
Review Article
Metabolomics of Pregnancy Complications: Emerging
Application of Maternal Hair

Thibaut D. J. Delplancke ,1,2,3 YueWu,1,2,3 Ting-Li Han,1,2,3,4 Lingga R. Joncer,3

Hongbo Qi,1,2,3 Chao Tong ,1,2,3 and Philip N. Baker3,4,5

1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University,
Chongqing 400016, China

3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education,
Chongqing Medical University, Chongqing 400016, China

4Liggins Institute, University of Auckland, Auckland, New Zealand
5College of Medicine, University of Leicester, Leicester LE1 7RH, UK

Correspondence should be addressed to Chao Tong; chaotongcqmu@163.com

Received 20 August 2018; Accepted 18 November 2018; Published 18 December 2018

Academic Editor: Peter P. Egeghy

Copyright © 2018 Thibaut D. J. Delplancke et al.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In recent years, the study ofmetabolomics has begun to receive increasing international attention, especially as it pertains tomedical
research. This is due in part to the potential for discovery of new biomarkers in the metabolome and to a new understanding
of the “exposome”, which refers to the endogenous and exogenous compounds that reflect external exposures. Consequently,
metabolomics research into pregnancy-related issues has increased. Biomarkers discovered throughmetabolomics may shed some
light on the etiology of certain pregnancy-related complications and their adverse effects on future maternal health and infant
development and improve current clinical management. The discoveries and methods used in these studies will be compiled and
summarized within the following paper. A further focus of this paper is the use of hair as a biological sample, which is gaining
increasing attention across diverse fields due to its noninvasive sampling method and the metabolome stability. Its significance in
exposome studies will be considered in this review, as well as the potential to associate exposures with adverse pregnancy outcomes.
Currently, hair has been used in only two metabolomics studies relating to fetal growth restriction (FGR) and gestational diabetes
mellitus (GDM).

1. Introduction

The speed in which new medical analytical techniques have
been developed during the past century has been monu-
mental. “Omics”, a group of biological fields comprising
genomics, transcriptomics, proteomics, and metabolomics
allow for high-throughput, simultaneous analysis of vast
numbers of molecules within a biological sample [1–6]. The
last of these, metabolomics, is defined as the study of metabo-
lites, a recognized field of study arising in the 1960s aimed
at developing a better understanding of cellular biology [7–
9]. However, its nomenclature is relatively new; the term

“metabolomics” was coined in the early 2000s [10].The study
of metabolomics facilitates an increased understanding of
all the endogenous and exogenous low-molecular weight
molecules (<1500 Da) which are downstream products from
interactions on a genomic or proteomic level [11–13].

Within metabolomics, the study of the “exposome”,
defined as an individual’s total exogenous footprint derived
from exogenous factors that exert a significant influence on
an individual’s biochemistry, is a relatively new but quickly
popularizing discipline for biomarker screening [14, 15]. The
total metabolic profile therefore reflects the biochemical
changes of a living cell or organism brought about by certain
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physiological conditions or in response to an external envi-
ronmental stimulus.This provides insight into the underlying
mechanism of disease development and progression and can
act as the bridge between genetic factors and environmental
exposures, revealing clues to the origin of the resultant
phenotypes of different individuals [16–18].

Metabolomics has become a fast growing area of interest
for research into the prognosis, screening, diagnosis, and
treatment of many diseases [19–23]. Medical metabolomics
research has been focused on the identification and investi-
gation of relevant metabolites formed during certain patho-
logical metabolic reactions. The process begins with untar-
geted screening of the metabolome (the entire set of small
molecules contained in a biological sample). Overall asso-
ciations between metabolites with significantly altered levels
fromcontrol are identified and analyzed to generate a hypoth-
esis. A more targeted approach is then utilized, focusing on
the metabolites with significantly altered values to further
investigate the consistency of results and prove or disprove
the proposed hypothesis. A variety of biological specimens,
namely, serum, urine, tissue, cerebrospinal fluid, hair, saliva,
stool, and exhaled breath, have been used in analysis to study
human pathology [13, 24–26].

Mass spectrometry-based metabolomics has been util-
ized in studies of pregnancy complications such as pree-
clampsia (PE), fetal growth restriction (FGR), gestational
diabetes mellitus (GDM), and preterm birth (PB). The
biomarkers related to these complications are analyzed to
obtain better knowledge concerning the underlying patho-
logical changes at a cellular metabolic level. The end goal
is to develop a more individualised method of screening
and treatment plan for each patient according to their
metabolic phenotype. However, a greater understanding of
the pathophysiology of each condition is first required [27].

