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Abstract

This paper considers the modal cut-on ratio and its use in acoustic mode detection in ducts for a radially
varying flow with swirl. These concepts have previously only been considered for the idealised case of uniform
axial mean flow and no swirl, and thus in this paper they are generalised and extended to account for radial
variations in axial and swirl Mach numbers. The cut-on ratio is shown to no longer satisfy a simple relation
with the axial wavenumber, showing that while the cut-on ratio in arbitrary flow is defined its usefulness
significantly decreases. Mode distribution functions are also investigated for radially varying flows, both in
terms of cut-on ratio and axial wavenumber. In view of the deficiencies of the cut-on ratio highlighted in the
paper a recent method for mode detection in ducts that uses just two microphones is generalised to deduce
the mode amplitudes in radially varying flows, based on modal axial wavenumber rather than cut-on ratio.
This method is shown to perform better than the existing method in radially varying and/or swirling flow
in simple test configurations with an idealised source distribution.

Keywords: Cut-on ratio, cut-on frequency, mode detection, two-microphone method

1. Introduction

This paper deals with the definition of modal cut-on (or cut-off) ratio in ducts with realistic mean flow
profiles and its application to mode detection in high-frequency broadband sound fields. The concept of
cut-on ratio was proposed in the early 1970’s by Rice [1] as a non-dimensional measure of the extent to which
an acoustic mode (indexed by (m,n)) in a duct is cut-on. In approximate terms it is related to how high
in frequency ω an acoustic mode is excited above its cut-on, or resonance, frequency ωmn. A mode excited
at a single frequency well above its cut-on frequency, ω � ωmn, is said to be well cut-on and its wavefront
normal vector propagates at a shallow angle to the duct axis. At frequencies close to the cut-on frequency,
the mode is said to be close to cut-off, whose modal wavefront normal vector propagates at a large angle to
the duct axis. These modes transport comparatively little sound power along the duct, tending to zero at
cut-off. The usefulness of this concept is that in a hard-walled duct containing a uniform mean axial flow,
different modes with different values of mode indices (m,n), but with the same cut-on ratio, have similar
transmission characteristics along the duct and similar radiation characteristics to the far field, as indicated
in Section 1.2 below.

The concept of modal cut-on (or cut-off ratio) is now in common usage in duct acoustics [2, 3, 4, 5] as
a single index of the degree to which a single mode is cut-on. It is a well-defined quantity in the idealised
case of a hard-walled duct containing a uniform mean axial flow and can be used to deduce the modal
propagation angle within the duct [6] and also the angle of the main lobe upon radiation to the far field
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[7, 8]. However, its definition in realistic mean flow profiles, and more importantly its interpretation, is less
clear. These issues are addressed in this paper.

We start by reviewing the basic relations between cut-on ratio and modal wavenumbers for the idealised
case of uniform mean axial flow. These are generalised to arbitrary mean flow profiles including the effects of
swirl, whose usefulness and limitations are then explored. Finally, its application to the new two-microphone
method recently proposed by Joseph [9] is investigated in which the concept of cut-on ratio and its simple
relationship to the modal axial wavenumber is central. Here we show that this method, which aims to
determine the distribution of mode amplitudes versus cut-on ratio, breaks down. An alternative formulation
is proposed that overcomes these issues.

1.1. Modal cut-on Ratio

The usefulness of the cut-on ratio was first proposed by Rice [10, 11]. Rice’s innovation was to recognise
that in a hard-walled duct containing a uniform mean axial flow, different modes with different values of
mode indices (m,n), but with the same cut-on ratio αmn, had similar transmission characteristics along the
duct and similar radiation characteristics to the far field. In particular, Rice showed that for this idealised
case, in which the flow speed was everywhere the same, the cut-on ratio was uniquely and simply related to
the angle ϕx at which the modal wavefront normal vector makes with the duct axis, and also the angle ψP
of the main far-field radiation lobe. Rice [1] used this concept to derive mode amplitude distributions that
vary smoothly with cut-on ratio for some idealised source distributions, such as when each mode is assumed
to contain identical sound power. Joseph et al. [12] later extended this concept to express the amplitude
distribution of a broader family of physically important source distributions in terms of α.

We start by reviewing the basic relations between modal cut-on ratio α and the modal wavenumber
components in a cylindrical hard-walled hollow or annular duct (with hub-to-tip ratio h) containing a
uniform axial flow. The outer duct wall has been non-dimensionalised (see Appendix A for the details of
how we non-dimensionalise all the variables) so that r = 1. At a single non dimensional frequency ω the
acoustic pressure propagating along the duct is of the form

p(r, θ, x) = exp (−iωt)

∞∑
m=−∞

∞∑
n=0

A±mnP
±
mn(r) exp (imθ) exp

(
iωk±mnx

)
, (1)

where A±mn is the pressure mode amplitude, m is the azimuthal mode order, P±mn(r) is the normalised, non-
dimensional mode shape over the duct cross section and kmn is the non-dimensional axial wavenumber, which
specifies the rate of change of phase with axial distance x along the duct for each mode. The superscripts ±
correspond to downstream modes (+) and upstream modes (−). The time dependence of p is kept implicit
throughout. We note that the exponent ω in the final term is an unusual choice, but this saves having to
non-dimensionalise kmn by ω later on. (Work by Heaton and Peake [13] has shown that for certain flow
parameters, there are instabilities associated with the nearly-convected modes and the critical layer that
grow exponentially, which means that the Fourier transforms are not strictly valid. However, even in these
cases Eq. (1) is still applicable unless we go far too downstream, since the contribution from the critical
layer and nearly-convected modes are initially of a very small magnitude.)

Substituting Eq. (1) into the convected wave equation with the axial Mach number Mx assumed to be
constant over the duct cross section yields the expression for kmn of the form,

kmn =
αmn −Mx

β2
, (2)

where β2 = 1 −M2
x . This simple relationship between k and α is central to the usefulness of the cut-on

ratio as an index of modal behaviour. The relation in Eq. (2) makes explicit that the cut-on ratio α is
simply the axial wavenumber k scaled by β2 and shifted by Mx, which explains the usefulness of α. Any
departure from this linear relationship leads to a loss in the usefulness of the cut-on ratio and ambiguity in
its interpretation.

We have non-dimensionalised velocities by the sound speed in the quiescent medium c0, and hence for
a uniform mean flow c0 is identically unity and therefore the usual 1/c0 term on the right hand side of
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Eq. (2) doesn’t explicitly appear. The quantity αmn may be expressed in terms of the transverse modal
wavenumber κmn [14]:

αmn = ±
√

1− β2
κ2
mn

ω2
. (3)

For the case of uniform axial flow in a hollow duct, κmn satisfies J ′m(κmn) = 0 and hence may be determined
from tables of the stationary values of the Bessel function Jm, as given in Abramowitz and Stegun [15]. We
can also determine the axial wavenumbers kmn for uniform axial flow by solving the eigenvalue problem
given in Appendix A (which also applies for an arbitrary swirling flow).

