For communications, also called internal

or silent actions, we introduce the special label τ . We define Act = τ ∪L. Therefore,

in our example the transition is:

(a.0 | a.0)\{a}
τ
−→ (0 | 0)\{a}

In order to formalise the transitions operational semantics can be used. Structural

Operational Semantics (SOS) have been introduced in [95]. It defines the behaviour

of a process by giving all possible transitions. The processes and transitions define

a graph with processes as nodes and transitions as edges. More formally, such

a graph is defined by a labelled transition system (LTS). An LTS is a structure

(St, AL,→:⊆ St × AL × St) with St representing the set of states, AL the set of

action labels and →:⊆ St× AL× St the labelled transition relation. For CCS, the

set of states St is the set of processes. The action labels are Act. The labelled

transition relation is defined by SOS rules. The SOS rules for CCS are given in

Figure 3.1.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 27

act
a.P

a
−→ P

sum1
P

a
−→ P ′

P + Q
a
−→ P ′ + Q

sum2
Q

a
−→ Q′

P + Q
a
−→ P + Q′

com1
P

a
−→ P ′

P | Q
a
−→ P ′ | Q

com2
Q

a
−→ Q′

P | Q
a
−→ P | Q′

com3
P

a
−→ P ′ Q

a
−→ Q′

P | Q
τ
−→ P ′ | Q′

res
P

a
−→ P ′

P\L
a
−→ P ′\L

{a, a} /∈ L con
P

a
−→ P ′

S
a
−→ P ′

S
def
= P

rel
P

a
−→ P ′

P [b\a]
b
−→ P ′[b\a]

Figure 3.1: SOS rules for CCS.

In order to show the validity of a transition we can use an inference tree. This gives

the SOS rules which are used to build a particular transition. The inference tree for

our example is shown in Figure 3.2.

res

com3

act
a.0

a
−→ 0

act
a.0

a
−→ 0

a.0 | a.0
τ
−→ 0 | 0

(a.0 | a.0)\{a}
τ
−→ (0 | 0)\{a}

Figure 3.2: Inference tree for the transition (a.0 | a.0)\{a}
τ
−→ (0 | 0)\{a}.

As we have seen the SOS rules work on the structure of the processes. They do not

make any assumptions about particular actions in the processes being used. Rule-

based calculi, on the other hand, have rules which tell how particular systems can

behave. As an example, we use the Calculus of Chemical Systems [96]. This works

on chemical species typically identified by capital letters.

Example 3.2. Two chemical species E and S, acting in parallel, are an example of

a process in the Calculus of Chemical Systems. A rule for a complexation of E and

S would then be:

E + S → E − S

where E − S is the new product. The rule here gives the particular species it is

working on and the result is a new species, for which we would need new rules if

we want it to do anything useful. In contrast SOS rules work for a multitude of

processes provided they have the right structure.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 28

3.2 Related work

3.2.1 Early developments in chemistry and computer sci-

ence

Chemists have started to look at the speed of reactions and the rates achieved as

soon as the concept of chemical reactions was established.1 Since chemical reactions

can be interlinked (they may use the same reactants, the product of one reaction

is the reactant of another one, and there may be circles involving several steps),

there can be complicated interactions. Such a system of compounds linked by re-

actions has a particular behaviour over time, and this can be modelled using a set

of ordinary differential equations (ODEs). Starting from defined concentrations of

each compound in a system, the ODEs can then be used to compute how the con-

centrations evolve over time and which concentrations exist in a stable state of the

system (assuming there is one). An important milestone was achieved by Joseph

L. Doob and others and popularized by Dan Gillespie (hence the name “Gillespie

algorithm”) in [41], enabling the fast calculation of such ODEs with limited com-

puting power. Models based on ODEs were widely applied in chemistry as well as in

biology and various techniques have been used to enable the simulation of complex

systems with large number of species and molecules. A good overview of the use of

ODEs in chemistry is given in [44]. Whilst such methods accurately show the dy-

namic behaviour, it was soon noted that they do not deal with the objects involved.

In particular, any properties of the objects, which make reactions possible, are not

considered. This became even more important when biochemical processes, which

do not only involve small molecules, but also macromolecules, cells, and membranes,

were modelled. This lack of understanding of the objects was raised in [37] and the

use of computer science methods like the λ-calculus was suggested.

In computer science, process calculi had been established as a means of formally

modelling concurrent systems. The principles of process calculi were explained in

Section 3.1. Popular process calculi include Calculus of communicating systems

(CCS) [78, 79], Communicating Sequential Processes (CSP) [46], and the π-calculus

[80]. In a process calculus, the processes contain information about what they can

potentially do, so this seems to fulfill the suggested need to have a better modelling

of the objects involved.

1An overview is given in [109], pp. 11 ff.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 29

3.2.2 Process calculi for chemistry and biology

A connection between process calculi and chemistry has been made in [7]. Here,

the Chemical Abstract Machine (CHAM) is introduced as a method to define the

semantics of a calculus. As opposed to other semantics for calculi, the algebraic

terms (“molecules”) can interact with each other no matter what order they are

written in - this is similar to molecules being in a solution. CHAM also introduces

membranes to group atoms and rules which simulate heating and cooling of solutions.

The actual rules determining the reactions must be defined for a particular CHAM.

Therefore, a CHAM can be used to execute processes of arbitrary process calculi.

A CHAM can also model actual chemistry depending on the rules used.

Starting with Regev et al. [100, 103, 104, 105, 102] process calculi, specifically the

π-calculus, were used to model biochemical systems. For this the biological units in

question are represented as processes, their possible actions are modelled as channel

ports and binding and unbinding is represented as establishing and breaking a com-

munication, respectively, on a channel. So there is an analogy between processes

in concurrent computing and biological entities in natural systems, and between

communication in computer systems and interactions between entities in biological

systems. In [105] proteins were modelled as collection of processes, the functional

subunits of proteins (called domains) as processes with the active parts of domains,

the residues, being (loosely) represented by actions. Since the π-calculus allows mes-

sage passing, modifications can be modelled by passing appropriate channel names.

Restriction is used to model molecular complexes and compartments. The aim of

this work as stated in [104] was mainly the representation of biological knowledge

and to enable computer-based analysis of these representations. A simulation soft-

ware BioSPI [98, 100] was also introduced.

In [100, 103, 104, 105] only the reactions taking place were represented and not their

rates. Since the rates can be vastly different and make some reactions irrelevant

even if they are possible, it seemed a natural extension to include reaction rates

in the model. This was done in [98] using the stochastic π-calculus, which was

introduced previously in [97]. Here, for each reaction a rate is given. In a BioSPI

simulation, the rates together with the concentrations of the molecules are used to

decide which reactions are executed if there is a choice. This enables the simulation

of the concentrations and of the overall state of the system over time.

With a framework which includes reaction rates, it was possible to simulate systems

of interlinked reactions and to see how they react to changes. This is relevant for

medical research since treatments using drugs change some of the reactions forming

CHAPTER 3. PROCESS CALCULI AND REACTIONS 30

the overall biochemistry of the organism, aiming for an effect not necessarily directly

connected to that change. Many drugs for example block a binding site on a molecule

and so reduce the rate of a particular reaction (a complete suppression is usually

not possible, so a very low rate is considered a blocking). Since, as we have seen,

the network of reactions can be very complicated, the effects of such a change to

the final results of the network are complicated to determine. A good model of the

system in a calculus including reaction rates can be used to test in silico the effects

of a drug on the biological system, which is the ultimate aim of the discipline of

systems biology. A typical example is [4], where the reactions involved in severe

asthma are simulated and the influence of inhibitors is calculated to find a good

potential drug. The software used here is Bio-PEPA [15].

Bio-PEPA is an extension of PEPA [45], which was intended for performance analysis

of computer systems. PEPA combines a process algebra with timing information

and Bio-PEPA uses this to represent reaction rates. In a Bio-PEPA simulation the

entities modelled are species. Every interaction of molecules creates a new species,

and there is no tracking of different “original” components. The transitions between

the entities model the transformations between species. There is no tracking of

mechanisms or modelling of the underlying causes. The focus is on the rates and

the development of concentrations over time. In that respect Bio-PEPA is similar

to previous work done on reaction dynamics, using ODEs and Gillespie’s algorithm.

Modelling biological processes using process algebras has been applied to various

areas since the original publications. Apart from biochemical interactions (e.g

metabolic pathways [9], gene regulatory networks [62, 76], the cell-division cycle

[10], inflammatory processes [68], RNA synthesis [16]), also processes involving or-

ganisms as entities were modelled, e.g. immune defence [42], epidemiology [114, 77],

or ecological processes [111, 112, 113]. On the other hand, also the calculi used have

been extended with new elements of syntax and associated rules for more realistic

modelling of biological and chemical examples. Apart from the languages based on

process calculi mentioned so far, the following calculi were suggested:

3.2.2.1 P Systems

Biological processes take place in separated compartments (e.g. cells) and the possi-

bility of interaction depends on the compartments in which the molecules are. The

first attempt at capturing this was done with P system [87]. A P system contains

several membranes, which can be inside each other. For every membrane a set of

rules is defined, making P Systems a rule-based system. Objects are located inside

CHAPTER 3. PROCESS CALCULI AND REACTIONS 31

membranes, are processed by rules, can enter and leave membranes, and membranes

can be dissolved. In the original definition, membranes cannot be created, this fea-

ture was added in later work [83]. P systems were later extended to model various

properties of systems, for example P systems with symport/antiport [86] add the

capability to only allow certain objects in a defined direction to pass. An example

of a P system is given in Section 3.4.5.

3.2.2.2 BioAmbients

BioAmbients [101] is based on the Ambient calculus [12], which was originally de-

vised for mobile computing outside the biological context and is an extension of the

π-calculus. Here, similarly to P systems, processes can be inside compartments (and

compartments can be in other compartments as well). The ability to enter, leave or

merge compartments is modelled by channels, and communications can be restricted

to processes in the same, neighbouring or parent/child compartments. BioAmbients

is a process calculus, as opposed to P Systems.

3.2.2.3 Brane Calculi

Brane Calculi (“brane” is short for membrane) [11], a family of process calculi,

model membranes not only as compartments that define which interactions can

happen, but also as part of the interactions. As a result, the membranes can be

transformed to gain new capabilities. Typical examples are viruses entering cells by

interacting with their membranes. The Projective Brane Calculus [29] is a variant

where interactions are directed outward or inward from a membrane.

3.2.2.4 Language for Biochemical Systems/Calculus of Chemical Sys-

tems

The Language for Biochemical Systems (LBS) is introduced in [88]. It is based on

a “Calculus of Chemical Systems”[96]. This is a rule-based system, where reaction

rules are explicitly given. A particular feature is modularity, meaning that a certain

pattern (for example a signalling cascade) can be modelled abstractly and then be

instantiated with certain compounds instead of the variables used in the pattern.

The “Calculus of Chemical Systems” is explained in Section 3.1.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 32

3.2.2.5 BIOCHAM

The Biochemical Abstract Machine (BIOCHAM) [35, 34] is a rule-based system for

biological networks. It also models temporal properties of a system in a logic based

language and enables validation of the temporal properties. Extensive software

support is available [1] for BIOCHAM.

3.2.3 Reversibility in computer science

In the 1950s, it was discovered that a certain amount of energy is dissipated into the

environment of a computing machine if information is lost, which became known

as Landauer’s principle (suggested by Rolf Landauer in [63], although earlier work

exists). This drew attention to reversible computing, which would not loose infor-

mation and be therefore much more energy-efficient. Early theoretical studies in the

area were focused on reversible finite state machine [51], reversible logic [63], and

reversible Turing machines [69].

Following from this, work has been done to better understand reversibility, and apply

it. In the area of applications, attempts have been made to build reversible circuits,

which are of particular significance in the area of quantum computing. Since this

thesis does not deal with the area, we recommend [74] for an overview.

In the area of programming languages, there have been several attempts at reversible

languages. The most prominent one of these is Janus, originally started in the

1980s, and recently continued at Copenhagen University [123]. Other examples

are R [39, 73]. In a reversible language, every statement is reversible, i.e. can be

run in both directions. That excludes certain operations (most prominently the

assignment), which have to be replaced by reversible operations - for example the

assignment would be replaced by repeated increment/decrement operations or a

swap, which are reversible. Reversible languages are not directly Turing complete,

since all functions implemented must be injective, whereas Turing machines can

compute non-injective functions. It has been shown that using some methods, most

prominently Landauer embedding and Bennett’s method, all functions can be made

injective [2]. Janus has also been extended to include features of an object-oriented

programming language, whilst still being reversible, leading to the ROOPL language

[43].

Another strand of research is the extension of conventional programming languages

to become reversible. A good overview is given in [71]. Generally speaking, this

CHAPTER 3. PROCESS CALCULI AND REACTIONS 33

can be done by saving previous states when progressing with the computation. This

technique, known as checkpointing, is used e.g. in [31] to make multiparty sessions

reversible. Recent work on reversing imperative programs is presented in [47] and

extended in [48] to reverse parallel C-like programs. Here, undo information is saved

locally for individual statements, making reversing independent from checkpoints.

Reversibility has also been explored for process calculi (see 3.2.4). For Turing ma-

chines, [6] has shown that any computation of a Turing machine can be simulated

reversibly, with increased requirements for space and time resources. Reversible cel-

lular automata have been used to simulate reversible circuits [81]. Finally, Petri nets

have been studied for reversibility. Traditionally, a reversible Petri net is defined

as being able to return to its inital markings from any state, thus reversibility is a

global property. In contrast, the possibility to undo specific computations is a local

property [5, 89].

The reversible languages and models mentioned have a range of applications. A

significant area is the possibility for error recovery, contributing to dependability of

software and systems. A typical example is reversible robot control [107], for which

the domain-specific language RASQ has been proposed [108]. Reversibility has

become standard in databases, since transactions, which can be undone, are widely

used. In software development, a comparable technique is reversible debugging. In a

reversible debugger, a developer can go back and forth in his code during debugging,

which avoids restarting the program to get to a previous state [32]. UndoDB is a

commercially available reversible debugger for C/C++ [118].

3.2.4 Reversibility and causality

The calculi described in so far do not explicitly address reversibility. This does not

mean that they do not include reversibility, since the obvious cases of reversibility

in natural processes make modelling reversibility necessary for a faithful modelling,

but there is no explicit relationship between doing and undoing one action. For

example, if we have a ligand binding to a protein and, perhaps after some other

useful actions, unbinding from it this could be modelled in a CCS-like calculus like

this:

Ligand
def
= bind.x.unbind.Ligand

Here, the ligand can bind (given there is a complimentary action available), then

perform its task x and unbind. Note that, if several copies exist, the unbind action

may only unbind from where it is actually bound to. In the π-calculus a private

CHAPTER 3. PROCESS CALCULI AND REACTIONS 34

channel can achieve this, as demonstrated for example in [103], p. 235. Of course the

unbinding is the inverse of the binding, but this is not expressed in the calculus. A

human reader can infer this from the action names, but in the calculus the names are

arbitrary. Since the actions done so far determine what can potentially be undone,

it seems that a closer modelling of this dependency might give new insights into the

underlying mechanism of the processes.

The first attempt at this was RCCS (“R” indicating reversibility) [26], later ex-

tended to include recursion and called CCS-R (we will use CCS-R in the following)

[27]. These are reversible calculi based on CCS. Reversibility is achieved by adding

memory to the processes. These memories record which actions have been done

and also any non-deterministic choices (+) that have been discarded. By using the

information from the memory, it is possible to undo past actions and restore dis-

carded branches, so that it is ultimately possible to go back to the state in which the

process started. This system of memories has consequences with respect to causality

of the undoing process. In an execution, an action a causes action b if in all possible

paths a comes before b. In a CCS-like calculus, causality exists for example between

prefixes: Clearly, in the process a.b action a must happen before b in all executions.

In the reverse trace therefore b must be undone before a. If undoing is done in the

reverse order of the forward path it is called backtracking. It may still be possible

to undo in a different order if actions are not causally dependent. For example, the

process a | b can clearly perform the traces a.b and b.a. In CCS-R the undoing could

take both paths no matter which path the forward transitions took.

Example 3.3. The process would be in CCS-R:

<> (a|b).01

The execution of b and a in this order makes the process:

<> (a|b).01
1,r,b
−−→

1,s,a
−−→ (< (s, a)|(r, b) >)01

From here we could reverse the order when going back to the initial state:

(< (s, a)|(r, b) >)01
1,r,b
←−−

1,r,a
←−−<> (a|b).01

This principle of reversibility is called causally consistent reversibility. It was shown

for CCS-R in [26]. Moreover, it is often understood as a general characteristic of

reversible calculi, e.g. in [21], p. 3. There are many instances of causally consistent

processes in biology. An example is a protein which can prevent the working of two

CHAPTER 3. PROCESS CALCULI AND REACTIONS 35

other proteins by binding to their active sites and making them unavailable. Such a

protein needs to be able to bind to one of the two proteins it blocks, unbind (which

is a reversing of the binding) and then bind to the other protein to block. Clearly

here the system goes back to a state in which it has been before, and from there it

takes an alternative path. An example of the use of CCS-R is given in Section 3.4.3.

Another reversible calculus based on CCS is CCSK, introduced in [94] and [90].

CCSK is derived from CCS by a procedure which can be used to derive a reversible

calculus from any standard process calculus with SOS rules. Instead of memories, the

actions are decorated with keys indicating which actions took place and potentially

which communications happened. Any alternative paths from the choice operator +

are left in place. In this way, all information about the past and all potential futures

are in the process term. CCSK offers causally consistent reversibility, similar to

CCS-R. An example of the use of CCSK is given in Section 3.4.1. Here, as well as

in CCS-R, the communications done are remembered and therefore only those can

be undone, avoiding the need for private channels as in the π-calculus.

Looking at biological processes, a restriction to causally consistent reversibility seems

too narrow, considering the example in Chapter 1, which clearly shows out-of-causal

order reversibility. An attempt to incorporate this into a calculus was made in [93].

The process is split here into two parts: The actual process and a controller. A new

type of prefix operator is used, where several actions are grouped in a set of actions.

In such a group the actions can be done in any order, and only once all actions

are done we can (potentially) progress to the next prefix. The controller gives the

order(s) in which the actions can be performed. Effectively the process only holds

the information about its current state, whereas all information about what can

happen is in the controller. Due to this there is not restriction to backtracking or

causally consistent undoing. This calculus is very flexible, but splits information in

two entities. Ideally, the modelling of the process should be so that the order of

actions emerges out of it. An example of the use of CCSK with controllers is given

in Section 3.4.2. Out-of-causal order computation was also studied in [92, 91].

There is a distinction made between controlled and uncontrolled reversibility in

[67, 65]. In uncontrolled reversibility, of which CCSK and CCS-R are examples, there

is no hint to when a reverse execution should be preferred over a forward executtion,

but there is information which actions can potentially be undone. In controlled

reversibility, represented by [93], there is a specification of when the calculation

should go forwards or reverse. In contrast in our calculus restricts the choice of

reversible actions in a subprocess depending on the state of this subprocess. We

therefore call this locally controlled reversibility.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 36

Reversibility for the π-calculus was addressed in [64, 65, 66] and in [20].

The κ-calculus [28] is based on graph-rewriting. Here, entities (e.g. proteins) are

defined as having several sites, which can potentially bind to other entities. The

rules tell that a link can be formed or broken if the sites in the involved entities are

in certain states. These rules allow a very flexible modelling of events and causalities.

They make κ-calculus a rule-based calculus. Similarly to CCSK with controllers,

we have a separation between entities and rules. Here the rules comprise all entities

involved, whereas in CCSK with controllers each controller is local for an entity. An

example of the use of κ-calculus is given in Section 3.4.4. Software support for the

κ-calculus is available, e.g. KaSim [8].

As we have seen, calculi imply certain types of causality. Generally speaking, there

are the following possibilities if we look at two particular events (which we call a

and b) in a system:

• Causality: a causes b if b can only happen once a has happened.

• Conflict: a and b are in conflict if only one of them can happen.

• Concurrency: a and b are concurrent if they can happen in any order.

We also get backtracking, causally consistent reversibility and out-of-causal-order

reversibility as the types of reversibility in a reversible calculus. We have seen that

some calculi imply certain types of reversibility. A framework explicitly modelling

events are event structures [121]. In an event structure the events and their causal

dependency (and conflict in some cases) are given. An event structure can be trans-

lated into a transition system and vice versa [120]. Various calculi have either been

extended to include causal modelling [23] or have been examined with respect to

their causal expressiveness [25, 24].

Finally, there is a wide range of works from biology and chemistry which are loosely

related to the field. Biological modelling implies the use of some type of language

(even if not formally defined or named). Apart from informal verbal and graphi-

cal models, Systems Biology Markup Language (SBML) provides a standardized,

formal language for modelling [50]. There is extensive software support for SBML.

Ideally, such a model should be close to modelling in mathematical languages and a

translation should be possible. In chemistry, there are reaction prediction systems,

which try to tell the possible reactions in a system based on chemical knowledge (a

typical example was the software EROS [49]). From there it is a logical step to ask

CHAPTER 3. PROCESS CALCULI AND REACTIONS 37

if the transitions in a biological systems (including proteins) can be inferred from

some general rule. Research in that area has indeed been performed, in biology the

automated reconstruction of pathways has been attempted. Success in that area has

been limited though, due to the complexity of the systems in question. The algo-

rithms therefore often work without explicit rules. A typical example is [56] which

a) generalizes the molecules into fingerprints and b) uses Support Vector Machines

(SVM) to find rules about which reactions happen. This means that explicit rules

are not visible, making it very difficult to learn about the structure of the rules.

3.3 Chemistry in process calculi

As we have seen in Section 3.2 process calculi were used to model biological processes.

The focus often was on quantitative modelling and not so much on the structure of

the networks. In many cases, the network is fully described, sometimes even with

reverse reactions given explicitly. In an actual biolological system, the network is

an emergent property of the entities involved. So ideally having modelled all the

entities, the network should emerge out of this. We want to try to do this as much

as possible in this thesis. Therefore we focus on modelling how the network is built

from the components instead of the behaviour of a pre-defined network.

For biological reactions such a modelling is difficult to do. The entities involved

are very large and complex (a protein contains hundreds to tens of thousands of

amino acids, each composed of around 20 atoms) and their functions are the result

of complex interactions on several levels. Whilst there is extensive research on

biological processes, we are still far away from an understanding which would enable

us, for example, to infer the functions of a protein from its structure.

We have therefore decided to look at classical chemical reactions. These are the

basis for the more complicated biological reactions and there has been research into

how and why they work for a long time. Even though our understanding of chemical

mechanisms is not complete, it seems a more appropriate area for our research.

Looking at chemical reactions, there are several ways in which atoms, molecules

and their interactions can be viewed. The most accurate view (according to cur-

rent research) are quantum chemical computations. Here, the electronic properties

of atoms are calculated, using the Schrödinger Equation, and then combined to

get electronic properties of a molecule. These determine the chemical properties

of a molecule, including its bonding abilities. Unfortunately, quantum chemistry

CHAPTER 3. PROCESS CALCULI AND REACTIONS 38

computations for multi-atom systems are computationally expensive or, in practice,

impossible for larger molecules. Various approximation methods have been devel-

oped. These include molecular orbitals (MO) and valence bonds (VB) methods.

Still this is a very low level modelling and does not seem suitable for an approach

using process calculi.2

Chemists had already tried to find rules for reactions before quantum theory was

available. These rules are of course approximations, but they have served science

and industry alike. There is a vast array of such approximations, but many are

based on the concept of atoms consisting of nuclei and electrons around them in

shells. The electrons can be shared between atoms, by this forming a bond. This

model is combined with a set of rules. A typical example is the octet rule, which says

that an atom has the most stable bonds if it has eight (hence the octet) electrons

in its outer shell.3 For example carbon has four electrons in its outer shell, so it can

form four bonds to gain four additional electrons. Like all approximations there are

limits (the octet rule only applies to carbon, nitrogen, oxygen, the halogens, and

some metals), but the rule is still useful. Such approximations are also something

we can model using process calculi, because there are entities and interactions.

The interactions between atoms are normally called bonds. The most important

type of chemical bonds and the one we are going to model are covalent bonds.

Covalent bonds are intramolecular bonds, i.e. they are formed between atoms which

are part of the same molecule. In a covalent bond two electrons are shared between

two atoms, the electrons forming the bond. As we have seen in Chapter 2, there are

two ways for a covalent bond to form: If there are two atoms which both expose a

single electron they can react with each other. The other possibility is that one atom

has an empty site and another atom a pair of two electrons (a lone pair) exposed.

The two electrons then form a dative covalent bond. There are other intramolecular

bonds, namely metallic bonds (where electrons are shared between a multitude of

atoms) and ionic bonds (where atoms are negatively or positively charged and bond

by the electronic attraction). Finally there are intermolecular bonds, where atoms

in different molecules interact without the molecules forming a single molecule.4

Since the chemical rules mentioned above focus on atoms and bonds as entities, we

decided to model chemical reactions by treating atoms as entities and bonding as

communication events, similar to what is done in the biological examples. We will

2For an overview of computational chemistry and quantum chemistry see [72], in particular
Chapter 4.3 discussing molecular orbitals (MO) and valence bonds (VB) methods.

3See [13] Chapter 9.4 for details.
4For details on chemical bonds see [13] Chapters 9.2, 9.4, and 12.5.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 39

try to model chemical rules that are generally used to get a notation which enables

transitions which are as close as possible to what is possible in reality.

As noted we will model covalent bonding. This involves sharing of electron pairs

between atoms. Since each of the atoms involved contributes to the bond this can

be modelled by actions faithfully. Also dative covalent bonding can faithfully be

modelled by actions on atoms. It should be mentioned that there are subcategories

of covalent, for example π- and σ-bonds (which are the most common ones), but for

our purposes we do not distinguish them.

In this research we have decided not to include other types of bonds than covalent

bonds. Also intermolecular forces will mostly not be considered with the exception

of hydrogen bonds. Since hydrogen bonds play a major rôle they will be dealt with.

Other intermolecular forces, which are generally of limited interest, are not included.

Against this background we have decided to model atoms as entities and their inter-

actions as actions in some process calculus suitable for this purpose. A particular

point of attention will be how reactions emerge out of the entities and what type of

causality we find there. Looking at what has been done so far, one possibility would

be to use the π-calculus. This offers mobility, which, since it allows to model changes

to the processes, has been useful in the biological examples, where states of entities

change. In our case, we would like to keep our entities immutable, since we have

chosen to model atoms where changes to state are not a natural concept (except by

bonding, but this will be covered by the actions). Therefore, a calculus based on

CCS seems more appropriate. Also the work done for CCSK and CCS-R can be

used as a starting point. This also implies that our calculus will not be rule-based

(as for example Bio-PEPA or LBS) but it will be based on a process calculus.

Finally, it should be noted that we have deliberately decided not to model the

electrons as entities. In our approach they are modelled in the actions respectively

bonds. Also, our modelling is not on molecular level, but on atomic level. This is

because chemical reactions start with atoms interacting, which leads to a change

on molecular level. In our case, this behaviour should be emergent from the atomic

interactions.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 40

3.4 Modelling of autoprotolysis of water in pro-

cess calculi

In Chapter 2 we have modelled a simple reaction of two water molecules using our

new calculus. In order to better understand what existing calculi can do and how

our new calculus compares to them we model the autoprotolysis of water in each of

the existing process calculi.

3.4.1 CCSK

We need a reversible calculus to model the process, since a bond is first formed

and later broken during the process. Firstly we look at a reversible version of

CCS, derived by the procedure given in [90]. This calculus, called CCSK, keeps all

properties of CCS, but adds reversibility.

The syntax of CCSK [90] is as follows:

P ::= 0
∣

∣

∣ a.P
∣

∣

∣ a[k].P
∣

∣

∣ P + Q
∣

∣

∣ P |Q
∣

∣

∣ P [b/a]
∣

∣

∣ P \a
∣

∣

∣ S|S
def
= P

where 0 is the zero agent, a.P is the action a followed by P , a[k].P is the past action

a with key k followed by P , P + Q is the choice of P or Q, P | Q is P in parallel

with Q, P [b/a] is P with all actions a renamed to b, P \A is P restricted by A and

S is an agent identifier defined by another agent.

Semantics are provided by SOS rules. There are forward and reverse SOS rules,

given in Figures 3.3 and 3.4. The predicate std is similar to std in Figure 4.1 in

Chapter 4.1 and ensures the rules only apply for reachable processes. The predicate

fsh is similar to fsh in Figure 4.1 in Chapter 4.1and prevents keys from being used

twiced. This calculus is similar to CCS, but it adds keys as a way to memorize past

actions instead of dropping them.

To model the system of two water molecules in CCSK, we still need oxygen and

hydrogen atoms. The modelling most faithful to the real situation is this:

H
def
= a.H ′

O
def
= a.a.a.O′

Here, an oxygen atom is modelled with three prefixes and a hydrogen atom with

the corresponding co-name. As in CCS, these can synchronise. A synchronisation

CHAPTER 3. PROCESS CALCULI AND REACTIONS 41

std(X)

a.X
a[m]
−−→ a[m].X

X
b[n]
−−→ X ′

a[m].X
b[n]
−−→ a[m].X ′

m 6= n

X
a[m]
−−→ X ′ std(Y)

X + Y
a[m]
−−→ X ′ + Y

Y
a[m]
−−→ Y ′ std(X)

X + Y
a[m]
−−→ X + Y ′

X
a[m]
−−→ X ′ fsh[m](Y)

X | Y
a[m]
−−→ X ′ | Y

Y
a[m]
−−→ Y ′ fsh[m](X)

X | Y
a[m]
−−→ X | Y ′

X
a[m]
−−→ X ′ Y

a[m]
−−→ Y ′

X | Y
τ [m]
−−→ X ′ | Y ′

X
a[m]
−−→ X ′

X\A
a[m]
−−→ X ′\A

a /∈ A ∪ A
X

a[m]
−−→ X ′

X[f]
f(a)[m]
−−−−→ X ′[f]

Figure 3.3: Forward SOS rules for CCSK.

(represented by a key) forms a bond until undone. In our modelling, the actions

make sure the oxygen atom can bond to two or three hydrogen atoms as required

and a hydrogen atom can bond to exactly one other atom. We can then model our

system of two oxygen atoms and four hydrogen atoms:

(a.H ′
1 | a.H ′

2 | a.a.a.O′
1 | a.H ′

3 | a.H ′
4 | a.a.a.O′

2) \ {a}.

This system now can develop to two water molecules. This happens by four com-

munications of a and a, so that two hydrogen atoms are bonded to each oxygen

atom:

(a[1].H ′
1 | a[2].H ′

2 | a[1].a[2].a.O′
1 | a[3].H ′

3 | a[4].H ′
4 | a[3].a[4].a.O′

2) \ {a}.

It can also develop to a OH− and a H3O
+. For this, three communications happen

with one oxygen atom and the remaining hydrogen atom could go to the other

oxygen atom:

(a[1].H ′
1 | a[2].H ′

2 | a[1].a.a.O′
1 | a[3].H ′

3 | a[4].H ′
4 | a[2].a[3].a[4].O′

2) \ {a}.

Any of these bonds can be broken by backtracking, which is the benefit of a reversible

calculus. So we could go from the two water molecules to OH and a H3O by breaking

the bond between one the hydrogen atoms and the oxygen atom it is bonded to and

re-bonding to the other oxygen atom. A problem is that three hydrogen atoms could

CHAPTER 3. PROCESS CALCULI AND REACTIONS 42

std(X)

a.X
a[m]
 a[m].X

X
b[n]
 X ′

a[m].X
b[n]
 a[m].X ′

m 6= n

X
a[m]
 X ′ std(Y)

X + Y
a[m]
 X ′ + Y

Y
a[m]
 Y ′ std(X)

X + Y
a[m]
−−→ X + Y ′

X
a[m]
 X ′ fsh[m](Y)

X | Y
a[m]
 X ′ | Y

Y
a[m]
 Y ′ fsh[m](X)

X | Y
a[m]
 X | Y ′

X
a[m]
 X ′ Y

a[m]
 Y ′

X | Y
τ [m]
 X ′ | Y ′

X
a[m]
 X ′

X\A
a[m]
 X ′\A

a /∈ A ∪ A
X

f(a)[m]
 X ′

X[f]
f(a)[m]
 X ′[f]

Figure 3.4: Reverse SOS rules for CCSK. → indicates a forward transition, a
reverse transition.

bond directly to an oxygen atom, without two waters ever existing. This would not

happen in reality, since, as we have seen in Chapter 2, it is the partial charge of

the water which enables the transfer. These charges are not at all modelled in this

representation.

In order for the hydrogen transfer to happen, a spontaneous dissociation of a hy-

drogen atom would be needed. This could then bind to another oxygen atom thus

completing the transfer. Whilst such dissociations exist, it is a different mechanism

than the transfer, which is supported by the partial charge. The dissociation would

also allow for protons to flow freely between water molecules, which is not the sit-

uation in reality. There could even be several water molecules loosing all of their

protons without any of them being bonded, which is quite unrealistic. Finally, the

hydrogen atoms bonded to one oxygen atom must dissolve in reverse order as they

were bonded, which is not at all the case in the real world.

Overall, we can model the final products in CCSK, but the processes taking place

are not well represented. The main reason for this is that the calculus is restricted

to backtracking for undoing actions.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 43

3.4.2 CCSK with execution control

CCSK is combined with an execution controller in [93] to achieve the behaviour to

be modelled. The syntax of CCSK, as given above, is extended by a new multiset

prefix to become:

P ::= 0
∣

∣

∣ (s).P
∣

∣

∣ P + Q
∣

∣

∣ P |Q
∣

∣

∣ P [b/a]
∣

∣

∣ P \a

where s is a multiset of actions or past actions.

The SOS rules in Figure 3.3 and 3.4 are extended by the rules in Figure 3.5. The

syntax of a controller is as follows:

C ::= c
∣

∣

∣ a.C
∣

∣

∣ a[k].C
∣

∣

∣ C + D
∣

∣

∣ C|D

The syntax of C is similar to that of a process, with c being a controller identifier,

a an action from A∪A∪A∪A, a[k] a past action with a key, and + and | being

the choice and parallel operators as in CCS. A process P controlled by a controller

C is written as P 〈C〉. The SOS rules for controllers are the standard SOS rules for

CCS, except that the prefixes include the new actions A ∪ A. The SOS rules for

the control operator 〈〉 are given in Figure 3.6. The rules are Ordered SOS rules

[116, 82], where (cf1) > (cf2) means that cf2 may only be applied if no cf1 rule is

applicable. As a consequence a process P controlled by C is allowed to compute

until the action to be executed in P can be executed in C. If an action from A∪A

can be undone in C, the process P can reverse until that action is undone.

std(X)

(α, s).X
α[n]
−−→ (α[n], s).X

X
µ[n]
−−→ X ′ fsh[n](s′)

(s′).X
µ[n]
−−→ (s′).X ′

std(X)

(α, s).X
α[n]
 (α[n], s).X

X
µ[n]
 X ′ fsh[n](s′)

(s′).X
µ[n]
 (s′).X ′

Figure 3.5: SOS rules for multisets. s is a sequence of actions or past actions. →
indicates a forward transition, a reverse transition.

For our example the processes (atoms) could be modelled as follows:

H
def
= (a, b).H ′

O
def
= (a, a, b).O′

CHAPTER 3. PROCESS CALCULI AND REACTIONS 44

cf1
X

α[n]
−−→ X ′ Y

α[n]
−−→ Y ′

X〈Y 〉
α[n]
−−→ X ′〈Y ′〉

> cf2
X

β[n]
−−→ X ′ Y

α′[n]
−−→ Y ′

X〈Y 〉
α[n]
−−→ X ′〈Y 〉

cr1
X

α[n]
 X ′ Y

α[n]
−−→ Y ′

X〈Y 〉
α[n]
 X ′〈Y ′〉

> cr2
X

β[n]
 X ′ Y

α′[n]
−−→ Y ′

X〈Y 〉
β[n]
 X ′〈Y 〉

Figure 3.6: SOS rules for the control operator 〈〉. → indicates a forward transition,
 a reverse transition.

Here, the new multiset prefixing operator is used. All actions or past actions in the

multiset can be done or undone in any order. What actually happens is determined

by a controller associated with each agent. The controller tells which actions the

agent can do and in which order. The following controllers achieve the desired

behaviour of our system:

CH
def
= a.C ′

H

C ′
H

def
= a.CH + b.a.C ′′

H

C ′′
H

def
= b.CH + a.b.C ′

H

CO
def
= a.a.C ′

O

C ′
O

def
= b.b.C ′

O + a.C ′′
O

C ′′
O

def
= a.CO + a.C ′

O

Using instances of controllers with subscripts, we can describe our system of two

oxygen atoms and four hydrogen atoms:

(O1〈CO1
〉 | O2〈CO2

〉 | H1〈CH1
〉 | H2〈CH2

〉 | H3〈CH3
〉 | H4〈CH4

〉)\{a, a, b, b}

The processes form the water molecules as follows (leaving out the restrictions for

clarity):

(a, a, b).O1〈CO1
〉 | (a, a, b).O2〈CO2

〉 | (a, b).H1〈CH1
〉 | (a, b).H2〈CH2

〉 |

(a, b).H3〈CH3
〉 | (a, b).H4〈CH4

〉
∗
−→ (a[1], a[2], b).O1〈b.b.C

′
O1

+ a.C ′′
O〉 |

(a[3], a[4], b).O2〈b.b.C
′
O2

+ a.C ′′
O〉 | (a[1], b).H1〈a.CH1

+ b.a.C ′′
H1
〉 |

(a[2], b).H2〈a.CH2
+ b.a.C ′′

H2
〉 | (a[3], b).H3〈a.CH3

+ b.a.C ′′
H3
〉 |

(a[4], b).H4〈a.CH4
+ b.a.C ′′

H4
〉

CHAPTER 3. PROCESS CALCULI AND REACTIONS 45

From here, the controllers allow one oxygen atom and one hydrogen atom to form

a bond b:

∗
−→ (a[1], a[2], b[5]).O1〈b.C

′
O1
〉 | (a[3], a[4], b).O2〈b.b.C

′
O2

+ a.C ′′
O〉 |

(a[1], b).H1〈a.CH1
+ b.a.C ′′

H1
〉 | (a[2], b).H2〈a.CH2

+ b.a.C ′′
H2
〉 |

(a[3], b[5]).H3〈a.C ′′
H3
〉 | (a[4], b).H4〈a.CH4

+ b.a.C ′′
H4
〉

For H3 this must be followed by breaking a and O2 can also take that route. So we

obtain:

∗
−→ (a[1], a[2], b[5]).O1〈b.C

′
O1
〉 | (a, a[4], b).O2〈a.CO + a.C ′

O〉 |

(a[1], b).H1〈a.CH1
+ b.a.C ′′

H1
〉 | (a[2], b).H2〈a.CH2

+ b.a.C ′′
H2
〉 |

(a, b[5]).H3〈b.CH + a.b.C ′
H〉 | (a[4], b).H4〈a.CH4

+ b.a.C ′′
H4
〉

We have now described the OH− −HO+
3 situation as desired. One problem is that

the system does not require the breaking of a and forming of b on the hydrogen

atom to happen together. Even though timing is not modelled here, it is not very

realistic to assume that the system can stay in the double bonded hydrogen state

for any period of time. In our modelling, we could even have any number of other

actions happening in between the forming and breaking of the bonds, which is very

unrealistic. Another problem is that a transfer of a hydrogen atom back to O2 can

happen, but only by transferring H3, since O1 according to its controller must break

the b bond. Breaking keys 1 or 2, which in reality is equally possible, is not allowed

in our modelling. Even if we introduce more paths into our controller, there is always

the problem that the three hydrogen atoms on H3O
+ are different, because one of

them has a different past, as shown by the keys being on a in H1 and H2 and on b

in H3. Also the controllers CH1
and CH2

are in a different state from the controller

CH3
.

