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Abstract. In this paper we introduce a generalization of a Brauer graph algebra which
we call a Brauer configuration algebra. As with Brauer graphs and Brauer graph alge-
bras, to each Brauer configuration, there is an associated Brauer configuration algebra.
We show that Brauer configuration algebras are finite dimensional symmetric algebras.
After studying and analysing structural properties of Brauer configurations and Brauer
configuration algebras, we show that a Brauer configuration algebra is multiserial; that
is, its Jacobson radical is a sum of uniserial modules whose pairwise intersection is either
zero or a simple module. The paper ends with a detailed study of the relationship between
radical cubed zero Brauer configuration algebras, symmetric matrices with non-negative
integer entries, finite graphs and associated symmetric radical cubed zero algebras.

Introduction

The classification of algebras into finite, tame and wild representation type has led to many
structural insights in the representation theory of finite dimensional algebras. Algebras
have finite representation type if there are only finitely many isomorphism classes of inde-
composable modules. In this case, the representation theory is usually very well understood
and these algebras often serve as first examples or test cases for new ideas and conjectures.
To cite but a few examples in this direction see for example [D1, D2, Ma] or [LY, Ri].

All other algebras have infinite representation type, and by [Dr] they are either tame or
wild. If an algebra has tame representation type its representation theory usually still ex-
hibits a certain regularity in its structure making calculations and establishing and proving
conjectures often possible. One example of this is the class of Brauer graph algebras, which
are, depending on their presentation, also known as symmetric special biserial algebras
[R, S]. Brauer graph algebras are tame algebras and much of their representation theory
is well-understood, see for example [A, GR, Ri, K] for a classification of derived equiva-
lence classes, [ESk1] for their Auslander-Reiten quiver, [GSS] for their covering theory or
[AG, GSST] for results on their Ext algebra. Recently there has been renewed interest in
Brauer graph algebras, stemming from their connection with cluster theory on the one side
[L, MS, S] and with mutation and derived equivalences on the other side [A, AAC, Z1, Z2].
Furthermore, Brauer graph algebras naturally appear in the derived equivalence classifi-
cation of self-injective algebras of finite and tame representation type, see [Sk] and the
references within. One reason that Brauer graph algebras are so well-studied and under-
stood is that the combinatorial data of the underlying Brauer graph encodes much of the
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representation theory of a Brauer graph algebra such as for example, projective resolutions
[G, R] or information on the structure of the Auslander-Reiten quiver [BS, Du].

In the general setting of wild algebras, however, the picture is very different and much
less is known or understood. In the cases where we do have some understanding, the wild
algebras under consideration are often endowed with some additional structure such as for
example in [E] where wild blocks of group algebras are considered, or in [EKS], or in [KSY]
where the algebras have other additional properties.

In this paper we introduce a new class of mostly wild algebras, called Brauer configuration
algebras. These algebras have additional structure arising from combinatorial data, called
a Brauer configuration. Brauer configuration algebras are a generalization of Brauer graph
algebras, in the sense that every Brauer graph is a Brauer configuration and every Brauer
graph algebra is a Brauer configuration algebra. However, unlike Brauer graph algebras,
Brauer configuration algebras are in general of wild representation type. But just as the
Brauer graph encodes the representation theory of Brauer graph algebras, the expectation is
that the Brauer configuration will encode the representation theory of Brauer configuration
algebras. As a first step in this direction, we show that the Brauer configuration yields the
Loewy structure of the indecomposable projective modules of a Brauer configuration algebra
and that the dimension of the algebra can be directly read off the Brauer configuration
(Proposition 3.13). In fact, surprisingly, one can show that the radical of every finitely
generated module over a Brauer configuration algebra, more generally, a special multiserial
algebra, is the sum of uniserial modules, the intersection of any two being (0) or a simple
module [GS]. We note that multiserial and special multiserial algebras were first introduced
in [VHW]. In [KY] multiserial algebras have been studied with a focus on hereditary
multiserial rings, and with a slightly differing definition multiserial algebras have been
studied in [BM, J, M]. Furthermore, there are a number of other results valid for Brauer
graph algebras that generalize to Brauer configuration algebras, see [GS], suggesting that
the study of these rings and their representations could lead to interesting results.

Brauer configuration algebras contain another class of well-studied algebras that also have a
combinatorial presentation in the form of a finite graph, namely that of symmetric algebras
with radical cube zero [GS]. Symmetric algebras with radical cube zero have been well-
studied, see for example, [B, ES1]. The representation type of symmetric algebras with
radical cube zero has been classified in terms of the underlying graph in [B] and for all
but a finite number of families they are of wild representation type. In the case of infinite
representation type, these algebras are Koszul and thus we have some understanding of
their representation theory and their cohomology in particular [ES1]. In this paper we
classify the Brauer configurations such that the associated Brauer configuration algebras
are canonical symmetric algebras with radical cube zero.

Brauer configuration algebras arise naturally in yet another context (in a different pre-
sentation). Namely, almost all representatives of derived equivalence classes of symmetric
algebras of finite representation type in the classification by Skowronski et al., see [Sk] and
the references within, are in fact Brauer configuration algebras. Those that are not Brauer
configuration algebras are in fact deformations of Brauer graph algebras.

In Brauer configuraton algebras, similarly to the symmetric special biserial algebras, a path
(of length at least 2) is non-zero if and only if it lies in a special cycle. It is a consequence
of the existence of the special cycles, that the projective indecomposable modules are such
that their heart, given by the quotient of the radical modulo the socle, is a direct sum of
uniserial modules (Theorem 3.10).

We will now sumarize the most important results in this paper.
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A Brauer configuration is a combinatorial data Γ = {Γ0,Γ1, µ, o}, where Γ0 is the set of
vertices of Γ, Γ1 is a set of multisets of elements of Γ0, µ is a function called the multiplicity
and o is called the orientation of Γ (see section 1 for the precise definition of a Brauer
configuration). Note that by a slight abuse of notation we call the elements in Γ1 polygons.
We denote by ΛΓ the Brauer configuration algebra associated to Γ.

First we have some structural results about Brauer configuration algebras.

Theorem A.

(1) A Brauer configuration algebra is a finite dimensional symmetric algebra.

(2) Suppose Γ = Γ1 ∪ Γ2 is a decomposition of Γ into two disconnected Brauer configu-
rations Γ1 and Γ2. Then there is an algebra isomorphism ΛΓ ' ΛΓ1 × ΛΓ2 between
the associated Brauer configuration algebras.

(3) The Brauer configuration algebra associated to a connected Brauer configuration is
an indecomposable algebra.

(4) A Brauer graph algebra is a Brauer configuration algebra.

In [VHW] multiserial algebras have been defined. They are a generalisation of biserial alge-
bras as defined in [T, F]. A multiserial algebra is defined to be a finite dimensional algebra
A such that, for every indecomposable projective left and right A-module P , rad(P ) is a
sum of uniserial submodules, say rad(P ) =

∑n
i=1 Ui, for some n and uniserial submodules

Ui of rad(P ) with the property that, if i 6= j, Ui ∩ Uj is either 0 or a simple A-module.
The following result explores the structure of the indecomposable projective modules of a
Brauer configuration algebra.

Theorem B. Let Λ be a Brauer configuration algebra with Brauer configuration Γ.

(1) There is a bijective correspondence between the set of projective indecomposable Λ-
modules and the polygons in Γ.

(2) If P is a projective indecomposable Λ-module corresponding to a polygon V in Γ.
Then rad(P ) is a sum of r indecomposable uniserial modules, where r is the number
of (nontruncated) vertices of V and where the intersection of any two of the uniserial
modules is a simple Λ-module.

Since Brauer configuration algebras are symmetric, it then directly follows from the defini-
tion of a multiserial algebra that Brauer configuration algebras are multiserial.

Corollary C. A Brauer configuration algebra is a multiserial algebra.

Finally we study a bijective correspondence and its consequences between finite graphs,
symmetric matrices and (ordered) Brauer configurations. For this we will restrict ourselves
to the case where the Brauer configuration has no self-folded polygons, or equivalently to
the case where there is no repetition of vertices in the polygons. We classify the Brauer con-
figuration algebras with Jacobson radical cubed zero in this case: they correspond exactly
to the canonical symmetric algebras with Jacobson radical cubed zero.

The paper is outlined as follows. In section 1 we define Brauer configurations and in sec-
tion 2 Brauer configuration algebras. Both sections contain examples to illustrate the newly
defined concepts. Section 3 starts out with the basic properties of Brauer configuration al-
gebras, we then define special cycles and use these to show that the projective-injective
modules of a Brauer configuration algebra are multiserial. In section 4 we define canonical
symmetric algebras with radical cube zero and relate them to Brauer configuration algebras
with radical cube zero and show that they correspond to exactly those Brauer configuration
algebras whose Brauer configurations consist of polygons that have no self-foldings.
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1. Brauer Configurations

In this section we define Brauer configurations which are generalizations of Brauer graphs.

For the readers benefit we briefly provide a definition of Brauer graph algebras. Let K be a
field. A Brauer graph algebra is constructed from the combinatorial information contained
in a Brauer graph, which is a 4-tuple (Γ0,Γ1, µ, o) where (Γ0,Γ1) is a finite (undirected)
graph with vertex set Γ0 and edge set Γ1. The graph may contain loops and multiple edges.
Next, µ is a set map from Γ0 → N where N denotes the positive integers. A vertex α ∈ Γ0

is called truncated if µ(α) = 1 and α is the endpoint of one and only one edge. Last, o is an
orientation of (Γ0,Γ1); that is, at each vertex α in Γ0, o a cyclic ordering of the edges having
v as one of its endpoints. The formal definition of the orientation and the construction a
Brauer graph algebra from a Brauer graph is a special case of the construction of a Brauer
configuration algebra from a Brauer configuration, which we give in detail below.

