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Abstract. In this paper, we propose a novel retinal layer boundary
model for segmentation of optical coherence tomography (OCT) images.
The retinal layer boundary model consists of 9 open parametric con-
tours representing the 9 retinal layers in OCT images. An intensity-based
Mumford-Shah (MS) variational functional is first defined to evolve the
retinal layer boundary model to segment the 9 layers simultaneously. By
making use of the normals of open parametric contours, we construct
equal sized adjacent narrowbands that are divided by each contour. Re-
gional information in each narrowband can thus be integrated into the
MS energy functional such that its optimisation is robust against differ-
ent initialisations. A statistical prior is also imposed on the shape of the
segmented parametric contours for the functional. As such, by minimising
the MS energy functional the parametric contours can be driven towards
the true boundaries of retinal layers, while the similarity of the contours
with respect to training OCT shapes is preserved. Experimental results
on real OCT images demonstrate that the method is accurate and ro-
bust to low quality OCT images with low contrast and high-level speckle
noise, and it outperforms the recent geodesic distance based method for
segmenting 9 layers of the retina in OCT images.

1 Introduction

Optical coherence tomography (OCT) image segmentation to detect retinal layer
boundaries is a fundamental procedure for diagnosing and monitoring the pro-
gression of retinal and optical nerve diseases. There exist rich literature on ap-
proaches for automatic and semi-automatic OCT image segmentation. Common
methods include deformable models [1,2], graph-based and geodesic distance
methods [3,4], statistical shape and appearance models [5,6], etc. Very recently,
deep neural networks are becoming increasingly popular for OCT segmentation,
demonstrating excellent performance [7,8]. However, these deep learning meth-
ods usually require the networks to be sufficiently deep to learn all appearance
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and shape variations of the retinal layers from annotated training sets. Therefore
the training set has to be very large and rich to prevent the over-fitting. Large
annotated training sets are however difficult to obtain. Existing OCT segmen-
tation algorithms also tend to segment individual retinal layers separately. This
form of analysis often fails when there is uncertainty in the image, especially
some retinal layers are often difficult to see or missing in OCT images.

We believe that OCT segmentation is more effective by incorporating anatom-
ical shape of the retinal layers and their spatial relations. As such, in this paper
we propose a shape-based variational Mumford-Shah (MS) functional for seg-
mentation of up to 9 retinal layer boundaries in OCT images, using only a small
training set. We make three distinct contributions to OCT segmentation:

– We introduce a new piecewise constant variational MS functional to evolve
a pre-defined retinal layer boundary model for OCT image segmentation. It
has a region-based data fidelity term and a hybridised first and second reg-
ularisation term. The pre-defined retinal layer boundary model consists of 9
retinal layer boundaries, each is an open explicit parametric contour repre-
sented by a set of control points. We then construct two narrowbands around
each open contour, within which region-based information is derived to aid
contour evolution. We show that by incorporating a retinal layer boundary
model our method can segment 9 retinal layers simultaneously, and by utilis-
ing regional information, the proposed method has a large convergence range
and is robust to initialisation.

– We introduce to the MS functional a shape constraint learnt from a set
of training OCT shapes. We then apply the principal component analysis
(PCA) to derive the statistical distribution from the training shapes as well
as the resulting irregular contours evolved directly from the MS functional.
In this way, the irregular contours are restricted to a manifold of familiar
shapes and thereby can be pulled back to appropriate positions to allow a
faster convergence.

– We apply the proposed method to real OCT dataset acquired from healthy
subjects, and demonstrate that the proposed method outperforms the state-
of-the-art methods.