The modelling done so far gives all steps in the controller. This is not needed. We

could have left out the controller on the hydrogen atoms completely, modelling the

systems as follows:

(O1〈CO1
〉 | O2〈CO2

〉 | H1 | H2 | H3 | H4)\{a, a, b, b}

The transitions possible are still the same as above, since the hydrogen atoms need

to interact with oxygen atoms and the oxygen atoms are fully controlled.

The calculus enables out-of-causal-order reversibility. This is achieved by making

the process a very basic entity. In our case it just holds the information which bonds

CHAPTER 3. PROCESS CALCULI AND REACTIONS 46

exist in it and which actions are potentially happening, but no information about

the causal order of actions. The process has information about the state, but it has

no information about transitions. The controller in contrast holds all the possible

orders of execution, it has complete information about the transitions. So we have

two entities, one holding state information and one holding transition information.

Ideally, we would want one entity comprising state and transitions.

3.4.3 CCS-R

In [27] CCS is combined with an external memory of past actions to achieve re-

versibility. CCS-R also has multi-actions similar to CCSK with execution control

(actions are separated by |). The syntax is defined as follows:

P ::= 0 | Σai.Pi | ΠMi[Pi]ui
| K | (νx)P

Here Σ represents the + and Π the | operator. M is a memory defined as:

M ::= 〈def : K(u)〉.M | 〈u, a, P 〉.M | 〈〉

For memories, 〈〉 is an empty memory and 〈u, a, P 〉.M is a memory representing a

past transition. In this, P is a dropped process if a choice was exectued, a is the

action executed, and u is the process communicated with in case of a communication.

Finally, 〈def : K(u)〉.M is used in case the executed process contained a process

identifier. It enables to re-introduce the process identifier if an action is undone.

The SOS rules for CCS-R are given in Figure 3.7. Here, we have rule com, which

means that a process u proceeds by doing an action a and dropping a process P , with

P being stored in the memory together with the action a. The back rule then enables

the backtracking of this, using the information in the memory to reconstruct the

original process, including the dropped process P . a represents an irreversible action,

which is not added to memory in rule com’. Rule syn allows the synchronisation

of two parallel processes. The remaining rules are standard SOS rules, where ↔

represents the transitions in both directions.

[27] also introduces multi-actions similar to CCSK with execution control. The

syntax is:

µ ::= ǫ | (µ | a)

where ǫ is an empty multiset and a is a single action. The SOS rules are extended

by those in Figure 3.8.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 47

com
M [a.Q + P]u

u,r,a
−−→ 〈r, a, P 〉.M [Q]u

back
〈r, a, P 〉.M [Q]u

u,r,a
←−−M [a.Q + P]u

com’
M [a.Q + P]u

u,r,a
−−→M [Q]u

ζ
P

u,r,a
↔ P ′

〈〉[P]
u,r,a
↔ 〈〉[P ′]

par
P

u,r,a
↔ P ′

P | Q
u,r,a
↔ P ′ | Q

res
P

u,r,a
↔ P ′ a 6= c, c

(νc)P
u,r,a
↔ (νc)P ′

syn
P1

u,r,a
↔ P ′

1 P2
u,r,a
↔ P ′

2

P1 | P2
u,r,a
↔ P ′

1 | P
′
2

≡
P ≡ P ′ P ′ u,r,a

↔ Q′ Q ≡ Q′

P
u,r,a
↔ Q

Figure 3.7: SOS rules for CCS-R.

µ-com
〈γ; P 〉.M [(µ | a).Q]u

u,r,a
−−→ 〈γ | (r, a); P 〉.M [Q]u

µ-back
〈γ | (r, a); P 〉.M [µ.Q]u

u,r,a
←−− 〈γ; P 〉.M [(µ | a).Q]u

Figure 3.8: SOS rules for CCS-R with multisets.

For our example the processes can be represented, using CCS-R and multisets, as

follows:
H

def
= (a|b).0

O
def
= (a|a).b.0

Notice that we have modelled hydrogen with a set of two actions here. In our

molecules the processes get an identifier and an empty memory:

(<> (a|b).01 | <> (a|b).02 | (a|a).b.05 | a.0′
3 | (a|b).04 | (a|a).b.06) \ {a}

We can now form the initial molecules:

(< 5, a > (b).01 | < 5, a > (b).02 | < (1, a)|(2, a) > b.05 | < 6, a > (b).03

| < 6, a > (b).04 | < (3, a)|(4.a) > b.06) \ {a}

Here, the actions have been executed and “moved” into the memory. For example,

the subprocess 1 (<> (a|b).01) has executed a. So this is now no longer part of the

process, but the memory of process 1 (< 5, a > after the execution) contains action

a and the information that there was a communication with process 5. We could

also have got the situation that one oxygen atom binds to three hydrogen atoms

and the other oxygen atom to one only.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 48

We could now make the hydrogen transfer happen by forming a b bond from one of

the hydrogen atoms to the other oxygen atom. We can then undo the a bond of that

hydrogen atom, since the reverting can be done in any order inside a multi-action

group. So these two steps can be modelled as follows:

1,6,b
−−→ (< (5, a)|(6, b) > 01 | < 5, a > (b).02 | < (1, a)|(2, a) > b.05 | < 6, a > (b).03 |

< 6, a > (b).04 | < (3, a)|(4, a).(1, b) > 06) \ {a}

1,5,a
←−− (< (6, b) > (a).01 | < 5, a > (b).02 | < (2, a) > (a).b.05 | < 6, a > (b).03 |

< 6, a > (b).04 | < (3, a)|(4, a).(1, b) > 06) \ {a}

This is our system in the desired state, and with a proton transfer as a step to get

there. Similarly to the situation when using CCSK there are still some problems:

1. The hydrogen atom can stay in the double bonded state and there is nothing

to show that this is a transition state only.

2. The hydrogen atoms in the H3O
+ molecule are different due to having a dif-

ferent history.

3. The reversal of the hydrogen transfer can only work with 1, since 5 needs to

do an a action as next step.

4. A hydrogen atom could be bonded to one oxygen atom with two bonds in

parallel.

We could also have modelled just one type of action similarly to Section 3.4.1. The

processes would be:

H
def
= (a).0

O
def
= (a|a|a).0

That would have lead to the same problem we saw with CCSK, namely that only

the spontaneous dissocation enables the proton transfer.

3.4.4 κ-calculus

The κ-calculus was introduced in [28] and is based on graph rewriting. It is aimed at

modelling proteins. Proteins have sites, which can bond to other sites. The formal

syntax of a κ-process is as follows:

S := 0 | A(ρ) | S, S | (x)(S)

CHAPTER 3. PROCESS CALCULI AND REACTIONS 49

where 0 is the empty process, S, S is a group of processes, (x) is the new name

constructor, and A is a protein with an interface ρ. The interface consists of a

number of sites which can be free or bound and hidden or visible. Edges are formed

between sites. Rules are used to determine which edges can be formed or broken.

Sites can be hidden or visible. Only visible sites can form part of a reaction. Sites

can also have states. This can for example be used to model phosphorylation.

A simple example of a system (not using hidden sites or states) could consist of a

kinase (K) and a target (T). The agents are:

K(a)

T (x, y)

A rule allowing the kinase to bind to the target is:

K(a), T (x)↔ K(a!1), T (x!1)

The rule requires a to be ready on K and x on T. Notice it does not say anything

about y, since sites which are not relevant for the rule can be left out. On the right

both a and x are bound (indicated by !) and the index 1 shows the bond. If we

apply the rule we get this transition:

K(a), T (x, y)→ K(a!1), T (x!1, y)

In order to model the autoprotolysis of water in the κ-calculus we start with atoms

as agents. For oxygen and hydrogen the agent signatures are:

O(a, a, c)

H(d)

Oxygen has three interaction sites named a, a and c and hydrogen has exactly one,

named d. This corresponds to the number of bonds the atoms can hold. There is

nothing said about which actions can happen in which order. In our modelling we do

not use the possibility to have different states for the interaction sites, since we can

model everything using the interaction of the atoms. The following rule captures

the bonding of a hydrogen atom to an oxygen atom:

O(a), H(d)→ O(a!1), H(d!1) (3.1)

Rewrite (3.1) describes that an oxygen atom and a hydrogen atom can combine on

any of the a sites of the oxygen atom, given an a site and d site of a hydrogen

CHAPTER 3. PROCESS CALCULI AND REACTIONS 50

atom are available, i.e. not yet bonded. Again we do not fully specify the agents,

for oxygen we only say an a must be available, the rest could be in any state. We

get the following system of two oxygen atoms and four hydrogen atoms by forming

groups of atoms using rule (3.1):

O(a!1, a!2, c), O(a!3, a!4, c), H(d!1), H(d!2), H(d!3), H(d!4)

A graphical illustration of the situation before applying the rule is shown in Fig-

ure 3.9 a) and in in Figure 3.9 b) after applying the rule.

OOOO

H HH HH HH H

aaaaaaaa
cccc

d dd dd dd d
a b

Figure 3.9: A possible modelling of the autoprotolysis of water using the κ calculus.
Squares represent atoms, filled circles indicate bound sites, empty circles indicate
free sites. The style of illustration follows [28].

As explained, the keys indicate bonds which have been formed. The bonding is as

expected in two molecules of water and has been facilitated by the rule given. By

adding an appropriate rule we could also make the bonding of hydrogen atoms to

oxygen atoms reversible. We now need a rule for the hydrogen transfer. This can

be expressed as follows:

O(c), H(d!1), O(a!1)→ O(c!2), H(d!2), O(a) (3.2)

The meaning of this is that if we have an oxygen atom which has a free c site and

a hydrogen bond to another oxygen atom, then the c site can bind to the hydrogen

atom with the existing bond being broken. Our process can evolve as follows using

rule (3.2):

O(a!1, a!2, c!5), O(a, a!4, c), H(d!1), H(d!2), H(d!5), H(d!4)

From that point we can now reverse, again using rule (3.2), and we get:

O(a!1, a!2, c), O(a, a!4, c!3), H(d!1), H(d!2), H(d!3), H(d!4)

Both transitions are using the same rule, which breaks the bond between a hydrogen

atom and an oxygen atom and forms a new bond from the same hydrogen atom to

another oxygen atom.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 51

A problem with this is that one of bonds is now to c and not to a, as it was

initially. We could solve this by either having a rewrite rule similar to promotion in

our calculus or by having an extra rule where the a does the transfer. Overall we

can nicely simulate our system, but we have the separation of processes and rules.

Whilst this is a possible modelling, there is a separate body of knowledge about

transitions. Ideally we want these to be an emergent property of the processes.

3.4.5 P Systems

P systems were originally designed in order to model biological processes taking

place in cells. Because of this, membranes (which separate the inside environment

of the cell from the outside environment and are selectively permeable) play an

important rôle. In our chemical examples we do not have membranes, but we could

still use the idea to model chemical processes. The syntax of a P system is defined

as follows (from [87]):

Π = (V, µ, w1, ..., wm, (R1, ρ1), ..., (Rm, ρm), i0)

where

1. V is an alphabet, its members are called objects. They represent the biochem-

ical entities we want to model.

2. µ is a membrane structure of degree m. Membranes can be nested, but there

must be an outer membrane containing the other membranes.

3. w1, ..., wm are words from the alphabet V . They represent the initial content

of the membranes 1 to m. ρi is a partial order relation over Ri, specifying

priority of rules in Ri.

4. R1, ..., Rm are the rules for each membrane. Each rule is of the form u → v

where u, v are words from V

5. i0 identifies the output membrane. P systems are intended to have a result in

a certain membrane once no rule can be executed any more.

If we want to model the autoprotolysis of water, we could do this by creating a

system with three “compartments”, where two compartments are inside the outer

one and contain an oxygen atom and two hydrogen atoms each, representing atoms.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 52

We would then give a rule which enables an “OHH” to move out of its compart-

ment. The outer compartment would then have a rule which enables two such water

molecules to interact. The membranes have the purpose to distinguish unconnected

atoms (represented in the inner compartments) from actual water molecules, which

are represented in the outer compartment. Since in a P system we do not hold

connectivity information we need to represent that information differently.

Our initial system is modelled as follows (the five elements mentioned above are

written on separate lines):

Π1 = (

HOXN,

[1[2]2[3]3]1,

λ, HHO, HHO,

HHOHHO → XN, HHO → (HHO, out), HHO → (HHO, out),

1

)

The system is represented in Figure 3.10.a): We have two inner membranes in an

outer membrane (described by [1[2]2[3]3]1), where membrane 1 (the outer membrane)

is empty (represented by λ) and the inner membranes both contain an entity HHO.

This is representing unconnected hydrogen and oxygen atoms in our case. The rules

say that the HHO objects from the inner membrane can move to the outer mem-

brane. This represents the formation of water molecules. In the outer membrane two

HHO objects can react to hydroNium (H3O
+) and hydroXide (OH−), represented

by the letters X and N respectively, the results of the autoprotolysis. We also have

defined membrane 1 (that is the outer membrane) as the output membrane. Whilst

we have chosen the names of our objects to resemble our molecules this would not

be necessary. The rules ensure that we get the desired result, which we interpret as

molecules again. The out in the second and third rule enables the reaction to start,

and it takes place in the first membrane (the output membrane).

111

222 333
HHOHHO

HHOHHO NX

a b c

Figure 3.10: A possible modelling of the autoprotolysis of water using P Systems.

CHAPTER 3. PROCESS CALCULI AND REACTIONS 53

To see how this happens exactly we follow the steps. In the initial state, the only

rules which can apply are those for the inner membranes 2 and 3. So we get:

Π1 = (HOXN, [1[2]2[3]3]1, HHOHHO, λ, λ, HHOHHO → XN,

HHO → (HHO, out), HHO → (HHO, out), 1

We represent this in Figure 3.10.b.

Then, in the outer membrane the rule applies and we get:

Π1 = (HOXN, [1[2]2[3]3]1, XN, λ, λ, HHOHHO → XN,

HHO → (HHO, out), HHO → (HHO, out), 1

The output membrane now contains the result, a hydroxide and a hydronium ion,

as shown in Figure 3.10.c). We could also have added rules to reverse the process

(e.g. XN → HHOHHO in the outer membrane). Reverse rules must in any case

be given explicitly.

Whilst we have managed to model the reaction, the modelling does not seem very

natural. This is mainly because we cannot handle a water molecule (or water ion)

as a composition of atoms and there is no connectivity information. This means

that in our rules we have to use the alphabet V to describe the compounds. If a

new compound is formed we need to give a new name to it, forgetting about its

components. This means that the rules in P systems are overall too simple for our

purpose. The atom based modelling described in Section 3.3 is not possible in P

systems.

3.5 Conclusion

We have seen that there is an extensive work on the application of process calculi to

biology. Various calculi were developed emphasizing different aspects of biological

systems. Whilst reversibility is contained in most of them, an explicit notion of

reversibility was developed only recently. Similarly, causality is increasingly dealt

with, where out-of-causal order reversibility is gaining attention, whereas tradition-

ally backtracking was the standard form of reversibility in many calculi. We have

also seen that process calculi have mainly been applied to higher-level biological

systems and not to chemical reactions. At the same time the mechanisms of chem-

CHAPTER 3. PROCESS CALCULI AND REACTIONS 54

ical reactions have been studied intensively. Therefore we decided to look at such

reactions for exploring the concepts of reversibility and causality in process calculi.

A short examination of existing calculi showed that we can model a simple chemical

reaction using them. We have also seen weaknesses of the calculi. In particular

CCSK and CCS-R restrict the possible reactions more than is the case in reality

because they rely on backtracking. CCSK with execution control allows a better

modelling, but uses external controls which include all possible traces. The κ-

calculus allows a good modelling, but also has external rules. Finally we showed

that P Systems are not very suitable for our purpose.

Chapter 4

A Calculus of Covalent Bonding

We now give a formal description of the calculus introduced in Chapters 1 and

2, which we call the Calculus of Covalent Bonding, in short CCB. We specify a

labelled transition system with structural operational semantics for the transitions.

We also give properties for the calculus in order to get a better understanding of

the possibilities and limitations of the calculus. In this chapter we do not work with

the subscripts suggested in Section 2 to keep the calculus more pure.

4.1 Definition of the calculus

In this section we define our new calculus CCB. First, we introduce some preliminary

notions and notations.

LetA be the set of (forward) action labels, ranged over by a, b, c, d, e, f . We partition

A into the set of strong actions, written as SA, and the set of weak actions, written

as WA. Reverse (or past) action labels are members of A, with typical members

a, b, c, d, e, f , and represent undoing of actions. The set P(A∪A) is ranged over by

L. Remember from the example in Chapter 2 that the weak actions, in conjunction

with the prefixing operator (s; b).P , allowed the breaking of existing bonds when a

new bond is formed. They also allow moving of keys by rewriting rules to restore

the basic state of atoms.

Let K be an infinite set of communication keys (or keys for short) [94, 90], ranged

over by k, l, m, n. The Cartesian product A × K, denoted by AK, represents past

actions, which are written as a[k] for a ∈ A and k ∈ K. Correspondingly, we have

the set AK that represents undoing of past actions. We use α, β to identify actions

55

CHAPTER 4. A CALCULUS OF COVALENT BONDING 56

which are either from A or AK. It would be useful to consider sequences of actions

or past actions, namely the elements of (A ∪ AK)∗, which are ranged over by s, s′

and sequences of purely past actions, namely the elements of AK∗, which are ranged

over by t, t′. The empty sequence is denoted by ǫ. We use the notation “α,s” and

“s,s′” to denote a concatenation of elements, which can be strings or single actions.

We shall also use two sets of auxiliary action labels, namely the set (A) = {(a) | a ∈

A}, and its product with the set of keys, namely (A)K. These labels will be used in

the auxiliary rules when defining the semantics of CCB. They denote the execution

of a weak action, which makes it possible in the SOS rules to force breaking of a

bond for those actions only.

We now define the Calculus of Covalent Bonding. The syntax of CCB is given below

where P is a process term:

P ::= S|S
def
= P

∣

∣

∣ (s; b).P
∣

∣

∣ P |Q
∣

∣

∣ P \L

The set of process identifiers (constants) PI contains typical elements S and T .

Each process identifier S has a defining equation S
def
= P where P contains only

forward actions (and no past actions). There is also a special identifier 0, denoting

the deadlocked process, which has no defining equation. For restrictions L ⊆ A

holds.

The calculus does not contain the nondeterministic choice operator +, which is a

feature of many similar calculi, including CCS. The reason for this decision is that

in our chemical modelling we decided to model any changes to the atoms by means

of the bonds respectively actions. We have seen an example of this in Chapter 2,

where an oxygen was modelled as O
def
= (o, o, n).O′. It can have either two or

three bonds, and since one of them is a weak action, the tendency is to go back to

have two bonds. This way we have modelled the behaviour of the atom without

nondeterministic choice. This does not mean there is no nondeterminism in the

calculus, though. We actually introduce a new type of nondeterminism, as we will

see. In Chapter 7 we use several multisets in one process and, together with the use

of the (s; b) operator, can model two different behaviours of the process.

We have a general prefixing operator (s; b).P , where s is a non-empty sequence of

actions or past actions. This operator extends the prefixing operator in [93]. The

action b is a weak action and it can be omitted, in which case the prefixing is written

as (s).P and is called the simple prefix. The simple prefix (which is still a sequence)

CHAPTER 4. A CALCULUS OF COVALENT BONDING 57

is the prefixing operator in [93]. One of the actions in s in (s).P may be a weak

action from WA. A weak action in s is only allowed for the simple prefix, in the

(s; b) operator b is the only allowed weak action. If s is a sequence that contains

a single action, then the action is a strong action and the operator is the prefixing

operator of CCS [78]. We omit trailing 0s so, for example, (s).0 is written as (s).

The new feature of the operator (s; b).P is the execution of the weak action b, which

can happen only after all the actions in s have taken place. Performing b then

forces undoing one of the past actions in s (by the concert rule in Figure 4.5). If a

(s; b) operator is followed by another sequence of actions there is a non-deterministic

choice of either doing b or progressing to the next sequence of actions.

P | Q represents two systems P and Q which can perform actions or reverse actions

on their own, or which can interact with each other according to a communication

function γ. As in the calculus ACP [36], the communication function is a partial

function γ : A × A → A which is commutative and associative. The function

γ is used in the operational semantics to define when two processes can interact.

Processes P and Q in P | Q can also perform a pair of concerted actions, which

is the new feature of our calculus. We also have the ACP-like restriction operator

\L, where L is a set of labels. It prevents actions from taking place and, due to the

synchronisation algebra used, it also blocks communication. If γ(a, b) = c then a.P

and b.Q cannot communicate in (a.P | b.Q) \ c. Note that we do not use the usual

relabelling operator [f], where f : A → A, in CCB, which could be easily added.

The set of process terms is ranged over by P, Q and R and is denoted by Proc. In the

setting of CCB these terms are simply called processes. A context C[] is a process

term containing a hole, represented by []. Formally, contexts are defined by the

following syntax: C ::= []
∣

∣

∣ (s; b).C
∣

∣

∣ P |C
∣

∣

∣ C|P
∣

∣

∣ C\L. The term C[Q] denotes the

result of filling the hole in the context C[] with the process Q. We say that R is a

subprocess of P if P is C[R] for some context C[].

We define the semantics of our calculus by a labelled transition system, LTS for short.

In Section 3.1 an LTS was defined as a structure (St, AL,→:⊆ St×AL× St) with

St representing the set of states, AL the set of action labels and→:⊆ St×AL×St

the labelled transition relation. The set of states St is the set Proc. In practice, all

our results and examples hold for consistent processes, namely processes reachable

from standard processes (see Definition 4.4). The action labels are the forward

actions AK, the reverse actions AK and the pairs of concerted actions AK × AK.

The labelled transition relation is defined by SOS rules (Figures 4.2–4.6) and rewrite

rules (Figure 4.7), where the rules in Figures 4.2–4.4 are influenced by [90]. Note that

sequences s and t are members of (A∪AK)∗ andAK∗ respectively in Figures 4.2–4.5.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 58

std(0) fsh[m](0)

std(P)

std(S)
S

def
= P

fsh[m](P)

fsh[m](S)
S

def
= P

k(s) = ∅ std(P)

std((s; b).P)

m /∈ k(s) fsh[m](P)

fsh[m]((s; b).P)

std(P) std(Q)

std(P | Q)

m /∈ k(s) m 6= n fsh[m](P)

fsh[m]((s; b[n]).P)

std(P)

std(P \ L)

fsh[m](P) fsh[m](Q)

fsh[m](P | Q)

fsh[m](P)

fsh[m](P \ L)

Figure 4.1: Predicates std and fsh.

We now introduce and explain the SOS rules before returning to the rewrite rules.

Let r be an SOS rule for an operator f of CCB as in Figures 4.2–4.5. Transitions

above the horizontal bar in r are called premises. The set of premises is written

as pre(r). The transition below the bar in r is the conclusion and is written as

con(r). We use two predicates std(P) : Proc and fsh[m](P) : K × Proc in our

SOS rules. They are defined in Figure 4.1, and they use two auxiliary functions

k(s) : (A ∪ AK)∗ → P(K) and keys(P) : Proc → P(K), which are defined in

Figure 4.3. Informally keys(P) associates with each term P the set of its keys. A

process P is standard, written std(P), if it contains no past actions (hence no keys).

A key n is fresh in Q, written fsh[n](Q), if Q contains no past action with the key

n. We extend the notion of fresh keys to the sequences of actions and past actions

s and t via the function k().

Figure 4.1 defines the predicates by induction over the process terms. We could also

have said that std(P) is true if keys(P) = ∅ and that fsh[m](P) is true if i /∈ keys(P).

act1
std(P) fsh[k](s, s′)

(s, a, s′; b).P
a[k]
−−→ (s, a[k], s′; b).P

act2
P

a[k]
−−→ P ′ fsh[k](t)

(t; b).P
a[k]
−−→ (t; b).P ′

par
P

a[k]
−−→ P ′ fsh[k](Q)

P | Q
a[k]
−−→ P ′ | Q

com
P

a[k]
−−→ P ′ Q

d[k]
−−→ Q′

P | Q
c[k]
−−→ P ′ | Q′

(∗)

res
P

a[k]
−−→ P ′

P\L
a[k]
−−→ P ′\L

a /∈ L con
P

a[k]
−−→ P ′

S
a[k]
−−→ P ′

S
def
= P

Figure 4.2: Forward SOS rules for CCB. The condition (*) is γ(a, d) = c, and
b ∈ WA. Remember that s is a mixed sequence of actions and past actions and t is
a sequence of purely past actions

CHAPTER 4. A CALCULUS OF COVALENT BONDING 59

k : (A ∪AK)∗ → P(K)
k(ǫ) = ∅

k(α : s) =

{l} ∪ k(s) if α = a[l], a ∈ A, l ∈ K

k(s) if α ∈ A

keys : Proc→ P(K)
keys(0) = ∅

keys(S) = keys(X) if S
def
= X

keys((s; b).X) = k(s) ∪ k(b) ∪ keys(X)
keys(X | Y) = keys(X) ∪ keys(Y)
keys(X\L) = keys(X)

Figure 4.3: Functions k and keys.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 60

rev act1
std(P)

(s, a[k], s′; b).P
a[k]
−−→ (s, a, s′; b).P

rev act2
P

a[k]
−−→ P ′

(t; b).P
a[k]
−−→ (t; b).P ′

rev par
P

a[k]
−−→ P ′ fsh[k](Q)

P | Q
a[k]
−−→ P ′ | Q

rev com
P

a[k]
−−→ P ′ Q

d[k]
−−→ Q′

P | Q
c[k]
−−→ P ′ | Q′

(∗)

rev res
P

a[k]
−−→ P ′

P\L
a[k]
−−→ P ′\L

a /∈ L rev con
P

a[k]
−−→ P ′

P
a[k]
−−→ S

S
def
= P ′

Figure 4.4: Reverse SOS rules for CCB. The condition (*) is γ(a, d) = c, and
b ∈ WA.

aux1
std(P) fsh[k](t)

(t; b).P
(b)[k]
−−−→ (t; b[k]).P

aux2
P

(b)[k]
−−−→ P ′ fsh[k](t)

(t; b′).P
(b)[k]
−−−→ (t; b′).P ′

concert
P

(b)[k]
−−−→ P ′ P ′ a[l]

−→ P ′′ Q
α[k]
−−→ Q′ Q′ d[l]

−→ Q′′

P | Q
{e[k],f [l]}
−−−−−→ P ′′ | Q′′

(∗)

concert act
P

{a[k],h[l]}
−−−−−→ P ′ fsh[k](t)

(t; b).P
{a[k],h[l]}
−−−−−→ (t; b).P ′

concert par
P

{a[k],h[l]}
−−−−−→ P ′ fsh[k](Q) fsh[l](Q)

P | Q
{a[k],h[l]}
−−−−−→ P ′ | Q

concert res
P

{a[k],h[l]}
−−−−−→ P ′

P\L
{a[k],h[l]}
−−−−−→ P ′\L

(∗∗)

Figure 4.5: SOS rules for concerted actions in CCB. The condition (*) is 1. α is c
or (c) and γ(b, c) = e for some c ∈ A, and 2. γ(a, d) = f . The condition (**) is
a, h /∈ L ∪ (L). Recall that t ∈ AK∗, and b ∈ WA.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 61

P ⇒ Q Q
µ
→ Q′ Q′ ⇒ P ′

P
µ
→ P ′

Figure 4.6: Structural congruence rule sc when µ ∈ AK ∪ (AK × AK), and rev sc
when µ ∈ AK.

red1 : P | Q⇒ Q | P

red2 : P | (Q | R)⇒ (P | Q) | R

red3 : (P | Q) | R⇒ P | (Q | R)

red4 : P | 0⇒ P

red5 : (P | Q)\L⇒ P\L | Q if (γ(fn(P)× fn(Q)) ∪ fn(Q)) ∩ L = ∅

red6 : P\L | Q⇒ (P | Q)\L if (γ(fn(P)× fn(Q)) ∪ fn(Q)) ∩ L = ∅

prom : (s, a, s′; b[k]).P ⇒ (s, a[k], s′; b).P if a ∈ SA, b ∈ WA

move-r : (s, a, s′, b[k], s′′).P ⇒ (s, a[k], s′, b, s′′).P if a ∈ SA, b ∈ WA

move-l : (s, b[k], s′, a, s′′).P ⇒ (s, b, s′, a[k], s′′).P if a ∈ SA, b ∈ WA

Figure 4.7: Reduction rules for CCB. Sequences s, s′, s′′ are members of (A∪AK)∗.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 62

Example 4.1. We illustrate how processes compute forwards using the new prefix-

ing operator. Consider a standard process (a; b).(c) | (a, d, c) and the communication

function γ given by γ(a, a) = a and γ(c, c) = c. We have

(a; b).(c) | (a, d, c)
a[1]
−−→ (a[1]; b).(c) | (a[1], d, c)

by the SOS rules act1 and com from Figure 4.2. This is because (c) is standard and

the key 1 is fresh in ε. The next step of computation involves a communication of

the actions c, which we obtain by rules act2 and com:

(a[1]; b).(c) | (a[1], d, c)
c[2]
−−→ (a[1]; b).(c[2]) | (a[1], d, c[2])

We note that the key 2 is fresh in a[1]. Finally, the action d takes place by act1 and,

informally, the symmetric version of par.

(a[1]; b).(c[2]) | (a[1], d, c[2])
d[3]
−−→ (a[1]; b).(c[2]) | (a[1], d[3], c[2])

Formally, we use par, the structural congruence rule sc in Figure 4.6 and the reduc-

tion rule red1 in Figure 4.7.

The next example illustrates how some of the reverse SOS rules work.

Example 4.2. Consider (a[1], b).(c).S where S
def
= (a, b).(c).S. We have

(a[1], b).(c).S
a[1]
−−→ (a, b).(c).S

by rev act1 since (c).S is standard. Since (a, b).(c).S is the definition of S we obtain

by rule rev con (a[1], b).(c).S
a[1]
−−→ S.

Figure 4.5 contains the SOS rules that define the new concerted actions transitions.

The main rule is the rule concert that defines when a pair of concerted actions takes

place. We also have two auxiliary rules aux1 and aux2 which define only an auxiliary

transition relation needed in the concert rule. The auxiliary rules are only applicable

if a weak action is beyond the semicolon, whereas a weak action in the simple prefix

is dealt with by standard rules and can therefore not become part of a concerted

action. Note that the concert rule uses lookahead [115]. Also note that transitions

in aux1 and aux2 use the auxiliary labels (b)[k] for all b ∈ WA and k ∈ K. The rule

concert par requires that k is fresh in Q, correspondingly as in par. Moreover, we

need to ensure that when we reverse h with the key l in P we do not leave out any

actions with the key l in Q which make up a multiaction communication with the

key l. Hence, we also include the premise fsh[l](Q) in concert par. The rule concert

CHAPTER 4. A CALCULUS OF COVALENT BONDING 63

act requires, correspondingly as act, that k is fresh in t. Our operational semantics

guarantees that if a standard process evolves to (t; b).P , for some P , and P reverses

an action with the key l, then l is fresh in t. Hence, we do not include fsh[l](t) in the

premises of concert act. Next, we illustrate how concerted actions transitions work.

Example 4.3. Consider the process (a; b) | a | b with γ(a, a) = c and γ(b, b) = d.

After the initial synchronisation of actions a, which produces the transition c[1], we

have a transition with a pair of concerted actions by rule concert in Figure 4.5

(a[1]; b) | a[1] | b
{d[2],c[1]}
−−−−−→ (a; b[2]) | a | b[2]

since (a[1]; b)
(b)[2]
−−−→ (a[1]; b[2]) by aux1, (a[1]; b[2])

a[1]
−−→ (a; b[2]) by rev act1, and since

a[1] | b
b[2]
−−→ a[1] | b[2]

a[1]
−−→ a | b[2] by par and rev par. The inference tree for this

example is shown in Figure 4.8.

Example 4.4. Consider (a[1]; b) | (a[1]; b) | e with γ(a, a) = c and γ(b, b) = d. We

clearly have the following pair of concerted actions

(a[1]; b) | (a[1]; b) | e
{d[2],c[1]}
−−−−−→ (a; b[2]) | (a; b[2]) | e.

Note that action d is possible since both processes break the same bond. If the two

a actions would have different keys it would not be possible to perform d since our

rules do not allow to break two bonds in a concerted action. The inference tree for

this example is shown in Figure 4.9.

There are processes with weak actions that can potentially communicate but there

are no concerted actions transitions due to our SOS rules:

Example 4.5. Consider (a[1]; b) | (e[2]; b) | (a[1], e[2]) with γ(a, a) = c and γ(b, b) =

d. The process cannot perform any concerted actions: Although (a[1]; b)
(b)[l]
−−→

a[1]
−−→

(a; b[l]), for any l different from 1 and 2, but (e[2]; b) | (a[1], e[2]) cannot perform the

auxiliary (b[l]) transition since there are no SOS rules for parallel composition and

auxiliary actions (b). This forces us to treat (a[1]; b) and (e[2]; b) as P and Q in the

concert rule, respectively, and we notice that we cannot undo a communication on

a or e.

Overall, the transitions in Figures 4.2–4.5 are labelled with a[k] ∈ AK, or with

c[l] ∈ AK, or with concerted actions (a[k], c[l]).

We also have the usual structural congruence rules sc and rev sc in Figure 4.6, which

potentially combine reductions (defined below) with transitions.

C
H

A
P

T
E

R
4
.

A
C

A
L

C
U

L
U

S
O

F
C

O
V

A
L

E
N

T
B

O
N

D
IN

G
64

concert

aux1
std(0) fsh[2](a[1])

(a[1]; b)
(b)[2]
−−−→ (a[1]; b[2])

rev act1
std(0) fsh[1](∅)

(a[1]; b[2])
a[1]
−−→ (a; b[2])

par

act1
std(0) fsh[2](∅)

b
b[2]
−−→ b[2]

a[1] | b
b[2]
−−→ a[1] | b[2]

par

rev act1
std(0) fsh[1](∅)

a[1]
a[1]
−−→ a

a[1] | b[2]
a[1]
−−→ a | b[2]

(a[1]; b) | a[1] | b
{d[2],c[1]}
−−−−−→ (a; b[2]) | a | b[2]

Figure 4.8: Inference tree for Example 4.3.

C
H

A
P

T
E

R
4
.

A
C

A
L

C
U

L
U

S
O

F
C

O
V

A
L

E
N

T
B

O
N

D
IN

G
65

concert

aux1
std(0) fsh[2](a[1])

(a[1]; b)
(b)[2]
−−−→ (a[1]; b[2])

rev act1
std(0) fsh[1](∅)

(a[1]; b[2])
a[1]
−−→ (a; b[2])

act1
std(0) fsh[2](a[1])

(a[1]; b)
(b)[2]
−−−→ (a[1]; b[2])

rev act1
std(0) fsh[1](∅)

a[1]; b[2])
a[1]
−−→ (a; b[2])

concert par
(a[1]; b) | (a[1]; b)

{d[2],c[1]}
−−−−−→ (a; b[2]) | (a; b[2])

(a[1]; b) | (a[1]; b) | e
{d[2],c[1]}
−−−−−→ (a; b[2]) | (a; b[2]) | e

Figure 4.9: Inference tree for Example 4.4.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 66

Next, we introduce our reduction relation which is given by the reduction (rewrite)

rules in Figure 4.7. The reduction relation is needed to define promotion of actions.

First we define the function fn for free names of processes.

Definition 4.1. The function fn : Proc→ P(K) is given as follows:

fn : Proc→ P(K)

fn(0) = ∅

fn(S) = fn(P) if S
def
= P

fn((α : s; b).P) = {α} ∪ fn(s; b).P)

fn((a; b).P) = {a, b} ∪ fn(P)

fn(P | Q) = fn(P) ∪ fn(Q) ∪ γ(fn(P)× fn(Q))

fn(P \L) = fn(P)\L

Our reduction rules have names such as, for example, red and we write red: P ⇒ Q

to indicate that the reduction rule P ⇒ Q is called red. The process P in the rule

P ⇒ Q is called a redex, and the process Q is called a contractum. A reduction rule

P ⇒ Q can be seen as a prescription for deriving rewrites C[P]⇒ C[Q] for arbitrary

context C[]. A P redex may be replaced by its contractum Q in an arbitrary context

C[] giving rise to a reduction step: C[P]⇒ C[Q].

Definition 4.2. The reduction relation ⇒ is the smallest reflexive and transitive

relation on CCB processes that is preserved by all contexts, and that satisfies the

rules in Figure 4.7.

Note that we do not want ⇒ to be symmetric as we wish to apply prom only from

left to right.

The rewrite rules in Figure 4.7 include prom, move-r, and move-l which promote

weak bonds (here b) to strong bonds (here a). The rule prom applies to the full

version of our prefix operator (with the ; construct), and move-r and move-l apply

only to the simple prefix. These three rules are here to model what happens in

chemical systems: a bond on a weak action is temporary and as soon as there is a

strong action that can accommodate that bond (as the result of concerted actions)

the bond establishes itself on the strong action thus releasing the weak action. In

order to align the use of these three rules to what happens in chemical reactions, we

insist that they are used as soon as they becomes applicable: this is made precise

CHAPTER 4. A CALCULUS OF COVALENT BONDING 67

in Definition 4.3. We could have used the idea of ordering on SOS rules and rewrite

rules [116, 82] to specify that the rewrite rules prom, move-r and move-r are higher

in the ordering than all SOS rules and the remaining rewrite rules, implying that

they should be applied first when deriving transitions. Alternatively, we could have

tried to employ some of the techniques presented in [18] to define our transition

relation. This would require the use of negative information in the premises, and

the definitions in the style as those in [116, 82]. However, since we combine SOS

rules with rewrite rules, we opted for a directly defined transition relation.

We now define the transition relation for the labelled transition system for CCB.

