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Abstract. We consider the topology and dynamics associated to a wide class
of matchbox manifolds, including spaces of aperiodic tilings and suspensions of
higher rank (potentially non-abelian) group actions on zero–dimensional spaces. For
such a space we introduce a topological invariant, the homology core, built using
an expansion of it as an inverse sequence of simplicial complexes. The invariant
takes the form of a monoid equipped with a representation, which in many cases
can be used to obtain a finer classification than is possible with the previously
developed invariants. When the space is obtained by suspending a topologically
transitive action of the fundamental group Γ of a closed orientable manifold on
a zero–dimensional compact space Z, this invariant corresponds to the space of
finite Borel measures on Z which are invariant under the action of Γ. This leads
to connections between the rank of the core and the number of invariant, ergodic
Borel probability measures for such actions. We illustrate with several examples
how these invariants can be calculated and used for topological classification and
how it leads to an understanding of the invariant measures.

1. Introduction

Given the action of the fundamental group Γ = π1(M) of a closed orientable man-
ifold M of dimension d on the zero–dimensional compact metric space Z, one can
suspend the Γ action over M to form a spaceM. Provided this Γ action has a dense
orbit (i.e., is topologically transitive), this space will have the structure of a matchbox
manifold. More generally, a matchbox manifold is a compact, connected metric space
that locally has the structure of Rd × T , where T is a zero–dimensional space. Such
spaces occur naturally when considering minimal sets of foliations and hyperbolic
attractors of diffeomorphisms of manifolds. We do not in general require any differ-
entiable structure, but shall restrict our consideration to matchbox manifolds that
admit an expansion as an inverse system (tower) of finite simplicial complexes with
well-behaved projection and bonding maps; such expansions are known to exist for
many classes, see for example, [14]. We detail the precise class of spaces we consider
in Section 2.

Special and well studied examples of such objects include the so called tiling spaces
arising from aperiodic tilings of a Euclidean space with finite (translational) local
complexity; see Sadun’s text [33] for a general introduction to such examples. These
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tiling spaces can be viewed as the suspension over a torus of a Zd action on a zero–
dimensional space, as detailed by Sadun & Williams [34].

In this paper we introduce a homeomorphism invariant of oriented matchbox mani-
folds, the homology core ofM. In its strongest form, the core may be considered as a
monoid equipped with a representation in a linear space, and it is this representation
(as opposed to an abstract monoid) that can be used to make the finest distinctions.
Our construction uses the top dimensional homology groups of an expansion of M,
and as such the invariance of the homology core can be considered a generalisation
of the work of Barge & Diamond [3] and Swanson & Volkmer [36] on the weak equiv-
alence of matrices related to a one dimensional substitution tiling system; we have
however no reason to restrict attention to substitution tiling spaces, and we can often
compute our invariant for oriented matchbox manifolds of any dimension to great
advantage.

Our work may also be seen as providing a generalisation of invariants as introduced
by Kellendonk [25] and Ormes, Radin & Sadun [30] which use oriented dimension
or cohomology groups, applied to higher dimensional primitive substitution tiling
spaces. For such tiling spaces a duality (clearest when working with coefficients in
a field of characteristic zero) can be established with the homology core, but much
more generally, the approach in this paper would also allow the construction and
topological invariance of such cohomological objects to be established in any oriented
matchbox manifold with a simplicial presentation, not just those defined by a single
primitive matrix. Nevertheless, the homological approach appears to be the more
natural place in which to do calculation, and in our final part we compute examples
of spaces with various expansions in which, for example, the Perron-Frobenius theory
heavily relied on by [30] is clearly not available.

While the homology core is constructed using expansions, as is usual in shape theory,
the homology core is not a shape invariant. In fact, we show that, unlike Cech coho-
mology, the homology core can be used to distinguish examples of shape equivalent
spaces, but at the same time, there are examples of spaces the homology core does not
distinguish but which are distinguished by the authors’ shape invariant L1 defined in
[12].

An intriguing and significant feature of the homology core we present appears when
our underlying matchbox manifold M is constructed by suspending a topologically
transitive Γ action on a zero–dimensional compact space Z over the oriented manifold
M . We show under these circumstances that the top Cech cohomology of such a
matchbox manifold is tractable, and as a result in many natural cases the homology
core can be identified with the space of finite Borel measures on the space Z that
are invariant under the given action of Γ. A related result for tiling spaces is given
by Bellissard, Benedetti & Gambaudo [7]. We note however that this result needs
only part of the invariant, and is dependent only on the core as an abstract monoid,
independent of its representation.

There is a connection with objects that have been previously used in the study of
invariant measures in, for example, Bezuglyi, Kwiatkowski, Medynets, & Solomyak
[9], Aliste-Prieto & D. Coronel [1], Petite [29] and Frank & Sadun [19]. In those
constructions the number of invariant, ergodic, Borel probability measures is usually
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found to be bounded above by the number of tile types, vertices in a related Bratteli
diagram or similar information. From our viewpoint, in many cases we can directly
compute the number of invariant, ergodic Borel measures in terms of extreme points
in our potentially much smaller homology core of M.

Furthermore, our result can be viewed as a refinement of the connection between
the foliation cycles of a foliated space and the space of invariant measures discovered
by Sullivan [35], see also [27]. The advantage of our approach is that one can often
calculate the homology core in a direct and quite tangible way, capturing some of the
geometric information lost in the other approaches.

A novel feature of our approach is that it is purely topological and makes no use
of a smooth structure as in [35], [7]. At the same time, by considering the more
general case we identify the key ingredients in the structure that make the argument
go through. In particular, the fibred simplicial presentations as found in [14] are
essential in the arguments of Theorem 5.7.

The paper is arranged as follows. In Sections 2 and 3 we specify the category of
matchbox manifolds we consider, associated homology classes and their behaviour
under homeomorphisms. In Section 4 we define the homology core, Definition 4.2,
and prove its invariance under homeomorphism. We also introduce the properties of
Z and Q-stability. In Section 5 we concentrate on those matchbox manifolds that are
suspensions over manifolds, and relate the homology core to spaces of invariant mea-
sures. In this section we also sketch the relation to the ordered cohomology of [30],
and indicate how the approach here could allow a generalisation of the construction
in [30] and its properties to a wider class of objects. In the final section, 6, we detail
a number of examples and computations. We recover and generalise, Theorem 6.2, a
result of Cortez & Petite [16] on the unique ergodicity of certain solenoids and their
associated odometers, provide examples, examples, 6, in which the core distinguishes
between non–minimal tiling spaces with multiple invariant ergodic measures, exam-
ples 6.7, which demonstrate that the core can distinguish shape equivalent spaces,
but also, 6.5, that the core will not fully distinguish between all shape inequivalent
spaces.

2. Background

In this section we shall present the preliminary results that allow us to obtain the
topological invariance of the homology core we construct in Section 4. We begin by
recalling the suspension construction, a special but important case of the matchbox
manifolds we consider.

