# Virus integration and tandem repeats in the genomes of Petunia 

# A thesis submitted to the University of Leicester for the degree of Doctor of Philosophy 

## By

Osamah Nadhim Kadhim Alisawi M.Sc.

January 2019
Department of Genetics and Genome Biology


#### Abstract

The integration of endogenous pararetroviruses (EPRVs) and tandemly repeated sequences were examined in whole genome raw reads, and two genome assemblies, in diploid Petunia species including hybrid-derivatives and their ancestors, using bioinformatics, molecular biology, cytogenetics and microscopy. Three types of EPRV clusters (petuvirus-, florendovirus- and caulimovirus-like sequences) were found. Chromosomal signals of PVCV (Petunia vein clearing virus) were seen by in situ hybridization in all Petunia species. Fragmented parts of four novel florendovirus-like sequences were found and the complete sequence was reconstructed, adding petunia to the 27 known host species. Chromosome III of P. axillaris and P. hybrida Rdc showed strong pericentromeric signal of PVCV and Florendovirus suggesting both EPRVs have similar positions, integration patterns and endogenization events (unlike $P$. integrifolia subsp inflata and $P$. axillaris subsp parodii). The caulimovirus-like sequence cluster was less abundant in genomes, with four novel members. RNA analysis from infected and healthy petunia samples revealed expression of endogenous PVCV and Caulimovirus sequences, unlike Florendovirus (not detected in RNA). The episomal form of vertically transmitted PVCV was integrated near the telomere of heterologous chromosomes. Transmission electron microscopy (TEM) showed differences in number and size of PVCV particles and inclusion bodies for both chlorotic spots and vein clearing symptoms, the latter correlated with PVCV particles in cytoplasm from vascular bundle cells. In plants with chlorotic symptoms, infected cells contained virions in parenchyma cells, while scattered virions were seen in chlorotic spots in P. hybrida W138 after heat induction of symptoms. Eight unique types of tandem repeat clusters were analysed within Petunia raw reads with variable genome proportions and different loci on mitotic chromosomes. Three were useful markers for chromosome identification. Taken together, the work shows the contribution of repetitive DNA to diversity and variation within petunia genomes, and has consequences for evolution, and both resistance and spread of some viruses.


## Declaration

I hereby declare that no part of this thesis has been previously submitted to this or any other university as part of the requirements for a higher degree. The study described in this thesis, unless otherwise acknowledged in the text or by reference, was conducted by the undersigned who is fully responsible.

This work was achieved in the Department of Genetics and Genome Biology, University of Leicester and Julius Kühn-Institut (JKI), Braunschweig, Germany (see Appendix 4.1), during the period from January 2015 to December 2018.

Signed: $\qquad$
Date: $\qquad$
Osamah Nadhim Kadhim Alisawi

## Dedication

## Thanks to ALLAH for blessing me much more than I deserve

This work is dedicated to the sacred two date palm trees grown on Euphrates river beach, covered me with their fronds, and taken care of me for my entire life, proud of you both my great father and mother

## Nadhim Kadhim Alisawi and Rabab Waheed Alisawi

My lovely, amazing wife Wasan Riyadh Alisawi, who brilliantly supported me to build up this story.

Future men, my little boys, Zaid, Yazan and newborn baby Taim.
My beloved sisters (Israa and Rawaa) and brothers (Ahmed and Yaseen).
I would also send my fulfilment and sincerity to my great grandfather who passed away and left behind a massive heritage for the whole tribe (Al-Isa) and Iraqi community.

## Al Sheikh Haj Waheed Abood Alisawi (1927-2012)

, my respected uncles

Dr. Abood Waheed Alisawi and Dr. Riyadh Waheed Alisawi

Finally, thanks must go to my homeland where the first ever civilization established

## IRAQ

## Acknowledgements

First and foremost, I would like to express my sincere gratitude and appreciation to my three supervisors Prof. Pat Heslop-Harrison, Dr. Trude Schwarzacher and Dr. Katja RichertPöggeler, for their support, guidance, kindness and generosity over the whole time of study.

I am indebted to Prof. David Twell and Dr. Richard Gornall for their positive comments and notes.

I would also like to acknowledge my thanks to Mr. Ramesh Patel and my colleagues in lab 201 Dr. Sarbast Ihsan Mustafa, Dr. Jotyar Jassim Muhammed, Dr. Rubar M. Salih, Dr. Nouf Fakieh Alsayied and Noorhariza Mohd Zaki.

My special thanks go to very gentle members of Dr. Katja Richert-Pöggeler's lab in Julius Kühn-Institut (JKI), Braunschweig, Germany; Mr. Dirk Schmalowski, Ms. Christina Maaß (Grille) and Ms. Sabine Schuhmann for their assistance and fruitful cooperation.

I highly appreciate the full cooperation of Assistant Prof. Aureliano Bombarely, Department of Horticulture, Virginia Tech, USA, who provided me with raw reads and assemblies of Petunia species.

I wish to thank my Iraqi friends Dr. Wadhah Mahbooba, Dr. Ghazwan Al Hassan, Dr. Pshtiwan Bebane, Dr. Tariq A. Kareem, Mr. Imad Younis, Mr. Muhammed Abdul Sattar, Mr. Wisam Aziz and Mr. Maitham Al-Jalali for their kind help.

I would like to thank my sponsorship; the Iraqi Ministry of Higher Education and Scientific research and my home department; Plant Protection Department, Faculty of Agriculture, University of Kufa for their funding and giving me this great opportunity.

Last, and by no means least, I wish to thank all people who have pushed me forward to be in progress all time.

## Contents

Abbreviations ..... viii
Chapter I. Introduction ..... 1
1.1 The genus Petunia ..... 1
1.2 The karyotype of petunia chromosomes ..... 8
1.3 Repetitive DNA ..... 10
1.3.1 Types of Repetitive DNA sequences ..... 11
1.4 Virus definition and taxonomy ..... 13
1.5 Transposable elements (TEs) ..... 14
1.5.1 Retrotransposons (Class I elements) ..... 15
1.5.2 DNA transposons (Class II elements) ..... 18
1.5.3 Transposable elements in petunia ..... 19
1.6 Fluorescence in situ hybridization ..... 19
1.7 Bioinformatic techniques ..... 20
1.7.1 Whole genome sequencing data ..... 20
1.7.2 $k$-mer counting ..... 21
1.7.3 Graph-based clustering of raw read sequences ..... 22
1.8 Aims and objectives ..... 25
Chapter II. Materials and methods ..... 26
2.1 Plant material and cultivation ..... 26
2.2 Standard solutions and media ..... 27
2.3 Methods ..... 31
2.3.1 Genomic DNA extraction ..... 31
2.3.2 DNA quantification ..... 32
2.3.3 PCR amplification ..... 32
2.3.4 Purification of DNA fragments from agarose gel ..... 33
2.3.5 Cloning of PCR products ..... 33
2.3.6 Probe labelling ..... 37
2.3.7 Petunia chromosome preparations ..... 37
2.3.8 Fluorescent in situ hybridization ..... 38
Chapter III. Integration of Endogenous Pararetroviruses (EPRVs) ..... 41
3.1 Endogenous pararetroviruses (EPRVs) ..... 41
3.1.1 Caulimoviridae ..... 42
3.2 Aims and objectives ..... 46
3.3 Materials and methods ..... 47
3.3.1 EPRV fragments in Petunia species ..... 48
3.3.2 De novo integration ..... 56
3.4 Results ..... 62
3.4.1 EPRVs sequences ..... 62
3.4.2 Phylogenetic relationships of EPRVs ..... 82
3.4.3 De novo integration ..... 83
3.5 Discussion ..... 90
3.5.1 PVCV fragments in all examined Petunia species ..... 90
3.5.2 PVCV as a cytogenetic marker ..... 91
3.5.3 Florendovirus-like sequences ..... 92
3.5.4 Hotspot of Chromosome III ..... 92
3.5.5 Caulimovirus-like sequences ..... 93
3.5.6 Expression of EPRVs ..... 94
3.5.7 De novo integration ..... 96
Chapter IV. Transmission electron microscopy of PVCV ..... 98
4.1 Introduction ..... 98
4.1.1 Electron microscopy and detection of Petunia vein clearing virus (PVCV) ..... 98
4.2 Aims and objectives ..... 99
4.3 Materials and methods ..... 99
4.3.1 Plant species ..... 99
4.3.2 Electron microscopy ..... 100
4.4 Results ..... 103
4.4.1 Horizontally transmitted PVCV ..... 103
4.4.2 Vertical transmission of PVCV ..... 108
4.5 Discussion ..... 113
4.5.1 Ultrastructural analysis of diffuse chlorosis and vein clearing symptoms after horizontal transmission of PVCV ..... 113
4.5.2 De novo integration and vertical transmission of PVCV in P. axillaris subsp parodii S 711 ..... 14
4.5.3 PVCV symptom expression and replication after induction of chromosomal copies ..... 115
Chapter V. Tandem repeats ..... 117
5.1 Introduction ..... 117
5.2 Aims and objectives ..... 118
5.3 Materials and methods ..... 119
5.3.1 Plant material and DNA extraction ..... 119
5.3.2 Tandem repeat analysis ..... 119
5.3.3 Chromosomes preparation and in situ hybridization ..... 119
5.4 Results ..... 122
5.4.1 Identification of tandem repeats by graph-based clustering ..... 122
5.4.2 Genome organization ..... 122
5.4.3 Chromosomal organization of tandem repeats. ..... 125
5.5 Discussion ..... 144
5.5.1 Genome proportion of tandem repeat clusters ..... 144
5.5.2 Tandemly repeated sequences within assemblies ..... 145
5.5.3 Graph based clusters pipelines. ..... 145
5.5.4 The role of tandemly repeated sequences ..... 145
5.5.5 The evolution of tandem repeats ..... 146
5.5.6 Tandem repeats as genetic markers. ..... 147
Chapter VI. General discussion: Repetitive elements in petunia ..... 148
References ..... 152
Appendices ..... 177

## Abbreviations

| bp | Base pairs |
| :--- | :--- |
| kb | Kilo bases |
| Mbp | Mega bases |
| pg | Picogram |
| C | C-value |
| Gb | Giga bases |
| PVCV | Petunia vein clearing virus |
| ICTV | International Committee on Taxonomy of Viruses |
| TSD | Target site duplications |
| DNA | Deoxyribonucleic acid |
| rDNA | Ribosomal DNA |
| cDNA | Complementary deoxyribonucleic acid |
| ITS | Internal transcriped spacer |
| cpDNA | Chloroplast DNA |
| mtDNA | Mitochonderia DNA |
| RE | RepeatExplorer |
| RNA | Ribonucleic acid |
| RNAse | Ribonuclease |
| Ch. | Chromosome |
| ORF | Open reading frame |
| DAPI | 4', 6-diamidino-2-phenylindole |
| dNTPs | Deoxy nucleotide triphosphates |
| FISH | Fluorescent in situ hybridization |
| RT | Reverse transcriptase |
| RH1 | Ribonuclase H1 |
| BSA | Bovine Serum Albumin |
| Epon | Epoxy resin |
| DDSA | Dodecenyl succinic anhydride |
| MNA | Methyl nadic anhydride |
| DMP | Dimethoxy propane |
| CCD | Charge - coupled device |
| TEM | Transmission Electron Microscope |
| IEM | Immuno- Electron Microscopy |
| ELISA | Enzyme Linked Immuno-Sorbent Assay |
| IBs | Inclusion Bodies |
| PPT | Polypurine tract |
| PBS | Primer binding site |
| \% | Percentage |
| g | Gravity |
| NOR | Nucleolar organising region |
| TEs | Transposable elements |
| UV | Ultra violet |
| MS | Murashige Skoog |
| v/v | Volume per volume |
| w/v | Weight per volume |
|  |  |


| $\mu \mathrm{g}$ | Microgram |
| :--- | :--- |
| CL | Cluster |
| Scf | Scaffold |
| F | Forward |
| R | Reverse |
| MYA | Million years ago |
| nm | Nanometer |
| $\mu \mathrm{m}$ | Micrometer |
| Btn | Biotin |
| DPV | Description of plant viruses |
| RFLP | Restriction fragment length polymorphism |
| TVCV | Tobacco vein clearing virus |
| CaMV | Cauliflower mosaic virus |
| BSV | Banana streak virus |
| BSOLV | Banana streak Obino l'ewai virus |
| BSGFV | Banana streak Golden finger virus |
| BSMYV | Banana streak Mysore virus |
| HHV-6 | Herpesvirus 6 |
| ICNV | International Committee on Nomenclature of Viruses |
| HTS | High throughput sequencing |
| NGS | Next generation sequencing |
| SNP | Single nucleotides polymorphism |
| AP | Aspartic proteinase |
| CP | Coat protein |
| MP | Movement protein |

## Chapter I. Introduction

### 1.1 The genus Petunia

The genus Petunia (Solanaceae) is a popular ornamental plant cultivated worldwide, but the taxonomy of the genus has not been clear throughout the years and has been changed a few times since the first description by Jussieu (1803). The name of Petunia derives from ''petum'' or ''betum'', an original name for the tobacco plant, Nicotiana tabacum, that is closely similar to Petunia nyctaginiflora (now $=P$. axillaris), that was one of the two Petunia species firstly described (Stehmann et al. 2009).

In 1803, based on collected material from Montevideo and Uruguay, Jussieu was the first person to describe Petunia (Jussieu 1803). As quite distinct species, P. parviflora Juss. and $P$. nyctaginiflora Juss. were described in the same paper. Earlier, Lamarck (1793) described $P$. nyctaginiflora Lam. as Nicotiana axillaris Lam, and then Petunia species were attributed to various genera of the Solanaceae such as Nicotiana, Fabiana, Calibrachoa, Salpiglossis and Nierembergia. The South American Solanaceae were revised by Miers (1846) who recognized ten species of Petunia, five of them new. In the Flora of Brazil, Sendtner (1850) revised Solanaceae with nine of the thirteen described Petunia species being new. In 1852, de Candolle's Prodromus publication, presented sixteen Petunia species by Dunal (1852) and transferred three species to the genus Fabiana; a new genus Leptophragma was described but is now considered as a synonym of Calibrachoa (Stehmann et al. 2009).

The first monograph of Petunia was published by Fries (1911) which included 27 species with nine species described as new. The morphology, geographic distribution, circumscription, and relationships between Petunia and other genera within Solanaceae were discussed in detail in this monograph and it is still the latest available revision of the genus (Stehmann et al. 2009). Some species of Petunia and Calibrachoa share similar floral and vegetative morphology in addition to geographic distribution, presenting difficulties to differentiate these two genera. Nevertheless, Wijsman's (1983) decision to separate the two genera (Petunia and Calibrachoa) has been confirmed by anatomical, reproductive, cytotaxonomic and chemical studies. Additionally, all Petunia species have seven pairs of chromosomes (Watanabe et al. 1996), whereas all examined Calibrachoa have nine pairs (Stehmann et al. 1996; Watanabe et al. 1997). There is a high level of cross-incompatibility between Petunia species that have
different numbers of chromosomes, indicating that they belong to genetically isolated groups (Wijsman 1983; Watanabe et al. 1996). Outcomes from recent molecular research have illuminated phylogenetic relationships using RFLP chloroplast DNA, ITS, cpDNA and mtDNA analyses and support the separation of the two genera, showing them as sister groups (Ando et al. 2005; Kulcheski et al. 2006). However, some commercial stocks are putative hybrids between Petunia and Calibrachoa and have been distributed in the floral markets with no clear explanation how they were hybridized. $\times$ Calitunia and $\times$ Petchoa Supercal were made by the Danziger and Sakata seed companies respectively. $\times$ Calitunia is characterized by early blooming, resistance to high soil pH , lush foliage, and a wide colour range while, $\times$ Petchoa is characterized by lush foliage, large vigour, sterile flowers and tolerance to hard weather conditions. These hybrids are triploid $(3 x=25)$ and two of the chromosome sets come from Calibrachoa (Van Meggelen 2005; Olschowski et al. 2012; Jędrzejuk et al. 2017). $P$. inflata is considered as a synonym of $P$. integrifolia by Smith (1966), but Wijsman (1982) restored this plant taxon to be a subspecies under $P$. integrifolia, a common species in southern regions of South America that he divided into three regional sub-species $P$. integrifolia subsp integrifolia, P. integrifolia subsp occidentalis and $P$. integrifolia subsp inflata. Recently, Ando et al. (2005) resurrected $P$. inflata as a species separate from P. integrifolia according to a morphometric analysis and suggested using straight calyx lobes as a good diagnostic attribute.

Stehmann et al. (2009) reported that Petunia has 14 species (Table 1.1).

Table 1.1 List of wild species of petunia and their main descriptions (Stehmann et al. 2009).

|  | Petunia species | Morphology | Distribution and habitat |
| :---: | :---: | :---: | :---: |
| 1 | $P$. axillaris (Lam.) Britton, Sterns and Poggenb | ''Flowers white and tube slightly enlarged or cylindrical toward the top'". | ''It exhibits the largest geographic distribution in the genus and is known to occur in Brazil (Rio Grande do Sul), Argentina, Uruguay, Paraguay, and Bolivia. Three allopatric subspecies have been accepted based on corolla tube length and stamen arrangement. Individuals of $P$. axillaris are heliophilous and inhabit rocky sites, but can also be found along roadsides'". |
| 2 | P. integrifolia (Hook.) Schinz and Thell | ''Stems decumbent; flowers purple; capsule subglobose with peduncle deflexed'. | ''It inhabits the Pampas province and occurs in Argentina, Uruguay, and southern Brazil (from Rio Grande do Sul to the coast of Santa Catarina), growing on different kinds of substrata (latossols, sandsoils, and litosoils). It can also be found on disturbed areas such as roadsides or cultivated lands'". |
| 3 | $P$. interior T. Ando \& Hashim | ''Flowers purple and anthers with channeled lobes at dehiscence". | ''Its geographic distribution ranges from northwestern Rio Grande do Sul and western Santa Catarina (with some disjunct places) in Brazil to the province of Misiones, Argentina'". |
| 4 | P. bajeensis T. Ando \& Hashim | '’Flowers purple and plant viscid; leaves with prominent | '" To date found only in the extreme southern region of Rio Grande do Sul, Brazil, in the municipalities |


|  |  | venation. Vegetatively, the individuals of this species roughly resemble more robust plants of $P$. bonjardinensis, but the morphology of the flowers does not differ from that of $P$. integrifolia except for the larger size of the floral parts". | of Baj'e, Cangucu, and Lavras do Sul, it can be found growing along roadside slopes'". |
| :---: | :---: | :---: | :---: |
| 5 | $P$. secreta Stehmann \& Semir | ''Flowers purple and plant erect; filaments adnate nearly to middle of corolla tube; pollen yellow'". | ' It is endemic to the place called "Pedra do Segredo" and adjacent areas around the municipality of Cac, apava do Sul, in Rio Grande do Sul, southern Brazil. It is clearly heliophilous, inhabiting the top of conglomerate sandstone towers at about $300-400 \mathrm{~m}$ elevation and visited by bees". |
| 6 | P. bonjardinensis T. Ando \& Hashim | ''Flowers purple and stigma exserted above anthers of the longest stamens'". | '' It is endemic to a small area near to the border of the southern Brazilian plateau, in the municipality of Bom Jardim da Serra, Santa Catarina, where it is not difficult to find individuals growing on roadside slopes'". |
| 7 | P. exerta Stehmann | ''Flowers red-orange and Sciophilous plants; anthers and stigma exserted from corolla tube". | '' This strictly endemic species is known only from the "guaritas" and adjacent areas, at the municipality of Cac, apava do Sul, Rio Grande do Sul, Brazil, growing in shallow caves sculpted by the wind in sandstone towers". |
| 8 | P. mantiqueirensis T. Ando \& Hashim | ''Flowers purple and plant procumbent; filaments adnate below the middle of tube; pollen violet or bluish". | ''It is restricted to the Serra da Mantiqueira, in Minas Gerais, southeastern Brazil, where few populations are known. Individuals of $P$. mantiqueirensis are shade tolerant and grow on the border of the Araucaria or montane forests, as well as on more open places, at altitudes ranging from 1000 to 1700 m above sea level'". |
| 9 | P. reitzii L. B. Sm. \& Downs | ''Flowers bright red and stigma located below the anthers of the longest pair of stamens'". | '' It is endemic to the oriental border of the southern Brazilian plateau in Santa Catarina and seems to be restricted to a small area between the municipalities of Bom Retiro and Urubici, at altitudes of about 1000 m and associated with Araucaria forest. It grows on the walls of small cliffs beside rivers, hanging freely in space, but can also be found along exposed roadside slopes". |
| 10 | P. saxicola L. B. Sm. \& Downs | ''Flowers bright red and stigma slightly exserted above the anthers of longest pair of stamens'". | 'The saxicolous habit of this species is unique in the genus, and individuals are found growing on humid and rocky escarpments of a small area of the border of the southern Brazilian plateau, in the municipality of Otacilio Costa, Santa Catarina. Only one population of $P$. saxicola is known to exist'". |
| 11 | P. scheideana L. B. Sm. \& Downs | ''Flowers purple and stigma located at the same level to the anthers of the longest pair of stamens'". | The geographic distribution ranges from higher altitudes ( $800-1000 \mathrm{~m}$ ) in Parana and Santa Catarina, Brazil, often associated with Araucaria forests, westward into the lowlands of extreme northern Misiones, Argentina (about 200-300 m) '" |
| 12 | P. altiplana T. Ando \& Hashim | ''Flowers purple and plant repent, rooting at the nodes; leaves widely obovate or orbicular'". | '" This species is distributed in the highlands of Santa Catarina and Rio Grande do Sul, Brazil, in altitudes from 800 to 1200 m , and grows in outcrops or exposed roadside slopes', |
| 13 | P. occidentalis R. E. Fr | '’Flowers purple and corolla limb $20-25 \mathrm{~mm}$ in diameter, | 'It is geographic distribution is restricted to the Sub-Andean mountains (from 650 to 2000 m of altitude) in northwestern Argentina (Jujuy, Salta) and southern Bolivia (Tarija), being separated from |


|  |  | filaments adnated $>7 \mathrm{~mm}$ to the corolla tube base". | the other Petunia species by the Chaco, a large, flat region covered by a dry forest, in northern Argentina, Bolivia, and Paraguay', |
| :---: | :---: | :---: | :---: |
| 14 | P. inflata R. E. Fr | ''Flowers purple and corolla limb $25-40 \mathrm{~mm}$ in diameter, filaments adnated $<5 \mathrm{~mm}$ to the corolla tube base". | '' It is found in a hybrid zone in northwestern Rio Grande do Sul, Brazil'’. |

Recently, Reck-Kortmann et al. (2014) used nuclear and plastid DNA markers to study twenty species of petunia phylogenetically adding three wild species ( $P$. riograndensis, $P$. littoralis, $P$. guarapuavensis) to the listed species above in Table 1.1 in addition to three subspecies ( $P$. axillaris subsp subandina, P. axillaris subsp parodii, $P$. integrifolia subsp depauperata). The monophyly and the divergence based on the differentiation of corolla tube length of Petunia species were confirmed by this phylogenetic study, while Petunia species were geographically distributed as a result of divergence within main clades suggesting the Pampas region as the earliest area of petunia divergence (Figure 1.1).


Figure 1.1 Phylogenetic tree of Petunia species based on nuclear and plastid sequences. Nodes with 1 or between 0.7 and 0.9 posterior probabilities appear as thick black and gray branches respectively. The principal clades identified in the analysis were appeared to the right as vertical bars. The most likely ancestral areas were shown as pie charts on the nodes, while other reconstructions indicated in black. This tree results were taken from four areas identified in the map at the top of this figure. Figure taken from ReckKortmann et al. (2014).


Figure 1.2 The examined Petunia species images: Petunia axillaris subsp axillaris N (A), P. integrifolia subsp inflata S6(B), P. hybrida Rdc (C), P. hybrida W138(D), P. hybrida V26 (E) and P. axillaris subsp parodii S7(F).

The garden petunia, Petunia hybrida has been considered as a decisive species for the genus taxonomy. It was obtained in (1834) by Atkins of Northampton, a British nurseryman, through hybridization and crossing, and rapidly spread to European nurseries (Sink 1984; Klemm et al. 2017). This hybrid described as Nierembergia atkinsiana by Sweet (1935), and later, Vilmorin (1863) represented the term Petunia x hybrida as the garden petunia (Ganga et al. 2011). Now, P. hybrida is cultivated around the world and is considered a very important Solanaceae ornamental plant. The origin of $P$. hybrida and genetic incompatibility mechanisms have been studied by many researchers (Ferguson \& Ottley 1932; Mather \& Edwardes 1943; Stout 1952; Van Der Donk 1974; Linskens 1975; Sink 1984). As parents of this hybrid, multiple species have been proposed: Wijsman (1982) reported that this plant was produced from breeding between two different species, $P$. axillaris that has white flowers pollinated by moths and $P$. integrifolia that has purple flowers pollinated by bees. Species of Calibrachoa such as $C$. calycina and C. linearis $(2 n=18)$ have been crossed with the parents of the hybrid plant ( $2 n=$ 14) by Wijsman (1903) without any success. Crosses between plants with different numbers of
chromosomes usually failed, unlike plants with similar chromosomes numbers (Wijsman 1983; Klemm et al. 2017).

Petunia is endemic to South America region and distributed between $22^{\circ}$ and $39^{\circ} \mathrm{S}$ subtropical regions (Figure 1.3). Brazil has most Petunia species with thirteen species (except $P$. occidentalis), followed by Argentina with five species, and then Uruguay, Paraguay, and Bolivia with two species for each. Two principal areas in southern Brazil considered as centers of diversity of Petunia species: (a) Pampean region lowlands (Figure 1.3A) and (b) southern Brazilian plateau highlands (Figure 1.3B). The two regions are included in the Pampean and Paranense provinces, respectively (Cabrera and Willink 1980). Serra do Sudeste region is considered as the highest richness area at low altitudes in the Brazilian pampa, the Pampas also occupied a large areas in Argentina, Uruguay, and southernmost Brazil.


Figure 1.3 Map of geographic distribution of Petunia in solid lines. The two dotted lines are the centers of diversity: Serra do Sudeste in Rio Grande do Sul, Brazil (A), and Highlands of Serra Geral in Santa Catarina, Brazil (B), while the large disjunct regions: Serra da Mantiqueira, in Minas Gerais, Brazil (C), and the SubAndean region in Argentina and Bolivia (D). Figure taken from Gerats and Strommer (2009).

The Serra do Sudeste in southern Rio Grande do Sul has a low range of mountains with diverse edaphic conditions. P. axillaris and Petunia integrifolia, parental species of the hybrid petunia, are endemic in these areas (Ando et al. 2001). In Serra do Sudeste, three out of five Petunia species grow in this region are strict sympatric ( $P$. bajeensis, $P$. exserta, and $P$. secreta).

The second region includes the Serra Geral borders in Santa Catarina state where Petunia species grow alongside with grasslands or with Araucaria moist forests. In this area, three out of four species are strict endemics ( $P$. bonjardinensis, $P$. reitzii and $P$. saxicola) that restricted to the higher region of the Santa Catarina plateau. Two large disjunct regions of Petunia are reported: the first is Serra da Mantiqueira in Brazil, where only P. mantiqueirensis is registered as endemic species phylogenetically linked to the Brazilian highland group and the second is Sub-Andean region in Argentina and Bolivia (Figure 1.3C, 1.3D). The the Atlantic rainforest and savanna considered as geographical barrier covered most of the $\mathrm{S}^{\sim}$ ao Paulo state. The SubAndean area is separated by the Chaco, a drier region from the core Petunia distribution where two species are inhibited: P. axillaris subsp. subandina, and P. occidentalis (Fries 1911; Ando 1996; Tsukamoto \& Kao 1998; Kokubun et al. 2006).

Fregonezi et al. (2012) reported that changes in climate, soil conditions and ecology probably played a significant role in Petunia speciation of lowland clade. Some species of Petunia are sympatric and associated with particular phytoecological areas while others, like P. axillaris, have widely distributed habitat within temperate South America. The role of ecological divergence is strongly accepted due to habitat changes that affected on population differentiation (Zheng \& Ge 2010). Multiple ecological and environmental pressures, such as different pollinators and gene flux disruption among groups, might be affected in differentiation of subspecies morphology. The differences of floral characteristics and pollinator attraction are associated with each other, and probably drove speciation together with ecological effects in the Pampas area (Fregonezi et al., 2012).
In scientific research, the accessions/lines V26 and Mitchell of $P$. hybrida are very frequently used, having high transformation ability, in addition to $P$. hybrida W138 that has dTPH1 transposon with high copy number and has been applied for transposon mutagenesis. These lines, as well as, genetic self-incompatibility, development, transposon activity, and integration with herbivores, pollinators and pathogens strongly support Petunia as a model plant (Bombarely et al. 2016; Vandenbussche et al. 2016).
Genomes of diploid Petunia species range between 1.30 to 1.57 pg 1C (corresponding to 1,300$1,570 \mathrm{Mb}$ ) (Mishiba et al. 2000). Compared with genomes of other Solanaceae, the genome of Petunia is larger than Solanum tuberosum ( 844 Mb ) and Solanum lycopersicum ( 900 Mb ), but
smaller than Capsicum annuum genome ( 3480 Mb ) (Kim et al. 2014). Additionally, Petunia has important uses as an anti -microbial source, possesses slight anti-oxidation activity, and the leaves have insecticide properties (Gautam et al. 2012).
P. hybrida along with other species of Chenopodium, Cucumis, Nicotiana, Phaseolus and Vigna is a common host plant used in virology for virus amplification (Hull 2014). More than 150 plant viruses are reported to infect petunia using artificial inoculations (Engelmann \& Hamacher 2008). The European and Mediterranean Plant Protection Organization (EPPO) requires testing of stock plants used in commercialized propagation schemes (OEPP/EPPO 2008) for nineteen viruses. Petunia viruses are known for their negative effect on its economic value such as Tobacco mosaic virus, Tomato mosaic virus, Potato virus Y, Broad bean wilt I virus, Alfalfa mosaic virus, Cucumber mosaic virus, Petunia asteroid mosaic virus, Petunia ring spot virus, Petunia vein banding virus, Petunia flower mottle virus and Petunia vein clearing virus (Lesemann 1996; Mavric et al. 1996; Cohen et al. 1999). Moreover, Chilli leaf curl virus, a new virus infecting $P$. hybrida, has been characterised in India for the first time by Nehra and Gaur (2015) while in Iran, Anabestani et al. (2017) found that Beet curly top virus could transmit through seeds of $P$. hybrida.

### 1.2 The karyotype of petunia chromosomes

Numbers and sizes of the somatic chromosomes as a complete set in each species are considered as a physical feature of the genome, presented as karyotypes (Stebbins \& Dunn 1950). The karyotype includes some fundamental aspects like centromere positions, ratios of arms, as well as chromosome numbers and sizes, and presence of secondary constrictions at the Nucleolar Organization Region (NOR, defining the satellited chromosome), and sometimes supernumerary B chromosomes. Using paraffin-sectioned samples, many researchers studied the somatic metaphase karyotype of $P$. hybrida (Dermen 1931; Steere 1932; Malinowski 1935; Marthaler 1936; Wergin 1936; Levan 1937; Cooper 1946). From those names, however, Malinowski, Levan and Marthaler were the only successful workers to find out loci of kinetochore by camera-lucida drawings. Malinowski and Levan works show distinct nucleolar constrictions and positions of kinetochore except karyotypes that were appeared slightly different from Marthaler results. The employed species in the Malinowski paper was registered firstly as $P$. violacea and then later revealed that it was actually $P$. hybrida (Stout 1952). Takehisa (1964) reported that in all chromosomes, differentiation in chromosome thickness happens from late prophase to metaphase and this result was confirmed by comparing lengths
of chromosomes at both phases. Individual chromosomes were classified to metacentric (M) and submetacentric (SM) groups as well as given numbers from the biggest to the smallest as M1, SM1, SM2, M2, SM3, SM4 and M3. Malinowski (1935) and Marthaler (1936) pointed out that chromosome SM1 had a satellite at the short arm. Five of the seven pairs of petunia chromosomes have been recognized using staining protocols, but the only problem was with chromosomes V and VI that share arm ratio and relative length. Smith and Oud (1972) characterised differences between those two chromosomes (V and VI) based on fluorescence patterns using quinacrine fluorescence staining. Furthermore, chromosome I has been characterised based on its relative length, while chromosomes II and III appeared identical but the existence of the satellite in II was adequate to differentiate them from each other (Marthaler 1936; Bentzer et al. 1971) (Figure 1.4). Smith et al. (1973) applied an improved method using cellulase and pectinase with quinacrine staining to obtain chromosome sets of $P$. hybrida under fluorescence microscopy showing relative length, centromere index and fluorescence intensity. On the other hand, Dietrich et al. (1981) demonstrated that C-banding technique and pachytene analysis are not valuable methods for large scale karyotyping because of the dispersed pattern of the heterochromatin in petunia that is not restricted in particular positions unlike in tomato. Conia et al. (1987) applied flow cytometric analysis to produce a high metaphase index for $P$. hybrida chromosomes showing theoretical histograms and experimental flow karyotype. Fransz et al. (1996) applied fluorescent in situ hybridization (FISH) to characterise the whole chromosomes of some hybrid cultivars of petunia using probes of 18S rDNA and chsA gene.


Figure 1.4 Idiogram of P. hybrida chromosomes according to (Marthaler 1936) showing the numbered seven chromosomes of petunia.

### 1.3 Repetitive DNA

Plant genomes contain large proportions of repetitive DNA that could reach up to $90-95 \%$, while low copy sequences, coding regions, regulatory units are only a small portion of the genome (Heslop-Harrison 2000). The repetitive DNA sequences consist of highly heterogeneous sets of many thousands of super families, families and subfamilies with a variety of copy numbers, motif length and arrangements within the genome. It has been proven that changes in repetitive DNA parts happened rapidly in parallel with speciation in higher plants (Bennett \& Leitch 2011). The existence of repetitive DNA sequences has different aspects from one to few sites inside the genome, whereas the widely dispersed motifs and tandem repeats throughout the DNA are making up 50-75\% of the nucleus DNA (Flavell et al. 1974; Schmidt \& Heslop-Harrison 1998; Heslop-Harrison \& Schmidt 2001).

Repetitive sequences have often been referred to as 'junk DNA' (Schmidt \& Heslop-Harrison 1998) as they are not transcriptionally active in general. Now, it is however clear that repetitive DNA sequences have impacts on the behaviour and structure of the genome and chromosomes, as well as chromosomes packaging and histone proteins modification in addition to gene expression, segregation and recombination (Martienssen 1998; Heslop-Harrison \& Schwarzacher 2012).

It has been shown that the repetitive DNA has many benefits including the function (e.g. rDNA repeats), evolution of the genome and the structural roles of some sequences inside chromosomes like centromeres and telomeres (Heslop-Harrison \& Schwarzacher 2012). The histone proteins modification is correlated with chromatin packaging or epigenetic fact, while some repetitive sequences might be transcribed to small RNAs which are included in chromatin or genome regulation and modification through evolution. This may lead to produce diversity, genome divergence and speciation as well as the modulation of gene expression can be controlled by losing and gaining of repeats (Schmidt \& Heslop-Harrison 1998).

The reasons for maintaining and tolerating repetitive sequences within the genome, as well as the vast diversity and different types of repetitive DNA sequences (Figure 1.3) are not totally clear. However, there is an assumption that the importance of the repetitive DNA is correlated with the maintenance and stabilization of the chromosomes structure (Irick 1994; Vig 1994), or is linked with identification and chromosome segregation in meiosis and mitosis (Vershinin
et al. 1995; Kubis et al. 1998). For example, telomeres can be protected by telomere-associated repeats and involved with gene regulation in subtelomeric regions (Sýkorová et al. 2003).

Moreover, the repetitive DNA probably has a role in protecting coding DNA against shock during stress conditions (Pluhar et al. 2001), and it has been used for nuclear architecture study (Heslop-Harrison 2000) (see Figure 1.5).


Figure 1.5 General image of plant DNA components in the nuclear genome of eukaryotes showing coding (Genes and regulatory sequences) and non-coding (repetitive DNA sequences include dispersed repeats, structural components, tandem repeats and repeated genes) divisions (Heslop-Harrison \& Schmidt 2001).

### 1.3.1 Types of Repetitive DNA sequences

### 1.3.1.1 Tandemly repeated sequences (Microsatellite, Minisatellite and Satellite DNA)

Microsatellites consist of 2-6 bp nucleotide repeats within arrays up to 1 kb , and are also called simple sequence repeat (SSR). They are abundantly found in plants in coding and noncoding regions. Generally, tri-nucleotides are found in coding-regions and while they do not
cause frameshifts, large arrays are linked to malfunctioning genes and diseases (Morgante et al. 2002). In many plants, di- nucleotides are considered the main members of SSRs, and the common repeats are GA, CT, AT and TA (Tóth et al. 2000). These types of repeats evolve quickly and due to the variable length of arrays have been used successfully for DNA markers, fingerprinting species and accessions (Kubis et al. 1998).

Minisatellites are tandem repeats with a monomer size between 9 to about 40 bp , for example positioned in the pericentromeric regions of Arabidopsis thaliana depending on the in situ hybridization findings. In eukaryotic genomes, both micro/minisatellites have different distributions and possible functions (Vergnaud \& Denoeud 2000). Interestingly, highly polymorphic minisatellites found hypervariable as well as too abundant within genomes as an efficient material to distinguish individuals (Weitzel et al. 1988).

Satellite sequences have larger monomer sizes of up to several kb and were initially discovered in Caesium density gradients for DNA isolation, to form distinct shoulders or satellites. They are the essential constituent of heterochromatin and found as large blocks of up to 1 Mb arrays in pericentromeric and centromeric position, but also interstitially or in subtelomeric regions (telomere associated sequences, TAS) (Arney \& Fisher 2004; Hall et al. 2004; Sharma \& Raina 2005; Bloom 2007). Satellite DNAs are highly varying in nucleotide sequence, intricacy, genomic multiplicity. Monomers often are found to have high ratio of $\mathrm{A}+\mathrm{T}$ nucleotides and while variable lengths in plant and animal genomes, the detected monomers have preferential lengths between 150 to 360 bp and significantly reflect requirements of wrapped DNA length around nucleosomes (Schmidt \& Heslop-Harrison 1998; Henikoff et al. 2001). In eukaryotes genomes, satellite DNA content is considerably variable and can make up $50 \%$ of the whole DNA (Doolittle \& Sapienza 1980; Cavalier-Smith 1985; Elder Jr \& Turner 1995; Schmidt \& Heslop-Harrison 1998; Gregory et al. 2006).

To detect and characterise satellite DNAs, digesting genomic DNA with restriction endonucleases and sequencing of short multimers or randomly cloned monomers is still the main technique despite the great progress of whole genome sequencing tools (Salih 2017). Tandemly repeated motifs assembly has been faced by serious restrictions: while the individual monomers might show some variation, these are generally too low for building contigs, and repeats are collapsed within an array, but also between different genome locations (Eichler et al. 2004; Rudd \& Willard 2004). Most assemblies are therefore devoid of large satellite arrays. Although satellite DNAs are highly abundant within the heterochromatin, they are still
underrepresented in the processes of genome analysis, and the data available are not enough to conclude about their functional evidence and general organization (Nagaki et al. 2004; Hoskins et al. 2007). See more details of tandemly repeated sequences (Satellite DNAs) in chapter V.

### 1.4 Virus definition and taxonomy

Based on the International Committee on Taxonomy of Viruses (ICTV), viruses define as "an elementary biosystem that possesses some of the properties of living systems such as having a genome and being able to adapt to changing environments. However, viruses cannot capture and store free energy and they are not functionally active outside their host cells" (Hull, 2001; Hansen and Heslop-Harrison 2004). Also, the ICTV accepted the proposed definition of Van Regenmortel (1990) ' 'A virus species is defined as a polythetic class of viruses that constitutes a replicating lineage and occupies a particular ecological niche'"(Murphy et al. 2012). These entities have genes with well identified properties of expression and replication in host tissues. Viruses were recognized till the 1990s based on their symptoms, physical and biological descriptions as well as host range, particle structure, replication and biochemical composition. Nowadays, viral genome nature, size and sequence have been accurately applied to categorize and classify viruses to different groups (Büchen-Osmond 2003; Hansen \& Heslop-Harrison 2004a).

The earliest attempts to recognize viruses started to differentiate them from other detectable microbes through light microscope. Ivanowski (1892) and Beijerinck (1898) were the first scientists who discovered plant viruses (Tobacco mosaic virus) based on physiochemical properties using filterability to assess their small sizes (van Helvoort \& Sankaran 2018). Most measurements made to classify viruses focused on the ability to do infections and diseases. The common features of pathogenic properties, organ tropisms, transmission and ecological characteristics were applied in virus classification at that early time such as viruses that share pathogenicity of causing mosaic symptoms (e.g., Cauliflower mosaic virus, Alfalfa mosaic virus and Tobacco mosaic virus). After 1930, the structure and composition of virus particles proposed by Bawden $(1941,1950)$ for the first time to identify viruses groups based on shared virion characteristics. On this basis, several groups of plant viruses constructed with filamentous or rod-shaped virions (Brandes \& Wetter 1959). Massive numbers of new viruses discovered in 1950s and 1960s with rapidly growing data that prompted some committees and individuals to work independently in classification schemes. Therefore, the International Committee on Nomenclature of Viruses (ICNV) was established in 1966 at the International

Congress of Microbiology in Moscow as a result of this background that became later in 1973 the International Committee on Taxonomy of Viruses (ICTV). The ICTV developed universal scheme taking virion properties as a main criteria to divide families, subfamilies and genera (Murphy et al., 2012). In the 1990s, the progress of species taxon suggests that families and genera should be classified monothetically while species are best identified polythetically (Van Regenmortel 1990). Nowadays, existing viruses of economically important plants have been classified based on useful and usable taxonomic system to orders, families, subfamilies, genera and species. Virus families are named with suffix-viridae and viruses within same family have distinct morphology, genome structure and replication. Also, family members seem more stable and indicate phylogenetic independence or separation. Virus genera are named with suffix-virus and genus members share same characteristics and phylogenies, and have differences from members of other genera. The species taxon is considered the crucial hierarchical level and could be recognized by more than one property. In some cases, genomic, structural, physicochemical and serological properties could be used to differentiate species level, while in other examples, viruses have already named as species due to their very distinct properties (Murphy et al., 2012).

### 1.5 Transposable elements (TEs)

TEs are involved in the genome with high ability to transpose between different loci as well as to replicate themselves producing abundant copies within genomes (Craig 2002). They are widely distributed through all organisms so far analysed, and frequently make up a large portion of the genome (Feschotte \& Pritham 2007; Pritham 2009). These elements can efficiently transmit between hosts through two styles, either by horizontal transfer between different species, or vertical inheritance over host generations (Schaack et al. 2010; Wallau et al. 2018). In genomes, TEs and endogenous viruses (see below) are considered main catalysts of innovation and variation with a more severe impact of their horizontal activity on eukaryotic evolution than expected before (Gilbert \& Feschotte 2018). Most of interspersed repetitive sequences were created by activity of mobile genetic elements (MGEs) inside the nucleus and cells. These MGEs are classified into two classes:

Class I elements are retrotransposons or retroelements, several kb in length, that move via 'copy-paste' mechanism through an RNA intermediates.

Class II elements are DNA transposons that move as DNA copies via 'cut- paste' mechanism and often have in plants much lower copy numbers, and due to their much smaller size and genome proportion, than retrotransposons (Heslop-Harrison \& Schmidt 2001).

MGEs represent DNA fragments that change their replication and movement within chromosomal positions of the same genome species, causing mutation and alteration in the genome (Jurka et al. 1992; Flavell et al. 1994). The elements show variable copy numbers between a few to millions per genome, and represent main and major component in the genome of eukaryotes (Schmidt 1999; Heslop-Harrison \& Schmidt 2001). TEs have been considered as an ancient component of genomes because of their existence in most organisms (Kidwell 2002; Hua-Van et al. 2005). Many researchers suggested that these components in plants comprise $>80-85 \%$ of the whole genomes sizes such as maize (Heslop-Harrison \& Schmidt 2001; Schnable et al. 2009), wheat (Tenaillon et al. 2011) and Liliaceae (Vitte \& Panaud 2005). Fungi, metazoans and yeasts do not have abundant TEs unlike plants (Daboussi \& Capy 2003; Hua-Van et al. 2005; Kidwell 2005), while these elements are not found in $20 \%$ of prokaryotic genomes and several parasitic apicomplexa (Bringaud et al. 2006; Hua-Van et al. 2011).

### 1.5.1 Retrotransposons (Class I elements)

As a genomic element, the retrotransposons and retroviruses share a similar mode of propagation via transcription and translation, then package their transcripts to particles (Adams et al. 1987). 'Copy- paste' mechanism is used to transpose these elements through an RNA intermediate, and RNA polymerase II used to transcribe retrotransposons to mRNA, then convert to a complementary DNA (cDNA) and integrate into a new locus in the genome via an integrase (Wicker et al. 2007; López-Flores \& Garrido-Ramos 2012; Lisch 2013). These elements were firstly characterised and identified based on Drosophila elements (Emori et al. 1985; Marlor et al. 1986). Retrotransposons are distributed with dispersal manner over chromosomes because of their life cycle (Heslop-Harrison et al. 1997). These elements go through duplicative transposition at the end of their cycle, increasing their numbers and expanding genome size (SanMiguel et al. 1996; Kumar \& Bennetzen 1999; Slotkin \& Martienssen 2007; López-Flores \& Garrido-Ramos 2012). Retrotransposons can be divided according to the existence or absence of long terminal repeats (LTRs) into LTR and non- LTRretrotransposons. In comparison to animal genomes, plants have higher amounts of LTR retrotransposons and considered the major retrotransposons order while animals have many non-LTR retrotransposons (Wicker et al. 2007; López-Flores \& Garrido-Ramos 2012).

### 1.5.1.1 LTR- retrotransposons

LTR- retrotransposons with a full length of these elements up to 25 kb , are present in plant genomes with varying proportion: in Arabidopsis (5\%), rice (10\%), sorghum (54,5\%) and more than this percentage in maize (50-80\%) (Sanmiguel \& Bennetzen 1998; Kapitonov \& Jurka 1999; Meyers et al. 2001; Neumann et al. 2003; Paterson et al. 2009). The LTRs have an internal domain that encodes the required proteins for retrotransposition (Schulman \& Kalendar 2005). There are two major open reading frames (ORFs), the gag polyprotein ORF that encodes the essential proteins for virus like elements and genome integration, and secondly, the longer pol ORF that is more conserved than gag, is auto-operated and contains a polyprotein with aspartic proteinase (AP), reverse transcriptase (RT) that is considered as highly conserved domains in all retrotransposons types, RNase H (RH), and integrase (INT) (Suoniemi et al. 1998) (Figure 1.4). LTR- retrotransposons have been classified to five superfamilies according to their domain/ORF order, Metaviridae (Ty3-gypsy); Pseudoviridae (Ty1-copia); Retroviruses; Endogenous retroviruses (ERVs); and Bel-Pao (Kumar \& Bennetzen 1999; Hansen \& Heslop-Harrison 2004a; Wicker et al. 2007). These elements have been classified to three groups (Gypsy, Copia and Bel-Pao) by López-Flores and Garrido-Ramos (2012) based on the similarity of sequences and the encoded genes order. As reverse-transcribing viruses, The International Committee on Taxonomy of Viruses (ICTV) has classified these elements under new order Ortervirales to five families: Caulimoviridae, Retroviridae, Hepadnaviridae, Metaviridae and Pseudoviridae. Latterly, in 2018, the ICTV added a new family, Belpaoviridae, that was previously considered as a member of the Metaviridae family (Krupovic et al. 2018) (Figure 1.6).


Figure 1.6 Phylogenetic tree of the six families of reverse-transcribing viruses (Retroviridae, Metaviridae, Caulimoviridae, Belpaoviridae, Pseudoviridae and Hepadnaviridae) showing genome arrangement of the protein domains and the close relationship between Metaviridae and Caulimoviridae. Figure taken from Krupovic et al. (2018).

Endogenous pararetroviruses are a relatively new discovery in plants. They include BSV (Banana streak virus), TVCV (Tobacco vein clearing virus) and PVCV (Petunia vein clearing virus). More detail about viruses and their nuclear integration are introduced in chapter III.

## Ty3-gypsy (Metaviridae)

This superfamily is widely distributed in fungi, plants and animals, and generates 4-6 bp target site duplications (TSD) and is bound by LTRs of varying size. Protein domains PBS and PPT have encoded by the gag-pol genes across downstream and upstream of LTR. Ty3-gypsy has derived its name from the Ty3 retrotransposons of Saccharomyces cerevisiae and Drosophila
melanogaster genomes. The integrase domain (INT) is localized downstream of RT and RH domains like in retroviruses that include the same ORF3 in the Ty3-gypsy (Marlor et al. 1986; Hansen et al. 1988; Krupovic et al. 2018).

## Ty1-copia (Pseudoviridae)

The Tyl-copia has been found in plants as well as other living organisms (Manninen \& Schulman 1993; White et al. 1994; Bennetzen 1996; Wicker et al. 2007), and named based on the Tyl retrotransposons of the genomes of Saccharomyces cerevisiae (Clare \& Farabaugh 1985), and Drosophila melanogaster (Mount \& Rubin 1985; Boeke \& Corces 1989; Grandbastien et al. 1989). The RT domain is located downstream of the INT and both are flanked by LTRs while the PBS and PPT have been located towards downstream and upstream of LTRs. In plants, this group shows less divergence than fungi and insects, and have variable sequence heterogeneity among plant species (Flavell et al. 1992). Additionally, significant differences have been found between Gypsy and Copia with the three proteins domains (INT, RT, and RH), as Gypsy has the INT in the downstream of RT and RH while in Copia the INT is positioned at the upstream of RT and RH (Hansen \& Heslop-Harrison 2004a; Krupovic et al. 2018).

### 1.5.1.2 Non LTR- retrotransposons

The non LTR-retrotransposons or retroposons have a very short LTR at the terminal region and transcribe from an internal promoter (Slotkin \& Martienssen 2007). They have two subdivisions, the first is the long interspersed nuclear elements (LINEs) and the second is the short interspersed nuclear elements (SINEs) based on the size and encoded domains. Plants have both types, but generally at lower levels (Kubis et al. 1998), while in animals, SINEs are abundantly found (Schmidt 1999; Jurka et al. 2007).

### 1.5.2 DNA transposons (Class II elements)

DNA transposons are transposons via a 'cut-paste' mechanism and do not involve an RNA intermediate. Also, these elements excise from some loci of chromosomes and then reintegrate within a new position of the genome by transposase enzyme. This class includes superfamilies of CACTA, Mutator-like element (MULE) and hAT (hobo, Activator and Tam3) (Lisch 2013). Another classification has put three subclasses based on DNA strand numbers that are excised through transposition, subclass I that works with 'cut-paste' mechanism, subclass II that works
with rolling circle approach (Helitrons), and subclass III with self-synthesizing DNA transposons (Polintons) (Feschotte \& Pritham 2007; Kapitonov \& Jurka 2008; Bao et al. 2009).

### 1.5.3 Transposable elements in petunia

Petunia genome has two major groups as viral (EPRVs), and non-viral (retrotransposons and DNA transposons) retroelements that play a crucial role in biodiversity of Petunia species (Richert-Pöggeler \& Schwarzacher 2009). Long terminal repeat (LTR) retroelements, as a type of repetitive DNA, are found in the Petunia genome with comparatively lower ratio than in other Solanaceae with higher percentage of DNA transposons than retrotransposons (Gerats 2009; Bombarely et al. 2016). In Petunia, the identification of conserved domains of gag-pol regions in LTR-retrotransposons (Richert-Pöggeler et al. 2003) has revealed homology to similar components within different plant families (Richert-Pöggeler \& Schwarzacher 2009). Although, reports of the Copia and Gypsy superfamilies (LTR retroelements) are still limited, Matsubara et al. (2005) studied the common features between $r$ Tphl the novel transposable element and Copia elements. Richert-Pöggeler and Schwarzacher (2009) had earlier reported relationships of Gypsy and Copia reverse transcriptase domains from some species of Petunia. Furthermore, Kriedt et al. (2014) discussed the relationship between the RNase H-3'LTR region of eight of Copia families in wild Petunia species.

### 1.6 Fluorescence in situ hybridization

The cytogenetic tool, is a technique in which widely used for detecting and proving the existence, abundance and location of genome sequences through hybridization between single stranded chromosomal DNA and a specific probe of labelled DNA(Schwarzacher \& HeslopHarrison 2000). Separately, the first description of in situ hybridization (ISH) was provided by Gall and Pardue (1969), and John et al. (1969), as initially, this technique used radioactive and colorimetric materials with some problems in radioactivity that could be released with low spatial resolution. Later, and since the mid-1980s, fluorophores have been used for detecting the hybridization sites instead of radioactive materials with more safely, saving time and high quality products. In addition, it is more flexible than before as we could mix more than one probe in multicolour tests (Salvo-Garrido et al. 2001; Schwarzacher 2003).

The metaphase and meiotic chromosomes, DNA fibres, nuclei, and tissues can be used as a target DNA (De Jong et al. 1999; Van Stedum \& King 2002). Single and double stranded DNA,

RNA and oligonucleotides can be applied as a DNA probe (Nouri-Aria 2008). Suitable length of probe is between 100 and 300 bp (Salvo-Garrido et al. 2001), and different methods can be used for labelling probes like nick translation, PCR labelling and random primer labelling (Schwarzacher \& Heslop-Harrison 2000). These methods can be used in two ways of labelling, the direct one in which the fluorophores are directly bound to the probe by using fluorophore conjugated nucleotides. The second way is indirect for detecting the hapten that has no fluorescence and integrated within the DNA probe, and then detected by a fluorophore-tagged antibody against the hapten (Volpi \& Bridger 2008).

The biotin and digoxigenin are most widely used in indirect labelling methods by utilizing the high avidin (or streptavidin) affinity to biotin more than anti-biotin, and DAPI applied as a blue dye to counterstain the chromosomes (Sharma \& Sharma 2001). The interaction of DNA: DNA in FISH is normally implemented in chromosomes preparations. In order to allow probe access and reduce image background, it is very important to make chromosomes free out the cells and spread on a glass slide. As well as, the inhibition of RNA and proteins should be done before the hybridization pre-treatments. After the hybridization process, the post-hybridization wash should be performed for removing free and weakly bound probes (Schwarzacher \& HeslopHarrison 2000).