In initial metabolomic studies of pregnancy-related com-
plications, urine and blood were used. However, the use
of hair as a metabolomic sample has generated increasing
interest due to its noninvasive nature and the stability of
compounds residing in the hair matrix. Unlike urine and
blood, results from a metabolomic investigation of hair do
not fluctuate from hour to hour. The metabolomic study
of human hair will allow for retrospective studies to be
performed, by way of segmental analysis on a single strand of
hair [28, 29].Hence,metabolomic analysis of hair can provide
a record of the chemical effects from long-term exposure of
known teratogenic pollutants such as tobacco, alcohol, and
drugs [30–32].

2. Metabolomics of Adverse
Pregnancy Outcomes

2.1. Preeclampsia. Preeclampsia is prevalent in 3-8% of all
pregnancies worldwide [33], with a high maternal mortality
rate of >50,000 per year [34]. It is defined by hypertension
with a BP of over 140/90 mmHgmeasured at two consecutive
times within a 6-hour period and proteinuria of >300mg/day,
in pregnant women with gestational ages beyond 20 weeks.
The precise aetiology of preeclampsia remains unclear. How-
ever, it is generally accepted that the condition arises from

defective vascularization of the placenta. Abnormal extrav-
illous trophoblastic penetration into the muscular layer of
spiral arteries in the uterus leads to reduced uteroplacental
blood flow. Diminished placental blood perfusion will then
give rise to ischaemia, oxidative stress, and inflammation.The
two characteristic signs of preeclampsia, namely, proteinuria
and hypertension due to endothelial injury, arise from the
release of inflammatory cytokines released in the aforemen-
tioned process [33].

Preeclampsia can potentially progress to complications
such as eclamptic seizures and hemolysis, elevated liver
enzymes and lowered platelet count syndrome (HELLP
syndrome), and acute complications such as renal or cardiac
failure [33, 35, 36]. Long-term maternal implications include
an increased risk of developing cardiovascular disease post-
partum. Preeclampsia also influences fetal growth and devel-
opment, often resulting in fetal growth restriction (FGR) and
preterm birth (often iatrogenic) [37].

Previous metabolomics investigations are summarized
in Table 1, demonstrating the significantly altered values of
certain metabolites in patients with preeclampsia as com-
pared to healthy pregnancies. Lipid peroxidation and altered
lipoprotein concentrations have been linked to endothelial
dysfunction and oxidative stress, and indeed one of the
notable findings consistent in several of these studies is the
altered values of metabolites related to lipid metabolism.
Carnitine, one of the metabolites related to transport of lipids
from cytoplasm to mitochondria, has also been reported
at significantly altered levels in preeclampsia (Table 1). In
addition, difference has been reported in levels of choline, an
essential nutrient functioning in the metabolism of phospho-
lipids; choline can also influence inflammation, apoptosis,
and angiogenesis [38, 39]. Mukherjee et al. proposed an
interesting hypothesis that change of fatty metabolism in the
placenta associatedwith early-onset preeclampsia (<34weeks
of gestation) can be reflected in maternal plasma metabolites
[40]. Additionally, changes in the concentration of certain
amino acids can be related to the risks for development of
preeclampsia, such as a decrease in taurine, an amino acid
released during trophoblast invasion into spiral arteries [41,
42].

2.2. Fetal Growth Restriction and Small for Gestational Age.
A fetus is defined as small for its gestational age (SGA)
when its estimated fetal weight falls below the 10th percentile
[43, 44]. Evidence of SGA is not enough to determine a
pathological diagnosis, as several other physiological factors
such as maternal ethnicity and genetics can contribute to a
low estimated fetal weight (EFW). A pathologic diagnosis of
fetal growth restriction (FGR) (also known as intrauterine
growth restriction, IUGR) ismore likelywhen SGA is coupled
with abnormal test results (such as an abnormal Uterine
Artery Doppler) [43].

FGR can be attributed to several different factors, such
as fetal genetic abnormalities and congenital infections (e.g.,
toxoplasmosis, malaria, and rubella). However, the majority
of FGR is associated with some form of placental perfusion
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insufficiency [45]. Fetuses with FGR are at high risk of
perinatal mortality and development of long-term morbidi-
ties such as neurodevelopmental delay, diabetes, and adult
hypertension and diabetes [46, 47]. Current treatment plans
include monitoring, administration of low-dose aspirin, and
induction of preterm delivery [44].

