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Abstract

A time-variable 1D photochemical model is used to study the distribution

of stratospheric hydrocarbons as a function of altitude, latitude, and sea-

son on Uranus and Neptune. The results for Neptune indicate that in the

absence of stratospheric circulation or other meridional transport processes,

the hydrocarbon abundances exhibit strong seasonal and meridional varia-

tions in the upper stratosphere, but that these variations become increasingly

damped with depth due to increasing dynamical and chemical time scales.

At high altitudes, hydrocarbon mixing ratios are typically largest where the

solar insolation is the greatest, leading to strong hemispheric dichotomies

between the summer-to-fall hemisphere and winter-to-spring hemisphere. At

mbar pressures and deeper, slower chemistry and diffusion lead to latitude

variations that become more symmetric about the equator. On Uranus, the

stagnant, poorly mixed stratosphere confines methane and its photochemical

products to higher pressures, where chemistry and diffusion time scales re-

main large. Seasonal variations in hydrocarbons are therefore predicted to be
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more muted on Uranus, despite the planet’s very large obliquity. Radiative-

transfer simulations demonstrate that latitude variations in hydrocarbons on

both planets are potentially observable with future JWST mid-infrared spec-

tral imaging. Our seasonal model predictions for Neptune compare well with

retrieved C2H2 and C2H6 abundances from spatially resolved ground-based

observations (no such observations currently exist for Uranus), suggesting

that stratospheric circulation — which was not included in these models —

may have little influence on the large-scale meridional hydrocarbon distribu-

tions on Neptune, unlike the situation on Jupiter and Saturn.

Keywords:

Atmospheres, chemistry; Photochemistry; Uranus; Neptune; Atmospheres,

composition

1. Introduction

Infrared and ultraviolet observations reveal that the stratospheric compo-

sition of Uranus and Neptune is being altered by solar-driven photochemistry,

despite the great distance of these planets from the Sun (see the reviews of

Atreya et al., 1991; Bishop et al., 1995; Yung and DeMore, 1999). Methane

photolysis by solar ultraviolet radiation triggers the production of acety-

lene (C2H2), ethylene (C2H4), ethane (C2H6), methylacetylene (CH3C2H),

diacetylene (C4H2), and other complex hydrocarbons, many of which have

been observed on Uranus and Neptune (see Burgdorf et al., 2006; Orton et al.,

2014c, and references therein). These photochemically produced species are

radiatively active at mid-infrared wavelengths and can affect many aspects

of the planetary atmosphere, such as its thermal structure, aerosol struc-
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ture, energy balance, dynamical motions, and ionospheric structure. A full

understanding of the three-dimensional (3D) time-variable behavior of pho-

tochemically produced species is therefore important for understanding many

aspects of atmospheric physics and chemistry on Uranus and Neptune.

The non-zero obliquity (axial tilt) of Uranus and Neptune results in a

seasonal dependence of solar insolation (see Fig. 1) that affects the produc-

tion and loss rates of photochemically active constituents. Uranus, with

its extreme ∼97.8◦ obliquity and rotational pole nearly in line with its or-

bital plane, experiences very unusual seasons compared to other Solar-System

planets. Averaged over a year, high latitudes on Uranus receive greater solar

insolation than low latitudes (see Fig. 2). Much of the planet alternates be-

tween being almost fully illuminated and being in almost complete darkness

for half a year at a time (with one year on Uranus being equal to 84 Earth

years), creating an opportunity for dramatic changes in hydrocarbon produc-

tion as a function of season. Neptune’s more moderate 28.3◦ obliquity results

in seasonal forcing similar to that on the Earth, Mars, and Saturn, with low

latitudes receiving a greater annual average solar insolation than high lati-

tudes. Thus, averaged over a year, hydrocarbon production rates on Neptune

will be greater at low latitudes than high latitudes. Given that a Neptune

year is 165 Earth years, the winter high-latitude regions on Neptune endure

long periods of time without sunlight, and the reduction in photochemical

production of stratospheric hydrocarbons during the long polar winter could

potentially affect global hydrocarbon abundances and/or result in different

meridional distributions of hydrocarbons than shorter-period planets with

similar obliquities, such as Saturn.
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Uranus: Daily mean solar insolation (W m-2)
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Neptune: Daily mean solar insolation (W m-2)
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Uranus: Daily mean actinic flux (W m-2)
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Neptune: Daily mean actinic flux (W m-2)
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Figure 1: (Top) Mean daily solar insolation (W m−2 per planetary day) incident onto a

unit horizontal surface at the top of the atmosphere of Uranus (Left) and Neptune (Right)

as a function of planetocentric latitude and season, where season is represented by solar

longitude Ls. (Bottom) Mean daily actinic flux (W m−2 per planetary day) at the top

of the atmosphere of Uranus (Left) and Neptune (Right) as a function of planetocentric

latitude and season. Note that a molecule being photodissociated does not care what

direction the photon is coming from, just what the local photon flux is; therefore, the

actinic flux, which is the solar flux without accounting for the cosine dependence of the

solar zenith angle, is more relevant to the photochemistry discussion than the insolation

at a “surface.”
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Figure 2: Annual average solar insolation at Uranus and Neptune as a function of latitude.

Unlike the situation on other planets in the solar system, the polar regions of Uranus receive

a higher annual average insolation than the equatorial region.

Although several one-dimensional (1D) photochemical models for Uranus

and Neptune have been developed in the past (e.g., Atreya and Ponthieu,

1983; Romani and Atreya, 1988, 1989; Romani et al., 1993; Summers and

Strobel, 1989; Bishop et al., 1990, 1992, 1998; Moses et al., 1992, 1995, 2005;

Lellouch et al., 1994; Dobrijevic and Parisot, 1998; Dobrijevic et al., 2010;

Bézard et al., 1999; Schulz et al., 1999; Orton et al., 2014c; Moses and Poppe,

2017), all previous models were designed for either global-average conditions

or specific latitudes and times. Here, we present results from a 1D time-

variable model that tracks the seasonal variation of photochemically pro-

duced hydrocarbons as a function of altitude for different latitudes. The

models are similar to those of Moses and Greathouse (2005) in that the 1D
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models for the different latitudes are not connected to each other via atmo-

spheric circulation or any type of meridional transport, and the temperature

structure is kept constant with latitude and time. Hue et al. (2015) show

that for Saturn, the expected seasonal variations in stratospheric tempera-

tures have only a minor influence on the abundances of the observable hy-

drocarbons, except in high-latitude regions during winter, where downward

diffusion of hydrocarbons is faster as a result of atmospheric compression due

to the lower temperatures. On the other hand, atmospheric dynamics can

alter the vertical and meridional distribution of stratospheric constituents

in potentially more significant ways. Comparisons of seasonal 1D photo-

chemical models with the observed vertical and meridional distribution of

hydrocarbon abundances can therefore provide useful information on the na-

ture and strength of atmospheric dynamics, as well as atmospheric chemistry

(see the Jupiter and Saturn studies of Moses and Greathouse, 2005; Liang

et al., 2005; Nixon et al., 2007, 2010; Guerlet et al., 2009, 2010; Friedson and

Moses, 2012; Sinclair et al., 2013, 2014; Zhang et al., 2013; Sylvestre et al.,

2015; Fletcher et al., 2015, 2016; Hue et al., 2015, 2016; Moses et al., 2015).

We describe our photochemical models in section 2, present and discuss

the results for the seasonal and meridional variations in hydrocarbons on

Uranus and Neptune in section 3, compare the theoretical predictions with

available observations in section 4, and discuss implications for future obser-

vations and modeling in section 5.
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2. Photochemical model

The coupled set of continuity equations describing the vertical distribu-

tion of chemical constituents in the upper atmosphere of Uranus and Neptune

is solved simultaneously by finite-difference methods, using the Caltech/JPL

1D KINETICS model (e.g., Allen et al., 1981; Yung et al., 1984). The Uranus

model contains 181 vertical grid points, ranging from 5.6 bar to 1× 10−8

mbar, with at least three grid points per scale height to ensure accuracy;

the background temperature structure is taken from Orton et al. (2014b).

The Neptune model contains 198 vertical grid points ranging from 5.0 bar to

1× 10−8 mbar, with the background temperature structure taken from Moses

et al. (2005), which was originally based on Orton et al. (1992), Roques et al.

(1994), and Wang and Yelle (1992). There is no physically meaningful reason

for the different number of grid points for each planet — the numbers were

chosen simply to conform to previous models for these planets (Orton et al.,

2014c; Moses and Poppe, 2017). Figure 3 shows the model temperature grid

for both planets. Although the temperature-pressure profile is assumed to

be constant with latitude, the altitude grid changes with latitude due to the

variation of gravity with latitude and radius on a rapidly spinning, oblate

planet (e.g., Lindal et al., 1985). Thirty different latitudes are considered,

ranging from −87◦ to 87◦ planetocentric latitude, every 6 degrees.

2.1. Chemistry inputs and boundary conditions

The chemical-kinetics inputs to the model are described in Moses et al.