Repetitive sequences, dispersed motifs, and (to some extent, although not routinely) single copy genes can be shown and localized on chromosomes with FISH (Bang et al. 1997). FISH is applied also to explore the phylogenetic relationships, chromosome identification, in addition to study evolutionary chromosome rearrangements, DNA mapping and genome organization (Heslop-Harrison 2000; Schwarzacher 2003; Contento et al. 2005).

### 1.7 Bioinformatic techniques

### 1.7.1 Whole genome sequencing data

NGS (Next Generation Sequencing) includes multiple high-throughput sequencing (HTS) techniques that generate huge numbers of reads from multiplexed specimens in a one run. A range of techniques have been developed extremely with time as this technology started with Sanger sequencing system by semi-automated tools as a first generation method for only a single strand DNA. Later, after twenty years, this approach has developed to sequence around

1000 bp per run (Shendure \& Ji 2008). Thereafter, NGS platforms have been developed significantly with high capability to sequence the whole genome using cyclic-array technology (Hutchison III 2007; Mardis 2008; Metzker 2010; Van Dijk et al. 2014). NGS has two approaches, short reads sequencing such as Illumina and Qiagen GeneReader and long reads like PacBio and Oxford Nanopore (Goodwin et al. 2016).

Although, the whole genome sequencing is very efficient in genome coverage, only partial genome assembly can be produced from short read approach, due to the impact of different repetitive sequences classes. Single copy sequence and repetitive sequences can be assembled accurately only in the case of shorter repeats than the read length (Ricker et al. 2012). Bombarely et al. (2016) performed a mixed de novo assembly for $P$. axillaris subsp axillaris N by hybridizing short reads (including mate pairs, short reads separated by approximately known distances) from Illumina and long reads from PacBio, while only short reads have been de novo assembled exclusively for $P$. integrifolia subsp inflata S6. High-quality assemblies represent sizes of 1.26 Gb and 1.29 Gb for $P$. axillaris subsp axillaris N and $P$. integrifolia subsp inflata S 6 respectively.

Illumina reads have been remapped to the assemblies, and the degree of heterozygosity has been estimated by single nucleotide polymorphism (SNP). The unassembled fractions of the genome have been rated with 140 Mb for $P$. axillaris subsp axillaris N and 110 Mb for $P$. integrifolia subsp inflata S6, because of the major impact of repetitive elements (Bombarely et al. 2016).

### 1.7.2 $k$-mer counting

Repetitive sequences contents in a genome can be analysed by using the $k$-mer frequency (Bergman \& Quesneville 2007; Marçais \& Kingsford 2011). K-mer means length $k$ sequence included in the analysed dataset, for instance, the sequence AAGAG is a 5-mer and it is only one of the 5 -mers positioned in the sequence AAGAGAAGAG. We can explore these sequences very repeatedly in the genome by counting all $k$-mers. Interestingly, $k$-mer counting can be useful tool for estimation of repeat libraries completeness and explore further sequences not found in the libraries (Krassovsky \& Henikoff 2014). K-mer analysis has been used to count the frequency of DNA sequences of length $k$ from raw reads data. It is an appropriate tool for measuring genome sizes and correcting sequence errors (Pevzner et al. 2001; Kelley et al. 2010), using some tools such as Jellyfish (Marçais \& Kingsford 2011), and Tallymer
(Kurtz et al. 2008). This method is considered unbiased tool for counting repetitive sequences due to its independence of genome assembly (Bergman \& Quesneville 2007; Marçais \& Kingsford 2011).
$K$-mer was applied for identifying highly repeated structures from unassembled genome sequences and the correlation between these sequences and the centromeric regions of several mammalian genomes (Alkan et al. 2011), and Williams et al. (2013) counted the repeated DNA sequences in bacteria using this tool. In Drosophila melanogaster, $k$-mer frequencies were used for counting the repetitive sequences, identifying known transposons and short repeats (Krassovsky \& Henikoff 2014). Recently, various lengths of Taraxacum microspecies motifs have been analysed using frequency analysis of all possible sequences, evaluating different lengths and complementing the graph-based outcomes (Salih et al. 2017). Using NGS data from the sheep genome, major classes of dispersed, tandemly repeated elements and endogenous retroviruses related repetitive sequences were identified by frequency analysis of short motifs (Mustafa et al. 2018).

### 1.7.3 Graph-based clustering of raw read sequences

### 1.7.3.1 RepeatExplorer

Sequences represented in multiple reads can be clustered using graph-based approaches. RepeatExplorer is a group of accessible software programs for identification of repetitive DNA sequences. De novo repeat characterisation could be achieved in the computational pipeline using the algorithm of a graph-based clustering without any demand for known reference databases. The main input of this pipeline is millions of short reads from next-generation sequencing that are random and non-selective. Phylogenetic relationships, comparative analysis and repeat classification of different types of retroelements result from the tools in this pipeline (Novák et al. 2010; Novák et al. 2013) (see Figure 1.7; Appendices 3.1 and 3.2).


Figure 1.7 Graph-based clustering of repetitive raw reads using the RepeatExplorer pipeline. Figure taken from Novák et al. (2013). The pipeline runs on Galaxy, an open source, web-based platform.

In comparative study between two genera of the South American killifish (Austrolebias charrua and Cynopoecilus melanotaenia), RepeatExplorer has been used for providing the annotated repeated sequences and their repetitive sections in the two genomes (García et al. 2015). Further, genomes of Ficus carica, Morus notabilis and Malus domestica have comparatively analysed through RepeatExplorer using Illumina reads (Usai et al. 2017). In the Solanaceae family, transposable elements of twenty eight species of the Physaleae and Solanaea tribes have been studied by RepeatExplorer, identifying repetitive components in all plants (Mendieta 2015). As well as, RepeatExplorer algorithm has identified simple and low complexity repeats in petunia in addition to mixed repeat family clusters integrating retroelements (Bombarely et al. 2016).

### 1.7.3.2 TAREAN

Tandem repeat analyzer (TAREAN), is a novel pipeline that effectively detects satellite repeats in the unassembled short reads. The graph-based clustering has been employed to characterise reads types of repetitive elements. Satellite repeats could be putatively detected by the existent circular structures in the graph-based clusters. Repeat monomers from the most frequent $k$ mers are reconstructed through destructing read sequences from their clusters. TAREAN has been efficiently examined through low-pass genome reads of various plant species (see Figure 1.8; Appendix 5.1).


Figure 1.8 Identification of candidate tandem repeat sequences using TAREAN. Figure taken from Novák et al. (2017).

The results from graph-based or $k$-mer identification of satellite repeats reveal the presence and exact genomic abundance of repetitive motifs, but give no information about their chromosomal distribution. In some cases, the repeats can be identified in whole genome
sequence assemblies (despite the collapse in number of copies during assembly), but in situ hybridization (FISH) has probed essential to give detailed information about locations, number of sites and relative abundance between sites. An example of such characterisation was given in Vicia faba where three repeats were detected and their loci identified on chromosomes (Novák et al. 2017).

### 1.8 Aims and objectives

Aims: The main aim of this study is to determine the interaction, chromosomal location of tandemly repeated sequences, PVCV and other endogenous viruses in Petunia species, to find out more about episomal, de novo integrated and induced infections, study expression patterns, and any differences between vein clearing and spot symptoms of PVCV.

## Objectives:

1. Organization of PVCV and other integrated viral sequences in Petunia species.

To explore sequences of PVCV, florendoviruses and other endogenous viruses in Petunia genomes, their location within petunia chromosomes, viral sequences activity and expression, the relationship and interaction of these sequences (chapter III).
2. Differences of PVCV symptoms and infections within petunia tissues.

To associate distinct symptom expression patterns as well as different modes of PVCV transmission (horizontal or vertical) with virus particle concentration as well as with changes in the cell ultrastructure of infected cells using transmission electron microscopy (TEM) together with immunogold labelling (chapter IV).
3. Identification of tandem repeats in petunia.

To reveal and characterise all tandem repeats that highly abundant motifs in petunia DNA, their organization within chromosome sequence assemblies, chromosomal location, and diversity among petunia species (chapter V).

## Chapter II. Materials and methods

### 2.1 Plant material and cultivation

The parental species, $P$. axillaris subsp axillaris N and $P$. integrifolia subsp inflata $S 6$ in addition to three cultivars of $P$. hybrida (Rdc, V26 and W138) and $P$. axillaris subsp parodii S7 were used in this study. Seeds of the three wild Petunia species have been provided by Cris Kuhlemeier, University of Bern, Switzerland. P. hybrida seeds were obtained from Ronald Koes, University of Amsterdam (W138), NL Chrestensen, Erfurt, Germany (Rdc, aka "Himmelsröschen") and John Innes Institute, Norwich (V26) (Table 2.1; Figure 1.1). The seeds were placed in small pots and covered lightly with a peat moss (Levington advance), and irrigated regularly under greenhouse conditions $\left(25^{\circ} \mathrm{C}\right.$ temperature and 16 hr of daylight) at the Department of Genetics and Genome Biology, University of Leicester (UK).

Table 2.1 List of suppliers for seeds from wild and hybrid petunia plants used in the studies.

| No. | Species | Cultivar | Source |
| :---: | :--- | :---: | :--- |
| 1. | P. axillaris subsp. axillaris | N | Cris Kuhlemeier, <br> University of Bern, <br> Switzerland |
| 2. | P. integrifolia subsp inflata | S6 | Cris Kuhlemeier, <br> University of Bern, <br> Switzerland |
| 3. | P. hybrida "Himmelsröschen" or <br> Rdc (Rose du ciel) | Rdc | NL Chtestensen, <br> Erfurt, Germany |
| 4. | P. hybrida | V26 | John Innes <br> Institute, Norwich |
| 5. | P. hybrida | W138 | Ronald Koes, <br> University of <br> Amsterdam |


| 6. | P. axillaris subsp parodii | S7 | Cris Kuhlemeier, <br> University of Bern, <br> Switzerland |
| :---: | :---: | :---: | :--- |

### 2.2 Standard solutions and media

Table 2.2 Standard solutions used in experiments

| Experiments | Solutions | Constitutions |
| :---: | :---: | :---: |
|  | CTAB buffer | 2\% (w/v) cetyltrimethylammonium bromide, 100mM Tris-HCL, 1.4M NaCL, 20mM EDTA. (pH 7.5-8.0) |
|  | 10x TE buffer | 100 mM Tris (tris-hydroxymethylamino-methane)$\mathrm{HCl}, 10 \mathrm{mM}$ EDTA (ethylene-diamine-tetra-acetic acid. ( pH 8 ) |
|  | DNA wash buffer | $76 \%$ ethanol, 10 mM ammonium acetate. |
|  | DNA extraction buffer | 50 mM of Tris-HCl, $\mathrm{pH} 8.0,25 \mathrm{mM}$ EDTA, 400 mM NaCl . |
|  | 6x Gel loading buffer | $60 \%$ (v/v) glycerol; $0.25 \%$ (w/v) bromophenol blue; $0.25 \%$ ( $\mathrm{w} / \mathrm{v}$ ) xylene cyanol FF; diluted to 1 x in $50 \%$ ( $\mathrm{v} / \mathrm{v}$ ) glycerol. |
|  | 50x TAE buffer <br> (tris acetate-EDTA) | 2M Tris- $\mathrm{HCl} ; 50 \mathrm{mM}$ (ethylenediaminetetraacetic acid; pH 8 ) $5.71 \%$ (v/v) glacial acetic acid, diluted to 1 x in deionised H 2 O . |
|  | Ethidium Bromide | $10 \mathrm{mg} / \mathrm{ml}$ ( 1 g Ethidium bromide dissolved in 100 ml of sterile distilled water and stored at $4^{\circ} \mathrm{C}$ ). |
| $\begin{aligned} & \text { on } \\ & \text { B } \\ & \text { E } \\ & \hline \end{aligned}$ | Ampicillin | $10 \mathrm{mg} / \mathrm{ml}(10 \mathrm{mg}$ of ampicillin dissolved in 1 ml of distilled water and stored at $-20^{\circ} \mathrm{C}$ ). |


|  | SOB medium <br> (super optimal broth) | 20 g of tryptone, 5 g yeast extract $0.5 \mathrm{~g} \mathrm{NaCl}, 10 \mathrm{ml}$ 250 mM KCl . The final volume was 1000 ml with sterile distilled water. $(\mathrm{pH} 7.0)$ |
| :---: | :---: | :---: |
|  | LB (lysogeny broth) | Agar plates: 2.5\% LB broth (Melford), $1.5 \%$ agar (For Medium), $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, $80 \mu \mathrm{~g} / \mathrm{ml} \mathrm{x}$-gal, $0.5 \quad \mathrm{mM} \quad \mathrm{IPTG} \quad$ (isopropyl $\quad \beta$-D-1thiogalactopyranoside. ( pH 7.2 ) |
|  | LB medium (luriabertani) | 12.5 g of LB broth ( 10 g tryptone, 5 g yeast extract, $10 \mathrm{~g} \mathrm{NaCl})$. The final volume was 500 ml with sterile distilled water. ( pH 7.0 ) |
|  | LB medium agar | 25 g of LB broth ( 10 g tryptone, 5 g yeast extract, 10 g $\mathrm{NaCl})$. The final volume was 1000 ml with sterile distilled water and 15 g of Bacto-Agar (DIFCO). |
|  | IPTG | 200 mM ( $476 \mathrm{mg} / \mathrm{ml}$ isopropyl-B-D-thiogalactopyronoside dissolved in 10 ml distilled water, filter sterilized and stored at $-20^{\circ} \mathrm{C}$ ). |
|  | X-gal | $40 \mathrm{mg} / \mathrm{ml}$ ( 1 g of 5 -bromo-4-chloro-3-indolyl $\beta$-Dgalactopyranoside with 25 ml of dimethylformamide, filter sterilized and stored at $-20^{\circ} \mathrm{C}$ ). |
|  | 2 x rapid ligation buffer | 60mM Tris-HCl ( pH 7.8 ), $20 \mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM}$ DTT, 2 mM ATP and $10 \%$ PEG. |
|  | 10x Enzyme buffer | 100 mM citric acid, 100 mM tri-sodium citrate, stored at $4^{\circ} \mathrm{C}$. $(\mathrm{pH} 4.6)$ |
|  | 1x Enzyme solution | $3 \% ~(\mathrm{w} / \mathrm{v})$ pectinase (Sigma), $0.2 \%(\mathrm{w} / \mathrm{v})$ cellulase [1.8\% (w/v), Onozuka RS] cellulase (Calbiochem) in 1 x enzyme buffer, stored at $-20^{\circ} \mathrm{C}$. |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$ | 8-hydroxyquinoline | 0.002 M (Dissolving 0.29 g of S-hydroxyquinoline in 1000 ml of ddH2O, stored in the dark at $4^{\circ} \mathrm{C}$ ). |



|  | RW1buffer <br> (RNeasy washing <br> buffer) | RW1 buffer contains a guanidine salt and ethanol. This buffer is used as a stringent washing buffer that efficiently removes biomolecules that are nonspecifically bound to the silica membrane like carbohydrates, proteins and fatty acids. |
| :---: | :---: | :---: |
|  | RDD buffer <br> ( RNase-free DNase) | RDD buffer provides efficient on column digestion of DNA and ensures that the RNA remains bound to the column. |
|  | RPE buffer | RPE buffer is a mild washing buffer used to remove traces of salts on the column. |
|  | PB buffer | PB buffer contains a high concentration of guanidine hydrochloride and isopropanol. |
|  | PE buffer | PE buffer is a wash buffer in DNA cleanup procedures. |
| $\begin{aligned} & \text { त्0 } \\ & 0.0 \\ & 0 \\ & 0.0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{I I} \end{aligned}$ | Elisa wash buffer | 6.06 g Tris base, 8.2 g NaCl and 6.0 ml 6 M HCl dissolved in 1 L of distilled water with about 7.2 pH . |
|  | Epon812 | Glycerol based aliphatic epoxy resin that is relatively low viscosity: Epon $812=150-220 \mathrm{cps}$ at $25^{\circ} \mathrm{C}$. |
|  | DDSA | 1-Dodecenylsuccinic anhydride is a hardener contains mixture of isomers. |
|  | MNA | Methyl nadic anhydride (Methyl-5- norbornene-2,3dicarboxylic Anhydride) is an epoxy curing harder. |
|  | DMP30 | 2,4,6-Tris-(dimethylaminomethyl) phenol is a curing catalyst for epoxy resins. |

### 2.3 Methods

### 2.3.1 Genomic DNA extraction

Genomic DNA was prepared from young leaves of petunia using the CTAB method (Doyle \& Doyle 1990) with some modifications. One to two grams of asymptomatic young leaves were collected from each individual species, and washed with distilled water and then wrapped with aluminium foil followed by shock freezing in liquid nitrogen and immediately ground up using a pestle and mortar to avoid enzymatic degradation. About half a spatula of polyvinylpyrrolidone (Sigma) was added to the material before transferring it into 10 ml of preheated CTAB buffer (contains $50 \mu \mathrm{l}$ of B-mercaptoethanol) in 50 ml tube and incubated at $60^{\circ} \mathrm{C}$ for 30 min . Absolute chloroform: isoamyl alcohol (24:1) was added with equal volume to each tube and blended via inverting many times for 3 min , then centrifuged at 2040 g at room temperature for 10 min . The supernatant was transferred gently from the top of the tube to another new one using 1 ml tip with cut end, the steps of washing and centrifugation were repeated another time. After that, pre-chilled isopropanol ( 0.6 x volume) was added to the supernatant for DNA precipitation, then the material was mixed carefully by inverting several times, and kept for 10 min on ice. The precipitated DNA was spun down at 735 g for 3 min , and then air dried and washed with 5 ml of DNA wash buffer for 20 min . After this step, the DNA was re-suspended in 1 ml of 1 x TE buffer at RT overnight after air drying. It was incubated for 1 hr at $37^{\circ} \mathrm{C}$ with $2 \mu \mathrm{l}$ of $10 \mu \mathrm{~g} / \mu \mathrm{l}$ RNase A (Bioline) to remove the RNA and re-precipitated with 1 x sodium acetate $3 \mathrm{M}(\mathrm{pH} 6.8)$ and 2 x absolute ethanol. The DNA was spun down at 735 g for 3 min and then re-suspended in $500 \mu \mathrm{l}$ of 1 x TE buffer at RT overnight, the prepared DNA was stored at $-20^{\circ} \mathrm{C}$.

### 2.3.2 DNA quantification

### 2.3.2.1 Gel electrophoresis

For conformation check and detection of denaturation, $5 \mu \mathrm{l}$ of the extracted total genomic DNA was separated on agarose gel ( $1 \% \mathrm{w} / \mathrm{v}$ in 1xTAE buffer with ethidium bromide $1 \mu \mathrm{~g} / \mu \mathrm{l}$ ) with a size and amount reference ( $5 \mu \mathrm{l}$ of Bioline 1 kb hyper ladder). The gel run was set up for 60 min at 75 V . Gel documentation system (Gen flash) was used to capture the gel image.

### 2.3.2.2 Spectrophotometry

Genomic DNA was assessed for purity, quality and amount using a Nanodrop ND-1000 spectrophotometer at $260 / 280 \mathrm{~nm}$ wavelength using $1 \mu 1$ of each single DNA sample. Quality was considered as a high when the OD 260/280 nm value was about 1.8-2.2.

### 2.3.3 PCR amplification

Genomic DNA, dNTPs and primers were diluted with sterilized water, and the final concentration of the DNA was $30-50 \mathrm{ng} / \mu \mathrm{l}$ to use as a template. The master mix components (Table 2.3) were set up to amplify some tandem repeats (see chapter V) and EPRVs (Table 2.4). PCR reactions used a gradient PCR machine (Biometra) with a program that consisted of 3 min for initial denaturation at $95^{\circ} \mathrm{C}$ and then 35 cycles of denaturation ( $95{ }^{\circ} \mathrm{C}$ for 30 sec ), annealing (50.2-69.3 ${ }^{\circ} \mathrm{C}$ for 30 sec ) and primer extension ( $72{ }^{\circ} \mathrm{C}$ for 1 min ). The last cycle was 1 min at $72^{\circ} \mathrm{C}$ as a final extension. After these steps, the temperature was set up at $16^{\circ} \mathrm{C}$ as indefinite time (Table 2.5). PVCV primers (Table 3.1) were amplified as (Table 3.2), and PCR products were checked by gel electrophoresis (see below).

Table 2.3 Components and quantities of PCR Master Mix.

| Components | Amounts $(\boldsymbol{\mu})$ |
| :---: | :---: |
| Molecular biology grade water | 13.4 |
| 10 x KAPA Taq Buffer | 2 |
| $\mathrm{MgCl}_{2}(25 \mathrm{mM})$ | 1.3 |
| 10 mM dNTP Mix | 1.2 |
| $10 \mu \mathrm{~L}$ Forward Primer | 0.5 |
| $10 \mu \mathrm{~L}$ Reverse Primer | 0.5 |
| KAPA Taq DNA Polymerase | 0.1 |
| Template DNA | 1 |
| Total | $20 \mu \mathrm{l}$ |

### 2.3.4 Purification of DNA fragments from agarose gel

Selected DNA fragments were cut from the gel by sterilized forceps and scalpels under a UV trans-illuminator (UVP). The gel pieces were placed into 1.5 ml Eppendorf tubes and then purified and washed from agarose parts according to the instructions in the clean-up kit (Nucleo Spin Extract II Clean up kit Macherey-Nagel Company).

### 2.3.5 Cloning of PCR products

The pGEM-T Easy Vector System I kit (Promega) was used for cloning of some purified PCR products.

### 2.3.5.1 Ligation

The ligation reactions were performed in a $300 \mu \mathrm{l}$ Eppendorf tube. The reactions consisted of 2x rapid ligation buffer ( $7 \mu \mathrm{l}$ ), pGEM-T Easy Vector ( $0.9 \mu \mathrm{l}$ ), DNA sample ( $5.4 \mu \mathrm{l}$ ), T4 DNA ligase ( $1.2 \mu \mathrm{l}$ ), and sterile water $(0.5 \mu \mathrm{l})$. The final volume was $15 \mu \mathrm{l}$ as (Table 2.4), and mixed gently by flicking, then incubated at RT for 1 hr and then overnight at $4^{\circ} \mathrm{C}$ (see Table 2.2).

Table 2.4 Components of the ligation reaction.

| Component | Volume ( $\mu \mathbf{I})$ | Final concentration |
| :---: | :---: | :---: |
| 2 x rapid ligation buffer | 7 | 1 x |
| pGEM-T Easy Vector | 0.9 | $1-10 \mathrm{ng} / \mu \mathrm{l}$ |
| Purified PCR products | 5.4 | $1-10 \mathrm{ng} / \mu \mathrm{l}$ |
| T4 DNA ligase | 1.2 | $6 \mathrm{U} / \mu \mathrm{l}$ |
| Molecular grade sterile water | 0.5 | NA |
| Total | 15 |  |

### 2.3.5.2 Transformation

Plasmid vectors containing the PCR product were transformed into transformation competent cells (Escherichia coli). After growth in selective media, culture was plated out on LB (Lysogeny Broth) agar plates with selective markers (pre-prepared media contains $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, $500 \mu \mathrm{~g} / \mathrm{ml}$ (IPTG) - isopropyl- $\beta$-A-thiogalactopyranoside and $40 \mu \mathrm{~g} / \mathrm{ml}$ (X-Gal) -5-bromo-4-chloro-3-indolyl- $\beta$-D-galactosidase) (see Table 2.2).

### 2.3.5.3 Screening and isolation of recombinant clones

Recombinant colonies with inserted sequences in the plasmid were white, while nonrecombinant cells appeared as blue colonies. White colonies were picked by a sterile toothpick and transferred into 5 ml LB medium tube and then incubated overnight at $37^{\circ} \mathrm{C}$ in a shaker $(230 \mathrm{~g})$ (see Table 2.2).

### 2.3.5.4 Colony PCR

Colony PCR was used to confirm recombinant clones and the size of insert using the universal M13 sequencing primers [forward (GTA AAA CGA CGG CCA GT) and reverse (GGA AAC AGC TAT GAC CAT G)]. The master mix components were prepared as (Table 2.5) in 1.5 ml Eppendorf tubes. 1-2 $\mu \mathrm{l}$ bacterial culture was used in addition to $15 \mu \mathrm{l}$ of master mix components in each clean 0.2 ml PCR tube. After flicking and spinning down the mixture tube, the PCR machine was set up according to the PCR protocol in (Table 2.6). PCR products and fragment lengths were analysed in horizontal agarose gel electrophoresis.

Table 2.5 Materials for PCR reaction of cloned inserts products.

| Components | Amounts ( $\boldsymbol{\mu} \mathbf{)}$ |
| :---: | :---: |
| Molecular grade Water | 9.65 |
| 10 x KAPA Taq Buffer | 1.5 |
| MgCl2(25mM) | 1 |
| 10 Mm dNTP Mix | 1.2 |
| $10 \mu \mathrm{~L}$ Forward Primer-M13 | 0.75 |
| $10 \mu \mathrm{~L}$ Reverse Primer-M13 | 0.75 |
| KAPA Taq DNA Polymerase | 0.15 |
| Total | 15 |

Table 2.6 Colony PCR protocol of cloned PCR products.

| Steps |  | Temperature ${ }^{\circ} \mathbf{C}$ | Duration <br> Minutes : seconds | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Initial <br> denaturation | 95 | $5: 00$ | 1 |
| 2 | Denaturation | 95 | $1: 00$ | 35 |
| 3 | Annealing | 55 | $00: 30$ |  |
| 4 | Extension | 72 | $1: 00$ |  |
| 5 | Final extension | 72 | $10: 00$ | 1 |
| 6 | Hold | 16 | pause | 1 |

### 2.3.5.5 Plasmid DNA isolation and purification

Plasmid DNA was purified using Machery-Nagel Kit following the Manufacturer's instructions. Recombinant colonies culture ( $1400 \mu \mathrm{l}$ ) was added into 1.5 ml Eppendorf tube and centrifuged directly at 9875 g for 30 sec . Then, the supernatant was gently removed and only pellets left at the bottom of the tube. The cell pellet was re-suspended totally by adding buffer A1 and pipetting up and down. In order to continue with cell lysis process, buffer A2 and buffer A3 were separately and respectively added and gently mixed by inverting the tube many times. The lysate was clarified by centrifugation at 9875 g for 5 min . The supernatant was loaded in a NucleoSpin Plasmid/Plasmid (no lid) column and centrifuged at 9875 g for 1 min. Next, the silica membrane was washed by adding buffer AW and buffer A4 separately and respectively with centrifugation at 9875 g for 1 min each. Finally, the silica membrane was dried by centrifugation and plasmid DNA was collected by adding $50 \mu \mathrm{l}$ elution buffer and centrifuged at 9875 g for 1 min .

### 2.3.5.6 Sequencing of cloned PCR products

Cloned PCR products were sequenced at GATC biotech (Germany) by sending the gel extracted DNA including the universal M13 forward primer.

### 2.3.6 Probe labelling

Purified PCR products or amplified cloned inserts were used as template for labelling with biotin-11-dUTP or digoxigenin-11-dUTP (Roche Diagnostics). The BioPrime (Invitrogen) DNA Labelling System was used for biotin labelling following the manufacturer's instruction. Briefly, $25 \mu \mathrm{l}$ of DNA sample ( $500-1000 \mathrm{ng}$ ) was added to $20 \mu \mathrm{l}$ of 2.5 X Random Primers Solution (final volume $45 \mu \mathrm{l}$ ) and then denatured at $95^{\circ} \mathrm{C}$ in a water bath. After the denaturation step, 10x dNTP ( $5 \mu \mathrm{l}$ ) and Klenow Fragment of E. coli DNA polymerase I (40U) ( $1 \mu \mathrm{l}$ ) were added on ice and mixed carefully but thoroughly, and then incubated for 2 hr at $37^{\circ} \mathrm{C}$. The BioPrime (Invitrogen) Array CGH Genomic Labelling Module was applied for digoxigenin labelling. After denaturing $19 \mu 1$ of DNA sample ( $500-1000 \mathrm{ng}$ ) and $16 \mu 1$ of 2.5X Random Primers Solution (final volume $35 \mu \mathrm{l}$ ), 10x dUTP nucleotide ( $3 \mu \mathrm{l}$ ), digoxigenin-11-dUTP (1,8 $\mu \mathrm{l}$ ) and Exo-Klenow Fragment (40U) $(0,8 \mu \mathrm{l})$ were gathered and mixed carefully but thoroughly and incubated for 2 hr at $37^{\circ} \mathrm{C}$. After incubating each sample, stop buffer ( $5 \mu \mathrm{l}$ ) was added to end the reaction. Finally, a NucleoSpin Extract II Clean-up Kit (Machery-Nagel) was used for cleaning each labelled probe and stored at $-20^{\circ} \mathrm{C}$. In addition, six probes of tandem repeats clusters (Table 5.2) have been labelled directly by synthesis with nucleotides linked with biotin.

### 2.3.7 Petunia chromosome preparations

Fresh root tips were firstly pretreated with 0.2 M 8 -hydroxyquinoline for 4 hr and then fixed with freshly made ethanol:glacial acetic acid (3:1). Fixed roots were prepared and washed two times for 10 min each in 1x enzyme buffer diluted from 10x enzyme buffer to remove the fixative solution residues, and then digested in 1x enzyme solution at $37^{\circ} \mathrm{C}$ in incubator for $15-20 \mathrm{~min}$. After this period, root tips were soaked again in 1 x enzyme buffer to stop the enzyme action. Clean glass slides (SuperFrost, Menzel-Glaser, Thermo Scientific) were used for preparation under a stereo microscope, with a fine needle and forceps, a single root tip was added to one drop of $60 \%$ acetic acid. Then, the root cap was removed keeping only the
meristematic tissues, and cells were separated with the needle and forceps. A glass coverslip ( $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ No. 1) was placed on the prepared cells and excess of acid removed by a filter paper. The coverslip was tapped gently to disperse the material and then squashed by force with the thumb. A phase contrast microscope was used for visualizing the slides to check cell quality, metaphase index, and to confirm if they were well squashed. After checking, the slides were transferred on to dry ice for 15 min and the cover slip was removed with a razor blade. The slides were air dried and stored at room temperature and checked again (see Table 2.2).

### 2.3.8 Fluorescent in situ hybridization

The method of Schwarzacher and Heslop-Harrison (2000) was applied for fluorescent in situ hybridization.

### 2.3.8.1 Pre-hybridization

Selected slides with free chromosomes and good metaphase distribution were re-fixed using immersion in new fixative absolute ethanol:glacial acetic acid (3:1) mixture for 10 min . Slides were soaked in absolute ethanol for two times 5 min each and air dried, and then incubated with $200 \mu \mathrm{l}$ of RNase ( $100 \mu \mathrm{~g} / \mathrm{ml}$ ) solution each under a plastic cover slip at $37^{\circ} \mathrm{C}$ for 1 hr in a humid chamber. The plastic coverslips were removed from slides by washing in 2xSSC for 2 and 10 min respectively, then slides were incubated in a pepsin solution ( $400 \mu \mathrm{pepsin}: 80 \mathrm{ml}$ $0,01 \mathrm{M} \mathrm{HCL}$ ) for 3 min at room temperature and washed with distilled water and 2 xSSC for 1 and 5 min respectively. Next, slides were incubated at RT for 10 min with saline buffered paraformaldehyde $4 \%(\mathrm{w} / \mathrm{v})$ (Fisher scientific) under the fume hood. The 2 xSSC solution was used again for washing slides, and then slides were dehydrated in $70 \%, 85 \%$ and $100 \%$ ethanol for 2 min each. Then, slides were air dried to prepare them for probe adding (see Table 2.2).

### 2.3.8.2 Hybridization

The total quantity of hybridization mixture including labelled probe was prepared in an Eppendorf tube ( $37 \mu \mathrm{l} /$ slide) (see Table 2.7). The mixture was heated at $95^{\circ} \mathrm{C}$ for 10 min and cooled on ice for 10 min . The prepared mixture was added to the marked area of a slide and covered with a plastic cover slip. The slides were placed on a thermal cycler and heated to $70^{\circ} \mathrm{C}$ for 7 min denaturing both chromosomal and probe DNA. For probe hybridization to chromosomal DNA, temperature was decreased slowly to $37^{\circ} \mathrm{C}$ and kept for $16-20 \mathrm{hr}$.

Table 2.7 Amounts and concentrations of components in the hybridization mixtures used in FISH.

| Components | Concentrations | Amount for 1 slide ( $\boldsymbol{\mu} \mathbf{)}$ |
| :---: | :---: | :---: |
| $100 \%$ formamide | $50 \%$ | 20 |
| 20 x SSC | 2 x | 4 |
| $50 \%$ dextran sulphate | $10 \%$ | 8 |
| Salmon sperm DNA <br> $1 \mu \mathrm{~g} / \mu \mathrm{l}$ | $0.025 \mu \mathrm{~g}$ |  |
| 100 mM EDTA | 1.25 mM | 1 |
| $10 \%$ SDS | $0.125 \%$ | 0.5 |
| Probe DNA | $(25-200 \mu \mathrm{~g} / \mu \mathrm{l})$ | 0.5 |
| Total |  | 3 |

### 2.3.8.3 Post-hybridization washes

Post hybridization washes were performed using stringent conditions with 0.1 xSSC at $42^{\circ} \mathrm{C}$ to decrease the background signals and to remove weakly bound probe (see Table 2.2).

### 2.3.8.4 Detection and DAPI staining

Washed slides were immersed in detection buffer for 5 min . Then, blocking solution was added to the slides and covered with a plastic cover slip and incubated for 30 min at $37^{\circ} \mathrm{C}$. The antibody solutions ( $40 \mu \mathrm{l}$ ) were added after removing coverslips. The plastic cover slips were added again on top to prevent dehydration and the whole assembly was incubated at $37^{\circ} \mathrm{C}$ for 1 hr . Then, detection buffer was used to wash slides three times at $40^{\circ} \mathrm{C}$ for 2 min each. After that, DAPI and anti-fade (Citifluor AF) mixture ( $20 \mu \mathrm{l}$ ) were added to the marked area in each slide before adding a glass cover slip (No. $0.24 \times 40 \mathrm{~mm}$ ). Finally, the slides were placed in the
dark at $4^{\circ} \mathrm{C}$ overnight before they were checked under an epifluorescence microscope (see Table 2.2).

### 2.3.8.5 Microscopy and photography

The FISH slides were scanned and viewed by a Nikon Eclipse 80i epifluorescence microscope (B\&W CCD camera, Nikon Digital Sight USB (H) EXT I/0 B2W camera controller and a Nikon Intenslight C-HGFI lamp). A drop of immersion oil was placed on the slide after pressing the cover slip carefully and firmly with a filter paper. Three types of band filters were used for checking FISH signals: DAPI (blue) was captured by UV-2E/C (wavelengths of excitation filter 340-380 nm), Digoxigenin (green) by B-2E/C (wavelengths of excitation filter $465-495 \mathrm{~nm}$ ), and Alexa Flour 594 (red) by G-2E/C (wavelengths of excitation filter 528-553 nm ). The red biotin/ Alexa594 streptavidin antibody signal was captured first, followed by the green digoxigenin/FITC-anti-digoxigenin signals, and later the DAPI signal. Each single image was captured using Nikon, NIS-Elements 4.0, false coloured, and overlaid for producing a composite image with the red and green colours for FISH probes and the blue for chromosomes. Adobe Photoshop CC2015.5 was used for preparing and overlaying images and hybridization signals, apart from cropping, using only functions affecting the whole image equally.

## Chapter III. Integration of Endogenous Pararetroviruses (EPRVs)

### 3.1 Endogenous pararetroviruses (EPRVs)

For a long time, a principle in virology stated that there was no evidence for plant viruses integrating into the host genome unlike bacterial and animal viruses. This dogma has been overruled with the discovery of endogenous pararetroviruses in plants. Most of our knowledge about EPRVs biology and evolution was gained from two sources: i) the activation of integrated EPRVs that gave factual proof of their infectivity under particular conditions and ii) identification of positioning and diversity within sequenced plant genomes. Richert-Pöggeler and Shepherd (1997) reported that Petunia vein clearing virus transmits through seeds and integrates in the Petunia hybrida genome. The whole virus sequence is present in most of $P$. hybrida and the parental species $P$. axillaris subsp. axillaris and $P$. integrifolia subsp inflata, and capable of episomal virus replication in response to stress (Richert-Pöggeler et al. 2003). Ndowora et al. (1999) and Harper et al. (1999) showed that Banana streak virus-OL integrates at two loci in the Musa genome using FISH and could trigger virus infection in healthy plants. In Musa balbisiana genome, four species of BSV have recently been reported as pathogenic integrants: Banana streak OL virus (BSOLV), Banana streak IM virus (BSIMV), Banana streak MY virus (BSMYV), and Banana streak GF virus (BSGFV) (Gayral et al. 2008; IskraCaruana et al. 2010; Geering et al. 2014). Lockhart et al. (2000) revealed that Tobacco vein clearing virus could also integrate in the genome of Nicotiana edwardsonii using hybridization tests and genomic library screening. These viruses, Petunia vein clearing virus (PVCV), Banana streak virus (BSV), and Tobacco vein clearing virus (TVCV), show episomal diseases related with integrated motifs (Harper et al. 2002).

Nowadays, many sequences of plant viruses have been found as integrants in different plant genomes (Hohn et al. 2008; Geering et al. 2014).

According to tenth Report of the International Committee on Taxonomy of Viruses (ICTV), there are five DNA plant virus families with ssDNA genomes and the family of Caulimoviridae encapsidating dsDNA:

1- The family of Geminiviridae has ten genera.
2- The family of Alphasatellitidae has twelve genera.
3- The family of Nanoviridae has three genera.

4- The family of Tolecusatellitidae has two genera.
5- The family of Caulimoviridae has eight recognized genera.
Recently, one additional genus has been proposed to the family of Caulimoviridae. It was named Florendovirus which members are found abundantly in a variety of flowering plants (Geering et al. 2010; Geering et al. 2014).

### 3.1.1 Caulimoviridae

The Caulimoviridae family includes genera of Caulimovirus, Soymovirus, Cavemovirus, Solendovirus, Petuvirus, Badnavirus, Rosadnavirus, Tungrovirus and Florendovirus with viral genomes from 7.2 to 9.2 kb , which are essentially differentiated from each other by their genome organization (Geering et al. 2010; Geering \& Hull 2012; Geering et al. 2014; Diop et al. 2018). Those viruses replicate uniquely by reverse transcription. Virus particles encapsidate a double-stranded DNA genome and virus integration step is not obligatory for viral replication. Their genome consists of open circular double-stranded DNA with single strand discontinuities at particular positions. Based on these biological properties which are distinct from retroviruses, they are also referred to as pararetoviruses (Temin 1985).

These gaps have resulted from DNA replication and are located at the priming positions for plus strand DNA synthesis as well as on the minus DNA strand (Gronenborn 1987; Harper et al. 2002). The family produce a more-than-genome-length RNA that takes two roles as a template for reverse transcription and as mRNA for some of gene products (Hull 2002).

Caulimovirus replication occurs in two cellular compartments: first, transcription of a genome length RNA from a viral minichromosomal form in the nucleus, followed by reverse transcription to give circular dsDNA with discontinuties in the cytoplasm (Gronenborn 1987; Harper et al. 2002). The genetic information can be either organized in up to eight ORFs comprising single gene products or like the ORF III of Badnavirus, encoding for the coat protein (CP), the movement protein (MP), an aspartate proteinase (AP), the reverse transcriptase (RT) and the ribonuclease H 1 (RH1) that are involved in virus replication. The genera of Badnavirus, Petuvirus, Solendovirus and Caulimovirus could integrate within host nuclear genomes and transmit over generations like cellular genes (Geering et al. 2014). Recently, Diop et al. (2018) reported that both primitive and complex vascular plants contain endogenous caulimovirid-like sequences. Up to five different genera of Caulimoviridae have
been detected in angiosperms with florendoviruses being the most prominent representative followed by petuviruses.

### 3.1.1.1 Petunia vein clearing virus (PVCV)

The virus was detected and described for the first time in Germany by Lesemann and Casper (1973). In a study aimed to identify mycoplasma-like bodies and viruses in Opuntia tuna showing witches-broom disease, Lesemann and Casper (1973) reported that it was not possible to detect virus-like particles in ultrathin sections of $O$. tuna tissues and most transmission experiments from infected Opuntia were negative. Petunia plants that were not used in the transmission tests, but had been raised from the same seed source showed all of sudden vein clearing symptoms and leaf deformation in young shoots with stunted growth. In ultrathin sections of symptomatic leaf and stem material, virus-like particles and inclusion bodies were discovered. Horizontal transmission of the virus to other petunia plants was possible using grafting. Based on host plant and symptoms the infectious entity was named "Petunia vein clearing virus" (Lesemann \& Casper 1973). Later, it has been recorded in United States of America (Lockhart \& Lesemann 1998), and in Israel (Gera et al. 2000). Particle measurements using purified virus suspensions showed that the average virion diameter with $40-50 \mathrm{~nm}$ is slightly smaller than other Caulimoviridae (Zeidan et al. 2000). Based on immune electron microscopy, no serological relationship to other members of caulimoviruses was found (Lesemann \& Casper 1973). Phylogenetic analyses confirmed PVCV being distinct from so far known Caulimoviridae and it was classified as type member of the new genus Petuvirus (Richert-Pöggeler \& Shepherd 1997; Fauquet et al. 2005).

The infected petunia plants appear stunted especially in young shoots, and display chlorosis along the leaf veins with either diffuse or sharp borders. Additionally symptomatic leaves show epinasty (Richert-Pöggeler et al. 2003). These symptoms (see Figure 3.1) are well expressed when the temperature is more than $25^{\circ} \mathrm{C}$ under nursery conditions (Zeidan et al. 2000). Furthermore, symptoms can arise from stressed plants that suffer from water and nutrient deficiency, in addition to wounding (Lockhart \& Lesemann 1998; Harper et al. 2002) and tissue culture (Richert-Pöggeler et al. 2003).


Figure 3.1 The symptoms on $P$. axillaris subsp parodii S 7 resulted by grafting with a PVCV infected scion of $P$. hybrida. The main symptoms appear as chlorosis along the leaf veins with either diffuse or sharp borders and stunted young shoots (RichertPöggeler et al. 2003).

Horizontal transmission of episomal PVCV was successful to Nicotiana glutinosa and $P$. axillaris subsp parodii S7 using grafting. So far, the determined host range of PVCV is limited within Solanaceae, including species of Petunia like $P$. integrifolia subsp. integrifolia, $P$. axillaris subsp axillaris, $P$. hybrida and $N$. glutinosa but not $N$. tabacum (Richert-Pöggeler et al. 2003). Outbreak of vein clearing disease has been observed for some cultivars of $P$. hybrida such as "Himmelsröschen" (Lesemann \& Casper 1973), "Fantasy Pink" (Lockhart \& Lesemann 1998), and the "Cascadia" series (Gera et al. 2000). Although PVCV transmission by vectors has not been found yet, the viral DNA can be transmitted by biolistic inoculation of petunia plants (Richert-Pöggeler et al. 2003).

Screening a genomic library of P. hybrida cultivar W138 identified integrated PVCV sequences arranged in a tandem array from which direct full genome length transcript can be synthesized. Indeed these "provirus"-like structures were infectious using biolistic inoculation of provirus-free P. axillaris subsp parodii S7 (Richert-Pöggeler et al. 2003). Most likely release of epigenetic control leads to PVCV infections originating from such endogenous copies in $P$. hybrida W 138 after wounding and tissue culture in $30 \%$ of the treated plants after 2-3 months (Noreen et al. 2007).

Detection of endogenous forms of PVCV in asymptomatic plants using FISH proved that there are homologous sequences in the genomes of $P$. axillaris subsp axillaris, $P$. integrifolia subsp inflata and P. hybrida (Richert-Pöggeler et al. 2003; Bombarely et al. 2016). No hybridization
signal was obtained in $P$. axillaris subsp parodii and $N$. glutinosa when stringent washing conditions were applied. Thus integrants are vertically transmitted via reproductive cells to the next generation (Richert-Pöggeler et al. 2003). Interestingly, FISH studies indicated the collocalisation of PVCV integrants with Metaviridae sequences that are phylogenetically the closest relative to Caulimoviridae (Bombarely et al. 2016; Krupovic et al. 2018).

The genome sequence of PVCV is 7206 bp in size (GenBank accession no. U95208). All genetic information is comprised in one large ORF consisting of 2179 amino acids which distinguishes PVCV from other members within Caulimoviridae having their genomic information distributed over 3 to 8 ORFs (Hohn \& Rothnie 2013). Within the polyprotein consensus sequences known from the gag and pol genes of retroviruses for a RNA binding domain (RB), protease (PR), reverse transcriptase (RT) and RNase H (RH) were identified (Richert-Pöggeler \& Shepherd 1997; Richert-Pöggeler et al. 2003).

An inactivated integrase-like domain and quasi (long) terminal repeats were described for PVCV which are core elements for retrotransposon integration during replication supporting the ancestral link of both phylogenetic groups (Richert-Pöggeler \& Shepherd 1997; RichertPöggeler et al. 2003; Krupovic et al. 2018).

The available data on genome assemblies of the two Petunia parental species $P$. axillaris subsp axillaris N (PaxiN) and P. integrifolia subsp inflata S6 (PinfS6) reveals numerous integrated sequences of PVCV (Bombarely et al. 2016). FISH was used to localize sequences on chromosomes. In cytological studies distinct patterns for PVCV sequence localization could be seen. In $P$. axillaris N they were mainly identified on chromosome III and less frequently on chromosome VI compared to $P$. integrifolia subsp inflata S6, in which only a weak signal on chromosome IV was observed in FISH. So far, almost the complete viral genome length as well as degenerated PVCV sequences have been found in arrays within both assemblies when screened for larger than 500 nt in length against PVCV (GenBank accession no. U95208). Different degrees of preservation of integrated PVCV sequence were found between the two Petunia species. Thirty sequences from PaxiN ranged between 542 and 2848 nt in length with 80-99\% identity, while in PinfS6, only nine smaller fragments with 563-635 nt in size revealed $78-80 \%$ identity. The route of PVCV integration seems to be similar in both Petunia species resulting in single insertions as well as small tandem arrays (Richert-Pöggeler et al. 2003; Bombarely et al. 2016).

### 3.1.1.2 Florendovirus

The newly described genus Florendovirus (Geering et al. 2014), out of the family of Caulimoviridae, has colonized the genomes from a large variety of flowering plants comprising 34 distinct viral species. Endogenous viral sequences have been found in monocot as well as eudicot plants including potato, maize, papaya, soybean, apple, citrus, cacao, grape, tomato, cassava, rice and other plants. The name 'Florendovirus' based on the existence in flowering plants referring to Flora the Roman goddess of flowers and to the fact of being endogenous. Further, depending on $80 \%$ nt identity in the reverse transcriptase (RT)-ribonuclease $H$ (RH) domains and other sequence clusters, 34 representative distinct virus species have been identified and classified giving them names including the host species name. The sequence fragments have been assembled into a total of 76 entire or nearly full-length Florendovirus genomes sized between 7.2 and 8.5 kb . They can encode for one or two open reading frames (ORFs) and thus were divided into two categories. The majority of florendoviruses have two ORFs in different reading frames. Sequence analysis revealed potential open reading frames encoding various protein domains necessary for viral replication. Phylogenetic analyses have shown that the genus Florendovirus branches next to Petuvirus that comprises all genetic information for replication within one large ORF. Florendoviruses harbor conserved domains of gag-pol genes typical for retroelements, being clearly distinct from known reverse transcribing elements like monopartite Caulimoviridae and diploid retroviruses (Geering et al. 2014; Bombarely et al. 2016).

### 3.2 Aims and objectives

Aims: The main aim of this chapter is to determine the interaction, chromosomal location of PVCV and other endogenous pararetroviruses in Petunia species, to find out more about episomal and induced infections, study expression patterns and EPRVs sites within Petunia chromosomes.

## Objectives:

- To identify sequences, copy numbers and genome proportions of PVCV, florendoviruses, and caulimoviruses in Petunia genomes.
- To define how EPRVs are organized and integrated in Petunia species and find their chromosomal location.
- To define relationships, pathways and mechanisms for evolution of integrated viral sequences and their episomal counterparts
- To investigate viral sequence activity or expression, involving nuclear and episomal copies, and sequences interactions.


### 3.3 Materials and methods

The range of approaches and workflow used in this chapter is presented in Figure 3.2.


Figure 3.2 Flowchart shows the outline of the materials of five genome raw reads (NGS), two assemblies and three wild Petunia species, three hybrid species, plus two genomes as an episomal and progeny of infected plants. Use of bioinformatic tools was in parallel with molecular biology and cytology techniques (PCR amplification, cloning, sequencing and FISH) (blue line). On the other side, the line of de novo integration started with non infected three wild species as well as two infected species with horizontally ( $P$. axillaris subsp parodii $\mathrm{S} 7+\mathrm{PVCV}$ ) and vertically (progeny of $P$. axillaris subsp parodii S7+PVCV) transmitted infections. DNA and RNA extractions as well as cDNA synthesis have processed toward PCR amplification and FISH techniques (red line). Each species has particular raw reads in addition to two assemblies for the parents ( $P$. axillaris subsp axillaris N and $P$. integrifolia subsp inflata S6), while one raw read set (PhybR27) was used as a representative for the three hybrid species ( $P$. hybrida Rdc, V26 and W138)(purple line).

### 3.3.1 EPRV fragments in Petunia species

### 3.3.1.1 Next generation sequencing

The raw reads of $P$. hybrida R27 (PhybR27) as a representative of the hybrid genomes was obtained from Aureliano Bombarely, Department of Horticulture, Virginia Tech, USA in addition to the assemblies of $P$. integrifolia subsp inflata S 6 (PinfS6) and $P$. axillaris subsp axillaris N (PaxiN) genomes (Bombarely et al. 2016). The genome of healthy, provirus-free $P$. axillaris subsp parodii S7 and PVCV infected $P$. axillaris subsp parodii S 7 were sequenced commercially by Novogene Company Limited, Hong Kong, China using Illumina HiSeqPE150 reads. The bi-directional reads have been paired by Geneious software before uploading through RepeatExplorer and doing 'Map to reference'. These data have been used in a basic search for EPRVs clusters within genomes sequences by RepeatExplorer (Novák et al. 2013), Repbase (Jurka et al. 2005; Bao et al. 2015), and Ubuntu Linux 13.10, using Geneious software (http://www.geneious.com/) (Kearse et al. 2012).

### 3.3.1.2 Graph-based read clustering with RepeatExplorer

This pipeline (Novák et al. 2013) has been used to explore EPRV clusters in the whole raw reads. The program only has the capability to recognize EPRVs at family level as caulimoviruses, and clusters of EPRVs needed further characterisation to identify to species level. Total contigs were extracted and each cluster was submitted through Repbase (Jurka et al. 2005), Basic Local Alignment Search Tool (Altschul et al. 1990), and then aligned to known viral sequences from DPV web (Adams \& Antoniw 2005) and Repbase dataset (Jurka et al. 2005) to identify virus sequences on the genus and species levels using the alignment tool in Geneious.

### 3.3.1.3 De novo assembly

Geneious software assembler was applied to de novo assembly of the whole raw reads of infected $P$. axillaris subsp parodii S 7 . The bi-directional reads have been paired by Geneious software before subjecting to the assembler, then $23 \%$ of the reads were taken to generate more than 100 contigs with variable lengths. Every individual contig was constructed of multiple overlapping assembled reads with consensus sequence for each contig. These consensus
sequences were applied to 'Map to reference' tool using well identified references (PVCV sequence), and then aligned (Figure 3.3).


Figure 3.3 Image of de novo assembly tool showing assembled raw reads that overlapped to construct single contig with consensus sequence. The blue line indicates coverage with variable depths over the whole sequence. The scattered black dots within reads indicate single nucleotide polymorphisms (SNPs).

### 3.3.1.4 Map to reference

This bioinformatic tool was applied using Geneious and other software packages (Kearse et al. 2012), to assemble the raw reads of all examined NGS data for EPRV sequences (Petuvirus, Florendovirus and Caulimovirus). The result was included in the main report that has number of assembled reads and the whole used reads as well as highly frequent overlapped reads have been incorporated in one contig and consensus sequence. This report data was used to calculate genome proportions and copy numbers as below:

1- Genome proportion: number of assembled reads / number of total NGS reads x 100 .
2- Copy number: number of assembled reads $x$ read length/ reference sequence length. (Mustafa et al. 2018) (see Figure 3.4).


Figure 3.4 Reference mapping tool showing mapped raw reads to the reference sequence (PVCV genome) to construct consensus sequence. The yellow line within reads indicate recombinant single nucleotide polymorphism (SNP) observed in high numbers of reads, while the red and blue dots indicate only one SNP for each dot within individuale read.

### 3.3.1.5 Phylogenetic analysis

In order to choose a robust model for phylogeny, MEGA7 (Tamura et al. 2013) was used with maximum likelihood method. Firstly, the Geneious software (founded by Biomatters; available from http://www.geneious.com) was applied for alignment with default parameters and optimized manually. Then, ClustalW alignment was used for the extracted sequences (about 6500 bp for each). After that, a phylogenetic tree has been reconstructed by General Time Reversible (GTR) as a best substitution model. Bayesian phylogeny inference was used for analysis with Bayesian inference of phylogeny (MrBayes 3.2.6). (Huelsenbeck \& Ronquist 2001).

### 3.3.1.6 PCR amplification

To confirm the "in silico" results obtained from the RepeatExplorer and 'Map to reference', primers based on sequences out of the identified EPRV-like clusters were designed as below:

## 1- Petuvirus-like sequences

Petuvirus cluster was found in the RepeatExplorer contigs (CL205), primers and cycling program listed in Tables 3.1 and 3.2 respectively. PCR amplification was applied to confirm presence or absence of missing parts of PVCV within petunias according to preliminary results
of 'map to reference' that show some parts of PVCV were missing from $P$. integrifolia subsp inflata S6 raw reads (Figure 3.5).


Figure 3.5 Distribution of primers and generated fragments within coding and non-coding regions. These parts have been selected as missing regions in $P$. integrifolia subsp inflata S6 raw reads (results from 'Map to reference') over the entire length of PVCV, while other parts have been found with variable pairwise identity and degeneration. The full length comprised five main protein domains, MP (movement protein), CP (coat protein), RT (reverse transcriptase), RVT (RNA dependent DNA polymerase), and RH (RNase H) respectively.

The main three fragments of endogenous PVCV (left, middle and right from accession no. AY228106) (Figure 3.6) were combined together by adding 220 ng of PVCV-L, 600 ng of PVCV-M, and 480 ng of PVCV-R, these concentrations have calibrated according to suitable volumes of the purified fragments. The mixture was applied as a probe in FISH (Table 3.4), and the cycling program mentioned in Table 3.2.


