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1 Introduction

Air pollution is emerging as one of the main causes of deaths and serious ailments in the
world. Greenhouse gases trap heat and make the planet warmer. As shown by a large
majority of scientists (see IPCC (2007, 2013, 2014) for instance), human activities are re-
sponsible for almost all of the increase in greenhouse gases in the atmosphere over the last
150 years. The World Meteorological Organization (WMO)1 confirms that the past 4 years
were the warmest on record since 1880. The global average surface temperature in 2018
was approximately 1◦C above the pre-industrial baseline (1850-1900). It ranks as the fourth
warmest year on record. 2017 and 2018 have experienced many high-impact events includ-
ing catastrophic hurricanes and floods, strong heatwaves and extreme drought. As a result
of a powerful El Niño, 2016 is likely to remain the warmest year on record (1.2◦C above
pre-industrial baseline). But, the long-term temperature upward trend is far more serious.
WMO reports that the 20 warmest years on record have been in the past 22 years. More-
over, long-term indicators of climate change (increasing carbon dioxide concentrations, sea
level rise and ocean acidification) continue unabated. Arctic sea ice coverage remains below
average and previously stable Antarctic sea ice extent was at a record low. Levels of carbon
dioxide (CO2) in the atmosphere have reached new highs, further fuelling global warming.
These CO2 emissions represent more than 75% of the total greenhouse gas emissions.2

Greenhouse gas emissions that cause air pollution are also the main factor causing cli-
mate change. Reducing air pollution, both globally and nationally, should be of the highest
priority. The World Health Organization (WHO (2016a,b)) and recent research have shown
that air pollution is the number one environmental cause of human deaths and kills more
people annually than road accidents, violence, fires and wars combined. Air pollution is
an international problem. A new WHO air quality model confirms that 92% of the world’s
population live in places where air quality levels exceed WHO limits. Air pollution has no
border3. Depending on wind, rainfall and temperature, a country can “import” or “export”
pollutants. This is the case, for example, with the importation of pollutants into California
from China.

In 2015, two thirds of total global emissions came from five countries and the Euro-
pean Union: China (29%), the United States (14%), the European Union (EU-28) (10%),
India (7%), the Russian Federation (5%) and Japan (3.5%). The year 2015 closed with
the adoption of the landmark Paris Agreement on Climate Change by 194 countries and
the European Union. The top emitter China started to curb its carbon dioxide emissions.
China and the United States reduced their emissions by 0.65% (1.16% per capita (pc)) and
2.63% (3.39% pc), respectively, compared to 2014. Emissions in the Russian Federation and
Japan also decreased, by 3.35% (3.55% pc) and 2.26% (2.18% pc), respectively. Emissions
in the OECD countries have also declined by 1.23% (1.86% pc). However, these decreases
were counterbalanced by increases in India (5.18%, 3.88% pc), the European Union (EU-28,
1.28%, 1.01% pc), non OECD countries (0.3%, 0.77% pc) and by increased emissions in a
large group of the smallest countries (see section 3 and Olivier et al. (2016)).

1See https://public.wmo.int/en.
2In 2013 (resp. 2017), the relative shares of the greenhouse gases were: 76% (resp. 75%) for carbon

dioxide (CO2), 16% (resp. 17%) for methane (CH4), 6% (resp. 6%) for nitrogen dioxide (NO2) and 2%
(resp. 3%) for fluorinated gases (IPCC (2014), Olivier and Peters (2018)).

3The Air Quality Index considers 6 common air pollutants (Ozone O3, suflur dioxide SO2, nitrogen dioxide
NO2, carbon dioxide CO2 and particule matter PM10, PM2.5). Air Visual (https://airvisual.com/earth)
produces a worldwide 3D animation that informs users about air quality wherever they are.
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Trends in global CO2 emissions seem to confirm that the slight slowdown in the emis-
sions growth due to fossil fuel combustion may not be random, but may be due to structural
changes in the economy, global energy efficiency improvements and the energy mix of key
world players (see Olivier et al. (2016), GCP (2016)). Some have gone as far as decoupling
global emissions and economic growth (see the announcement of IEA (2016)). Unfortunately,
global carbon emissions jumped to an all-time high in 2018 and the Global Carbon Project
report (see Figueres et al. (2018)) estimated that CO2 emissions have risen by 2.7% in 2018.

The relationship between greenhouse gases (hereafter GHG) and economic activities is
complex and the literature on this subject is huge. There has been considerable interest
in the relationship between economic growth and environmental pollution since the seminal
papers by Grossman and Krueger (1991, 1995). They found an inverted U-shaped pattern,
now commonly referred to as the Environmental Kuznets Curve (EKC). This well-known
curve suggests that various indicators of environmental degradation tend to get worse as
modern economic growth occurs until average income reaches a certain point over the course
of development. After this turning point and beyond some level of income per capita, the
trend reverses and high-income levels per capita economies lead to environmental improve-
ment. This EKC is essentially an empirical phenomenon and the empirical evidence is mixed.
Proponents and opponents of this view are numerous as there is no guarantee that economic
growth will see a decline in pollutants. Pollution is not only a function of income, but many
other factors as well. These include population levels and densities, urbanization, technology,
development of the economy, trade liberalization, effectiveness of government regulation, to
mention a few. The statistical evidence for the EKC is not robust and the mechanisms that
might drive such patterns are still contested (see for instance Van Alstine and Neumayer
(2010) and Stern (2004, 2017)) to mention a few).

Most of the empirical studies in this area imposed relatively restrictive functional forms
(such as a quadratic form for the EKC or for the link between CO2 emissions and urbaniza-
tion). However, recently some have used semiparametric approaches, which do not impose
any a priori restrictions on the functional form.

In this paper, we study the relationship between carbon dioxide emissions and GDP using
a semiparametric panel data approach with random coefficients. It allows us to take into
account the heterogeneity between countries and periods. Inspired by the work of Lee and
Wand (2016a), we use a mean field variational Bayesian (MFVB) approach which has great
advantages as compared to Markov Chain Monte Carlo (MCMC) technique such as Gibbs
sampling. In section 2, we briefly review the literature on EKC and its critics as well as
the works justifying a semiparametric approach. In section 3, we describe our panel data
using 81 countries observed over the period 1991-2015. Section 4 presents the model and the
estimation method based on a MFVB approximation. In Section 5, the estimation results
are discussed. Finally, Section 6 concludes.

2 A quick overview of the literature on EKC and its

critics

A significant part of the literature on EKC has focused on estimating the turning point(s),
the shape imposed, and the associated econometric techniques. Some caveats should be kept
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in mind when looking at the results of empirical studies in this literature. First, no turning
point is in sight for some aspects of the environment. This includes CO2 emissions, direct
material flows4 and the biodiversity loss (see Van Alstine and Neumayer (2010)).

Cavlovic et al. (2000) and Hui et al. (2007) attempt to draw a conclusion about the
existence of an EKC and the level of the income turning point via meta-analyses. The
empirical evidence shows that EKC is a very sensitive concept depending on data features,
methodology, estimation technique and the environmental indicators used. By and large,
empirical studies show that most countries exhibit a positive linear relationship between
CO2 emissions (or sulfur dioxide SO2 emissions) and GDP. Second, even if an EKC is found,
multiple turning points may arise (see for instance Binder and Neumayer (2005)). Third,
when EKC exists, it could be due to a trade effect, i.e., rich countries may become clean by
importing products that are polluting in production from lower-income countries (see for in-
stance Cole and Neumayer (2005)). Fourth, there are several econometric problems with the
estimation results obtained from a standard quadratic equation relating a log-environmental
indicator and log-GDP per capita. The most important of these are the omitted variables
bias, the problem of spurious regressions and the identification of dynamic effects (see Stern
(2004, 2017)). Variables such as density of the urban population, energy use and energy con-
sumption, trade and economic liberalization, land use, income inequality, institutional and
political behavior, democracy, literacy, environmental non-government organizations should
be taken into account to reduce the omitted variables bias (see for instance Dasgupta et al.
(2002), Liu (2005), Van Alstine and Neumayer (2010) to mention a few).

Spurious regressions may arise if the environmental indicator and GDP per capita are
both trending over time. Time-specific dummies are not enough to control non-stationarity.
Estimating the model in first differences or in growth rates might work as a solution. Iden-
tification of time effects lead several authors to use panel data unit root tests and panel
data cointegration models to control for non-stationarity and common trends (see for in-
stance Perman and Stern (2003), Galeotti et al. (2006), Romero-Ávila (2008), Vollebergh
et al. (2009), Stern (2010), Anjum et al. (2016), Baek (2015), Bernard et al. (2015), Apergis
(2016), Uchiyama (2016), Wagner and Grabarczyk (2016) to mention a few).
Most of the papers using panel data found a “CO2 emissions - GDP elasticity” between
0.6 and 1, but the confirmation of the Kuznets hypothesis is mixed. The estimated EKC
shapes are found to be either quadratic or lie between what Dasgupta et al. (2002) call the
“race to bottom” and the “new toxics”.5 Wagner and Grabarczyk (2016) are somewhat
critical of these papers, because most of these papers use standard panel linear cointegration
techniques with cross-sectional independence. Moreover, the implicit hypothesis that all the
slope coefficients are in fact identical for all countries is too restrictive in many applications.
They advocate estimating a quadratic EKC with country-specific intercepts and slope coef-
ficients for the relationship between log CO2 per capita and log GDP per capita adding a
deterministic trend. They estimate seemingly unrelated cointegrating polynomial regression

4Direct material flows are defined as the amount of material in physical weight (excluding water and air)
available to an economy. These material flows comprise the extraction of materials inside the economy and
the physical imports and exports (i.e., the mass weight of goods imported or exported).