1.1. Definition of Brauer configurations. We begin with a tuple Γ = (Γ0,Γ1), where
Γ0 is a (finite) set of vertices of Γ and Γ1 is a finite collection of labeled finite sets of vertices
where repetitions are allowed. That is, Γ1 is a finite collection of finite labeled multisets
whose elements are in Γ0.

Example 1.1. We provide two examples which we will continue to use throughout the
paper to help clarify both definitions and concepts.

Example 1: Γ = (Γ0,Γ1) with Γ0 = {1, 2, 3, 4, 5, 6, 7, 8} and Γ1 = {V1 = {1, 2, 3, 4, 7}, V2 =
{1, 2, 3, 8}, V3 = {4, 5}, V4 = {4, 6}, V5 = {1, 4}}.

Example 2: ∆ = {∆0,∆1}, with ∆0 = {1, 2, 3, 4} and ∆1 = {V1 = {1, 1, 1, 2}, V2 =
{1, 1, 3}, V3 = {1, 2, 3, 4}}.

We abuse notation and call the elements of Γ1 polygons. The use of the term ‘polygon’
will become clear when we discuss realizations of configurations in section 1.2. We call the
elements of a polygon V the vertices of V . If V is a polygon in Γ1 and α is a vertex in Γ0,
define occ(α, V ) to be the number of times α occurs as a vertex in V and define the valence
of α, val(α), to be

∑
V ∈Γ1

occ(α, V ).

Example 1.2. In the first example above, we have occ(1, V1) = 1, occ(1, V2) = 1,
occ(1, V3) = 0, etc and val(1) = 3 and val(2) = 2, etc.
In the second example, we have occ(1, V1) = 3, occ(1, V2) = 2, occ(1, V3) = 1, etc. and
val(1) = 6 and val(2) = 2, etc.

For Γ = (Γ0,Γ1) to be a Brauer configuration, we need two more pieces of information.
One is a multiplicity function µ : Γ0 → N, where N denotes the strictly positive integers.
The other is an orientation o for Γ.

Example 1.3. In the first example, we choose µ(3) = 3, µ(5) = 2, and µ(i) = 1 for all
other vertices. In the second example, we choose µ(i) = 1 for all vertices i. Of course, there
are many other choices for the multiplicity function than the arbitrary ones given here.

An orientation for Γ is a choice, for each vertex α ∈ Γ0, of a cyclic ordering of the polygons
in which α occurs as a vertex, including repetitions. More precisely, for each vertex α ∈ Γ0,
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let V1, . . . , Vt be the list of polygons in which α occurs as a vertex, with a polygon V occuring
occ(α, V ) times in the list, that is V occurs the number of times α occurs as a vertex in V .
The cyclic order at vertex α is obtained by linearly ordering the list, say Vi1 < · · · < Vit
and by adding Vit < Vi1 . Finally, note that if V1 < · · · < Vt is the chosen cyclic ordering
at vertex α, then the same ordering can be represented by any cyclic permutation such as
V2 < V3 < · · · < Vt < V1 or V3 < V4 < · · · < Vt < V1 < V2, etc.

Example 1.4. In the first example, the list of polygons ocuring at vertex 1 is V1, V5, V2,
and V1, V2 at vertex 2, V1, V2 at vertex 3, V1, V3, V4, V5 at vertex 4, V3 at vertex 5, V4 at
vertex 6, V1 at vertex 7, and V2 at vertex 8.

In the second example, the list of polygons ocuring at vertex 1 is V
(1)

1 , V
(2)

1 , V
(3)

1 , V
(1)

2 ,

V
(2)

2 , V3, where V
(1)

1 , V
(2)

1 , V
(3)

1 are the three ocurrences of vertex 1 in V1, etc.

An orientation is then given by cyclically ordering the lists of polygons at each vertex.
Thus, for the first example, one orientation would be: V1 < V5 < V2 at vertex 1, V1 < V2

at vertex 2, V1 < V2 at vertex 3, V1 < V4 < V3 < V5 at vertex 4, V3 at vertex 5, V4 at
vertex 6, V1 at vertex 7, and V2 at vertex 8. Note that for vertices 2,4,5,6,7,8 there is
only one choice for cyclic ordering. On the other hand, there are 2 choices for the cyclic
ordering at vertex 1 and 3! choices at vertex 4. For later use, we call the orientation given
above o1(Γ) and let o2(Γ) be the orientation with orderings V1 < V2 < V5 at vertex 1 and
V1 < V5 < V3 < V4 at vertex 4. For the remainder of the paper, unless otherwise stated,
we will use the orientation o1(Γ) when referring to example 1.

In the second example, let o(∆) be the orientation given by the orderings V
(1)

1 < V
(2)

1 <

V
(3)

1 < V
(1)

2 < V
(2)

2 < V3 at vertex 1, V1 < V3 at vertex 2, and V2 < V3 at vertex 3. There
are many other choices of orientations for this example and they are typically associated to
non-isomorphic Brauer configuration algebras.

Definition 1.5. A Brauer configuration is a tuple Γ = (Γ0,Γ1, µ, o), where Γ0 is a set of
vertices, Γ1 is a set of polygons, µ is a multiplicity function, and o is an orientation, such
that the following conditions hold.

C1. Every vertex in Γ0 is a vertex in at least one polygon in Γ1.

C2. Every polygon in Γ1 has at least two vertices.

C3. Every polygon in Γ1 has at least one vertex α such that val(α)µ(α) > 1.

Note that if V and V ′ are two distinct polygons in Γ1, it is possible that V and V ′ have
identical sets of vertices. We distinguish between the two using their labels V and V ′.
Also note that ({1, 2}, {V = {1, 2}}, µ, o) with µ(1) = µ(2) = 1 violates C3 and hence
is not a Brauer configuration. However, by convention this algebra usually is nevertheless
consider to be a Brauer graph algebra and is isomorphic to the truncated polynomial algebra
k[x]/(x2).

Our next goal is to show that a Brauer configuration is the union of connected Brauer
configurations. More precisely, let Γ = (Γ0,Γ1, µ, o) be a Brauer configuration. We say
that Γ is disconnected if there are two Brauer configurations Γ′ = (Γ′0,Γ

′
1, µ
′, o′) and

Γ′′ = (Γ′′0,Γ
′′
1, µ
′′, o′′) such that

(1) {Γ′0,Γ′′0} is a partition of Γ0,

(2) for every polygon V ∈ Γ1, the vertices of V are either all in Γ′0 or are all in Γ′′0,
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(3) {Γ′1,Γ′′1} constitutes a partition of Γ1,

(4) µ′ (resp. µ′′) is a restriction of µ to Γ′0 (resp. Γ′′0), and

(5) the orientations o′ and o′′ are induced by o.

In this case, we write Γ = Γ′ ∪ Γ′′. We say Γ is connected if it is not disconnected. It is
clear that any Brauer configuration can be uniquely written as a union of connected Brauer
configurations. We call these connected Brauer configurations the connected components of
Γ.

We say a polygon in a Brauer configuration is self-folded if there is at least one vertex which
occurs more than once in V . See the section below on realizations for a justification of the
terminology.

Remark 1.6. A connected Brauer configuration, all of whose polygons are 2-gons is a
Brauer graph and a self-folded 2-gon is a loop. For the definition of Brauer graphs and
Brauer graph algebras, see, for example, [B], for a definition in terms of ribbon graphs, see
[MS] or for a presentation more closely related to the present paper, see [GSS].

1.2. Realizations of Brauer configurations. It is very useful to visualize a Brauer
configuration Γ = (Γ0,Γ1, µ, o). For this, one represents each polygon in Γ1 by an actual
polygon. That is given a polygon (or multiset) V = {α1, . . . , αd} in Γ1, V is visualized by
an actual d-gon with vertices labeled by the αi. Although there usually are many ways to
perform the vertex labeling, just one is chosen. In particular, the order in which one labels
the vertices of the actual polygon is not important. If a vertex α ∈ Γ0 occurs more than
once in V , that is, V is self-folded, we identify all vertices labeled α in the actual polygon
V . Finally, we identify vertices of different polygons if they correspond to the same vertex
in Γ0. We call such a choice, a realization of the configuration Γ. The actual theory and
proofs in this paper never refer to or use any realization, however in terms of visualizing
and understanding the results and proofs, realizations of configurations are a useful tool.

Example 1.7. We provide two realizations of the first example given above. Here is the
first realization.

1

2

34

7

5 6

V3 V4

V1V5 V2

8

Note that the vertices in the polygon V1 are ‘ordered’ 1,2,3,4,7 and in the 5-gon representing
V1, 1 is adjacent to 2, 2 is adjacent to 3, etc. If we change the order in which vertices occur,
we will, in general, change the realization. For example, in the first example, if instead,
we ordered the vertices 1,3,4,2,7 in the realization, we would obtain the following Brauer
configuration.
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7

1

3

42

5 6

8

V1

V2

V5

V3 V4

We note that these are two different realizations of the same Brauer configuration and that
the first realization is embeddable in the plane but the second is not.

Below is a realization of ∆, the second example, in which there are a number of self-foldings.

2 3
V1 V2

1

4

V3

1.3. Truncated vertices and reduced Brauer configurations. We now define the
crucial concept of a truncated vertex in a Brauer configuration Γ = (Γ0,Γ1, µ, o). We say a
vertex α ∈ Γ0 is truncated if val(α)µ(α) = 1; that is, α occurs exactly once in exactly one
V ∈ Γ1 and µ(α) = 1. A vertex that is not truncated is called a nontruncated vertex.

Example 1.8. In the first example, vertices 6,7, and 8 are truncated. Note that vertex 5 is
not truncated, even though val(5) = 1, since µ(5) = 2 > 1. In the second example, vertex
4 is truncated.