Recall that the states of the LTS are processes in Proc and the labels are members

of A, AK, (A)K and the concerted actions labels in AK × AK. Let d : Proc →

N be the operator depth function defined by d(P) = 0 if P is a constant, and

d(f(P1, . . . , Pn)) = 1 + max{d(Pi)|1 ≤ i ≤ n} otherwise, where f is an operator of

CCB. The transition relation is given as follows:

Definition 4.3. We associate to Proc andAK∪AK∪(A)K∪(AK×AK) a transition

relation → given by
⋃

l<ω →
l, where transition relations →l⊆ Proc × AK ∪ AK ∪

(A)K∪(AK×AK)×Proc are as follows, with b ∈ AK and µ ∈ AK∪AK∪(AK×AK):

1. P
(b)[k]
−−−→ P ′ ∈→l if d(P) = l, P

(b)[k]
−−−→ P ′ = ρ(con(r)), where r is either aux1

or aux2, and each premise in pre(r) is a valid transition in
⋃

k<l →
k or a valid

predicate.

2. P
µ
→ P ′ ∈→l if d(P) = l, P ⇒ Q, for some Q such that Q does not contain

any prom, move-r and move-l redex, Q
µ
→ Q′ = con(r), for some rule r where

each member of pre(r) is either a valid transition in
⋃

k<l →
k, a valid rewrite

or a valid predicate, and Q′ ⇒ P ′.

The first part of the definition specifies the auxiliary transitions using rules aux1 and

aux2. The second part tells us how to use the remaining rules to define transitions.

If P has no prom, move-r and move-l redex, then we apply our rules in a standard

way. Otherwise, we are required to reduce P to Q with prom, move-r and move-l

first, then we define a transition of Q to Q′ in a standard way, and finally we reduce

Q′ to P ′ (if needed). This implies that if P has a prom, move-r or move-l redex,

then we must use one of the structural congruence rules in Figure 4.6. And, if we

use any of these rules, then the reduced process Q must no longer have any prom,

move-r and move-l redex.

The next example illustrates the application of the promotion rewrite rule.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 68

Example 4.6. The transition (a[1]; b) | a[1] | b
{d[2],c[1]}
−−−−−→ (a; b[2]) | a | b[2] from

Example 4.3 cannot be followed by a communication of actions a because there is

a prom redex (a; b[2]) in (a; b[2]) | a | b[2]. The rewrite of this redex takes priority:

the bond 2 moves from the weak b to the strong a by prom:

(a; b[2]) | a | b[2]⇒ (a[2]; b) | a | b[2]

As a result, we can bond on the weak b again and, importantly, the a[2] to b[2] bond

is irreversible as γ(a, b) is undefined. Note that reaching this bond by computing

forwards alone is not possible.

We shall call henceforth the transitions derived by the forward SOS rules the for-

ward transitions and, the transitions derived by the reverse SOS rules the reverse

transitions. Correspondingly, there are the concerted (action) transitions.

Example 4.7. The prom and move rules can give rise to transitions which would

be blocked by restrictions otherwise. We start with process (e|(a; a′)|b) \ c with

γ(a, b) = c, γ(a, e) = d and γ(b, a′) = f . It would seem that the transition c cannot

happen because of the restriction, even though a and b are ready. On the other

hand we can execute this sequence: (e|(a; a′)|b) \ c
d[1]
−−→ (e[1]|(a[1]; a′)|b) \ c

{f [2],f [1]}
−−−−−−→

(e|(a; a′[2])|b[2]) \ c⇒ (e|(a[2]; a′)|b[2]) \ c. The c is now a past action according to

the keys, but has only happened indirectly, ignoring the restriction. The inference

tree for this example is shown in Figure 4.10.

Whilst we have defined the semantics of CBB using SOS rules, there are other

possibilities to achieve this. One was suggested in [14] and is based on Nominal

Logic described in [40]. Here, we give an informal overview how the semantics of

CCB could be defined using Nominal Logic. For this, we would define sorts. Based

on this, a nominal signature Σ, which is a triple (∆, A, F), can be described. Here

∆ is a set of base sorts ranged over by σ, A is a set of atom sorts ranged over by A,

and F is a set of operators f(σ1 × ...× σn) → σ. For our calculus we would define

a base sort O for processes and an atom sort C for actions. Instead of a labelled

transition system (LTS), as we did previously, we define a nominal transition system

specification (NTSS), which is a triple (Σ, R, D), where Σ is a nominal signature (as

defined before), R is a set of (transition) relation symbols, and D is a set of derivation

rules. In our calculus, a transition relation symbol for example for the action prefix

would be:

transition(a, x) : (C ×O)→ O

Here, transition(a, P) would correspond to a process (s, a, s′; b).P . We would also

define freshness of keys fresh, standard of processes std, and the synchronisation

C
H

A
P

T
E

R
4
.

A
C

A
L

C
U

L
U

S
O

F
C

O
V

A
L

E
N

T
B

O
N

D
IN

G
69

par

act1
std(0) fsh[7](i[1], j[2])

(i[1], j[2], k)
k[7]
−−→ (i[1], j[2], k[7])

(i[1], j[2], k) | (f [3], g[4], h)
k[7]
−−→ (i[1], j[2], k[7]) | (f [3], g[4], h) (1)

par

act1
std(0) fsh[4](f [3])

(f [3], g[4], h)
g[4]
−−→ (f [3], g, h)

(i[1], j[2], k[7]) | (f [3], g[4], h)
g[4]
−−→ (i[1], j[2], k[7]) | (f [3], g, h) (2)

aux1
std(0) fsh[7](a[1], b[2], c[3], d[4])

(a[1], b[2], c[3], d[4]; e)
(e)[7]
−−−→ (a[1], b[2], c[3], d[4]; e[7]) (3)

rev act1
std(0) fsh[4]((a[1], b[2], c[3], e[7])

sc
(a[1], b[2], c[3], d[4]; e[7])

d[4]
−−→ (a[1], b[2], c[3], d; e[7]) (a[1], b[2], c[3], d; e[7])⇒ (a[1], b[2], c[3], d[7]; e)

(a[1], b[2], c[3], d[4]; e[7])
d[4]
−−→ (a[1], b[2], c[3], d[7]; e) (4)

concert
(1) (2) (3) (4)

(a[1], b[2], c[3], d[4]; e) | (f [3], g[4], h) | (i[1], j[2], k)
{l[7],p[4]}
−−−−−→ (a[1], b[2], c[3], d[7]; e) | (f [3], g, h) | (i[1], j[2], k[7])

Figure 4.10: Inference tree for Example 4.7.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 70

function with respect to nominal signatures. Using these functions, we could finally

define derivation rules. For example, the equivalent rule of act1 would be:

std(P) fsh[k](s, s′)

transition(a, (s, a, s′; b).x)
transition(a)
−−−−−−−→ (s, a[k], s′; b).x

In a similar manner, all transition rules could be defined based on nominal signa-

tures.

4.2 Properties of CCB

In this section we establish several properties of the LTS for CCB. We start by

showing the expected properties of keys, namely that when an action takes place

it uses a fresh key, and when a past action is undone its key is removed from the

resulting process. We also show that the reverse transitions invert the corresponding

forward transitions, and vice versa.

Definition 4.4. A process P is consistent if Q→∗ P for some process Q such that

std(Q).

Remark 4.1. It is decideable if a process P is consistent. Firstly, we define the

root of a process as the process stripped of all keys. This can be done using a

function similar to the pruning map in Section 4.3, but including weak actions. We

can show that every process has exactly one root, as done in [90], p. 82. It can be

checked algorithmically if a process is consistent. An algorithm could work as given

in Figure 4.11, with the resulting process being the root of a consistent process. We

assume that keys have been used in ascending order in order to keep the argument

clear. If this would not have been the case, we would need additional rules for

finding the last key used, which would be possible.

To demonstrate this, we take a sample process with some past actions:

((a).(b[3]).0 | (c[2]).(d[3]).0)\{c}

The synchronisation function is empty. This process is not std, so if it is consistent,

we should be able to use the algorithm to show this. The highest key is 3. There

are two actions with this key, so it must be the result of a communication. Actions

b and d are not part of the synchronisation function, so we determine the process

not to be consistent at this point. If γ(a, d) would be part of the synchronisation

function, we could continue. At this point, we determine that the multiset before

(b) has fresh actions, which again means that the process is not consistent. For the

CHAPTER 4. A CALCULUS OF COVALENT BONDING 71

1 Let P be the process to check

2 while (keys(P) 6= ∅)

3 Let k be the highest key in p

4 Let act be the set of actions with key k in p

5 if (|act| == 2) then

6 if (actions are not in γ or actions are not in parallel) then

7 P not consistent; end.

8 else

9 remove k from P

10 else

11 if (act restricted)

12 P not consistent; end.

13 else

14 remove k from P

15 If the removed key was the last past action in a multiset and there is

a multiset before it, check that the previous multiset in this process

has only past action and potentially a ; b element. If not,

P is not consistent; end.

16 P is consistent.

Figure 4.11: Algorithm for deciding consistency of processes.

second subprocess, the multiset before (d) has only past actions, which is in line with

a consistent process. On the other hand, c is a past action whilst c is restricted, so

this again makes the process not consistent.

If the process would be

((a[1]).(b[3]).0 | (c[2]).(d[3]).0)\{}

with γ(b, d) = e, it would be consistent. Whilst executing the algorithm, we remove

all keys and finish the algorithm with the result of the process being consistent.

Proposition 4.1. Let P be consistent. Then

1. If P
a[k]
−−→ Q then k /∈ keys(P) and keys(Q) = keys(P) ∪ {k} for all Q.

2. If P
a[k]
−−→ Q then k ∈ keys(P) and keys(Q) = keys(P) \ {k} for all Q.

3. If P
a[k]
−−→ P ′ then P ′ a[k]

−−→ P . If P ′ a[k]
−−→ P and P ′ has no move-r or move-l redexes,

then P
a[k]
−−→ P ′.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 72

Proof. 1. We prove Proposition 4.1.1 by induction on the depth of the inference

tree of P
µ[k]
−−→ Q.

1. Base case follows for processes with the inference tree of depth 0.

2. Inductive hypothesis: We assume that Proposition 4.1.1 holds for all subpro-

cesses R of P and all ν[l], namely if R is a consistent process and R
ν[l]
−−→ R′

for some R′ then k /∈ keys(R) and keys(R′) = keys(R) ∪ l.

3. Induction step: We show that Proposition 4.1.1 holds for P . For this we

consider cases depending on the structure of P:

(a) P ≡ (s; b).R: There are two cases:

i. P
µ[k]
−−→ P ′ by rule act1 in Figure 4.2: Assume P is consistent, P

µ[k]
−−→

P ′ and s is µ : s′. Since P
µ[k]
−−→ P ′ by rule act1 we get fsh[k](s),

meaning k does not appear in s and std(R) which means R contains

no keys, hence k /∈ keys(P). Also P
µ[k]
−−→ P ′ by act1 means (µ :

s′; b).R
µ[k]
−−→ (µ[k] : s′; b).R. That means we can calculate keys(P ′) as

follows: keys(P ′) = keys((µ[k] : s′; b).R) = {k} ∪ keys((µ : s′; b).R) =

{k} ∪ keys(P) as required.

ii. P
µ[k]
−−→ P ′ by rule act2 in Figure 4.2: Assume P is consistent and

P
µ[k]
−−→ P ′. We deduce that P ≡ (t; b).R and P ′ ≡ (t; b).R′. Recall

that t denotes a sequence of past actions, namely an element from

AK∗. The premises of act2 ensure that fsh[k](t) and R
µ[k]
−−→ R′. R

is consistent since P is consistent by assumption. Since R is consis-

tent and R
µ[k]
−−→ R′ then, by the inductive hypothesis, k /∈ keys(R)

and keys(R′) = keys(R) ∪ {k}. Since k /∈ keys(R) and fsh[k](t) we

obtain k /∈ keys((t; b).P) as required. We can also calculate keys(P ′):

keys(P ′) = keys((t; b).R′) = keys((t; b)) ∪ keys(R′) = keys((t; b)) ∪

keys(R) ∪ {k} = keys((t; b).R) ∪ {k} = keys(P) ∪ {k} as required.

(b) P ≡ R | Q: There are two cases:

i. This happens by rule par in Figure 4.2. Assume P is consistent and

P
µ[k]
−−→ P ′. Since P

µ[k]
−−→ P ′, by rule par, R

µ[k]
−−→ R′ must hold as well

as fsh[k](Q), meaning k does not appear in Q. Since k /∈ keys(R) by

the inductive hypothesis and k /∈ keys(Q), it follows k /∈ keys(R | Q)

since keys(R | Q) = keys(R) ∪ keys(Q) according to the definition of

keys in Section 4. Thus k /∈ keys(P) since keys(P) = keys(R | Q) as

above.

Also keys(P ′) = keys(R′)∪keys(Q) according to the definition of keys.

Also keys(R′) = keys(R) ∪ {k} by the inductive hypothesis. Hence,

CHAPTER 4. A CALCULUS OF COVALENT BONDING 73

keys(P ′) = keys(R) ∪ {k} ∪ keys(Q) = keys(R) ∪ keys(Q) ∪ {k} =

keys(P) ∪ {k} as required.

ii. This happens by rule com in Figure 4.2. Assume P is consistent and

P
µ[k]
−−→ P ′. Since P

µ[k]
−−→ P ′, by rule con, R

ν1[k]
−−→ R′, Q

ν2[k]
−−→ Q′ and

γ(nu1, nu2) = µ must hold without loss of generality. The inductive

hypothesis in this case is not only true about R, but also Q, so

that if Q is a consistent process and Q
ν2[k]
−−→ Q′ then k /∈ keys(Q)

and keys(Q′) = keys(Q) ∪ k. We deduce that k /∈ keys(P) since

keys(P) = keys(R | Q) = keys(R) ∪ keys(Q) and k /∈ keys(R) and

k /∈ keys(Q).

We can calculate keys(P ′): keys(P ′) = keys(R′∪keys(Q)′) = keys(R′)∪

keys(Q′) = keys(R) ∪ k ∪ keys(Q) ∪ k = keys(R) ∪ keys(Q) ∪ k =

keys(R | Q) ∪ k = keys(p) ∪ k as required.

(c) P ≡ R \ L: This is by rule res in Figure 4.2. Assume P is consistent

and P
µ[k]
−−→ P ′. Since P

µ[k]
−−→ P ′ by rule res we obtain R

µ[k]
−−→ R′ and

µ /∈ L. Since k /∈ keys(R) by the inductive hypothesis it follows that

k /∈ keys(R \ L) since restriction does not change the keys of the process

by definition of keys. Also keys(P) = keys(R) and keys(P ′) = keys(R′)

according to the definition of keys. Since by the inductive hypothesis

keys(R′) = keys(R) ∪ {k} we can calculate keys(P ′): keys(P ′) = keys(R′ \

L) = keys(R′) = keys(R) ∪ {k} = keys(P) ∪ {k} as required.

(d) P ≡ S with S
def
= R: Assume P is consistent and P

µ[k]
−−→ P ′ by rule con in

Figure 4.2. Hence R
µ[k]
−−→ P ′ by con and, by the inductive hypothesis (as

the depth of the inference tree for R
µ[k]
−−→ P ′ is clearly less than the depth

of the inference tree for P
µ[k]
−−→ P ′) k /∈ keys(R) and keys(S) = keys(R)∪k.

Since the definition of keys includes keys(S) = keys(R) if S
def
= R, it follows

that k /∈ keys(P) and keys(P ′) = keys(P) ∪ k as required.

2. The proof of part 2 is by induction on the depth of inference trees for transitions

and since it is very similar to the proof of part 1 above it is omitted.

3. We prove part 3 by considering each implication separately:

1. P
µ[k]
−−→ P ′ ⇒ P ′

µ[k]
−−→ P : We use induction on the depth of the inference tree

of P
µ[k]
−−→ P ′.

(a) Base case follows for processes with the inference tree of depth 0.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 74

(b) Inductive hypothesis: We assume that the property holds for all subpro-

cesses R of P , namely if R is a consistent process and if R
ν[l]
−−→ R′ for

some R′ then R′ ν[l]
−−→ R.

(c) Induction step: We consider cases depending on the structure of P . As-

sume that P is consistent and P
a[k]
−−→ P ′.

i. P ≡ (s; b).R: Here we distinguish two cases:

A. P
µ[k]
−−→ P ′ by rule act1 if s contains at least one fresh action:

Here s is of the structure µ : s′, t and the transition is (µ :

s′, t; b).R
a[k]
−−→ (µ[k] : s′, t; b).R by act1. This implies that std(R)

and fsh[k](s′ ∪ t). Because of this (µ[k] : s′, t; b).R
µ[k]
−−→ (µ :

s′, t; b).R can happen by rule rev act1 and P ′
µ[k]
−−→ P where P ′ ≡

(µ[k] : s′, t; b).R as required.

B. P
µ[k]
−−→ P ′ by rule act2 if there are no fresh actions in s: Here the

transition must happen in R. Since, by the inductive hypothesis,

the property is true for R, namely R′
µ[k]
−−→ R, we deduce by rule

rev act2 that P ′
µ[k]
−−→ P .

ii. P ≡ Q | R: There are two cases:

A. Transition by rule par: We deduce without loss of generality

R
µ[k]
−−→ R′ and fsh[k](Q). By the inductive hypothesis R′

µ[k]
−−→ R

must hold. By rev par, Q | R′
µ[k]
−−→ Q | R follows. Hence,

P ′
µ[k]
−−→ P where P ′ ≡ Q | R′.

B. Transition by rule com: Assume that P is consistent, γ(ν1, ν2) =

µ and P
µ[k]
−−→ P ′. Since this happens by rule com Q

ν1[k]
−−→ Q′ and

R
ν2[k]
−−→ R′. Because of the inductive hypothesis, Q′

ν1[k]
−−→ Q and

R′
ν2[k]
−−→ R. By rule rev com we obtain Q′ | R′

µ[k]
−−→ Q | R. Hence,

P
µ[k]
−−→ P where P ′ ≡ Q′ | R′.

iii. P ≡ R \ L: This is by rule res. For P
a[k]
−−→ P ′ to be valid a /∈ L

and R
µ[k]
−−→ R′ must be true. Hence, by the inductive hypothesis,

R
µ[k]
−−→ R′. Since µ /∈ L, by rule rev res, R′\L

µ[k]
−−→ R\L and, hence,

P ′
µ[k]
−−→ P where P ′ ≡ R′\L.

iv. P ≡ S with S
def
= R: P

µ[k]
−−→ P ′ by rule con in Figure 4.2. There is a

transition R
µ[k]
−−→ R′ and, by the inductive hypothesis, R′

µ[k]
−−→ R is

true. Since R′
µ[k]
−−→ R and S

def
= R we get R′ a[k]

−−→ S by rev con. Hence

P ′
µ
−→ P where P ′ ≡ R′.

2. P
µ[k]
−−→ P ′ ⇒ P ′ µ[k]

−−→ P : The proof works similar to the first part of proof of

Proposition 4.1.3 and is thus omitted.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 75

Next, we introduce some notation. We define a new transition relation 7−→ by

P
a[k]
7−→ Q if P

a[k]
−−→ Q or P

a[k]
−−→ Q. Process P is called the source and Q the target

of P
a[k]
7−→ Q. We will use t, t′, t1, . . . to denote transitions, for example t : P

a[k]
7−→ Q.

Two 7−→ transitions are coinitial if they have the same source, and they are cofinal

if their targets are identical.

We define when two transitions are concurrent.

Definition 4.5. Two coinitial transitions P
a[k]
7−→ P ′ and P

b[l]
7−→ P ′′ are concurrent

if there exists M 6= P such that P ′ b[l]
7−→M and P ′′ a[k]

7−→M .

Note that two concurrent transitions are coinitial and, together with the two transi-

tions (with the target M) required by Definition 4.5, they form a “diamond” struc-

ture with the nodes P, P ′, P ′′ and M .

When transitions in Definition 4.5 are forward, we may not be able to complete the

diamond as the following example shows. In such case, we say that the transitions

are in conflict. Consider (a) | (b) | (b) with γ(a, b) = c. The two coinitial transitions

below are in conflict:

(a) | (b) | (b)
c[1]
−−→ (a[1]) | (b[1]) | (b)

(a) | (b) | (b)
c[2]
−−→ (a[2]) | (b) | (b[2])

However, coinitial reverse transitions are concurrent. We shall denote the syntactical

equality of process expressions by ≡.

Proposition 4.2 (Reverse Diamond). Let P be a consistent process and let t′ :

P
a[k]
−−→ P ′ and t′′ : P

b[l]
−→ P ′′ with l 6= k. Then t′ and t′′ are concurrent.

Proof. We prove Proposition 4.2 by induction on the depth of the inference tree for

transition of P .

1. Base case: Processes with an inference tree of depth 0 have no reverse transi-

tions, so the proposition is valid.

2. Inductive hypothesis: We assume that for all subprocesses R of P and all

c[m], d[n], if R is a consistent process, R
c[m]
−−→ R′ and R

d[n]
−−→ R′′, with m 6= n,

then there is an N so that R′ d[n]
−−→ N and R′′ c[m]

−−→ N .

3. Induction step: We consider cases depending on the structure of P :

(a) P ≡ (s; b).R with s containing two or more past actions: This in-

cludes the the case P ≡ (t; b).R. This is by rule rev act1. With s′

CHAPTER 4. A CALCULUS OF COVALENT BONDING 76

being the sequence obtained from s by removing a[k] and b[l] with k, l /∈

keys(s′) we have (a[k], b[l], s′; c).R
a[k]
−−→ (a, b[l], ts; c).R

b[l]
−→ (a, b, s′; c).R

or (a[k], b[l], s′; c).R
b[l]
−→ (a[k], b, s′; c).R

a[k]
−−→ (a, b, s′; c).R. Let M ≡

(a, b, s′; c).U | T as required.

(b) P ≡ (s; b).R with s containing one or none past action: We cannot deduce

the required transitions P
a[k]
−−→ P ′ and P

b[l]
−→ P ′′ for any a, b, k, l and l 6= k

by any SOS rule. Hence the proposition is vacuously valid.

(c) P ≡ Q | R: There are three cases:

i. P
a[k]
−−→ P ′ by rule rev par and P

b[l]
−→ P ′ by rule rev par. There are

two subcases here:

A. Transitions in the same subprocess: Assume without loss of gen-

erality Q
a[k]
−−→ Q′ and Q

b[l]
−→ Q′′. By the inductive hypothesis

there is an N so that Q′ b[l]
−→ N and Q′′ a[k]

−−→ N . We can conclude

by using rule rev par that Q′ | R
b[l]
−→ N | R and Q′′ | R

a[k]
−−→ N | R.

With M ≡ N | R we get the result.

B. Transitions in different subprocesses: Assume without loss of gen-

erality that Q
a[k]
−−→ Q′ and R

b[l]
−→ R′. By rule rev par Q | R

a[k]
−−→

Q′ | R
b[l]
−→ Q′ | R′ and Q | R

b[l]
−→ Q | R′ a[k]

−−→ Q′ | R′ are valid.

These form the required reversal diamond with M ≡ Q′ | R′.

ii. P
a[k]
−−→ P ′ by rule rev com and P

b[l]
−→ P ′ by rule rev par: Without loss

of generality this covers all cases with one rev par and one rev com

transition. We assume that a[k] is by rule rev com, that γ(a1, a2) = a

and that b[l] is by rev par. We also assume that b happens in Q, so

that Q
b[l]
−→ Q′ and fsh[l](R), and that Q

a1[k]
−−→ Q′′ and R

a2[k]
−−→ R′.

We know that l 6= k because fsh[l](R) and R
a2[k]
−−→ R′′, a transition

which could not happen if l = k, since according to Proposition 4.1.2

a key cannot be fresh for a reverse transition to happen with this

key. By the inductive hypothesis there is an N so that Q′
a1[k]
−−→ N

and Q′′ b[l]
−→ N . Using the rev com rule we can deduce P

a[k]
−−→ Q′′ | R′,

P
b[l]
−→ Q′ | R, Q′′ | R′ b[l]

−→ N | R′ and Q′ | R
a[k]
−−→ N | R′. Taking

M ≡ N | R′ we get the result.

iii. P
a[k]
−−→ P ′ by rev com and P

b[l]
−→ P ′′ by rev com: Without loss of

generality this covers all cases with two rev com transitions. We

assume γ(a1, a2) = a and γ(b1, b2) = b. Also Q
a1[k]
−−→ Q′, Q

b1[l]
−−→ Q′′,

R
a2[k]
−−→ R′ and R

b2[l]
−−→ R′′. Since Q

a1[k]
−−→ Q′ and Q

b1[l]
−−→ Q′′ by the

inductive hypothesis it follows that there is an N so that Q′
b1[l]
−−→ N

and Q′′
a1[k]
−−→ N and since R

a2[k]
−−→ R′ and R

b2[l]
−−→ R′′ there is an N ′

so that R′
b2[l]
−−→ N ′ and R′′

a2[k]
−−→ N ′. By rule rev par it follows that

CHAPTER 4. A CALCULUS OF COVALENT BONDING 77

P
a[k]
−−→ Q′ | R′ b[l]

−→ N | N ′ and P
b[l]
−→ Q′′ | R′′ a[k]

−−→ N | N ′. Let

M ≡ N | N ′ as required.

(d) Cases P ≡ R \ L and P ≡ S with S
def
= R follow in a standard way

by using rules rev res and rev con in Figure 4.4, respectively, and the

inductive hypothesis.

Before we show that coinitial forward transitions are concurrent if they result in

cofinal computations, we introduce traces. A trace is a sequence of composable

forward and reverse transitions over CCB. Traces are ranged over by σ, σ′, σ1,

Two transitions are composable if the target of the first transition is the source of

the second transition. The composition of transitions and traces is denoted by ‘;’.

The source of a trace is the source of the first transition of the trace, and the target

of a trace is the target of the last transition in the trace. As with transitions, two

traces are coinitial if they have the same source, and they are cofinal if their targets

are identical. The syntactical equality of transitions is also denoted by ≡.

Proposition 4.3 (Forward Diamond). If P is a consistent process and t1 ≡ P
a[k]
−−→

P ′, t2 ≡ P
b[l]
−→ P ′′, with l 6= k, and P ′ →∗ R and P ′′ →∗ R, for some R, then there

is M 6≡ P such that P ′ b[l]
−→M , P ′′ a[k]

−−→M and M →∗ R.

Proof. By induction on the depth of the inference tree for transition of P .

1. Base case: obvious.

2. Inductive hypothesis: We assume that Proposition 4.3 holds for all subpro-

cesses R of P and all c[m], d[n], namely if R is a consistent process, t′
1 ≡

R
c[m]
−−→ R′ and t′

2 ≡ R
d[n]
−−→ R′′ with m 6= n, and t′

1; σ′
1 and t′

2; σ′
2, for some

σ′
1 and σ′

2, are cofinal then there is an N so that R′ d[n]
−−→ N , R′′ c[m]

−−→ N and

N →∗ N ′ is cofinal with σ′
1 and σ′

2.

3. Induction step: We assume t1 ≡ P
a[k]
−−→ P ′ and t2 ≡ P

b[l]
−→ P ′′, and consider

cases depending on the structure of P :

(a) P ≡ (s; b).R with s containing two or more fresh actions: This happens

by rule act1. s is of the structure a, b, s′ with k, l /∈ keys(s′) so that

P ≡ (a, b, s′; b).R. So we have t3 ≡ P ′ b[l]
−→ (a[k], b[l], s′; c).R and t4 ≡

P ′′ a[k]
−−→ (a[k], b[l], s′; c).R. With M ≡ (a[k], b[l], s′; c).R this gives us the

result.

(b) P ≡ Q | R:

i. P
a[k]
−−→ P ′ by rule par and P

b[l]
−→ P ′ by rule par.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 78

A. Transitions in the same subprocess: Assume without loss of gen-

erality Q
a[k]
−−→ Q′ and Q

b[l]
−→ Q′′. By the inductive hypothesis

there is an N so that Q′ b[l]
−→ N and Q′′ a[k]

−−→ N and there is a T

so that Q′ →∗ T and Q′′ →∗ T implying that a1[k] and b[l] do

not exclude the execution of each other in Q. We can conclude,

by rule par, that Q′ | R
b[l]
−→ N | R and Q′′ | R

a[k]
−−→ N | R. Taking

M ≡ N | R gives the result.

B. Transitions in different subprocesses: Assume without loss of gen-

erality that Q
a[k]
−−→ Q′ and R

b[l]
−→ R′. By rule par Q | R

a[k]
−−→

Q′ | R
b[l]
−→ Q′ | R′ and Q | R

b[l]
−→ Q | R′ a[k]

−−→ Q′ | R′ are valid.

These form the required forward diamond with M ≡ Q′ | R′.

ii. P
a[k]
−−→ P ′ by rule com and P

b[l]
−→ P ′ by rule par: Without loss of

generality this covers all cases with one par and one com transition.

We assume that a[k] happens by rule com, that γ(a1, a2) = a and that

b[l] happens by rule par. We also assume that b happens in Q, so that

Q
b[l]
−→ Q′ and fsh[l](R), and that Q

a1[k]
−−→ Q′′ and R

a2[k]
−−→ R′. Also

there is a T so that Q′ →∗ T and Q′′ →∗ T implying that a1[k] and

b[l] do not exclude the execution of each other in Q. By the inductive

hypothesis there is an N so that Q′ a1[k]
−−→ N and Q′′ b[l]

−→ N . By com

we deduce that P
a[k]
−−→ Q′′ | R′, P

b[l]
−→ Q′ | R, Q′′ | R′ b[l]

−→ N | R′ and

Q′ | R
a[k]
−−→ N | R′. With M ≡ N | R′ this gives us the result.

iii. P
a[k]
−−→ P ′ by com and P

b[l]
−→ P ′′ by com: Without loss of gen-

erality this covers all cases with two com transitions. We assume

that γ(a1, a2) = a and γ(b1, b2) = b. Also Q
a1[k]
−−→ Q′, Q

b1[l]
−−→ Q′′,

R
a2[k]
−−→ R′ and R

b2[l]
−−→ R′′. Since Q

a1[k]
−−→ Q′ and Q

b1[l]
−−→ Q′′ by the

inductive hypothesis it follows that there is an N so that Q′ b1[l]
−−→ N

and Q′′ a1[k]
−−→ N and since R

a2[k]
−−→ R′ and R

b2[l]
−−→ R′′ there must be

an N ′ so that R′ b2[l]
−−→ N ′ and R′′ a2[k]

−−→ N ′. Also, there is a T so

that Q′ →∗ T and Q′′ →∗ T , implying that a1[k] and b1[l] do not

exclude the execution of each other in Q and there is a T ′ so that

R′ →∗ T ′ and R′′ →∗ T ′, implying that a2[k] and b2[l] do not exclude

the execution of each other in R. By par P
a[k]
−−→ Q′ | R′ b[l]

−→ N | N ′

and P
b[l]
−→ Q′′ | R′′ a[k]

−−→ N | N ′. We let M ≡ N | N ′ as required.

(c) cases P ≡ R \ L and P ≡ S with S
def
= R follow a standard way.

The next subsection explores some properties of transitions by concerted actions.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 79

4.2.1 Concerted actions

The properties of keys corresponding to those in parts 1 and 2 of Proposition 4.1

hold also for the transitions by concerted actions in CCB.

Proposition 4.4. Let P be consistent. If P
{µ[k],ν[l]}
−−−−−→ Q then k /∈ keys(P), l ∈

keys(P) and keys(Q) = (keys(P) ∪ {k}) \ {l} for all Q.

Proof. By induction on the depth of the inference tree of P
{µ[k],ν[l]}
−−−−−→ Q.

1. Base case follows for processes with the inference tree of depth 0.

2. Inductive hypothesis: We assume that Proposition 4.4 holds for all subpro-

cesses R of P and all ν[l] and all µ[k], namely if R is a consistent pro-

cess and R
{µ[k],ν[l]}
−−−−−→ R′ for some R′ then k /∈ keys(R), l ∈ keys(R) and

keys(R′) = (keys(R) ∪ {k}) \ {l}.

3. Induction step: We show that Proposition 4.4 holds for P . For this we consider

cases depending on the structure of P :

(a) P ≡ R | Q: There are two cases here:

i. The transition is by the rule concert in Figure 4.5: Assume P is

consistent and P
{µ[k],ν[l]}
−−−−−→ P ′ for some P ′. Since P

{µ[k],ν[l]}
−−−−−→ P ′, by

rule concert, we have R
(µ1)[k]
−−−→ R′, Q

(µ2)[k]
−−−→ Q′ or Q

µ2[k]
−−→ Q′, R′

ν1[l]
−−→

R′′, Q′
ν2[l]
−−→ Q′′, γ(ν1, ν2) = ν and γ(µ1, µ2) = µ must hold without

loss of generality. Also, P ′ ≡ R′′ | Q′′. We can calculate keys(P):

keys(P) = keys(R) ∪ keys(Q). Since R and Q can both perform a

transition with k, we know, by argument similar to that used in the

proof of Proposition 4.1.1, that k /∈ keys(R) and k /∈ keys(Q), and

therefore k /∈ keys(P) as required. Since R′ and Q′ can perform

undoing of actions with the key l, we know that l ∈ keys(R′) and

l ∈ keys(Q′) by Proposition 4.1.2. Transitions of R and Q to R′ and

Q′ respectively do not involve l, so l ∈ keys(R) and l ∈ keys(Q) must

hold. Since keys(P) = keys(R ∪ Q) we deduce that l ∈ keys(P) as

required. Because of Proposition 4.1.1 and Proposition 4.1.2 we can

calculate keys(Q′′): keys(Q′′) = keys(Q′)\{l} = (keys(Q)∪{k})\{l},

keys(R′′): keys(R′′) = keys(R′) \ {l} = (keys(R) ∪ {k}) \ {l}, and

keys(P ′): keys(P ′) = keys(R′′) ∪ keys(Q′′) = (keys(R) ∪ {k}) \ {l} ∪

(keys(Q) ∪ {k}) \ {l} = (keys(R) ∪ keys(Q) ∪ {k}) \ {l} = (keys(P) ∪

{k}) \ {l} as required.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 80

ii. The transition is by concert par rule in Figure 4.5: We assume without

loss of generality R
{µ[k],ν[l]}
−−−−−→ R′ and fsh[k](Q), and P ′ ≡ R′ | Q.

By the inductive hypothesis we have k /∈ keys(R), l ∈ keys(R) and

keys(R′) = (keys(R) ∪ {k}) \ {l}. Since keys(P) = keys(R | Q) =

keys(R) ∪ keys(Q) and fsh[k](Q) and k /∈ keys(R) we deduce that

k /∈ keys(P). Also, since l ∈ keys(R) and keys(P) = keys(R | Q) =

keys(R) ∪ keys(Q) and we deduce that l ∈ keys(P). Hence, we have

keys(P ′) = keys(R′)∪keys(Q) = (keys(R)∪{k})\{l}∪keys(Q). Since

l /∈ keys(Q) by concert par, we have (keys(R)∪{k}) \ {l}∪ keys(Q) =

(keys(R | Q) ∪ {k}) \ {l} = (keys(P) ∪ {k}) \ {l} as required.

(b) P ≡ (t; b).R: The transition is by concert act rule in Figure 4.5. Assume

P is consistent and P
{µ[k],ν[l]}
−−−−−→ P ′. We deduce that P ′ ≡ (t; b).R′ for

some R′. Recall that t denotes a sequence of past actions, namely an

element from AK∗. The premises of concert act ensure that fsh[k](t) and

R
{µ[k],ν[l]}
−−−−−→ R′. The process R is consistent since P is consistent. Since

R is consistent and R
{µ[k],ν[l]}
−−−−−→ R′ then, by the inductive hypothesis,

k /∈ keys(R), l ∈ keys(R) and keys(R′) = (keys(R) ∪ {k}) \ {l}. Since

k /∈ keys(R) and fsh[k](t) we obtain k /∈ keys((t; b).R) = keys(P) as

required. Since l ∈ keys(R) we obtain l ∈ keys((t; b).R) = keys(P) as

required. It is clear by the rules act2 and concert act that since l ∈ keys(R)

the key l is not among the keys in t in (t; b).R. We now calculate keys(P ′):

keys(P ′) = keys((t; b).R′) = k(t)∪k(b)∪keys(R′) = k(t)∪k(b)∪(keys(R)∪

{k}) \ {l} = ((k(t)∪ k(b)∪ keys(R))∪ {k}) \ {l} = (keys((t; b).R)∪ {k}) \

{l} = (keys(P) ∪ {k}) \ {l} as required.

(c) P ≡ R\L: The transition must be by concert res from Figure 4.5. Assume

P is consistent and P
{µ[k],ν[l]}
−−−−−→ P ′. Since P

{µ[k],ν[l]}
−−−−−→ P ′ by rule concert

res we obtain R
{µ[k],ν[l]}
−−−−−→ R′ and µ, ν /∈ L∪ (L). Since k /∈ keys(R) by the

inductive hypothesis, it follows that k /∈ keys(R\L) since restriction does

not change the keys of the process by definition of keys. Since l ∈ keys(R)

by the inductive hypothesis, it follows that l ∈ keys(R\L). Also keys(P) =

keys(R) and keys(P ′) = keys(R′) according to the definition of keys. Since

by the inductive hypothesis keys(R′) = keys(R) ∪ {k} we can calculate

keys(P ′): keys(P ′) = keys(R′ \ L) = keys(R′) = (keys(R) ∪ {k}) \ {l} =

(keys(P) ∪ {k}) \ {l} as required.

(d) There are no transitions by concerted actions for P ≡ (s; c).R and P ≡ S

with S
def
= R.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 81

The property corresponding to part 3 of Proposition 4.1, namely P
{µ[k],ν[l]}
−−−−−→ P ′ if

and only if P ′
{ν[l],µ[k]
−−−−−→}P does not hold in general but only in certain circumstances,

which we now describe. Consider (a[k]; b).Q | R and c, d, for any Q, R, such that

γ(a, c) = d = γ(b, c) with R
c[l]
−→ R′ and R′ c[k]

−−→ R′′. We obtain, by concert and prom

rules,

(a[k]; b).Q | R
{d[l],d[k]}
−−−−−→ (a; b[l]).Q | R′′ ⇒ (a[l]; b).Q | R′′

Since R′′ c[k]
−−→ R′ c[l]

−→ R, we get, again by concert and prom rules

(a[l]; b).Q | R′′ {d[k],d[l]}
−−−−−→ (a; b[l]).Q | R⇒ (a[k]; b).Q | R

Assume that R is (c, c[k]).R1 for some R1. If we take S as (a[l]; b).Q | R′′, then the

following result could be seen as corresponding to part 3 of Proposition 4.1:

Proposition 4.5. Consider (a[k]; b).Q for any Q and c, d such that γ(a, c) = d =

γ(b, c). There exist R, S and l such that (a[k]; b).Q | R
{d[l],d[k]}
−−−−−→ S if and only if

S
{d[k],d[l]}
−−−−−→ (a[k]; b).Q | R.

4.3 CCB without weak actions

In this section we discuss the main properties of the sub-calculus of CCB that uses

no weak actions. Our prefix operator is thus (s).P , where s contains only strong

actions. We call this calculus CCBs. Its SOS rules are as for CCB except that the

rules in Figure 4.5 do not apply as there are no weak actions. The congruence rules

prom, move-r and move-l also do not apply since there are no weak actions. We shall

use µ, ν to denote strong actions in this section.