(2005, 2015) and references therein, with the complete updated reaction list

presented in Moses and Poppe (2017). A total of ∼70 hydrocarbon and oxy-
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Figure 3: Temperature profiles for Uranus and Neptune (as labeled) adopted in the model.

gen species are considered, interacting through ∼500 chemical reactions, with

113 of these being photolysis reactions. The model includes condensation of

C2H2, C2H6, C3H8, C4H2, C4H10, C6H6, H2O, and CO2, all of which will

condense on both Uranus and Neptune (for the condensation procedure, see

Moses et al., 2000b). Multiple Rayleigh scattering of the dominant gas-phase

constituents is included, but aerosol scattering and absorption are not — the

stratospheric aerosols are optically thin (Pollack et al., 1987; Moses et al.,

1995; Karkoschka and Tomasko, 2009, 2011). The chemical production and

loss rates and atmospheric transmission profiles are diurnally averaged, which

is appropriate given that photolysis time scales and chemical time constants

for the hydrocarbons are longer than a planetary day (∼17.24 hr rotation

rate for Uranus, ∼16.11 hr for Neptune).

Methane from the deep atmosphere is the ultimate source of all carbon-

bearing species in the model. Although methane condenses in the upper
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troposphere of Uranus and Neptune, causing it to be depleted at higher alti-

tudes, some CH4 vapor makes it past the tropopause cold trap and into the

stratosphere, just as water vapor does on the Earth. To streamline the cur-

rent calculations, we neglect tropospheric methane condensation and instead

fix the CH4 volume mixing ratio at the lower boundary of the model to be

representative of the value observed in the lower stratosphere — 1.6× 10−5

for Uranus (based on Orton et al., 2014c) and 1.2× 10−3 for Neptune (based

on Fletcher et al., 2010; Lellouch et al., 2010, 2015). This assumption leads

to an inaccurate methane profile in the troposphere and therefore inaccu-

rate tropospheric hydrocarbon chemistry (which is relatively unimportant at

these deeper altitudes, in any case), so the tropospheric results are ignored

throughout the paper; only the stratospheric results are discussed. We also

fix the mixing ratios of helium and CO at the lower boundary of the model.

On Uranus, we assume the lower-boundary volume mixing ratio to be 15%

for helium (Lindal et al., 1987) and 1.0× 10−10 for CO (i.e., well below the

upper limit of Teanby and Irwin, 2013). On Neptune, we assume the lower-

boundary volume mixing ratio to be 19% for helium (Conrath et al., 1991b)

and 8× 10−8 (Luszcz-Cook and de Pater, 2013) for CO. The rest of the hy-

drocarbon and oxygen species are assumed to have concentration gradients

of zero at the lower boundary, allowing the species to flow freely from their

source regions at higher altitudes through the lower boundary at a maximum

possible rate.

For the models presented here, we assume that the CH4 mixing ratio

at the base of the stratosphere is constant with latitude. Karkoschka and

Tomasko (2009, 2011), Sromovsky et al. (2011, 2014), Irwin et al. (2012),
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Tice et al. (2013), de Kleer et al. (2015), and Luszcz-Cook et al. (2016) pro-

vide observational evidence that the methane abundance in the troposphere

varies with latitude on both Uranus and Neptune, with the polar regions

being depleted in methane with respect to equatorial regions. The high-

latitude depletion in CH4 is particularly strong for Uranus. As discussed

in the above references, these variations most likely arise from large-scale

circulation patterns affecting the methane abundance in its condensation

region in the upper troposphere, with CH4 enhancements occurring in up-

welling regions and depletions in downwelling regions, but the full details

of this process have yet to be worked out. Moreover, it is currently unclear

whether the latitude dependence extends into the stratosphere or not, or even

how the methane is injected into the stratosphere in the first place. Does

methane “leak” out of the troposphere into the stratosphere preferentially

in regions where the tropopause is warmer and the local saturation vapor

pressure higher (e.g., Orton et al., 2007), or is the methane dynamically in-

jected into the stratosphere preferentially in regions with strong convective

uplift (e.g., Karkoschka and Tomasko, 2011; Sromovsky et al., 2014; de Pa-

ter et al., 2014)? Given the lack of current information on the stratospheric

behavior of methane as a function of latitude, our constant-with-latitude as-

sumption provides a first-order look at the problem that can be altered when

more data become available, such as with future observations from the James

Webb Space Telescope (JWST) (Norwood et al., 2016). We do note, however,

that when Greathouse et al. (2011) assumed a larger stratospheric methane

abundance at the equator relative to the poles at Neptune, the temperature

predictions from their radiative seasonal models were in closer agreement to
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the observed temperatures, suggesting a latitude dependence of CH4 in the

stratosphere of Neptune, at least, is possible.

The oxygen-bearing species in our model are assumed to derive from ex-

ternal sources such as comets (Lellouch et al., 2005; Hesman et al., 2007;

Luszcz-Cook and de Pater, 2013) or interplanetary dust (Moses 1992, Poppe

2016; see also Cavalié et al. 2014 & Moses and Poppe 2017), with CO having

a possible significant internal source from the deeper troposphere (Fegley and

Prinn, 1986; Lodders and Fegley, 1994; Fletcher et al., 2010; Luszcz-Cook and

de Pater, 2013; Cavalié et al., 2017). Other major oxygen species from the

interior, such as H2O and CO2, will condense at depth in the troposphere,

with negligible amounts being transported into the stratosphere. To account

for the external source of oxygen, we assume that H2O, CO, and CO2 are

flowing in at the top of the atmosphere on both planets. The relative fluxes

for these species are taken from Moses and Poppe (2017), who investigated

the coupled oxygen-hydrocarbon photochemistry on Uranus and Neptune,

and constrained the influx rates through comparisons of models with strato-

spheric observations of H2O (Feuchtgruber et al., 1997, 1999; Lellouch et al.,

2010), CO (Lellouch et al., 2005; Hesman et al., 2007; Fletcher et al., 2010;

Luszcz-Cook and de Pater, 2013; Teanby and Irwin, 2013; Cavalié et al.,

2014), and CO2 (Feuchtgruber et al., 1999; Meadows et al., 2008; Orton

et al., 2014c). For Uranus, these influx rates are 1.2× 105 H2O molecules

cm−2 s−1, 2.7× 105 CO molecules cm−2 s−1, and 2.8× 103 CO2 molecules

cm−2 s−1 at the top boundary. For Neptune, the assumed influx rates are

2.0× 105 H2O molecules cm−2 s−1, 2.0× 108 CO molecules cm−2 s−1, and

2.3× 104 CO2 molecules cm−2 s−1 at the top boundary.
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Note that our assumption of a constant influx at the top boundary pro-

vides a reasonable approximation to the situation in which the oxygen is sup-

plied by interplanetary dust particles, but the vertical profiles of the oxygen

species would be more complicated if the bulk of the oxygen were supplied by

a relatively recent large cometary impact, as has been suggested for Neptune

in particular (see Lellouch et al., 2005; Hesman et al., 2007; Luszcz-Cook and

de Pater, 2013; Moses and Poppe, 2017). We also assume a downward flux of

atomic H at the upper boundary of both planets to account for an additional

thermospheric source. We assume an influx rate of 5× 107 and 1× 107 H

atoms cm−2 s−1, respectively, at the top boundary of our Uranus and Nep-

tune models based on Moses et al. (2005). All other species are assumed to

have zero-flux boundary conditions at the top of the atmosphere.

2.2. Vertical transport and solar flux

As is typical in 1D photochemical models, vertical transport is assumed to

operate through eddy and molecular diffusion. The eddy diffusion coefficient

profile is one of the major free parameters for such models. Figure 4 shows

the diffusion coefficients adopted in our models. For Uranus, we assume

the vertical eddy diffusion coefficient Kzz = 2430 cm2 s−1, independent of

altitude, based on Orton et al. (2014c). That assumption places the methane

homopause at the ∼7× 10−2 mbar pressure level. For Neptune, we assume

Kzz = 105

0.1

P

0.55

, for P < 0.1 mbar

= 105

0.1

P

0.98

, for 28 mbar < P < 0.1 mbar
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= 400, for P > 28 mbar,

(1)

for Kzz in cm2 s−1 and P in mbar, which places the methane homopause level

at ∼8× 10−5 mbar. These eddy diffusion coefficient profiles were chosen in

combination with our adopted lower-stratospheric CH4 mixing ratio and our

updated giant-planet chemical reaction list to provide a reasonable fit to

the global-average stratospheric hydrocarbon abundances on both Uranus

and Neptune (see Orton et al., 2014c; Moses and Poppe, 2017). For the

nominal models presented here, the Kzz profile is assumed to be independent

of latitude. The assumptions regarding the molecular diffusion coefficients

are described in Moses et al. (2000a).
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Diffusion coefficient (cm2 s-1)

Uranus

Neptune

Figure 4: Profiles of the eddy diffusion coefficients (solid lines) and CH4 molecular diffu-

sion coefficients (dot-dashed lines) for Uranus (green) and Neptune (blue) adopted in the

models.

For the solar ultraviolet flux, we take the average of the solar-cycle min-
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imum and maximum fluxes presented in Woods and Rottman (2002). Al-

though the hydrocarbon abundances at high altitudes are sensitive to the

instantaneous solar flux, such that the solar-cycle variations should show up

readily in the mixing ratio profiles in the upper stratosphere (e.g., Moses

and Greathouse, 2005), chemical and transport time scales are much longer

in the middle and lower stratosphere where the infrared observations are

probing. Therefore, average solar flux values are sufficient for our purposes.