Let Γ = π1(M,m0) be the fundamental group of a PL closed orientable manifold M
of dimension d. Let Γ act on the left of the zero–dimensional compact space Z. We

identify Γ with the deck transformations of the universal covering map M̃ →M , and

we consider Γ to act on the right of M̃. This then leads to the suspension M̃ ×Γ Z,

which is the orbit space of the action of Γ on M̃ × Z given by

(γ, (m, c)) 7→ (m · γ−1, γ · c).
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The space M := M̃ ×π1(M) Z thus constructed is a foliated space which is locally
homeomorphic to Rd × Z. Provided that the action of Γ is topologically transitive,
M is connected and hence is an example of a matchbox manifold. All the standard
examples of repetitive, aperiodic tiling spaces with finite local complexity are such
suspensions with abelian group Γ = Zd and M a d-torus [34].

DEFINITION 2.1. A matchbox manifold M is a compact, connected metric space
with the structure of a foliated space, such that for each x ∈M, the transverse model
space Tx is totally disconnected.

The topological dimension of a matchbox manifold of dimension d is the same as
the dimension of its leaves, which coincide with the path components. In the case
of a suspension over a manifold M , then d coincides with the dimension of M. The

smoothness of a suspension M̃×π1(M)Z along leaves in the case that M is smooth and
its structure as a fiber bundle over M with fiber Z follow from general considerations,
see [11, Chapt 3.1]. A matchbox manifold is minimal when each path component is

dense. A suspension M̃ ×π1(M) Z is minimal if the action of Γ on Z is minimal. We
refer the reader to [13], [14] for a more detailed discussion.

DEFINITION 2.2. Let M be a matchbox manifold of dimension d. A simplicial
presentation of M is an inverse sequence whose limit is homeomorphic to M

M ≈ lim←−{M
f1←− X2

f2←− X3
f3←− · · · }

and is such that each Xn is a triangulated space and each bonding map fn is surjective
and simplicial. Additionally, we require for each n that:

(i) each simplex in the triangulation of Xn is a face of a d–dimensional simplex
and

(ii) each d–dimensional simplex S of Xn pulls back inM to a subset homeomorphic
to S ×K for some zero–dimensional compact K and that for each k ∈ K the
restriction of the projection M → Xn to S × {k} is a homeomorphism onto
its image.

Condition (ii) is similar to requiring the restrictions to leaves to be covering maps (as
is the case of the fiber bundle projections in a suspension), only at the boundaries of
the simplices S in the leaves (where there can be branching in Xn) the projections
do not necessarily behave as covering maps. In addition to very general tiling spaces,
according to the results of [14], a wide variety of minimal matchbox manifolds ad-
mit such a presentation. However, these presentations are only known to exist for
matchbox manifolds with trivial holonomy. When the manifold is obtained from the
suspension of the action of a group Γ, the condition of trivial holonomy implies that if
γ ∈ Γ fixes an element of the transverse space z ∈ Z, then γ must fix a neighbourhood
of z. While it is not know the precise degree to which non–trivial holonomy provides
an obstruction to the existence of simplicial expansions, this suggests a property of
the group action that appears necessary for the connection between the Γ–invariant
measures and the topologically invariant homology core. Since there are examples of
group actions that do not admit non–trivial invariant Borel measures, this highlights
a potential topological obstruction to the existence of such measures.
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According to the definition, corresponding to the triangulation of Xn in a simplicial
presentation which M admits, there is a decomposition of M into a finite number
of sets of the form Si ×Ki that intersect only along sets of the form ∂Si ×K, where
∂Si is the boundary of Si and K is a clopen subset of Ki. Thus, the leaves of M
can be given a simplicial structure induced by this decomposition. What is more,
the leaves of M can be considered as being tiled by finitely many tile types, one
type corresponding to each simplex Si in the triangulation of Xn. Given the nature
of a triangulation, we also have that there are only finitely many ways that tiles
may intersect in a leaf, which can be considered as a form of what is known as
finite local complexity. Of course, unlike the case of the aperiodic tilings generally
studied, there is no reason to assume the leaves are euclidean, or even contractible.
Each of the successive approximating spaces Xn leads to a finer decomposition of
M and the fibers of the projection M → Xn+1 are contained in the fibers of the
projection M → Xn and the induced map fn : Xn+1 → Xn is simplicial in that it
can be considered as the geometric realisation of a simplicial map of the complexes
underlying the triangulations of Xn+1 and Xn.

This special structure will allow us to apply a powerful result on the approximation
of maps between inverse limits as described below.

DEFINITION 2.3. For given inverse limitsM = lim
←−
{Xn, fn} and N = lim

←−
{Yn, gn},

a map h : M → N is said to be induced if for a subsequence nk of N, there is for
each k ∈ N a map hk : Xnk

→ Yk such that the following diagram commutes

Xn1

h1
��

Xn2

f
n2
n1
oo

h2
��

· · ·oo Xnk

hk
��

oo Xnk+1

f
nk+1
nk
oo

hk+1

��

· · ·oo

Y1 Y2g1
oo · · ·oo Ykoo Yk+1gk

oo · · ·oo

and the resulting map M → N given by (xi) 7→ (hi(xni
)) is equal to h. Here, for

r < `, we write f `r for the composite fr ◦ · · · ◦ f`−1.

We record the key result of Rogers [31, Thm 4] on the approximation of maps between
inverse limits as maps between the factor spaces.

THEOREM 2.4. [31] Given two matchbox manifolds with simplicial presentations
M = lim

←−
{Xn, fn} and N = lim

←−
{Yn, gn} and given any ε > 0, any continuous map

f :M→ N is homotopic to an induced map fε in which points are moved no more
than ε over the course of the homotopy from f to fε.

3. Orientation in matchbox manifolds

We now consider a matchbox manifoldM equipped with simplicial presentationM =
lim
←−
{Xn, fn}. Recall that the leaf topology for a leaf L has a basis of open sets

formed by intersecting L with open sets of plaques of the foliation charts, which
gives L the structure of a connected manifold. A leaf can be orientable or not,
and when L is orientable it admits one of two orientations. (A convenient way of
considering orientations and orientability for a non–compact manifold admitting a
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simplicial structure such as L is with the use of homology groups based on infinite
chains, see, e.g., [28, p.33, 388].) If L has an orientation, each time it enters a subset
of M of the form S × K, where S is a simplex of dimension d corresponding to a
triangulation of some Xn, then L induces an orientation of S. It can happen that
each time an oriented L enters S×K it induces the same orientation of S or it could
induce different orientations. If L always induces the same orientation on S, we shall
say L induces a coherent orientation on S, and if this is so for all simplices S in all
Xn then we say L can be oriented coherently. In a minimal matchbox manifold M,
whether a given simplex S of Xn is coherently oriented is independent of the choice
of orientable leaf L. (It should be borne in mind that for general matchbox manifolds
not all leaves of a matchbox manifold need be homeomorphic and that it can even
happen that some leaves are orientable while others not.)

DEFINITION 3.1. A simplicial representation of a matchbox manifoldM = lim
←−
{Xn, fn}

is orientable if the following conditions hold

(i) M has an orientable dense leaf L and
(ii) L can be oriented coherently with respect to the triangulations of all the Xn.

An orientation of an orientable simplicial presentation of M is given by a choice of
orientation of a dense leaf L as above and the corresponding induced orientation of
each simplex occurring in the triangulations of the Xn.