Several metabolomic studies of SGA cases have shown
significant alterations in relative concentration of certain
metabolic classes between affected pregnancies as compared
to uncomplicated pregnancies (Table 2). For instance,Horgan
et al. (2011) discovered a significant association between
altered levels of sphingolipids and phospholipids in maternal
blood and SGA [47]. Sphingolipids are a class of fatty
acids that act as vital mediators in the cellular processes
of apoptosis, proliferation, and stress responses [48, 49].
Therefore, they may be indicative aberrant cellular processes
in cytotrophoblasts, resulting in placental insufficiency and
FGR [50, 51]. Phospholipids are another class of fatty acids,
comprising the major component of cell membranes. An
increase in phospholipid levels in maternal serum is also
indicative of cellular damage and apoptosis [52].

Van Vliet et al. (2013) studied metabolomic changes
in fetal rabbit brain tissue when FGR was induced; 18
metabolites belonging to certain classes (neurotransmitters,
amino acids and fatty acids related to energy metabolism,
and oxidative stress) were found to have significantly altered
values (p< 0.05) [46]. Of particular note are the signif-
icantly decreased values of N-acetylaspartylglutamic acid
(NAAG) and N-acetylaspartate (NAA), two cerebral-specific
metabolites that are indicative of neuronal density and
viability, providing insight to the correlation between FGR
and fetal neurodevelopmental delay [53]. Vab Vliet et al.
also identified a significant reduction of certain amino acid
concentrations (asparagine, ornithine, histidine, and l-lysine)
and pyroglutamic acid (precursor to glutamate) in fetal
rabbit brain with induced FGR [46]. As amino acids and
glutamate are important for brain growth, metabolism, and
function, these findings are hardly unexpected. However,
Favretto et al. (2014) have conversely discovered significantly
increased levels of 7 alpha amino acids (including pheny-
lalanine and tryptophan) and glutamate itself in cord blood
[54].

2.3. Preterm Birth. PB is defined as delivery before 37 weeks
of gestation and affects up to 12-13% of pregnancies [55].
It can be further classified into three categories: sponta-
neous labor with intact membranes (SPB), preterm prema-
ture rupture of the membranes (PPROM), and medically
induced preterm labor (IPB, including cesarean sections
for maternal and fetal indications) [55]. Understanding of
the etiological processes that lead to PB remains limited.
However, most SPB cases result from one or more of the
following pathological processes: amniochorionic decidual
or systemic inflammation, activation of the maternal/fetal
hypothalamic–pituitary–adrenal, decidual haemorrhage, or
pathological distension of the uterus. Cervicovaginal secre-
tions or fluid could be collected easily in a noninvasive and
repetitive way, at different times of gestation and parturition.

In many cases, abnormal cervical structure, local inflamma-
tion, and high cervicovaginal fluid acetate integral of women
appear as major precipitating factors of SPB [56, 57].

Although limited metabolomics study has been per-
formed on PB, Maitre and Oladipo noted a heightened
concentration of lysine (an essential amino acid) in maternal
urine and premature neonatal plasma, respectively (Table 3)
[45, 58]. Maitre et al. (2014) have also noted an elevated
lysine and steroid conjugate levels and significantly decreased
levels of formate in urine samples related to spontaneous
preterm birth (SPB). They speculated that an increase in
N-acetylglycoprotein fragment in these urine samples was
proportionately linked to higher risk of medically induced
preterm birth (IPB) [45]. Since N-acetylglycoproteins are
known to be inflammation-induced acute phase proteins in
serum, this is not an unexpected finding [59]. However,
it shows promising potential for early diagnosis of IPB
indications.

2.4. Gestational Diabetes Mellitus. Gestational diabetes
(GDM) is currently defined as any degree of glucose intoler-
ance with onset or first recognition during pregnancy
[60]. The diagnostic criteria vary, but are based on fasting
plasma glucose values and glucose value after a glucose load,
typically tested at weeks 24-28 of pregnancy [61, 62]. GDM
has an incidence of up to 15-20%, according to availability of
sophisticated screening methods, population demographics,
and criteria for diagnosis [60, 61]. Risk factors that have
been correlated with GDM include advanced maternal age,
race/ethnicity, obesity, and family history of type 2 diabetes
mellitus (T2DM) [61].