We also include an isotropic source of stellar background UV radiation (taken

from Mathis et al., 1983) and solar Lyman α photons that are being scat-

tered from atomic hydrogen in the local interplanetary medium (LIPM).

This LIPM source of photolyzing radiation is increasingly important to the

photochemistry the farther the planet is located from the Sun, as was first

demonstrated by Strobel et al. (1990) and Bishop et al. (1992). The LIPM

source is needed particularly for the seasonal models presented here, as the

scattered Lyman alpha provides a mechanism for CH4 to be photolyzed even

during the long polar winter on these planets, when high latitudes do not

receive direct sunlight.

The magnitude of this LIPM source depends on both the solar cycle

and heliocentric distance. Before the Voyager encounter with Neptune, the

Ultraviolet Spectrometer (UVS) instrument recorded a background Lyman

alpha LIPM intensity of roughly 340 Rayleighs (Broadfoot et al., 1989). Due

to apparent calibration issues with the Voyager measurement (Gangopadhyay

et al., 2005), we revise this value downward by a factor of ∼2, and based on

modeling and observations (Gangopadhyay et al., 2005; Quémerais et al.,

2009), we assume the intensity at Uranus is a factor of ∼1.3 larger than that

14



at Neptune. The actinitc flux from this LIPM source (assuming isotropic

from the upper hemisphere only) is 2π
∫ 1

0
I(τ, µ)dµ, where I is the intensity

incident on a small surface area with cosine of the incidence angle µ at

vertical optical depth τ within the atmosphere. From Beer’s law, I(τ, µ) =

I0 exp(−τ/µ), and the actinic flux becomes

F (τ) = 2πI0
(
e−τ − τ [−Ei(−τ)]

)
, (2)

where Ei is the exponential integral. In general, Lyman alpha photons from

this LIPM source are absorbed at higher altitudes than the direct solar Ly-

man alpha source.

Unlike the case on Saturn, the small, faint ring systems of Uranus and

Neptune do not cast sufficient shadows on the planets to notably affect the

solar flux received and so are ignored in the calculations.

2.3. Seasonal model procedure

We first keep the season fixed at northern vernal equinox conditions (Ls

= 0◦) and run the 1D models for the different latitudes until steady-state

solutions are achieved for that constant season. Then, we run the time-

variable seasonal models with the above vernal equinox results as our initial

conditions. The heliocentric distance and relevant solar zenith angle and

flux calculations are updated every planetary day during the seasonal model

runs. The planetary orbital positions as a function of time (and Ls) for two

full planetary years are obtained from the JPL Horizons ephemeris calculator

(Giorgini et al., 1996). The values for Uranus begin at Ls = 0◦ in November,

1839 and end two planetary years later at Ls = 0◦ in December, 2007; the
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values for Neptune begin at Ls = 0◦ in September, 1716 and end two plan-

etary years later at Ls = 0◦ in March, 2046. The full two-year time period

was chosen originally to avoid any potential discontinuities due to the solar

cycle being different at the beginning and end of the most recent planetary

year when repeating the yearly calculations, but with the choice of solar-cycle

averages, the full two-year sequence is unnecessary. By the same token, the

results for a specific Ls for Neptune from this time period are relevant to the

same Ls in the more recent era beyond 2007. Because the chemical species

that are produced in the upper stratosphere can take thousands of years to

diffuse down to the base of the model atmosphere, this two-planetary-year

sequence is run again and again, with the results from the end of the second

year being fed as initial conditions to the beginning of new two-year calcu-

lation, until a repeatable annual result is obtained. The Uranus model was

iterated for a total of 80 Uranus years (∼6721 Earth years), and the Neptune

model for 10 Neptune years (∼1648 Earth years) — more time is needed for

the Uranus run because of the low eddy diffusion coefficient. The results

from the converged solutions are presented below.

3. Results and Discussion

The photochemical product abundances vary with altitude, latitude, and

time on Uranus and Neptune due to seasonal forcing (see full model output in

the Supplementary Material). We begin by discussing the seasonal variations

on Neptune, which are reasonably straightforward and qualitatively similar

to those derived for Saturn (Moses and Greathouse, 2005; Hue et al., 2015).

We then discuss seasonal variations on Uranus, which differ from those on

16



Neptune and Saturn — not only because of the planet’s extreme axial tilt,

but because of the very weak vertical mixing on Uranus. The results for both

planets as a function of latitude are then presented, followed by the column

densities as a function of both latitude and season.
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Figure 5: Mixing ratio profiles for key hydrocarbons (as labeled) on Neptune as a function

of season for 3◦N planetocentric latitude (Top), 45◦ planetocentric latitude (Middle), and

81◦ planetocentric latitude (Bottom). Seasons are shown every 30◦ in Ls. Data points

are from various published observations (global average or low latitude, acquired during

Ls = 230–300◦) (Caldwell et al., 1988; Bézard et al., 1991; Bishop et al., 1992; Orton

et al., 1992; Kostiuk et al., 1992; Yelle et al., 1993; Bézard et al., 1998; Schulz et al., 1999;

Meadows et al., 2008; Fletcher et al., 2010; Greathouse et al., 2011; Lellouch et al., 2015),

and unpublished Infrared Space Observatory hydrocarbon observations (Bruno Bézard,

personal communication, 2001).
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Fig. 5. (continued).
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Fig. 5. (continued).
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3.1. Seasonal variations in mixing ratios on Neptune

The vertical mixing-ratio profiles of several observed (or potentially ob-

servable) hydrocarbons on Neptune are shown in Fig. 5 as a function of season

for representative low, middle, and high latitudes (top, middle, and bottom

panels, respectively). Seasonal variations in the mixing ratios are appar-

ent at altitudes above the few-millibar region for most of the photochemical

products. Greater seasonal variation is exhibited at high latitudes than low

latitudes, simply because the seasonal variation in solar insolation is greater

at high latitudes than low latitudes (recall Fig. 1). Note that methane itself

does not vary much with either season or latitude because its vertical profile

is dominated by eddy and molecular diffusion rather than chemistry; the cu-

mulative photochemical products do not rival the abundance of the parent

CH4 molecules, so photodestruction leads to only a very minor change in the

mixing-ratio profile of methane.

For stable species with relatively long chemical lifetimes, such as C2H2

and C2H6, the seasonal variations are confined to high altitudes and become

progressively smaller in magnitude at deeper pressures (see also Fig. 6). This

behavior stems from the fact that both the diffusion time scales and chemical

time constants for these species generally increase with increasing pressure

(see Fig. 7, which displays the time constants at −3◦ latitude for the vernal

equinox situation at the start of the model run). Chemical time constants

do vary considerably with both latitude and season, but the general trend

of shorter time constants at higher altitudes holds true for all situations.

Both the diffusion time scales and chemical lifetimes are less than a Neptune

season in the region from ∼1 to a few µbar, where the C2H2 and C2H6 pro-
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Figure 6: Mixing ratios of acetylene (left) and ethane (right) on Neptune as a function

of season (represented by solar longitude Ls) at 1.1× 10−3 mbar (top), 0.01 mbar (sec-

ond from top), 0.1 mbar (third from top), and 1 mbar (bottom). Results are shown for

five different latitudes: −9◦ (red), −27◦ (orange), −45◦ (green), −63◦ (blue), and −81◦

(magenta). Seasonal variations are are prominent at lower pressures (higher altitudes) but

become muted at higher pressures (lower altitudes), and are much greater at high latitudes

than low latitudes. The 81◦ S latitude region receives no direct sunlight for an extended

period during the winter, leading to a strong minimum during that period. Note also

that the position of the minimum mixing ratio shifts to later in the year as the pressure

increases in the atmosphere. (For interpretation of the references to color in this figure

legend, the reader is referred to the online version of this article.)

duction rates peak in the upper stratosphere. Therefore, at ∼0.001 mbar, the

C2H2 and C2H6 abundances respond quickly to changes in insolation. The

increased insolation during the summer season leads to increased C2H2 and

C2H6 production rates and an increased abundance of hydrocarbon photo-

chemical products in general (see Figs. 5 & 6). The short vertical diffusion
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time scales ensure that the photochemically produced species are transported

rapidly to lower altitudes. Conversely, lower photochemical production rates

in the winter lead to lower abundances of hydrocarbons at high altitudes, as

the molecules produced in previous seasons have already been transported

away. Photolysis by direct solar ultraviolet photons shuts off during the long

polar winter, causing a strong dip in the high-altitude C2H2 and C2H6 abun-

dances at high latitudes in the winter season (see Figs. 5 & 6), which quickly

recovers as soon as the region receives direct sunlight again. However, solar

Lyman α radiation scattered by H atoms in the local interplanetary medium

continues to contribute to CH4 photolysis even in the polar night, preventing

a much stronger depletion in hydrocarbon abundances.

