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Abstract  

Modelling and Validation of Satellite-Derived Hourly Global Horizontal 

Irradiance in Northeast Iraq Based On a New Quality Control Procedure 

Bikhtiyar M Ameen 

 

The thesis presents a procedure for obtaining high quality hourly Global Horizontal 

Irradiance (GHI) in areas with limited ground measurements of GHI such as northeast 

Iraq. This was done by comparing two broadly Quality Control (QC) approaches, 

developing a local test and investigating a new one utilising Air Temperature (AT) and 

Sunshine Duration (SD) variables for stations when only GHI is available. This also was 

achieved by using QC GHI data to validate two Satellite-Derived Datasets (SDDs) in a 

new area and correcting SDDs under cloudy-sky conditions with a simple method and by 

combing SDD with climate variables as new input combinations to model hourly GHI 

data in Artificial Neural Network (ANN) models. The results showed vast differences 

between the two QC procedures, while the two QC are applied in literature separately. 

The results of the local test showed better quality check than the other two. The new QC 

test using SD and AT has detected additional questionable data, which were not flagged 

by the other QC approaches. The SD tests can be used as a consistency check in GHI 

data, unlike AT tests for the same target. The hourly GHI ground data were well presented 

by the two SDDs, while the overall performance of HelioClim-3 version-5 (Hc3v5) is 

better than Copernicus Atmosphere Monitoring Service (CAMS) radiation service 

version-5 (CRSv3). The results of the bias correction of SDDs under cloudy-sky 

condition revealed high accuracy by decreasing bias by 10–80%. The results of modelling 

GHI hourly with ANN models were improved slightly by using the new input 

combinations generation on bias (0.0%) and root mean square error (9.5%). Overall, the 

results suggest that the SD can be used partly as a consistency test in QC of hourly GHI 

data, and AT can be used for a general check for the same target. The Hc3v5 and CRSv3 

are considered to be a reliable source of GHI data in northeast Iraq. The results of ANN 

models with the new input combinations support their continued and future use to 

improve the outcomes of the hourly GHI modelling. 
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1.1 Introduction  

This chapter gives the general background of the topic, the sun and its energy with 

defining some terms that are used in this study. It concludes with topics, which lead to 

draw the literature review map and the structure of the thesis. 

1.2 General context  

The sun is the main source of energy for the earth, which runs the physical, chemical, 

biological, climatic, meteorological, photosynthetic processes and life on earth 

(Bojanowski, 2014; Chiras, 2016; Haigh and Cargill, 2015). The energy from the sun 

comes to the earth as electromagnetic waves. 97% of that energy has a spectral range of 

290–3000 nm (WMO, 2008), which generally consists of 1% ultraviolet, visible 45% and 

near infrared 54% (Soulayman, 2017). The incoming energy from the sun to the earth is 

based on the blackbody radiation, the sun-earth distance and the surface temperature of 

the sun. Based on those factors the emitted energy of the sun reaching the earth (Box, 

2017; Petty, 2006; Iqbal, 2012). The suns irradiance on the top of the atmosphere on the 

normal plane perpendicular to the array of the sun is called the solar constant, which is 

1367 W/m2 (Rigollier et al., 2000; WMO, 2008; Iqbal, 2012). The solar constant is a 

general term, and it is calculated based on long-term data from models and sensors aboard 

satellites at the top of the atmosphere (Bojanowski, 2014; Muller, 2014). It is different by 

plus or minus of watts based on the activation of the sun every 11 years and the means by 

which this is calculated is not considered to be a concern for solar energy project on the 

earth (Box, 2017; Petty, 2006), and in the general context for this study. However, the 

solar constant is different on the horizontal plane owing to the spherical shape of the earth, 

and it is also different based on the sun-earth distance from January to March (Iqbal, 

2012; Box, 2017). Therefore, the top of atmosphere irradiance on the horizontal plane 

(TOA) is calculated by multiplying the solar constant by the cosine solar zenith angle 

(Equation 1.1), according to the location, day of the year and time of the day for each 

minute or an hour for any areas (Muneer, 2007; Blanc and Wald, 2016). The solar zenith 

angle is the angle between the beam of the sun and the vertical line on the horizontal 

surface. The zenith angle is similar to the sun’s elevation angle, whereas it is measured 

from the vertical rather than from the horizontal and it is between 0-90° (Figure 1.1). 

TOA = (So/SE2)*(Cosθ) (1.1) 
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where: 

So: Solar constant equal to 1367 W/m2.  

Cosθ: Cosine of solar zenith angle. 

SE: The Sun-Earth distance in astronomical units. This is used to adjust the solar 

constant over a year. For instance, its highest value is 1.016682 in July, and the lowest 

value is 0.983277 in January (Long and Dutton, 2002; NREL, 2017).  

 

 

Figure 1.1: An example of zenith and elevation angles of the sun’s beam irradiance at the 

earth’s surface. 

 

The rate of the TOA irradiance reaching the surface of the earth differs owing to the 

degree to which it is scattered, absorbed and reflected by clouds, aerosols and gases in 

the atmosphere (Muneer, 2007; Box, 2017). Figure 1.2 shows the overall irradiance, 

which reaches the atmosphere for all land and ocean for the earth energy budget. 

However, the amount is temporally and spatially variable (Box, 2017; Haigh and Cargill, 

2015). Therefore, knowing the amount of irradiance, which reaches the earth surface as 

direct and diffuse radiation scattered by clouds and other atmosphere materials, based on 
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a location and time, is crucial for fields such as agriculture, architecture, solar energy and 

hydrology. 

 

Figure 1.2: Overall global annual rates of solar irradiance which reaches the atmosphere and 

the ground, adapted from (Grüter et al., 1986; Petty, 2006).  

 

This study takes into consideration the amount of solar energy, which reaches the 

horizontal surface of the earth, which consists of all the solar irradiance components 

(direct and diffuse), these are called Global Horizontal Irradiance (GHI). There are also 

some alternative terms and names for GHI such as surface solar irradiance, short wave 

radiation, insolation, downward radiation and global solar radiation (Alton et al., 2005; 

Box, 2017; Goswami et al., 2000; Korany et al., 2016; Zhang et al., 2018a). The sun’s 

energy or irradiance from the sun on the earth’s surface is calculated as an energy unit 

(radiation) joule per square centimeter (joule/cm2), which is an accumulative amount of 
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the energy per unit area in time or as power (irradiance) in watts per square meter (W/m2), 

which is a mean of irradiance over a given time interval (Badescu, 2008; Goswami et al., 

2000; Haigh and Cargill, 2015; Iqbal, 2012). The GHI (W/m2) on the hourly time scale is 

a concern of this study.  

The sources of obtaining or calculating GHI on the earth’s surface are ground 

measurements, satellite data and modelling in several ways.  

1.2.1 Ground Measurements of Solar Irradiance  

The most accurate measurement of irradiance at the earth’s surface comes from 

pyranometers (Bojanowski, 2014; Palmer et al., 2018). There are different types of 

instruments to measure solar irradiance, which are based on the wavelength targeted 

detection (KAZ, 2018). The focus of this study is on pyranometers, which generally 

measure the shortwave irradiance between (285–3000 nm) of spectral ranges, which are 

UV, visible and infrared (Harrison and Harrison, 2014; Badescu, 2008). There are two 

main types of pyranometers which measure irradiance; these are blackbody thermopile 

pyranometers and silicon-cell pyranometers (Harrison and Harrison, 2014). The better 

instruments are the thermopile pyranometers, which convert nearly all the energy 

spectrum, unlike silicon-cell pyranometers (Goswami et al., 2000). A thermopile 

pyranometer consists of an outer and inner glass dome to protect it from long wavelengths 

and thermal radiations, and a cable connection to a data logger (Figure 1.3-a). The inside 

contains a thermopile sensor, which has a black coating; this sensor converts the 

temperature to a voltage. The voltage is converted to watts per meter by dividing it by the 

sensitivity of a pyranometer (KAZ, 2018). Silicon-Cell pyranometers use a silicon device 

(photodiode) to convert irradiance from the sun to an electrical current (Figure 1.4) 

(Goswami et al., 2000; Walter-Shea et al., 2018). The principles of the working of 

pyranometers vary.  

According to solar components, there are three types of instruments, these record 

Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI) and GHI (Figure 

1.3-c, 1.3-b and 1.3-a respectively) (Harrison and Harrison, 2014). The main use of the 

pyranometer is to record GHI, as shown in Figure 1.3-a; the pyranometer can also be used 

to record diffuse irradiance along with a shadowing device, which prevents the sensor 

from the direct irradiance Figure 1.3-b. The beam irradiance is recorded by a 
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pyrheliometer, which is designed to capture only the direct irradiance from the sun 

(Figure 1.3-c). The sun tracker, shadowing device and the pyrheliometer need special 

maintenance, which means few stations have those instruments for recording solar 

components individually (Mueller et al., 2012). However, the recording GHI pyranometer 

is also limited owing to the high cost and maintenance (Bojanowski et al., 2013; Hassan 

et al., 2016). 

 

Figure 1.3. Thermopile Pyranometer used to measure GHI (a), Same pyranometer with shading 

ball for DHI measurements (b) and Two-axis tracked pyrheliometer for DNI measurements (c) 

(REW, 2003).  
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Figure 1.4: Vaisala pyranometer at Dukan station (Taken 2018). 

Pyranometers are manufactured by various companies around the world. The broadly 

used instruments are from Kipp and Zonen, Apogee, Campbell Scientific and Vaisala 

firms. The instruments have been developed and have been modified several times and 

know there are various types of instruments in the market. Therefore, the World 

Meteorological Organization (WMO) and the International Organization for 

Standardization (ISO) have some specific terms and classifications as classes to show the 

reliability of pyranometers according to the purpose of use. The classes are Moderate 

quality, Good quality and High quality for WMO and similarly ISO has Second Class, 

First Class and Secondary Standard (ISO, 1990; Geiger et al., 2002; WMO, 2008). This 

study utilised GHI data, recorded by a good quality WMO pyranometers (ISO first class). 

All the pyranometers are considered to be sensitive equipment; for this reason regular 

checks, cleaning, high maintenance and calibration every one-two years are required 

(KAZ, 2018; Younes et al., 2005; WMO, 2008; Balzarolo et al., 2011). The recorded data 

needs to be checked or passed with several filters to detect errors in them before use for 

scientific purposes (Moradi, 2009; Journée and Bertrand, 2011a). The sources of errors 

include equipment failure, cosine effect, thermal offset, spectral range, non-linearity, 

sensitivity, power off and other operationally related issues (Muneer and Fairooz, 2002; 

Younes et al., 2005; Schwandt et al., 2014). Those sources of errors are contributing to 
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some uncertainty of recorded GHI data according to various types of instruments based 

on manufacturing development. The sources of errors are as follows. 

The cosine effect is that the detector inside pyranometers response to the angle at 

which radiation strikes the sensor’s area. The more acute angle of the sun’s irradiance to 

horizontal surface the more significant errors will be mainly at the sunrise and the sunset 

when the sun is low in the horizon (Muneer and Fairooz, 2002; Younes et al., 2005).  

The thermal offset is a false signal because of the temperature difference between the 

inner dome and the detector of a pyranometer. This different temperature leads to a 

potentially significant imbalance in the net infrared radiation budget of the detector and 

consequently passes it to the output signal. This is because the sensor absorbs not only 

solar irradiance but also thermal radiation from the instrument body of the instrument. 

The rate of this error is under 20 W/m2 and it reached to under 3 W/m2 in very recent and 

developed pyranometers (KAZ, 2018; Sanchez et al., 2015).  

The spectral range depends on the pyranometer’s manufacturing for detecting the 

sun’s irradiance Spectral.  For example, the spectral range of the CMP6 Pyranometer lies 

between 285-2800 nm and the QMS101 Pyranometer is between 400-1100 nm, which 

means the error rates of the second one is higher because it does not observe all spectacles 

from the sun’s irradiance. The ability of the detector for the instruments to observe all 

spectral is also essential to minimise these kinds of errors (KAZ, 2018; VAISALA, 2019).    

The non-linearity and non-stability are also related to the capacity of the instruments 

for work according to their design and their lifetime, which they cause some errors in the 

data. It should not reach above 1% per year (KAZ, 2018; Muneer and Fairooz, 2002). 

Each pyranometer has a specific sensitivity value to calculate the final output from a 

pyranometer (by dividing millivolt output by the sensitivity). The high difference of 

temperature and instruments lifetime affects the sensitivity resulting in a decrease in the 

quality of the data if they are not recalibrated or modified with those factors.   

Therefore, there are various Quality Control (QC) methods to detect those errors and 

issues in the GHI, including statistical measurements, graphs, using assumptions based 

on the various limits of the TOA and using other climate variables. Those QC approaches 

will be discussed in the literature section. The ground data need to be quality checked to 
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reveal the reliability of ground measurements, to evaluate Satellite-Derived Datasets 

(SDDs) and to test the results of GHI modelling. This thesis deals with QC of GHI in a 

chapter to check the ability of QC tests to detect errors in the GHI and compares the result 

of error detection of different methods with developing a new QC method for detecting 

errors in GHI by utilising Sunshine Duration (SD) and Air Temperature (AT). The 

literature will be reviewed in the next chapter regarding this.   

1.2.2 GHI from Satellite Data 

Satellite images are considered to be a good source of GHI data at high spatial 

resolution to cover the limited spatial resolution in the ground measurements (Blanc et 

al., 2011a; Eissa et al., 2013; Janjai et al., 2009). The most affordable satellite images to 

cover large areas of the earth are geostationary satellites, namely Meteosat First 

Generation (MFG) which comprises Meteosat 2–7 providing coverage until 2006 and the 

Meteosat Second Generation (MSG) which comprises Meteosat 8–10. The Japanese 

Geostationary Meteorological Satellite (GMS) is also known as Himawari series or 

Multifunctional Transport Satellites (MTSAT), the current satellite is Himawari-8, and 

the Geostationary Operational Environmental Satellite system (GOES) (Gherboudj and 

Ghedira, 2016; Ineichen et al., 2009). These geostationary satellites have a fixed position 

on the equator, and they move with the movement of the earth providing images for a 

fixed position every 15 minutes. Hence, the resolution is decreased the further from the 

centre of the image (Bouchouicha et al., 2016; Marchand et al., 2017). The polar-orbiting 

satellites such as the National Oceanic and Atmospheric Administration (NOAA) are also 

utilised for the same purpose (Riihelä et al., 2015; Urraca et al., 2017b). 

The methods for converting satellite images to GHI started in the 1960s (Grüter et 

al., 1986; Bojanowski, 2014). There are two general methods for utilising satellite images 

to obtain GHI, these are physical and statistical approaches (Cano et al., 1986). The 

physical approach is based on physical laws, which use radiative transfer models to 

formulate a relationship between ground and satellite data, to determine the sun's 

irradiance on the earth's surface (Janjai, 2010; Janjai et al., 2009; Pinker and Ewing, 1985; 

Gautier et al., 1980). The statistical approach is based on finding a relationship between 

ground data and information from visible and Infrared bands of satellite images (Mueller 

et al., 2012; Rigollier et al., 2004). The older methods and early steps are fully described 

in Grüter et al. (1986).  
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The methods that are broadly and currently used to estimate GHI from geostationary 

satellite images are the family of Heliosat methods, which are based on a statistical 

relationship between cloud properties and ground albedo with using the Clear Sky 

irradiance on the horizontal plane (Cs) model (Schroedter-Homscheidt et al., 2017; 

Urraca et al., 2017b; Diallo et al., 2018). The Heliosat method was originally devised by 

Cano et al. (1986). The method has since been modified several times (Beyer et al., 1996; 

Mueller et al., 2004; Rigollier et al., 2002; Schroedter-Homscheidt et al., 2017). The 

modifications and developments to the method involve reducing the number of empirical 

parameters from Heliosat-1 (H1) to Heliosat-2 (H2) and changing the calculation 

approach for the cloud index as from H2 to Heliosat-4 (H4). Further improvements of the 

inputs for calculating the Cs model, which affect the results of the model or change the 

Cs model among the available Cs models (Cano et al., 1986; Qu et al., 2014; Marchand 

et al., 2017; Schroedter-Homscheidt et al., 2017). The broadly used model of the Heliosat 

family models until now is H2, which was published by Rigollier et al. (2004). 

The principle of the H2 is that the reflectance in the cloudy pixel is higher than other 

pixels. The law is based on comparing a cloudy satellite pixel to what should be observed 

on that pixel if the sky were clear. In this way, the cloud index, which is related to the 

‘clearness’ of the atmosphere, is calculated as in Equation 1.1 as first step. The Cs index 

is defined as the ratio of the actual GHI to the GHI that would be received if the sky were 

clear (Equation 1.2). In the second step, the cloud index is corrected based on the Cs 

irradiance model (Equation 1.3). The method is illustrated in Figure (1.5).  

 

𝑛 =
𝑝 − 𝑝𝑔

𝑝𝑐 − 𝑝𝑔
 (1.1) 

𝑘𝑐 = 1 − 𝑛 (1.2) 

𝐺𝐻𝐼 = 𝑘𝑐 ∗ Cs (1.3) 

where n = cloud index, 𝑝 = albedo of the pixel, 𝑝𝑔 = ground albedo, 𝑝𝑐 = albedo of the 

bright clouds, 𝑘𝑐 = clear sky index and Cs = GHI under clear sky. 
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Figure 1.5: H2 method adapted from (Rigollier and Wald, 1999). 
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GHI in cloud-free conditions is estimated as a Cs model with various ways, the basic 

idea is the comparison of GHI on the earth surface compared to the amount of TOA. 

Several variables namely solar zenith angle, site elevation, aerosol and gases in the 

atmosphere need to be addressed to determine that rate on the ground level. Several 

studies have tried to estimate Cs from a simple algorithm (Reno et al., 2012; Gueymard 

and Myers, 2008). Cs model is in progress by improving the quality of inputs to the model, 

which they determine the atmosphere optical depth and its properties from various 

sources (Zhang et al., 2018b; Munkhammar and Widén, 2018; Eissa et al., 2015a). The 

simple Cs model is to use TOA with the cosine of solar zenith angle and empirical 

coefficient by: 

Cs = 0.70*TOA*(Cosθ) (1.4) 

 Full information on several Cs models and their development can be found at (Reno 

et al., 2012; Scharmer and Greif, 2000; Rigollier et al., 2000; Gueymard and Myers, 

2008). Other developed Cs models are Bird (Bird and Hulstrom, 1981) and The European 

Solar Radiation Atlas (ESRA) (Scharmer and Greif, 2000). A recent development is the 

McClear Cs model (Lefèvre et al., 2013), which uses all inputs (solar zenith angle, ground 

albedo, ozone and water vapour column, aerosol, gases, time interval, location and 

elevation), some of these inputs are calculated from satellite images. The McClear Cs 

model has been validated in several areas (Eissa et al., 2015b; Lefèvre and Wald, 2016), 

and has a better performance compared to previous Cs models (Schroedter-Homscheidt 

et al., 2017). The model has been used to improve HelioClim-3 (HC3) (Qu et al., 2014) 

and it has been used in Copernicus Atmosphere Monitoring Service (CAMS) Radiation 

Service (CRS) (Schroedter-Homscheidt et al., 2017). Full details about the McClear Cs 

model is published in Lefèvre et al. (2013). This thesis has utilised hourly GHI from the 

McClear Cs model in various way in Chapters 4, 5 and 6.  

Based on the H2 and Heliosat family and other methods (Habte et al., 2017; Gautier 

et al., 1980; Janjai, 2010; Janjai et al., 2009) for converting satellite images to estimate 

GHI and other solar components, several datasets provide solar irradiance components at 

the earth’s surface on different time scales. Full detail and information about those 

datasets can be found in Polo et al. (2016) and Urraca et al. (2017b). Generally, the solar 

irradiance estimated from satellite sources and the above-mentioned methods are called 

SDDs. For example, SDDs namely HC3, Photovoltaic Geographical Information System 
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(PVGIS), The Surface Solar Radiation Dataset- Heliosat (SARAH) and Solar Energy 

Mining (SOLEMI) are created from H2 and have differing numbers of inputs or use inputs 

from satellites or new Cs models. Another example of SDDs is CRS, which is created by 

H4, which has the same principle of H2, but uses cloud properties from APOLLO 

(AVHRR Processing scheme Over cLouds, Land and Ocean). It is a series term for 

analysing various cloud types and cloud properties from geostationary satellite images 

(Schroedter-Homscheidt et al., 2017; Klüser et al., 2015). 

SDDs provide GHI, DNI and DHI data in sub-hourly, hourly, daily and monthly 

based on the original satellite image resolution, and they are an essential source for 

obtaining solar irradiance data especially in the area with few ground measurements. 

They have been validated in several areas, but further research is required to evaluate 

them in the new areas to demonstrate their accuracy. Therefore, in the literature review 

section, the extensive studies that examine those SDDs will be discussed to identify 

knowledge gaps. 

1.2.3 Modelling Global Horizontal Irradiance (GHI) 

 GHI is required for several fields such as hydrology, architecture, agriculture and 

solar energy applications with different time scales. The ground measurement is limited, 

owing to high maintenance and a high cost of instruments. In the early twentieth century, 

the equipment for directly measuring GHI was rare. Currently, the in-situ measurements 

are still not wide (Spencer, 1982; Fan et al., 2018). Those reasons encouraged the 

researcher to model GHI in a variety of techniques. The most common equation to 

estimate GHI from SD was developed in 1924 by Angstrom (1924). This has since been 

developed and is known as the Angstrom-Prescott equation (Njau, 1996; Liu et al., 2009; 

Paulescu et al., 2016b). Other studies have used cloud cover and minimum and maximum 

AT to estimate GHI (Supit and Kapper, 1998). Even due to the limitation of those 

variables, other studies tried to estimate GHI from AT which is available at most stations 

(Bristow and Campbell, 1984; Ododo et al., 1995; Jong and Stewart, 1993; Hassan et al., 

2016). Several other climate variables (SD, AT, Relative Humidity (RH), Wind Speed 

(WS), and cloud cover) and set of variables from sun’s position and a geographical 

location with a variety of algorithms, statistical techniques and empirical models have 

been used to estimate GHI (Mohanty et al., 2016; Zhang et al., 2017; Yadav and Chandel, 

2014a; Chukwujindu and Ogbulezie Julie, 2017; Besharat et al., 2013; Chukwujindu, 
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2017). The GHI ground data record is limited even in developed countries, studies have 

tried to interpolate station data to cover a large area, and other studies have used satellite 

data to cover those limitations (Palmer et al., 2017; Urraca et al., 2017c; Zou et al., 2016; 

Loghmari et al., 2018; Gutierrez-Corea et al., 2014). 

Using various methods and several variables to model GHI leads studies that have 

classified GHI models. For example, the empirical, statistical and physical model types 

are broadly mentioned (Grüter et al., 1986; Mohanty et al., 2016; Bojanowski, 2014).  The 

models are classified as five major approaches for obtaining GHI, which are: parametric, 

statistical, reanalysing, SDD and interpolation (Urraca et al., 2017c). In recent studies, 

empirical models (Fan et al., 2019), interpolation techniques (Loghmari et al., 2018), 

linear regression with various combination of variables (Keshtegar et al., 2018; Doorga 

et al., 2019) and physical models with satellite images (Kumler et al., 2019; Wang et al., 

2019) are used to estimate GHI. Machine learning algorithms are broadly used to model 

GHI either with satellite images or with a variety of ground based climate variables (Koo 

et al., 2019; Jadidi et al., 2018; Khosravi et al., 2018b; Antonanzas-Torres et al., 2015). 

Applying any of these approaches for the purpose of GHI modelling depends on the 

availability and the limitation of the inputs, e.g. climate variables, satellite data or model 

assumptions. 

The direction of the new research in the field is going to model GHI in a high spatial-

temporal resolution such as sub-hourly or hourly timescales with machine learning 

approaches, and obtaining high quality GHI by applying various QC tests and combining 

SDDs and ground based measurements for the target. Therefore, the QC approaches, 

SDDs and GHI modelling with Artificial Neural Network (ANN) models will be 

discussed in detail in the literature review chapter. 

1.3 Thesis structure  

The thesis is comprised of seven chapters. They can be considered in three main 

sections (Figure 1.6). The first three chapters in Section one consist of an introduction to 

the study with general context, background information and outlining key concepts 

(Chapter 1). The literature is reviewed broadly in three parts; these are QC approaches to 

test GHI, validation of SDDs and modelling GHI with various methods and time scales, 

to identify the gaps and informing research questions and objectives (Chapter 2). The 
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geography of the study area is described regarding location and climate variables in 

Chapter 3 and with a description of the evaluation criteria used in this study. 

Section 2 consists of the analyses and results chapters: 

Chapter 4 compares the results of three QC procedures testing GHI against each other 

and investigates a new QC test methodology by utilising SD and AT variables to check 

hourly GHI data for consistency test. 

Chapter 5 uses the quality checked GHI data from Chapter 4 to validate the spatial 

and temporal variability of the two SDDs (HC3 version-5 [HC3v5] and CRS version-3 

[CRSv3]) in all-sky, clear-sky and cloudy-sky conditions in northeast Iraq. This chapter 

also uses ground data to evaluate other pixel point data from the two SDDs. The chapter 

also applied a simple method for bias correction in SDDs under cloudy-sky condition. 

Chapter 6 describes a method to estimate hourly GHI data with ANN and regression 

models in areas with limited ground measurements by using new inputs from SDDs 

(Chapter 5), climate variables and GHI (Chapter 4) in ten input combinations.  

The final section is Chapter 7, which provides a synopsis of the overall thesis 

contributions and general discussion, highlighting the major conclusions and outcomes. 

Limitations of the study are identified with recommendations for further research based 

on the limitations and the findings. 



 

16 

  

 

Figure 1.6: Thesis structure.  
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2.1 Introduction  

    GHI data is crucial for several fields such as solar energy, agriculture, architecture 

and hydrology, and thus there are a high number of studies on this subject. Indeed, there 

are weekly publications about GHI in its various aspects and branches of knowledge. This 

thesis focuses in particular on three topics in the literature; these are QC of ground 

measurements, validation of SDD and modelling GHI with several inputs.  

     In the first part of this chapter, literature on QC methods of GHI is reviewed. Next, 

the literature regarding the validation of satellite data and SDDs in various climate regions 

is explored, and then the literature concerning modelling GHI with various algorithms 

and inputs with a focus on ANN models is detailed. Finally, the knowledge gaps from 

each of the review sections are identified and presented, and these formulate the research 

questions and objectives of the thesis.  

2.2 Quality Control of Ground Data 

2.2.1 Introduction  

Solar irradiance is considered to be one of the most critical climate variables. It 

affects other climate variables and it is crucial for research fields including climate 

change, renewable energy, agriculture, architecture and hydrology (Pashiardis and 

Kalogirou, 2016; Zo et al., 2017). Therefore, high quality solar irradiance data are needed. 

It can be estimated from satellite images (Rigollier et al., 2002; Janjai et al., 2009; 

Dubayah, 1992; Qin et al., 2011) and predicted it using other climate variables 

(Ampratwum and Dorvlo, 1999; El-Metwally, 2004; Hassan et al., 2016; Yadav et al., 

2014b). In both cases, high quality ground data are required for validation. Solar 

irradiance is measured at the ground level with precision by pyranometers, albeit with 

some uncertainty due to technical issues of the instruments, which include the cosine 

effect, temperature response, sensitivity, non-linearity, spectral range and thermal offset 

(Younes et al., 2005). In addition, there are operational and installation errors from 

miscalibration, a lack of regular cleaning of dust, snow, water droplets and bird droppings, 

and shadows cast on the equipment by nearby trees and buildings (Muneer and Fairooz, 

2002). These factors cause systematic and random errors in the data, which have been 

reported in the literature (Long and Shi, 2008; Moreno-Tejera et al., 2015; Roesch et al., 

2011; Schwandt et al., 2014; Shi et al., 2008). Therefore, sensors that measure solar 
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irradiance  are unlike other meteorological instruments in that they need high maintenance 

to sustain performance and collect of high quality data, and their data recording needs to 

be checked regularly before they are used in scientific studies (Younes et al., 2005; 

Pashiardis and Kalogirou, 2016; Perez-Astudillo et al., 2018). Hence, new pyranometers 

have been developed, and some of the equipment errors have been almost eliminated, e.g. 

snow melt on the pyranometer dome (Blonquist et al., 2009). The QC approaches and the 

way for checking in literature are listed as follows: 

2.2.2 Quality Control methods 

Several studies and organisations have proposed models for the QC of solar 

irradiance data to detect errors using a variety of tests. The tests recommended by the 

Baseline Surface Radiation Network (BSRN) of the WMO are the most widely used tests 

in the literature (García Cabrera et al., 2018; Long and Shi, 2008; Moreno-Tejera et al., 

2015; Ntsangwane et al., 2018; Perez-Astudillo et al., 2018; Roesch et al., 2011; Yang et 

al., 2018; Zo et al., 2017). This method was proposed by Long and Dutton (Long and 

Dutton, 2002). The test consists of several sub-tests, which are used to check errors of the 

physically possible limit, extremely rare limit and comparison test. The comparison test 

independent on the availability of all solar components, but this study is dealing with GHI 

only not DNI and DHI. Some other QC tests are formed in equations based on some 

assumptions by utilising the data of solar constant and solar zenith angle.  

Other prominent tests are those, which depend on the TOA and Cs model for testing 

the physically possible limit and extremely rare limit, respectively. This test is named 

TOACs in this study and is presented by Geiger et al. (2002). It has been applied widely 

in the literature (Moradi, 2009; Tang et al., 2010; Khaliliaqdam and Soltani, 2012). This 

comparison of BSRN and TOACs tests has not been documented in depth in the literature. 

The National Renewable Energy Laboratory (NREL) of the United States has also 

developed QC software to quality check solar irradiance data based on the ratio between 

global and beam irradiance (Maxwell et al., 1993), that QC software cannot be applied 

when only GHI is available. 

Others QC tests have set the maximum limit of solar irradiance data as 120% of TOA 

to check a major problem in the data by flagging any value above that limit. (Muneer and 

Fairooz, 2002; Younes et al., 2005). Some studies (Pashiardis and Kalogirou, 2016; 
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Lemos et al., 2017) have used a combination of tests in the literature such as a subtest of 

BSRN, a subtest of TOACs and other tests as a quality check without comparing and 

investigating the different results of each test for the same target. 

2.2.3 Consistency Test or Comparison Test 

Comparisons between solar irradiance components as a test to check the consistency 

and plausibility of the solar irradiance data based on the relationship between diffuse, 

direct (beam) and global irradiance have been studied intensely (Muneer and Fairooz, 

2002; Younes et al., 2005; Long and Shi, 2008; Ineichen, 2013). Some studies have 

assessed the relationship between beam, diffuse, and GHI as an index for detecting errors. 

For example, several studies have used checks such as direct irradiance is lower than GHI, 

diffuse is lower than 110% of GHI and the sum of direct and diffuse is within ± 8% of 

GHI (Maxwell et al., 1993; Muneer and Fairooz, 2002; Younes et al., 2005; Journée and 

Bertrand, 2011a; Ineichen, 2013). Pyranometers, pyrheliometer and sun trackers need 

high maintenance and are costly (WMO, 2008). Therefore, meteorological stations often 

lack the capability of recording solar irradiance data, particularly all of its components. 