Eqs (1) and (2) make explicit the existence of a frequency ω = ωmn at which αmn = 0, below which
the mode decays exponentially along the duct away from the source and may be said to be cut-off. Setting
αmn = 0 in Eq. (3) gives the cut-on frequency as ωmn = βκmn. At any arbitrary frequency ω therefore αmn
may be written as,

α = ±
√

1− ω2
mn

ω2
. (4)

It therefore takes purely imaginary values for cut-off modes, is zero at cut-off and ranges between zero and
unity as the frequency increases above cut-off. Other variants of this quantity are often used, such as the
cut-off ratio ξmn introduced by Rice et al. [6],

ξ2
mn =

1

1− α2
mn

=
ω2

ω2
mn

, (5)

which has the advantage of being real for both cut-on and cut-off modes.
The relationship in Eq. (2) has recently been used in a new measurement method by which the mode

amplitude distribution versus αmn can be determined from the cross spectrum of acoustic pressures between
two closely spaced microphones at the duct wall. This method will be considered again in Sections 3 and
4 and shown to be inaccurate for realistic mean flow profiles due to the deficiencies of cut-on ratio in these
cases.

1.2. Modal propagation angles

Before proceeding to investigate the meaning and interpretation of cut-on ratio for realistic mean flow
profiles we first discuss its usefulness in determining the main modal propagation angles in uniform axial
flow. Figure 1 show the modal wavefront, approximated as a plane wave, in the r - x plane of the duct.

x

r

Wave front

cr
cR

ψP

c0M∞

cr
c0

ϕx

cx

Figure 1: Modal wavefront propagating in the r - x plane.

The normal to the modal wavefront propagates at the speed of sound c0 at an angle ϕx to the duct
axis with components (cx, cr), whose wavenumber components are in the same direction with magnitudes
k = ω/c0, kx = ω/cx and kr = ω/cr. However, in the presence of a uniform axial flow the resultant
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direction of propagation is cR with components (cx + c0Mx, cr) at an angle ψP to the duct axis since the
axial propagation speed includes an additional drift correction c0Mx corresponding to the axial flow speed.
Making use of Eq. (2) and the geometry sketched in Figure 1, the two modal propagation angles ϕx and ψP
may be expressed solely in terms of cut-on ratio or axial wavenumber as follows [6],

cosϕx =
kmn

1− kmnMx
=

αmn −Mx

1− αmnMx
, (6a)

cosψP =
Mx + kmnβ

2

[(1− kmnMx)(1 +Mx(Mx + kmnβ2))]
1/2

=
αmnβ

(1− α2
mnM

2
x)

1/2
. (6b)

The two angles ϕx and ψP define the behaviour of modal propagation in the duct and to the far field.
The first angle relates to the angle of the wavefront within the duct, and is linked to the phase speed of
the mode, which is cos−1(Mx) at cut-on, tending to 0◦ as the frequency is increased. The second angle ψP
quantifies the resultant propagation angle and is identical to the angle of the main far-field radiation lobe
as it radiates from the duct open end. At the cut-on frequency it takes the value of 90◦, and tends towards
0◦ as the frequency is increased above the cut-on frequency. Clearly, therefore, different modes with the
same cut-on ratios have similar transmission and radiation characteristics for this idealised flow profile. It
is also clear that the expression for the radiation angles are much simpler in terms of cut-on ratio than axial
wavenumber.

2. Defining the cut-on ratio for swirling flow in an annular duct

As discussed in Section 1 above, the concept of cut-on ratio is well defined for a duct containing a
uniform axial mean flow. Moreover, its relationship to the modal wavenumber components, and hence
propagation angles, is straightforward. In the more realistic case of an arbitrary swirling flow, its definition,
and usefulness, is less obvious. In this section we generalise the definition of the cut-on ratio αmn to include
these general profiles and investigate its relationship to the axial wavenumber component kmn, which as we
saw in Eq. (6) is inextricably linked to the modal propagation angles ϕx and ψP . Throughout this paper
we will generally drop the indices notation (m,n) (except where needed) and just refer to the cut-on ratio
as α and axial wavenumber or mode k.

We now consider modal propagation in a hard-walled annular duct h < r < 1 containing radially varying
axial and circumferential velocity components Mx(r) and Mθ(r), respectively. As soon as we consider
swirling flow, we have a number of difficulties. For example, the formulation in Eq. (1) is no longer true,
since the modes are no longer orthogonal and a complete basis. However, if the nearly-convected modes are
assumed to have a very small contribution then it approximately holds as a sum over the acoustic modes,
as shown in Posson and Peake [16].

2.1. Defining the cut-on ratio for arbitrary swirling flow

In this paper we define the cut-on ratio for arbitrary swirling flows to be

αmn = ±
√

1− ω2
mn

ω2
, (7)

where ωmn is the cut-on frequency of the (m,n)-th mode (i.e. the frequency at which kmn, goes from
propagating (=(kmn) = 0) to evanescent (=(kmn) 6= 0)). Note that this definition was chosen to have the
desired property of spanning the range [−1, 1] for the range of propagating duct modes. We emphasise,
however, that the choice of definition is essentially arbitrary. In choosing it to be defined by Eq. (7) it
has the advantages of being entirely consistent with the case of uniform mean axial flow and, as we shall
show below in Section 2.3, has an identical distribution to that of a uniform axial flow even for large radial
variations in axial and circumferential flow speeds.

Another advantage of choosing the definition in Eq. (7) is that it allows for the easy determination of
propagating (or cut-on) and evanescent (or cut-off) modes. In term of the axial wavenumber kmn, a mode is
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propagating if =(kmn) = 0 and evanescent otherwise. In term of the cut-on ratio αmn, a for a propagating
mode we have αmn ∈ [−1, 1], while for an evanescent mode αmn is purely imaginary since ωmn > ω. Thus,
it performs in the same way as for uniform flow.

In general, the cut-off frequencies ωmn are required to be calculated numerically, and a procedure for
doing this is described in Appendix B.

2.2. Relating the cut-on ratio and axial wavenumber

In this section, the computed values of α deduced from the numerical procedure outlined in Appendix B
are plotted against their corresponding values of k (also calculated using the method described in Appendix
A) for the three representative cases of: uniform axial flow, radially varying axial flow and radially varying
swirling flow. In what follows we are only interested in the acoustic modes k, with all the nearly-convected
modes or hydrodynamic modes ignored. Furthermore, we will limit our discussions to cut-on or propagating
acoustic modes. Comparing the numerical values of α and k will be shown to be key in establishing the
validity of the theoretical linear relationship expressed in Eq. (2) in these cases, and hence establish the
usefulness of cut-on ratio as a parameter for uniquely determining modal propagation.

We will see that the relationship between α and k becomes significantly more complicated and non-
linear when radial variations to the flow are present. In these more realistic cases, therefore, cut-on ratio
may not be as useful as a parameter for predicting modal propagation and an alternative parameter must
be considered, as discussed in Section 3.

2.2.1. Uniform axial flow

Before discussing more realistic flow profiles, we first consider the idealised case of a uniform axial flow
with Mach number Mx = 0.5 in an annular duct with hub-to-tip ratio h = 0.5 at a non-dimensional frequency
of ω = 20. This case allows the validation of the numerical procedure aimed at reproducing the theoretical
relation of Eq. (2). Figure 2 is a plot of k against α (calculated using the cut-on frequency in Eq. (7)) for all
the cut-on radial modes associated with representative values of m (m = 0, 5, 10, 15, 20). Also shown is the
dashed line of Eq. (2). Extremely good agreement is observed, thereby validating the numerical procedure.