We shall also consider the forward-only version of CCBs called CCBf . The syntax

of CCBf is

P ::= S|S
def
= P

∣

∣

∣ (s).P
∣

∣

∣ P |Q
∣

∣

∣ P \L

and the SOS rules are given in Figure 4.12; we also have the reduction rules from

Figure 4.7 (without prom, move-r and move-l) which, together with rules in Fig-

ure 4.12, generate the transition relation −→f for CCBf . Note that we do not record

past actions (actf rule); hence CCBf is similar to the core of ACP. We note that

CCBs is different from CCSK [94, 90] as it uses multiset prefixing (very much like

in [27, 93]) and ACP-like communication. Alternatively, we could have derived the

SOS rules of CCBf from those of CCBs by applying a transformation which stripes

from every rule all keys in the labels and all past actions in the processes, using

the pruning map π defined in the next paragraph. Together with the removal of

CHAPTER 4. A CALCULUS OF COVALENT BONDING 82

actf
(s, a, s′).P

a
−→f (s, s′).P

parf

P
a
−→f P ′

P | Q
a
−→f P ′ | Q

comf

P
a
−→f P ′ Q

b
−→f Q′

P | Q
c
−→f P ′ | Q′

(∗) resf

P
a
−→f P ′

P\L
a
−→f P ′\L

a /∈ L

conf

P
a
−→f P ′

S
a
−→f P ′

S
def
= P sc

P ⇒∗ Q Q
a
→f Q′ Q′ ⇒∗ P ′

P
a
→f P ′

Figure 4.12: SOS rules for CCBf . We have a, b, c ∈ SA and (*) is γ(a, b) = c.

the semicolons and the weak actions that transforms CCB rules into CCBf rules.

Rule act1 from Figure 4.2 in this way becomes rule actf . Rule act2 from Figure 4.2

is no longer relevant since we have no past actions and therefore no sets of purely

past actions. Rules par, com, res, and con from Figure 4.2 are transformed into the

respective rules of CCBf . Rule sc is identical except that in CCBf it applies to

transitions from CCBf .

We show firstly that → for CCBs is essentially conservative over −→f . A process of

CCBs is converted to a CCBf process by “pruning” past actions:

Definition 4.6. The pruning map π : ProcCCBs
→ ProcCCBf

is defined as follows,

where t ∈ AK∗ and s, s′ ∈ A∗:

π(0) = 0 π((s, t, s′).P) = (s, s′).π(P) π((t).P) = π(P)

π(P | Q) = π(P) | π(Q) π(P \ L) = π(P) \ L π(S) = π(P) if S
def
= P

Theorem 4.1 (Conservation). Let P ∈ ProcCCBs
.

1. If P
µ[k]
−−→ Q then π(P)

µ
−→f π(Q).

2. If π(P)
µ
−→f Q, then for any k ∈ K\keys(P) there is Q′ such that P

µ[k]
−−→ Q′ and

π(Q′) = Q.

Proof. 1. We use induction on the depth of the inference tree of P
µ[k]
−−→ Q.

(a) Base case: obvious.

(b) Inductive hypothesis: We assume that for all subprocesses R of P and

all ν[l], if R is a consistent process and if R
ν[l]
−−→ R′ for some R′ then

π(R)
ν
−→f π(R′).

(c) Induction step: We consider cases depending on the structure of P . As-

sume that P is consistent and P
µ[k]
−−→ P ′ in all cases.

i. P ≡ (s; b).R: There are two cases:

CHAPTER 4. A CALCULUS OF COVALENT BONDING 83

A. P
µ[k]
−−→ P ′ by act1 in Figure 4.2: Assume s = µ : s′, t where

s′ ∈ A∗ and t ∈ AK∗. Then (µ : s′, t; b).R
µ[k]
−−→ (µ[k] : s′, t; b).R.

We can apply π to the processes: π((µ : s′, t; b).R) = (µ : s′).R =

π(P) and π((µ[k] : s′, t; b).R) = (s′).R = π(P ′). The transition

(µ : s′).R
µ
−→f (s′).R is by act1 and we get π(P)

µ
−→f π(P ′).

B. P
µ[k]
−−→ P ′ by act2 in Figure 4.2: We deduce that P ≡ (t; b).R,

fsh[k](t) and P ′ ≡ (t; b).R′. Recall that t contains only past

actions. The transition must be (t; b).R
µ[k]
−−→ (t; b).R′, and we get

by act2 R
µ[k]
−−→ R′ and fsh[k](t). Applying π to the processes we

get π((t; b).R) = π(R) and π((t; b).R′) = π(R′). Since R
µ[k]
−−→ R′,

by the inductive hypothesis, we obtain π(R)
µ
−→f π(R′). The last

implies π((t; b).R)
µ
−→f π((t; b).R′) which is π(P)

µ
−→ π(P ′).

ii. P ≡ R | Q: There are two cases:

A. This happens by par in Figure 4.2. Since P
µ[k]
−−→ P ′, by rule par,

R
µ[k]
−−→ R′ and fsh[k](Q) must hold. By the inductive hypothesis

π(R)
µ
−→f π(R′) is true. By rule par π(R) | π(Q)

µ
−→f π(R′) | π(Q)

holds, which means π(R | Q)
µ
−→f π(R′ | Q) and π(P)

µ
−→S π(P ′)

as required.

B. This is by com in Figure 4.2. The inductive hypothesis in this

case is not only true about R, but also about Q, so that if Q

is consistent and Q
µ1[k]
−−→ Q′ then π(Q)

µ1−→f π(Q′). Assume P

is consistent, P
µ[k]
−−→ P ′ and γ(µ1, µ2) = µ. We can calculate

π(P) = π(R | Q) = π(R) | π(Q) and π(P ′) = π(R′ | Q′) =

π(R′) | π(Q′). Since π(R)
µ
−→f π(R′) and π(Q)

µ
−→f π(Q′) it

follows that according to rule com π(R) | π(Q)
µ
−→f π(R′) | π(Q′)

which means π(P)
µ
−→f π(P ′) as required.

iii. Cases for P ≡ R \ L and P ≡ S with S
def
= R are straightforward.

2. We prove Theorem 4.1.2 by using induction on the definition of π(P), which

means on the structure of P .

(a) Base case: obvious.

(b) Inductive hypothesis: We assume that for all subprocesses R of P and

all ν, if π(R)
ν
−→f R′, then for any l ∈ K\keys(R) there is R′′ such that

R
ν[l]
−−→ R′′ and π(R′′) = R′.

(c) Induction step: We show the result for π(P) as well. we consider cases

depending on the structure of P . Assume that P is consistent and

π(P)
µ
−→f Q for some Q in all cases.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 84

i. P ≡ (s, s′; b) and π((s, s′; b).R) = (s′).π(R): Here rule actf applies

with s′ being of the structure ν, s′′. The transition is (ν, s′′).R
ν
−→f

(s′′).R). Then with k ∈ K\keys(P) we have (ν, s′′).R
ν[k]
−−→ (ν[k], s′′).R

and we let Q′ ≡ (ν[k], s′′).R with π(Q′) ≡ (s′′).R.

ii. P ≡ (t; b).R and π((t; b).R) = π(R): Here the transition is in R by

π(R)
ν
−→f R′. By the inductive hypothesis R

µ[k]
−−→ R′′ and π(R′′) = R′

for some R′′. We deduce that π(P)
ν
−→f R′ and P

µ[k]
−−→ R′′. Let

Q′ ≡ R′′ with the required properties.

iii. P ≡ R | T and π(P) = π(R | T): There are two cases:

A. The transition is by parf . Assume π(R | T)
µ
−→f Q for some Q.

So π(R | T)
µ
−→f Q implies without loss of generality π(R)

µ
−→f R′

for some R′ and Q ≡ R′ | π(T) since π(P) = π(R | T) =

π(R) | π(T). Since π(R)
µ
−→f R′ by the inductive hypothesis

there exists a U and a k ∈ K \ (keys(R) ∪ keys(T)) such that

R
µ[k]
−−→ U and π(U) = R′. Since R

µ[k]
−−→ U and since fsh[k](T)

we obtain by rule par R | T
µ[k]
−−→ U | T . Now we calculate

π(U | T) = π(U) | π(T) = R′ | π(T) = Q. Let Q′ ≡ U | T with

the required properties.

B. The transition is by comf . Since π(P)
µ
−→ P ′, by rule comf ,

R
ν1−→ R′, T

ν1−→ T ′ and γ(ν1, ν2) = µ for some R′, T ′ must hold

without loss of generality. The inductive hypothesis in this case

is not only true about R, so there is an R′′ such that R
ν1[k]
−−→ R′′

and π(R′′) = R′ and a T ′′ such that T
ν2[k]
−−→ T ′′ and π(T ′′) = T ′.

We can deduce that R | T
µ[k]
−−→ R′′ | T ′′. Also π(R′′ | T ′′) =

π(R′′) | π(T ′′) = R′ | T ′ = P ′. Let Q′ ≡ R′′ | T ′′. This has the

required properties.

iv. Cases for P ≡ R \ L and P ≡ S with S
def
= R are straightforward.

We now consider the causal consistency property, first defined and discussed in

[26, 66], for CCBs. We define when a set of keys is a cause for another key:

Definition 4.7. The set of causes of a key k in P is defined as follows:

cau(0, k) = ∅ cau(P \L, k) = cau(P, k)

cau((s).P, k) = k(s) ∪ cau(P, k) if k ∈ keys(P) cau((µ[k] : s).P, k) = ∅

cau((s).P, k) = ∅ if k /∈ keys(P) cau(S) = cau(P) if S
def
= P

cau(P | Q, k) = cau(P, k) ∪ cau(Q, k)

CHAPTER 4. A CALCULUS OF COVALENT BONDING 85

If one of two coinitial transitions is forward and the other reverse, either they are

concurrent (by Defintion 4.5) or the forward transition depends causally on the

reverse one.

Proposition 4.6. If t1 ≡ P
µ[k]
−−→ P ′ and t2 ≡ P

ν[l]
−−→ P ′′, then either t1 and t2 are

concurrent or k ∈ cau(P ′′, l).

Proof. By induction on the depth of inference trees for transition of P .

1. Base case: Obvious.

2. Inductive hypothesis: We assume that for all subprocesses R of P and all

c[m], d[n], if R is a consistent process, t1 ≡ R
c[m]
−−→ R′ and t2 ≡ R

d[n]
−−→ R′′ then

either t1 and t2 are concurrent or m ∈ cau(P ′′, n).

3. Induction step: We show Proposition 4.6 for P . By Definition 4.5 there is

either an M such that M 6= P , P ′ ν[l]
−−→ M and P ′′

µ[k]
−−→ M , or k ∈ cau(P ′′, l)

holds. We consider cases based on the structure of P :

(a) P ≡ (s; b).R with s containing at least one past action and at least one

fresh action. The transitions t1 and t2 are by rev act1 respectively act1.

Since there is nothing in the rules giving any of them precedence, the tran-

sitions are concurrent as required. With s′ being the sequence obtained

from s by removing actions ν and µ[k] we have t1 ≡ (s′, ν, µ[k]; b).R
µ[k]
−−→

(s′, ν, µ, ; b).R and t2 ≡ (s′, ν, µ[k]; b).R
ν[l]
−−→ (s′, ν[l], µ[k]; b).R. We now

deduce M ≡ (s′, ν[l], µ; b).R, and the properties required for ν and µ[k]

being concurrent hold: namely (s′, ν, µ, ; b).R
ν[l]
−−→M and (s′, ν[l], µ[k]; b).R

µ[k]
−−→

M .

(b) P ≡ (s; b).R where s contains only fresh actions: We cannot have the

required transition t2. Hence Proposition 4.6 is vacuously valid.

(c) P ≡ (s; b).R where s contains only past actions: There is R
ν[l]
−−→ R′, and a

µ[k] ∈ s so that t2 ≡ (s; b).R
ν[l]
−−→ (s; b).R′ and t1 ≡ (s; b).R

µ[k]
−−→ (s′; b).R

for some s′. These transitions are not concurrent since doing any action

in R prevents undoing of actions in s and vice versa. Hence k ∈ cau(P ′′, l)

holds with P ′′ ≡ (s; b).R′.

(d) P ≡ Q | R: There are three cases:

i. t1 by rule rev par and t2 by rule par. There are two sub-cases:

A. Transitions in the same subprocess: Assume without loss of gen-

erality Q
µ[k]
−−→ Q′ and Q

ν[l]
−−→ Q′′. By the inductive hypothesis

these transitions are either concurrent or k ∈ cau(Q′′, l).

CHAPTER 4. A CALCULUS OF COVALENT BONDING 86

- concurrent transitions: By the inductive hypothesis there is an

N so that Q′ ν[l]
−−→ N and Q′′ mu[k]

−−−→ N . We can conclude by using

rule rev par that Q′ | R
ν[l]
−−→ N | R and Q′′ | R

µ[k]
−−→ N | R.

Letting M ≡ N | R we get the required result.

- k ∈ cau(Q′′, l): Since cau(P | Q, k) = cau(P, k) ∪ cau(Q, k)

according to Definition 4.7 we get cau(Q′′ | R, l) = cau(Q′′, l) ∪

cau(R, l). If k ∈ cau(Q′′, l) then k ∈ cau(Q′′, l) ∪ cau(R, l) must

be true as well and, hence, k ∈ cau(Q′′ | R). Since P ′′ ≡ Q′′ | R

it follows that k ∈ cau(P ′′, l) as required.

B. Transitions in different subprocesses: Assume without loss of gen-

erality that Q
µ[k]
−−→ Q′ and R

ν[l]
−−→ R′. These transitions are con-

current. By rule rev par Q | R
µ[k]
−−→ Q′ | R

ν[l]
−−→ Q′ | R′ and

Q | R
ν[l]
−−→ Q | R′

µ[k]
−−→ Q′ | R′ are valid. These form the diamond

required for concurrent transitions with M ≡ Q′ | R′.

ii. P
µ[k]
−−→ P ′ by rule rev com and P

ν[l]
−−→ P ′′ by rule par: Without loss of

generality this covers all cases with one par and one rev com or one

rev par and one com transition. We assume that P
µ[k]
−−→ P ′ happens

by rule rev com, where γ(µ1, µ2) = µ, and that P
ν[l]
−−→ P ′′ happens

by rule par. We also assume that ν happens in Q, so that Q
ν[l]
−−→

Q′, and that Q
µ1[k]
−−→ Q′′ and R

µ2[k]
−−→ R′. We know that fsh[l](R)

because of the preconditions of the par rule and that l 6= k because

fsh[l](R) and R
µ2[k]
−−→ R′′, a transition which could not happen if

l = k, since according to Proposition 4.1.2 a key cannot be fresh

for a reverse transition to happen with this key. By the inductive

hypothesis transition Q
ν[l]
−−→ Q′ and Q

µ1[k]
−−→ Q′′ are either concurrent

or k ∈ cau(Q′, l).

A. concurrent transitions: By the inductive hypothesis there is an

N so that Q′
µ1[k]
−−→ N and Q′′ ν[l]

−−→ N . Using the rev com rule we

can deduce that P
µ[k]
−−→ Q′′ | R′, P

ν[l]
−−→ Q′ | R, Q′′ | R′ ν[l]

−−→ N | R′

and Q′ | R
µ[k]
−−→ N | R′. Letting M ≡ N | R′ we obtain the result.

B. k ∈ cau(Q′, l): k ∈ cau(Q′, l) implies k ∈ (cau(Q′, l) ∪ cau(R, l))

according to Definition 4.7, which is k ∈ cau(Q′ | R, l). Since

P ′′ = Q′ | R we have k ∈ cau(P ′′, l) as required.

iii. P
µ[k]
−−→ P ′ by rev com and P

ν[l]
−−→ P ′′ by com: Without loss of gener-

ality this covers all cases with one com and one rev com transition.

We assume that γ(µ1, µ2) = µ and γ(ν1, ν2) = ν. Also Q
µ1[k]
−−→ Q′,

Q
ν1[l]
−−→ Q′′, R

µ2[k]
−−→ R′ and R

ν2[l]
−−→ R′′. By the inductive hypothesis

CHAPTER 4. A CALCULUS OF COVALENT BONDING 87

the transitions µ1 and ν1 must be either concurrent or k ∈ cau(Q′′, l).

For transitions µ2 and ν2 the same holds. So we distinguish three

cases:

A. two concurrent transitions: Since Q
µ1[k]
−−→ Q′ and Q

ν1[l]
−−→ Q′′ by

the inductive hypothesis it follows that there is an N so that

Q′ ν1[l]
−−→ N , and Q′′

µ1[k]
−−→ N and since R

µ2[k]
−−→ R′ and R

ν2[l]
−−→ R′′

there is an N ′ so that R′ ν2[l]
−−→ N ′ and R′′

µ2[k]
−−→ N ′. By rev

par and par it follows that P
µ[k]
−−→ Q′ | R′ ν[l]

−−→ N | N ′ and

P
ν[l]
−−→ Q′′ | R′′ µ[k]

−−→ N | N ′. Letting M ≡ N | N ′ gives the

result.

B. k ∈ cau(Q′′, l) and k ∈ cau(R′′, l): Since P ′′ ≡ Q′′ | R′′ we can

calculate cau(P ′′, l) = cau(Q′′ | R′′, l) = cau(Q′′, l) ∪ cau(R′′, l).

Since k ∈ cau(Q′′, l) and k ∈ cau(R′′, l) it follows that k ∈

cau(Q′′, l) ∪ cau(R′′, l) and that k ∈ cau(P ′′, l) as required.

C. k ∈ cau(Q′′, l), and R
µ2[k]
−−→ R′ and R

ν2[l]
−−→ R′′ are concurrent:

Since P ′′ ≡ Q′′ | R′′ we get cau(P ′′, l) = cau(Q′′ | R′′, l) =

cau(Q′′, l) ∪ cau(R′′, l). Since k ∈ cau(Q′′, l) it follows that k ∈

cau(Q′′, l) ∪ cau(R′′, l) and that k ∈ cau(P ′′, l) as required. This

also applies when k ∈ cau(R′′, l), so Q
µ1[k]
−−→ Q′ and Q

ν1[l]
−−→ Q′′

are concurrent.

(e) P ≡ R \ L: The transitions R \ L
µ[k]
−−→ R′ \ L and R \ L

ν[l]
−−→ R′′ \ L are

by rule rev res in Figure 4.4 respectively res in Figure 4.2. We assume

without loss of generality that R
µ[k]
−−→ R′, R

ν[l]
−−→ R′′ and µ, ν /∈ L. By

the inductive hypothesis R
µ[k]
−−→ R′ and R

ν[l]
−−→ R′′ are either concurrent

or k ∈ cau(R′′, l).

i. concurrent transitions: By the inductive hypothesis there is an N so

that R′
µ[l]
−−→ N and R′′ ν[k]

−−→ N . Consider M ≡ N \L. Since µ, ν /∈ L

by rule rev res respectively res we deduce P
µ[k]
−−→ R′\L

ν[l]
−−→ M and

P
ν[l]
−−→ R′′\L

µ[k]
−−→M .

ii. k ∈ cau(R′′, l): Since cau(P \L, k) = cau(P, k) according to Defini-

tion 4.7 we calculate cau(R′′\L, l) = cau(R′′, l). If k ∈ cau(R′′, l) it

follows that k ∈ cau(R′′\L, l) as required.

(f) P ≡ S with S
def
= R: similar to the P ≡ R \ L case.

Next we introduce further notation on traces. We denote the reverse transition

corresponding to a forward transition t (and the forward transition corresponding

to a reverse transition t) as t•. Similarly to denoting the reverse transitions by •,

CHAPTER 4. A CALCULUS OF COVALENT BONDING 88

we denote the reverse trace of σ as σ•. The empty trace with a process P is written

as ǫP , and when the process is the source or the target of the transition t, we write

ǫsource(t) respectively ǫtarget(t). Similarly as with forward and reverse transitions, we

shall use forward traces (traces composed of forward transitions only) and reverse

traces (traces composed of reverse transitions only).

We can now define causal equivalence between traces.

Definition 4.8. Causally equivalent traces are defined by the least equivalence

relation ≍ which is closed under composition and obeys the following rules, where

t1 is P
a[k]
7−→ Q, t2 is P

b[l]
7−→ R, d1 is Q

b[l]
7−→ S and d2 is R

a[k]
7−→ S:

t1; d1 ≍ t2; d2 t; t• ≍ ǫsource(t) t•; t ≍ ǫtarget(t)

The first relation states that the concurrent transitions t1 and t2 are causally in-

dependent, hence they can happen in any order. The trace t1; d1 forms a diamond

with t2; d2, so the traces are causally equivalent. The remaining relations state that

doing a transition and its reverse version is the same as doing nothing.

The next two results are needed to prove causal consistency for CCBs; they follow

closely [26, 66]. The first states that any computation has a causally equivalent

version in which we first compute in reverse for a while and then we only compute

forwards. The second result says that a trace which has a forward-only coinitial

and cofinal and causally equivalent trace can always be shortened to a forward-only

trace.

Proposition 4.7 (Rearrangement). If σ is a trace then there exist forward traces

σ1 and σ2 such that σ ≍ σ•
1; σ2.

Proof. We give a constructive proof. We show that any trace can be transformed

to the form required by Proposition4.7. Any trace must be either σ, σ• or σ•
1; σ2

or it must be of the form σ•
1; σ∗

2; t1; t•
2; σ3 where σ, σ1 and σ2 are forward traces and

σ3 is composed of any number of forward and reverse transitions. In other words,

this means that we can identify the earliest pair of forward-reverse transitions. The

instructions for the transformation to the required form are in the algorithm in

Figure 4.13.

We show that the algorithm terminates in all cases with the required result. Exe-

cuting the inner while loop (lines 9 to 13) once decreases the length of the resulting

σ2 by 1 and increases the length of the resulting σ3 by 1.

After the inner while loop terminates we have length(σ′
2) = length(σ2). The trace

σ•
1; t• forms a new reverse only trace whose length is increased by 1 compared to σ•

1.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 89

1 Let σinput be our trace

2 while (σinput 6= σ ∧ σinput 6= σ• ∧ σinput 6= σ•
1; σ2 for all forward traces

σ, σ1, σ2)

3 σinput is of the form σ•
1; σ2; t1; t•

2; σ3 for some (possibly
new) σ1, σ2, t1, t2, σ3, where σ1, σ2, σ3 are forward traces,
t1, t2 are forward transitions (any of σ1, σ2, σ3 could be
empty sequences ǫ)

Let length(σ1) = n, length(σ2) = k, length(σ3) = l.
Distance from start to the pair t1; t•

2 is n + k

4 Let t1 ≡ P
µ[m]
−−→ P ′, t•

2 ≡ P ′ ν[n]
−−→ P ′′ (so t2 ≡ P ′′ ν[n]

−−→
P ′)

5 if (µ[m] = ν[n]) then

6 Since µ[m] = ν[k] we get P ≡ P ′′ and, by Def-
inition 4.8, transitions t1; t•

2 are replaced by ǫ in
σinput

7 σinput is now σ•
1; σ2; σ3

8 else

9 while (σ2 6= ǫ)

10 σinput is σ•
1; σ2; t1; t•

2; σ3 for some (possibly
new) σ2, t1, t2 and σ3, with σ1 and σ2 being
forward traces and t1 and t2 being forward
transitions

11 According to Proposition 4.1.3 there must be

a transition t•
1 ≡ P ′

µ[m]
−−→ P . t•

1 and t•
2 form a

diamond with two transitions t•
3 ≡ P

ν[n]
−−→M

and t•
4 ≡ P ′′

µ[m]
−−→ M for some M accord-

ing to Proposition 4.2. According to Propo-
sition 4.1.3 there must be a transition t4 ≡

M
µ[m]
−−→ P ′′. The trace t•

3; t4 replaces t1; t•
2 in

σinput since the traces are coinitial and cofinal

12 σinput is now σ•
1; σ2; t•

3; t4; σ3

13 end while (at this point σ2 is ǫ)

14 σinput is now σ•
1; t•; σ′

2; σ3 for some t, σ′
2 where σ′

2 is
forwards only

15 end if

16 end while (at this point σinput = σ ∨ σinput = σ• ∨ σinput =
σ•

1; σ2, for some forward traces σ, σ1 and σ2)

Figure 4.13: Rearrangement algorithm.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 90

Executing the outer while loop once decreases the length of the sequence t•
2; σ3,

which is the “unprocessed” part of σ•
1; σ2; t1; t•

2; σ3, and changes the structure of

σinput so it is no longer as required by Proposition 4.7. The sequence σ•
1; σ2; t1 is of

the form required by Proposition 4.7 and its length is increased by the outer while

loop. This is because at the end of the outer while loop we have σ•
1; t•; σ′

2; σ3. The

part σ•
1; t•; σ′

2 of this trace is in the correct form and its length is increased by 1,

since t• is added, σ•
1 is unchanged, and length(σ′

2) = length(σ2). The sequence σ3 is

the “unprocessed” part, which has been shortened by one transition, in comparison

to t•
2; σ3 since σ3 is unchanged. Hence the algorithm terminates once σ3 has been

completely processed and the final σinput has the required form with σ3 being empty.

Proposition 4.8 (Shortening). If σ1 and σ2 are coinitial and cofinal traces, with

σ2 a forward trace, then there exists a forward trace σ′
1 of length at most that of σ1

such that σ′
1 ≍ σ2.

Proof. By induction on the length of σ1. If σ1 is a forward trace then the proposition

holds. If not, then by Proposition 4.7 we assume σ1 to be σ′•; σ for some forward

sequences σ and σ′. There is only one sub-trace t•
1; t2 in σ′•; σ where the first

transition t•
1 is reverse and the second transition t2 is forward. We assume t•

1 ≡

P
µ[k]
−−→ P ′ and t2 ≡ P ′ ν[l]

−−→ P ′′. There is a transition t′ ≡ R
µ[k]
−−→ R′ in σ1 for some

R, R′, otherwise σ1 could not be cofinal with σ2. Proposition 4.1.3 implies that there

is a transition t1 ≡ P ′ µ[k]
−−→ P . Transitions t1 and t2 are either concurrent, in conflict,

or l ∈ cau(P, k) or k ∈ cau(P ′′, l). The possibility of t1 and t2 being in conflict is

excluded since we have t1 and t2 in a valid trace, namely P ′ ν[l]
−−→ P ′′ →∗ R

µ[k]
−−→ R′.

Also, k ∈ cau(P ′′, l) is impossible since we perform ν[l] before µ[k] in the trace

P
µ[k]
−−→ P ′ ν[l]

−−→ P ′′ →∗ R
µ[k]
−−→ R′. Finally, l ∈ cau(P, k) cannot hold because

otherwise, since P ′ µ[k]
−−→ P , some α[l] transition must have happened in P ′ before

P ′ µ[k]
−−→ P . This contradicts P ′ ν[l]

−−→ P ′′ (key l is not fresh in P ′ due to the α[l] action,

hence P ′ ν[l]
−−→ P ′′′ is not possible for any P ′′′). Hence l /∈ cau(P, k) and, overall, the

only possibility is that t1 and t2 are concurrent.

The transitions t•
1 and t2 form a diamond with two transitions t3 ≡ P

ν[l]
−−→ P ′′′ and

t•
4 ≡ P ′′′

µ[k]
−−→ P ′′ for some P ′′′ according to Proposition 4.2. The trace t3; t•

4 can

replace t•
1; t2 in σ′•; σ since the traces are coinitial and cofinal. We can repeat this

process of “moving” an equivalent version of t•
4 to the right (by following the steps

described above) until the resulting t• (with the label µ[k]) is directly to the left of

t′ ≡ R
µ[k]
−−→ R′. These transitions are then Q

µ[k]
−−→ R

µ[k]
−−→ R′ for some Q (where

Q = R). Using Definition 4.8 we can remove them. The resulting trace is shorter

than σ1 and we can repeat the process until the trace is forwards only.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 91

Next we have the second important result for CCBs.

Theorem 4.2 (Causal consistency). Let σ1 and σ2 be traces. Then σ1 ≍ σ2 if and

only if σ1 and σ2 are coinitial and cofinal.

Proof. The statement, if σ1 ≍ σ2 then σ1 and σ2 are coinitial and cofinal, follows

directly from the construction of ≍ in Definition 4.8.

Next, we show that if σ1 and σ2 are coinitial and cofinal then σ1 ≍ σ2. We use

induction on the sum of the lengths of σ1 and σ2 and on the distance between the

end of σ1 and the earliest pair of transitions t1 in σ1 and t2 in σ2 which are not

equal. The coinitial and cofinal traces σ1 and σ2 are rewritten as compositions of

reverse and forward traces by Proposition 4.7. There are three cases:

1. t1 is forward and t2 is reverse: We can assume that σ1 = σ•; t1; σ′ and σ2 =

σ•; t•
2; σ′′ by Proposition 4.7. Since t1 is forward t1; σ′ must be forward, whereas

t•
2; σ′′ must start with at least one reverse transition. Since σ1 and σ2 are

coinitial and cofinal t1; σ′ and t•
2; σ′′ are also coinitial and cofinal. We notice

that the assumption of Proposition 4.8 is valid for t1; σ′ and t•
2; σ′′, hence there

is a forward trace σ′′′ shorter than t•
2; σ′′ such that σ′′′ ≍ t•

2; σ′′. So the trace

σ•; σ′′′ is shorter than σ2 = σ•; t•
2; σ′′, and the result follows by induction.

2. t1 and t2 are forward: Assume t1 ≡ R
µ[k]
−−→ R′ and t2 ≡ R

ν[l]
−−→ R′′ for

some R, R′, R′′. Transitions t1 and t2 must be be concurrent according to

Proposition 4.3. Since σ1 and σ2 are cofinal, there must be transitions t′
1 ≡

P
ν[l]
−−→ P ′ and t′

2 ≡ Q
µ[k]
−−→ Q′ for some P , P ′, Q, Q′ at some later stage in

σ1 and σ2. We look at the case of t′
1 ≡ P

ν[l]
−−→ P ′ in σ1 here, the other case

follows in the corresponding way. All transitions from t1 to t′
1 are concurrent

since we can do µ[k] either as the first transition R
µ[k]
−−→ R′ of σ1 or as the last

transition in the sub-trace t2; t∗; t′
2. Hence, we can rearrange the transitions by

the technique used in the proof of Proposition 4.7 so that R
ν[l]
−−→ R′′′ comes first.

This transition is identical to t2. So we have moved the first non-matching pair

of transitions in σ1 and σ2 to the right, and the result follows by induction.

3. t•
1 and t•

2 are reverse: Transitions t•
1 ≡ R

µ[k]
−−→ R′ and t•

2 ≡ R
ν[l]
−−→ R′′, for

some R, R′ and R′′, are undoing different actions. Since σ1 and σ2 are cofinal,

there is either a transition t′•
1 ≡ P ′′

µ[k]
−−→ P ′′′, for some P ′′ and P ′′′ in σ2, or a

transition t′
1 ≡ P

µ[k]
−−→ P ′, for some P and P ′ in σ1, redoing the action undone

in t•
1. For t•

2 there is either a transition t′•
2 ≡ S ′′

µ[k]
−−→ S ′′′, for some S ′′ and

S ′′′ in σ1, or a transition t′
2 ≡ S

µ[k]
−−→ S ′, for some S and S ′ in σ2, redoing the

action undone in t•
1. We treat these cases separately:

CHAPTER 4. A CALCULUS OF COVALENT BONDING 92

(a) t′•
1 ≡ P ′′

µ[k]
−−→ P ′′′ in σ2 or t′•

2 ≡ S ′′ ν[l]
−−→ S ′′′ in σ1: We consider t′•

1 ≡

P ′′
µ[k]
−−→ P ′′′ in σ2, the other case follows correspondingly. The traces t•

1

and t•
2 are concurrent according to Proposition 4.2. All transitions from

t•
2 to t′•

1 must be concurrent since from R we can do µ[k] either as the first

transition as in σ1 or as the last one in this sub-trace. So we can rearrange

the transitions by a similar technique of “swaps” as used in the proof of

Proposition 4.7 so that R
µ[k]
−−→ R′′′ comes first. This transition is identical

to t•
1, and we have moved the first non-matching pair of transitions in σ1

and σ2 to the right, hence the case follows by induction.

(b) t′
1 ≡ P

µ[k]
−−→ P ′ in σ1 and t′

2 ≡ S
ν[l]
−−→ S ′ in σ2 and P ′′

µ[k]
−−→ P ′′′ not in

σ2 and S ′′ ν[l]
−−→ S ′′′ not in σ1: We consider t′

1 ≡ P
µ[k]
−−→ P ′ in σ1 only,

the case t′
2 ≡ S

ν[l]
−−→ S ′ in σ2 follows correspondingly. We show that

the transitions from t•
1 up to t′

1 are concurrent. In fact, we show that

t•
1 and t′′, the next transition on the way to t′

1, are concurrent. If they

are concurrent, we can swap them thus moving t•
1 to the right towards

t′
1. If we follow this approach we will eventually have t•

1 immediately to

the left of t′
1, and we can remove t•

1; t′
1 according to Definition 4.8. What

remains to be done is to prove that t•
1 and t′′ are concurrent. There are

two cases: b If t′′ is forward then we have a situation as in the proof

of Proposition 4.8, where we show that the transitions are concurrent.

The second case is for t′′ being reverse. Assume t′′ ≡ R′ α[n]
−−→ R′′. Hence

by Proposition 4.1.3 we have R′ µ[k]
−−→ R. So we have R′ α[n]

−−→ R′′ and

R′ µ[k]
−−→ R. This matches the assumptions of Proposition 4.6 (where R′

is P). If we show that n /∈ cau(R, k) then they are concurrent. The

transitions R
µ[k]
−−→ R′ α[n]

−−→ R′′ show that µ[k] is undone before α[n], so n

cannot be one of the causes of k in R. Hence, the transitions t•
1 and t′′

are concurrent, and the result follows by induction.

One of the consequences of causal consistency for CCBs concerns reachability: any

state that can be reached from a standard process during an arbitrary computation

can be reached by computing forwards alone. This property is not valid in the full

calculus CCB as can be seen in Chapter 1 and in Example 4.6.

4.4 Expressiveness

A comparison of the expressiveness of CCB to existing calculi is complicated by the

non-existence of non-deterministic choice in our calculus, whereas other comparable

CHAPTER 4. A CALCULUS OF COVALENT BONDING 93

calculi contain it. Therefore, we show that non-deterministic choice could easily be

added to CCB and was left out only to make it more realistic for our application.

CCB with non-deterministic choice has this syntax:

P ::= S|S
def
= P

∣

∣

∣ (s; b).P
∣

∣

∣ P |Q
∣

∣

∣ P + Q
∣

∣

∣ P \L

The + operator is the standard non-deterministic choice operator.

The forward SOS rules are extended by the following rule:

sum
P

a[k]
−−→ P ′ fsh[k](Q)

P + Q
a[k]
−−→ P ′ + Q

concert sum
P

a[k]
−−→ P ′ fsh[k](Q)

P + Q
a[k]
−−→ P ′ + Q

The reverse SOS rules are extended with following rule:

sum rev sum
P

a[k]
−−→ P ′ std(Q)

P + Q
a[k]
−−→ P ′ + Q

We now can compare the expressiveness of this calculus to existing calculi. If we

consider CCSK and CCS-R, then it is at least as expressive as CCSK and CCS-R.

In addition, in our calculus we have the concerted actions. Whilst other calculi can

also have a forward action followed by a reverse action, there is no possibility to

prevent other actions to happen in between. This is a new feature in CCB.

Due to our new operator, we can get sequences of transitions not possible in calculi

without out-of-causal-order reversibility. If we take the example from Chapter 1, we

get the following trace of actions (underlining indicating reversing, as before, and

writing the concerted reaction as two transitions): cdqcd. Here c is done before d

and is undone before d as well. In causal order, we would have cdqdc as the only

possible trace.

The reversible π calculus, as introduced in [66], is also less expressive than CCB,

because it is a causally consistent calculus. Similar to CCSK and CCSR, it does not

have concerted actions. Compared to the κ-calculus, CCB is not more expressive.

In particular, out-of-causal-order reversibility can be modelled in the κ-calculus, as

we have seen in Section 3.4.4. As we have seen in Section 3.4.5, P systems can also

model out-of-causal-order reversibility, but comparing expressiveness is not directly

possible, since P systems does not have transition labels.

CHAPTER 4. A CALCULUS OF COVALENT BONDING 94

4.5 Conclusion

We have given a formal definition of CCB. We have also examined properties of

the calculus, showing that the calculus without weak actions is causally consistent.

The calculus without weak actions is also a conservative extension of a forward-only

calculus. In contrast if we add the weak actions we get a more complex behaviour.

In particular, we can reach states by doing forward and reverse transitions which

cannot be reached by computing forwards alone.

Chapter 5

The hydration of formaldehyde in

water

So far we have seen an informal example for the type of problems we want to tackle

in Section 2 and a formal syntax and SOS rules for it in Section 4. In this chapter

we examine a more complicated example to establish how our calculus performs and

include the subscripts we used in Section 2 in our calculus.

O

H

H

O

H H

H

HO OH

H

+

Figure 5.1: Hydration of formaldehyde in water into methanediol.

We describe in detail the hydration of formaldehyde in water.1 Formaldehyde is a

good preservative and is well known for its use in preserving specimen samples[38].

It also serves as an important building block in industrial processes and is therefore

produced in large quantities.2 At room temperature, formaldehyde forms a colour-

less and smelly gas. Formaldehyde reacts with water molecules to form methanediol.

The reaction is shown in Figure 5.1. It is reversible but it is much faster towards the

methanediol, so the equilibrium contains mostly methanediol. It should be noted

that other reactions are taking place in a solution of formaldehyde in water, however

we consider only the interaction of formaldehyde with water molecules. The carbon

atom of formaldehyde is not shown in Figure 5.1 in line with a common shorthand

formula for organic molecules. It resides at the point where the line, which reflect

1Detailed description of the reaction is given in [17]. The main path is on page 143, the base-
catalysed reaction is on page 713, and the acid-catalysed reaction in on page 343 of [17].

2According to [30] 41 million tonnes of formaldehyde-water solution were produced in 2010, the
most important product being various resins.

95

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 96

covalent bonds, from the oxygen atom and the hydrogen atoms meet; we follow this

convention in all other reaction diagrams. We use single lines to represent single

bonds in all our reactions, and we use double lines for double bonds, where two

electron pairs are shared between atoms.

5.1 The most common mechanism of the reaction

A closer look at the reaction in Figure 5.1 shows that the most common sequence of

intermediate reactions leading to methanediol is the one given in Figure 5.2. We now

describe carefully its steps. The oxygen atom in one of the water molecules attacks

the central carbon atom in the formaldehyde to form the intermediate 2 in Figure 5.2.

Then one of the hydrogen atoms of the positively charged oxygen atom is taken

away by another water molecule in a proton transfer. This gives the intermediate 3.

Finally, a proton is donated to the other oxygen atom in the intermediate 3 to give

the final configuration 4. As in the description of the autoprotolyis in Section 2.1

curved arrows for electron movements are given for the reaction going from left to

right.