As shown in Table 4, several metabolites, such as those of
lipids, glycerophospholipid, and carnitines, have been noted
across various studies of GDM [63–65]. Another class of
thesemetabolites is the branched-chain amino acids (BCAA).
BCAAs have proven involvement in insulin resistance and
suppression of insulin secretion, by impacting the mito-
chondria in pancreatic beta cells, and show an association
with higher risk of developing GDM [66–69]. Several fatty
acids and downstream products of fatty acid metabolism
(which are associated with insulin resistance and glucose
metabolism) have also shown downregulation in serum from
maternal hyperglycemia and GDM cases [70–72]. Dudzik et
al. (2014) discovered several significant differences in relative
metabolite concentrations in the plasma and urine samples
between hyperglycemic and healthy pregnant women. One of
these was a significant decrease in glycerophospholipid levels,
which could be attributed to change in glucose metabolism
due to beta-cell dysfunction in cases of glucose intolerance
[65].

Long-term effects on the mother include postpartum
T2DM and cardiovascular disease [60, 61]. Furthermore,
infants born to women with GDM are at increased risk
for respiratory distress syndrome, macrosomia, jaundice,
and obesity or other metabolic syndromes in later life [73,
74]. When diagnosed early, these adverse short-term and
long-term health issues may be reduced through lifestyle
intervention [60]. Therefore, the study and discovery of
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potential biomarkers for GDM are significant not only for its
benefits for diagnosis and treatment of GDM itself, but also
for prevention of further morbidities associated with T2DM.

3. Hair Metabolomics

3.1. General Use of Hair in Clinical Applications. The use
of hair as a biological specimen is commonplace in the
measurement of toxic exposures. It began with accurate
estimation of exposure to heavy metals and alcohol in the
1960s. Hair specimen have been used to determine the level
of exposure to smoking, pesticides and drugs [7, 75, 76].
All of these substances lead directly or indirectly to adverse
pregnancy outcomes [77–84]. Chemical markers detected
in human hair specimens have proven to be both objective
and accurate in the measurement of environmental exposure.
One advantage of using hair as a biological sample is that
it provides a broader view of an individual’s metabolic
profile. Both endogenous compounds and environmental
chemicals are assimilated into hair during growth. Therefore,
hair provides a metabolite profile that reflects the long-term
effect of environmental exposure on pregnancy outcomes. In
contrast, the more conventional samples such as blood and
urine only provide transient biochemical profiles.

In addition, hair is a stable biological sample and can
be stored for longer periods of time; no special preparations
need to be conducted to prevent sample degradation, thus
simplifying transport between laboratories.

There are, however, several limitations related to the
use of hair in metabolomic studies. Lower concentrations
of toxic substances are incorporated into hair as com-
pared to those that can be analyzed in blood and urine
samples. Therefore, instruments with higher sensitivity are
required [85, 86]. Furthermore, gender, nutrition, melanin
content of hair, lipophilicity, pH of molecules, agricultural
exposures, and external contamination (through sweat or
sebum) may all affect the incorporation of trace elements
into hair [87–90]. Certain hair treatments, even as simple as
shampoo, also affect the concentration of analytes found in
hair.

3.1.1. Trace Element Exposure. Humans are commonly ex-
posed to a variety of toxic trace elements. Arsenic, cadmium,
lead, andmercury are known teratogenic factors and can con-
tribute to neurotoxicity during pregnancy [82, 91–96]. While
the more conventional samples such as urine and blood
provide a more accurate measurement of physiological toxin
concentrations, hair can be used to conduct a retrospective
study that could provide more information of the times the
toxinwas ingested and the accumulation of toxins in the body
over time.

Analytical methods have been dramatically improved
in recent decades and hybrid generation-atomic fluores-
cence spectrometry [97, 98], inductively coupled plasma-
mass spectrometry (ICP-MS) [87, 99], and atomic absorption
spectrometry [88, 100, 101] are utilized to analyze trace
elements in hair samples. A more simplistic method for ICP-
MSwas further developed to cut down on time and resources
by coupling high-performance liquid chromatography with

ICP-MS [102]. Another method, laser ablation-ICP-MS, gives
the spatial distribution of trace elements in a single strand,
thereby giving a timeline for exposure with a high degree of
accuracy from a minute specimen [103–105].