We will see in what follows that a truncated vertex only plays a role if it is one of the two
vertices of a 2-gon. Namely, we introduce a reduction procedure which removes truncated
vertices from polygons with 3 or more vertices. This will not affect the associated Brauer
configuration algebra defined in Section 2, see Proposition 2.7.

The reduction procedure for removing a truncated vertex occurring in a d-gon, d ≥ 3
is defined as follows. Suppose that Γ = (Γ0,Γ1, µ, o) is a Brauer configuration and that
α ∈ Γ0 is a truncated vertex in a d-gon V ∈ Γ1 with d ≥ 3. Note that since α is truncated,
val(α) = 1 and this implies that V is the unique polygon in Γ1 having α as a vertex. After
reordering the vertices in V , we may assume that V is the d-gon (α1, . . . , αd), with α = αd.
Let Γ′ = (Γ′0,Γ

′
1, µ
′, o′), where

(1) Γ′0 = Γ0 \ {α},
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(2) V ′ be the (d− 1)-gon {α1, . . . , αd−1},

(3) Γ′1 = (Γ1 \ {V }) ∪ {V ′},

(4) µ′ = µ|Γ′
0
.

(5) o′ is the orientation induced from the orientation o.

We see that Γ′ is simply obtained from Γ by “removing” the truncated vertex α from V .
Note that the number of polygons in Γ and Γ′ are the same and only one polygon in Γ′ has
one less vertex.

If Γ′ also has a truncated vertex in a d′-gon, with d′ ≥ 3, we can remove it and obtain a
Brauer configuration Γ′′, where Γ′′ has 2 less vertices than Γ. Continuing in this fashion,
we arrive at a Brauer configuration Γ∗ in which, if α is a truncated vertex, it occurs in a
2-gon and hence there are no more reductions that can be performed in Γ∗. We call Γ∗ a
reduced Brauer configuration associated to Γ. If Γ = Γ∗ we say that Γ is a reduced Brauer
configuration. We leave the proof of the next result to the reader.

Lemma 1.9. Let Γ be a Brauer configuration and suppose that Γ∗ and Γ∗∗ are two reduced
configurations associated to Γ. Then we may choose a relabeling of the vertices of Γ∗∗ so
that Γ∗ = Γ∗∗. �

The above lemma allows us to talk about ‘the’ reduced configuration associated to a Brauer
configuration.

Example 1.10. In the first example, the reduced configuration is obtained by removing
vertices 7 and 8. Note that although vertex 6 is truncated, it is in the 2-gon V4. In the
second example, the reduced configuration is obtained by removing vertex 4.

Realizations of the reduced Brauer configurations for these two examples are given below.

1

2

34

5 6

V3 V4

V1V5 V2
2 3

V1 V2

1

V3

Given a Brauer configuration Γ = (Γ0,Γ1, µ, o), we note that Γ is reduced if and only if
every polygon V in Γ1 satisfies one of the following conditions:

(1) V contains no truncated vertices.

(2) V is a 2-gon with one truncated vertex.

2. Brauer configuration algebras

In this section we define Brauer configuration algebras. As described in the introduction,
Brauer configuration algebras are generalizations of Brauer graph algebras.
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Let Γ = (Γ0,Γ1, µ, o) be a Brauer configuration. For each nontruncated vertex α ∈ Γ0,
consider the list of polygons V containing α such that V occurs in this list occ(α, V ) times.
As described in Section 1, the orientation o provides a cyclic ordering of this list. We call
such a cyclically ordered list the successor sequence at α. Suppose that V1 < · · · < Vt is
the successor sequence at some nontruncated vertex α (with val(α) = t). Then we say that
Vi+1 is the successor of Vi at α, for 1 ≤ i ≤ t, where Vt+1 = V1. Note that if val(α) = 1,
µ(α) > 1 and α is vertex in polygon V , then the successor sequence at α is just V .

Example 2.1. The successor sequences for our two examples are already given by the
orientations in Example 1.4. For instance, for the first example (with orientation o1(Γ)),
the successor sequence of vertex 4 is V1 < V4 < V3 < V5 (or V4 < V3 < V5 < V1 etc.) For

the second example, the successor sequence for vertex 1 is V
(1)

1 < V
(2)

1 < V
(3)

1 < V
(1)

2 <

V
(2)

2 < V3.

A Brauer configuration algebra ΛΓ associated to a Brauer configuration Γ is defined by
giving ΛΓ as a path algebra of a quiver modulo an ideal of relations. Fix a field K and let
Γ = (Γ0,Γ1, o, µ) be a Brauer configuration, with Γ1 = {V1, . . . , Vm}.

2.1. The quiver of a Brauer configuration algebra. We define the quiver QΓ as fol-
lows. The vertex set {v1, . . . , vm} of QΓ is in correspondence with the set of polygons
{V1, . . . , Vm} in Γ1, noting that there is one vertex in QΓ for every polygon in Γ1. We call
vi (respectively, Vi) the vertex (resp. polygon) associated to Vi (resp. vi). In order to define
the arrows in QΓ, we use the successor sequences. For each nontruncated vertex α ∈ Γ0,
and each successor V ′ of V at α, there is an arrow from v to v′ in QΓ, where v and v′ are
the vertices in QΓ associated to the polygons V and V ′ in Γ1, respectively.

Note that V ′ can be the successor of V more than once at a given vertex of Γ0, and also
that V ′ can be the successor of V at more than one vertex of Γ0. For each such occurrence
there is an arrow from v to v′. In particular, QΓ may have multiple arrows from v to v′.

Thus, every arrow in QΓ is associated to a vertex α ∈ Γ0 and two polygons V and V ′ in Γ1

such that V ′ is the successor of V at α. Conversely, associated to two polygons V , V ′, such
that V ′ is the successor of V at some vertex α ∈ Γ0, there is an arrow from v to v′ in QΓ.

Example 2.2. For the first example, recall that we took V1 < V5 < V2 as as the ordered
list of polygons at vertex 1 for the orientation o1(Γ). It is the successor sequence at vertex
1 of Γ that yields the arrows a1, a2, and a3 in the quiver below. For example, V5 is the
successor of V1 at vertex 1 yielding the arrow a1. The successor sequence V1 < V2 at vertex
2 yields the arrows b1 and b2. The successor sequence at vertex 3 yields c1 and c2, that at
vertex 4 yields d1, . . . , d4, and that at vertex 5 yields e.

The quiver associated to (Γ0,Γ1, µ, o1(Γ)) is

2 1 5 4 3

c1

c2

b2

b1

a1

a2
a3

ed2

d3

d4

d1
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The quiver associated to (Γ0,Γ1, µ, o2(Γ)) is

2 1 5 4 3
a1

a2

a3b1

b2

c1

c2

d1

d2

d3

d4

e

We note that the two orientations o1(Γ) and o2(Γ) give rise to two non-isomorphic quivers;
that is, they are non-isomorphic as oriented graphs. More precisely, the number of arrows
going into a vertex, the number of arrows going out of a vertex and the fact that vertex
3 has a loop show that if there were an isomorphism of quivers, vertex 3 would be sent to
vertex 3 and vertex 5 would be sent to vertex 5. But the arrow between vertices 3 and 5
are in opposite directions in the two quivers. Hence the quivers are not isomorphic.

The quiver associated to ∆ = (∆0,∆1, µ, o(∆)) is

1 2

3

a6

a5 a1

a2

c1

c2

a3a4

b1

b2

Remark 2.3. When we apply the above construction to Brauer configuration algebras
where all polygons are 2-gons, we recover the usual quiver of a Brauer graph algebra.

2.2. Ideal of relations and definition of a Brauer configuration algebra. We define
a set of elements ρΓ in KQΓ which will generate the ideal of relations IΓ of the Brauer
configuration algebra associated to the Brauer configuration Γ. There are three types of
relations in ρΓ. For this we need the following definitions.

For each nontruncated vertex α ∈ Γ0 with successor sequence V1 < V2 < . . . < Vval(α),
let Cj = ajaj+1 · · · aval(α)a1 · · · aj−1 be the cycle in QΓ, for j = 1, . . . , val(α), where the
arrow ar corresponds to the polygon Vr+1 being the successor of the polygon Vr at the
vertex α. Now fix a polygon V in Γ1 and suppose that occ(α, V ) = t ≥ 1. Then there
are t indices i1, . . . , it such that V = Vij . We define the special α-cycles at v to be the
cycles Ci1 , . . . , Cit , where v is the vertex in the quiver of QΓ associated to the polygon V .
Note that each Cij is a cycle in QΓ, beginning and ending at the vertex v and if α occurs
only once in V and µ(α) = 1, then there is only one special α-cycle at v. Furthermore,
if V is a polygon containing n vertices, counting repetitions, then there are a total of n
different special α-cycles at v, one for each α ∈ V where each repetition of α in V gives rise
to a different special α-cycle at v. Note however that the special cycles, corresponding to
repetitions of the same vertex α in V , are cyclic permutations of each other.

We will sometimes say C is a special α-cycle if v is understood or just a special cycle if
both v and α are understood.
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Example 2.4. In the first example with orientation o1(Γ), the special 1-cycle at v1 is
a1a2a3, the special 2-cycle at v1 is b1b2, etc. The special 1-cycle at v2 is the cyclic permu-
tation a3a1a2 of the special 1-cycle at v1. Similarly, the special 2-cycle at v2 is b2b1. There
are no special j-cycles for j = 6, 7, 8 since they are truncated vertices. Note that e2 is the
unique 5-cycle at v3 since µ(5) = 2.

In the second example, there are three special 1-cycles at v1, a1a2 · · · a6, a6a1a2 · · · a5, and
a5a6a1a2 · · · a4. There are two special 1-cycles at v2 a2a3 · · · a6a1 and a3a4 · · · a6a1a2. There
is only one special 1-cycle at v3. Since vertex 4 of Γ is truncated, there are no special 4-
cycles. Since 2 is not a vertex in V2, there are no special 2-cycles at v2 and similarly, since
3 is not in V1 there are no special 3-cycles at v1.