Figure 3.6 Organization of chromosomal PVCV in lambda clone 5 (Accession no. A Y228106) of P. hybrida W 138 library with PVCV-middle (-M), right (-R) and left (-L) fragments in addition to their primers with arrows above to cover each part. The reverse primer of the middle part (34961) located in real above pink box next to SacI position. The pink boxed regions are coding sequences interrupted with non-coding regions. PVCV sequences at the 5 end found in reverse orientation (mirrored PVCV). The two lines below QTRs indicate putative transcripts and numbers below those lines indicate primers used to analyse QTRs. Figure taken from (Richert-Pöggeler et al. 2003).

## 2- Florendovirus-like sequence

This cluster was extracted from the RepeatExplorer contigs (CL131) with about 3000 nt and then characterised by aligning the sequence with some well identified florendoviruses that were taken from Geering et al. (2014) in addition to further identification in Repbase and NCBI. The Florendovirus primer was designed in two steps. First, scaffolds of the Petunia assemblies were searched for Florendovirus sequences and the shared scaffolds have been collected. Next, the identified scaffolds that have Florendovirus sequences were aligned and a consensus sequence determined in order to design the forward and reverse primers respectively (Figure 3.7). So far, designed primer represents about 63 of 76 of Florendovirus members, and sequence analysis revealed that the consensus sequence comprised conserved domains of RNaseH (RH), and two conserved domains out of the reverse transcriptase region of reverse transcriptase (RNA dependent DNA polymerase, RVT), and of reverse transcriptase (RTLTR), with 697 bp length (Figure 3.8). Many primers were designed and the best set (FlorB) was chosen (see Tables 3.1 and 3.3).


Figure 3.7 Alignment of multiple Florendovirus members that shared similar scaffolds in the assemblies; the consensus has been applied to design forward and reverse primers (Scf380F and Scf380R).


Figure 3.8 FlorB consensus sequence organization with conserved protein domains, the total size is 697 bp ( Scf 380 F and Scf 380 R ), the consensus sequence was inverted from 3' to 5', and comprised conserved domains of RNaseH (RH), of two conserved domains out of the reverse transcriptase (RT) out of ORF3 region of Florendovirus member in $P$. axillaris subsp axillaris N .

3- Caulimovirus-like sequence

Caulimovirus sequences were taken from the RepeatExplorer contigs (CL112) with about 1700 nt , and then one set of primers was designed from the consensus sequence with length of 1030 bp, comprising reverse transcriptase (RNA dependent DNA polymerase, RVT) as a part of ORF2 (Figure 3.9; Tables 3.1 and 3.3) .
 ORF2

Figure 3.9 Consensus sequence of caulimovirus-like sequence that shows forward and reverse primers of 1030 bp (RE-CL112F and RE-CL112R), comprising one conserved domain out of the reverse transcriptase domain as a part of ORF2.

Table 3.1 List of EPRVs primers.

| No. | Primer name | Sequence | $\mathbf{T m}^{\circ} \mathbf{C}$ | Product <br> length <br> (bp) |
| :--- | :--- | :--- | :---: | :---: |
| 1 | PVCV (802F- <br> $1432 \mathrm{R})$ | (802F) CCC AAT GTA CCC AAG TCC C <br> (1432R) GGC TCC ACT GTC AGA TGA GG | 59.5 | 630 |
| 2 | PVCV(1341F <br> $-1633 \mathrm{R})$ | (1341F) GTG GGA TCA TTG AGC AGG CC <br> (1633R) GGG TCT TTT GCA CCA GAT GG | 62.8 | 292 |
| 3 | PVCV(2002F <br> $-2588 R)$ | (2002F) CAA ATC CGC CTA ACT CAC CG <br> (2588R) CTT AGG TGG AGT GAT TTC AGG | 58 | 586 |
| 4 | PVCV(6539F <br> $-7103 R)$ | (6539F) GCC ATC AAC CCC CTC ATG G <br> (7103R) GGC ACC ATA CAG CCA TAA TAC <br> C | 61.9 | 564 |


| 5 | PVCV(6966F <br> $-7206 R)$ | (6966F) CTC TCT CTT GTT TCC AAA CTC <br> (7206R) ATA CGA GAT ATG GAG GAA TT | 50.6 | 240 |
| :--- | :--- | :--- | :--- | :--- |
| 6 | Florendovirus <br> (FlorB) | (Scf380F) GGT CAG CAC CAG AGT CTA G <br> (Scf380R) GCG GAA CAA CTC CAA GGT <br> GAC | 57 | 697 |
| 7 | Caulimoivirus | (RE-CL112F) CCT CAC CTG GAT CCG ATA <br> TCT C <br> (RE-CL112R) GCT CCG AAT AGT TTC AGC <br> GG | 60 | 1030 |

Table 3.2 PCR cycling program for PVCV primers.

| Step |  | Temperature $^{\circ} \mathbf{C}$ | Duration | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| Minuets :seconds |  |  |  |  |$]$

Table 3.3 PCR cycling program for Florendovirus and Caulimovirus primers.

| Step |  | Temperature ${ }^{\circ} \mathbf{C}$ | Duration <br> Minutes :seconds | Cycles |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Initial <br> denaturation | 95 | $3: 00$ | 1 |
| 2 | Denaturation | 95 | $00: 30$ | 35 |
| 3 | Annealing | $50.2-69.3$ | $00: 30$ |  |
| 4 | Extension | 72 | $1: 00$ |  |
| 5 | Final extension | 72 | $1: 00$ | 1 |
| 6 | Hold | 16 | pause | 1 |

3.3.1.7 Cloning, sequencing and probes labelling

These methods were mentioned earlier in 2.3.5 and 2.3.6 respectively.

### 3.3.1.8 Chromosome preparations and fluorescent in situ hybridization

These protocols were explained earlier with details in 2.3.7 and 2.3.8 respectively. Three main fragments of chromosomal PVCV used in FISH are in Table 3.4.

Table 3.4 PVCV hybridization probes used in FISH.

| No | Primer <br> name | Nucleotide sequence (5'-3') | Tm <br> ${ }^{\circ} \mathbf{C}$ | Length <br> (bp) | Reference |
| :---: | :---: | :--- | :--- | :--- | :--- |
| 1 | PVCV-M <br> (middle) | (36191F) CAG TCT AGC AGT <br> CAC CTT GG <br> (34961R) TGC TCT CAT GTC <br> CAT TTC AAC C | 58 | 3000 | Richert-Pöggeler $e t$ <br> al., 2003 |
| 2 | PVCV-L <br> (large) | (32463F) CAA GGA GCT CCC <br> CTT ACA AAA GAC TCC <br> (36828R) CGA GAA CTC TGA <br> TAA GAC CTT G | 60 | 1100 | Richert-Pöggeler et <br> al., 2003 |
| 3 | PVCV-R <br> (right) | (34926F) TTG CTG ATT TCC <br> TAT CAA GGC C | 66 | 2400 | Richert-Pöggeler et <br> al., 2003 <br> (32462R) AGG GGA GCT CCT <br> TGG ATT TGG ACT TGG |

### 3.3.2 De novo integration

P. axillaris subsp parodii S 7 had been selected as a model plant to study PVCV de novo integration since it did not contain provirus-like sequences (Richert-Pöggeler et al. 2003). A model system to study de novo integration was set up by Richert-Pöggeler (unpublished). $P$. axillaris subsp parodii S 7 had been infected using biolistic inoculation on plants grown under sterile conditions on Murashige Skoog (MS) agar in magenta boxes ( $100 \times 100 \times 120 \mathrm{~mm}$ ). As inoculum, the infectious full-length clone p72-2, 3c of PVCV (Richert-Pöggeler et al. 2003) was used. Successful PVCV infection was proven using PCR verified by immune electron microscopy. PVCV infected plants were maintained using cuttings under sterile tissue culture conditions for more than 8 years. For seed production plants were transferred to soil and grown under greenhouse conditions and maintained using cuttings. In leaves with vein clearing symptoms presence of episomal virus replication was proven by immune electron microscopy. PVCV positive plants were registered under the number EM09-348 and manually pollinated. Harvested seeds were plated first on MS agar plates and maintained in tissue culture transferring cuttings to new media every 6-8 weeks. Episomal PVCV infection was proven using immune electron microscopy.

### 3.3.2.1 Plant material and cultivation

The parents $P$. axillaris subsp axillaris N and $P$. integrifolia subsp inflata S 6 in addition to provirus free, PVCV-infected $P$. axillaris subsp parodii S7, and next generation of infected $P$. axillaris subsp parodii S 7 maintained by tissue culture, were used in this study. Seeds of the three wild Petunia species have been provided by Cris Kuhlemeier, University of Bern, Switzerland. The seeds were placed after surface sterilization on Murashige Skoog (MS) (Appendix 4.3) agar plates ( 2.165 g of MS salts with macro and micronutrients added to 10 g of sucrose and dissolved in ultrapure water and then filled to 1 liter. After that, 8 g of bacto agar added to the mixture and autoclaved at $121^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 30 \mathrm{ml}$ added for each plate). After three weeks, the young plants were transferred directly to soil or in peatmoss (Klassmann substrate 1 type) and cultivated at Julius Kühn-Institut (JKI) greenhouse, Braunschweig, Germany (see Appendix 4.1). Light ( $12-14 \mathrm{hr}$ ), temperature $\left(20-25^{\circ} \mathrm{C}\right)$ and humidity ( $60-80 \%$ ) conditions (Table 3.5).

Table 3.5 The descriptions of the five DNA samples from different petunias.

| Samples | Registration codes | Descriptions |  |
| :--- | :--- | :---: | :--- |
| i | P. axillaris subsp <br> axillaris N | TEM16-124_1-6 | Mixed sample of six plants TEM16-124_1 to _6, PVCV <br> sequence insertions have been found in the genome <br> assemblies. |
| ii | P. integrifolia subsp <br> inflata S6 | TEM15-652 | PVCV sequence insertions have been found in the genome <br> assemblies. |
| iii | P. axillaris subsp <br> parodii S7+ PVCV | TEM16-35_1 | Episomal PVCV genome, horizontally transmitted virus via <br> grafting. |
| iv | P. axillaris subsp <br> parodii S7 | TEM16-315_1-3 | Mixed sample of three plants TEM16-315_1to _3, no <br> episomal PVCV genome detected. |
| v | progeny of $P$. <br> axillaris subsp <br> parodii S7 + PVCV | EM09-348 | Parental plant registered as EM09-348 to study if episomal <br> replicating virus can be vertically transmitted to the next <br> generation (progeny) via de novo integration (Figure 3.35). |

### 3.3.2.2 DNA extraction

Total DNA of $P$. axillaris subsp axillaris N, $P$. integrifolia subsp inflata S6, P. axillaris subsp parodii S7, PVCV-infected $P$. axillaris subsp parodii S7 (plants were grown in greenhouse), and progeny of PVCV-infected $P$. axillaris subsp parodii S 7 (plant was grown in tissue culture) has been extracted and purified from leaves using Edwards's protocol (Edwards et al. 1991) with some modification. Small petunia leaves were harvested in a tube with one small grinding ball and then frozen in liquid nitrogen and ground well for 30 sec . After that, extraction buffer ( $800 \mu \mathrm{l}$ ) was added and mixed well, tubes have been applied for heat extraction in heat block at $60^{\circ} \mathrm{C}$ for 30 min followed by centrifugation for 15 min at 1306 g . Next, supernatant ( $600 \mu \mathrm{l}$ ) was transferred to a new tube and $600 \mu \mathrm{l}$ iso-propanol (ice-cold) was added and then centrifuged for 5 min at 11752 g . After the supernatant was poured off, $1000 \mu \mathrm{l}$ of $70 \%$ ethanol (ice-cold) was added and centrifuged for 5 min at 11752 g , and the supernatant was discarded and pellets left to dry at room temperature. Finally, pellets were dissolved in $100 \mu \mathrm{l}$ water and measured for DNA concentration using a NanoDrop ND-1000.

### 3.3.2.3 RNA extraction

RNeasy Plant Mini Kit (QIAGEN) was used for RNA extraction and plant material was about 100 mg for each sample, RLT buffer ( $445.5 \mu \mathrm{l}$ ) with mercaptoethanol $(4.5 \mu \mathrm{l})$ added to each sample and mixed well vigorously, and then transferred to QLAshredder spin column and centrifuged at 12752 g for 2 min . After that, the supernatant was relocated to a new Eppendorf tube without disturbing the cell debris pellet and $200 \mu 1$ of ethanol ( $96 \%$ ) was added, and transferred then to the RNeasy Mini spin column for spinning at 12752 g for 15 sec . The flow through material was discarded, RW1 buffer ( $350 \mu \mathrm{l}$ ) added and centrifuged for 15 sec at 12752 g. The DNase - RDD mixture was prepared earlier to be ready at this stage by adding $10 \mu \mathrm{l}$ of DNase with $70 \mu 1$ RDD buffer. Later, this $80 \mu 1$ samples were added to the center of RNeasy tube membrane and incubated for 15 min at room temperature. After this step, buffers [RW1 ( $350 \mu \mathrm{l}$ ) and RPE ( $500 \mu \mathrm{l}$ )] were added to the membrane and then centrifuged for 15 sec at 12752 g . For collecting the purified RNA, the spin column was placed in a new 2 ml collection tube and centrifuged at 12752 g for 1 min and then placed in a new Eppendorf tube and $30 \mu 1$ of RNase free water added and centrifuged for 1 min at 12752 g . Finally, this sample was measured using a NanoDrop ND-1000 to check purity and concentration.

### 3.3.2.4 cDNA- synthesis

RNA samples were used for cDNA synthesis using oligo dT primer [M4-T, 5'-GTTTTCCCAGTCACGAC(T)15-3' described by Chen et al. (2002)] since a polyA-tail is present at the 3 ' end of the viral RNA. Generated cDNA is a prerequisite for PCR with virus specific primers to monitor transcription of viral sequences. Omniscript Reverse Transcription Kit (QIAGEN) was used for obtaining the complementary DNA of the RNA samples. In a PCR tube, $3 \mu 1$ of each RNA sample added to $9 \mu 1$ of RNase free water and then mixed well, the mixture denatured at $65^{\circ} \mathrm{C}$ for 5 min in a PCR machine to remove RNA secondary structures. Components of cDNA-synthesis (Table 3.6) mixed well in a PCR tube and then $8 \mu 1$ for each sample was added to the denatured sample, then incubated in a PCR machine at $37^{\circ} \mathrm{C}$ for 1 hr .

Table 3.6 Components and quantities of cDNA synthesis mixture.

| cDNA synthesis | $\boldsymbol{\mu} /$ /sample |
| :--- | :---: |
| 10x RT buffer | 2 |
| dNTP mix $(5 \mathrm{mM})$ | 2 |
| Primer M4-T $(10 \mu \mathrm{M})$ | 2 |
| RNase inhibitor $(4 \mathrm{U} / \mu \mathrm{l})$ | 1 |
| Omniscript Reverse <br> Transcriptase | 1 |
| Total for each sample | 8 |

### 3.3.2.5 Gel electrophoresis of RNA samples and cDNA-synthesis

3-4 $\mu \mathrm{l}$ of RNA sample mixed with 1-2 $\mu$ l of RNase free water then added to $5 \mu \mathrm{l}$ of 2 x loading dye. $2 \mu \mathrm{l}$ of RNA marker (Thermo Scientific RiboRuler High Range RNA-Ladder, 6000 bp 200 bp ), was mixed with $5 \mu \mathrm{l} 2 \mathrm{x}$ RNA loading dye (Thermo Scientific) and $3 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. Samples and markers were denatured in a PCR machine at $70^{\circ} \mathrm{C}$ for 10 min and then directly put on ice for 5 min before running on $1.5 \%$ agarose gel in 1x TAE-buffer.

For cDNA samples, $5 \mu \mathrm{l}$ of each cDNA was added to $5 \mu \mathrm{l}$ of RNase free water then mixed with $2 \mu \mathrm{l}$ of 6 x loading dye. $1 \mu \mathrm{l}$ of DNA ladder added to $1 \mu \mathrm{l}$ of 6 x DNA loading dye and then mixed with $4 \mu 1 \mathrm{H}_{2} \mathrm{O}$. Samples and markers were added on $1.5 \%$ agarose gel electrophoresis to run for 1 hr at 80 volts.

### 3.3.2.6 Reverse transcriptase-PCR amplification

cDNA of each sample was used as a template with specific primer pairs for PVCV named F 16a and R16b (Richert-Pöggeler et al. 2003). PVCV primers 16a and 16b produced a 483 bp fragment comprising part of the conserved RT domain within PVCV pol region (Figure 3.10):

F16a (3972 to 3988 bp): CGC ATT GGA GCA GAT GG
R16b (4454 to 4437 bp): GTG AGA GAA GAG TGT GAG


Figure 3.10 PVCV primer location within the whole sequence of PVCV, including RT domain and the total size is 483 bp .

For Florendovirus and Caulimovirus, primers were used as in Table 3.1.

Genomic DNA was diluted to $30-50 \mathrm{ng} / \mu \mathrm{l}$ with sterilized water and used as a template. The dNTPs and primers were also diluted with sterilized water. A PCR machine (PTC-100, Programmable Thermo Controller, MJ Research) was used for primer amplification. The master mix components (Table 3.7) were set up for PCR reactions using the specific program that consisted of 2 min for initial denaturation at $95^{\circ} \mathrm{C}$ and then 35 cycles for denaturation $\left(95^{\circ} \mathrm{C}\right.$ for 45 sec$)$, annealing ( $54^{\circ} \mathrm{C}$ for 45 sec ) and primer extension ( $72^{\circ} \mathrm{C}$ for 1 min ). The last cycle was 10 min at $72^{\circ} \mathrm{C}$ as a final extension. After these steps, the temperature was set up at $10^{\circ} \mathrm{C}$ as indefinite hold time (Table 3.8). PCR products were checked using $1.5 \%$ agarose gel electrophoresis in 1x TAE-buffer with 75 volts for 1 hr .

Table 3.7 Components and quantities of PCR Master Mix.

| PVCV-PCR | Sample ( $\boldsymbol{\mu l}$ ) |
| :---: | :---: |
| 10X buffer | 5 |
| dNTP-Mix 10mM | 1 |
| Primer 16a forward | 2 |
| Primer 16 b reverse | 2 |
| $\mathrm{MgCl}_{2} 25 \mathrm{mM}$ | 4 |


| Taq- Polymerase $(5 \mathrm{U} / \mu \mathrm{l})$ <br> (HotStart) | 0.25 |
| :---: | :---: |
| RNase-free water | 35 |
| Total for 1 sample | 49.25 |

Table 3.8 PCR cycling program using PVCV primers F16a and R16b.

| Step | Temperature <br> ${ }^{\circ} \mathbf{C}$ | Duration <br> Min:Sec | Cycles |
| :---: | :---: | :---: | :---: |
| Denature | 95 | $2: 00$ | 1 |
| Denature | 95 | $0: 45$ | 35 |
| Annealing | 54 | $0: 45$ |  |
| Extension | 72 | $1: 00$ |  |
| Final extension | 72 | $10: 00$ | 1 |
| Hold | 10 | pause | 1 |

### 3.3.2.7 Purification of PCR- product

QIAquick PCR Purification Kit was used for purifying PCR products following the manufacturer's instructions. A 5x volume of PB buffer were added to the sample in a new tube and mixed gently. The mixture was added on the lilac column and spun down for 1 min at 13793 g and then the flow-through was discarded. Next, PE buffer ( $750 \mu \mathrm{l}$ ) was added and centrifuged for 1 min at 13793 g , and then the flow-through was discarded. After that, the column was spun down for 1 min at 13793 g to remove residual wash buffer. Finally, the column was placed in a clean 1.5 ml Eppendorf tube and $50 \mu \mathrm{l}$ ultrapure-water added and left for 1 min at room temperature before centrifugation for 1 min at 13793 g , then the purified PCR product was measured using a NanoDrop ND-1000, and then sent for sequencing.

### 3.4 Results

### 3.4.1 EPRVs sequences

Three clusters of pararetroviruses as endogenous sequences within all examined raw reads were identified by the RepeatExplorer pipeline (see Appendix 3.2):

### 3.4.1.1 Petuvirus-like cluster

The typical member of this cluster is Petunia vein clearing virus (PVCV) which is found in CL205 with $34.8 \%$. A very distinct shape of the virus cluster has produced as graph based sequence with interfered circles and the main protein domains (RT, RVT and RH) in the middle (Figure 3.11).


Figure 3.11 Graph based cluster of PVCV in CL205, showing interfered circular shapes and protein domains of RT (in green), RVT (in cyan) in the middle and RHdomain (in yellow). The graphs generated by RepeatExplorer show nodes (dots) representing groups of sequences, connected by edges to other nodes where there is similarity between domains of the sequences. Here, RVT domains are all quite similar, while there is more variability and a longer distance (base pairs) between the RH and RT domains (seen as three loops).

## Genome proportions

Using the reference sequence of PVCV, 'map to reference' of raw reads showed variable proportions of PVCV between samples. PhybR27 was the highest, ( $0.0278 \%$ ); while PaxiN $(0.0075 \%)$ was more than the other parent PinfS6 $(0.0016 \%)$. In the healthy $P$. axillaris subsp parodii S7 (PparS7), the virus proportion ( $0.000273 \%$ ) was at the lowest. DNA from the infected plant PparS7+PVCV, including episomal PVCV in the DNA used for sequencing, showed the highest proportion of reads mapping to the PVCV reference ( $0.0588 \%$ ) (Figure 3.12).


Figure 3.12 Genome proportions of PVCV within all examined raw reads, showing higher proportion in PparS7+PVCV, then PhybR27, PaxiN, PinfS6 and the lower proportion was in PparS7.

## Copy numbers

When converted to copy numbers per genome equivalent for integrated PVCV, PhybR27 had 949 copies, PaxiN 172.7, and PinfS6 36.8 copies, with minimal numbers (4.5) in PparS7. The infected genome of $P$. axillaris subsp parodii S7 (PparS7+PVCV) has 1075 copies, much more that the integrated PVCV in PhybR27 by 126 copies while differences were very high with other reads (Figure 3.13).


Figure 3.13 Copy numbers of PVCV in all examined raw reads, showing higher proportion in PparS7+PVCV and then PhybR27, PaxiN, PinfS6 while the lower proportion was in PparS7.

## PVCV fragments in all examined Petunia species

Using the reference sequence of PVCV against whole reads of Petunia genomes by map to reference tool revealed that some parts of PVCV were missing from raw reads of some species. To check that result, PCR amplification was applied for some specific regions over the whole sequence of the virus against all Petunia DNAs. The first primer set was located between 802 and 1432 bp and successfully amplified the expected size 630 bp in $P$. axillaris subsp axillaris N, P. hybrida Rdc, P. hybrida V26, P. hybrida W138, and P. axillaris subsp parodii S 7 in addition to infected $P$. axillaris subsp parodii S 7 while it is clearly missed in $P$. integrifolia subsp inflata $S 6$ (Figure 3.14).


Figure 3.14 First set of primers to amplify 630 bp sequence size between 802 and 1432 bp over PVCV, and find out missing parts in all examined Petunia genomes: $P$. axillaris subsp axillaris $\mathrm{N}(1), P$. hybrida Rdc (2), P. hybrida V26 (3), P. hybrida W138 (4), P. integrifolia subsp inflata S 6 (5), P. axillaris subsp parodii S7 (6) P. axillaris subsp parodii S7 +PVCV(7), and negative control (8), showing that $P$. integrifolia subsp inflata S 6 has missed this part of sequence unlike other species.

The second and third sets of primers (1341-1633 bp) and (2002-2588 bp) amplified 292bp and 586 bp bands sizes respectively in $P$. axillaris subsp axillaris $\mathrm{N}, P$. hybrida Rdc, $P$. hybrida V26, P. hybrida W138, P. axillaris subsp parodii S 7 , and infected $P$. axillaris subsp parodii S7 while they failed in P. integrifolia subsp inflata S6 (Figure 3.15). The fourth set of primers (6539-7103 bp) failed to amplify the 564 bp product in both P. integrifolia subsp inflata S6 and $P$. axillaris subsp parodii S7, and existed in other Petunia genomes. The last primer set was designed to amplify 240 bp at the end of PVCV sequence that bioinformatically appeared as a polymorphic region; this failed by PCR in all genomes except the infected $P$. axillaris subsp parodii S 7 that has full length episomal virus (Figure 3.15).


Figure 3.15 Four sets of primers to explore different sizes of sequences that expected to be missed in some species: $P$. axillaris subsp axillaris $\mathrm{N}(1), P$. hybrida Rdc (2), P. hybrida V26 (3), P. hybrida W138 (4), P. integrifolia subsp inflata S6 (5), P. axillaris subsp parodii S7 (6), P. axillaris subsp parodii S7 +PVCV (7), and negative control (8). No fragment was amplified in $P$. integrifolia subsp inflata S6, while third set failed in P. axillaris subsp parodii S7. The last part 240 bp of PVCV did not amplify in all genomes except the episomal copies from infected $P$. axillaris subsp parodii S 7 .

In order to confirm whether the last region of integrated virus is really missed or not, another PCR was applied using primer set forward 6966 and reverse 1432 bp to cover the end and the start parts of the virus sequence taking into account that PVCV is tandemly arranged within genomes. This amplification was successful in all hybrids and infected $P$. axillaris subsp parodii S 7 genomes with expected size 1672 bp , while in $P$. axillaris subsp axillaris $\mathrm{N}, P$. integrifolia subsp inflata S 6 and $P$. axillaris subsp parodii S 7 genomes, the band was less than expected size 250,900 and 900 bp respectively. Interestingly, in the case of $P$. hybrida Rdc and $P$. hybrida W138, two more bands were noticed with sizes of 900 and 700 bp , those bands were sharper in $P$. hybrida W138 than Rdc (Figure 3.16).


Figure 3.16 Amplified bands have covered the end and start regions of PVCV to confirm if there is missing part at the end of PVCV in genomes of $P$. axillaris subsp axillaris N (1), P. hybrida Rdc (2), P. hybrida V26 (3), P. hybrida W138 (4), P. integrifolia subsp inflata S6 (5), P. axillaris subsp parodii S7 (6), P. axillaris subsp parodii $\mathrm{S} 7+\mathrm{PVCV}$ (7), and negative control (8).

According to the results of 'map to reference' and PCR, P. axillaris subsp axillaris N and all hybrid plants include the full sequence of chromosomal PVCV except the last part 240 bp that was polymorphic or degenerate. Virus sequence in P. integrifolia subsp inflata S6 has very degenerated regions that were not possible to amplify by PCR except for some shorter lengths with higher conservation. In P. axillaris subsp parodii S7 genome, 'map to reference' suggested the PVCV sequence has about nine missing regions and the last part is degenerated (Appendix 3.3), although regions spanning some of the 'missing parts' were amplified by PCR primers.

## FISH

The amplified fragments PVCV-M (3000 bp), PVCV-L (1100 bp), and PVCV-R (2400 bp) (Figure 3.17) were combined and labelled using biotin-11-dUTP and digoxigenin-11- dUTP and then applied for in situ hybridization over all examined Petunia species metaphases.


Figure 3.17 The main three fragments of PVCV, PVCV-M (3000 bp), PVCV-L (1100 bp), and PVCV-R (2400 bp) based on (Richert-Pöggeler et al. 2003), see Figure 3.6 and Table 3.4.

In $P$. axillaris subsp axillaris N , pericentromeric signals were seen on three pairs of chromosomes: a strong signal on Ch.III, lower strength signal on Ch.II, and a weak signal on Ch.VI. Hybrid plant chromosomes showed a distinct distribution for each species: P. hybrida Rdc shows nicely strong signals on the centromere of Ch. I, II, III, IV and VI with higher strength signal than others on Ch. III. In P. hybrida W138, five pairs of chromosomes clearly showed strong pericentromeric signals on Ch.III, lower strength on Ch.II, and weaker signals on Ch.IV, VII, and I, interestingly, however, Ch.IV shows telomeric signals on the short arm as well as the pericentromeric signal. Only two pairs of $P$. hybrida V26 chromosomes showed pericentromeric signals on Ch.III and IV. Very weak signals on the centromere of Ch.IV and III in P. integrifolia subsp inflata S 6 and $P$. axillaris subsp parodii S 7 respectively were sometimes detected. Ch.III in most species showed the hotspot of strong signals of chromosomal PVCV sequences (Figure 3.18).


Figure 3.18 Signals of PVCV probe over all examined Petunia chromosomes, showing three pairs with signals (red) in $P$. axillaris subsp axillaris N (A), one pair (green) in $P$. integrifolia subsp inflata S 6 (B), five pairs (red) in P. hybrida Rdc (C) and P. hybrida W138 (D), two pairs (green) in P. hybrida V26 (E), and one pair (red) in $P$. axillaris subsp parodii $\mathrm{S} 7(\mathrm{~F})$. Chromosomes were stained with DAPI (blue) and probes were labelled with biotin 11-dUTP (detected in red) and digoxigenin-11-dUTP (detected in green). Bar $=10 \mu \mathrm{~m}$.

### 3.4.1.2 Florendovirus-like cluster

This graph-based read cluster (CL131) includes 36.3\% of reads with pararetrovirus homology (output from the Repeat Explorer). Further analysis of the reads showed a new genus of Caulimoviridae called Florendovirus (Geering et al. 2014) in this cluster at high copy numbers. The graph showed a circular pattern, with a butterfly half wing shape linked irregularly, having RT and RH domains in the middle of graph (Figure 3.19).


Figure 3.19 Florendovirus-like cluster of CL131, showing butterfly half wing shape linked with irregular circle, having RT (in blue) and RH (in green) domains in the middle of the graph.

## Novel florendoviruses in Petunia species

Initially, all 76 entire sequences of Florendovirus members in (Geering et al. 2014) have been extracted and blasted against the parental genome assemblies; 74 of these sequences were found as fragmented parts with variable numbers of hits between PaxiN and PinfS6. Most of florendoviruses were registered in PaxiN with slightly higher numbers than PinfS6; two members were not found (OsatBV-compBsc1 and SbicV-compB) (Figure 3.20). From the RepeatExplorer, CL131 shared with most of florendoviruses in RT and RH domains with about $70 \%$ pairwise identity, although the entire sequence was different. To reveal the real identity of this cluster, the whole sequence was mapped to the whole raw reads of the four examined genomes, and the consensus sequence was extracted. After that, this sequence was blasted through NCBI and Repbase to find protein domains and open reading frames. Interestingly, in

PparS7 case, the extracted cluster from the RepeatExplorer was the entire sequence of Florendovirus. The new members of florendoviruses, one from each raw read set, were named following Geering et al. (2014). In PaxiN, the whole sequence length of its own Florendovirus, PaxiV is 7170 bp and has four open reading frames, and four conserved domains RH, RT, RVT and MP, also flanked by poly TA. The PinfS6 member is PinfV with entire length 7142 bp and same protein domains as PaxiV with poly TA flanking regions and three open reading frames. The hybrid read has PhybV with 7519 bp and six open reading frames, while PparV in PparS7 has 6519 bp and two open reading frames, and similar features as above (Figure 3.21; Appendices 3.4, 3.5, 3.6 and 3.7).


Figure 3.20 Hits of florendoviruses fragments over parental genomes P. axillaris N and $P$. integrifolia subsp inflata S 6 , showing $P$. axillaris subsp axillaris N has slightly higher numbers than $P$. integrifolia subsp inflata S 6 except in MdomVscMd1. The references Florendovirus types OsatBV-compBsc1 and SbicV-compB were not found in either genome.


Figure 3.21 New sequences of florendoviruses in Petunia genome reads, PaxiV, PinfV, PhybV and PparV in PaxiN, PinfS6, PhybR27 and PparS7 respectively, having variable lengths and ORFs with inverted sequences. The circular forms on the left show putative exogenous forms with expected cutting side and the direction of integration (black arrow) before endogenisation event.

## Genome proportion

Each Florendovirus member was used against the whole raw reads of its own genome to calculate genome proportion. Highly variable proportions within Petunia species have been registered, PhybR27 shows most with $0.1331 \%$, followed by PaxiN with $0.1012 \%$ and then PparS7 $0.071 \%$ while the lowest one was PinfS6 (0.0097\%) (Figure 3.22).


Figure 3.22 Genome proportions of florendovirus-like clusters over the examined Petunia species, showing higher ratio in PhybR27, then PaxiN, and PparS7, the lower proportion was in PinfS6.

## Copy numbers

Florendovirus-like sequence integrated in PhybR27 with highest number of copies (5018) that doubled PaxiN copies (2579), 1300 copies found in PparS7 and only 176 copies were registered in PinfS6 (Figure 3.23).


Figure 3.23 Copy numbers of florendovirus-like sequences in all used raw reads, showing higher copies in PhybR27, PaxiN, PparS7, and PinfS6 respectively.

## FISH

The amplified Florendovirus PCR product FlorB was cloned and then sequenced to confirm the sequence identity and purity (Figures 3.24 and 3.25 ). Next, the FlorB sequence was labelled and used as a probe for in situ hybridization. FlorB probe was not easy hybridizable over most of Petunia species that in situ was repeated many times to confirm results, and the most successful hybridizations were achieved for $P$. axillaris subsp axillaris N and $P$. hybrida Rdc. Clearly, pericentromeric signals have been identified at the centromere of five pairs of $P$. axillaris N chromosomes (Ch.II, III, IV, V and VI), and the strongest signal has spotted on Ch.III. In P. hybrida Rdc, pericentromeric signals have been spotted on five pairs (Ch.I, II, III, IV and VI), and like in $P$. axillaris N , Ch.III has shown high condensed signal on the centromere. Signals were not detected on $P$. integrifolia subsp inflata S 6 and $P$. axillaris subsp parodii S7 chromosomes (Figure 3.26).


Figure 3.24 Amplified bands with multiple annealing temperatures using florB primer pair, a DNA template was for $P$. axillaris subsp axillaris N. Highest fragment concentration was gained at $60^{\circ} \mathrm{C}$, the length is 697 bp .


Figure 3.25 Amplification of cloned florB sequence at $55^{\circ} \mathrm{C}$. Product size is 903 bp , representing the insert plus M13 cloning site and primers (206 bp).


Figure 3.26 FISH of florB probe to metaphase of $P$. axillaris subsp axillaris N (A) and $P$. hybrida Rdc (C), showing signals at the centromere regions of five pairs of chromosomes, chromosome III has a stronger signal than others. No signals were seen in $P$. integrifolia subsp inflata S 6 (B) and $P$. axillaris subsp parodii S 7 (D). Chromosomes were stained with DAPI (blue) and the probe was labelled with biotin 11- dUTP (detected in red). Bar $=10 \mu \mathrm{~m}$.

### 3.4.1.3 Caulimovirus-like cluster

Based on the RepeatExplorer pipeline, caulimovirus-like cluster (CL112) homology was identified in $27.2 \%$ of the reads. Graph based clustering showed a similar shape to the Florendovirus graph with opposite sizes of the graph parts, and RT and RH domains involved in the middle (Figure 3.27).


Figure 3.27 Caulimovirus-like cluster of CL112, showing butterfly half wing shape smaller than in florendovirus-like cluster linked with irregular circle, having RT (in yellow) and RH (in cyan) domains in the middle of graph.

## Novel caulimoviruses in Petunia species

This cluster was preliminarily blasted through Repbase database after extraction from the RepeatExplorer (PaxiN), and a high similarity was found with integrated Caulimovirus members especially in RT and RH domains. After that, 'map to reference' tool was applied against the entire raw reads, and the consensus sequence extracted. As in florendoviruses, the whole sequence of Caulimovirus represented in the cluster of RepeatExplorer of PparS7. Obviously this consensus sequence has represented as new member of caulimoviruses in $P$. axillaris subsp axillaris N , and similar process has been achieved for other raw reads. Next, protein domains and ORFs were identified over the whole sequences. These sequences were named following Repbase dataset regulation that has big collection of integrated Caulimovirus members in a wide range of plant genomes. Accordingly, Caulimovirus-PAx represents caulimovirus-like sequence in $P$. axillaris subsp axillaris N (PaxiN), Caulimovirus-PIn in $P$. integrifolia subsp inflata S6 (PinfS6), Caulimovirus-PHy in P. hybrida (PhybR27), and Caulimovirus-PPa in $P$. axillaris subsp parodii S7 (PparS7). These virus-like sequences were found in PaxiN, PinfS6, PhybR27 and PparS7 with 7722, 8012, 8060 and 7999 bp lengths
respectively with a different series of protein domains. In Caulimovirus-PAx and Caulimovirus-PPa, protein domains start with MP, RT, RVT and RH with four and five ORFs respectively, while in Caulimovirus-PIn, begin with RH, MP, RT and RVT with eight open reading frames for all. Interestingly, these domains were inverted in Caulimovirus-PHy and start with RH, RT, RVT and MP, and has four open reading frames (Figure 3.28; Appendices 3.8, 3.9, 3.10 and 3.11).


Figure 3.28 Novel members of caulimoviruses within Petunia genome reads, Caulimovirus-PAx, Caulimovirus-PIn, Caulimovirus-PHy and Caulimovirus-PPa, showing different lengths and domain distributions, and variable ORFs numbers. Interestingly, Caulimovirus-PHy has an inverted sequence unlike the others. The circular forms on the left show putative exogenous forms with suggested cutting side and the direction of integration (black arrow) before endogenisation event.

## Genome proportion

Unlike the other two EPRV clusters, the caulimovirus-like cluster had a higher proportion ( $0.0279 \%$ ) in PparS7 than others, while PaxiN and PhybR27 have approximately same ratio ( $0.015 \%$ ), and the lowest proportion was in PinfS6 (0.0062\%) (Figure 3.29).


Figure 3.29 Genome proportions of caulimovirus-like clusters within the four petunia reads, showing higher ratio in PparS7, then PaxiN and PhybR27 with similar ratio, the lower proportion was in PinflS6.

## Copy numbers

Higher number of copies registered in PhybR27 (3843) and then PparS7 and PaxiN with 3237 and 2493 respectively, and like other EPRV, PinfS6 has the lower copies (Figure 3.30).


Figure 3.30 Copy numbers of caulimovirus-like clusters within the four petunia reads, showing higher number in PhybR27, then PparS7 and PaxiN, the lower number was in PinflS6.

## PCR amplification and in situ hybridization

The CL112 primers ( 1030 bp ) amplified a product that was labelled for in situ hybridization to Petunia chromosomes (Figure 3.31). No hybridization signals were identified in any Petunia metaphases (Figure 3.32) using the protocol for localization of repetitive sequences at discrete loci.


Figure 3.31 Amplified band of Caulimovirus primer (CL112) with 1030 bp at $60^{\circ} \mathrm{C}$.


Figure 3.32 FISH image of caulimovirus-like cluster probe on $P$. hybrida Rdc metaphase, showing no spotted signals on chromosomes.

### 3.4.2 Phylogenetic relationships of EPRVs

The closely related EPRVs links have been confirmed through Bayesian phylogenetic tree of the whole EPRVs sequences ( 6500 bp each) that reconstructed after their alignments. The most closely related florendoviruses were PhybV and PaxiV (supported by posterior probability of 1), and both members have 0.61 support with PparV, then those three have 1 support with PinfV. A similar story was repeated with caulimoviruses: Caulimovirus-PHy shows high similarity with Caulimovirus-PAx (1 support), then the two linked with Caulimovirus-PPa (1 support), and all related to Caulimovirus-PIn with 1 support. The outgroup viruses were PVCV and CaMV, and the latter was closer to the EPRVs than PVCV especially in the region of RT and RH domains (Figure 3.33).


Figure 3.33 Bayesian phylogenetic tree of a group of caulimoviruses and florendoviruses in comparison with PVCV and CaMV using 18 entire sequences (about 6500 bp each), showing high relationship between Florendovirus members (in red), and Caulimovirus members (in blue) in Petunia genomes. The EPRVs of florendoviruses and caulimoviruses from Amborella trichopoda and Oryza sativa show closely related sequences due to host impact unlike EPRVs from Solanum tuberosum and Glycine max. The sequences were aligned by ClustalW alignment and then tree was reconstructed through MrBayes inference. The number next each branch is for posterior probability (> 0.5 support).

### 3.4.3 De novo integration

### 3.4.3.1 DNA extraction

Total DNA comprising genomic and potential episomal DNA of different Petunia species was extracted from leaf tissues. Quantity and quality of the samples were analysed and determined by spectrophotometry and gel electrophoresis. For all Petunia samples (see Table 3.5), high molecular weight DNAs (above 10 kb ) were collected (Figure 3.34), genomic DNA from all samples was of good quality with a 260/280 ratio between 1.70 to 2.10 and the concentrations were about 30 to $800 \mathrm{ng} / \mu$. The differences in the DNA quantity were due to different amount of leaves from each sample as well as plant age. All plants have been registered and submitted to TEM inspection for presence of PVCV virions or other viral contamination.


Figure 3.34 1\% agarose gel of extracted DNA from P. axillaris subsp axillaris N (mixed sample from plants numbered TEM16-124_1 to _6, lane) (1), $P$. integrifolia subsp inflata S6 TEM15-652 (2) PVCV infected P. axillaris subsp parodii S7 TEM16-35_1 (3), P. axillaris subsp parodii S7 (mixed sample from plants TEM16-315_1to _3) (4) and progeny of PVCV infected P. axillaris subsp parodii S7 EM09-348 (5) by loading $10 \mu \mathrm{~L}$ purified DNA $+3 \mu \mathrm{~L}$ loading Buffer (5X). $10 \mu \mathrm{l}$ of 1 kb hyper ladder (Bioline), run on each side of the gel.


Figure 3.35 Model of horizontal followed by vertical transmission of PVCV in $P$. axillaris subsp parodii S7. Healthy plants can be infected with PVCV via biolistic inoculation (horizontal transmission). Vegetative propagation using cuttings probably promotes de novo integration of PVCV sequences into the $P$. axillaris subsp parodii S 7 genome. Thus the virus gets vertically transmitted over generations by seeds.

### 3.4.3.2 RNA extraction

PCR for detection of episomal PVCV replication and activation of other pararetroviral-like sequences is challenging on DNA templates because of the presence of chromosomal viral copies which can also serve as template during PCR. RNA transcription is a first step in retroelement replication, therefore, total RNA extracts were prepared from equal weights of the selected five samples, including a DNase incubation to remove chromosomal DNA contamination in the final RNA sample. RNA concentration and quality were determined using a spectrophotometer and gel electrophoresis (Figure 3.36). The obtained RNA was variable, and samples with lower RNA content showed a higher degree of RNA degradation (see Table 3.9):

Table 3.9 RNA concentrations of the five petunias samples.

| Samples | Registration codes | RNA (ng/ $\boldsymbol{\mu} \mathbf{1})$ |  |
| :--- | :--- | :---: | :---: |
| i | P. axillaris subsp axillaris N | TEM16-124_1-6 | 141,66 |
| ii | P. integrifolia subsp inflata <br> S6 | TEM15-652 | 314,36 |
| iii | P. axillaris subsp parodii S7 <br> + PVCV | TEM16-35_1 | 107,98 |
| iv | P. axillaris subsp parodii S7 | TEM16-315_1-3 | 416,50 |
| v | Progeny of $P$. axillaris subsp <br> parodii S7 + PVCV | EM09-348 | 252,72 |



Figure 3.36 RNA extraction of $P$. axillaris subsp axillaris $N$ (mixed sample from plants numbered TEM16-124_1 to _6, lane) (1), P. integrifolia subsp inflata S6 TEM15-652 (2) PVCV infected $P$. axillaris subsp parodii S7 TEM16-35_1 (3), P. axillaris subsp parodii S7 (mixed sample from plants TEM16-315_1to _3) (4) and progeny of PVCV infected P. axillaris subsp parodii S7 EM09-348 (5) by loading $5 \mu \mathrm{~L}$ purified RNA $+5 \mu \mathrm{~L}$ loading dye ( 2 X ). $10 \mu \mathrm{l}$ of RNA ladder ( $2 \mu \mathrm{l}$ RNA Ladder, $5 \mu \mathrm{l}$ RNA loading dye ( 2 X ) and $3 \mu \mathrm{l} \mathrm{H}_{2} 0$ ), run on the left lane (M) of each gel.

### 3.4.3.3 Reverse Transcriptase-PCR

Complementary DNAs were synthesized, and electrophoresed for the five RNA samples (Figure 3.37). All cDNA bands were between 250 and 1000 bp . cDNAs were used as templates for PCR using PVCV F16a-R16b (483 bp), Florendovirus florB ( 697 bp ), Caulimovirus CL112 (1030 bp) primer pairs (Figure 3.38).


Figure 3.37 cDNA synthesis of $P$. axillaris subsp axillaris N (mixed sample from plants numbered TEM16-124_1 to _6, lane) (1), P. integrifolia subsp inflata S6 TEM15-652 (2) PVCV infected $P$. axillaris subsp parodii S7 TEM16-35_1 (3), P. axillaris subsp parodii S7 (mixed sample from plants TEM16-315_1to _3) (4) and progeny of PVCV infected P. axillaris subsp parodii S7 EM09-348 (5) with Omniscript Reverse Transcription Kit. Gel was run by loading $5 \mu \mathrm{l}$ cDNA, $5 \mu \mathrm{l}$ $\mathrm{H}_{2} \mathrm{O}$ and $2 \mu \mathrm{l}$ DNA loading dye (6X). $6 \mu \mathrm{l}$ of DNA Ladder ( $1 \mu 1$ DNA Ladder, $1 \mu \mathrm{l}$ 6X DNA loading dye and $4 \mu 1 \mathrm{H}_{2} \mathrm{O}$ ).

Although the PCR was not quantitative, there were suggestive differences in product amount between samples. For PVCV primer, the strongest band was produced with sample No. 3 ( $P$. axillaris subsp parodii $\mathrm{S} 7+\mathrm{PVCV}$ ), known to be episomally infected by PVCV. Weaker bands were found in samples No. 5 (progeny of $P$. axillaris subsp parodii S7 + PVCV) and No. 1 ( $P$. axillaris N ), very light bands were amplified for samples No. 2 ( $P$. integrifolia subsp inflata S6) and No. 4 (P. axillaris subsp parodii S7). The faint PCR products in the wild Petunia
species may originate from residual DNA in the RNA sample. A control used directly extracted RNA as a template for PCR without the reverse transcription step. The PCR product obtained in P. axillaris subsp parodii S 7 has confirmed earlier results in 3.4.1.1 as this wild Petunia was suggested to be free of any forms of PVCV before these experiments.

CL112 primer of Caulimovirus has amplified strongly with samples No. 3 ( $P$. axillaris subsp parodii $\mathrm{S} 7+\mathrm{PVCV}$ ) and No. 4 ( $P$. axillaris subsp parodii S 7 ), and then sample No. 5 ( $P$. axillaris subsp parodii $\mathrm{S} 7+\mathrm{PVCV}$ ), light band for sample No. 1 ( $P$. axillaris subsp axillaris N ) and very light band for sample No. 2 ( $P$. integrifolia subsp inflata S6).

Using the florB primer for Florendovirus sequence, the bands were often light for samples No.3, 4 and 5 even after amplifying them again using their PCR products as templates while very light bands were identified for samples No. 1 and 2 (Figure 3.38).


Figure 3.38 PCR of $P$. axillaris subsp axillaris $N$ (mixed sample from plants numbered TEM16-124_1 to _6, lane) (1), P. integrifolia subsp inflata S6 TEM15652 (2) PVCV infected P. axillaris subsp parodii S7 TEM16-35_1 (3), P. axillaris subsp parodii S7 (mixed sample from plants TEM16-315_1to _3) (4) and progeny of PVCV infected $P$. axillaris subsp parodii S7 EM09-348 (5) cDNAs as templates and primer pairs of PVCV (F16a+R16b), Caulimovirus (CL112) and Florendovirus (florB).

### 3.4.3.4 In situ hybridization

From tissue culture, de novo integrated PVCV sample with vein clearing symptom that was infected horizontally in 2001 by grafting and then maintained in a tissue culture condition was
checked and analysed. Further, produced seeds from this particular plant as vertically transmitted and de novo integrated virus have been examined with same protocol (Figure 3.35). In order to find out de novo integration sites of PVCV over host chromosomes, PVCV probe has been applied against progeny of PVCV infected $P$. axillaris subsp parodii S7 EM09-348 metaphases. Findings show telomeric signals of integrated virus on the telomere of heterologous chromosomes with variable strengths on short or long arms. In some cases, signal was shown on the telomere of one individual chromosome or two heterologous chromosomes, and signal strength was very concentrated with multiple dots or too weak with only two dots around the telomere. For instance, in Figure 3.39 fluorescent signals of PVCV were located on the short and long arms of Ch.III and IV chromosomes respectively, with a weak signal on the short arm of Ch.III and too condensed dots on the long arm of Ch.IV. Typical signal was registered as two dots on the telomere follow by a dotted ring around the telomere region (Figure 3.40). In contrast, signal features and loci of de novo integrated PVCV in host chromosomes are completely different from locations of the chromosomal PVCV in all Petunia chromosomes where it appeared as only two dots in the centromere or telomere regions over only homologous chromosomes (Figure 3.18).


Figure 3.39 PVCV signals over next generation of PVCV infected P. axillaris subsp parodii S7 EM09-348 metaphases that show two signals with variable strength on the long arm (A) of Ch.IV and short arm (B) of Ch.III. Chromosomes were stained with DAPI (blue) and probe was labelled with biotin-11- dUTP (detected in red). $\mathrm{Bar}=10 \mu \mathrm{~m}$.


Figure 3.40 Typical signal of integrated PVCV on the long arm of the telomere region of progeny of PVCV infected $P$. axillaris subsp parodii S7 chromosome, showing an unusual hybridization pattern with two dots and a halo of dots looks like a ring around the telomere. Chromosomes were stained with DAPI (blue) and probe was labelled with biotin 11-dUTP (detected in red). Bar $=10 \mu \mathrm{~m}$.

### 3.4.3.5 De novo assembly

In order to confirm the results of in situ hybridization above of de novo integrated PVCV, de novo assembly for the whole raw reads of infected $P$. axillaris subsp parodii S 7 was applied. Then, the constructed consensus sequences were mapped to PVCV sequence to check if there is any telomeric sequence (TTTAGGG) near the virus sequence. After that, the mapped contig was extracted and then aligned against PVCV sequence. The result shows that some contigs have telomere sequence incorporated within a recombinant PVCV while other contigs have telomere sequences around the integrated virus sequence (Figure 3.41). More importantly, PVCV has two regions of telomeric repeat TTAGGG (mammalian-type) in at the start (590595 bp ) and end (6214-6219 bp) of the entire length.


Figure 3.41 The mapped and aligned contig to PVCV shows contig 21950 extracted from de novo assembly has reverse complement telomere sequence (CCCTAAA) next to recombinant PVCV sequence.

### 3.5 Discussion

### 3.5.1 PVCV fragments in all examined Petunia species

Findings of this project strongly support the importance of endogenous viral sequences in plant genomes, and provided further evidence of the integration diversity between plant viruses and their hosts. Although the integrated sequences are inherited over generations and many are degenerated, some sequences are relatively intact, transcriptionally efficient and could be infectious under particular conditions (Geering 2001; Geering et al. 2010; Geering et al. 2014). The revolution of sequencing techniques confirmed that some plant genomes have been infected by some Caulimoviridae members especially in the Solanaceae that were reported as appropriate hosts for a wide number of plant viruses (Engelmann \& Hamacher 2008; Geering et al. 2014; Kim et al. 2014). Endogenisation searches have been extended successfully within Petunia genomes, using bioinformatics tools and PCR amplification. According to the results, virus sequence has been found with full length in the hybrid genomes of Petunia with respect to some shorter lengths or degenerated copies. Although PVCV has been naturally fragmented in the genome of Petunia, necessarily conserved protein domains are still active and capable to make infection under stress conditions (Richert-Pöggeler et al. 2003; Bombarely et al. 2016). In the wild species, $P$. axillaris subsp axillaris N has similar length to PVCV in the hybrids
and only the last part was degenerated. While $P$. axillaris subsp parodii S 7 was reported in Bombarely et al. (2016) as missing all PVCV fragments, this work has shown the existence of virus parts with some missing fragments. The virus in the other parent $P$. integrifolia subsp inflata S6 was found degenerated over the whole sequence (so primer homologies were probably the reason for failure of amplification of some regions). The degenerated nucleotides of the last part of chromosomal PVCV in most Petunia genomes enables primers from this region to act as markers to differentiate integrated virus copies from those copies of the exogenous form (Figures 3.14, 3.15 and 3.16). FISH results have confirmed variable existence of virus sequences over Petunia species: strong signals have been captured in the hybrids and $P$. axillaris subsp axillaris N , in contrast to very weak signal in one pair of $P$. integrifolia subsp inflata S 6 and $P$. axillaris subsp parodii S 7 chromosomes. In $P$. axillaris subsp axillaris N , one more pair of chromosomes (Ch.II) were captured with weak pericentromeric signals adding this chromosome to Bombarely et al. (2016) who showed only two pairs of P. axillaris N chromosomes with strong signals of PVCV (Figure 3.18). The existence of EPRVs may also play a role in genome diversification by providing coding or transcription regulatory elements as new genetic components.
3.5.2 PVCV as a cytogenetic marker

Chromosomal signals of PVCV in each species enabled recognition of Petunia species and chromosomes according to their signal positions, showing EPRV is a useful cytogenetic marker (Figure 3.18). For retrotransposons, their widespread distribution within chromosomes, high copy numbers, in addition to the ubiquitous nature, have made these components quite typical for developing of the DNA based markers (Flavell et al. 1992; Teo et al. 2005). As very closely related to retrotransposons, endogenous pararetroviruses (EPRVs) probably integrate within host genomes by hitchhiking on retrotransposons and the hybrid of the two types is eligible of real transposition might be made through this path (Hohn 1994; Richert-Pöggeler et al. 2003; Gregor et al. 2004; Froissart et al. 2005; Staginnus et al. 2007; Richert-Pöggeler \& Schwarzacher 2009). Additionally, in the context of diversity among Petunia genomes, integration of PVCV has revealed evolution and phylogeny approaches over Petunia species, and clarified the real relationships between wild and hybrid hosts based on EPRV.

### 3.5.3 Florendovirus-like sequences

The florendovirus-like clusters in Petunia species show fragmented parts of the 74 members of florendoviruses (Geering et al. 2014) in the two parents assemblies (PaxiN and PinfS6) (Figure 3.20). Conversely to the PVCV case, these fragments registered in $P$. axillaris subsp parodii S7 with higher proportions and copies than in P. integrifolia subsp inflata S6. Interestingly, four novel florendoviruses were recorded as one virus-like sequence in raw reads from each genome, adding petunia to the list of 27 host species invaded by these viral units (Figure 3.21; Appendices 3.4-3.7). As Geering et al. (2014) reported about the phylogenetic link between the two sister groups of Florendovirus and PVCV, new members in petunia have shared the plesiomorphic trait particularly of RT and RH with PVCV. However, those two could be distinguished by the existence of more than one ORF in florendoviruses unlike PVCV that has one ORF. The results of FISH revealed condensed signal also in the centromere of Ch.III of $P$. axillaris subsp axillaris N and $P$. hybrida Rdc in addition to weaker signals in other chromosomes (Figure 3.26).