From here on we shall only consider orientable presentations. While this originally
seems quite restrictive, any non-orientable matchbox manifold has an orientable “dou-
ble cover”, [11, p. 280]. As a basic example, the leaves of a tiling space arising from an
aperiodic tiling of Rd with finite translational local complexity admit a natural orien-
tation induced by the translation action, and the various presentations that have been
constructed using the structure of the tiles are coherent with this orientation provided
one takes the extra step of introducing the simplicial structure on the complexes. Ob-
serve also that since we are endowing each Xn with the orientation induced by L and
the bonding maps are simplicial, the bonding maps will preserve the orientation of
each simplex.

DEFINITION 3.2. A homeomorphism h :M→N of matchbox manifolds with cor-
responding oriented simplicial presentations M = lim

←−
{Xn, fn} and N = lim

←−
{Yn, gn}

with orientations induced by the leaf L ofM and h(L) of N is orientation preserving
if h preserves the orientation of L and otherwise h is orientation reversing.

The invariants we construct will be preserved by orientation preserving maps and
are intimately related to how their homotopic induced maps act on the algebraic
invariants of the approximating spaces Xn.

DEFINITION 3.3. Given an oriented simplicial presentation M = lim
←−
{Xn, fn}, a

positive homology class of Xn is a homology class in the top dimensional simplicial
homology group Hd(Xn) that can be represented as the positive integer combination
of elementary chains of positively oriented d–simplices of some simplicial subdivision
of Xn, and we denote the set of all positive homology classes as H+

d (Xn). Similarly,
we define H−d (Xn) as all the homology classes in the simplicial homology Hd(Xn)
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that can be represented as the negative integer combination of elementary chains of
positively oriented d–simplices of some simplicial subdivision of Xn. (The zero class
is considered to be in H+

d (Xn) ∩H−d (Xn).)

Observe that by our choices of orientation for the Xn and their common relation to
a chosen leaf L, each bonding map fn : Xn+1 → Xn satisfies (fn)∗(H

+
d (Xn+1)) ⊂

H+
d (Xn) and similarly with H−d (Xn+1). The following result is key for the topological

invariance of the homology core.

PROPOSITION 3.4. Given a homeomorphism h : M → N of d–dimensional
matchbox manifolds with corresponding oriented simplicial presentationsM = lim

←−
{Xn, fn}

and N = lim
←−
{Yn, gn} let h′ : M→ N be any induced homotopic map corresponding

to the following commutative diagram

Xn1

h1
��

Xn2

f
n2
n1
oo

h2
��

· · ·oo Xnk

hk
��

oo Xnk+1

f
nk+1
nk
oo

hk+1

��

· · ·oo

Y1 Y2g1
oo · · ·oo Ykoo Yk+1gk

oo · · ·oo

Then for each i ∈ N, either

(i) (hi)∗(H
+
d (Xni

)) ⊂ H+
d (Yi) and (hi)∗(H

−
d (Xni

)) ⊂ H−d (Yi) or
(ii) (hi)∗(H

+
d (Xni

)) ⊂ H−d (Yi) and (hi)∗(H
−
d (Xni

)) ⊂ H+
d (Yi)

according as h is orientation preserving (i), or reversing (ii).

Proof. Suppose then that we have an orientation preserving homeomorphism h :
M → N with homotopic induced map h′ : M → N as above, and let i ∈ N.
To calculate the map induced on homology (hi)∗ : H+

d (Xni
) → H+

d (Yi), one first
finds a simplicial approximation H : Xni

→ Yi to hi. Notice that this simplicial
approximation also induces a simplicial map HL : L→ h′(L). As the path components
coincide with the leaves of these spaces and h′ is homotopic to h, we have h′(L) = h(L).
By hypothesis, h preserves the orientation and maps the positive generator of Hd(L),
which is the class formed by the sum of all the elementary chains of positively oriented
simplices of dimension d, to the positive generator of Hd(h(L)). The same is true
then for the homotopic map h′ (and the map it induces on leaves) and so also for the
simplicial approximation HL. But that means that HL must map positively oriented
simplices to positively oriented simplices or degenerate simplices. The other cases are
similar. �

It is important to realise that even when the underlying map h is an induced home-
omorphism, the maps hn are often not homeomorphisms.

4. Homology core and homeomorphism invariance

In this section we introduce the homology core and show the subtle ways it is pre-
served by homeomorphism, depending on the precise nature of the space in question.
Unlike (Cech) cohomology, homology does not generally behave well with respect to
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inverse limits, and so some care is needed in discussing this variance. The notion of the
homology core is two-fold: it is a sub-object of the inverse limit lim

←−
{Hd(Xn), (fn)∗}

built from the positive homology classes of Xn, and it is equipped with a representa-
tion, a map to linear space (in fact, a family of such representations). By virtue of
the nature of inverse limits, there are obvious natural maps to the homology groups
Hd(Xn,R), and it is these which provide our representations.

Throughout this section, we assume a simplicial presentation M = lim
←−
{Xn, fn} of

our matchbox manifold which is oriented. Observe that, as the Xn contain no (d+1)-
simplices, the groups Hd(Xn) are free abelian of some finite rank. Consider the
subgroup Pn of Hd(Xn) generated by H+

d (Xn), which will then also be a free abelian
group, say of rank rn. Define Vn as Pn

⊗
R, an R–vector space also of dimension rn.

As previously observed, (fn)∗ maps H+
d (Xn+1) to H+

d (Xn), and so (fn)∗
⊗

idR yields
a linear map Ln : Vn+1 → Vn. (When needing to distinguish these vector spaces or
maps for different spaces we add a superscript, e.g. LMn .)

DEFINITION 4.1. The positive and negative cone in Vn is

Cn :=
{∑

xi
⊗

ri | ri ≥ 0, xi ∈ H+
d (Xn)

}
∪
{∑

xi
⊗

ri | ri ≤ 0, xi ∈ H+
d (Xn)

}
and the positive cone in Vn is

C+
n :=

{∑
xi
⊗

ri | ri ≥ 0, xi ∈ H+
d (Xn)

}
.

Our previous observations can then be rephrased as Ln(Cn+1) ⊂ Cn. However, this
inclusion will often be strict. This leads us to the following.

DEFINITION 4.2. We define the homology core at place k of the oriented presen-
tation M = lim

←−
{Xn, fn} and linear maps Ln : Vn+1 → Vn as above by

CM(k) :=
⋂
n>k

Lnk (Cn) ,

where Lnk = Lk ◦ · · · ◦ Ln−2 ◦ Ln−1. Similarly, the positive homology core C+
M(n) is

given by

C+
M(k) :=

⋂
n>k

Lnk
(
C+
n

)
.

The fact that we must consider the core at various “places” k is a reflection of the
fact that induced maps of towers homotopic to a given map do not have to respect
the places in the two corresponding towers.

THEOREM 4.3. Suppose we have a homeomorphism h :M→N of d–dimensional
matchbox manifolds with corresponding oriented simplicial presentationsM = lim

←−
{Xn, fn}

and N = lim
←−
{Yn, gn}.