5“The curve will rise to a horizontal line at maximum existing pollution level, as globalization promotes
a“race to bottom” in environmental standards.... If certain pollutants are reduced as income increases,
industrial society continuously creates new, unregulated and potentially toxic pollutants.... The overall envi-
ronmental risks from these new pollutants may continue to grow even if some sources of pollution are reduced,
as shown by the “new toxics” line in Figure 1.” ( Dasgupta et al. (2002) pp. 148).
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using fully modified OLS SUR estimators for 7 European countries over a very long period
1870 − 2009 but 4 of out 7 countries show “race to bottom” or “new toxics” shapes, the
concavity being barely pronounced. Moreover, there has been recent work on the effects of
the business cycle on carbon dioxide emissions and specifically on whether the “emissions-
income elasticity” differs during downward and upward movements of the business cycle (see
Bowen and Stern (2010), Peters et al. (2012), Jotzo et al. (2012), Heutel (2012), Doda (2013,
2014), Burke et al. (2015), Sheldon (2015)). Using a panel data set of 189 countries over
the period 1961–2010, Burke et al. (2015) conclude that there is no strong evidence that the
emissions-income elasticity is larger during years of an economic expansion as compared to
a recession. They also find that economic growth tends to increase emissions not only in the
same year, but also in subsequent years. These delayed effects imply that emissions tend to
grow more quickly after booms and more slowly after recessions.

Another main aspect of this literature between environment quality and economic de-
velopment has been over the appropriate underlying functional form (see Dasgupta et al.
(2002)). It must be noted that most of the empirical studies have imposed relatively restric-
tive functional forms, such as the quadratic form for the EKC. Although some researchers
allow for non-linearity by introducing higher order terms. More recently, some have used a
semiparametric approach, allowing greater freedom in the relationship between the environ-
mental variable and GDP per capita since it does not impose any a priori restriction on the
functional form of this relationship. For example, Millimet et al. (2003) have shown with
data for the US states that such parametric modeling can be rejected in favor of a semipara-
metric estimator. Using a panel of 122 countries (of which 95 are LDCs) for carbon dioxide
and a panel of 108 countries (of which 81 are LDCs) for sulfur, over the period 1950–1990,
Bertinelli and Strobl (2005) estimated a semiparametric model. Their findings suggest that
the link between environmental pollution and economic growth is actually monotonically
increasing for low levels of GDP/capita, and flat thereafter. In their specification against a
linear model and using bootstrapped values, they were unable to reject a linear relationship.
These results echoe the skepticism raised by Stern (2004, 2017) over the existence of an
international EKC in his review of the literature. However, it should be noted that except
for real GDP per capita, Bertinelli and Strobl (2005) used only time- and country-specific
dummies to control for other explanatory factors of pollution. One must however pay at-
tention to the presence of unit root and its possible impact on the validity of nonparametric
or semiparametric approaches. This is an important point that we will study using a small
Monte Carlo simulation to assess the performance of our proposed MFVB method when non
stationary I(1) series are present in the explanatory variables set (see appendix B in the
supplementary material). Our simulation results support the use of the MFVB approach
even in the presence of non stationary variables like log CO2 per capita and log GDP per
capita in our application. Our MFVB estimation on a nonlinear semiparametric panel data
specification with random coefficients does not lead to non stationary residuals. In a re-
lated context, statistical inference for the random coefficient panel data model find that, in
a random coefficient autoregression context, there is no unit root problem. Horváth and
Trapani (2016) show that the weighted least squares estimator of the autoregressive root is
always asymptotically normal, irrespective of the average value of the autoregressive root,
of whether the autoregressive coefficient is random or not, and of the presence and degree
of cross dependence (see also Ng (2008)).

In the same literature, the relationship between CO2 emissions and urbanization has been
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extensively investigated in recent years. But, the empirical results are mixed. For example,
Cole and Neumayer (2004) and Liddle and Lung (2010) demonstrate a positive correlation
between urbanization and CO2 emissions, while Fan et al. (2006) find a negative correlation
between urbanization and CO2 emissions in developing countries. Poumanyvong and Kaneko
(2010) argue that assuming that the relationship between urbanization and CO2 emissions is
homogenous for all countries may be unreasonable. They examine the effects of urbanization
on CO2 emissions for low-, middle-, and high-income groups, and find that while a positive
relationship exists for all income groups, it is most prominent in the middle-income group.
The vast majority of the existing literature assumed that there exists a linear relationship
between urbanization and CO2 emissions. Ehrhardt-Martinez et al. (2002) argue that urban-
ization is a good proxy for modernization, and thus the relationship between urbanization
and CO2 emissions may vary across different stages of development. Our results in Table 1
show that the effect of urbanization on CO2 emissions is positive and significant. Zhu et al.
(2012) investigate the relationship between CO2 emissions and urbanization in a sample of
20 emerging countries over the period 1992–2008 using the semiparametric panel data model
with fixed effects. They find a nonlinear relationship between log CO2 emissions and log-
urbanization and little evidence in support of an inverted-U curve. Wang et al. (2015), using
a panel of OECD countries over the period 1960-2010, estimate a semiparametric approach
with fixed effects of the Stochastic Impacts by Regression on Population, Affluence and Tech-
nology model (STIRPAT) proposed by Dietz and Rosa (1997).6 Using the work of Baltagi
and Li (2002), the STIRPAT framework of the carbon emissions is extended by introducing
a semiparametric specification of urbanization and with time- and country-specific dummies.
The results show that the estimated “CO2 emission - energy intensity elasticity” and the
“CO2 emission - affluence elasticity” are unity. Wang et al. (2015) also found evidence for an
inverse U-shaped curve relationship between urbanization and carbon emissions. However,
the shape of the smoothed relationship between urbanization and log CO2 emissions lies
between the conventional EKC and what Dasgupta et al. (2002) call the “race to bottom”.

This rapid overview of the empirical validations of the EKC curve reinforce the idea of
using a semiparametric form, allowing slope coefficients to vary between countries and avoid-
ing the use of the cointegration approach with fixed coefficients for a quadratic specification.
Nevertheless, methods for estimating a semiparametric panel data model with random coef-
ficients are few. In section 4, we use a Bayesian approach that is capable of estimating such
a complex specification.

3 The data

The data come from several sources: the World Development Indicators, from the World
Bank, The Emission Data base for Global Atmospheric Research (EDGARv4.3.2), from
the European Commission, Joint Research Centre (JRC)/PBL Netherlands Environmental
Assessment Agency, the Eurostat database, from the European Commission and the Stan-
dardized World Income Inequality Data base (SWIID) created by Solt (2016) for the Gini
index. Merging the data coming from these sources lead to an unbalanced panel data set
with missing values. The percentage of missing values range between 0 and 45% depending
on the variable considered. We dropped countries, variables and years for which missing
values were larger than 15%. These variables included education, health, institutional and

6Affluence relates to the average consumption of each person in the population.
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political behavior, democracy, literacy, environmental non-government organizations. The
remaining variables with missing data were processed using cubic B-splines to obtain sat-
isfactory imputations.7 We have chosen a missingness rate of 15% that allows us to keep
the maximum number of observations for the maximum number of countries. Moreover, our
choice of using a cubic spline smoothing method rather than a multiple imputation method
(like MICE or EM) is reinforced by the results of Yoon et al. (2017). Missing data may cause
bias in estimation and inference. The missing data mechanisms (missing at random (MAR),
missing completely at random (MCAR) and missing not at random (MNAR), see Rubin
(1976)) have greater impact on the research results than does the proportion of missing data
(see also Tabachnick and Fidell (2001)). Many modern missing data methods (e.g., multiple
imputation, FIML, EM, etc.) assume MAR. Yoon et al. (2017), using health longitudinal
data, have compared the most familiar methods for estimating missing data. They show
that recurrent neural networks (RNN), just followed by cubic splines, give the best results
(i.e., smallest rmse) as compared to imputation (MICE (multiple imputation by chained
equations (see White et al. (2011)) or EM). Increasing the missingness rate (10%, 20%, ...,
50%) does not change significantly the rmse of RNN-based methods or cubic smoothing
while the rmse of MICE or EM increase faster. Likewise, increasing the individual size (from
N = 500, 1000, 2000, ..., 16000) or the time length (T=5, 10, 15, ..., 30) does not deteriorate
the results of the first two methods as compared to multiple imputation methods. The final
data set utilizes a balanced panel data set for 81 countries over 25 years (1991-2015).8

The left panel of Figure 1 shows the smoothed trends of CO2 emissions for some coun-
tries from locally weighted regressions. China and India experienced episodes of growth in
the overall level of CO2 emissions. In contrast, the US, OECD countries and the European
Union (EU-28) saw their CO2 emissions levels decline. Nevertheless, looking at the right
panel of Figure 1, the shapes of the smoothed CO2 emissions per capita are different except
for China and India. There is a significant decrease in the CO2 emissions per capita for
the USA, and to a lesser extent for OECD, European Union, France, Germany, UK and
the Russian Federation. Japan seems to have experienced a stable evolution over these two
decades.

Please insert Figure 1 here

Please insert Figure 2 here

The left panel of Figure 2 plots log CO2 emissions per capita against log-GDP per capita
for the 2, 025 observations (81 countries, 1991–2015). There is a positive correlation between
these two variables (0.89) with an evolution in the form of a funnel as the log-GDP per
capita increases. This seems to reflect high levels of heterogeneity for large log-GDP per
capita values. The right panel of Figure 2 zooms on the richest countries. The 6th order
local polynomial fit shows a maximum and a pronounced curvature mainly due to the pres-
ence of two countries (Norway and Singapore) with low pollution levels and very high levels
of income per capita. Figure 3 gives the same results but for the levels of the scatter plot
of CO2 emissions per capita against GDP per capita. The evolution in the form of a funnel

7We also tried multiple imputation, using Bootstrap-based EM algorithms proposed by Honaker and King
(2010), Honaker et al. (2011) but we got implausible values, mainly for the oldest or most recent years. So,
we prefer to use cubic B-spline interpolation.