In this project, our findings have proved Geering et al. (2014) suggestion about integration loci of Florendovirus sequences in TE-rich regions of plant chromosomes flanked by TA dinucleotides repeats. Results did not particularly agree with Geering et al. (2014) reporting about $9 \%$ of Florendovirus positions within introns of plant genes based on data from Vitis vinifera genome suggesting biological effects of these elements on gene transcripts and expression levels. Here, inserted Florendovirus motifs accumulated in heterochromatin regions in fragile sites of poly-TA simple repeats, probably including secondary structures like hairpins and therefore avoiding chromosome fragility (Zlotorynski et al. 2003; Dillon et al. 2013). These elements could act as fillers to repair DNA breaks either through microhomologymediated end or non-homologous end joining (Huertas 2010).

### 3.5.4 Hotspot of Chromosome III

Chromosome III in particular shows stronger pericentromeric signal in $P$. axillaris subsp axillaris N , the hybrid species and weaker signal in $P$. axillaris subsp parodii S 7 , and this might reflect a PVCV hotspot inside this chromosome. It probably happened due to high rates of recombination hotspots and frequencies within this chromosome that resulted from elevated DNA break formation. Croll et al. (2015) found that recombination rate frequency for each
chromosome was inversely linked to the chromosome length as it was higher in smallest core chromosome. In Petunia chromosomes, the centromere of Ch.III has the closest length to the telomere region among all chromosomes as eccentric type with relatively small size (Smith et al. 1973). More importantly, the existence of PVCV and florendovirus-like sequences in the same chromosome (Figure 3.42) might supported similarity of the two EPRVs sequence in phylogeny as they pass through the same ancient endogenisation events. It might be a source of virus sequences to other chromosomes by rearrangements, crossovers, frequency of recombination (Lively 2010; Morran et al. 2011) or transposition, all features that influence genetic variability of species and elimination of pathogenic sequences. On the virus side, in animals, a crucial role is played by pathogen recombination, leading to annual recurring outbreaks of recombined viral strains driving epidemic influenza (Nelson \& Holmes 2007).


Figure 3.42 FISH image of florB (A) and PVCV (B) probes on $P$. axillaris subsp axillaris N chromosomes shows both probes hybridized at the same region of the centromere of Ch.III. The probe was labelled with biotin11-dUTP (red). Bar =10 $\mu \mathrm{m}$.

### 3.5.5 Caulimovirus-like sequences

The caulimovirus-like sequence RepeatExplorer cluster was found in lower genome proportions than other two EPRVs clusters with varying proportions of copies in raw reads (Figures 3.29 and 3.30), and undetectable signals along chromosomes (Figure 3.32). Signal strength reflects copy numbers and abundance of applied sequence; although FISH is not a
quantitative tool, probes with low copy number will be hardly detectable and many researchers failed to quantify in situ experiments (Leitch \& Leitch 2013). Here, four novel caulimovirus sequences have been identified in raw reads from each species, and they have multiple ORFs (more than four; Figure 3.28). In the assemblies, protein domains were surprisingly rearranged, and this might happen due to different cutting points and integration sites of their circular DNA at endogenisation (20-34 MYA), probably explaining why Caulimovirus-PHy has an inverted sequence with respect to other caulimovirus-like sequences. Recently, many endogenous viruses that belong to genus Caulimovirus have been characterised in plant genomes, and despite these integrants being found fragmented and degenerated, they could be reassembled through in silico (Geering et al. 2010; Geering et al. 2014), and data suggests in vivo too (Harper et al. 1999; Richert-Pöggeler et al. 2003). Sequences of endogenous caulimoviruses have been arranged and listed in a Repbase database (Appendices 3.8-3.11) that incorporates representative repetitive sequences of eukaryotes species. They have variable numbers of ORFs with normal sequence direction ( $5^{\prime}-3^{\prime}$ ) (Bao et al. 2015). Interestingly, this study has not confirmed that some caulimovirid sequences have bipartite genome structure like that mentioned in Geering et al. (2014) study about Florendovirus members depending on their gene organization as there is no such example of bipartite genomes in the members of the Caulimoviridae.

### 3.5.6 Expression of EPRVs

Exploring more details about the activity of all three EPRVs has further importance to investigate their ability for expression and being active under specific conditions. Synthesizing cDNAs for infected and healthy Petunia samples has revealed that PVCV and caulimoviruslike sequences have been strongly expressed, unlike Florendovirus that surprisingly have not been detected (Figure 3.38), suggesting that despite very abundant copy numbers (Figure 3.23), they are relatively inactive. So far, our results have disagreed with the comment of Geering et al. (2014) about good representation of Florendovirus members in expressed sequence tag (EST) databases, suggesting that Florendovirus sequences are transcribed. Interestingly, Geering et al. (2014) has reported findings above based on only three from 27 host genomes (Citrus clementia, Oryza sativa and Prunus persica) data with a range between 47-57\% alignment identities. So far, the transcription of florendovirus-like sequence has dependent activity according to host effect and specificity, also extended search to explore more facts
from other host genomes is quite recommended. It is also noteworthy that early analysis of EST libraries from potato showed pararetrovirus-like sequences, particularly in those derived from callus (Hansen et al. 2005).

The chromosomal environment has some influences on the expression of genes that observed in some species such as in Drosophila where particular gene has been inactivated after it translocated into heterochromatic region (Reuter et al. 1990), while in tomato, the sulfurea locus instability was studied in closely located gene to heterochromatin region that suppressed its function (Hagemann \& Snoad 1971). In P. hybrida, the foreign genes expression of lines 17 and 24 show stable and distinct methylation pattern at the integration regions in transgenic and wild plants. This pattern was imposed on the flanked regions of the integrated fragments and probably it's responsible for the intensity changes of gene expression (Pröls \& Meyer 1992). Richert-Pöggeler et al. (2003) reported that integrated PVCV sequences of healthy petunias are likely to be methylated. While under induction factors, the virus could be released at short period of demethylation in one integration loci at single cell.

Phylogenetic relationships among florendoviruses have revealed that $P$. axillaris subsp axillaris N and $P$. hybrida were so far closely related genomes (Figure 3.33) and reflected that most of the hybrid characteristics came from the parent $P$. axillaris subsp axillaris N , the same story as for caulimoviruses. EPRV data from examined genomes has suggested that $P$. integrifolia subsp inflata S6 was not permissive with invasion of these elements, unlike the hybrid one, $P$. axillaris subsp axillaris N and $P$. axillaris subsp parodii S 7 respectively (Figures 3.12, 3.13, 3.22, 3.23, 3.29 and 3.30). This outcome suggests that $P$. integrifolia subsp inflata S6 contributed less than $P$. axillaris subsp axillaris N in formation of the hybrid genome, a result in agreement with preliminary data that has been discussed within the Petunia genome sequencing consortium (Bombarely et al. 2016).

The role of endogenous pararetroviruses in inducing new virus infection from the host genome has opened the door widely to answer many questions about the benefits of EPRVs to their host. It was reported for long time that EPRVs could prevent new infections as one of defence role for EPRVs, but researches of inducible patterns of Petunia vein clearing virus, Banana streak virus and Tobacco vein clearing virus have contradicted the first statement of EPRVs role. In addition, these elements have been found with higher numbers of copies than silencing approaches need to prevent virus infection, as well as having different distributions in different plant families that have no infection from the exogenous related virus (Jakowitsch et al. 1999; Wesley et al. 2001; Kunii et al. 2004). The differences between the species in endogenous copy
numbers and in the domains represented, may suggest silencing mechanisms are more efficient in some genomes than others in parallel with cross-protection, and silencing of RNA-viruses (Papaya ringspot virus; Ming et al. 2008).

### 3.5.7 De novo integration

Vertical transmission has been studied here through de novo integration using our virus of interest PVCV that horizontally infected $P$. axillaris subsp parodii S 7 by grafting, and then maintained vertically since 2001. Many plant viruses use vertical transmission through seeds (or other propagules such as seed potatoes) to cause severe infections on host plants by transmitting virus particles from parents to hybrids, as well as this method has a huge impact on pathogen virulence and plant adaptation. It seems most likely that vertical transmission rate has negative correlation with pathogen virulence that may have evolved with challenge to the hypothesis of trade-off and suggested models (Ewald 1983, 1987; Alizon et al. 2009). PVCV is integrated into arbitrary loci on host plant chromosomes as virus signals were found on the telomere of the short or long arm of heterologous chromosomes and signal strength widely fluctuated within examined chromosomes (Figure 3.39 and 3.40). De novo assembly confirmed the telomere sequence (TTTAGGG) was associated around the recombinant virus sequence suggesting PVCV has integrated in the telomere region (Figure 3.41). In plant genomes, this study has been applied for the first time as only in recent years, few researches have started to explore this type of integration for herpesvirus 6 (HHV-6) within human chromosomes using fluorescent in situ hybridization (FISH). Herpesvirus 6 integrated in the telomere site of human chromosomes, and the examined individual's cells were $100 \%$ vertically infected, also virus signals found interestingly on short or long arm of heterologous chromosomes (Nacheva et al. 2008). Further studies have characterised that chromosomally integrated herpesvirus 6 is so far unstable and could be released to cause infection as a functioning virus (Huang et al. 2013; Wood \& Royle 2017). Our data in this research has so far agreed with data from human genome, suggesting similar pattern of integration between two viruses (PVCV and HHV-6) and two hosts ( $P$. axillaris subsp parodii S 7 and Homo sapiens). However, PVCV sequence has TTAGGG (mammalian-type) telomeric repeat in two regions at the start (590-595 bp) and end (6214-6219 bp) of the whole length. PVCV integrates at the telomere of infected Petunia probably because of unstable proximal telomeric sites of these chromosomes and still prone to high recombination rate coupled together with abundant
virus genomes that integrated by such a mechanism contributing the telomere regions (McKnight et al. 2002; Wang et al. 2004). This mechanism perhaps starts with disturbing the t -loop site and allow emergence of telomere rapid deletion events as reported in yeast (Lustig 2003), and then truncated regions may arise by double strand break and end processing to produce single-strand overhang in presence of virus genome strands that is easily interfered with (Huang et al. 2013). However, this model was taken from results of other kingdoms, and the applicability of the model to plant genomes needs further investigation. Sequencing using technologies such as 10X Genomics or Nanopore Minion to identify long-range associations of sequences would be helpful.

## Chapter IV. Transmission electron microscopy of PVCV

### 4.1 Introduction

### 4.1.1 Electron microscopy and detection of Petunia vein clearing virus (PVCV)

Transmission electron microscope (TEM) of ultrathin sections or sap from infected tissues is widely used for detection and identification of plant and animal viruses. In a study aimed to identify phytoplasma-like bodies and viruses in Opuntia tuna showing witches-broom diseaselike symptoms, Lesemann and Casper (1973) reported that it was not possible to detect viruslike particles in ultrathin sections of embedded $O$. tuna tissues and that most transmission experiments from infected Opuntia were negative. Petunia test plants that were not used for the transmission experiments, showed all of sudden vein clearing symptoms and leaf deformation in young shoots with stunted growth. In ultrathin sections of embedded symptomatic leaf and stem material, virus-like particles and inclusion bodies were discovered. Only grafting from petunia to petunia transmitted the virus-like particles. Based on host plant and symptoms the infectious entity was named "Petunia vein clearing virus" (PVCV). No serological relationships between PVCV and other caulimoviruses using immuno electron microscopy (IEM) was identified (Lesemann \& Casper 1973). Based on phylogentic analysis and distinct genome organization PVCV was classified in a new genus amongst Caulimoviridae named Petuvirus (Richert-Pöggeler \& Shepherd 1997; King et al. 2011). Lack of molecular tools and information about virus biology at that time made electron microscopy a useful diagnostic tool for PVCV detection in plant tissues. However, using electron microscopy for virus detection is hampered because of the low virus concentration and unequal virus distribution within plant tissues (Sikron et al. 1995). Consequently the risk of false negative results for PVCV existed which is critical when testing propagation material from commercial nurseries (Zeidan et al. 2000). A PCR based technique increased the sensitivity for plant virus detection (Rybicki \& Hughes 1990; Navot et al. 1992; Zeidan et al. 2000). The virions can be detected in crude samples only in symptomatic tissues. Virion's diameter was variable with the majority of particles being between 40 and 45 nm in size (Lesemann and Casper, 1973). Ultrathin sections of embedded symptomatic plant material revealed that many infected cells contained one or more densely stained inclusion bodies (IB) with a diameter up to $10 \mu \mathrm{~m}$. The inclusion bodies were rounded, but in some cases appeared irregular, the matrix
appeared finely granular and within the bodies many lightly contrasted, rounded, vacuole-like regions were present. The IBs were not enveloped by a membrane. Virus particles have not been found within the IB matrix but sometimes close to the inclusion bodies and just within vacuole-like regions, particles have rarely occurred within a nucleus (Lesemann \& Casper 1973). Here, the ultra-structure of variability in vein clearing symptom expression reaching from a more spot like appearance to extended chlorosis along the veins were analysed using transmission electron microscopy (TEM). Furthermore the ultra-structure of PVCV infected cells originating from horizontal or vertical transmission was compared.

### 4.2 Aims and objectives

Aims: One aim of this chapter is to determine the cellular ultra-structure and any differences between vein clearing and spot symptoms. The second aim addresses if viral integration is essential for virus replication. Therefore, episomal viral replication from induced chromosomal copies of PVCV which were preexisting or derived from de novo integration was compared with PVCV replication in petunia plants after horizontal virus transmission.

## Objectives:

Using transmission electron microscopy (TEM) together with immunogold labelling technique to associate different modes of PVCV transmission (horizontal or vertical) with virus particle concentration as well as with changes in the ultra-cellular structure of infected cells in both of episomal, de novo integrated and induced infections of PVCV.

### 4.3 Materials and methods

### 4.3.1 Plant species

The examined Petunia species were: i) episomally infected $P$. axillaris subsp parodii S7, registered as TEM16-35_1, showing vein clearing and local lesion symptoms. ii) progeny of PVCV-infected $P$. axillaris subsp parodii S7 grown from seeds on Murashige-Skoog agar (Appendix 4.3) as tissue culture samples showing vein clearing registered as TEM16-483. iii) progeny of episomally infected $P$. axillaris subsp parodii S 7 that showed vein clearing symptoms, registered as TEM12-584. iv) induced symptoms under heat application were taken
from $P$. hybrida W138, registered as 3645 d [(examined plants at four weeks old were exposed to 16 h at $30^{\circ} \mathrm{C}$ and then 8 h at $25^{\circ} \mathrm{C}$ until viral symptoms were induced, while control plants were grown for 24 h at $25^{\circ} \mathrm{C}$ (Noreen et al. 2007)]. v) healthy leaves of $P$. axillaris subsp parodii S 7 that do not carry infectious chromosomal copies of PVCV, registered as TEM 16403_3. vi) healthy leaves of $P$. hybrida W138, that harbor inducible PVCV genomes within their chromosomes, registered as TEM 16-484 (Table 4.1).

Table 4.1 List of examined samples of petunia with symptoms, registration codes and descriptions.

| Samples |  | Symptoms | Registration codes | Descriptions |
| :--- | :--- | :---: | :---: | :--- |
| i | P. axillaris subsp <br> parodii S7 | Vein clearing <br> and chlorotic <br> spot | TEM 16-35_1 | PVCV infected P. axillaris subsp parodii S7 with <br> episomal form that horizontally transmitted via <br> grafting. |
| ii | P. axillaris subsp <br> parodii S7 | Vein clearing | TEM16-483 | Progeny of PVCV-infected P. axillaris subsp <br> parodii S7 grown from seeds on Murashige-Skoog <br> agar. |
| iii | P. axillaris subsp <br> parodii S7 | Vein clearing | TEM 12-584 | Progeny of PVCV infected P. axillaris subsp <br> parodii S7 that vertically transmitted. |
| iv | P. hybrida W138 | Chlorotic spot | 3645d | Induced P. hybrida W138 by heat application. |
| v | P. axillaris <br> subsp parodii S7 | No symptoms | TEM 16-403_3 | Healthy P. axillaris subsp parodii S7 leaves. |
| vi | P. hybrida W138 | No symptoms | TEM 16-484 | Healthy P. hybrida W138 leaves. |

### 4.3.2 Electron microscopy

Dip preparations were done with symptomatic leaf tissues of petunia. TEM grids were mounted on the crude sap preparations for 5 min , washed with water and for contrast negative stained with $1 \%$ aqueous uranyl acetate. Samples were dried and screened for presence of virions using a transmission electron microscope, Tecnai G2 spirit, FEI. TEM examination was performed at acceleration voltage of 80 kV providing optimal contrast for biological material. Images were taken using a $2 \times 2 \mathrm{k}$ digital camera (Veleta) which was attached at the side of the microscope column. A serological approach was used to enhance detection sensitivity using the electron microscope. For immuno electron microscopy (IEM), a polyclonal PVCV antibody
produced in rabbits (Richert 1992) was employed. IEM included immunosorbant electron microscopy (ISEM) for trapping of virus particles with PVCV specific antibody diluted 1:1000. For virus identification, samples were incubated with PVCV antibody diluted 1:50. For a more pronounced visualization of antibody-virion interaction, selected samples from dip preparations as well as ultrathin sections were immunogold labelled with a secondary gold-goat-anti-rabbit antibody conjugate diluted 1:50. For immunogold labelling, 5 or 10 nm gold particles were used, and both particle sizes obtained specific labelling of PVCV particles.

### 4.3.2.1 Embedding procedure

According to Lesemann (1991), symptomatic leaf tissue was sliced into $1 \times 2 \mathrm{~mm}$ pieces using a sharp razor blade. The leaf sections were transferred carefully and directly with a preparation needle into 1 ml of the first fixation solution ( $2.5 \%$ glutaraldehyde in $0.1 \mathrm{M}(\mathrm{K}, \mathrm{Na})$ P-buffer) in 3.5 ml glass tubes. Leaf tissues were submerged in the fixation solution and degassed for 15 min in a vacuum desiccator. Once all air had been removed from the sample tissue, fixation was done for at least 2 hr followed by a washing step to remove the first fixation solution. For the second (post) fixation served $1 \mathrm{ml} 0.5 \%$ osmium tetroxide in $0.1 \mathrm{M}(\mathrm{K}, \mathrm{Na})$ P-buffer for at least 2 hr . Samples were washed using a Pasteur pipette filled with Millipore water four times for 5 min each. For contrast, samples were negative stained with $1 \%$ aqueous uranyl acetate.

### 4.3.2.2 Preparation of embedding forms

Freshly prepared embedding resin (Epon812+DDSA, MNA, catalysator DMP30) from stock solutions was added to half the volume of the embedding form that had been labelled with a small piece of paper by pencil at upper right corner of the form (see Appendix 4.2). A preparation needle was used to remove air bubbles and the resin was left for polymerizing overnight at $40^{\circ} \mathrm{C}$ in a drying oven (Memmert). On the second day, dehydration procedure was done by preparing $50 \%$ acetone ( $15 \mathrm{ml} 100 \%$ acetone +15 ml Millipore water) and $70 \%$ acetone ( $35 \mathrm{ml} 100 \%$ acetone +15 ml Millipore water). Then, washing for two times ( 30 min ) with $50 \%$ acetone, two times ( 30 min ) with $70 \%$ acetone and four times ( 30 min ) with $100 \%$ acetone. After the last $100 \%$ acetone step, solutions have been added into small glass tubes ( 5 ml ) with flat bottom that were labelled accordingly. Solutions were transferred via fast pouring and remaining pieces were transferred using a preparation needle. $100 \%$ acetone were replaced with acetone/Epon 1:1 in order to remove acetone, glass tubes placed inside dry oven with open
door and rotated by rotator for 1 hr at $40^{\circ} \mathrm{C}$. Solution replaced with Epon and acetone/Epon solution was removed as much as possible. Final infiltration step of the fixed sample was done before transfer to embedding forms two times for 1 hr at $40^{\circ} \mathrm{C}$ with Epon. Embedding forms that have been prefilled with Epon (half volume, see above) were filled up with the sample in Epon solution and air bubbles removed. Polymerization occurred at $60^{\circ} \mathrm{C}$ for 48 hr in a drying oven (Memmert). For each sample 4 repetitions were done, the generated blocks have been numbered chronologically (registration codes) and each repetition is indicated by a letter (see Table 2.2).

### 4.3.2.3 Immunogold labelling using ultra-thin sections

Three to five ultra-thin sections of 60 nm thickness in average were mounted on a nickel grid ( 75 mesh). To avoid unspecific binding, the mounted sections were blocked for 15 min with $1 \%$ BSA in 0.1 M phosphate (P-) buffer, pH 7.0 followed by washing with 1.5 ml ELISA washbuffer and excess liquid was removed. Incubation with the primary antibody diluted 1:50 in ELISA wash-buffer +0.5 \% BSA was done overnight followed by washing with 1.5 ml ELISA wash-buffer and excess liquid was removed. After that, the grid was incubated with the secondary antibody (gold-goat-anti-rabbit, 10 nm ) diluted 1:50 in ELISA wash-buffer+0.5 \% BSA for 2 h . Before the addition of $2 \%$ uranyl acetate for contrast, the sections were washed with ultra-pure $\mathrm{H}_{2} \mathrm{O}$. Finally, the grid was washed with few drops of ultra-pure $\mathrm{H}_{2} \mathrm{O}$ and stored dry (see Table2.2).

### 4.4 Results

### 4.4.1 Horizontally transmitted PVCV

In order to study the cellular ultra-structure of observed symptomatic phenotypes comprising diffuse chlorosis or direct vein clearing (Figures 4.1and 4.2) in leaves after horizontal transmission, tissues were embedded for TEM analysis. In $P$. axillaris subsp parodii S7, no full-length PVCV sequences capable of triggering infection are present (Figure 3.18; Appendix 3.3). Therefore these plants are predestined to study the ultra-structure of cells for PVCV replication using episomal DNA templates only without interference from inducible chromosomal PVCV DNA copies.


Figure 4.1 Typical vein clearing symptoms on young shoot after vertical transmission of PVCV. The depicted plant on the left, registered as TEM12-584, is from the progeny of P. axillaris subsp parodii $\mathrm{S7}$ that had been infected with PVCV using biolistic inoculation and maintained in tissue culture over several years. Prior to pollination and seed harvest plants were transferred from tissue culture to the green house. Healthy leaf of $P$. axillaris subsp parodii S7, registered as TEM16-403_3 on the right.


Figure 4.2 PVCV symptoms on infected $P$. axillaris subsp parodii S7 (TEM1635_1) leaves start with yellow local lesion close to the leaf midrib (left), elongated spot along the side vein (right). P. axillaris subsp parodii S 7 plants were infected with an infectious full-length clone of PVCV [72-2_3c, (Richert-Pöggeler et al. 2003)] using biolistic inoculation and propagated in tissue culture for several years and transferred to soil to increase growth under greenhouse conditions.

### 4.4.1.1 Cellular ultra-structure of diffuse chlorotic symptoms along the veins

In symptomatic leaves of $P$. axillaris subsp parodii S7 (TEM16-35_1) displaying elongated chlorotic spots (Figure 4.2 left panel), virus particles have been shown in mesophyll cells that are adjacent to the vasculature and concentrated in distinct cytoplasmic regions. Additionally, rough endoplasmic reticulum (ER) was noticed in these cytoplasmic regions adjacent to virus particles. The isometric particles had an average diameter between 36 and 46 nm . During temporal progression of infection these viroplasm seem to become more compact and appear as electron dense material in which virions are not distinguishable any more. In average 500 to 1000 virus particles were counted in infected cells. Various phases during maturation from viroplasm to inclusion bodies are displayed in Figures 4.3 and 4.4. Inclusion bodies (IB) have been noticed with a rounded shape in some cells and irregular shape in others with a diameter of $500 \mathrm{~nm}-2 \mu \mathrm{~m}$. IBs are without membranes. Vacuoles were observed in some infected cells and chloroplasts in the examined cells did not have any starch granules (Figures 4.3, 4.4 and 4.5). Immunogold labelling confirmed that the majority of virions can be found in the
cytoplasm and not within the inclusion body matrix where only few gold particles were located (Figure 4.6).


Figure 4.3 Ultrathin section of PVCV-infected P. axillaris subsp parodii S7 (TEM16-35_1) mesophyll leaf cell. High concentration of virions and two large inclusion bodies were identified in the cytoplasm. $\mathrm{Vp}=$ viroplasm, $\mathrm{IB}=$ inclusion body, $\mathrm{M}=$ mitochondria, $\mathrm{V}=$ vacuole. $\mathrm{Bar}=2 \mu \mathrm{~m}$ (left), and $1 \mu \mathrm{~m}$ (right).


Figure 4.4 Transmission electron micrograph of ultrathin section of PVCV-infected $P$. axillaris subsp parodii S7 (TEM16-35_1) mesophyll leaf cell, showing distributed virions with less dense inclusion body matrix. $\mathrm{V} p=$ viroplasm, $\mathrm{IB}=$ inclusion body, $\mathrm{M}=$ mitochondria, $\mathrm{V}=$ vacuole, $\mathrm{Ch}=\mathrm{ch}$ loroplasts without starch. $\mathrm{Bar}=1 \mu \mathrm{~m}$.


Figure 4.5 Details of PVCV virions within the cytoplasm in episomally infected P. axillaris subsp parodii S7 (TEM16-35_1) and interaction with vesicular membranes. Vp= viroplasm, V= vacuole. Bar=500 nm.


Figure 4.6 Immunogold labelling of PVCV particles in episomally infected $P$. axillaris subsp parodii S7 (TEM16-35_1) mesophyll leaf cell using 10 nm gold conjugated-anti-rabbit antiserum. The inclusion bodies have been noticed with a rounded shape. Some virions are found outside but in close contact with the IB (black arrow). $\mathrm{V} p=$ viroplasm, $\mathrm{IB}=$ inclusion body, arrows indicate regions with gold label. Contrast and brightness have been adjusted to improve visibility of the gold particles. $\mathrm{Bar}=500 \mathrm{~nm}$.

### 4.4.1.2 Cellular ultra-structure of vein restricted chlorosis symptoms

Tissue embedded from leaves of PVCV infected $P$. axillaris subsp parodii S7 (TEM16-35_1) displaying vein clearing symptoms revealed a high concentration of PVCV particles in the cytoplasm of mesophyll cells adjacent to the vasculature. No inclusion bodies have been noticed in these cells indicating probably an early event in virus infection. Viroplasm has formed but has not yet reached a more condensed stage resulting in the formation of inclusion bodies. Vacuole like regions have been found with a big portion at the periphery of these cells. These results of vein clearing samples have been confirmed with another infected plant under the same greenhouse conditions (Figure 4.7).


Figure 4.7 Transmission electron micrograph of ultrathin section of PVCVinfected $P$. axillaris subsp parodii S7 (TEM16_35_1) in the cytoplasm of a mesophyll cell adjacent to the vasculature, showing isometric virions. No inclusion bodies have been found in these cells. $\mathrm{Vp}=$ viroplasm, $\mathrm{M}=$ mitochondria, $\mathrm{Ch}=\mathrm{chloroplasts}$ without starch. $\mathrm{Bar}=1 \mu \mathrm{~m}$.

### 4.4.2 Vertical transmission of PVCV

### 4.4.2.1 TEM for progeny of PVCV-infected $P$. axillaris subsp parodii S7

PVCV infected $P$. axillaris subsp parodii S 7 derived from biolistic inoculation using an infectious full-length clone have been vegetatively propagated for several years on Murashige Skoog medium by cuttings and transferred to the greenhouse for further growth and seed production. The seeds of such plants were grown under sterile as well as greenhouse conditions. Under both cultivation methods, vein clearing symptoms occurred and were tested for episomal PVCV infection which must have occurred during vertical transmission via seeds. PVCV particles have been shown in companion cells adjacent to the vasculature (Figure 4.8). The particles have been found in condensed regions within a cell and were spherical with an average diameter of 44 nm , immunogold labelled sections have confirmed this result as gold particles were attached to virions. Inclusion bodies have not been found in the infected cells (Figure 4.9).


Figure 4.8 Ultrathin section of progeny of PVCV-infected $P$. axillaris subsp parodii S7 (TEM16-483) grown from seeds on Murashige-Skoog agar, showing virions in the cytoplasm of a bundle sheath cell. No inclusion bodies have been found in these cells. $\mathrm{Vp}=$ viroplasm, $\mathrm{V}=$ vacuole. $\mathrm{Bar}=5 \mu \mathrm{~m}$ (left), and 500 nm (right).


Figure 4.9 Overview and details of ultra-structure of progeny of PVCV-infected P. axillaris subsp parodii S7 (TEM12-584) leaves with vein clearing symptoms. Virions are distributed in the cytoplasm of a probable companion cell, showing condensed virions. No inclusion bodies have been found in these cells. Vp= viroplasm, $\mathrm{M}=$ mitochondria. $\mathrm{Bar}=5 \mu \mathrm{~m}$ (left), and $2 \mu \mathrm{~m}$ (right).
4.4.2.2 Ultrastructure of PVCV infection after induction of chromosomal PVCV forming a tandem array

In the $P$. hybrida cultivar W138 it has been shown that integrated PVCV genomes arranged in a tandem array are infectious (Richert-Pöggeler et al. 2003). Furthermore, it has been reported that such chromosomal copies can be activated after heat exposure (Noreen et al. 2007). Symptomatic leaf sections from induced $P$. hybrida W138 have been embedded and ultrathin sections were screened for PVCV infected cells originated from vertical transmission. Isometric virions as well as inclusion bodies resided in the cytoplasm (Figure 4.10). About 300400 virions were counted in infected cells that have approximately the same dimensions in comparison to particles (about 40 to 52 nm ) derived from horizontal transmission (Figures 4.10 and 4.11). Three different stages of inclusion bodies were present (Figures 4.10 and 4.11). They all displayed a rounded shape with an average diameter of 450-600 nm . The cell displayed in Figure 4.10 contained two IBs with vacuole-like inner core that have released generated particles in the cytoplasm. These particles reacted specifically with immunogold. The IB in the upper left corner is electron dense and surrounded by cellular (ER) membrane structures. In

Figure 4.11 an earlier stage of PVCV replication is depicted. Here the two IBs, flanking the virion containing region, are less electron dense and virions seem to egress from the viroplasm matrix into the cytoplasm. Mature particles in the cytoplasm are immunogold labelled.

When chromosomal copies of PVCV are present they can theoretically trigger PVCV infection in each cell. The host plant seems to employ epigenetic regulation to avoid this (Noreen et al. 2007). Instead the virus can move from the initially infected cell via plasmodesmata to the neighboring cell. An indication for such intercellular movement is depicted in Figure 4.11 on the right panel. A single virion is located adjacent to the cell wall with plasmodesmata exposed.


Figure 4.10 Transmission electron micrograph of an ultrathin section of induced P. hybrida W138 (3645d). In the cytoplasm of a mesophyll cell, scattered virions and three inclusion bodies are visible. $\mathrm{Vp}=$ viroplasm, $\mathrm{M}=$ mitochondria, $\mathrm{IB}=$ inclusion body, $\mathrm{Ch}=$ chloroplast with and without starch granules, V= vacuole. Bar $=5 \mu \mathrm{~m}$ (left), and $1 \mu \mathrm{~m}$ (right).


Figure 4.11 PVCV replication in induced $P$. hybrida W138 (3645d). In an early stage of replication PVCV particles seem to egress from the viroplasm matrix (VP) into the cytoplasm. Mature virions in the cytoplasm are immunogold labelled. Red arrow indicates single virion adjacent to the cell wall with plasmodesmata (PD) visible. $\mathrm{Vp}=$ viroplasm. $\mathrm{Bar}=2 \mu \mathrm{~m}(\mathrm{left}), 1 \mu \mathrm{~m}($ middle $)$, and $500 \mathrm{~nm}($ right $)$.

### 4.4.2.3 TEM for healthy $P$. axillaris subsp parodii S 7 and $P$. hybrida W 138

Embedded tissue of healthy plants contained no abnormality regarding organelle sizes or shapes and vasculature. Neither PVCV virions nor inclusion bodies have been noticed in the respective cells. (Figures 4.12 and 4.13 ).


Figure 4.12 Healthy cell of $P$. axillaris subsp parodii S 7 , showing normal cell components in the vasculature. $\mathrm{M}=$ mitochondria, $\mathrm{V}=$ vacuole. $\mathrm{Bar}=1 \mu \mathrm{~m}$.


Figure 4.13 Ultrathin section of healthy P. hybrida W138, showing normal cell components at parenchyma cells. $\mathrm{N}=$ nucleolus within the nucleus, $\mathrm{M}=$ mitochondria, $\mathrm{Ch}=$ chloroplast, $\mathrm{V}=$ vacuole. $\mathrm{Bar}=2 \mu \mathrm{~m}$.

To sum up the results above see Table 4.2:
Table 4.2 Differences in virion and inclusion body numbers and sizes within applied samples contents.

|  | Type of symptom/origin of DNA | Virion <br> numbers | Virion <br> sizes | Number <br> of IBs | IB sizes |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | Spreading chlorosis/episomal | $500-1000$ | $36-46 \mathrm{~nm}$ | $2-3$ | $0.5-2 \mu \mathrm{~m}$ |
| 2 | Vein clearing/episomal | $500-750$ | $40-44 \mathrm{~nm}$ | No | No |
| 3 | Vein clearing/chromosomal | $300-750$ | 44 nm | No | No |
| 4 | Spontaneous chlorosis/chromosomal | $300-400$ | $40-52 \mathrm{~nm}$ | $1-3$ | $450-600 \mathrm{~nm}$ |

### 4.5 Discussion

Electron microscopy provides high resolution images of the viruses, and shows their relationship or interactions with the host cells. Together with microscopy techniques based on light (fluorescence microscopy, confocal laser scanning microscopy) and molecular biology tools (e.g. PCR, FISH, NGS) it enables comprehensive analysis of the virosphere (Hoang et al. 2011; Corbetta et al. 2017; Hesketh et al. 2017; Lei et al. 2017; Balke et al. 2018). In this chapter we employ electron microscopy to study PVCV in petunia cells (Figures 4.3-4.13). PVCV can occur both in episomal as well as chromosomal forms depending on the host. Both templates can trigger viral infection. The aim was to compare PVCV replication after horizontal and vertical transmission respectively. In earlier studies it had been shown that the presence of PVCV particles is correlated with symptom expression (Richert 1992). Therefore, the impact of various phenotypes on viral replication also investigated in the distinct transmission modes.

### 4.5.1 Ultrastructural analysis of diffuse chlorosis and vein clearing symptoms after horizontal transmission of PVCV

Despite no vector for horizontal (from plant to plant) PVCV transmission being identified yet, plants can be infected artificially using grafting or biolistic inoculation (Richert-Pöggeler et al. 2003). The leaf symptoms on PVCV infected petunia are generally described as leaf yellowing and vein clearing in young shoots (Lockhart \& Lesemann 1998; Zeidan et al. 2000; RichertPöggeler et al. 2003). In some cases, symptoms start with local chlorosis adjacent to one of small netted veins then developing either strictly along the vein or becoming a diffuse chlorosis spreading further into the leaf lamina (Figure 4.2). In horizontal PVCV transmission, the encapsidated circular double stranded DNA molecules are released from the capsid and are transcribed in the plant nucleus. The generated RNA molecule comprising the complete viral genome including promoter sequences is transported to the cytoplasm. The transcript serves as messenger RNA and as template for DNA synthesis using reverse transcription. To determine whether the differences in symptomatic phenotypes were also reflected on the cellular level of PVCV infected $P$. axillaris subsp parodii S7 plants, electron microscopy was applied, including use of immunolabelling of PVCV to confirm the identification of structures with viral capsids. So far, cells from tissue with vein clearing contained clustered virions but lacked viral inclusion bodies. The minimum diameter of the virion was 36 nm and the maximum was

45 nm ; this is in accordance with the published value of 46 nm which was obtained measuring purified virions directly (Richert-Pöggeler \& Lesemann 2007). Many of these cells included vacuoles, and chloroplasts sometimes contain starch granules. In leaves displaying diffuse chlorosis, infected cells contained virions in parenchyma cells with minimum diameter 44nm and the maximum was 56 nm . Conversely to cells derived from vein clearing tissue, there were condensed inclusion bodies of rounded or irregular shapes with a diameter of $500 \mathrm{~nm}-2 \mu \mathrm{~m}$ similar to those described by Lesemann and Casper (1973) (Figures 4.3, 4.4, 4.5 and 4.6). The existence of rough endoplasmic reticulum (ER) in the cytoplasmic regions adjacent to virus particles may be an indication that these metabolic active sites are also used for translation of viral proteins (Schaad et al. 1997; Turner et al. 2004)

Comparing the two symptom types, differences in particle sizes and IB numbers have been found in infected cells for each phenotype (Table 4.2). These observations give first insights in stages during viral replication. Early on infected tissue in which chlorosis is limited to the vein region viral replication starts. Spreading of viral infection to the leaf lamina is accompanied by enhanced viral replication. As consequence more virus particles are present and inclusion bodies are formed. However, in virology, inclusion bodies are accumulated dead-end materials that contain unused viral proteins in the cytoplasm of infected cells at late times of infection, while viroplasms are electron-dense masses at early stages of infection include viral and cellular factors in viral replication sites within infected cells (Novoa et al. 2005). The variability in particle sizes may indicate different steps of particle interactions with viral proteins as well as with host components. For Cauliflower mosaic virus it has been shown that during virus movement interaction of coat protein with the virion associated protein occurs (Stavolone et al. 2005; Amari et al. 2010; Stavolone \& Lionetti 2017).

### 4.5.2 De novo integration and vertical transmission of PVCV in $P$. axillaris subsp parodii S7

The $P$. axillaris subsp parodii S7 genome was assumed to be free of any integrated form of PVCV, since no signal was generated under stringent hybridization conditions using total genomic DNA as template and virus specific probes (Richert-Pöggeler et al. 2003). When artificially infected using grafting or biolistic inoculation, $P$. axillaris subsp parodii S 7 proved to be a suitable host for PVCV allowing episomal replication (Figures 4.1 and 4.2). These experiments showed that unlike retroviruses, endogenous pararetroviruses do not depend on integration into the host genome to complete their replication cycle; indeed, before Harper et
al. (1999), integrated pararetroviruses were unknown in plants. $P$. axillaris subsp parodii S 7 is an ideal model system to study de novo integration of PVCV sequences into the Petunia genome. Whereas it is estimated that integration occurs frequently in somatic cells, the manifestation of such an event in reproductive cells and thus in the progeny may be rare (Gayral et al. 2008). Therefore the progeny of PVCV infected P. axillaris subsp parodii S 7 grown in tissue culture for prolonged times ( $>10$ years) were screened. For infection of sterile plants, biolistic inoculation with an infectious full-length clone had been used (Richert-Pöggeler et al. 2003). Cuttings from PVCV infected plants were transferred to new MS medium every 4-8 weeks. The dedifferentiation of cells during the process of new root development most likely facilitates invasion of the host genome by linearized PVCV DNA molecules present in the nucleus. Furthermore it had been postulated that integrated copies get activated in such meristematic cells due to changes in epigenetic modifications (Noreen et al. 2007).

PVCV infection of symptomatic plants were confirmed by PCR and IEM. A first evidence for vertical transmission of PVCV was obtained when the progeny of these plants showed typical vein clearing symptoms and tested positive in PCR and IEM. FISH further confirmed de novo integration of PVCV in the telomeric regions of chromosomes III and IV (see Figure 3.39).

The fact that virions but no IBs were detectable (Figures 4.7, 4.8 and 4.9), may indicate either that an early step in viral replication is caught or that in this cell only intracellular replication occurs. The latter case would be similar to the replication of LTR retrotransposons (RichertPöggeler \& Schwarzacher 2009).

### 4.5.3 PVCV symptom expression and replication after induction of chromosomal copies

Elevated temperatures above $25^{\circ} \mathrm{C}$ for a continuous time period of 7 days can enhance symptom expression in P. hybrida (Zeidan et al. 2000). Additionally, P. hybrida line W138 was shown to be more permissive than cultivar Rdc (Himmelsröschen) to induce symptoms after repeated heat treatments with a higher rate of infection (Noreen et al. 2007). Symptoms from induced infection are often starting as spot features more than vein clearing. In contrast to horizontally infected $P$. axillaris subsp parodii S 7 cells, symptom expression resulted from activation of chromosomal copies. Particle concentration in W138 cells was at the maximum about 400 /cell (Figures 4.10 and 4.11), while in PVCV infected P. axillaris subsp parodii S7 it could reach 1000 /cell (Figures 4.3-4.7). Virions were found loosely scattered in the cell
whereas in horizontally infected $P$. axillaris subsp parodii S 7 additionally viroplasm and IBs were present.

The ultra-structural analyses provided first evidence that the efficiency in viral replication depends on the origin of PVCV infection. Virus activation from chromosomal copies seems to be less efficient. This may happen due to tighter epigenetic control by the host than from episomal PVCV copies. It may also take longer to build up high virus load because the number of integrated tandem array is less than the number of circular DNA molecules provided in artificial infection. The low efficiency of expression of EPRVs is also found in banana, where infection originating from endogenous copies is unusual, sometimes following stress such as tissue culture or cold nights (Harper et al. 1999; Harper et al. 2002).

The virulance of viruses could be significantly affected by transmission mode as its increase within horizontal transmission as a side effect of a trade off between infectivity and virulance. In vertical transmission, virulance decreases to allow virus transmission to wide host offsprings. Stewart et al. (2005) reported that Barley stripe mosaic virus (BSMV) horizontally transmitted in its host (Hordeum vulgare) with twofold increase in infectivity and tripled virulance, while in vertical transmission, infectivity slightly increased, while virulence highly reduced.

Interestingly, in the $P$. hybrida line W138 telomeric PVCV insertions as seen after de novo integration in $P$. axillaris subsp parodii S7 of this study were identified (Richert-Pöggeler and Schwarzacher, unpublished) (see Figure 3.18). The plasticity of telomeres harbouring various retroelements as shown for bdelloid rotifers and Drosophila (Arkhipova et al. 2017; Casacuberta 2017), and we can speculate similar plasticity and reorganization of sequences in telomeric regions may also be true for petunia. Notably, Vicient and Casacuberta (2017) discussed transposable elements and their insertion into heterochromatic regions of chromosomes (including centromeres and telomeres), potentially a model for the behaviour of EPRVs. Future studies should address if the invasion of the Petunia genome by PVCV starts at the telomere and then spreads to other loci in the pericentromeric regions of chromosomes. The identified telomeric copy in W138 may indicate the dynamics in virus host symbiosis and thus may represent a recent de novo integration by PVCV.

## Chapter V. Tandem repeats

### 5.1 Introduction

Tandemly repeated or satellite (satDNA) DNA sequences are often present at pericentromeric and centromeric heterochromatin, and may related to chromosome pairing and separation of chromosomes in eukaryotic cell divisions (Arney \& Fisher 2004; Hall et al. 2004; Bloom 2007; Sepsi et al. 2017). Within plant genomes, tandemly repeated DNA nature and content differs between species, and sequence may diverge within species. Tandem repeats typically represent $5 \%$ to $25 \%$ of all the DNA, with transposable elements being an even more abundant repetitive motif (Elder Jr \& Turner 1995; Schmidt \& Heslop-Harrison 1998; Melters et al. 2013), with the repetitive component of the genome responsible for much of the difference in DNA content between species (Doolittle \& Sapienza 1980; Cavalier-Smith 1985; Gregory et al. 2006). With the introduction of large scale DNA sequencing, the nature, evolutionary mechanisms and functions of tandem repeats can be studied across the whole genome, complementing earlier studies of its abundance (Charlesworth et al. 1994; Elder Jr \& Turner 1995; Schmidt \& HeslopHarrison 1998; Ugarković \& Plohl 2002). Tandemly repeated DNA consists of monomers, often with high AT/GC nucleotide ratio, and variable lengths between few bp to more than 1 kb within arrays consisting of tens to millions of the monomer. Monomers have preferential lengths around 175 and 360 bp , reflecting the DNA length wrapped around nucleosomes (Schmidt \& Heslop-Harrison 1998; Henikoff et al. 2001). Tandemly repeated motifs assembly has proved impossible with current short-read technologies because of collapse of the sequence motifs within large contigs; while large-insert sequences, and long-molecule sequence reads are becoming helpful, there are still major challenges in measuring copy numbers and determining genomic locations of major arrays in both plants and animals (Kuhn et al. 2011).

Despite the abundance of tandem repeats, more data on their role in genome organization and function is required (Eichler et al. 2004; Nagaki et al. 2004; Rudd \& Willard 2004; Hoskins et al. 2007; Heitkam \& Schmidt 2009; Talbert et al. 2018). Large volumes of high-quality random sequence reads of 100 to 350 bp are suitable for identification of abundant tandemly repeated sequence motifs from genomes with appropriate analysis tools. K -mer analysis identifies the most abundant sequence motifs $k$-bases long in short raw read sequences. Graph-based clustering of raw reads, particularly using the RepeatExplorer software tools (Novák et al. 2013) is also allowing repeat sequence identification. The tandem repeat analyser (TAREAN)
is a computational pipeline that can be applied to explore tandem repeats using graph-based sequence clustering algorithms (Novák et al. 2013; Bilinski et al. 2017; Novák et al. 2017). Using in situ hybridization to chromosomes with repetitive motifs identified by assemblies of abundant motifs in $k$-mers or graph-based clusters shows the genomic organization and any clustering of the loci.

Like most plant genomes, repetitive DNA is abundant in Petunia genomes, but the existence of these sequences at $60 \%$ (see Appendix 3.1) is comparatively low with a larger space of genes and low copy sequences, taking into consideration the genome size. In the assembled genomes of the $P$. axillaris subsp axillaris N (PaxiN) and $P$. integrifolia subsp inflata S 6 (PinfSO), abundant repeats of the typical 180 bp or 340 bp that wrap around nucleosomes have not been found, while repeat searches revealed the existence of short (60) bp and long repeats (500-1000 bp) (Bombarely et al. 2016). RepeatExplorer (Novák et al. 2013) has been used to identify simple and low complexity repeats, finding clusters including retroelements. Bombarely et al. (2016) revealed that tandem repeats are not very abundant in the Petunia genome assembly or raw reads, although some were extracted from smaller scaffolds, many composed of a 169 bp repeat. A strong in situ hybridization signal was found at the centromeres. Larger scaffolds (409-826 kb) had multiple tandem repeat copies as internal as well as terminal sequences, and dispersed short arrays have been found in other scaffolds. Interestingly, there was no evidence found for association with centromeres of repeat carrying scaffolds to give the distribution of a Gypsy retroelement-related fragment located near the centromeres of all chromosomes.

### 5.2 Aims and objectives

The main goal of this chapter is to:

- identify the tandemly repeated satellite DNA motifs in Petunia axillaris subsp axillaris N and $P$. integrifolia subsp inflata S6 with their hybrid cultivars $P$. hybrida Rdc, $P$. hybrida V26 and $P$. hybrida W 138 , and the sister $P$. axillaris subsp parodii S 7 .
- characterise their nature, organization, diversity and abundance to understand the evolutionary processes and potential consequences of the presence of this abundant component of the nuclear genome.


### 5.3 Materials and methods

### 5.3.1 Plant material and DNA extraction

Petunia species from the same sources in chapter II; 2.1 (see Table 2.1), were germinated and root-tips were used for somatic chromosome preparations. Genomic DNA was prepared from young leaves using the CTAB method (mentioned earlier in 2.3.1) (Doyle \& Doyle 1990) with some modifications. Purified genomic DNA was used to amplify tandem repeats by PCR (see Table 2.5), cloned (see 2.3.5), and sequenced commercially (see 2.3.5.6).

### 5.3.2 Tandem repeat analysis

Illumina HiSeq PE126 raw reads of P. hybrida R27 (PhybR27) were obtained from Aureliano Bombarely, Department of Horticulture, Virginia Tech, USA, in addition to the assemblies and raw reads of $P$. integrifolia subsp inflata S6 (PinfSO) and P. axillaris subsp axillaris N (PaxiN) genomes (Bombarely et al. 2016). Genomic DNA of P. axillaris subsp parodii S 7 was sequenced commercially by Novogene, Hong Kong, China using Illumina HiSeq-PE150 reads. These data have been used in a basic analysis of tandem repeat clusters within genome sequences using Geneious (http://www.geneious.com/) (Kearse et al. 2012). The programmes RepeatExplorer (Novák et al. 2013), and Tandem Repeat Analyser (TAREAN) (Novák et al. 2017), were used for graph-based clustering of repeated sequences in the raw reads. Additionally, Repbase (Jurka et al. 2005; Bao et al. 2015), Tandem repeats finder (Benson 1999), (BLAST); Basic Local Alignment Search Tool (Altschul et al. 1990), dot-plot tools and RepeatMasker (Smit \& Hubley 2015) (http://www.repeatmasker.org) were used for checking, finding and characterising repeat sequences, and the database of conserved protein motifs of retroelements (Hansen \& Heslop-Harrison 2004b). Copy numbers in raw reads were calculated by counting number of reads mapping to reference sequences (see 3.3.1.4).

### 5.3.3 Chromosomes preparation and in situ hybridization

Root tips from young plants of all examined Petunia species were pretreated with 0.2 M 8hydroxyquinoline for 4 hr before fixation with freshly made ethanol:glacial acetic acid (3:1). Chromosome preparations were made on slides following proteolytic digestion of fixed and washed root tips with pectinase and cellulase (see 2.3.7). The method of Schwarzacher and Heslop-Harrison (2000) was applied for fluorescent in situ hybridization (mentioned earlier in
2.3.8). For making probes, PCR was used to amplify Type I-CL43A and Type II-CL43B (Tables 5.1and 5.2) and products were labelled with biotin-11-dUTP and digoxigenin-11-dUTP via BioPrime (Invitrogen) DNA Labelling System and Array CGH Genomic Labelling Module (see 2.3.6). Probes of the six other clusters (Table 5.3) were synthesized as oligonucleotides 5'-labelled directly with biotin-11-dUTP (Sigma Aldrich Company). Hybridization sites were detected by anti-avidin antibody conjugated to red fluorochomes, and anti-digoxigenin antibody conjugated with FITC. DAPI (4, 6-diamidino-2-phenylindole) and an antifade solution were used for counterstaining and mounting chromosomes. Slides were examined using a Zeiss Axioplan 2 or Nikon Eclipse 80i epifluorescence microscope and images were captured as mentioned earlier in 2.3.8.5. Adobe Photoshop CC2015.5 was used for preparing and overlaying images and hybridization signals, apart from cropping, using only functions affecting the whole image equally.

Table 5.1 The first two tandem repeat clusters primers.

| No | Primer <br> name | Sequence | Tm ${ }^{\circ} \mathbf{C}$ | Product <br> length <br> (bp) |
| :--- | :--- | :--- | :---: | :---: |
| 1 | CL43A | (Scf160-72F ) CCG AAA GCG CAA AC TATC CC <br> (Scf160-26R ) AAA AAG AGG TAG GCG TTG A AG | 64.5 | 157 |
| 2 | CL43B | (Scf160-62F) ACC AGC AGA AAT AGA TCC AC <br> (Scf160-64R) TGC AGA AGT ACA TCT ATG CG | 53 | 1002 |

Table 5.2 PCR cycling program for the first tandem repeats primers.

| Step |  | Temperature $^{\circ} \mathbf{C}$ | Duration (Minutes:seconds) | Cycles |
| :--- | :---: | :---: | :---: | :---: |
| 1 | Initial denaturation | 95 | $3: 00$ | 1 |
| 2 | Denaturation | 95 | $00: 30$ | 35 |
| 3 | Annealing | $50.2-69.3$ | $00: 30$ |  |
| 4 | Extension | 72 | $1: 00$ | 1 |
| 5 | Final extension | 72 | $1: 00$ | 1 |
| 6 | Hold | 16 | pause |  |

Table 5.3 Direct probe sequences of six tandem repeat clusters.

| No. | Probe name <br> \&type | Nucleotide sequence (5'-3') | Probe length <br> (bp) |
| :---: | :--- | :--- | :---: |
| 1 | CL58[Btn] | TCACTAGAAATGACCAATTA <br> TACTTGTTAGAGTGACAAAT <br> GATGATCATTA | 51 |
| 2 | CL95[Btn] | CCTTTTTGGTATACTGTATAC <br> TCTTTCGGTATACCTTGTTAT <br> GTTTGGATCGAAG | 55 |
| 3 | CL102[Btn] | AACATACATAAATATTTGAT <br> TGTAGAAAATATTTGAGCCG <br> AAGCGGCCG | 49 |
| 4 | CL114[Btn] | AAACTGACTCGAAAAGGAA <br> ATGATCGCTATCTTTTAGC | 38 |
| 6 | CL295[Btn] | TGATGATGATCATCACTAGA <br> CATGACCAAATATACAAGTA <br> AGAGTGATAAA | 51 |
| CL331[Btn] | GGCTACACCATGCGAAGTTC <br> GGGGACGAACTTGCTTTAAA <br> GAAAGGGGGGATGA | 54 |  |

### 5.4 Results

### 5.4.1 Identification of tandem repeats by graph-based clustering

In the $P$. hybrida R27 reads, graph-based clustering with the program RepeatExplorer (Novák et al. 2013), and tandem repeat analysis (TAREAN) identified candidate tandem repeats by characteristic cluster graphs with star- or donut-like forms (Figures 5.2, 5.7, 5.9, 5.11, 5.13, 5.15, and 5.17; Appendix 5.1). In total, only eight candidate tandem repeats were identified in P. hybrida (PhybR27) (Table 5.1; two came from a division of a cluster), a number that is consistent with examination of sequence assembly data. Each tandem repeat had a characteristic monomer length and genome proportion.

Other bioinformatics approaches were also used to identify tandem-repeat motifs, including analysis of the most abundant $k$-mers (motifs $k$ bases long, where $15<k<64$ ), and visualization of dot-plots covering the sequence assemblies to show tandem arrays by a series of lines of homology parallel to the major diagonal (Figure 5.4). These revealed the same tandem-repeat types with no additional motifs more than 50 bp long. Some of the identified tandem repeats marked the ends of assembled sequence scaffolds.