We now define the three types of relations by setting:

Relations of type one. For each polygon V = {α1, . . . , αm} ∈ Γ1 and each pair of nontrun-

cated vertices αi and αj in V , ρΓ contains all relations of the form Cµ(αi) − (C ′)µ(αj) or

(C ′)µ(αj) − Cµ(αi) where C is a special αi-cycle at v and C ′ is a special αj-cycle at v.

Relations of type two. The type two relations are all paths of the form Cµ(α)a where C is
a special α-cycle and a is the first arrow in C.

Relations of type three. These relations are quadratic monomial relations of the form ab in
KQΓ where ab is not a subpath of any special cycle.

Definition 2.5. Let K be a field and Γ a Brauer configuration. The Brauer configuration
algebra ΛΓ associated to Γ is defined to be KQΓ/IΓ, where QΓ is the quiver associated to Γ
and IΓ is the ideal in KQΓ generated by the set of relations ρΓ of type one, two and three.

We note that the set of relations ρΓ generating IΓ is not necessarily minimal and usually
contains redundant relations.

Example 2.6. For the first example, we list some of the relations of type one: a1a2a3 −
b1b2, a1a2a3 − (c1c2)3, a1a2a3 − d1d2d3d4, a3a1a2 − b2b1, a3a1a2 − (c2c1)3, d3d4d1d2 − e2,
etc. Many of the type one relations are redundant, for example, b1b2 − (c1c2)3

and (c1c2)3 − d1d2d3d4 follow from the above. Some of the type two relations are
a1a2a3a1, a2a3a1a2, a3a1a2a3, d4d1d2d3d4, d3d4d1d2d3, e3, (c1c2)3c1, (c2c1)3c2, etc. The
type three relations are any of the paths of length two of the form aibj , bjai, aicj , cjai,
aidj , djai, eai, and aie for all possible combinations of i, j. This gives a partial list of the
type one, two, and three relations, and it includes many relations that are consequences of
others.

For the second example, some of the type one relations are a1a2 · · · a6 − a6a1a2 · · · a5,
a1a2 · · · a6 − a5a6a1a2 · · · a4, a2a3 · · · a6a1 − a3a4 · · · a6a1a2, and b2b1 − c2c1. Some type two
relations are a6a1 · · · a6, a1 · · · a6a1, or b2b1b2. Any aibj , bjai, aicj , cjai, bicj are type three
relations. Some other relations of type three are a6a5, a

2
5, a

2
2 and a5a1.

Next we show that the reduction procedure for removing truncated vertices from a d-gon,
d ≥ 3, does not change the Brauer configuration algebra.

Proposition 2.7. Let Γ be a Brauer configuration with associated Brauer configuration
algebra ΛΓ. Suppose α ∈ Γ0 is a truncated vertex in a polygon V ∈ Γ1 and V is a d-gon,
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d ≥ 3. Let Γ′ be the Brauer configuration algebra obtained by removing the vertex α as in
Section 1.3. Then the Brauer configuration algebra ΛΓ′ associated to Γ′ is isomorphic to
ΛΓ.

Proof. Since α is truncated, there is a unique polygon, say V ∈ Γ1 in which α is a vertex.
Again since α is truncated there are no special α-cycles. Thus, no arrows are created in
the quiver of Λ by α, and the quivers of Λ and Λ′ are the same. Similarly, the ideals of
relations are seen to be the same and the result follows. �

2.3. Special cycles. In this section we investigate properties of special cycles and use these
properties to obtain results about the muliplicative structure of a Brauer configuration
algebra.

Let Λ = KQ/I be the Brauer configuration algebra associated to a reduced Brauer config-
uration Γ. Denote by π : KQ → Λ the canonical surjection. Then if no confusion can arise
we denote π(x) by x̄, for x ∈ KQ.

We begin with a list of facts about successors and successor sequences translated into facts
about special cycles. The proofs of these facts are immediate consequences of the definitions
and are left to the reader. We denote by (F) facts relating to successor sequences and by
(F′) the analogous facts expressed in terms of special cycles.

(F1) If V ′ is a successor to V in the successor sequence at the (nontruncated) vertex
α ∈ Γ0 then there is a unique arrow in Q from v to v′ associated to V ′ being the
successor of V .

(F′1) If a : v → v′ is an arrow in Q then up to cyclic permutation there is a unique special
cycle C in which a occurs. If, in particular, C is a special α-cycle, for some α ∈ Γ0

then a is associated to one occurence of V ′ being a successor of V in the successor
sequence at α.

(F2) For each nontruncated vertex α ∈ Γ0 there is a unique successor sequence at α, up
to cyclic permutation.

(F′2) For each nontruncated vertex α ∈ Γ0, there is a unique special α-cycle, up to cyclic
permutation.

(F3) If V ′ is the successor of V at α ∈ Γ0, then, after cyclically reordering the successor
sequence at α, the sequence begins with the chosen V < V ′.

(F′3) If a is an arrow in Q, then there is a unique nontruncated α ∈ Γ0 and a unique
special α-cyce C such that a is the first arrow in C. In particular, there are no
repeated arrows in a special cycle.

(F′4) If there is an arrow that occurs in two special cycles C and C ′, then there is a
nontruncated vertex α ∈ Γ0 such that both C and C ′ are special α-cycles and C ′ is
a cyclic permutation of C.

(F5) The number of polygons in the successor sequence at a vertex α ∈ Γ0 is
∑

V ∈Γ1
occ(α, V ).

(F′5) The number of arrows in a special α-cycle is
∑

V ∈Γ1
occ(α, V ).

The next result and its corollary show that there is a very tight multiplicative structure in
Λ.
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Proposition 2.8. Let Γ be a Brauer configuration with associated Brauer configuration
algebra Λ = KQ/I and let V ∈ Γ1, α ∈ Γ0 a nontruncated vertex in Γ0 that occurs
in V . Let C = a1a2 . . . aval(α) be a special α-cycle at v and C ′ the cyclic permutation
aj+1 . . . aval(α)a1 . . . aj. Let p = a1a2 . . . aj, for some 1 ≤ j ≤ val(α) − 1 and set x = Csp

and y = pC ′s, for some 0 ≤ s < µ(α). Then

(1) ai 6= aj, for i 6= j.

(2) x̄ 6= 0.

(3) If a is an arrow in Q, then xa 6= 0 if and only if a = aj+1.

(4) ȳ 6= 0.

(5) If a is an arrow in Q, then ay 6= 0 if and only if a = aval(α).

Proof. Part (1) follows from (F′3). The type two and three relations are monomial paths

and the type one relations are differences Dµ(α)−D′µ(α) where D and D′ are special α-cycles
for some α ∈ Γ0. Since x and y have no subpaths that are type two relations or type three
relations, we see (2) and (4) hold. Similarly, if a 6= aj+1, then aja is a type three relation
and hence (3) holds. Finally, if a 6= aval(α) then aa1 is a type three relation and hence (5)
holds. �

Proposition 2.8 has the following consequence which plays an important role in [GS].

Proposition 2.9. Let Γ be an indecomposable reduced Brauer configuration with associated
Brauer configuration algebra Λ = KQ/I and assume rad2(Λ) 6= 0. Let a be an arrow in Q.
Then

(1) there is a unique arrow b such that ab 6= 0, and

(2) there is a unique arrow c such that ca 6= 0.

Proof. First note that if P is an indecomposable projective Λ-module with P rad2(Λ) = 0,
then by indecomposability and symmetry and the definition of the relations, P/P rad(Λ)
and P rad(Λ) are isomorphic simple Λ-modules, and hence Λ would be isomorphic to
K[x]/(x)2, contradicting the assumption that rad2(Λ) 6= 0.

From the definition of the type one, two, and three relations, if x and y are arrows in Q
then xy 6= 0 if and only if there is a special cycle in which the arrows x and y occur and
y immediately follows x. By (F′3), suppose that a is the first arrow in the special α-cycle
C = a1 · · · aval(α) for some nontruncated vertex α ∈ Γ0. It follows that b = a2 and c = aval(α)

and we are done. �

From this result we obtain the following surprising consequence which shows that there is
a tight connection between arrows in Q and paths of length 2 in Q that are not in the
ideal I, the ideal generated by the relations of types one, two, and three. We introduce the
following notation for this result. Set

Π = {ab | a, b arrows in Q and ab /∈ I}

that is Π is the set of paths of length 2 in Q that are not in I. The following corollary
follows directly from 2.9.
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Corollary 2.10. Let Γ be an indecomposable reduced Brauer configuration with associated
Brauer configuration algebra Λ = KQ/I and assume that rad2(Λ) 6= 0. Let Π be as defined
above and define f : Π → Q1 by f(ab) = a and g : Π → Q1 by g(ab) = b, where a, b ∈ Q1

with ab /∈ I. Then the maps f and g are bijections.

We call two special cycles in A equivalent if one is a cyclic permutation of the other. Suppose
that there are t equivalence classes and let C = {C1, . . . , Ct} be a full set of equivalence
class representatives.

Proposition 2.11. Let Γ be an indecomposable reduced Brauer configuration with as-
sociated Brauer configuration algebra Λ = KQ/I and assume that rad2(Λ) 6= 0. Let
C = {C1, . . . , Ct} be a complete set of representatives of special cycles. The following
statements hold.

(1) Any arrow of Q occurs once in exactly one of the special cycles in C.

(2) The cardinality of Q1 is

|Q1| =
∑
Ci∈C
|Ci| =

∑
α∈Γ0,

α nontruncated

∑
V ∈Γ1

occ(α, V )

where |Ci| denotes the number of arrows in the cycle Ci.