3.1.2. Drug Abuse Analysis. Measuring complex molecules
such as drugs in hair has proved to be more challenging
than analysis of trace elements. While trace elements remain
unmodified, drugs can be catabolised and it is often the
byproducts or downstreammetabolites that are incorporated.
Therefore, analyses of these compounds require more sophis-
ticated analysis techniques such as GC-MS and LC-MS.
Nevertheless, analysis of hair samples remains a method for
determining the presence or absence of certain drugs and to
obtain a better understanding of absorption and metabolism
of different drugs [106].

There are several advantages to using hair samples in
investigations of illicit drug exposure. Firstly, it can be
collected in person, thus removing the possibility of substi-
tution, which is a common problem in urine sampling [107].
Secondly, unlike the fast clearance rate of these compounds
(e.g., heroin) in blood and urine, drugs, and their byproducts
remain stable in hair [106, 108, 109]. Finally, segmental
analysis of hair samples allows one sample to give a picture
for months compared to multiple blood tests, which could
be useful for a longitudinal monitor of drugs abstinence
[110].

Exposures to certain illicit and pharmaceutical drug com-
pounds such as ACE-inhibitors and heroin during pregnancy
have been proven to exert a teratogenic effect, providing a
further indication in pregnancy [111–113].

The usual limitations of metabolomics hair analysis
should be kept in mind. Moreover, Mercolini L. et al.
discovered potential bias from external contamination of
hair, for example, that consumption of cannabis could only
be confirmed when both THC (tetrahydrocannabinol) and
its metabolite THC-COOHwere detected in the hair samples
[114].

3.1.3. Alcohol Consumption via Hair Analysis. During the last
decade, monitoring of alcohol consumption has advanced
with the discovery of two types of alcohol metabolite, ethyl
glucuronide (EtG), and fatty acid ethyl esters (FAEEs) (ethyl
myristate, ethyl palmitate, ethyl oleate, and ethyl stearate)
in hair [115–117]. Sensitivity and specificity of GC-MS and
LC-MS analysis for detection and measurement of these
compounds in hair are excellent and are often utilized in
traffic law enforcement and liver transplant allocation [118–
121]. Originally, it was believed that FAEE or EtG in hair
can only be used for identifying rather than quantifying
alcohol consumption [122]. However, in 2016 the Society
of Hair Testing published a consensus for workable cut-
off values (Table 5). Cut-off values for FAEEs are adjusted
according to hair segment used, to account for possible
external concentrations of FAEEs into hair from cosmetic
treatments.

EtG is predominantly incorporated into hair matrix by
sweat [123], while FAEE incorporation is by sebum [124].
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Table 5: Consensus on alcohol markers in hair analysis by Society of Hair Testing.

Total Abstinence Chronic Excessive Consumption Hair segment
EtG <7 pg/mg ≥30 pg/mg proximal scalp hair segment up to 6 cm

FAEEs <0.12ng/mg ≥0.35 ng/mg 0-3 cm proximal scalp hair segment
<0.15ng/mg ≥0.45 ng/mg 0-6 cm proximal scalp hair segment

Tsanaclis et al. (2009) and Crunelle et al. (2015) discovered
that one of the drawbacks of using only EtG in hair for mea-
surement of alcohol consumption is that normal hair hygiene
practices (e.g., shampooing) and cosmetic treatments (dyeing
and bleaching) greatly reduces the concentration of EtG in
hair as it is a hydrophilic compound [125, 126]. However, EtG
concentration in hair is not influenced by the use of alcohol-
containing hair products or by the use of hair spray, wax, gel,
oil, or grease [127]. In contrast, FAEE is virtually unaffected
by shampoo washing or dyeing, but its concentration may
be increased by ethanol-containing lotions and hairspray
[127, 128]. All of these factors and more (such as the site
of hair collection) must be considered when determining
an individual’s abstinence or alcohol dependence. EtG and
FAEEs are used in combination to increase reliability of the
results [129].

3.1.4. Evaluating Tobacco Smoke Exposure Via Hair Analysis.
During the past century, a large number of studies have
been conducted on the long-term and short-term teratogenic
effects of cigarette smoke [75, 130]. Nicotine and its catabolite
cotinine are used in tobacco smoke exposure measurement.
However, due to the short half-life of nicotine and cotinine,
analytical techniques using conventional samples such as
blood [131] and urine [132] have yet been able to accurately
quantify the harmful concentrations and level of risk in devel-
opment of pregnancy complications for pregnant women and
their fetuses [131, 132].