### 5.4.2 Genome organization

### 5.4.2.1 Assemblies and raw-reads

Analysis of sequence reads from the Petunia genomes ( $P$. axillaris subsp axillaris $\mathrm{N}, P$. integrifolia subsp inflata S 6 , the ancestors of the hybrid petunia; and the sister species $P$. axillaris subsp parodii S7) by mapping reads to reference motifs for each tandem repeat type identified in $P$. hybrida showed each was abundant, although there were substantial differences in relative copy numbers (Table 5.4; Figure 5.1). Copies of all tandem repeat motifs were found in the two whole genome assemblies, although collapsed by the assembly algorithms or being placed at ends of scaffolds (eg Figure 5.4); assembled lengths of tandem repeat arrays are also shown.

The genome sizes of the two parental and the hybrid-origin Petunia species are similar (1,400 Mb , all $2 \mathrm{n}=2 \mathrm{x}=14$ ). The evolutionary differences were analysed in tandem repeat abundance.

The expectation would be stochastic processes would lead to differences in abundance in the parental species (separation 30 MYA), while $P$. hybrida would represent an average. Compared to $P$. axillaris subsp axillaris $\mathrm{N}, P$. integrifolia subsp inflata S 6 had a total repeat copy number of $30 \%$ less, while $P$. hybrida had $30 \%$ more; among individual tandem repeat types, some increased in copy number while some decreased. P. axillaris subsp parodii S7 (accurate genome size not known) had fewer tandem repeats, with a particular reduction (27\%) in the most abundant Type I.

Table 5.4 Tandem repeat types with copy numbers and genome proportions within Petunia genomes reads plus array lengths in assemblies.



Figure 5.1 Relative copy number of each repeat type in $P$. axillaris subsp axillaris N (red) and $P$. integrifolia subsp inflata S 6 (yellow), and the numbers in the hybrid species $P$. hybrida (orange) and sister species $P$. axillaris subsp parodii S 7 (cyan). Each sequence shows a unique absolute (Table 5.4) and relative pattern of copy number variation.

Table 5.5 Ratios of mapped tandem repeat sequences to the four examined raw reads with $0 \%$ mismatch (absolute copy number) over $10 \%$ mismatch (relative copy number).

| Types | PaxiN | $\boldsymbol{\%}$ | PinfS6 | $\boldsymbol{\%}$ | PhybR27 | \% | PparS7 | \% |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TypeI-CL43A | $56,598 / 314,586$ | 17.9 | $35,523 / 316,813$ | 11.21 | $59,862 / 389,959$ | 15.3 | $18,142 / 111,816$ | 16.2 |
| TypeII-CL43B | $90 / 147,144$ | 0.06 | $1 / 318,384$ | 0.0003 | $1 / 401,170$ | 0.000002 | $6 / 89,908$ | 0.0066 |
| TypeIII-CL58 | $12,688 / 140,814$ | 9 | $3,022 / 40,308$ | 7.4 | $6,958 / 98,868$ | 7 | $3,170 / 42,894$ | 7.39 |
| TypeIV-CL95 | $285 / 57,672$ | 0.49 | $465 / 34,756$ | 1.3 | $2,318 / 82,679$ | 2.8 | $757 / 31,748$ | 2.38 |
| TypeV-CL102 | $19,575 / 45,909$ | 42 | $7,865 / 22,652$ | 34.7 | $62,927 / 87,498$ | 71.9 | $8,054 / 22,131$ | 36.3 |
| TypeVI-CL114 | $11,811 / 34,039$ | 34.6 | $6,534 / 31,516$ | 20.7 | $16,325 / 46,875$ | 34.8 | $6,295 / 18,930$ | 33.2 |
| TypeVII-CL295 | $3,185 / 24,192$ | 13 | $261 / 3,049$ | 8.5 | $2,058 / 27,596$ | 7.4 | $1,251 / 7,019$ | 17.8 |
| TypeVIII-CL331 | $3,613 / 11,952$ | 30 | $3,006 / 9,779$ | 30.7 | $4,573 / 16,797$ | 27 | $3,733 / 19,616$ | 19 |

In situ hybridization was used to find the location of each repeat on metaphase chromosomes. Except for the least abundant sequence TypeVIII-CL331 (where no hybridization signal was observed), the chromosomal study showed the motifs were repeated and presented at multiple discrete loci.

### 5.4.3 Chromosomal organization of tandem repeats

### 5.4.3.1 Type I- CL43A

CL43A is a tandem repeat with consensus monomer length of 157 bp . It appears in the genome assembly 5-10 kb arrays, and marks the end of several scaffolds. There are 1,013 and 1,016 copies in the PinfS6 and PaxiN assemblies respectively, but as expected, these represent a collapse of monomers from raw reads, with more than 300,000 copies per genome in PhybR27, PaxiN and PinfS6, and a lower content in PparS7 (Table 5.4; Figure 5.1). The TAREAN and RepeatExplorer clustering graphs for Type I-CL43A and Type II-CL43B are condensed starlike shapes (Figure 5.2). In situ experiments showed that this sequence has strong (in agreement with the high copy number), subtelomeric signals, showing two dots on most chromosomes ends in the six Petunia species (Figure 5.3). Interestingly, this tandem repeat is sharing exactly similar features of the published repeat (169 bp) in Bombarely et al. (2016) that extracted by $k$-mer analysis.


Figure 5.2 Graphs of tandem repeat clusters of Type I-CL43A and Type II-CL43B, showing similar condensed star like shapes with high similarity to other genome reads clusters (PinfS6-CL15, PhybR27-CL108, PaxiN-CL98, and Ppar-CL147) based on the results of TAREAN and RepeatExplorer pipelines.


A
B


C
D


E

Figure 5.3 In situ hybridization of tandem repeat Type I-CL43A probe to metaphase chromosomes ( $2 \mathrm{n}=14$ ) from six Petunia species, showing subtelomeric signals as pairs of dots on all telomeres, except one chromosome pair (Ch.II) on P. axillaris N (A) and P. hybrida Rdc (C), two pairs (Ch.II and Ch.IV) on P. integrifolia subsp inflata S 6 (B), P. hybrida V26 (D), P. hybrida W138 (E) and P. axillaris subsp parodii $\mathrm{S} 7(\mathrm{~F})$ with signals only at the end of the long arms, and no telomeric signal was detected on the short arms carrying the 5S rDNA arrays. Chromosomes were stained with DAPI (blue) and the probe was detected red for $P$. integrifolia subsp inflata S6 (B), P. hybrida Rdc (C), P. hybrida V26 (D), P. hybrida W138 (E) and P. axillaris subsp parodii S7 (F), while detected green was used for labelling this probe in $P$. axillaris subsp axillaris N (A) and to the 5S rDNA on one pair of $P$. hybrida $\mathrm{Rdc}(\mathrm{C})$. $\mathrm{Bar}=10 \mu \mathrm{~m}$ for $P$. axillaris subsp axillaris $\mathrm{N}(\mathrm{A})$, P. hybrida W138 (E) and P. hybrida Rdc (C), and $5 \mu \mathrm{~m}$ for $P$. hybrida V26 (D), P. axillaris subsp parodii $\mathrm{S} 7(\mathrm{~F})$, and $3 \mu \mathrm{~m}$ for $P$. integrifolia subsp inflata S 6 (A).

### 5.4.3.2 Type II- CL43B

This repeat assembled with a long monomer of $1,002 \mathrm{bp}$, and was identified with 2,486 copies in PaxiN and 1,702 copies in PinfS6 genome assemblies, while 147,144 and 318,384 copies (and 401,170 copies in PhybR27) per genome were identified in the reads. The assemblies showed the 1 kb tandem-repeat array, including interspersion with other repeat arrays of about 20 kb (Figure 5.4). The tandem repeat had strong, quite broad, signals at the centromere regions of all Petunia species chromosomes (Figure 5.5). Both Type I and Type II repeats shared the same graph based cluster feature as a condensed star like shape (Figure 5.2), had $79.8 \%$ pairwise identity, and were located together in some scaffolds (PaxiN162Scf00160 scaffold) (Figure 5.6), in situ hybridization showed contrasting subtelomeric and pericentromeric locations for Type I-CL43A and Type II-CL43B respectively.


Figure 5.4 Self-dot plots of tandem repeat Type II- CL43B in PinfS6101Scf00909 scaffold at $P$. integrifolia subsp inflata S6 assembly (A) showing tandem structure between $360,000 \mathrm{bp}$ and $415,000 \mathrm{bp}$ (total size of this scaffold is about $1,820,000$ bp), and PaxiN162Scf01294 scaffold at P. axillaris subsp axillaris N assembly (B) showing about 2 kb array at the end of this scaffold. Arrows in (A) indicate missassembled array of Type II-CL43B while in (B), single arrow indicates a small array at the end of the scaffold.


Figure 5.5 Metaphase chromosomes of Petunia ( $2 \mathrm{n}=14$ ) species probed with tandem repeat Type $I I-C L 43 B$ showing dispersed and strong signals at the centromere regions of all Petunia species chromosomes. Chromosomes stained with DAPI (blue) and the probe detected red for P. axillaris subsp axillaris N (A), P. hybrida Rdc (C) and P. hybrida V26 (D), while in P. integrifolia subsp inflata S6 (B), P. hybrida W138 (E) and P. axillaris subsp parodii $\mathrm{S} 7(\mathrm{~F})$, the probe was detected green. Bar $=10 \mu \mathrm{~m}$.

## Type II-CL43B



Figure 5.6 Self-dot plot of PaxiN162Scf160 scaffold, showing tandem repeat Type I-CL43 A and Type II-CL43 B positions as 10 kb and 1 kb arrays respectively.

### 5.4.3.3 Type III-CL58

This tandem repeat is abundantly represented in the assemblies and raw reads with $0.150 \%$ genome proportion. It showed variable sizes of arrays between 3 kb and 15 kb within small scaffolds, with $23 \%$ (PinfSO) and $7 \%$ (PaxiN) of the reads being represented in assemblies, presumably representing collapse of reads of the repeat in the assemblies, and different copy
numbers in each species (Table 5.4). In TAREAN, the repeat graph showed a solid star-like shape with multiple arms in comparison with shapes from RepeatExplorer that presented this star like feature in PinfS6, PhybR27 and PparS7 with long arm which branches with one loop (Figure 5.7). On chromosomes, a centromeric signal was found on four pairs of $P$. axillaris subsp axillaris N chromosomes (Ch. II, III, IV and V), with two pairs in P. integrifolia subsp inflata S6, P. hybrida Rdc (Ch. II and III) and P. hybrida V26 (Ch.II and IV), and three pairs on P. hybrida W138 (Ch.II, IV and V; hence showing intraspecific variation) and $P$. axillaris subsp parodii S7 (Ch.II, III and IV) (Figure 5.8).



RE-PinfS6-CL 79


RE-PhybR27-CL 95


RE-PaxiN-CL 75

Figure 5.7 Tandem repeat Type III-CL58 cluster graphs, showing high similarity in PinfS6-CL79, PhybR27-CL95 and Ppar-CL117 graphs, while PaxiN-CL75 is more likely to TAREAN graph.


Figure 5.8 Metaphase chromosomes of Petunia ( $2 \mathrm{n}=14$ ) species probed with tandem repeat Type III-CL58 detected red shows that centromeric signals clearly found on four pairs of $P$. axillaris subsp axillaris N (A) (Ch.II, III, IV and V). Two pairs are seen in $P$. integrifolia subsp inflata S6 (B), P. hybrida Rdc (C) (Ch.II and III) and P. hybrida V26 (D) (Ch.II and IV) have centromeric signals; there are three pairs on P. hybrida W138 (E) (Ch.II, IV and V) and P. axillaris subsp parodii S7 (F) (Ch.II, III and IV). Bar $=10 \mu \mathrm{~m}$ for all species except $P$. axillaris subsp parodii $\mathrm{S} 7(\mathrm{~F})$ that has $5 \mu \mathrm{~m}$.

### 5.4.3.4 Type IV-CL95

Despite of $0.092 \%$ genome proportion and the abundant sequences of this repeat within PinfS6 and PaxiN assemblies, it has low numbers of copies in PhybR27and PparS7 (Figure 5.1). This repeat had small arrays with about 1 kb that were widely distributed over assemblies. Cluster graphs had a solid circle with few extensions especially in PaxiN and PparS7 reads; PinfS6 and PhybR27 were similar, while PaxiN had a smaller central cluster and four branches (Figure 5.9). Consistent with the copy number and distribution in assemblies, and weak and dispersed signals were seen on chromosomes (Figure 5.10).


RE-PinfS6-CL140

RE-PhybR27-CL157



RE-PaxiN-CL139


RE-Ppar-CL173


Figure 5.9 Graphs of four genomes clusters of tandem repeat Type IV-CL95 that compared together with TAREAN shape, representing spitting images for PinfS6CL140 and PhybR27-CL157 clusters with smaller central cluster and four branches, two branches are coming together at the middle, and between PaxiNCL139, Ppar-CL173 and TAREAN with a solid circle and few extensions.


Figure 5.10 Metaphase chromosomes of Petunia ( $2 \mathrm{n}=14$ ) species probed with repeat Type IV-CL95 shows weak and dispersed signals (red) over all chromosomes (blue). P. axillaris subsp axillaris N (A), P. integrifolia subsp inflata S 6 (B), P. hybrida Rdc (C), P. hybrida V26 (D), P. hybrida W138(E) and P. axillaris subsp parodii $\mathrm{S} 7(\mathrm{~F}) . \mathrm{Bar}=10 \mu \mathrm{~m}$ for all species.

### 5.4.3.5 Type V-CL102

Type V was poorly represented within PinfS6 and PaxiN assemblies (as small 1 kb arrays), although copies were abundant in all raw reads ( $0.08 \%$ genome proportion). The sequence included many copies of the telomeric repeat (TTTAGGG) and variants, and the graph had two connected solid circles or a circular pattern (Figure 5.11). In situ hybridization signals were strong on the telomere region of one pair of all Petunia species chromosomes, showing highly condensed signal on just the short arm of chromosome II (Figure 5.12).


RE-PinfS6-CL 195


RE-PhybR27-CL175


RE-PaxiN-CL55


RE-Ppar-CL119

Figure 5.11 Tandem repeat Type V-CL102 graphs, showing two connected solid circles for TAREAN and PinfS6-CL195, and a bit different from both PaxiN-CL55 and PhybR27-CL175 clusters shapes that look very close to each other, while Ppar-CL119 shows circular shape surrounded by condensed nodes.


Figure 5.12 Metaphase chromosomes of Petunia ( $2 \mathrm{n}=14$ ) species probed with tandem repeat Type V-CL102, showing strong signals (red) on the telomere region on the short arm of chromosome II. P. axillaris subsp axillaris N (A), P. integrifolia subsp inflata S 6 (B), P. hybrida Rdc (C), P. hybrida V26 (D), P. hybrida W 138 ( E ) and $P$. axillaris subsp parodii $\mathrm{S} 7(\mathrm{~F})$. Bar $=5 \mu \mathrm{~m}$ for A and F , and $10 \mu \mathrm{~m}$ for the rest.

### 5.4.3.6 TypeVI-CL114

Abundant sequences have been shown in the two assemblies with notably higher copy numbers in PaxiN and PhybR27 than other two species. For this tandem repeat, arrays are between 1 to 2 kb with $0.074 \%$ genome proportion. Graphs showed that PhybR27 has a solid circle with extensions linked and a ring shape, and PparS7 shows similar graph without ring, while this ring shape looks bigger in PaxiN, and very complex feature of PinfS6 (Figure 5.13). P. axillaris subsp axillaris N, P. integrifolia subsp inflata S6, P. hybrida V26, and P. axillaris subsp parodii S7 had centromeric signals on two chromosome pairs (Ch.II and IV) with variable site strengths, while chromosomes of $P$. hybrida Rdc and $P$. hybrida W138 only showed one pair (Ch.IV) (Figure 5.14).


Figure 5.13 Graphs show tandem repeat Type VI-CL114 shapes that have a solid circle with extensions linked with a ring shape for PhybR27-CL172, and PparCL175 shows similar graph without ring, while this ring shape looks bigger in PaxiN-CL146, and very complex feature of PinfS6-CL61.


Figure 5.14 Metaphase chromosomes of Petunia ( $2 \mathrm{n}=14$ ) species probed with tandem repeat Type VI-CL114 revealed that $P$. axillaris subsp axillaris N (A), $P$. integrifolia subsp inflata S6 (B), P. hybrida V26 (D), and P. axillaris subsp parodii S7 (F) chromosomes have centromeric signals (red) on two pairs (Ch.II and IV) with variable site strengths, while chromosomes of P. hybrida W138 (E) and $P$. hybrida $\mathrm{Rdc}(\mathrm{C})$ only has one pair (Ch.IV). Bar $=10 \mu \mathrm{~m}$.

### 5.4.3.7 Type VII-CL295

This repeat was more abundant in PhybR27 and PaxiN than PinfS6 and PparS7 with $0.017 \%$ genome proportion and variable arrays sizes between 1 to 20 kb . A star like graph shape of TAREAN is not as condensed as in the RepeatExplorer clusters, and graphs of PhybR27 and PaxiN are similar (Figure 5.15). All Petunia species have intercalary strong sites on the short arm of Ch .I in addition to a centromeric signal on Ch .II in $P$. axillaris subsp axillaris $\mathrm{N}, P$. integrifolia subsp inflata S6 and $P$. hybrida Rdc (Figure 5.16).


Figure 5.15 Graphs of tandem repeat Type VII-CL295 show star like shape of TAREAN that not quite condensed like in the RepeatExplorer clusters except Ppar-CL299 that looks quite close, PhybR27-CL296 and PaxiN-CL254 shapes are very similar, while PinfS6-CL79 has linear branches linked with the condensed spot that interestingly same shape of PinfS6-CL79 in the tandem repeat Type IIICL58 (Figure 5.7).


Figure 5.16 Metaphase chromosomes of Petunia ( $2 \mathrm{n}=14$ ) species probed with tandem repeat Type VII-CL295 shows intercalary strong sites on the short arm of Ch.I in $P$. axillaris subsp axillaris N (A), P. integrifolia subsp inflata S 6 (B), $P$. hybrida Rdc (C), P. hybrida V26 (D), P. hybrida W138 (E), and P. axillaris subsp parodii S 7 ( F ), in addition to a centromeric signal on Ch .II only in $P$. axillaris subsp axillaris N (A), P. integrifolia subsp inflata S 6 (B), and P. hybrida Rdc (C). The probe was labelled with biotin 11- dUTP (red). Bar $=10 \mu \mathrm{~m}$.

### 5.4.3.8 Type VIII-CL331

A small number of copies of this repeat were found in PinfS6 and PaxiN, with only small arrays in the assembly. From TAREAN data, this repeat has donut graph shape, not as condensed as others in RepeatExplorer (Figure 5.17). No signal was detected by in situ hybridization on chromosomes over all petunias (Figure 5.18), confirming the low abundance. The result suggests that clusters with this abundance and lower can be discounted from analysis of major abundant tandemly repeat satDNA sequences.


Figure 5.17 Donut shapes of Type VIII-CL331, showing TAREAN's graph that is not quite condensed in comparison with more concentrated shapes in the RepeatExplorer (PinfS6-CL326, PhybR27-CL345, PaxiN-CL286, and PparCL280).


Figure 5.18 Metaphase chromosomes of Petunia $(2 n=14)$ species probed with tandem repeat Type VIII-CL331 shows no clear signals over all Petunia species chromosomes. $\mathrm{Bar}=10 \mu \mathrm{~m}$ for all species except $P$. integrifolia subsp inflata S 6 that has $5 \mu \mathrm{~m}$.

### 5.5 Discussion

The detailed analysis of repetitive elements from genomes of four Petunia species used complementary tools (graph-based repeat clustering using unassembled raw reads, raw read mapping, sequence assemblies, in situ hybridization and chromosome studies).

### 5.5.1 Genome proportion of tandem repeat clusters

Repetitive elements represented 64-68 \% of the Petunia genomes (Figure 1.3; Appendix 3.1), consistent with the measurements reported by Bombarely et al. (2016) in P. axillaris subsp axillaris N . The analysis showed that a relatively low proportion, $0.6 \%$, of the genome $(8.4 \mathrm{Mb}$ of the $1,400 \mathrm{Mb}$ genomes) was represented by a limited number - just eight- tandemly-repeated clusters of satellite DNA clusters (Table 5.4). This contrasts with a higher percentage of tandem repeats in other species with a range of genome sizes: 4.89 \% in Coix aquatica (Cai et al. 2014; $2,335 \mathrm{Mb}$ ), $6.8 \%$ in Beta vulgaris (Zakrzewski et al. 2010; $714-758 \mathrm{Mb}$ ), $5 \%$ in Zea mays (Meyers et al. 2001; 2,300-2,700 Mb), 2.7\% in Vicia faba (Robledillo et al. 2018; 1,300 Mb), $20 \%$ in Citrus spp. ( 380 Mb ), $30 \%$ in Cucumis sativus genomes ( 367 Mb ) (Hemleben et al. 2007). The Petunia figure is similar to that reported in Coix lacryma-jobi $(0.60 \%, 1,600 \mathrm{Mb})$. Even Arabidopsis thaliana $(176 \mathrm{Mb})$ includes some $8 \%$ of the genome as rDNA repeats, with $4 \%$ as the single AtCon tandemly repeated centromeric sequence (Heslop-Harrison et al. 1999). Except for the 45 S rDNA sequences at the secondary constrictions (slightly darker in DAPI staining), the low proportion of tandemly repeated satellites in petunia is supported by the chromosome images where no positively- or negatively- staining bands are seen (Figures 5.3, $5.5,5.8,5.10,5.12,5.14,5.16$ and 5.18). In contrast, many other plant species have conspicuous bands, considered as heterochromatin, at centromeric, sub-telomeric or intercalary positions on chromosomes. It is important to study in detail the nature of the tandem repeats in a genome where they represent a small but significant proportion: is their number, distribution and even function the same as in genomes with a higher proportion? Do any features of the genome mitigate against amplification of tandem arrays?

### 5.5.2 Tandemly repeated sequences within assemblies

In assembled sequence scaffolds, various short satellite repeat arrays were found ranging in length from less than 1 kb to some 20 kb (Table 5.4; Figures 5.4 and 5.6). Collapse of repeats, and mis-assembly of flanking regions, is often a consequence of the sequence assembly data and algorithms. Nevertheless, the assembly data in petunia, using both PacBio long-reads and mate-pairs (Bombarely et al. 2016) were supported the low proportion and diversity of tandem repeats. Depending on conformation, small repeat arrays ( $<10-50 \mathrm{~kb}$ ) were not expected to be seen, by in situ hybridization, nor identify SSRs and microsatellites, typically represented by 10s of copies of 2-, 3- or 4- base pair motifs, in the repeat analysis here. However, the chromosomes do show some array loci that are absent from the $P$. axillaris N assembly: for example, tandem repeats Type I-CL43A (10 kb array length, with much higher copy number by in situ hybridization and read mapping than in the assembly) and Type II-CL43B (1 kb) both locate in scaffold PaxiN162Scf160, but in situ hybridization locates Type I at subtelomeric sites and Type II is pericentromeric (Figures 5.3, 5.5 and 5.6). Short arrays of telomeric sequences, their derivatives, or other subtelomeric repeats, are often also found near centromeres (Presting et al. 1996), as seen in the sub-centromeric scaffold PaxiN162Scf160, while the major subtelomeric Type I arrays, like the Type V telomere (Figure 5.12), are collapsed in the draft assemblies.

### 5.5.3 Graph based clusters pipelines

Graph-based clustering algorithms are widely applied to whole-genome sequence assembly (Zerbino \& Birney 2008; Kingsford et al. 2010; Novák et al. 2010). Here, RepeatExplorer and TAREAN graphs are used to cluster repetitive elements, and the tandem repeats generally show a graph with a dense centre (star) or ring (donut) graph shape representing multiple similar reads with overlaps, with a lower number of peripheral reads with variants or representing ends of arrays (Figures 5.2, 5.7, 5.9, 5.11, 5.13, 5.15 and 5.17). While the graphs were helpful for identification of candidate tandem repeats, no link was evident between biological features of the repeat (abundance, location, monomer length and array size, or inter-monomer variation) and the detailed pattern of the graph.
5.5.4 The role of tandemly repeated sequences

Despite the relatively low proportion of repeats in petunia, tandem repeat classes were found with centromeric, peri-centromeric, sub-telomeric, telomeric and intercalary locations (Table 5.4; Figures 5.3, 5.5, 5.8, 5.10, 5.12, 5.14, 5.16 and 5.18). Their potential role in maintenance of nuclear of chromosome structure at metaphase and interphase has been considered, including centromeric function (Hemleben et al. 2007). Roles in large-scale genome organization (Biscotti et al. 2015), chromatin packaging, or maintenance of chromosome stability (Vershinin \& Heslop-Harrison 1998), and effects on the environment of the expressed genes (Lamb et al. 2007), have also been proposed (Ohtsubo et al. 1991; Han et al. 2008; Torres et al. 2011) (Figure 5.1).
5.5.5 The evolution of tandem repeats
P. axillaris subsp axillaris N and $P$. integrifolia subsp inflata S 6 separated from a common ancestor some 30 MYA (Wang et al. 2008), and came together in $P$. hybrida in the last 2 centuries (Gerats \& Strommer 2008). Comparing PaxiN and PinfS6, of the eight tandem repeats, three have substantially more copies in PaxiN than PinfS6, and two have more in PinfS6 than PaxiN. Notably, in the hybrid combination, one tandem repeat has a substantially greater copy number (similar copies in both ancestors, telomeric location) while two are diminished (one more PaxiN than PinfS6, one more PinfS6 than PaxiN). Tandem repeats most likely evolve in copy number by unequal crossing-over at meiosis, or slippage during replication before mitosis, events that our data show have occurred in both recent and older evolutionary time with both amplification and loss. The abundance of all types I to VIII in the sister species $P$. axillaris subsp parodii S 7 suggests that all types are ancient. Given the defined nature of the tandem repeats and availability of straightforward analysis pathway, it will be valuable to resynthesize $P$. hybrida from it ancestors and analyse the copy number changes occurring over a few generations, comparing both sexual and vegetative pathways to distinguish meiotic and mitotic events, and examining if the changes are salutatory, occurring in bursts soon after hybrid formation as with transposon activation, (Grandbastien 1998), and potentially related through chromatin remodelling and methylation changes. Genomic changes are regularly seen in hybrid species (Alix et al. 2017). Gaeta et al. (2007) have resynthesized tetraploid Brassicas and seen homoeologous chromosome exchanges, and it would be valuable to examine repetitive DNA changes over similar timescales in petunia. Ma and Gustafson (2008) examined changes in new triticale (wheat x rye) hybrids, and found more genomic changes in the rye chromosomes, occurring immediately after hybridization, also noting an
effect of cytoplasm; major rearrangements of the genome are also seen hybrids in the grass genus Brachypodium (Lusinska et al. 2018). In other Triticeae species, substantial differences in tandem repeat abundance between sister species combining in a polyploid hybrid are evident: the tandem repeat $d p T a 1$ is much more abundant in the N than D genomes in ancestral species and hybrid Aegilops ventricosa (Bardsley et al. 1999). Here, though, each type of repeat has a unique pattern of amplification in the three sister species $P$. axillaris subsp axillaris $\mathrm{N}, P$. integrifolia subsp inflata S 6 and $P$. axillaris subsp parodii S7 suggesting different evolution from that of the rest of the genome. Very rapid changes in copy number - from approximately 5 x to $1 / 5 \mathrm{x}$ in the hybrid compared to ancestral species - were observed for the each type. No correlations between abundance nor copy number evolution and chromosomal location were evident (see Figure 5.10).

### 5.5.6 Tandem repeats as genetic markers

Most of tandem clusters involved in pericentromeric regions except Type I-CL43A and Type V-CL102 that discovered in subtelomeric and telomeric loci respectively (Figures 5.3 and 5.12). This distribution is functionally important to strengthen chromosome structure of petunia as a typical genome. Findings of tandem repeat types III, VI and VII have been characterised as chromosomes markers, providing useful cytogenetic tool for easily identifying metaphase chromosomes, depending on repeat localization and fluorescence intensity (Figures 5.8, 5.14 and 5.16). Recently, many tools have been used for finding a specific approach to characterise genomes of different species, these methods are classified as non-PCR and PCR based techniques (Agarwal et al. 2008; Korir et al. 2013). So far, facts of the homology between in situ hybridization strength and the abundance of copy numbers in raw reads have been achieved for some tandem repeats but unlikely approved for others like Type IV and Type VIII (Figures 5.10 and 5.18). However, the two types have to some extent enough copy numbers and genome proportion (especially Type IV), with no clear signal has seen through FISH that is not a quantitative way for detecting unclear probes. This probably because of the existence of these repeats is much dispersed and in very small arrays. Interestingly, no correlation has been noticed between the copy numbers of some repeats and chromosome sizes.

Results obtained in the present chapter will consequently be used in integration of the chromosomal and genetic maps that are undertaken by the Petunia Genome Sequencing Consortium through molecular mapping and in situ hybridization, efficient chromosomes markers, providing useful cytogenetic tool for easily identifying metaphase chromosomes.

## Chapter VI. General discussion: Repetitive elements in petunia

This work has characterised the repetitive DNA landscape in the Petunia genome (see Appendix 3.1), with DNA components that can be divided into two major divisions based on their organization and position within genome. One division contains semi-autonomous sequences such as DNA transposable elements, retroelements, and integrated retrovirus-related sequences. The retroviral-related sequences were the focus of more detailed studies of their consequences for the genome and plant. The second division includes tandemly repeated sequences like satellite DNAs.

## PVCV and other integrated viral sequences in Petunia species

From the first group, EPRVs, as elements with major consequences for the host plant, were investigated here using bioinformatics tools, cytogenetic work (chapter III), and transmission electron microscopy (chapter IV) within Petunia genomes. Although these elements have extensively colonized flowering plant genomes since 20-34 MYA, EPRVs are still less well studied in plant genomes than in animals where they have been known for many years (Geering et al. 2014). Our results have highlighted further facts to understand the role of EPRVs elements (petu-like, florendo-like, and caulimo-like sequences) in formation of wild and hybrid host genomes, their possible functions, and relationship between different units. High variable proportions of EPRVs sequences have been counted within wild and hybrid genomes of petunia, and widely distinguished over their loci on chromosomes suggesting these elements (petu-like virus) as a novel cytogenetic marker alongside retrotransposons (Figure 3.18). Interestingly, some EPRVs (petu, and florendo-like sequences) share similar positions over host chromosomes (Figure 3.42) suggesting probably their closely related phylogenetic relationship with same endogenisation events. Endogenisation searches were extended to discover novel members of florendoviruses and caulimoviruses (four sequences of each type of both groups).

Also, the outcomes show higher levels of genome proportions and copy nymbers of EPRVs within hybrid petunia than wild parents, in addition to integration pattern of these elements inside hybrids as tandemly repeated sequences unlike their parents. As a consequence, hybrid petunias are considered as a reservoir of EPRVs and have more permissive and inducible genomes than wild parents (Richert-Pöggeler et al. 2003) (chapter III).

## PVCV expression and infections within Petunia tissues

Expression protocols have revealed that florendoviruses were non-active integrants despite their abundance unlike petu- and caulimo-like sequences that were strongly expressed (Figure 3.38). For the first time in plants, the approach of de novo integration of chromosomally integrated PVCV has discovered to be integrated over next generations on the telomere of heterologous chromosomes (see Figure 3.39). Moreover, significant ultra-structure changes have been noticed within chlorotic spot, vein clearing symptoms of horizontally transmitted PVCV as well as progeny of vertically transmitted PVCV and induced symptoms of PVCV (chapter IV).

The wide existence of endogenous pararetroviruses in abundant copy numbers within flowering plant genomes has suggested these elements as a source of infection, but also have a protective function in silencing and suppression via RNA interference-induced resistance (RichertPöggeler et al. 2003). The number of copies in petunia (chapter III) is much higher than is known to induce RNAi-mediated resistance to RNA viruses (Ratcliff et al. 1997; Jakowitsch et al. 1999; Wesley et al. 2001; Kunii et al. 2004). With the close relationship to retroelements, EPRV insertion has many impacts on host genome, potentially including chromosome breakage and rearrangement, insertional mutation, sequence amplification and gene regulation. However, most retroelements such as the Gypsy and Copia families, or DNA elements including CACTA-EnSpm, have more dispersed distributions over broad chromosomal regions, compared to the EPRVs that occur a discrete chromosomal loci. Fragmented lengths of integrated EPRV units also could have activities of promoter/enhancer, ORFs, active splice sites and RT in addition to transposition and related amplification ability (Löwer 1999; Hansen \& Heslop-Harrison 2004a). Additionally, they are playing a very clear role in their host evolution by adding novel genetic components at the levels of coding or transcriptional regulation taking into account that plants have higher plasticity in their genome structure than animals: the existence of EPRVs may play a role in genome diversification by providing coding or transcription regulatory elements as new genetic components. The spread of EPRVs is widley correlated with their host reproduction and distribution between different regions around the world. Although some EPRVs are located in geographically segregated regions, they probably spreaded to different areas of the world around 500 YA. Based on genetic population structure, these elements showed frequent spread among regions. Our findings confirmed the widespread distribution of EPRVs in the genomes of cultivated and wild plants
with extensive colonization patterns. These elements followed similar scale of high copy numbers families of transposable elements (Geering et al. 2014; Yasaka et al. 2014).

## Tandemly repeats as major repetitive DNA sequences in petunia

Tandemly repeated sequences have been analysed in this work through bioinformatics analysis and cytogenetic tools to explore their diversity over host genomes (chapter V). These elements were found with relatively low abundance in Petunia genomes, and include eight types of clusters that involved in centromeric, peri-centromeric, sub-telomeric, telomeric and intercalary regions of Petunia chromosomes (Table 5.4). Tandemly repeated clusters are vary in their copy numbers and localizations over examined Petunia genomes. More importantly, three types of tandem repeats have been characterised as efficient chromosomes markers, providing useful cytogenetic tools for the identification of metaphase chromosomes based on repeat localization and fluorescence intensity (Figures 5.8, 5.14 and 5.16). This work is consistent with a functional role suggested for the repeats in genome evolution and structural roles within chromosomes regions like centromeres and telomeres (Schmidt \& HeslopHarrison 1998). Their maintenance role in chromosome structure at metaphase and interphase has been considered, including centromeric function (Hemleben et al. 2007). Roles in largescale genome organization (Biscotti et al. 2015), chromatin packaging, or maintenance of chromosome stability (Vershinin \& Heslop-Harrison 1998), and effects on the environment of the expressed genes (Lamb et al. 2007), have also been proposed (Ohtsubo et al. 1991; Han et al. 2008; Torres et al. 2011), as well as in the stability of chromatin packaging (Escudeiro, Adega, Robinson, Schwarzacher, Heslop-Harrison and Chaves, submitted). Moreover, as repetitive DNA, tandem repeats probably have a protective role for coding DNA from any shock through stress conditions due to its high stability and it has been used for nuclear architecture study, chromosomes and genomes identification, and phylogenetic analysis (Heslop-Harrison 2000; Pluhar et al. 2001).

## Future extensions

Work should be continued to find out more integration features, localization, and transmission of different EPRVs within other plant species: given the well-defined presence and effects in petunia described here, and in banana (Harper et al. 1999), it is likely that they will be found more widely across plant species. Investigating new members of EPRVs should be extended
with assistance of the whole genome sequencing techniques. FISH work on caulimovirus-like sequences position in Petunia chromosomes should be extended using new techniques such as a massive single copy pools of oligonucleotides (Han et al. 2015) to cover all EPRVs types' locations. Expression patterns of EPRVs have been explored within and between wild Petunia species, and more data from hybrid varieties is strongly needed. In addition, de novo integration experiments have revealed novel facts about plant virus integration over plant generations, and exploring more details about integration sites within telomere regions are highly recommended. It would also be valuable to characterise further the mechanisms of vein clearing following PVCV infection, including the effects on chloroplasts. It will also be important to examine miRNA/siRNA species present in various infected and resistant or asymptomatic lines to futher characterise the endogenous effects of the integrated EPRV sequence motifs. For tandemly repeated sequences, it will be valuable to resynthesize $P$. hybrida from it ancestors and analyse the copy number changes occurring over a few generations, and examining chromosome elimination and diploidization, comparing both sexual and vegetative pathways to distinguish meiotic and mitotic events, and examining if the changes are salutatory, occurring in bursts soon after hybrid formation. For all the repetitive sequence classes, it will be interesting to further examine their role in epigenetics, including chromatin organization, their relationships with histone and DNA modifications, and potential consequences for the modulation of gene expression and chromosomes behaviour in adjacent regions.

## Conclusion

In the context of diversity and evolution, using six petunia species, raw reads from four wholegenome survey sequencing experiments, and two assemblies with bioinformatics tools, cytogenetic techniques and electron microscopy allowed us to explore our collected results regarding EPRVs and tandem repeats. This project has achieved our main aims (see 1.7) in order to provide new insights and highlight further facts to understand the role of repetitive DNA elements in formation of wild and hybrid host genomes, their possible functions and relationships. These elements present fundamental diversity among the evolutionarily related species and individuals, suggesting an evolutionary impact associated with repeats on host genome variation.

## References

Adams M.J. \& Antoniw J.F. (2005) DPVweb: An open access internet resource on plant viruses and virus diseases. Outlooks on Pest Management 16, 268-70.

Adams S.E., Mellor J., Gull K., Sim R.B., Tuite M.F., Kingsman S.M. \& Kingsman A.J. (1987) The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell 49, 111-9.

Agarwal M., Shrivastava N. \& Padh H. (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27, 617-31.

Alix K., Gérard P.R., Schwarzacher T. \& Heslop-Harrison J. (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany 120, 183-94.
Alizon S., Hurford A., Mideo N. \& Van Baalen M. (2009) Virulence evolution and the tradeoff hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology 22, 245-59.
Alkan C., Cardone M.F., Catacchio C.R., Antonacci F., O'Brien S.J., Ryder O.A., Purgato S., Zoli M., Della Valle G. \& Eichler E.E. (2011) Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Research 21, 137-45.

Altschul S.F., Gish W., Miller W., Myers E.W. \& Lipman D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403-10.

Amari K., Boutant E., Hofmann C., Schmitt-Keichinger C., Fernandez-Calvino L., Didier P., Lerich A., Mutterer J., Thomas C.L. \& Heinlein M. (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathogens 6, e1001119.
Anabestani A., Behjatnia S.A.A., Izadpanah K., Tabein S. \& Accotto G.P. (2017) Seed Transmission of Beet Curly Top Virus and Beet Curly Top Iran Virus in a Local Cultivar of Petunia in Iran. Viruses 9, 299-310.

Ando T. (1996) Distribution of Petunia axillaris (Solanaceae) and its new subspecies in Argentina and Bolivia. Acta Phytotax. Geobot. 47, 19-30.

Ando T., Kokubun H., Watanabe H., Tanaka N., Yukawa T., Hashimoto G., Marchesi E., Suárez E. \& Basualdo I.L. (2005) Phylogenetic analysis of Petunia sensu Jussieu (Solanaceae) using chloroplast DNA RFLP. Annals of Botany 96, 289-97.

Ando T., Nomura M., Tsukahara J., Watanabe H., Kokubun H., Tsukamoto T., Hashimoto G., Marchesi E. \& Kitching I.J. (2001) Reproductive isolation in a native population of Petunia sensu Jussieu (Solanaceae). Annals of Botany 88, 40313.

Arkhipova I.R., Yushenova I.A. \& Rodriguez F. (2017) Giant reverse transcriptaseencoding transposable elements at telomeres. Molecular Biology and Evolution 34, 2245-57.

Arney K.L. \& Fisher A.G. (2004) Epigenetic aspects of differentiation. Journal of Cell Science 117, 4355-63.
Balke I., Reseviča G. \& Zeltins A. (2018) Isolation and Characterization of Two Distinct Types of Unmodified Spherical Plant Sobemovirus-Like Particles for Diagnostic and Technical Uses. In: Virus-Derived Nanoparticles for Advanced Technologies (pp. 1934). Springer.

Bang J.W., Kim J.S. \& Lee M.K. (1997) Molecular cytogenetics of plant genome. Journal of Plant Biology 40, 149-55.

Bao W., Jurka M.G., Kapitonov V.V. \& Jurka J. (2009) New superfamilies of eukaryotic DNA transposons and their internal divisions. Molecular Biology and Evolution 26, 983-93.

Bao W., Kojima K.K. \& Kohany O. (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11-16.

Bardsley D., Cuadrado A., Jack P., Harrison G., Castilho A. \& Heslop-Harrison J. (1999) Chromosome markers in the tetraploid wheat Aegilops ventricosa analysed by in situ hybridization. Theoretical and Applied Genetics 99, 300-4.

Bennett M.D. \& Leitch I.J. (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107, 467-590.

Bennetzen J.L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends in Microbiology 4, 347-53.

Benson G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27, 573-80.

Bentzer B., Bothmer R.v., Engstrand L., Gustafsson M. \& Snogerup S. (1971) Some sources of error in the determination of arm rations of chromosomes. Botaniska Notiser.

Bergman C.M. \& Quesneville H. (2007) Discovering and detecting transposable elements in genome sequences. Briefings in Bioinformatics 8, 382-92.

Bilinski P., Han Y., Hufford M.B., Lorant A., Zhang P., Estep M.C., Jiang J. \& RossIbarra J. (2017) Genomic abundance is not predictive of tandem repeat localization in grass genomes. PloS one 12, e0177896.
Biscotti M.A., Olmo E. \& Heslop-Harrison J.P. (2015) Repetitive DNA in eukaryotic genomes. Chromosome Res. 23:415-20.
Bloom K. (2007) Centromere dynamics. Current Opinion in Genetics \& Development 17, 1516.

Boeke J. \& Corces V.G. (1989) Transcription and reverse transcription of retrotransposons. Annual Reviews in Microbiology 43, 403-34.
Bombarely A., Moser M., Amrad A., Bao M., Bapaume L., Barry C.S., Bliek M., Boersma M.R., Borghi L. \& Bruggmann R. (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants 2, 16074-82.

Brandes J. \& Wetter C. (1959) Classification of elongated plant viruses on the basis of particle morphology. Virology 8, 99-115.

Bringaud F., Ghedin E., Blandin G., Bartholomeu D.C., Caler E., Levin M.J., Baltz T. \& El-Sayed N. M. (2006) Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Molecular and Biochemical Parasitology 145, 158-70.
Büchen-Osmond C. (2003) Taxonomy and classification of viruses. Manual of clinical microbiology 2, 1217-26.
Britton N.L. \& Brown A. (1913) An illustrated flora of the northern United States, Canada and the British possessions: from Newfoundland to the parallel of the southern boundary of Virginia, and from the Atlantic Ocean westward to the 102d meridian. C. Scribner's sons.

Cabrera, A.L. andWillink, A. (1980) Biogeografia de America Latina, 2nd Edn. Secretaria Generalde la OEA, Washington.

Cai Z., Liu H., He Q., Pu M., Chen J., Lai J., Li X. \& Jin W. (2014) Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genomics 15, 1025-40.

Casacuberta E. (2017) Drosophila: retrotransposons making up telomeres. Viruses 9, 192207.

Cavalier-Smith T. (1985) Selfish DNA and the origin of introns. Nature 315, 283-84.

Charlesworth B., Sniegowski P. \& Stephan W. (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215-20.
Chen J., Chen J.P. \& Adams M. (2002) Characterisation of some carla-and potyviruses from bulb crops in China. Archives of Virology 147, 419-28.

Clare J. \& Farabaugh P. (1985) Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proceedings of the National Academy of Sciences 82, 2829-33.

Cohen J., Sikron N., Shuval S. \& Gera A. (1999) Susceptibility of vegetatively propagated petunia to tobamovirus infection and its possible control. Hortscience 34, 292-3.

Conia J., Bergounioux C., Perennes C., Muller P., Brown S. \& Gadal P. (1987) Flow cytometric analysis and sorting of plant chromosomes from Petunia hybrida protoplasts. Cytometry: The Journal of the International Society for Analytical Cytology 8, 500-8.

Contento A., Heslop-Harrison J. \& Schwarzacher T. (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenetic and Genome Research 109, 34-42.

Cooper D. (1946) Double fertilization in Petunia. American Journal of Botany 33, 54-7.
Corbetta M., Kasdorf G., Engelbrecht D. \& Wiid J. (2017) Detection of viral-like particles by electron microscopy of negatively stained extracts from grapevines. South African Journal of Enology and Viticulture 5, 43-9.

Craig N.L. (2002) Mobile DNA: an introduction. In: Mobile DNA II (pp. 3-11). American Society of Microbiology.

Croll D., Lendenmann M.H., Stewart E. \& McDonald B.A. (2015) The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics 201, 1213-28.

Daboussi M.-J. \& Capy P. (2003) Transposable elements in filamentous fungi. Annual Reviews in Microbiology 57, 275-99.

De Jong J.H., Fransz P. \& Zabel P. (1999) High resolution FISH in plants-techniques and applications. Trends in Plant Science 4, 258-63.
Dermen H. (1931) Polyploidy in petunia. American Journal of Botany 18, 250-61.
Dietrich A., De Jong J. \& Mulder R. (1981) Location and variation of the constitutive heterochromatin in Petunia hybrida. Genetica 55, 85-91.

Dillon L.W., Pierce L.C., Ng M.C. \& Wang Y.-H. (2013) Role of DNA secondary structures in fragile site breakage along human chromosome 10. Human Molecular Genetics 22, 1443-56.

Diop S.I., Geering A.D., Alfama-Depauw F., Loaec M., Teycheney P.-Y. \& Maumus F. (2018) Tracheophyte genomes keep track of the deep evolution of the Caulimoviridae. Scientific Reports 8, 572-80.

Doolittle W.F. \& Sapienza C. (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601-3.

Doyle J. \& Doyle J. (1990) Isolation of DNA from small amounts of plant tissues. BRL Focus 12, V15.

Edwards K., Johnstone C. \& Thompson C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research 19, 1349.

Eichler E.E., Clark R.A. \& She X. (2004) An assessment of the sequence gaps: unfinished business in a finished human genome. Nature Reviews Genetics 5, 345-54.

Elder Jr J.F. \& Turner B.J. (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. The Quarterly Review of Biology 70, 297-320.

Emori Y., Shiba T., Kanaya S., Inouye S., Yuki S. \& Saigo K. (1985) The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles. Nature 315, 773-76.

Engelmann J. \& Hamacher J. (2008) Plant Virus Diseases: Ornamental Plants 207-229.
Ewald P.W. (1983) Host-parasite relations, vectors, and the evolution of disease severity. Annual Review of Ecology and Systematics 14, 465-85.

Ewald P.W. (1987) Transmission Modes and Evolution of the Parasitism-Mutualism Continuum a. Annals of the New York Academy of Sciences 503, 295-306.

Fauquet C.M., Mayo M.A., Maniloff J., Desselberger U. \& Ball L.A. (2005) Virus taxonomy: VIIIth report of the International Committee on Taxonomy of Viruses. Academic Press.

Ferguson M.C. \& Ottley A.M. (1932) Studies on Petunia III. A redescription and additional discussion of certain species of Petunia. American Journal of Botany 19, 385-405.

Feschotte C. \& Pritham E.J. (2007) DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331-68.

Flavell A.J., Dunbar E., Anderson R., Pearce S.R., Hartley R. \& Kumar A. (1992) Ty1copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Research 20, 3639-44.

Flavell A.J., Pearce S.R. \& Kumar A. (1994) Plant transposable elements and the genome. Current Opinion in Genetics \& Development 4, 838-44.
Flavell R., Bennett M., Smith J. \& Smith D. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics 12, 257-69.
Fransz P.F., Stam M., Montijn B., Hoopen R.T., Wiegant J., Kooter J.M., Oud O. \& Nanninga N. (1996) Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridization. The Plant Journal 9, 767-74.

Fregonezi J.N., Turchetto C., Bonatto S.L. \& Freitas L.B. (2012) Biogeographical history and diversification of Petunia and Calibrachoa (Solanaceae) in the Neotropical Pampas grassland. Botanical Journal of the Linnean Society 171, 140-53.

Fries R.E. (1911) Die Arten der Gattung Petunia. Kungl. Svenska Vetenskapsakademiens Handlingar 46, 1-72.

Froissart R., Roze D., Uzest M., Galibert L., Blanc S. \& Michalakis Y. (2005) Recombination every day: abundant recombination in a virus during a single multicellular host infection. PLoS Biology 3, 389-95.
Gaeta R.T., Pires J.C., Iniguez-Luy F., Leon E. \& Osborn T.C. (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. The Plant Cell 19, 3403-17.

Gall J.G. \& Pardue M.L. (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proceedings of the National Academy of Sciences 63, 378-83.

Ganga M., Jayalakshmi S., Jegadeeswari V., Padmadevi K. \& Jawaharlal M. (2011) Petunia. In: Wild Crop Relatives: Genomic and Breeding Resources. 209-42. Springer.

García G., Ríos N. \& Gutiérrez V. (2015) Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae). Genetica 143, 353-60.

Gautam K.K., Kumar S. \& Raj S.K. (2012) Molecular characterization of Cucumber mosaic virus strain causing severe mosaic disease on petunia in India. Phytoparasitica 40, 42531.

Gayral P., Noa-Carrazana J.-C., Lescot M., Lheureux F., Lockhart B.E., Matsumoto T., Piffanelli P. \& Iskra-Caruana M.-L. (2008) A single Banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. Journal of Virology 82, 6697-710.

Geering A. \& Hull R. (2012) Family Caulimoviridae. Virus taxonomy classification and nomenclature of viruses ninth Report of the International Committee on Taxonomy of Viruses, 424-43.

Geering A.D. (2001) Caulimoviridae (Plant Pararetroviruses). eLS.
Geering A.D., Maumus F., Copetti D., Choisne N., Zwickl D.J., Zytnicki M., McTaggart A.R., Scalabrin S., Vezzulli S. \& Wing R.A. (2014) Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nature Communications 5, 5269-79.

Geering A.D., Scharaschkin T. \& Teycheney P.-Y. (2010) The classification and nomenclature of endogenous viruses of the family Caulimoviridae. Archives of Virology 155, 123-31.

Gera A., Sikron N., Cohen J. \& Zeidan M. (2000) First report of Petunia vein clearing virus in Israel. Plant Disease 84, 201.

Gerats T. (2009) Identification and exploitation of Petunia transposable elements: a brief history. In: Petunia (pp. 365-79). Springer.

Gerats T. \& Strommer J. (2008) Petunia: evolutionary, developmental and physiological genetics. Springer Science \& Business Media.

Gilbert C. \& Feschotte C. (2018) Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Current Opinion in Genetics \& Development 49, 15-24.

Goodwin S., McPherson J.D. \& McCombie W.R. (2016) Coming of age: ten years of nextgeneration sequencing technologies. Nature Reviews Genetics 17, 333-51.

Grandbastien M.-A. (1998) Activation of plant retrotransposons under stress conditions. Trends in Plant Science 3, 181-7.

Grandbastien M.-A., Spielmann A. \& Caboche M. (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337, 376-80.

Gregor W., Mette M.F., Staginnus C., Matzke M.A. \& Matzke A.J. (2004) A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiology 134, 1191-9.
Gregory T.R., Nicol J.A., Tamm H., Kullman B., Kullman K., Leitch I.J., Murray B.G., Kapraun D.F., Greilhuber J. \& Bennett M.D. (2006) Eukaryotic genome size databases. Nucleic Acids Research 35, 332-8.

Greuter W., McNeill J., Barrie F.R., Burdet H., Demoulin V., Filgueiras T., Nicholson D., Silva P., Skog J. \& Trehane P. (2000) International code of botanical nomenclature
(Saint Louis Code): Sixteenth International Botanical Congress, St Louis, Missouri, USA, July-August 1999. In: International code of botanical nomenclature (Saint Louis Code): Sixteenth International Botanical Congress, St Louis, Missouri, USA, JulyAugust 1999. International Association for Plant Taxonomy.
Gronenborn B. (1987) The molecular biology of Cauliflower mosaic virus and its application as plant gene vector. In: Plant DNA Infectious Agents (pp. 1-29). Springer.

Hagemann R. \& Snoad B. (1971) Paramutation (somatic conversion) at the Sulfurea locus of Lycopersicon esculentum V. The localisation of Sulf. Heredity 27, 409.

Hall A.E., Keith K.C., Hall S.E., Copenhaver G.P. \& Preuss D. (2004) The rapidly evolving field of plant centromeres. Current Opinion in Plant Biology 7, 108-14.
Han Y., Zhang T., Thammapichai P., Weng Y. \& Jiang J. (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200, 771-9.

Han Y., Zhang Z., Liu J., Lu J., Huang S. \& Jin W. (2008) Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenetic and Genome Research 122, 80-8.

Hansen C., Harper G. \& Heslop-Harrison J. (2005) Characterisation of pararetrovirus-like sequences in the genome of potato (Solanum tuberosum). Cytogenetic and Genome Research 110, 559-65.

Hansen C. \& Heslop-Harrison J.S. (2004b) Sequences and Phylogenies of Plant Pararetroviruses, Viruses, and Transposable Elements. Advances in Botanical Research 41, 165-93.

Hansen L.J., Chalker D.L. \& Sandmeyer S.B. (1988) Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Molecular and Cellular Biology 8, 5245-56.
Harper G., Hull R., Lockhart B. \& Olszewski N. (2002) Viral sequences integrated into plant genomes. In: Annual Review of Phytopathology, pp. 119-36.

Harper G., Osuji J.O., Heslop-Harrison J.P. \& Hull R. (1999) Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255, 207-13.

Heitkam T. \& Schmidt T. (2009) BNR-a LINE family from Beta vulgaris-contains a RRM domain in open reading frame 1 and defines a L1 sub-clade present in diverse plant genomes. The Plant Journal 59, 872-82.

Hemleben V., Kovarik A., Torres-Ruiz R.A., Volkov R.A. \& Beridze T. (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Systematics and Biodiversity 5, 277-89.
Henikoff S., Ahmad K. \& Malik H.S. (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098-102.
Hesketh E.L., Meshcheriakova Y., Thompson R.F., Lomonossoff G.P. \& Ranson N.A. (2017) The structures of a naturally empty Cowpea mosaic virus particle and its genome-containing counterpart by cryo-electron microscopy. Scientific Reports 7, 53948.

Heslop-Harrison J. (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. The Plant Cell 12, 617-35.

Heslop-Harrison J.P., Brandes A., Taketa S., Schmidt T., Vershinin A.V., Alkhimova E.G., Kamm A., Doudrick R.L., Schwarzacher T. \& Katsiotis A. (1997) The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica 100, 197-204.
Heslop-Harrison J.P. \& Schwarzacher T. (2012) Genetics and genomics of crop domestication. In: Plant Biotechnology and Agriculture (pp. 3-18). Elsevier.
Heslop-Harrison J.S., Murata M., Ogura Y., Schwarzacher T. \& Motoyoshi F. (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. The Plant Cell 11, 31-42.