2 Methodology

2.1 Intensity-based variational MS functional

We start with a new intensity-based MS segmentation functional, and then apply
a learnt shape constraint to the functional. We define a retinal layer boundary
model as having 9 retinal layers, each of which is an explicit parametric contour
C. Based on [9], we propose a new piecewise constant MS functional for each of
the 9 retinal layers

E ({ui} , C) =
∑
i

∫
Ωi

(f − ui)2dx+
α

2

∫ 1

0

|Cs (s)|2ds+
β

2

∫ 1

0

|Css (s)|2ds, (1)
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where f is the input image and ui are the mean grey value of region Ωi. The
first regional energy term follows the Chan-Vese model [2,10]. In the second term,
Cs is the first order derivative of the curve C with respect to the arc length s
normalized into the region [0, 1], and Css is the second order derivative. α and
β are two regularisation coefficients. To segment a retinal layer in OCT, i has
two values, namely, 1, 2. The contour regularisation (last two terms) combines
the first and second order derivatives, preventing the contour from bending by
introducing elasticity and stiffness to the contour. Each control point of the
contour thus can be more equidistant or centred between its neighbourhood
points. This makes the functional stable for numerical calculation. C is defined
as a parametric contour of a set of control points

C(s) = (x,y)T . (2)

Here x = (x1, · · · , xM ), y = (y1, · · · , yM ) are the coordinates of the M control
points to represent one retinal layer boundary. The start and end points are
C(0) = (x1, y1)T and C(1) = (xM , yM )T , respectively.
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Fig. 1: A strategy to construct a narrowband around an open contour. In the
narrowband region information can be utilised.

Variational methods taking into account regional information are generally
more robust against noisy and initialisation. In OCT segmentation, we however
require the parametric contour C to be an open curve [5]. In this case, C(0) is no
longer equal to C(1). This brings difficulties in estimating parameter (u1, u2) in
(1) due to the vanished image regions Ω1 and Ω2. To circumvent this limitation,
we propose to construct a narrowband around the open contour C using the
method illustrated in Fig 1:

– For each control point on C, such as the red dot in Fig 1, we compute its
normal using the neighbourhood control points;

– We define a narrowband radius |s|, and interpolate new points, as represented
by the black dots in Fig 1, along the two normal directions of the original
control points;
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– We determine those pixels that have fallen in the narrowband between the
two contours in Fig 1 and afterwards compute (u1, u2) as in (3).

2.2 Minimisation of MS by gradient descent

We minimise the proposed functional (1) with respect to both the parameter
(u1, u2) and the contour C, where (u1, u2) denote the mean grey values on both
sides of contour curve C and have a simple closed-form

ui =
1

|Ωi|

∫
Ωi

fdx, i = 1, 2, (3)

where Ωi, i = 1, 2 are the two regions partitioned by the curve C and they
change as the curve evolves. Since we are able to construct regions Ωi from an
open contour C, it is easy to calculate ui in (3). After ui are estimated, we fix ui
and use the gradient descent method to minimise the functional (1) with respect
to the open contour C. This results in the following contour evolution equation

∂C (s, t)

∂t
= −∂E(C)

∂C
= αCss (s, t)− βCssss (s, t)−Q (s, t)n (s, t) . (4)

where Q(s, t) = (f − u1)
2 − (f − u2)

2
, and n(s, t) = (nx(s, t),ny(s, t)) denotes

the outer normal vector of the contour C. The first two terms on the right-
hand side of (4) minimise the contour length and thereby enforce an equidistant
spacing between the control points. The third term maximises the homogeneity
in the adjoining regions in the narrowband, which is measured by the energy
density (3). This forces C move towards a retinal layer boundary in the OCT
image.

We now need to discretise (4) for numerical implementation. Specifically, for
each control point of the contour C, we have the following two semi-implicit
iterative schemes

xk+1
i − xki
∆t

= α∂xxx
k+1
i − β∂xxxxxk+1

i −Q(xki , y
k
i )nx(xki , y

k
i ), (5)

yk+1
i − yki
∆t

= α∂yyy
k+1
i − β∂yyyyyk+1

i −Q(xki , y
k
i )ny(xki , y

k
i ), (6)

where ∆t is an artificial time parameter. The superscript k denotes the kth
iteration, and the subscript i the ith control point. As compared to explicit
iterative methods, semi-implicit relaxation methods allow the use of a relative
larger time step ∆t, speeding up the convergence rate of contour evolution. We
apply the finite difference method with Neumann boundary condition [11] to
discretise the 2nd- and 4th-order derivatives ∂xxxi, ∂yyyi, ∂xxxxxi and ∂yyyyyi.