Proof. Given an arrow a ∈ Q1, there is a unique nontruncated α ∈ Γ0 such that a is in a
special α-cycle by (F′1). Hence a is in every special α-cycle since any two special α-cycles
are cyclic permutations of one another by (F′3) and (F′4). Thus, we can assume that a is
in exactly one of the special cycles in C. Since special cycles have no repeated arrows by
(F′3), part (1) follows. Part (2) follows from part (1) and we are done. �

3. Properties of Brauer configuration algebras

In this section we prove some basic properties of Brauer configuration algebras. Assume that
Λ = KQ/I where Λ is a Brauer configuration algebra associated to a Brauer configuration
and Q is the quiver of Λ. We assume from now on that all Brauer configurations are
reduced. We show that I is an admissible ideal and that Λ is a symmetric algebra. We
also show that a Brauer configuration algebra is indecomposable if and only if its Brauer
configuration is connected. Finally, we show that Λ is a multiserial algebra; that is we show
that the heart of Λ is a direct sum of uniserial modules.

3.1. First properties of Brauer configuration algebras and a basis of Λ. If p is a
path in a quiver Q, we let `(p) denote the length of p.

Lemma 3.1. Suppose that Λ = KQ/I is the Brauer configuration algebra associated to a
Brauer configuration Γ. Let C be a special cycle and let p be a path of length ≥ 1 in Q such
that the first arrow of p is the first arrow in C. Then p̄ 6= 0 if and only if p is a prefix of
Cµ(α).

Proof. Since the first arrow of p = a1 · · · am is the same as the first arrow of C, either p is
a prefix of Cs for some s or there is an i such that ai is an arrow in C but aiai+1 is not in
C. First assume aiai+1 is not in C. Then aiai+1 is not in any special cycle by Proposition
2.8(3). Hence aiai+1 is a type three relation and p̄ = 0.
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Assume that C is a special α-cycle for some nontruncated vertex α ∈ Γ0. Now suppose
that p is a prefix of Cs. Then either `(p) ≤ `(Cµ(α)) or `(p) > `(Cµ(α)).

First assume that `(p) > `(Cµ(α)). Then p contains Cµ(α)a1 which is a type two relation.
Hence, p̄ = 0.

Now suppose that `(p) ≤ `(Cµ(α)). Then p contains no relations of type two or three. By
the length assumption, type one relations do not affect p and we see that p̄ 6= 0. The proof
is complete. �

We let J denote the two sided ideal in KQ generated by the arrows in Q. Recall that the
ideal I in KQ is admissible if JN ⊆ I ⊆ J2, for some N ≥ 2. Clearly, if I is admissible
then Λ is finite dimensional.

Proposition 3.2. Let Λ = KQ/I be the Brauer configuration algebra associated to a
Brauer configuration Γ. Then I is admissible and Λ is a symmetric algebra.

Proof. From the definition of the three types of relations, we see that I is contained in J2.
Consider the set

S = {Cµ(α) | α is a nontruncated vertex and C is a special α-cycle }.

Let N = maxCµ(α)∈S(`(Cµ(α))) + 1. If p is a path of length N , then p cannot be a prefix of
any element in S. Note that by (F′3), we see that every arrow in Q is the prefix of some
cycle in S. Using this observation and Lemma 3.1, we see that p̄ = 0; that is, p ∈ I. Thus
JN ⊆ I and it follows that I is admissible.

Using Lemma 3.1, the reader may check that the two sided socle of Λ is generated by the
elements of S. In fact, for each V ∈ Γ1, choose a nontruncated vertex α of V and one

special α-cycle at v, CV , in Q. Then {Cµ(α)
V | V ∈ Γ1} forms a K-basis of the two sided

socle of Λ.

To show that Λ is symmetric, let φ : Λ → K be the K-linear form defined as follows. Let
p be a path in Q. Then φ(p̄) = 1 if and only if p ∈ S. If p /∈ S, let φ(p̄) = 0. It is easy
to show that φ(ab) = φ(ba). That Kerφ contains no left or right ideals follows from the
description of a K-basis of the two sided socle of Λ and that φ is 1 on elements of S. It
follows that Λ is a symmetric algebra. �

The next result provides a useful K-basis of Λ.

Proposition 3.3. Let Λ be the Brauer configuration algebra associated to the Brauer con-
figuration Γ. For each V ∈ Γ1, choose a nontruncated vertex α of V and exactly one special
α-cycle CV at v. Then keeping the above notation, we have

{p̄ | p is a proper prefix of some Cµ(α) where C is a special α-cycle} ∪ {Cµ(α)
V | V ∈ Γ1}

is a K-basis of Λ.

Proof. We have seen that {Cµ(α)
V | V ∈ Γ1} is a K-basis of the socle of Λ. Using that

every arrow is the start of a special cycle, Lemma 3.1 and that the only relations affecting
proper subpaths of the special cycles are monomial relations (types two and three), the
result follows. �
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3.2. Decomposable and indecomposable Brauer configuration algebras. We start
by investigating disconnectedness of Brauer configurations.

Proposition 3.4. Suppose the Brauer configuration Γ is disconnected and decomposes into
Brauer configurations Γ′ ∪ Γ′′. Then the associated Brauer configuration algebra ΛΓ is
isomorphic to the product ΛΓ′ × ΛΓ′′.

Proof. By definition of a disconnected Brauer configuration given in Section 1, there can
be no arrows between vertices in QΓ′ and QΓ′′ and the result follows.

�

We prove the converse.

Proposition 3.5. If the Brauer configuration Γ is connected then the Brauer configuration
algebra associated to Γ is indecomposable as an algebra.

Proof. We show that if a Brauer configuration algebra is decomposable then the Brauer
configuration is disconnected. Suppose that Γ is a Brauer configuration with associated
Brauer configuration algebra Λ. Assume that Λ is not indecomposable and that Λ ∼= Λ′×Λ′′.
Let Q,Q′, and Q′′ be the quivers of Λ,Λ′ and Λ′′ respectively. Then Q is the disjoint
union of Q′ and Q′′. Let A = {V ∈ Γ1 | the vertex in Q associated to V is in Q′} and
B = {V ∈ Γ1 | the vertex in Q associated to V is in Q′′}. Note that A ∪ B = Γ1 and
A ∩B = ∅.

Let A be the set of vertices of the polygons in A and B be the set vertices of the polygons
in B. Then we show that A ∩ B = ∅. Indeed, suppose there is a vertex α ∈ Γ0 that is a
vertex of a polygon V ∈ A and of a polygon V ′ ∈ B. Then both V and V ′ occur in the
successor sequence at α. Hence, if C is a special α-cycle, both v and v′ occur as vertices in
C. This contradicts the fact that there are no paths from v to v′ in the quiver of Λ since
v is a vertex in Q′ and v′ is a vertex in Q′′. Hence, by condition C1, we get a partition of
Γ0 = A ∪ B.

In order to show that Γ is disconnected, assume for a contradiction that Γ is connected.
Hence, since Γ1 = A∪B, A∩B = ∅, Γ0 = A∪B and A∩B = ∅, for Γ to be connected there
must be some polygon V that has vertices from both A and B; that is, there is a polygon
V ∈ Γ1 and α ∈ A, and β ∈ B, such that α and β are vertices of V . This contradicts
A ∩B = ∅, finishing the proof. �

3.3. Gradings of Brauer configuration algebras.

Proposition 3.6. Let Λ be the Brauer configuration algebra associated to a connected
Brauer configuration Γ. The algebra Λ has a length grading induced from the path algebra
KQ if and only if there is an N ∈ Z>0 such that, for each nontruncated vertex α in Γ0,
val(α)µ(α) = N .

Proof. If α ∈ Γ0 is a truncated vertex in the 2-gon V , then the projective indecomposable
associated to V is uniserial and gives rise to a monomial relation of type two. Monomial
relations are homogeneous under any grading.
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Suppose Λ has a length grading. If C is a special α-cycle, then the length of Cµ(α) is
val(α)µ(α). Since type two and three relations are monomials, the ideal of relations I is
generated by length homogeneous relations if the type one relations are length homogeneous.
Thus, for I to be generated by length homogeneous elements, all type one relations must
be length homogeneous. But this implies that for a special α-cycle C at v and a special
β-cycle C ′ at v, the relation Cµ(α) − (C ′)µ(β) must be length homogeneous. Thus for all
vertices α in a polygon, the val(α)µ(α) must all be equal. Using connectedness, we see that
if α is a vertex in polygon V and β is a vertex in polygon V ′, then there is a sequence of
polygons V1, . . . , Vk and vertices αi, βi in Vi, such that α = α1, βi = αi+1 for i = 1, . . . , k−1
and β = βk. The result now follows.

The converse immediately follows from the fact the if for each nontruncated vertex α in Γ0,
val(α)µ(α) = N then all relations are length homogeneous. �

3.4. Projective indecomposable modules and uniserial modules. We now describe
the projective-injective indecomposable modules and the non-projective uniserial modules
over a Brauer configuration algebra.

Let Λ be a Brauer configuration algebra associated to a reduced Brauer configuration Γ.
In what follows we adopt the following notation, if V is a polygon in Γ and v is the vertex
in the quiver of Λ associated to V , then we let PV be the projective Λ-module (resp. SV
the simple Λ-module) associated to v. Let V be a polygon in Γ1, α a nontruncated vertex
in V with n = val(α), and C = a1a2 · · · an a special α-cycle at v. Let ai be an arrow from
vi → vi+1 and let Vi be the polygon in Γ1 associated to vi, for i = 1, . . . , n. Note that
V1 = Vn+1 = V . It follows from Proposition 2.9 and Proposition 3.3 that based on the
choice of C, we can now define a chain of uniserial submodules in the following way.