This means that most of the above tests cannot be applied when just GHI is available. 

This study addresses this problem area. 

2.2.4 Statistical Index  

GHI data have also been checked by utilising statistical indexes such as the ratio 

between the first and third quartiles to determine the rates of lower and upper outliers in 

the data. This is to check the normal operation in a station based on those rates. If the 

outlier rates are low, it means data quality is good and vice versa (Muneer and Fairooz, 

2002; Shi et al., 2008; Younes et al., 2005). The ratio of standard deviation and the mean 

of the GHI with TOA data have also been used as conditional operators of an equation 

for a persistence test of GHI; for further details, see (Journée and Bertrand, 2011a). This 

study has also utilised some statistical indices for setting the test limits. 

2.2.5 Satellite-Derived Datasets (SDDs) for Testing GHI 

GHI of SDD is the same as GHI ground measurements, but are estimated from 

satellite images. The role of SDDs for checking GHI ground measurements have been 

addressed by two similar studies as a method (Urraca et al., 2018a; Urraca et al., 2017a). 
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They have mentioned that the minor deviation and some operational errors (snow, soiling 

and shading on sensor and data logger fault) and equipment errors (miscalibration and 

low quality sensor) can be detected by the method. They proved that most of these errors 

cannot be detected by conventional QC approaches. 

Similarly, Urraca et al. (2018c) address uncertainty of annual ground measurements 

as yearly bias by comparing them with SDDs. The QC methods in their study were 

applied for daily or annual data. Therefore, it is not clear how this works for hourly data 

as per this research. In addition, the SDDs need to be checked with high quality controlled 

data before using them as a reference to check GHI ground, which is limited in the study 

area where GHI ground data are rare. 

2.2.6 Graphical Representation to Detect Errors  

Graphical plots are considered a good way to demonstrate data trends. In most of the 

previous studies, graphics are used to display the errors by flagging the GHI data with a 

specific flag number for each error type, which is useful for the user to see the errors and 

question the data easily. For instance, Moreno-Tejera et al. (2015)  investigated a new 

kind of graphic to show the errors as flags in BSRN tests. They state that their graphic is 

a good representation for the errors.  Other kinds of graphics have also been used to show 

the errors of daily GHI among several datasets based on QC methods (Urraca et al., 

2018a; Urraca et al., 2017a). Others have shown that various scatter plots can be used to 

determine the border of tests and to demonstrate the uncertainty in the GHI data (Yang et 

al., 2018; Younes et al., 2005; Moradi, 2009). However, a few studies (Pashiardis and 

Kalogirou, 2016; Moreno-Tejera et al., 2016) mention a figureprint plot to determine 

errors. It is hard to find studies, which have investigated the use of general plot to detect 

systematic errors in GHI by SD and AT variables. In general, some of those graphics are 

not easily readable and understandable for a user to examine the errors in the solar 

irradiance data. Therefore, this study uses a new style of fingerprint plot and uses general 

plots to plot variables of SD, AT and GHI for detecting systematic errors and other 

questionable data.  

2.2.7 Comparison between Pyranometers  

Several studies have dealt with faults and issues regarding instruments. For instance, 

Blonquist et al. (2009) have compared several pyranometers in the field to select their 
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quality and their work. Some other studies have investigated the errors regarding the 

thermopile and photodiode pyranometers (Al-Rasheedi et al., 2018; Habte et al., 2015; 

Geuder et al., 2014; Wilbert et al., 2016). The others have addressed specific issues 

namely, temperature response and thermal offset (Sanchez et al., 2015; Ji and Tsay, 

2010), cosine response (Michalsky et al., 1995), spectral response (Vignola et al., 2016), 

and calibration (Kim et al., 2018; Mathijssen et al., 2018; Olano et al., 2015). In all the 

above cases, the reference pyranometer is required, which is unavailable in the case study. 

Therefore, this study is addressing other ways for QC of GHI data.   

2.2.8 Climate Variables for Test GHI 

Regarding the use of other climate variables for testing the quality of GHI data, SD 

and AT are used as below. 

2.2.8.1 Sunshine Duration for Test GHI 

SD has been used for testing daily GHI data by Muneer and Fairooz (2002) and 

monthly GHI data by Younes et al. (2005). Moradi (2009) also investigated a model, 

which is based on the lower limit of the SD index, to test daily global irradiance. Moradi’s 

(2009) method is suited especially for those stations for which direct and diffuse 

irradiance components are not available, as (Khaliliaqdam and Soltani, 2012) confirm. 

Recently, Journée and Bertrand (2011a) have also tested hourly DNI data with SD. In 

Chapter 4 of this thesis another way to test hourly GHI with SD is presented. The use of 

upper and lower limit of SD with some conditionals of the TOA rates to check hourly 

GHI data is limited in the literature.   

2.2.8.2 Air Temperature for Test GHI 

Uses of AT to assess GHI data are scarce in the literature, despite the known 

relationship between the two variables (Zahumenský, 2004; Hassan et al., 2016; Prieto et 

al., 2009) and several models have also used AT to estimate GHI (Hassan et al., 2016). 

AT has been used for testing longwave radiation (Long and Shi, 2008). The same study 

also used the lower bound of AT for snow melting to test the sum of global shortwave 

radiation, whereas utilising AT within different circumstances to test hourly GHI is not 

seen in the literature.  
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2.3 Validation of Satellite-Derived Datasets (SDDs)  

2.3.1  Introduction  

The ground measurements of GHI have high accuracy and high temporal availability, 

whereas the high spatial resolution of recorded data and the number of stations with solar 

irradiance data are limited in most geographical areas. The reasons for this are the high 

purchase and high maintenance costs of pyranometers. Satellite images have been 

analysed to estimate GHI in order to cover the scarcity of ground measurement data. Most 

of the affordable satellite images for that purpose are the geostationary satellite images 

(Gherboudj and Ghedira, 2016). Others such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Qin et al., 2011) and Landsat images have been used (Xie 

et al., 2012), but their temporal resolution is not acceptable. The basic idea of estimating 

GHI from satellite images is to find the relationship between satellite images and ground 

measurements, either with statistical or physical approaches (Cano et al., 1986). The 

popular method for that is Heliosat-2 method, which was described in (Chapter 1, Section 

2.2). Other studies also used satellite imagery with different techniques for GHI 

estimations (Janjai et al., 2009; Janjai, 2010; Janjai et al., 2011). 

There are several SDDs for establishing, measuring, modelling and estimating GHI 

(Polo et al., 2016; Zhang et al., 2016). Some of those well-known SDDs are described in 

(Table 2.1). In addition, SDDs have been utilised in several ways, for example, an SDD 

from MSG has been used to create a solar map (Polo, 2015).  Studies which merged 

ground data with the SDD for the same above purpose, reveal that the merging technique 

for producing a solar map is better than interpolating ground data (Journée and Bertrand, 

2011b; Journée et al., 2012). SDDs have also been combined with meteorological data to 

calibrate a GHI model (Bojanowski et al., 2013). The same data combinations have also 

been analysed to create GHI datasets for crop modelling over Europe (Roerink et al., 

2012). SDDs have been utilised to assess long-term trends of a GHI time series (Sanchez-

Lorenzo et al., 2015). SDDs are quite useful because of the limitations of ground data for 

GHI applications.  

There are also some reanalysis datasets for GHI and other solar components, which 

are described in (Zhang et al., 2016). More broadly, Zhang et al. (2016) have evaluated 

the result of the six re-analysed datasets for obtaining GHI with ground data from 
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measurement networks such as the BSRN and others for 674 cities around the globe, with 

an overall bias found to be 11–50 W/m2. They used a large volume of data in various 

climate regions and countries; however, the results are shown according to the datasets 

and measurement networks, rather than for each station. This is useful for comparison 

between the SDDs and measurement networks, but it does not reflect a real situation for 

the individual stations. Urraca et al. (2018b) have also validated three global reanalyses 

of GHI data worldwide, and the result shows positive bias. Another study has merged 

SDDs and reanalysis products to create a long-term GHI dataset (Feng and Wang, 2018a). 

 

Table 2.1: Datasets and services providing solar irradiance time series derived from satellite 

information 

Name  Time scale Coverage  Method  Web site 

NSRDB 30 min USA-India  

Physical 

Solar 

Model 

http://rredc.nrel.gov/solar/old_d

ata/nsrdb/ 

 

NASA 3- hourly World - http://gewex-srb.larc.nasa.gov/ 

PVGIS Hourly  
Europe-Africa-

Asia 

Heliosat 

family 
http://re.jrc.ec.europa.eu/pvgis/ 

CM – 

SAF(SAH

RA) 

Hourly  Europe-Africa 
Heliosat 

family 

http://www.cmsaf.eu/ 

 

SOLAMI 15 min 
Europe-Africa-

Asia 
H2 

http://wdc.dlr.de/data_products/

SERVICES/SOLARENERGY/ 

 

HelioClim 15 min 
Europe-Africa-

Asia 
H2 

http://www.soda-pro.com/web-

services/radiation/helioclim-3-

archives 

CAMS 15 min  
Europe-Africa-

Asia 
H4 

http://www.soda-pro.com/web-

services/radiation/cams-

radiation-service 

 

SDDs are necessary for many fields of research because they provide GHI for many 

areas and countries. Therefore, the validation of SDDs is crucial to investigate their 

reliability by using various methods in different geographical and climate areas. Several 

prior studies achieved that based on the following datasets.  

2.3.2 National Solar Radiation Database (NSRDB)   

National Solar Radiation Database (NSRDB) is a database for providing GHI, other 

solar components and other climate variables in the United States and surrounding 

http://rredc.nrel.gov/solar/old_data/nsrdb/
http://rredc.nrel.gov/solar/old_data/nsrdb/
http://gewex-srb.larc.nasa.gov/
http://re.jrc.ec.europa.eu/pvgis/
http://www.cmsaf.eu/
http://wdc.dlr.de/data_products/SERVICES/SOLARENERGY/
http://wdc.dlr.de/data_products/SERVICES/SOLARENERGY/
http://www.soda-pro.com/web-services/radiation/helioclim-3-archives
http://www.soda-pro.com/web-services/radiation/helioclim-3-archives
http://www.soda-pro.com/web-services/radiation/helioclim-3-archives
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
http://www.soda-pro.com/web-services/radiation/cams-radiation-service
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countries. The GHI by NSRDB was created using the Physical Solar Model (PSM), which 

utilises satellite images and information from the satellites sources from GEOS, NOAA, 

MODIS and the National Ice Centre and Modern Era Retrospective analysis for Research 

and Applications, version 2 (MERRA-2) (Sengupta et al., 2018). The PSM has been 

developed by NREL with their collaborators, and it shares similar principles with H2 for 

calculating cloud properties and calculating GHI (Sengupta et al., 2015).  

The database has been validated by several comprehensive studies. For instance, the 

GHI from NSRDB has been validated with quality controlled ground data for several 

stations across the United States for periods of 1998-2015 (Habte et al., 2017) and 2005-

2012 (Sengupta et al., 2015). The results of both studies show good agreements between 

ground data and SDD with a bias of ± 5%. A similar database has been validated in a 

United States context, but only in California with 27 stations. The overall results of 

validation showed overestimation by a 5% bias and showed high seasonal deviation and 

deviation from morning to evening in various climate types in the State (Nottrott and 

Kleissl, 2010). Some other studies have also evaluated the NSRDB and other SDD over 

the United States in different climate regions against several ground measurements 

(Gueymard and Wilcox, 2011; Habte et al., 2012; Lave and Weekley, 2016; Xia et al., 

2017). 

This demonstrates the importance of SDD and their validation in developed countries 

to provide a high spatial resolution of GHI owing to the limitation of ground data. 

Therefore, it seems clear that the validation of SDD in developing countries is considered 

to be highly crucial because the ground data also is limited.  

2.3.3 GHI derived from Himawari-8 

Himawari-8 is a current operator of GMS. The images from Himawari-8 have been 

used to estimate GHI in East Asia and Australia. The sub hourly GHI data have been 

validated with quality controlled GHI ground data at four stations in Japan. The result 

revealed good agreement by a mean bias of 20–30 W/m2 (Damiani et al., 2018). The same 

data have been evaluated with high quality data at 36 Chinese stations, the results were 

improved to an overall bias of 13–14 W/m2 of all the stations for the daily and monthly 

data but not for the sub hourly data (Shi et al., 2018). Another study has demonstrated the 

high accuracy of GHI derived from Himawari-8 than MERRA-2 and ERA-Interim 
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reanalysis datasets at 34 stations over Australia and East Asia. The results are returned to 

high temporal and spatial resolutions of Himawari-8 images (Yu et al., 2018). These 

validations also illustrate the importance of SDDs worldwide, which they can be used for 

various purposes. 

2.3.4 GHI Derived From Various Meteosat Satellite Images  

Some studies have validated GHI from various Meteosat satellite images either by 

H2 or other methods. For instance, Moradi et al. (2009) estimated daily GHI with the H2 

method in Iran, evaluating the result of the model with four stations in the country, which 

revealed a good agreement with 12% RMSE and 2% bias. Schillings et al. (2004) 

validated DNI data at weather stations in eight cities in Saudi Arabia with Meteosat-7 

data using the H2 method. The results indicate a good agreement with a mean bias of 

4.3% from hourly data. Similarly, AL-Jumaily et al. (2010) evaluated the GHI data of 

two Iraqi weather stations with the same method using Meteosat-8 data for the year 2005. 

Positive biases of 0.024 KWh/m2 and 0.012 KWh/m2 GHI for daily mean values were 

found for both cities. The authors indicate that further research comparing Meteosat-8 

data with other areas of Iraq is needed. It is necessary for studies to validate more than 

one SDD for comparison between them, and then select the most accurate.  

2.3.5 Satellite Application Facility on Climate Monitoring (CM SAF)  

The CM SAF provides two SDD products. First, is the CM SAF operational product, 

which provides daily GHI and DNI and is based on the look-up-table approach, full detail 

is available from (Mueller et al., 2009). The product is similar to other SDDs, using 

Meteosat satellite images to calculate cloud properties and other inputs (aerosol, gases,  

and atmosphere optical depth) to calculate GHI and estimating the other solar components 

DNI and DHI (Urraca et al., 2017b). The CM SAF daily GHI has been validated by 

several studies (Sanchez-Lorenzo et al., 2013; Ineichen et al., 2009; Mueller et al., 2009; 

Urraca et al., 2017b; Amillo et al., 2018). 

Second, is SARAH, which provides GHI and DNI at 30 minutes (Amillo et al., 2018), 

it is considered the same as the Heliosat methods but is implemented differently. SARAH 

has two versions based on the improvement of the inputs (Urraca et al., 2018b). It has 

been validated worldwide in the literature. For example, SARAH GHI daily mean has 

been compared against ground data at 20 stations in Sweden and Norway, and the result 
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reveals good agreement with an bias of 8% roughly (Riihelä et al., 2015). Similar data 

have also been validated in 22 cities in Europe with a comparison to other SDDs (Amillo 

et al., 2014). In the same continent, GHI daily mean from SARAH have been evaluated 

with 313 stations with the comparison to other GHI products. The results show better 

performance of SARAH than CM SAF operational and reanalysis ERA-Interim with a 

bias of 4% and 7% respectively (Urraca et al., 2017b). Similarly, Amillo et al. (2018) 

have compared the performance of SARAH and CM SAF operational of hourly GHI at 

13 stations in South Africa. The overall results show the high accuracy of SARAH (bias 

1.4%) compared with CM SAF operational (bias 4.9%). The GHI data from the MFG and 

MSG by SARAH have also been evaluated over India, which shows an overestimation 

bias of 10–20% of the daily mean compared to ground observations (Riihelä et al., 2018). 

Recently, a study has utilised solar irradiance data from SARAH to address and show the 

spatial variability of solar resources in Kenya (Kariuki and Sato, 2018).  The rates for the 

performance of SDDs in various areas indicate that the SDDs are a reliable source of GHI 

data and further validation in new regions is required.   

2.3.6 Solar Energy Mining (SOLEMI) 

Solar Energy Mining (SOLEMI) is also a SDD for providing solar irradiance 

components, that are estimated from geostationary satellite images of Meteosat west 

(placed at 0 longitudes) and Meteosat east (placed at 63 east over the Indian Ocean). It 

also applies the H2 method but with a different calculation of the inputs to the method 

such as Cs model as an input. SOLEMI is run by DLR (Deutsches Zentrum für Luft- und 

Raumfahrt, [German Aerospace Center]) in Germany (Meyer et al., 2003; Schroedter-

Homscheidt et al., 2017). It has been validated over eight cities in Saudi Arabia with a 

bias of  4% (Meyer et al., 2003). 

2.3.7 HelioClim-3 (HC3) and CAMS Radiation Service (CRS)  

The most popular SDD is hosted by the Solar Radiation Data (SoDa) portal (SoDa, 

2018), which contains several projects; one of them is HelioClim-3 version 4 and version 

5 (HC3v4-5), which are based on the H2 method for converting satellite images of MSG 

to GHI. Another is the CRS, which is based on H4 for the same purpose. The two SDDs 

will be described in (Chapter 5, Section 2.4). 
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Those SDDs have been validated by several studies in various areas (Table 2.2). For 

example, Thomas et al. (2016a) have validated the hourly GHI from SDDs such as 

HC3v4-5 and CRS for 42 stations in Brazil. The result reveals a high correlation (an 

average of 96%) between HC3v4-5 and ground measurements, whereas that with CRS is 

lower by 2%. Similarly, r values above 0.92 for 15 min and 0.98 for daily GHI, with a 

bias of roughly 5% were found when comparing HC3v4-5 and CRS to ground data at 14 

stations over the world (Thomas et al., 2016c). Hourly GHI and DNI from HC3v4-5 for 

all-sky conditions, and using the McClear dataset for clear-sky conditions, have been 

validated with ground data in seven stations over Egypt, with RMSE ranges from 6%–

22% (Eissa et al., 2015a). Marchand et al. (2017) have validated hourly GHI from HC3v4-

5 and CRS with ground data at five stations in the United Arab Emirates and Oman. The 

overall validation result shows bias under 5% and RMSE 11%–16% on average. Similar 

SDDs have been validated in Morocco with five stations for hourly GHI (Marchand et 

al., 2018). The bias ranged from −6%–7%, whereas RMSE ranged from 12% to 21% on 

average. The study also revealed the superior performance of HC3v5 compared to CRS. 

The CRS has also been validated at ten stations in Croatia with overall r values of 0.967 

(Gašparović et al., 2018). This thesis focuses on those two SDDs because they are 

available in the case study area and they have a high rate of accuracy in several areas. 

They have not been validated in the study area, and they have high temporal resolution, 

unlike most other SDDs. 

Those SDDs provide data of various regions and areas worldwide and have been 

validated globally, and the validation results are impressive that those SDDs are crucial 

for obtaining GHI. Therefore, the first step to use those SDDs in an area is to check their 

accuracy, which this study will do in Chapter 5. The validation is also crucial with an area 

that the ground measurements have not used for that purpose.   
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Table 2.2: Validation of GHI between ground measurements and HC3v5 and CAMS in 

literature. 

Reference  Station –

Country  

Temporal  Data type  Overall validation 

results  
Marchand et al. 

(2018) 
5- Morocco  Hourly  HC3v4-5 

and CRS 

Bias= −6% to 7% 

RMSE 12% to 21% 

Marchand et al. 

(2017) 
5 – United 

Arab 

Emirates 

and Oman 

Hourly  HC3v4-5 

and CRS 

Bias less than 5% 

RMSE 11% to 16% 

Thomas et al. 

(2016a) 

42- Brazil  Hourly 

Daily 

Monthly 

HC3v4-5 

and CRS 

Bias= 1% to 10% 

RMAE= 15% to 36% 

Thomas et al. 

(2016b) 

14- over 

world 

15 min 

Hourly 

Daily  

HC3-4-5 

and CRS 

Bias= 5% on average 

 

Eissa et al. 

(2015a) 

7- Egypt Hourly  HC3  RMSE=15% to 22% 

Gašparović et al. 

(2018) 
10- Croatia Daily GHI  CRS  r = 0.967 

This thesis 

Chapter 5 

9-Iraq Hourly  HC3v5 and 

CRS 

See (Chapter 5, Section 5.5) 

 

2.4 Modelling Global Horizontal Irradiance 

2.4.1 Introduction  

Ground data are limited in many areas, they have technical and operational issues 

and SDDs have some rate of bias, while they cover the limitation of spatial resolution in 

the ground data generally. GHI is also required highly for several fields. Therefore, 

several studies have tried to estimate and model GHI, based on the limitation and 

availability of inputs to the model, spatial and temporal resolution and sky conditions and 

according to purpose of requirement. The approaches and techniques to model GHI are 

empirical, statistical, physical and soft computing (Chapter 1, Section 2.3). ANN models 

are machine learning methods which have been used broadly with a variety of purposes. 

The thesis will also use the ANN models to estimate GHI in Chapter 6. Therefore, ANN 

models are reviewed comprehensively as follows: 
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2.4.2 Using Satellite Images to Estimate GHI with Artificial Neural Network 

Models 

ANN is a powerful soft computing approach to capture details and information in an 

image and has been broadly used for image classification, image data analysing, pattern 

recognition and analysing nonlinear relationships (Behrang et al., 2010; Yadav and 

Chandel, 2014a). Several studies have used ANN models to analyse satellite images for 

estimating GHI and other components of solar irradiance. For example, Meteosat-6 

satellite images have been analysed to estimate monthly GHI over Turkey (Şenkal and 

Kuleli, 2009). Similarly, Meteosat-9 satellite images have also been used with extra data 

in a model in Andalusia, Spain (Linares-Rodriguez et al., 2013). ANNs have also been 

used with Heliosat-2 for converting multi-spectral MSG images to estimate hourly GHI 

(Quesada-Ruiz et al., 2015). In addition, images from MTSAT have been analysed and 

combined with other data in an ANN for predicting GHI (Lu et al., 2011). Other studies 

have analysed satellite images for obtaining climate variable data (such as land surface 

temperature), which were then paired with ground measurements in a model to estimate 

GHI (Şenkal, 2010; Fallahi et al., 2018). Another case is Qin et al. (2011), who inputted 

monthly precipitation calculated from The Tropical Rainfall Measuring Mission 

(TRMM) satellite data, with MODIS surface temperature data to model GHI as an output. 

Those papers have examined the use of ANNs with some climate parameters from 

satellite images to estimate GHI, but high temporal availability of those parameters is 

limited. 

2.4.3 ANNs to Forecast GHI 

 ANNs have also been used to forecast GHI with various data and over various time 

intervals. For example, HC3, climate variables and other inputs (Bird Cs model and data 

of total cloud cover from numerical weather prediction models)  have been analysed in 

ANN models to forecast GHI in intra-day and 1–6 hour ahead in Gran Canary, Spain in 

two different studies (Aguiar et al., 2016; Aguiar et al., 2015). They demonstrated that 

the SDD improved the forecasting results. Cloud properties and velocity metric data from 

satellite images with ground data have been used in an ANN model to forecast GHI at 30, 

60, 90 and 120 min time scales (Marquez et al., 2013). Cs model and weather research 

data have been used to forecast GHI 24 hours ahead with an ANN model (Lima et al., 

2016). Hybrid ANN models have also been used to forecast GHI one hour ahead (Crisosto 
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et al., 2018; Jadidi et al., 2018). Those papers demonstrated the role of ANNs in 

forecasting GHI at various time scales, and the role of SDDs and Cs as inputs to improve 

the model results.  

2.4.4 Estimating Daily and Monthly GHI with ANNs 

ANNs are considered to be one of the most powerful algorithms to find relationships 

between dependent and independent variables. They have been used broadly in literature 

(Table 2.3) to estimate GHI and other solar irradiance components with different types of 

data. For instance, geographical and meteorological parameters at different time scales as 

various inputs have been used with ANN models for a variety of climate regions and 

countries. For example, two cities in Oman (Al-Alawi and Al-Hinai, 1998), eight cities 

(Jiang, 2009) and nine cities  (Feng et al., 2018b) in China, one city (Chukwu, 2012) and 

195 cities (Fadare, 2009)  in Nigeria, 27 stations (Ozgoren et al., 2012), seven cities (Kisi, 

2014) and 30 cities (Kaba et al., 2018) in Turkey. In addition, they have been applied to 

five stations in Argentina (Jimenez et al., 2016), six cities in the Yucatan peninsula, 

Mexico (Quej et al., 2017), five cities in Italy (Renno et al., 2016), four cities in the USA 

and two cities (Sharifi et al., 2016), 19 cities (Kheradmanda et al., 2016), 10 cities (Jahani 

and Mohammadi, 2018) and 12 cities in Iran (Khosravi et al., 2018b) and Cairo city in 

Egypt (Hassan et al., 2017a). Generally, the results of those models in the literature show 

good agreement with ground data based on statistical indicators (Table 2.3). This 

indicates the importance of various types of ANN models and algorithms for estimating 

GHI. However, those studies mainly focused on daily time scales and in some cases on 

monthly time scales, but not at an hourly time scale, which is the focus of this study.   

  

Table 2.3: The literature for estimating GHI with ANN models on daily and monthly time 

scales. 

Reference  Inputs   Temporal  Country  ANN type Overall results   

Kaba et al. 

(2018) 

Latitude, longitude, 

TOA, SD, clod cover, 

min and max of AT. 

Daily at 30 

station 
Turkey  Deep learning  r=0.980 

Jahani and 

Mohammadi 

(2018) 

SD and min and max 

of AT. 

Daily at 

ten stations 
Iran 

MLP coupled 

with genetic 

algorithm  

R2=0.92 

Khosravi et al. 

(2018b) 

Latitude, Longitude, 

month, day, average, 

max and min of AT, 

air pressure, RH, WS 

and TOA.  

Daily at 12 

stains  
Iran 

multilayer 

feed- 

forward neural 

network 

R2=0.988 
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Reference  Inputs   Temporal  Country  ANN type Overall results   

Hassan et al. 

(2017a) 

Day number, TOA, 

SD, AT, RH, air 

pressure and WS.  

Daily at 

one city 
Egypt  MLP R2=0.947 

Quej et al. 

(2017) 

TOA, min and max 

AT and precipitation. 

Daily at 

six cities 
Mexico 

feed forward 

neural network 
R2=0.545 to 0.705 

 Sharifi et al. 

(2016) 

Kt, TOA, AT and 

daylight hour. 

Daily at 

two station  
Iran 

feed forward 

neural network 

RMSE= 0.078–

0.115 MJ/m−2 

day−1 

Renno et al. 

(2016) 

Latitude, longitude, 

daylight hour, SD, 

AT, precipitation and 

declination angle. 

Daily at 

five station  
Italy  MLP MAPE = 4.57% 

Jimenez et al. 

(2016) 

Solar zenith angel, 

GHI, RH and min, 

max, average of AT. 

Daily GHI 

for 5 

stations  

Argentina 

feed forward - 

back 

propagation 

RMSE 2.83% 

Kisi (2014) 

Latitude, longitude, 

altitude and month of 

the year. 

Monthly at 

seven 

stations  

Turkey  - 
MAE ¼ 4.69 

MJ/m2 

Ozgoren et al. 

(2012) 

Latitude, longitude, 

Altitude, month, min, 

max, average of AT, 

soil temperature, RH, 

WS, pressure, vapour 

pressure, cloudiness 

and SD. 

Daily at 27 

stations  

 

Turkey 

MNLR 

multilayer 

non-linear 

regression 

with ten 

models of 

ANN  

MAPE 5.34% 

R2 0.993 

Kheradmanda 

et al. (2016) 

Latitude, longitude, 

Altitude, AT, 

precipitation, RH, 

and SD. 

Monthly at 

nine 

stations  

Iran 
Multilayer 

Perceptron  

testing data 

MAPE 4.33% 

Chukwu 

(2012) 

SD, max AT, cloud 

cover and RH. 

Monthly 

average at 

a city 

Nigeria MLP  

r= 0.99 

MPE 0.851 

RMSE 0.003 

Fadare (2009) 

Latitude, longitude, 

Altitude, month, AT, 

, RH, and  SD. 

Monthly at 

195 

stations 

Nigeria 

Standard 

multilayer 

feed- forward 

back 

propagation  

r= 0.956 

Jiang (2009) 
Latitude, longitude, 

Altitude, SD. 

Monthly at 

three 

stations 

 

China 

feed- forward 

back 

propagation 

with 6 

empirical 

models 

MPE 4.65% 

Al-Alawi and 

Al-Hinai 

(1998) 

Location, month, air 

pressure, AT, vapour, 

RH, WS and SD. 

Monthly 

for two 

cities  

Oman 

multilayer feed 

forward 

one model 

MAPE 5.43% 

General accuracy 

 is 95% 

 

2.4.5 Estimating GHI on Hourly Time Scales with ANNs 

After an extensive review of recent literature, only four studies have been found that 

have used ANNs to estimate GHI at an hourly time step. The following studies each 
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focused on one city in Algeria (Dahmani et al., 2016), Malaysia (Ibrahim and Khatib, 

2017) and Morocco (Loutfi et al., 2017), and on five cities in North Africa and Jordan 

(Hassan et al., 2017b). They are fully described and compared to this study in Chapter 6 

(Table 2.4). On the other hand, other studies have estimated direct normal irradiance 

(Lopez et al., 2005; Renno et al., 2016), DHI (Alam et al., 2009; Soares et al., 2004) and 

have forecasted GHI, as mentioned in the previous paragraphs using ANN models on 

hourly time scales. 

These studies (Table 2.4) also used other machine learning approaches with ANNs, 

estimated other solar components and estimated GHI at other time steps including daily 

and monthly, whereas the descriptions in the table are focused on the ANNs for estimating 

hourly GHI. 

It is clear from the literature that studies using SDDs and combining them with 

observed climate variables and with TOA and Cs as several new input combinations in 

an ANN model to estimate hourly GHI, are quite limited.  

  

Table 2.4: The literature for estimating GHI with ANN models on hourly time scales. 

Ref Inputs 

Neurons in 

the Hidden 

Layer 

Training algorithm 
Best 

RMSE 

(Dahmani 

et al., 

2016) 

SD, AT, RH, WS, TOA, 

precipitation, Pressure, 

Declination, Zenith angle and 

Wind direction 

1–8 

By 1 or 2 

feed-forward back 

propagation 

Levenberg-Marquardt 

13.3% 

(Ibrahim 

and 

Khatib, 

2017) 

AT, RH, sunshine ratio, Day 

number, Month number, 

Number of an hour per day 

3 and 6 Firefly algorithm 18.9% 

(Loutfi et 

al., 2017) 

SD, AT, RH, WS, Declination 

angle, GHI daily, daylight 

hours, TOA, sunshine fraction 

10, 15 and 

20 

feed-forward 

Levenberg- Marquardt 
13.1% 

(Hassan et 

al., 2017b) 

TOA, Solar time and Day 

number 

100, 180, 

210 and 

300 

- 17% 

This 

study 

SD, At, RH, WS, Cs, TOA, 

HC3v5 and CRSv3 

20–140 by 

10 

feed-forward 

backpropagation 

Levenberg-Marquardt 

See 

(Chapter 

6, 

Section 

6.5) 
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2.5 Gaps in the Literature  

After the review in the most relevant literature, the below gaps are identified, which 

need to be addressed and in new studies:  

•    There is a crucial need to demonstrate the difference between two broadly applied 

QC tests (TOACs and BSRN) for GHI data. This is because the tests have the same target 

but with various criteria, with which they test the GHI data for physical possible limits 

and extremely rare limits.  