To iterate (5) and (6), the open contour normals (nx,ny) are calculated in
Fig 2. Apart from the two endpoints, for each control point on the contour we
first compute its tangent using its neighbours via the centre finite difference
scheme. For the start and end points, their tangents are respectively computed
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with the forward and backward finite differences. The contour normals thereby
can be easily derived from the computed tangents because they are perpendicular
to each other.

Note that given M control points we have to calculate a set of 2M equations
as in (5) and (6). Since the 2nd- and 4th-order derivatives are linear differential
operators, we can rewrite (5) and (6) to its matrix form as

xk+1 = (I −∆tA)
−1 (

xk −∆tQ
(
xk,yk

)
· nx

(
xk,yk

))
, (7)

yk+1 = (I −∆tA)
−1 (

yk −∆tQ
(
xk,yk

)
· ny

(
xk,yk

))
, (8)

where I is the identity matrix, · denotes pointwise multiplication and A is an
M ×M matrix of the form



−α− 2β α+ 3β −β 0 0 0 · · · 0 0
α+ 3β −2α− 6β α+ 4β −β 0 0 · · · 0 0
−β α+ 4β −2α− 6β α+ 4β −β 0 · · · 0 0
0 −β α+ 4β −2α− 6β α+ 4β −β · · · 0 0
0 0 −β α+ 4β −2α− 6β α+ 4β · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · −2α− 6β α+ 3β
0 0 0 0 0 0 · · · α+ 3β −α− 2β


.

Matrix A satisfies the condition that C(0) 6= C(1). It is a sparse matrix and only
5 diagonals have non-zero values so can be inverted efficiently. The equations (7)
and (8) are now discretised with a set of control points. The solutions gives the
coordinates of all the control points (x,y) at (k + 1)th iteration.
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Fig. 2: Computing normals of a discrete point on an open parametric curve.

2.3 Integrating shape constraint to intensity-based MS

The contour evolution driven by (7) and (8) can become irregular as the MS
functional uses only local pixel intensities. To further improve the MS functional
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we propose to impose some constraint for the functional to control contour evolu-
tion. With some manually segmented retinal layer boundaries as training shapes
we can derive the statistical distribution of the retinal layer boundaries as a
shape constraint on the MS functional. The main idea of this is to project the
irregular shapes into a latent space spanned by a few eigenvectors of training
shapes with largest eigenvalues. In this way, the resulting irregular shapes are
restricted to a manifold of familiar shapes and thereby can be corrected. Note
that other dimensionality reduction methods can be also used to derive shape
constraint. In this work we found PCA performs reasonably well. Next we detail
the use of shape constraint to (1) using PCA. Note that an OCT shape model
represents the locations of 9 boundaries.

If one OCT shape model consists of N control points, it can be modelled
as a 2N -dimensional vector z = (x1, · · · , xN , y1, · · · , yN )

T
, where N = 9M (M

appears in (2)). Assuming that we have L training shapes manually annotated
from L OCT images. We first align all shapes at the centre of coordinate origin
by applying the Procrustes transformations. The mean OCT shape is then com-
puted by z̃ = 1

L

∑L
j=1 zj . For each shape zj in the training set, its deviation

from the mean shape z̃ is dzj = zj − z̃. Then the 2N × 2N covariance matrix

Cov can be calculated by Cov = 1
L−1

∑L
j=1 dzjdz

T
j .