O

H

H H

H

O

HH

O

H

H
H

OO

H H

HO O

H

O

H

H
H

OHHO

H

H

H

H

O O

H

H

++
+ + +

1 2 3 4

Figure 5.2: The most common path through the hydration of formaldehyde.

In order to model this reaction, we need to understand what it is that makes it hap-

pen. The main factor is that the oxygen atom in the water molecule is nucleophilic:

it tends to connect to another atomic nucleus, which is electrophile, i.e. tends to

connect to nucleophiles. In the formaldehyde the oxygen atom attracts electrons

towards itself, so the carbon atom has a positive charge and is an electrophile. Now,

the oxygen atom in the water molecule, which also attracts electrons and therefore

has negative charge and is a nucleophile, is attracted by this carbon atom and forms

a bond to the carbon atom. This bond is formed out of the electrons of one of

the electron pairs in the oxygen atom so far not involved in bonding, so-called lone

electron pairs. Since carbon cannot form more than four bonds, this reaction is

compensated by the double bond in the formaldehyde becoming a single bond and

the electrons from the double bond moving to a lone pair on the oxygen atom, which

now has three lone pairs. These movements are concerted, namely they happen to-

gether without a stable intermediate state and cannot be separated. So there is a

continuous change between two tetracoordinate species through a pentacoordinate

transition state. We have now reached the intermediate 2 in Figure 5.2.

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 97

Looking at the intermediate 2, we can see that contains one oxygen atom which is

negatively charged, because the oxygen atom has three lone pairs and a surplus of

one electron. The other oxygen atom is positively charged, since it has three bonds

and only one lone pair and therefore is missing an electron. The intermediate 2 reacts

then with a water molecule. The water molecule is nucleophilic and has lone pairs

for a bonding. It therefore can abstract one of the hydrogen atoms on the positively

charged oxygen atom. This leads to the intermediate 3 and a H3O+ molecule, a

water molecule with an additional hydrogen atom and a positively charged oxygen

atom.

Finally, a hydrogen atom can be re-donated to the negatively charged oxygen atom.

Note that the re-donated hydrogen atom may not be the one which was originally

attached to the oxygen atom. This transfer is possible since the oxygen atom in

the H3O+ is electron-deficient and the negatively charged oxygen atom is rich in

electrons. We then get the substrate 4 which contains the final product methanediol,

and water.

5.2 Other paths through the reaction

There are other paths through the reaction of formaldehyde and water. We assume

that we now start with a mixture of three water molecules and one formaldehyde

molecule. This shall allow us to explore all other water-formaldehyde interactions.

Two water molecules can interact to form H3O+ and OH−. This is known as au-

toprotolysis of water and is described in detail in Chapter 2 and [59]. These two

molecules can be considered an acid and a base respectively3. Both can interact with

formaldehyde and thus produce methanediol by different mechanisms than those in

the previous section.

Figure 5.3: Acid-catalysed hydration of formaldehyde in water.

The acid-catalysed reaction is described in Figure 5.3. Here the H3O molecule,

which was formed during the autoprotolysis serves as the acid as it easily donates a

proton. This proton can be donated to the oxygen atom in the formaldehyde, since

3There are slightly different definitions of acids and bases in the literature, we use the general
Bronsted-Lowry acid-base theory, which defines a base as a proton acceptor and an acid as a proton
donor.

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 98

this is slightly negatively charged, as we have seen. We then get the intermediate

6 in Figure 5.3. The charge on the oxygen atom can “move” to the carbon atom

by the electrons forming one of the bonds between the carbon atom and the oxygen

atom switching to the oxygen atom as a lone pair. The real charge distribution

is somewhere in between. We shall assume that the intermediates 6 and 7 are

somewhat different structures, and we shall model the transition from 6 to 8 as a

pair of concerted actions. Once the intermediate 8 is reached, one of the protons

from the oxygen atom in the intermediate 8 can be abstracted by one of the water

molecules, giving H3O+ and making the reaction a catalytic process.

H

O

HH

O

O

H

H

HH

O

O

H

O

H

HH

O

H

O

H

O

H

H

++ + +

11 1210

Figure 5.4: Base-catalysed hydration of formaldehyde in water.

The base-catalysed reaction in Figure 5.4 starts with a water and a OH− molecule,

the base, which tends to accept protons very strongly. It can therefore interact with

the carbon atom in the formaldehyde, which is similar to the water molecule attack-

ing the carbon atom. One of the bonds of the carbon-oxygen double bond is broken

and the oxygen atom becomes negatively charged. This gives the intermediate 11

which is in fact the same as the intermediate 3 in Figure 5.2. Then, one of the

protons of the water molecule can be abstracted, and we obtain the methanediol

and an HOH− molecule. Although this is the same structure as the original acid, it

is made up from different atoms. The process is considered catalytic since the OH−

molecule is retrieved at the end of the process.

H

O

H

O

H

O

O

H

H H

H H

13 14

Figure 5.5: Other compounds possible in the reaction of formaldehyde with water.

There are other ways how several molecules of water can react with formaldehyde

to produce methanediol and other byproducts. For example the base, OH−, could

directly interact with intermediate 7 to form methanediol and two water molecules.

Also, the two compounds given in Figure 5.5 can be created as intermediate products

in the reaction.

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 99

FA |W |W |W FA |W | OH | H3O i6 |W | OH |W

i8 | OH |W

MD | OH | H3O

i2 |W |W i3 | H3O |W MD |W |W

i6 | OH | OH | H3O

i7 | OH | OH | H3O

i7 |W | OH |W

i14 | OH | OH

i13 | H3O | H3O i2 | H3O | OH

Figure 5.6: All possible reactions in a system of formaldehyde and three water
molecules. The reactions displayed in more detail in Figure 5.7 are denoted here by
bold arrows.

All possible reactions of a system of one formaldehyde and three water molecules

are shown in Figure 5.6. Although the directions of reactions are denoted with

arrows, all reactions are reversible; the arrows merely indicate the direction to the

final product. We write FA for formaldehyde, W for water, MD for methanediol,

OH for hydroxide/OH−, and H3O for hydronium/H3O+. Many of the intermediate

compounds are denoted by iX where X ∈ {2, 3, 6, 7, 8, 13, 14}. Figure 5.6 includes

all intermediates from Figure 5.3 and Figure 5.4. The compounds in Figure 5.5

have only one path leading to them, and we could only move away from them by

reverting these actions. This is because these compounds are the “extreme” states

where there is either no hydrogen atom on an oxygen atom or both oxygen atoms are

fully saturated with two hydrogen atoms. The resonance between the intermediates

i6 and i7 in Figure 5.3 is represented by dashed arrows.

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 100

{np[11],c4o2[4]}

{np[12],h3o3[5]} {np[13],h5o5[12]}

{np[12],h3o3[5]}

{np[11],c4o2[4]}

{np[13],h5o5[7]}

{np[11],c4o2[4]}

{np[14],h6o6[8]}

{np[5],h8o8[14]}

FA |W |W |W FA |W | OH | H3O i6 |W | OH |W

i8 | OH |W

MD | OH | H3O

i2 |W |W i3 | H3O |W MD |W |W

Figure 5.7: The three main reaction paths in the hydration of formaldehyde.

5.3 A CCB model of the hydration of formalde-

hyde in water

We are now ready to model our reaction in CCB. Figure 5.7 shows in more detail

the three main paths through our reaction that we described in the last section;

these paths have been highlighted in bold in Figure 5.6.

The initial state of the reaction is modelled by the composition of one formaldehyde

FA and three water molecules, written as FA |W |W |W. The final products are

methanediol MD and two water molecules, written as MD |W |W. The path via

the intermediate molecules 2 and 3 in Figure 5.2 is via the nodes denoted by i2 and

i3 in Figure 5.7. The FA |W | OH | H3O node is the result of an autoprotolysis. The

base-catalysed and acid-catalysed reactions are put into the same diagram, again

the intermediates i6 and i8 correspond to molecules in Figure 5.3. As we can see in

Figure 5.7 the reactions are driven completely by concerted actions.

We model the formaldehyde molecule CH2O and the three water molecules H2O as

appropriate compositions of their atoms, namely hydrogen, oxygen and carbon. We

use our general prefixing operator to define these atoms:

H
def
= (h; p).H ′

O
def
= (o, o, n).O′

C
def
= (c, c, c, c; p).C ′

Carbon has four strong actions c, representing the potential for four covalent bonds,

and a weak action p, standing for a positive partial charge. The oxygen atom

can have up to three bonds. Normally it has two bonds, however, if a suitable

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 101

reaction partner is close, an additional weak bond is available. We use therefore

the simple prefixing operator to model it, with one weak action n standing for

the potential for a negative partial charge. A partial charge means that a part or

parts of a molecule have an electric charge, even though the molecule as a whole

is neutrally charged. These uneven charge distributions enable many reactions by

allowing another molecule to attack a partially charged part. The hydrogen atom

has one strong bond, and we use additionally a weak action p to represent that it can

become positively charged. Processes H ′, O′, and C ′ represent unspecified further

behaviour of the respective atoms.

Since our reaction involves multiple copies of H and O we shall adopt a subscript

notation to denote distinct copies of the same process. Both action labels and process

names will be subscripted. For example, H1
def
= (h1; p).H ′

1 and H2
def
= (h2; p).H ′

2 are

two copies of the hydrogen atom H. We shall abstract away these subscripts in

Section 6, where we introduce chemical process equivalence. Also, the copies of

actions c of carbon will be subscripted.

The synchronisation function γ is defined on subscripted actions as follows:

γ(ci, hj) = cihj i ∈ {1, . . . , 4}, j ∈ {1, . . . , 8}

γ(hi, oj) = hioj i ∈ {1, . . . , 8}, j ∈ {1, . . . , 6}

γ(ci, oj) = cioj i ∈ {1, . . . , 4}, j ∈ {1, . . . , 6}

γ(ci, n) = cin i ∈ {1, . . . , 4}

γ(hi, n) = hin i ∈ {1, . . . , 8}

γ(n, p) = np

Now we are ready to model H2O and CH2O molecules. A water molecule is modelled

simply as a composition of two copies of the hydrogen process with one copy of

oxygen atom; see below. The restriction of actions hi and oi, for i ∈ {3, 4},

ensures that actions such as h3[5] cannot be done alone but only together with

their partners o3[5]. This happens via undoing of h3o3[5] bond. When any of these

actions is fresh they can only happen together with their partners (as prescribed by

the communication function γ), and not alone.

((h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n).O′
2) \ {h3, h4, o3, o4}

The formaldehyde molecule is modelled by

(((c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[4], n).O′
1)

\{c1, c2, c3, c4, h1, h2, o1, o2, c1h1, c2h2}

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 102

Again the restriction of actions ci, for i ∈ {1, 2, 3, 4}, oj, for j ∈ {1, 2}, and hk, for

k ∈ {1, 2}, ensures that such actions cannot be done alone but only together with

their partners. When any of these actions is fresh they can only happen together

with their partners (as prescribed by the communication function γ), and not alone.

This also means that we do not allow the creation of new bonds (involving these

actions) between different molecules as single acts of synchronisation. Such new

bonds will be created via concerted actions and (almost) always via the weak np

bonds which will then get promoted to strong bonds.

We also restrict cihi for i ∈ {1, 2}. It prevents breaking any of the bonds between

C1 and its hydrogen atoms H1 and H2. This serves two purposes. Firstly, it makes

sure that once we have done the p action of the carbon process, we will break one

of the bonds between the carbon atom and the oxygen atom. This is justified since

in reality it is one of the oxygen bonds which is broken, so this models the reality

closely. Secondly, it also prevents O2 or O3 from abstracting H1 or H2 from the

carbon atom. Note that hi, oj and n are not restricted in FA and in W: this allows

us to break bonds involving these actions as a part of concerted actions.

The four molecules of the reaction are now composed in parallel:

(CH2O | H2O | H2O | H2O) \ {n, p}

We restrict actions n and p, so that they cannot happen separately from each other

but only together within this system of processes.

The main path through the reaction require only two copies of water molecules so we

start with the following initial state, where keys 1, . . . , 8 specify the initially existing

bonds of formaldehyde and the two water molecules.

(((c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[4], n).O′
1)

\ {c1, c2, c3, c4, h1, h2, o1, o2, c1h1, c2h2}

| ((h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n).O′
2) \ {h3, h4, o3, o4}

| ((h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3) \ {h5, h6, o5, o6}

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4 \ {h7, h8, o7, o8}) \ {n, p}

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 103

As we did in Section 2.1, we move restrictions to the outside, giving the following

process:

((c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[4], n).O′
1

| (h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n).O′
2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4)

\ {c1, c2, c3, c4, h1, h2, o1, o2, c1h1, c2h2} \ {h3, h4, o3, o4}

\ {h5, h6, o5, o6} \ {h7, h8, o7, o8} \ {n, p}

We leave out restrictions in the following sections to improve readability. The initial

process without restrictions is as follows:

(c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[4], n).O′
1

| (h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n).O′
2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

remembering that the restrictions are still there.

5.3.1 The main path through the reaction

We first consider the reaction steps in Figure 5.2, following the path via i3 | H3O |W

and i2 |W |W in Figures 5.6 and 5.7. The first step is the n, p reaction between

C1 and O2 or O3. Note that there are other n, p reactions that are allowed by our

model. We could have O2 getting a hydrogen atom from O3, or vice versa, which

is the autoprotolysis of water which we have mentioned before. We shall discuss

this further later on. Also O1 could pull one of the hydrogen atoms from one of the

water molecules: again, we shall discuss it later.

Returning to the first step of our reaction, we have O2 bonding with C with the key

11. This is followed immediately by breaking of the bond 3 or 4 by the rule concert.

Note that breaking of 1 or 2 is not possible because of the restriction of c1h1 and

c2h2. We break the bond 4 and get a transition by concerted actions: we create

the bond np[11] and break the bond c4o2[4]. Henceforth we shall write the name

of the target of a transition below the transition, using the names that appear in

Figures 5.6-5.7. Here, for example, the compound resulting from this transition is

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 104

i2 |W but since in general we have an extra water molecule W, we write i2 |W |W

(changes highlighted in bold).

(c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[4], n).O′
1

| (h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n).O′
2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

{np[11],c4o2[4]}
−−−−−−−−→

(c1[1], c2[2], c3[3], c4; p[11]).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2, n).O′
1 | (h3[5]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n[11]).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i2 |W |W

Now the prom rewrite rule must be applied before we derive the next concerted

transition: we promote the weak bond 11 of the carbon atom to a stronger bond on

c4, which has become available:

(c1[1], c2[2], c3[3], c4; p[11]).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2, n).O′
1 | (h3[5]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n[11]).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

⇒

((c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2, n).O′
1 | (h3[5]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n[11]).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i2 |W |W

The next step is to form a bond between O3 and either H3 or H4. We bond with H3

with the key 12 and break the bond 5, producing a pair of concerted actions. We

then move a weak bond 11 on n in O2 to a stronger bond on o3 (which has become

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 105

available) by rewrite rule move-r. We also promote the weak bond 12 in H3 to a

strong bond on h3 by rewrite rule prom, giving overall this transition:

{np[12],h3o3[5]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2, n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[11], o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i3 | H3O |W

The next step is a proton transfer from O3 to O1. We transfer H5 (but we could

have used H6 or H3 since they all have the p action ready). Performing the transfer

of H5 from O3 to O1 (and breaking the bond 12), we obtain the following:

{np[13],h5o5[7]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2, n[13]).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[11], o4[6], n).O′

2

| (h5; p[13]).H ′
5 | (h6[8]; p).H ′

6 | (o5, o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

MD |W |W

we obtain the final product (methanediol CH2(OH)2) and two water molecules:

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[11], o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

MD |W |W

Note that the n, p actions are ready again and all the existing bonds are on strong

actions. So we now can reverse the reaction by O3 abstracting a hydrogen atom

from H4 or H5, and all the way to the initial state. Moreover, let us inspect the

bonds 4, 5 and 7 which are broken during the reaction. The bonds were formed

during the initial bonding of the atoms. They are broken as a result of application

of our new general prefixing operator. This operator enables the reaction to work

forwards without external control. Indeed, the original order of the formation of the

bonds is completely irrelevant for the reaction to work.

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 106

5.3.2 The base-catalysed path

We now consider the base-catalysed path described in Figure 5.4. The path is via

FA |W | OH | H3O and i3 | H3O |W to MD |W |W in Figures 5.6-5.7. The path

needs three water molecules. We shall show the application of the promotion or

move rules without explaining them in detail. We start with the initial system

(remembering that restrictions are not shown, changes highlighted in bold):

(c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2[4], n).O′
1

| (h3[5]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[5], o4[6], n).O′
2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

FA |W |W |W

{np[12],h3o3[5]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2[4], n).O′
1 | (h3; p[12]).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

⇒ (c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[4], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

FA |W | OH | H3O

{np[11],c4o2[4]}
−−−−−−−−→ (c1[1], c2[2], c3[3], c4; p[11]).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2, n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n[11]).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 107

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2, n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[11], o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i3 | H3O |W

{np[13],h3n[12]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2, n[13]).O′
1 | (h3; p[13]).H ′

3 | (h4[6]; p).H ′
4 | (o3[11], o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[13]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[11], o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

MD |W |W

We have reached the final state of the reaction: a methanediol with two water

molecules. Notice that this methanediol process is identical (including keys) to the

methanediol process in the main path.

5.3.3 The acid-catalysed path

Next we consider the acid-catalysed path described in Figure 5.3. The path is via

i6 |W | OH |W and i8 | OH |W in Figures 5.6–5.7. The path uses three water

molecules as in the base-catalysed path. We shall apply the promotion or move

rules as needed. We start with the initial system:

(c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[4], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

FA |W | OH | H3O

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 108

{np[13],h5o5[7]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2[4], n[13]).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5; p[13]).H ′
5 | (h6[8]; p).H ′

6 | (o5, o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

⇒ (c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[4], n[13]).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i6 |W | OH |W

The last rewrite is by rule move-r. The reaction continues as follows:

{np[11],c4o2[4]}
−−−−−−−−→ (c1[1], c2[2], c3[3], c4; p[11]).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2, n[13]).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n[11]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n[11]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4)

i8 | OH |W

We continue from i8 | OH |W via MD | OH | H3O with concerted actions:

{np[14],h6o6[8]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6; p[14]).H ′

6 | (o5[12], o6, n[11]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n[14]).O′
4

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 109

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[14]; p).H ′

6 | (o5[12], o6[11], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n[14]).O′
4

MD | OH | H3O

We reach the final state of a methanediol and two water molecules:

{np[5],h8o8[10]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n[5]).O′

2

| (h5[13]; p).H ′
5 | (h6[14]; p).H ′

6 | (o5[12], o6[11], n).O′
3

| (h7[9]; p).H ′
7 | (h8; p[5]).H ′

8 | (o7[9], o8, n[14]).O′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[10]; p).H ′

6 | (o5[12], o6[11], n).O′
3

| (h7[9]; p).H ′
7 | (h8[5]; p]).H ′

8 | (o7[9], o8[14], n).O′
4 MD |W |W

We return to the transition from intermediate 6 to intermediate 8 in Figure 5.3.

Once the hydrogen atom is bound to the oxygen atom in compound 6 we have a

so-called resonance, where the positive charge can be on the oxygen atom or the

carbon atom (or in between) and the structure resonates between the intermediate

6 and 7 (indicated by the dashed arrow in Figure 5.3). We can model this movement

between the two intermediates as follows: starting from i6 |W | OH |W we break

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 110

bond 4 without forming a new bond at the same time, and perform a move-r rewrite

on O1:

(c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[10]; p).H ′

6 | (o5[12], o6[11], n).O′
3

| (h7[9]; p).H ′
7 | (h8[5]; p]).H ′

8 | (o7[9], o8[14], n).O′
4

c4o2[4]
−−−→

(c1[1], c2[2], c3[3], c4; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i7 |W | OH |W

The movement from i7 to i6 is gotten by creating the bond on c4 and n of O1 with

the key 4:

c4n[4]
−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2[13], n[4]).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i6 |W | OH |W

Note that the last compound is chemically equivalent to i6 |W | OH |W, and it is

also identical syntactically to i6 |W | OH |W except the keys 4 and 13 are swapped

in O1.

We have noted before that the main path and the base-catalysed path form a di-

amond: we can get from FA |W |W |W to i3 | H3O |W either via i2 |W |W or

via FA |W | OH | H3O. We underline that the resulting methanediol processes are

syntactically identical. However, there is no such tight correspondence between

methanediol in the main path and methanediol in the acid-catalysed path. In the

main path, we bind a water molecule to the carbon atom, and then use another

H2O as a proton shuttle to move a hydrogen atom. The H2O which is used as a

proton shuttle is unchanged. In the acid-catalysed path, we bind a hydrogen atom

to the formaldehyde first, bind a water molecule to it and then remove one of these

hydrogen atoms and put it back on a water molecule. Hence, the two methanediol

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 111

processes are not written identically but they represent the same compound. We

shall explain later how this equivalence might be formally defined.

5.3.4 Other paths

We now discuss the remaining reactions in Figure 5.6.

The compounds 13 and 14 in Figure 5.5 are of particular interest since they have

only one path leading to and out of them. Firstly, we can get from i3 | H3O |W to

i13 | H3O | H3O as follows:

(c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2 | (o1[3], o2, n).O′
1

| (h3[12]; p).H ′
3 | (h4[6]; p).H ′

4 | (o3[11], o4[6], n).O′
2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i3 | H3O |W

{np[13],h4o4[6]
−−−−−−−−→}(c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2, n).O′
1 | (h3[12]; p).H ′

3 | (h4; p[13]).H ′
4 | (o3[11], o4, n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n[13]).O′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2, n).O′
1 | (h3[12]; p).H ′

3 | (h4[13]; p).H ′
4 | (o3[11], o4, n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n[13]).O′
4

i13 | H3O | H3O

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 112

We can also reverse back to i3 | H3O |W by performing concerted actions followed

by a promotion and a move:

{np[6],h4n[13]
−−−−−−−−→}(c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2, n).O′
1 | (h3[12]; p).H ′

3 | (h4; p[6]).H ′
4 | (o3[11], o4, n[6]).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2, n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[11], o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n[12]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o3[9], o8[10], n).O′
4

i3 | H3O |W

Furthermore, we can also get from i8 | OH |W to i14 | OH | OH:

(c1[1], c2[2], c3[3], c4[1]; p]).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n[11]).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i8 | OH |W

{np[14],h7o7[9]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2[13], n[14]).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n[11]).O′
3

| (h7; p[14]).H ′
7 | (h8[10]; p).H ′

8 | (o7, o8[10], n).O′
4

⇒ (c1[1], c2[2], c3[3], c4[11]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[13], n[14]).O′
1 | (h3[12]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3, o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[12], o6[8], n[11]).O′
3

| (h7[14]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7, o8[10], n).O′
4

i14 | OH | OH

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 113

And we can reverse back to i8 | OH |W in very much the same way as from

i13 | H3O | H3O to i3 | H3O |W.

The reaction from i6 |W | OH |W to i6 | OH | OH | H3O and its inverse is the auto-

protolysis of water, and works independently of the rest. The corresponding applies

to the reaction from i7 | OH | OH | H3O to i7 |W | OH |W and its reversal.

The step from i6 | OH | OH | H3O to i7 | OH | OH | H3O involves the intermediates

i6 and i8 only (as in Figure 5.3) and no other compounds, so the reaction is as

described before.

The reaction from i2 |W |W to i2 | OH | H3OW is also an autoprotolysis of water.

There are several more reactions possible, all via concerted actions. We only describe

one of them, namely from FA |W |W |W to i6 |W | OH |W:

(c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[4], n).O′
1 | (h3[5]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n).O′

2

| (h5[7]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5[7], o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

{np[13],h5o5[7]}
−−−−−−−−−→ (c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′

1 | (h2[2]; p).H ′
2

| (o1[3], o2[4], n[13]).O′
1 | (h3[5]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n).O′

2

| (h5; p[13]).H ′
5 | (h6[8]; p).H ′

6 | (o5, o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

⇒ (c1[1], c2[2], c3[3], c4[4]; p).C ′ | (h1[1]; p).H ′
1 | (h2[2]; p).H ′

2

| (o1[3], o2[4], n[13]).O′
1 | (h3[5]; p).H ′

3 | (h4[6]; p).H ′
4 | (o3[5], o4[6], n).O′

2

| (h5[13]; p).H ′
5 | (h6[8]; p).H ′

6 | (o5, o6[8], n).O′
3

| (h7[9]; p).H ′
7 | (h8[10]; p).H ′

8 | (o7[9], o8[10], n).O′
4

i6 |W | OH |W

5.4 Conclusion

We have shown so far how CCB can be used with a more complicated example than

the autoprotolysis of water used before in Chapter 2. We now evaluate the suitability

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 114

of CCB in the modelling of covalent reactions as exemplified by the hydration of

formaldehyde in water. We have used the software described in Chapter 8 to perform

the evaluation described here. We first consider if all chemically valid interactions

between the compounds of the reaction can be represented well in our calculus. We

have seen in Figure 5.3 the resonance between the intermediates i6 and i7. We

are able to model appropriately the movement between i6 and i7 by transitions

that break spontaneously a bond or create a bond. What is less clear is why this

spontaneous break should happen at this point and not elsewhere. We are unable

to represent the movement from i7 to i8, however, we model appropriately the

evolution from i6 to i8 via a concerted actions transition. Apart from the reaction

steps described above, all other steps can be represented well in our calculus.

The other way of assessing the suitability of CCB for this type of reactions is to ask

if our calculus enables transitions which do not occur in reality. We notice that some

bonds can break spontaneously as, for example, in water molecules. Although this

does not happen in reality by itself the process (known as water splitting) can hap-

pen as part of photosynthesis or in various technical processes. So the spontaneous

breaking of water molecules could be treated as harmless. A spontaneous breaking

of a bond can also happen in the methanediol MD, where the bonds between carbon

atom and oxygen atom could break. This is a consequence of allowing the sponta-

neous break of the double bond in the compound i6. The difference between these

two cases is not properly modelled in our calculus. However, if the carbon-oxygen

bond in MD breaks, the carbon atom could bond immediately afterwards to the

water molecule, and we would get the compound i8, which is a valid intermediate,

so this break of the carbon-oxygen bond does not cause a problem.

Our model also allows the interaction of the methanediol with a water molecule in

the final system MD |W |W. Since the carbon process C has the action p ready,

and the oxygen process O3 in the water molecule has the action n ready, and n, p is

a part of our synchronisation function, a bond between C and O3 can be created4.

The reason why this type of interaction does not occur in reality is that the four

groups around the carbon atom shield it from any interaction (as opposed to the

three groups on the formaldehyde, of which two are relatively small hydrogen atoms).

This is a steric effect, the effect due to atoms occupying space and preventing other

atoms from moving. Our calculus does not model spatial arrangement of atoms well

enough.

4We have actually used a similar mechanism of C interacting with O to get from compound 1
to compound 2 in Figure 5.2.

CHAPTER 5. THE HYDRATION OF FORMALDEHYDE IN WATER 115

Finally, there is one more case which is possible in our calculus, namely the transfer

of a proton from a OH− molecule to an electronegative atom. Since the p action is

still ready on the H in OH− any other n action can interact. In reality OH− is no

longer polar, because the formal negative charge cancels out any partial charge. We

could say that there is no p on the hydrogen process any more.

Overall, our calculus gives a good modelling of the example. We have one transition

we cannot properly model (the resonance) and we have two transitions which can

happen in our model, but not in reality (the carbon atom with four groups reacting

and OH− losing a proton). Furthermore the spontaneous break of the carbon-oxygen

bond in methanediol is problematic. Considering the number of correctly modelled

reactions, we can say that we model most reactions possible correctly and the most

reactions modelled are correct.

We will informally discuss an extension of our calculus to solve these problems in

Chapter 9.

Chapter 6

Chemical process equivalence

In Chapter 5 we have seen that the system of FA (formaldehyde molecule) with three

W (water molecules) evolves to MD (methanediol molecule) with two W (water

molecules) via different sequences of concerted actions. Some paths end up at the

same process, others lead to somewhat syntactically different processes. We have

explained that these different processes represent the same compounds. We also

have explained that the difference originates as a side effect of using subscripted

copies of atoms, where both the action names and process names are uniformly

subscripted. Also keys can lead to differences since they can be chosen arbitrarily.

We now present how we can formally define the equivalence mentioned here, which

is referred to as chemical process equivalence.

We have chosen this term to indicate that this is an equivalence on processes, but

inspired by a chemical notation. It should be mentioned that “chemical equiva-

lence” is used by chemists to describe atoms inside a molecule which have the same

electronic environment and are therefore identical for reactions.1 We have already

seen this: For example in the autoprotolysis of water in Chapter 2 the two hydrogen

atoms of a water molecule are chemically equivalent. When we looked at the hy-

dration of formaldehyde in Chapter 5 we implicitly used chemical equivalence when

discussing the various paths. It is still possible to explore which path a reaction

actually proceeds with the help of isotope labelling. For this a particular atom in a

molecule is replaced by one if its isotopes. Since isotopes are electronically identical

it will not change the reaction, but the isotope can be identified in the result or

1Since spectroscopic methods are used to elucidate chemical structures and are influenced by
chemical equivalence the concept is typically discussed in this context, see [54], p. 51–52.

116

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 117

intermediates of the reaction and the atom can be traced in this way through the

reaction.2

In Chapter 5 we have added the subscripts to actions and process names so that

they started with 1 for each action or process name. Whilst this is easy to read it

makes handling the subscripts by functions working on the whole process difficult.

We will therefore use unique subscripts in all of the processes we deal with. To make

understanding easier we adopt the convention to use multiples of 10 as subscripts for

process names of subprocesses representing hydrogens (e.g. H10), multiples of 100

for the oxygen processes (e.g. O100) and multiples of 100 plus 1000 for the carbon

processes (e.g. C1000). Other processes could be subscripted by multiples of 100

plus 2000 and so on. Subscripts for actions are starting with the process name’s

identifier plus 1 (e.g. (h11).H10). In this way, we have unique subscripts and can

easily identify which subprocess an actions belongs to.

6.1 Definition of chemical process equivalence

The first step for developing a definition of equivalence is to define α conversion on

subscripts and keys in processes. Let S be a set of subscripts, taken from N. A and

PI (defined in Section 4.1) are now keys and constants with a subscript, otherwise

the syntax of the calculus is as defined in Section 4.1. The notion of α conversion

of a key k in P is defined as follows:

Definition 6.1. Assume P is a consistent process, and k and l are keys. We define

α conversion of k into l in P by function αkeys in Figure 6.1 if fsh[l](P), otherwise

it is is undefined.

The notion of α conversion of a subscript k in P is defined as follows:

Definition 6.2. Assume P is a consistent process, and k and l are subscripts.

We define α conversion of k into l in P by function αsubscripts in Figure 6.2 if

fshsubscript[l](P), otherwise it is undefined.

Note that the function αsubscripts also converts subscripts in restrictions. For α

conversion of keys we need the helper function αk, which is given in Figure 6.1.

Otherwise all functions and predicates used for α conversion of keys are defined in

Chapter 4. For α conversion of subscripts we need helper functions αs, αsr, αsc,

2For isotope labelling see [13] p. 752.

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 118

αkeys(0, k, l) = 0

αkeys(S, k, l) = αkeys(P, l, l) if S
def
= P

αkeys((s; b).P, k, l) = (αk(s, k, l); αk(b, k, l)).αkeys(P, k, l)
αkeys(P | Q, k, l) = αkeys(P, k, l) | αkeys(Q, k, l)
αkeys(P \L, k, l) = αkeys(P, k, l)\L

αk : (A ∪AK)∗ ×K ×K → (A ∪AK)∗

αk(ǫ, k, l) = ǫ

αk(α : s, k, l) =

a[l] : αk(s, k, l) if α = a[k], a ∈ A

α : αk(s, k, l) otherwise

Figure 6.1: Function αkeys defining α conversion of key k into key l in CCB and
helper function αk, with k, l ∈ K.

and αk, which are given in Figure 6.2. We also need some new predicates and

functions presented in Figure 6.3. Here, similarly to having defined freshness of a

key in Figure 4.1, we define freshness of a subscript.

Example 6.1. We consider the first water molecule from Chapter 2. To recall this

was modelled as:

P
def
= (((h11[1]; p).H ′

10 | (h21[2]; p).H ′
20 | (o101[1], o102[2], n).O′

100) \ {h11, h12, o101, o102}

We can apply α conversion of keys to P . For example we can change key 1 to 5,

which is fresh in P . Performing αkeys(P, 1, 5) results in:

(((h11[5]; p).H ′
10 | (h21[2]; p).H ′

20 | (o101[5], o102[2], n).O′
100) \ {h11, h12, o101, o102}

We could also change a subscript. Since 15 is a fresh subscript we could apply

αsubscripts(P, 11, 15) resulting in:

(((h15[1]; p).H ′
10 | (h21[2]; p).H ′

20 | (o101[1], o102[2], n).O′
100) \ {h15, h12, o101, o102}

Notice the restriction has been converted as well.

Finally, we could change a subscript on a process name by applying

αsubscripts(P, 10, 30) and we get:

(((h11[1]; p).H ′
30 | (h21[2]; p).H ′

20 | (o101[1], o102[2], n).O′
100) \ {h11, h12, o101, o102}

We note that this breaks our convention about subscripts: The process H ′
30 has an

action h11, whereas we originally assigned them so that subscripts for actions are

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 119

αsubscripts(0, k, l) = 0
αsubscripts(S, k, l) = αsc(S, k, l)
αsubscripts((s; b).P, k, l) = (αs(s, k, l); αs(b, k, l)).αsubscripts(P, k, l)
αsubscripts(P | Q, k, l) = αsubscripts(P, k, l) | αsubscripts(Q, k, l)
αsubscripts(P \L, k, l) = αsubscripts(P, k, l)\αsr(L, k, l)

αs : (A ∪AK)∗ × S × S → (A ∪AK)∗

αs(ǫ, k, l) = ǫ

αs(α : s, k, l) =

al[x] : αs(s, k, l) if α = ak[x], a ∈ A

al : αs(s, k, l) if α = ak, α ∈ A

α : αs(s, k, l) otherwise

αsr :⊆ A× S × S →⊆ A
αsr(ǫ, k, l) = ǫ

αsr({α} ∪ L, k, l) =

{al} ∪ αsr(L, k, l) if α = ak, α ∈ A

{α} ∪ αsr(L, k, l) otherwise

αsc : PI × S × S → PI

αsc(α, k, l) =

Sl if α = Sk, α ∈ PI

α otherwise

Figure 6.2: Function αsubscripts defining α conversion of subscript k into subscript
l in CCB and helper function αs, αsr, and αsc, with k, l ∈ S.

starting with the process name’s identifier plus 1. This means that process H ′
30

should have action h31. We get the differently numbered action since this rule was

a convention only and is not enforced by the α conversion rules.

Having defined α conversion, we can now define swapping keys or subscripts between

processes. First we define the function swapkeys for swapping keys in a process P :

Definition 6.3. Assume P is a consistent process, k, l, and m are keys and l, m /∈

keys(P). We define swapping of k and l in P by function swapkeys : Proc×K×K →

Proc, which is given as follows:

swapkeys(P, k, l)
def
= αkeys(αkeys(αkeys(P, k, m), l, k), m, l)

We then define the function swapsubscripts for swapping subscripts in a process:

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 120

s : (A ∪AK)∗ →⊆ S
s(ǫ) = ∅

s(α : s) =

{l} ∪ s(s) if α = al[x] or α = al, a ∈ A, l ∈ S, x ∈ K

s(s) otherwise

fshsubscript[m](0)

fshsubscript[m](P)

fshsubscript[m](S)
S

def
= P

m /∈ s(s) fshsubscript[m](P)

fshsubscript[m]((s; b).P)

m /∈ s(s) m 6= n fshsubscript[m](P)

fshsubscript[m]((s; b[n]).P)

fshsubscript[m](P) fshsubscript[m](Q)

fshsubscript[m](P | Q)

fshsubscript[m](P)

fshsubscript[m](P \ L)

Figure 6.3: Function s and predicate freshsubscript.

Definition 6.4. Assume P is a consistent process, k, l, and m are subscripts,

k ∈ s(P), and l /∈ s(P), m /∈ s(P). We define swapping of k and l in P by function

swapsubscripts : Proc× S × S → Proc, which is given as follows:

swapsubscripts(P, k, l)
def
=

alphaconversionsub(alphaconversionsub(alphaconversionsub(P, k, m), l, k), m, l)

Example 6.2. We again consider the water molecule from Chapter 2:

P
def
= (((h11[1]; p).H ′

10 | (h21[2]; p).H ′
20 | (o101[1], o102[2], n).O′

100) \ {h11, h12, o101, o102}

We can swap keys 1 and 2 in P . Application of swapkeys(P, 1, 2) yields

(((h11[2]; p).H ′
10 | (h21[1]; p).H ′

20 | (o101[2], o102[1], n).O′
100) \ {h11, h12, o101, o102}

Since we have made our processes identifiable by using the Hx notation we can see

that we swapped the keys between the two hydrogen processes. Considering that

the order of the parallel processes within P is irrelevant3 we could not distinguish

the two hydrogen processes otherwise. So what we have effectively achieved is a

swap of chemically equivalent atoms.

The same effect could be achieved by applying swapsubscripts(P, 11, 21) and

swapsubscripts(P, 10, 20), which gives:

(((h21[1]; p).H ′
20 | (h11[2]; p).H ′

10 | (o101[1], o102[2], n).O′
100) \ {h11, h12, o101, o102}

3Note rule red1 in Figure 4.7.

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 121

If we rearrange the processes H ′
20 and H ′

10 we get the identical process as before,

where the H ′
10 process is linked to o102 and the H ′

20 process is linked to o101.

We can now define chemical process equivalence:

Definition 6.5. Let P and Q be consistent CCB processes. P is chemically process

equivalent to Q, written as P ≈ Q, if P can be rewritten to Q by the repeated

application of swapkeys, swapsubscripts, αsubscripts, and αkeys in some order.

The functions swapkeys, swapsubscripts, αsubscripts, and αkeys have been imple-

mented in the software described in Chapter 8.

6.2 Properties of the equivalence relation

In this section we establish several properties of the functions swapkeys,

swapsubscripts, αsubscripts, and αkeys, that are used to define chemical process

equivalence ≈.

Clearly an α conversion on a key or subscript which is fresh does not have any effect:

Proposition 6.1. Let P be a consistent CCB process and k, l ∈ K. If fsh[k](P)

then αkeys(P, k, l) = P .

Note that fsh[l](P) is assumed to be true by Definition 6.1, which makes the propo-

sition obvious.

Proposition 6.2. Let P be a consistent CCB process and k, l ∈ S. If

fshsubscript[k](P) then αsubscripts(P, k, l) = P .

Note that fshsubscript[l](P) is assumed to be true by Definition 6.2.

The order of execution of two α conversions is not relevant if either all old and new

keys are different or the two swap operations are identical:

Proposition 6.3. Let P be a consistent CCB process and k, l ∈ K. If (k 6=

m ∧ l 6= m ∧ n 6= k) ∨ (k = m ∧ l = n) then αkeys(αkeys(P, k, l), m, n) =

αkeys(αkeys(P, m, n), k, l).