•    To date, there are limited studies that identify the role of SD to test the quality of 

GHI data by using the upper and lower bounds of SD (high and low value of SD in a time 

interval such as 50 min and 0 min sunshine in one hour). 

•    To date, it is hard to find studies which have used the AT variable to check the 

quality of GHI. 

•    Some studies have used the lower bound of SD to test the GHI data, whereas 

using SD and AT to QC GHI have never been attempted. 

•   Very limited studies have utilised fingerprint plots and general plots by plotting 

SD, AT and GHI in one graph for a general QC and to detect any questionable data.   

•    Several studies have validated SDDs in various areas and regions. Therefore, there 

is no existing study to compare and validate SDDs (HC3v5 and CRSv3) in Iraq. 

•    There are no studies that investigate and evaluate two other pixel point data of 

SDD against GHI ground measurements. 

•    Up to now, a few studies have used SDDs to forecast GHI, whilst studies using 

SDDs with climate variables to estimate GHI were not found. 

•    Using the new combination of inputs from SDDs, climate variables, TOA and Cs 

to estimate hourly GHI was rare.  
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2.6 Aims of the Research  

 The overall aim of this study was to obtain good QC of hourly GHI data in an area 

with limited ground measurements and rare GHI modelling. This is by developing new 

QC tests, evaluating and comparing two SDDs for GHI data and correcting bias for SDDs 

under cloudy-sky conditions and modelling hourly GHI with new input combinations in 

ANN models. 

  

2.7 Research Objectives  

The following objectives are formed based on gaps in the literature and the aims of 

the study. 

1.  To determine the differences between (TOACs and BSRN) the QC set of tests for 

error detection in hourly GHI data, to develop a local test for error detection based on that 

difference and to evaluate the role of the local test. 

2. To develop a new QC method for GHI by using the SD and AT variables and to 

evaluate it, if it works as a consistency test and to detect systematic errors and 

questionable data by graphics. 

3. To validate the SDDs in new areas and to investigate the spatiotemporal features 

of SDDs to ground data, and to investigate the difference of two pixel point data from 

SDDs around a station compared with ground data of a station. 

4. To evaluate the ability of a simple method for bias correction in SDDs under 

cloudy sky conditions.  

5. To assess the role of new input combinations (SDDs. Cs, TOA and climate 

variables) in estimating and modelling hourly GHI data. 
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3.1 Study area 

3.1.1 Location 

The study area is located in the Kurdistan Region of northeast Iraq (latitudes [34°08’20”–

37°22’36”], and longitudes [42°32’00”–46°14’29”]). The bordering countries in the east 

and the north are Iran and Turkey whereas to the west and south are other parts of Iraq 

(Figures 3.1 and 3.2).  

 

Figure 3.1: The case study location in Iraq with bordering countries. 
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Most of the stations are located in mountainous areas but a few of them are located in the 

plains (Figure 3.2). The twenty meteorological weather stations selected in that area 

(Figure 3.3), were used in Chapter 4 with six other stations worldwide for validation 

purpose of the new QC method. Hence, the meteorological stations were reduced to nine 

in Chapter 5 with using SDDs data in a station location and with two SDD data points 

around each station (Figure 3.2) and these same nine stations are used in Chapter 6.  

 

Figure 3.2: The topography of the study area with station locations and point locations around 

the stations used in Chapter 5 (USGS, 2018). 

3.1.2 Climate  

Three climate types according to the Köppen classification are seen in the study area 

where the selected stations are located (Figure 3.3). The climate types are hot semi-arid 

(BWh), warm-summer (Csb) and hot-summer (Csa) of Mediterranean Sea climate types 

(Kottek et al., 2006; Rasul, 2016). In general, the area has hot, warm dry summers and 

mild, cold wet winters, and spring and autumn are mild (Najmaddin, 2017). Climate 

variables are the outcome of the sun’s irradiance with interactions of the atmosphere and 

the earth surface, and some of the variables were utilised in this study. Most of the climate 
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variables are described in detail; this is because there is no recorded data about other 

variables, which affect the GHI such as aerosol, cloud types and atmosphere contents. 

The monthly mean of hourly data of each variable are described to show a general 

description of each variable, this study utilises hourly data when the sun elevation angle 

is above 15°. The averages of data in each month were calculated from hourly data for 

each nine station. All the data presented in Figures 3.4–3.8 are calculated based on the 

availability of hourly data at nine stations for no more than four years of recorded data 

(Figure 3.2), some variables are lacking in certain years in some stations. Therefore, the 

figures are shown the averaged data from all nine stations based on the availability of 

climate variables at a station, except that GHI is shown for each station individually. For 

instance, climate variables (GHI, AT, SD, RH and WS) were recorded at four automatic 

stations (Halsho. Bazian, Maydan and Kalar), whereas the SD variable was not recorded 

at five tower stations (Batufa, Enjaksor, Jazhnikan, Hojava and Tarjan), which is the main 

difference between the automatic and the tower stations.  

 

Figure 3.3: The case study area with Köppen climate regions and distribution of the stations. 
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3.1.2.1 GHI 

The general description of monthly mean of hourly GHI and its value in W/m2 on the 

year in the study area can be seen by a close look at Figure (3.4). The annual mean value 

of hourly GHI is between 450–500 W/m2 among the stations. The GHI is low in winter 

months and increases slightly to reach its peak in summer. Daytime lengthens and is 

cloud–free sky in summer whilst daytime is shorter with cloudy and rainy skies in winter. 

There is no vast difference from station to another, whereas some minor differences 

between them are related to the local conditions. 

 

Figure 3.4: Mean of GHI at each station. 

 

3.1.2.2 Sunshine Duration (SD) and Cloud Cover 

There is a direct relationship between SD and GHI. This is obvious in Figure 3.5, 

which shows the mean SD and GHI in each month. The SD is considered one of the most 

vital variables for estimating GHI and it is used in literature broadly (Almorox and 

Hontoria, 2004; Ampratwum and Dorvlo, 1999; Brabec et al., 2016; De Souza et al., 

2016; Fan et al., 2018; Fan et al., 2019; Nguyen and Pryor, 1997; Suehrcke et al., 2013). 

Peak records of SD are in summer months, which near 13 hours and low in winter months, 

nearing 7 hours. Figure 3.5 shows the mean SD at four automatic stations to describe SD 
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and compare it with GHI in the study area because the SD is recorded in those stations, 

unlike others. 

SD records the direct irradiance, which describes the sky as cloudy or cloud free, 

which then gives a general idea about GHI. However, the type of clouds vary from thin 

and bright to accumulated and dark and have a clear effect on GHI (Betts et al., 2001). 

When the clouds are thin and high the diffuse irradiance is low, and vice versa for dark 

clouds. This information about clouds are unavailable in weather stations, but generally, 

dark accumulated clouds are common in winter, high and thin in spring and in autumn 

and summer, the sky is generally free from clouds. The various types of clouds affect the 

GHI, which reaches the earth’s surface. 

 

Figure 3.5: Mean SD at four automatic stations (Halsho, Bazian, Maydan and Kalar) and GHI 

for the nine stations in the study area as in Figure 3.4. 

3.1.2.3 Air Temperature (AT) 

AT is dependent on GHI but is affected by other factors. This can be noted in the 

comparison of AT to GHI in each month in Figure 3.6. AT is seasonally more variable 

than GHI (Figure 3.6). This is related to the late response of AT to the change of GHI 

owing to the process of conduction and convection after irradiance. Similar to SD and 

GHI, the overall lowest AT values are recorded in winter (8–15 °C) and the highest are 



 

42 

  

recorded in summer (32–39 °C), with moderate AT (15–25 °C) recorded in spring and 

autumn (Figure 3.6).  

 

Figure 3.6: Mean AT and GHI for the nine stations in the study area as in Figure 3.4. 

3.1.2.4 Precipitation   

Precipitation in the study area falls mostly as rain with a few days of snow annually. 

Snow is higher in the mountain areas (stations; Halsho, Batufa and Hojava) compared to 

plain areas (stations; Maydan, Kalar and Tarjan). A similar situation is also true for 

rainfall. Precipitation monthly falls from October to May with high fluctuation from year 

to year. The annual average varies from 250–400 mm in the south east in low elevation 

land and increases in the north east in high elevation land to 700–900 mm year based on 

data from 1960–2015 (GDMS, 2017). The rain has two major effects on GHI. First, in 

rainy periods the rain clouds prevent the direct irradiance from reaching the earth’s 

surface. This is limited to the rain time and this factor has a connection with the cloud 

types. Second, a positive side of rain is that it cleans the pyranometers in the rainy season. 

Regarding snow, this covers the dome of the pyranometers, but in the chosen stations this 

does not affect more than about ten days annually. However, in some stations snow 

occurrence is lower than 1 day in 20 years on average (GDMS, 2017).   
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3.1.2.5 Relative Humidity (RH) 

There is a general relationship between RH and GHI (Figure 3.7). This reveals that 

the RH is considered one of the climate variables for modelling GHI. In addition, studies 

have demonstrated the effect of RH on estimating GHI (Soulayman, 2017). The high 

mean values of RH are recorded in winter, and low values are recorded in summer (Figure 

3.7) 

 

Figure 3.7: Mean RH and GHI for the nine stations in the study area as in Figure 3.4. 

3.1.2.6 Wind Speed (WS) 

The wind in the case study varies significantly locally. For example, the mountains 

behind the plain area has different air pressure, which causes local winds with various 

speeds from day to night and season to season (Ahmed and Mahammed, 2012). However, 

Figure 3.8 shows a stability of WS over the course of the year with a mean of nearly 4 

m/s at all the nine stations. Some minimal fluctuations can be noted from season to season 

in Figure 3.8. The wind has a nonlinear relationship with GHI because the difference in 

GHI is one of the factors to move the wind indirectly. Figure 3.8 shows the WS at 10 



 

44 

  

meter elevation, whereas the WS at high elevations has a role in moving the clouds thus 

affecting the GHI. A study has shown that the wind stills aerosols which then affects the 

variability of GHI (Lin et al., 2015). The five to ten day average of dusty winds have been 

recorded in stations Kalar, Bazian and Maydan in the years 2003–2016 (GDMS, 2017). 

The dust causes a decrease in GHI, dust remaining on the pyranometers would affect the 

measurements if they are not cleaned directly. 

 

Figure 3.8: Mean WS and GHI for the nine stations in the study area as in Figure 3.4. 

 

3.2 Evaluation Criteria 

The validation performance between ground data and SDDs, namely HC3v5 and 

CRSv3 (Chapter 5), and between ground data with the ANN and regression model 

predictions for training, validation and test data (Chapter 6) have been evaluated using 

statistical indicators. These were correlation coefficient (r) in Equation (3.1), the bias in 

Equation (3.2), the relative bias (bias %) in Equation (3.3), the root mean square error 

(RMSE) in Equation (3.4), and the relative RMSE (RMSE %) in Equation (3.5) (Quej et 

al., 2017; Thomas et al., 2016b).  
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𝑟 =
∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑋𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑌𝑖 − �̅�)2𝑛

𝑖=1

 
(3.1) 

𝐵𝑖𝑎𝑠 =
∑ (𝑌𝑖 − 𝑋𝑖)𝑛

𝑖=1

𝑛
 (3.2) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =
𝐵𝑖𝑎𝑠

𝑀𝑒𝑎𝑛 𝑋𝑖
∗ 100 (3.3) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − 𝑋𝑖)2𝑛

𝑖=1

𝑛
 (3.4) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑀𝑒𝑎𝑛 𝑋𝑖
∗ 100 (3.5) 

where n = the number of observations, Xi = the GHI of ground data and Yi = the GHI of 

an SDD (Chapter 5), and Yi = the estimated GHI (Chapter 6). �̅� and �̅�  are the average 

of 𝑋𝑖 and 𝑌𝑖 respectively. 
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A part of the research presented in this chapter has previously been published with CC-

BY copyright license as: 

 “Ameen, B., Balzter, H. and Jarvis, C. (2018) 'Quality Control of Global Horizontal 

Irradiance Estimates through BSRN, TOACs and Air Temperature/Sunshine 

Duration Test Procedures', Climate, 6(3), 69.“ 

 

4.1 Introduction 

This chapter addresses objectives:  

1.  To determine the differences between (TOACs and BSRN) the QC set of tests for 

error detection in hourly GHI data, to develop a local test for error detection based on that 

difference and to evaluate the role of the local test. 

2. To develop a new QC method for GHI by using the SD and AT variables and to 

evaluate it, if it works as a consistency test and to detect systematic errors and 

questionable data by graphics. 

Pyranometers for recording solar irradiance data face several equipment and 

operational errors. Several studies have provided QC approaches, whereas most of them 

cannot be applied when only GHI is available and the comparison between different QC 

approaches is limited in the literature.   

It is clear that further research into the QC of GHI observations is required. The aim 

of this chapter was, therefore, to compare and evaluate the results of two sets of tests 

(TOACs and BSRN) for hourly GHI data over 20 stations where data had not been quality 

assured and tested. The analysis assessed the reliability of each test where the criteria in 

each test are different, but they check the GHI data for the physically possible limit and 

extremely rare limit errors. The limits of the QC tests (BSRN and TOACs) were modified 

based on the local climate condition in the study area, and the new boundaries were named 

as a local test. This is to demonstrate the role of the local test compared to BSRN and 

TOACs QC tests. This study in this chapter also uses a simple new AT and SD tests, 

which are based on the relationship between GHI, AT and SD. This test is useful for 

stations that do not record diffuse and direct irradiance. It was validated with high quality 

data in which all of solar irradiance components were available at six stations worldwide 

with the same climate types as the study area. Finally, SD and AT are combined to 
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enhance the results and to detect the errors in those variables (SD and AT) too rather than 

GHI. 

4.2 Materials and Methods  

4.2.1 Dataset  

4.2.1.1 Study Sites  

The study area is northeast Iraq, which was described in Chapter 3; Sections 3.1, 

where twenty stations have been selected. In addition, six stations worldwide, three from 

Australia and one from each of France, Brazil and Israel were used in this chapter for 

validation of the AT and SD tests. 

4.2.1.2 Ground Measurements  

Hourly data of GHI (W/m2), SD in minutes per hour and average AT (°C) were 

collected from seven automatic and thirteen tower meteorological stations in the 

Kurdistan region of northeast Iraq. SD is not recorded at the tower stations. Openly 

available one minute data of all solar irradiance components with SD from three 

Australian (BOM, 2018) and one minute data of all solar irradiance components with AT 

from three BSRN (König-Langlo et al., 2013) stations from France, Brazil and Israel  

were collected for validation purposes. The climate regions according to the Köppen 

classification and the station locations in the study area are shown in Figure (3.3). Tables 

(4.1, 4.2, and 4.3) show the geographical information, pyranometer types and timescales 

for each station. The data acquisition times were selected to be between sunrise and sunset 

when the sun elevation angle is above 15°. This is to avoid a high rate of errors due to the 

cosine effect for lower sun angles and the AT test when the elevation angle is low (Younes 

et al., 2005; Journée and Bertrand, 2011a; Pashiardis and Kalogirou, 2016), although 

some researchers suggested a 7° sun elevation angle (Lemos et al., 2017). The timescale 

of the data varies between the stations. 

4.2.1.3 Calculated Data 

The hourly data for Cs from the McClear model and TOA hourly irradiance (W/m2) 

were collected at SoDa (2018) for all stations as periods in the Tables (4.1, 4.2, and 4.3). 

Minute data of solar zenith angle for all station as periods in the Tables (4.1, 4.2, and 4.3) 



 

49 

  

were collected at NREL (2017). The minute data was aggregated to hourly data and the 

cosine solar zenith angle for each hour was also calculated.  

Table 4.1: Description of processed data of hourly GHI measured by a CMP6 Kipp and Zonen 

Pyranometer with climate variables and calculated variables for the tower stations. 

Station Latitude Longitude 
Elevation 

a.s.l (m) 
Period (dd/mm/yy) 

Number 

of data 

Barzor 37.1881 N 42.6950 E 509 01/07/2010 – 31/08/2011 4119 

Batufa 37.1764 N 43.0236 E 947 01/01/2011 – 31/12/2013 10320 

Enjaksor 37.0603 N 42.4353 E 509 01/01/2011 – 31/12/2014 13757 

Hojava 37.0075 N 43.0369 E 933 01/01/2011 – 31/12/2013 10320 

Mazne 36.7183 N 44.4814 E 677 01/06/2010 – 30/09/2011 4749 

Kani spi 36.5556 N 42.8483 E 334 01/01/2011 – 31/12/2014 13757 

Jazhnikan 36.3564 N 43.9556 E 430 01/01/2011 – 31/10/2013 9893 

Aliawa 36.1933 N 44.7908 E 535 01/07/2010 – 30/11/2011 4877 

Tarjan 36.1258 N 43.7353 E 276 01/01/2011 – 31/12/2013 10320 

Shabakaykon 35.9536 N 44.9422 E 602 01/07/2010 – 30/11/2011 4877 

Surdash 35.8625 N 45.1036 E 1040 01/01/2013 – 31/12/2013 3437 

Banmaqan 35.5197 N 44.7903 E 887 01/06/2010 – 31/12/2010 1987 

Kalarikon 34.6547 N 45.3019 E 254 01/06/2010 – 31/03/2011 2766 

 

Table 4.2: Description of processed data of hourly GHI measured by a QMS101 Vaisala 

Pyranometer with climate variables and calculated variables for the automatic stations. 

 

  

Station Latitude Longitude 
Elevation 

a.s.l (m) 
Period (dd/mm/yy) 

Number 

of data 

Halsho 36.2097 N 45.2598 E 1105  01/01/2013 – 31/12/2016 13757 

Dukan 35.9541 N 44.9505 E 555  01/01/2015 – 26/09/2016 6138 

Bazian 35.6021 N 45.1376 E 892  01/04/2014 – 30/12/2016 9534 

Halabja 35.1889 N 45.9928 E 695  01/01/2013 – 31/12/2016 13757 

Darband 35.1131 N 45.6854 E 513  01/01/2015 – 31/12/2016 6883 

Maydan 34.9194 N 45.6224 E 330  01/01/2014 – 31/12/2016 10320 

Kalar 34.6244 N 45.3049 E 218  01/01/2014 – 31/12/2016 10320 
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Table 4.3: Description of processed data of hourly GHI, DNI and DHI measured by Kipp and 

Zonen equipment with high quality and climate variables for six stations elsewhere in the world 

for validation. 

Station- 

Country 
Latitude Longitude 

Elevation 

a.s.l (m) 
Period 

(dd/mm/yy) 

Number 

of data 

 

Used 

for 

test 

Köppen 

climate 

type* 

Carpentras 

–France 
44.083 N 5.059 E 100  

01/01/2015 

–31/12/2016 
6366 AT Csb 

Sede 

Boqer - 

Israel 

30.905 N 34.782 E 477  
01/01/2010 

–31/12/2011 
6899 AT BWh 

Petrolina- 

Brazil 
34.624 S 45.304 W 387  

01/01/2013 

–31/12/2015 
7318 AT Bsh 

Geraldton 

-  

Australia 

28.795 S 114.697 E 33  

01/01/2004 

– 

31/12/2005 

5148 SD Bsh 

Longreach 

- Australia 
23.4397S 144.282 E 192  

01/01/2013 

– 

31/12/2013 

3027 SD BSh 

Broome –  

Australia 
17.9475S 122.235 E 7.4  

01/01/2015 

–31/12/2016 
5778 SD BSh 

* Warm-summer Mediterranean (Csb), hot desert (BWh), hot semi-arid (BSh). 

4.2.2 Method 

The time series of hourly data for each station were plotted for variables GHI, AT 

and SD together for daytime recordings with sun elevation angle above 15, and GHI 

alone for day and night data, in fingerprint plots, in which the x-axis represents a day in 

the year and the y-axis represents an hour in the day. These plots demonstrate a GHI value 

for the times with a colour scale from blue to red (R codes for creating a fingerprint plot 

are provided in Appendix A, Table A1). This is to check for any major problems with the 

data before testing every single observation. Secondly, in order to obtain high quality GHI 

data, the methods in the following sections were implemented and illustrated in Figure 

4.1. The full QC method with R codes is provided in Appendix A (Table A2) 

4.2.2.1 Missing value (NA) detection 

Detecting missing hourly values in the time series and setting them to not applicable 

(NA) is essential to show missing observations which can later be used for different 

purposes, such as comparing two observations in the time series or comparing ground 

data with satellite data to avoid inappropriate comparisons (Ineichen, 2013; Schwandt et 

al., 2014; Pashiardis and Kalogirou, 2016).  All hourly time series data were checked 
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automatically for any gaps or unreliable filled values such as 999 and (///), and they were 

set to NA. The one-minute data of BSRN and Australian stations were aggregated to 

hourly data. For this aggregation, first, the time series was be gap-filled. The whole hour’s 

data was set to NA for any hour in which there were missing data.  

4.2.2.2  Comparison between BSRN and TOACs Tests 

GHI data were checked for the physically possible limits for minimum and maximum 

observations using two tests. The first subtest uses the Baseline Surface Radiation 

Network (BSRN) subtest with two targets.  

–4 W/m2 < GHIGD < (So/SE2)*(1.5(Cosθ)1.2) + 100 W/m2 (4.1) 

With: 

GD: Ground Data 

The tests were applied in several case studies (Chapter 2, Section 2.2). These can be 

obtained from a number of sources such as at (NREL, 2017). The first subtest of BSRN 

as Equation (4.1) is compared to the first subtest of TOACs Equation (4.2) for the same 

two targets, as shown below: 

The second condition of Equation 4.1 (flag 2) for the BSRN subtest is compared to 

the second condition of Equation 4.2 (flag 3) for the TOACs subtest to detect the upper 

physically possible limits. The first condition of Equation (4.1) (flag 4) for the BSRN 

subtest is compared to the first condition of Equation 4.2 (flag 5) for the TOACs subtest 

to detect lower physically possible limits (Table 4.4). See Figure 4.1 for clarification. 

0.03*TOA < GHIGD < TOA (4.2) 

The TOACs tests are described in detail in Geiger et al. (2002). The test requires the 

TOA, which is available from sources, namely SoDa (2018) and NREL (2017). It is 

calculated generally for any location and time by: 

TOA = (So/SE2)*(Cosθ) (4.3) 

Another comparison between BSRN and TOACs in other subtests is checking to 

detect extremely rare limit observations in the data; their borders for detection are lower 

than the previous subtests in Equations 4.1 and 4.2. The first one is related to the BSRN 

second subtest with the same requirements as Equation 4.1, and is calculated by Equation 
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(4.4). The target is the same for both BSRN and TOACs second subtests. The second 

subtest of BSRN has compared the condition of Equation 4.4 (flag 6) to the condition of 

Equation 4.5 (flag 7), which represents the second subtest of the TOACs. See Figure 4.1 

for clarification. 

GHIGD < (So/SE2)*(1.2(Cosθ)1.2) + 50 W/m2 (4.4) 

GHIGD < 1.1*Cs (4.5) 

The TOACs second subtest is based on comparing the ground data with 110% of the 

Cs irradiance value (Geiger et al., 2002). In reality, the ground data should be lower than 

the result of Cs irradiance (Lefèvre et al., 2013; Lemos et al., 2017). However, if it is 

higher than the Cs irradiance, the data value should be flagged for further checks. There 

are a number of models for estimating Cs irradiance (Reno et al., 2012). One simple 

model is based on daylight time by hours with a constant coefficient and TOA (FAO, 

2017). Another model uses the Linke turbidity factor to demonstrate the clarity of the sky 

(Rigollier et al., 2000). For more detail about Cs irradiance, the reader is referred to Reno 

et al. (2012) and Chapter 1, Section 2.2. This study used the McClear model for Cs 

irradiance, which was based on a physical model and uses more than one input to the 

model, mostly from satellite images. Full details can be found in Lefèvre et al. (2013). 

4.2.2.3 Comparison of Local Test with BSRN and TOACs Tests 

The test was developed and was named as a local test to check GHI data for minimum 

and maximum physically possible limit (Equation 4.6) and extremely rare limit (Equation 

4.7) observations, like BSRN and TOACs QC tests.   

0.005*TOA < GHIGD < 1.2*TOA (4.6) 

GHIGD < 1.25*Cs (4.7) 

The local test boundaries were set to be between BSRN and TOACs. This is because 

the BSRN test boundaries were developed to be applicable for all the latitude. The TOACs 

boundaries are restricted whereas these have been applied in several countries (Chapter 

2, Section 2.2). The local test boundaries were also set based on the local climate 

condition in the case study area (Chapter 3, Section 1.2) because the climate is seasonally 

changeable, which then it affects the minimum and maximum amount of the irradiance 

used for in the region. 
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The error detection for lower and upper physically possible limit observations of the 

local test, as in Equation 4.6 (flags 8 and 9), is compared to conditions in Equations 4.1 

and 4.2 (flags 2, 3, 4, and 5) of BSRN and TOACs QC tests respectively. Similarly, the 

condition of Equation 4.7 (flag 10) of the local test is compared to Equations 4.4 and 4.5 

(flags 6 and 7) of the BSRN and TOACs QC tests for extremely rare limit observations. 

For further clarification, see Table 4.4 and Figure 4.1. 

4.2.2.4  Sunshine Duration Test 

The relationship between SD and GHI and its use as a consistency test of the GHI 

data have been described extensively in the literature (Muneer and Fairooz, 2002; Younes 

et al., 2005; Shi et al., 2008; Moradi, 2009; Journée and Bertrand, 2011a). The SD test is 

a good option for those areas where only GHI is available, and the irradiance components 

are not available. This was demonstrated by Moradi (2009) for checking daily data. The 

comparison test for checking the consistency of data cannot be applied because it depends 

on diffuse and direct (beam) irradiance in addition to global irradiance. Previous studies 

(Khaliliaqdam and Soltani, 2012; Moradi, 2009) used the lower limit of SD with a 

clearness index to test GHI data. Here, both the lower and upper bounds of SD are applied 

in the testing. First, for the lower bound of SD = 0, in a given time interval GHI should 

not exceed the maximum possible rate of diffuse irradiance. Otherwise, data values will 

be flagged as dubious quality according to Equation (4.8). This is because under cloudy 

conditions when SD is zero, pyranometers record the diffuse irradiance. 

The maximum rate of diffuse irradiance is set to 35% of TOA, based on a satellite-

derived data, which is available for the case study at SoDa (2018) because of the 

unavailability of measured diffuse irradiance in the case study. The max diffuse from 

CRSv3 of SDD was compared with various values of TOA in the case study, until it was 

set as 35% of TOA. Here,  GHI was tested, based on the reality that direct (beam) 

irradiance should not exceed 120 W/m2 if the sunshine duration is zero (WMO, 2008; 

Journée and Bertrand, 2011a). This means that the contribution of direct irradiance to the 

GHI is low when SD is zero, and most of the GHI in this situation is diffuse irradiance. 

Therefore, the condition of the test was set to explain why GHI is high, while SD is zero. 

The condition is set as in Equation 4.8 so that if the result is true, the data passes the test 

and vice versa. The data is checked for this type of error, which can occur because of 

miscalibration and operational related errors such as high reflected radiation from nearby 
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equipment. Hence, this situation may happen naturally by broken cloud or bright cloudy 

sky, but they are not regular. If the rate of the test does not reach a high percentage, it is 

considered acceptable. However, the hourly data are based on mean irradiance, which 

includes several situations.  

Regarding the upper bound of SD, if the SD exceeds 83% in a given time interval, 

the solar irradiance should be above 35% of TOA. For SD between 50% and 83%, solar 

irradiance should be above 10% of TOA. This situation was checked with Equation 4.9. 

The test detects data values affected by partial shading of the sensor, semi-malfunction, 

bird droppings on the sensor and other forms of dirt. The test also checks data for 

systematic errors above 3% of TOA if they have not been detected by the lower limit of 

TOACs test. 

SD = 0 & GHIGD < M-diff (4.8) 

where: 

M-diff: Possible max diffuse irradiance equal to 35% of TOA in this study. 

SD > 50 min in 60 & GHIGD > M-diff; 50 > SD < 30 min in 60 & GHIGD > 

0.1*TOA 
(4.9) 

This test was validated with three Australian stations (Table 4.3). The validation was 

done by comparing SD tests in Equations 4.8 and 4.9 (flags 11 and 12) with flag 17, which 

is based on the consistency test with the availability of solar irradiance components (the 

conditions are shown in Table 4.4). The validation is based on comparing (1) how the SD 

tests passed data or flagged it as having errors with (2) the consistency test in high quality 

data at Australian stations. This is because the consistency test uses the data records of 

three pyranometers. Therefore, the rates of error detection in flags 11 and 12 on one side 

and flag 17 on the other side in that high quality data evaluate the SD tests based on their 

percentage of error detection compared to the consistency test. 

4.2.2.5 Air Temperature Test 

Using AT for quality checks of GHI data has not been widely described in the 

literature, although there is a significant relationship between both variables, especially 

during daytime. One of the main factors of temperature change is solar irradiance. When 

it is transmitted through the atmosphere, a fraction of the irradiance reaches the earth's 
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surface and is converted into thermal energy. However, there are several regional, local, 

and climatological factors affecting these processes. 

Several models have used AT to estimate GHI (Hassan et al., 2016; Khaliliaqdam 

and Soltani, 2012). Therefore, the relationship between the two variables can be used to 

test GHI data, for example by utilising mean AT for each month for all data observations. 

Assume that if AT is higher than its monthly average, the GHI should be above 10% of 

TOA (Equation 4.10), and if the AT is lower than half its monthly average, GHI should 

be lower than the maximum possible diffuse ratio (Equation 4.11).  

where: 

MATM: Monthly mean of daytime hourly AT in each month (from January to 

December) 

These are the hypotheses for detecting possible errors in the data. However, the rate 

of flag errors can be due to local factors that affect the temperature change, whereas in 

the specific climate regions, the ratio of flag errors should not reach up to 3% of the data. 

The condition of the test is based on the connection between two variables, when the sun 

elevation angle is above 15, and the limit of the test is set to a low level such as 10% and 

35% of TOA. This is to decrease the effect of other factors discussed above, because the 

response of temperature to GHI is delayed slightly by absorption, conduction and transfer. 

Other QC tests of GHI data in the literature also have some conditionals, namely 

comparison and statistical tests (Muneer and Fairooz, 2002; Long and Shi, 2008; Shi et 

al., 2008; Journée and Bertrand, 2011a; Pashiardis and Kalogirou, 2016; Zo et al., 2017), 

which do not test all the data. This new AT test was checked in semi-arid and 

Mediterranean climate regions. Some modifications for other climate regions might be 

needed. 