At 0.01 mbar, the chemical lifetime of C2H2 approaches a Neptune season

and that of C2H6 exceeds a Neptune year (Fig. 7). The C2H2 and C2H6 mix-

ing ratios in this pressure region are strongly influenced by molecules being

transported into the region from higher altitudes, albeit with a time delay,

which introduces a phase lag into the seasonal behavior. Seasonal variations

are still apparent, but become more muted, and the minimum and maximum

in the mixing ratios are shifted away from the solstices toward later times

in the winter and summer seasons. Those phase lags continue to grow with

depth, and the seasonal variations become reduced in magnitude, until al-

most no seasonal variations remain apparent in the few mbar region. At that

point, the yearly averaged solar insolation controls the overall abundances,

rather than the seasonally variable insolation. Other relatively chemically

stable, long-lived species such as C3H8 and C4H10 exhibit similar behavior as

C2H2 and C2H6, with seasonal variations confined to higher altitudes, and
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Figure 7: Time constants for photochemical loss (Left) and net photochemical lifetime

(Right) above the condensation region on Neptune for C2H6 (red solid line) and C2H2

(blue dashed line), along with the diffusion time constant for C2H6 (green dot-dashed line,

nearly identical to that for C2H2), compared to a Neptune year (vertical black triple-dot-

dashed line) and a Neptune season (orange dotted line) for −3◦ latitude, vernal equinox.

The photochemical loss time scale is defined as the species concentration divided by the

chemical loss rate; the net photochemical time scale is defined as the species concentration

divided by the absolute magnitude of the chemical production rate minus the loss rate for

the species. The latter gives a better measure of the species stability in the presence of

efficient recycling processes; the sharp peaks occur where production and loss rates are

nearly equal. The diffusion time scale is defined as the square of the generalized scale

height divided by the generalized diffusion coefficient (see Moses and Greathouse, 2005).

Note that chemical and diffusion time scales are shorter than a Neptune season in the

peak production region from 1 to a few µbar but the net chemical lifetimes become longer

than a Neptune season in the middle and lower stratosphere. (For interpretation of the

references to color in this figure legend, the reader is referred to the online version of this

article.)

phase lags introduced in the ∼0.01-10 mbar region.

Less stable species such as C2H4, CH3C2H, C4H2, and CH3 that have

shorter chemical lifetimes at depth continue to experience seasonal varia-
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tions at all altitudes above their condensation regions (i.e., for the first three

aforementioned species, which condense). The seasonal behavior of these

species can be complicated, as both diffusion and in situ photochemistry af-

fect the behavior, photodestruction of other seasonally variable species such

as C2H2 and C2H6 contribute to their production, and photochemically pro-

duced radicals such as atomic H affect both production and destruction (see

Moses et al., 2000a, 2005, 2015, for details). This more complicated chem-

istry (as well as uncertainties in the thermal structure for the observational

abundance determinations) contributes to the apparent disagreements be-

tween the CH3C2H and C4H2 abundances predicted by the models and in-

ferred from observations. The model-data mismatch for these species is not

of great concern here, because each chemical rate coefficient in the model is

subject to uncertainties, which when combined, lead to factors of a few un-

certainties in the predicted abundances (e.g., Dobrijevic et al., 2003, 2010).

Accounting for these uncertainties in our seasonal models is beyond the scope

of this paper.

Full results for the abundances of all species in the model as a function

of latitude and season can be found in the Supplementary Material for this

article.

3.2. Seasonal variations in mixing ratios on Uranus

The mixing-ratio profiles for several observed (or potentially observable)

hydrocarbons on Uranus are shown in Fig. 8 as a function of season for

representative low, middle, and high latitudes. The first thing to note from

Fig. 8 is that seasonal variations in hydrocarbon abundances are minor on

Uranus compared to Neptune. Small changes in the C2H2 and C2H6 mixing
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ratio with season are predicted in the ∼0.1–1 mbar region (see also Fig. 9),

with virtually no seasonal change at deeper pressures. Vertical transport on

Uranus is not very vigorous. The methane homopause is therefore located

at a relatively deep ∼7× 10−2 mbar on Uranus — a pressure roughly three

orders of magnitude greater than the homopause level on Neptune — and

so the CH4 is not carried as high up in the stratosphere on Uranus as it is

on Neptune. Both C2H2 and C2H6 have their peak production region near

∼0.2 mbar on Uranus, at which point chemical time constants exceed (and

diffusion time constants approach) a Uranus season (see Fig. 10). At altitudes

above the 0.2-mbar level, the C2H2 production rate exceeds its loss rate, and

because more C2H2 is produced in the summer season and less in the winter,

the C2H2 mixing ratio at 0.1 mbar is greatest in the summer-to-fall time

frame and least in the winter-to-spring, with the phase lag due to the long

diffusion and chemistry time constants being apparent in Fig. 9. In contrast,

the loss rate of C2H6 from photolysis exceeds the production rate at altitudes

above the 0.2-mbar level, so more of the C2H6 that is being carried upward

from its peak production region is destroyed in the summer than the winter,

and the mixing ratio of C2H6 is greatest in the winter/spring and smallest in

the summer/fall. At pressures of 1 mbar and greater, diffusion and chemical

time constants are so long that no seasonal changes are expected for C2H2

and C2H6 at these pressures.
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Figure 8: Mixing ratio profiles for key hydrocarbons (as labeled) on Uranus as a function

of season for 3◦N planetocentric latitude (Top), 45◦ planetocentric latitude (Middle), and

81◦ planetocentric latitude (Bottom). Seasons are shown every 30◦ in Ls. Data points

are from various published observations (Encrenaz et al., 1986, 1998; Orton et al., 1987;

Herbert et al., 1987; Caldwell et al., 1988; Yelle et al., 1989; Bishop et al., 1990; Bézard

et al., 1999; Orton et al., 2014c).
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Fig. 8. (continued).

Even the species with shorter chemical lifetimes, such as C2H4 and CH3C2H

experience relatively little seasonal variation in comparison with Neptune, be-

cause of the long diffusion time scales and lack of presence of these molecules

at high altitudes where time scales are typically shorter. We would therefore

not expect to observe much in the way of seasonal variations in hydrocarbon

abundances on Uranus unless vertical transport — or stratospheric circula-

tion in general — changes with season. One exception is C4H2, whose mixing

ratio varies by as much as an order of magnitude in the ∼0.2–0.5 mbar region

(see Fig. 8).
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Figure 9: Mixing ratios of acetylene (left) and ethane (right) on Uranus as a function of

season (represented by solar longitude Ls) at 0.1 mbar (top), 0.2 mbar (middle), and 1

mbar (bottom). Results are shown for five different latitudes: −9◦ (red), −27◦ (orange),

−45◦ (green), −63◦ (blue), and −81◦ (magenta). Seasonal variations are muted in general

on Uranus but are more pronounced at lower pressures (higher altitudes). (For interpre-

tation of the references to color in this figure legend, the reader is referred to the online

version of this article.)

Note, however, that if stratospheric temperatures vary with season, the

column abundance of all the condensable hydrocarbons will be greater at lat-

itudes and seasons where the lower-stratospheric temperatures are warmer,

because the available region over which the molecules can remain in the

vapor phase expands to deeper pressures (i.e., the condensation region be-

comes more narrowly confined to the coldest pressure levels surrounding the

tropopause). On Uranus, where the stratosphere is colder and the column

density of hydrocarbons is so low anyway due to sluggish atmospheric mix-

ing, changes in the pressure level of condensation due to seasonal temperature

changes (e.g., Conrath et al., 1990) may have more of an effect on observed
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hydrocarbon abundances than changes due to seasonal photochemistry itself.

This effect applies to all hydrocarbons that can condense in the lower strato-

sphere, including C2H2 and C2H6, and would be observable if remote-sensing

observations probe deep enough to sense the condensation region near the

∼1–10 mbar level.

Figure 10: Time constants for photochemical loss (Left) and net photochemical lifetime

(Right) above the condensation region on Uranus for C2H6 (red solid line) and C2H2 (blue

dashed line), along with the diffusion time constant for C2H6 (green dot-dashed line, nearly

identical to that for C2H2), compared to a Uranus year (vertical black triple-dot-dashed

line) and a Uranus season (orange dotted line) for −3◦ latitude, vernal equinox. (For

interpretation of the references to color in this figure legend, the reader is referred to the

online version of this article.)

3.3. Meridional variations in mixing ratios on Uranus and Neptune

As with seasonal variations, latitude variations in mixing ratios are more

pronounced at higher altitudes. Fig. 11 illustrates how the C2H2, C2H6,

CH3C2H, and C4H2 mixing ratios on Neptune vary as a function of latitude

at four specific seasons: Ls = 0◦ (dotted orange curves), 90◦ (solid blue

curves), 180◦ (dashed green curves), and 270◦ (solid red curves). At high

30



altitudes (e.g., pressures less than ∼0.1 mbar), hemispheric dichotomies are

readily apparent, typically with fewer photochemical products being present

in the hemisphere experiencing winter and spring (due to the long accu-

mulated time periods with low sunlight), and more photochemical products

in the hemisphere experiencing summer and fall. At higher pressures, the

mixing ratios of longer-lived species such as C2H2 and C2H6 become more

symmetric about the equator, with the annual average actinic flux dominat-

ing the latitude variations (e.g., recall Fig. 2). On Neptune, the variations in

annual average solar irradiation with latitude lead to a greater 1-mbar abun-

dance of C2H2, C2H6, and CH3C2H at low latitudes in comparison with high

latitudes, while species with short chemical lifetimes, such as C4H2, continue

to exhibit hemispheric asymmetries at pressures of 1 mbar (see Fig. 11).

Note also for the shorter-lived species that the increasing phase lag with

depth can lead to hemispheric asymmetries at 1 mbar that are completely

out of phase with those at 0.1 mbar. This effect is important to keep in

mind when considering observations that are more sensitive to deeper levels

— the abundances are out of phase at these depths in comparison to the

instantaneous seasonal forcing, and the vertical profiles change significantly

with season and latitude, which is important to keep in mind when choosing

priors for retrievals.