Proof. fsh[n](P) and fsh[l](P) are assumed to be true by Definition 6.1. If k 6= m

then the subsets of AK affected by αkeys(X, k, l) and αkeys(X, m, n) operations,

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 122

applied to the same process, are disjoint. If l 6= m ∧ n 6= k as well, then none

of the actions changed by one operation will be changed by the other operation.

Therefore, the two operations are independent and can be swapped. On the other

hand, if k = m the two operations affect the same subsets of AK, so only the

operation executed first will have an effect. If they change the keys to different keys

the result will be different, so only if l = n is true as well the overall result will hold.

The corresponding holds for α conversion of subscripts:

Proposition 6.4. If (k 6= m ∧ l 6= m ∧ n 6= k) ∨ (k = m ∧ l = n) then

αsubscripts(αsubscripts(P, k, l), m, n) = αsubscripts(αsubscripts(P, m, n), k, l).

The reasoning is similar to that in the proof of Proposition 6.3, with

fshsubscript[n](P) and fshsubscript[l](P) assumed to be true by Definition 6.2.

Function αkeys is transitive:

Proposition 6.5. Let P be a consistent CCB process and k, l ∈ K. Then

αkeys(αkeys(P, k, l), l, m) = αkeys(P, k, m)

Proof. Since fsh[l](P), the subset of AK affected by αkeys(αkeys(P, k, l), l, m) will

be the same as that affected by αkeys(P, k, l). So the first operation changes a set

of keys from k to l and exactly these will be changed by the second operation from

l to m. This is equivalent to changing k to m directly.

The same holds for α conversion of subscripts:

Proposition 6.6. Let P be a consistent CCB process and k, l ∈ K. Then

αsubscripts(αsubscripts(P, k, l), l, m) = αsubscripts(P, k, m)

The reasoning is as in the proof of Proposition 6.5.

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 123

6.3 Chemical process equivalence in the hydra-

tion of formaldehyde

We use the example from Section 5.3 to demonstrate the usefulness of the equiv-

alence. If we consider the path in Figure 5.7 via FA | W | HO | H3O and

i3 | H3O | W , we get the following process:

P1
def
= (c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′

1000 | (h11[1]; p).H ′
10 | (h21[2]; p).H ′

20

| (o101[3], o102[13], n).O′
100 | (o201[11], o202[6], n).O′

200 | (h31[13]; p).H ′
30 | (h41[6]; p).H ′

40

| (h51[7]; p).H ′
50 | (h61[8]; p).H ′

60 | (o301[7], o302[8], n).O′
300

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

If we consider the path in Figure 5.7 via FA | W | HO | H3O, i6 | W | HO | W ,

i8 | HO | W , and MD | HO | H3O respectively, we get the this process:

P2
def
= (c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′

1000 | (h11[1]; p).H ′
10 | (h21[2]; p).H ′

20

| (o101[3], o102[13], n).O′
100 | (o301[12], o302[11], n).O′

300 | (h31[12]; p).H ′
30 | (h51[13]; p).H ′

50

| (h41[6]; p).H ′
40 | (h81[5]; p]).H ′

80 | (o201[5], o202[6], n).O′
200

| (h71[9]; p).H ′
70 | (h61[10]; p).H ′

60 | (o401[9], o402[10], n).O′
400

The processes are shown with the restrictions dropped, the subscripts changed as

explained at the beginning of this chapter, and arranged to show similarities as much

as possible, by writing the methanediol in the first two lines and the two molecules

of water in the following lines. Figure 6.4 shows P1 and P2. The matching parts are

shaded. The remaining four hydrogen atoms and one oxygen atom and the bonds

connected to them are different between the two processes.

If we disregard the naming of the atoms (which was done for convenience only) we

get two identical graphs: two water (H2O) molecules and one methanediol (CH4O2).

If we employ subscripts to identify copies of the same atom, we can see that in the

first case the bonds 6 and 11 are on the same oxygen atom, whereas in the second

case they are on different oxygen atoms. As explained in Section 5.3 the difference

is not because we did not do the “right” transition, but is systematic - it cannot be

avoided by choosing different hydrogen processes for transfer or using other actions

where possible. Chemical process equivalence shows that the results are equivalent.

Since the two processes above are identical from a chemical point of view, it should

be possible to transform them into one another using (some of) the functions used

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 124

Figure 6.4: A full representation of the two processes P1 and P2, resulting from
using the paths in Figure 5.7 via FA | W | HO | H3O and i3 | H3O | W , or via
FA | W | HO | H3O, i6 | W | HO | W , i8 | HO | W , and MD | HO | H3O
respectively. The nodes are marked with process names, the actions are put around
the process names and the communication keys are represented by lines with the
key next to them. For example in P1 C1000 represents the process with the process
identifier C1000, with the four actions c1001−1004 arranged around it. Action c1001

shares key 1 with the action h11 on the process H10. Matching parts in the two
processes are shaded.

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 125

for defining chemical process equivalence. Starting with process P2 (which we give

below for convenience) the transformations are as follows:

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o301[12], o302[11], n).O′

300 | (h31[12]; p).H ′
30 | (h51[13]; p).H ′

50

| (h41[6]; p).H ′
40 | (h81[5]; p]).H ′

80 | (o201[5], o202[6], n).O′
200

| (h71[9]; p).H ′
70 | (h61[10]; p).H ′

60 | (o401[9], o402[10], n).O′
400

We first swap subscripts 60 with 80 and 61 with 81 (this effectively swaps

hydrogen processes H ′
60 and H ′

80) by applying swapsubscripts(P2, 60, 80) and

swapsubscripts(P2, 61, 81):

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o301[12], o302[11], n).O′

300 | (h31[12]; p).H ′
30 | (h51[13]; p).H ′

50

| (h41[6]; p).H ′
40 | (h61[5]; p]).H ′

60 | (o201[5], o202[6], n).O′
200

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

Then we swap subscripts 200 with 300, 201 with 301, and 202 with

302 (this effectively swaps oxygen processes O′
200 and O′

300) by ap-

plying swapsubscripts(P3, 200, 300), swapsubscripts(P3, 201, 301), and

swapsubscripts(P3, 202, 302):

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o201[12], o202[11], n).O′

200 | (h31[12]; p).H ′
30 | (h51[13]; p).H ′

50

| (h41[6]; p).H ′
40 | (h61[5]; p]).H ′

60 | (o301[5], o302[6], n).O′
300

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

Next we swap subscripts 50 with 30 and 51 with 31 (this effectively swaps

hydrogen processes H ′
30 and H ′

50) by applying swapsubscripts(P4, 30, 50) and

swapsubscripts(P4, 31, 51):

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o201[12], o202[11], n).O′

200 | (h51[12]; p).H ′
50 | (h31[13]; p).H ′

30

| (h41[6]; p).H ′
40 | (h61[5]; p]).H ′

60 | (o301[5], o302[6], n).O′
300

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 126

Finally we swap subscripts 40 with 50 and 41 with 51 (this effectively swaps

hydrogen processes H ′
40 and H ′

50) by applying swapsubscripts(P5, 40, 50) and

swapsubscripts(P5, 41, 51):

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o201[12], o202[11], n).O′

200 | (h41[12]; p).H ′
40 | (h31[13]; p).H ′

30

| (h51[6]; p).H ′
50 | (h61[5]; p]).H ′

60 | (o301[5], o302[6], n).O′
300

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

Now we rearrange parallel processes (using rule red1, namely P | Q⇒ Q | P , which

allows swapping parallel processes):

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o201[12], o202[11], n).O′

200 | (h31[13]; p).H ′
30 | (h41[12]; p).H ′

40

| (h51[6]; p).H ′
50 | (h61[5]; p]).H ′

60 | (o301[5], o302[6], n).O′
300

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

The next step is to change keys: Key 5 becomes 8, key 6 becomes 7, key 12 becomes

6 (by applying αkeys(αkeys(αkeys(P7, 5, 8), 6, 7), 12, 6):

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o201[6], o202[11], n).O′

200 | (h31[13]; p).H ′
30 | (h41[6]; p).H ′

40

| (h51[7]; p).H ′
50 | (h61[8]; p]).H ′

60 | (o301[8], o302[7], n).O′
300

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

Finally we need to apply swapsubscripts(P8, 201, 202) and

swapsubscripts(P8, 301, 302) to ensure the bonds inside O′
200 and O′

300 are on

the same actions as in P1:

(c1001[1], c1002[2], c1003[3], c1004[11]; p).C ′
1000 | (h11[1]; p).H ′

10 | (h21[2]; p).H ′
20

| (o101[3], o102[13], n).O′
100 | (o201[11], o202[6], n).O′

200 | (h31[13]; p).H ′
30 | (h41[6]; p).H ′

40

| (h51[7]; p).H ′
50 | (h61[8]; p]).H ′

60 | (o301[7], o302[8], n).O′
300

| (h71[9]; p).H ′
70 | (h81[10]; p).H ′

80 | (o401[9], o402[10], n).O′
400

The resulting process is exactly the same as the first process P1. We have shown

the equivalence of the results of following FA | W | HO | H3O and i3 | H3O | W ,

or via FA | W | HO | H3O, i6 | W | HO | W , i8 | HO | W , and MD | HO | H3O

in Figure 5.7. We did this by using rules αkeys, swapsubscripts, and red1 to convert

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 127

P2 into P1. The correctness of this conversion has been verified using the software

described in Chapter 8.

Remark 6.1. In Figure 6.4 we have used a conversion of processes into graph-like

structures. This is possible since our processes are built by parallel composition of

processes, each of them representing an atom (e.g. the process used in this section

consists of hydrogen and oxygen atoms modelled in Section 2.1). The communica-

tions add keys to these, each communication linking two processes (atoms in our

modelling). Since we used process names for the subprocesses, we can use process

names as nodes and the communication keys as edges in Figure 6.4. In this figure we

also give an implicit mapping of nodes and edges, forming an isomorphism between

P1 and P2, where C1000 in P1 maps to C1000 in P2, O200 in P1 maps to O300 in P2,

H40 in P1 maps to H30 in P2 and so forth. We will use these ideas in Chapter 8 to

develop an automatic mapping between equivalent processes.

6.4 Behavioural equivalence

Chemical process equivalence, as defined before, is comparing processes. Since pro-

cesses represent molecules in our application, it compares molecules. If the molecules

are results of reactions, we can decide if different reaction paths lead to the same

result or different molecules. Similar notions of equivalence are, for example, used

in the λ-calculus ([22], p. 95).

In CCS, the most important notions of equivalence are bisimulations.4 These are

behavioural, two processes are considered equivalent if they show the same behaviour.

This is a useful notation, for example, in software engineering, where it is important

to assure that an implementation behaves like a specification, independently of its

internal workings. In our examples, such an interpretation is not possible, since

reaction steps are labelled with the names of the actions involved. These are a very

localized aspect of a larger molecule and they would not normally be considered

to indicate identical or equivalent molecules. A relevant chemical concept are for

example functional groups ([13], pp. 390/391). A functional group is a specific

substituent, which enables a certain reaction. Identical functional groups in different

compounds typically enable the same reactions. Our notation is too localized to

capture them, though. For example there are various functional groups containing

an oxygen atom, where a carbon atom reacts with that oxygen atom. Our modelling

4There are different types of bisimulation, in particular the treatment of silent actions, which
we do not use in CCB is different (see [79] Chapters 4 and 5 for bisimulations in CCB). For
bisimulations in the π-calculus see [80] Chapters 12 and 13.

CHAPTER 6. CHEMICAL PROCESS EQUIVALENCE 128

could only capture this oxygen-carbon interaction and would not have information

about the environment, which would be needed for a meaningful comparison of the

various functional groups.

We could still use behavioural aspects to define certain chemical properties. An

example of this could be solubility ([13], p. 441). Substances may, if put into

a solvent, form a homogeneous mixture with the solvent. Common solvents are,

for example, water or methanol. Not every substance is soluble in every solvent,

though. Various chemical and physical properties play a role here. In our calculus,

if we have properly modelled both the solute and the solvent, we could put the

molecules in parallel and compare the reactions possible to those within the solute

and the solvent only. If they are equivalent, then the substance is insoluble in this

solvent. If the combined processes representing molecules are not equivalent to the

pure processes/molecules, there is some interaction. This interaction would indicate

solubility. More generally speaking, this is an example of chemical context. We

simulate the behaviour of a compound in various contexts. If there is no difference,

this tells us something about the compound.

6.5 Conclusion

We have added subscripts to actions and process identifiers in Chapter 2. This

has allowed us to distinguish actions or processes which could not be distinguished

otherwise. If we use actions or processes which only differ by subscript we get

syntactically different processes. However they indicate the same chemical structure,

if we translate processes back into structures, by doing the reverse of what we did in

Section 5.3. We have shown that using α conversion of subscripts and keys, we can

convert such syntactically different processes into syntactically identical processes,

thus giving a notion of chemical process equivalence in our calculus. Considering the

example from Chapter 5, we can show the equivalence of all results of the model to

processes which model what are considered different compounds by chemists. This

shows that our modelling is realistic for this type of reciting networks. We have also

suggested how a behavioural approach similar to bisimilarity in CCS could be used

to model chemical concepts.

Chapter 7

Base Excision Repair

7.1 Description of Base Excision Repair

So far we have seen some applications of CCB, which are very close to the original

inspiration of the calculus. If the principles behind CCB are of some general rele-

vance, there should be other processes we can model using our calculus. A candidate

for these might be biological processes. These are ultimately chemical reactions, but

they are often viewed at a much higher level of abstraction then demonstrated so far.

Typically, in such studies atoms would no longer play a rôle, but proteins and other

macromolecules, consisting of thousands or more atoms are considered as entities.

Typical examples are pathways, gene regulation, transcription, or DNA repair. One

of the mechanisms for DNA repair is base excision repair (BER). Specifically, BER

is responsible for repairing small damages in the DNA, where a single base pair

is not correct. Such damages can be inflicted by processes in the body or various

external factors like radiation. Repair of such damages is important to prevent a

degradation of the DNA information in the organism. There are various subtypes

of BER, and various proteins involved in it. For our purposes, we look at the case

that a uracil base has been incorporated in the DNA. Uracil is normally only found

in RNA, whereas DNA consists of the four bases adenine (A), cytosine (C), guanine

(G), and thymine (T).

Uracil-DNA glycosylase (UNG or UDG) is the protein responsible for removing

uracil from DNA and making the position available for insertion of the correct

base. The process has been extensively studied1 and modelled in [55] and [57]. A

1A good overview is given in [106]. We use a highly simplified view here. For example, there is
not a single UDG, but a family of UDGs all exhibiting slightly different behaviour.

129

CHAPTER 7. BASE EXCISION REPAIR 130

description of the process on an abstract level is as follows: UDG can bind to any of

the deoxyribose/phosphate groups forming the backbone strands of the DNA. From

there it can “walk” along the chain to the next deoxyribose/phosphate group (that

walk makes it much more likely to find a damage than if UDG would just randomly

bind to and get off the DNA strand again). If the base attached to this group is

uracil, UDG will bind to it and dissolve the bond from the uracil to the DNA. Uracil

can then be released and UDG can either continue the search or get off the DNA

strand. The correct base can take the place of the uracil.

7.2 Modelling BER

In order to model BER, we need the following components: deoxyribose/phosphate

groups, the UDG, the uracil and the four other bases. The other bases will not take

part in the reactions, but include them in our model in order to demonstrate the

interaction we. The components are the following:

DP
def
= (p3, p5, b, d).DP ′

UDG
def
= (h; f).(e).UDG ′

U
def
= (b; e).(u).U ′

A
def
= (b; i).(a).A′

T
def
= (b; i).(t).T ′

G
def
= (b; i).(g).G′

C
def
= (b; i).(c).C ′

where processes A, T , G, C, and U model the bases adenine (A), cytosine (C),

guanine (G), thymine (T), and uracil (U) respectively. Process UDG represents the

Uracil-DNA glycosylase and DP a deoxyribose/phosphate group. Here d, e, i, and

f are weak actions, all other actions, namely p3, p5, h, b, u, a, t, g, and c are strong.

The synchronisation function for our system is as follows:

γ(p3, p5) = p

γ(b, b) = bb

γ(a, t) = at

γ(g, c) = gc

γ(h, d) = hd

γ(f, d) = fd

γ(e, e) = ee

CHAPTER 7. BASE EXCISION REPAIR 131

UDG

DP1 DP2

hd

fd

Figure 7.1: A UDG unit whilst performing a step along a DNA strand. The hd
bond is broken together with the new fd being formed.

We model the deoxyribose/phosphate groups first. This has two ends, normally

called 3’ and 5’, which we model as p3 and p5 actions respectively. They help us to

build the DNA strands. Also, there is a b action, which enables binding of a base.

Then we need a possibility for the UDG to bind and to “walk”: this is enabled

by actions d, h, and f , as we will see. UDG is modelled to have the prefix (h; f),

which enables the walk, since the strong action h can be bonded to a DP and f can

interact with a neighbouring DP . This breaks the hd bond, and the fd bond is then

promoted to d, which gives us the UDG being bonded to the neighbouring DP the

same way it was bound before to the other DP . Figure 7.1 shows this intermediate

situation whilst this step is performed. The five bases (C, G, T , A) all have a b

action to bind to a DP . If A− T respectively C − G are opposite each other they

can bind and therefore form a correct base pair in the DNA. Uracil (U) is not able

to form a base pair in our DNA context. All bases have a weak action in the prefix

(b; x). This action x serves for removing the base from the DNA by breaking the b

bond. For uracil the action x is e, for other bases it is i. By this UDG can be specific

to uracil. In our model no action interacts with i, but of course other proteins not

modelled might react with it. Note that i and e actions in the U , A, T , G, and C

processes cannot happen if the u, a, t, g respctively c actions are done, so i and e

are blocked by u, a, t, g, and c. Since u, a, t, g and c are used to form the base pairs

this means that a correct base pair cannot be removed from the DNA in any case.

This models the situation we need for the repair mechanism to work. We have used

concerted actions in two instances here: Firstly to enable the UDG walk. This is

CHAPTER 7. BASE EXCISION REPAIR 132

an instance where backtracking would not work, since we need out-of-causal-order

reversibility in this case. We cannot unbond from the old DP first and then choose

the next DP , but we must hold the old bond until the new bond is formed. Secondly,

we use a concerted action to enable the repair mechanism by making a bonding on

the repair action break the bond to DP.

In the synchronisation function, we have the interaction of p3 and p5 to form the

strands, the b-b interaction for binding the bases, the h-d and f -d interaction for

the “walk”, the a-t and g-c interactions for forming the base pairs, and the e-e

interaction for the repair action.

In order to model a strand of DNA, we restrict ourselves to three base pairs. This

means we need six DP processes and six bases. We put two “correct” base pairs

and one containing a uracil base. An extra C base must be available for replacing

U . We also use subscripts to distinguish processes where there is more than one

instance of the process. The system is modelled in CCB as follows:

(DP1 | DP2 | DP3 | A | T | G1 | G2 | U | C1 | C2 | DP4 | DP5 | DP6 | UDG)

\{p3, p5, d, b, a, t, g, e, u, c, h, f, i}

We leave out the restriction from now on for ease of reading. We number actions

using subscripts where there is more than one instance, and set initial bonds as

required. We get the following process:

(p31, p51[1], d1, b1[5]).DP ′
1 | (p32[1], p52[3], d2, b2[4]).DP ′

2 | (p33[3], p53, d3, b3[9]).DP ′
3 |

(b1[5]; i1).(a[6]).A′ | (b2[7]; i2).(t[6]).T ′ | (b3[8]; i3).(g1).G′
1 | ((b4[9]; i4).(g2[10]).G′

2 |

(b5[4]; e2).(u).U ′ | (b6[11]; i6).(c1[10]).C ′ | (b7; i7).(c2).C ′ | (p34, p54[12], d4, b4[7]).DP ′
4 |

(p35[12], p55[13], d5, b5[8]).DP ′
5 | (p36[13], p56, d6, b6[11]).DP ′

6 | (h; f).(e2).UDG ′

Initially UDG bonds to DP1, which in turn is bonded to a correct base pair (note

UDG was not bound so far to any other process). The situation is shown in Fig-

CHAPTER 7. BASE EXCISION REPAIR 133

UDG

DP1 DP2 DP3

DP4 DP5 DP6

A

T C1

C2

G1

G2U

Figure 7.2: A three base pair DNA fragment, with a uracil instead of a cytosine,
and a UDG protein attached.

ure 7.2 and is as follows (the bonds created, news keys and action on which keys

were removed are shown in bold):

hd[2]
−−→ (p31, p51[1], d1[2], b1[5]).DP ′

1 | (p32[1], p52[3], d2, b2[4]).DP ′
2 |

(p33[3], p53, d3, b3[9]).DP ′
3 | (b1[5]; i1).(a[6]).A′ | (b2[7]; i2).(t[6]).T ′ | (b3[8]; i3).(g1).G′

1 |

((b4[9]; i4).(g2[10]).G′
2 | (b5[4]; e2).(u).U ′ | (b6[11]; i6).(c1[10]).C ′ | (b7; i7).(c2).C ′ |

(p34, p54[12], d4, b4[7]).DP ′
4 | (p35[12], p55[13], d5, b5[8]).DP ′

5 |

(p36[13], p56, d6, b6[11]).DP ′
6 | (h[2]; f).(e2).UDG ′

The UDG can now randomly “walk” along the chain. The (h; f) prefix can appro-

priately model this, since if the weak f action binds to the neighbour, the bond on

h is broken. In our case, action f in UDG can communicate with d2 in DP2. This

CHAPTER 7. BASE EXCISION REPAIR 134

breaks bond 2 from h in UDG to d1 in DP1, thus having performed a “step”. We

then move key 14 from f to h (via the prom rule from Figure 4.7) and get:

{fd[14],hd[2]}
−−−−−−−→⇒ (p31, p51[1], d1, b1[5]).DP ′

1 | (p32[1], p52[3], d2[14], b2[4]).DP ′
2 |

(p33[3], p53, d3, b3[9]).DP ′
3 | (b1[5]; i1).(a[6]).A′ | (b2[7]; i2).(t[6]).T ′ | (b3[8]; i3).(g1).G′

1 |

((b4[9]; i4).(g2[10]).G′
2 | (b5[4]; e2).(u).U ′ | (b6[11]; i6).(c1[10]).C ′ | (b7; i7).(c2).C ′ |

(p34, p54[12], d4, b4[7]).DP ′
4 | (p35[12], p55[13], d5, b5[8]).DP ′

5 |

(p36[13], p56, d6, b6[11]).DP ′
6 | (h[14]; f).(e2).UDG ′

UDG could now simply continue its walk, or it can interact via its e action with

the uracil. Note that other bases expose the i action, so uracil cannot interact with

them. The u, a, t, g, or c actions block e or i, so correct base pairs are not affected

by repairs. In our example e2 on UDG interacts with e2 on U , breaking bond 4

between b5 in UDG and b2 in DP2. We have achieved the desired repair, since the

uracil is removed from the DNA. We model this by the following transition (we use

the rewrite rule again):

{ee[15],bb[4]}
−−−−−−−→⇒ (p31, p51[1], d1, b1[5]).DP ′

1 | (p32[1], p52[3], d2[14], b2).DP ′
2 |

(p33[3], p53, d3, b3[9]).DP ′
3 | (b1[5]; i1).(a[6]).A′ | (b2[7]; i2).(t[6]).T ′ | (b3[8]; i3).(g1).G′

1 |

((b4[9]; i4).(g2[10]).G′
2 | (b5[15]; e2).(u).U ′ | (b6[11]; i6).(c1[10]).C ′ | (b7; i7).(c2).C ′ |

(p34, p54[12], d4, b4[7]).DP ′
4 | (p35[12], p55[13], d5, b5[8]).DP ′

5 |

(p36[13], p56, d6, b6[11]).DP ′
6 | (h[14]; f).(e2[15]).UDG ′

The floating C2 can now take the place of the U by binding to DP2 and G1. This is

represented by the following two transitions:

bb[16]
−−−→

gc[17]
−−−→ (p31, p51[1], d1, b1[5]).DP ′

1 | (p32[1], p52[3], d2[14], b2[16]).DP ′
2 |

(p33[3], p53, d3, b3[9]).DP ′
3 | (b1[5]; i1).(a[6]).A′ | (b2[7]; i2).(t[6]).T ′ | (b3[8]; i3).(g1[17]).G′

1 |

((b4[9]; i4).(g2[10]).G′
2 | (b5[15]; e2).(u).U ′ | (b6[11]; i6).(c1[10]).C ′ | (b7[16]; i7).(c2[17]).C ′ |

(p34, p54[12], d4, b4[7]).DP ′
4 | (p35[12], p55[13], d5, b5[8]).DP ′

5 |

(p36[13], p56, d6, b6[11]).DP ′
6 | (h[14]; f).(e2[15]).UDG ′

The resulting process is shown in Figure 7.3.

If uracil would have been bonded on u, the interaction with UDG could not have

happened, so the defect is recognized. We now have the uracil broken from the

deoxyribose/phosphate group and the b action on the deoxyribose/phosphate group

ready to bond to another base. UDG needs to release U and then either to continue

CHAPTER 7. BASE EXCISION REPAIR 135

UDG

DP1 DP2 DP3

DP4 DP5 DP6

A

T C1

C2

G1

G2

U

Figure 7.3: The repaired DNA fragment, with the uracil replaced by a cytosine.

its walk or release itself from the DNA. We can again use our new operator for

modelling UDG, since this way we achieve that the repair mechanism happens. On

the other hand by combining two groups of actions we “block” this repair to happen

if the desired second bond is there.

A limitation of our modelling is that it allows the UDG during its “walk” to bind

to any DG group, since there is no restriction which d action is used. In reality of

course UDG must continue with the nearest DP group. This is a spatial effect our

calculus does not model so far. Similarly, the repair by UDG binding to the e action

of a uracil (U) is not dependent on the UDG being next to it, whereas in reality it

is. Again this is a spatial effect, which we will discuss in Section 9.3.1.

We have used the software from Chapter 8 to test the modelling. The desired path is

one of the possibilities, which shows that our modelling is adequate in this respect.

We also get some undesired reactions: Apart from UDG binding to any DP group

during its walk, there is also the possibility that the unused p5 action of a DP, which

is at the end of the DNA strand, interacts with an unused p3 from the a DP at the

other end of the DNA strand. This is not impossible as a such, but prevented in

reality by at least two effects we do not model. One is again the spatial arrangement,

the other is the fact that the ends of the DNA are protected by special groups, which

we do not model here. They prevent reactions at the DNA ends.

CHAPTER 7. BASE EXCISION REPAIR 136

7.3 Conclusion

In this chapter we have seen that our calculus is suitable for modelling higher-level

processes in biological systems. We have also used the full power of our calculus with

nested prefixes like (s; b).(s′; b′).P , and not only simple processes of the form (s; b).0,

as we did before. We have modelled the “walk” of UDG along a strand of DNA by

actions in s, and, once a fault is found, the repair mechanism was modelled by the

actions in s′. We have seen that our modelling enables some unwanted reactions, but

we can explain this by noting that we do not include spatial effects in our modelling.

Chapter 8

Simulation software

In order to ensure that we get a faithful list of the possible transitions of a CCB

process we decided to develop a software simulation tool. It is obvious from previous

sections that already relatively small systems are difficult to analyse “manually”. A

simulation tool can help us to comprehensively examine transitions.

8.1 Software architecture

The simulation software has been written in Java and is named CCBsimulation.1

An object-oriented approach, as it exists in Java, is suitable for our sort of problem.

Furthermore the standard libraries are extensive and cover the needs for our basic

simulation.

The tool emphasizes the integration of the execution of the calculus with the graph-

ical display. For this reason we have decided against using an existing tool. Some of

such tools have good support for the language implementation (e.g. Maude [75] or

ProB [99]), but would make a graphical display difficult. The Concurrency Work-

bench [110] has a graphical interface, but is relatively old and does not support

the use of keys. Furthermore the core of our language is small and can easily be

implemented in a compact system, whereas more flexible systems allowing different

calculi and languages to be integrated possess more complexity. We can therefore

implement the language and the graphical display without much overhead in a small

system.

1The source code for the project is available at https://github.com/stefhk3/ccbsimulation.

137

https://github.com/stefhk3/ccbsimulation

CHAPTER 8. SIMULATION SOFTWARE 138

Some design principles and fundamental decisions were taken for the implementation

of the simulation. These are:

• A process object always represents one state of a process. If a transition is

executed this changes the process (i.e. adds/removes the key of one or more

actions in the process). This means that in order to build a transition network

the process needs to be copied into a new object before a transition is applied.

• Recursion is a central principle used throughout. Since the definition of the

syntax of the calculus is recursive, our process classes are as well: Apart from

the 0 process, which represents the end of the recursion, all processes contain

one (or in case of Parallel two) other process.

• In object oriented programming methods of a class can implement algorithms

working with objects of that class. This means that the classes need to be

changed when the calculus is extended or additional features are implemented.

For core functionalities this seems acceptable, but in other cases more flexibil-

ity might be desired. For this we adopt the visitor pattern ([33], p. 331). We

will explain below what this means in our software.

The code of the simulation tool consists of various classes. These are organised in

packages according to their purpose. The classes which are needed to represent and

execute processes are explained here by package and shown in the class diagram in

Figure 8.1:

• The package org.openscience.ccb.process contains classes for modelling

processes. They follow the syntax given in Chapter 4. So we have a class for

Prefix, Restriction and Parallel, plus an extra class for the 0 process.

There is an interface Process which is implemented by all process classes.

Important methods implemented in the classes are:

– getActionsReady lists all actions which are ready in a process to be

executed. This is an important function for inferring the transitions.

– inferTransitions: This method gives a list of all possible transitions

of this process. It takes the synchronization function as a parameter.

inferTransitions and getActionsReady work by calling the respective

method on the sub-process(es), since processes are defined recursively.

The 0 process will just return an empty list of actions or transitions, which

means the ultimate result is built recursively from the sub-processes.

CHAPTER 8. SIMULATION SOFTWARE 139

– executeTransition: This executes a transition. The transition has

typically been found using inferTransitions. Executing a transition

changes the state of the process object respectively the relevant subpro-

cesses in it.

– getKeys: This method gives all keys from this process. This is used for

checking if a key is fresh.

– toString: This is a standard Java method for printing classes. In our

case it formats the process according to the syntax in Chapter 4.

– getXML: This returns an XML representation of the process. XML is used

to save and reload processes. There is also a constructor in the process

classes, which accepts XML as an argument and builds the process from

the XML code.

– clone: This provides a deep copy of a Process. As mentioned transitions

are executed in a process, so this is needed to execute several transitions

from one Process.

The methods mentioned are part of the interface Process and are therefore

implemented in all processes. As explained above this means all classes need

to be changed if the methods would change. This is justified since these are

core methods. For other potential aspects of processes the visitor pattern is

employed. For this each process has a method accept(CCBVisitor visitor),

where visitor is any class implementing the interface visitor. This interface

has a method visit(Process process), which is implemented by the actual

visitor classes and performs the desired operation on the process, depending

on the type of process. The process classes implement accept. In this method

the process class calls the visit method of the visitor and calls accept of sub-

processes if necessary, without knowing about what the visitor actually does.

This means that the visit method of the visitor is called with all processes as

a parameter and the visitor can perform any desired action on them. In this

way a new operation, which modifies a process and all its subprocesses, can

be added without modifying the code of the processes.

• The classes in org.openscience.ccb.transition model transitions. There is

an abstract class Transition which is implemented by SimpleTransition

and Communication. These classes represent all transitions from Figures 4.2

and 4.4. Wheter an action is forward or reverse is determined by the attribute

keybroken of the class being 0 (for forward transitions) or a natural number

(which must be an existing key). In a similar fashion concerted actions have the

CHAPTER 8. SIMULATION SOFTWARE 140

attribute triggeredTransition set to give the linked action. This attribute

is null in case of other transitions.

• Actions are modelled in the org.openscience.ccb.action package. An ab-

stract class Action is implemented by WeakAction and StrongAction. The

behaviour of these classes is identical, but in order to distinguish them when

inferring the transitions they are modelled as different classes. There is also a

class PastSemicolonAction, which models the b action in prefixes of the form

(s; b). Again this class has no different behaviour. It extends WeakAction

since b always is a weak action. Any action can have a key or be fresh. We

do not model subscripts explicitly, if subscripts are desired the actions names

have to be given like a1. We assume the action names contain letters only and

the subscripts are numbers only, so if necessary they can be separated.

• The package org.openscience.ccb.reduction models the move and prom

rules from Figure 4.7. We have decided not to implement these directly in the

processes, but as separate classes. The decision is explained below.

• The package org.openscience.ccb.predicate models the predicates from

Section 9.3.1 (distance ds and connectivity conn). These are implemented

as separate classes similar to the reduction rules.

• org.openscience.ccb.synchronisation contains only one class,

Synchronize. This represents the synchronisation function γ between

actions of CCB. The important method is isSychronized, which takes two

action labels and gives the name of their synchronisation, or null if they

cannot interact.

• org.openscience.ccb.parser contains CCBParser, which parses a process

term into a Process object.

• In org.openscience.ccb.test collects unit tests for the package, see Sec-

tion 8.4.

• Finally org.openscience.ccb.ui comprises the user interface classes discussed

in Section 8.2.

The software tool uses some external software. This is firstly the Java Runtime

Environment. The version required is 1.8 or higher. One major reason is that the

graphical user interface described in Section 8.2 uses JavaFX, which is only available

from 1.8. JavaFX is superior to older solutions (AWT and Swing) with respect to

user experience and look and feel. JGraphT [52] is used for the handling of graphs

CHAPTER 8. SIMULATION SOFTWARE 141

together with mxgraph [84] for the layout of graphs. Finally XOM [122] is used for

XML handling and parsing (we decided to use XOM instead of the DOM or SAX

implementations, which are part of the standard Java library, since it has a cleaner

architecture and API2). JUnit [53] is used to run unit tests for the package.

2[119] explains this well, even it is by the author of XOM.

C
H

A
P

T
E

R
8
.

S
IM

U
L

A
T

IO
N

S
O

F
T

W
A

R
E

142

Figure 8.1: The main classes of the software package CCBsimulation.

CHAPTER 8. SIMULATION SOFTWARE 143

8.2 User interfaces

All of the above mentioned classes are used by two user interface implementations,

a command-line and a graphical user interface. The difference is therefore only in

the interface, the implementation of the execution of CCB processes is identical.

8.2.1 Command-line interface

We offer a command-line interface, called CCBcommandline, which is usable on any

machine, even without a graphical user interface. A record of a typical session in

CCBcommandline is shown in Figure 8.2. The user enters a process and defines the

synchronisation function and the weak actions. The user is then presented with all

possible inital transitions. In the transitions, the actions which will be executed are

marked with , any undoing triggered by the ; operator is marked with #. The user

is then offered with the choice to either execute all or some of the transitions. In

Figure 8.2 the user started with the system from Section 5.3 and has decided to

execute only the first transition. The result is a new set of processes, for which the

user again is shown the transitions. The user can continue until either they decide

to stop or continue until no new processes can be generated.

There are a couple of settings which influence the behaviour of the software. They

are provided in a configuration file. Two of them control if the rules prom and move

are applied automatically whenever possible. A third determines if spontaneous

undoing of communications is possible. If this is enabled the number of possible

transitions increases considerably and it becomes difficult to spot desired transitions.

Also in many cases, for example in our chemical modelling, spontaneous breaks do

not normally happen. Therefore they can be switched off by default. The user then

has the ability to execute individual transitions as needed.

8.2.2 Graphical user interface

As an alternative we also offer a graphical user interface for the CCB simulation,

called CCBgui. CCBgui offers the functions of CCBcommandline and, in addition,

various visualizations. Figure 8.3 shows a screenshot of CCBgui. The process loaded

is the same as in Figure 8.2. After loading the initial process we have executed all

possible transitions. These gave us new processes (shown in the upper left section).

We can see that now 19 new transitions are possible (centre left section). Similar to

CHAPTER 8. SIMULATION SOFTWARE 144

CCBcommandline the user can decide to execute some or all possible transitions and

do spontaneous breaks of bonds (the same configuration file as in CCBcommandline

is used). In addition, the following features have been implemented:

• A graphical view of the processes dealt with so far. This is the lower left

section of the GUI. Hovering over the nodes in this display shows the process

term, which is represented by a node. In Figure 8.3 we started with process

P0 and got three transitions to P1, P2, and P3. From P2 one of the transitions

goes to P3. Since the model loaded was again that from Section 5.3, this shows

the transitions from

FA | W | W | W

in Figure 5.6, where

P0 = FA | W | W | W

P1 = i2 | W | W

P2 = FA | W | OH | H3O

P3 = i6 | W | OH | W

The layout of the transitions in CCGgui is done automatically (using mx-

graph), so it is different from that in Figure 5.6, which was done manually.

• Processes can be viewed as graphs. The translation is as mentioned in Sec-

tion 6.3 and is further elaborated on in the next section. In the screenshot

P1 is selected and the molecules modelled by this process are shown. Again

mxgraph is used for layout, so the layout does not necessarily follow chemi-

cal conventions. Processes can be selected for display either from the list of

current processes or from the graphical view of the processes dealt with so far.

• The current state of the overall system can be saved and reloaded. This

includes all current processes, the synchronization action and the set of weak

actions. From this, the program can start in the current state. The past

processes are currently not saved.

Figures 8.4 and 8.5 shows the base excision repair from Chapter 7. The upper

image in Figure 8.4 shows the UDG floating freely. Note that the two DNA back-

bone strands are not shown as parallel, this is again due to the generic layout

algorithm. This forms a ring out of the backbone strands and the two aminoacid

bridges (compare Figure 7.2). The lower image in Figure 8.4 shows UDG bonded to

a deoxyribose/phosphate group. In the upper image in Figure 8.5 UDG has moved

CHAPTER 8. SIMULATION SOFTWARE 145

to the deoxyribose/phosphate group where the uracil is bonded. Finally, in the lower

image in Figures 8.5, the uracil has been removed from the DNA. In each step only

the relevant transition was executed. Other transitions are possible at each stage,

but disregarded here.

C
H

A
P

T
E

R
8
.

S
IM

U
L

A
T

IO
N

S
O

F
T

W
A

R
E

146
shk3@Heinrich:˜/git/ccbsimulation/lib$ java -cp "*" org.openscience.ccb.ui.CCBcommandline

Enter your process:

(((c1[1],c2[2],c3[3],c4[4];p).0 | (h1[1];p).0 | (h2[2];p).0 | (o1[3],o2[4],n).0) \ {c1,c2,c3,c4,h1,h2,o1,o2,c1h1,

→֒ c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],n).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (o7[9],o8[10],n).0) \ {h7,h8,o7,o8}) \ {n,

→֒ p}

Enter your synchronisation function [format: a,a,b...):

c1,h1,c1h1,c1,h2,c1h2,c1,h3,c1h3,c1,h4,c1h4,c1,h5,c1h5,c1,...