Hourly mean and its hourly half of the mean of AT is calculated in each month for 

sun elevation angle above 15°. For example, all hourly data of the AT in January are used 

to calculate mean and half of the mean to test the January GHI data, and so on for each 

month. 

AT > MATM & GHIGD > 0.1* TOA (4.10) 

AT < MATM/2 & GHIGD < M-diff (4.11) 
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The AT test is useful because: 

1. Other tests such as the upper and lower of physically possible limit and extremely 

rare limit cannot be used for detecting errors in the middle of the data. See Figures 4.6 

and 4.7 green lines. 

2. When the comparison test based on solar components cannot be applied because 

diffuse and direct beam irradiance have not been recorded. 

3. The temperature is recorded for almost all stations, and the uncertainty of 

temperature recording equipment is minimal (WMO, 2008; Zahumenský, 2004). 

4. When the sunshine record is unavailable at a station, and AT is available. 

5. The test can be used for further checks to demonstrate the quality of solar 

irradiance data or to compare its result with other QC tests. 

However, the test has some limitations such as the effect of some local factors and 

climate conditions on the result and also some natural situation of GHI might be detected 

as errors. This test will be checked with data from three BSRN stations (Table 4.3). This 

is quite similar to the validation SD test procedure, but Equations 4.10 and 4.11 AT tests 

(flags 13 and 14) were compared with the flag 17 consistency test. 

4.2.2.6 Combining Air Temperature and Sunshine Duration Tests 

To reduce uncertainty, to detect errors in both AT and GHI and to enhance the SD 

test, Equations 4.8 & 4.10 was combined in one new test (Table 4.4, flag 15) and 

Equations 4.9 & 4.11 was also combined in another new test (Table 4.4, flag 16). All 

arguments are written in one conditional. This is useful to check each variable against 

each other to see in which variable the errors are: GHI, AT or SD. The argument is based 

on conditions of three variables. In these new tests, data were checked for multiple 

possible errors, for instance, whether AT was above its mean, SD was above 50 min in 

60 min, and GHI was lower than 10% of TOA. If there were any cases like this, the data 

value is flagged. Similarly, if AT was less than half MATM and SD was zero, and GHI 

was above 35% TOA, the data value was flagged. 



 

57 

  

All the input parameters for the equations to test the GHI data were calculated or 

downloaded from related sources for each hour according to the true local solar time for 

all stations in the case study area. 

4.2.2.7 Quality Control Flags 

As suggested by Maxwell et al. (1993) and applied by Younes et al. (2005) and 

Moradi (2009), none of the data were modified or deleted. Instead, they were flagged. 

The data were checked by all tests separately, and each subtest had a flag number. If the 

condition of an equation or a part of the equation for those equations with two conditions, 

is true, data were passed; otherwise, data were failed and flagged with the appropriate 

error flag number (Table 4.4, Figure 4.1). Some flags could be removed by aggregating 

hourly data to daily data, whereas others could not be removed, because the flaw in the 

data affects the quality of the aggregation. The flag procedure is considered an easy 

automatic way to count, check, delete, and interpolate any observation according to its 

flag number. 

4.2.2.8 Counting All Tests 

Flag 1 is set according to different sets of tests, from TOACs, BSRN and local test 

alone, by combining them with the SD tests, and subsequently with the AT tests 

separately, as well as by combining them with both SD and AT tests (Figure 4.1). Unlike 

previous studies (Moreno-Tejera et al., 2015; Zo et al., 2017) this procedure was used to 

assess the ratio of data values pass for each test separately. This is important, because in 

the previous sections all data have been tested with each subtest, whereas here data is 

assessed to select in which test or tests the data values passed. 
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Figure 4.1: Flowchart of the proposed QC approach described in this chapter.
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Table 4.4: Flag number and description of the quality control approach. 

Flag Number Test condition 

or criteria 
Test Description 

Pass Fail 

1 2 

Upper physically possible limit 

BSRN second part of Equation 

(4.1) 
Comparison of GHI ground data against 

TOA and additional TOA following 

Equation (4.1) for the upper limit and 

with 3% and −4 for the lower limit. 

Checks for major errors and flags those 

as a fail flag.   

1 3 

Upper physically possible limit 

TOACs second part of Equation 

(4.2) 

1 4 
Lower physically possible limit 

BSRN first part of Equation (4.1) 

1 5 

Lower physical possibly limit 

TOACs first part of Equation 

(4.2) 

1 6 
Extremely rare limit BSRN 

second part of Equation (4.4) 

Comparison of GHI ground data against 

additional of TOA. 

1 7 
Extremely rare limit TOACs 

Equation (4.5) 

Comparison of GHI ground data against 

the McClear model for Cs irradiance. 

1 8 
Upper physically possible limit 

local test Equation (4.6) 
Same as flags 2–5 

1 9 
Lower physically possible limit 
local test Equation (4.6) 

1 10 
Extremely rare limit local test 

Equation (4.7) 
Same as flag 7 

1 11 

Sunshine 50 minutes in 60 and 

35% of TOA: SD between 30 to 

50 minutes in 60 and 10% of 

TOA Equation (4.9) 

The test derived from the relation 

between GHI and SD as an argument 

when SD is high. Detects errors 

stemming from shaded or partly shaded 

conditions and partial malfunction of 

the sensor.  

1 12 
Sunshine zero  

and 35% of TOA Equation (4.8) 

Same as flag 11, based on whether SD 

is zero. Persistency check of data and 

test for calibration errors of the sensor. 

1 13 

Temperature above its mean in 

the month and 10% of TOA 

Equation (4.10) 

Tests the relation between GHI and AT 

similar to flag 11. Checks the 

plausibility of data.  

1 14 

A temperature lowers its half 

mean in the month and 35% of 

TOA Equation (4.11) 

Similar to flag 12. Also checks the 

plausibility of the data. 

1 15 
Combine Equation (4.8) and 

Equation (4.10) 
Based on the relationship among GHI, 

AT and SD. Tests all three variables 

against each other. 1 16 
Combine Equation (4.9) and 

Equation (4.11) 

1 17 
GHI/DNI*Cos θ +DHI =<1.08, 

GHI/DNI*Cos θ +DHI =>0.92 

Consistency check based on the 

combination of the solar irradiance 

components. 

Applied for stations in Table 4.7 

1 
Specific 

number 

To count one test or some tests 

together  

Counts if the observation passes all tests 

or some tests. 
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4.3 Results 

The QC test procedures were applied to GHI data from 20 meteorological stations in 

northeastern Iraq. All results are presented in Tables 4.5, 4.6 and 4.7 and Figures 4.2–4.9. 

Table 4.5 shows the results of the tower stations for comparison between the BSRN (flags 

2, 4, & 6) and TOACs (flags 3, 5, & 7) tests for each of their subtests, respectively, with 

AT tests as flags 13 and 14. Flag 2 is compared to flag 3, and flag 4 is compared to flag 

5 for detecting observations above and below the upper and lower physically possible 

limits, respectively, for each subtest of the BSRN and TOACs tests. Similarly, flag 6 is 

compared to flag 7 for detecting extremely rare observations as subtests in the two tests. 

The conditions of the BSRN and TOACs tests were compared to the local test (flags 8, 9 

and 10) for detecting observations above and below the upper and lower physically 

possible limit and extremely rare limit observations, respectively. Similar to Table 4.5, 

Table 4.6 shows the result of automatic stations for all flags in Table 4.5 with flags 11 

and 12 of SD tests and flags 15 and 16 for combining AT and SD tests. This is because 

SD is available in automatic stations only. Table 4.7 shows the result of the validation for 

SD tests (flag 11 and 12) by consistency test (flag 17) at three Australian stations and 

evaluating AT tests (flag 13 and 14) by consistency test (flag 17) at three BSRN stations. 

The rate of passing data by flag 1 among the tests and combination of the tests are 

demonstrated by Figures 4.8 and 4.9 for the tower and the automatic stations, respectively. 

General checks for the time series data are shown for some examples in Figures 4.2–4.7. 

The borders and limits of the tests are shown for different hours of the day at one station 

as an example (Figures 4.6–4.7). The rates of NA detection are shown in Tables 4.5 and 

4.6 for the 20 stations. 

4.3.1  General check and NA Detection  

All available GHI, SD and AT data are shown for a selection of stations in Figures 

4.2 and 4.3 (all other stations are in Appendix A, Figures A1–A4). There are systematic 

errors in the GHI data for Maydan station (Figure 4.2-b) from January to March 2016. 

Other errors in the GHI data are found for Kalar station (Figure 4.3-b) from the end of 

2015 until January 2016, and for Mazne station (Figure 4.3-a). Errors in SD data are 

present for Bazian (Figure 4.2-a) and Kalar (Figure 4.3-b) stations, especially in the hot 

summer months, whereas both GHI and AT are normal for the first two stations. 
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Data gaps (NA) are shown in Tables 4.5 and 4.6. A high rate of missing hourly values 

(11.3%) recorded by the automatic stations was found at Maydan, and the lowest rate at 

Halsho (3%). Missing values were not detected at the tower stations except at a negligible 

rate (0.3%) at Hojava station.  

The fingerprint plot of stations, namely Halabja, Dukan and Kalar (Figures 4.4-b, 

4.5-a and 4.5-b) show systematic errors in each year in April and September. Other 

stations are nearly normal with a few questionable data at some of them according to the 

fingerprint plots (Appendix A, Figures A5–A8). The example of Bazian is shown Figure 

4.4-a. 

4.3.2 Comparing BSRN and TOACs  

The limitations and borders of the BSRN and TOACs tests are shown in Figure 4.6 

and 4.7 as samples from different hours of the day. For the physically possible upper limit 

test (flags 2 and 3) most automatic and tower stations passed the flag 2 checks, whereas 

low rates were recorded in some stations for flag 3 (Tables 4.5 and 4.6). 

All data values passed the flag 4 BSRN test, while flag 5 for the TOACs test was 

raised by 9.53%, 6.14%, 5.55% and 1.46%% of the data values recorded at Kalar, 

Banmqan, Mazne and Surdash, respectively. The error rate for the same flag is lower than 

1.15% for other stations (Tables 4.5 and 4.6). 

The data were checked to detect extremely rare limit observations by flags 6 and 7. 

The rate of flag 6 is zero in all stations except Banmqan, which recorded 0.75%. In 

contrast, high rate of flag 7 was recorded in most stations. The highest rates were 27.18%, 

17.45%, 12.98% and 11.65% Surdash, Banmqan, Aliawa and Kalarikon at stations 

respectively. However, two low rates were recorded for the same flag, which are 0.03% 

and 0.46% at Halabja and Darband stations. Other values of flag 7 for remaining stations 

range from 1% to 9% (Tables 4.5 and 4.6). 

4.3.3 Comparing BSRN and TOACs QC Tests to the Local Test  

The limitations and borders of the local test compared to the BSRN and TOACs tests 

are shown in Figures 4.6 and 4.7. For the physically possible upper limit test (flags 2 and 

3 of the BSRN and TOACs tests compared to flag 8), most stations passed those flags 
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with minor differences. For the physically possible lower limit test, error detected by flag 

9 of the local test is quite similar to the flag 5 of TOACs test, and it is quite different 

compared to flag 4 of the BSRN test at most of the stations (Tables 4.5 and 4.6).  

The results of error detection for extremely rare limit observations as flag 10 of the 

local test is quite different compared to the flags 6 and 7 of BSRN and TOACs 

respectively. The rates of flag 10 were under 2% at most of the stations, and zero rates 

were recorded at Dukan and Halabja stations. The high rates of flag 10 by 6.44% and 

3.21% were recorded at Banmqan and Surdash stations (Tables 4.5 and 4.6).   

4.3.4 Sunshine Duration Test  

This test is applied only to automatic stations. The rate of flag 11 is near zero at three 

stations but reached 1.68% at Halabja and 7.36% at Kalar stations. Flag 12 registered high 

rates of 17.64%, 12.3%, 7.38% and 3.93% at Halsho, Bazian, Kalar and Maydan 

respectively, but the rates of the three other stations were lower than 1% (Table 4.6). In 

the validation of this test according to the Table 4.7, the rate of flag 11 was near 0%, but 

the flag 17 consistency test is zero in two Australian stations and near zero (0.02%) in the 

other one. Hence, flag 12 recorded low rates of 0.59%, 0.26% and 0.43% at the same 

three stations.  
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Figure 4.2: Scatter plots of GHI W/m2 (first y-axis) and SD in minutes per hour with AT in C 

(second y-axis) for all hourly time series data in each station. 
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Figure 4.3: Scatter plots of GHI W/m2 (first y-axis) and SD in minutes per hour with AT in C 

(second y-axis) for all hourly time series data in each station. 
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Figure 4.4: Fingerprint plot GHI time series of hourly data for four stations as an example, 

white colour shows NA values. 
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Figure 4.5: Fingerprint plot GHI time series of hourly data for four stations as an example, 

white colour shows NA values. 
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Figure 4.6: Scatter plots of the limits for tests, namely BSRN (BSRN-P & BSRN-R) in olive, 

TOACs in red and local test in blue for lower and upper physical possible limit and extremely 
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rare limit checking respectively, SD and AT are in green for consistency check and GD is GHI 

ground data for each hour at Surdash station as an example. 

 

 
Figure 4.7: Same as Figure 4.6, but for hours at 12:00 and 15:00. 
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Table 4.5: The ratio of NA and the error flags in the tower station data. F= flag. 

Name NA 

(%) 

F2 

(%) 

F3 

(%) 

F4 

(%) 

F5 

(%) 

F6 

(%) 

F7 

(%) 

F8 

(%) 

F9 

(%) 

F10 

(%) 

F13 

(%) 

F14 

(%) 

Barzor 0.0 0 0.0 0 0.61 0 8.79 0 0.02 1.22 0.68 0.68 

Batufa 0 0 0.01 0 0.68 0 9.21 0 0.03 0.84 0.63 1.49 

Enjkasor 0 0 0.04 0 0.43 0 8.12 0 0.01 1.58 0.81 1.40 

Hojava 0.3 0 0.05 0 0.40 0 5.52 0.01 0.02 1.06 0.63 1.63 

Mazne 0 0 0 0 5.55 0 4.36 0 5.01 0.67 3.31 1.49 

Kanispi 0 0 0.01 0 0.46 0 8.03 0 0.01 1.67 0.71 1.05 

Jazhnikan 0 0 0 0 0.31 0 4.45 0 0 0.66 0.53 1.02 

Aliawa 0 0 0 0 0.24 0 12.98 0 0.01 2.29 0.33 0.76 

Tarjan 0 0 0.08 0 0.29 0 9.18 0 0.01 1.67 0.65 1.77 

Shabakaykon 0 0 0.0 0 0.86 0 2.21 0 0.31 0.29 0.69 0.63 

Surdash 0 0 0.03 0 1.46 0 27.18 0 0.03 3.21 1.11 1.75 

Banmqan  0 0 0.20 0 6.14 0.75 17.45 0 6.14 6.44 0.0 0.40 

Kalarikon 0 0 0 0 0.07 0.0 11.65 0 0 1.08 0.04 0.36 

Note: some flags were not applied because SD is not recorded at tower stations. 

4.3.5  Air Temperature Test. 

The occurrence rate of flag 13 is below 1% for most automatic and tower stations. 

The two highest rates were 4.54% and 3.31% at Kalar and Mazne. Similarly, the rate of 

flag 14 is below 1% at 11 stations, and the highest percentage of 1.81% was recorded at 

Halsho station. The rate of the remaining stations was lower than 1.8% (Tables 4.5 and 

4.6). Table 4.7 compares this test with a consistency check, and reveals that the rate of 

flags 13 and 14 were 0%, but flag 17 reached 1.87% at Petrolina station. The same two 

flags recorded low rates of 0.04% and 0.58%, whereas flag 17 reached 2.5% at Sede 

Boqer. At Carpentras, flags 13 and 14 rose to 0.93% and 2.08% of the data while flag 17 

had a very low rate of only 0.03%.   

4.3.6 Combining Air Temperature and Sunshine Duration Test 

Zero rates were recorded for flag 15 except at one station (Kalar) with 3.45%. The 

rate of flag 16 is also below 0.5% at two stations; it reached zero at the other five stations 

(Table 4.6). 
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4.3.7 Data Pass (Flag 1) 

The result of flag 1, which indicates values of GHI pass tests or all tests, is 

represented by five combinations. First, according to all BSRN test, the GHI data showed 

a high percentage pass rate for flag 1 of all stations at 100%, except Banmqan station at 

99.75% (Figures 4.8 and 4.9). Second, the results of flag 1 according to the TOACs test 

are quite different from the BSRN test. The two lowest pass rates were recorded at 

Surdash and Banmqan stations at 71% and 76%. The other stations, Aliawa, Kalar and 

Kalarikon, had pass rates less than 90%, and all other rates ranged from 90% to 99%. 

Third, the results of flag 1 according to the local test are different compared to the TOACs 

test by high rates. This is because data pass according to the local test are above 98% at 

most of the stations. Two low rates were also recorded for the local test at Kalar and 

Banmqan at 90% and 87% (the same seen as the TOACs test), but the rates of the local 

test are higher than TOACs test. The notable rate is that the rate of flag 1 according to the 

local test is 96% at Surdash stations, whereas it is 71% according to TOACs test. Flag 1 

rates of the local test differs from the BSRN test by 2% at most of the stations while at 

Mazne, Kalar and Banmqan stations rates differ by 5%, 10% and 12% (Figures 4.8 and 

4.9).    

Next, when combining the AT tests with the previous two tests, the passed data 

percentage according to this test was generally lower by nearly 1–2 % of the TOACs test 

(Figures 4.8 and 4.9). 

Finally, the combination of the SD tests combined with AT tests, local test, TOACs, 

and BSRN tests were applied only to the automatic stations. The results of SD with 

TOACs and BSRN are shown in Figure 4.9. The pass rate of flag 1 was lowest at Halsho, 

Kalar and Bazian (76%, 81% and 84%). In contrast, the pass rate of the other four stations 

was above 90%. The result of mixed tests of AT and SD with the local test, TOACs and 

BSRN were quite similar to the result of TOACs alone (Figure 4.8). 
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Table 4.6: The ratio of NA and error flags at the automatic stations. 

Name 
NA 

(%) 

F2 

(%) 

F3 

(%) 

F4 

(%) 

F5 

(%) 

F6 

(%) 

F7 

(%) 

F8 

(%) 

F9 

(%) 

F10 

(%) 

F11 

(%) 

F12 

(%) 

F13 

(%) 

F14 

(%) 

F15 

(%) 

F116 

(%) 

Halsho 3.0 0 0.01 0 1.15 0 5.61 0 0 0.86 0.01 17.64 0.80 1.81 0 0.36 

Dukan 7.0 0 0 0 1.14 0 1.12 0 0.02 0 1.12 0.02 1.85 0.72 0 0 

Bazian 5.6 0 0 0 0.36 0 3.17 0 0.02 0.36 0.07 12.3 0.29 0.72 0 0.04 

Halabja 3.3 0 0 0 0.60 0 0.03 0 0.01 0 1.68 0.03 0.54 0.46 0 0.0 

Darband 7.5 0 0 0 0.97 0 0.46 0 0.02 0.06 0.56 0.09 1.22 0.31 0 0 

Maydan 11.3 0 0 0 0.45 0 2.83 0 0.16 0.55 0.02 3.93 0.07 0.20 0 0.0 

Kalar 6.5 0 0 0 9.53 0 1.84 0 9.36 0.28 7.36 7.38 4.54 0.09 3.45 0.0 

  

 

Table 4.7: The ratio of error flags at the validation stations. 

Name 
F11 

(%) 

F12 

(%) 

F113 

(%) 

F14 

(%) 

F117 

(%) 

Carpentras –France - - 0.93 2.08 0.03 

Sede Boqer - Israel  - - 0.04 0.58 2.5 

Petrolina- Brazil - - 0 0 1.87 

Geraldton -  Australia 0 0.59 - - 0.02 

Longreach - Australia 0.03 0.26 - - 0.0 

Broome – Australia 0.02 0.43 - - 0.0 
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Figure 4.8: Bar chart of flag 1 passed data according to each set of tests in tower stations. 

‘Others’ refers to previous tests such as BSRN and TOACs. 

 

 

Figure 4.9: Bar chart of flag 1 passed data according to each set of tests in automatic stations. 
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4.4  Discussion 

The application of the sets of QC tests to the GHI station data in northeastern Iraq 

showed that both station types generally have high data quality. Data gaps are generally 

very limited at the tower stations, whereas all automatic stations have a rate of missing 

values, which are similar to previously published studies (Roesch et al., 2011; Schwandt 

et al., 2014). The results of QC of GHI show slight differences between the BSRN and 

TOACs tests on one side and the difference between the local test compared to BSRN 

and TOACs on other side. The results of quality checks of GHI based on SD vary 

compared with those of the station and with the lower and upper limits of SD. Small error 

rates are detected by the AT tests for all stations. The errors flagged up by a combination 

of SD and AT are generally low. The results of evaluating SD and AT by consistency test 

at validation stations support the SD test but not the AT tests. The rate of AT test errors 

at the validation stations also is low. 

The general reliability and error rates for GHI, SD and AT can be highlighted by 

comparing them to each other (Figures 4.2 and 4.3) or for GHI by fingerprint plots 

(Figures 4.4 and 4.5). Those plots are important to check all data, whereas their results 

are more obvious if they are used to check one to three years data rather than above three 

years. The figures represent hourly data. For instance, when minute data is aggregated as 

hourly values and the errors are therefore difficult to detect. Figure 4.2 identifies some 

equipment errors in the GHI data when compared to a time series of AT. Figure 4.2-b 

shows that both GHI and AT have systematic errors. This type of error is not easily 

detected by comparing both variables. However, for the fingerprint plot some errors can 

be seen easily if the plot represents one- or ten-minutes data while some errors are seen 

for hourly data (Figures 4.4 and 4.5). 

The two tests showed different results (Tables 4.5 and 4.6). In the past, several studies 

have applied either BSRN or TOACs. The difference between the two tests is evident 

from Tables 4.5 and 4.6 and Figures 4.8 and 4.9. This is because the limits of the BSRN 

tests are higher than the TOACs tests (Figures 4.6 and 4.7).  

The detection errors of the upper physically possible limit as (flag 2) and (flag 3) are 

relevant in the two tests, whereas more observations are flagged as errors by the TOACs 

test than by the BSRN test (Tables 4.5 and 4.6). This is because the TOACs test depends 
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on TOA and BSRN depends on increased TOA (Equation 4.1, Figures 4.6 and 4.7). This 

result of each test is in agreement in term of error detection rates with published studies 

(Schwandt et al., 2014; Khaliliaqdam and Soltani, 2012; Urraca et al., 2017a; Moradi, 

2009; Pashiardis and Kalogirou, 2016; Geiger et al., 2002) that have applied each test 

separately. 

The most important feature is that the lower limit of the BSRN test (flag 4) leaves 

errors, even significant systematic errors, undetected (Tables 4.5 and 4.6, Figures 4.2–

4.5). This is due to setting the lower limit to (−4 W/m2). In contrast, many data values are 

flagged by the TOACs test (flag 5) (Tables 4.5 and 4.6, Figures 4.2 and 4.3). This might 

be due to the full or partial shading of the sensor, dirt on the sensor or malfunction of the 

sensor (Younes et al., 2005; Schwandt et al., 2014; Lemos et al., 2017). The lower limit 

of the BSRN test can be useful when checking day- and night-time data in cold regions. 

It is clear that there is no negative value of GHI, but this situation happens when the 

calibration calculation depends on the temperature difference between the dark and bright 

area in the active part of the sensor, which occurs at night (Roesch et al., 2011; Zo et al., 

2017). 

Another interesting aspect is that the error rates of the BSRN for the extremely rare 

limit test observations (flag 6) are zero; while flag 7 of the TOACs test for the same target 

recorded high rates at most stations. The high difference between the two tests is related 

to the border limits (Figures 4.6 and 4.7). However, high error rates of flag 7 are detected 

in this study. Similar error rates are reported in the literature (Journée and Bertrand, 

2011a; Lemos et al., 2017; Moradi et al., 2009). Those studies explained that this situation 

happens in mid-high latitudes when clouds reflected radiation is received by the sensor, 

resulting GHI greater than Cs irradiance. In the case study, the high errors are also 

explained in the case of Surdash and Banmqan stations, by operational issues such as 

miscalibration and dirty sensor because most other tests detect the errors in those two 

stations or by the Cs model, which can under estimate GHI (Lefèvre and Wald, 2016) 

especially when the sun elevation angle is between 16–20. 

The results of the local test are interesting compared to BSRN and TOACs because 

the systematic errors were detected by flag 9 of the local test similar to flag 5 of the 

TOACs test and unlike flag 4 of the BSRN test, and the high rates of values passed flag 

10 of the local test similar to flag 6 of the BSRN test and unlike flag 7 of the TOACs test 
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(Tables 4.5 and 4.6). This is related to the modifications of boundaries, which have been 

edited in the local test (Equations 4.6 and 4.7, Figures 4.6 and 4.7). This reveals the vital 

of modification of those QC tests (BSRN and TOACs) when they are needed to be applied 

in a new study area as in this study.  

The result of the SD test for flag 11 recorded two high error rates, which are partly 

related to errors in the SD recorder. Other error rates indicate that the pyranometer needed 

to be checked for partial shading or dirt contamination especially in April and September 

(Figures 4.4 and 4.5) when most of the errors are detected by flag 11 (Table 4.6). For the 

lower limits of the SD test (flag 12) the high rate of errors at Bazian and Kalar stations 

during particular times are related to systematic errors in SD itself, not in the GHI data 

(Figures 4.2-a and 4.3-b), as seen in the flag 16 result. This indicates that when another 

variable is used for QC of GHI data, it should be checked prior to the analysis. Studies 

mentioned some ways for testing an SD recorder (Zahumenský, 2004; Journée and 

Bertrand, 2011a). Some studies have used SD for testing the GHI data without checking 

it against another variable such as AT for more accurate results (Moradi, 2009; 

Khaliliaqdam and Soltani, 2012). Therefore, SD were compared with the possible 

maximum diffuse TOA irradiance and with AT, and the results are acceptable (flag 15 

and flag 16). In this way, both SD and GHI are tested (Table 4.6). From the comparison 

of flags 11 and 12 (Tables 4.6 and 4.7) at the case study stations and the validation 

stations, the results show good agreement. The rates of errors are relevant except where 

the errors are related to SD and not to the GHI. However, flag 12 recorded low rates 

(under 0.5%) and the incidence of flag 17 was nearly zero in all validation cases. These 

findings generally support the use of SD as a consistency check. 

Published uses of AT for QC of GHI are limited in the literature. The results here 

demonstrate good agreement of the AT test for its lower and upper limits with other tests 

such as in the case of Kalar, Dukan, Surdash and Mazne stations (Tables 4.5 and 4.6). 

This is for its upper limit, which supports the results of other tests, and the rates of error 

are because of the same reason as flag 5. For low AT and high GHI, the result of AT also 

supports, other tests at most tower stations and Kalar and Halabja automatic stations. In 

the case of comparing AT (flag 13 and flag 14) with the consistency test (flag 17). The 

validation station results did not support using AT as a consistency test because error rates 

was detected by the consistency test unlike AT test (Table 4.7). This is because the error 
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rates detected by the AT tests at Carpentras and Petrolina are related mainly to the local 

conditions, whereas comparison rates at Sede Boqer tend to be relevant. The low error 

rates of nearly 2% of dubious data values according to the AT tests in high quality data 

tend to support the use of AT a plausible test (Table 4.7). This supports our previous 

argument with the AT test, which is based on no more than 3% errors in a station dataset. 

Other studies have used the other components of solar irradiance (Moreno-Tejera et al., 

2015; Zo et al., 2017)  and using only SD (Moradi, 2009; Khaliliaqdam and Soltani, 2012) 

whereas our model is based on AT which is available at most stations. 

Another interesting point of this chapter is related to the error rates identified by flags 

15 and 16, which indicate that the errors are not generally in the GHI data but are instead 

related to the SD and AT variables.  

The rate of flag 1, which means data pass for various types of tests, reveals a high 

difference between BSRN and TOACs tests. This indicates that the BSRN test is not 

acceptable if only GHI is available because even systematic errors are not detected 

(Figures 4.2–4.9). The TOACs test detected several systematic errors, and other errors, 

whereas some other observations have also been flagged due to the using of 110% of Cs 

model as a limit. The rates of flag 1 based on the local test are quite acceptable because 

not all data passed all tests like BSRN and the rates of passing values were not low like 

TOACs. This indicates how the modification of those tests is crucial, if they are applied 

in an area when only GHI available. However, unlike this study several studies applied 

those QC tests such as BSRN (García Cabrera et al., 2018; Long and Shi, 2008; Perez-

Astudillo et al., 2018; Roesch et al., 2011; Zo et al., 2017) and TOACs (Khaliliaqdam 

and Soltani, 2012; Moradi, 2009; Tang et al., 2010) in regions without any modifications. 

The rates of data pass based on AT tests with others are lower by nearly 2% based on 

TOACs, which indicates that some data values are flagged as dubious only by the AT 

test. The rates of data passing the QC according to the SD test are low because errors 

could be in the SD recorder, which were detected by combining it with the AT test (Table 

4.6, Figures 4.8 and 4.9). The results reveal that SD and AT tests have detected a rate of 

dubious data which had not been detected by any other tests due to the chosen limits of 

those tests (Figures 4.6 and 4.7). 

Limitations of the tests are as follows. Firstly, the general plot (Figures 4.2 and 4.3) 

is not always reliable especially for a large number of observations. Secondly, the chosen 
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limits for the SD and AT tests might not be perfect. For example, the upper limit of SD 

was set to 50 and from 30–50 minutes in one hour, which is based on an assumption about 

why SD is high and GHI is low; there might be some questionable data under that limit. 

Previous studies have used only one argument as a lower limit (Khaliliaqdam and Soltani, 

2012; Moradi, 2009). Our set limits for these two tests are near the middle of the data for 

the upper limit and far from the TOACs by 7% for the lower limit (Figures 4.6 and 4.7). 

This is important to identify errors in that border and contribute to other tests. Thirdly, 

the mean and the half of mean AT in each month are used to test GHI with 10% and 35% 

of TOA, which also tends not to be perfect. This is mainly because there are some times 

when the arguments of AT test may happen naturally, especially when the AT is lower 

than its half of the mean in the month and GHI is above 35% of TOA. The arguments 

need to be modified by using the AT test in other climate regions.  

Owing to the limitations of recording minimum and maximum AT in many stations 

in the study area and the fact that the increase in AT from one hour to the next is not high 

(Zahumenský, 2004), the mean AT was used for the test. In contrast, some studies have 

estimated GHI from minimum and maximum AT (Hassan et al., 2016; Besharat et al., 

2013). Unless SD and AT have been validated with the consistency test, which tests all 

single observations, AT and SD have limited borders for tests according to conditional 

arguments (Table 4.4, Figures 4.6 and 4.7), which means that they do not test every single 

observation in the time series. Generally, the results of AT for testing GHI data show 

good agreement with other tests and AT is useful to enhance the SD test. 