Analysis of nicotine and cotinine in hair has been her-
alded as a solution. Several analytical techniques, namely,
GC [75], RPHPLC [133], GC-MS [130], and HPLC [134] have
been used to identify smokers. Of particular interest is the
GC-MS platform and its ability to evaluate levels of passive
smoking by hair sample [135], as it is less prone to interference
and a smaller sample size is needed for analysis (e.g., 5 mg
of hair from one test subject) [135]. Exposure to polycyclic
Aromatic Hydrocarbons (PAHs), another substance found in
cigarette smoke and heavy industry, can also be quantified in
hair through GC-MS [130].

3.1.5. Evaluating Pesticide Exposure via Hair Analysis. In
recent decades, many pesticides have been outright banned
or its use severely restricted in Europe and several other
countries [136]. However, pesticide use is still widespread,
despite well-known carcinogenic, mutagenic, and teratogenic
effects [137–141].

Blood and urine are routinely used to assess pesti-
cide intake. These compounds can be directly measured in
blood while their catabolites can be analyzed in urine. In
addition to providing a method for retrospective analysis

of pollutant exposure, both the compound itself and its
catabolites can be analyzed in a single hair sample. GC-
MS [142] or GC-MS/MS [143] are validated methods but
both require a precleanup procedure, either liquid-liquid
extraction (LLE) or solid-phase extraction (SPE), to purify
the analytes and enhance sensitivity. A study conducted by
Duca et al. (2014) found that SPE gives a better recovery
rate of the analytes compared to LLE and reduces the
background noise of the analysis via detecting sixty-seven
pesticides and metabolites from different chemical classes
including organochlorines, organophosphates, carbamates,
pyrethroids, ureas, azoles, phenylpyrazoles, and neonicoti-
noids. [144]. In 2012, Salquèbre et al. applied an improved
clean-up procedure developed from SPE called Solid-phase
microextraction (SPME) that in combination with gas chro-
matography tandem (triple quadrupole) mass spectrometry
was able to analyze smaller sample amounts due to its higher
sensitivity [85].

4. Hair Metabolome Related to Adverse
Pregnancy Outcomes

The application and advantages of hair as a biological
specimen have previously been discussed in the context of
biological screening and toxin exposure. The use of hair
to investigate the metabolome of pregnant women and
research adverse pregnancy outcomes holds great potential.
The incidence of adverse pregnancy outcomes is influenced
by environmental and physiological changes from precon-
ception until delivery. Analysis of hair could provide a
wide perspective of the whole process as both endogenous
(metabolome) and exogenous compounds (exposome) are
incorporated. However, thus far, this potential has not been
fully realized. There have only been two studies investigating
the hair metabolome in pregnant women who suffer from
certain pregnancy-related complications. These studies were
done by Sulek et al. and He et al. on FGR [145] and GDM
[146], respectively (Table 6).

In the FGR study, hair sampleswere taken from83women
at 26-28 weeks of gestation. 41 of these women subsequently
delivered SGA fetuses, and the 42 remaining women deliv-
ered fetuses of normal weight, serving as controls. GC-MS
basedmetabolite profiling of the hair samples was used to dis-
cover significant variations in a range of metabolites between
cases and controls including amino acids, amino acid deriva-
tives, fatty acids, cofactors, and antioxidants. Based on these
results, a biomarker model was capable of distinguishing
pregnancies complicated by FGR from normal pregnancies,
using fivemetabolites, with a receiver-operating curve of 0.99.
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The authors also reported increased levels of heptadecane
in samples obtained from FGR pregnancies. Heptadecane
is an exogenous alkane hydrocarbon incorporated into the
metabolome through air pollution and/or food contamina-
tion and may represent an environmental trigger that leads
to FGR. Furthermore, elevated levels of NADPH/NADP in
combination with decreased levels of glutathione observed
in the FGR cases suggest redox imbalance and placental
oxidative stress that may be another precipitating factor of
FGR [46, 145].

More recently, the GDM study conducted by He et
al. (2015) studied hair metabolite profiles from 47 cases
diagnosed with GDM as compared to 47 controls with no
pregnancy complications, at around 24-28weeks of gestation.
The hair metabolome analysis of GDM identified a signif-
icantly elevated level of adipic acid, a compound that had
been found at elevated levels in urine of subjects with Type II
diabetes and associated with oxidative stress [146–149]. One
limitation of this study, however, was that hair analysis was
performed on the whole hair strand. Therefore, the results
represent the metabolic profile of both preconception and
early gestational periods [146].