8See Appendix 1 for a detailed description of these variables.
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is accentuated as the GDP per capita increases. The local polynomial fit reveals a maxi-
mum estimated at 10.2525 metric tons of per capita CO2 emissions for a GDP per capita
of 42, 801 USD. We find a slight concave form for the EKC with a turning point at 42, 801
USD. When we drop both Norway and Singapore from the sample, the curvature seems more
accentuated, emphasizing the fact that the local polynomial adjustment gives more weight
to rich countries with low levels of pollution (France, Sweden, Switzerland), compared to
rich countries with high levels of pollution (Australia, Canada, USA). This remains to be
confirmed by the semiparametric model proposed in this paper.

Please insert Figure 3 here

Please insert Figure 4 here

The left panel of Figure 4 plots CO2 emissions per capita against GDP per capita for the
countries means and reveals significant differences between countries. Some countries have
peculiar behavior, see for instance USA, Australia and Canada which represent the most
polluted rich countries. In the United States, the largest source of greenhouse gas emissions
from human activities is from burning fossil fuels for electricity, heat and transportation
(EPA (2016)). Australia has one of the highest per capita emissions of carbon dioxide in
the world, with 0.3% of the world’s population it produces 1.8% of the world’s greenhouse
gases. Australia uses principally coal power (70%) for electricity, with the remainder mainly
gas, with no nuclear, low levels of hydro power, and low, but increasing, levels of solar,
wind and wave power. Some of the reasons for Australia’s high levels of emissions include
Australia smelts Aluminium, a warm climate results in high use of air conditioning and the
effect of agriculture. Canadians have a huge appetite for energy. Canada makes up less
than 0.5% of the world’s population, but is the world’s eighth largest producer of greenhouse
gases. Canada’s greenhouse gas emissions are increasing. Energy consumption has grown
about 22% and emissions by 19% since 1990. The energy industry and the transportation
sector contribute the greatest share of emissions (ECCC (2016)). Other rich countries such
as France, Sweden, Switzerland and, to a lesser extent, Norway and Singapore have energy
and environmental policies that generate less pollution (about 6 metric tons per capita for
the first three countries and 10 metric tons per capita for the second two countries). The
right panel of Figure 4 plots the time means CO2 emissions per capita against years. The
local polynomial smooth curves (or order 6 and 10) show very clearly the existence of a
cycle that seems to follow the international business cycle with three distinct periods: a
recession (1991-1995), an expansion (1996-2007) and a new recession (2008-2015). The last
period (2014-2015) seems to express the end of the depression and a new expansion. However,
there is a very important collapse in the per capita CO2 emissions during the 2008-2009 crisis.

The graphs show differentiated behaviors by country, year and whether level, per capita
or logs where used. There is strong heterogeneity as well as different trends across countries
and years. We carry out IPS and CIPS unit root tests9 on these two fundamental variables:

9The Im-Pesaran-Shin (IPS) unit root tests (Im et al. (2003)) and the Pesaran (2007) CIPS tests relax
the assumption of a common autoregressive parameter in the augmented Dickey-Fuller (ADF) specification
contrary to other standard tests such as Levin-Lin-Chu, Harris-Tzavalis or Breitung tests. IPS tests assume
cross-sectional independence, but allow for heterogeneity of the form of country deterministic effects (constant
and/or linear time trend) and heterogenous serial correlation structure of the error terms. Cross-sectional
augmented IPS (CIPS) test (Pesaran (2007)) allow for cross-sectional dependence by augmenting the test
with a cross-section average.
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per capita log CO2 and per capita log-GDP (see Table A1 in the supplementary material).
With the full sample (81 countries and 25 years), we cannot reject the null of unit roots (I(1)
process) for the log CO2 emissions per capita and for the log-GDP per capita. In contrast,
trend stationary (TS) processes are not rejected at the 5% level for the log CO2 emissions
per capita when we drop China and India from the sample. Similarly, when restricting the
sample to only the 30 OECD countries, the TS processes are not rejected at the 5% level
for the log CO2 emissions per capita. This is not true for the 49 non-OECD countries alone
(excluding China and India)). The existence of a deterministic trend in the variables un-
derlies the phenomenon of spurious regression in many cases. But, when structural breaks
occur, the spurious regression between trend stationary series (or between a TS dependent
variable and I(1) covariates) can be removed by including the trend variable and the struc-
tural breaks as regressors (see Kim et al. (2004), Garćıa-Belmonte and Ventosa-Santaulària
(2011), Noriega and Ventosa-Santaulària (2005) and Wu et al. (2016) to mention a few). To
guard against possible spurious regressions, we will also introduce structural breaks which
correspond to the business cycle reversal phases.

These statistics show that there are fundamental differences among countries. The mo-
tivation of a mixed fixed- and random-coefficients model is then conditioned on these indi-
vidual specific effects. Such a specification allows us to draw inference on certain population
characteristics through the imposition of a priori constraints on the coefficients (see Hsiao
and Pesaran (2008), Bresson and Hsiao (2011), Hsiao (2014, 2015) among others). These
different elements lead us to choose a semiparametric panel data specification with random
intercepts and slopes coefficients which is the subject of the next section.

4 The semiparametric panel data model with random

coefficients

4.1 The model

We start with a semiparametric extension of the usual STIRPAT model, i.e., the stochas-
tic version of the impacts of population, affluence and technology (IPAT) model: Iit =
aPopbitA

c
itTech

d
ite

εit where I refers to environmental impact, Pop, A, and Tech refer to pop-
ulation, affluence and technology factors, respectively. Generally, authors use the amount
of carbon dioxide emitted (in tons per capita) by country i in year t for the environmental
impact variable I, A is the GDP per capita, Tech is the energy intensity. As discussed
in the brief review of literature on EKC, introducing a semiparametric form between the
environmental variable and GDP per capita offers greater freedom in this relationship as
it does not impose any a priori restriction on the functional form. Furthermore, we intro-
duce random intercepts and slopes coefficients for other explanatory variables to take into
account heterogeneity between the countries. In the spirit of Ruppert (2002) and Lee and
Wand (2016a), we use a mixed model with a penalized spline for log-GDP per capita. Then,
the initial random coefficient model

log

(
CO2

Pop

)
it

=
∑qR

j=1

(
βRj X

R
it,j + uRi,jZ

R
it,j

)
+ εit (1)
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is extended by adding a smooth function for the lth predictor, say sl, 1 ≤ l ≤ L

f (sl,it) = βlsl,it +

qGl∑
k=1

uGlkzlk (sl,it) , uGlk ∼ N
(
0, σ2

ul

)
, 1 ≤ l ≤ L (2)

where
{
zl1 (.) , ..., zlqGl (.)

}
is a set of a penalized spline functions of size qGl and σ2

ul
is the

penalized parameter for the spline coefficients
{
uGl1, ..., u

G
lqGl

}
. We suppose here that we have

only one predictor, the log of GDP per capita, so L = 1. Putting these together, the
semiparametric panel data model with random coefficients is given by

log

(
CO2

Pop

)
it

=
∑qR

j=1

(
βRj X

R
it,j + uRi,jZ

R
it,j

)
+ f

(
log

(
GDP

Pop

)
it

)
+ εit

where f

(
log

(
GDP

Pop

)
it

)
= βl log

(
GDP

Pop

)
it

+

qGl∑
k=1

uGlkzlk

(
log

(
GDP

Pop

)
it

)
(3)

and ZR = blockdiag
(
XR
i

)
(1≤i≤N)

for i = 1, ..., N(81), t = 1, ..., T (25). XR
it,1 is the intercept and XR

it,j, 2 ≤ j ≤ qR are the other
covariates (in log, percent, dummies or time trend). XR is an (NT × qR) matrix of covari-
ates, ZR is an (NT ×NqR) block-diagonal matrix of the XR

i submatrices. In the statistics
literature, X and Z are called the fixed and random effects design matrices associated with
β and u. The latter are called the fixed effects and random effects vectors. This terminology
is different from what the panel data literature dubs as “fixed” and “random” effects. The
random intercept is defined by the sum (βR1 + uRi,1), the random slope for variable Xi,2 is
the sum (βR2 + uRi,2), etc. The disturbances εit have a normal distribution εit ∼ N (0, σ2

ε).
Following Wand and Ormerod (2008) and Lee and Wand (2016a), we use transformed cubic
O’Sullivan splines.10 Penalized splines can be viewed as random effects as one penalizes the
spline basis function coefficients by treating them as a random sample from a multivariate
normal distribution to avoid overfitting of the data (see Lee (2016)).11

This semiparametric panel data model with random coefficients is a complex specifi-
cation and the methods for estimating such a specification are few. In the panel data
literature, random coefficient models (RCM) and linear mixed-effects models frequently use
either maximum likelihood estimators involving repeated applications of the penalized least
squares method (see Bates et al. (2015)) or Bayesian Gibbs sampling (see Hsiao and Pesaran
(2008), Bresson and Hsiao (2011) and Hsiao (2015) among others). Adding semiparametric
elements reinforces the complexity. The varying coefficient model considered here is there-
fore part of the already long tradition of research on semiparametric estimation of partially
linear varying coefficient panel data models which allow flexibility to characterize trending
phenomenon in nonlinear panel data analysis. Some use semi-parametric profile likelihood
methods (Chen et al. (2012), Li et al. (2017)), kernel or averaged local linear estimation (Li

10O’Sullivan penalized splines are similar to P-splines, but have the advantage of being a direct general-
ization of smoothing splines.