Set Unµ(α) = Unµ(α)(C) to be isomorphic to the simple module associated to v = vn+1. Note

that Unµ(α) has K-basis {(a1a2 . . . an)µ(α)} = {Cµ(α)}. Assuming Uj+1 = Uj+1(C) is defined
and j ≥ 1, let Uj = Uj(C) be the uniserial Λ-module containing Uj+1 and such that Uj/Uj+1

is isomorphic to the simple module associated to v`, where j = kn+ ` with 1 ≤ ` < n and

0 ≤ k < µ(α). Note that Uj has K-basis {(Cka1a2 . . . a`), (Cka1a2 . . . a`+1), . . . , (Cµ(α))}.
Thus, we obtain a chain of uniserial modules

(0) ⊂ Unµ(α) ⊂ U(nµ(α))−1 ⊂ · · · ⊂ U2 ⊂ U1.

If V is a 2-gon with vertices α and β, with β truncated (and hence α is non-
truncated), then the indecomposable projective Λ-module PV is uniserial with K-basis

{ev, a1, a1a2, . . . , (a1a2 . . . an)µ(α)}, where ev is the primitive idempotent in Λ at vertex v,
and we obtain a chain of uniserial modules

(0) ⊂ Unµ(α) ⊂ U(nµ(α))−1 ⊂ · · · ⊂ U2 ⊂ U1 ⊂ PV .

Lemma 3.7. Let Λ be a Brauer configuration algebra with connected Brauer configuration
Γ. Let U be a non-projective uniserial Λ-module. With the notation above we have the
following.

(1) There is a polygon V in Γ, a nontruncated vertex α in V , and a special α-cycle C at
v such that U is isomorphic to Uj(C) for some 1 ≤ j ≤ val(α)µ(α). Furthermore,
if U is not a simple Λ-module then V, α, and j, are unique and C is unique up to
cyclic permutation.
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(2) Suppose that U is a non-zero, and non-simple uniserial module isomorphic to Uj(C)
obtained from a special α-cycle C and let U ′ be a non-projective uniserial Λ-module
isomorphic to U ′j′(C

′) obtained from a special β-cycle C ′ at v′, with α 6= β. Then

dimK HomΛ(U,U ′) ≤ 1.

Proof. Let U be a uniserial Λ-module. If U is a simple Λ-module then (1) holds. Assume
that U is a nonsimple uniserial Λ-module. Let the socle of U be isomorphic to a simple
module SV for some V ∈ Γ1. Since Γ is reduced, V is either a 2-gon with one truncated
vertex or V is a d-gon, d ≥ 2, and all the vertices of V are nontruncated. We have
that U maps monomorphically into PV since PV is an indecomposable injective module.
Applying Proposition 2.8 and Propositiom 2.9, we see that U is isomorphic to Uj(C), for
some special α-cycle at v and some j, 1 ≤ j ≤ val(α)µ(α). The last part of (1) again follows
from Proposition 2.8 and Proposition 2.9

Part (2) follows from (F′4) since, if α 6= β then C and C ′ can have no arrows in common.
In particular, the only possible map would be from U to the socle of U ′. �

Proposition 3.8. Let Λ be a Brauer configuration algebra associated to a connected Brauer
configuraton Γ. Let U be a uniserial Λ-module. With the notation above we have that U
is projective (uniserial) if and only if U is isomorphic to the indecomposable projective
Λ-module associated to a 2-gon V having a truncated vertex.

Proof. If V is a 2-gon with vertices α and β and β is truncated, then there is only one
special α-cycle at v and by the discussion at the beginning of this section, PV is a uniserial
projective module. Conversely, suppose that V is a d-gon, d ≥ 2, such that each vertex in
V is nontruncated. Let V = {α1, . . . , αd} and, for 1 ≤ i ≤ d, let Ci be a special αi-cycle
at V . These cycles yield distinct uniserial submodules U1(Ci), all having the same socle.
Hence PV is not a uniserial module. The result follows. �

Example 3.9. Let Λ be the Brauer configuration algebra associated to the Brauer config-
uration of our first example (after reducing). If X is a set of elements in Λ, let 〈X〉 denote
the right submodule of Λ generated by X. Then, the polygon V1 = {1, 2, 3, 4}, yields the
following sequences of uniserial submodules:

〈a1a2a3〉 ⊂ 〈a1a2〉 ⊂ 〈a1〉,
〈b1b2〉 ⊂ 〈b1〉,

〈(c1c2)3〉 ⊂ 〈(c1c2)2c1〉 ⊂ · · · ⊂ 〈c1〉,
〈d1d2d3d4〉 ⊂ 〈d1d2d3〉 ⊂ · · · ⊂ 〈d1〉.

Note that vertex 5 in V3 is truncated and hence we get a uniserial projective Λ-module
generated by the idempotent ev3 . The sequence of uniserial modules in ev3Λ is

〈d2d3d4d1〉 ⊂ 〈d2d3d4〉 ⊂ · · · 〈d2〉 ⊂ 〈ev3〉.

Since the Brauer configuration of our second example (after reducing) has no truncated
vertices, the associated Brauer configuration algebra has no uniserial projective modules.

Next, we describe the indecomposable projective modules over a Brauer configuration al-
gebra.
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Theorem 3.10. Let Λ be a Brauer configuration algebra associated to a reduced Brauer
configuration Γ. Let P be an indecomposable projective Λ-module associated to a d-gon V .
Define an integer r by setting r = d if all vertices of V are nontruncated and r = 1 if V
is a 2-gon with one truncated vertex. Then rad(P ) is the sum of the r uniserial Λ-modules∑

C U1(C) where C runs over the special α-cycles at v for every nontruncated vertex α of V .
If r > 1, then Ui∩Uj is the simple socle of P . Furthermore, the heart of P , rad(P )/ soc(P )
is a direct sum of uniserial Λ-modules.

Proof. Let

Cv = {C | C is a special α-cycle at v, α a nontruncated vertex in V } = {C1, . . . , Cr}.

For each Ci ∈ Cv, the uniserial Λ-module U1(Ci) is generated by the first arrow, ai, in
Ci. Let M denote the submodule of P generated by a1, . . . , ar. Note that a1, . . . , ar are
precisely the arrows in the quiver of Λ that start at vertex v (where v corresponds to V )
and that P = evΛ, where ev is the primitive idempotent in Λ at v. Then it follows that
M = rad(P ) and that M =

∑r
i=1 U1(Ci).

For i = 1, . . . r, we have seen that C
µ(α)
i is a nonzero element in the socle of P and,

considering the relations of type 1 they are all equal. Since the type 2 and type 3 relations
are monomial relations, it follows that, if i 6= j, then U1(Ci)∩U1(Cj) is the socle of P which
is a simple Λ-module.

Again from the relations of types one, two and three, we see that we have a short exact
sequence of Λ-modules

0→ ⊕r−1
i=1Sv

f→ ⊕ri=1U1(Ci)→M → 0,

where f(s1, . . . , sr−1) = (s1, s2 − s1, s3 − s2, . . . , sr−1 − sr−2,−sr−1). Factoring out the
socles, we obtain an isomorphism.

⊕ri=1U1(Ci)/Sv
∼=→M/ soc(P ).

Noting that M/ soc(P ) is the heart of P , the proof is complete. �

Example 3.11. Let Λ be the Brauer configuration algebra corresponding to our first ex-
ample and let P be the indecomposable projective Λ-module associated to the vertex 1
in the quiver of Λ which in turn corresponds to the polygon V1 of the associated Brauer
configuration. We give a schematic of P .
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In [GS] the notion of a multiserial algebra is defined. Multiserial algebras are a direct
generalization of biserial algebras. Namely, a K-algebra A is multiserial if the Jacobson
radical of A e- as a left and right A-module is a direct sum of uniserial modules, the
intersection of any two uniserial modules is either 0 or a simple A-module. It follows from
Theorem 3.10 that a Brauer configuration algebra is multiserial and we also obtain the
number of uniserial summands in the heart of each projective indecomposable:

Corollary 3.12. Let Λ be a Brauer configuration algebra with Brauer configuration Γ.

(1) Λ is a multiserial algebra.

(2) The number of summands in the heart of a projective indecomposable Λ-module P
such that rad2(P ) 6= 0 equals the number of non-truncated vertices of the polygon in
Γ corresponding to P counting repetitions.

The next result uses Theorem 3.10 and shows that the dimension of a Brauer configuration
algebra can easily be computed from its Brauer configuration.

Proposition 3.13. Let Λ be a Brauer configuration algebra associated to the Brauer config-
uration Γ and let C = {C1, . . . , Ct} be a full set of equivalence class representatives of special
cycles. Assume that, for i = 1, . . . , t, Ci is a special αi-cycle where αi is a nontruncated
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vertex in Γ. Then
dimK Λ = 2|Q0|+

∑
Ci∈C
|Ci|(ni|Ci| − 1),

where |Q0| denotes the number of vertices of Q, |Ci| denotes the number of arrows in the
αi-cycle Ci and ni = µ(αi).

Proof. Since dimK Λ = dimK(Λ/ rad(Λ)) + dimK rad(Λ) and dimK(Λ/ rad(Λ)) = |Q0|
we must show that dimK rad(Λ) = |Q0| +

∑
i=1 |Ci||Ci − 1|µ(αi). Now dim rad(Λ) =

dimK soc(rad(Λ)) + dimK(rad(Λ)/ soc(rad(Λ))) = |Q0| + dimK(rad(Λ)/ soc(rad(Λ))). We

must show that rad(A)/ soc(rad(A)) =
∑

i=1 |Ci||Ci− 1|µ(αi) . Using Theorem 3.10, we see
that rad(Λ)/ soc(Λ) is isomorphic to the direct sum of the uniserial modules aΛ/ soc(aΛ),
that is, rad(Λ)/ soc(Λ) ' ⊕a∈Q1(aΛ/ soc(aΛ). But if C = a1 · · · as is the special α-cycle
with first arrow a = a1 associated to the uniserial module aΛ, then dimK(aΛ) = µ(α)s.
Hence, dimK(aΛ/ soc(aΛ)) = µ(α)|C| − 1. Noting there are |C| special cycles equivalent to
C, the result now follows. �

4. Radical cubed zero Brauer configuration algebras

In this section we classify the radical cubed zero Brauer configuration algebras such that
the associated Brauer configuration has no self-foldings; that is, each polygon in the Brauer
configuration contains no repeated vertices. More precisely, we associate Brauer configura-
tion algebras to finite graphs and compare them to the symmetric radical cube zero algebras
associated to the same graphs. In particular, given a symmetric radical cubed zero algebra
associated to a graph, we provide a construction of a Brauer configuration, such that the
associated Brauer configuration algebra is isomorphic to the given symmetric radical cubed
zero algebra.