4.5 Conclusions 

The study in this chapter has applied QC approaches for flagging data values of 

hourly GHI, which are of dubious quality, using the BSRN and TOACs tests for the upper 

and lower limits of physically possible and extremely rare observations, modifying those 

QC tests as a local test for the same target. New quality checks were developed based on 

SD and AT for stations where solar irradiance components were unavailable; these tests 

detected further errors in the data at seven automatic stations and thirteen tower stations 

in semi-arid and Mediterranean Sea climate regions. The new tests were validated with 

high quality meteorological data from six stations in various regions around the globe 

with similar climate types. The results demonstrate the high percentage difference 

between BSRN and TOACs for each subtest due to the different limits. This indicates that 
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BSRN cannot be used when only GHI is available because most errors will not be 

detected. Hence, the extremely rare limit of TOACs detected high rates of errors. The 

results of the local test covered the limitations in the BSRN and TOACs QC tests by 

detecting systematic errors and not flagging high rates of observations as errors for the 

extremely rare limit test. SD can be used as a partial consistency test, which has been 

supported by the validation results. Contrary to that, AT has not been supported as a 

suitable test. However, it is possible that AT can be used to generally check GHI data, 

especially when the components of solar irradiance data are unavailable. The AT test 

detected very low error rates in high quality data at the validation stations. Further 

research is required to compare BSRN and TOACs tests in other areas. Using several 

arguments with mean AT or with minimum and maximum AT, and also using other 

climate variables to check the quality of solar irradiance data will be useful. 
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A part of the research presented in this chapter has previously been published with CC-

BY copyright license as: 

 “Ameen, B., Balzter, H., Jarvis, C., Wey, E., Thomas, C. and Marchand, M. (2018) 

'Validation of Hourly Global Horizontal Irradiance for Two Satellite-Derived 

Datasets in Northeast Iraq', Remote Sensing, 10(10), 1651.“ 

 

5.1 Introduction 

This chapter addresses objectives:  

3. To validate the SDDs in new areas and to investigate the spatiotemporal features 

of SDDs to ground data, and to investigate the difference of two pixel point data from 

SDDs around a station compared with ground data of a station. 

4. To evaluate the ability of a simple method for bias correction in SDDs under 

cloudy sky conditions.  

Validation of SDD is considered to be crucial owing to the limited recording and 

limited spatial coverage of ground measurements and a high cost of instruments for GHI. 

This chapter deals with the validation of SDDs with GHI quality controlled data from 

chapter four. Nine stations are selected out of twenty stations owing to the low rates of 

data passing the QC tests and issues related to calibration of the pyranometers.  

Therefore, this chapter aimed to compare the hourly GHI from HC3v5 and CRSv3 

with ground measurements at those nine stations in northeast Iraq. It is first study to 

validating those SDDs in that region. One intention of this chapter is to evaluate the 

spatial-temporal performance of those datasets in all-sky, clear-sky, and cloudy-sky 

conditions and with the clearness index. Another goal is to use a new approach for 

validation, which is limited in the literature, comparing the GHI from ground 

measurements at a station against the GHI from SDDs at each station location and the 

two points around it, at a spatial resolution of 5 km (corresponding to that of MSG 

imagery), and with each point collected from a different pixel. The chapter was also 

intended to apply and to test a method for bias correction of GHI in SDDs under cloudy-

sky conditions in the case study area. 
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5.2 Materials and Methods 

5.2.1 Study Site  

The study area is in northeast Iraq, and was described in Chapter 3, Section 3.1. Based 

on the QC approaches (Chapter 4) and some calibration issues of GHI data, nine stations 

were used in this chapter from the twenty stations considered in Chapter 4. 

5.2.2  Ground Measurements  

The hourly GHI data with some other climate variables were collected from two 

station types. First, the data are from tower stations. The pyranometer used for recording 

data in these stations is the Kipp and Zonen CMP6 Pyranometer. The data were collected 

for the period 2011–2014 from five stations, which lacked some years, from the Ministry 

of Electricity-Kurdistan Regional Government (KRG) (Table 5.1). Others are automatic 

stations equipped with an Vaisala QMS101 Pyranometer. The data were collected from 

the General Directorate of Meteorology and Seismology-KRG from four stations (2013–

2016), which lacked some years (Table 5.2). 

 

Table 5.1: Tower stations with hourly GHI from Kipp and Zonen CMP6 Pyranometer. 

Station Coordinates (Degrees) Elevation a.s.l (m) Period (dd/mm/yy) 

Batufa 37.1764 N 43.0236 E 947 01/01/2011–31/12/2013 

P1-Batufa 37.1952 N 42.9478 E 854  

P2-Batufa 37.1689 N 43.1042 E 885  

Enjaksor 37.0603 N 42.4353 E 509 01/01/2011–31/12/2014 

P1-Enjaksor 37.0642 N 42.3544 E 433  

P2-Enjaksor 37.0533 N 42.4936 E 520  

Hojava 37.0075 N 43.0369 E 933 01/01/2011–31/12/2013 

P1-Hojava 37.0331 N 42.9803 E 856  

P2-Hojava 37.0061 N 43.0883 E 940  

Jazhnikan 36.3564 N 43.9556 E 430 01/01/2011–31/10/2013 

P1-Jazhnikan 36.3672 N 43.8936 E 376  

P2-Jazhnikan 36.3347 N 44.0294 E 467  

Tarjan 36.1258 N 43.7353 E 276 01/01/2011–31/12/2013 

P1W-Tarjan 36.1297 N 43.6686 E 263  

P2-Tarjan 36.1208 N 43.7931 E 308  

Note: The periods in the table are available for the ground measurements; the SDDs and TOA 

for the same periods have been collected for each station location and points around the stations, 

which were used for validation. 
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5.2.3 Calculated Data 

These were described in (Chapter 4, Section 2.1.2). 

5.2.4 Satellite-Derived Datasets 

The SoDa portal (SoDa, 2018) is owned by MINES ParisTech and Transvalor-

France. It provides a dataset of solar irradiance components, which are based on 

converting satellite images of MSG in the field view of the SEVIRI instrument covering 

Europe, Africa, the Middle East and part of South America (Figure 5.1) by the HC3 and 

CRS datasets. The hourly GHI data from HC3v5 and CRSv3 SDDs for each station 

location and for points around each station have been collected from the SoDa website 

(SoDa, 2018), based on the available period of ground data. 

 

Table 5.2: Automatic stations with hourly GHI Vaisala QMS101 Pyranometer. 

Station Coordinates (Degrees) Elevation a.s.l (m) Period (dd/mm/yy) 

Halsho 36.2097 N 45.2598 E 1105 01/01/2013–31/12/2016 

P1-Halsho 36.2201 N 45.2235 E 1119  

P2-Halsho 36.2058 N 45.3000 E 1395  

Bazian 35.6021 N 45.1376 E 892 01/04/2014–30/12/2016 

P1-W Bazian 35.6059 N 45.0689 E 872  

P2-E Bazian 35.5796 N 45.1817 E 828  

Maydan 34.9194 N 45.6224 E 330 01/01/2014–31/12/2016 

P1-Maydan 34.9203 N 45.5656 E 388  

P2-Maydan 34.9182 N 45.6716 E 396  

Kalar 34.6244 N 45.3049 E 218 01/01/2014–31/12/2016 

P1-Kalar 34.6220 N 45.1768 E 230  

P2-Kalar 34.6237 N 45.4103 E 210  

Note: The periods in the table are available for the ground measurements; the SDDs and TOA 

for the same periods have been collected for each station location and points around the stations, 

which were used for validation. 
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Figure 5.1: Spatial coverage of the SEVIRI instrument for MSG images (SoDa, 2018). 

 

5.2.4.1 HelioClim-3 (HC3) 

The HC3 dataset was created by converting Meteosat images to estimate the GHI for 

every 15 min since February 2001 using the original H2 method. The principle of H2 is 

to calculate solar irradiance statistically by the cloud cover index, which is created using 

the reflectance in the visible image of MSG and ground albedo (Moradi et al., 2009). The 

method has been modified several times by various inputs. It initially refers to Cano et al. 

(1986), and a new method was published in Rigollier et al. (2004). The MSG image 

processing in this model gives GHI. Then, DNI and DHI are estimated (Eissa et al., 

2015a). 

The most common versions of HC3 are v4 and v5. V4 inputs are the Cs model of the 

ESRA and the Linke turbidity factor (Thomas et al., 2016c). One limitation of this release 

is that it does not detect a local effect on the Linke turbidity factor (Thomas et al., 2016b). 

The Cs model gives solar irradiance globally as in the free cloudy-sky (Eissa et al., 

2015b). HC3v5 works largely on the same principle as HC3v4, but is different because it 

uses the McClear Cs model (Marchand et al., 2017). McClear is a model for providing 
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solar irradiance under clear-sky conditions. It counts the optical depth of the atmosphere 

as a column, which contains aerosol, water vapour and ozone. It is provided by the 

Copernicus atmosphere monitoring service (Lefèvre and Wald, 2016). The data within 

those datasets are available online (SoDa, 2018) for MSG coverage for free from 2004 to 

2006, and with payment from 2007 onwards. 

5.2.4.2 Copernicus Atmosphere Monitoring Service (CAMS), Radiation Service 

(CRS) 

CRS is a dataset of solar irradiance components, which provides H4 data using the 

satellite images of MSG. H4 is a modified method of their previous version. Cloud cover 

from APOLLO and ground albedo from MODIS and the McClear Cs model are used in 

this method (Eissa et al., 2015b; Thomas et al., 2016a; Thomas et al., 2016b). The data 

are available for free from 2004 until two days before for the areas covered by MSG 

images. The third version of CRS is available after bias correction (SoDa, 2018). This 

study has used CRS version 3 (CRSv3). Further information about the HC3v4-5 and 

CRSv3 projects can be found at (SoDa, 2018) and (Blanc et al., 2011b; Eissa et al., 2015a; 

Eissa et al., 2015b; Marchand et al., 2017; Thomas et al., 2016c; Thomas et al., 2016a; 

Thomas et al., 2016b). 

5.2.5 Quality Control of GHI Measurements 

Full information about the QC of the GHI ground data is described in Chapter (4). In 

addition, data cleaning were done for both SDDs and ground data by setting the solar 

elevation angle above 15°. Missing values were found and set as NA. The two datasets 

were harmonised for true local solar time. Systematic errors were removed from the data, 

and some questionable values of data according to various tests were not used in the 

validation process. 

5.2.6 Validation Approach  

The validation approach is illustrated in Figure 5.2. Most of the previous studies for 

validation of GHI SDD against ground data have separated data into all-sky and clear-

sky conditions (Amillo et al., 2014; Eissa et al., 2015a; Schillings et al., 2004). The 

division also depends on the clearness index (Kt). The Kt is calculated by dividing hourly 

GHI ground data by TOA (Eke et al., 2017). The TOA was collected from SoDa (2018). 

For calculating the Kt of SDDs see Figure 5.2. The Kt was used for validation and setting 
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limits among the various sky conditions (Mueller et al., 2011; Amillo et al., 2014) as 

below: 

 Clear-sky conditions: 0.65 ˂ Kt ≤ 1 

 Intermediate sky conditions: 0.3 ˂ Kt ≤ 0.65 

 Cloudy-sky conditions: 0 ˂ Kt ≤ 0.3 

This study separates the ground data into all-sky, clear-sky and cloudy-sky conditions 

based on the above Kt limits. This is to test the SDDs in various situations and to 

demonstrate under which situations the SDDs are the most accurate. 

The approach uses the ground data of a station to assess the SDDs with data from the 

station location pixel and with another two points of SDD pixel data. One pixel data point 

is selected to the east and another is selected to the west of a station at a distance of 6–10 

km, (Tables 5.1 and 5.2, Figure 5.3). This is to select a different pixel from the station 

location pixel; given the spatial resolution of MSG imagery is 5 km in the case study 

region (Figure 5.1). Hereafter, P1 is called the west point for each station, and P2 is called 

the east point. This is for further investigation into the validation of SDD for more than 

one-pixel around the station and to address whether the SDD values from neighbouring 

pixels are the same or different. This is because the solar irradiance intensity may be the 

same in an area of 25 km2 (Bojanowski et al., 2013; Bouchouicha et al., 2016). 

The validation performance between ground data and the SDDs, were evaluated for 

the all-sky conditions for hourly GHI for the stations and points around the stations and 

clearness index for all-sky conditions at stations, and the GHI for the clear-sky and cloudy 

conditions at the stations (Chapter 3, Section 3.2). 

The performance of two SDDs against the ground data have also been assessed in 

all-sky conditions to demonstrate the variability within reproducing the ground data by 

SDDs by using the hourly mean and standard deviation of GHI in a month. The monthly 

mean and standard deviation of hourly GHI were calculated for ground data and SDDs 

for each month in the selected period of a station. 
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Figure 5.2: The flowchart of the approach in this chapter. 
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Figure 5.3: Example of point pixel selection of SDD around Bazian station. 

5.2.7 Bias Correction for SDD 

Several studies have shown an overestimation of bias for SDDs under cloudy-sky 

conditions (Ameen et al., 2018b; Amillo et al., 2014; Eissa et al., 2015b; Xia et al., 2017). 

Several other studies have investigated various methods to correct bias in SDDs 

(Cebecauer and Suri, 2010; Davy et al., 2016; Frank et al., 2018; Gueymard et al., 2012; 

Lange, 2018; Qu et al., 2014; Rincón et al., 2018; Vernay et al., 2013). For further detail, 

see Polo et al. (2016). A simple method for bias correction uses a short-term of ground 

measurements to correct long-term of SDDs data by identifying seasonal and systematic 

errors in SDDs. The simple method was applied by Polo et al. (2015) for bias correction 

of DNI from SDD under clear sky conditions in India. However, the simple method was 

used in this study for bias correction of GHI from SDD under cloudy-sky conditions in 

which uses a new test for the method in different climate region. The simple method is 

fully described by Polo et al. (2015). 

The simple method utilises a linear regression equation to remove bias in the dataset. 

First, estimate SDD from the ground using Equation 5.1 to calculate coefficients in the 
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short-term dataset, such as one-year data or some months data. Second, it estimates new 

SDD in Equation 5.2 with bias removal from these data by fitted line to the y=x line; it 

uses the coefficients calculated from Equation 5.1. Finally, it uses the newly created SDD 

with SDD in the short-term dataset to calculate the coefficients of the regression equation 

(Equation 5.3). The coefficients of Equation 5.3 will be used in Equation 5.4 to correct 

long-term SDD datasets that are available in a station or in nearby areas.  An example of 

R codes applied is shown in Table 1B, Appendix B, which shows how corrected SDD is 

calculated based on the simple method with further explanation for steps. The coefficients 

and regression equations are also provided in Table 2B, Appendix B for each station for 

both SDD. 

SDD1 = (a*GHIGD) + b (5.1) 

New SDD = SDD1 – [(a – 1) GHIGD + b] (5.2) 

Corrected SDD1 = (a* New SDD) + b (5.3) 

Corrected SDD2 = (a*SDD2) + b (5.4) 

where: 

SDD1 is SDD in a short term  

SDD2 is SDD in a long term  

a and b are the coefficients of the regression are calculated in each step. 

 

5.3  Results 

Table 5.3 represents the results of the hourly GHI in all-sky conditions for the stations 

and the points around them; Table 5.4 represents the results of the clearness index in all-

sky conditions for the stations; and Table 5.5 represents the results of the hourly GHI in 

clear-sky and cloudy-sky conditions for the stations.  

Figures 5.4 and 5.5 show the results of the Monthly mean and standard deviation for 

each SDD with ground data. Figures 5.6 and 5.7 give further results between the stations 

with the points around them, and between SDDs in all-sky, clear-sky and cloudy-sky 

conditions for the results of the validation percentages of the bias and the RMSE, 

respectively. The results of some stations, as examples, with scatter plots are shown in 

Figures 5.8–5.10 (all other statins are in Appendix B, Figures B1–B6) for the GHI and 
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clearness index in all-sky conditions, and the GHI in clear-sky and cloudy-sky conditions. 

Table 5.6, Figures 5.11, and 5.12 show the results of bias correction for SDDs. 

Overall, the study is focused on all-sky conditions to show the results in different ways 

such as within the clearness index, the mean and standard deviation in a month and other 

statistical indicators, which have been used in all three sky conditions. This is to avoid 

complex results when presenting all of the above data in a variety of sky conditions. 

Table 5.3: Validation of hourly GHI under all-sky conditions for stations and points around 

them. Mean, Bias and RMSE units are W/m2. 

Stations 
Number 

of data 
Mean 

HC3v5 CRSv3 

r Bias 
Bias 

% 
RMSE 

RMSE 

% 
r Bias 

Bias  

% 
RMSE 

RMSE 

% 

Batufa 10,218 511 0.96 −6 −1.2 74 14 0.95 −27 −5.3 92 18 

P1 10,218 511 0.95 −15 −2.9 72 14 0.94 −28 −5.5 100 20 

P2 10,218 511 0.96 −16 −3.1 77 15 0.95 −29 −5.7 93 18 

Enjaksor 13,622 518 0.97 −4 −0.8 64 12 0.95 −20 −3.9 85 16 

P1 13,622 518 0.96 −9 −1.7 75 14 0.94 −19 −3.7 90 17 

P2 13,622 518 0.97 −6 −1.2 64 12 0.95 −21 −4.1 86 17 

Hojava 10,195 503 0.96 0 0 74 15 0.95 −19 −3.8 89 18 

P1 10,195 503 0.95 0 0 83 17 0.94 −20 −4 96 19 

P2 10,195 503 0.96 3 0.6 78 16 0.94 −16 −3.2 91 18 

Jazhnikan 9856 518 0.96 −13 −2.5 73 14 0.95 −20 −3.9 82 16 

P1 9856 518 0.96 −14 −2.7 77 15 0.95 −21 −4.1 84 16 

P2 9856 518 0.96 −12 −2.3 73 14 0.95 −21 −4.1 83 16 

Tarjan 10,261 521 0.96 −20 −3.8 74 14 0.95 −26 −5 81 16 

P1 10,261 521 0.96 −21 −4 78 15 0.95 −26 −5 83 16 

P2 10,261 521 0.96 −20 −3.8 73 14 0.95 −26 −5 80 15 

Halsho 13,183 503 0.96 1 0.2 81 16 0.95 7 1.4 89 18 

P1 13,183 503 0.95 6 1.2 84 17 0.95 7 1.4 90 18 

P2 13,183 503 0.94 1 0.2 93 18 0.95 5 1 90 18 

Bazian 8884 515 0.96 −8 −1.6 69 13 0.96 −2 −0.4 76 15 

P1 8884 515 0.96 −6 −1.2 74 14 0.95 −4 −0.8 79 15 

P2 8884 515 0.97 −8 −1.6 68 13 0.96 −2 −0.4 76 15 

Maydan 9089 514 0.97 −5 −1 68 13 0.96 3 0.6 73 14 

P1 9089 514 0.96 −6 −1.2 72 14 0.96 1 0.2 75 15 

P2 9089 514 0.97 −3 −0.6 65 13 0.96 6 1.2 71 14 

Kalar 7979 474 0.95 20 4.2 84 18 0.94 19 4 84 18 

P1 7979 474 0.94 19 4 88 19 0.93 19 4 88 19 

P2 7979 474 0.95 21 4.4 84 18 0.92 25 5.3 97 20 
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Table 5.4: Validation of hourly GHI under all-sky conditions for the clearness index. 

Stations 
Number of 

data 
Mean 

HC3v5 Clearness Index CRSv3 Clearness Index 

r Bias 
Bias 

% 
RMSE 

RMSE

% 
r Bias 

Bias 

% 
RMSE 

RMSE

% 

Batufa 10,218 0.602 0.89 −0.009 −1.5 0.102 16.94 0.85 −0.038 −6.3 0.121 20.1 

Enjaksor 13,622 0.611 0.89 −0.01 −1.64 0.089 14.57 0.83 −0.032 −5.2 0.117 19.1 

Hojava 10,195 0.592 0.87 −0.004 −0.68 0.1 16.89 0.85 −0.03 −5.0 0.116 19.5 

Jazhnikan 9856 0.602 0.86 −0.024 −3.99 0.1 16.61 0.85 −0.031 −5.1 0.107 17.7 

Tarjan 10,261 0.612 0.85 −0.034 −5.56 0.103 16.83 0.84 −0.04 −6.5 0.109 17.8 

Halsho 13,183 0.584 0.87 −0.003 −0.51 0.109 18.66 0.84 0.008 1.3 0.12 20.5 

Bazian 8884 0.593 0.87 −0.014 −2.36 0.093 15.68 0.85 −0.006 −1.0 0.098 16.5 

Maydan 9089 0.594 0.87 −0.016 −2.69 0.091 15.32 0.86 −0.003 −0.5 0.092 15.4 

Kalar 7979 0.565 0.83 0.013 2.3 0.099 17.52 0.82 0.017 3.0 0.097 17.1 
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Figure 5.4: Monthly mean and standard deviation of hourly GHI data in each month aggregated 

over the data availability for each station with HC3v5. The difference between dots reveals the 

errors in a month and vice versa. If the dot of the SDD in a month is above the dot of the ground 

data, it denotes overestimation; otherwise, it denotes underestimation. 
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Figure 5.5: Monthly mean and standard deviation of hourly GHI data in each month aggregated 

over data availability for each station with CRSv5. The difference between dots reveals errors in  

a month and vice versa. If the dot of the SDD in a month is above the dot of the ground data, it 

denotes overestimation; otherwise, it denotes underestimation. 
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Figure 5.6: Comparison of bias (%) for the hourly GHI for all-sky conditions among stations 

with points around them for HC3v5 and CRSv3. Clear-skies and cloudy-skies at stations are 

represented by blue, light blue, black and grey colours, respectively. 

 

 

Figure 5.7: As in Figure 5.6, but for RMSE (%). 
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Table 5.5: Validation of hourly GHI under clear-sky and cloudy-sky conditions. Mean, Bias and RMSE units are W/m2. 

Station Condition Number of Data Mean 

HC3v5 CRSv3 

r Bias 
Bias

% 
RMSE 

RMSE

% 
r Bias 

Bias

% 
RMSE 

RMSE

% 

Batufa 
Clear-sky 5937 679 0.97 −32 −4.7 58 9 0.95 −45 −6.6 86 13 

Cloudy-sky 1448 106 0.68 89 84 114 108 0.63 47 44.3 91 86 

Enjaksor 
Clear-sky 7955 672 0.97 −18 −2.7 53 8 0.95 −33 −4.9 78 12 

Cloudy-sky 1507 113 0.68 55 48.7 85 75 0.64 33 29.2 77 68 

Hojava 
Clear-sky 5669 672 0.97 −23 −3.4 56 8 0.95 −34 −5.1 77 11 

Cloudy-sky 1365 113 0.64 81 71.7 113 99 0.59 45 39.8 101 89 

Jazhnikan 
Clear-sky 5513 681 0.97 −21 −3.1 54 8 0.96 −33 −4.8 69 10 

Cloudy-sky 1018 117 0.63 44 37.6 84 72 0.69 39 33.3 83 71 

Tarjan 
Clear-sky 5983 666 0.97 −29 −4.4 62 9 0.96 −41 −6.2 72 11 

Cloudy-sky 965 120 0.68 39 32.5 73 61 0.68 39 32.5 85 71 

Halsho 
Clear-sky 7498 677 0.97 −25 −3.7 56 8 0.97 −26 −3.8 61 9 

Cloudy-sky 2083 106 0.61 65 61.3 102 96 0.6 90 84.9 127 120 

Bazian 
Clear-sky 4673 690 0.97 −16 −2.3 54 8 0.96 −15 −2.2 64 9 

Cloudy-sky 937 115 0.64 55 47.8 90 78 0.65 53 46.1 93 81 

Maydan 
Clear-sky 4729 678 0.97 2 0.3 55 8 0.96 2 0.3 62 9 

Cloudy-sky 813 127 0.51 30 23.6 88 69 0.65 39 30.7 88 69 

Kalar 
Clear-sky 2755 659 0.96 19 2.9 57 9 0.95 7 1.1 60 9 

Cloudy-sky 686 133 0.64 22 16.5 74 56 0.72 39 29.3 81 61 
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Figure 5.8: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Batufa station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right. 
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Figure 5.9:  Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Kalar station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right. 
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Figure 5.10: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Maydan station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right. 
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5.3.1 All-Sky Conditions 

The results of the validation for the all-sky conditions are presented in Table 5.3. The 

range r was 0.94–0.97 in all of the stations and 0.92–0.97 in the points around them. 

Interestingly, zero bias was recorded at Hojava station, and it was near zero in several 

other cases (Halsho, Maydan and Bazian stations) for both SDDs. Negative 

(underestimation) bias was recorded in several cases. It ranges from −21 W/m2 (−4%) to 

−3 W/m2 (−0.6%) for HC3v5, which is lower than CRSv3 in most cases, which ranges 

from −27 W/m2 (−5.3%) to −2 W/m2 (−0.4%). Moreover, bias (%) was lower than −6% 

for all of the stations. However, a positive (overestimation) bias was recorded in some of 

the cases. The highest case of bias in the chapter was recorded at Kalar station, which was 

25 W/m2 (5.3%) for CRSv3 and 21 W/m2 (4.4%) for HC3v5. Some other positive rates 

were recorded at Halsho and Maydan stations, which were lower than 2% for both SDDs 

(Figure 5.6, Table 5.3). 

The bias at each station was compared to the points around the station, and was nearly 

the same with no more than 4% difference for each station. Overall, the rate of bias in 

HC3v5 was less than that in CRSv3 (Figure 5.6, Table 5.3). 

The RMSE was under 21% in all of the cases. Its lowest value, at Enjaksor, was 64 

W/m2 (12%), and increased to the highest value of 88 W/m2 (19%) at Kalar station for 

HC3v5. It was generally high for CRSv3 ranging from 71 W/m2 (14%) to 100 W/m2 

(20%). Most of the other rates of RMSE were between 14−18% for both SDDs. 

The RMSE for the points around the stations compared to the station location are 

nearly the same (Figure 5.7). Overall, the RMSE for HC3v5 was less than that for CRSv3 

(Figure 5.7). 

The smooth scatter density plot illustrates the residual and correlation between 

ground data and SDDs in some cases. For example, Figure 5.8 for Batufa station shows 

that the density of observations were mostly under the 1:1 (y=x) line, which indicated a 

recorded negative bias, and the RMSE was acceptable for HC3v5 and high for CRSv3, 

while some of the other values above the 1:1 line are under 200W/m2. However, Figure 

5.9 (Kalar station) shows that the majority of observations are above the 1:1 line and some 
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points are far from the line. This corresponds to positive bias and high RMSE in the 

station. 

Low rates of bias and RMSE were recorded at Maydan station, which is shown in 

Figure 5.10 for HC3v5 and CRSv3 respectively. The best-fit line in red is nearly the same 

as the 1:1 line, more so for HC3v5 than CRSv3 (at the same station). 

The results of the clearness index in the all-sky conditions are represented in Table 

5.4. The percentages of bias and RMSE were quite similar to the GHI. Hence, the r values 

at all of the stations were lower than the GHI, which ranged from 0.82–0.89. The r values 

were higher for HC3v3 than CRSv3 when comparing each station for both. The scatter 

density plot shows the highest density of observations at around 0.7 for all of the stations. 

Negative bias at Batufa, Maydan and positive bias at Kalar can be seen, although the 

values were low. Several values are far from the 1:1 line, resulting in RMSE to be from 

15%–21% at all of the stations (Figures 5.8–5.10). 

Results of the monthly mean and standard deviation of the GHI are represented in 

Figure 5.4 for HC3v5 and in Figure 5.5 for CRSv3. The two figures demonstrate the 

distribution of the two SDDs with ground data in each month, expressed by the standard 

deviation. However, some differences were recorded in the winter months at Batufa, 

Hojava, Halsho and Bazian stations, whereas for summer months differences were 

recorded at Maydan and Kalar stations for both SDDs. 

5.3.2 Clear-Sky and Cloudy-Sky Conditions 

The compared results of the two SDDs for clear-sky and cloudy-sky conditions are 

presented in Table 5.5. There are apparent differences in the r values between the clear-

sky and cloudy-sky conditions in all of the cases. The was 0.95–0.97 for clear-skies, 

whereas for the cloudy-skies, it was 0.51–0.72 . 

Similarly, the ranges of bias were much higher in the cloudy-skies than in the clear-

skies. The lowest bias was a 2 W/m2 (0.3%) overestimation at Maydan under clear-sky 

conditions whereas in the same station it reached 30 W/m2 (24%) under cloudy-sky 

conditions. The highest bias for the clear-sky conditions was recorded at Batufa station, 

which was −32 W/m2 (−4.7%). The same station had the highest bias for the cloudy-sky 

conditions, which was 89 W/m2 (84%). These were recorded for HC3v5. The bias for 



 

100 

  

CRSv3 was the same as HC3v3 for the low range in the clear-sky conditions. In others, 

the ranges start from −45 W/m2 (−6.6%) underestimation at Batufa station to 7 W/m2 

(1%) overestimation at Kalar station, while for cloudy-skies, it ranged from 33 (29%) to 

90 (85%) W/m2 respectively. The variety of the two SDDs in term of bias is shown in 

Figure 5.6, which illustrates a moderate difference between cloudy-sky and clear-sky 

conditions from one station to the other. In addition, the range of bias was much lower in 

clear-skies than cloudy-skies and the bias in all-sky conditions was lower than that in 

clear-skies except for two stations for both SDDs where the bias was higher to some 

degree in the all-sky conditions than in the clear-skies (Figure 5.6). 

Similarly, the RMSE was much higher under cloudy-skies than under clear-skies for 

the SDDs in each station. For example, at Halsho station for CRSv3 it was 61 W/m2 (9%) 

in clear-skies and increased sharply to 127 W/m2 (120%) under cloudy conditions. Nearly 

the same situation can be seen for Batufa station for HC3v5. The RMSE for both SDDs 

was lower than 14% at all of the stations for the clear-skies while it was above 58% for 

the cloudy-skies (Figure 5.7, Table 5.5). The RMSE in clear-skies was lower than in the 

case of all-sky conditions in all of the study areas for both SDDs (Figure 5.7). 

The smooth scatter density plot for Batufa, Kalar and Maydan of both SDDs 

separately shows that the density of observations were above the 1:1 line, and the 

direction of distribution was towards the high value of SDD which recorded high 

overestimation and high RMSE in cloudy-sky conditions (Figures 5.8–5.10). In contrast, 

in the clear-sky conditions for nearly all of the stations, the distribution of observations 

was near the 1:1 line. This leads to low RMSE in clear-skies compared to cloudy-sky and 

all-sky conditions (Figures 5.8–5.10). The observations under the 1:1 line illustrated a 

negative bias at Batufa station, whereas the opposite—i.e. positive bias—occurred at 

Kalar station, and a minimal bias was seen at Maydan station relative to the normal 

distribution. 