2.2.2. Radially varying axial flow

In this section the relationship between α and k is investigated for the case of radially varying axial flow
in which swirl is absent. Figures 3a, 3b and 3c are plots of α versus k for the three idealised profiles of
Mx(r) = 0.4 + 0.4(r − h), Mx(r) = 0.33 + 0.66(r − h) and Mx(r) = 0.25 + (r − h) at a non-dimensional
frequency of ω = 20 in a duct with a hub-to-tip ratio of h = 0.5. These shear flows profiles are designed
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Figure 2: Plot of k verses α in grey circles for Mx = 0.5, ω = 20, h = 0.5 and all values of m. Selected values of m are
highlighted with coloured shapes.
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Figure 3: Plot of k versus α for three different axial flows (grey circles), (a): Mx(r) = 0.4 + 0.4(r − h), (b):
Mx(r) = 0.33 + 0.66(r− h) and (c): Mx(r) = 0.25 + (r− h). The other parameters are h = 0.5 and ω = 20. Selected values of

m have been highlighted with coloured shapes. In black (dashed) is the relationship between k and α for uniform flow
Mx = 0.5.

to have increasing gradient but have an identical radially-averaged mean flow speed of Mx = 0.5. Whilst
not being completely realistic, these profiles were chosen to allow a systematic investigation to be carried
out into the sensitivity of cut-on ratio to variations in the axial shear flow profiles. Such profiles could be
representative of those typical of the inlet and bypass ducts in aeroengines. For each flow we consider all
the cut-on radial modes, with the largest value of m corresponding to a propagating mode different in each
figure and is highlighted in red circles. Also shown in these figures, as a dashed line, is the theoretical line
of Eq. (2) showing the relationship for the case of uniform axial mean flow.

These figures demonstrate that the relationship k(α) is no longer linear and whose deviation from the
uniform flow case (the black dashed line) increases as the shear flow gradient increases. In these figures
the modal behaviour associated with some representative circumferential mode orders m are indicated as
coloured shapes. It is clear from the figure that in these systematically chosen flow profiles, the behaviour
of k(α) for individual modes is complicated and may be summarised as follows:

1. The relationship k(α) is monotonic for modes at a fixed value of m.

2. Modes of the same radial index n (with n = 1 corresponding to the most cut-on mode) but different
m values follow the same trajectory, which in this case appears to be approximately linear.

3. The variation of α for a given value of k increases as α decreases from 1 to −1. Greater variations in
α are predicted for upstream-going modes than downstream-going modes.

4. As a consequence of the second observation the relationship k(α) is no longer one-to-one, in the sense
that a single value of k can correspond to multiple values of α. In particular, in Figure 3c, k ≈ −1,
for example, could correspond to an upstream or a downstream mode, with this distinction marked in
each figure.

We can therefore conclude from Figure 3 that for small variations in the mean flow profile (such as in
Figure 3a), the cut-on ratio remains a useful concept in determining the modal axial wavenumber k and
hence modal propagation, as sketched in Figure 1. However, for larger variations in flow profile (such as
Figures 3b and 3c), α no longer accurately quantifies the behaviour of k and hence modal propagation.

We now consider the relationship between k and α for a more realistic axial flow profile. This profile
was measured in the by-pass section of a scale-model aero-engine with hub-to-tip ratio of h = 0.6558 in the
Anecom test facility in Germany [17]. This profile is plotted in Figure 4a. The relationship between α and
k is plotted in Figure 5 at the two frequencies of ω = 20 and ω = 80. While all four features above are
present in the plots, for this more realistic case the variation k(α) is much closer to the uniform profile case.
The definition of cut-on ratio remains valid and useful for this more realistic non-swirling profile.

From Figure 5, it is clear that the relationship between k and α is broadly similar at the low and
high frequencies under consideration. This applies generally for other flows, such as those in Figure 3
and throughout the rest of this paper. Since calculating the wavenumbers k and cut-on ratio α is more
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Figure 4: Plot of (a) axial flow Mx(r) based on Tester and Murray [17]. The hub-to-tip ratio is h = 0.6558. In (b) we give the
idealised swirling flows Mθ(r) that are considered later in Section 2.2.3.

expensive at higher frequencies, we can thus examine the behaviour k(α) at low frequencies to determine
the relationship between k and α, and the usefulness of the cut-on ratio.

At the present time we are unable to predict the extent of deviation of k(α) for any arbitrary flow profile
from the uniform axial flow case and hence establish the usefulness of cut-on ratio. However, the deviation
is clearly linked to the degree of variation in the flow profile with radius. More work is needed to understand
the sensitivity of k(α) to flow profile.

2.2.3. Radially varying axial and swirling flow

We now consider the most general case of radially varying axial flow and swirling flow representative
of, for example, the interstage region of an aeroengine. To understand the general effects of swirl on the
behaviour of k(α) it is instructive to first consider the idealised case of solid body swirl of Mθ(r) = Ωr with
uniform axial flow. We initially use an idealised swirl model where the effect of swirl is simply to shift the
frequency in Eq. (2) by a Doppler factor −mΩ, as in Morfey [14] (so ignoring the effect of the mean swirl
on the mean flow speed of sound and density in Eq. (A.2) and Eq. (A.3) briefly for this example only). The
k(α) relationship from Eq. (2) therefore becomes

kmn =
αmn −Mx

1−M2
x

ω −mΩ

ω
. (8)

Thus, there is no longer a relation involving only k and α since now we have an additional dependence on
m.
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Figure 5: Plot of k versus α for the realistic axial flow Mx(r) from Figure 4a. The other parameters are h = 0.6558 and (a)
ω = 20 and (b) ω = 80. Selected values of m have been highlighted with coloured shapes. In black (dashed) is the

relationship between k and α for uniform flow Mx = 0.445, corresponding to the radial average.
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We now investigate the precise dependence of k on α for a flow profile comprising the realistic axial flow
profile Mx(r) plotted in Figure 4a, combined with four different idealised swirling flow profiles with increasing
levels of swirl. These are given by Mθ(r) = 0.3r (solid body swirl), Mθ(r) = 0.2r + 0.2, Mθ(r) = 0.1r + 0.4
and Mθ(r) = 0.6, and are plotted in Figure 4b. We have assumed both the axial and swirling flow have an
infinitely thin boundary layer, and therefore used the Myers boundary condition to account for the boundary
layer. Otherwise, fully resolving the boundary layer is challenging and computationally expensive.

The computed variation of k with α is plotted in Figure 6 at a frequency of ω = 20. Note that the
effects on the mean sound speed and density by the swirling flow is accounted for in these computations and
throughout the rest of the paper.