We begin with a well-known one-to-one correspondence. Fix a positive integer n and
consider the set of finite graphs G = (G0, G1) where G0 = {1, 2, . . . , n} is the set of vertices
of G and G1 is the set of edges of G. We further suppose that G has no isolated vertices;
in particular, the valency of each vertex is at least equal to one. We allow multiple edges
and loops. We say two such graphs G = (G0, G1) and G′ = (G0, G

′
1) if there is a set

isomorphism δ : G1 → G′1 such that, for each e ∈ G1, the endpoints of e and δ(e) are the
same. Effectively, two graphs are equivalent if they differ only in the names of the edges.

Let Gn denote the set of equivalence classes of finite graphs having n vertices labelled 1 to
n and such that there are no vertices of valency zero.

LetMn denote the set of symmetric n×n matrices with entries in the nonnegative integers
such that no row only has 0 entries. Equivalently, no column has only 0 entries. Although
the next result is well-known we include a short proof for completeness.

Lemma 4.1. There is a one-to-one correspondence between Gn and Mn.

Proof. If G represents an equivalence class in Gn, define E(G) to be the n× n matrix with
(i, j)-entry being the number of edges with endpoints the vertices i and j, if 1 ≤ i 6= j ≤ n,
and the (i, i)-entry of E(G) is the number of loops at vertex i.

If E = (ei,j) ∈ Mn let G(E) be the equivalence class of a graph with vertex set {1, . . . , n}
and ei,j edges with endpoints i and j.

We have G(E(G)) = G and E(G(E)) = E. Finally, G having no isolated vertices corre-
sponds to E having no zero row and no zero column and we are done. �
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Our goal is to extend the one-to-one correspondence given in the above Lemma to include
Brauer configurations. For this we need to introduce ordered Brauer configurations. But
before we do so, we would like to motivate why this is necessary. Consider the following
two (unequal) symmetric matrices

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 and


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 .

The graphs associated to these matrices are both 4 cycles respectively given by

1 2 1 3

4 3 and 4 2.

As the vertices of the graph will correspond to the polygons in a Brauer configuration, to
obtain the desired one-to-one correspondence, one needs to distinguish two Brauer configu-
rations that differ only in the labelling of the polygons. This is taken care of by ‘ordering’
the polygons, which is formally defined below.

Before giving the definition of ordering, we have the following result.

Lemma 4.2. Let Λ be a indecomposable Brauer configuration algebra with Brauer config-
uration Γ. Then rad3(Λ) = 0 and rad2(Λ) 6= 0 if and only if val(α)µ(α) = 2, for each
nontruncated vertex α ∈ Γ0.

Proof. If α is a nontruncated vertex, then val(α)µ(α) ≥ 2. If, for some α ∈ Γ0, val(α)µ(α) ≥
3 and C is a special α-cycle, then Cµ(α) has length val(α)µ(α) and is a nonzero element in
soc(Λ). Thus rad3(Λ) 6= 0. Conversely, if rad3(Λ) 6= 0 then there must be some vertex α

and a special α-cycle C such that the length of Cµ(α) which equals val(α)µ(α) is ≥ 3. To

see this, if every Cµ(α) is of length 2 then every path of length 3 must be in the ideal of
relations. In particular, rad3(Λ) = 0, a contradiction. �

Let Γ = (Γ0,Γ1, µ, o) be a reduced Brauer configuration such that |Γ1| = n. That is, there
are exactly n polygons in Γ1, and suppose further that 1 ≤ val(α)µ(α) ≤ 2, for all α ∈ Γ0.
Recall that by our assumptions on Brauer configurations and the definition of reduced,
if val(α)µ(α) = 1, then α is a truncated vertex in a 2-gon and the other vertex is not
truncated.

We say Γ is ordered by f if f : {1, 2, 3, . . . , n} → Γ1 is an isomorphism. Note that f ‘orders’
the polygons in Γ1 with f(i) being the ith polygon. To simplify notation, we will usually
omit f and use the terminology ‘the ith polygon’ for f(i) and say Γ is ordered. We remark
that the assumption that val(α)µ(α) ≤ 2 for all α, implies there is only one choice for o
and µ is determined by the truncated vertices. Namely, if α is a vertex with val(α) = 2 and
µ(α) = 1 and if α is in the polygons V and V ′, with V 6= V ′, then the successor sequence
at α must be V < V ′ which is the same as V ′ < V . If α is a vertex with val(α) = 1, α
is either truncated or not. If α is truncated, µ(α) = 1 and if not, µ(α) = 2, and α ∈ V ,
then the successor sequence for α is given by V . If α is truncated then α has no successor
sequence.
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We say an ordered reduced Brauer configuration Γ has no self-foldings if, for each polygon
V in Γ1, there are no repeated vertices in V .

Let Γ = (Γ0,Γ1, µ, o) and Γ′ = (Γ′0,Γ
′
1, µ
′, o′) be two ordered reduced Brauer configurations

with no self-foldings such that, for each α ∈ Γ0 or α ∈ Γ′0, we have 1 ≤ val(α)µ(α) ≤ 2. We
say Γ is equivalent to Γ′ if there is a set isomorphism ε : Γ0 → Γ′0 such that if {α1, . . . , αr}
is the ith polygon in Γ1, then {ε(α1), . . . , ε(αr)} is the ith polygon in Γ′1. Effectively, two
ordered reduced Brauer configurations are equivalent if they differ only in the names of the
vertices.

It easily follows from the definition, that if Γ and Γ′ are equivalent Brauer configurations
then the associated Brauer configuration algebras are isomorphic. This holds since the only
difference between Γ and Γ′ is the labeling of the vertices.

Let Bn be the set of equivalence classes of ordered reduced Brauer configurations Γ satisfying

(1) Γ has no self-foldings,

(2) Γ has exactly n polygons, and

(3) 1 ≤ val(α)µ(α) ≤ 2, for all α ∈ Γ0.

Before stating our next result, we introduce some terminology. Let G = (G0, G1) be a
representative of an element of Gn. A vertex in G is called a leaf if it has valency 1. If i is
a leaf and i is an endpoint of the edge e, we say e is the leaf edge associated to i.

Proposition 4.3. The set Bn is in one-to-one correspondence with the sets Gn and Mn,
for all strictly positive integers n.

Proof. We show that Bn is in one-to-one correspondence with Gn.

Let Γ = (Γ0,Γ1, o, µ) be an ordered, reduced Brauer configuration which represents an
equivalence class in Bn. We construct a graph G(Γ) which represents an equivalence class
in Gn as follows. For i = 1, . . . n, let Vi be the ith polygon in Γ1. The vertex set of G(Γ) is
given by {1, . . . , n} with the polygon Vi in Γ corresponding to the vertex i in G(Γ). The
number of edges between vertices i and j in G(Γ), where i 6= j, is equal to the number of
vertices α ∈ Γ0 such that α ∈ Vi ∩ Vj . The number of loops at vertex i in G(Γ) is equal to
the number of vertices α ∈ Γ0 such that α ∈ Vi, and µ(α) = 2. From Γ, we have constructed
a graph G(Γ). The reader may check that if Γ′ is another Brauer configuration in the same
equivalence class of Bn as Γ, then G(Γ) and G(Γ′) are in the same equivalence class in Gn.
Thus, we have a well-defined map from Bn to Gn.

We will construct the inverse map from Gn to Bn. We begin with a special case. Let G
be the graph with one vertex {1} and one loop at 1. Set Γ(G) = ({α, β}, V = {α, β}, µ, o)
where µ(α) = 1 and µ(β) = 2. Note that there is only one orientation since there is just
one polygon. The vertex α is truncated. Then we send the equivalence class of G to the
equivalence class of Γ(G). It is clear that G(Γ(G)) is in the same equivalence class as G in
Gn.

Now let G = (G0, G1) be a graph in an equivalence class in Gn. Using the special case
above, we may assume that G has no connected components consisting of a vertex and a
loop. Define a Brauer configuration Γ(G) = (Γ0,Γ1, µ, o) representing an equivalence class
in Bn as follows. The vertex set of Γ(G) is

Γ(G)0 = G1 ∪ {(e, i) | i is a leaf and e is the leaf-edge associated to i}.
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The set of polygons {V1, . . . , Vn} is in bijection with the set G0 of vertices of G, where
Vi = {e ∈ G1 | i is an endpoint of e} if i is not a leaf and Vi = {e, (e, i)} where i is a leaf
and e is the leaf edge associated to i. If e is a loop at vertex i in G, then Vi contains e as
an element once (since we are constructing Brauer configurations with no self-foldings; as
an aside, Example 4.7 shows that if we allow self-foldings, there could be more than one
Brauer configuration associated to a graph G). Note that the valency of a vertex in Γ(G)
is at most 2 since an edge in G has at most two endpoints. Therefore there are at most two
polygons at any vertex of Γ(G) and there is a unique cyclic order o. To clarify notation,
if e is an edge in G then we will write ē instead of e for the vertex in Γ. We define the
multiplicity function as follows. If e is an edge of G and e is not a loop, then µ(ē) = 1.
If e is a loop, µ(ē) = 2. Finally set µ(e, i) = 1. We see that the vertices of Γ(G) of the
form (e, i) are precisely the truncated vertices of Γ(G). Moreover, it is clear that Γ(G) is
ordered and reduced. Thus we have constructed a Brauer configuration Γ(G). The reader
may check that sending the equivalence class of G to the equivalence class of Γ(G) is a
well-defined map and inverse to the first map. �

For a given graph G in an equivalence class of Gn, call the Brauer configurations constructed
in the proof of Proposition 4.3 above, the Brauer configuration associated to the graph G
and denote it by Γ(G).