Overall, the results of the validation varied from one station to another. However, 

they are all acceptable according to bias (under 3%) and RMSE (under 14%) for hourly 

data. At some stations, the results were disappointing. The points around the stations had 

nearly the same ranges of bias and RMSE compared to the station location. In most of the 

cases, the bias and RMSE of HC3v5 were lower than CRSv3. The bias and RMSE were 

lower for the clear-sky and all-sky conditions than for the cloudy-skies. 
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5.3.3 Results of Bias Corrections for SDDs under Cloudy-Sky Conditions 

Statistical results of bias correction under Cloudy-Sky Conditions for SDDs in the 

case study area are presented in Table 5.6, whereas the comparison of relative bias and 

relative RMSE before and after corrections are demonstrated in Figures 5.11 and 5.12 

respectively. Slight improvement is noted for each of the individual cases of relative bias 

at all nine stations, whereas there is a narrow improvement for relative RMSE and with 

no improvement is noted at three stations for relative RMSE among eighteen cases. The 

bias removal rates were recorded between 10% to 80% from one station to another. For 

instance, bias reduced from 84% to 5% at Hojava, and it reduced from 16.5% to 5.3% at 

Kalar for HC3v5. It reduced to near zero percentage at Hojava and Bazian for HC3v5 and 

at Enjaksor for CRSv3. The overall improvements of relative RMSE after the bias 

correction ranged from 2% to 33% except three negative cases at all stations for HC3v5 

and CRSv3.     

 

Table 5.6: Statistical results of hourly GHI bias corrections for SDDs at nine stations. Bias and 

RMSE units are W/m2. 

Stations  

HC3v5-Corected  CRSv3-Corected 

Bias 
Bias 

% 
RMSE 

RMSE 

% 
Bias 

Bias  

% 
RMSE 

RMSE 

% 

Batufa 5.19 4.96 78.8 75.42 -4 -3.9 80.4 80.7 

Enjaksor 4.1 3.6 71.6 64.1 -1 -0.9 72.44 64.8 

Hojava 0.8 0.7 74.6 66.1 -10.7 -9.5 84.2 75.09 

Jazhnikan 14.5 12.6 83.8 72.9 4.8 4.2 71.9 62.64 

Tarjan 12.3 10.6 68.3 59 -16.1 -13.9 72.9 63 

Halsho -6.7 -6.3 82.1 77.8 -4.9 -4.6 86.9 82.3 

Bazian 0.05 0.04 77.7 67.2 4.4 3.8 79.48 68.6 

Maydan 7.7 6.2 92.53 74.3 16.9 13.6 88.9 71.4 

Kalar 7.3 5.3 83.03 60.39 4.7 3.4 73.3 53.34 
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Figure 5.11: Comparison of bias (%) before and after corrections for SDDs. 

 

 
Figure 5.12: Comparison of RMSE (%) before and after corrections for SDDs. 
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5.4 Discussion 

The validation results demonstrate good agreement between the ground data and 

SDDs in all-sky and clear-sky conditions (average r = 0.95, bias under 6% and RMSE 

under 21%), unlike the results for the cloudy-sky conditions (average r = 0.61, bias above 

16% and RMSE above 61%). The results from the two neighbouring points at each station 

are close to the results at the station location with an average difference of 2%. Overall 

the performance of SDDs are in agreement with those from similar studies in other areas 

(Eissa et al., 2015a; Marchand et al., 2017; Thomas et al., 2016a; Thomas et al., 2016b), 

which also showed a better performance for HC3v5 over CRSv3 (Figure 5.6 and 5.7). 

This is mainly related to the models for creating each dataset, whether it is H2 or H4 (see 

this Chapter, Section 2.4). The results of bias correction demonstrate clear improvement 

of SDDs under cloudy-sky conditions. 

5.4.1  All-Sky Conditions 

The high rates of positive bias and RMSE at Kalar compared to all of the other 

stations (Figures 5.6–5.10) might be due to the quality of the recorded data (Chapter 4) 

and a partial shadow on the sensor at that station, because its mean is lower than that at 

the other stations by nearly 30 W/m2 (Table 5.3), although those data did pass the quality 

control. A similar positive bias and RMSE are reported by other studies (Eissa et al., 

2015a; Marchand et al., 2017). Low rates of bias (0–2%) were recorded for HC3v5 

Hojava, Halsho, Bazian and Maydan, and for CRSv3 for the same stations except for 

Hojava, whose bias rate reaches −3.8% for all-sky conditions (Table 5.3, Figure 5.6). 

These show that the GHI ground data are explained well by satellite data (Figures 5.8–

5.10 and B1–B6).  Underestimations of bias (1–6%) and RMSE (12–20%) were recorded 

at most stations (Table 5.3, Figures 5.6 and 5.7). Comparable percentages were recorded 

in similar studies in other areas and climate regions, namely Egypt (Eissa et al., 2015a), 

Brazil (Thomas et al., 2016a), and some BSRN stations (Thomas et al., 2016b). The 

reasons are partly related to the local condition of the station, inputs to the Heliosat 

method—especially the atmospheric optical depth owing to its unavailability—, various 

cloud types, the resolution of satellite images and the aerosols effect (Kaskaoutis et al., 

2016; Thomas et al., 2016a; Xia et al., 2017). This is because in some cases, the GHI 

ground data are well explained by SDDs, but in other cases only some error rates were 

recorded (Table 5.3). Those rates are quite reasonable for hourly GHI (Marchand et al., 
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2017). Those rates of bias can be corrected or modified in some ways (Frank et al., 2018; 

Polo et al., 2015; Polo et al., 2016; Qu et al., 2014). 

The low variabilities between the ground data and both SDDs are seen in Figures 5.4 

and 5.5. This might be related to the geographical location and climatic condition, and 

another reason is that the data were aggregated, concealing some random errors between 

the two datasets. Hence, some error rates in winter months are related to the difficulty of 

the Heliosat methods to estimate GHI in cloudy conditions (Schillings et al., 2004; Blanc 

et al., 2011b). The performance of the clearness index (Table 5.4) is nearly the same for 

GHI in at all-sky conditions. 

An interesting side of this study is that the results of the validation for both SDDs 

with the two neighbouring points at each station separately are slightly closer to those at 

the station location. The differences range between 0%–2% for bias and RMSE for each 

point at most of the locations (Table 5.3, Figures 5.6 and 5.7). The ±1%–4% difference 

between the station location and the neighbouring points with the station ground data GHI 

are mainly related to the elevation above sea level for each location. Other factors might 

be related to local land surface types such as land and water, agriculture and bare soil. 

This indicates that the GHI from SDDs can be used for regional planning for various 

purposes, and the ground data GHI can be used for neighbouring areas when there is a 

limitation of ground data. This validation is also considered to add further weight to the 

use of solar irradiance data for neighbouring area or interpolating ground data in a 25 km2 

area (Bojanowski et al., 2013; Bouchouicha et al., 2016; Janjai et al., 2011). 

5.4.2 Clear-Sky and Cloudy-Sky Conditions 

The validation results for both SDDs with the ground data for clear-sky conditions 

showed good agreement according to RMSE, which decreased at most stations (Figures 

5.6–5.10). This is partly related to the inputs to the H2 method, especially in incorporating 

the visible images of MSG in cloud-free conditions into the model. Similarly, the 

increased performance of HC3v5 for clear-sky conditions has been reported (Eissa et al., 

2015a) in Egypt. However, the remaining residuals of clear-sky conditions are caused by 

the factors that have been mentioned in the all-sky conditions above. However, the bias 

increased to some degree for both SDDs in most of the stations, which were recording 

underestimations for clear-sky conditions. This is partially related to the increase of the 
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mean GHI ground data in clear-sky conditions. It has also been recorded by several 

studies (Amillo et al., 2014; Zhang et al., 2016; Xia et al., 2017), which show that the bias 

is underestimated for clear-skies. 

The study investigated the performance of SDDs on cloudy-sky conditions, reflected 

in the low performance of both HC3v5 and CRSv3 according to the high ratio of bias and 

RMSE (Figures 5.6 and 5.7). A close look at the samples of smooth scatter plots (Figures 

5.8–5.10) shows how far the observations and their density are from the 1:1 line. This is 

related to difficulties in analysing cloudy pixels of MSG images (Schillings et al., 2004); 

the clouds prevented the ground being viewed from the sensor aboard the satellite 

(Marchand et al., 2017), and as such it is hard to differentiate between cloud albedo and 

ground albedo (Blanc et al., 2011b). These factors lead to a general overestimation of 

GHI as shown in all of the stations (Table 5.5) for bias, and much higher RMSE (Figures 

5.5 and 5.6). Indeed, in some of the cases, it is above the mean of the observations. Similar 

high residuals for cloudy conditions have been reported in the literature (Amillo et al., 

2014; Eissa et al., 2015a; Zhang et al., 2016; Xia et al., 2017). This indicates that the GHI 

ground data are well explained by the SDDs in clear-sky conditions, whereas they are not 

explained well in cloudy-sky conditions. The results of high bias and RMSE indicate that 

further research is required to correct the errors under cloudy-sky conditions, whereas 

several studies have done bias corrections for all-sky conditions (Frank et al., 2018; Polo 

et al., 2015; Polo et al., 2016; Qu et al., 2014). 

5.4.3 Bias Corrections for SDDs under Cloud-Sky Conditions 

The correction approach applied here substantially reduces the bias and enhances the 

SDDs under cloudy-sky conditions. This demonstrates the importance of applying bias 

correction approaches to improve the bankability of GHI data from SDDs. The various 

rates of improvement for relative bias among cases are related to the original SDDs, and 

local climate condition and landscape variability, also reported by the literature (Frank et 

al., 2018; Lange, 2018; Rincón et al., 2018). The low improvement of RMSE compared 

to bias after correction is in an agreement with similar studies (Polo et al., 2015; Rincón 

et al., 2018). These low improvements of RMSE could be associated with stochastic 

errors related to numerical random calculations. 
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The limitations of this study in this chapter are the different data timescales from one 

station to another and the limited information available for some parameters, such as the 

aerosols and local atmospheric properties. This might lead to a challenge to fully explain 

the reasons behind the results at each station. The simple bias correction method required 

short-term high quality ground measurement to capture the errors in SDDs over the long-

term and this is a limitation of the method. 

The validation results vary from one station to another, they are near the WMO 

standard, in which the bias should be less than 3 W/m2 and 95% of errors should not 

exceed 20 W/m2 (Lefèvre and Wald, 2016). However, the validation results in a minority 

of stations are above the WMO standard. It is therefore probable that the SDDs can be 

used for modelling and mapping solar irradiance with some modification and using results 

of bias correction under cloudy-sky conditions. 

 

5.5 Conclusions 

The study in this chapter validated hourly GHI from two SDDs ( HC3v5 and CRSv3) 

against ground data from nine stations in northeast Iraq for all-sky, clear-sky and cloudy-

sky conditions values were compared for the station pixel and with two other adjacent 

pixels around the station in all-sky conditions. The simple method was applied for bias 

corrections in SDDs under cloudy-sky conditions. The temporal changes of ground data 

GHI were well represented by both SDDs; r was above 0.94 for the all-sky and clear-sky 

conditions, and above 0.82 for the clearness index in most cases, while for cloudy-skies 

was between 0.51–0.72. The bias was negative (underestimation) for most cases except 

for two HC3v5 and three CRSv3 cases,; all of the absolute bias ranges were smaller than 

8% of the mean GHI in all-sky and clear-sky conditions. For cloudy-sky conditions, bias 

was positive and varied from one station to another, by 17%–85% of the mean GHI. The 

same applies to RMSE. It ranged between 8–20% in all of the stations for all-sky and 

clear-sky conditions. In contrast, the RMSE range was much higher in cloudy-sky 

conditions: above 56%. The differences between neighbouring pixels and at-station pixels 

in the SDDs compared to the ground data of GHI for each site are very small, varying by 

2% in most cases. The overall performance of HC3v5 is better than that of CRSv3. 
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Despite the high error rates at some stations, the GHI values from SDDs were closely 

related to the ground data at most of the stations. However, the resolution of MSG images 

is 5 km. The SDDs represent hourly GHI well, and this can be used to map solar resources 

and possibly for modelling GHI with ground data in areas with a low number of stations. 

The results of bias correction revealed clear improvement of SDDs under cloudy-sky 

conditions by reducing the bias by 10%–80% in various cases and reducing bias to near 

zero at some stations. 

Further research would be useful for validating the SDDs in other climates. Some 

studies are also required to address the inputs to the Heliosat method, according to 

regional and local factors, for a better estimation of GHI from satellite images. 
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A part of the research presented in this chapter has previously been published with CC-

BY copyright license as: 

“Ameen, B., Balzter, H., Jarvis, C. and Wheeler, J. (2019) 'Modelling Hourly Global 

Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as 

New Inputs with Artificial Neural Networks', Energies, 12(1), 148.“ 

 

6.1 Introduction 

This chapter addresses objective: 

5. To assess the role of new input combinations (SDDs. Cs, TOA and climate 

variables) in estimating and modelling hourly GHI data. 

Several studies have estimated GHI from various methods, but a high temporal 

resolution of GHI is likely necessary for several applications such as photovoltaic panel 

and concentrated solar power projects. Recently, demand for GHI that has increased for 

solar energy projects, due to problems related to non-renewable energies, a lack of other 

energy sources, increasing use of energy and potential availability of solar energy 

(Boussaada et al., 2018; Jadidi et al., 2018; Palmer et al., 2017; Palmer et al., 2018). 

However, stations with long historical measurements of GHI are limited because of the 

cost of installation and maintenance of pyranometers (Hassan et al., 2017b).  

Therefore, this chapter aimed to address a model for obtaining high quality of GHI 

data on an hourly time step according to bias and RMSE by using new input combinations 

including SDDs, Cs model, TOA and climate variables (SD, AT, RH and WS) in a 

comparison of the results of ANN and regression models. This is a gap filling knowledge 

because the new input combinations have not been used by previous literature (Chapter 

2, Section 4) to improve the quality of the results of GHI modelling.  

This chapter used quality controlled GHI ground data (Chapter 4) and validated 

SDDs (Chapter 5) as the new input combinations in ten sets of inputs in ANN and 

regression models.  
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6.2 Materials and Methods  

6.2.1 Study Site  

The study area is in northeast Iraq, and was described in Chapter 3, Section 3.1. The 

same nine stations used in Chapter 5 were used here. 

6.2.2 Ground Measurements 

Hourly ground data for SD AT, RH, WS and GHI, were collected from two station 

types. First, the data are from tower stations are all above variables except SD. The 

pyranometer used for recording GHI in these stations is the Kipp and Zonen CMP6 

Pyranometer. The data were collected for the period 2011–2014 from five stations, some 

of which lacked some years, from the Ministry of Electricity-KRG (Table 6.1). The 

stations are automatic weather stations, at which SD is also recorded as well as the above 

variables. The GHI equipped in these stations is the Vaisala QMS101 Pyranometer. The 

data were collected from 2013–2016 by the General Directorate of Meteorology and 

Seismology-KRG for four stations (Table 6.2). Both datasets are missing some months 

or years. 

 

Table 6.1: Tower stations with hourly data of AT, RH, WS and GHI at ground measurements 

with GHI of two SDDs and with calculated Cs and TOA irradiance. 

Station Coordinates (Degrees) Elevation a.s.l (m) Period (dd/mm/yy) 

Batufa 37.1764 N 43.0236 E 947 01/01/2011–31/12/2013 

Enjaksor 37.0603 N 42.4353 E 509 01/01/2011–31/12/2014 

Hojava 37.0075 N 43.0369 E 933 01/01/2011–31/12/2013 

Jazhnikan 36.3564 N 43.9556 E 430 01/01/2011–31/10/2013 

Tarjan 36.1258 N 43.7353 E 276 01/01/2011–31/12/2013 

 

Table 6.2: Automatic stations as data in Table 6.1, plus SD. 

Station Coordinates (Degrees) Elevation a.s.l (m) Period (dd/mm/yy) 

Halsho 36.2097 N 45.2598 E 1105 01/01/2013–31/12/2016 

Bazian 35.6021 N 45.1376 E 892 01/04/2014–30/12/2016 

Maydan 34.9194 N 45.6224 E 330 01/01/2014–31/12/2016 

Kalar 34.6244 N 45.3049 E 218 01/01/2014–31/12/2016 
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6.2.3 Calculated data  

These were described in (Chapter 4, Section 2.1.2). 

6.2.4 Satellite-Derived Datasets (SDDs) 

These were described in (Chapter 5, Section 5.2.4). 

6.2.5 Quality Control of GHI Measurements and Evolution of SDDs  

The output data from the nine stations, where ground measurements were tested 

(Chapter 4) and SDDs were evaluated (Chapter 5), were used in this chapter. In addition, 

the station data was harmonised with SDDs (HC3v5 and CRSv3), with TOA and Cs. All 

data were merged into one dataset. The dataset was configured based on the true solar 

time, when the solar elevation angle is above 15°. Systematic errors, NA values and a few 

questionable data points were then removed.  

6.2.6 Data Pre-processing  

The data were normalised to 0–1 as it is recommended for ANNs (Quaiyum et al., 

2011; Jimenez et al., 2016; Fadare, 2009; Saberian et al., 2014). The input normalised 

data of SD, AT, RH, WS, Cs, TOA, HC3v5 and CRSv3 were set as ten different inputs. 

Each input contained some of the above variables in both tower and automatic stations 

(Table 6.3). Each set of input combinations were named model-1 (M1) to model-10 (M10) 

(Table 6.3). Hereafter, each combination of inputs at each station from M1 to M10 was 

used in ANN and regression models, and the results were presented using those names 

(M1–M10), as demonstrated in Table 6.3. The data in each station were randomly 

distributed for each model from M1–M10 as training (70%), validation (15%) and test 

(15%) data for ANN models. The training data were presented to the network during 

training, and the network was adjusted according to its error. The validation data were 

used to measure network generalization, and to halt training when generalization stops 

improving based on an increase in the mean square error. The test data have no effect on 

training and test data provide an independent measure of network performance during 

and after training (MATLAB, 2018). 
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The same data deviations for each station from (M1–M10) were used in multiple 

regression models, but the data were randomly distributed as training (70%) and test 

(30%). 

Table 6.3: Inputs and output to the ANN models. 

Models Inputs (automatic stations) Inputs (tower stations) Output 

M1 SD, AT, RH, WS AT, RH, WS GHI 

M2 SD, AT, RH, WS, Cs AT, RH, WS, Cs GHI 

M3 SD, AT, RH, WS, TOA AT, RH, WS, TOA GHI 

M4 SD, AT, RH, WS, HC3v5 AT, RH, WS, HC3v5 GHI 

M5 SD, AT, RH, WS, CRSv3 AT, RH, WS CRSv3 GHI 

M6 SD, AT, RH, WS, Cs, TOA AT, RH, WS, Cs, TOA GHI 

M7 SD, AT, RH, WS, Cs, HC3v5 AT, RH, WS, Cs, HC3v5 GHI 

M8 SD, AT, RH, WS, Cs, CRSv3 AT, RH, WS, Cs CRSv3 GHI 

M9 SD, AT, RH, WS, Cs, TOA, 

HC3v5 

AT, RH, WS, Cs, TOA, 

HC3v5 

GHI 

M10 SD, AT, RH, WS, Cs, TOA, 

CRSv3 

SD, AT, RH, WS, Cs, TOA, 

CRSv3 

GHI 

 

6.2.7 Artificial Neural Networks (ANNs) 

ANNs are machine-learning techniques, which are based on how the human brain 

works and they are prepared to replicate the way that humans learn. ANNs are considered 

one of the most powerful algorithms for finding a relationship between inputs and outputs. 

They have been used broadly in the literature for modelling GHI and have been described 

in detail (Chapter 2, Section 2). ANNs are black box models because they do not provide 

any insights into the structure of the function being shaped, while they can approximate 

any function.  

ANNs contain three primary layers, which are the input layer, hidden layer and output 

layer (Figure 6.1). Each layer consists of a number of neurons and every neuron in one 

layer is associated and interacts with other layers. Each neuron in the input layer only acts 

as a partition to distribute the input value to the neuron in the next layer. Each input to 

the neuron in that next layer is weighted by the strengths of the respective connections 

from the input layer and summed with the adjustable value (Bias) and then the output of 

the neuron is calculated with a function. The weight and bias in each layer’s neurons are 

adjusted based on the activation function or transfer function (sigmoid, hyperbolic tangent 
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and linear), and algorithms (including Levenberg-Marquardt, Bayesian Regularization 

and Scaled Conjugate Gradient) for training the model, which depend on error minimising 

between the desired output and the target (Kheradmanda et al., 2016; López et al., 2018; 

Loutfi et al., 2017). 

 

Figure 6.1: ANN architecture description. 

The neural network fitting toolbox (nftool) of MATLAB R2016a academic use 

(MATLAB, 2018) was used in this chapter (see Appendix C, Figures C3–C10 and Table 

C10). After the data were normalised to 0–1 and inputs and outputs were designated as 

M1–M10 for each station, the data were divided into training, validation and test sets. 

The Levenberg-Marquardt back propagation algorithm (Moré, 1978) was used to train 

each model with activation functions, sigmoid in the hidden layer and linear in the output 

layer (Figure 6.1). The number of neurons in the hidden layer for each model was selected 

after several tests based on the performance and balance of under or overfitting of results 

among the training, validation and test datasets. All other processes such as initial weight 

and bias, and connections between layers were automatically completed.  

The Levenberg-Marquardt algorithm was used due to its reduced time requirement 

for convergence (MATLAB, 2018), and its results are better than others were including 

Bayesian Regularization and Scaled Conjugate Gradient in the case of modelling GHI 

(Fadare, 2009; Khosravi et al., 2018a; López et al., 2018; Rao K et al., 2018). Another 
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reason is that the initial results of Levenberg-Marquardt better than those of the other two 

training algorithms. 

The methodology steps in this chapter are illustrated in Figure 6.2. The results of 

each station and each model were aggregated for five towers and four automatic stations 

in one combination for each station type as overall results of the tower station and overall 

results of the automatic station; this is to avoid a complicated explanation of the results 

of each station separately. Hence, the results of each station are displayed in Appendix C. 

 
Figure 6.2: Flowchart of the methodology steps in this chapter. 
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6.3 Results 

The results of hourly GHI with ANN and regression models from M1–M10 based on 

variable inputs for train, validation and test data were averaged for four automatic stations 

and five tower stations and are presented in Tables 6.4 and 6.5 respectively. The same 

results with the number of neurons in the hidden layer, number of datasets used and mean 

of GHI ground data for each induvial station types are presented in Appendix C, Tables 

(C1–C9) with two Figures (C1 and C2) of relative bias and RMSE of test data for further 

demonstration. The results of regression models are presented in Tables 6.6 and 6.7 for 

both station types. Figures 6.3 and 6.4 show further comparison of the relative bias and 

RMSE between the ANN and regression models and the station types in the test data. In 

addition, the results of M1–M10 in the test data are shown with scatter plots of ground vs 

ANN models and estimated vs residuals in Figures 6.5–6.8 for both station types 

respectively. 

As can be seen in Tables 6.4 (tower stations) and 6.5 (automatic stations), there is no 

significant difference (the differences are lower than 3% in all individual cases) when 

comparing training and validation data with test data, which is in line with the stated 

methodology. Therefore, the results will be presented and discussed according to the 

models’ test data, which is more important to demonstrate the reliability of each model.  

The overall results of GHI estimation by ANN models compared to ground data shows 

the better performance for automatic stations than for tower stations in all models based 

on r values, bias and RMSE (Tables 6.4 and 6.5 , Figures 6.3–6.8). 

The lowest r value ranges among the models between 0.601 and 0.755 in M1 for both 

station types respectively. The highest r value is 0.983 for M9 applied to automatic 

stations and 0.976 in M10 tower stations. Other r values range from 0.903–0.982 in both 

station types (Tables 6.4 and 6.5). Despite both high and low r values, the values of M3 

and M5 compared to other remaining values are low in automatic stations. This is also 

true for M2, M3 and M6 to others at tower stations. 

The values of bias were significantly low in all cases in the study area, which is under 

1% of mean ground data for M1–M10. In the tower stations, the highest bias was recorded 

in M1 (3.4 W/m2) 0.7%. It was 0.4% (2.3 W/m2) in M2, a negative bias of −0.4% (−2 

W/m2) in M7 and the other rates were below 0.3%. However, in the automatic stations, 
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the highest bias was recorded in M3 (−2 W/m2) −0.4%. It was 0.3% in M1 and M5 and 

the others were below that value. The lowest bias was recorded at M8, M9 and M10, 

which were close to zero in both station types (Tables 6.4 and 6.5, Figure 6.3). Figure 6.3 

demonstrates the low rates of relative bias among M1–M10 for both station types. 

The RMSE results were similar to those for bias. The highest RMSE for the tower 

stations was recorded in M1 (209.5 W/m2 41%). It decreased to 111.8 W/m2 (21.5%) and 

to 104.4 W/m2 (20.2%) in M3 and M2 respectively. The lowest recorded RMSE values 

were 57.8 W/m2 (11.2%), 60 W/m2 (11.6%) and 60.4 W/m2 (11.6%) in M10, M9 and M7 

respectively. Other rates are between 12%–19%. 

On the other hand, the RMSE at automatic stations were low compared to the tower 

stations for each model. The highest was recorded in M1 (163.6 W/m2 33.7%). It 

decreased to 60 W/m2 (12.4%) in M3. The lowest RMSE was recorded in M9 (46.3 W/m2 

9.5%) and there were slightly higher values in M7 (47.6 W/m2 9.8%) and M10 (47.2 

W/m2 9.8%). The other remaining values were between 10%–12% (Tables 6.4 and 6.5, 

Figure 6.4). Figure 6.4 shows kind of stability of relative RMSE in automatic stations 

after M1 among other models whereas it shows fluctuations for tower stations for the 

same situation. 

The scatter plots of each individual model in Figures 6.5 (tower stations) and 6.7 

(automatic stations) show the results of hourly GHI models for test data against ground 

measurements. The observations are concentrated around the 1:1 line in better 

performance models (M8, M9 and M10), where the regression lines are correspondingly 

close to the 1:1 line. The opposite is seen in M1 for both station types. However, in models 

M2, M3 and M6 (tower stations) the observations are far from the 1:1 line and the 

regression line in red is not close to the 1:1 line, corresponding to high recorded RMSE 

compared to other models (Figure 6.5).     

Figures 6.6 (for tower stations) and 6.8 (for automatic stations) show the scatter plots 

of residuals against estimated hourly GHI of test data in each model. The clustered 

patterns of residuals are seen only in M1 in both station types whereas all other residuals 

are randomly distributed and the densities of observation are around zero. However, low 

performance can be noted at M2, M3 and M6 (Figure 6.6).  
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Regarding the results of regression models compared to ANN models, there is clearly 

a better performance using ANN than regression models according to r values and RMSE 

in each individual cases. However, according to bias in few cases regression is better than 

ANN models by minimal rates no more than 0.4% (Tables 6.4, 6.5., 6.6 and 6.7, Figures 

6.3 and 6.4). 

The results of regression are similar to ANN models by increasingly better 

performance after M1, M2 and M3 to other models (M4–M10). The lowest bias was 

recorded in M10 (0.01%), M6 (0.02%), M5 (0.07%) and M8 (0.07%) at tower stations 

and it was −0.06% in all M4, M5 and M7 at automatic stations. The lowest RMSE was 

12% in both M7 and M9 at automatic stations and it was 13% in all M4, M7 and M9 at 

tower stations (Tables 6.6 and 6.7)  
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Figure 6.3: Comparison of bias (%) for the hourly GHI among ANN and regression models and for the overall results of station types. 
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Figure 6.4: As in Figure 6.3, but for RMSE (%). 
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Table 6.4: Statistical results of hourly GHI models averaged for each ANN model M1–M10 for tower stations. Mean, Bias and RMSE units are W/m2. 

Models 

Train Validation Test 

Mean Bias 
Bias 

% 
RMSE 

RMSE 

% r Mean Bias 
Bias 

% 
RMSE 

RMSE 

% r Mean Bias 
Bias 

% 
RMSE 

RMSE 

% r 

M1 517.2 −0.4 −0.1 206.6 40 0.617 516.2 0.2 0.0 208.4 40.2 0.600 511 3.4 0.7 209.5 41 0.601 

M2 516.2 3.7 0.7 103.4 20 0.919 513.6 4.0 0.8 105.4 20.4 0.916 516.7 2.3 0.4 104.4 20.2 0.917 

M3 514.8 1.7 0.3 111.6 21.6 0.905 518.8 −0.4 −0.1 112.8 21.6 0.903 519.7 −1.7 −0.3 111.8 21.5 0.903 

M4 515.8 1.8 0.3 62 12.2 0.971 518.4 1.0 0.2 62.6 12 0.971 516.7 1.5 0.3 62.9 12.2 0.971 

M5 515.6 0.2 0.0 76 15 0.957 516.4 1.0 0.2 76.6 14.8 0.956 517.2 1.7 0.3 75.6 14.6 0.958 

M6 516 −0.6 −0.1 95 18.4 0.932 514 −0.8 −0.2 98.4 19.4 0.927 518.7 0.9 0.2 98.1 18.9 0.929 

M7 515.6 −1.5 −0.3 59.8 11.4 0.974 513 −1.1 −0.2 60.4 11.6 0.973 521.1 −2.0 −0.4 60.4 11.6 0.973 

M8 515.8 −0.7 −0.1 73 14.2 0.961 519.2 −1.4 −0.3 74.2 14.2 0.960 514 −0.1 0.0 75.3 14.6 0.958 

M9 515.6 0.4 0.1 59.2 11.4 0.974 518.6 0.4 0.1 59.6 11.4 0.974 516.3 0.3 0.1 60 11.6 0.974 

M10 517.2 1.3 0.2 55.8 10.8 0.977 512.6 1.8 0.4 58.2 11.4 0.975 513.8 −0.2 0.0 57.8 11.2 0.976 
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Table 6.5: As in Table 6.4, but for automatic stations. 