11That is, uG11, ..., u
G
LqGL
| σ2

u1
, ..., σ2

uL
∼ N

0, blockdiag
(
σ2
ul
IqGl

)
(1≤l≤L)

 where IGql is an
(
qGl × qGl

)
identity

matrix.
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et al. (2011)), series estimation methods (Huang et al. (2002), Li et al. (2003), Fan and Li
(2004), Qu and Li (2006), Fan et al. (2007), Li et al. (2015), An et al. (2016)) to mention
a few. Adding semiparametric elements gives preference to the Bayesian techniques rather
than the frequentist ML estimators. In the spirit of works on semiparametric partially linear
model using series estimation methods, we use a Bayesian linear-mixed Gaussian model-
based penalized spline specification with random coefficients proposed by Lee and Wand
(2016a). This approach is part of a series of Bayesian works that has been developing in
recent years, such as the work of Park et al. (2015), Jeong and Park (2016) or Huang and
Lu (2017), all of which use Markov Chain Monte Carlo (MCMC) techniques. Unfortunately,
the MCMC techniques such as Gibbs sampling could become computationally prohibitive
and may suffer from poor mixing and do not scale well when applied to models that require
inversion of large sparse covariance matrices (as in our case). This paper uses the Lee and
Wand (2016a) approach of a mean field variational Bayes approximation, which has many
advantages over MCMC.

4.2 The mean field variational Bayes approximation

In this section, we present the panel data semiparametric model with random coefficients and
we outline the mean field variational Bayesian approach (hereafter MFVB) used to estimate
this model. We are influenced by the work of Zhao et al. (2006), Lee (2016) and Lee and
Wand (2016a) and we follow their notation. The linear-mixed Gaussian specification is given
by

y ∼ N

(
XRβR + ZRuR + f

(
XG
)
, σ2

εINT

)
(4)

where y is a (NT × 1) vector (y11, ..., y1T , y21, ..., y2T , ..., yN1, ..., yNT )′ for i = 1, ..., N coun-
tries and t = 1, ..., T time periods. INT is an (NT×NT ) identity matrix. XR is an (NT×qR)
matrix of covariates, ZR is an (NT × NqR) block-diagonal matrix of the XR

i submatrices.
The dimensions of the vectors βR and uR are respectively (qR × 1) and (NqR × 1). XR

it,1 is
the intercept and XR

it,j, 2 ≤ j ≤ qR are the other control covariates. The random intercept
is defined by the sum (βR1 + uRi,1), the random slope for variable Xi,2 is the sum (βR2 + uRi,2),
etc. The semiparametric additive function is given by

f
(
XG
)

= XGβG + ZGuG =
L∑
l=1

XG
l β

G
l +

L∑
l=1

ZG
l u

G
l

=
L∑
l=1

XG
l β

G
l +

L∑
l=1

qGl∑
k=1

uGlkz
G
lk

(
XG
l

)
(5)

The (NT × L) matrix XG contains L covariates that are not already included in XR. The
(NT × qL) matrix ZG, with qL =

∑L
l q

G
l , would contain spline basis functions ZG

l of the
same covariates, using qGl knots and uG are the (qL × 1) spline coefficient vectors. For the
covariate Xl, Z

G
l =

{
zGlk
(
XG
l

)
, 1 ≤ k ≤ qGl

}
are spline bases of size qGl and

{
uGlk, 1 ≤ k ≤ qGl

}
are the spline coefficients. In our case, XG contains only the log of GDP per capita (i.e.,
L = 1).

The quantity of spline basis functions has a minimal effect on the adequacy of (4) and,
as Ruppert (2002) showed, the number of knots qGl is not a crucial parameter because
smoothing is controlled by the penalty parameter. A common default for the number of

11



knots in the penalized spline literature is qGl = min (ν/4, 35) where ν is the number of
unique XG

l,it’s (see Ruppert (2002), Ruppert et al. (2003)). In our case, as NT = 2025,
the number of knots could be chosen as 35. Ruppert (2002) discusses ‘hi-tech’ choice of
qGl knots and follows the recommendation of Eilers and Marx (1996) to work with equally-
spaced knots. “Because smoothing is controlled by the penalty parameter, the number of
knots, is not a crucial parameter” (Ruppert (2002), p. 740). To select the optimal number
of interior knots, some use cross-validation techniques (e.g., Wahba (1985), Li and Racine
(2007)). Knot selection could be also made using the Lasso (e.g., Tibshirani (1996)). Some
others use the backward elimination procedure (Smith (1982)). But generally, researchers
arbitrarily choose the number of knots. We can quote several papers in which a majority of
applied or simulated studies use 20, 25, 30 or 50 interior knots whatever the size of N and/or
T (or N in the case of cross-sections).12 qGl = 25 is sometimes recommended for models of
practical interest (see Li and Ruppert (2008)). Moreover, in an extension of our small Monte
Carlo simulation study (see appendix C in the supplementary material), we use N = 100,
T = 25, qGl = (10, 25, 50) interior knots for the spline bases. Whatever the chosen number of
interior knots (10, 25 or 50), MVFB estimates are close to the theoretical values in both the
non stationary or stationary cases. It also confirms the fact that there is no optimal number
of knots for spline bases and supports the idea of Ruppert (2002) that the number of knots
is not a crucial parameter because smoothing is controlled by the penalty parameter. These
results also highlight the choice of the previous quoted applied and/or simulated studies.
Then,

y ∼ N

(
XRβR + ZRuR +XGβG + ZGuG, σ2

εINT

)
∼ N

(
Xβ + Zu, σ2

εINT

)
(6)

where

XR = vec
(
XR

1 , ..., X
R
N

)
, ZR = blockdiag

(
XR
i

)
(1≤i≤N)

, β =
(
βR
′
, βG

′
)′

(7)

X =
(
XR, XG

)
, u =

(
uG
′
, uR

′
)′

, and Z =
(
ZG, ZR

)
X and Z are the fixed effects and random effects design matrices associated with the fixed
effects and random effects vectors β and u. The random effects vector uR has an unstruc-
tured

(
qR × qR

)
covariance matrix IN ⊗ΣR, ⊗ denoting the Kronecker product. The spline

coefficient vector uG has a block-diagonal covariance matrix σ2
ul
IqGl where σ2

ul
is the penalized

parameter for the spline coefficients
{
uGlk, 1 ≤ k ≤ qGl

}
. Then, the random effects covariance

12For instance, Ruppert (2002) shows the weak impact of the number of knots on performance of the
penalized spline when he uses 20, 40 or 80 knots. Wand and Ormerod (2011) study penalized wavelets in a
semiparametric regression and use 25 knots for N = 4096 observations. Pham et al. (2013) use 30 knots in
a simulation study on measurement error for N=(50, 500) observations. Lee and Wand (2016a), in a Monte
Carlo study, use 25 knots with N = (100, 500, 2500, 12500) and 10 ≤ ti ≤ 20 for i = 1, ..., N . They also
use 25 knots in a health study of N = 3978 mothers with 1 ≤ ti ≤ 6 births for i = 1, ..., N leading to an
unbalanced panel with a total of 8604 births. Lee and Wand (2016b) use 25 knots in a simulation study
with N = 50, T = 50. They also use 25 for N = 295, 340 low-risk nulliparous women giving birth for the
first time in T = 99 australian public or private hospitals. Hajargasht and Griffiths (2018) for estimation
and testing stochastic frontier models use 20 knots for N = 43 smallholder rice producers in the Philippines
between 1990 and 1997, etc.
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matrix is homoskedastic and given by

Cov (u) =

(
Cov

(
uG
)

0
0 Cov

(
uR
) ) =


blockdiag

(
σ2
ul
IqGl

)
(1≤l≤L)

0

0 IN ⊗ ΣR


In our specification, y will be the log-CO2 per capita,

[
XG, ZG

]
are restricted to the log-GDP

per capita and
[
XR, ZR

]
are the other covariates including the intercept. Lee and Wand

(2016a) used a Bayesian approach to fit the model to the data and for inference. The full
Bayesian model (with priors on parameters and hyperparameters) is given by:

y | β, u, σ2
ε ∼ N

(
Xβ + Zu, σ2

εINT
)

(8)

with

β ∼ N
(
0, σ2

βIP
)

, IP = IqR+L

u | ΣR, σ2
ul

∼ N

0,

 blockdiag
(
σ2
ul
IqGl

)
(1≤l≤L)

0

0 IN ⊗ ΣR


ΣR | aR1 , .., aRqR ∼ IW

(
ν + qR − 1, 2νdiag

(
1/aR1 , .., 1/a

R
qR

))
aRr ∼ IG

(
1
2
, A−2

Rr

)
, 1 ≤ r ≤ R

σ2
ε | aε ∼ IG

(
1
2
, 1/aε

)
aε ∼ IG

(
1
2
, A−2

ε

)
σ2
ul
| aul ∼ IG

(
1
2
, 1/aul

)
, 1 ≤ l ≤ L

aul ∼ IG
(

1
2
, A−2

ul

)
where IW (.) and IG (.) are inverse-Wishart and inverse-Gamma distributions.13 The likeli-
hood combined with the prior distributions yields a joint posterior distribution which does
not have a known tractable distribution and the parameters have to be sampled using MCMC
techniques such as Gibbs sampling. But, MCMC becomes computationally prohibitive and
do not scale well when applied to massive data sets and/or models that require storage and
inversion of large sparse covariance matrices. Inference based on MCMC can be very slow
for such models and MCMC methods may suffer from poor mixing.