Heslop-Harrison J. \& Schmidt T. (2001) Plant nuclear genome composition. Chichester: John Wiley \& Sons Ltd; 2012.
Hoang A.T., Zhang H.-m., Yang J., Chen J.-p., Hébrard E., Zhou G.-h., Vinh V.N. \& Cheng J.-a. (2011) Identification, characterization, and distribution of Southern rice black-streaked dwarf virus in Vietnam. Plant Disease 95, 1063-9.

Hohn T. (1994) Recombination of a plant pararetrovirus: Cauliflower mosaic virus. In: Homologous Recombination and Gene Silencing in Plants (pp. 25-38). Springer.

Hohn T., Richert-Pöggeler K.R., Staginnus C., Harper G., Schwarzacher T., Teo C.H., Teycheney P.-Y., Iskra-Caruana M.-L. \& Hull R. (2008) Evolution of integrated plant viruses. In: Plant Virus Evolution (pp. 53-81). Springer.
Hohn T. \& Rothnie H. (2013) Plant pararetroviruses: replication and expression. Current Opinion in Virology 3, 621-8.

Hoskins R.A., Carlson J.W., Kennedy C., Acevedo D., Evans-Holm M., Frise E., Wan K.H., Park S., Mendez-Lago M. \& Rossi F. (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316, 1625-8.

Hua-Van A., Le Rouzic A., Boutin T.S., Filée J. \& Capy P. (2011) The struggle for life of the genome's selfish architects. Biology Direct 6, 19-47.

Hua-Van A., Le Rouzic A., Maisonhaute C. \& Capy P. (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenetic and Genome Research 110, 426-40.

Huang Y., Hidalgo-Bravo A., Zhang E., Cotton V.E., Mendez-Bermudez A., Wig G., Medina-Calzada Z., Neumann R., Jeffreys A.J. \& Winney B. (2013) Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids Research 42, 315-27.

Huelsenbeck J.P. \& Ronquist F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-5.

Huertas P. (2010) DNA resection in eukaryotes: deciding how to fix the break. Nature Structural and Molecular Biology 17, 11-16.
Hull R. (2002) Matthew's Plant Virology $4^{\text {a }}$ Ed.[e-book] Grã-Bretanha. Bath Press. Disponível em: http://pt. scribd. com/doc/51572781/Matthews-Plant-Virology-4th-Ed [Acedido em 2 de Setembro de 2013].

Hull R. (2014) Chapter 8-origins and evolution of plant viruses. Plant Virology, 5th edn (ed. Hull R.), 423-76.

Hutchison III C.A. (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Research 35, 6227-37.

Irick H. (1994) A new function for heterochromatin. Chromosoma 103, 1-3.
Iskra-Caruana M.-L., Baurens F.-C., Gayral P. \& Chabannes M. (2010) A four-partner plant-virus interaction: enemies can also come from within. Molecular Plant-Microbe Interactions 23, 1394-402.

Jakowitsch J., Mette M., van Der Winden J., Matzke M. \& Matzke A. (1999) Integrated pararetroviral sequences define a unique class of dispersed repetitive DNA in plants. Proceedings of the National Academy of Sciences 96, 13241-6.

Jędrzejuk A., Meyer L. \& Serek M. (2017) Characterization of interspecific hybrids of Petunia and Calibrachoa by multiplex PCR, DNA content, and chromosome number. The Journal of Horticultural Science and Biotechnology 92, 493-501.

John H., Birnstiel M. \& Jones K. (1969) RNA-DNA hybrids at the cytological level. Nature 223, 582-87.

Jurka J., Kapitonov V.V., Kohany O. \& Jurka M.V. (2007) Repetitive sequences in complex genomes: structure and evolution. Annual Review of Genomics and Human Genetics. 8, 241-59.

Jurka J., Kapitonov V.V., Pavlicek A., Klonowski P., Kohany O. \& Walichiewicz J. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110, 462-7.

Jurka J., Walichiewicz J. \& Milosavljevic A. (1992) Prototypic sequences for human repetitive DNA. Journal of Molecular Evolution 35, 286-91.
Jussieu A.d. (1803) Sur le Petunia genera nouveau de la famille des plants solanees. Annales du Muséum d'histoire naturelle. 2, 214-6.

Kapitonov V.V. \& Jurka J. (1999) The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. Journal of Molecular Evolution 48, 248-51.

Kapitonov V.V. \& Jurka J. (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Reviews Genetics 9, 411-12.

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S. \& Duran C. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-9.

Kelley D.R., Schatz M.C. \& Salzberg S.L. (2010) Quake: quality-aware detection and correction of sequencing errors. Genome Biology 11, R116-28.

Kidwell M.G. (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115, 49-63.

Kidwell M.G. (2005) Transposable elements. In: The Evolution of the genome (pp. 165-221). Elsevier.

Kim S., Park M., Yeom S.-I., Kim Y.-M., Lee J.M., Lee H.-A., Seo E., Choi J., Cheong K. \& Kim K.-T. (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature genetics 46, 270-78.
King A.M., Lefkowitz E., Adams M.J. \& Carstens E.B. (2011) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier.

Kingsford C., Schatz M.C. \& Pop M. (2010) Assembly complexity of prokaryotic genomes using short reads. BMC bioinformatics 11, 21-31.

Klemm N., Dohm A., Sander U. \& Capo A. (2017) Petunia plants having a unique flower color pattern. Patent Application Publication 461, 822.

Kokubun H., Nakano M., Tsukamoto T., Watanabe H., Hashimoto G., Marchesi E., Bullrich L., Basualdo I.L., Kao T.-h. \& Ando T. (2006) Distribution of selfcompatible and self-incompatible populations of Petunia axillaris (Solanaceae) outside Uruguay. Journal of Plant Research 119, 419.

Korir N.K., Han J., Shangguan L., Wang C., Kayesh E., Zhang Y. \& Fang J. (2013) Plant variety and cultivar identification: advances and prospects. Critical Reviews in Biotechnology 33, 111-25.
Krassovsky K. \& Henikoff S. (2014) Distinct chromatin features characterize different classes of repeat sequences in Drosophila melanogaster. BMC Genomics 15, 105-18.
Kriedt R.A., Cruz G.M., Bonatto S.L. \& Freitas L.B. (2014) Novel transposable elements in Solanaceae: evolutionary relationships among Tnt1-related sequences in wild Petunia species. Plant Molecular Biology Reporter 32, 142-52.
Krupovic M., Blomberg J., Coffin J.M., Dasgupta I., Fan H., Geering A.D., Gifford R., Harrach B., Hull R. \& Johnson W. (2018) Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. Journal of Virology 92, e00515-18.
Kubis S., Schmidt T. \& Heslop-Harrison J.S. (1998) Repetitive DNA elements as a major component of plant genomes. Annals of Botany 82, 45-55.
Kuhn G.C., Küttler H., Moreira-Filho O. \& Heslop-Harrison J.S. (2011) The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Molecular Biology and Evolution 29, 7-11.
Kulcheski F.R., Muschner V.C., Lorenz-Lemke A.P., Stehmann J.R., Bonatto S.L., Salzano F.M. \& Freitas L.B. (2006) Molecular phylogenetic analysis of Petunia juss.(Solanaceae). Genetica 126, 3-14.
Kumar A. \& Bennetzen J.L. (1999) Plant retrotransposons. Annual Review of Genetics 33, 479-532.

Kunii M., Kanda M., Nagano H., Uyeda I., Kishima Y. \& Sano Y. (2004) Reconstruction of putative DNA virus from endogenous Rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution. BMC Genomics 5, 8094.

Kurtz S., Narechania A., Stein J.C. \& Ware D. (2008) A new method to compute $K$-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genomics 9, 517-35.

Lamb J.C., Meyer J.M., Corcoran B., Kato A., Han F. \& Birchler J.A. (2007) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Research 15, 33-49.

Lei R., Jiang H., Hu F., Yan J. \& Zhu S. (2017) Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Reports 36, 327-41.

Leitch I.J. \& Leitch A.R. (2013) Genome size diversity and evolution in land plants. In: Plant Genome Diversity Volume 2 (pp. 307-22). Springer.
Lesemann D.-E. (1991) Specific cytological alterations in virus-infected plant cells. In: Electron Microscopy of Plant Pathogens (pp. 147-59). Springer.

Lesemann D.-E. (1996) Viruses recently detected in vegetatively propagated Petunia. In: IX International Symposium on Virus Diseases of Ornamental Plants 432, pp. 88-95.

Lesemann D. \& Casper R. (1973) Electron microscopy of Petunia vein-clearing virus, an isometric plant virus associated with specific inclusions in petunia cells. Phytopathology 63, 1118-1124.

Levan A. (1937) On chromosome fragments in Petunia. Svensk Botanisk Tidskrift 31: 1-10.
Linskens H. (1975) Incompatibility in Petunia. Proceedings of the Royal Society of London 188, 299-311.

Lisch D. (2013) How important are transposons for plant evolution? Nature Reviews Genetics 14, 49-61.

Lively C.M. (2010) A review of Red Queen models for the persistence of obligate sexual reproduction. Journal of Heredity 101, S13-S20.

Lockhart B. \& Lesemann D.-E. (1998) Occurrence of Petunia vein-clearing virus in the USA. Plant Disease 82, 262.

Lockhart B.E., Menke J., Dahal G. \& Olszewski N. (2000) Characterization and genomic analysis of Tobacco vein clearing virus, a plant pararetrovirus that is transmitted vertically and related to sequences integrated in the host genome. Journal of General Virology 81, 1579-85.

López-Flores I. \& Garrido-Ramos M. (2012) The repetitive DNA content of eukaryotic genomes. In: Repetitive DNA (pp. 1-28). Karger Publishers.

Löwer R. (1999) The pathogenic potential of endogenous retroviruses: facts and fantasies. Trends in Microbiology 7, 350-6.

Lusinska J., Majka J., Betekhtin A., Susek K., Wolny E. \& Hasterok R. (2018) Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon, B. stacei and B. hybridum. Annals of Botany 122, 445-59.

Lustig A.J. (2003) Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nature Reviews Genetics 4, 916-23.

Ma X.-F. \& Gustafson J.P. (2008) Allopolyploidization-accommodated genomic sequence changes in triticale. Annals of Botany 101, 825-32.

Malinowski E. (1935) Studies on unstable characters in Petunia. I. The extreme flower types of the unstable race with mosaic color patterns. Genetics 20, 342-56.
Manninen I. \& Schulman A.H. (1993) BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Molecular Biology 22, 829-46.

Marçais G. \& Kingsford C. (2011) A fast, lock-free approach for efficient parallel counting of occurrences of $k$-mers. Bioinformatics 27, 764-70.
Mardis E.R. (2008) The impact of next-generation sequencing technology on genetics. Trends in Genetics 24, 133-41.
Marlor R.L., Parkhurst S. \& Corces V.G. (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Molecular and Cellular Biology 6, 1129-34.
Marthaler H. (1936) Morphologie der Chromosomen des Zellkerns von Petunia. Z. indukt. Ab-stamm u. Vererb. 72: 258-266.

Martienssen R.A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proceedings of the National Academy of Sciences 95, 2021-6.
Mather K. \& Edwardes P. (1943) Specific differences in Petunia. III. Flower colour and genetic isolation. J. Genet 45, 243-60.
Matsubara K., Kodama H., Kokubun H., Watanabe H. \& Ando T. (2005) Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene 358, 121-6.
Mavric I., Blatnik A. \& Ravnikar M. (1996) Viruses infecting trailing petunias in Slovenia. In: IX International Symposium on Virus Diseases of Ornamental Plants 432, pp. 3647.

McKnight T.D., Riha K. \& Shippen D.E. (2002) Telomeres, telomerase, and stability of the plant genome. Plant Molecular Biology 48, 331-7.

Melters D.P., Bradnam K.R., Young H.A., Telis N., May M.R., Ruby J.G., Sebra R., Peluso P., Eid J. \& Rank D. (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology 14, R10-30.

Mendieta J.P. (2015) Transposable Element Abundance and Variability in 28 Different Species in the Family Solanaceae. Undergraduate Honors Theses. 980.

Metzker M.L. (2010) Sequencing technologies-the next generation. Nature Reviews Genetics 11, 31-46.

Meyers B.C., Tingey S.V. \& Morgante M. (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Research 11, 1660-76.

Ming R., Hou S., Feng Y., Yu Q., Dionne-Laporte A., Saw J.H., Senin P., Wang W., Ly B.V. \& Lewis K.L. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991-96.

Mishiba K.-I., Ando T., Mii M., Watanabe H., Kokubun H., Hashimoto G. \& Marchesi E. (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Annals of Botany 85, 665-73.
Morgante M., Hanafey M. \& Powell W. (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 30, 194.
Morran L.T., Schmidt O.G., Gelarden I.A., Parrish R.C. \& Lively C.M. (2011) Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science 333, 216-8.

Mount S.M. \& Rubin G.M. (1985) Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Molecular and Cellular Biology 5, 1630-8.

Murphy F.A., Fauquet C.M., Bishop D.H., Ghabrial S.A., Jarvis A.W., Martelli G.P., Mayo M.A. \& Summers M.D. (2012) Virus taxonomy: classification and nomenclature of viruses. Springer Science \& Business Media.

Mustafa S.I., Schwarzacher T. \& Heslop-Harrison J. (2018) Complete mitogenomes from Kurdistani sheep: abundant centromeric nuclear copies representing diverse ancestors. Mitochondrial DNA Part A, 1-14.

Nacheva E.P., Ward K.N., Brazma D., Virgili A., Howard J., Leong H.N. \& Clark D.A. (2008) Human herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal sites. Journal of Medical Virology 80, 1952-8.

Nagaki K., Cheng Z., Ouyang S., Talbert P.B., Kim M., Jones K.M., Henikoff S., Buell C.R. \& Jiang J. (2004) Sequencing of a rice centromere uncovers active genes. Nature Genetics 36, 138-45.
Navot N., Zeidan M., Pichersky E., Zamir D. \& Czosnek H. (1992) Use of the polymerase chain reaction to amplify Tomato yellow leaf curl virus DNA from infected plants and viruliferous whiteflies. Phytopathology 82, 1199-202.

Ndowora T., Dahal G., LaFleur D., Harper G., Hull R., Olszewski N.E. \& Lockhart B. (1999) Evidence that badnavirus infection inmusacan originate from integrated pararetroviral sequences. Virology 255, 214-20.
Nehra C. \& Gaur R. (2015) Molecular characterization of Chilli leaf curl virus infecting new host plant Petunia hybrida in India. Virus Genes 50, 58-62.
Nelson M.I. \& Holmes E.C. (2007) The evolution of epidemic influenza. Nature Reviews Genetics 8, 196-05.

Neumann P., Požárková D. \& Macas J. (2003) Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Molecular Biology 53, 399-410.

Noreen F., Akbergenov R., Hohn T. \& Richert-Pöggeler K.R. (2007) Distinct expression of endogenous Petunia vein clearing virus and the DNA transposon dTphl in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant Journal 50, 219-29.
Nouri-Aria K.T. (2008) In situ hybridization. In: Allergy Methods and Protocols (pp. 331-47). Springer.
Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P. \& Macas J. (2017) TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research 45, 111-21.
Novák P., Neumann P. \& Macas J. (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC bioinformatics 11, 37890.

Novák P., Neumann P., Pech J., Steinhaisl J. \& Macas J. (2013) RepeatExplorer: a Galaxybased web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792-3.

Novoa R.R., Calderita G., Arranz R., Fontana J., Granzow H. \& Risco C. (2005) Virus factories: associations of cell organelles for viral replication and morphogenesis. Biology of the Cell 97, 147-72.

OEPP/EPPO (2008) Production of pathogen-tested herbaceous ornamentals. Bulletin OEPP/EPPO Bulletin 38, 31-52.

Ohtsubo H., Umeda M. \& Ohtsubo E. (1991) Organization of DNA sequences highly repeated in tandem in rice genomes. The Japanese Journal of Genetics 66, 241-54.
Olschowski S., Meyer L., Mußmann V. \& Serek M. (2012) Investigation of crossing barriers between Calibrachoa and Petunia species. In: II All Africa Horticulture Congress 1007, pp. 765-9.

Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G., Hellsten U., Mitros T. \& Poliakov A. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-56.

Pevzner P.A., Tang H. \& Waterman M.S. (2001) An Eulerian path approach to DNA fragment assembly. Proceedings of the National Academy of Sciences 98, 9748-53.

Pluhar S., Erickson L. \& Pauls K. (2001) Effects of tissue culture on a highly repetitive DNA sequence (E180 satellite) in Medicago sativa. Plant Cell, Tissue and Organ Culture 67, 195-9.

Presting G.G., Frary A., Pillen K. \& Tanksley S.D. (1996) Telomere-homologous sequences occur near the centromeres of many tomato chromosomes. Molecular and General Genetics MGG 251, 526-31.

Pritham E.J. (2009) Transposable elements and factors influencing their success in eukaryotes. Journal of Heredity 100, 648-55.

Pröls F. \& Meyer P. (1992) The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. The Plant Journal 2, 465-75.

Ratcliff F., Harrison B.D. \& Baulcombe D.C. (1997) A similarity between viral defense and gene silencing in plants. Science 276, 1558-60.
Reck-Kortmann M., Silva-Arias G.A., Segatto A.L.A., Mäder G., Bonatto S.L. \& de Freitas L.B. (2014) Multilocus phylogeny reconstruction: new insights into the evolutionary history of the genus Petunia. Molecular phylogenetics and evolution 81, 19-28.

Reuter G., Giarre M., Farah J., Gausz J., Spierer A. \& Spierer P. (1990) Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zincfinger protein. Nature 344, 219.

Richert-Pöggeler K. \& Shepherd R. (1997) Petunia vein-clearing virus: a plant pararetrovirus with the core sequences for an integrase function. Virology 236, 137-46.

Richert-Pöggeler K.R. \& Lesemann D.-E. (2007) Petunia vein clearing virus. AAB Descriptions of Plant Viruses.

Richert-Pöggeler K.R. \& Schwarzacher T. (2009) Impact of Retroelements in Shaping the Petunia Genome. In: Petunia (pp. 343-63). Springer.

Richert-Pöggeler K.R., Noreen F., Schwarzacher T., Harper G. \& Hohn T. (2003) Induction of infectious Petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO Journal 22, 4836-45.

Richert (1992) Untersuchungen zur Charakterisierung des Petunia vein clearing virus (PVCV), ein samenübertragbares Pararetrovirus. PhD thesis, , Göttingen, Germany. In: PhD thesis. University of Göttingen, Göttingen, Germany.

Ricker N., Qian H. \& Fulthorpe R. (2012) The limitations of draft assemblies for understanding prokaryotic adaptation and evolution. Genomics 100, 167-75.
Robledillo L.Á., Koblížková A., Novák P., Böttinger K., Vrbová I., Neumann P., Schubert I. \& Macas J. (2018) Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Scientific Reports 8, 5838-49.

Rudd M.K. \& Willard H.F. (2004) Analysis of the centromeric regions of the human genome assembly. Trends in Genetics 20, 529-33.

Rybicki E.P. \& Hughes F.L. (1990) Detection and typing of Maize streak virus and other distantly related geminiviruses of grasses by polymerase chain reaction amplification of a conserved viral sequence. Journal of General Virology 71, 2519-26.

Salih M. (2017) Nuclear and chloroplast genome diversity in apomictic microspecies of Taraxacum. University of Leicester, Department of Genetics, PhD thesis.

Salih R.H.M., Majeský L., Schwarzacher T., Gornall R. \& Heslop-Harrison P. (2017) Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies. PloS one 12, e0168008.

Salvo-Garrido H., Travella S., Schwarzacher T., Harwood W. \& Snape J. (2001) An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome 44, 104-10.

SanMiguel P. \& Bennetzen J.L. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Annals of Botany 82, 37-44.

SanMiguel P., Tikhonov A., Jin Y.-K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P.S., Edwards K.J., Lee M. \& Avramova Z. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765-8.

Schaack S., Gilbert C. \& Feschotte C. (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends in Ecology \& Evolution 25, 537-46.

Schaad M.C., Jensen P.E. \& Carrington J.C. (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. The EMBO Journal 16, 4049-59.

Schmidt T. (1999) LINEs, SINEs and repetitive DNA: non-LTR retrotransposons in plant genomes. Plant Molecular Biology 40, 903-10.

Schmidt T. \& Heslop-Harrison J. (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends in Plant Science 3, 195-9.

Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L. \& Graves T.A. (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112-5.

Schulman A.H. \& Kalendar R. (2005) A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetic and Genome Research 110, 598605.

Schwarzacher T. (2003) Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. Journal of Experimental Botany 54, 11-23.

Schwarzacher T. \& Heslop-Harrison P. (2000) Practical in situ hybridization. BIOS Scientific. Oxford: Bios Scientific Publishers Limited.

Sepsi A., Higgins J.D., Heslop-Harrison J.S. \& Schwarzacher T. (2017) CENH 3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat. The Plant Journal 89, 235-49.

Sharma A.K. \& Sharma A. (2001) Chromosome painting-principles, strategies and scope. Methods in Cell Science 23, 1-5.

Sharma S. \& Raina S. (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenetic and Genome Research 109, 15-26.

Shendure J. \& Ji H. (2008) Next-generation DNA sequencing. Nature Biotechnology 26, 1135-45.

Sikron N., Cohen J., Shoval S. \& Gera A. (1995) Virus diseases in petunia. Phytoparasitica 23, 273.

Sink K. (1984) Taxonomy. In: Petunia (pp. 3-9). Springer.
Slotkin R.K. \& Martienssen R. (2007) Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics 8, 272-85.

Smit A. \& Hubley R. (2015) GreenP. RepeatMasker at http://repeatmasker. org Retrieved online.

Smith F. \& Oud J. (1972) The possibility to distinguish chromosomes of Petunia hybrida by quinacrine fluorescence. Genetica 43, 589-96.

Smith F., Oud J. \& De Jong J. (1973) A standard karyogram of Petunia hybrida Hort. Genetica 44, 474-84.

Smith L. (1966) Flora Illustrada Catarinense. Solanaceas: Herbario. Barbosa Rodrigues, 26191.

Staginnus C., Gregor W., Mette M.F., Teo C.H., Borroto-Fernandez E.G., Machado M.L.d.C., Matzke M. \& Schwarzacher T. (2007) Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species.(Research article)(Clinical report). BMC Plant Biology 7, 24-40.

Stavolone L. \& Lionetti V. (2017) Extracellular matrix in plants and animals: Hooks and locks for viruses. Frontiers in Microbiology 8, 1760-68.

Stavolone L., Villani M.E., Leclerc D. \& Hohn T. (2005) A coiled-coil interaction mediates Cauliflower mosaic virus cell-to-cell movement. Proceedings of the National Academy of Sciences 102, 6219-24.

Stebbins G. \& Dunn L. (1950) Chapter XII: the karyotype. pp. 442-72. Columbia University Press New York.

Steere W.C. (1932) Chromosome behavior in triploid Petunia hybrida. American Journal of Botany 19, 340-57.

Stehmann J. \& Bohs L. (2007) Nuevas combinaciones en Solanaceae. Darwiniana 45, 2401.

Stehmann J., Semir J., Dutilh J. \& Forni-Martins E. (1996) Solanaceae. IOPB chromosome data. International Organization of Plant Biosystematics Newsletter, 26-7.

Stehmann J.R., Lorenz-Lemke A.P., Freitas L.B. \& Semir J. (2009) The genus Petunia. In: Petunia (pp. 1-28). Springer.

Stehmann J.R. \& Semir J. (1997) A new species and new combinations in Calibrachoa (Solanaceae). Novon, 417-9.

Stewart A.D., Logsdon J.M. \& Kelley S.E. (2005) An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59, 730-9.
Stout A.B. (1952) Reproduction in Petunia. Memoirs of the Torrey Botanical Club 20, 1-202.
Suoniemi A., Tanskanen J. \& Schulman A.H. (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. The Plant Journal 13, 699-705.

Sýkorová E., Lim K., Kunicka Z., Chase M., Bennett M., Fajkus J. \& Leitch A. (2003) Telomere variability in the monocotyledonous plant order Asparagales. Proceedings of the Royal Society of London B: Biological Sciences 270, 1893-904.

Takehisa S. (1964) The karyotype of Petunia hybrida and the differential chromosome condensation. The Japanese Journal of Genetics 38, 237-43.
Talbert P., Kasinathan S. \& Henikoff S. (2018) Simple and Complex Centromeric Satellites in Drosophila Sibling Species. Genetics 208, 977-990.

Tamura K., Stecher G., Peterson D., Filipski A. \& Kumar S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27259.

Temin H. (1985) Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons, and retrotranscripts. Molecular Biology and Evolution 2, 455-68.

Tenaillon M.I., Hufford M.B., Gaut B.S. \& Ross-Ibarra J. (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biology and Evolution 3, 219-29.

Teo C.H., Tan S.H., Ho C.L., Faridah Q.Z., Othman Y.R., Heslop-Harrison J.S., Kalendar R. \& Schulman A.H. (2005) Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. Journal of Plant Biology 48, 96-105.

Torres G.A., Gong Z., Iovene M., Hirsch C.D., Buell C.R., Bryan G.J., Novák P., Macas J. \& Jiang J. (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. G3: Genes, Genomes, Genetics 1, 85-92.
Tóth G., Gáspári Z. \& Jurka J. (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10, 967-81.
Tsukamoto T., Ando, T., Kokubun, H., Watanabe, H., Tanaka, R., Hashimoto, G., Marchesi, E. \& Kao T. (1998) Differentiation in the status of self-incompatibility among all natural taxa of Petunia (Solanaceae). Acta Phytotaxonomica et Geobotanica 49, 115-33.

Turner K.A., Sit T.L., Callaway A.S., Allen N.S. \& Lommel S.A. (2004) Red clover necrotic mosaic virus replication proteins accumulate at the endoplasmic reticulum. Virology 320, 276-90.

Ugarković Đ. \& Plohl M. (2002) Variation in satellite DNA profiles-causes and effects. The EMBO Journal 21, 5955-9.

Usai G., Mascagni F., Zuccolo A., Giordani T., Natali L. \& Cavallini A. (2017) Characterization of the repetitive component of the fig (Ficus carica) genome. In: $L X$ SIGA Annual Congress.

Van Der Donk J. (1974) Gene activity and the incompatibility reaction in Petunia. In: Proceedings International Symposium on Fertilization in Higher Plants. NorthHolland Publishing Co., Amsterdam, pp. 279-292.

Van Dijk E.L., Auger H., Jaszczyszyn Y. \& Thermes C. (2014) Ten years of next-generation sequencing technology. Trends in Genetics 30, 418-26.
van Helvoort T. \& Sankaran N. (2018) How Seeing Became Knowing: The Role of the Electron Microscope in Shaping the Modern Definition of Viruses. Journal of the History of Biology, 1-36.
Van Meggelen I. (2005) Flower trails in den Niederlanden, Erste Kreuzung zwischen Petunia and Calibrachoa vorgestellt. Dtsch Gartenbau 25, 10-6.

Van Regenmortel M.H. (1990) Virus species, a much overlooked but essential concept in virus classification. Intervirology 31, 241-54.

Van Stedum S. \& King W. (2002) Basic FISH techniques and troubleshooting. In: Molecular Cytogenetics (pp. 51-63). Springer.

Vandenbussche M., Chambrier P., Rodrigues Bento S. \& Morel P. (2016) Petunia, your next supermodel? Frontiers in Plant Science 7, 72-83.

Vergnaud G. \& Denoeud F. (2000) Minisatellites: mutability and genome architecture. Genome Research 10, 899-907.

Vershinin A.V. \& Heslop-Harrison J.S. (1998) Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Molecular Biology 36, 149-61.
Vershinin A.V., Schwarzacher T. \& Heslop-Harrison J.S. (1995) The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell 7, 1823-33.

Vicient C.M. \& Casacuberta J.M. (2017) Impact of transposable elements on polyploid plant genomes. Annals of Botany 120, 195-207.

Vig B.K. (1994) Do specific nucleotide bases constitute the centromere? Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 309, 1-10.

Vitte C. \& Panaud O. (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenetic and Genome Rresearch 110, 91-107.

Volpi E.V. \& Bridger J.M. (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45, 385-409.

Wallau G.L., Vieira C. \& Loreto É.L.S. (2018) Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome. Mobile DNA 9, 6-22.

Wang R.C., Smogorzewska A. \& De Lange T. (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355-68.

Wang Y., Diehl A., Wu F., Vrebalov J., Giovannoni J., Siepel A. \& Tanksley S.D. (2008) Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics 180, 391-408.

Watanabe H., Ando T., Iida S.-i., Buto K.-i., Tsukamoto T., Kokubun H., Hashimoto G. \& Marchesi E. (1997) Cross-compatibility of Petunia pubescens and P. pygmaea with native taxa of Petunia. Journal of the Japanese Society for Horticultural Science 66, 607-12.

Watanabe H., Ando T., Iida S.-i., Suzuki A., Buto K.-i., Tsukamoto T., Hashimoto G. \& Marchesi E. (1996) Cross compatibility of Petunia cultivars and P. axillaris with native taxa of Petunia in relation to their chromosome number. Journal of the Japanese Society for Horticultural Science 65, 625-34.

Weitzel J.N., Hows J.M., Jeffreys A.J., Min G.L. \& Goldman J.M. (1988) Use of a hypervariable minisatellite DNA probe (33.15) for evaluating engraftment two or more years after bone marrow transplantation for aplastic anaemia. British Journal of Haematology 70, 91-7.

Wergin W. (1936) Zytologische Untersuchungen on Petunia hybrida hort. Z, indukt. Abstamm u. Vererb. 71: 120-155.

Wesley S.V., Helliwell C.A., Smith N.A., Wang M., Rouse D.T., Liu Q., Gooding P.S., Singh S.P., Abbott D. \& Stoutjesdijk P.A. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal 27, 581-90.

White S.E., Habera L.F. \& Wessler S.R. (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proceedings of the National Academy of Sciences 91, 11792-6.

Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M. \& Panaud O. (2007) A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics 8, 973-82.

Wijnands D., Bos J., Wijsman H., Schneider F., Brickell C. \& Zimmer K. (1986) Proposal to conserve 7436 petunia with P. nyctaginiflora as typs. cons.(Solanaceae). Taxon 35, 748-9.

Wijsman H. (1982) On the interrelationships of certain species of Petunia : 1. Taxonomic notes on the parental species of Petunia hybrida. Acta Botanica Neerlandica 31, 47790.

Wijsman H. (1983) On the interrelationships of certain species of Petunia II. Experimental data: Crosses between different taxa. Acta Botanica Neerlandica 32, 97-107.

Wijsman H. (1990) On the inter-relationships of certain species of Petunia VI. New names for the species of Calibrachoa formerly included into Petunia (Solanaceae). Acta Botanica Neerlandica 39, 101-2.

Wijsman H. \& De Jong J. (1985) On the interrelationships of certain species of Petunia IV. Hybridization between $P$. linearis and $P$. calycina and nomenclatorial consequences in the petunia group. Acta Botanica Neerlandica 34, 337-49.

Williams D., Trimble W.L., Shilts M., Meyer F. \& Ochman H. (2013) Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics 14, 537-48.

Wood M.L. \& Royle N.J. (2017) Chromosomally integrated human herpesvirus 6: models of viral genome release from the telomere and impacts on human health. Viruses 9, 18498.

Yasaka R., Nguyen H.D., Ho S.Y., Duchêne S., Korkmaz S., Katis N., Takahashi H., Gibbs A.J. \& Ohshima K. (2014) The temporal evolution and global spread of Cauliflower mosaic virus, a plant pararetrovirus. PloS one 9, e85641.

Zakrzewski F., Wenke T., Holtgräwe D., Weisshaar B. \& Schmidt T. (2010) Analysis of ac $0 \mathrm{t}-1$ library enables the targeted identification of minisatellite and satellite families in Beta vulgaris. BMC Plant Biology 10, 8-22.

Zeidan M., Sikron N., Cohen J. \& Gera A. (2000) Improved detection of Petunia vein clearing caulimovirus. Hortscience 35, 1279-82.

Zerbino D.R. \& Birney E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18, 821-9.

Zheng X.M. \& Ge S. (2010) Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara). Molecular Ecology 19, 243954.

Zlotorynski E., Rahat A., Skaug J., Ben-Porat N., Ozeri E., Hershberg R., Levi A., Scherer S.W., Margalit H. \& Kerem B. (2003) Molecular basis for expression of common and rare fragile sites. Molecular and Cellular Biology 23, 7143-51.

## Appendices



Appendix 3.1 Summary histogram of all used raw reads from RepeatExplorer report showing about $60 \%$ of the repetitive DNA components and ratios.

| Show | 2000 $\checkmark$ ent |  |  |  |  |  | Search: $\square$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cluster | Super custer | $\begin{array}{r} \text { Genome } \\ \text { Proportion } \\ {[\%]} \end{array}$ | $\begin{gathered} \text { Genomese } \\ \text { Proportion } \\ \text { Adjusted } \\ \text { [\%] } \end{gathered}$ | Size real | $\begin{gathered} \text { Craph } \\ \text { Layout } \end{gathered}$ | $\begin{gathered} \substack{\begin{subarray}{c}{\text { simimarity } \\ \text { bassed } \\ \text { annotation }} }} \end{gathered}$ | Pbs score | $\underset{\text { detection }}{\mathrm{Ltr}}$ | $\begin{gathered} \text { Satellite } \\ \text { probability } \end{gathered}$ | TAREAN classification | $\underset{\substack{\text { Consensus } \\ \text { length }}}{\text {. }}$ |
| 1 | 1 | 1 | 0.8 | 0 Os | 376 | $3$ |  <br>  |  | Nan | 2 Cu 21 | Osm |  |
| 2 | 2 | 2 | 0.68 | 0.68 | 333 |  |  |  |  | 23624 | Osm |  |
| 3 | 1 | 1 | ${ }^{0.65}$ | ${ }^{0.65}$ | 337 |  |  |  |  | 27 22 | Ober |  |
| 4 | 4 | 1 | 062 | 0.6 | 3108 |  |  $12.29 \%$ Clan_ILTRTY3_Epsy chromovirus CRMTY3-CAC |  |  | 9 St 23 | 0 ant |  |
| 5 | 1 | 2 | or | ost |  |  | 005 |  |  | *22 | Oter |  |
| 6 | 9 | $\pm$ | 0.49 | 0.8 | 249 |  |  Bist Cum Hit <br>  <br>  <br>  <br>  |  |  | 11463 | ant |  |

Appendix 3.2 The first page of RepeatExplorer report showing repetitive DNA components with list starts with highest proportion clusters to the smallest ones.


Appendix 3.3 Mapped P. axillaris subsp parodii S7 reads (PparS7) to PVCV reference, showing nine missing parts within the entire PVCV sequence and degenerated part at the end.

```
;ID PaxiV DNA ; PLN ; 7170 BP
; XX
;DE Consensus Florendovirus in Petunia axillaris.
; XX
; AC
; XX
;DT 04-Jun-2018 (Rel. -1, Created)
;DT 04-Jun-2018 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; PaxiV.
; XX
;OS Petunia axillaris
; XX
;OC Petunia axillaris
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
;OC Petunioideae; Petunia.
; XX
;RN [1] (bases 1 to 7170)
;RA Alisawi,O., Richert-Poggeler,K.,
;RA Heslop-Harrison,P. and Schwarzacher,T.
;RT New integrated Florendovirus in Petunia axillaris.
;RL Direct Submission to RR (04-Jun-2018)
; XX
;CC New integrated Florendovirus in Petunia axillaris.
```

; FT CDS 6704..1263
; FT /product="PaxiV_1p"
; FT /translation="L̄̄VIIEKLVTVQEPIIKMEGSSQSVLNSINLSTEI
; FT DKISKIENNLLNWNIPKEKLEKIYEVGGFDFINRFNIKTCESTIAINQS
;FT VETIQLLSIKDIEKYRKSYKFLHIGLVQVAVKPLHRLGLDIPICLLLRD
; FT NRFLNFDDSLIAVLQSNMANGPVYFNCYPNFSVDINDPTILDTLTLNVK
; FT TKHLNSKHQAREIAIIYRVYYKLMKTTLAPKAKPSRAHKGVTMLMEANI
; FT KHHNIFVPRLLKWDEVLSKDEWHFDSITEPKVEDESIQIEQVIQHTDGS
; FT IDLKFLKSRSFNATSSSSRMSFSRPSTSCPLEEEDIISKNLKGVNFSKK
; FT IPQPEYKPVIINQPSSPTFSEINDSLGMITLEEPFEPDIKYLQQLWVKP
; FT ENNIKREWYRNNYTLEQRKSFRDKWMKDMKKWKCSLEFFKWFEYTGKLA
; FT NCESLNMVVKKWYTKSNKIIESTIPPLEEINIPVGDKVVIGNPFKRTSI
; FT DAQGEPKNKDINKLIEQSNYTNQILHVIANQVEEARSKSSFKPFPEKRI
; FT KFEDNIEENPIFRLPSMSKDKFPSLPKGGLEIKGDVLDEITKRLKSSLT
; FT INTIPKEKENSVKTLSELNNQLNKLGSNYHHKKNYYKKPTFPDIQYEEE
; FT HLVSFSSHSGDAITEWNIDGQAEHQILNRLHEMGIAATAYKIKGNTDKQ
;FT AATLLSYGFTGMLKNWWDNYLSDKDRETVLNATTIIKIVKQEGSSTNQI
; FT IEEQVREDAINTLLYAIIKHFIGEPKVFKDRSLEILSNLSCPKLHDFKW
; FT YKDIFLNKVMIREDCNHSYWKEKFISGLPHLFADKVRQKIKDRFNGEIP
; FT YDGLTYGDIVSFINITALELCTDMKLKNQLKRDYKITKKELGNFCSDFG
; FT YAKITAPSTEATKRSKRINRKDKSSNSNYKRKSSKRYRKKIPKNASQSK
; FT QPSFKERCYNCGKKGHKANDCRVKTKKKNKINSLELDEDIKNKIYAILD
;FT ENDNSEEESSSTESISDDEQINIAYESSDSYTSESECDCPRGLCTCGTG
; FT SIKVISNENKEFFFDLIDQIKDEEIKREYLLKLKDIVLSRESNKPNISN
; FT PFSMKNILQKFDKKEEKISISDLYAELATLKQEVNILKQKVNNIEEENL
; FT ALELIQKTQKELNSTIIGESSNTKQVEAQDDELGVLAISKIKSQKWYVP
; FT IKLVINSEYSIQTVALLDSGADQNCIVEGLIPTKYCDKTSAKLFSASGE
;FT KLKIKYKLSNAHICNNNICFKNTFILIKDLNEEVILGTPFLTQISPFTV
; FT NTTGITTNNLGKEIIFYFLNGPKQREIDTLKERSIYKIQMIKNQINYIK
; FT DEIKIVKIEDQLKDKLIQDKILQAQKEIESEVCSDLPNAFWERKRHIVR
;FT LPYIEGFEDGSIPTKARPIQMNQELMEYCKKEINELLEKKIIRPSKSPW
; FT SCSAFYVNNNAERERGAPRLVINYKPLNKVLRWIRYPIPNKRDLLKRTY
; FT KAKIYSKFDMKSGFWQIQIDERDKYKTAFNVPFGQYEWNVMPFGLKNAP
; FT SEFQNIMNNIFNPYSSFSIVYIDDVLIFSENIDQHFKHLKIFLNIIKKN
; FT GLVVSAKKIKLFQTSIRFLGHDLSQGMYKPIYRAIEFSTKFPDVLTDKT
; FT QLQRFLGSLNYVSDFIPNLRQICEPLYQRLRKNPIPWSQEQTQTVQKVK
; FT SIVQRLPCLGIPHPDAFMIVETDASEIGFGGILKQRLSPKESEQLVRYC
; FT SGIWNGTQKNYSTIKKEILSIVLCITKFQDDLINKEFLLRVDCKAAKDV
; FT LQKDVKNLVSKQIFARWQALLSSFDFQIEFIKGEDNSLPDFLTREFLQR
;FT RHEAIISSKTSEAIP"
; XX
; DR [1] (Consensus)
; XX
; SQ Sequence 7170 BP; 2014 A; 1105 C ; 1016 G; $3035 \mathrm{~T} ; 0$ other; Paxiv
gactaaataatcaaagtcaagaatcttatctttacaaaagtaaagtaagatctacattattgataccact tggcacttatttgttgtctatcttttgctaaaaatccgtgagatatgcttgagcaatcccgtgtgggtcc tccatatctccattatcttctgctgatgctgttgatgatgctgtatccaataattcagtaatttgattta tttcactgccatttgcttggtctaaatttgctaaggcctgttgaagttttcttttcaacgcttcctttga taatttgtctgttgatccgatcttcgtttgaacttgctgaacctgtttttctttgttcttaggggtccac cccttaatttttatagttttaacaaggtacctgaccttgcataatacctctatattgaattcccaactaa taatataggacactcttttagccatgaagaatttacataactgtatatgttctggtaatgctgctagttc ttcgttttctttctggtaattggtgtgtaactgtttgaaagaaggtgacaacaccctttcgtctgctcca aatgtattccaccattcataaaaccatcttgggatgggatccgttgataccttttcacagaacttgacaa accatgaatggctgccaggtcttaagtatatgaagttaaaccacgcatttttgtagtcgtaaaaattata acctgatattttaaaattcactgataatggaaattgaatcggcgtgtgtagatgatctactggccaatcc gcagggcttaaaattcttttaatagtaaacttggagtacctaatactcctcggatcatttttatctgcta
actcattttcaatctctattgaattggttgctatcaatatagcttcataaaattctcttgttttataagg gttgtctgtttccacataatttctgtctgtgtaacaagacttgataatatctgtaattcgtttttcaact aattttctctcaatcgcaatgattggtacctgttgactgtttatccaatcgaatttctgttgacttgctg ttgaagagcttgcttgttcttgtttaatgggaggttgaggttgtactgcctcagaataactgtttatggt tcttttggcataactgtttaaggattgttttgaggttcctggggttgcttctctctttaccggtgtagga ggaggtaattgaggaaactctgctaaagccgtatatctgtttatatgtgagttctggttatgatgctgtt caaggaattgcctcggaggttttactggatataatggcctcatgtcttctctgtaaaaattctctagtta aaaaatctggaagactattgtcttctcctttaataaattctatttgaaaatcaaagctagataataaagc ttgccatctggcaaatatttgttttgaaactaaatttttaacatctttttgcaaaacatcttttgctgct ttacaatcaactcttaaaagaaattctttgtttatcaaatcatcttgaaatttagttatacataaaacta ttgataaaatttcttttttaatagtactataatttttttgagttccgttccatatgccagagcaatatcg gactaattgttcagactcttttggagagagacgctgtttaagaattcctccgaaacctatttcagaggca tcggtttcaacaatcataaaggcatccggatgtggtatgcctagacatggaagtctttgaacaatacttt tgaccttttggactgtttgtgtttgttcttggctccaaggaattggatttttcctaagacgctgataaag gggttcacatatttgtctaagatttggaataaaatctgagacatagttgaggcttcctaaaaatctttgt aactgagttttatctgttaaaacatctggaaattttgtagagaattctatggctctataaattggtttat acatgccttgagataagtcatgtcctaaaaatctgatagaggtttgaaatagtttgatctttttggcact cactaccagcccatttttcttaataatattaagaaatatctttaaatgcttaaaatgttgatctatattt tctgaaaatattaatacgtcatctatataaactattgagaatgaactatatggattaaatatattattca ttatattttgaaattctgatggggcattttttaacccaaagggcataacattccattcatattggccaaa gggcacattaaatgctgttttatacttatccctttcatctatttggatttgccaaaatcctgatttcata tcaaatttactatatattttagccttatacgttctttttaataaatctcttttatttggaattggatatc gtatccatcttaatactttgtttaaaggtttataatttataactaatcttggagctcctctttctcgttc agcattgttattaacataaaatgcggaacaactccaaggtgacttagagggacgaattattttcttttct aataattcattaatttcctttttacaatattccattaattcttggttcatttgaattggtctagccttag tggggatagatccatcttcaaatccttctatatatggtaatcgtactatatgcctttttctttcccaaaa ggcattaggtagatctgaacaaacttcagattctatttctttttgggcttgtagtattttatcttgaatt aatttatctttaagctggtcttctattttaacaattttaatttcatcttttatgtaatttatttgatttt ttatcatttgtattttatagatacttctttcttttagagtatctatttctctttgttttggaccatttag gaaataaaatattatttctttaccaagattattggtagtaatacctgttgtattaactgtaaaaggagat atctgagttaaaaagggagttcctaatataacttcctcatttaaatcttttattagaataaaagtatttt taaagcatatgttattattacatatatgtgcattagataatttatattttattttaagtttttctcctga tgcagagaataattttgctgatgttttatcacaatattttgttggaatcaatccttctactatacaattt tggtcagcaccagagtctagtaaagctactgtctggatactgtattcactatttatgactaattttattg gtacataccatttttgagacttaattttagagatagccaagactcctaattcgtcgtcttgtgcttctac ttgtttagtatttgaactttctcctattattgtagaatttaattccttttgagttttttgaattaattct agagcaaggttttcttcctctatattattaactttttgttttaaaatattaacttcttgttttaatgttg ctaattctgcataaagatctgatatagatattttttcttcttttttatcaaatttttgtagaatattttt catactaaaggattggatatgttaggtttatttgattctctacttaagactatatcttttaattttaaa agatattctcttttaatttcttcatcctttatttgatctattagatcaaagaagaattctttattttcat ttgatatgacttttattgaacctgtcccgcaggtacataatcctctaggacaatcacactctgattcgga agtgtaactatcactagactcatatgctatattaatttgttcatcatcacttatgctttccgtggatgaa ctttcttcttcactattatcattttcgtctagtatagcatatattttattcttaatgtcttcatctaatt ctaaactattaatcttgtttttcttctttgtcttgactctacaatcatttgccttatggcctttttttcc acaattgtagcatctttctttaaaagaaggttgtttactttgacttgcattttttggaattttcttcctg tatcttttggaagattttcttttataattactattgctacttttgtcttttctatttatccttttggatc tttttgttgcctcggtagacggggcagttattttagcataaccaaaatcactacagaaatttcctaattc cttcttagtgattttataatctctttttaactgattttttaatttcatatcagtacatagttctaaagct gttatattaataaagcttactatatcaccataggttaatccgtcataaggtatttcaccgttaaatctat cttttattttttgtctaactttatctgcaaataaatgtggtagtccacttataaatttttctttccaata actatgattacaatcttctctaatcattactttatttaaaaatatgtctttataccatttaaagtcatgt aattttggacatgataaattagataatatttctaaacttctatctttaaatacttttggttctccaataa agtgtttaattatggcatataataaagtgtttatggcatcttcacgtacttgttcttctattatttgatt agtactactaccttcttgtttaactatttttatgattgtagtagcattaaggacagtttctctatcttta tccgacagatagttgtcccaccaattttttaacattcctgtaaatccgtaagaaagcagggttgctgctt gcttatctgtattaccttttattttataggctgttgctgctattcccatttcatgtaatctattaagtat ttgatgttctgcttgtccatctatattccattcagttatagcatcacctgagtgagaactgaatgatact agatgttcttcttcatactgtatatcaggaaatgtaggttttttataataatttttcttatgatgataat
tagatcctaatttatttaattgattatttaattcagataaggtttttaccgaattttctttttcttttgg aattgtatttatcgttaaagatgattttaaccttttggtaatttcatctagaacatcaccttttatttcc aatccacctttaggaagactagggaatttatcttttgacatactaggtagcctgaaaattggattttctt caatattatcttcaaattttattcttttctctgggaatggtttaaaagaagacttgcttcttgcttcttc tacctgattggctatgacatgtagtatttgatttgtataattactttgttctattaatttattaatatct ttatttttaggttctccttgggcatctattgatgttcttttaaaaggatttcctattactactttatcac ctactggtatatttatttcttctaatgggggaatggtagattctattattttattacttttcgtatacca ttttttaactaccatatttaaagattcacagttagctaattttcctgtatattcaaaccatttaaaaaat tctaaactacacttccattttttcatatctttcatccatttatctctaaatgatttcctctgttctaaag tgtaattgtttctataccattctcttttaatattattctctggttttacccagagttgttggagatattt tatatctggttcaaatggttcttctaatgttatcattcctaaggaatcatttatttcactaaaggttggg cttgatggttgattgattatgacaggcttgtattctggttgtggaatttttttactaaagttaacacctt ttaaatttttgcttattatgtcttcttcctccaggggacaagaagtagatggccttgaaaaggacatcct ggaagatgaagatgtagcattaaaggatctagattttaggaattttaaatctattgatccatctgtatgt tgtataacttgttctatttgtatagattcatcttccacttttggttccgtgatggaatcaaagtgccatt catcttttgataagacttcatcccatttaagtaatcttgggacaaatatattatgatgtttaatatttgc ttccattaacattgtaactcctttatgagctctacttggtttagctttgggagctaaagtagttttcatt aatttataatatactctatatattatagctatttctctggcttgatgtttactatttaaatgttttgttt taacatttaatgttagagtatctaatattgttggatcattaatatcaactgagaaatttgggtaacaatt aaagtatactggcccatttgccatgttactttgtaatacggctattaatgaatcatcaaagtttaaaaat ctattatctcttaataataaacatataggaatatctaatcctagtctatgaagtggttttacagccactt gcactagtcctatatgtaggaacttataactttttctatatttttctatatcttttatagacaatagttg aattgtttcaactgactgatttatagcaattgttgattcacatgttttaatattaaatctatttatgaag tcaaatcctccgacttcatatatcttttctaacttttctttgggaatattccaatttaacagattatttt ctatttttgatattttatctatttctgttgataggtttatactgtttaatactgactgcgatgatccttc cattttaataatgggctcctggaccgtcacaagcttttctataataactttcagctataggttttaatct aagtatttctgaaatattattttgcatataatgtagaaaatcaatatttcctgttaagagatatctatgt agattatcctttaaaagcttttcatggtcattaatttctttatcaatatttatccagagttctagataac ctggatccatattcatttttaaaatattatatttttatttttattaaggaaatctcttctccaaagttta taatatagcagaagagtttcttctacgtaaggattatcgttgtttattaaatcagaaaaacatatattca taaaatagatataataatcattatcattatatttattaaaccagtgtttcatataatacgggagttaagt gttttttgttttcttatgggggggttatcctatagttaactctactcttttctattaaggtgttttcttt attcagatttccttcgttcttatcctatgt

## Appendix 3.4 Approved sequence of PaxiV, the Florendovirus member in $P$. axillaris subsp axillaris N by Repbase database.

```
;ID PinfV DNA ; PLN ; 7142 BP
; XX
;DE consensus sequence of new Florendovirus in Petunia inflata.
; XX
; AC .
; XX
;DT 04-Jun-2018 (Rel. -1, Created)
;DT 04-Jun-2018 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; PinfV.
; XX
;OS Petunia integrifolia subsP. integrifolia subsp inflata
; XX
;OC Petunia integrifolia subsP. integrifolia subsp inflata
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
```