The sluggish vertical mixing and large axial tilt on Uranus result in no-

table differences in latitude variations on Uranus (see Fig. 12), in compar-

ison to Neptune. The longer vertical diffusion time scales and shorter year

on Uranus result in seasonal variations being damped at 1 mbar on Uranus,

and even species with relatively short photochemical lifetimes, like C3H4 and
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Figure 11: Mixing ratios of ethane and acetylene (Left) and methylacetylene and diacety-

lene (Right) at 0.1 mbar (Top) and 1 mbar (bottom) on Neptune for four different seasons:

Ls = 0◦ (dotted orange), 90◦ (solid blue), 180◦ (dashed green), and 270◦ (solid red). (For

interpretation of the references to color in this figure legend, the reader is referred to the

online version of this article.)

C4H2, are controlled by the annual average actinic flux at these pressures.

Because the annual average daily insolation is greater at the poles than the

equator on the highly tilted Uranus (Fig. 2), most photochemically produced

species at 1 mbar have a larger mixing ratio at high latitudes than low lat-

itudes. Ethane is an exception. The low-altitude homopause on Uranus

results in different dominant hydrocarbon reactions in the region in which

methane is photolyzed than on the other giant planets. Photolysis reactions

control both the production and loss of ethane in the homopause region,
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which act to counteract each other, and there are no effective in situ chem-

ical loss processes for C2H6 at 1 mbar. The net column production rate for

C2H6 therefore does not vary much as a function of latitude. The C2H6 that

is produced near the homopause region diffuses downward, and because we

have assumed that the eddy diffusion coefficient profile does not vary with

latitude, the ethane abundance at depth on Uranus is relatively constant

with latitude.

Figure 12: Same as Fig. 11, except for Uranus.

At higher altitudes on Uranus (e.g., 0.1 mbar in Fig. 12), the photochem-

ically produced species exhibit hemispheric dichotomies, with most species

being more abundant in the summer-to-fall hemisphere than the winter-to-

spring hemisphere, as on Neptune. However, C2H6 is again an exception.
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At the CH4 homopause on Uranus, CH4 is less abundant than on the other

giant planets and is less effective at shielding the C2H6 from photolysis.

Seasonal variations in solar irradiation therefore lead to a reduction in the

high-altitude C2H6 abundance in the summer/fall hemisphere in comparison

with the winter/spring hemisphere.

Keep in mind that the models presented in this paper do not consider

meridional circulation or differences in vertical transport or methane abun-

dance with latitude. Such processes could end up controlling latitude varia-

tions in photochemically produced species abundances on the giant planets,

particularly on Uranus, where chemical and diffusion time constants are long

and latitudinal/seasonal variations are predicted to be weak.

3.4. Variations in column abundance with latitude and season on Neptune

Because the hydrocarbon mixing ratios change significantly with altitude

and the because the observed emission is proportional to the column abun-

dance of the molecules when the emission lines are optically thin, it is conve-

nient to consider the column abundance above various pressure regions when

predicting observable changes as a function of latitude and time. Figs. 13–17

show how the column abundances of various hydrocarbons above different

pressure levels vary as a function of latitude and season on Neptune.
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Figure 13: The column abundance of ethane on Neptune above 0.01 mbar (Top), 0.1

mbar (Middle), and 1 mbar (Bottom), as a function of planetocentric latitude and season

(Ls). The dashed vertical line represents the time of the Voyager encounter, and the solid

vertical line represents 7 September 2018, the date of the next Neptune opposition.
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Figure 14: Same as Fig. 13, except for acetylene.
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Figure 15: Same as Fig. 13, except for ethylene.
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Figure 16: Same as Fig. 13, except for methylacetylene.
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Figure 17: Same as Fig. 13, except for diacetylene.
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As was discussed in section 3.1, the abundances of most of the hydro-

carbon photochemical products closely track the seasonal variation of solar

insolation at high altitudes, causing the hydrocarbon column densities above

0.01 mbar to be much greater in the summer hemisphere in comparison to

the winter hemisphere. However, chemical and diffusion time scales increase

with depth in the atmosphere, leading to increasing phase lags in the abun-

dance maxima and minima with depth at any particular latitude, along with

meridional profiles of column abundance that become more symmetric about

the equator at greater depths. These changes are readily apparent for C2H6

(Fig. 13), C2H2 (Fig. 14), and CH3C2H (Fig. 16).

Similar trends are seen for C2H4 (Fig. 15) and C4H2 (Fig. 17), although

these two species also exhibit some additional interesting behavior. Note from

Fig. 15 that the C2H4 column abundance above 1 mbar begins to increase

strongly during the high-latitude winter months. This behavior results from

the fact that photolysis is normally an effective loss process for C2H4 in

the 0.1-10 mbar region, but direct solar UV photolysis is absent during the

winter polar night. Although the stellar background UV source and scattered

LIPM Lyman alpha photons are still available at that time, the overall C2H4

photolysis rate is greatly diminished, and the local production rate of C2H4

exceeds its loss rate. The dominant production of C2H4 at this time occurs

through C2H2 + H + M → C2H3 + M, followed by C2H3 + H2 → C2H4

+ H, causing a net conversion of C2H2 into C2H4 during the long winter

polar nights at ∼0.1-10 mbar. Diffusion of C2H4 from higher altitudes into

this region also contributes to the increase. For C4H2, Fig. 17 illustrates

that high-altitude production of C4H2 occurs most readily during the long
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high-latitude summers, when the sun never sets, with much less production

at other latitudes/times. The seasonal and meridional behavior at 1 mbar

is more complicated and reflects the diffusion source from higher altitudes,

with its associated phase lag, as well as in situ production and loss. One

interesting feature that shows up in the C4H2 column density plot at 1 mbar

is a brief local maximum as the sunlight returns to the high-latitude regions

in the late winter or spring.

3.5. Variations in column abundance with latitude and season on Uranus

Figure 18 illustrates how the column abundances of several hydrocarbon

photochemical products vary with latitude and season on Uranus. Because

the hydrocarbons are vertically confined to deeper stratospheric levels due

to the weak atmospheric mixing on Uranus, we do not show the results for

multiple pressures, but instead plot the column abundance above 0.25 mbar,

which is near the peak of the contribution function for most of the observed

hydrocarbon bands in the Spitzer/IRS infrared observations (Orton et al.,

2014b,c).

The column densities of C2H2, CH3C2H, and C4H2 exhibit maxima in the

summer-to-fall hemispheres and minima in the winter-to-spring hemispheres,

with strong hemispheric dichotomies apparent during most seasons. As with

Neptune, this result is caused by the greater photochemical production rates

during periods and locations with higher mean daily solar insolation, com-

bined with a phase lag due to the diffusion of hydrocarbons from higher

altitudes. Unlike Neptune, however, these species do not have a maximum

column abundance near the equator when averaged over a year, as can be

seen from the generally low column abundances in the equatorial region.
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Figure 18: The column abundance of acetylene (Top left), ethane (Top right), methy-

lacetylene (Bottom left), and diacetylene (Bottom right) on Uranus above 0.25 mbar, as

a function of planetocentric latitude and season (Ls). The dashed vertical line represents

the time of the Voyager encounter, and the solid vertical line represents the next Uranus

opposition on 24 October 2018.

The abundance of diacetylene is particularly sensitive to solar irradiation.

Because the C4H2 chemical lifetime is short, the diacetylene column density

drops precipitously in the winter polar night once the sun drops below the

horizon, as is obvious in Fig. 18.

As discussed in Section 3.3, C2H6 is an exception to the aforementioned
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trends in the hydrocarbon distributions with latitude and season. At 0.25

mbar and lower pressures, photolysis effectively destroys C2H6, so it survives

at these pressures more readily at low latitudes and in the winter-to-spring

hemispheres, where the mean daily solar insolation is the lowest.

4. Comparisons with observations

Low signal-to-noise ratios prevented mapping of the hydrocarbon infrared

emission features during the Voyager flybys of Uranus and Neptune, so no

measurements of photochemical product abundances as a function of lati-

tude were ever reported from the only spacecraft to ever encounter these

planets. The large heliocentric distances and cold atmospheric temperatures

of Uranus and Neptune also pose challenges for obtaining spatially resolved

observations of hydrocarbon photochemical products from Earth-based tele-

scopes. Hammel et al. (2007) and Orton et al. (2007) were the first to show

spatially resolved images of C2H6 emission on Neptune, and Greathouse et al.

(2011) were the first to present meridional distributions of C2H2 and C2H6.

Greathouse et al. (2011) used the TEXES spectrograph at the Gemini North

8-m telescope in October 2007 (Neptune Ls = 275.4◦) to obtain high-spectral-

resolution, spatially resolved observations of emission from H2, CH4, C2H2,

and C2H6 at thermal-infrared wavelengths. Emission from the S(1) rota-

tional line of H2 and the ν4 band of CH4 were used to constrain stratospheric

temperature fields, which then allowed Greathouse et al. (2011) to retrieve

ethane and acetylene mixing ratios as a function of pressure and latitude.