Variational Bayesian inference can help in tackling the scalability challenge of big data
sets and/or models with large sparse covariance matrices as they use a deterministic opti-
mization approach to approximate the posterior distribution. The parameters of the approx-
imate distribution are chosen to minimize some measure of distance (as the Kullback-Leibler
divergence) between the approximation and the posterior. Mean field variational Bayes
approximation is analogous to Gibbs sampling for conjugate models (see Bishop (2006),
Ormerod and Wand (2010), Pham et al. (2013) and Lee and Wand (2016a) to mention a
few).

13The initial values of the hyperparameters of the priors are: σ2
β = 105, Aε = 105, Au = 105, AR = 105 and

ν = 2 leading to diffuse priors. We use transformed cubic O’Sullivan splines with 25 knots. The standard
deviation parameters have independent Half-Cauchy priors σul

∼ Half-Cauchy(Aul
), σε ∼ Half-Cauchy(Aε)

which are equivalent to the following statements: σ2
ul
∼ IG

(
1
2 , 1/aul

)
with aul

∼ IG
(
1
2 , A

−2
ul

)
and σ2

ε ∼
IG
(
1
2 , 1/aε

)
with aε ∼ IG

(
1
2 , A

−2
ε

)
. Indeed, the hierarchical representation enables MCMC and variational

methods to be easily carried out because of the conditional conjugacy properties of the Inverse-Gamma
distribution. If x and a are random variables such that x | a ∼ IG (1/2, 1/a) with a ∼ IG

(
1/2, 1/A2

)
, then√

x ∼ Half-Cauchy(A) (see Gelman (2006)).
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In what follows, we give a quick overview of the MFVB method and its application to the
semiparametric panel data model with random coefficients.

Consider a generic Bayesian model with observed vector y and parameter vector θ that
is continuous over the parameter space Θ. The Bayes theorem allows one to define the
posterior distribution as:

p (θ | y) =
p (θ, y)

p (y)
=
p (y | θ) p (θ)

p (y)
with p (y) =

∫
Θ

p (θ, y) dθ (9)

Let q be an arbitrary density function over Θ. Then, the logarithm of the marginal likelihood
satisfies (see Bishop (2006), Ormerod and Wand (2010)):

log p (y) = log p (y)

∫
Θ

q (θ) dθ =

∫
Θ

q (θ) log p (y) dθ

=

∫
Θ

q (θ) log

{
p (θ, y) /q (θ)

p (θ | y) /q (θ)

}
dθ

=

∫
Θ

q (θ) log

{
p (θ, y)

q (θ)

}
dθ +

∫
Θ

q (θ) log

{
q (θ)

p (θ | y)

}
dθ

= log p (y, q) +KL(q, p) (10)

where KL(q, p) is the Kullback-Leibler divergence between q (θ) and p (θ | y). Furthermore,
log p (y, q) is a lower bound on the marginal log-likelihood. The Kullback-Leibler divergence
becomes

KL(q, p) = Eq(θ) [log q (θ)]− Eq(θ) [log p (θ | y)]

= Eq(θ) [log q (θ)]− Eq(θ) [log p (θ, y)] + log p (y) (11)

where the last term, log p (y), is a constant. The minimization of the Kullback-Leibler
divergence is thus equivalent to maximizing the scalar quantity,

log p (y, q) = Eq(θ)

[
log

(
p (θ, y)

q (θ)

)]
(12)

which is usually referred as the evidence lower bound (ELBO)14.
Let {θ1, ..., θM} be a partition of the parameter vector θ. The MFVB approximates the
posterior distribution p (θ | y) by the product of the q-densities:15

q (θ) =
M∏
j=1

qj (θj) (13)

The optimal q-densities which minimize the Kullback-Leibler divergence are given by

q∗j (θj) ∝ exp
[
Eq(−θj) {log p (θj| rest)}

]
, j = 1, ...,M (14)

where Eq(−θj) denotes expectation with respect to
∏

k 6=j qk (θk).
rest ≡ {y, θ1, ..., θj−1, θj+1, ..., θM} is the set containing the rest of the random vectors in the

14The lower bound is also known as the negative variational free energy and the entropy of the variational
distribution is given by Eq(θ) log [q (θ)].

15This is known as the mean field restriction. The term mean field originated from physics.
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model, except θj and the distributions (θj| rest) are the full conditionals in the MCMC liter-
ature. The iterative scheme for obtaining the optimal q-densities under product restriction
(13) is

1. Initialize q∗1 (θ1) , q∗2 (θ2) , · · · , q∗M (θM)

2. Cycle through updates:

q∗1 (θ1) ←
exp

[
Eq(−θ1) {log p (y, θ)}

]∫
exp

[
Eq(−θ1) {log p (y, θ)}

]
dθ1

· · · · · · · · · · · · · · · · · · · · · · · ·

q∗M (θM) ←
exp

[
Eq(−θM ) {log p (y, θ)}

]∫
exp

[
Eq(−θM ) {log p (y, θ)}

]
dθM

until the increase in log p (y, q) is negligible.

Compared to the minimization of the KL divergence, the maximization of the ELBO is
often a more convenient objective of the optimization over the free distributional parameters.
Lee and Wand (2016a) apply this principle and derive the MFVB approximation of the linear-
mixed Gaussian model-based penalized spline specification (8) on the following factorization:

p (θ | y) = p (θ1, ..., θM | y) = p
(
β, uR, uG, aR, au, aε,Σ

R, σ2
u, σ

2
ε | y

)
(15)

≈ q
(
β, uR, uG, aR, au, aε,Σ

R, σ2
u, σ

2
ε

)
= q

(
β, uR, uG

)
q
(
ΣR
)
q
(
σ2
ε

)
q (aε)

qR∏
r=1

q
(
aRr
) L∏
l=1

q (aul)
L∏
l=1

q
(
σ2
ul

)
= q (β, u) q

(
ΣR
)
q
(
σ2
ε

)
q (aε)

qR∏
r=1

q
(
aRr
) L∏
l=1

q (aul)
L∏
l=1

q
(
σ2
ul

)
They first derive the conditional posterior densities p (θj | rest) for j = 1, ...,M from the full
Bayesian model (8), i.e., the Gibbs sampling algorithm. Then, they derive the optimal q-
densities and the associated updated parameters using (13). Updating parameters is stopped
when the maximum ELBO (12) is reached. After tedious derivations16, this leads to the
following forms of the optimal q-densities

q∗ (β, u) ∼ N
(
µq(β,u),Σq(β,u)

)
q∗
(
ΣR
)
∼ IW

(
ν +N + qR − 1, Bq(ΣR)

)
q∗ (σ2

ε) ∼ IG
(

1
2

(T + 1) , Bq(σ2
ε)

)
q∗ (aε) ∼ IG

(
1, Bq(aε)

)
q∗
(
σ2
ul

)
∼ IG

(
1
2

(
qGl + 1

)
, Bq(σ2

ul
)

)
q∗ (aul) ∼ IG

(
1, Bq(aul )

)
q∗
(
aRr
)
∼ IG

(
1
2

(
ν + qR

)
, Bq(aRr )

)
(16)

16See Lee (2016) for the derivations of the optimal q-densities.
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where the parameters are updated according to Algorithm 1 (see below). Convergence in
Algorithm 1 is assessed using ELBO on the marginal log-likelihood:

log p (y, q) = Eq(θ)

[
log

(
p (θ, y)

q (θ)

)]
(17)

= Eq(θ)

[
log p

(
y, β, u, aR, au, aε,Σ

R, σ2
u, σ

2
ε

)
− log q

(
β, u, aR, au, aε,Σ

R, σ2
u, σ

2
ε

) ]
which is presented below. Convergence of such an algorithm to at least a local optima is
guaranteed based on convexity properties. The ELBO is judged to cease increasing when
the tolerance criterion is less than 10−7. This algorithm is part of the family of coordinate
ascent variational inference (CAVI). It iteratively optimizes each factor of the mean field
variational density, while holding the others fixed (see Bishop (2006) and Blei et al. (2017)).

Algorithm 1. Mean field variational Bayes algorithm (see Lee and Wand (2016a), pp.
882).

1. Initialize µq(1/σ2
ε) > 0, µq(1/aε) > 0, µq(1/σ2

ul
) > 0, µq(1/aul)

> 0, 1 ≤ l ≤ L, µq(1/aRr ) > 0,

1 ≤ r ≤ qR,Mq((ΣR)−1) positive definite.

2. Cycle through updates:

(a) S ← 0, s← 0, for i = 1, ..., N :

Gi ← µq(1/σ2
ε)

(
CG
i

)′
XR
i ; Hi ←

[
µq(1/σ2

ε)

(
XR
i

)′
XR
i +Mq((ΣR)−1)

]−1

with CG
i =[

XG
i , Z

G
i

]
S ← S +GiHi (Gi)

′ ; s← s+GiHi

(
XR
i

)′
yi

(b) Σq(β,uG) ←

µq(1/σ2
ε)

(
CG
)′
CG +

 σ−2
β IP 0

0 blockdiag
(
µq(1/σ2

ul
)IqGl

)
(1≤l≤L)

− S

−1

(c) µq(β,uG) ← µq(1/σ2
ε)Σq(β,uG)

[(
CG
)′
y − s

]
with CG =

[
XG, ZG

]
(d) for i = 1, ..., N :

Σq(uRi ) ← Hi +Hi (Gi)
′Σq(β,uG)GiHi

µq(uRi ) ← Hi

[
µq(1/σ2

ε)

(
XR
i

)′
yi − (Gi)

′ µq(β,uG)

]

Bq(σ2
ε) ← µq(1/aε) + 1

2


‖ D ‖2 +tr

[(
CG
)′
CGΣq(β,uG)

]
+
∑N

i=1 tr
[(
XR
i

)′
XR
i Σq(uRi )

]
−2µ−1

q(1/σ2
ε)

∑N
i=1 tr

[
GiHi (Gi)

′ΣR
q(β,uG)

]


with D = y − CGµq(β,uG)


XR

1 µq(uR1 )
...