The variation of k with α in these figures show similar features as described in Section 2.2.2 for the
non-swirling flow but with some important differences. The most notable difference is that the relationship
is no longer symmetric in ±m. As a result, for a fixed radial mode order n, the trajectories that were
approximately lines in Figure 3 now become loops. Each loop corresponds to a particular radial mode order,
as explicitly labelled in Figure 6d (with n = 1 corresponding to the most cut-on mode).
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Figure 6: Plot of k versus α (grey circles) for the axial flow from Figure 4a and different swirling flows (a) Mθ(r) = 0.3r; (b)
Mθ(r) = 0.2r + 0.2; (c) Mθ(r) = 0.1r + 0.4 and (d) Mθ(r) = 0.6. The other parameters are h = 0.6558 and ω = 20. Selected
values of m have been highlighted with coloured shapes. In black (dashed) is the relationship between k and α for uniform

axial flow Mx = 0.445 and no swirl.
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Figure 7: Plot of η(α) (in blue, solid) after calculating α for all cut-on modes for two different flows in an annular duct with
0.5 < r < 1. We have plotted |α| in red (dashed). The flow parameters are (a) Mx = 0.5, Mθ = 0, ω = 80; (b)

Mx(r) = 0.3 + 0.2r2, Mθ(r) = 0.2r + 0.3, ω = 80.

Finally we note that the modes associated with circumferential mode order m = 0 lie very close to the
black (dashed) line denoting the relationship between k and α in uniform flow. This behaviour is readily
understood from Eq. (8) for the case of solid body swirl with the idealised swirl model which predicts that
swirl has no effect for these axisymmetric modes. Therefore, the behaviour at m = 0 closely mirrors Figure
5a which has the same axial flow profile but no swirl.

2.3. Mode distribution function for cut-on ratio

One of the advantages of representing modes by their cut-on ratio rather than mode indices (m,n) is
in the calculation of multi-mode sound field in the high frequency limit [12, 1]. In these calculations the
double summation over m and n is replaced by a single integration over cut-on ratio α, where α is treated
as a continuous variable on the domain [−1, 1]. Central to these calculations is therefore knowledge of how
the values of α are distributed, which is expressed as a probability density function η(α).

One such example of this approach is in a new measurement procedure, referred to here as the two-
microphone method [9], which allows the mode amplitude distribution to be deduced as a function of α
from measurements of the coherence function between two acoustic measurements made at the duct wall.
However, this method based on α is restricted to a uniform axial mean flow. This procedure will be discussed
in some detail in Section 3 and a revised formulation based on wavenumber k is presented subsequently that
is valid for any arbitrary flow profile.

In a hollow duct with uniform axial flow, in the high-frequency limit, work by Joseph [9], Joseph et al.
[12], Rice [1] have shown analytically that α has the following distribution

η(α) = |α|, −1 ≤ α ≤ 1. (9)

This result predicts that there are comparatively very few modes close to α = 0 near cut-off, and most of
the modes are clustered near the end points at α = ±1, corresponding to well cut-on modes.

The density function η(α) is now computed numerically for the case of uniform axial flow in an annular
duct with h = 0.5 and also the more general swirling flow Mx(r) = 0.3 + 0.2r2, Mθ(r) = 0.2r + 0.3, also
with h = 0.5. These density functions are plotted in Figure 7a and Figure 7b respectively, in blue (solid).
The dashed red curve in this figure corresponds to the distribution of Eq. (9). Even for swirling flow, the
distribution η(α) is observed to closely follow |α|. These results clearly suggest that the definition of α
in Eq. (7) appears to preserve the essential density function derived for uniform flow, irrespective of flow
profile. The reasons for this unexpected result are currently not clear.

In order for the density functions to be reasonably smooth, we have to compute η(α) at a large frequency,
which has been done in Figure 7 (ω = 80). If we instead considered lower frequencies, then we would get a
distribution which oscillates significantly and would not be useful in estimating η(α) accurately.
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2.4. Mode distribution for wavenumber

So far in this section we have considered the relationship between wavenumber k and cut-on ratio α, and
also the probability density function of α. We therefore now turn our attention to the probability density
function (or modal density function) η(k), which will be of use in Section 3 in a revised two-microphone
method based on k. Note that unlike the η(α) distribution in Figure 7, the mode distribution is expected
to differ for each flow profile.

2.4.1. Uniform axial flow

In the case of uniform axial flow, Eq. (2) indicates a linear relationship between k and α from which k
takes values in the range

− 1

1−Mx
< k <

1

1 +Mx
, (10)

for propagating modes, so, unlike α is not symmetric unless Mx = 0. Substituting for k in the probability
density function for α in Eq. (9) and normalising η(k) such that∫ 1/(1+Mx)

−1/(1−Mx)

η(k)dk = 1, (11)

gives

η(k) = (1−M2
x)2

∣∣∣∣k +
Mx

1−M2
x

∣∣∣∣ . (12)

It is clear that k = −Mx/(1−M2
x) corresponds to α = 0 for modes at cut-off, with both having probability

zero. The maximum value of the modal density function occurs for the most upstream and downstream
cut-on modes, k = −1/(1−Mx) and k = 1/(1 +Mx) respectively, where η(k) = 1−M2

x .

2.4.2. Radially varying axial and swirling flow

One of the advantages of expressing the distribution of modes according to their α values is that across
the range of propagating modes α varies between −1 and 1. In the case of uniform axial mean flow, the
corresponding range of k is readily determined from Eq. (10). However, in the general case of arbitrary
radially varying swirling flow, the range of k must be determined numerically, which we now show varies
with frequency.

Table 1 lists the calculated values of the minimum and maximum values of k for the range of propagating
modes at different frequencies for the radially varying non-swirl case, Mx(r) = 0.4 + 0.4(r − h), Mθ = 0
considered previously in Section 2.2.2. Table 1 makes clear the frequency dependence of the minimum and
maximum values of k needed to quantify the range of propagating modes. However, as we let ω →∞ then
kmin and kmax appears to converge to well defined limits. A similar study in swirling flow suggests that the
observation is also valid in this case, but the maximum and minimum values of k no longer occur at m = 0,
so it much more expensive to compute kmin and kmax.

We now investigate the behaviour of the modal density function for an arbitrary swirling flow, obtained
after numerically computing k for all the propagating modes. In practice ω & 100 was found to be sufficiently
high to obtain a smooth estimate for the density function η(k).

The modal density functions η(k) are compared in Figure 8 for two cases of identical axial flow profile
Mx(r) = 0.4 + 0.2r but with low (Figure 8a) and high (Figure 8b) levels of swirl, gives by the profiles
Mθ(r) = 0.1r + 0.1/r and Mθ(r) = 0.3r + 0.2/r. The radially averaged levels of swirl for the two cases
are Mθ = 0.2136 and Mθ = 0.5023 respectively. The distributions were calculated at the non-dimensional

ω 10 20 40 80 160
kmin −1.7896 −1.8382 −1.8788 −1.9060 −1.9188
kmax 0.6987 0.7013 0.7135 0.7351 0.7523

Table 1: Calculation of kmin and kmax for the swirling flow Mx(r) = 0.4 + 0.4(r − h), Mθ = 0 in a duct 0.5 < r < 1 at
different frequencies, showing the weak frequency dependency.
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Figure 8: Plot of η(k) (in blue, solid) after calculating k for all cut-on modes for axial flow Mx(r) = 0.4 + 0.2r in a duct
0.5 < r < 1 at a frequency ω = 150. The swirl is (a) Mθ(r) = 0.1r + 0.1/r and (b) Mθ(r) = 0.3r + 0.2/r. In blue is the

distribution of upstream cut-on modes, while in yellow is the distribution of downstream modes. In red (dashed) we have
plotted the density function η(k) for the uniform axial flow Mx, given by Eq. (12).

frequency of ω = 150. The distribution of upstream propagating modes is depicted in yellow and the
downstream modes in blue. For comparison, the density function of Eq. (12) for the uniform axial mean
flow is plotted as a red dashed line.