Their results at the peak of the contribution functions from the strong mid-

IR C2H2 and C2H6 lines are shown in Fig. 19, in comparison with our results
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at Ls = 280◦ for the same pressure levels.
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Figure 19: Model predictions for the meridional variation of the ethane mixing ratio at

1 mbar (red curve) and the acetylene mixing ratio at 0.45 mbar (blue curve) at Ls =

280◦, in comparison with the retrievals of Greathouse et al. (2011) from Gemini/TEXES

observations at Ls = 275.4◦.

Our seasonal photochemical model provides an excellent fit to the Greathouse

et al. (2011) retrieved meridional distribution of C2H6 at 1 mbar, with both

model and data exhibiting a peak mixing ratio at the equator that then drops

off gradually toward higher latitudes in both hemispheres. For acetylene, the

observations indicate a slight maximum in the C2H2 mixing ratio at −28◦ lat-

itude, with mixing ratios dropping gradually toward both lower and higher

latitudes. This C2H2 meridional behavior is not predicted by the models,
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which instead exhibit an equatorial maximum mixing ratio with more-or-

less symmetric behavior across the equator at this season (Fig. 19), and a

column abundance above 1 mbar that peaks at −9◦ latitude (see Fig. 14).

However, the C2H2 meridional distribution from the model, as well as an

ad hoc constant-with-latitude distribution, are both consistent with the re-

trievals to within observational uncertainties. This model-data consistency

for Neptune hydrocarbon distributions is in sharp contrast to similar com-

parisons for Jupiter (Liang et al., 2005; Nixon et al., 2007, 2010; Zhang et al.,

2013; Fletcher et al., 2016) and Saturn (Moses and Greathouse, 2005; Guer-

let et al., 2009, 2010; Friedson and Moses, 2012; Sinclair et al., 2013, 2014;

Sylvestre et al., 2015; Hue et al., 2015), for which stratospheric circulation

and/or other meridional/vertical transport processes have been suggested as

influencing the large-scale meridional hydrocarbon distributions. The good

model-data comparisons here for Neptune suggest that either stratospheric

winds are weaker and have less of an effect on hydrocarbon distributions on

Neptune, or that degeneracies in retrievals and/or uncertainties in models

and their related assumptions are resulting in a fortuitous coincidence.

Spatially resolved observations of C2H6 on Neptune from two different

mid-infrared observational data sets (Keck/LWS spectra from 2003 and Gemini-

S/TReCS spectra from August 2007) were also presented by Fletcher et al.

(2014). A factor of ∼2 difference in the meridionally averaged 1-mbar C2H6

mixing ratio between the two data sets highlights the difficulties inherent in

calibrating mid-infrared ground-based spectra and suggests that degeneracies

between temperatures and abundances are a perennial issue for the retrievals,

particularly when dealing with low-resolution spectra. Fletcher et al. (2014)
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also point to poor weather conditions and the lack of a Cohen standard star

for calibration of the 2007 Gemini-S spectra. The Fletcher et al. retrievals of

the Keck data from 2003 exhibit a maximum in the 1-mbar C2H6 abundance

at the equator, declining gradually toward higher latitudes — consistent

with both our photochemical models and the retrievals of Greathouse et al.

(2011). The Fletcher et al. retrievals from the Gemini-S data from 2007

have a higher overall C2H6 mixing ratio and fine-scale meridional structure,

including a local minimum at the equator and the south pole, that are not

consistent the photochemical models or with the retrievals of Greathouse

et al. (2011). Fletcher et al. (2014) suggest that differences between the 2003

and 2007 data sets are caused by either poor weather for the 2007 observa-

tions, calibration issues, or by changes in lower-stratospheric temperatures

that are not sampled reliably in retrievals of low-resolution spectra.

From the time of the Voyager encounter with Neptune in 1989 to the

2007 observations of Greathouse et al. (2011) and Fletcher et al. (2014),

the southern hemisphere of Neptune had swung more prominently into view

from the Earth, and our models suggest that the overall column abundance

of C2H6 above 1 mbar would have been increasing over that time period in

the southern hemisphere. This trend is superficially consistent with the re-

port of Hammel et al. (2006) of an increase in global-average ethane emission

over the time period from 1985 to 2003. On the other hand, Hammel et al.

(2006) observe a decrease in emission from 2003 to 2004 that is not consis-

tent with the photochemical models, and Fletcher et al. (2014) argue for a

possible slight decrease in the global-average C2H6 mixing ratio from 2003 to

mid-2007, with a sharper increase in late 2007, none of which are predicted
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by the models. The hydrocarbon emission depends on both atmospheric

temperatures and abundances, and it remains to be seen whether the pho-

tochemical model predictions are consistent with the observed time-variable

trends and/or whether other factors such as adiabatic heating/cooling and

variations in abundances due to transport effects are in play.

No retrievals of hydrocarbon abundances as a function of latitude have

ever been published for Uranus. The stratosphere of Uranus is colder than

that of Neptune, and detecting any hydrocarbon emission other than from

CH4 and C2H2 from Earth-based telescopes has typically been difficult. The

Voyager encounter with Uranus in 1986 occurred near southern summer sol-

stice. Analyses of the ultraviolet solar occultation during the Voyager en-

counter yielded C2H2 and C2H6 vertical profiles near the equatorial region

(Herbert et al., 1987; Bishop et al., 1990). The peak C2H2 mixing ratio de-

rived from this UV occultation is less than that derived from global-average

Infrared Space Observatory (ISO) observations obtained in 1996 (Encrenaz

et al., 1998). Because the southern hemisphere of Uranus was still domi-

nating the whole-disk observations in 1996, our photochemical model predic-

tions for enhanced southern hemispheric C2H2 during this time period are

qualitatively consistent with the greater C2H2 abundance seen by Encrenaz

et al. (1998), in comparison with the equatorial region during the Voyager

encounter (see Fig. 18).

Later Spitzer/IRS observations of Uranus acquired near the 2007 equinox

suggest a very slight decrease in the C2H2 abundance in comparison with the

Encrenaz et al. (1998) ISO observations. This result, too, appears qualita-

tively consistent with the models, as the emission from the predicted greater
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abundance of C2H2 in the southern hemisphere would still be dominating

the whole-disk observations at the equinox (Fig. 18), and the hemispheric-

averaged C2H2 column abundance decreased between 1998 and 2007 in the

model. The models predict a continued decrease in the C2H2 abundance in

the southern hemisphere over the next few years, accompanied by an increase

in the northern hemisphere abundance.

5. Implications for future observations and modeling

Large ground-based telescopes are currently capable of spatially resolving

Uranus and Neptune at mid-infrared wavelengths (e.g., Greathouse et al.,

2011; Fletcher et al., 2014; Orton et al., 2014a), and our models provide

hypotheses for the distribution of hydrocarbons that can be tested with such

future observations. In addition, the James Webb Space Telescope (JWST),

which is due to be operational shortly (currently delayed launch date March-

to-June, 2019), will be able to provide spatially-resolved spectroscopic maps

of Uranus and Neptune. Of particular interest onboard JWST is the Medium

Resolution Spectrometer (MRS) of the MIRI instrument (Rieke et al., 2015),

an Integral Field Unit (IFU) with the capability to provide spatially-resolved

5-28 µm spectroscopy across the planetary disks (Norwood et al., 2016).

The resulting spectral maps will provide key observational tests of the two-

dimensional hydrocarbon distributions predicted by our models.

We use the time-, latitude- and altitude-dependent hydrocarbon profiles

from our models to simulate the expected spectral radiance and brightness

temperatures that could be observed by the MIRI instrument. Our assumed

spatially-uniform stratospheric temperatures were combined with the two-
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dimensional (latitude, altitude) tropospheric temperatures as measured by

Voyager-2/IRIS (Orton et al., 2015; Fletcher et al., 2014) to provide a realistic

estimate of the temperature distribution, although we note that stratospheric

temperature contrasts, if present, would significantly alter our results. We

employ the NEMESIS optimal estimation retrieval algorithm (Irwin et al.,

2008) in forward-modelling mode, simulating the top-of-atmosphere spectral

radiance for all pixels on the observable disk, accounting for the latitude,

longitude, and emission angle of the individual pixel element. The spatial

orientation and size of each disk was calculated for their 2018 oppositions

(3.7” for Uranus on October 24th; 2.4” for Neptune on September 7th). The

launch delay to 2019 will not have a significant effect on these simulations,

given the long seasonal timescales of both worlds. However, JWST is only

capable of observing during a limited range of solar elongations, such that

the planets will be observed closer to quadrature with a slightly degraded

spatial resolution (angular diameter 3.6” for Uranus, 2.3” for Neptune).