XR
Nµq(uRN)


(e) µq(1/σ2

ε) ← 1
2

(T + 1) /Bq(σ2
ε); µq(1/aε) ← 1/

[
µq(1/σ2

ε) + A−2
ε

]
16



(f) for r = 1, ..., qR :

Bq(aRr ) ← ν
(
Mq((ΣR)−1)

)
rr

+ A−2
Rr

; µq(1/aRr ) ← 1
2

(
ν + qR

)
/Bq(aRr )

Bq(ΣR) ←
∑N

i=1

(
µq(uRi )µ

′
q(uRi )

+ Σq(uRi )

)
+ 2νdiag

(
µq(1/aR1 ), ..., µq

(
1/aR

qR

))
(g) Mq((ΣR)−1) ←

(
ν +N + qR − 1

)
B−1
q(ΣR)

(h) for l = 1, ..., L :

µq(1/aul)
← 1/

[
µq(1/σ2

ul
) + A−2

ul

]
; Bq(aul )

← 1/µq(1/aul)

µq(1/σ2
ul

) ←
qG+1

2µ
q(1/aul)

+‖µ
q(uG

l )
‖2+tr

[
Σ

q(uG
l )

] ; Bq(σ2
ul

) ← 1
2

(
qGl + 1

)
/µq(1/aul)

(i) for i = 1, ...,M :

Λq(β,uG,uRi ) ≡ Eq

[([
β
uG

]
− µq(β,uG)

)(
uRi − µq(uRi )

)′]
← −Σq(β,uG)GiHi

Σq(β,uG,uRi ) ≡ Cov

 β
uG

uRi

← (
Σq(β,uG) Λq(β,uG,uRi )

Λ′
q(β,uG,uRi )

Σq(uRi )

)

(j) Σq(β,u) ←

(
Σq(β,uG) Λq(β,uG,uR1 ,...,uRN)

Λ′
q(β,uG,uR1 ,...,uRN)

Σq(uRi )

)

until the increase in the ELBO log p (y, q) is negligible.

The variational lower bound on the marginal log-likelihood has the following expression
(see Lee and Wand (2016a), pp. 893):

log p (y, q) =
1

2
qR
(
ν + qR − 1

)
log 2ν − T

2
log 2π −

(
1

2
qR + L+ 1

)
log π (18)

−P
2

log σ2
β −

σ−2
β

2

[
‖ µq(β) ‖2 +tr

[
Σq(β)

]]
+

1

2

(∑L
l=1 q

G
l + P +N

)
−1

2

∑N
i=1 log

∣∣∣µq(1/σ2
ε)

(
XR
i

)′
XR
i +Mq((ΣR)−1)

∣∣∣− 1

2
log
∣∣∣Σ−1

q(β,uG)

∣∣∣
− log

(
CqR,ν+qR−1

)
+ log

(
CqR,ν+N+qR−1

)
− 1

2

(
ν +N + qR − 1

)
log
∣∣Bq(ΣR)

∣∣
+
∑L

l=1 log Γ

(
qGl + 1

2

)
− 1

2

∑L
l=1

(
qGl + 1

)
logBq(σ2

ul
) +

∑L
l=1 log Γ (N (T + 1))

−1

2
(T + 1) logBq(σ2

ε) −
∑qR

r=1 logARr + qR log Γ

(
qG + ν

2

)
+
∑qR

r=1 νMq((ΣR)−1)µq(1/aRr ) −
1

2

(
qR + ν

)∑qR

r=1 logBq(aRr )

−
∑L

l=1

[
logAul + logBq(aul)

+ µq(1/aul)
µq(1/σ2

ul
)

]
+ logAε

− logBq(aε) + µq(1/aε)µq(1/σ2
ε)

where Ca,b is the normalizing factor: Ca,b = 2ab/2πa(a−1)/4
∏a

j=1 Γ
(
b+1−j

2

)
and Γ (.) is the

Gamma function.

17



The computing time gains afforded by the MFVB algorithm, as compared to Gibbs sam-
pling, are huge (see for instance Pham et al. (2013) and Lee and Wand (2016a)).17 More
importantly, this approximation avoids the pitfalls of poor mixing of MCMC methods on
models with large sparse covariance matrices. But variational inference algorithms involve
different implementation challenges from sampling algorithms. They are harder, in that they
may require lengthy mathematical derivations to determine the updating rules. However,
once implemented, variational Bayes can be easier to test, because one can use the standard
checks for optimization code (gradient checking, local optimum tests, etc). Most variational
inference algorithms converge to optima, which eliminates the need to check convergence
diagnostics and the output of most variational inference algorithms is a distribution, rather
than samples. Moreover, the accuracy scores of the MFVB approximation (as compared to
MCMC) generally exceed 95 − 97% and rarely drop below 90% in most papers on MFVB
(see for instance Bishop (2006), Ormerod and Wand (2010), Faes et al. (2011), Pham et al.
(2013), Lee and Wand (2016a) and Blei et al. (2017) to mention a few). More recently, using
a variational Bayes Kalman filter, the computationally efficient approximations have also
been confirmed by Koop and Korobilis (2018) for efficient posterior and predictive inference
in high-dimensional time-varying parameter models.
While there has not been much theory developed around variational inference, there are
nevertheless major trends that emerge. Blei et al. (2017) have summarized a variety of re-
sults about theoretical guarantees of variational inference but conditional on specific models
and families of variational approximations. A number of recent contributions have shed new
light on characterizing frequentist properties of variational estimators which is an impor-
tant question (see Alquier and Ridgway (2017), Zhang and Gao (2017), Bhattacharya et al.
(2018), Chérief-Abdellatif (2018) and Wang and Blei (2018) to mention a few).18

Thus, the MFVB approach has great advantages as compared to the MCMC technique
such as Gibbs sampling. More generally, if MCMC algorithms, like Metropolis-Hastings or
the Gibbs sampler, rely on stochastic processes that yield samples from the posterior, vari-
ational inference transforms posterior inference into optimization. In variational inference,
the posterior distribution over a set of unobserved variables θ, given some data y, is approx-
imated by a variational distribution p(θ | y) ≈ q(θ). The distribution q(θ) is restricted to
belong to a family of distributions of simpler form than p(θ | y). Variational inference posits
a class of distributions q over the latent space Θ and tries to find the closest distribution
in Kulback-Leibler (KL) divergence to the posterior and minimizing the KL divergence is
equivalent to maximizing the evidence lower bound (ELBO). The choice of variational family
q(θ) trades off the fidelity of the posterior approximation with the difficulty of optimizing
over the variational parameters. The classical choice of variational family is the mean field
family, which factorizes over some partition of the latent variables q (θ) =

∏M
j=1 qj (θj).

The optimal q-density functions, obtained via an iterative coordinate ascent variational in-
ference algorithm (which is a generalization of the EM algorithm), has been the workhorse
for deploying variational inference in a variety of applications especially when MCMC algo-
rithms are essentially impractical or impossible to implement (see Ranganath et al. (2014),
Ranganath (2017)).

17The MFVB can be 3, 500 (or more) times faster than the MCMC. Lee and Wand (2016a) used a data set
with more than N = 140, 000 mothers with 1 to 5 children for an application on the link between birthweight
of children and infant’s gestational age (in weeks). It took 4 days with MCMC and few minutes with MFVB.

18We would like to thank a referee for suggesting this point.
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Though this model class imposes many restrictions, variational methodology is used in
a diversified range of applications, from Bayesian Gaussian mixtures, latent Dirichlet al-
location (Blei et al. (2003)), probabilistic matrix factorization (Salakhutdinov and Mnih
(2008)), hierarchical linear regression (Gelman (2006)), hierarchical Bayesian nonparametric
models (Hjort et al. (2010)), complex models with elaborate distributions (such as asymmet-
ric Laplace and skew normal) to spline and wavelet regression models (Neville et al. (2014)),
to mention a few.
Because of their ability to handle complex specifications, large samples, sparse matrices, ...,
these methods have developed very rapidly since a decade in physics, in statistics, health
studies, neuroimaging, machine learning, ... and make a more timid and more recent appear-
ance in econometrics. However, more and more studies, in various topics, use variational
inference (see Wang and Blei (2018)). More recently, for discrete-margined copula mod-
els (Loaiza-Maya and Smith (2019)), for spatiotemporal models (Quiroz et al. (2018)), for
generalized linear latent variable models (Hui et al. (2017)), for models with specific fac-
tor covariance structure (Ong et al. (2018)), for stochastic frontier models using variational
Bayes (Hajargasht and Griffiths (2018)) or for inference in high-dimensional time-varying
parameter models (Koop and Korobilis (2018)), to mention a few. The algorithm proposed
by Lee and Wand (2016a) has a promising future with a remarkable ability to perform high
quality Bayesian inference for large panel data models faster than ever before.