The density functions η(k) for swirling flow in Figure 8 exhibit several features distinct from the α
distributions plotted in Figure 7. The most striking observation is that η(k) differs significantly from the
case of the uniform axial flow in terms of shape, height and end points kmin and kmax. As we increase the
swirl velocity, these differences becomes more exaggerated, as seen in Figure 8b. One particularly noticeable
feature in Figure 8 is the presence of an overlap region (in green) of k in which upstream and downstream
propagating modes share the same value of k. This phenomenon is also observed in flow profiles in which
swirl is absent. For higher values of swirl, this effect is more pronounced, as seen in Figure 8b. However,
this non-uniqueness is not a problem when either the upstream or downstream going modes are dominant,
such as in an aeroengine duct inlet or bypass section.

By way of summary, therefore, a simple distribution for α with η(α) = |α| for −1 ≤ α ≤ 1 is observed
for all swirling flows considered. However, due to the complex inter-relationship between the wavenumber
and cut-on ratio, as shown in Section 2.2, the resulting density function in k is complicated, depends on the
flow profile and must be numerically determined.

3. A new two-microphone method

In this section we investigate a relatively new method for determining the mode amplitude distribution
in which the concept of cut-on ratio was central. It is based on previous work by Joseph [9] in which
the mode amplitude distribution may be determined as a function of cut-on ratio α from measurements of
the coherence function between the acoustic pressures at two closely spaced microphones at the duct wall.
Central to the formulation of the method is Eq. (2) linking k to α for a uniform mean axial flow. The
formulation in Joseph [9] is therefore restricted to the idealised case of uniform mean flow.

In this section we provide an alternative formulation in terms of the axial mode wavenumber k which
circumvents the need to invoke the relationship of Eq. (2) for uniform mean flow. The new formulation
in terms of k is therefore completely general, and therefore allows the mode amplitude distribution to be
determined as a function of k for any arbitrary flow profile, including swirl. This new formulation also
highlights the deficiency of the cut-on ratio in arbitrary flows. We will show in the next section that the
α-based and k-based formulations give essentially equivalent mode amplitude distribution results for the
flow profiles for which k(α) matches most closely the theoretical relationship of Eq. (2) for a uniform mean
axial flow.
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3.1. Outline of method

In this section the basic steps involved in the derivation of the expression for the mode amplitude
distribution in terms of the pressure coherence function are presented for radially varying swirling flow.
However, unlike in Joseph [9] we avoid the use of Eq. (2) linking k and α which is valid only for uniform
mean flow.

We begin by calculating the pressure cross spectrum (density) between two points separated by a distance
∆x at the same circumferential location on the outer duct wall. Making the assumption of uncorrelated
mode amplitudes, the cross spectrum between the acoustic pressures at the outer wall of the duct with
arbitrary θ and an axial separation distance of ∆x is given by

S12(ω) = E
[
p(1, θ, x1)p?(1, θ, x1 + ∆x)

T

]
. (13)

In this expression, T is the time interval over which the Fast Fourier Transform of p is taken, and p is given
in Eq. (1). Substituting Eq. (1) in Eq. (13) (which approximately holds even for swirling flow as discussed
at the start of Section 2) then gives the cross spectrum as

S12(ω) =
∑
m,n

[
E
(
|A+
mn(ω)|2

)
eiωk+mn∆x|P+

mn(1)|2 + E
(
|A−mn(ω)|2

)
eiωk−mn∆x|P−mn(1)|2

]
, (14)

where we have separated the cross spectrum into downstream (+) and upstream contributions (−). The
eigenfunctions (or mode shapes) P±mn(r) have been normalised such that

2

(1− h2)

∫ 1

h

|P±mn(r)|2rdr = 1. (15)

The main assumption underlying the technique is that the relative mode amplitude distribution is only
a function of the non-dimensional axial wavenumber kmn. The mode amplitude distribution has been
demonstrated to be solely a function of α in uniform flow for a broad range of physically realistic source
distributions as seen in Rice [1], Joseph et al. [12]. It must therefore be solely a function of k in a uniform
mean axial flow since k and α are linearly related through Eq. (2). In this new formulation we will assume
that the relative mode amplitude distribution only depends on k for all flow profiles. The mode amplitudes
may therefore be written in the form

E
(
|A±mn(ω)|2

)
= S(ω)a2

±(k±mn). (16)

where S(ω) is a frequency-dependent source term whose interpretation will be made clear below and a2
±

describes the non-dimensional mode amplitude function of modal axial wavenumbers k±mn, which is to be
determined.

In the high-frequency limit (non-dimensional frequency ω & 10) we can treat a2(k) as a continuous
variable. The discrete summation in Eq. (14) can therefore be replaced by an integration over k that
includes the density function η(k) to account for the distribution of modes across their k-values, as plotted
in Figure 8 and discussed in Section 2.4. Finally, we replace the square of the radial eigenfunctions P±mn(1)
by their value at the duct wall (see Joseph et al. [12]) averaged over all indices m and n, given by

〈|P±mn(1)|2〉 = 2. (17)

This approximation gives the largest error for modes with large m values [9], but since there are relatively few
of these modes the approximation should produce “negligible error” [12] compared to the exact calculation.

After making these three approximations and noting that the number of modes with k values between
k and k + dk is Nωη(k)dk, where Nω is the total number of propagating modes at the frequency ω, we
therefore arrive at the pressure cross spectrum at the duct wall:

S12(ω̂) = 2NωS(ω̂)

∫ kmax

kmin

a2(k)η(k)eiω̂kdk, where ω̂ = ω∆x. (18)
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Finally, we choose the non-dimensional mode amplitude distribution to be normalised such that∫ kmax

kmin

a2(k)η(k)dk = 1. (19)

Setting ∆x = 0 in Eq. (18) gives the autospectrum S11(ω̂) of pressure at the duct wall. Further noting
the normalisation property of Eq. (19) defines the source term S(ω) in terms of the autospectrum of the
pressure at the duct wall,

S11(ω̂) = 2NωS(ω̂). (20)

We then approximate the pressure power spectral density at x2 = x1 + ∆x, by S22(ω̂) ≈ S11(ω̂) and
introduce the complex coherence function ψ12(ω̂), which is defined at the duct wall and is given by

ψ12(ω̂) =
S12(ω̂)√

S11(ω̂)S22(ω̂)
. (21)

Finally, we arrive at an integral relationship between the complex coherence function ψ12(ω̂) and the mode
amplitude distribution function a2(k),

ψ12(ω̂) =

∫ kmax

kmin

a2(k)η(k)eiω̂kdk. (22)

This integral can be thought of as an integral over R, since η(k) = 0 for k < kmin or k > kmax. The result is a
Fourier transform relationship between the coherence function ψ12(ω̂) and the mode amplitude distribution
a2(k), which can be readily inverted to deduce a2(k) in terms of the easily measurable quantity ψ12(ω̂):

a2(k) =
1

2πη(k)