The MIRI forward-model simulations include both collision-induced con-

tinuum emission from H2-H2, H2-He and H2-CH4, as well as emission and

absorption from the gaseous species in our photochemical model. Sources of

spectral line data are described in Fletcher et al. (2014) and were used to

generate k-distributions (absorption coefficients ranked in order of strength

on a wavelength, temperature, and pressure grid) for use in NEMESIS. These

k-distributions were generated for CH4 and its isotopologues, C2H2, C2H4,

C2H6, C3H4, C3H8, C4H2, CO2 and C6H6. The tables covered each of the 12

sub-bands (i.e., four IFUs with three subbands each) of MIRI between 5-28

µm, using the correct variation of the spectral resolution (R ∼ 1550− 3250)
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with wavelength. The four IFUs have fields of view ranging from 3.9” at the

shortest wavelength to 7.7” at the longest wavelength, easily accommodat-

ing the disks of Uranus and Neptune. However, as the detector pixel scales

(variable from 0.196” to 0.273”) and image slicer scales (variable from 0.176”

to 0.645”) undersample the spectral line spread function and spatial point

spread functions (diffraction limited spatial resolution 0.19” at 4.89 µm to

1.10” at 28.45 µm), respectively, and as the MIRI consortium is implement-

ing dithering techniques to optimize sampling of the target field, we elected

to base our simulation on the 0.11”/pixel plate scale of the MIRI imager,

combined with the diffraction-limited performance of the 6.5-m mirror. This

plate scale significantly oversamples the FWHM of JWST’s primary mirror

and is smaller than the best plate scale of the MIRI IFU, but it is repre-

sentative of the expected noise-free quality with an optimal use of telescope

dithering.

Disk images at every wavelength were convolved with a Gaussian, repre-

senting the diffraction-limited spatial resolution of a 6.5-m primary mirror,

and then averaged spectrally to highlight interesting hydrocarbon features.

Finally, a brightness-temperature cross section was extracted along the cen-

tral meridian (to show meridional variations) and along a latitude circle at

the sub-Earth latitude (to show the variation of brightness temperature with

emission angle).
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Figure 20: Synthetic images of Neptune (Top row) relevant to the next opposition on 7

September 2018, simulating what the JWST MIRI instrument would be able to see if it

were operating at that time: (Left) in the tropospheric continuum at 18.6 µm, (Second

from left) in the methane emission band at 7.7 µm, (Second from right) in ethane emission

at 12.2 µm, and (Right) in acetylene emission at 13.6 µm. The dashed line marks the

central meridian, and the black dot is at the position of the south pole. Brightness-

temperature cross sections in the same four wavelength regions were also extracted (Middle

row) along the central meridian to highlight latitude variations and (Bottom row) along a

latitude circle at the sub-Earth latitude to highlight variations in brightness temperature

with emission angle.
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Figure 21: Same as Figure 20, except for Uranus at the next opposition on 24 October

2018, and the black dot is at the north pole.
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Figure 20 shows the simulated MIRI images for Neptune. The tropo-

spheric temperature structure is probed at 18.6 µm. The assumed Voyager-

era thermal structure (Conrath et al., 1998; Fletcher et al., 2014), with broad

mid-latitude temperature minima sandwiched between warmer equatorial

and high-latitude regions — which was assumed for these synthetic images

but was not considered in the photochemical models — shows up readily in

the 18.6 µm images. For a lack of information to the contrary, we have as-

sumed a uniform stratospheric thermal structure and spatially uniform eddy

diffusion coefficients in both the photochemical model and synthetic images,

which result in roughly uniform methane vertical profiles across the planet.

The images in methane emission at 7.7 µm are therefore relatively bland,

with limb brightening dominating the observed emission. If any latitudi-

nally variable stratospheric temperatures are actually present on Neptune,

these should show up readily in all the hydrocarbon emission bands. Limb

brightening is also apparent in the ethane emission at 12.2 µm and acety-

lene emission at 13.6 µm, but the meridional emission cross sections also

show evidence for the predicted compositional gradients. For example, the

1-mbar low-latitude column-density maximum in C2H6 during this season

(see Fig. 13) enhances the low-latitude emission at 12.2 µm, while the strong

enhancement in the stratospheric column abundance on C2H2 at high south-

ern latitudes is readily apparent in the 13.6 µm images.

Figure 21 shows the simulated MIRI images for Uranus. As with Nep-

tune, the Voyager-derived tropospheric thermal structure shows a temper-

ature minimum at mid-latitudes (Flasar et al., 1987; Conrath et al., 1998;

Orton et al., 2015), which shows up readily in the 18.6 µm images. The as-
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sumed uniform stratospheric temperature fields lead to rather bland images

in the stratospheric emission features, with limb brightening dominating the

emission (and note that the brightest emission is not actually right at the

limb itself, due to an artifact of the point-spread function of the observatory,

convolving dark space with the bright emission from the limb). The compo-

sitional gradients are less pronounced on Uranus than on Neptune, so there

is in general less structure apparent in the Uranus images at 12.2 and 13.6

µm. Our models predict a greater column abundance of C2H6 at low lati-

tudes than high latitudes during this season (see Fig. 18), whereas the C2H2

column abundance is more uniform with latitude, and hints of this behavior

appear in the 12.2 and 13.6 µm cross sections, respectively, although any

thermal contrasts in the stratosphere as a function of latitude would likely

obscure these differences in the real images.

It should be kept in mind that our seasonal photochemical models do not

account for changes in stratospheric temperatures with latitude or season,

for possible variations in the stratospheric methane profile with latitude or

season, or for variations due to the advection of species. Such effects could

potentially have a major influence on the hydrocarbon emission profiles and

vertical/meridional distributions, with meridional temperature gradients in

particular having a likely large effect on the stratospheric emission features

seen with MIRI. Future models should add complexity in stages, such as cou-

pling the photochemical model with a radiative model that can accurately

predict seasonally variable temperatures, incorporating possible meridional

changes in the methane profile, and testing 2D behavior with different zonally

average circulation scenarios. Eventually, incorporating simple C2Hx chem-
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istry and realistic hydrocarbon-based radiative transfer into general circula-

tion models would be the ultimate end goal for predictions of the distribution

of hydrocarbons as a function of latitude and season on the giant planets.

6. Conclusions

Time-variable photochemical models are used to investigate how hydro-

carbon photochemical products vary as a function of altitude, latitude, and

season on Uranus and Neptune. The results indicate that meridional and

seasonal gradients in hydrocarbon abundances can persist on these planets

in the absence of stratospheric circulation.

Based on our theoretical calculations and comparisons with observations,

we draw the following conclusions for Neptune:

• Seasonal variations in hydrocarbon abundances on Neptune are pre-

dicted to be greater at high latitudes than low latitudes because of the

larger seasonal variations in solar insolation at high latitudes.

• The larger mean daily solar insolation in the summer hemisphere leads

to greater photochemical production and higher abundances of hydro-

carbon photochemical products in the summer hemisphere than the

winter hemisphere.

• Seasonal variations in hydrocarbon abundances on Neptune are most

pronounced at high altitudes and become progressively weaker at depth

because diffusion time constants and chemical lifetimes increase with

increasing pressure. Hydrocarbons respond quickly to changes in the

solar flux at high altitudes, but the greater time constants at depth
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introduce phase lags in the seasonal response to the changing insolation,

such that the abundance maxima for long-lived hydrocarbons such as

C2H2 and C2H6 shift to later in the summer season with increasing

depth.

• In the absence of advection or other stratospheric transport processes,

meridional variations in hydrocarbon abundances will exist on Nep-

tune and will again be greater at high altitudes than low altitudes. At

pressures greater than a few mbar, chemical and transport time scales

are longer than a Neptune season, and the yearly averaged solar flux

then controls the hydrocarbon abundance variation with latitude. Be-

cause the yearly average insolation is larger at the equator than the

poles at Neptune, most hydrocarbons at pressures greater than a mbar

are expected to exhibit abundance maxima at low latitudes, decreasing

gradually toward higher latitudes. Hydrocarbons that have short pho-

tochemical lifetimes at mbar pressures, such as C2H4 and C4H2, exhibit

additional complicated seasonal behavior.

• Model predictions for the meridional variation of C2H2 and C2H6 on

Neptune compare well with retrievals from the spatially resolved Gem-

ini infrared spectral observations of Greathouse et al. (2011), and the

Keck observations of Fletcher et al. (2014) (to within uncertainties of

the observational analyses), suggesting that stratospheric circulation

is less important in controlling the large-scale hydrocarbon meridional

distributions on Neptune than it is on Jupiter and Saturn (cf. Liang

et al., 2005; Moses and Greathouse, 2005; Nixon et al., 2007; Guerlet
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et al., 2009; Sinclair et al., 2013; Sylvestre et al., 2015; Hue et al., 2015;

Fletcher et al., 2016).

Neptune’s axial tilt is only a couple degrees greater than that of Saturn,

and the predicted seasonal variations on Neptune share many similarities

with those on Saturn (cf. Moses and Greathouse, 2005; Hue et al., 2015).

Seasonal variations on Uranus, on the other hand, differ notably from both

Saturn and Neptune. Although the extreme axial tilt of Uranus is partially

responsible for these differences, the very weak atmospheric mixing on Uranus

plays a larger role. Our main conclusions with respect to Uranus are the

following:

• The weak vertical transport on Uranus confines hydrocarbons to rela-

tively low altitudes. The vertical diffusion time constants and chemical

lifetimes tend to be large in the pressure region where the complex

hydrocarbons are being produced, which results in more muted sea-

sonal variations on Uranus than on Neptune. Some seasonal variation

is expected in the 0.1-1 mbar region of Uranus (leading to notable

hemispheric dichotomies in hydrocarbon abundances, with generally

greater abundances in the summer-to-fall hemisphere than the winter-

to-spring hemisphere), but virtually no seasonal changes are predicted

at pressures greater than 1 mbar.