5 The results

Results for βRj and βG coefficients are given in Table 1.19 Convergence is quickly reached af-
ter 644 cycles and 42.88 seconds of computing time, which is incredibly faster than MCMC.20

Convexity properties of the MFVB algorithm guarantees quick convergence of such an al-
gorithm to at least a local optima. In the left panel of Table 1, some variables are not
significant and have been dropped in the restricted model of the right panel of Table 1.21

We have introduced 4 dummies: high pop density, large country, large forest and non
OECD countries. The dummy variable high pop density takes the value 1 for the 25%
highest population density countries and 0 otherwise. The large country dummy variable
takes the value 1 for the 25% largest countries and 0 otherwise. The large forest dummy
variable takes the value 1 for the 50% largest forests and 0 otherwise. The fourth dummy
is for the non OECD countries. We can see that most of the coefficients are highly sig-
nificant whatever the risk level, except for the electricity production from nuclear sources,
the alternative and nuclear energy use, the trade of services and the highest forest percent
dummy variable. Elasticities of the CO2 emissions per capita relative to energy intensity and
energy use are significant. A 10% increase in energy intensity (resp. energy use per GDP per
capita) leads to a 4.35% (resp. 2.07%) increase in the CO2 emissions per capita. Remember
that the energy intensity is the ratio between energy supply and GDP. It is an indication of
how much energy is used to produce one unit of economic output. Energy use per GDP is
the kilogram of oil equivalent of energy use per GDP. It refers to the use of primary energy

19We tested several specifications including other covariates such as surface area (sq. km), land area (sq.
km), agricultural land (% of land area that is agricultural), a Gini index of income inequality. But these
variables were not statistically significant.

20Estimation was conducted using R version 3.3.2 on a MacBook Pro, 2.8 GHz core i7 16Go MGz DDR3
ram. Some elements of the R code are available in the supplementary material of Lee and Wand (2016a)).

21For the restricted model, convergence is reached after 607 cycles and 33.70 seconds of computing time
(see Figure D1 in the supplementary material for the plot of the ELBO).
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before transformation to other end-use fuels. The “CO2 emission - pump price of diesel fuel
elasticity” is −0.03 which confirms a certain sensitivity of greenhouse gases to an increase
in fuels prices. An increase of one percent of the fossil fuel energy consumption increases
the CO2 emissions per capita by 1.44%. Similarly, an increase of one percent of electricity
production from hydroelectric sources decreases the CO2 emissions per capita by 0.16%. The
rate of urbanization has also a strong effect since an increase of one unit leads to an increase
of 0.46% of the CO2 emissions per capita. The highest population density countries have
a significant but moderate effect (as compared to the other countries) since they increase
the CO2 emissions per capita by exp (0.059)− 1 = 6.07%. In contrast, the largest countries
have a strong impact on the greenhouse gases evolution. As compared to smaller countries,
they increase the CO2 emissions per capita by a huge exp (0.60)−1 = 82.2%, ceteris paribus.

Please insert Table 1 here

Non-OECD countries emit less pollution per capita than OECD countries (exp (−0.514)−
1 = −40.19%). Merchandise trade as a % of GDP has also a positive effect on CO2 emis-
sions. An increase of 10 points leads to an increase in CO2 emissions per capita by 0.6%. We
introduced a linear trend with structural breaks which has a positive and significant effect
on the regression.22,23 But more interestingly and more importantly is the link between the

CO2 emissions per capita and the GDP per capita. The estimated coefficient β̂
G

= 0.847
leads to a strong “CO2 emission - GDP elasticity” close to unity, the 95% confidence in-
terval being [0.798; 0.895]. It confirms the positive link observed in Figures 2 and 3. This
result contradicts the assumption of the decoupling of global emissions and economic growth
retained in the International Energy Agency announcement (IEA (2016)), an assumption
which seems unrealistic.

Figure 5 shows the MFVB spline fit of the CO2 emissions per capita against the ob-

served GDP per capita and the pointwise 95% credible set using estimated values β̂
R

1 +

f̂ (log (GDP/POP )it). It reveals an increasing curve of the greenhouse gases as the GDP
per capita increases. The end of the MFVB spline fit of the CO2 emissions per capita forms
a bearing, corresponding to a kind of ratchet effect, but does not show any maximum of a
concave function that would express the standard form of an EKC. This is a confirmation
of the results of Bertinelli and Strobl (2005) which suggest that the link between environ-
mental pollution and economic growth is actually monotonically increasing for low levels of
GDP/capita, and flat thereafter. Dropping Norway and Singapore from the sample lead to
a continuously increasing relationship which gives a little more weight to the richest and
strongest polluters (Australia, Canada, USA) abandoning what Dasgupta et al. (2002) call
the “race to bottom” in favor of the “new toxics” shape.

22It is defined as:

trend=

 t (= 1, 2, .., 4, 5) if year <1996
t+ 10 (= 16, 17, .., 26, 27) if year >1995 and year <2008
t− 12 (= 6, 7, .., 12, 13) if year > 2007.

23We have also tested a standard linear trend (without structural breaks) but its coefficient was not
significantly different from zero, thus confirming the need to introduce structural breaks corresponding to
the cycle reversal phases observed in Figure 4.
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Please insert Figure 5 here

Figure 5 confirms that the shape of the estimated EKC gives no evidence for an inverted-
U curve between the environmental variable and economic growth. The introduction of
additional explanatory variables and the freedom of functional form allowed by the semi-
parametric method does not confirm the concavity observed with the simple local polynomial
adjustment found in Figures 2 and 3. We cannot confirm the existence of a turning point
marking the reversal of the trend in the pollution levels. On the contrary, the econometric
model favors an increase (or a stabilization) in the relationship between CO2 emissions per
capita and GDP per capita.

The semiparametric approach seems to be fully justified.24 Note the greatly increasing
breadth of the confidence interval, which seems to follow very closely the funnel shape of
the cloud of points. This increasing confidence interval can also express the very strong
heterogeneity observed previously and demonstrates the ability of the MFVB approach to
embrace situations where behaviors are very heterogeneous. For a fixed number of knots
qGl and a large N , under assumptions of the model, OLS estimation with inference based
on clustering at the country level could be an interesting benchmark for fixed coefficients(
βR, βG

)
in Table 1. However, running an extension of the small Monte Carlo study (in

appendix C of the supplementary material) shows that differences in the accuracy of the
estimates of the fixed coefficients

(
βR, βG

)
between MFVB and OLS with clustered stan-

dard errors, could be huge. Hence, OLS estimation with inference based on clustering at the
individual level can not serve as a benchmark for the semiparametric estimation of partially
linear varying coefficient panel data models. These results also confirm the recent research
of D’Adamo (2018) which shows that inference based on the usual cluster-robust standard
errors by White (1984) is invalid in general when the number of controls is a non-vanishing
fraction of the sample size or for semiparametric partially linear model with fixed coefficients.

So far, we have discussed average marginal effects. One of the advantages of the ran-
dom coefficients specification is that it is possible to discriminate between these marginal
effects for different countries (βRj +uRi,j) for i = 1, ..., N(81). If the average intercept estimate

is β̂
R

1 = −6.288 with a 95% confidence interval of [−7.350;−5.225], intercepts associated

with each country (β̂
R

1 + ûRi,1) range between −19 (Ethiopia) to 0 (Sweden) highlighting the
extreme sensitivity of country specific effects (see the supplementary material). This sen-
sitivity also applies to covariates, which add to the richness of the random coefficients models.

Please insert Figure 6 here

Please insert Figure 7 here

We report only the plot of these marginal effects for energy intensity (Figure 6) and the
fossil fuel energy consumption percent (Figure 7) (see the supplementary material for the
other marginal effects25). Obviously, there is a large sensitivity of these marginal effects by
country resulting in much richer information than the average value provided in Table 1. If

24Estimation for OECD countries only, leads to similar results. However, there is a much less “race to the
bottom” and more of a “new toxics” shape (see Figure E2 in the supplementary material).

25See also the supplementary material for the marginal effects from the semiparametric estimation for the
30 OECD countries only.
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we compare the marginal effects for energy intensity, its effects on CO2 emissions per capita
is about 164% more important for China than for France. The corresponding figures for Nor-
way, USA and Sweden are 136% 288% and 559%, respectively. In other words, China needs
much more energy to produce a one unit of economic output than France, Norway, USA or
Sweden. In contrast, the sensitivity of the CO2 emissions per capita relative to the fossil
fuel energy consumption (% of total) is about 140% more important for France as compared
to China. The corresponding figures for Norway, USA and Sweden are 38%, 95% and 107%.26

Our estimates suggest a positive increasing relationship between CO2 emissions per capita
and GDP per capita. We use bootstrap tests suggested by Cai et al. (2000) and Henderson
et al. (2008) which allow one to test the null hypothesis of a parametric specification against
the alternative of a semiparametric specification. Using 500 replications, we test our MFVB
estimates against a) the random intercept and constant slope coefficients model (i.e., the
one-way error component model (OWEC)), b) the random intercept and slope coefficients
model (i.e., RCM). The random intercept - constant slope coefficients model (OWEC) and
the RCM have been estimated using maximum likelihood. The computational methods
for maximum likelihood fitting of the linear mixed-effects model involve penalized quasi-
likelihood methods as repeated applications of the penalized least squares method which
can be computationally intensive (see Bates et al. (2015)). Second, we specify a quadratic
EKC27 and test again our MFVB semiparametric estimates against these parametric esti-
mates. Table 2 gives the bootstrapped p-values of the tests of Cai et al. (2000) [CFY ] and
Henderson et al. (2008) [HCL] for the different specifications. Results show that we reject
the null hypothesis of parametric specifications in favor of our semiparametric models with
random coefficients since all the bootstrapped p-values are less than 4.5%.

Please insert Table 2 here

Our results show that economic growth tends to increase greenhouse gas emissions. Thus
the relationship between CO2 emissions per capita and GDP per capita may vary across dif-
ferent stages of development. On average, the “CO2 emissions - GDP elasticity” is around
0.85 at the 5% level. This estimated value is close to those found in the literature using
parametric panel data specifications with or without cointegrating relations. Moreover, we
find a nonlinear relation and no evidence in support of an inverted-U curve between log CO2

per capita and log-GDP per capita. Thus, the Kuznets hypothesis is not confirmed. We find
no turning points with this semiparametric EKC. When Norway and Singapore are in the
sample of countries considered, its shape is associated with what Dasgupta et al. (2002) call
the “race to bottom”. When these two countries are excluded from the sample, its shape is
associated with what Dasgupta et al. (2002) call the “new toxics”.