(i) Then there are subsequences mi, ni and linear maps Ki with Ji that map the
cones in the following diagram surjectively.
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(1)

CM(n1)

K1
����

CM(n2)oooo

K2
����

CM(n3)oooo

K3
����

· · ·oooo CM(nk)

Kk
����

oooo CM(nk+1)
oooo

Kk+1
����

· · ·oooo

CN (m1) CN (m2)oooo

J1
eeee

CN (m3)oooo

J2
eeee

· · ·oooo CN (mk)oooo CN (mk+1)oooo

Jk
ffff

· · ·oooo

(ii) If the linear maps LNn are eventually injective, then there is an ` such that each
linear map Ji (i ≥ `) as in the above Diagram 1 maps CN (mi+1) isomorphically
onto CM(ni).

(iii) Moreover, if there is a uniform (for all n) bound to dimV Nn , then there is
an ` such that each linear map Ji (i ≥ `) as in the above Diagram 1 maps
CN (mi+1) isomorphically onto CM(ni).

Proof. (i) Let us write ` for the inverse of the homeomorphism h, and suppose h′ and
`′ are induced maps as in Theorem 2.4 corresponding to h and `. Then we have the
following diagram between subtowers after reindexing:

Xn1

h′1
��

Xn2

f
n2
n1
oo

h′2
��

Xn3

f
n3
n2
oo

h′3
��

· · ·oo Xnk

h′k
��

oo Xnk+1

f
nk+1
nk
oo

h′k+1

��

· · ·oo

Ym1 Ym2
g
m2
m1

oo

`′1
aa

Ym3
g
m3
m2

oo

`′2
aa

· · ·oo Ymk
oo Ymk+1

g
mk+1
mk

oo

`′k
cc

· · ·oo

In general this diagram will not be commutative, but the maps induced on homology
are commutative since the compositions of h′ and `′ are homotopic to the respective
identities. By Proposition 3.4 we are then led to the following commutative diagram
of (restrictions of) linear maps.

(2)

CM(n1)

��

CM(n2)oo

��

CM(n3)oo

��

· · ·oo CM(nk)

��

oo CM(nk+1)
oo

��

· · ·oo

CN (m1) CN (m2)oo

ee

CN (m3)oo

ee

· · ·oo CN (mk)oo CN (mk+1)oo

ff

· · ·oo

By construction, each horizontal map in the diagram is surjective. Moreover, each of
the vertical maps Ki is part of a commutative triangle

(3) CM(ni)

Ki

��

CN (mi) CN (mi+1)oooo

Ji
ff

.

and as the horizontal map is surjective, Ki is surjective as required in Diagram 1.
Similar arguments apply to the Ji.
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(ii) Assume then that the horizontal maps are additionally injective from some point
in the tower associated to N . Then for sufficiently large i in the triangle (3), we see
Ji must also be injective on C(mi+1).

(iii) Assume then that there is a uniform (for all n) bound to dimV Nn . This then
implies a uniform bound for the topological dimension of CN (m). As the maps (Lmn )N

are linear, they cannot raise (topological) dimension. Hence, for sufficiently large
values (say, m ≥ W ) the topological dimension of CN (m) must have the same value
D. Then, for all k > W the restriction of the maps (LkW )N to CN (k) must be injective
and we have the hypothesis for (ii). �

The spaces which are best understood are those for which there is a uniform bound on
rankHd(Xn) for a presentation. In such cases, by telescoping the given presentation,
one can obtain a presentation for which rankHd(Xn) is constant. We can already see
from the above the homology core yields a good deal of information for such spaces.
However, depending on the exact conditions we can say much more in special cases.

DEFINITION 4.4. An oriented simplicial presentation M = lim
←−
{Xn, fn} is said

to be homologically Z–stable if for each n the functions (fn)∗ : Hd(Xn+1)→ Hd(Xn)
and Ln : Vn+1 → Vn are isomorphisms, and we say the presentation is homologically
Q–stable if for each n the functions (fn)∗ : Hd(Xn+1,Q) → Hd(Xn,Q) and Ln :
Vn+1 → Vn are isomorphisms.

REMARK 4.5. Observe that in the case of a Q–stable presentation, each core CM(k)
can be identified as the image in H∗(Xk,R) of the limit of the inverse sequence
of the cones Cn (n ≥ k) with bonding maps the restrictions of the Ln. The core
CM(k), however, retains geometric information lost in the abstract limit lim

←−
{Cn, Ln}

as it includes a specific embedding in Vk, a point that will be demonstrated in the
examples of the final section. However, this identification with the inverse limit alone
will still be significant when relating the cores to their dual counterparts and spaces
of measures in the next section.

We can now state and prove our key invariance result.

THEOREM 4.6. For X ∈ {Z,Q }, suppose we have homologically X–stable sim-
plicial presentations M = lim

←−
{Xn, fn} and N = lim

←−
{Yn, gn} and a homeomor-

phism h : M → N . Choose a basis for each VMn , V Nn consisting of elements of
H+
d (Xn), H+

d (Yn) so that the corresponding linear maps LMn , L
N
n are represented by

elements of GL(D,X), where D is the common dimension of the VMn , V Nn . Then,
with respect to these bases, all the homology cores CM(m) and CN (n) are in the same
GL(D,X)–orbit.

Proof. Consider now diagram 1 as before and the associated diagram on homology
groups with X coefficients. Under our new hypotheses, all the horizontal maps are
isomorphisms and hence all the vertical and diagonal maps are also isomorphisms as
well. With the bases we have chosen, the result follows directly. �

REMARK 4.7. Some relaxation of the stability assumptions in this theorem is
possible, and we really only need there to be a uniform bound on the ranks of the
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groups Hd(Xn). We can apply similar arguments to the general case as Theorem 4.3 to
obtain that for homeomorphic matchbox manifolds M,N (not necessarily enjoying
stability properties) that the cores CM(m) and CN (n) are images of matrices with
integer entries for restricted choices of m,n as indicated in the theorem. Observe that
if there is a uniform bound on rankHd(Xn), then we can find an inverse sequence of
groups which is Q–stable and which is pro–equivalent to the inverse sequence of the
the Vn and Ln, and this is sufficient to draw the same conclusions as in the theorem
above.

5. Homology core and invariant measures

In this section we relate part of our invariant (the monoid, without the representation)
to sets of transverse invariant measures, paralleling and extending a number of earlier
works, as discussed in the remarks below, and as mentioned in the introduction.

We consider matchbox manifolds that are given as suspensionsM := M̃ ×Γ Z over a
closed PL manifold M with fundamental group Γ = π1(M). We denote the associated
bundle projection by π : M → M. Explicitly, in this setting we directly equate the
homology core with the space of Γ–invariant, finite Borel measures for a topologically
transitive Γ–action on the zero dimensional space Z. We shall only consider finite
measures and henceforth will assume all measures are finite.

DEFINITION 5.1. Let us say that the matchbox manifold M = M̃ ×Γ Z has a
consistent presentation if it has an oriented simplicial presentationM = lim

←−
{Xn, fn}

for which the fibers of the projection M→ X1 are subsets of the fibers of the bundle
map π :M→M.

The class of matchbox manifolds obtained by such a suspension construction is quite
large and includes among others all translational tiling spaces of finite local complexity
[34], but not all possible orientable examples, [17]. We see below, Proposition 5.4,
that this class admits a simple description of its top cohomology Hd(M).