Models 

Train Validation Test 

Mean Bias 
Bias 

% 
RMSE 

RMSE 

% r Mean Bias 
Bias 

% 
RMSE 

RMSE 

% r Mean Bias 
Bias 

% 
RMSE 

RMSE 

% 
r 

M1 485 −0.2 −0.1 160.5 33.0 0.743 481.2 1.2 0.2 162.0 33.8 0.736 482.2 1.4 0.3 163.6 33.7 0.755 

M2 484.2 0.4 0.1 54.3 11.5 0.974 486.5 −0.2 0.0 55.8 11.5 0.973 479.9 0.7 0.1 56.8 11.8 0.974 

M3 484.5 −0.6 −0.1 55.5 11.8 0.973 479.2 −1.2 −0.3 59.0 12.3 0.970 485.4 −2.0 −0.4 58.8 12.1 0.971 

M4 484 0.0 0.0 53.8 11.3 0.975 488 0.8 0.2 54.5 11.3 0.974 480.4 −0.5 −0.1 54.6 11.4 0.976 

M5 484.7 1.5 0.3 58.8 12.5 0.970 480.5 2.0 0.4 61.8 13.0 0.967 484.4 1.6 0.3 60.0 12.4 0.970 

M6 482.5 −0.7 −0.1 52.8 10.8 0.976 491.2 −1.3 −0.3 54.0 11.0 0.974 482.6 −0.5 −0.1 54.1 11.2 0.976 

M7 483.5 1.2 0.3 46.0 9.3 0.982 486.5 0.4 0.1 47.3 9.5 0.981 483.3 1.1 0.2 47.6 9.8 0.981 

M8 484 0.1 0.0 48.5 10.3 0.979 481.7 −0.1 0.0 50.0 10.3 0.978 486 0.3 0.1 49.5 10.2 0.980 

M9 484 0.7 0.1 43.5 9.0 0.984 480 0.0 0.0 44.3 9.3 0.983 487.9 −0.2 0.0 46.3 9.5 0.983 

M10 484.5 0.3 0.1 44.5 9.5 0.983 483.2 0.6 0.1 45.3 9.3 0.982 482.1 0.3 0.1 47.2 9.8 0.982 
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Figure 6.5: Scatter plots of hourly GHI ground measurements and ANN model estimated from M1–M10 at test data for overall results at tower stations. 
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Figure 6.6: Scatter plots of hourly GHI residuals versus ANN model estimated from M1–M10 at test data for overall results at tower stations. The plots 

clearly reveal that the models were a good fit at M4, M5 and M7–M10 whereas it is not fit at M1 and low fit are seen at M2, M3 and M6. 
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Figure 6.7: Scatter plots of hourly GHI ground measurements and ANN model estimated from M1–M10 at test data for overall results at automatic stations. 
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Figure 6.8: Scatter plots of hourly GHI residuals versus ANN model estimated from M1–M10 at test data for overall results at tower stations. The plots 

clearly reveal that the models were a good fit for all except M1.



 

126 

 

 

Table 6.6: Statistical results of hourly GHI models averaged for each regression model M1–

M10 for tower stations. Mean, Bias and RMSE units are W/m2. 

Models 
Test data 

Mean Bias Bias % RMSE RMSE % r 

M1 516 -1.9 -0.37 220 43 0.55 

M2 516 -1 -0.19 115 22 0.9 

M3 516 -0.5 -0.1 125 24 0.88 

M4 516 -0.42 -0.08 67 13 0.967 

M5 516 0.36 0.07 81 16 0.952 

M6 516 0.12 0.02 111 22 0.907 

M7 516 -0.45 -0.09 67 13 0.967 

M8 516 0.35 0.07 80 16 0.953 

M9 516 -0.53 -0.1 67 13 0.967 

M10 516 0.05 0.01 80 16 0.953 

 

 

Table 6.7: As in Table 6.6, but for automatic stations. 

Models 
Test data   

Mean Bias Bias % RMSE RMSE % r 

M1 490 -4.14 -0.84 189 39 0.644 

M2 490 -1.56 -0.32 81 17 0.945 

M3 490 -1.61 -0.33 87 18 0.936 

M4 490 -0.31 -0.06 62 13 0.968 

M5 490 -0.29 -0.06 71 14 0.958 

M6 490 -1.38 -0.28 80 16 0.946 

M7 490 -0.3 -0.06 59 12 0.971 

M8 490 -0.84 -0.17 66 13 0.964 

M9 490 -0.41 -0.08 58 12 0.972 

M10 490 -0.72 -0.15 65 13 0.965 
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6.4 Discussion 

Hourly GHI was estimated for nine stations in northeast Iraq using observed 

meteorological inputs (SD, AT, RH and WS), calculated inputs (TOA and Cs) and new 

input from SDDs (HC3v5 or CRSv3) to the ten M1–M10 ANN models based on the 

number and combination of inputs. The results of the overall performance have r values 

from 0.601 to 0.976, bias from −0.4% to 0.7% and RMSE from 11.2% to 41% at tower 

stations and r values from 0.755 to 0.983, bias from −0.4% to 0.3% and RMSE from 9.5% 

to 33.7% at automatic stations. Excellent performance was recorded in M9 (9.5%) and 

M10 (11.2%) and low performance was recorded in M1 at automatic and tower stations 

respectively. The better results of those models at hourly time scales compared to the 

previous studies for similar estimation (Chapter 2, Table 2.4) are related to the new inputs 

such as Cs, TOA and SDDs together in this study and in this chapter.  The results of ANN 

models recorded better performance than regression models in most cases. This 

demonstrates the capability of the ANN algorithm for capturing the relationships between 

inputs and outputs. 

The overall better performance for automatic stations than for tower stations in all 

models, was obtained by the using of SD as an input in automatic stations—SD is 

unrecorded by tower stations. It is also reported by literature (Ampratwum and Dorvlo, 

1999; Dahmani et al., 2016; Loutfi et al., 2017; Rao K et al., 2018) that the role of SD 

increases the performance of models. This is unsurprising; it is recording the same 

phenomenon.  

The low performance of M1 for both station types is related to the small number of 

inputs, which do not include any of the calculated inputs. The calculated inputs such as 

Cs have a unique role to increase the model performance as seen in M2 compared to M1 

in both stations. This is in agreement to improved results in some limited studies, which 

used Cs as inputs either for modelling or forecasting GHI (Lima et al., 2016; Aguiar et 

al., 2015; Ramedani et al., 2014; Voyant et al., 2011). 

The low recorded bias in most of the models is related to the good estimation of GHI 

by ANN models as mentioned in several studies (Dahmani et al., 2016; Hassan et al., 

2017a; Jimenez et al., 2016; Loutfi et al., 2017). The overall bias among stations are 

presented, which led to a decrease in the bias because of positive bias in some stations 
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and negative bias in others in the same model; whereas the bias in all individual stations 

was, lower than 2% except one case of 2.2% (Appendix C, Tables C1–C9, Figure C1).       

 The fluctuation of RMSE among models at tower stations and its stability among 

models at automatic stations (Figures 6.4 and C2, Tables 6.4 and 6.5) is mainly related to 

the role of SD, which was used as an input in the latter. The highest record of RMSE in 

M1 in both station types are related to inputs which contain only four climate variables. 

This is reported by literature where GHI was estimated at a daily time scale (Ozgoren et 

al., 2012; Rao K et al., 2018). The improved performance in M2 and M3 compared to M1 

is related to the use of additional variables of Cs and TOA in those models respectively 

(Table 6.3). Hence, the low performance of M2, M3 and M6 compared to better 

performance in M4 and M5 are related to the use of SDDs as new inputs with climate 

variables. This has been reported by studies, which have used SDDs in foresting GHI 

(Aguiar et al., 2016; Aguiar et al., 2015). The better performance of M7 and M8 compared 

to the previous M1–M6 are related to the use of Cs with SDDs in those models. The role 

of Cs is mentioned in the literature (Lima et al., 2016; Voyant et al., 2011), but in those 

cases, it was not combined with SDDs. The overall better performances of M9 and M10 

from the other models (M1–M8) are related to the fact all variables were used in those 

models. These demonstrate the better performance of this study compared to similar 

studies (Dahmani et al., 2016; Hassan et al., 2017b; Ibrahim and Khatib, 2017; Loutfi et 

al., 2017). This is because the best RMSE recorded by this study is 9.5%, whereas the 

other studies are 13.3%, 17%, 18.9% and 13.1 respectively. 

The performance of HC3v5 as an input with only four climate variables is better than 

CRSv3 as demonstrated in the comparison between M4 and M5 in both station types, 

whereas in other models (M7–M10) the difference between them are minimal. The former 

results (M4–M5) are related to the accurate reproduction of the GHI ground data by 

HC3v5 as described in the literature (Ameen et al., 2018b; Marchand et al., 2017; Thomas 

et al., 2016a). The latter (M7–M10) is related to the use of Cs and TOA as separate inputs.    

This study revealed that using SDDs, Cs, and TOA with climate variables in ANN 

models has improved the results of estimation for hourly GHI with all data combined r 

value of 0.980, bias lower than 2% and RMSE lower than 10% compared to similar 

studies with no combination of those inputs (Dahmani et al., 2016; Hassan et al., 2017b; 

Ibrahim and Khatib, 2017; Loutfi et al., 2017). 
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The results of this study demonstrate that this way of modelling allows the retrieval 

or management of a dataset of GHI for decades where the inputs are available, but where 

GHI is not recorded as in most areas in the case study and similar regions with a scarcity 

of ground data, it can be achieved by using the trained models. 

The overall better GHI estimation results of ANN models than regression models 

(Figures 6.3 and 6.4), demonstrated by this study, have also been reported in literature 

(Jiang, 2009; Jimenez et al., 2016; Kaba et al., 2018; Moreno et al., 2011; Sharifi et al., 

2016; Zou et al., 2016; Kumar et al., 2015). In addition, recently ANN and other machine 

learning approaches have been used broadly for GHI modelling (Chapter 2, Section 2.4).  

The improvement in the results of regression models for GHI estimation from M1, 

M2 and M3 to M4–M10 like ANN models but with low rates at both station types (Figures 

6.3 and 6.4) are related to the role of new inputs (including Cs and SDD). The best results 

of regression models in this study, which recorded bias of lower than 1% and RMSE of 

12%–13% indicates that the regression models can also be used with the new input 

combinations for modelling GHI due to their ease of use.  

The new inputs of SDDs and Cs, improved the results and are easily and openly 

available for most regions (SoDa, 2018) unlike other variables such as cloud cover and 

SD (Ameen et al., 2018a; Hassan et al., 2016; Urraca et al., 2017c). Therefore, the 

mentioned new variables can be used for modelling and forecasting the solar components 

for better results. 

The limitations are principally as follows: This chapter estimated GHI but no other 

solar components, which are required directly in fields such as DNI in concentrated solar 

power. Hence, some studies have estimated DNI and DHI from GHI (Loutfi et al., 2017; 

Pérez-Burgos et al., 2018; Lee et al., 2017). However, further research is required for that 

in such areas with a scarcity of ground data. Another limitation is the scarcity of long-

term GHI ground data at timescales beyond five years or more, which are better for 

training this kind of model. 

6.5 Conclusions 

This chapter aimed to use a new input of SDDs together with Cs, TOA and observed 

climate variables SD, AT, RH and WS as new input combinations in ten ANN models to 
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estimate GHI at the hourly time scale with a Levenberg-Marquardt training algorithm. 

The inputs were arranged into ten different sets, as models M1–M10 to demonstrate the 

role of new inputs. The data at four automatic stations of all the above variables and five 

tower stations without SD in northeast Iraq were used. The ANN results were compared 

to regression models for the same inputs. 

The test results demonstrated a good improvement from M1 to M10 based on adding 

the new inputs such as TOA with observed variables (M3), Cs with observed variables 

(M2), SDDs with all observed climate variables (M4–M5), other combinations (M6–M8) 

and all together (M9–M10) with low percent fluctuation between both station types. The 

best results are r = 0.983, RMSE = 9.5% and bias = 0.0% in M9 and r = 0.976, RMSE = 

11.2% and bias = 0.0% in M10 and the worst results are r = 0.755, RMSE = 33.7% and 

bias = 0.3% in M1 and r = 0.601, RMSE = 41% and bias = 0.7% in M1 at automatic and 

tower stations respectively. The ANN results were better than the regression models in 

most cases. The regression models were also improved by new input combinations. 

This study in this chapter demonstrated the role of new input combinations for 

estimating hourly GHI with high accuracy. While the models have been trained with a 

few years of data, it would be better to train them with more years of data with such 

algorithms.  

Further research is required for using new inputs with other machine learning 

approaches and other empirical models. 
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7.1 Introduction  

This chapter is organised as follows. The knowledge contribution to the literature 

from this study is identified in Section (7.2).  Meeting the aim and the objectives of the 

study and the main conclusions are highlighted in Sections 7.3 and 7.4. Finally, 

recommendations for future research based on the results and the limitations of the study 

are provided in Section 7.5.  

7.2 Contribution to knowledge   

This study presented new results of a novel QC approach for testing GHI; it 

demonstrated the difference between two QC tests and developing the local QC test; it 

validated two SDD values for GHI in a new area (northeast Iraq) with applying a method 

for bias correction of those SDDs under cloud-sky conditions, and it revealed the role of 

new input combinations to improve modelling hourly GHI. The key contribution of the 

thesis for each chapter can be listed as follows:   

In Chapter 4, the study applied a new QC method to detect systematic errors and 

questionable data on GHI hourly time scales by utilising SD and AT climate variables. 

This is to cover the limitation of applied QC approaches where some of their subtests, 

such as consistency or comparison tests, cannot be applied when only GHI is available 

and other solar components are unavailable. The study showed that the new QC approach 

could be used as a consistency test partially. Moreover, the new QC procedure has 

detected a rate of errors in hourly GHI data, which has not been identified by other 

approaches. 

Another contribution of this chapter is a comparison between two existing QC tests 

(BSRN and TOACs) that has not previously been documented in the literature. The study 

illustrated the difference between them and their subtests for flagging erroneous GHI data 

or revealing questionable data. Based on the differences of data flagging and error 

detection between those two QC tests, a new QC test as a local test was developed to 

check GHI. The ratio of data flagging by the local test is quite reasonable. This is because 

1) the local test detected systaltic errors in which had not been detected by BSRN test, 

and 2) the local test was not flagged high rate of observation as errors as they were flagged 

by TOACs test. 
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In Chapter 5, the study contributed to previous studies by validating two SDDs for 

GHI in a new region (northeast Iraq), where those and other SDDs have not been validated 

in that area in the past. The study investigated the reliability of each SDD to reproduce 

GHI hourly ground data in all-sky, clear-sky and cloud-sky conditions. The findings 

showed that SDDs can be a good source of GHI data in the study area. However, they did 

not reproduce ground data well under cloudy-sky conditions. The study modified a 

method for bias correction and applied it to correct SDDs under cloudy-sky conditions; 

the corrected SDDs data can be used for forming a GHI dataset. The chapter also 

investigated a new validation method by validating two other point pixel data of SDDs 

around a station with station data. The finding showed minor differences in the two-point 

pixel data with station pixel data. This offers further insight for using GHI data of the 

neighbouring area and interpolating ground data for the same target in the case of limited 

recording observations in an area.    

The contribution of Chapter 6 demonstrates the role of several sets of new input 

combinations of SDDs, TOA, Cs and climate variables in the ANN models to obtain high 

accuracy of hourly GHI data modelling. A significant finding was that HC3v5 and CRSv3 

decreased RMSE in ANN models compared to other input sets. The results also 

demonstrated that all inputs together have a high accuracy of results than when some of 

the inputs are lacking. This study also proved the better performance of ANNs than 

regression models as seen by previous studies (Jiang, 2009; Jimenez et al., 2016; Kaba et 

al., 2018; Moreno et al., 2011; Sharifi et al., 2016; Zou et al., 2016; Kumar et al., 2015). 

7.3 Meeting the Aim and Objectives  

Solar irradiance data is considered as an essential parameter in the fields of solar 

energy, agriculture, architecture, hydrology and others. Therefore, it is highly required, 

and it is obtained from direct ground measurements, SDD, and modelling. Unfortunately, 

the recorded ground data are limited, especially in developed countries (e.g. Middle East) 

and the ground measurements need to be checked with QC approaches due to operational 

and equipment errors. An issue with QC methods is their error rates detection are 

different, and some of the QC methods cannot be applied when only GHI is available.  

SDD is an option for obtaining solar irradiance data, whereas these data need to be 

evaluated with high-quality ground measurements. Obtaining GHI from a variety of 
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methods has been addressed in the literature, but achieving highly accurate results from 

hourly GHI data requires a new approach. 

Given this background, this study aimed to develop a model for obtaining high 

accuracy of GHI hourly data in three steps from QC approaches, evaluating and correcting 

SDDs, and combining SDDs with ground measurements for that goal. The method could 

be used to create a GHI hourly dataset in the study area, and it can be applied in other 

areas for the same purpose. The following objectives were formed to achieve the aims of 

the study: 

1.  To determine the differences between (TOACs and BSRN) the QC set of tests 

for error detection in hourly GHI data, to develop a local test for error detection 

based on that difference and to evaluate the role of the local test. 

The two QC (BSRN and TOACs) tests to detect questionable data of hourly GHI 

were compared for the upper and lower limits of physically possible and extremely rare 

observations at 20 stations in northeast Iraq (Chapter 4, Section 3.2). The results 

demonstrate the high percentage difference between BSRN and TOACs (up to 30% 

among stations) for each subtest due to the different limits. This indicates that BSRN tests 

cannot be used when only GHI is available because most errors will not be detected. 

Hence, the extremely rare limit of the TOACs test flagged high rates of GHI data as errors. 

The local test was developed based on the difference limit between BSRN and TOACs 

QC tests (Chapter 4, Section 2.2.3). The results of the local test covered the limitations in 

the BSRN and TOACs QC tests by detecting systematic errors and passing high rates 

values of the extremely rare limit test. This confirms the role of the local test, and it 

indicates that those QC tests needed to be modified based on a local climate condition. 

This is limited in the literature (Geiger et al., 2002; Khaliliaqdam and Soltani, 2012; Long 

and Shi, 2008; Moradi, 2009; Moreno-Tejera et al., 2015; Ntsangwane et al., 2018; 

Pashiardis and Kalogirou, 2016; Perez-Astudillo et al., 2018; Roesch et al., 2011; Tang 

et al., 2010; Zo et al., 2017). 

 

2. To develop a new QC method for GHI by using the SD and AT variables and 

to evaluate it, if it works as a consistency test and to detect systematic errors and 

questionable data by graphics. 
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In Chapter 4, the new QC tests were developed by using SD and AT variables to 

check the consistency of GHI hourly data and to use graphics for a general check of those 

variables. The new QC tests were applied at 20 stations in northeast Iraq, and the QC tests 

were validated at six stations worldwide. The results revealed that SD can be used as a 

partial consistency test, which has been supported by the validation results. On the 

contrary, AT has not been supported as a suitable test. The new approach based on SD 

and AT flagged several questionable data, which were not detected by BSRN tests nor by 

TOACs tests. This indicates that the new methods can improve the two other tests. 

However, the results also demonstrated that graphics such as fingerprint plot and plotting 

SD, AT and GHI together can be used to detect systematic errors in the GHI data. This 

suggests that using other climate variables for checking GHI data is a good option. The 

QC tests were written in R codes, which is easy for using, modifying and comparing the 

results of flags for each QC test.  

 

3. To validate the SDDs in new areas and to investigate the spatiotemporal 

features of SDDs to ground data, and to investigate the difference of two pixel point 

data from SDDs around a station compared with ground data of a station. 

Hourly GHI from two SDDs ( HC3v5 and CRSv3) were validated against ground 

data from nine stations in northeast Iraq for all-sky, clear-sky and cloudy-sky conditions, 

and two other adjacent pixels data of the two SDDs around a station in all-sky conditions 

were also compared to the ground data of a station at nine meteorological stations in 

Chapter 5. The results of validation revealed high accuracy of SDDs in the new region 

(northeast Iraq) in all-sky and clear-sky condition (r values above 0.94) and low 

performance in the cloudy conditions nearly the same as other studies in other areas for 

the same SDDs (Amillo et al., 2014; Eissa et al., 2015a; Marchand et al., 2017; Thomas 

et al., 2016a; Thomas et al., 2016b). This indicates that those SDDs are considered as a 

good source for solar irradiance data in all-sky and clear conditions despite a rate of bias. 

The results of the other two points show a minor difference with ground data. This adds 

further weight for using neighbouring data for a location in the case of a GHI data record 

limitation. 
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4. To evaluate the ability of a simple method for bias correction in SDDs under 

cloudy sky conditions.  

The simple method of bias correction was applied in Chapter 5 to correct the two 

SDDs (HC3v5 and CRsv3) in cloudy-sky conditions at nine stations in northeast Iraq. 

The results illustrated a definite improvement of the two SDDs to represent ground data 

in cloudy-sky conditions after bias correction. The method required one season or one 

year of GHI ground measurement for training and calculating coefficients of the 

regression equation. With one year of trained data, this study has provided the equations 

and coefficients that can be used to correct SDDs in similar climate regions, and they can 

be used to create a long-term dataset of GHI from SDDs in the study area. 

 

5. To assess the role of new input combinations (SDDs. Cs, TOA and climate 

variables) in estimating and modelling hourly GHI data. 

In Chapter 6, the hourly GHI data has been estimated with ANN and regression 

models at nine stations in northeast Iraq using several sets of inputs from climate 

variables, new input (SDD), Cs and TOA. The results of GHI estimation were slightly 

improved due to new inputs in different scenarios in both ANN and regression models. 

When some combination inputs were used without SDDs, the results are nearly the same 

as reported by other literature. However where all inputs from SDDs, TOA, Cs and 

climate variables were used the RMSE decreased slightly in this study compared to other 

studies (Dahmani et al., 2016; Hassan et al., 2017b; Ibrahim and Khatib, 2017; Loutfi et 

al., 2017). This is because those studies did not use SDDs as additional inputs for the 

hourly GHI modelling. This indicates that the ANN trained models can be used for other 

stations to estimate GHI with high accuracy (bias near zero and RMSE under 10%) when 

the inputs are available, but GHI is not available. This is because the ANN models have 

already been tested and validated with good quality of GHI ground data. In the same way, 

a long-term dataset of GHI can be formed. The results confirm the role of SDD as 

inevitable input in GHI modelling. Therefore, it is suggested that the SDD be used in all 

modelling and prediction of GHI and for other solar components for better results.  
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7.4 Conclusions  

This thesis has presented an approach to obtain good quality hourly GHI data in an 

area of scarce ground measurements, using northeast Iraq, as an example. It contributes 

to developing a new method for QC GHI, modifying the QC tests according to the local 

data, validating two SDDs in the new region, applying a method to adjust GHI from SDDs 

under cloudy-sky conditions and using new inputs in modelling hourly GHI to improve 

the accuracy of results. The method of QC can be used in the case study to test GHI. This 

is because, to date, no QC approaches have been applied in the Iraqi Kurdistan region to 

check GHI data. In addition, it can also be implemented by engineering and researchers 

in other areas because the study demonstrated that modifying QC tests is working 

precisely and SD can be used as a consistency test. The study also revealed that SDDs are 

a good source of solar irradiance data and it applied a simple method with high 

performance (reducing bias by 10–80%) for correcting bias in SDDs under cloudy-sky 

conditions. The thesis proved that hourly GHI data with nearly 0% bias and RMSE under 

10% can be obtained with new input combinations from SDDs, climate variables, Cs and 

TOA. Researchers can also apply the new input combinations in models to obtain high 

accuracy of hourly GHI data. In addition, M9 and M10 of ANN models are highly 

recommended to be used in a data bank of solar irradiance in Iraq and in Middle East. In 

general, the results of the study illustrated the idea for obtaining GHI and forming GHI 

datasets, which can be used by policymakers for solar energy projects or by scientists for 

the purpose of agriculture, architecture and hydrological modelling.  

7.5 Limitations and Future Research Recommendations 

There are some limitations in the data and in the methods that have been utilised in 

this thesis, which require further research. They will be provided for each chapter. 

In Chapter 4, first, the chosen limits for the SD and AT tests might not be perfect. 

For example, the upper limit of SD was set to 50 and from 30–50 minutes in one hour, 

which is based on an assumption about why SD is high and GHI is low; there might be 

some questionable data under this limit. Second, the mean and the half of mean AT in 

each month were used to test GHI with 10% and 35% of TOA, which tends not to be 

perfect. This is mainly because there are some times when this situation may happen 

naturally. Next, owing to the limited record of minimum and maximum AT in many 
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stations in the study area, the chapter used mean AT for tests. The SD and AT do not 

check every observation because they have a limit border, unlike the consistency test. 

Finally, the methods for the quality check cannot detect several random errors such as 

minor calibration error and low performance of the equipment and others. This requires 

developing new methods by using SDDs or using reference pyranometers or any other 

possible approach to detect random errors. In addition, further research is also required 

to compare BSRN and TOACs tests in other areas. Using several arguments with mean 

AT or with minimum and maximum AT, and also using other climate variables to check 

the quality of GHI data will be useful. 

In Chapter 5, the challenges are the different data timescales from one station to 

another, lack of several years of ground data and the limited information available for 

some variables including aerosols and local atmospheric properties in which they are 

useful to analyse the rate of bias and RMSE in each sky condition.  

Further research would also be useful for validating the SDDs in other climates with 

several years of data, and to compare most of the available SDDs in a local area or large 

regions based on their availability. This is to show the reliability of each of them based 

on the data and the method used for forming them. Some further studies are also required 

to address the inputs to the Heliosat method, according to regional and local factors, for 

a better estimation of GHI from satellite images. 

In Chapter 6, the study focused on only estimating GHI but no other solar 

components, which are required for some fields of solar energy, such as concentrated 

solar power. Further research might estimate DNI and DHI from GHI in areas with a 

scarcity of ground data, like other areas where other studies have been conducted. Again, 

another limitation is the scarcity of long-term GHI ground data at time scales beyond five 

years or more.  It would be better to train ANN models with more years of data to improve 

estimation. It might be possible to apply the same method to an area of long-term data for 

further investigation.  

Further research is also required to utilise the new input combinations provided in 

this thesis with other machine learning approaches, namely support vector machines and 

random forests, or with bagging and boosting algorithms.    
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Figure A1: Scatterplots of GHI W/m2 (first y-axis) and SD in minutes per hour with AT in C (second y-axis) for all hourly time series data in each station. 
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Figure A2: Scatterplots of GHI W/m2 (first y-axis) and AT in C (second y-axis) for all hourly time series data in each station. 
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Figure A3: Scatterplots of GHI W/m2 (first y-axis) and AT in C (second y-axis) for all hourly time series data in each station. 
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Figure A4: Scatterplots of GHI W/m2 (first y-axis) and AT in C (second y-axis) for all hourly time series data in each station. 
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Figure A5: Fingerprint plot GHI time series of hourly data for each station, white colour shows NA values. 
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Figure A6: Fingerprint plot GHI time series of hourly data for each station, white colour shows NA values. 
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Figure A7: Fingerprint plot GHI time series of hourly data for each station, white colour shows NA values. 
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Figure A8: Fingerprint plot GHI time series of hourly data for each station, white colour shows NA values. 



 

148 

 

Table A1: R codes for fingerprint plot to test GHI data. 

# Fingerprint plot to check GHI data 

# Note: The code was originally written by Dr Ross Morrison, Biometeorologist, CEH Wallingford for 

DEFRA SP1210 Lowland Peatlands purpose (2014). Then it was adopted by Dr Alex Cumming, 

Department of Geography, University of Leicester for air temperature variable (2016). Finally, it was 

modified by Bikhtiyar Ameen, Department of Geography, University of Leicester for GHI hourly data 

(September 2017). 

# The example here is applied at Halsho station in the study area. 

# Need a variable (VAR.x), Year & Month  

VAR.GHI<- Halsho$GHI # put GHI data as variable here 

# Create a Year variable as a column variable. 

Halsho[,"Year"]<- strftime((as.POSIXct(Halsho$date, format= "%Y-%m-%d %HH:%MM")), format=  

"%Y") 

Year<- Halsho$Year 

# Create a Month variable as a column variable. 

Halsho[,"Month"]<- strftime((as.POSIXct(Halsho$date, format= "%Y-%m-%d %HH:%MM")), 

format=  "%m") 

Month<- Halsho$Month 

## 

Year <- as.numeric(Year)   

Month <- as.numeric(Month) 

# 24 returns to the number of data records of each hour at daytime and nighttime.  # If data is recorded 

at each half of hour, it will change the 24 to 48. 

mat.var <- matrix(data = GHI.x, nrow =24, ncol = length(VAR.x)/24) 

y <- 1:nrow(mat.var) 

x <- 1:ncol(mat.var) 

par(mar=c(5,4.5,4,3)+0.1,mgp=c(2.2,1,0)) # To set margins 

par(fg = NA,col="black") # to remove line colour in the legend 

### Set up colour scheme 

fJetColors <- colorRampPalette(c('#00007F', 'blue', '#007FFF', 'cyan', '#7FFF7F', 'yellow', '#FF7F00', 

'red', '#7F0000')) 

Jet.n <- 200 

# plot with countor  

filled.contour(x=x, 

               y=y, 

               z=t(mat.var), 

               color.palette=colorRampPalette(c(fJetColors(Jet.n))),  

               plot.title=title(main="Halsho (Lat:36.209 Lon:45.259) 1105 m",cex.main=1.8, sub=" ", 

                                xlab="Day of Year", ylab="Hour of Day",cex.lab=1.6),  

               nlevels=256, 

               plot.axes = { axis(side = 1, at = c(1,365,721,1086), labels 

=c("2013","2014","2015","2016"),pos = 1.5, outer = F,tick = T,col.ticks ="#fe03ff",cex.axis=1.2) 

                 axis(side = 2, at = c(6,12,18), labels = c("06:","12:","18:"),cex.axis=1.2,pos = 1.5, outer = 

F,tick =T,col.ticks ="#fe03ff")}, 

               key.title=title(main="W/m²",adj = 0,line = 0.8), 

               key.axes = axis(4, line = F,col.ticks =4, seq(0, 1200, by = 100),cex.axis=1.2)) 

#End 
 

Table A2: R codes for full applied QC method. 

# QC of GHI data based on BSRN, TOACs, and SD and AT tests. #September 2017# 

#Managing the data for each station from its hourly time series with GHI, SD and AT of ground data, 

Cs, TOA, SE, SZӨ and Cos SZӨ Calculated data as data frame named StationDF = data frame of a 

station with variables from the relevant sources. 

# Import station csv data file to R which contains all relevant variables. 

StationDF <- read.csv(file.choose(), header = T) 

# Creating a full-time series base on the first available hour data and the end available hour data of a 

station data named as date.time. 
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xStationDF <- seq(as.POSIXct("2013-01-01 0:00:00", tz = "UTC"), as.POSIXct("2016-12-31 

23:00:00", tz="UTC"), by="hour") 

names(xStationDF)[1] <- "date.time" 

# Merging the created time series with a time series of the station to detect any gaps and set them as 

NAs automatically. 

# Wth new name StationDF1 

StationDF1 <- merge(xStationDF, StationDF, by = "date.time", all.x = TRUE) 

#Calculating the variables that required for QC test based on the solar constant (1367) and other 

variables in the station data frame.  

# To test Upper physically possible limit BSRN. See table (4.1) 

StationDF1$BSRN.P<- round(((1367/StationDF1$SE^2*1.5*(StationDF1$CosSZӨ^1.2))+100),1) 

# To test Extremely rare limit BSRN.  

StationDF1$BSRN.R <- round(((1367/StationDF1$SE^2*1.2*(StationDF1$CosSZӨ^1.2))+50),1) 

# To test Lower physical possibly limit TOACs.  

StationDF1$M0.03 <- round(StationDF1$TOA*0.03,1) 

# To count 10% of TOA and used it with SD and AT tests.  

StationDF1$TO0.1 <- round(StationDF1$TOA*0.1,1) 

# To count 35% of TOA and used it with SD and AT tests.  

StationDF1$Mdiff <- round(StationDF1$TOA*0.35,1) 

# To test Extremely rare limit TOACs.  

StationDF1$C1.1 <- round(StationDF1$Cs*1.1,1) 

# To count 120% of TOA and used it to test Upper physically possible limit local test.  

StationDF1$TO1.2 <- round(StationDF1$TOA*1.2,1) 

# To test Lower physical possibly limit local test.  

StationDF1$M0.005 <- round(StationDF1$TOA*0.005,1) 

# To test Extremely rare limit local test.  

StationDF1$C1.25 <- round(StationDF1$Cs*1.25,1) 

#create a new variable as Month to count the number of each month with its number in the time series 

for calculating the mean of AT in each month to later uses of AT tests.  