∫ ∞
−∞

ψ12(ω̂)e−iω̂kdω̂ for kmin < k < kmax. (23)

In the original formulation of this method [9] the additional step was taken of expressing k in terms of
α using Eq. (2) for the case of uniform mean flow to arrive at a Fourier Transform relationship between the
mode amplitude distribution as a function of α and the coherence function. The original formulation in terms
of α may be recovered from the general result of Eq. (23) by making the substitution k = (α−Mx)/(1−M2

x)
to give

a2(α) =
1

2π|α|

∫ ∞
−∞

eiMxω̂ψ12(ω̂)e−iω̂αdω̂ for − 1 < α < 1, where ω̂ =
ω∆x

1−M2
x

. (24)

However, the current analysis demonstrates that this additional step is unnecessary in the case of uniform
mean flow and incorrect for realistic flow profiles since there is no longer a linear relationship between k and
α. The analysis above has demonstrated that the essential Fourier Transform relation between a2 and the
coherence function is with the modal axial wavenumber k and that further expressing it in terms of α is
unnecessary and potentially inaccurate, as demonstrated in the simulations presented below in Section 4.

3.2. Limitations of the new two-microphone method

The previous section has demonstrated how the two-microphone method may be completely generalised
to any arbitrary flow profile to allow the mode amplitude distribution to be determined as a function of
k based on pressure measurements at just two microphones at the duct wall. However, the formulation
introduces a number of potential difficulties that must be considered that do not exist in the original
formulation in terms of α for uniform mean flow.

One of the major difficulties with the use of the new formulation is that, whilst it can provide an accurate
estimate for a2 in terms of k, the interpretation of k in terms of modal propagation and radiation angles,
ϕx and ψP respectively, is much less clear. This difficulty is an artefact of the radially varying flow and the
difficulty in defining meaningful propagation and radiation angles in these flow profiles, rather than the new
technique itself.
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The second fundamental difficulty with the new formulation is the non-uniqueness of k in describing
upstream and downstream propagating modes. A small range of k values have been shown to exist for each
flow profile that correspond to both upstream and downstream going modes for different values of m, as seen
in Figure 8. Clearly, this non-uniqueness issue only presents difficulties when upstream and downstream
going modes of roughly the same amplitude are present simultaneously.

Lastly, the new method requires an estimate for the modal density function η(k), which we have shown
in Section 2.4 varies considerably depending upon the mean flow profile. By contrast, the density function
for α, based on a limited number of simulations with different profiles, appears to be robust and given by
η(α) = |α|. The new formulation therefore introduces extra computation time, but is not excessive if the
range of flow profiles under consideration is limited.

4. Evaluation of the two-microphone methods

In this section, the accuracy of the original two-microphone method of Eq. (24) based on the cut-on
ratio and the assumption of uniform mean flow is now compared against the new formulation of Eq. (23)
based on k in which no assumption is made about the nature of the mean flow profile. Their relative ability
to deduce the mode amplitude distribution from the acoustic pressure coherence function is now compared.
An idealised source distribution is assumed in this study comprising incoherent point monopole sources
uniformly distributed over the duct cross section.

Four different swirling flow profiles are investigated for numerical validation of the two methods. The
first is the axial flow profile shown in Figure 4a, which was measured in a scale-model test rig with hub-
to-tip ratio of h = 0.6558, and the second is for the axial flow Mx(r) = 0.25 + (r − h) with h = 0.5. Both
flow profiles have no swirling component. The third and fourth cases involve swirling flow, with the third
case corresponding to the solid body swirl profile Mθ = 0.3r and the fourth case the swirling flow profile
Mθ = 0.1r + 0.4, both shown in Figure 4b. In the last two cases the hub-to-tip ratio was h = 0.6558 and
the axial flow profile was assumed to be that of Figure 4a.

The coherence function was deduced from the acoustic pressure cross spectrum of Eq. (14) with an
assumed mode amplitude distribution function versus α corresponding to incoherent point monopole sources
(in uniform axial flow with no swirl) uniformly distributed over the duct cross section. This is given by [12]

|Amn(αmn)|2 ∝ 1

α2
mn

(1− αmnMx)2

(1−M2
x)2

, (25)

where |A+
mn(αmn)|2 = |Amn(αmn)|2 for αmn > 0 and |A−mn(αmn)|2 = |Amn(αmn)|2 for αmn < 0.

In order to validate the new two-microphone formulation in terms of k, the mode amplitude distribution
function must be known as a function of k. Substituting kmn = (αmn−Mx)/β2 for the case of uniform flow
into Eq. (25) provides a theoretical mode distribution function in terms of k that we wish to recover from
the coherence function using Eq. (23), of the form

|Amn(kmn)|2 ∝ (1− kmnMx)2

(Mx + kmn(1−M2
x))

2 . (26)

The mode amplitude distributions in terms of α and k were used in Eq. (24) and Eq. (23) respectively to
deduce the complex coherence function at 100 frequency points between ω = 1 to ω = 101 in equal increments
of ∆ω = 1. The coherence function was computed separately for upstream and downstream going modes for
the two mode amplitude distribution functions of Eq. (25) and Eq. (26). The microphone non-dimensional
axial separation distance was chosen to be ∆x = 0.2 to ensure that the coherence function decays sufficiently
to zero and hence achieve convergence of the integrals in Eq. (23) and Eq. (24). The coherence functions
based on the distributions of α and k were then used in Eq. (24) and Eq. (23) to deduce the mean square
mode amplitude distribution as a function of α and k. The amplitude distribution functions obtained from
this procedure are plotted in subsequent figures and compared against their theoretical distribution functions
of Eq. (25) and Eq. (26).
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Figure 9: Prediction results for a2 for the axial flow shown in Figure 4a, from Tester and Murray [17]. (a): α-based method,
(b): k-based method.

4.1. Axial flow

Figure 9 shows the comparison of the mode amplitude distribution deduced from the α-based and k-based
two-microphone methods for the purely axial flow profile measured in the bypass section of a scale-model rig
(plotted in Figure 4a) with their corresponding theoretical distributions of Eq. (25) and Eq. (26) respectively.

Generally good agreement between the predicted and actual mode distribution functions is observed in
both cases, with levels of error being similar in both the α and k-based methods. The greatest error (of more
than 5 dB) is found to occur for the extreme values of α and k. The upstream and downstream modes are
represented by horizontal arrows in both figures. Note the small region of overlap in k between about −0.5
and −0.45, which represents both upstream and downstream going modes. Modes represented by their k
values in this region are therefore non-unique. This phenomenon represents one of the disadvantages of the
k-based two-microphone method. We show below the region of overlap becomes greater when swirl is present,
as we saw with the modal density function in Section 2.4. However, this non-uniqueness phenomenon is only
an issue when both upstream and downstream propagation of similar amplitudes are present simultaneously.
In situations where it is required to resolve upstream and downstream propagating modes, for example in the
case of strong reflections, knowledge of the axial wavenumber is ambiguous in the small overlap region. In
these cases, the use of the cut-on ratio has been shown to provide an unambiguous differentiator of upstream
and downstream propagating modes.