DEFINITION 5.2. Denote by M(Z) the set of all Borel measures on the space Z.
For a ring R = Z or R, denote by C(Z;R) the R-module of continuous R-valued
functions on Z. A positive element of C(Z;R) is a function that takes only non-
negative values. A positive homomorphism C(Z;R) → R is an R-linear map which
takes positive elements to non-negative numbers. We write PhomR(C(Z;R);R) for
the set of positive homomorphisms C(Z;R)→ R.

LEMMA 5.3.
M(Z) = PhomZ(C(Z;Z);R) .

Proof. The Riesz Representation theorem tells us that the set of measures M(Z) can
be identified with PhomR(C(Z;R);R), where µ ∈M(Z) corresponds to the positive
homomorphism f 7→

∫
Z
fdµ. Any functional

∫
Z
− dµ is however determined by its

values on R-valued step functions taking finitely many values; this set of functions
can be equated with C(Z;Z)⊗ R. The lemma follows by noting the equivalence

PhomR(C(Z;Z)⊗ R;R) ≡ PhomZ(C(Z;Z);R) .

�
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PROPOSITION 5.4. Suppose the d-dimensional matchbox manifold M = M̃ ×ΓZ
has a consistent presentation. Then the top dimension Cech cohomology, Hd(M) can
be identified with C(Z;Z)Γ, the Γ-coinvariants of C(Z;Z).

Proof. A Serre spectral sequence for the cohomology ofM using the bundle structure

Z −→ M̃ ×Γ Z =M π−→M

yields an E2 page

Ep,q
2 =

{
Hp(M ;H0(Z)) = Hp(M ;C(Z;Z)) if q = 0
0 if q 6= 0 .

This follows from the fact that the Cech cohomology of a totally disconnected space Z
is C(Z;Z) in dimension 0 and is trivial in all higher dimensions. The spectral sequence
thus collapses, with no extension problems, giving Hp(M) = Hp(M ;C(Z;Z)). To
conclude the proof, we show that in general, a group cohomology Hd(M ;A) for a
closed, orientable triangulated d-manifold with fundamental group Γ and coefficients
A with (potentially non-trivial) Γ-action can be identified with the coinvariants AΓ.

Lift the triangulation of M to a triangulation on the universal cover M̃ , and consider

Cd
Γ(M̃ ;A), the Γ-equivariant d-cochains on M̃ with values in A. As M is compact

these form a free, finite dimensional A-module. As we can find a path from the
interior of one d-simplex to that of any other, passing only through d − 1 simplices,
the cohomology

(4) Hd(M ;A) =
Cd

Γ(M̃ ;A)

Im
(
δd : Cd−1

Γ (M̃ ;A)→ Cd
Γ(M̃ ;A)

)
is generated by a single copy of A. However, for each γ ∈ Γ and each d-simplex S,
there is a path from the interior of S to itself which represents γ, and crosses only
codimension one simplices. The sum of the coboundaries of these d − 1 simplices,
taken over all γ ∈ Γ, show that the quotient (4) is the full coinvariants AΓ. �

REMARK 5.5. In the situation where the manifold M is also aspherical, we can
prove more. This case includes any d-torus, as is the case when M is a tiling space
for a d-dimensional tiling of finite local complexity, and also the case when M is any
Riemannian manifold of non-positive curvature. If M is aspherical (so, πn(M) = 0
for all n > 1), then M is a model for the classifying space BΓ. The cohomology
Hp(M ;C(Z;Z)) can thus be identified with the group cohomology Hp(Γ;C(Z;Z)).
Moreover, the Poincaré duality of the manifold M tells us that Γ is a Poincaré duality
group, and this latter property implies that, for any Γ-module A, the group homology
and cohomology of Γ with coefficients in A are related by the isomorphism

(5) Hn(Γ;A) ∼= Hd−n(Γ;A) .

The conclusion of Proposition 5.4 for these M now follows since

Hd(M) = Hd(M ;C(Z;Z)) = H0(Γ;C(Z;Z)) = C(Z;Z)Γ

where the last equivalence can be taken as the definition of group homology (i.e., that
for a given group Γ, the group homologies H∗(Γ;−) are the left derived functors of
the coinvariant functor A 7→ AΓ; see, for example, [10] section II.3). Clearly though,
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for such manifolds M more is true and the intermediate dimensional cohomology can
be described in a fashion similar to that used in [23] section 3.

COROLLARY 5.6. Suppose M is an oriented matchbox manifold of dimension d
with a consistent presentation. Then MΓ(Z), the Γ-invariant measures on Z, can be
identified

MΓ(Z) = PhomZ(C(Z;Z)Γ;R) = PhomZ(Hd(M);R) .

Proof. As the Γ action on Z induces an action on C(Z;Z) which takes positive ele-
ments to positive elements, Lemma 5.3 and a simple adjunction yields the identifica-
tion

MΓ(Z) = Positive Γ-invariant Z-linear homomorphisms C(Z;Z)→ R
= PhomZ(C(Z;Z)Γ;R)
= PhomZ(Hd(M);R), by Lemma 5.4 .

�

The set of positive homomorphisms PhomZ(Hd(M);R), being dual to a cohomological
gadget, has a natural homological interpretation, the homology core of Section 4.

THEOREM 5.7. Let M be an oriented matchbox manifold of dimension d with
a consistent presentation, and assume also that the presentation is homologically Q-
stable. Then for any n, the space of Γ–invariant, Borel measures on Z can be identified
with the positive homology core

MΓ(Z) = C+
M(n) .

Proof. First observe that the usual pairing of homology and cohomology gives a pair-
ing between Hd(M) = Hd(lim

←
Xn) = lim

→
Hd(Xn) and lim

←
Hd(Xn): denote an ele-

ment of lim
→
Hd(Xn) as a sequence b = (bn ∈ Hd(Xn) | (fn)∗(bn) = bn+1) and one of

lim
←
Hd(Xn) as a sequence a = (an ∈ Hd(Xn) | (fn)∗(an+1) = an). Then define

〈b, a〉 = 〈bn, an〉 .
This is well defined, i.e., independent of n, since

〈bn, an〉 = 〈bn, (fn)∗(an+1)〉 = 〈(fn)∗(bn), an+1〉 = 〈bn+1, an+1〉 .
By stability and finite dimensionality, this pairing gives a duality between Hd(M;R)
and lim

←
Hd(Xn;R), and so each R-linear homomorphism Hd(M;R)→ R is given by a

pairing 〈−, a〉 for some a ∈ lim
←
Hd(Xn;R). Hence it suffices to check that the isomor-

phism of Proposition 5.4 identifies the positive homomorphisms PhomZ(C(Z;Z)Γ;R)
with those Hd(M;R)→ R given by elements of the core C+

M(n) ⊂ lim
←
Hd(Xn;R).

Let S be a d-simplex in M , and pick an interior point z. Regard Z as the fibre in
M over z, and let Zn be the finite, discrete space, the image of Z in Xn. Let β be
a continuous function Z → Z, representing a free abelian class [β] ∈ C(Z;Z)Γ =
Hd(M) (we are not interested in torsion classes since these pass to zero after taking
R coefficients). As in the construction of the proof of Proposition 5.4, β can be
interpreted as a cocycle on M by first mapping Z × S → Z using β on Z (and
constant on the S component), extended trivially to the rest ofM. Any such cocycle
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is the pullback of a cocycle on Xn, for some sufficiently large n, defined similarly
using some function βn : Zn → Z. Then β is a positive function if and only if βm is,
for all m > n, and if βm is a positive function, the cohomology class [βm] ∈ Hd(Xn) is
positive in the sense of pairing non-negatively with elements in the positive homology
core. Thus any element of C+

M(n), considered as a function 〈−, a〉, restricts to an
element of PhomZ(C(Z;Z)Γ;R), giving the inclusion C+

M(n) ⊂MΓ(Z).