StationDF1[,"Month"]<- strftime((as.POSIXct(StationDF$date.time, format= "%Y-%m-%d 

%HH:%MM")), format=  "%m") 

# Calculate mean AT for each month # Number 18 at the end of each code is a variable sequence of 

AT in the station data frame.  

s1 <- summary(StationDF1[StationDF1$Month=="01",18]) 

s2 <- summary(StationDF1[StationDF1$Month=="02",18]) 

s3 <- summary(StationDF1[StationDF1$Month=="03",18]) 

s4 <- summary(StationDF1[StationDF1$Month=="04",18]) 

s5 <- summary(StationDF1[StationDF1$Month=="05",18]) 

s6 <- summary(StationDF1[StationDF1$Month=="06",18]) 

s7 <- summary(StationDF1[StationDF1$Month=="07",18]) 

s8 <- summary(StationDF1[StationDF1$Month=="08",18]) 

s9 <- summary(StationDF1[StationDF1$Month=="09",18]) 

s10 <- summary(StationDF1[StationDF1$Month=="10",18]) 

s11 <- summary(StationDF1[StationDF1$Month=="11",18]) 

s12 <- summary(StationDF1[StationDF1$Month=="12",18]) 

# make data frame of mean AT 

meanATStationDF <- rbind(s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12) 

meanATStationDF <- as.data.frame (meanATStationDF) 

# set new variable as half of mean AT. 

meanATStationDF [,7] <- meanATStationDF[,4]/2 

########################################################## 

# Apply QC method with flags 

# Setting flags according to tests (BSRN and TOACs) see table (4.1) 

StationDF1$f2 <- ifelse(StationDF1$GHI<StationDF1$BSRN.E, c(1), c(2)) 

StationDF1$f3 <- ifelse(StationDF1$GHI<StationDF1$TOA, c(1), c(3)) 

enjaksorD$f4 <- ifelse(enjaksorD$mV> -2, c(1), c(4)) 

StationDF1$f5 <- ifelse(StationDF1$GHI>StationDF1$M0.03, c(1), c(5)) 

StationDF1$f6 <- ifelse(StationDF1$GHI<StationDF1$BSRN.R, c(1), c(6)) 

StationDF1$f7 <- ifelse(StationDF1$GHI<StationDF1$C1.1, c(1), c(7)) 

# Setting flags according to local tests see table (4.1) 
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StationDF1$f8 <- ifelse(StationDF1$GHI<StationDF1$TOA1.2, c(1), c(8)) 

StationDF1$f9 <- ifelse(StationDF1$GHI>StationDF1$M0.005, c(1), c(9)) 

StationDF1$f10 <- ifelse(StationDF1$GHI<StationDF1$C1.25, c(1), c(10)) 

## SD test for its upper bound, Why SD is high whereas GHI is low. 

StationDF1$f11 <- ifelse(StationDF1$SD > 50 & StationDF1$GHI < StationDF1$Mdiff | 

StationDF1$SD < 50 & StationDF1$SD > 30 & StationDF1$GHI < StationDF1$TO0.1, c(11), c(1)) 

# SD test for its lower bound, Why SD is low whereas GHI is high. 

StationDF1$f12 <- ifelse(StationDF1$SD==0 & StationDF1$GHI > StationDF1$Mdiff, c(12), c(1)) 

# AT test for its upper bound, Why AT is higher than its mean in the month, whereas GHI is lower 

than 10% of TOA. # Number[x,4] returns to the column number of mean AT in a (meanATStationDF) 

data frame. 

StationDF1$f13 <- 

ifelse(StationDF1$Month=="01"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATSt

ationDF[1,4] | 

StationDF1$Month=="02"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[2,4] | 

StationDF1$Month=="03"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[3,4] | 

StationDF1$Month=="04"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[4,4] | 

StationDF1$Month=="5"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStationD

F[5,4] | 

StationDF1$Month=="06"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[6,4] | 

StationDF1$Month=="07"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[7,4] | 

StationDF1$Month=="08"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[8,4] | 

StationDF1$Month=="09"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[9,4] | 

StationDF1$Month=="10"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[10,4] | 

StationDF1$Month=="11"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[11,4] | 

StationDF1$Month=="12"&StationDF1$GHI<StationDF1$TO0.1&StationDF1$AT>meanATStation

DF[12,4], c(13), c(1)) 

# AT test for its lower bound, Why AT is lower than its half of mean in the month, whereas GHI is 

higher than 35% of TOA. # Number[x,7] returns to the column number of half of mean AT in a 

(meanATStationDF) data frame. 

StationDF1$f14 <- 

ifelse(StationDF1$Month=="01"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATSt

ationDF[1,7] | 

StationDF1$Month=="02"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[2,7] | 

StationDF1$Month=="03"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[3,7] | 

StationDF1$Month=="04"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[4,7] | 

StationDF1$Month=="5"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[5,7] | 

StationDF1$Month=="06"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[6,7] | 

StationDF1$Month=="07"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[7,7] | 

StationDF1$Month=="08"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[8,7] | 

StationDF1$Month=="09"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[9,7] | 

StationDF1$Month=="10"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[10,7] | 
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StationDF1$Month=="11"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[11,7] | 

StationDF1$Month=="12"&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationD

F[12,7], c(14), c(1)) 

# All arguments of SD and AT for their upper bound with low GHI in one argument for each month. 

To check both SD, AT and GHI together. 

StationDF1$f15 <- 

ifelse(StationDF1$Month=="01"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&Statio

nDF1$AT>meanATStationDF[1,4] | 

StationDF1$Month=="02"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[2,4]| 

StationDF1$Month=="03"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[3,4] | 

StationDF1$Month=="04"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[4,4] | 

StationDF1$Month=="5"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1$

AT>meanATStationDF[5,4] | 

StationDF1$Month=="06"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[6,4] | 

StationDF1$Month=="07"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[7,4] | 

StationDF1$Month=="08"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[8,4] | 

StationDF1$Month=="09"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[9,4] | 

StationDF1$Month=="10"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[10,4] | 

StationDF1$Month=="11"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[11,4] | 

StationDF1$Month=="12"&StationDF1$SD>50&StationDF1$GHI<StationDF1$TO0.1&StationDF1

$AT>meanATStationDF[12,4], c(15), c(1)) 

# All arguments of SD and AT for their lower bound with high GHI in one argument for each month. 

To check both SD, AT and GHI together. 

StationDF1$f16 <- 

ifelse(StationDF1$Month=="01"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&Statio

nDF1$AT<meanATStationDF[1,7] | 

StationDF1$Month=="02"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[2,7] | StationDF1$Month=="03"&StationDF1$SD 

==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$AT<meanATStationDF[3,7] | 

StationDF1$Month=="04"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[4,7] | 

StationDF1$Month=="5"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[5,7] | 

StationDF1$Month=="06"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[6,7] | 

StationDF1$Month=="07"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[7,7] | 

StationDF1$Month=="08"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[8,7] | 

StationDF1$Month=="09"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[9,7] | 

StationDF1$Month=="10"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[10,7] | 

StationDF1$Month=="11"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[11,7] | 

StationDF1$Month=="12"&StationDF1$SD==0&StationDF1$GHI>StationDF1$Mdiff&StationDF1$

AT<meanATStationDF[12,7], c(16), c(1)) 

#################################################### 

# Before final count to the rate of flags, the flags can be selected based on the solar zenith angle (SZӨ) 

for selecting specific time or day time. 
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StationDF1 <- StationDF1 [ which(StationDF1$SZӨ < 75),] 

# for daytime 

StationDF1 <- StationDF1 [ which(StationDF1$SZӨ < 90),] 

# To set night-time to zero(0) for all flags as the two examples is shown, before final calculating of the 

rates. 

StationDF1$f2 <- ifelse(StationDF1$SZӨ>90,  c(0), c(StationDF1$f2)) 

StationDF1$f3 <- ifelse(StationDF1$SZӨ>90,  c(0), c(StationDF1$f3)) 

# To delete NAs before final count if it is required. 

StationDF1 <- na.omit(StationDF1) 

##################################################### 

# Calculating data pass according to BSRN tests. 

StationDF1$BSRN <- ifelse(StationDF1$f2==1 & StationDF1$f6==1 , c(1), (15)) 

# Calculating data pass according to TOACs tests. 

StationDF1$HeliClim <- ifelse(StationDF1$f3==1 & StationDF1$f5==1 & StationDF1$f7==1 , c(1), 

(16)) 

# Calculating data pass according to local test. 

StationDF1$HeliClim <- ifelse(StationDF1$f8==1 & StationDF1$f9==1 & StationDF1$f10==1 , c(1), 

(20)) 

# Calculating data pass according to AT and all other previous tests. 

StationDF1$ATtest <- ifelse(StationDF1$f2==1 & StationDF1$f3==1 & StationDF1$f5==1 & 

StationDF1$f6==1 & StationDF1$f7==1 & StationDF1$f13==1 & StationDF1$f14==1, c(1), (17)) 

# Calculating data pass according to AT and all other previous tests. 

StationDF1$SDtest <- ifelse(StationDF1$f2==1 & StationDF1$f3==1 &  StationDF1$f5==1 & 

StationDF1$f6==1 & StationDF1$f7==1 & StationDF1$f11==1 & StationDF1$f12==1, c(1), (18)) 

# Calculating data pass according to mix arguments of SD and AT tests and all BSRN and TOACs 

tests. 

StationDF1$mixATSD <- ifelse(StationDF1$f2==1 & StationDF1$f3==1 &  StationDF1$f5==1 & 

StationDF1$f6==1 & StationDF1$f7==1 & StationDF1$f15==1 & StationDF1$f16==1, c(1), (19)) 

####################### 

# For counting percentage of each flag  

tblFun <- function(x){ 

  tbl <- table(x) 

  res <- cbind(tbl,round(prop.table(tbl)*100,2)) 

  colnames(res) <- c('Count','Percentage') 

  res 

}  
# This [27:43] returns to the column number of flags. 

perStationDF <- do.call(rbind,lapply(StationDF1[27:43],tblFun)) 

########################################################### 

# To save data as tables. 

write.csv(perStationDF, "StationDFper.csv") 

write.csv(StationDF1, "StationDF1.csv") 

#End 
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Figure B1: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Enjaksor station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right. 
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Figure B2: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Hojava station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right. 
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Figure B3: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Jazhnikan station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right.   
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Figure B4: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Tarjan station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right.  
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Figure B5: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Halsho station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right. 
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Figure B6: Example scatter plots between hourly GHI ground measurements and SDDs (HC3v5 top and CRSv3 bottom) for Bazian station for all-sky left, 

clear-sky mid and cloudy-sky right conditions. Also shows in the clearness index (Kt) for right. 
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Table B1: R codes for Appling the simple method of bias correction for SDD under cloudy sky conditions. 

# Simple method from (polo, 2015) applied for bias correction under cloudy-sky conditions. 

# Divide dataset to use one year data for bias correction  

Station2011 <- Station[which(Station$Year==2011),] 

Station2012.2013 <- Station[which(Station$Year > 2011),] 

# estimate HC3v5 from GHI ground data in one year to calculate coefficients 

Station2011m <- lm(Station2011$HC3v5 ~ Station2011$GHIGD) 

coefStation2011m <- coef(Station2011m) 

interceptStation2011m <- round(coefStation2011m[1],3) 

slopStation2011m <- round(coefStation2011m[2],3) 

# Estimate new SDD of HC3v5 as ynew from previous steps and coefficients 

Station2011$ynew <- Station2011$HC3v5-((slopStation2011m-1)*Station2011$GHIGD+interceptStation2011m) 

# calculate the coefficients from ynew and HC3v5  

Station2011m1 <- lm(Station2011$ynew ~ Station2011$HC3v5) 

coefStation2011m1 <- coef(Station2011m1) 

interceptStation2011m1 <- round(coefStation2011m1[1],3) 

slopStation2011m1 <- round(coefStation2011m1[2],3) 

# Use the coefficients from pervious steps to calculate Corected-HC3v5 in the new dataset.  

Station2012.2013$Corected-HC3v5 <- Station2012.2013$HC3v5*slopStation2011m1+interceptStation2011m1 
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Table B2: Coefficients of regression models for bias correction under cloudy-sky conditions of both SDDs and at each station. 

Stations HC3v5 CRSv3 

Batufa Corrected-HC3v5 = HC3v5* 1.062−97.406 Corrected-CRSv3 = CRSv3*1.057−58.668 

Enjaksor Corrected-HC3v5 = HC3v5*1.126−72.964 Corrected-CRSv3 = CRSv3*1.076−44.475 

Hojava Corrected-HC3v5 = HC3v5*1.021−84.253 Corrected-CRSv3 = CRSv3*1.047−59.811 

Jazhnikan Corrected-HC3v5 = HC3v5*1.163−61.212 Corrected-CRSv3 = CRSv3*0.988 −33.993 

Tarjan Corrected-HC3v5 = HC3v5*1.145−54.289 Corrected-CRSv3 = CRSv3*0.963 −43.837 

Halsho Corrected-HC3v5 = HC3v5*1.036−75.792 Corrected-CRSv3 = CRSv3*1.006−94.783 

Bazian Corrected-HC3v5 = HC3v5*1.064−69.250 Corrected-CRSv3 = CRSv3*1.0877−64.905 

Maydan Corrected-HC3v5 = HC3v5*1.123−44.535 Corrected-CRSv3 = CRSv3*1.080 −42.400 

Kalar Corrected-HC3v5 = HC3v5*1.156−42.402 Corrected-CRSv3 = CRSv3*0.995 −35.299 
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Appendix C – Chapter 6 Additional Figures and Tables  

 

 

Table C1: Statistical results of hourly GHI ANN models and neuron numbers in the hidden layer for Batufa tower station. Mean, Bias and RMSE units are 

W/m2. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 523 0.03 0.01 211 40 0.654 514 7.11 1.38 212 41 0.639 512 9.87 1.93 215 42 0.639 70 

M2 523 3.34 0.64 110 21 0.919 511 7.61 1.49 112 22 0.914 517 4.54 0.88 110 21 0.92 80 

M3 519 2.68 0.52 115 22 0.912 528 -0.42 −0.08 117 22 0.906 518 -0.18 -0.03 120 23 0.904 140 

M4 517 0.93 0.18 66 13 0.971 534 0.86 0.16 65 12 0.973 522 0.3 0.06 66 13 0.972 70 

M5 518 −0.6 −0.12 83 16 0.955 523 1.11 0.21 79 15 0.959 528 0.18 0.03 82 16 0.956 70 

M6 521 1.32 0.25 100 19 0.932 506 1.41 0.28 108 21 0.923 533 0.83 0.16 101 19 0.935 90 

M7 522 −5.23 −1 64 12 0.974 514 −2.29 −0.45 66 13 0.971 519 −4.86 −0.94 64 12 0.973 70 

M8 521 0.53 0.1 79 15 0.959 525 −1.32 −0.25 80 15 0.957 513 0.63 0.12 81 16 0.957 70 

M9 519 2.51 0.48 64 12 0.974 526 1.79 0.34 64 12 0.974 522 1.5 0.29 65 12 0.973 50 

M10 522 −0.55 −0.11 61 12 0.976 513 0.98 0.19 63 12 0.975 521 0.07 0.01 61 12 0.976 90 
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Table C2: As in Table C1, but for Enjaksor tower station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 518 −1.36 −0.26 207 40 0.608 521 −3.85 −0.74 208 40 0.6 515 −2.67 −0.52 209 41 0.596 90 

M2 518 −2.02 −0.39 103 20 0.919 520 −2.97 −0.57 105 20 0.916 512 −0.57 −0.11 104 20 0.917 120 

M3 514 2.27 0.44 112 22 0.903 530 0.42 0.08 113 21 0.901 524 −1.84 −0.35 113 22 0.898 100 

M4 514 0.21 0.04 57 11 0.976 529 −2.32 −0.44 57 11 0.975 524 0.04 0.01 57 11 0.976 60 

M5 517 3.93 0.76 75 15 0.958 521 2.45 0.47 75 14 0.958 517 4.09 0.79 75 15 0.959 90 

M6 518 −0.83 −0.16 98 19 0.926 519 −2.64 −0.51 102 20 0.92 517 4.12 0.8 100 19 0.925 70 

M7 519 0.24 0.05 54 10 0.979 512 −1.03 −0.2 56 11 0.977 519 −2.45 −0.47 56 11 0.977 60 

M8 517 5.47 1.06 73 14 0.96 521 4.34 0.83 73 14 0.961 519 4.49 0.87 72 14 0.961 50 

M9 516 −0.45 −0.09 54 10 0.978 525 0.56 0.11 55 10 0.977 520 0.49 0.09 54 10 0.979 60 

M10 520 0.73 0.14 52 10 0.98 513 0.63 0.12 51 10 0.98 511 −0.14 -0.03 52 10 0.98 100 

 

Table C3: As in Table C1, but for Hojava tower station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 504 −1.63 -0.32 205 41 0.634 514 −6.44 -1.25 207 40 0.618 491 6.66 1.36 208 42 0.621 90 

M2 504 5.03 1 106 21 0.918 495 0.47 0.09 106 21 0.916 509 −0.44 −0.09 103 20 0.92 90 

M3 504 1.82 0.36 112 22 0.908 503 −0.78 -0.16 111 22 0.906 501 1.25 0.25 110 22 0.908 90 

M4 503 0.45 0.09 64 13 0.97 501 0.11 0.02 64 13 0.97 509 0.3 0.06 65 13 0.969 80 

M5 504 −2 -0.4 79 16 0.955 498 2.35 0.47 83 17 0.947 504 −1.46 −0.29 79 16 0.955 80 

M6 501 −4.56 -0.91 98 20 0.93 512 −0.81 -0.16 100 20 0.925 504 −3.23 −0.64 99 20 0.927 100 

M7 501 −3.24 -0.65 64 13 0.97 507 −2.2 -0.43 62 12 0.972 511 −2.67 −0.52 64 13 0.97 80 

M8 504 −4.46 -0.88 75 15 0.959 504 −3.53 -0.7 78 15 0.957 500 −6.12 −1.22 78 16 0.957 80 

M9 504 0.32 0.06 64 13 0.971 503 −0.83 -0.17 64 13 0.97 499 2.7 0.54 63 13 0.971 80 

M10 502 4.01 0.8 57 11 0.976 514 4.16 0.81 63 12 0.972 499 2.56 0.51 61 12 0.974 80 
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Table C4: As in Table C1, but for Jazhnikan tower station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 518 −1.85 −0.36 208 40 0.59 518 −0.13 −0.03 208 40 0.584 519 −6.91 −1.33 209 40 0.586 100 

M2 516 8.12 1.57 99 19 0.924 516 10.19 1.97 102 20 0.918 530 3.36 0.63 102 19 0.917 110 

M3 518 0.99 0.19 108 21 0.907 512 0.03 0.01 111 22 0.906 526 −1.78 −0.34 109 21 0.903 110 

M4 521 3.41 0.65 62 12 0.97 509 3.59 0.71 63 12 0.97 516 3.67 0.71 66 13 0.968 120 

M5 518 −1.5 −0.29 72 14 0.96 521 −3.16 −0.61 75 14 0.958 514 2.21 0.43 71 14 0.96 100 

M6 518 0.63 0.12 89 17 0.938 514 −1.4 −0.27 91 18 0.934 522 0.39 0.07 96 18 0.927 130 

M7 514 −0.4 −0.08 58 11 0.974 524 −1.07 −0.2 60 11 0.973 530 0.01 0 60 11 0.972 120 

M8 517 −2.8 −0.54 70 14 0.963 524 −3.44 −0.66 69 13 0.964 516 −0.39 −0.08 75 15 0.955 140 

M9 516 −0.58 −0.11 56 11 0.976 525 −1.27 −0.24 57 11 0.976 523 −3.2 −0.61 59 11 0.974 140 

M10 520 3.27 0.63 53 10 0.979 503 3.45 0.69 59 12 0.972 523 0.65 0.12 59 11 0.973 130 

 

Table C5: As in Table C1, but for Tarjan tower station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 523 3.01 0.58 202 39 0.598 514 4.39 0.85 207 40 0.557 517 11.55 2.23 207 40 0.552 100 

M2 520 3.83 0.74 99 19 0.917 526 4.76 0.9 102 19 0.917 518 5.33 1.03 102 20 0.912 80 

M3 519 0.89 0.17 111 21 0.895 521 −1.26 −0.24 112 21 0.894 528 −6.07 −1.15 106 20 0.907 70 

M4 524 4.08 0.78 61 12 0.97 519 2.51 0.48 64 12 0.969 510 3.79 0.74 62 12 0.967 100 

M5 521 1.2 0.23 71 14 0.959 519 2.33 0.45 71 14 0.959 523 2.82 0.54 71 14 0.959 20 

M6 522 0.49 0.09 90 17 0.932 519 −0.66 −0.13 91 18 0.935 518 1.22 0.24 93 18 0.929 80 

M7 522 1.01 0.19 59 11 0.972 508 0.95 0.19 58 11 0.972 527 0.18 0.03 59 11 0.972 60 

M8 520 −2.17 −0.42 68 13 0.962 522 −2.81 −0.54 71 14 0.96 521 0.41 0.08 71 14 0.96 60 

M9 523 0.1 0.02 58 11 0.973 514 1.69 0.33 58 11 0.974 517 −0.04 −0.01 60 12 0.971 40 

M10 522 −1.16 −0.22 56 11 0.975 520 −0.32 −0.06 55 11 0.975 516 −4.35 −0.84 57 11 0.973 60 
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Table C6: As in Table C1, but for Halsho automatic station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 482 1.13 0.23 153 32 0.835 468 2.39 0.51 153 33 0.834 474 8.11 1.71 155 33 0.827 80 

M2 479 −0.76 −0.16 57 12 0.979 487 −1.08 −0.22 59 12 0.977 472 1.11 0.24 61 13 0.976 120 

M3 478 −2.87 −0.6 62 13 0.974 475 0.32 0.07 67 14 0.97 485 −3.28 −0.68 66 14 0.972 120 

M4 481 −0.11 −0.02 55 11 0.98 476 2.36 0.5 55 12 0.98 474 −0.49 −0.1 56 12 0.98 60 

M5 477 0.64 0.13 60 13 0.976 481 1.44 0.3 62 13 0.974 484 0.31 0.06 62 13 0.975 100 

M6 479 −0.52 −0.11 58 12 0.978 482 −0.14 −0.03 57 12 0.978 477 1.6 0.34 60 13 0.976 40 

M7 478 1.45 0.3 49 10 0.984 479 1.37 0.29 50 10 0.984 481 1.81 0.38 49 10 0.984 20 

M8 478 −0.37 −0.08 51 11 0.983 481 0.95 0.2 54 11 0.981 482 0.65 0.13 51 11 0.983 30 

M9 477 −0.14 −0.03 48 10 0.985 483 1.54 0.32 48 10 0.985 484 −0.1 −0.02 49 10 0.984 50 

M10 476 0.4 0.08 47 10 0.985 489 0 0 46 9 0.986 481 0.73 0.15 49 10 0.985 40 

 

Table C7: As in Table C1, but for Bazian automatic station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 482 −0.46 −0.1 166 34 0.724 477 −3.28 −0.69 168 35 0.712 468 5.49 1.17 168 36 0.716 70 

M2 480 3.41 0.71 62 13 0.966 482 0.25 0.05 63 13 0.965 473 0.78 0.16 62 13 0.967 60 

M3 479 −0.11 −0.02 60 13 0.968 475 −0.63 −0.13 63 13 0.965 484 −1.32 −0.27 61 13 0.967 70 

M4 477 0.94 0.2 55 12 0.973 490 4.31 0.88 55 11 0.973 477 1.11 0.23 56 12 0.973 50 

M5 480 2.78 0.58 61 13 0.967 471 4.94 1.05 64 14 0.963 483 2.97 0.61 61 13 0.969 60 

M6 478 −0.31 −0.06 57 12 0.971 484 −0.26 −0.05 61 13 0.967 476 0.88 0.18 58 12 0.971 70 

M7 478 2.47 0.52 50 10 0.979 486 −0.62 −0.13 50 10 0.978 476 −2.14 −0.45 50 11 0.978 20 

M8 480 −0.04 −0.01 52 11 0.976 476 2.2 0.46 53 11 0.976 476 1.18 0.25 53 11 0.975 20 

M9 478 2.6 0.54 46 10 0.982 484 0.74 0.15 46 10 0.982 477 2.93 0.61 48 10 0.979 40 

M10 480 0.37 0.08 46 10 0.981 480 1.82 0.38 47 10 0.98 472 −0.31 −0.07 49 10 0.978 50 
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Table C 8: As in Table C1, but for Maydan automatic station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 503 0.06 0.01 165 33 0.723 501 13.04 2.6 170 34 0.701 507 -0.72 -0.14 169 33 0.7 60 

M2 503 −0.1 −0.02 43 9 0.983 506 −1.09 −0.22 45 9 0.982 499 -0.16 -0.03 46 9 0.982 60 

M3 506 0.42 0.08 45 9 0.982 494 1.64 0.33 48 10 0.98 498 0.02 0 47 9 0.981 50 

M4 503 0.17 0.03 48 10 0.98 509 −1.94 −0.38 50 10 0.978 499 0.19 0.04 49 10 0.978 60 

M5 504 −2.29 −0.45 54 11 0.974 499 −2.64 −0.53 59 12 0.969 505 -2.93 -0.58 57 11 0.971 70 

M6 500 −1.41 −0.28 42 8 0.984 514 −1.11 −0.22 43 8 0.983 506 -3.86 -0.76 44 9 0.982 80 

M7 504 0.96 0.19 37 7 0.988 499 1.26 0.25 39 8 0.986 503 2.02 0.4 40 8 0.986 60 

M8 503 0.16 0.03 40 8 0.986 503 −0.32 −0.06 42 8 0.984 505 0.28 0.06 43 9 0.983 60 

M9 505 0.6 0.12 35 7 0.989 488 −1.37 −0.28 35 7 0.989 511 -2.43 -0.48 39 8 0.987 50 

M10 504 0.33 0.07 38 8 0.987 502 0.18 0.04 40 8 0.986 500 -0.46 -0.09 41 8 0.985 70 

 

Table C9: As in Table C1, but for Kalar automatic station. 

Models 
Train Validation Test 

Neurons 
Mean Bias % RMSE % r Mean Bias % RMSE % r Mean Bias % RMSE % r 

M1 473 −1.63 −0.34 158 33 0.689 479 −7.26 -1.52 157 33 0.695 479 −9.24 −1.93 161 34 0.705 70 

M2 475 −0.91 −0.19 55 12 0.968 471 1.17 0.25 56 12 0.966 475 0.84 0.18 56 12 0.966 60 

M3 475 0.03 0.01 55 12 0.968 473 −6.31 −1.33 58 12 0.965 474 −3.22 −0.68 58 12 0.962 50 

M4 475 −1.14 −0.24 57 12 0.966 477 −1.44 −0.3 58 12 0.964 473 −2.85 −0.6 57 12 0.964 60 

M5 478 4.84 1.01 60 13 0.962 471 4.31 0.92 62 13 0.96 464 6.89 1.48 60 13 0.961 90 

M6 473 −0.48 −0.1 54 11 0.97 485 −3.77 −0.78 55 11 0.969 471 −0.73 −0.15 52 11 0.971 80 

M7 474 −0.02 0 48 10 0.976 482 −0.47 −0.1 50 10 0.975 472 2.12 0.45 51 11 0.972 60 

M8 475 0.77 0.16 51 11 0.972 467 −3.03 −0.65 51 11 0.972 479 −1.02 −0.21 51 11 0.972 40 

M9 476 −0.21 −0.04 45 9 0.979 465 −0.77 −0.17 48 10 0.975 477 −0.66 −0.14 48 10 0.977 40 

M10 478 0.03 0.01 47 10 0.977 462 0.34 0.07 48 10 0.976 474 1.05 0.22 49 10 0.973 60 
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Figure C1: Comparison of bias (%) for the hourly GHI among ANN models, stations, and overall results of station types. 
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Figure C2: As in Figure C1, but for RMSE (%). 
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Figure C3: Using ANN APP in MATLAB software to run ANN models as number 1 in red, Selecting Neural Network fitting tool as number 2–4 in red to 

next step. 
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Figure C4: The first step in the Neural Network fitting tool is import data to MATLAB number 1 in red, second mange data frames and variables in 

MATLAB-Workspace as target variable and several sets of input variables, number 2 in red. Then, open data frames and table of variables to change 

(Transpose Variable) the variables from vertical to horizontal as it is required in MATLAB number 3 in red. 
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Figure C5: Select input and target data in step three in red symbols. 

 

Figure C6: Determining the percentage of data for training, validation and testing in step four 

in red symbols. 
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Figure C7: Determining the number of hidden node in the hidden layer in step four in red 

symbols. 

 

Figure C8: Choosing the training algorithm and train the model in step five in red symbols. 
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Figure C9: Checking the performance of the training model based on errors and regression 

plots to select a model or to retrain it, in step six red symbols. 

 

Figure C10: Save the results, errors and trained model in the final step. 
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Table C10: MATLAB codes for appling an ANN model as the same steps in Figures (C3–C9). 

% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by Neural Fitting app 

% Created 19-Aug-2018 17:56:24 

% 

% This script assumes these variables are defined: 

%   maydanP31 - input data. 

%   GHI1 - target data. 

x = Climate.variables; 

t = GHI; 

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

% Create a Fitting Network 

hiddenLayerSize = 100; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Choose Input and Output Pre/Post-Processing Functions 

% For a list of all processing functions type: help nnprocess 

 
% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'sample';  % Divide up every sample 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean Squared Error 

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 

    'plotregression', 'plotfit'}; 

% Train the Network 

[net,tr] = train(net,x,t); 

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

% Recalculate Training, Validation and Test Performance 

trainTargets = t .* tr.trainMask; 

valTargets = t .* tr.valMask; 

testTargets = t .* tr.testMask; 

trainPerformance = perform(net,trainTargets,y) 

valPerformance = perform(net,valTargets,y) 

testPerformance = perform(net,testTargets,y) 

% View the Network 

view(net) 

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 
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% Deployment 

% Change the (false) values to (true) to enable the following code blocks. 

% See the help for each generation function for more information. 

if (false) 

    % Generate MATLAB function for neural network for application 

    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 

    % tools, or simply to examine the calculations your trained neural 

    % network performs. 

    genFunction(net,'myNeuralNetworkFunction'); 

    y = myNeuralNetworkFunction(x); 

end 
if (false) 

    % Generate a matrix-only MATLAB function for neural network code 

    % generation with MATLAB Coder tools. 

    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 

    y = myNeuralNetworkFunction(x); 

end 
if (false) 

    % Generate a Simulink diagram for simulation or deployment with. 

    % Simulink Coder tools. 

    gensim(net); 

end 
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