Both studies thus show promising results that could
advance the understanding and clinical approach to these
pregnancy complications.

5. Relating the Exposome to Adverse
Pregnancy Outcomes

The term “exposome” was first defined by Christopher Wild
in 2005 and then underwent several modifications as the
understanding of it developed over time [150]. The latest
definition of the exposome, suggested by Miller and Jones,
is “the cumulative measure of environmental influences
and associated biological responses throughout the lifespan
including exposures from the environment, diet, behaviour,
and endogenous processes” [14]. Evaluating adverse preg-
nancy outcomes to pollutants, drugs, and various exposures
based on maternal metabolite profiles seem to be a logical
next step. Exposome markers not only give rise to spe-
cific phenotypes but also modify the metabolic phenotype
depending on the health status of the individual. In addition
to external exposome, the endogenous exposome, which are
the chemicals generated within the human body in response
to external stimuli through various physiological processes
(e.g., oxidative stress, inflammation, or infections) should
also be investigated [151].

Currently, the major focus in pregnancy-related exposure
investigations is on pesticides, tobacco smoke, drug abuse,
alcohol dependence, and exposure to mercury [79, 152, 153].
These pollutants can be transported from mother to fetus
through the placenta. Prenatal and neonatal samples such
as maternal and infant hair, meconium, maternal blood,
and cord blood have been used in studies done on fetal
and maternal exposures. Results from these studies show
that meconium provides the most sensitive data represent-
ing in utero fetal exposure, while maternal hair sampling
is the most stable for detecting the maternal exposome
[32, 154–156].

Fetal exposure to mercury and more specifically
methylmercury (a neurotoxin) during pregnancy could occur
through maternal consumption of mercury-contaminated
fish [157, 158]. Fetal exposure to pesticides could occur
through contaminated food and water, inhalation of
pesticide-polluted air, or skin contact. Some pesticides are
also neurotoxic and could result in mental retardation,
learning disabilities, autism, attention deficit-hyperactivity
disorders, and deficiencies in motor development in
the infant [159, 160]. Furthermore, increased risks of
IUGR, PTB, miscarriage, and fetal alcohol syndrome
have been associated with exposure to pollutants during
pregnancy [161–163]. One study by Bonvallot et al. (2013)
has demonstrated that 5 metabolites (glycine, threonine,
lactate, glycerophosphocholine, and citrate) in the urine
were significantly different between pesticide-exposed
and unexposed pregnant women [164]. Comprehending
the associations between the exposome and adverse
pregnancy outcomes and future health of fetus is crucial
in risk estimation and prediction of developing pregnancy
complications, and further studies into the exposome should
be conducted.

6. Conclusion

It is well-established that the first 1000 days of human
life, calculated from conception, are crucial in determining
well-being throughout the entire lifespan [165]. The most
recent research studies have further suggested that maternal
health condition even before conception is also involved
in determining fetal health [166]. Therefore, the maternal
metabolome should be monitored or assessed as early as
possible. Given that many pregnancies are unplanned and
first blood draw or urine collection is done in the pregnancy
clinic, a biological sample that could be collected after
conception but able to reveal the preconception metabolome
would prove to be extremely valuable. This is one main
advantage of using hair as a biological sample. In addi-
tion, analysis of the hair metabolome also holds potential
for early diagnosis and risk identification biomarkers for
various pregnancy complications and harmful exposures
during pregnancy. Preventative plans and /or personalized
treatment plans could be created from the data obtained
from these studies. Other advantages of using hair as a
biological sample are that hair sampling is noninvasive and
safe for both mother and fetus, and the hair metabolome is
stable and can be preserved for months at room temperature
without any special preparation. Thus, further studies of
the hair metabolome relating to pregnancy complications
could open the door to many significant practical advances
in the way these conditions are dealt with in the clinical
setting.
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[21] J. L. Sébédio and S. Polakof, “Using metabolomics to iden-
tify biomarkers for metabolic diseases: analytical methods
and applications A2,” in Metabolomics as a Tool in Nutrition
Research, J.-L. Brennan and L. Sébédio, Eds., pp. 145–166,
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