We now consider the second case of a purely axial flow, Mx(r) = 0.25 + (r − h). A comparison of the
predicted and actual mode amplitude distribution functions for this profile are shown in Figures 10a and
10b for the α-based and k-based two-microphone methods respectively.

For this radial profile the k-based method provides consistently better agreement with the theoretical
distribution, except at large negative k values, corresponding to well cut-on modes whose corresponding α
values are close to −1. The range of k for which upstream and downstream going modes overlap is also
greater for this axial flow profile. The generally poor performance of the α-based method could have been
predicted from the extent of deviation of k(α) from the uniform mean flow result of Eq. (2), as seen in
Figure 3c. For the previous realistic axial flow example, there was a much smaller deviation from Eq. (2),
as seen in Figure 5b, which explains the better performance of the α-based method in that example.

One reason for the poor performance of the two-microphone method in this example at large negative k
values is due to the poor estimate of the modal density function since there is a relative sparseness of modes
in this k range, as shown in Figure 10c.

The density function η(k) exhibits non-physical oscillatory behaviour for values of k . −2.5 (with 13%
of the total modes satisfying k < −2.5) corresponding to the range of k in Figure 10b of poorest agreement
with the theoretical distribution. To obtain a smoother, more accurate estimate for η(k) in in this example,
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Figure 10: Prediction results for a2 for the axial flow of Mx(r) = 0.25 + (r − h). (a): α-based method, (b): k-based method.
(c): mode density function η(k).

the propagating modes from all frequencies in the range 1 ≤ ω ≤ 101 were used to compute the distribution
plotted in Figure 10c, but even this is not sufficiently smooth. This sparseness phenomenon is less of an
issue for the α-based method, since the probability density function appears to follow η(α) = |α| for all flow
profiles.

4.2. Swirling flow

We now consider the effect of swirl on the α-based and k-based two-microphone methods. Figure 11
shows a comparison of the predicted and actual mode amplitude distribution functions for the case in which
the axial flow profile Mx(r) corresponds to the measured data in Figure 4a with a swirl component given
by Mθ(r) = 0.3r.

Both methods can be seen to provide satisfactory agreement with the actual distribution but with the k-
based method providing marginally better agreement overall. In this case the overlap between upstream and
downstream propagating modes is relatively small. Again, this level of agreement with the α-based method
could have been anticipated from the generally good levels of agreement between the exact relationship k(α)
and the uniform mean flow case, plotted in Figure 6a.

Finally, we examine the effect of increasing the level of swirl. Figure 12 shows a comparison of the mode
amplitude distribution functions using the α and k-based methods when the swirl velocity profile is increased
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Figure 11: Prediction results for a2 for the axial flow shown in Figure 4a and solid body swirl of Mθ(r) = 0.3r. (a): α-based
method, (b): k-based method.

to Mθ(r) = 0.1r+0.4. The predicted mode amplitude distribution for the α-based method is generally over-
estimated by more than 5 dB over the full range of modes compared to the actual distribution. Generally
good levels of agreement are established for the k-based method, except for large negative k values owing
to the relatively poor estimate of η(k) deduced in this example for the most cut-on modes, again stemming
from the relative sparseness of these modes.. Once again, the poor performance of the α-based method in
this example is consistent with the generally large deviation of k(α) from the theoretical relationship in
Eq. (2) assumed in the method, shown in Figure 6c.

5. Conclusions

The concept of modal cut-on ratio has been widely used as a non-dimensional measure of the degree
to which an acoustic mode propagating along a duct is cut-on. In general terms, it represents how far in
frequency a single mode is excited above its cut-on frequency. In the idealised case of a uniform mean axial
flow its definition and its relation to the modal wavenumber components is clear and unambiguous, and can
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Figure 12: Prediction results for a2 for the axial flow shown in Figure 4a and swirl of Mθ(r) = 0.1r + 0.4. (a): α-based
method, (b): k-based method.
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be used to deduce modal transmission and radiation angles. Equally importantly, the modal cut-on ratio
α can be used in place of the usual modal indices (m,n) to characterise modal propagation. However, the
definition of cut-on ratio in the more realistic case in which the axial flow speed is radially varying, and
which may also contain swirl, is not clear and is open to interpretation. This paper sought to clarify these
issues.

In the case of a uniform axial mean flow, the definition of cut-on ratio arises naturally as the ratio of
the frequency and transverse modal wavenumber (cf. Eq. (3)). This definition of cut-on ratio can in turn
be expressed in terms of the excitation frequency relative to its cut-on frequency ωmn, as in Eq. (4). In the
more general case of arbitrary flow profile there is no simple relation between α and the modal wavenumber
components. However, in this paper we choose, arbitrarily, the identical expression of cut-on ratio

αmn = ±
√

1−
(ωmn

ω

)2

, (27)

for arbitrary flow profiles, where ωmn must be computed numerically. This definition has the advantage of
being consistent for the uniform flow case, has the range [−1, 1] for propagating modes, and unexpectedly
appears to have the same probability density function η(α), irrespectively of flow profile. The reasons for
this is currently unknown but provides some confidence in the choice of definition of α. However, this paper
has shown that this definition leads to difficulties in its interpretation and application. We found that in
general the relationship between axial wavenumber and cut-on ratio is significantly more complicated in
swirling flow.

By way of illustrating the difficulty with defining a generalised cut-on ratio in an arbitrary flow profile,
the accuracy of a new but previously studied measurement method (the two-microphone method) was
investigated in this paper. The aim of the method was to express the mode amplitude distribution as a
function of α from measurements of the coherence function between the acoustic pressures at two closely
spaced microphones at the duct wall. Central to the validity of the measurement technique is the assumption
that the relationship between k and α for a uniform axial mean flow is accurate in all flow profiles. The
two-microphone method was applied to predictions of the coherence function for four flow profiles based on
an assumed mode amplitude distribution function of α. Two of the profiles were purely radially varying
axial flows while the other two involved different degrees of swirl. As expected, agreement between the
recovered distributions and the exact distributions were poorest when the variation of k with α deviated
furthest from the relationship for a uniform axial mean flow.

This difficulty was circumvented by simply re-formulating the two-microphone method directly in terms
of axial wavenumber k without making any assumed dependence between k and α. This new formulation
is therefore completely general and applies to any arbitrary flow profile. However, whilst we showed this
new formulation allows for the good estimation of mode amplitude in any flow profile, it has the following
disadvantages:

1. The interpretation of k, and its relationship to modal propagation angles is complicated for arbitrary
profiles and must generally be determined numerically.

2. The modal density function η(k) must be determined by numerical computation whereas for α it
appears to closely follow Eq. (9) irrespective of flow profile, even in the presence of swirl.

3. Modal axial wavenumbers k are no longer unique for upstream and downstream going modes, with
the size of the overlap region dependent on the flow profile. This is only an issue when upstream and
downstream going modes of comparable amplitude are present simultaneously.