Enter the weak actions [format: a,b,c...):

n,p

0: Ready for execution ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1[1];p).0 | (h2[2];p).0 | (n,o1[3],o2[4]).0) \ {c1,c2

→֒ ,c3,c4,h1,h2,o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (_n,o3[5],o4[6]).0) \ {h3,h4,o3,o4} | ((h5[7];

→֒ p).0 | (h6[8];p).0 | (n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (n,o7[9],o8[10]).0)

→֒ \ {h7,h8,o7,o8};np;0

1: Ready for execution ((c1[1],c2[2],c3[3],c4[4];p).0 | (h1[1];p).0 | (h2[2];p).0 | (_n,o1[3],o2[4]).0) \ {c1,c2,

→֒ c3,c4,h1,h2,o1,o2,c1h1,c2h2} | ((#h3[5];_p).0 | (h4[6];p).0 | (n,o3[5],o4[6]).0) \ {h3,h4,o3,o4} | ((h5[7];

→֒ p).0 | (h6[8];p).0 | (n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (n,o7[9],o8[10]).0)

→֒ \ {h7,h8,o7,o8};np;0

2: Ready for execution ((#h3[5];_p).0 | (h4[6];p).0 | (n,o3[5],o4[6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];

→֒ p).0 | (_n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,

→֒ o8};np;0

3 transitions ready, execute [a]ll or give [e]xclude or [i]nclude list or say [b]reakX

i1

0: Ready for execution ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1[1];p).0 | (h2[2];p).0 | (o1[3],o2[4],n[100]).0) \ {

→֒ c1,c2,c3,c4,h1,h2,o1,o2,c1h1,c2h2} | ((h3[100];p).0 | (h4[6];p).0 | (_n,o3,o4[6]).0) \ {h3,h4,o3,o4} | ((h5

→֒ [7];p).0 | (h6[8];p).0 | (n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (n,o7[9],o8

→֒ [10]).0) \ {h7,h8,o7,o8};np;0

1: Ready for execution ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1[1];p).0 | (h2[2];p).0 | (o1[3],o2[4],n[100]).0) ...

2: Ready for execution ((#h3[100];_p).0 | (h4[6];p).0 | (n,o3,o4[6]).0) ...

3: Ready for execution ((h3[100];p).0 | (#h4[6];_p).0 | (n,o3,o4[6]).0) ...

4: Ready for execution ((h3[100];p).0 | (h4[6];p).0 | ...

5: Ready for execution ((#h5[7];_p).0 | (h6[8];p).0 | ...

6 transitions ready, execute [a]ll or give [e]xclude or [i]nclude list or say [b]reakX

Figure 8.2: A record of the program CCBcommandline with a system of three water and one formaldehyde molecule loaded. One round of
transitions has been executed. The synchronization function and some processes have been shortened (indicated by ...) in the figure.

C
H

A
P

T
E

R
8
.

S
IM

U
L

A
T

IO
N

S
O

F
T

W
A

R
E

147

Figure 8.3: A screenshot of the program CCBgui with a system of three water and one formaldehyde molecule loaded. One round of
transitions has been executed.

CHAPTER 8. SIMULATION SOFTWARE 148

Figure 8.4: A screenshot of the first two steps of the execution of the base excision
repair in CCBsimulation. Only the relevant transition is chosen and executed.

CHAPTER 8. SIMULATION SOFTWARE 149

Figure 8.5: A screenshot of the execution of the last two steps of the base excision
repair in CCBsimulation. Only the relevant transition is chosen and executed.

CHAPTER 8. SIMULATION SOFTWARE 150

8.3 Process equivalence

As we have explained in Remark 6.1 we can convert processes which are chemically

process equivalent into each other by using a set of simple rewrite rules. We also

explained that using a graph isomorphism as an intermediate step helps with quickly

establishing if two graphs can be transformed. We firstly give an overview of this

process and then explain how it is implemented in the software. The steps to check

if processes P1 and P2 are chemically process equivalent are:

• We convert P1 and P2 into graphs G1 and G2.

• We check if there exists an isomorphism between G1 and G2.

• If an isomorphism exists use the algorithm from Figure 8.6 to derive the rewrite

rules needed to rewrite P1 into P2. If P1 and P2 are not isomorphic, then P1

and P2 cannot be chemically process equivalent.

The implementation of these steps was done as part of the software and is used

by both user interfaces. The first step, the graph conversion, is done as explained

shortly in Section 6.3. In more detail, we firstly create a node for each subprocess,

which is in parallel with other processes. If two such subprocesses share a key, we

create an edge linking them. If there is more than one key shared between two

processes, this is represented by the weight of the edge being incremented for each

shared key. The set or the semicolon operators are disregarded, the keys of all

actions in one subprocess are treated the same.

The class SimpleGraph from JGraphT is used for building the graph. This represents

an undirected, weighted graph. The processes are used as nodes directly. The edges

are built from the keys, as described in Section 6.3. As mentioned there the same

conversion is used for displaying the processes in the graphical user interface. The

layout is irrelevant for the equivalence check or the inference of transitions, it is only

for display purposes.

For the isomorphism check the class VF2GraphIsomorphismInspector from

JGraphT is used. An isomorphism is defined as a bijection between the vertices

in the graphs, so that two edges are adjacent in one graph if and only if they are

adjacent in the other graph. Efficient solutions to the problem of finding graph iso-

morphisms have been proposed in the literature, VF2GraphIsomorphismInspector

implements the algorithm described in [19], which is a fast and commonly used al-

CHAPTER 8. SIMULATION SOFTWARE 151

gorithm for this purpose.3 The algorithm is implemented in JGraphT. In order to

apply it to our processes we need to provide implementations for comparing vertices

and edges. These are implemented as part of our software package. Two edges are

considered equals if their weights are equal. Two vertices (which are processes in

our case) are considered equal if the actions, ignoring subscripts, are equal. This

is necessary since the informal process identifiers we used when writing down our

processes (for example the H ′
1 in (h1; p).H ′

1) are not used in the software. When

entering (h1; p).H ′
1) into the software it would become (h1; p).0) and we have no

process identifier to decide of two subprocesses are identical. Using the actions for

this purpose is in line with our chemical metaphor since two atoms with the same

interaction capability are the same for all practical purposes.

Finally the algorithm described in Figure 8.6 can be applied to transform the process

transformed into G1 to the process transformed into G2. The algorithm firstly finds

a new key and a new subscript, which is larger than all currently used (line 2).

It then swaps all keys in G1, which are not matched in G2, to the new key and

increments the new key (lines 3 to 7). It then swaps all keys in G1, which are not

matches in G2 (these are the keys changed in the first step), to the matching key

in G2 (lines 8 to 11). It then executes a similar algorithms for all subscripts in

actions in lines 12 to 32. In this part, it iterates over all vertices in the graph (which

represent all parallel processes). For each vertex, it checks if the subscript of the

process identifier and the subscripts of the actions in this process match those in

G2, if not, it sets them to new subscript and increments the new subscript (line 12

to 22). There are separate loops for past actions (lines 17 to 19) and fresh actions

(lines 20 to 22). This is necessary because for past actions we need to order them

by the keys to make sure actions with the same keys get the same subscript in G1

and G2. For fresh actions, there are no key and a lexicographical ordering is enough

to ensure that actions with the same name get the same subscripts in G1 and G2.

It then repeats the process and sets subscripts, which do not match those in G2 to

the matching subscript in G2 (lines 23 to 32).

If we would swap key X in G1 directly into the key Y it maps onto in G2, it could

happen that Y is already used in G2. We could then not distinguish Y keys in

G2, which were swapped to Y, from those who had key Y in the original process.

Therefore if, in a later step, we swap Y into a third key, we would also change keys

which should not be changed. In an implementation this might not be necessary

since the processes might well be identifiable otherwise (e.g. by memory addresses),

but we want to keep the algorithm as general as possible.

3For an overview of algorithms for finding graph isomorphism see [70].

CHAPTER 8. SIMULATION SOFTWARE 152

1 Precondition: We have G1 and G2, representing processes P1 and P2. The
conversion is done as in Section 6.3. Both processes have all process identifiers
and actions annotated with subscripts, which are unique in the process. All
edges have a key ∈ K. We have a function getProcess which returns the
subprocess represented by a vertex. We have a graph isomorphism which
maps every vertex in G1 onto a vertex in G2 and every edge in G1 onto an
edge in G2. We have a function getEdge(G2, e), which return the edge in graph
G2 mapped to edge e in G1 and a function getV ertex(G2, v), which return the
vertex in graph G2 mapped to vertex v in G1.

2 Find a kn greater than all keys used in G1 and an sn greater than all subscripts
used in G1.

3 for each (edge e with key k in G1)

4 Let k2 be the key of getEdge(G2, e);

5 if (k 6= k2)

6 αkeys(P1, k, kn);

7 Increment kn;

8 for each (edge e with key k in G1)

9 Let k2 be the key of getEdge(G2, e);

10 if (k 6= k2)

11 αkeys(P1, k, k2);

12 for each (vertex v with subscript s in G1)

13 Let s2 be the subscript of getV ertex(G2, v);

14 if (s 6= s2)

15 αsubscripts(P1, s, sn);

16 Increment sn;

17 for each (action a with subscript s1 in fresh actions of getProcess(v)
in lexicographical order)

18 find subscript s2 for matching action in

getProcess(getV ertex(G2, v));

19 if (s 6= s2) αsubscripts(P1, s1, sn); Increment sn;

20 for each (action a with subscript s1 in past actions of getProcess(v)
ordered by key)

21 find subscript s2 for matching action in

getProcess(getV ertex(G2, v));

22 if (s 6= s2) αsubscripts(P1, s1, sn); Increment sn;

CHAPTER 8. SIMULATION SOFTWARE 153

23 for each (vertex v with subscript s in G1)

24 Let s2 be the subscript of getV ertex(G2, v);

25 if (s 6= s2)

26 αsubscripts(P1, s, s2);

27 for each (action a with subscript s1 in fresh actions of getProcess(v)
in lexicographical order)

28 find subscript s2 for matching action in

getProcess(getV ertex(G2, v);

29 if (s 6= s2)αsubscripts(P1, s1, s2)

30 for each (action a with subscript s1 in past actions of getProcess(v)
ordered by key)

31 find subscript s2 for matching action in

getProcess(getV ertex(G2, v));

32 if (s 6= s2)αsubscripts(P1, s1, s2)

Figure 8.6: An algorithm to rewrite a CCB process P1 into a chemically equivalent
processes P2.

In the CCBgui software the user can enter two processes and is presented with the

steps needed to transform the first process into the second. Figure 8.7 shows on

example of this. The two processes used here are those used in Section 6.3. We

notice that there are more steps needed than in Section 6.3. The reason is that in

Section 6.3 we move processes and use swapkeys and swapsubscripts to minimize the

number of operations needed. The algorithm performs a graph matching and, based

on this, systematically uses αsubscripts and αkeys to make the processes identical.

An intelligent minimization of changes using moving of processes and swaps of keys

and subscripts is not implemented.

CHAPTER 8. SIMULATION SOFTWARE 154

Figure 8.7: CCBgui demonstrating chemical process equivalence of two processes.

8.4 Testing

In order to ensure the quality of the software two testing strategies have been em-

ployed.

Firstly, JUnit is used for unit testing (the tests are collected in the package

org.openscience.ccb.test). They contain a number of small test cases. These

have been written to test a range of examples, covering simple standard situations

as well as border cases (for example processes with no transition possible, only a

weak action possible, only communications possible, no communcations possible,

transitions possible in the process, but prevented by a restriction). The tests in-

clude all components, namely the parser, the modelling of the processes, actions and

transitions, including the inference and execution of transitions, and application of

the reduction rules. The tests work directly on the classes representing processes

and do not involve the user interfaces. Since the JUnit tests can be executed auto-

CHAPTER 8. SIMULATION SOFTWARE 155

matically they also serve for regression testing. We have decided not to do automatic

testing for the user interfaces, since this is relatively complicated to do and does not

provide much value if (as in our case) no logic is implemented directly in the user

interface.

Secondly, we have executed the hydration of formaldehyde in water from Chapter 5,

using the command line interface. A record of this is provided in Appendix 9.3.2.

The compounds and paths from Figure 5.6 are all derived during the execution.

Some other reactions which are possible in the calculus have been excluded by only

executing the desired reactions. We have also executed the base excision repair from

Chapter 7 and the autoprotolysis of water from Chapter 2 and found them to give

the transitions expected.

8.5 Conclusion

We have demonstrated the use of our software package CCBsimulation. We have

shown that it can be used to derive the transitions of the examples given in previous

chapters. It derives all possible transitions, which helps us to verify that the software

works correctly. We have also checked that all transitions that we derived “by hand”

in Chapters 7, 2, and 5 can be derived by CCBsimulation. Two user interfaces are

available for the user to choose. We have shown that the software architecture

mirrors CCB, in particular by the use of recursion. We have demonstrated that

chemical process equivalence can be checked in our software.

Chapter 9

Conclusion

This chapter summarizes the thesis presented and evaluates the significance of the

work done. It also provides directions for future work based on this thesis.

9.1 Summary

We have introduced a new process calculus called the Calculus of Covalent Bonding

(CCB). It is inspired by chemical reactions where covalent bonds can be formed and

broken. Forming and breaking typically go hand in hand, driven by small disequi-

libria in charge distribution. We called this type of reversibility, where undoing is

part of a pair of bonds being formed and broken, locally controlled reversibility. We

called such pairs of events concerted actions.

In order to model this type of reversibility by means of a calculus we introduced a

new general prefixing operator that allows us to model locally controlled reversibility.

CCB incorporates this new operator into a CCS-style calculus. The new operator

permits us to perform pairs of concerted actions, where the first element of the pair

is a creation of a (weak) bond and the second element is breaking one of the existing

bonds. The mechanism has purely a local character; there is no need for an extensive

memory or global control.

We have given the calculus operational semantics. We have shown that the calculus

allows for undoing steps of computation in both causal consistent and out-of-causal

order. We have also shown that the calculus without the special prefixing operator is

a conservative extension of a forward-only calculus, whereas adding our new operator

gives as new behaviour.

156

CHAPTER 9. CONCLUSION 157

We have modelled the autoprotolysis of water and the hydration of formaldehyde

in water as examples of a chemical reaction, where our calculus models directly the

type of reactions it was inspired by. The Base Excision Repair (BER) is an example

where our calculus is applied to model a higher level mechanism, where agents are

not necessarily atoms and bonds not always covalent bonds between atoms. Here

we also used the full calculus, using nested prefixes like (s; b).(s′; b′).P , and not only

simple processes of the form (s; b).0.

We have established chemical process equivalence of two processes. This allowed us

to model reaction networks, where different paths lead to the same molecule, but

use different atoms to achieve the reaction.

The software package CCBsimulation allows the simulation of CCB processes and

evaluates possible transitions. A command line interface and a graphical user in-

terface can display complex transition networks. The user can understand complex

transition networks, which would be difficult to examine manually.

9.2 Evaluation of CCB

We have set out to devise new ways of modelling computations by drawing inspi-

ration from biological and chemical processes. Reversibility was intended to be the

focus of our research. We have decided to look at chemical reactions as a manageable

field of examples. Modelling these using process calculi, which so far had mainly

been used in biological modelling, we aimed for novel ways of doing computations.

We have designed CCB by following this direction. With this we have formally

described a calculus which incorporates out-of-causal-order reversibility. To the

best of our knowledge this is the first such calculus. This means we can reach

in our calculus states which could not be reached by computing forwards alone.

Furthermore the calculus has locally controlled reversibility as opposed to a global

control. This is relevant because local control is involved in self-organising processes.

When modelling two chemical reactions we have found that they can be represented

realistically. Most reactions in our calculus are chemically valid. We had a case (the

resonance) which could not be represented properly and some reactions possible in

our calculus which are not possible or not realistic. We will look at these in Sec-

tion 9.3. We have also seen that we can abstract away from faithful modelling of

chemical reactions. Base Excision Repair was an example where we can describe

a high-level representation of a biological mechanism using the full calculus. An-

CHAPTER 9. CONCLUSION 158

other example where this is useful is a model of long standing transactions with

compensations in [93].

Our chemical process equivalence allows to deal with reaction networks and the

various paths in them realistically. We can show that different paths, which lead to

the same compound in reality, can be modelled appropriately in our calculus.

The CCBsimulation allows the simulation of complex transition networks. We have

used it successfully to evaluate processes which would have been impossible to eval-

uate by hand.

9.3 Future work

9.3.1 Improve chemical modelling

As has been mentioned in this thesis there are a number of situations which cannot

be modelled well with our calculus. Many of these are related to the spatial aspect

of reactions. Some of the cases we have seen are as follows:

1. Intramolecular reactions: In Section 5.4 we have seen that an intramolecular

reaction would be possible in our process. Whilst intramolecular reactions

exist in such a case the atoms cannot get close enough to react, whereas in

larger molecules this could well happen.

2. Steric effects: As we have seen in Section 5.2 the number (and to a degree the

size) of the groups around the carbon can prevent a reaction from happening.

3. In our high level example (Section 7) we see a spatial problem similar to the

one just mentioned: Interactions are only possible between the neighbouring

molecules.

We suggest as a starting point for further research to deal with the mentioned cases

by introducing two properties into an extended calculus, called CCB-S for CCB-

spatial, namely the distance between processes, and the number of neighbours of a

process. We shortly discuss this calculus to give an indication of the direction of

future work.

The syntax of CCB-S is the same as that of CCB as given in Section 4.1. This

implies that every CCB process is a CCB-S process as well.

CHAPTER 9. CONCLUSION 159

In order to deal with spatial issues in our processes we define a metric space. For

this we define a function ds which gives the distance for any pair of subprocesses

within a process.

Definition 9.1. The distance ds(P, Q, S) between two subprocesses P and Q of a

process S
def
= P | Q | R is

ds(P, Q, S) =

1 if keys(P) ∩ keys(Q) 6= ∅

1 + ds(Q, R, S) if keys(P) ∩ keys(R) 6= ∅ and

ds(R, Q, S) <∞

∞ otherwise

In this we treat all bonds as having the same length. This is not the case in reality

(bond lengths vary roughly from 100 to 300 pm, depending on electronic details of

the bonding), but for many purposes a treatment based on a uniform bond length

is sufficient.

In order to deal with the steric effects we define the number of neighbours of a

process by a function conn.

Definition 9.2. The connectivity conn(P, S) of a subprocess P of process S
def
= P | R

is

conn(P, S) = |keys(P) ∩ keys(R)|

We extend the SOS rules for CCB with side conditions referring to the functions

ds and conn. The new SOS rules are given in Figures 9.1-9.3. The predicates std

and fsh are as before (Figure 4.1). The only instances where the distance is used

is in rules com and concert act. In these rules the thresholds for con and dis must

be chosen by the user as well as the relations R and R′ when a system is specified.

R can any of <, = or, >, whereas R′ can be <or ≤. We will see below that this

enables the modelling of various examples by varying the conditions. Forward rules

not involving a communication are not affected by distance, since they do not involve

more than one process. In rule rev com we do not need to stipulate a distance, since

the processes that have communicated have the distance 1, and since they share a

key.

This calculus could be used to deal with the three cases mentioned above. The in-

tramolecular reactions could be excluded by giving a minimum distance, the steric

effect can be modelled by not allowing reactions if an atoms has four or more neigh-

CHAPTER 9. CONCLUSION 160

act1
std(X) fsh[k](s)

(s, a; b).X
a[k]
−−→ (s, a[k]; b).X

act2
X

a[k]
−−→ X ′ fsh[k](t)

(t; b).X
a[k]
−−→ (t; b).X ′

par
X

a[k]
−−→ X ′ fsh[k](Y)

X | Y
a[k]
−−→ X ′ | Y

com
X

a[k]
−−→ X ′ Y

b[k]
−−→ Y ′

X | Y
c[k]
−−→ X ′ | Y ′

(∗)

res
X

a[k]
−−→ X ′

X\L
a[k]
−−→ X ′\L

a /∈ L con
X

a[k]
−−→ X ′

S
a[k]
−−→ X ′

S
def
= X

Figure 9.1: Forward SOS rules of CCB-S. The condition (*) is γ(a, d) = c, b ∈ WA,
ds(X, Y) R dis where dis ∈ N, conn(X) R′ con, and conn(Y) R′ con where con ∈ N.

rev act1
std(X) fsh[k](s)

(s, a[k]; b).X
a[k]
−−→ (s, a; b).X

rev act2
X

a[k]
−−→ X ′ fsh[k](t)

(t; b).X
a[k]
−−→ (t; b).X ′

rev par
X

a[k]
−−→ X ′ fsh[k](Y)

X | Y
a[k]
−−→ X ′ | Y

rev com
X

a[k]
−−→ X ′ Y

b[k]
−−→ Y ′

X | Y
c[k]
−−→ X ′ | Y ′

(∗)

rev res
X

a[k]
−−→ X ′

X\L
a[k]
−−→ X ′\L

a /∈ L rev con
X

a[k]
−−→ X ′

X
a[k]
−−→ S

S
def
= X ′

Figure 9.2: Reverse SOS rules of CCB-S. The condition (*) is γ(a, d) = c, and
b ∈ WA.

bours and for the BER example a maximum distance would be an appropriate

condition. We see this as a promising area for further research.

9.3.2 Other future work

In Section 8.3 we presented a way to establish chemical process equivalence using

a graph conversion. There are potentially other ways of doing this, e.g. using

a term rewriting system. The application of such systems could also offer a better

understanding of the rules. For example it would be interesting to see if the minimal

number of transformations can be established.

So far we did not take energy into account. Since reactions involve energy, by

either releasing or absorbing energy, and the laws of thermodynamics determine if

a reaction happens or not, including energy flows is a potentially useful extension.

CHAPTER 9. CONCLUSION 161

aux1
std(X) fsh[k](t)

(t; b).X
(b)[k]
−−−→ (t; b[k]).X

aux2
X

(b)[k]
−−−→ X ′ fsh[k](t)

(t; a).X
(b)[k]
−−−→ (t; a).X ′

concert
X

(a)[k]
−−−→ X ′ X ′ b[l]

−→ X ′′ Y
α[k]
−−→ Y ′ Y ′ d[l]

−→ Y ′′

X | Y
{e[k],f [l]}
−−−−−→ X ′′ | Y ′′

(∗)concert act
X

{a[k],b[l]}
−−−−−→ X ′ fsh[k](t)

(t; a).X
{a[k],b[l]}
−−−−−→ (t; a).X ′

concert par
X

{a[k],b[l]}
−−−−−→ X ′ fsh[k](Y)

X | Y
{a[k],b[l]}
−−−−−→ X ′ | Y

concert rev
X

{a[k],b[l]}
−−−−−→ X ′

X\L
{a[k],b[l]}
−−−−−→ X ′\L

(∗∗)

Figure 9.3: SOS rules for concerted actions of CCB-S. The condition (*) is α is
c or (c), γ(b, c) = e for some c ∈ A, γ(a, d) = f , ds(X, Y) R dis where dis ∈ N,
conn(X) R′ con, and conn(Y) R′ con where con ∈ N. The condition (**) is a, h /∈
L ∪ (L). Recall that t ∈ AK∗.

Ideally it would give a more general modelling and exclude some unwanted paths,

which so far can be executed in the calculus.

Another area for further work is the interdisciplinary application of the calculus

and its possible extension. The principles described may be relevant in many other

areas. If these are examined this could result in further extensions to CCB. A specific

area here could be models of distributed computing or other complex computational

systems where coordination of tasks is needed. Reversibility can help to make such

system more resilient. Our calculus could help in finding ways to control reversibility

in such systems.

The software tool demonstrated in Chapter 8 could be extended to form the core of

a generic process calculus simulation tool. For this it would need to be modularized

in order for a user to provide his own rules for parsing, infer transitions, executing

processes etc. The use of the visitor pattern is an example of how this could be done.

The extension could be done by rules being supplied in textual format, but also by

code being provided by the user. With the help of Java techniques like introspection

it would be possible to load code at runtime. Also the code for the display of the

processes could be modular, so that different layout algorithms could be provided.

Some might be optimized for the display of chemical structures, others could render

the processes for different application areas.

Appendix: Record of the

execution of the hydration of

formaldehyde in water using

CCBsimulation

Here we give a complete execution of a system of one formaldehyde and three water

molecules, as described in Chapter 5. The execution contains all states from Fig-

ure 5.6. After each step we have executed those reactions which can realistically

happen. Behind each reaction we give an explanation, using the following keys:

• [X +] new processes, which are followed in the next step. X refers to the states

in Figure 5.6.

• [X -] leads to an already covered compound. These paths are shown by the

program, since they represent a new transition. We do not execute them.

These include reverse reactions of previously done transitions.

• [1] not possible because of steric hindrance, see Section 5.2.

• [2] single oxygen not possible, see Section 5.4.

• [3] transition to same state. This can for example happen if a water molecule

abstract a hydrogen atom from an H3O
+ molecule, producing a H3O

+ and a

water molecule again.

• [4] intramolecular reaction, see Section 5.4.

The resonances are not executed here as single steps, but only as concerted actions

with the next step. As a consequence, i7 | W | OH | W and i7 | OH | OH | H3O

are not reached directly, but are an intermediate state in a reaction.

162

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 163

All bold text are comments, added manually and not part of the program output.

Enter your process:

(((c1[1],c2[2],c3[3],c4[4];p).0 | (h1[1];p).0 | (h2[2];p).0 | (o1[3],

→֒ o2[4],n).0) \ {c1,c2,c3,c4,h1,h2,o1,o2,c1h1,c2h2} | ((h3[5];p)

→֒ .0 | (h4[6];p).0 | (o3[5],o4[6],n).0) \ {h3,h4,o3,o4} | ((h5

→֒ [7];p).0 | (h6[8];p).0 | (o5[7],o6[8],n).0) \ {h5,h6,o5,o6} |

→֒ ((h7[9];p).0 | (h8[10];p).0 | (o7[9],o8[10],n).0) \ {h7,h8,o7,

→֒ o8}) \ {n,p} [FA W W W +]

Enter your synchronisation function [format: a,a,b...):

c1,h1,c1h1,c1,h2,c1h2,c1,h3,c1h3,c1,h4,c1h4,c1,h5,c1h5,c1,h6,c1h6,c1,

→֒ h7,c1h7,c1,h8,c1h8,c2,h1,c2h1,c2,h2,c2h2,c2,h3,c2h3,c2,h4,c2h4

→֒ ,c2,h5,c2h5,c2,h6,c2h6,c2,h7,c2h7,c2,h8,c2h8,c3,h1,c3h1,c3,h2,

→֒ c3h2,c3,h3,c3h3,c3,h4,c3h4,c3,h5,c3h5,c3,h6,c3h6,c3,h7,c3h7,c3

→֒ ,h8,c3h8,c4,h1,c4h1,c4,h2,c4h2,c4,h3,c4h3,c4,h4,c4h4,c4,h5,

→֒ c4h5,c4,h6,c4h6,c4,h7,c4h7,c4,h8,c4h8,o1,h1,o1h1,o1,h2,o1h2,o1

→֒ ,h3,o1h3,o1,h4,o1h4,o1,h5,o1h5,o1,h6,o1h6,o1,h7,o1h7,o1,h7,

→֒ o1h7,o2,h1,o2h1,o2,h2,o2h2,o2,h3,o2h3,o2,h4,o2h4,o2,h5,o2h5,o2

→֒ ,h6,o2h6,o2,h7,o2h7,o2,h8,o2h8,o3,h1,o3h1,o3,h2,o3h2,o3,h3,

→֒ o3h3,o3,h4,o3h4,o3,h5,o3h5,o3,h6,o3h6,o3,h7,o3h7,o3,h8,o3h8,o4

→֒ ,h1,o4h1,o4,h2,o4h2,o4,h3,o4h3,o4,h4,o4h4,o4,h5,o4h5,o4,h6,

→֒ o4h6,o4,h7,o4h7,o4,h8,o4h8,o5,h1,o5h1,o5,h2,o5h2,o4,h3,o5h3,o5

→֒ ,h4,o5h4,o5,h5,o5h5,o5,h6,o5h6,o5,h7,o5h7,o5,h8,o5h8,o6,h1,

→֒ o6h1,o6,h2,o6h2,o6,h3,o6h3,o6,h4,o6h4,o4,h5,o6h5,o6,h6,o6h6,o6

→֒ ,h7,o6h7,o6,h8,o6h8,o7,h1,o7h1,o7,h2,o7h2,o7,h3,o7h3,o7,h4,

→֒ o7h4,o4,h5,o7h5,o7,h6,o7h6,o7,h7,o7h7,o7,h8,o7h8,o8,h1,o8h1,o8

→֒ ,h2,o8h2,o4,h3,o8h3,o8,h4,o8h4,o4,h5,o8h5,o8,h6,o8h6,o8,h7,

→֒ o8h7,o8,h8,o8h8,c1,n,c1n,c2,n,c2n,c3,n,c3n,c4,n,c4n,h1,n,h1n,

→֒ h2,n,h2n,h3,n,h3n,h4,n,h4n,h5,n,h5n,h6,n,h6n,h7,n,h7n,h8,n,h8n

→֒ ,n,p,c1,o1,c1o1,c1,o2,c1o2,c1,o3,c1o3,c1,o4,c1o4,c1,o5,c1o5,c1

→֒ ,o6,c1o6,c1,o7,c1o7,c1,o8,c1o8,c2,o1,c2o1,c2,o2,c2o2,c2,o3,

→֒ c3o3,c2,o4,c2o4,c2,o5,c2o5,c2,o6,c2o6,c2,o7,c2o7,c2,o8,c2o8,c3

→֒ ,o1,c3o1,c3,o2,c3o2,c3,o3,c3o3,c3,o4,c3o4,c3,o5,c3o5,c3,o6,

→֒ c3o6,c3,o7,c3o7,c3,o8,c3o8,c4,o1,c4o1,c4,o2,c4o2,c4,o3,c4o3,c3

→֒ ,o4,c3o4,c3,o5,c3o5,c3,o6,c3o6,c3,o7,c3o7,c3,o8,c3o8

Enter the weak actions [format: a,b,c...):

n,p

0: Ready for execution P0 ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (n,o1[3],o2[4]).0) \ {c1,c2,c3,c4,h1,h2,o1

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 164

→֒ ,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (_n,o3[5],o4[6])

→֒ .0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (n,o5[7],o6

→֒ [8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (n,o7

→֒ [9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i2 W W +]

1: Ready for execution P1 ((c1[1],c2[2],c3[3],c4[4];p).0 | (h1[1];p)

→֒ .0 | (h2[2];p).0 | (_n,o1[3],o2[4]).0) \ {c1,c2,c3,c4,h1,h2,o1

→֒ ,o2,c1h1,c2h2} | ((#h3[5];_p).0 | (h4[6];p).0 | (n,o3[5],o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i6 W OH W +]

2: Ready for execution P2 ((#h3[5];_p).0 | (h4[6];p).0 | (n,o3[5],o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (_n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [FA W OH H3O +]

3 transitions ready, execute [a]ll or give [e]xclude or [i]nclude

→֒ list or say [b]reakX

a

Transitions from 0

0: Ready for execution P0 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],n

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (_n,

→֒ o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

1: Ready for execution P1 ((c1[1],c2[2],c4[4],#c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],n

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (_n,

→֒ o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

2: Ready for execution P2 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,o1,

→֒ o2,c1h1,c2h2} | ((#h3[5];_p).0 | (h4[6];p).0 | (o3[5],o4[6],n

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [4]

3: Ready for execution P3 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,o1,

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 165

→֒ o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],n

→֒ [100]).0) \ {h3,h4,o3,o4} | ((#h5[7];_p).0 | (h6[8];p).0 | (n,

→֒ o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i8 OH W +]

4: Ready for execution P4 ((#h3[5];_p).0 | (h4[6];p).0 | (o3[5],o4

→֒ [6],n[100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 |

→֒ (_n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p

→֒).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i3 H3O W +]

5: Ready for execution P5 ((#h5[7];_p).0 | (h6[8];p).0 | (n,o5[7],o6

→֒ [8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (_n,o7

→֒ [9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i2 H3O OH +]

Transitions from 1

6: Ready for execution P6 ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (o1[3],o2[4],n[101]).0) \ {c1,c2,c3,c4,h1,

→֒ h2,o1,o2,c1h1,c2h2} | ((h3[101];p).0 | (h4[6];p).0 | (_n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [MD W W +]

7: Ready for execution P7 ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (o1[3],o2[4],n[101]).0) \ {c1,c2,c3,c4,h1,

→֒ h2,o1,o2,c1h1,c2h2} | ((h3[101];p).0 | (h4[6];p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (_n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i8 OH W -]

8: Ready for execution P8 ((#h3[101];_p).0 | (h4[6];p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (_n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [FA W OH H3O -]

9: Ready for execution P9 ((h3[101];p).0 | (#h4[6];_p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (_n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [2]

10: Ready for execution P10 ((h3[101];p).0 | (h4[6];p).0 | (_n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((#h5[7];_p).0 | (h6[8];p).0 | (n,o5

→֒ [7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [3]

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 166

11: Ready for execution P11 ((#h5[7];_p).0 | (h6[8];p).0 | (n,o5[7],

→֒ o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (_n,

→֒ o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i6 OH OH H3O +]

Transitions from 2

12: Ready for execution P12 ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1[3],o2[4]).0) \ {c1,c2,c3,c4,h1,

→֒ h2,o1,o2,c1h1,c2h2} | ((h3[102];p).0 | (h4[6];p).0 | (_n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5[7],

→֒ o6[8],n[102]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i3 H3O W -]

13: Ready for execution P13 ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1[3],o2[4]).0) \ {c1,c2,c3,c4,h1,

→֒ h2,o1,o2,c1h1,c2h2} | ((h3[102];p).0 | (h4[6];p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5[7],

→֒ o6[8],n[102]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i2 H3O OH -]

14: Ready for execution P14 ((c1[1],c2[2],c3[3],c4[4];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o1[3],o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((#h3[102];_p).0 | (h4[6];p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5[7],

→֒ o6[8],n[102]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i6 W OH W -]

15: Ready for execution P15 ((c1[1],c2[2],c3[3],c4[4];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o1[3],o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[102];p).0 | (#h4[6];_p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5[7],

→֒ o6[8],n[102]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [2]

16: Ready for execution P16 ((c1[1],c2[2],c3[3],c4[4];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o1[3],o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[102];p).0 | (h4[6];p).0 | (n,o3,o4[6])

→֒ .0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5[7],o6

→֒ [8],n[102]).0) \ {h5,h6,o5,o6} | ((#h7[9];_p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i6 OH OH H3O -]

17: Ready for execution P17 ((#h3[102];_p).0 | (h4[6];p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5[7],

→֒ o6[8],n[102]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [3]

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 167

18: Ready for execution P18 ((h3[102];p).0 | (#h4[6];_p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5[7],

→֒ o6[8],n[102]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [2]

19: Ready for execution P19 ((h3[102];p).0 | (h4[6];p).0 | (_n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((#h5[7];_p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[102]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [FA W W W -]

20 transitions ready, execute [a]ll or give [e]xclude or [i]nclude

→֒ list or say [b]reakX

i3,4,5,6,11,12

Transitions from 3

0: Ready for execution P0 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],

→֒ o4[6],n[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p)

→֒ .0 | (_n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8

→֒ [10];p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

1: Ready for execution P1 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],

→֒ o4[6],n[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p)

→֒ .0 | (n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

2: Ready for execution P2 ((c1[1],c2[2],c4[4],#c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],

→֒ o4[6],n[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p)

→֒ .0 | (_n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8

→֒ [10];p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

3: Ready for execution P3 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,h1,h2

→֒ ,o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],

→֒ n[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (#h6[8];_p).0 |

→֒ (n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i14 OH OH +]

4: Ready for execution P4 ((#h3[5];_p).0 | (h4[6];p).0 | (o3[5],o4

→֒ [6],n[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p).0

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 168

→֒ | (n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p)

→֒ .0 | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [MD OH H3O +]

5: Ready for execution P5 ((#h5[103];_p).0 | (h6[8];p).0 | (n,o5,o6

→֒ [8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (_n,o7

→֒ [9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i2 H3O OH -]

6: Ready for execution P6 ((h5[103];p).0 | (#h6[8];_p).0 | (n,o5,o6

→֒ [8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (_n,o7

→֒ [9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [2]

Transitions from 5

7: Ready for execution P7 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],n

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[105];p).0 | (h6[8];p).0 | (_n

→֒ ,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (o7[9],o8[10],n[105]).0) \ {h7,h8,o7,o8};np;0 [1]

8: Ready for execution P8 ((c1[1],c2[2],c4[4],#c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],n

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[105];p).0 | (h6[8];p).0 | (_n

→֒ ,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (o7[9],o8[10],n[105]).0) \ {h7,h8,o7,o8};np;0 [1]

9: Ready for execution P9 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,o1,

→֒ o2,c1h1,c2h2} | ((#h3[5];_p).0 | (h4[6];p).0 | (o3[5],o4[6],n

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[105];p).0 | (h6[8];p).0 | (n,

→֒ o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (

→֒ o7[9],o8[10],n[105]).0) \ {h7,h8,o7,o8};np;0 [4]

10: Ready for execution P10 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (_n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2

→֒ ,o1,o2,c1h1,c2h2} | ((h3[5];p).0 | (h4[6];p).0 | (o3[5],o4[6],

→֒ n[100]).0) \ {h3,h4,o3,o4} | ((#h5[105];_p).0 | (h6[8];p).0 |

→֒ (n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (o7[9],o8[10],n[105]).0) \ {h7,h8,o7,o8};np;0 [i8 W OH -]

11: Ready for execution P11 ((h5[105];p).0 | (h6[8];p).0 | (_n,o5,o6

→֒ [8]).0) \ {h5,h6,o5,o6} | ((#h7[9];_p).0 | (h8[10];p).0 | (o7

→֒ [9],o8[10],n[105]).0) \ {h7,h8,o7,o8};np;0 [i2 W W -]

Transitions from 6

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 169

12: Ready for execution P12 ((c1[1],c2[2],#c4[4],c3[106];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[101]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[101];p).0 | (h4[6];p).0 | (_n,o4

→֒ [6],o3[106]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 |

→֒ (n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p

→֒).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

13: Ready for execution P13 ((c1[1],c2[2],#c4[4],c3[106];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[101]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[101];p).0 | (h4[6];p).0 | (n,o4

→֒ [6],o3[106]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 |

→֒ (_n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

14: Ready for execution P14 ((c1[1],c2[2],c4[4],#c3[106];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[101]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[101];p).0 | (h4[6];p).0 | (_n,o4

→֒ [6],o3[106]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 |

→֒ (n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p

→֒).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

15: Ready for execution P15 ((c1[1],c2[2],c4[4],c3[106];p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (_n,o2[4],o1[101]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[101];p).0 | (#h4[6];_p).0 | (n,

→֒ o4[6],o3[106]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0

→֒ | (n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8

→֒ [10];p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [4]

16: Ready for execution P16 ((#h3[101];_p).0 | (h4[6];p).0 | (n,o4

→֒ [6],o3[106]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 |

→֒ (_n,o5[7],o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i3 H3O W -]