• Most hydrocarbons on Uranus are predicted to have a greater abun-

dance at the poles than the equator, due to the latitude variation of the

annual average solar insolation on the highly tilted Uranus. Ethane is

an exception to this trend because of effective photolysis loss that can
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compete with production; C2H6 abundances are on average greater at

low latitudes than high latitudes.

Solar Lyman alpha photons scattered from atomic hydrogen in the in-

terplanetary medium provide an important source of photolyzing radiation

for both Uranus and Neptune, particularly in the high-latitude polar winter,

where sunlight is absent for long periods of time each year. Seasonal varia-

tions at high altitudes would be even more significant without this extra UV

source.

Based on our photochemical model results, we simulated the emission

from Uranus and Neptune that would be observed using the MIRI instrument

onboard JWST. We find that hydrocarbon variations with latitude should

show up readily in MIRI images of Neptune but would be more muted for

Uranus. Keep in mind, however, that the models presented here do not

consider possible seasonal variations in stratospheric temperatures, possible

latitude variations in the stratospheric methane abundance or its vertical

profile, or possible perturbations due to stratospheric circulation, waves, or

other transport processes. These factors could potentially play a major role

in controlling large-scale vertical and meridional hydrocarbon distributions,

particularly on Uranus, where chemical and diffusion time constants are long.

Because many of the hydrocarbon photochemical products condense in the

cold lower stratospheres of these planets, any (likely) changes in temperature

with season could strongly affect the total column density of the condens-

able products, due to the high sensitivity of the species’ vapor pressures to

temperatures, although the gas-phase chemistry variations themselves are

not very sensitive to temperature (e.g., Moses and Greathouse, 2005; Moses
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et al., 2015). Differences in the methane abundance at high versus low lati-

tudes have already been identified in the tropospheres of Uranus and Neptune

(Karkoschka and Tomasko, 2009, 2011; Sromovsky et al., 2011, 2014; Irwin

et al., 2012; Tice et al., 2013; de Kleer et al., 2015; Luszcz-Cook et al., 2016),

and if such differences extend into the stratosphere, would have a major ef-

fect on photochemical production rates. Seasonal forcing likely drives strato-

spheric circulation on Uranus and Neptune (e.g., Flasar et al., 1987; Conrath

et al., 1990, 1991a), and could have important consequences for hydrocar-

bon distributions. The models presented here represent a first-order solution

that when compared to observations can provide valuable insights into the

physical and chemical processes at play in the stratospheres of Uranus and

Neptune. Future 1D, 2D, and 3D models could add complexity, as needed,

to explain observations. We present our full model results in the journal

supplementary material in the hopes that they will be of use in analyzing

future observations, including potential spatially resolved infrared spectral

observations from JWST (e.g., Norwood et al., 2016) and potential future

spacecraft missions to the ice giants (e.g., Hofstadter et al., 2017; Mousis

et al., 2017).

Hydrocarbon photochemical products (both vapor and aerosols) on Uranus

and Neptune help control stratospheric heating, cooling, and energy balance,

which in turn influence atmospheric dynamics. The gas-phase hydrocar-

bons reveal the complex chemistry at play in these atmospheres and can act

as tracers to illuminate dynamical motions. Furthering our understanding

of the three-dimensional time-variable behavior of hydrocarbons on Uranus

and Neptune is therefore important for furthering our understanding of the
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complex chemical, radiative, and dynamical couplings and feedbacks that

characterize our solar-system ice giants.
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Griffin, M., 1997. External supply of oxygen to the atmospheres of the

giant planets. Nature 389, 159–162.

Feuchtgruber, H., Lellouch, E., Encrenaz, T., Bezard, B., Coustenis, A.,

Drossart, P., Salama, A., de Graauw, T., Davis, G. R., 1999. Oxygen in

the stratospheres of the giant planets and Titan. In: Cox, P., Kessler,

M. (Eds.), The Universe as Seen by ISO. Vol. SP-427 of ESA Special

Publication. pp. 133–136.

Flasar, F. M., Conrath, B. J., Pirraglia, J. A., Gierasch, P. J., 1987. Voy-

ager infrared observations of Uranus’ atmosphere - Thermal structure and

dynamics. J. Geophys. Res. 92, 15011–15018.

Fletcher, L. N., de Pater, I., Orton, G. S., Hammel, H. B., Sitko, M. L., Irwin,

P. G. J., 2014. Neptune at summer solstice: Zonal mean temperatures from

ground-based observations, 2003-2007. Icarus 231, 146–167.

64



Fletcher, L. N., Drossart, P., Burgdorf, M., Orton, G. S., Encrenaz, T., 2010.

Neptune’s atmospheric composition from AKARI infrared spectroscopy.

Astron. Astrophys. 514, A17.

Fletcher, L. N., Greathouse, T. K., Orton, G. S., Sinclair, J. A., Giles, R. S.,

Irwin, P. G. J., Encrenaz, T., 2016. Mid-infrared mapping of Jupiter’s tem-

peratures, aerosol opacity and chemical distributions with IRTF/TEXES.

Icarus 278, 128–161.

Fletcher, L. N., Irwin, P. G. J., Sinclair, J. A., Orton, G. S., Giles, R. S.,

Hurley, J., Gorius, N., Achterberg, R. K., Hesman, B. E., Bjoraker, G. L.,

2015. Seasonal evolution of Saturn’s polar temperatures and composition.

Icarus 250, 131–153.

Friedson, A. J., Moses, J. I., 2012. General circulation and transport in Sat-

urn’s upper troposphere and stratosphere. Icarus 218, 861–875.

Gangopadhyay, P., Izmodenov, V. V., Shemansky, D. E., Gruntman, M.,

Judge, D. L., 2005. Reappraisal of the Pioneer 10 and Voyager 2 Lyα

intensity measurements. Astrophys. J. 628, 514–519.

Giorgini, J. D., Yeomans, D. K., Chamberlin, A. B., Chodas, P. W., Ja-

cobson, R. A., Keesey, M. S., Lieske, J. H., Ostro, S. J., Standish,

E. M., Wimberly, R. N., 1996. JPL’s on-line solar system data service.

In: AAS/Division for Planetary Sciences Meeting Abstracts #28. Vol. 28

of Bulletin of the American Astronomical Society. p. 1158.

65



Greathouse, T. K., Richter, M., Lacy, J., Moses, J., Orton, G., Encrenaz,

T., Hammel, H. B., Jaffe, D., Aug. 2011. A spatially resolved high spectral

resolution study of Neptune’s stratosphere. Icarus 214, 606–621.
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J. I., Hartogh, P., Jarchow, C., Sagawa, H., 2015. New constraints on the

CH4 vertical profile in Uranus and Neptune from Herschel observations.

Astron. Astrophys. 579, A121.

Lellouch, E., Moreno, R., Paubert, G., 2005. A dual origin for Neptune’s

carbon monoxide? Astron. Astrophys. 430, L37–L40.

68



Lellouch, E., Romani, P. N., Rosenqvist, J., 1994. The vertical Distribution

and Origin of HCN in Neptune’s Atmosphere. Icarus 108, 112–136.

Liang, M.-C., Shia, R.-L., Lee, A. Y.-T., Allen, M., Friedson, A. J., Yung,

Y. L., 2005. Meridional transport in the stratosphere of Jupiter. Astrophys.

J. Lett. 635, L177–L180.

Lindal, G. F., Lyons, J. R., Sweetnam, D. N., Eshleman, V. R., Hinson, D. P.,

1987. The atmosphere of Uranus - Results of radio occultation measure-

ments with Voyager 2. Journal of Geophysical Research 92, 14987–15001.

Lindal, G. F., Sweetnam, D. N., Eshleman, V. R., 1985. The atmosphere

of Saturn: An analysis of the Voyager radio occultation measurements.

Astron. J. 90, 1136–1146.

Lodders, K., Fegley, Jr., B., 1994. The origin of carbon monoxide in Nep-

tunes’s atmosphere. Icarus 112, 368–375.

Luszcz-Cook, S. H., de Kleer, K., de Pater, I., Adamkovics, M., Hammel,

H. B., 2016. Retrieving Neptune’s aerosol properties from Keck OSIRIS

observations. I. Dark regions. Icarus 276, 52–87.

Luszcz-Cook, S. H., de Pater, I., 2013. Constraining the origins of Neptune’s

carbon monoxide abundance with CARMA millimeter-wave observations.

Icarus 222, 379–400.

Mathis, J. S., Mezger, P. G., Panagia, N., 1983. Interstellar radiation field and

dust temperatures in the diffuse interstellar matter and in giant molecular

clouds. Astron. Astrophys. 128, 212–229.

69



Meadows, V. S., Orton, G., Line, M., Liang, M.-C., Yung, Y. L., van Cleve,

J., Burgdorf, M. J., 2008. First Spitzer observations of Neptune: Detection

of new hydrocarbons. Icarus 197, 585–589.

Moses, J. I., 1992. Meteoroid ablation in Neptune’s atmosphere. Icarus 99,

368–383.

Moses, J. I., Allen, M., Yung, Y. L., 1992. Hydrocarbon nucleation and

aerosol formation in Neptune’s atmosphere. Icarus 99, 318–346.

Moses, J. I., Armstrong, E. S., Fletcher, L. N., Friedson, A. J., Irwin, P. G. J.,

Sinclair, J. A., Hesman, B. E., 2015. Evolution of stratospheric chemistry

in the Saturn storm beacon region. Icarus 261, 149–168.
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