Example 4.4. To help clarify the above proof we provide examples of both constructions.
Namely in the first instance, given a Brauer configuration we construct a representative of
the associated graph equivalence class. Secondly, given a graph, we construct a representa-
tive of the corresponding Brauer configuration.

a) Let Γ = (Γ0,Γ1, µ, o) be a Brauer configuration where Γ0 = {1, 2, . . . , 10}, Γ1 =
{V1, . . . , V6}, with V1 = {1, 2, 3}, V2 = {3, 4, 5}, V3 = {1, 5}, V4 = {2, 4, 6, 7, 9}, V5 = {7, 8},
and V6 = {9, 10}, µ(8) = 2 = µ(6), and µ(i) = 1, for i 6= 6, 8. Note that since at each vertex
of Γ the valency is ≤ 2, there is a unique orientation o. We further remark that neither
vertices 6 nor 8 are truncated since their multiplicities are greater than 1, however, vertex
10 is truncated. A realization of Γ is given by

V1

V2

V4

V5

V6

1 2

3

45

9

10

7 8

6

V3

The reader may check that the equivalence class of the graph G(Γ) as constructed in the
theorem can be represented by

1

4

3 6
5

a1

a2 a6

a7

a8a9

a3

a5

2 a4

Note that the edges are labelled ai, where i is the vertex in Γ yeilding ai. Thus, since vertex
1 in Γ is in V1 ∩ V3, we have an edge a1 between 1 and 3. Similarly, for example, since
vertices 6 and 8 in Γ has multiplicity 2, we get the loops a6 and a8. Note that since 10 is
truncated in Γ, there is no a10 and vertex 6 of G(Γ) is a leaf.
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As a second example, we start with a graph G representing an equivalence class in G6

1 2 3 6

4

5

a b
cd

i

f g

h

and construct the associated Brauer configuration, which is

(a, 1) (e, 6)

h

V1
V2 V3

V6

a b e

d c

g f

V4

V5

Note that the two leaves at vertices 1 and 6 in G, result in two truncated vertices in Γ(G);
namely (a, 1) and (e, 6), respectively.

Given a graph G representing an equivalence class in Gn, there is a standard construction
of a radical cubed zero symmetric algebra which we now recall. We start by constructing a
quiver, QG, associated to G as follows. The vertex set of QG consists of n vertices labeled
{1, . . . , n} and, for each edge e in G1 that is not a loop, and such that e has endpoint
vertices i and j in G0, there are two arrows a and a′ in QG such that a is an arrow from i
to j and a′ an an arrow from j to i. For each loop e at vertex i in G, the quiver QG has a
loop b at vertex i.

We call aa′, a′a, and b2 distinguished paths in QG.

Let IG be the ideal in KQG generated by

(1) all p− q where p and q are distinguished path with the same start and end vertices.

(2) all aba, for all arrows a, b in Q such that ab is a distinguished path.

(3) all non-distinguished paths of length 2.

Note that if G′ is a graph equivalent to G then QG = QG′ and IG = IG′ .

Keeping the notation above, we have the following result.

Lemma 4.5. Let G be a graph representing an equivalence class in Gn. Then KQG/IG is
a symmetric K-algebra with radical cubed zero.

Proof. Let π : KQG → KQG/IG be the canonical surjection. It is routine to check that
KQG/IG is a selfinjective algebra with radical cubed zero.

To see that KQG/IG is symmetric, define f : KQG/IG → K as follows. If p is a path in
KQG, let

f(π(p)) =

{
1, if p is a distinguished path,

0, in all other cases.

It is straightforward to show that the kernel of f contains no two-sided ideals and that
f(xy) = f(yx), for all x, y ∈ KQG/IG. �
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We call AG = KQG/IG the canonical symmetric algebra with radical cubed zero associated
to G.

We now present the main result of this section.

Theorem 4.6. Let G be a representative of an equivalence class in Gn, let Γ(G) be the
Brauer configuration associated to G with corresponding Brauer configuration algebra ΛΓ(G)

and let AG be the canonical symmetric algebra with radical cubed zero associated to G. Then
ΛΓ(G) and AG are isomorphic as K-algebras.

Proof. For ease of notation set Γ = Γ(G), Λ = ΛΓ(G) and A = AG. The quiver QΛ of Λ
has vertex set {v1, . . . , vn} corresponding to the set of polygons {V1, . . . , Vn}. Recall that
the vertex set Γ0 of Γ is given by the edge set G1 of G together with the truncated vertices
(e, i), where i is a leaf and e is the leaf edge associated to i.

For the special case where G has one vertex and a loop at that vertex, both Λ and A are
isomorphic to K[x]/(x3) since the Brauer configuration associated to G is given in the proof
of Proposition 4.3 is a 2-gon with one vertex truncated and the other has multiplicity 2.

Thus we may assume that G has no connected component consisting of one vertex and a
loop. Let e ∈ Γ0 where e is an edge in G. To avoid confusion, we will write ē when e is
a vertex in Γ and e when e is an edge in G. Then, as an edge in G, e either is a loop or
not. If e is a loop in G, then let i be the vertex in G0 that is the endpoint of e. From our
construction it then follows that, as a vertex in Γ0, ē has valence 1 in Γ, that ē ∈ Vi and
µ(ē) = 2. But then in Γ, the successor sequence at ē is Vi and it gives rise to a loop at vi
in QΛ. On the other hand, if e is not a loop in G, then e has two endpoints i and j, with
1 ≤ i 6= j ≤ n. It follows from our construction of Γ, that ē as a vertex in Γ0 is such that
val(ē) = 2 with ē ∈ Vi and ē ∈ Vj . Furthermore, the successor sequence at ē is Vi < Vj . It
follows that ē gives rise to two arrows in QΛ, namely one arrow from i to j and one from j
to i. Recall that the truncated vertices of Γ do not influence QΛ.

LetQA be the quiver of the canonical symmetric algebra with radical cube zero A associated
to G. It clearly follows from the construction of QΛ and QG that by sending vi to i and
an arrow from vi to vj to an arrow from i to j, we obtain an isomorphism QΛ → QG. Let
IΓ be the ideal of relations of the Brauer configuration algebra associated to Γ and IG be
the ideal of relations of A. It easy to see that, under the isomorphism QΛ → QA, the type
one, two and three relations obtained from the Brauer configuration Γ map isomorphically
to the relations (1), (2), and (3) for the canonical symmetric algebra with radical cube zero
associated to G given above. This completes the proof.

�

One might ask if every radical cubed zero symmetric algebra is the canonical symmetric
algebra with radical cube zero associated to a graph G. The answer is no as shown by
the following example of a graph to which we can associate two non-isomorphic symmetric
algebras with radical cube zero.

Example 4.7. We give an example of a graph G in G1 and two symmetric algebras asso-
ciated to this graph, one of them being the canonical symmetric algebra with radical cube
zero associated to G, the other one being a Brauer configuration algebra where the Brauer
configuration has a self-folding. These two algebras are isomorphic if K contains an element
i such that i2 = −1 and they are non-isomorphic otherwise.
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Let G be the graph with one vertex and two loops.

The canonical symmetric algebra associated to G is A = K[x, y]/(xy, x2 − y2), where K
is a field and K[x, y] is the commutative polynomial ring in two variables. A Brauer
configuration such that the associated Brauer configuration algebra is isomorphic to A is
Γ = ({α, β}, V = {α, β}, µ, o) with µ(α) = µ(β) = 2. In fact, this corresponds to the Brauer
graph algebra associated to the Brauer graph given by a single edge where both vertices
have multiplicity two.

Now consider the algebra A′ = K[x, y]/(x2, y2). Then A′ is a symmetric radical cubed zero
algebra. The algebra A′ is isomorphic to the Brauer configuration algebra associated to
the Brauer configuration Γ′ = ({α}, V = {α, α}, µ, o) with µ(α) = 1. Remark that Γ′ has a
self-folding. The algebra A′ also corresponds to a Brauer graph algebra. Its Brauer graph
is given by a loop with multiplicity one at the only vertex.

Note that the matrix associated to both A and A′ is the 1× 1 matrix (2).

Now suppose that i ∈ K with i2 = −1. Then the map defined by x 7→ x + iy, y 7→ x − iy
induces an isomorphism from A′ to A. If, however, K does not contain an element squaring
to −1 then the algebras A and A′ defined above are not isomorphic.

Example 4.7 leads to the question: What can one say about an indecomposable symmetric
radical cubed zero algebra of the form KQ/I. This question is addressed in [GS] where
it is shown that every such algebra is a Brauer configuration algebra, when one allows
self-foldings in the Brauer configuration.
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[VHW] Von Höhne, Hans-Joachim; Waschbüsch, Josef. Die struktur n-reihiger Algebren. Comm. Algebra

12 (1984), no. 9-10, 1187–1206.
[Z1] Zvonareva, Alexandra. On the derived Picard group of the Brauer star algebra, arXiv:1401.6952.
[Z2] Zvonareva, Alexandra. Two-term tilting complexes over Brauer tree algebras, arXiv:1311.7061.

Edward L. Green, Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA

E-mail address: green@math.vt.edu

Sibylle Schroll, Department of Mathematics, University of Leicester, University Road, Le-
icester LE1 7RH, United Kingdom

E-mail address: schroll@le.ac.uk