Conversely, by the same construction, any positive element of C(Z;Z)Γ can be rep-
resented as a positive element of the cochain group Cd(M;Z), and so any element
of PhomZ(C(Z;Z)Γ;R) is represented by an element of PhomZ(Cd(M;Z),R), and
moreover one that vanishes on coboundaries, i.e., is a cycle in lim

←
Hd(Xn;R). Hence

MΓ(Z) ⊂ C+
M(n). �

REMARK 5.8. Recall that the set of Γ-invariant probability measures on Z can
be identified with the convex set in PhomZ(C(Z;Z)Γ;R) of functionals satisfying∫
Z
1Zdµ = 1, and the ergodic ones can be identified with the extreme points of this

set. Thus, when the conditions of the theorem are met this allows us to identify the
set of invariant ergodic probability measures directly.

REMARK 5.9. As noted in the introduction, results of the form of Theorem 5.7 have
appeared elsewhere. In particular we highlight the work of Bellissard, Benedetti, and
Gambaudo [7] who have a corresponding result for the special cases of spaces of perfect
aperiodic tilings, i.e., repetitive, aperiodic tilings of euclidean space Rd of finite local
complexity, and thus are suspension matchbox manifolds with underlying manifold
M a d-torus. Though it makes use of smoothness assumptions on the underlying
manifold, the proof given in [7] might extend to more general settings. The approach
here however, purely in the PL category, is greatly aided by establishing our explicit
description of top cohomology, Proposition 5.4, of the underlying objects.

REMARK 5.10. Ormes, Radin and Sadun [30] define a notion of positive cohomol-
ogy cone (‘ordered cohomology’) in the specific case of spaces of primitive substitution
tilings. These correspond to matchbox manifolds with constant expansions

M = lim
←

{
X

A←− X
A←− X

A←− · · ·
}

and where (some power of) the matrix A∗ on d-dimensional cochains Cd(X,Z) →
Cd(X,Z) is strictly positive. The construction and proof of the homeomorphism
invariance of the resulting cohomology cone is heavily dependent on the application
of Perron Frobenius theory, but the duality used in the proof of Theorem 5.7 shows
that for these tiling spaces, and with R coefficients, there is a straightforward duality
between the ordered cohomology cone and the homology core. Indeed for this case,
these gadgets can be described very explicitly: the homology core is the subspace
of Hd(X;R) spanned by the Perron Frobenius eigenvector, and the positive cone in
cohomology is the dual cone to this, the half space of vectors which pair non-negatively
with the positive PF elements. Integrally however the relationship is potentially a
lot more complicated, and depends in particular to questions of the Z-stability of the
expansion.

Nevertheless, the work of this paper shows a way of generalising the construction of
[30], defining the ordered cohomology for general matchbox manifolds in terms of dual
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cones to the positive homology core; homeomorphism invariance in the general case,
at least for examples with uniformly bounded homology ranks of the Xn could then
be proved from the invariance of the homology core. Computation in the general case
still presents considerable difficulties, especially in the non-constant presentations,
examples of which are discussed in the next section, and we suspect that the homology
variant, with its natural representation in the vector spaces Hd(Xn;R) is nevertheless
the most convenient place for computation.

REMARK 5.11. Theorem 5.7 makes use only of part of the paraphernalia of the
homology core, namely the cone of positive elements in lim

←
Hd(Xn;R), and not the

specific representation in the vector space Hd(Xn;R); we shall see the importance of
the additional structure in the results of the next section.

6. Applications and Examples

We begin by considering an example that exploits the connection between the homol-
ogy core and the structure of the invariant measures of the underlying action. This
first example has some overlap with the results of Cortez and Petite [16].

EXAMPLE 6.1. Solenoids and Γ odometers

Let M be a PL orientable d–dimensional manifold with fundamental group Γ =
π1(M,m0). Consider then a chain of (not necessarily normal) subgroups of finite
index greater than 1:

Γ = Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ · · · ⊃ Γi ⊃ · · ·

and the associated Cantor set

C = lim
←
{Γ/Γ1 ← Γ/Γ2 ← · · · ← Γ/Γi ← · · · }.

There is a natural minimal action of Γ on C given by translation in each factor. The
suspension of this action over M then yields a minimal matchbox manifold M =

M̃ ×Γ C which has a consistent presentation in which X1 = M and Xn = M̃/Γn.
This presentation can be made simplicial by taking a simplicial structure for M that

is then lifted to M̃ , which in turn pushes down to a simplicial structure for the leaves
and the quotients Xn.

THEOREM 6.2. The action of Γ on C as above is uniquely ergodic.

Proof. In this case Hd(Xn) is isomorphic to Z for each n. The induced homology maps
are multiplication by the degrees of the corresponding covering maps, which in turn
are given by the indices of the subgroups. Thus, this presentation is Q–stable and
each core CM(n) and each vector space Vn can be identified with R. By Theorem 5.7
the action of Γ is uniquely ergodic. �

We now begin an investigation of how to calculate the homology core for Q and
Z–stable presentations.
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DEFINITION 6.3. A sequence of matrices of constant rank d with non–negative
entries (Mn)n∈N, is recurrent if there are indices k1 < `1 ≤ k2 < `2 ≤ · · · and a
matrix B with positive entries satisfying for all n

B = M `n−1
kn

It is known, see e.g. [20, pp. 91–95], that if (Mn)n∈N, is recurrent then there is a
v ∈ Rd with positive entries satisfying

span v =
⋂
n∈N

Mn
0

(
Cd
)
,

where Cd denotes the positive and negative cone in Rd. Recurrent sequences have been
important in the study of S–adic systems, see e.g. [8].

It then follows that if the sequence of matrices (Mn)n∈N representing the linear maps
as described in Theorem 4.6 is recurrent, then CM(n) will be a single line for each n.
We shall see below in Example 6.7 that this condition is however not necessary for
the core to be a single line in each place. In the special case (Mn)n∈N is a sequence
each term of which is the same positive matrix, CM(n) is a single line formed by the
span of the Perron–Frobenius right eigenvector.

EXAMPLE 6.4. Substitution tiling spaces

We illustrate how to distinguish two substitution tiling spaces of dimension one using
their homology cores.

σ1 : {a, b} → {a, b}∗ is given by

{
a 7→ a10b7

b 7→ a3b2
and

σ2 : {a, b} → {a, b}∗ is given by

{
a 7→ a11b4

b 7→ a3b
.