We calculate the eigenvectors vk and corresponding eigenvalues λk of Cov
(sorted so that λk ≤ λk+1). Let P = (p1, . . . ,pm) be the matrix of the first m
eigenvectors of vk. Then we can approximate an OCT shape in the training set
by

z≈z̃ + Pb, (9)

where b = (b1.b2, . . . , bm) defines the parameters for m different deformation
patterns. Since P is an orthogonal matrix, b is given by

b = PT (z − z̃). (10)

By varying the parameters bi, we can generate new examples of the shape. We
can also limit each bi to constrain the deformation patterns of the shape. Typical
limits [6] are

− 3
√
λi ≤ bi ≤ 3

√
λi, (11)

where i = 1, . . . ,m.
The use of shape constraint to (1) for segmenting 9 retinal layer boundaries

is summarised as follow: P, z̃ and λi are first computed from a set of training
OCT shapes. After the original OCT shape model (locations of 9 boundaries) is
updated with (7) and (8) (each boundary in the shape model is updated sepa-
rately), it is transformed to approximate the mean shape z̃ with the Procrustes
transformation, which forms z. This is followed by updating b using (10) and
then projecting it using (11), i.e. the coefficients b obtained with (10) are con-
strained with equation (11). Next, we correct the original OCT shape using (9)
with the projected b and warping the corrected version back to the original lo-
cation. In this way, the original irregular OCT shape is pulled back to a regular
one used for the next iteration of (7) and (8). The whole process is repeated
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until convergence. The overall numerical optimisation of the proposed method
is fast as it only computes a few hundred control points.

3 Experimental results

Data: 9 retinal layers boundaries were segmented for each image from in vivo
OCT B-scans. 30 Spectralis SDOCT (ENVISU C class 2300, Bioptigen, axial
resolution = 3.3µm, scan depth = 3.4mm, 32,000 A-scans per second) B-scans
from 15 healthy adults were used for the work. The B-scan was imaged from
the left and right eye of the healthy adults using a spectral domain OCT device
with a chin rest to stabilise the head. The B-scan located at the foveal centre was
identified from the lowest point in the foveal pit where the cone outer segments
were elongated (indicating cone specialisation). The ground truth boundaries
were manually generated by an experienced ophthalmologist. The dataset was
randomly split into 20 training and 10 (5 are corrupted with high-level speckle
noise using Matlab imnoise function with 0.8 variance) validation datasets. For
image pre-processing, all images were cropped to extract only region of interest
and were flattened using ground truth labels before training. The 9 retinal layer
boundaries which can be segmented by the proposed method are shown in Fig 3.

Fig. 3: An example B-Scan OCT image centred at the macula, showing 9 tar-
get intra-retinal layer boundaries. The names of these boundaries labelled as
notations B1,B2...B9 are summarised in Table 1.

Table 1: Notations for nine retinal boundaries, their corresponding names and
abbreviations

Notation Name of retinal boundary/surface Abbreviation

B1 internal limiting membrane ILM
B2 outer boundary of the retinal nerve fibre layer RNFLo
B3 inner plexiform layer-inner nuclear layer IPL-INL
B4 inner nuclear layer-outer plexiform layer INL-OPL
B5 outer plexiform layer-outer nuclear layer OPL-ONL
B6 outer nuclear layer-inner segments of photoreceptors ONL-IS
B7 inner segments of photoreceptors-outer segments of photoreceptors IS-OS
B8 outer segments of of photoreceptors-retinal pigment epithelium OS-RPE
B9 retinal pigment epithelium-choroid RPE-CH

Parameters: These parameters in our method are the first and second order
regularisation parameters α and β, the artificial time step ∆t, the narrowband
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radius |s|, the number of eigenvectors/eigenvalues t, the number of control points
for 9 boundaries, and the iteration number (1000).