Throughout this paper, we have considered a wide range of flows and non-dimensional frequencies when
considering the relationship between the axial wavenumber k and cut-on ratio α (from ω = 20 to ω = 150),
and the two microphone method (ω = 1 and ω = 101). In typical applications, we would be interested
in frequencies between 50 Hz and 10 kHz and engine radii between 0.5 m and 1.5 m, which corresponds to
0.5 . ω . 280. The conclusions in this paper about the relationship between k and α would hold for all of
these frequencies, but calculating quantities such as η(k) and η(α) for very low frequencies would be difficult
due to the sparseness of modes at low frequencies. Additionally, the two-microphone method relies on a high
frequency limit (ω & 10) in order to be able to write the mode amplitude function as a continuous variable.
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Appendix A. Calculating the eigenmodes in swirling flow

We now discuss how to calculate the eigenmodes kmn and associated eigenfunction (or mode shape)
Pmn(r) for swirling, inviscid, homentropic flow in a duct. This is based upon the method in Posson and
Peake [16] and Mathews and Peake [18], which is outlined below. A cylindrical coordinate system is used,
with x the axial coordinate, r the radial coordinate and θ the azimuthal coordinate, with u, v and w being
the velocity components in the x, r and θ directions respectively.

We non-dimensionalised quantities as follows. Distances are non-dimensionalised by the outer tip of
the duct Rt. Velocities are non-dimensionalised by the speed of sound at the outer tip, c0(Rt), while
densities and pressures non-dimensionalised by the density and pressure at the outer tip. Frequencies are
non-dimensionalised by c0(Rt)/Rt.

Given a base flow of the form
(Mx(r), 0,Mθ(r)), (A.1)

we calculate from the Euler equations and the gas thermodynamic relations that the base flow speed of
sound is given by

c20(r) = 1 + (γ − 1)

∫ r

1

M2
θ (s)

s
ds, (A.2)

while the density is given by
ρ0(r) = [c20(r)]1/(γ−1), (A.3)

and finally the pressure is given by

p0(r) =
1

γ
−
∫ 1

r

ρ0(s)M2
θ (s)

s
ds, (A.4)

where γ is the ratio of specific heat capacities (γ = 1.4) for air. We then Fourier transform the standard
mass, energy and momentum equations using

{u, v, w, p}(r, x, θ, t) =

∫ ∑
m

∫
{U(r), V (r),W (r), P (r)}eiωkxdkeimθe−iωtdω. (A.5)

After rearranging, the eigenvalues satisfy

MxΛ̄

c20ζ
iU +

[
Mx

c20ζ

dMx

dr
− 1

rζ
− M2

θ

ζrc20

]
V − 1

ζ

dV

dr
− m

rζ
iW − iΛ̄

c20ρ0ζ
P = kωiU, (A.6a)

− Λ̄

Mx
V − 2Mθ

rMx
iW +

i

ρ0Mx

dP

dr
− iM2

θ

ρ0Mxrc20
P = kωV, (A.6b)

− 1

Mx

[
Mθ

r
+

dMθ

dr

]
V − Λ̄

Mx
iW − im

rρ0Mx
P = kωiW, (A.6c)

−ρ0Λ̄

ζ
U + i

ρ0

ζ

[
dMx

dr
−
(

1 +
M2
θ

c20

)
Mx

r

]
V − iρ0Mx

ζ

dV

dr
+
mρ0Mx

rζ
W +

MxΛ̄

c20ζ
P = kωP, (A.6d)

with the Myers boundary condition in hard walls:

V (h) = 0 and V (1) = 0, (A.6e)
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where

Λ̄ =
mMθ

r
− ω and ζ = 1− M2

x

c20
, (A.7)

with Λ̄ the reduced frequency and ζ2 is local compressibility factor. We solve this eigenvalue problem using
Chebfun [19] in MATLAB, which avoids having to discretise the derivatives. This allows the calculation of
kmn and Pmn(r). Our numerical eigenmode solver was validated against the results from the program in
Posson and Peake [16]. We find that we get perfect agreement in all cases with Posson and Peake [16] for a
duct with hard walls.

Any hydrodynamic modes or nearly-convected modes found by the solver are identified by comparing
their wavenumber k to the wavenumbers of the critical layer and using the symmetry of the cut-on acoustic
modes, and then are ignored for the purpose of this paper. More details about them can be found in Heaton
and Peake [13] or Mathews and Peake [20].

Appendix B. Numerically calculating the cut-on frequency

The essential idea to calculate the cut-on frequency ωmn is that we vary the frequency ω and solve the
eigenvalue problem numerically for the eigenmodes kmn until the n-th upstream and downstream modes
coalesce and become cut-off. The precise frequency where this happens will be denoted ωmn.

Given a fixed value of ω and an azimuthal number m, we can calculate all the eigenmodes kmn by solving
the eigenvalue problem in Eq. (A.6). Let k?mn denote the cut-on eigenmodes. Assume that n ranges from 1
to N . Let N denote the number of cut-on modes, so N (ω) = N .

We illustrate the procedure when ω = 12, m = 0, Mx = 0.5 and Mθ = 0, for which there are three cut-on
modes (so N = 3).

• Make an initial guess. We first try and find frequencies ωj < ω where we have 1, 2, . . . , N cut-on
eigenmodes. For example, we could try guessing ωj = jω/N has j cut-on modes.
We calculate that ω1 = 4, ω2 = 8, ω3 = 12 and that N (ω1) = 1, N (ω2) = 2 and N (ω3) = 3.

• Refine guess. Suppose we find that frequencies ωj and ωj+1 have the same number of cut-on modes
j, but ωj+2 has j + 2 cut-on modes. We refine the guess by letting ωj+1 ← (ωj+1 + ωj+2)/2 and
hoping that for the new value of ωj+1, N (ωj+1) = j + 1. We carry on a similar procedure until we
have N different frequencies ωj , where N (ωj) = j for j = 1, . . . , N .
Our initial guess had N (ωj) = j for j = 1, . . . , N so this is not required.

• Bounded regions. Let ω0 = 0. We have now deduced a range for the cut-on frequency for each
index. For 1 ≤ n ≤ N we have that ωn−1 < ωmn < ωn.

• Introduce distance function. For a given ω, introduce the distance function d(ω) = |min(k?mn,down)−
max(k?mn,up)|, which is the distance between the closest upstream and downstream mode.
For example, we find that d(ω1) = 10.6667, d(ω2) = 15.3989 and d(ω3) = 13.1893.

• Find zeros of the distance function. For the cut-on frequencies, we have d(ωmn) = 0. In the
range ωn−1 < ωmn < ωn we have precisely one zero, due to our definition of ωn. We use a numerical
solver (eg Newton-Raphson) to solve d(ωmn) < ε to a tolerance of ε, which takes f(n, ε) iterations to
converge.
We find that the three cut-on frequencies are ω0,1 = 0, ω0,2 = 5.5372 and ω0,3 = 10.9346.

Since we have to solve the eigenvalue problem at least N times to get the initial guesses ωj , and then∑N
j=1 f(j, ε) to find the cut-on frequencies, we can see that we have to solve the eigenvalue problem a

significant amount of times. Thus, the method to find the cut-on frequency and hence the cut-on ratio from
Eq. (4) will be very expensive.

One way to speed up the method would be to find the eigenmodes faster, which might be possible by
reducing the required accuracy. Alternatively, we could try and investigate whether there is a method
which can determine whether a matrix has repeated eigenvalues without solving for them. To the authors
knowledge, there is no method for doing this at present.
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