17: Ready for execution P17 ((#h5[7];_p).0 | (h6[8];p).0 | (n,o5[7],

→֒ o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (_n,

→֒ o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [MD OH H3O -]

Transitions from 4

18: Ready for execution P18 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[104];p).0 | (h4[6];p).0 | (_n,o4[6],o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 170

19: Ready for execution P19 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[104];p).0 | (h4[6];p).0 | (n,o4[6],o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

20: Ready for execution P20 ((c1[1],c2[2],c4[4],#c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[104];p).0 | (h4[6];p).0 | (_n,o4[6],o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

21: Ready for execution P21 ((c1[1],c2[2],c4[4],#c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[104];p).0 | (h4[6];p).0 | (n,o4[6],o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [1]

22: Ready for execution P22 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (_n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2

→֒ ,o1,o2,c1h1,c2h2} | ((#h3[104];_p).0 | (h4[6];p).0 | (n,o4[6],

→֒ o3[100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [MD W W -]

23: Ready for execution P23 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (_n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2

→֒ ,o1,o2,c1h1,c2h2} | ((h3[104];p).0 | (h4[6];p).0 | (n,o4[6],o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((#h7[9];_p).0 | (h8

→֒ [10];p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [MD H3O

→֒ HO -]

24: Ready for execution P24 ((h3[104];p).0 | (#h4[6];_p).0 | (n,o4

→֒ [6],o3[100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 |

→֒ (o5[7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8

→֒ [10];p).0 | (_n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i13 H3O

→֒ H3O +]

25: Ready for execution P25 ((h3[104];p).0 | (h4[6];p).0 | (_n,o4[6],

→֒ o3[100]).0) \ {h3,h4,o3,o4} | ((#h5[7];_p).0 | (h6[8];p).0 | (

→֒ o5[7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 171

→֒ [10];p).0 | (n,o7[9],o8[10]).0) \ {h7,h8,o7,o8};np;0 [i2 W W

→֒ -]

Transitions from 11

26: Ready for execution P26 ((c1[1],c2[2],#c3[3],c4[4];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (o1[3],o2[4],n[101]).0) \ {c1,c2,c3,

→֒ c4,h1,h2,o1,o2,c1h1,c2h2} | ((h3[101];p).0 | (h4[6];p).0 | (_n

→֒ ,o3,o4[6]).0) \ {h3,h4,o3,o4} | ((h5[107];p).0 | (h6[8];p).0 |

→֒ (n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (o7[9],o8[10],n[107]).0) \ {h7,h8,o7,o8};np;0 [MD OH H3O +]

27: Ready for execution P27 ((#h3[101];_p).0 | (h4[6];p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[107];p).0 | (h6[8];p).0 | (_n,

→֒ o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (

→֒ o7[9],o8[10],n[107]).0) \ {h7,h8,o7,o8};np;0 [FA W OH H3O -]

28: Ready for execution P28 ((h3[101];p).0 | (#h4[6];_p).0 | (n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((h5[107];p).0 | (h6[8];p).0 | (_n,

→֒ o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (

→֒ o7[9],o8[10],n[107]).0) \ {h7,h8,o7,o8};np;0 (i6 o w h3o) [2]

29: Ready for execution P29 ((h3[101];p).0 | (h4[6];p).0 | (_n,o3,o4

→֒ [6]).0) \ {h3,h4,o3,o4} | ((#h5[107];_p).0 | (h6[8];p).0 | (n,

→֒ o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 | (

→֒ o7[9],o8[10],n[107]).0) \ {h7,h8,o7,o8};np;0 [i6 W W OH -]

30 transitions ready, execute [a]ll or give [e]xclude or [i]nclude

→֒ list or say [b]reakX

i4,24

Transitions from 24

0: Ready for execution P0 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[104];p).0 | (h4[110];p).0 | (_n,o4,o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (o7[9],o8[10],n[110]).0) \ {h7,h8,o7,o8};np;0 [1]

1: Ready for execution P1 ((c1[1],c2[2],c4[4],#c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,

→֒ o1,o2,c1h1,c2h2} | ((h3[104];p).0 | (h4[110];p).0 | (_n,o4,o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (o7[9],o8[10],n[110]).0) \ {h7,h8,o7,o8};np;0 [1]

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 172

2: Ready for execution P2 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o1,o2[4]).0) \ {c1,c2,c3,c4,h1,h2,o1,

→֒ o2,c1h1,c2h2} | ((#h3[104];_p).0 | (h4[110];p).0 | (n,o4,o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[7];p).0 | (h6[8];p).0 | (o5

→֒ [7],o6[8],n[104]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];

→֒ p).0 | (o7[9],o8[10],n[110]).0) \ {h7,h8,o7,o8};np;0 [i3 W H3O

→֒ -]

Transitions from 4

3: Ready for execution P3 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[109];p).0 | (h4[6];p).0 | (_n,o4

→֒ [6],o3[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p).0

→֒ | (n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p)

→֒ .0 | (o7[9],o8[10],n[109]).0) \ {h7,h8,o7,o8};np;0 [1]

4: Ready for execution P4 ((c1[1],c2[2],#c4[4],c3[100];_p).0 | (h1

→֒ [1];p).0 | (h2[2];p).0 | (n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,

→֒ h1,h2,o1,o2,c1h1,c2h2} | ((h3[109];p).0 | (h4[6];p).0 | (n,o4

→֒ [6],o3[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p).0

→֒ | (_n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p

→֒).0 | (o7[9],o8[10],n[109]).0) \ {h7,h8,o7,o8};np;0 [1]

5: Ready for execution P5 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,h1,h2

→֒ ,o1,o2,c1h1,c2h2} | ((#h3[109];_p).0 | (h4[6];p).0 | (n,o4[6],

→֒ o3[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p).0 | (

→֒ n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (o7[9],o8[10],n[109]).0) \ {h7,h8,o7,o8};np;0 [i8 OH W -]

6: Ready for execution P6 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,h1,h2

→֒ ,o1,o2,c1h1,c2h2} | ((h3[109];p).0 | (#h4[6];_p).0 | (n,o4[6],

→֒ o3[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p).0 | (

→֒ n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (o7[9],o8[10],n[109]).0) \ {h7,h8,o7,o8};np;0 [4]

7: Ready for execution P7 ((c1[1],c2[2],c4[4],c3[100];p).0 | (h1[1];p

→֒).0 | (h2[2];p).0 | (_n,o2[4],o1[103]).0) \ {c1,c2,c3,c4,h1,h2

→֒ ,o1,o2,c1h1,c2h2} | ((h3[109];p).0 | (h4[6];p).0 | (n,o4[6],o3

→֒ [100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (#h6[8];_p).0 | (

→֒ n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0 |

→֒ (o7[9],o8[10],n[109]).0) \ {h7,h8,o7,o8};np;0 [4]

APPENDIX . RECORD OF THE HYDRATION OF FORMALDEHYDE... 173

8: Ready for execution P8 ((#h3[109];_p).0 | (h4[6];p).0 | (n,o4[6],

→֒ o3[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p).0 | (

→֒ _n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (o7[9],o8[10],n[109]).0) \ {h7,h8,o7,o8};np;0 [3]

9: Ready for execution P9 ((h3[109];p).0 | (#h4[6];_p).0 | (n,o4[6],

→֒ o3[100]).0) \ {h3,h4,o3,o4} | ((h5[103];p).0 | (h6[8];p).0 | (

→֒ _n,o5,o6[8]).0) \ {h5,h6,o5,o6} | ((h7[9];p).0 | (h8[10];p).0

→֒ | (o7[9],o8[10],n[109]).0) \ {h7,h8,o7,o8};np;0 [i3 H3O W -]

10 transitions ready, execute [a]ll or give [e]xclude or [i]nclude

→֒ list or say [b]reakX

Bibliography

[1] The Biochemical Abstract Machine BIOCHAM 3, 2017. https://lifeware.

inria.fr/biocham/. Accessed 3-November-2017.

[2] Holger Bock Axelsen and Robert Glück. What Do Reversible Programs Com-

pute? In Martin Hofmann, editor, Foundations of Software Science and Com-

putational Structures, pages 42–56. Springer Berlin Heidelberg, 2011.

[3] Josef C. M. Baeten and W. Peter Weijland. Process Algebra (Cambridge Tracts

in Theoretical Computer Science 18). Cambridge University Press, 1990.

[4] Caroline Baroukh, Anthony Rowe, and Yike Guo. Process calculi for systems

biology and applications in severe asthma. In 2010 IEEE International Con-

ference on Bioinformatics and Biomedicine Workshops, pages 217–222. IEEE,

2010.

[5] Kamila Barylska, Maciej Koutny, Lukasz Mikulski, and Marcin Pia̧tkowski.

Reversible computation vs. reversibility in Petri nets. Science of Computer

Programming, 151:48 – 60, 2018. Special issue of the 8th Conference on Re-

versible Computation (RC2016).

[6] C. H. Bennett. Logical Reversibility of Computation. IBM J. Res. Dev.,

17(6):525–532, November 1973.

[7] Gerard Berry and Gerard Boudol. The Chemical Abstract Machine. In Pro-

ceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’90, pages 81–94. ACM, 1990.

[8] Pierre Boutillier, Jérôme Feret, Jean Krivine, and Lý Kim Quyên. KaSim &

KaSa reference manual (release 3.90). http://dev.executableknowledge.

org/docs/KaSim-manual-master/KaSim_manual.htm. Accessed: 2-

September-2016.

174

https://lifeware.inria.fr/biocham/
https://lifeware.inria.fr/biocham/
http://dev.executableknowledge.org/docs/KaSim-manual-master/KaSim_manual.htm
http://dev.executableknowledge.org/docs/KaSim-manual-master/KaSim_manual.htm

BIBLIOGRAPHY 175

[9] Muffy Calder, Stephen Gilmore, and Jane Hillston. Modelling the Influence

of RKIP on the ERK Signalling Pathway Using the Stochastic Process Alge-

bra PEPA, In Corrado Priami, Anna Ingólfsdóttir, Bud Mishra, and Hanne

Riis Nielson, editors, Transactions on Computational Systems Biology VII,

pages 1–23. Springer, 2006.

[10] Giulio Caravagna and Jane Hillston. Bio-PEPAd: A non-Markovian extension

of Bio-PEPA. Theoretical Computer Science, 419(Supplement C):26–49, 2012.

[11] Luca Cardelli. Brane Calculi. In Vincent Danos and Vincent Schachter, edi-

tors, Computational Methods in Systems Biology, volume 3082 of Lecture Notes

in Computer Science, pages 257–278. Springer, 2005.

[12] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In Proceedings of

the First International Conference on Foundations of Software Science and

Computation Structure, FOSSACS ’98, pages 140–155. Springer, 1998.

[13] Raymond Chang and Ken Goldsby. General Chemistry. The Essential Con-

cepts. McGraw-Hill, 2014.

[14] Matteo Cimini, MohammadReza Mousavi, Michel A. Reniers, and Murdoch J.

Gabbay. Nominal SOS. Electronic Notes in Theoretical Computer Science,

286:103 – 116, 2012. Proceedings of the 28th Conference on the Mathematical

Foundations of Programming Semantics (MFPS XXVIII).

[15] Federica Ciocchetta and Jane Hillston. Bio-PEPA: A Framework for the

Modelling and Analysis of Biological Systems. Theor. Comput. Sci., 410(33-

34):3065–3084, August 2009.

[16] Federica Ciocchetta, Jane Hillston, Martin Kos, and David Tollervey. Mod-

elling co-transcriptional cleavage in the synthesis of yeast pre-rRNA. Theoret-

ical Computer Science, 408(1):41–54, 2008.

[17] Jonathan Claydon, Nick Greeves, Stuart Warren, and Peter Wothers. Organic

Chemistry. Oxford University Press, 2001.

[18] Rance Cleaveland, Gerald Löttgen, and V. Natarajan. Priority in Process

Algebra. In Jan A. Bergstra, Alban Ponse, and Scott Allen Smolka, editors,

Handbook of Process Algebra, chapter 12, pages 711–765. Elsevier Science,

2001.

[19] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A

(sub)graph isomorphism algorithm for matching large graphs. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 26(10):1367–1372, 2004.

BIBLIOGRAPHY 176

[20] Ioana Cristescu, Jean Krivine, and Daniele Varacca. A Compositional Seman-

tics for the Reversible p-Calculus. In 28th Annual ACM/IEEE Symposium on

Logic in Computer Science, pages 388–397. IEEE Computer Society, 2013.

[21] Ioana Cristescu, Jean Krivine, and Daniele Varacca. Rigid Families for the

Reversible π-Calculus, In Simon Devitt and Ivan Lanese, editors, Reversible

Computation: 8th International Conference, RC 2016, volume 9720 of Lecture

Notes in Computer Science, pages 3–19. Springer, 2016.

[22] Zoltán Csörnyei and Gergely Dévai. An Introduction to the Lambda Calculus,

In Zoltán Horváth, Rinus Plasmeijer, Anna Soós, and Viktória Zsók, editors,

Central European Functional Programming School: Second Summer School,

CEFP 2007, Cluj-Napoca, Romania, June 23-30, 2007, Revised Selected Lec-

tures, pages 87–111. Springer Berlin Heidelberg, 2008.

[23] Michele Curti, Pierpaolo Degano, and Cosima Tatiana Baldari. Causal π-

Calculus for Biochemical Modelling. In Corrado Priami, editor, Computational

Methods in Systems Biology, volume 2602 of Lecture Notes in Computer Sci-

ence, pages 21–34. Springer, 2003.

[24] Vincent Danos, Jerome Feret, Walter Fontana, Russell Harmer, Jonathan Hay-

man, Jean Krivine, Chris Thompson-Walsh, and Glynn Winskel. Graphs,

Rewriting and Pathway Reconstruction for Rule-Based Models. In Deepak

D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS

Annual Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS 2012), volume 18 of Leibniz International Pro-

ceedings in Informatics (LIPIcs), pages 276–288. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2012.

[25] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Kriv-

ine. Rule-Based Modelling of Cellular Signalling. In Lúıs Caires and Vasco T.

Vasconcelos, editors, CONCUR 2007 - Concurrency Theory, volume 4703 of

Lecture Notes in Computer Science, pages 17–41. Springer, 2007.

[26] Vincent Danos and Jean Krivine. Reversible Communicating Systems. In

Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency

Theory, volume 3170 of Lecture Notes in Computer Science, pages 292–307.

Springer, 2004.

[27] Vincent Danos and Jean Krivine. Formal Molecular Biology Done in CCS-

R. Electronic Notes in Theoretical Computer Science, 180(3):31–49, 2007.

Proceedings of the First Workshop on Concurrent Models in Molecular Biology

(BioConcur 2003).

BIBLIOGRAPHY 177

[28] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical

Computer Science, 325(1):69–110, 2004.

[29] Vincent Danos and Sylvain Pradalier. Projective Brane Calculus, In Vincent

Danos and Vincent Schachter, editors, Computational Methods in Systems

Biology: International Conference CMSB 2004, Paris, France, May 26-28,

2004, Revised Selected Papers, volume 3082 of Lecture Notes in Computer

Science, pages 134–148. Springer, 2005.

[30] Centre for Industry Education Collaboration Department of Chemistry,

University of York. The Essential Chemical Industry - online. Methanal

(Formaldehyde), 2016. http://www.essentialchemicalindustry.org/

chemicals/methanal.html. Accessed 22-January-2018.

[31] Mariangiola Dezani-Ciancaglini and Paola Giannini. Reversible Multiparty

Sessions with Checkpoints. In Daniel Gebler and Kirstin Peters, editors, Pro-

ceedings Combined 23rd International Workshop on Expressiveness in Concur-

rency and 13th Workshop on Structural Operational Semantics, Québec City,

Canada, 22nd August 2016, volume 222 of Electronic Proceedings in Theoret-

ical Computer Science, pages 60–74. Open Publishing Association, 2016.

[32] Jakob Engblom. A review of reverse debugging. In Proceedings of the 2012

System, Software, SoC and Silicon Debug Conference, pages 1–6, Sept 2012.

[33] Ralph Johnson Richard Helm Erich Gamma, John Vlissides. Design Patterns.

Pearson, 1994.

[34] François Fages and Sylvain Soliman. Formal Cell Biology in Biocham, In

Marco Bernardo, Pierpaolo Degano, and Gianluigi Zavattaro, editors, For-

mal Methods for Computational Systems Biology: 8th International School

on Formal Methods for the Design of Computer, Communication, and Soft-

ware Systems, SFM 2008, Advanced Lectures, volume 5016 of Lecture Notes

in Computer Science, pages 54–80. Springer, 2008.

[35] François Fages, Sylvain Soliman, and Nathalie Chabrier-Rivier. Modelling and

querying interaction networks in the biochemical abstract machine biocham.

Journal of Biological Physics and Chemistry, 4:64–73, 2004.

[36] Wan Fokkink. Introduction to Process Algebra (Texts in Theoretical Computer

Science. An EATCS Series). Springer, 2000.

[37] W. Fontana and L.W. Buss. The Barrier of Objects: From Dynamical Systems

to Bounded Organizations. IIASA working paper, IIASA, Laxenburg, Austria,

March 1996.

http://www.essentialchemicalindustry.org/chemicals/methanal.html
http://www.essentialchemicalindustry.org/chemicals/methanal.html

BIBLIOGRAPHY 178

[38] Cecil H. Fox, Frank B. Johnson, John Whiting, and Peter P. Roller. Formalde-

hyde fixation. Journal of Histochemistry and Cytochemistry, 33(8):845–853,

1985.

[39] Michael P. Frank. Reversibility for Efficient Computing. PhD thesis, Cam-

bridge, MA, USA, 1999. AAI0800784.

[40] Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax

involving binders. In Proceedings. 14th Symposium on Logic in Computer

Science (Cat. No. PR00158), pages 214–224, July 1999.

[41] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.

The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[42] Maria Luisa Guerriero, Davide Prandi, Corrado Priami, and Paola Quaglia.

Process Calculi Abstractions for Biology, In Anne Condon, David Harel,

Joost N. Kok, Arto Salomaa, and Erik Winfree, editors, Algorithmic Bio-

processes, pages 463–486. Springer, 2009.

[43] Tue Haulund, Torben Ægidius Mogensen, and Robert Glück. Implementing

Reversible Object-Oriented Language Features on Reversible Machines. In

Iain Phillips and Hafizur Rahaman, editors, Reversible Computation, pages

66–73. Springer International Publishing, 2017.

[44] Desmond J. Higham. Modeling and Simulating Chemical Reactions. SIAM

Review, 50(2):347–368, 2008.

[45] Jane Hillston. A Compositional Approach to Performance Modelling. Dis-

tinguished Dissertations in Computer Science. Cambridge University Press,

1996.

[46] Charles A. R. Hoare. Communicating Sequential Processes. Prentice Hall

International Series in Computing Science. Prentice-Hall, 1985.

[47] James Hoey, Irek Ulidowski, and Shoji Yuen. Reversing Imperative Parallel

Programs. In Kirstin Peters and Simone Tini, editors, Proceedings Com-

bined 24th International Workshop on Expressiveness in Concurrency and

14th Workshop on Structural Operational Semantics, Berlin, Germany, 4th

September 2017, volume 255 of Electronic Proceedings in Theoretical Com-

puter Science, pages 51–66. Open Publishing Association, 2017.

[48] James Hoey, Irek Ulidowski, and Shoji Yuen. Reversing Parallel Programs

with Blocks and Procedures. In Jorge A. Pérez and Simone Tini, editors, Pro-

ceedings Combined 25th International Workshop on Expressiveness in Con-

BIBLIOGRAPHY 179

currency and 15th Workshop on Structural Operational Semantics, Beijing,

China, September 3, 2018, volume 276 of Electronic Proceedings in Theoreti-

cal Computer Science, pages 69–86. Open Publishing Association, 2018.

[49] Robert Höllering, Johann Gasteiger, Larissa Steinhauer, Klaus-Peter Schulz,

and Achim Herwig. Simulation of Organic Reactions: From the Degradation

of Chemicals to Combinatorial Synthesis. Journal of Chemical Information

and Computer Sciences, 40(2):482–494, 2000.

[50] Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri, John Doyle,

Hiroaki Kitano, et al. The systems biology markup language (SBML): a

medium for representation and exchange of biochemical network models.

Bioinformatics, 19(4):524–531, 2003.

[51] David A. Huffman. Canonical forms for information-lossless finite-state logical

machines. IRE Transactions on Information Theory, 5(5):41–59, May 1959.

[52] JGraphT. JGraphT website, 2016. http://www.jgrapht.org. Accessed 11-

July-2016.

[53] JUnit. JUnit website, 2018. https://junit.org/. Accessed 12-May-2018.

[54] William Kemp. NMR in Chemistry. A Multinuclear Introduction. Macmillan,

1995.

[55] Agnes Köhler, Jean Krivine, and Jakob Vidmar. A Rule-Based Model of Base

Excision Repair. In Pedro Mendes, Joseph O. Dada, and Kieran Smallbone,

editors, Computational Methods in Systems Biology: 12th International Con-

ference, CMSB 2014, pages 173–195. Springer, 2014.

[56] Masaaki Kotera, Yasuo Tabei, Yoshihiro Yamanishi, Toshiaki Tokimatsu, and

Susumu Goto. Supervised de novo reconstruction of metabolic pathways from

metabolome-scale compound sets. Bioinformatics, 29(13):135–144, 2013.

[57] Jean Krivine. Kappa project: DNA repair, 2017. https://www.

irif.fr/˜jkrivine/homepage/Teaching_files/TP-DNA.pdf. Accessed 11-

November-2017.

[58] Stefan Kuhn. Simulation of Base Excision Repair in the Calculus of Covalent

Bonding. In Jarko Karri and Irek Ulidowski, editors, Reversible Computation,

10th International Conference, RC 2018, volume 11106 of Lecture Notes in

Computer Science, pages 123–129. Springer, 2018.

http://www.jgrapht.org
https://junit.org/
https://www.irif.fr/~jkrivine/homepage/Teaching_files/TP-DNA.pdf
https://www.irif.fr/~jkrivine/homepage/Teaching_files/TP-DNA.pdf

BIBLIOGRAPHY 180

[59] Stefan Kuhn and Irek Ulidowski. Towards Modelling of Local Reversibility. In

Jean Krivine and Jean-Bernard Stefani, editors, Reversible Computation, 7th

International Conference, RC 2015, volume 9138 of Lecture Notes in Computer

Science, pages 279–284. Springer, 2015.

[60] Stefan Kuhn and Irek Ulidowski. A Calculus for Local Reversibility. In Simon

Devitt and Ivan Lanese, editors, Reversible Computation, 8th International

Conference, RC 2016, volume 9720 of Lecture Notes in Computer Science,

pages 20–35. Springer, 2016.

[61] Stefan Kuhn and Irek Ulidowski. Local reversibility in a Calculus of Covalent

Bonding. Science of Computer Programming, 151(Supplement C):18–47, 2018.

Special issue of the 8th Conference on Reversible Computation (RC2016).

[62] Céline Kuttler and Joachim Niehren. Gene Regulation in the Pi Calculus:

Simulating Cooperativity at the Lambda Switch. In Corrado Priami, Anna

Ingólfsdóttir, Bud Mishra, and Hanne Riis Nielson, editors, Transactions on

Computational Systems Biology VII, pages 24–55. Springer, 2006.

[63] Rolf Landauer. Irreversibility and Heat Generation in the Computing Process.

IBM Journal of Research and Development, 5(3):183–191, July 1961.

[64] Ivan Lanese, Claudio Antares Mezzina, Alan Schmitt, and Jean-Bernard Ste-

fani. Controlling Reversibility in Higher-Order Pi. In Joost-Pieter Katoen and

Barbara König, editors, CONCUR 2011 - Concurrency Theory, volume 6901

of Lecture Notes in Computer Science, pages 297–311. Springer, 2011.

[65] Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Controlled

Reversibility and Compensations. In Robert Glück and Tetsuo Yokoyama, ed-

itors, Reversible Computation, 4th International Workshop, RC 2012, volume

7581 of Lecture Notes in Computer Science, pages 233–240. Springer, 2013.

[66] Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernhard Stefani. Reversing

Higher-Order Pi. In Proceedings of the 21st International Conference on Con-

currency Theory CONCUR 2010, volume 6269 of Lecture Notes in Computer

Science, pages 478–493. Springer, 2010.

[67] Ivan Lanese, Claudio Antares Mezzina, and Francesco Tiezzi. Causal-

Consistent Reversibility. Bulletin of the EATCS, 114, 2014.

[68] Paolo Lecca, Corrado Priami, P. Quaglia, B. Rossi, C. Laudanna, and G. Con-

stantin. A Stochastic Process Algebra Approach to Simulation of Autoreactive

Lymphocyte Recruitment. SIMULATION, 80(6):273–288, 2004.

BIBLIOGRAPHY 181

[69] Yves Lecerf. Machines de Turing réeversibles. Comptes Rendus Hebdomadaires

des Séances de l’Académie des Sciences, 257:2597–26, 1963.

[70] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. An

in-depth comparison of subgraph isomorphism algorithms in graph databases.

In Proceedings of the 39th international conference on Very Large Data Bases,

PVLDB’13, pages 133–144. VLDB Endowment, 2013.

[71] George B. Leeman, Jr. A Formal Approach to Undo Operations in Program-

ming Languages. ACM Trans. Program. Lang. Syst., 8(1):50–87, January

1986.

[72] Errol G. Lewars. Computational Chemistry. Springer, 2016.

[73] Armando B. Matos. Linear programs in a simple reversible language. Theo-

retical Computer Science, 290(3):2063 – 2074, 2003.

[74] Pawel Kerntopf Claudio Moraga Krzysztof Podlaski Robert Wille

Matthias Soeken, Nabila Abdessaied. COST Action IC1405: Reversible

Computation - Extending Horizons of Computing. State of the Art Report

Working Group 3: Reversible logic synthesis, 2018. https://github.

com/COST-IC1405/wg3-soar-report/blob/master/README.md. Accessed

22-Nov-2018.

[75] Maude. The Maude System, 2018. http://maude.cs.illinois.edu/. Ac-

cessed 25-June-2018.

[76] Mylène Maurin, Morgan Magnin, and Olivier Roux. Modeling of Genetic Regu-

latory Network in Stochastic π-Calculus, In Sanguthevar Rajasekaran, editor,

Bioinformatics and Computational Biology: First International Conference,

BICoB 2009, pages 282–294. Springer, 2009.

[77] Chris McCaig, Rachel Norman, and Carron Shankland. From individuals to

populations: A mean field semantics for process algebra. Theoretical Computer

Science, 412(17):1557–1580, 2011.

[78] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980.

[79] Robin Milner. Communication and Concurrency (Prentice Hall International

Series in Computer Science). Prentice Hall PTR, 9 1995.

[80] Robin Milner. Communicating and Mobile Systems: The π-calculus. Cam-

bridge University Press, 1999.

https://github.com/COST-IC1405/wg3-soar-report/blob/master/README.md
https://github.com/COST-IC1405/wg3-soar-report/blob/master/README.md
http://maude.cs.illinois.edu/

BIBLIOGRAPHY 182

[81] Daniel Morrison and Irek Ulidowski. Direction-Reversible Self-Timed Cellular

Automata for Delay-Insensitive Circuits. J. Cellular Automata, 12(1-2):101–

120, 2016.

[82] MohammadReza Mousavi, Iain Phillips, Michel A. Reniers, and Irek Ulid-

owski. Semantics and expressiveness of ordered SOS. Information and Com-

putation, 207(2):85–119, 2009.

[83] Madhu Mutyam and Kamala Krithivasan. P Systems with Membrane Cre-

ation: Universality and Efficiency. In Proceedings of the Third International

Conference on Machines, Computations, and Universality, MCU ’01, pages

276–287. Springer-Verlag, 2001.

[84] mxGraph. mxGraph website, 2018. https://jgraph.github.io/mxgraph/.

Accessed 5-May-2018.

[85] Miloslav Nic, Jiri Jirat, and Bedrich Kosata. IUPAC Compendium of Chemical

Terminology (Gold Book), Release 2.3.3b, 2017-03-27. https://goldbook.

iupac.org/. Accessed 12-December-2017.

[86] Andrei Pǎun and Gheorghe Pǎun. The power of communication: P systems

with symport/antiport. New Generation Computing, 20(3):295–305, 2002.

[87] Gheorghe Pǎun. Computing with Membranes. Journal of Computer and

System Sciences, 61(1):108–143, 2000.

[88] Michael Pedersen and Gordon D. Plotkin. A Language for Biochemical Sys-

tems: Design and Formal Specification. In Corrado Priami, Rainer Breitling,

David Gilbert, Monika Heiner, and Adelinde M. Uhrmacher, editors, Trans-

actions on Computational Systems Biology XII, pages 77–145. Springer, 2010.

[89] Anna Philippou and Kyriaki Psara. Reversible Computation in Petri Nets.

In Jarkko Kari and Irek Ulidowski, editors, Reversible Computation, pages

84–101. Springer International Publishing, 2018.

[90] Iain Phillips and Irek Ulidowski. Reversing algebraic process calculi. The

Journal of Logic and Algebraic Programming, 73(1-2):70–96, 2007.

[91] Iain Phillips and Irek Ulidowski. Reversibility and Asymmetric Conflict in

Event Structures. In Pedro R. D’Argenio and Hernán Melgratti, editors, CON-

CUR 2013 - Concurrency Theory, volume 8052 of Lecture Notes in Computer

Science, pages 303–318. Springer, 2013.

https://jgraph.github.io/mxgraph/
https://goldbook.iupac.org/
https://goldbook.iupac.org/

BIBLIOGRAPHY 183

[92] Iain Phillips, Irek Ulidowski, and Shoji Yuen. Modelling of Bonding with

Processes and Events. In Gerhard W. Dueck and D. Michael Miller, editors,

Reversible Computation, 5th International Conference, RC 2013, volume 7948

of Lecture Notes in Computer Science, pages 141–154. Springer, 2013.

[93] Iain Phillips, Irek Ulidowski, and Shoji Yuen. A Reversible Process Calculus

and the Modelling of the ERK Signalling Pathway. In Robert Glück and Tetsuo

Yokoyama, editors, Reversible Computation, 4th International Workshop, RC

2012, volume 7581 of Lecture Notes in Computer Science, pages 218–232.

Springer, 2013.

[94] Ian Phillips and Irek Ulidowski. Reversing algebraic process calculi. In Pro-

ceedings of 9th International Conference on Foundations of Software Science

and Computation Structures, FOSSACS 2006, volume 3921 of Lecture Notes

in Computer Science, pages 246–260. Springer, 2006.

[95] Gordon D. Plotkin. A structural approach to operational semantics. The

Journal of Logic and Algebraic Programming, 60–61:17–139, 2004.

[96] Gordon D. Plotkin. A Calculus of Chemical Systems, In Val Tannen, Limsoon

Wong, Leonid Libkin, Wenfei Fan, Wang-Chiew Tan, and Michael Fourman,

editors, In Search of Elegance in the Theory and Practice of Computation:

Essays Dedicated to Peter Buneman, pages 445–465. Springer, 2013.

[97] Corrado Priami. Stochastic π-Calculus. The Computer Journal, 38(7):578–

589, 1995.

[98] Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Appli-

cation of a stochastic name-passing calculus to representation and simulation

of molecular processes. Information Processing Letters, 80(1):25–31, 2001.

[99] ProB. The ProB Animator and Model Checker, 2018. https://www3.hhu.

de/stups/prob/index.php/Main_Page. Accessed 25-June-2018.

[100] Aviv Regev. Representation and simulation of molecular pathways in the

stochastic pi-calculus. In Ralph Gauges, C. van Gend, and U. Kummer, ed-

itors, 2nd Workshop on Computation of Biochemical Pathways and Genetic

Networks, pages 109–115. Logos, 2001.

[101] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and

Ehud Shapiro. BioAmbients: an abstraction for biological compartments.

Theoretical Computer Science, 325(1):141–167, 2004.

https://www3.hhu.de/stups/prob/index.php/Main_Page
https://www3.hhu.de/stups/prob/index.php/Main_Page

BIBLIOGRAPHY 184

[102] Aviv Regev and Ehud Shapiro. Cells as computation. Nature, 419(6905):343,

2002.

[103] Aviv Regev and Ehud Shapiro. The π-calculus as an Abstraction for Biomolec-

ular Systems, In Gabriel Ciobanu and Grzegorz Rozenberg, editors, Modelling

in Molecular Biology, pages 219–266. Springer, 2004.

[104] Aviv Regev, William Silverman, and Ehud Shapiro. Representation and simu-

lation of biochemical processes using the π-calculus process algebra. In Russ B.

Altman, A. Keith Dunker, and Lawrence Hunker, editors, Pacific Symposium

on Biocomputing 2001, pages 459–470. World Scientific, 2000.

[105] Aviv Regev, William Silverman, and Ehud Shapiro. Representing biomolecular

processes with computer process algebra: π-calculus programs of signal trans-

duction pathways, 2000. http://www.wisdom.weizmann.ac.il/˜biospi/pi_

draft.ps. Accessed 5-May-2016.

[106] Norbert Schormann, Robert Ricciardi, and Debasish Chattopadhyay. Uracil-

DNA glycosylases-structural and functional perspectives on an essential family

of DNA repair enzymes. Protein Science, 23(12):1667–1685, Dec 2014.

[107] Ulrik Pagh Schultz. Towards a General-Purpose, Reversible Language for Con-

trolling Self-reconfigurable Robots. In Robert Glück and Tetsuo Yokoyama,

editors, Reversible Computation, pages 97–111. Springer Berlin Heidelberg,

2013.

[108] Ulrik Pagh Schultz, Johan Sund Laursen, Lars-Peter Ellekilde, and Hol-

ger Bock Axelsen. Towards a Domain-Specific Language for Reversible As-

sembly Sequences. In Reversible Computation - 7th International Conference,

RC 2015, Grenoble, France, July 16-17, 2015, Proceedings, pages 111–126,

2015.

[109] Lesley Smart. Chemical Kinetics and Mechanism. The Molecular World. The

Royal Society of Chemistry, 2002.

[110] Perdita Stevens. The Edinburgh Concurrency Workbench, 2018. http://

homepages.inf.ed.ac.uk/perdita/cwb/. Accessed 25-June-2018.

[111] David J. Sumpter, Guy B. Blanchard, and David S. Broomhead. Ants and

agents: a process algebra approach to modelling ant colony behaviour. Bulletin

of Mathematical Biology, 63(5):951–980, Sep 2001.

http://www.wisdom.weizmann.ac.il/~biospi/pi_draft.ps
http://www.wisdom.weizmann.ac.il/~biospi/pi_draft.ps
http://homepages.inf.ed.ac.uk/perdita/cwb/
http://homepages.inf.ed.ac.uk/perdita/cwb/

BIBLIOGRAPHY 185

[112] David J. Sumpter and David S. Broomhead. Shape and dynamics of ther-

moregulating honey bee clusters. Journal of Theoretical Biology, 204(1):1–14,

May 2000.

[113] David J. Sumpter and David S. Broomhead. Relating individual behaviour to

population dynamics. Proceedings of the Royal Society B: Biological Sciences,

268(1470):925–932, May 2001.

[114] David J. Sumpter and Stephen J. Martin. The dynamics of virus epidemics in

Varroa-infested honey bee colonies. Journal of Animal Ecology, 73(1):51–63,

2004.

[115] Irek Ulidowski. Equivalences on Observable Processes. In Proceedings of the

7th Annual IEEE Symposium on Logic in Computer Science, pages 148–159.

IEEE, 1992.

[116] Irek Ulidowski and Iain Phillips. Ordered SOS Process Languages for Branch-

ing and Eager Bisimulations. Information and Computation, 178(1):180–213,

2002.

[117] Irek Ulidowski, Iain Phillips, and Shoji Yuen. Concurrency and Reversibility.

In Shigeru Yamashita and Shin-ichi Minato, editors, Reversible Computation,

6th International Conference, RC 2014, volume 8507 of Lecture Notes in Com-

puter Science, pages 1–14. Springer, 2014.

[118] UndoDB. UndoDB website, 2018. https://undo.io/. Accessed 22-Nov-2018.

[119] Bill Venners. The Good, the Bad, and the DOM, 2018. https://www.artima.

com/intv/dom.html. Accessed 1-July-2018.

[120] Irina Virbitskaite and Nataliya Gribovskaya. Preserving Behavior in Transi-

tion Systems from Event Structure Models. In Proceedings of the 27th Inter-

national Workshop on Concurrency, Specification and Programming, Berlin,

Germany, September 24-26, 2018., 2018.

[121] Glynn Winskel. Event structures, In Wilfried Brauer, Wolfgang Reisig, and

Grzegorz Rozenberg, editors, Petri Nets: Applications and Relationships to

Other Models of Concurrency: Advances in Petri Nets 1986, Part II Proceed-

ings of an Advanced Course Bad Honnef, 8.–19. September 1986, volume 8052

of Lecture Notes in Computer Science, pages 325–392. Springer, 1987.

[122] XOM. XOM website, 2018. https://xom.nu/. Accessed 5-May-2018.

https://undo.io/
https://www.artima.com/intv/dom.html
https://www.artima.com/intv/dom.html
https://xom.nu/

BIBLIOGRAPHY 186

[123] Tetsuo Yokoyama and Robert Glück. A Reversible Programming Language

and Its Invertible Self-interpreter. In Proceedings of the 2007 ACM SIGPLAN

Symposium on Partial Evaluation and Semantics-based Program Manipula-

tion, PEPM ’07, pages 144–153. ACM, 2007.

	Contents
	List of Figures
	Introduction
	Contributions
	Thesis outline

	Autoprotolysis of water
	Modelling the autoprotolysis of water
	Chemically equivalent processes
	Conclusion

	Process calculi and the modelling of biochemical reactions
	Basics of process calculi and rule-based calculi
	Related work
	Early developments in chemistry and computer science
	Process calculi for chemistry and biology
	Reversibility in computer science
	Reversibility and causality

	Chemistry in process calculi
	Modelling of autoprotolysis of water in process calculi
	CCSK
	CCSK with execution control
	CCS-R
	-calculus
	P Systems

	Conclusion

	A Calculus of Covalent Bonding
	Definition of the calculus
	Properties of CCB
	Concerted actions

	CCB without weak actions
	Expressiveness
	Conclusion

	The hydration of formaldehyde in water
	The most common mechanism of the reaction
	Other paths through the reaction
	A CCB model of the hydration of formaldehyde in water
	The main path through the reaction
	The base-catalysed path
	The acid-catalysed path
	Other paths

	Conclusion

	Chemical process equivalence
	Definition of chemical process equivalence
	Properties of the equivalence relation
	Chemical process equivalence in the hydration of formaldehyde
	Behavioural equivalence
	Conclusion

	Base Excision Repair
	Description of Base Excision Repair
	Modelling BER
	Conclusion

	Simulation software
	Software architecture
	User interfaces
	Command-line interface
	Graphical user interface

	Process equivalence
	Testing
	Conclusion

	Conclusion
	Summary
	Evaluation of CCB
	Future work
	Improve chemical modelling
	Other future work

	Appendix Record of the execution of the hydration of formaldehyde in water using CCBsimulation
	Bibliography