These parameters are selected as follows: 1) Large α and β leads to increas-
ingly shorter and finally vanishing segmentation boundaries. Small values may
cause control points intersect with each other, thus leading to numerical instabil-
ities. In this work, we fixed α = β = 0.5; 2) ∆t is bounded by the CFL stability
condition. Numerical stabilities can be attained by using ∆t = 0.01; 3) |s| was
selected according to the initial OCT boundaries. If initialisation is close to the
true retinal layer boundaries, |s| is small (10 pixels for Fig 4 1st row). Otherwise,
a large |s| should be used (50 pixels for Fig 4 last row). Note that we set |s| the
same value for each of 9 OCT boundaries; 4) t was confirmed by choosing the
first t largest eigenvalues such that

∑t
i=1 λi ≥ 0.98VT , where VT is the total

variance of all the eigenvalues. We used the number of training samples as the
value of t. Eigenvectors corresponding to small eigenvalues do not contribute
much to shape variation; 5) 360 control points in total are used for a whole OCT
shape (each retinal layer boundary thus has 40). Overall, we only adjusted |s|
for different initialisations (see Fig 4).

In2

In3

In1

Fig. 4: Experiments of contour evolution with different initialisation conditions
for the proposed method. 1st column: three initialisations (i.e. In1, In2 and In3);
2nd-3rd columns: intermediate contour evolution; 4th column: final segmentation
results; 5th column: notation abbreviations for 9 retinal layer boundaries (refer
to Fig 3 for their full name). The experiments show that by incorporating region-
based information our method has much larger convergence range so it is robust
against different initialisations.

Comparsion: The performance of the proposed segmentation method was eval-
uated by computing the Hausdorff distance (HD) metric between the automated
and ground truth segmentations for different retinal layer boundaries. We com-
pared our method with the geodesic distance method proposed in [4]. In Fig 5,
visual comparison suggests that the proposed method provides significant im-
provements over intensity-based geodesic distance in OCT segmentation, espe-
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cially when OCT images are of low contrast and contain high-level speckle noise.
In Table 2, we report the HD metric of each boundary as well as the total 9
boundaries over the validation dataset and show that our method outperforms
the geodesic distance in terms of the HD metric for all the retinal layer bound-
aries. The improvements are more evident at IML, RNFLσ, IPL-INL, INL-OPL
and OPL-ONL boundary locations. Note that in order to compare our results
with ground truth labels we fitted a spline curve to each segmentation contour
such that the resulting contours run across the entire width of the OCT image.

Fig. 5: Visual comparison of segmentation of 9 retinal layer boundaries using
the geodesic distance [4] and proposed shape-based MS method. 1st column:
input B-scans; 2nd column: geodesic distance results; 3rd column: our results;
4th column: ground truth.

Table 2: Quantitative comparison of segmentation results from the geodesic dis-
tance method (GDM) and proposed method for different retinal layer boundary,
in terms of Hausdorff distance metric (mean±standard deviation).

IML NFLσ IPL-INL INL-OPL OPL-ONL

GDM [4] 9.80±2.51 10.2±3.32 25.26±10.5 22.55±8.96 20.46±7.24

Proposed 1.72±0.52 1.68±0.66 1.058±0.12 0.925±0.10 0.863±0.23

ONL-IS IS-OS OS-RPE RPE-CH Overall

GDM [4] 2.53±1.05 1.91±1.34 1.21±1.05 1.031±0.98 10.55±4.10

Proposed 0.61±0.05 0.84±0.11 1.61±0.96 0.952±0.78 1.140±0.39

4 Conclusion

We presented a new segmentation method for optical coherence tomography
(OCT) images, which allows the integration of statistical shape models learned
from a small OCT dataset. To this end, we developed the Mumford-Shah func-
tional in a way which facilitates a parametric representation of open contours.
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We then constructed narrowbands around the open contours such that regional
information can be derived to assist segmentation. We have shown that integrat-
ing such information allows the proposed method to have a large convergence
range and thus robust against different initialisations. We have also validated
that the proposed method is very accurate even OCT images are of low contrast
and contain high-level speckle noise, and that the method outperforms the state-
of-the-art geodesic distance segmentation method. The proposed method can be
readily extended to other segmentation problems involving open contours.
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