Each substitution σi is primitive, aperiodic and is proper (see [4] for the role proper-
ness plays in expansions as inverse limits). Thus, the corresponding tiling spaces Ti
(formed by suspending the associated substitution subshift on {a, b}Z over the circle)
admit the following presentations [4]

(6) Ti ≈ lim←−{X
fi←− X

fi←− X
fi←− · · · }

where X is the wedge of two circles in both cases and the map fi is the natural one
induced by the corresponding substitution σi. This can be easily adjusted to yield
an oriented simplicial presentation by introducing vertices in X (progressively more
as one passes down the sequence). For each copy of X in the two towers we take
as a basis for H1(X) ≈ Z

⊕
Z the cycle corresponding to the a–circle ≈ (1, 0) and

the cycle corresponding to the b–circle ≈ (0, 1). Then each Vn in the two sequences
is isomorphic to R2 with the corresponding bases. We then have the corresponding
towers of the Vn and Ln.
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(7) R2 Mi←− R2 Mi←− R2 Mi←− · · ·

where M1 =

(
10 7
3 2

)
and M2 =

(
11 4
3 1

)
represent the corresponding linear

transformations with respect to the chosen bases. Observe then that both presenta-
tions are Z–stable, and so by Theorem 4.6 the two tiling spaces are homeomorphic
only if their homology cores are in the same GL(2,Z) orbit. As the matrices are
positive, by our above remarks the cores at all places are given by the span of the
Perron-Frobenius right eigenvector of the corresponding matrix. Such eigenvectors

are given by v1 :=

(
1
7
(4 +

√
37)

1

)
for M1 and v2 :=

(
1
4
(5 +

√
37)

1

)
for M2. As the

continued fraction expansions of 1
7
(4 +

√
37) and 1

4
(5 +

√
37) are not tail equivalent,

the vectors v1 and v2 cannot be in the same GL(2,Z) orbit [22, Thm. 174].

EXAMPLE 6.5. Relation to shape type

We shall see in Example 6.7 an entire class of shape equivalent spaces that the homol-
ogy core can distinguish topologically, but here we supplement the pair σ1, σ2 from
Example 6 with a third substitution that demonstrates a limitation of the homol-
ogy core for the purposes of topological classification, showing that the core cannot
distinguish all shape inequivalent spaces.

σ3 : {a, b} → {a, b}∗ is given by

{
a 7→ ababaababaababaab

b 7→ ababa

This substitution is not proper, but its square (σ3)2 is proper. The tiling space T3

corresponding to σ3 is the same as the tiling space corresponding to (σ3)2 in the sense
that the subshifts of {a, b}Z determined by these substitutions are the same. Thus,
again T3 admits an oriented simplicial presentation as in Equation 6, where X is
again the wedge of two circles, but the map f3 is induced by the substitution (σ3)2.
With respect to the bases as before, the homology tower for T3 is as in Equation 7
with Mi replaced by (M1)2. Thus, the homology core of at all places is identical to
that of T1. Observe that the bonding map f3 yields an automorphism of π1(K) (with
base point the point common to both cirles) whose inverse can be represented by
the automorphism of the free group generated by {a, b} given by the square of the
following:

a 7→ a−1b3a−1b4

b 7→ b−4ab−3ab−3a

It follows that the L1 invariant (see [12]) vanishes for T3. However, the L1 invari-
ant does not vanish for T1, as can be seen by an application of the folding lemma
of Stallings. (See [12] for similar examples.) Thus, although these spaces are not
homeomorphic or even shape equivalent, the homology core does not detect this.
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In general, once an appropriate presentation has been found as indicated in [2], one
can calculate the homology core of a substitution tiling space of higher dimension in
a similar way using a single matrix.

While there are many techniques that have been developed to topologically classify
minimal substitution tiling spaces as above, the homology core can be applied equally
well to non–minimal substitution tiling spaces as studied in [26]. In [26] an inverse
limit presentation for non–minimal substitution tiling spaces is developed that allows
us to find the homology core.

EXAMPLE 6.6. Non–minimal substitution tiling spaces

We now show how we can similarly use the homology core to distinguish two non–
minimal substitution tiling spaces of dimension one using their homology cores.

τ1 : {a, b, ā, b̄, x} → {a, b, ā, b̄, x}∗ is given by



a 7→ aba

b 7→ a

ā 7→ āb̄ā

b̄ 7→ ā

x 7→ aā

and

τ2 : {a, b, ā, b̄, x} → {a, b, ā, b̄, x}∗ is given by



a 7→ aab

b 7→ ab

ā 7→ āāb̄

b̄ 7→ ā

x 7→ bā

.

Substitutions of this type are considered in [26, Section 6], where the tiling space has
two disjoint minimal sets that are both in the closure of a single orbit (the “bridge”)
that results from the sequences stemming from the substitution applied to x, although
no x appears in the ultimate subshift resulting from the substitution. In these cases
the tiling space has the form

Ti ≈ lim←−{Xi
fi←− Xi

fi←− Xi
fi←− · · · }

where Xi is formed by joining the complexes associated to the two minimal sets
by an arc. The bonding map f1 induces an isomorphism (f1)∗ on H1(X1,Z) ≈ Z4

represented by M1 =


2 1 0 0
1 0 0 0
0 0 2 1
0 0 1 0

 . As (f1)∗ is an isomorphism, we see that this

presentation is Z–stable. Direct analysis of the matrix M1 reveals that the homology

core at any place is the union of the two sectors bounded by the spans of


1 +
√

2
1
0
0


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and


0
0

1 +
√

2
1

 . Similarly the bonding map f2 induces an isomorphism (f2)∗ on

H1(X2,Z) ≈ Z4 represented by M2 =


2 1 0 0
1 1 0 0
0 0 2 1
0 0 1 0

 with resulting homology core

at any place the union of the two sectors bounded by the spans of


1
2
(1 +

√
5)

1
0
0


and


0
0

1 +
√

2
1

 . Due to the Z–stability of these presentations, by Theorem 4.6 T1

and T2 are homeomorphic only if there there is a matrix in GL(4,Z) that permutes
their homology cores, which is clearly impossible since

√
2 is not rationally related to√

5, and we see directly that T1 and T2 are not homeomorphic. By Theorem 5.7 each
of the subshifts Xτi admit two invariant Borel ergodic, probability measures.

General homeomorphisms of the Cantor set with multiple invariant ergodic measures
are studied in detail in [9], and while our techniques could be applied equally well to
suspensions of the homeomorphisms described there, to effectively calculate homology
cores one would first need to develop the theory of their inverse limit presentations
and their relation to the incidence matrices they consider.

We now see how one can apply Theorem 4.6 to great advantage to topologically
classify some natural classes of spaces that are not substitution tiling spaces but
matchbox manifolds of dimension one.

For convenience to make indices match their usual interpretations, in the following
two examples we will index inverse sequences starting with index 0.

EXAMPLE 6.7. Continued fractions

For simplicity (as it does not affect the homology calculations) we represent K as the
CW complex depicted in Figure 1 with three one cells with the indicated orientations
and two vertices.

For each positive integer n let fn : K → K be the map defined by

a // c

b // ca

n− 1 copies︷ ︸︸ ︷
cb · · · cb c

c // b
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a

c

b

Figure 1. The complex K

where fn maps each cell onto cells in the indicated order from left to right, preserving
orientation. For each sequence of positive integers N = (n0, n1, ...), we define the
orientable matchbox manifold

(8) XN := lim←− {K
fn0←−− K

fn1←−− K
fn2←−− K

fn3←−− · · · }.