[^0]tgtcaggaatcttttctttacaaaagtaaagtaagatttacattattgataccacttggcatctatttgt tgtctatcttttgctaaaaatccgtgagatacgcttgagcaatcccgtgtgggtcctccatatctccatt atctcctgctgatgctgttgatgacgctgtatctaataattcagtgatttgatttatttcactaccattt gcttggtccaaatttgccaaggcctgttgaagttttctttttaacgcttcctttgataatttgtctgttg atccgatctttgtttgaacttgttgaacctgtttttctttgtttttaggggtccaccccttaatttttat agttttaacaaggtacctgaccttgcataatacttctatattgaattcccaactaataatataggacact cttttagccatgaagaatttacataactgtatatgttctggtaatgctgctagttcttcattttctttct ggtaattggtgtgtaactgtttgaaagaaggtgacaacaccctttcgtctgctccaaatgtattccacca ttcataaaaccatcttgggatgggatccgttgataccttttcacagaacttgacaaaccatgaatggctg ccaggtcttaagtatatgaagttaaaccatgcatttttatagtcgtaaaaattataacctgatattttaa aatccactgataatgggaattgaatcggcgtgtgtagatgatctactggccaatccgcagggcttaaaat tcttttaatagtaaacttggagtacctaatactccttggatcatttttatctgctaactcattttcaatt tctattgaatttgttgctatcaatatagcttcataaaattctcttgttttataagggttgtctgtttcca cataatttctgtctgtgtaacaagacttgataatatctgtaattcgtttttcaactaattttctctcaat tgcaatgattggtacctgttgactgtttatccaatcgaatttctgttgacttgctgttgaagagcttgct tgttcttgtttaatgggaggttgaggttgtactgcctcagaataactgtttatggttcttttggcataac tgtttaaggattgttttgaggttcctgaggttgcttctctctttaccggtgtaggaggaggtaattgagg aaactctgctaaaactgtatatctgtttatatgtgagttctggttatgatgctgttcaaggaattgcctc ggaggtcttactggatataatggcctcatgttttctctgtaaaaattctctagttaaaaaatccggaaga ctattgtcttctcctttaataaattctatttgaaaatcaaagctagataataaagcttgccatctggcaa atatttgttttgaaactaaattcttaacatctttttgcaaaacatcttttgctgctttacaatcaactct taaaagaaattctttgtttatcaaatcatcttgaaatttagttatacataaaactattgataaaatttct tttttaatagtactataatttttttgagctccgttccatattccagagcaatatcggactaattgttcag actcttttggagagagacgctgtttaagaattcctccgaaacctatttcagaggcatcggtttcaacaat cataaaggcatccggatgtggtatgcctagacaaggaagtctttgaacaatacttttgactttttggact gtttgtgtttgttcttggctccaaggaactggatttttcctaagacgctgataaaggggttcacatattt gtctaaggtttggaataaaatctgaaacataattgaggcttcctaaaaacctttgtaactgagttttatc tgttaaaacatctggaaattttgtagagaattctatggctctacaaattggtttatacatgccttgagac aagtcatgtcctaaaaatctaatagaggtttgaaataatttaatcttcttggcactcactaccagcccat ttttctgaataatattaagaaatatttttaaatgtttaaaatgttgatctatattttctgaaaatattaa tacatcatcaatataaactattgagaatgaactatatggattaaatatattattcattatattttgaaat tctgatggggcattttttaacccaaagggcataacattccattcatattggccaaagggcacattaaatg ctgttttatacttatccctttcatctatttggatttgccaaaatcctgatttcatatcaaatttactata tattttagccttatacgttctttttaataaatctcttttatttggaattggatatcgtatccatcttaat actttgtttaaaggtttataatttataactaatcttggagctcctctttctcgttcagcattattattaa cataaaatgcggaacaactccaaggtgacttagaaggacgaattattttcttttctaataattcattaat ttcctttttacaatattccattaattcttggttcatttgaattggtctagccttagtggggatagactct tcttcaaatccttctatatacggtaatcgtactatatgcctttttctttcccaaaaggcattaggtagat ctgagcagacttcagattctatttctttttgggtttgtaatattttatcttgaattagtttatctttaag ctggttttctattttaacaattttaatttcttcttttatgtaatttatttgattttttatcaattgtatt ttatagatacttctttcttttagagtatctatttctctttgttttggaccatttaggaaataaaatatta tttctttaccaagattattggtagtaatacctgttgtattaactgtaaaaggagatatctgagttaaaaa gggagttcctaatataacttcttcatttaaatcctttatcagaataaaagtatttttaaagcatatgtta ttattacatatatgtgcattagataatttatattttattttaagtttttctcctgatgcagagaataatt ttgctgatgttttatcacaatattttgttggaattaatccttctactatacaattttggtcagcaccaga gtctaataaagctactgtctggatactgtattcactatttatgactaattttattggtacataccatttt tgagacttaattttagagatagccaagactcccaattcgtcgtcttgtgcttctacttgtttagtatttg aactttctcctattattgtagaatttaactccttttgagttttttgaattaattctagagcaaggttttc ttcctctattttattaactttttgttttaaaatattaacttcttgttttaatgttgttaattctgcataa agatctgatatagatattttttcttcttttttatcaaatttttgtagaatatttttcatactaaaaggat tggatatgttaggtttatttgattctctacttaagactatgtcttttaattttaaaagatattctctttt aatttcttcatcctttatttgatctattagatcaaagaagaactctttattttcatttgatatgactttt attgaacctgtcccgcaggtacataatcctttaggacaatcacactctgattcagaagtgtaactatcac tagactcatatgctatattaatttgttcatcatcacttatgtcttccgtggatgaacttccttcttcact attatcattttcgtctagtatagcatatattttattcttaatgtcttcatctagttctaaactattaatt ttgtttttcttttttgcttttactctacaattatttgccttatggcctttctttccacaattgtagcatc tttcttcaaaagaaggttgcttattttgacttgtattttttggaattttcttcctgtatcttttggaaga ttttcttttataataactattgctacttttgtcttttctatttatccttttggatttttttgttgcctcg
gtagacggggcagttatcttagcataaccaaaatcactacagaaatttcctaattctttcttagtgattt tataatctctttttagctgattttttaatttcatatcagtacaaagttctaaagctgttatgttaataaa gcttattatatcaccataggttaaaccatcataaggtatttcaccgttaaatctatcttttattttttgt ctaactttatctgcaaataactgtggtaatccacttataaatttttctttccaataactatgattacaat cttctctaatcattactttatttaggaatatgtctttataccatttaaagtcatgtaattttggacatga taaattagataatatttctaaacttctatctttaaatacttttggttctccaataaagtgtttaattata gcatataataaagtatttatagcatcttcacgtacttgttcttctattgtttgattagtactattacttt cttgtttaactacctttatgattgtagtagcattaaggacagtttctctatctctatctgacagatagtt gtcccaccaattttttaacattcctgtaaatccgtaagaaagcagggttgctgcttgcttatctgtatta ccttttattttataggctgttgctgctattcccatttcatgtaatctattaagtatttgatgttctgctt gtccatctatattccactcagttatagcatcacctgtgtgcgaactgaatgatactagatgttcttcttc atactgtatatcaggaaatgtaggttttttataataatttttcttatgatgataattagatcctaattta tttaattgattatttaattcagataaggtttttactgaattttctttctctattggaattgtatttattg ttaaagatgattttaaccttttagtaatttcatctagaacatcaccttttatttccaatccacctttagg aagactagggaatttatcttttgacatactaggtagcctgaaaattggattcttttcaatattatcttca aattttattcttttctctgggaatggtttaaaagaagacttgcttcttgcttcttctacctgattagcta tgacatgtaatatttgattcgtataattactttgttctattaatttattaatatctttatttttaggttc tccttgggcatctattgatgttcttttaaaaggatttcctattactactttatcacctactggtatattt atttcttctaatgggggaatggtagattctattattttattacttttcgtataccattttttaactacca tatttaaagactcacagttagctaattttcctgtatattcaaaccatttaaaaaattctaaactacactt ccattttttcatatctttcatccatttatctctaaatgatttcctctgttctaaagtgtaattgttttta taccattctcttttaatattattctctggttttacccagagttgttggagatattttatatctggttcaa atggttcttctaacgttatcattcctaaggaatcatttatttcactaaaggttgggcttgatggttgatt gattatgacaggcttgtattctggttgtggaattcttttactaaagttaacaccttttaaatttttgctt attatgtcttcttcctccaggggacaagaagtagacggccttgaaaaggacatcctggaagatgaagatg tagcgttaaaggatctagattttagaaattttaaatctattgatccatctgtatgttgtataacttgttc tatttgtatagattcatcttccacttttggttccgtgatggaatcaaagtgccattcattttttgataag acttcatcccatttaagtaatcttgggacaaatatattatgatgtttaatatttgcttccattaacattg taactcctttatgagctctacttggtttagctttgggagctaaagtagttttcattaatttataatatac tctatatattatagctatttctctggtttgatgtttactattcaaatgttttgttttaacatttaatgtt agaacatctaatattgttggatcattaatatcaactgagaaattcggataacaattaaagtatactggcc catttgccatgttactttgtaatacggctattaatgaatcatcaaagtttaagaatctattatctcttaa taataaacatataggaatatctaatcctagtctatgaagtggttttacagccacttgcactagtcctata tgtaggaacttataactttttctatatttttctatatcttttatagacaatagttgaattgtttcaactg actgatttatagcaattgttgattcacatgttttaatattaaatctatttatgaagtcaaatcctccgac ttcatatatcttttctatcttttctttgggaatattccaatttaacagattattttcaatttttgatatt ttatctacttctgttgataggtttatactgtttaatactgactgtgatgatccttccattttaataatga gctcctggaccgtcacaagcttttctataataactttcagctataggttttaacctaagtatttctgaaa tattattttgcatataatgtagaaaatcaatatttcctgttaaaagatatctatgtaaattatcctttaa aagcttttcatggtcactaatttctttatcagtatttatccagagttctagataacctggatccatattc atttttaaaatatttctatttcttctaaggaaatctcttctccaaagtctataatataactgaagagttt cttttacgtagggattatcactgtttactaaatcagtgtaacatgtattcatatagtagatataatagtt attattattatatttattaaaccagtgtttcattaagtacgggagtttaagtgttttagttttcttatgg g 9

Appendix 3.5 Approved sequence of PinfV, the Florendovirus member in $P$. integrifolia subsp inflata S6 by Repbase database.

```
;ID PhybV DNA ; PLN ; 7519 BP
;XX
;DE Consensus sequence of Florendovirus.
;XX
;AC .
; XX
;DT 04-Jun-2018 (Rel. -1, Created)
;DT 04-Jun-2018 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; PhybV.
; XX
;OS Petunia x hybrida
;XX
;OC Petunia x hybrida
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
;OC Petunioideae; Petunia.
; XX
;RN [1] (bases 1 to 7519)
;RA Alisawi,O., Richert-Poggeler,K.,
;RA Heslop-Harrison,P. and Schwarzacher,T.
;RT New integrated Florendovirus in Petunia hybrida.
;RL Direct Submission to RR (04-Jun-2018)
; XX
;CC Integrated Florendovirus in Petunia hybrida.
;XX
;FT CDS 6922..1481
;FT /product="PhybV_1p"
;FT /translation="L\overline{KVIIEKLVTVQEFIIKMEGSSQSVLNSINLSTEV}
;FT DKISKIENNLLNWNIPKEKLEKIYEVGGFDFINRFNIKTCESTIAINQS
;FT VETIQLLSIKDIEKYRKSYKFLHIGLVQVAVKPLHRLGLDIPICLLLRD
;FT NRFLNFDDSLIAVLQSNMANGPVYFNCYPNFSVDINDPTILDVLTLNVK
;FT TKHLNSKHQAREIAIIYRVYYKLMKTTLAPKAKPSRAHKGVTMLMEANI
; FT KHHNIFVPRLLKWDEVLSKDEWHFDSITEPKVEDESIQIEQVIQHTDGS
;FT IDLKFLKSRSFNATSSSSRMSFSRPSTSCPLEEEDIISKNLKGVNFSKR
;FT IPQPEYKPVIINQPSSPTFSEINDSLGMITLEEPFEPDIKYLQQLWVKP
;FT ENNIKREWYRNNYTLEQRKSFRDKWMKDMKKWKCSLEFFKWFEYTGKLA
;FT NCESLNMVVKKWYTKSNKIIESTIPPLEEINIPVGDKVVIGNPFKRTSI
;FT DAQGEPKNKDINKLIEQSNYTNQILHVIANQVEEARSKSSFKSFPEKRI
;FT KFEDNIEKNPIFRLPSMSKDKFPSLPKGGLEIKGDVLDEITKRLKSSLT
;FT INTIPKEKENSVKTLSELNNQLNKLGSNYHHKKNYYKKPTFPDIQYEEE
;FT HLVSFSSHSGDAITEWNIDGQAEHQILNRLHEMGIAATAYKIKGNTDKQ
;FT AATLLSYGFTGMLKNWWDNYLSDRDRETVLNATTIIKIVKQESSSTNQI
; FT IEEQVREDAINTLLYAIIKHFIGEPKVFKDRSLEILSNLSCPKLHDFKW
; FT YKDIFLNKVMIREDCNHSYWKEKFISGLPHLFADKVRQKIKDRFNGEIP
;FT YDGLTYGDIVSFINITALELCTDMKLKNQLKRDYKITKKELGNFCSDFG
;FT YAKITAPSTEATKRSKRINRKDKSSNSYYKRKSSKRYRKKIPKNTSQSK
;FT QPSFEERCYNCGKKGHKANDCRVKTKKKNKINSLELDEDIKNKIYAILD
;FT ENDNSEEESSSTESISDDEQINIAYESSDSYTSESECDCPRGLCTCGTG
;FT SIKVISNENKEFFFDLIDQIKDEEIKREYLLKLKDIVLSRESNKPNISN
;FT PFSMKNILQKFDKKEEKISISDLYAELTTLKQEVNILKQKVNKIEEENL
;FT ALELIQKTQKELNSTIIGESSNTKQVEAQDDELGVLAISKIKSQKWYVP
;FT IKLVINSEYSIQTVALLDSGADQNCIVEGLIPTKYCDKTSAKLFSASGE
;FT KLKIKYKLSNAHICNNNICFKNTFILIKDLNEEVILGTPFLTQISPFTV
;FT NTTGITTNNLGKEIIFYFLNGPKQREIDTLKERSIYKIQLIKNQINYIK
;FT DEIKIVKIENQLKDKLIQDKILQTQKEIESEVCSDLPNAFWERKRHIVR
;FT LPYIEGFEEGSIPTKARPIQMNQELMEYCKKEINELLEKKIIRPSKSPW
```

; FT SCSAFYVNNNAERERGAPRLVINYKPLNKVLRWIRYPIPNKRDLLKRTY
; FT KAKIYSKFDMKSGFWQIQIDERDKYKTAFNVPFGQYEWNVMPFGLKNAP
; FT SEFQNIMNNIFNPYSSFSIVYIDDVLIFSENIDQHFKHLKIFLNIIKKN
; FT GLVVSAKKIKLFQTSIRFLGHDLSQGMYKPICRAIEFSTKFPDVLTDKT
; FT QLQRFLGSLNYVSDFIPNLRQICEPLYQRLRKNPIPWSQEQTQTVQKVK
; FT SIVQRLPCLGIPHPDAFMIVETDASEIGFGGILKQRLSPKESEQLVRYC
; FT SGIWNGTQKNYSTIKKEILSIVLCITKFQDDLINKEFLLRVDCKAAKDV
; FT LQKDVKNLVSKQIFARWQALLSSFDFQIEFIKGEDNSLPDFLTREFLQR
; FT RHEAIISSKTSEAIP"
; XX
; DR [1] (Consensus)
; XX
; SQ Sequence $7519 \mathrm{BP} ; 2137 \mathrm{~A} ; 1167 \mathrm{C} ; 1080 \mathrm{G} ; 3135 \mathrm{~T} ; 0$ other; PhybV
aataaaattggaactgtttattgaaaaagaaggaacattgttatagacagagggaaaggagggaatattt ctacaatgaggatttcgagtgatgccttacttctgatttctacttctatttatagctgctaatgacacta ttctcctttacaggtggagagctattaacggggaatcttatcttttataaagtaagataagatttacatt attgatgctaatgggatcctattgtcaagaatcttatctttacaaaagtaaagtaagatctacattattg ataccacttggcacctatttgttgtctatcttttgctaaaaatccgtgagatatgcttgagcaatcccgt gtgggtcctccatatctccattatctcctgctgatgctgttgatgatgctgtatctaataattcagtgat ttgatttatttcactgccatttgcttggtctaaatttgccaaggcctgttgaagttttctttttaacgct tcctttgataatttgtctgttgatccgatcttcgtttgaacttgttgaacctgtttttctttgttcttag gggtccaccccttaatttttatagttttaacaaggtacctgaccttgcataatacttctatattgaattc ccaactaataatataggacactcttttagccatgaagaatttacataactgtatatgttctggtaatgct gctagttcttcgttttctttctggtaattggtgtgtaactgtttgaaagaaggtgacaacaccctttcgt ctgctccaaatgtattccaccattcataaaaccatcttgggatgggatccgttgataccttttcacagaa cttgacaaaccatgaatggctgccaggtcttaagtatatgaagttaaaccacgcatttttttagtcgtaa aaattataacctgatattttaaaattcactgataatggaaattgaatcggcgtgtgtagatgatctactg gccaatccgcagggcttaaaattcttttaatagtaaacttggagtacctaatactccttggatcattttt atctgctaactcattttcaatttctattgaattggttgctatcaatatagcttcataaaattctcttgtt ttataagggttgtctgtttccacataatttctgtctgtgtaacaagacttgataatatctgtaattcgtt tttcaactaattttctctcaatcgcaatgattggtacctgttgactgtttatccaatcgaatttctgttg acttgctgttgaagagcttgcttgttcttgtttaatgggaggttgaggttgtactgcctcagaataactg tttatggttcttttggcataactgtttaaggattgttttgaggttcctggggttgcttctctctttaccg gtgtaggaggaggtaattgaggaaactctgctaaagctgtatatctgtttatatgtgagttctggttatg atgctgttcaaggaattgcctcggaggtcttactggatataatggcctcatgtcttctctgtaaaaattc tctagttaaaaaatctggaagactattgtcttctcctttaataaattctatttgaaaatcaaagctagat aataaagcttgccatctggcaaatatttgttttgaaactaaattcttaacatctttttgcaaaacatctt ttgctgctttacaatcaactcttaaaagaaattctttgtttatcaaatcatcttgaaatttagttataca taaaactattgataaaatttcttttttaatagtactataatttttttgagttccgttccatatgccagag caatatcggactaattgttcagactcttttggagagagacgctgtttaagaattcctccgaaacctattt cagaggcatcggtttcaacaatcataaaggcatccggatgtggtatgcctagacaaggaagtctttgaac aatacttttgactttttggactgtttgtgtttgttcttggctccaaggaattggatttttcctaagacgc tgataaaggggttcacatatttgtctaagatttggaataaaatctgaaacataattgaggcttcctaaaa acctttgtaactgagttttatctgttaaaacatctggaaattttgtagagaattctatggctctacaaat tggtttatacatgccttgagacaagtcatgtcctaaaaatctaatagaggtttgaaatagtttaatcttt ttggcactcactaccagcccatttttcttaataatattaagaaatatctttaaatgcttaaaatgttgat ctatattttctgaaaatattaatacatcatcaatataaactattgagaatgaactatatggattaaatat attattcattatattttgaaattctgatggggcattttttaacccaaagggcataacattccattcatat tggccaaagggcacattaaatgctgttttatacttatccctttcatctatttggatttgccaaaatcctg atttcatatcaaatttactatatattttagccttatacgttctttttaataaatctcttttatttggaat tggatatcgtatccatcttaatactttgtttaaaggtttataatttataactaatcttggagctcctctt tctcgttcagcattattattaacataaaatgcggaacaactccaaggtgacttagaaggacgaattattt tcttttctaataattcattaatttcctttttacaatattccattaattcttggttcatttgaattggtct agccttagtggggatagatccttcttcaaatccttctatatatggtaatcgtactatatgcctttttctt tcccaaaaggcattaggtagatctgaacagacttcagattctatttctttttgggtttgtagtattttat cttgaattagtttatctttaagctggttttctattttaacaattttaatttcatcttttatgtaatttat ttgattttttatcaattgtattttatagatacttctttcttttagagtatctatttctctttgttttgga
ccatttaggaaataaaatattatttctttaccaagattattggtagtaatacctgttgtattaactgtaa aaggagatatctgagttaaaaagggagttcctaatataacttcttcatttaaatcttttatcagaataaa agtatttttaaagcatatgttattattacatatatgtgcattagataatttatattttattttaagtttt tctcctgatgcagagaataattttgctgatgttttatcacaatattttgttggaattaatccttctacta tacaattttggtcagcaccagagtctaataaagctactgtctggatactgtattcactatttatgactaa ttttattggtacataccatttttgagacttaattttagagatagccaagactcccaattcgtcgtcttgt gcttctacttgtttagtatttgaactttctcctattattgtagaatttaactccttttgagttttttgaa ttaattctagagcaaggttttcttcctctattttattaactttttgttttaaaatattaacttcttgttt taatgttgttaattctgcataaagatctgatatagatattttttcttcttttttatcaaatttttgtaga atatttttcatactaaaaggattggatatgttaggtttatttgattctctacttaagactatatctttta attttaaaagatattctcttttaatttcttcatcctttatttgatctattagatcaaagaagaattcttt attttcatttgatatgacttttattgaacctgtcccgcaggtacataatcctctaggacaatcacactct gattcggaagtgtaactatcactagactcatatgctatattaatttgttcatcatcacttatgctttccg tggatgaactttcttcttcactattatcattttcgtctagtatagcatatattttattcttaatgtcttc atctaattctaaactattaattttgtttttcttttttgtcttgactctacaatcatttgccttatggcct ttttttccacaattgtagcatctttcttcaaaagaaggttgtttactttgacttgtattttttggaattt tcttcctgtatcttttggaagattttcttttataataactattgctacttttgtcttttctatttatcct tttggatctttttgttgcctcggtagacggggcagttatcttagcataaccaaaatcactacagaaattt cctaattctttcttagtgatcttgtaatctctttttaactgattttttaatttcatatcagtacatagtt ctaaagctgttatgttaataaagcttactatatcaccataggttaaaccatcataaggtatttcaccgtt aaatctatcttttattttttgtctaactttatctgcaaataaatgtggtaatccacttataaatttttct ttccaataactatgattacaatcttctctaatcattactttatttagaaatatgtctttataccatttaa agtcatgtaattttggacatgataaattagataatatttctaaacttctatctttaaatacttttggttc tccaataaagtgtttaattatagcatataataaagtatttatagcatcttcacgtacttgttcttctatt atttgattagtactactactttcttgtttaactatttttatgattgtagtagcattaaggacagtttctc tatctctatctgacagatagttgtcccaccaattttttaacattcctgtaaatccgtaagaaagcagggt tgctgcttgcttatctgtattaccttttattttataggctgttgctgctattcccatttcatgtaatcta ttaagtatttgatgttctgcttgtccatctatattccattcagttatagcatcacctgagtgcgaactga atgatactagatgttcttcttcatactgtatatcaggaaatgtaggttttttataataatttttcttatg atgataattagatcctaatttatttaattgattatttaattcagataaggtttttactgaattttctttt tcttttggaattgtatttatcgttaaagatgattttaaccttttagtaatttcatctagaacatcacctt ttatttccaatccacctttaggaagactagggaatttatcttttgacatactaggtagcctgaaaattgg atttttttcaatattatcttcaaattttattcttttctctgggaatgatttaaaagaagacttgcttctt gcttcttctacttgattagctatgacatgtagtatttgatttgtataattactttgttctattaatttat taatatctttatttttaggttctccttgggcatctattgatgttcttttaaaaggatttcctattactac tttatcacctactggtatatttatttcttctaatgggggaatggtagattctattattttattacttttc gtataccattttttaactaccatatttaaagattcacagttagctaattttcctgtatattcaaaccatt taaaaaattctaaactacacttccattttttcatatctttcatccatttatctctaaatgatttcctctg ttctaaagtgtaattgtttctataccattctcttttaatattattctctggttttacccagagttgttgg agatattttatatctggttcaaatggttcttctaacgttatcattcctaaggaatcatttatttcactaa aggttgggcttgatggttgattgattatgacaggcttgtattctggttgtggaattcttttactaaagtt aacaccttttaaatttttgcttattatgtcttcttcctccaggggacaagaagtagatggccttgaaaag gacatcctggaagatgaagatgtagcgttaaaggatctagattttaggaattttaaatctattgatccat ctgtatgttgtataacttgttctatttgtatagattcatcttccacttttggttccgtgatggaatcaaa gtgccattcatcttttgataagacttcatcccatttaagtaatcttgggacaaatatattatgatgttta atatttgcttccattaacattgtaactcctttatgagctctacttggtttagctttgggagctaaagtag ttttcattaatttataatatactctatatattatagctatttctctggcttgatgtttactatttaaatg ttttgttttaacatttaatgttagaacatctaatattgttggatcattaatatcaactgagaaattcgga taacaattaaagtatactggcccatttgccatgttactttgtaatacggctattaatgaatcatcaaagt ttaagaatctattatctcttaataataaacatataggaatatctaatcctagtctatgaagtggttttac agccacttgcactagtcctatatgtaggaacttataactttttctatatttttctatatcttttatagac aatagttgaattgtttcaactgactgatttatagcaattgttgattcacatgttttaatattaaatctat ttatgaagtcaaatcctccgacttcatatattttttctaacttttctttgggaatattccaatttaacag attattttctatttttgatattttatctacttctgttgataggtttatactgtttaatactgactgtgat gatccttccattttaataatgaactcctggaccgtcacaagcttttctataataactttcagctataggt tttaacctaagtatttctgaaatattattttgcatataatgtagaaaatcaatatttcctgttaaaagat atctatgtaaattatcctttaaaagcttttcatggtcactaatttctttatcaatatttatccagagttc tagataacctggatccatattcatttttaaaatattatatttttatttttattaaggaaatctcttctcc
aaagtttataatataacagaagagtttcttctacgtaaggattatcgttgtttattaaatcagagaaaca tatattcataaaatagatataatattcattatcattatatttattaaaccagtgtttcataaaatacggg agttaagtgttttttgttttcttatgggggggttatcctatagttaactctactcttttctattaaggtg ttttctttattcagaatttccttcgttcttatcctatgtagctaagcgacgggaacaccaatccgggtcc ggccctacgtcctagactcaacgggctaatccaacagaactttatggcttgccaacgtcgaaacggggga ttaatcggttacctcgacacaaggataag

Appendix 3.6 Approved sequence of PhybV, the Florendovirus member in $P$. hybrida by Repbase database.

```
;ID PparV DNA ; PLN ; 6519 BP
; XX
;DE Integrated Florendovirus in P. axillaris subsp parodii.
; XX
; AC .
; XX
; DT 05-Apr-2018 (Rel. -1, Created)
;DT 05-Apr-2018 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; PparV.
; XX
;OS Petunia axillaris subsP. axillaris subsp parodii
; XX
;OC Petunia axillaris subsP. axillaris subsp parodii
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
;OC Petunioideae; Petunia.
; XX
;RN [1] (bases 1 to 6519)
;RA Alisawi,O., Richert-Poggeler,K.,
; RA Schwarzacher,T. and Heslop-Harrison,P.
;RT Integrated Florendovirus within P. axillaris subsp parodii S7
genome.
;RL Direct Submission to RR (05-Apr-2018)
; XX
;CC Consensus sequence.
; XX
;FT CDS 6432..991
;FT /product="PparV_1p"
; FT /translation="LKVIIEKLVTVQEPIIKMEGSSQSVLNSINLSTEV
; FT DKISKIENNLLNWNIPKEKLEKIYEVGGFDFINRFNIKTCESTIAINQS
; FT VETIQLLSIKDIEKYRKSYKFLHIGLVQVAVKPLHRLGLDIPICLLLRD
; FT NRFLNFDDSLIAVLQSNMANGPVYFNCYPNFSVDINDPTILDVLTLNVK
; FT TKHLNSKHQAREIAIIYRVYYKLMKTTLAPKAKPSRAHKGVTMLMEANI
; FT RHHNIFVPRLLKWDEVLSKDEWHFDSITEPKVEDESIQIEQVIQHTDGS
; FT IDLKFLKSRSSNATSSSSRMSFSRPSTSCPLEEEDIISKNLKGVNFSKR
;FT IPQPEYKPVIINQPSSPTFSEINDSLGMITLEEPFEPDIKYLQQLWVKP
; FT ENNIKREWYRNNYTLEQRKSFRDKWMKDMKKWKCSLEFFKWFEYTGKLA
;FT NCESLNMVVKKWYTKSNKIIESTIPPLEEINIPVGDKVVIGNPFKRTSI
; FT DAQGEPKNRDINKLIEQSNYTNQILHVIANQVEEARSKSSFKPFPEKRI
; FT KFEDNIEENPIFRLPSMSKDKFPSLPKGGLEIKGDVLDEITKRLKSSLT
; FT INTIPKEKENSVKTLSELNNQLNKLGSNYHHKKNYYKKPTFPDIQYEEE
```

; FT HLVSFSSHSGDAITEWNIDGQAEHQILNRLHEMGIAATAYKIKGNTDKQ
; FT AATLLSYGFTGMLKNWWDNYLSDRDRETVLNATTIIKVVKQESNSTNQT
;FT IEEQVREDAINTLLYAIIKHFIGEPKVFKDRSLEILSNLSCPKLHDFKW
; FT YKDIFLNKVMIREDCNHSYWKEKFISGLPQLFADKVRQKIKDRFNGEIP
; FT YDGLTYGDIISFINITALELCTDMKLKNQLKRDYKITKKELGNFCSDFG
; FT YAKITAPSTEATKKSKRKNRKDKSSNSDYKRKYSKRYRKKIPKNTSQSK
; FT QPSFKERCYNCGKKGHKANDCRVKTKKKNKINSLELDEDIKNKIYAILD
; FT ENDNSEEESSSTESISDDEQINIAYESSDSYTSESECDCPRGLCTCGTG
; FT SIKVISNENKEFFFDLIDQIKDEEIKREYLLKLKEIVLSRESNKPNISN
; FT PFSMKKILQKFDKKEEKISISDLYAELTTLKQEVNILKQKVNNIEEENL
; FT ALELIQKTQKELNSTIIGESSNTKQVEAQDDELGVLAISKIKSQKWYVP
; FT IKLVINSEYSIQTVALLDSGADQNCIVEGLIPTKYCDKTSAKLFSASGE
; FT KLKIKYKLSNAHICNDNICFKNTFILIKDLNEEVILGTPFLTQISPFTV
; FT NTTGITTNNLGKEIIFYFLNGPKQREIDTLKERSIYKIQLIKNQINYIK
;FT DEIKIVKIENQFKDKLIQDKILQTQKEIESEVCSDLPNAFWERKRHIVR
; FT LPYIEGFEEGSIPTKARPIQMNQELMEYCKKEINELLEKKIIRPSKSPW
; FT SCSAFYVNNNAERERGAPRLVINYKPLNKVLRWIRYPIPNKRDLLKRTY
; FT KAKIYSKFDMKSGFWQIQIDERDKYKTAFNVPFGQYEWNVMPFGLKNAP
; FT SEFQNIMNNIFNPYSSFSIVYIDDVLIFSENIDQHFKHLKIFLNIIKKN
; FT GLVVSAKKIKLFQTSIRFLGHDLSQGMYKPICRAIEFSTKFPDVLTDKT
; FT QLQRFLGSLNYVSDFIPNLRQICEPLYQRLRKNPVPWSQEQTQTVQKVK
; FT SIVQRLPCLGIPHPDAFMIVETDASEIGFGGILKQRLSPKESEQLVRYC
; FT SGIWNGAQKNYSTIKKEILSIVLCITKFQDDLINKEFLLRVDCKAAKDV
;FT LQKDVKNLVSKQIFARWQALLSSFDFQIEFIKGEDNSLPDFLTREFLQR
;FT RHEAIISSKTSEAIP"
; XX
; DR [1] (Consensus)
; XX
;SQ Sequence 6519 BP; 1830 A; 1013 C; 921 G; $2755 \mathrm{~T} ; 0$ other; PparV
tcctttgataatttgactgttgatccgatattcgtttgaacttgctgaacctgtttttctttgttcttag gggtccatcccttaatttttatagttttaacaaggtacctgaccttgcataatacttctatattgaattc ccaactaataatataggacactcttttagccatgaagaatttacataactgtatatgttctggtaatgct gctagttcttcattttctttctggtaattggtgtgtagctgtttgaaagaaggtgacaacaccctttcgt ctgctccaaatgtattccaccattcataaaaccatcttgggatgggatccgttgataccttttcacagaa cttgacaaaccatgaatggctgccaggtcttaagtatatgaagttaaaccacgcatttttgtagtcgtag aaattataacctgatattttaaaattcactgataatggaaattgaatcggcgtgtgtagatgatctactg gccaatccgcagggcttaaaattcttttaatagtaaacttggagtacctaatactccttggatcattttt atctgctaactcattttcaatctctattgaattggttgctatcaatatagcttcataaaattctcttgtt ttataagggttgtctgtttccacataatttctgtctgtgtaacaagacttgataatatctgtaattcgtt tttcaactaattttctctcaatcgcaatgattggtacctgttgactgtttatccaatcgaatttctgttg acttgctgttgaagagcttgcttgttcttgtttaatgggaggttgaggttgtactgcctcagaataactg tttatggttcttttggcataactgtttaaggattgttttgaggttcctggggttgcttctctctttaccg gtgtaggaggaggtaattgaggaaactctgctaaagccgtatatctgtttatatgtgagttctggttatg atgctgttcaaggaattgcctcggaggttttactggatataatggcctcatgtcttctctgtaaaaattc tctagttaaaaaatctggaagactattgtcttctcctttaataaattctatttgaaaatcaaagctagat aataaagcttgccatctggcaaatatttgttttgaaactaaattcttaacatctttttgcaaaacatctt ttgctgctttacaatcaactcttaaaagaaattctttgtttatcaaatcatcttgaaatttagttataca taaaactattgataaaatttcttttttaatagtactataatttttttgagctccgttccatattccagag caatatcggactaattgttcagactcttttggagagagacgctgtttaagaattcctccgaaacctattt cagaggcatcggtttcaacaatcataaaggcatccggatgtggtatgcctagacaaggaagtctttgaac aatacttttgactttttggactgtttgtgtttgttcttggctccaaggaactggatttttcctaagacgc tgataaaggggttcacatatttgtctaagatttggaataaaatctgaaacataattgaggcttcctagaa acctttgtaactgagttttatctgttaaaacatctggaaattttgtagagaattctatggctctacaaat tggtttatacatgccttgagacaagtcatgtcctaaaaatctaatagaggtttgaaataatttaatcttc ttggcactcactaccagcccatttttcttaataatattaagaaatatctttaaatgcttaaaatgttgat ctatattttctgaaaatattaatacatcatcaatataaactattgagaatgaactatatggattaaatat attattcattatattttgaaattctgatggggcattctttaacccaaagggcataacattccattcatat
tggccaaagggcacattaaatgctgttttatacttatccctttcatctatttggatttgccaaaatcctg atttcatatcaaatttactatatattttagccttatacgttctttttaataaatctcttttatttggaat tggatatcgtatccatcttaatactttgtttaaaggtttataatttataactaatcttggagctcctctt tctcgttcagcattattattaacataaaatgcggaacaactccaaggtgacttagaaggacgaattattt tcttttctaataattcattaatttcctttttacaatattccattaattcttggttcatttgaattggtct agccttagtggggatagatccttcttcaaatccttctatatacggtaatcgtactatatgcctttttctt tcccaaaaggcattaggtagatctgaacagacttcagattctatttctttttgggtttgtagtattttat cttgaattagtttatctttaaactggttttctattttaacaattttaatttcgtcttttatgtaatttat ttgattttttatcaattgtattttatagatacttctttcttttagagtatctatttctctttgctttgga ccatttaggaaataaaatattatttctttaccaagattattggtagtaatacctgttgtattaactgtaa aaggagatatctgagttaaaaagggagttcctaatataacttcttcatttaaatcctttatcagaataaa agtatttttaaagcatatgttatcattacatatatgtgcattagataatttatattttattttaagtttt tctcctgatgcagagaataattttgctgatgttttatcgcaatattttgttggaattaatccttctacta tacaattttggtcagcaccagagtctaataaagctactgtctggatactgtattcactatttatgactaa ttttattggtacataccatttttgagacttaattttagagatagccaagactcccaattcgtcgtcttgt gcttctacttgtttagtatttgaactttctcctattattgtagaatttaactccttttgagttttttgaa ttaattctagagcaaggttttcttcctctatgttattaactttttgttttaaaatattaacttcttgttt taatgttgttaattctgcataaagatctgatatagatattttttcttcttttttatcaaatttttgtaga atttttttcatactaaaaggattggatatgttaggtttatttgattctctacttaagactatttctttta attttaaaagatattctcttttaatttcttcatcctttatttgatctattagatcaaagaagaattcttt attttcatttgatatgacttttattgaacctgtcccgcaggtacataatcctctaggacaatcacactct gattcggaagtgtaactatcactagactcatatgctatattaatttgttcatcatcacttatgctttccg tggatgaactttcttcttcactattatcattttcgtctagtatagcatatattttattcttaatgtcttc atctaattctaaactattaattttgtttttcttctttgtcttgactctacaatcatttgccttatggcct ttttttccacaattgtagcatctttctttaaaagaaggttgtttactttgacttgtattctttggaattt tcttcctgtatcttttggaatattttcttttataatcactattgctacttttgtcttttctatttttcct tttggatttttttgttgcctcggtagacggggcagttatcttagcataaccaaaatcactacagaaattt cctaattctttcttagtgattttataatctctttttagctgattttttaatttcatatcagtacatagtt ctaaagctgttatgttaataaagcttattatatcaccataggttaaaccatcataaggtatttcaccgtt aaatctatcttttattttttgtctaactttatctgcaaataactgtggtaatccacttataaatttttct ttccaataactatgattacaatcttctctaatcattactttatttaggaatatgtctttataccatttaa agtcatgtaattttggacatgataaattagataatatttctaaacttctatctttaaatacttttggttc tccaataaagtgtttaattatagcatataataaagtatttatagcatcttcacgtacttgttcttctatt gtttgattagtactattactttcttgtttaactacctttatgattgtagtagcattaaggacagtttctc tatctctatctgacagatagttgtcccaccaattttttaacattcctgtaaatccgtaagaaagcagggt tgctgcttgcttatctgtattaccttttattttataggctgttgctgctattcccatttcatgtaatcta tttagtatttgatgttctgcttgtccatctatattccactcagttatagcatcacctgagtgagaactga atgatactagatgttcttcttcatactgtatatcaggaaatgtaggttttttataataatttttcttatg atgataattagatcctaatttatttaattgattatttaattcagataaggtttttactgaattttctttt tcttttggaattgtatttatcgttaaagatgattttaaccttttagtaatttcatctagaacatcacctt ttatttctaatccacctttaggaagactagggaatttatcttttgacatactaggtagcctgaaaattgg attttcttcaatattatcttcaaattttattcttttctctgggaatggtttaaaagaagacttgcttctt gcttcttctacctgattggctatgacatgtagtatttgatttgtataattactttgttctattaatttat taatatctctatttttaggttctccttgggcatctattgatgttcttttaaaaggatttcctattactac tttatcacctactggtatatttatttcttctaatgggggaatggtagattctattattttattacttttc gtataccattttttaactaccatatttaaagattcacagttagctaattttcctgtatattcaaaccatt taaaaaattctaaactacacttccattttttcatatctttcatccatttatctctaaatgatttcctctg ttctaaagtgtaattgtttctataccattctcttttaatattattctctggttttacccagagttgttgg agatattttatatctggttcaaatggttcttctaacgttatcattcctaaggaatcatttatttcactaa aggttgggcttgatggttgattgattatgacaggcttgtattctggttgtggaattcttttactaaagtt aacaccttttaaatttttgcttattatgtcttcttcctccaggggacaagaagtagatggccttgaaaag gacatcctggaagatgaagatgtagcattagaggatctagattttaggaattttaaatctattgatccat ctgtatgttgtataacttgttctatttgtatagattcatcttccacttttggttccgtgatggaatcaaa gtgccattcatcttttgataagacttcatcccatttaagtaatcttgggacaaatatattatgatgtcta atatttgcttccattaacattgtaactcctttatgagctctacttggtttagctttgggagctagagtag ttttcattaatttataatatactctatatattatagctatttctctggcttgatgtttactatttagatg ttttgttttaacatttaatgttagaacatctaatattgttggatcattaatatcaactgagaaattcgga taacaattaaagtatactggcccatttgccatgttactttgtaatacggctattaatgaatcatcaaagt
ttaagaatctattatctcttaataataaacatataggaatatctaatcctagtctatgaagtggttttac agccacttgcactagtcctatatgtaggaacttataactttttctatatttttctatatcttttatagac aatagttgaattgtttcaactgactgatttatagcaattgttgattcacatgttttaatattaaatctat ttatgaagtcaaatcctccgacttcatatatcttttctaacttttctttgggaatattccaatttaacag attattttctatttttgatattttatctacttctgttgataggtttatactgtttaatactgactgtgat gatccttccattttaataatgggctcctggaccgtcacaagcttttctataataactttcagctataggt tttaatctaagtatttctgaaatattattttgcatataatgtaaaaaatcaatatttcctgttgaaagat atctatgta

Appendix 3.7 Approved sequence of PparV, the Florendovirus member in $P$. axillaris subsp parodii S 7 by the Repbase database.

```
;ID Caulimovirus-PAx DNA ; PLN ; 7722 BP
; XX
;DE Integrated caulimovirus sequence.
; XX
; AC .
; XX
; DT 07-Aug-2017 (Rel. -1, Created)
;DT 07-Aug-2017 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; Caulimovirus-PAx.
; XX
;OS Petunia axillaris
; XX
;OC Petunia axillaris
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
;OC Petunioideae; Petunia.
; XX
;RN [1] (bases 1 to 7722)
;RA Alisawi,O., Richert-Poggeler,K.,
; RA Heslop-Harrison,P. and Schwarzacher,T.
;RT New integrated viral sequence within Petunia axillaris genome.
;RL Direct Submission to RR (07-Aug-2017)
; XX
;CC 100% identical to consensus.
;CC ~ 61.1% identical to Caulimovirus-2_STu.
;CC ~ 55.8% identical to Caulimovirus-3-STu.
;CC ~ 61.4% identical to Caulimovirus-4_STu.
; XX
;FT CDS 1072..5505
;FT /product="Caulimovirus-PAx_1p"
; FT /translation="KYLMDFTSTIDF\overline{SRGSPARKKISEDFYKPRWELFR}
; FT RWFFKSFNRTEQNDFQEEFYKDLEKVNKIISFIPWFMGKYVANYIAVLE
; FT RQFELLNGKIIDAVLPPQQPFKIKKEGKMMDFAAFSAMIEDNTLQVTVK
; FT HINIMLKQHNYTNIYVHILGEHIVSLHDKVDKLCSIISSNTASTSGKEK
; FT LEKPPRVAIPTIQPPPDVEDFKLKPDAYNIEKFLNEKFKELSLKPLINT
; FT EESDNAFSENEVFEDDFPKLTYDQINKLKSSYSSKFADKPRQRMFYYPR
; FT PTPQDVLFEEQDDMYAPNSFSGKQIYEWNIDGLTNRQMYVVMHRMMMYS
; FT TICKTNGNSDKTVANMITSGFTGQLKGWWDNYLTVDQRNEILNAVKSEP
```

; FT GTSTADNTNAVYFLVVNIIEHFSGRWSDNSETIRTLLQNMRCKTLTSFR
; FT LYKDTFLCRVMELPECNSTHWKSKFIDGLPNLFAERVKKVLRQEGVNIN
; FT YDDHTYGSLVGICIQEGLALCNDIKLNQELKRHRLNERQQLGEFCGQFG
; FT MDDPRTRTKSKSHKLHRSKTGKKHDYQEWRQRYSERRTEKRARRKKAFK
; FT ERKDDIKAKAKNPLNCWKCGRFGHRYKDCKVKERIKALNIDEDLKDSLL
; FT KILLNSEPEISDPGEENIPTKEELNKVFQDESDIVTSSEDECDPCKIGQ
; FT PCDNKENDEFYNLFSQFSLNTLDNDNLIELLKMVQDSKVRSKLIDQIKG
; FT NFEQKESEGLEKGFYAPMDNTPYTMKEVKRLLEQRKMSHSGSPTTSQDL
; FT EKEVYNLKKEIYNLKKENKILDQRISRIEGKGKEKDETTTPSNSENLDN
; FT IFSDMNEEFLTTLEVFTSQKFFIKITLLIDYNFKKEFIALVDSGADLNC
; FT VQEGLIPSRYFHKTTHSLRSANGEKMQIEYKLPTASICTNKVCIPQSFV
; FT LIKNMSNQVILGTPFLQKIFPITRIDKEGIIGTFQGKPIIFQFITEPIT
; FT RVLNQLKDMLAKKSQHINFLKQEIYTLNIDEILKNPKLREKIDFMINQF
; FT SLQICSEHPNAFWNRKKHVVTLPYEEEFSEANSIPTKARPCQMNSEYLE
; FT LCKKEIDSLLHKGLIRSSKSPWSCTAFYVNKHAEQERGVPRLVINYKPL
; FT NKVLKWIRYPIPNKKDLLDRLHNAIIFSKFDLKSGYWQIQIAETDRYKT
; FT AFNVPIGQFEWNVMPFGLKNAPSEFQKIMNDIFIPYSNFIIVYIDDILV
; FT FSNTIEMHFKHLELFKKIIIQNGLVISKPKMFLFQTKVRFLGHNIEKGK
; FT IIPINRSIEFASKFPDVITDKTQLQRFLGSLNYIAPFYKDLAKDTSILY
; FT DRLKKIPKPWTDAHTETVRKIKERVKNLPCLTLANPTWPKIIETDASDI
; FT GYGGILKQNAPGEKIEYLIQFHSGKWNNSQKNYSTVAKEILAIVKCVLK
; FT FQGDLYNQKFLIKTDCQSAKFMFNKDCKHDVSKQMFARWQALLAPFDFE
;FT IHYKKGEDNSLPDFLTREYLAS"
; XX
; DR [1] (Consensus)
; XX
; SQ Sequence 7722 BP; 2842 A; 1120 C; 1379 G; $2381 \mathrm{~T} ; 0$ other;
Caulimovirus-PAx
tttaatgattagaaacaagactactgttaaaaacagtagaaaggaggaatatgatattccacaacaccta gatttacttaacaagtggactattcctaaagttcaacctaagttaatataccagttaggaacctttgaga aatttggtttgaaacaagtagtgaaaactacagaagatactattactattgataatgatcatgctacctt taatttattgactcagcatgatttattgccttatatgcacactcatagatttattcatattggtttaatt caagttgcatttaaacctttaactttaagaggactgaatgaaacgtttatagctgctctcagggatggta gaaaccataactggaagaaatcccttatagggattgtacaatcaagtttggcctatggcccggtatattt taatgcttatccgaatttacaaatatcattatcggatgaaaatgctttaaaagccctagttttaaatgtt aaactgcatggttatgactatatgcctaatacagaagtcatatgtatctgttataggatttattttaaac cattatatactctaaatcctatgtgcaaaatcatggattttaaaaatgagactattttaatagaaactaa ttttggtaaaacaaaggttactaccagaagaccaatcaagtgggaagaaatagatttccctaaagagtgg gtcatggaggatgctgctcctccaaaagatttgaaaagtactgatttaactggaattgaacagactccag agggcaatgtaaaaatcagatttgaatctgatgacgttgtaagtaggataaatatgggatcggatagatc tagctctaaaaatttatctagatctaattctttgtattattctcatatctctccaattgattatattgtt gaaaccccttctagagcttctacttctcaaataagagaagaaatgcctagatataatagtttgaaaattg ataaagataatattgtcactcctgttgctcctataagagaacaacagattgacgatgcggatataactgc atctgaaatggattttggtgaaaatatttaatggattttacatccacaattgattttagtcggggatcac ccgcaagaaagaaaatatctgaggatttttataaacccagatgggaactttttagaagatggtttttcaa aagttttaatagaactgaacaaaatgattttcaagaagaattttataaagatcttgagaaagtcaacaaa attatatcttttatcccatggtttatgggaaaatatgtggcaaattatattgctgttttggaaagacaat tcgagttgttaaatggtaaaatcattgacgctgtattacctccacagcaaccttttaaaataaagaagga gggaaaaatgatggattttgcagctttttctgcgatgatagaggataataccttacaagttactgttaaa catattaatattatgttaaaacagcataactatactaatatttatgttcatatattgggtgagcatattg tatctttacatgataaggtagataaactatgttctataataagcagtaatactgctagcacatcaggaaa agaaaaattggaaaagccacctcgagtagccattccaactattcagcctcctcctgatgttgaagatttt aaattaaaacctgatgcatataatatcgaaaagtttttaaatgagaaatttaaagagttatcactaaagc ctctaattaatacggaggaaagtgataatgcattttctgaaaatgaagtttttgaagatgattttccaaa actaacttatgatcaaattaataaattaaagtcttcttatagttcgaaatttgctgataaaccaaggcaa aggatgttttactatcctaggcctactcctcaggatgttctattcgaagagcaggatgatatgtatgctc cgaatagtttcagcggtaagcagatatatgaatggaatattgatggccttaccaataggcaaatgtatgt agttatgcatagaatgatgatgtatagcacgatttgcaagactaatggtaatagtgataaaactgttgcc
aatatgattacctcgggttttactggtcaattaaaagggtggtgggataattatctcactgttgaccaga gaaatgaaattttgaatgcagttaaaagtgaaccaggaacttctacagctgataatactaatgctgttta ttttttggttgttaatataattgaacacttttcaggaagatggtctgataatagtgagactattcgaacc ctcttacagaatatgagatgtaagactttaacttcatttagactttataaagatacatttctttgtagag tcatggagttaccagagtgtaatagcactcattggaaatctaaatttatagatggacttcctaacctctt tgcagaaagagttaaaaaagttcttaggcaagaaggagtcaatattaactatgatgaccatacttatgga agtttggttggaatatgtatccaagaaggattggcgttatgtaatgatatcaagctaaatcaggagctta aacgccatcgtcttaatgaaagacaacagttgggtgaattttgtggtcaattcggcatggatgatccacg aacccgaaccaaatcaaagtctcataagcttcatagaagcaagactggtaagaaacatgattaccaggaa tggagacaaagatattcggagagacgcacagaaaagcgtgctagaagaaaaaaggcttttaaagagcgaa aggatgacattaaagccaaagccaagaatccactaaattgttggaaatgtggaaggtttggtcatcgata taaagactgcaaggtcaaagagagaatcaaagctcttaatatagatgaagatctgaaggattctttattg aagatcttattaaattctgaaccagaaatatcggatccaggtgaggaaaatatccctaccaaggaagaac taaataaagtcttccaggatgaaagtgatattgtcactagttctgaggatgaatgtgatccttgcaagat tggacaaccttgtgataataaagaaaatgatgaattttataatttattttctcaatttagtcttaacact ttggataatgataatttaatagaattattgaaaatggtacaggattccaaagtgagatccaaacttatcg atcagatcaaaggaaatttcgaacagaaggaatccgaaggattggaaaagggtttctatgctcctatgga taatactccatacaccatgaaagaagttaaaagacttctagaacaaagaaaaatgagtcatagtggttca cctactacgtctcaggatttggaaaaagaggtttataacctcaaaaaagagatttataatctcaagaaag aaaataagatattagatcaaaggatttctagaattgaaggaaaaggtaaagaaaaggatgaaaccactac cccttctaattctgaaaatcttgataatatttttagcgatatgaatgaagagtttttaactaccctagaa gtatttacttctcaaaagttttttataaaaattactcttcttattgattataatttcaaaaaagaattta tagctcttgttgatagtggagcagatttaaattgtgttcaagaaggattaattccttcacgatattttca taagactactcatagtttaaggtctgctaatggtgagaaaatgcagattgagtacaaattgccaacagct tctatatgcacaaataaggtatgtatacctcaaagctttgttttaataaaaatatgtctaaccaagtta tactaggaacaccctttttacaaaaatatttcctattactaggattgataaagaagggataataggaac ttttcaaggaaaacctattatttttcagtttataactgaacctattactagagttttaaaccagttgaaa gatatgctagctaagaagagtcagcatatcaattttcttaaacaagaaatttatactttaaatatcgatg agattttaaaaaatcctaaattgagagaaaaaattgattttatgataaatcagttttcattacaaatttg tagtgaacatccaaatgctttttggaataggaaaaaacatgtagttacacttccatatgaggaagagttt tctgaagctaatagtatccctactaaggcaagaccttgccagatgaattcagaatacttggaattatgca aaaaggaaatagattctttattgcataaaggtctcatacgatcatcgaaatcaccatggtcctgtacagc gttctatgttaataaacatgctgaacaggaaagaggagttccaaggttagtaataaactataaacctttg aataaagttttgaaatggatcaggtatccaattcctaataaaaaggatttattagataggcttcataatg ctattatattttctaaatttgatttaaatcagggtactggcagattcaaatagctgaaactgacaggta caaaactgctttcaacgttccaataggacaatttgaatggaacgttatgccatttggtttaaaaaatgct ccttctgaatttcagaaaattatgaatgacatattcatcccttatagtaattttattatcgtttatattg acgatatcttagtattttctaatactatcgaaatgcattttaagcatttagaattatttaaaaaattat tatacaaaatggtttggttatatctaaacctaaaatgtttttgtttcaaactaaagtaagatttcttggc cataatattgaaaaggggaaaattattcctattaatagaagtatagaatttgcttctaaatttccagatg ttataactgacaaaactcaattacagagatttcttggaagtctaaattatattgctccattttataaaga tctggctaaggatacatctattttatatgatagattgaaaaagattccaaagccatggacagatgctcat actgagacagtccggaaaatcaaggaaagggtaaaaaatctcccttgtcttacattggctaatcctacat ggccaaaaattatagagaccgatgcatcagacattggttatggaggtattttaaaacaaaatgctccagg agagaaaattgaatatttgatacaattccattctggtaaatggaataacagtcagaaaaactattcaact gtagcaaaagaaatacttgctatagtaaaatgtgttttaaaattccaaggtgatttatacaatcagaagt ttcttataaagaccgattgccaatcagctaaattcatgtttaataaagattgtaaacatgatgtctctaa gcaaatgtttgctagatggcaagcgctattagctccatttgattttgaaatacattataagaaaggagaa gataatagccttcctgattttttgactagagaatatttggctagttaatgataataatcattatcttaat gtgcaggttatttaatatgtgtagacgagataatatgctttattattgtccatactgccaaaatcaactc ttacccaggcagatgtatgctatatattgggatttgcgtgcaacgcagagtagattgaaaaaactggtgt atgaagctgaagatttattatcacgtgccaagttctttaataaagaagatgtagatcatgttatcagcat tatatgcacagcaaaaactagaatgaaagatattacaaaggaaattataggaatccataaagtattggaa atttatccaatatatctggcctgatgaatttatgatctattatatgcaggttatgcatccggcccgaggg aacccaacctctaatagaggaaggggaaacagaggaagaggcactggtagaggtgctgtaatagcccaaa tgggtaagcaaaggcttatagccgaagacttaacaggatcatcttcgaagagtaatacaagcaatgatac aatgtcataccaacagtatcaagaattcctgaaatggaaaaattctcaagagaagcaaaagggaacagag gataatatgcctccgtcatattcttctattatattagaagatgataacgagactatccagtcttatatta
agacagatcacaaggaaatagtattattccttgaagatagagaccttcaatggaaagatgagccatggaa attaatggcaagatatttaaataatgcgtcatacgcagcctgtacttataagtacagaggtcattatgag atgatacttaacaccactgaatcttgcgagatatcgcatttttacccagctaataccaaaaaagttttta acttttccaaatgataatcaaaaggattatatccgcagaagaatggggtttaagtaccctaactgaaag aagttataatcatccagagatgaaaacaccggtaaaatataattactgggactatgtggatagcttttat aaagcattgctatatgagaatgagaacaagaaacattcttggttcataaaaatatgctcaaatgtttata aacagagcaatataccaaattggttttcacagtggtggatcgtttatggtcctacggtaaaattgctacc ggagccattgctcagtttatatactgaatgggtggatgtatctcccaagattcatgaattacagggaaat aacactcttatagagggaaattcttatatgaatttctttattgaatattcaatcccatggattatgaaat ggagcgttgaagtggattataccccacataacattcctgccttatatagaaccttttatacgaggttttg gaaaaaaatgattcaaagaacagctgatggtaatctacactgtcaagatacaattgatttaataaaacaa tcactcgagaaatataaacagattgatcatctggaacaagttaatacaccaagtccttatcaacacattc tccataagttaaggatgaagaagggattaatgaccaaagaggaaaagttagccttctacttggaagaagt caaaaaagatttaatcaaaaatcttgaggttgaaattcagtcagacacgtcaatggcttctgcaaataat acagaagatgagggcgaatattgtctaccaggggaatcccaatcaattacagaagatgaagcaaatgatt atatcaccaatataatgacacaggtgactgaacaagtgactaaagagagggaatcttccaaggcacaaaa cgctaagggaaaggataaactctgacgaggacatattattcaagacccctcagcttttataaagttacct ttaataaagtagcttcaataatgttgctctctctttaataaaagcagctttgataaagttgtgaaaataa tgggccatctatcggccatttttctttctttaattttcaaccggccacttgtaaagtttgggcctaattt gttgatttattttgtctataaatagcttaggagttagaacggagaagggcatcagtttacaaccctctca aaattgtaaatctctcctattgtaaaaactttcaagcatataaaattctcttaattgcctgagcgcaaaa ccaggtatttaacattgttcttttaattttgtttcttttaataaatttaagctttgatacttggcctaat gataggctaaatcattaagtgt

Appendix 3.8 Approved sequence of Caulimovirus-PAx, the Caulimovirus member in $P$. axillaris subsp axillaris N by the Repbase database.

```
;ID Caulimovirus-PIn DNA ; PLN ; 8012 BP
; XX
;DE Integrated caulimovirus sequence.
; XX
; AC .
; XX
;DT 17-Aug-2017 (Rel. -1, Created)
;DT 17-Aug-2017 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; Caulimovirus-PIn.
; XX
;OS Petunia integrifolia subsP. integrifolia subsp inflata
; XX
;OC Petunia integrifolia subsP. integrifolia subsp inflata
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
;OC Petunioideae; Petunia.
; XX
;RN [1] (bases 1 to 8012)
;RA Alisawi,O., Richert-Poggeler,K.,
;RA Heslop-Harrison,P. and Schwarzacher,T.
;RT Integrated caulimovirus sequence within Petunia inflata genome.
;RL Direct Submission to RR (17-Aug-2017)
; XX
;CC 100% identical to consensus.
; XX
;FT CDS 787..2298
```

; FT /product="Caulimovirus-PIn_1p"
;FT /translation="ESIKYWKFIQYIWPDEFMIYYMQVMHPARGNPTSN
; FT RGRGNRGRGTGRGDVIAQMGKQRLIAEDLTGSSSKSNTSNDTMSYQQYQ
; FT EFLKWKNSQEKQKGTEDNMPPSYSSIILEDDNETIQSYIKTDHKEIILF
; FT LEDRDLQWKDEPWKLMARYLNNASYAACTYKYRGHYEMILNTTESCEIS
; FT HFYPANTKKVFNFSKMIIKRIISAEEWGLSTLTERSYNHPEMKTPVKYN
; FT YWDYVDSFYKALLYENENKKHSWFIKICSNVYKQSNIPNWFSQWWIVYG
;FT PTVKLLPEPLLSLYTEWVDVSPKIHELQGNNTLIEENSYMNFFIEYSIP
; FT WIMKWSVEVDYTPHNIPALYRTFYTRFWKKMIQRTADGNLHCQDTIDLI
;FT KQSLEKYKQIDHLEQVNTPSPYQHILHKLRMKKGLMTKEEKLAFYLEEV
; FT KKDLIKNLEVEIQSDTSMASANNTEDEGEYCLPGESQSITEDEANDYIT
; FT NIMTQVTEQVTKERESSKAQNAKGKDKL"
; XX
; DR [1] (Consensus)
; XX
; SQ Sequence $8012 \mathrm{BP} ; 2908 \mathrm{~A} ; 1183 \mathrm{C} ; 1436 \mathrm{G} ; 2485 \mathrm{~T} ; 0$ other;
Caulimovirus-PIn
gcaagtatttcttttgctacagttgaatagtttttctgactgttattccatttaccagaatggaattgta tcaaatattcaattttctctcctggagcattttgttttaaaatacctccataaccaatgtctgatgcatc ggcctcctggagtattttaaaacaaaatgctccaggagagaaaattgaatatttgatacaattccatttt ggtaaatggaataacagtcagaaaaactattcaactgtagcaaaagaaatacttgctatagtaaaatgtg ttttaaaattccaaggtgatttatacaatcagaagtttcttataaagaccgattgccaatcagctaaatt catgtttaataaagattgtaaacatgatgtctctaagcaaatgtttgctagatggcaggcgctattagcc ccatttgattttgaaatacattataagaaaggagaagataatagccttcctgattttttgactagagaat atttggctagttaatgataataatcattatcttaatgtgcaggttatttaatatgtgtagacgagataat atgctttattattgtccatactgccaaaatcaactcttacccaagcagatgtatgctatatattgggatt tgcgtgcaacgcagagtagattgaaaaaactggtgtatgaagctgaagatttattatcacgtgccaagtt ctttaataaagaagatgtagatcatgttatcagcattatatgcacagcaaaaactagaatgaaagatatt acaaagcaaattataggaatccataaagtattggaaatttatccaatatatctggcctgatgaatttatg atctattatatgcaggttatgcatccggcccgagggaacccaacctctaatagaggaaggggaaacagag gaagaggcactggtagaggtgatgtaatagcccaaatgggtaagcaaaggcttatagccgaagacttaac aggatcatcttcgaagagtaatacaagcaatgatacaatgtcataccaacagtatcaagaattcctgaaa tggaaaaattctcaagaaaagcaaaagggaacagaggataatatgcctccgtcatattcttctattatat tagaagatgataacgagactatccagtcttatattaagacagatcacaaggaaataatattattccttga agatagagacctccaatggaaagatgagccatggaaattaatggcaagatatttaaataatgcgtcatac gcagcctgtacttataagtacagaggtcattatgagatgatacttaacaccactgaatcttgcgagatat cgcatttttacccagctaataccaaaaaagtttttaacttttccaaaatgataatcaaaagaattatatc cgcagaagaatggggtttaagtaccctaactgaaagaagttataatcatccagagatgaaaacaccggta aaatataattactgggactatgtggatagcttttataaagcattgctatatgagaatgagaacaagaaac attcttggttcataaaaatatgctcaaatgtttataaacagagcaatataccaaattggttttcacagtg gtggatcgtttatggtcctacggtaaaattgctaccagagccattgctcagtttatatactgaatgggtg gatgtatctcccaagattcatgaattacagggaaataacactcttatagaggaaaattcttatatgaatt tctttattgaatattcaatcccatggattatgaaatggagcgttgaagtggattataccccacataacat tcctgccttatatagaaccttttatacgaggttttggaaaaaaatgattcaaagaacagctgatggtaat ctacactgtcaagatacaattgatttaataaaacaatcactcgagaaatataaacagattgatcatctgg aacaagttaatacaccaagtccttatcaacacattctccataagttaaggatgaagaagggattaatgac caaagaggaaaagttagccttctacttggaagaagtcaaaaaagatttaatcaaaaatcttgaggttgaa attcagtcagacacgtcaatggcttctgcaaataatacagaagatgagggcgaatattgtctaccagggg aatcccaatcaattacagaagatgaagcaaatgattatatcaccaatataatgacacaggtgactgaaca agtgactaaagagagggaatcttccaaggcacaaaacgctaagggaaaggataaactctgacgaggacat attattcaagacccctcagcttttataaagttacctttaataaagtagcttcaataatgttgctctctct ttaataaaagcagctttgataaagttgtaatgggccatctatcggccatttttctttctttaattttcaa ccggccacttgtaaagtttgggcctaatttgttgatttattttgtctataaatagcttaggagttagaac ggagaagggcatcagtttacaaccctctcaaaattgtaaatctctcctattgtaaaaactttcaagcata taaaattctcttaattgcctgagcgcaaaaccaggtatttaacattgttcttttaattttgtttctttta ataaatttaagctttgatacttggcctaatgagaggctaaatcattaagtgttgagctctgtcacactag gctactagggtaaaatgattctaataacagattatgattagaatctcagcaggtggtggtgttaaaggta tggtttgatagacaacccaggcggaaggctgcatgccagaaccaaggttctgttgtttgcccgcttagcc
gaggatggcgcttagggctgttgttgaacctaattttgggttcagccactccttgccagggttgtgtcac cagtaaaattttcctgttacccccatgctgttaagatccgtcataaatttggtatcagagccatggtgca cagtagcaataggtgacgagttcaacacttaactttctgatgaatatcattagaaacaagactactgtta aaaacagtagaaaggaggaatatgatattccacaacacctagatttacttaacaagtggactattcctaa agttcaacctaagttaatataccagttaggaacctttgagaaattgggtttgaaacaagtagtgaaaact acagaagatactattactattgataatgatcatgctacctttaatttattgactcagcatgatttattgc cttatatgcacactcatagatttattcatattggtttgattcaagttgcatttaaacctttaactttaag aggactaaatgaaacgtttatagctgctctcagggatggtagaaaccataactggaagaaatcccttata gggattgtacaatcaagtttggcctatggcccggtatattataatgcttatccgaatttacagatatcat tatcggatgaaaatgctttaaaagccctagttttaaatgttaaactgcatggttatgactatatgcctaa tacagaagtcatatgtatctgttataggatttattttaaaccattatatactctaaatcctatgtgcaaa atcatggattttaaaaatgagactattttaatagaaactaattttggtaaaacaaaggttactactagaa gacctatcaagtgggaagaaatagattttcctaaagagtgggtcattgaggatgctgctcctccaaaaga tttgaaaagtactgatttaactggaattgaacagactccagagggcaatgtaaaaatcagatttgaatct gatgacgttgtaagtaggataaatatgggatcggatagatctagctctaaaaatttatctagatctaatt ctttgtattattctcatatctctccaattgattatattgttgaaaccccttctagagcttctacttctca aataagagaagaaatgcttagatataatagtttgaaaattgataaagataatattgttactcctgttgct ccaataaaggaacaacaaaggaatgatgttgatgcagatataactgagtcagaaatgggttttgaaattt aatggattttaagcctaaaatagattttagtcggggatcacccgcaagaaaaaaaaattctgaagaattt tataaacctagatgggcattatttcggaaatgattttttaaaagttttgataaaaccaagcaacatgcgt ttcaagaagaattctatgaagatcttgaaaagcatgacaagcttatatcttttgtcttgtggtttatggg aagatatgtagcaaataatattgctgtcatgggaaggcaatttgaaatggcaaatggtacaattgttgat gctgtattacctccacagcaaccttttaaaatgaaaaaacttgactttgcagcgtttgctacattatggg atgagcaaactttgcaagttactgttaaacatattaatattatgttaaaacagcataactatactaatat ttatgttcatgtattaggtgagcatattgtatctttacatgataaggtagataaaatatgttctataata agcagtaatactgctagcacatcaggaaaagaaaaattggaaaagccacctcgagtagccattccaacta ttcagcctcctcctgatgttgaagattttaaattaaaacctgatgcatataatatcgaaaagtttttaaa tgagaaatttaaaaagttatcactaaagcctctaattaatacggaggaaagtgataatgcattatctgaa aatgaagtttttgaaagtgattttccaaaactaacttatgatcaaattaataaattaaagtcttcttata gttcgaaatttgctgataaaccaaggcaaaggatgttttactatcctaggcctactcctcaggatgttta attcgaagagcaggatgatatgtatgctccgaatagtttcagcggtaagcagatatatgaatggaatatt gatggccttaccagtaggcaaatgtatgtagttatgcatagaatgatgatgtatagcacgatttgcaaga ctaatggtaatagtgataaaactgttgccaatatgattacctcgggttttactggtcaattaaaagggtg gtgggataattatctcactgttgaccagagaaatgaaattttgaatgcagttaaaagtgaaccaggaact tctacagctgataatactaatgctgtttattttttggttgttaatataattgaacacttttcaggaagat ggtctgataatagtgagactattcgaaccctcttacagaatatgagatgtaagactttaacttcatttag actttataaagatacatttctttgtagagtcatggagttaccagagtgtaatagcactcattggaaatct aaatttatagatggacttcctaacctctttgcagaaagagttaaaaaagttcttaggcaagaaggagtca atattaactatgatgaccatacttatggaagtttggttggaatatgtatccaagaaggattggcgttatg taatgatatcaagctaaatcaggagcttaaacgccatcgtcttaatgaaagacaacagttgggtgaattt tgtggtcaattcggcatggatgatccacgaacccgaaccaaatcaaagtctcataagcttcataaaagca agactggtaagaaacatgattaccaagaatggagacaaaaatatttagaaagacgcacagaaaagtgtac tagaagaaaaaagcttttaaagagcgaaaggatgacattaaagccaaagccaagaatccactaaattgt tggaaatgtggaaggtttggtcatcgatataaagactgcaaggtcaaagagagaatcaaagctcttaata tagatgaagatctgaaggattctttattgaagatcttattaaattctgaaccagaaatatcggatccagg tgaggaaaatatccctaccaaggaagatctaaataaagtcttccaggatgaaagtgatattgtcactagt tctgaggatgaatgtgatccttgcaagattggacaaccttgtgataatgaagaaaatgatgaattttata atttattttctcaatttagtctttaacactttggataatgataatttaatagaattattgaaaatggtac aggattccaaagtgagatccaaacttatcgatcagatcaaaggaaatttcgaacagaaggaatccgaagg attggaaaagggtttctatgctcctatggataatactccatacaccatgaaagaagttaaaagacttcta gaacaaagaaaaatgagtcatagtggttcacctactacgtctcaggatttggaaaaagaggtttataacc tcaaaaagagatttataatctcaagaaagaaaataagatattagatcaaaggatttctagaattgaagg aaaaggtaaagaaaaagatgaaaccactaccccttctaattctgaaaatcttgataatatttttagcgat atgaatgaagagtttttaactacactagaagtatttacttctcaaaagttttttataaaaattactcttc ttattgattataatttcaaaaaagaatttatagctcttgttgatagtggagcagatttaaattgtgttca agaaggattaattccttcacgatattttcataagactactcatagtttaaggtctgctaatggtgagaaa atgcagattgagtacaaattgccaacagcttctatatgcacaaataaggtatgtatacctcaaagctttg ttttaataaaaatatgtctaaccaagttatactaggaacaccctttttacaaaaaatatttcctattac
taggattgataaagaagagataataggaacttttcaaggaaaacctattatttttcagtttataactgaa cctattactagagttttaaaccagttgaaagatatgctagctaagaagagtcagcatatcaattttctta aacaagaaatttatactttaaatatcgatgagattttaaaaaatcctaaattgagagaaaaaattgattt tatgataaatcagttttcattacaaatttgtagtgaacatccaaatgctttttggaataggaaaaaaaca tgtagttacacttccatatgaggaagagttttctgaagctaatagtatccctactaagccaagaccttgc cagatgaattcagaatacttggaattatgcaaaaaggaaatagattctttattgcataaaggtctcatac gatcatcgaaatcaccatggtcctgtacagcgttctatgttaataaacatgctgaacaggaaagaggagt tccaaggttagtaataaactataaacctttgaataaagttttgaaatggatcaggtatccaattcctaat aaaaaggatttattagataggcttcataatgctattatattttctaaatttgatttaaaatcagggtact ggcagattcaaatagctgaaactgacaggtacaaaactgctttcaacgttccaataggacaatttgaatg gaacgttatgccatttggtttaaaaatgctccttctgaatttcagaaaattatgaatgacatattcatc ccttatagtaattttattatcgtttatattgacgatatcttagtattttctaatactatcgaaatgcatt ttaagcatttagaattatttaaaaaaattattatacaaaatggtttggttatatctaaatctaaaatgtt tttgtttcaaactaaagcaagatttcttggccataatattgaaaaggggaaaattattcctattaataga agtatagaatttgcttctaaatttccagatgttataactgacaaaactcaattacagagatttcttggaa gtctaaattatattgctccatttcataatcca

Appendix 3.9 Approved sequence of Caulimovirus-PIn, the Caulimovirus member in $P$. integrifolia subsp inflata $S 6$ by the Repbase database.

```
;ID Caulimovirus-PHy DNA ; PLN ; 8060 BP
; XX
;DE Integrated caulimovirus sequence.
; XX
; AC .
; XX
;DT 18-Aug-2017 (Rel. -1, Created)
;DT 18-Aug-2017 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; Caulimovirus-PHy.
; XX
;OS Petunia x hybrida
; XX
;OC Petunia x hybrida
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
;OC Petunioideae; Petunia.
; XX
;RN [1] (bases 1 to 8060)
;RA Alisawi,O., Richert-Poggeler, Heslop-Harrison,P. and
Schwarzacher,T.
;RT New integrated caulimovirus sequence within Petunia hybrida genome.
;RL Direct Submission to RR (18-Aug-2017)
; XX
;CC 95.9% identical to consensus.
;CC ~ 61% identical to Caulimovirus-2_STu.
;CC ~ 55.9% identical to Caulimovirus-3_STu.
;CC ~ 61.1% identical to Caulimovirus-4_STu.
; XX
; FT CDS 1549..722
;FT /product="Caulimovirus-PHy_1p"
; FT /translation="NIITGTMWIAFIKALLYENENKKHSWFIKICSNVY
```

; FT KQSNIPNWFSQWWIVYGPTVKLLPEPLLSLYTEWVDVSPKIHELQGNNT
; FT LIEGNSYMNFFIEYSIPWIMKWSVEVDYTPHNIPALYRTFYTRFWKKMI
; FT QRTADGNLHCQDTIDLIKQSLEKYKQIDHLEQVNTPSPYQHILHKLRMK
; FT KGLMTKEEKLAFYLEEVKKDLIKNLEVEIQSDTSMASANNTEDEGEYCL
; FT PGESQSITEDEANDYITNIMTQVTEQVTKERESSKAQNAKGKDKL"
; XX
; DR [1] (Consensus)
; XX
; SQ Sequence 8060 BP; 2520 A; 1418 C; 1146 G; 2976 T; 0 other;
Caulimovirus-PHy
gctcttgttgatagtggagcagatttaaattgtgtggaatctatttcctttttgcataattccagacaca accctggcaaggagtggctgaacccaaaattaggttcaacaacagccctaaacgccatcctcggctaagc gggcaaacaacagaaccttggttctggcattcaaccttccgcctgggttgtctatcaaaccataccttta acaccaccacctgctgagattctaatcttaatctgttatttagaatcattttacccccagtagcctagtg tgacagagctcaacacttaatgaattttagcctatcatttaggccaagtatcaaagcttaaaatttatta aaagaaacaaaattaaaagaacaatgttaaatacctggttttgcgctcaggcaattaagagaatttttat atgcttgaaagtttttacaataggagagatttacaattttgagagggttgtgaaaactgatgcccttctc cgttctaactcctaagctatttatagacaaagaataaatcaacaaattaggcccaaactttacaagtggc cggttgaaaattaaagaaagaaaaatggccgatagatggcccattattttcacaactttatcaaagctgc ttttattaaagagagagcaacattattgaagctactttattaaaggtaactttataaaagctgaggggtc ttgaataatatgtcctcgtcagagtttatcctttcccttagcgttttgtgccttggaagattccctctct ttagtcacttgttcagtcacctgtgtcattatattggtgatataatcatttgcttcatcttctgtaattg attgggattcccctggtagacaatattcgccctcatcttctgtattatttgcagaagccattgacgtgtc tgactgaatttcaacctcaagatttttgattaaatcttttttgacttcttccaagtagaaggctaacttt tcctctttggtcattaatcccttcttcatccttaacttatggagaatgtgttgataaggacttggtgtat taacttgttccagatgatcaatctgtttatatttctcgagtgattgttttattaaatcaattgtatcttg acagtgtagattaccatcagctgttctttgaatcatttttttccaaaacctcgtataaaaggttctatat aaggcaggaatgttatgtggggtataatccacttcaacgctccatttcataatccatgggattgaatatt caataagaaattcatataagaatttccctctataagagtgttatttccctgtaattcatgaatcttggg agatacatccacccattcagtatataaactgagcaatggctccggtagcaattttaccgtaggaccataa acgatccaccactgtgaaaaccaatttggtatattgctctgtttataaacatttgagcatatttttatga accaagaatgtttcttgttctcattctcatatagcaatgcttttataaaagctatccacatagtcccagt aattatattttaccggtgttttcatctctggatgattataacttctttcagttagggtacttaaacccca ttcttctgcggatataatccttttgattatcattttggaaaaaagttaaaaacttttttggtattagctg ggtaaaaatgcgatatctcgcaagattcagtggtgttaagtatcatctcataatgacctctgtacttata agtacaggctgcgtatgacgcattatttaaatatcttgccattaatttccatggctcatctttccattgg aggtctctatcttcaaggaataatattatttccttgtgatctgtcttaatataagactggatagtttcgt tatcatcttctaatataatagaagaatatgacggaggcatattatcctctgttcccttttgcttctcttg agaatttttccatttcaggaattcttgatactgttggtatgacattgtatcattgcttgtattactcttc gaagatgatcctgttaagatcttcggctataagcctttgcttacccatttgggctattacagcacctcta ccagtgcctcttcctctgtttccccttcctctattagaggttgggtttcctcgggccggatgcataacct gcatataatagatcataaattcatcaggccagatatattggataaatttccaatactttacggattccta taatttcctttgtaatatctttcattctagtttttgctgtgcatataatgctgataacatgatctacatc ttctttattaaagaacttggcacgtgataataaatcttcagcttcatacaccagtttttttcaatctact ctgcgttgcacgcaaatcccaatatatagcatacatctgcctgggtaagagttgattttggcagtatgga caataataaagcatattatctcgtctacacatattaaataacctgcacattcaaaataatgattctatta tcattaactagccaaatattctctagttaaaaaaatcaggaagactattatcttctccttttttatattg tatttcaaaatcaaatggggctaataatgcctgccatcttgcaaacatttgtttagaaacatcatgttta caatctttattaaacataaatttagctgattggcaatcagtctttataataaacttttggttatataaat caccttgaaattttaaaacacattttactatagcaagtatttcttttgctacagttgcataattttttct ggctattattccatttaccagaatggaatatgaaccaaatattcaattttattcttctggagagtattgc tttaaaatacctccataaccaatgtcagaagcatcagtttctattatctttggccaagtaggattagcca atgtaagacaaggaagagttttttactctttccttgatctttctggactgttttagtatgagcatcagtc catggctttggaatcttttttcaatctatcatataagatagctgtatctttagcaagattctcataaaat ggagcaatataatttaaactccctagaaatctctgtaattgagttttatctgttataatatcaggaaatt tagaagcaaattcaatacttctattaataggtataatctttcctttttcaatattatgaccaaggaatct tacctttagtttgaaataaaaacatttttggttttagatataaccaaaccattttgtataattattttct taaataaatttcaaagatgcttaaaatgcatttcaatagtatttgaaaatactaatatatcgtcaatata
aacgataataaaattgctataaggaatgaatatatcattcataattttctgaaattcagaaggagcattt ttttaatccaaatggcataacattccattcgaactgtcctattgggacattaaaagcagttttatacctg tcagcttcagctatttgaatctgccagtatcctgatttcaaatcaaatttagaaaatataatagcattat gaagcctatccaataaatcctttttattaggaataggatatctaatccatttcaaaactttattcaaagg tttatagtttatgactaaccttggaactcctctttcttgttcagcatgtttattaacataaaaagctgta caagaccatggggattttttgaagatcgaataagacctttatgtaataaagaatctatttccttttttac ataattccaaatattctgaattcatttggcaaggtcttgccttagtaggaatacttattagtttcagaaa agtcttcctcatatggaagtgtaactacatgctttttcctattccaaaaaagcatttggatgttcactac aaatttgtaatgaaaactgatttattataaaatcaatttttttctctcaatttgggatttttttataaat ctcatcaatatttaaagtataaatttcttgtttaagaaaattgatatgctgacttttcttagctcagcat atcttttaactggtttaaaactctagtaataggttcagttataaactgaaaaataataggtttttcttga aaagttcctattatcccttctttatcaatcctagtaataggaaatattttttgtaaaaagggtgttccta gtataacttggttagacatattttttattaaacaaagctttgaggtatacataccttatttgtgcatat agaagcttttggcaatttgtactcaatctgcattttctcaccattagcagaccttaaactatgagtagtt ttatgaaaatatcgtgaaggaattaatccttcttgaacacaatttaaatctgctccactatcaacaagag ctataaattcttttttgaaattataatcaataagaagagtaatttttataaaaaacttttgagaagtaa atacttctagggtagttaaaaactctgcctcattcccgatatcgctaaaaatattatcaagattttcaga attagaaggggtagtggtttcatccttttctttaccttttccttcaattctagaaatcctttgatctaat atcctattttccttcttgagattataaatctcctttttatgaggttataaacctcttttttccaaatcct gagacgtagtaggtgaactactatgactcatttttcttttgttctagaagtcttttaacttctttcatgg tgtatggagtattatccataggggcatagaaatccctttttcaatccttcggattccttctgttcgaaat ttcttcctttgatctgatcgcgataagtttagatctaacttcggaatcctgtaccatcttcaataaattc tattaaattatcattatccaaagtgttaaagactaaaattgagaaaataaattataaaattcatcatttt cttcattatcacaaggttgtccaatcttgcaaggatcacattcatcctcagaactagtgacaatatcact ttcatcctggaagactttaatttagttcttccttggtagggatattttcctcacctggatccgatatttc tggttcagaatttaataagatctttaataaagaatcttacacaaagaatctttcagatcttcatctatat taagagctttgatcttttcttttactttgcaatctttataatgatgaccaaatcttccacacttccaaca attttgtggtttctttgatttagtggattcttggctttggctttaatgtcatcctttcgctctttaaaag ccttttttcttctagcacgcttttctgtgcgtctctccgaatatctttgtctccattcctggtaatcatg tttcttaccagtcttgcttctatgaagcttatgagactttgatttggttcgggttcgtggatcatccatg ccgaattgaccacaaaattcacccaactgttgtctttcattaagacgatggcgtttaagctcttgattta gcttaatttcattacataacgccaatccttcttggatacatattccaactaaacttccataagtatggtc atcataatcgattaatatgaactcctccttgtctaagagcttttttaactctttctgcaaagaggttagg aagtccatctataaatttggatttccaatgagtgctattacactctggtaactccataactctgcaaaga aatgtatctttataaagtctaaatgaagttaaagtcttacatctcatattctgtaagagggttcgaatag tctcactattatcagaccatcttcctgaaaagtgttcaattatattaacaaccaaagaataaacagcatt agaattatcagctgtagaagatgttcctggttctgtagaagttcctggttcacttttaactgcattcaaa atttcatttcgctggtcaacagtgagataattatcccaccacccttttaattgaccagtaaaacctgaga taatcatattattggcaacagttttatcactattaccattagtcttgcaaatcgtgctatacatcatcat tctatgtataactacatacatttgcctattggtaaaggccatcaatattccattcatatatctgcttacc gctgaaactattcggagcatacagtatcatcctgctcttcgaatagaacatcctgaggagtaggcctagg atagtaaaacatcctttgccttggtttatcagcaaatttcgaactataagaagactttaatttattaatt tgatcataagtcaatttattaatttgatcataagttagttttggaaaatcactttcgaaaaacttcattt tcagatgaaaatgcattatcactttcctccgtattaattagaggctttagtgataactctttaaatttct catttaaaaacttttcgatattagatgcatcaggtcttttaatttaaaattttcaacatcaggaggaggt tgaatagttggaatggctactcgtggtggctcttccaatttttcttttcctgatgtgctagcagtattac tgcttattgatagaacataatttatctaccttatcatgtaaagatacaatatgctcacccaatatatgaa cataaatattagtatagttatgctgttttaacataatattaatatgtttaacagtaacttgtaaagtatt atcttcaattattgcagaaaaagctgcaaaatcaatcatttttccctccttctttattttaaaaggttgc tgtggaggtaatacagcatcaatgattttaccatttgacaattcaaattgtctttccaaaacagcaatat tatttgctacatattttcccataaaccatgggataaaagatataattttattaactttctcaagatcttt ataaaattcttcttgaaaatcattttgttcagttttattaaaacttttaaaaaccattttctaaatagt tcccatctgggtttataaaaatcctcagatattttctttcttgcgggtgatccccgactaaaatcaattg tggacttaaaatccattaaatatttatttcaaaactttcaaaatccatttcagatgcagttatgtctaca tcatttatctgttgttctttttataggagcaacaggagtaacaatattatttttatcaattttcaaagta tgatatctaggcacttcctctcttatctgagaagtagaagctctagaaggagtttgaacaatataatcaa ttggagaaatatgagaatgatataaagaattagatctagataaaccttgaaaactagatctgtcagatct catatccatcctacttataacatcttcagattcaaatctgatttttacatttccttctggagtttgttca
attccagtcaaatctgtatttttaaaatcttttggaggagctgcttcctccatgacccactctttagggg aaatctatttcatcccacttgataggtcttctggtagtaactttagttttaccaaaattagtttctatta aaatagtttcatttttaaaatccataattttgcacataggatttaaagtatataatggcttaaaataaat cctataacagatacatattacttctgtattaggcatatatatcataaccatgtaatttaacatttaaaac taaagctttttaaagcattttcatccgacaatgatatctgtaaattcggataagcattaaaatatactgg gccataggccaaacttgattgtacaatccctataagggatttcttccagttatggtttctaccatccctg agagcagctataaaaagtttcatttaatcctcttaaagttaaaggtttaaatgcaacttgaattaaacca atatgaataaatctatgagtatgcatataaggcaataaatcatgctgagacaataaattaaaagtagcat gatcactatcaatcgtgatagtttcttcagtagttttaactacctgctttaaacccaatttttcaaaggt tcctagctgg

Appendix 3.10 Approved sequence of Caulimovirus-PHy, the Caulimovirus member in $P$. hybrida by the Repbase database.

```
;ID Caulimovirus-PPa DNA ; PLN ; 7999 BP
; XX
;DE Integrated viral sequence of Caulimovirus in P. axillaris subsp
parodii.
; XX
; AC .
; XX
; DT 04-Apr-2018 (Rel. -1, Created)
;DT 04-Apr-2018 (Rel. -1, Last updated, Version 1)
; XX
;KW Caulimoviridae; Integrated Virus; Caulimovirus-PPa.
; XX
;OS Petunia axillaris subsP. axillaris subsp parodii
; XX
;OC Petunia axillaris subsP. axillaris subsp parodii
;OC Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
;OC Petunioideae; Petunia.
; XX
;RN [1] (bases 1 to 7999)
;RA Alisawi,O., Richert-Poggeler,K.,
;RA Schwarzacher,T. and Heslop-Harrison,P.
;RT Integrated caulimoviral sequence within P. axillaris subsp parodii
S7 genome.
;RL Direct Submission to RR (04-Apr-2018)
; XX
;CC Consensus sequence.
; XX
; FT CDS 1437..5870
;FT /product="Caulimovirus-PPa_1p"
;FT /translation="KYLMDFTSTIDFSRGSPARKKISEDFYKPRWELFR
; FT KWFFKNFNKTEQNAFQEEFYKDLEKHNKLISFIPWFMGKYVANNIAVLE
; FT RQFEMSNGKIIDAVLPPQQPFKIKKEGKMIDFAAFSAMIEDNTLQITVR
; FT HINIMLKQQNYTNIYVHILGEHIVSLHDKVDKLCSIISSNTASTSGKEK
```

; FT LEKPPRVAIPTIQPPPDVENFKLKPDAYNIEKFLNEKFKELSLKPLINT
; FT EESDNAFSEDEVFEGDFPKLTYDQINKLKSSYSSKFADKPRQRMFYYPR
; FT PTPQDVLFEEQDDMYAPNSFSGKQIYEWNIDGLTNRQMYVVIHRMMMYS
; FT TICKTNGNSDKTVANMIIAGFTGQLKGWWDNYLTVDQRNEILNAVKSEP
; FT GTSTADNTNAVYFLVVNIIEHFSGRWSDNSETIRTLLQNMRCKTLTSFR
;FT LYKDTFLCRVMELPECNSTHWKSKFIDGLPNLFAERVKKALRQGGVHIN
; FT YDDHTYGSLVGICIQEGLALCNEIKLNQELKRHRLNERQQLGEFCGQFG
; FT MDDPRTRTKSKSHKLHRSKTGKKHDYQEWRQRYSERRTEKRTRRKKAFK
; FT ERKDDIKAKAKNPLNCWKCGRFGHRYKDCKVKERIKALNIDEDLKDSLC
; FT KILLNSEPEISDPGEENIPTKEELNKVFQDESDIVTSSEDECDPCKIGQ
; FT PCDNKENDEFYNLFSQFSLNTLDNDNLIELLKMVQDSEVRSKLIDQIKG
; FT NFEQKESEGLKKGFYAPMDNTPYTMKEVKRLLEQRKMSHSSSPTTSQDL
; FT EKEVYNLKQEIYNLKKENRILEQRISRIEGKGKEKDEILTPSNSENLDN
; FT IFSNMNEEFLTTLEVFTSQKFFIKITLLIDYNFKKEFIALVDSGADLNC
; FT VQEGLIPSRYFHKTTHSLRSANGEKMQIEYKLPKASICTNKVCIPQSFV
; FT LIKNMSNQVILGTPFLQKIFPITRIDKEGIIGTFQEKPIIFQFITEPIT
; FT RVLNQLKDMLAKKSQHINFLKQEIYTLNIDEILKNPKLREKIDFMINQF
; FT SLQICSEHPNAFWDRKKHVVTLPYEEEFSEANSIPTKARPCQMNSEYLE
;FT LCKKEIDSLLHKGLIRSSKSPWSCTAFYVNKHAEQERGVPRLVINYKPL
;FT NKVLKWIRYPIPNKKDLLDRLHNAIIFSKFDLKSGYWQIQIAEADRYKT
; FT AFNVPIGQFEWNVMPFGLKNAPSEFQKIMNDIFIPYSNFIIVYIDDILV
; FT FSNTIEMHFKHLELFKKIIIQNGLVISKPKMFLFQTKIRFLGHNIEKGK
; FT IIPINRSIEFASKFPDIITDKTQLQRFLGSLNYIAPFYENLAKDTAILY
;FT DRLKKIPKPWTDAHTKTVQKIKERVKNLPCLTLANPTWPKIIETDASDI
; FT GYGGILKQYSPEEKIEYLIQFHSGKWNNSQKNYATVAKEILAIVKCVLK
; FT FQGDLYNQKFIIKTDCQSAKFMFNKDCKHDVSKQMFARWQALLAPFDFE
;FT IHYKKGEDNSLPDFLTREYLAS"
; XX
; DR [1] (Consensus)
; XX
; SQ Sequence 7999 BP; 2984 A; $1120 \mathrm{C} ; 1395 \mathrm{G} ; 2500 \mathrm{~T} ; 0$ other;
Caulimovirus-PPa
tatttggcctaaatgataggctaaaatcattaagtgttgagctctatcacactaggctactggggtaaaa tgattctaataacagattatgattagaatctcagcaggtggtggtgttaaaggtatggtttgatagacaa cccaggcggaaggttgaatgccagaaccaaggttctgttgtttgcccgcttagccgaggatggcgcttag ggctgttgttgaacctaattttgggttcagccactccttgccagggttgtgtcaccagtaaaatttcctg ttacccccatgctgttaagatccgtcgaaatttggtatcagagccatggtgcacagtagcaataggtgaa gagttcaacacttatctttctaatgaatatcattagaaacaaaactactgttaaaaacagtagaaaagag gaatatgatattccacaacacttagatttacttaataaatggactattcctaaagttcaacctaagttaa tatatcagctaggaacctttgaaaaattgggtttgaaacaagtagttaaaactacagaagatactatcac tattgataatgatcatgctacttttaatttattgactcagcatgatttattgccttatatgcatactcat agatttattcatattggtttaattcaagttgcatttaaacctttaactttaagaggattaaatgaaacgt ttatagctgctctcagggatggtagaaaccataactggaaaaaatcccttatagggattgttcaatcaag tttggcctatggcccagtatattttaatgcttatccgaatttacagatatcattgtcggatgaaaatgct ttaaaagctttagttttaaatgttaaattacatggttatgattatatgcctaatacagaagttatatgta tctgttataggatttattttaagccattatatactttaaatcctatgtgtaaaattatggattttaaaaa tgagactattttaatagaaactaattttggtaaaactaaagttactaccagaagacctatcaagtgggat gaaatagatttccctaaagagtgggtcatggaggatgctgctcctccaaaagatttgaaaagtactgatt taactggaattgaacagactccagaaggtaatgtgaaaatcagatttgaatttgatgatagaataaatat gggatcggatagatctagctctaaaaatttatctagatctaattctttgtattattctcatatctctcca attgattatattgttcaaactccttctagagcttctacttctcaaataagagaagaagtgcctagatata atagtttgaaaattgataaaaataatattgttactcctgttgctcctataagagaacaacaaatagacga tgcggatataactgcatctgaaatggattttggtgaaaatatttaatggattttacatccacaattgatt ttagtcggggatcacccgcaagaaagaaaatatctgaggatttttataaacccagatgggaactttttag aaaatggttttttaaaaattttaataaaactgagcaaaatgcttttcaagaagaattttataaagatctt gaaaagcataataaacttatatcttttatcccatggtttatgggaaaatatgtagcaaataatattgctg ttttggaaagacaatttgaaatgtcaaatggtaaaatcattgacgctgtattacctccacagcaaccttt taaaataaagaaggagggaaaaatgattgattttgcagctttttctgcaatgattgaagataatactctt
caaattactgttagacacattaatataatgttgaaacagcagaactatactaatatttatgttcatatat tgggtgaacatattgtatctttacatgataaggtagataaattatgttctataataagcagtaatactgc tagcacatcaggaaaagaaaaattggaaaagccacctcgagtagccattccaactattcagcctcctcct gatgttgaaaattttaaattaaaacctgatgcatataatattgaaaagtttttaaatgagaaatttaaag agttatcactaaagcctctaattaatacggaggaaagtgataatgcattttctgaagatgaagtttttga aggtgattttccaaaactaacttatgatcaaattaataaattaaaatcttcttatagttcgaaatttgct gataaaccaaggcaaaggatgttttactatcccaggcctactcctcaggatgttctattcgaagagcagg atgatatgtatgctccgaatagtttcagcggtaagcaaatatatgaatggaatattgatggccttaccaa taggcaaatgtatgtagttatacatagaatgatgatgtatagcacgatttgcaagactaatggtaatagt gataaaactgttgccaatatgattattgcaggttttactggtcaattaaaaggatggtgggataattatc tcactgttgaccagcgaaatgaaattttgaatgcagttaaaagtgaaccaggaacttctacagctgataa tactaatgctgtttattttttggttgttaatataattgaacacttttcaggaagatggtctgataatagt gagactattcgaaccctcttacagaatatgagatgtaagactttaacttcatttagactttataaagata catttctttgtagagtcatggagttaccagagtgtaatagcactcattggaaatctaaatttatagatgg acttcctaacctctttgcagaaagagttaagaaagctcttagacaaggaggagttcatattaattatgat gaccatacttatggaagtttggttggaatatgtatccaagaaggattggcgttatgtaatgaaattaagc taaatcaggagcttaaacgccatcgtcttaatgaaagacaacagttgggtgaattttgtggtcaattcgg catggatgatccacgaacccgaaccaaatcaaagtctcataagcttcatagaagcaagactggtaagaaa catgattaccaggaatggagacaaagatattcggagagacgcacagaaaagcgtactagaagaaaaagg cttttaaagagcgaaaggatgacattaaagccaaagccaagaatccactaaattgttggaaatgtggaag gtttggtcatcgatataaagactgcaaggtcaaagagagaatcaaagctcttaatatagatgaagatctg aaggattctttatgcaagatcttattaaattctgaaccagaaatatcggatccaggtgaggaaaatatcc ctaccaaggaagaactaaataaagtcttccaggatgaaagtgatattgtcactagttctgaggatgaatg tgatccttgcaagattggacaaccttgtgataataaagaaaatgatgaattttataatttattttctcaa tttagtcttaacactttggataatgataatttaatagaattattgaagatggtacaggattccgaagtga gatctaaacttatcgatcagatcaaaggaaatttcgaacagaaggaatccgaaggattgaaaaagggttt ctatgcccctatggataatactccatacaccatgaaagaagttaaaagacttctagaacaaagaaaaatg agtcatagtagttcacctactacgtctcaggatttggaaaaagaggtttataaccttaaacaggagattt ataatctcaaaaaggaaaatagaatattagaacaaaggatttccagaattgaaggaaaaggtaaagaaaa ggatgaaatccttaccccatctaattctgaaaatcttgataatatttttagcaatatgaatgaagagttt ttaactaccctagaagtatttacttctcaaaagttttttataaaaattactcttcttattgattataatt tcaaaaagaatttatagctcttgttgatagtggagcagatttaaattgtgttcaagaaggattaattcc ttcacgatattttcataaaactactcatagtttaaggtctgctaatggtgagaaaatgcagattgagtac aaattgccaaaagcttctatatgcacaaataaggtatgtatacctcaaagctttgttttaataaaaaata tgtctaaccaagttatacttggaacaccctttttacaaaaaatatttcctattactaggattgataaaga agggataataggaacttttcaagaaaaacctattatttttcagtttataactgaacctattactagagtt ttaaaccagttaaaagatatgctagctaagaagagtcagcatatcaattttcttaaacaagaaatttata ctttaaatatcgatgagattttaaaaaatcctaaattgagggaaaaaattgattttatgataaatcagtt ttcattacaaatttgtagtgaacatccaaatgctttttgggataggaaaaaacatgtagttacacttcca tatgaggaagagttttctgaagctaatagtatccctactaaggcaagaccttgccagatgaattcagaat atttggaattatgcaaaaggaaatagattctttattgcataaaggtctcatacgatcatcgaaatcacc atggtcttgtacagcgttctatgttaataaacatgctgaacaagaaagaggagttccaaggttagtaata aattataaacctttgaataaagttttgaaatggatcaggtatccaattcctaataaaaaggatttattgg ataggcttcataatgctattatattttctaaatttgatttaaaatcaggatactggcagattcaaatagc tgaagctgacaggtataaaactgcttttaatgtcccaataggacagttcgaatggaatgttatgccattt ggattaaaaatgctccttctgaatttcagaaaattatgaatgatatattcattccttatagtaatttta ttatcgtttatattgacgatatattagtattttcaaatactattgaaatgcattttaagcatttagaatt atttaaaaaattattatacaaaatggtttggttatatctaaacctaaaatgtttttgtttcaaactaaa ataagatttcttggccataatattgaaaaggggaaaattattcctattaatagaagtatagaatttgctt ctaaatttccagatattataacagataaaactcaattacagagatttctaggaagtttaaattatattgc tccattttatgaaaatcttgctaaagatacagctatcttatatgatagattgaaaaagattccaaagcca tggactgatgctcatactaaaacagtccagaagatcaaggaaagagtaaaaaatctcccttgtcttacat tggctaatcctacatggccaaaaataatagaaactgatgcttctgacattggttatggaggtattttaaa gcaatactctccagaagaaaaattgaatatttgatacaatttcattctggtaaatggaataatagccag aaaaattatgcaactgtagcaaaagaaattcttgctatagtaaaatgtgttttaaaatttcaaggtgatt tatacaatcagaagtttattataaagactgattgccaatcagctaaatttatgtttaataaagattgtaa acatgatgtttctaaacaaatgtttgctagatggcaggcactattagccccatttgattttgaaatacat tataaaaaggagaagataatagccttcctgattttttaactagagaatatttggctagttaatgataat
aatcattattttaatgtgcaggttatttaggatgtgcagaagtaaaaatatgctctattattgtccctac tgccagcaccagattatatcaagacaaatgagaatattatattgggatctgcttaatacaaaaagaaat taaaatactggaaaaatgaatccaaggatttgttatcacatgctgatcacttttataaaggagaaataga tcatatcataagtatcctgaaaaggactattgatagaatgaaagaaataaatacggacataataggaatc cgtaaagtattggaaacatatccaatgtatttagcctgacaaaattgtgatttatcgaatgcaggacatg caccctggtcacggaaacccaacctctaatagaggaaggggaaacagaggaagaggcactggtagaggtg ctgtaatagcccaaatgggtaagcaaaggcttatagccgaagacttaacaggatcatcttcaaagaataa taaaaaggatgatactatgtcataccaacagtatcaagaattcctgaaatggaaaaattctcaagaaaag caaaagggaacagaggataatatgcctccatcatattcttctattataatagaagatgataatgaaaata tccagtcttatattaagacagattacaaggagttaatattattccttgaagatagagaccttcaatggaa ggatgagccatggaaattaatggcaaaatatctgaataatacatcatacccaagctgtacttataagtac agagctcattatgagatgatactcaaaggcactgaatcttgcgaaatatcgcatttttatccagcaaata caaaaaaagtttataacttttccaaaatgataatcaaacggattatatccgcagaagaatggggtttaag taccctgactgaaagaagttataatcatccagaaatgaaaacaccggtaaaatacaattactgggattat gtggatagcttttataaagcattattatatgagaatgataacaagaaacattcttggtttataaaaatat gctcaaatgtttataaacagagcaatataccaaattggttttcacaatggtggatcacttatggtcctac cgtaaaaatattaccagaaccattgctcagtttatatactgattgggtggatgtatctccaaaaattcaa gaattacaaagaaataatactcttattgaaggaagttcttatatgaatttctttattgaatattcaattc catggataatgaaatggagtgttgaagtggattatactccacataatattcctgctttatacaggacctt ttatacaaggttttggaaaaaaatgatccagaaaacagctgatggtaatctgcagtgccaggatacaatt gatttaataaaacaatcactggaagaatataaacagattgatcatatgaagcaacttaatacaccaagtc cttatcaacatataattcataaattaaagatgaagaagggactaatgacaaaagaagaaatgttagcttc ttatttggaagaagtaaaaaaagatttaataaaaaatcttgaagttgaaattcagtcagacacatcaatg gcttctgcaaataatacagaagatgaaggtgaatattgtctgccaggagaatcccagtcaatcacagaag aagaagtaaatgattatatcacaaatatcataacacaggtgaataaagaagaatcttctatattacaaag caccaaagggaaagataagatctgacgcggatgcattattgaagattccctcaactttcataaagtacct tttataaagcagctttgataaagttgtaatgggccatctatcggccatttttctttctttaattttcaac cggccacttgtaaagtttgggccatattagttgttttattctttgaaatttttctataaatagggtagga gtttgagtagagaaggggagacaacccctcactctcattgtaaatctccccattgtaaaaatctttcagt ttataaaaattctctattgcctgagcgcaaactaaggtattcataattgttcctttattttgtttaactt atataattttaaatattgc

Appendix 3.11 Approved sequence of Caulimovirus- $P P a$, the Caulimovirus member in P. axillaris subsp parodii S7 by the Repbase database.

Institut für Epidemiologie und Pathogendiagnostik Institute for Epidemiology and Pathogen Diagnostics

Bundesforschungsinstitut für Kulturpflanzen

JKI, Messeweg 11-12, 38104 Braunschweig, Germany

Bearbeiter/-in: Dr. K. Richert-Pöggeier

## Department of Genetics <br> University of Leicester <br> Leicester LE1 7RH UK

Fon: (0531) 2993730
.
kuehn. de
inr Az:
Unser AZ:

## Certificate of scientific visit at Julius Kühn-Institut (JKI) from mid-July to mid-October 2016

## To whom it may concern

This is to inform you that the three-month visit of Mr. Osamah Alisawi at Julius Kühn-Institut in Braunschweig, Germany, started on 19 July 2016. During his stay he conducted doctoral studies within a cooperative research project with Dr. Trude Schwarzacher and Professor Dr. Pat Heslop-Harrison, University of Leicester, Leicester, UK.
Mr. Alisawi learned and applied successfully various techniques for pararetrovirus characterization using electron microscopy. The employed methods comprised dip preparation, immuno electron microscopy including immunogold labeling on homogenized plant material as well as embedded - cellular structures preserving - plant material. Besides his activities in the laboratory applying molecular and microscopic techniques, he presented the obtained results on various occasions. He gave an oral presentation "Virus integration and repetitive elements in genomes of Solanaceae" in frame of the weekly institute colloquium for scientists and Ph.D. students at which his supervisors Dr. Trude Schwarzacher, University of Leicester and Dr. Katja Richert-Pöggeler (JKI) were present. He reported on his scientific background and PhD project during a colloquium organized by JKI Ph.D. students and Post docs to exchange and discuss their projects and related scientific matters. Mr. Alisawi attended the international conference " 15 th World Petunia Days" in Lutherstadt Wittenberg, Germany, in September 2016. He was involved in conducting the meeting in Wittenberg, presented a poster on "DNA virus integration and repetitive elements in Petunia genomes" and co-authored the talk given by Dr. Trude Schwarzacher "Repetitive DNA landscape in Petunia".
Mr. Alisawi's interest in pararetroviruses as well as thorough knowledge of plant virology, his polite manners as well as his good laboratory practice and cheerful character made his visit a most pleasant experience for the whole team.


Dr. Thomas Kühne
Director and Professor,
Head of the Institute -

Appendix 4.1 certificate of scientific visit at Julius Kühn-Institut (JKI), Braunschweig, Germany for three months.


Appendix 4.2 Embedding steps of selected samples that embedded in freshly prepared and added resin to half the volume of the labelled form and then polymerized overnight at $40^{\circ} \mathrm{C}$ in a drying oven (Memmert).


Appendix 4.3 The selected Petunia species ( $P$. axillaris subsp parodii $\mathrm{S} 7+\mathrm{PVCV}$ ), showing vein clearing symptoms maintained in Murashige skoog medium (MS) (tissue culture condition) for embedding later.

## Tandem Repeat Analyzer

## Run staistic

mber finout seauences: 199952262
Cluster meroing: :
Consensus files - fasta format
Puature atellite (bilis confidence) - total 1 found
putative atellite (lon confidence) - total 7 townd
IDNA - total 1 tound
Documentation
For the explanation of T TREAN output see the hallo pection
Putative satellite (high confidence)


Putative satellite (low confidence)


Appendix 5.1 The first page of tandem repeat analyzer (TAREAN) report showing a list of tandem repeat clusters with genome proportions and graphs.


[^0]:    ;OC Spermatophyta; Magnoliophyta; eudicotyledons; Gunneridae;
    ;OC Pentapetalae; asterids; lamiids; Solanales; Solanaceae;
    ;OC Petunioideae; Petunia.
    ; XX
    ;RN [1] (bases 1 to 7142)
    ; RA Alisawi,O., Richert-Poggeler,K.,
    ;RA Heslop-Harrison,P. and Schwarzacher,T.
    ; RT New integrated Florendovirus in Petunia inflata.
    ;RL Direct Submission to RR (04-Jun-2018)
    ; XX
    ; CC New integrated Florendovirus in Petunia inflata.
    ; XX
    ;FT CDS 6760..1319
    ; FT /product="PinfV_1p"
    ; FT /translation="LK̄VIIEKLVTVQELIIKMEGSSQSVLNSINLSTEV
    ; FT DKISKIENNLLNWNIPKEKIEKIYEVGGFDFINRFNIKTCESTIAINQS
    ;FT VETIQLLSIKDIEKYRKSYKFLHIGLVQVAVKPLHRLGLDIPICLLLRD
    ; FT NRFLNFDDSLIAVLQSNMANGPVYFNCYPNFSVDINDPTILDVLTLNVK
    ;FT TKHLNSKHQTREIAIIYRVYYKLMKTTLAPKAKPSRAHKGVTMLMEANI
    ; FT KHHNIFVPRLLKWDEVLSKNEWHFDSITEPKVEDESIQIEQVIQHTDGS
    ; FT IDLKFLKSRSFNATSSSSRMSFSRPSTSCPLEEEDIISKNLKGVNFSKR
    ; FT IPQPEYKPVIINQPSSPTFSEINDSLGMITLEEPFEPDIKYLQQLWVKP
    ; FT ENNIKREWYKNNYTLEQRKSFRDKWMKDMKKWKCSLEFFKWFEYTGKLA
    ; FT NCESLNMVVKKWYTKSNKIIESTIPPLEEINIPVGDKVVIGNPFKRTSI
    ; FT DAQGEPKNKDINKLIEQSNYTNQILHVIANQVEEARSKSSFKPFPEKRI
    ; FT KFEDNIEKNPIFRLPSMSKDKFPSLPKGGLEIKGDVLDEITKRLKSSLT
    ; FT INTIPIEKENSVKTLSELNNQLNKLGSNYHHKKNYYKKPTFPDIQYEEE
    ; FT HLVSFSSHTGDAITEWNIDGQAEHQILNRLHEMGIAATAYKIKGNTDKQ
    ; FT AATLLSYGFTGMLKNWWDNYLSDRDRETVLNATTIIKVVKQESNSTNQT
    ; FT IEEQVREDAINTLLYAIIKHFIGEPKVFKDRSLEILSNLSCPKLHDFKW
    ; FT YKDIFLNKVMIREDCNHSYWKEKFISGLPQLFADKVRQKIKDRFNGEIP
    ; FT YDGLTYGDIISFINITALELCTDMKLKNQLKRDYKITKKELGNFCSDFG
    ; FT YAKITAPSTEATKKSKRINRKDKSSNSYYKRKSSKRYRKKIPKNTSQNK
    ; FT QPSFEERCYNCGKKGHKANNCRVKAKKKNKINSLELDEDIKNKIYAILD
    ; FT ENDNSEEGSSSTEDISDDEQINIAYESSDSYTSESECDCPKGLCTCGTG
    ; FT SIKVISNENKEFFFDLIDQIKDEEIKREYLLKLKDIVLSRESNKPNISN
    ; FT PFSMKNILQKFDKKEEKISISDLYAELTTLKQEVNILKQKVNKIEEENL
    ;FT ALELIQKTQKELNSTIIGESSNTKQVEAQDDELGVLAISKIKSQKWYVP
    ; FT IKLVINSEYSIQTVALLDSGADQNCIVEGLIPTKYCDKTSAKLFSASGE
    ; FT KLKIKYKLSNAHICNNNICFKNTFILIKDLNEEVILGTPFLTQISPFTV
    ; FT NTTGITTNNLGKEIIFYFLNGPKQREIDTLKERSIYKIQLIKNQINYIK
    ; FT EEIKIVKIENQLKDKLIQDKILQTQKEIESEVCSDLPNAFWERKRHIVR
    ; FT LPYIEGFEEESIPTKARPIQMNQELMEYCKKEINELLEKKIIRPSKSPW
    ; FT SCSAFYVNNNAERERGAPRLVINYKPLNKVLRWIRYPIPNKRDLLKRTY
    ; FT KAKIYSKFDMKSGFWQIQIDERDKYKTAFNVPFGQYEWNVMPFGLKNAP
    ; FT SEFQNIMNNIFNPYSSFSIVYIDDVLIFSENIDQHFKHLKIFLNIIQKN
    ; FT GLVVSAKKIKLFQTSIRFLGHDLSQGMYKPICRAIEFSTKFPDVLTDKT
    ; FT QLQRFLGSLNYVSDFIPNLRQICEPLYQRLRKNPVPWSQEQTQTVQKVK
    ; FT SIVQRLPCLGIPHPDAFMIVETDASEIGFGGILKQRLSPKESEQLVRYC
    ; FT SGIWNGAQKNYSTIKKEILSIVLCITKFQDDLINKEFLLRVDCKAAKDV
    ; FT LQKDVKNLVSKQIFARWQALLSSFDFQIEFIKGEDNSLPDFLTREFLQR
    ;FT KHEAIISSKTSEAIP"
    ; XX
    ; DR [1] (Consensus)
    ; XX
    ; SQ Sequence 7142 BP; 2018 A; $1103 \mathrm{C} ; 1006 \mathrm{G} ; 3015 \mathrm{~T} ; 0$ other; PinfV
    tattaacggggaatcttatcttttataaagtaagataagatttacattattgatgctaatgggatcctat