For homology calculations, we use the classes [z1] and [z2] of the cycles z1 ∼ cb and
z2 ∼ ca as generators of H1(K,Z) ≈ Z

⊕
Z. With respect to these generators, we

have the induced homomorphism on H1(K,Z) given by

(fn)∗ ∼
(
n 1
1 0

)
.

Notice that (fn)∗ is an isomorphism for each n, and so each presentation as given in
Equation 8 is Z–stable, and so we may apply Theorem 4.6 to the family of spaces

X := {XN |N is a sequence of positive integers }.
Observe that (

n0 1
1 0

)(
n1 1
1 0

)
· · ·
(
nk 1
1 0

)
=

(
pk pk−1

qk qk−1

)
where pk

qk
= [n0, n1, n2, . . . , nk] in continued fraction notation. Observe that with

αN := [n0, n1, n2, . . . ], we have that limk→∞
pk
qk

= αN . Now

(
pk pk−1

qk qk−1

)
maps the

positive and negative cones in Vk to the sectors in V0 bounded by the lines spanned

by

(
pk
qk

)
and

(
pk−1

qk−1

)
. Hence, we have that the homology core of XN at place

zero is given by

span

(
αN

1

)
=
⋂
n∈N

Mn
0 (Cn) .

Hence, the corresponding Z action on the Cantor set is uniquely ergodic by Theorem
5.7, and by Theorem 4.6 the spaces XN and XM are homeomorphic only if there is a

matrix in GL(2,Z) that maps

(
αN

1

)
into span

(
αM

1

)
. By the classical theorem
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on the classification of numbers by their continued fraction expansions, [22, Thm.
174], this happens precisely when the continued fraction expansions for αN and αM
share a common tail: there exist k and l such that for all positive integers i we have
mk+i = n`+i. When this happens, the inverse sequences defining XN and XM have
equal cofinal subsequences and so are clearly homeomorphic. Thus we obtain the
following classification of the spaces in X, c.f. [6],[18].

THEOREM 6.8. XM and XN are homeomorphic if and only if the sequences M
and N share a common tail.

Observe that all the spaces in X are shape equivalent to K and hence to a wedge
of two circles. Hence, while the Example 6.5 illustrates that there are spaces for
which shape invariants (such as the L1 invariant) can distinguish spaces that are not
distinguished by their homology cores, there are also large classes of shape equivalent
spaces that the homology core can distinguish.

Similar examples of families with matrices of larger size can be obtained using the
matrices corresponding to higher dimensional versions of continued fractions, see, e.g.,
[21].

EXAMPLE 6.9. Generalised continued fractions

With K as before, for each pair of positive integers m,n let fm,n : K → K be the
map defined by

a→ c

b→
m copies︷ ︸︸ ︷
ca · · · ca

n− 1 copies︷ ︸︸ ︷
cb · · · cb c

c→ b

With respect to the same generators as before, we have the induced isomorphism on
H1(K,Q) given by

(fm,n)∗ ∼
(
n 1
m 0

)
.

Thus while our presentation of X(α, β) is not generally Z–stable, it is Q–stable. For
given sequences of positive integers α = (a1, a2, . . . ), β = (b0, b1, . . . ) we will then
have the orientable matchbox manifold given by

X(α, β) := lim←− {K
f1,b0←−− K

fa1,b1←−−− K
fa2,b2←−−− K

fa3,b3←−−− · · · }.

For given sequences α and β we then have(
b0 1
1 0

)(
b1 1
a1 0

)
· · ·
(
bk 1
ak 0

)
=

(
Ak Ak−1

Bk Bk−1

)
where Ak

Bk
is the k–th convergent of the generalised continued fraction

b0 + K∞n=1

an
bn
,
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where

b0 + K∞n=1

an
bn

is used to denote

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + · · ·

see, e.g., [24]. Now

(
Ak Ak−1

Bk Bk−1

)
maps the positive and negative cones in Vk to

the sectors in V0 bounded by the lines spanned by

(
Ak

Bk

1

)
and

( Ak−1

Bk−1

1

)
. Hence,

the key to understanding the cores for these spaces is the limiting behaviour of these
convergents.

We can rewrite our general continued fraction as an equivalent one (one with the
same convergents) as follows [24, 2.3.24]

b0 + K∞n=1

an
bn
≈ b0 +

1

b1/a1 +
1

a1b2/a2 +
1

b3a2/a1a3 +
1

a1a2b4/a2a4 + · · ·
where now we have positive rational entries. By the theorem of Van Vleck [24, Thm.
4.29], for a continued fraction with positive entries of the form

k0 + K∞n=1

1

kn
,

we have that if
∑∞

i=1 ki converges, then the even and odd convergents converge
monotonically to different values (the larger/smaller terms decrease/increase), and
if
∑∞

i=1 ki diverges, then the convergents converge to a single value.

In what follows, for a given continued fraction b0 + K∞n=1
an
bn

we use the notation

k0 = b0, k1 = b1/a1 and recursively kn = bnbn−1

ankn−1
for n > 1. These ki are then the

values in the equivalent continued fraction k0 +K∞n=1
1
kn
. With this notation, we have

the following conclusions.

PROPOSITION 6.10.

For X(α, β) associated to the continued fraction b0 + K∞n=1
an
bn

(I) If
∑∞

n kn diverges, then with ` = lim An

Bn
, we have the homology core at place

zero given by

span

(
`
1

)
=
⋂
n∈N

Mn
0 (Cn) .
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(II) If
∑∞

n kn converges, then with `E = lim A2n

B2n
and `O = lim A2n−1

B2n−1
we have the

homology core at place zero
⋂
n∈N M

n
0 (Cn) is the union of the two sectors in

V0 bounded by span

(
`E
1

)
and span

(
`O
1

)
.

�

Observe that two spaces X(α, β) and X(α′, β′) are homeomorphic only if they both
correspond to the same case (I) or (II) as above as the dimension of the homology
core depends on which of the two cases we are in.

We then can directly apply Theorem 4.6 and Theorem 5.7 to obtain the following.

PROPOSITION 6.11.

(1) If X(α, β) and X(α′, β′) both satisfy the condition in (I) above, then X(α, β)

and X(α′, β′) are homeomorphic only if the vectors

(
`
1

)
and

(
`′

1

)
are

in the same GL(2,Q) orbit, and the corresponding Z actions are uniquely
ergodic.

(2) If both X(α, β) and X(α′, β′) satisfy the conditions in (II) above, then X(α, β)

and X(α′, β′) are homeomorphic only if

(
`E
1

)
and

(
`O
1

)
are (as a pair)

in the same GL(2,Q) orbit as

(
`′E
1

)
and

(
`′O
1

)
, and in this case the

corresponding Z actions have two invariant ergodic probability measures.

�

The spaces in Example 6.7 provide a class of spaces that all satisfy condition (I),
but there are many other spaces as well. Besides the recurrence of the sequence
of matrices, a simple criterion that guarantees that we are in case (I) is given by
bn > an for sufficiently large n, and a simple example of case (II) is given by α =
(22n−1)n∈Z+ , β = (1, 1, 1, . . . ). It appears to be quite difficult to calculate the values

of

(
`E
1

)
and

(
`O
1

)
in case (II), which makes it quite difficult to give a natural

classification.

PROBLEM 6.12. Identify a natural class of spaces X(α, β) of class (II) for which
the corresponding homology cores lead to a classification.
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