26This high sensitivity of CO2 emissions to the fossil fuel energy consumption can be explained by the fact
that France is one of the most nuclearized countries and therefore emits less CO2 per inhabitant. Indeed,
in 2015, France had 58 nuclear reactors against 100 for the USA, 36 for China and 10 for Norway. Relative
to the number of inhabitants, the ratio of France/China nuclear reactors is 3474.92 (respectively 290.19 and
86.52 for France/USA and France/Norway).

27Our parametric RCM have the following form: yit = Xitβi+witγ1i+w
2
itγ2i+εit where yit is the CO2 per

capita (in log), wit is the GDP per capita (in log) and Xit are the other covariates including the intercept.
We test a linear EKC (γ2i = 0, ∀i) and a quadratic EKC (γ2i 6= 0). For the one-way error component model:
βi = β, ∀i except for the intercept and γ1i = γ1, γ2i = γ2, ∀i.
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Compared to other panel data studies, this approach has several advantages. First, it
rejects the restrictive assumption that all slope coefficients are identical for all countries. It
allows one to estimate country-specific intercepts and slope coefficients and can be applied
to a large cross-sectional dimension (i.e., a large number of countries). Second, the use
of a semiparametric function in addition to the presence of random intercepts and slope
coefficients allow us flexibility in the functional form between CO2 and GDP.

In a field such as climate change where the relationship between environmental vari-
ables and economic variables are very complex, such a semiparametric specification can be
promising.

6 Conclusion

This paper proposed a semiparametric estimation of the relationship between CO2 emissions
and economics activities for 81 countries observed over the period 1991−2015. The data set
reveals differentiated behaviors by country, year and whether level, per capita or logs were
used. There is strong heterogeneity as well as different trends across countries and years. We
reject the null hypothesis of parametric specifications in favor of our semiparametric model
with random coefficients. The motivaion of a mixed fixed- and random-coefficients model
has been conditioned on these country specific effects. Following a recent approach proposed
by Lee and Wand (2016a), we specified and estimated a MFVB semiparametric panel data
model with random coefficients. This approach has numerous advantages as compared to
the MCMC techniques such as Gibbs sampling. We specify and estimate a log model with
structural breaks between CO2 emissions per capita and GDP per capita. Results reveal a
strong “CO2 emissions - GDP elasticity”, close to one, confirming the increasing but complex
link between these two variables. These results hold when considering OECD countries only.
The inclusion of random coefficients in a mixed model-based penalized spline basis function
enriches the estimates and their interpretations, given the large diversity of responses by
variables and countries. Our study focuses on the CO2-GDP link, but one could also track
other greenhouse gases emissions and economic activities using the same methodology.
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7 Appendix - Definition of the variables

Variable Description
CO2 Global CO2 emissions from fossil fuel use

and cement production (metric tons)

Pop Population, total

GDP GDP, PPP (constant 2011 international US$)

Land area Land area (sq. km)

Pop density Population density (people per sq. km of land area)

Urban Urban population (% of total)

Agricult Agricultural land (% of land area)

Forest Forest area (% of land area)

Energy intensity Energy intensity (% of GDP)

Energy use per GDP Energy use per GDP (in kg of oil equivalent per $1,000 GDP)
Energy imports Energy imports, net (% of energy use)

Fossil fuel consumption Fossil fuel energy consumption (% of total)

Electric consumption Electric power consumption (kWh per capita)

Nuclear energy use Alternative and nuclear energy (% of total energy use)

Electric prod oil gas coal Electricity production from oil, gas and coal sources (% of total)

Electric prod hydroelectric Electricity production from hydroelectric sources (% of total)

Electric prod nuclear Electricity production from nuclear sources (% of total)

Electric transm losses Electric power transmission and distribution losses (% of output)

Openness Trade (% of GDP)

Merchandise trade Merchandise trade (% of GDP)

Services trade Trade in services (% of GDP)

Pump price diesel Pump price for diesel fuel (US$ per liter)

Gini index Gini index of income inequality
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Romero-Ávila, D. (2008). Questioning the empirical basis of the environmental Kuznets
curve for CO2: New evidence from a panel stationarity test robust to multiple breaks and
cross-dependence. Ecological Economics, 64(3):559–574.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.

Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of Com-
putational and Graphical Statistics, 11(4):735–757.

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge
University Press.

Salakhutdinov, R. and Mnih, A. (2008). Probabilistic matrix factorization. In Platt, J. C.,
Koller, D., Singer, Y., and Roweis, S. T., editors, Advances in Neural Information Pro-
cessing Systems, volume 20, pages 1257–1264. Curran Associates, Inc., NY.

Sheldon, T. (2015). Asymmetric effects of the business cycle on carbon dioxide emissions:
A new layer of climate change uncertainty. In The Dynamic Energy Landscape. 33rd US-
AEE/IAEE North American Conference, International Association for Energy Economics.

Smith, P. L. (1982). Curve fitting and modeling with splines using statistical variable se-
lection techniques. Technical report, NASA, Langley Research center, Hampton. Report
NASA 166034.

Solt, F. (2016). The standardized world income inequality database. Social Science Quar-
terly, 97(5):1267–1281.

Stern, D. I. (2004). Environmental Kuznets curve. In Cleveland, C., editor, The Encyclopedia
of Energy, volume 2, pages 517–525. Academic Press, San Diego, CA.

Stern, D. I. (2010). Between estimates of the emissions-income elasticity. Ecological Eco-
nomics, 69(11):2173–2182.

Stern, D. I. (2017). The environmental Kuznets curve after 25 years. Journal of Bioeco-
nomics, 19(1):7–28.

Tabachnick, B. G. and Fidell, L. S. (2001). Using Multivariate Statistics. Allyn & Bacon,
Nedham Heights, MA, 6th edition edition.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288.

Van Alstine, J. and Neumayer, E. (2010). The environmental Kuznets curve. In Gallagher,
K. P., editor, Handbook on Trade and the Environment, pages 49–59. Edward Elgar, Chel-
tenham, UK.

Vollebergh, H. R. J., Melenberg, B., and Dijkgraaf, E. (2009). Identifying reduced-form
relations with panel data: The case of pollution and income. Journal of Environmental
Economics and Management, 58(1):27–42.

31



Wagner, M. and Grabarczyk, P. (2016). The environmental Kuznets curve for carbon dioxide
emissions: A seemingly unrelated cointegrating polynomial regressions approach. Discus-
sion paper 75/2016, SFB 823, “Statistical modelling of nonlinear dynamic processes”, TU
Dortmund University, Dortmund.

Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter
in the generalized spline smoothing problem. The Annals of Statistics, 13(4):1378–1402.

Wand, M. P. and Ormerod, J. (2008). On semiparametric regression with O’Sullivan penal-
ized splines. Australian & New Zealand Journal of Statistics, 50(2):179–198.

Wand, M. P. and Ormerod, J. T. (2011). Penalized wavelets: Embedding wavelets into
semiparametric regression. Electronic Journal of Statistics, 5:1654–1717.

Wang, Y. and Blei, D. M. (2018). Frequentist consistency of variational Bayes. Journal of
the American Statistical Association, pages 1–15. Published online: 06 Aug 2018.

Wang, Y., Zhang, X., Kubota, J., Zhu, X., and Lu, G. (2015). A semi-parametric panel data
analysis on the urbanization-carbon emissions nexus for OECD countries. Renewable and
Sustainable Energy Reviews, 48:704–709.

White, H. L. (1984). Asymptotic Theory for Econometricians. Academic Press.

White, I. R., Royston, P., and Wood, A. M. (2011). Multiple imputation using chained
equations: Issues and guidance for practice. Statistics in Medicine, 30(4):377–399.

WHO (2016a). Ambient air pollution: A global assessment of exposure and burden of
disease. Technical report, World Heath Organization, Geneva, Switzerland. Available at
http://www.who.int/phe/health topics/.

WHO (2016b). Fact sheet on ambient air quality and health. Techni-
cal report, World Heath Organization, Geneva, Switzerland. Available at
http://www.who.int/mediacentre/factsheets/.

Wu, M., You, P., and Zou, N. (2016). On spurious regressions with trending variables.
Cornell University Library arXiv:1606.05049.

Yoon, J., Zame, W. R., and van der Schaar, M. (2017). Multi-directional recurrent neural
networks: A novel method for estimating missing data. In Precup, D. and Teh, Y. W., edi-
tors, Proceedings of Machine Learning Research, volume 70, pages 3958–3966. Proceedings
of Machine Learning Research (PMLR).

Zhang, F. and Gao, C. (2017). Convergence rates of variational posterior distributions.
Cornell University Library arXiv:1712.02519.

Zhao, Y., Staudenmayer, J., Coull, B. A., and Wand, M. P. (2006). General design Bayesian
generalized linear mixed models. Statistical Science, pages 35–51.

Zhu, H.-M., You, W.-H., and Zeng, Z.-F. (2012). Urbanization and CO2 emissions: A
semi-parametric panel data analysis. Economics Letters, 117(3):848–850.

32



T
ab

le
1

-
L

og
-l

in
ea

r
m

o
d
el

fo
r

C
O

2
em

is
si

on
s

p
er

ca
p
it

a.

lo
g
(C

O
2
/P

op
)

co
ef

.
st

d
.

er
r.

t
co

ef
.

st
d
.

er
r.

t
in

te
rc

ep
t

-6
.1

44
1

0.
52

46
-1

1.
71

16
-6

.2
88

1
0.

54
20

-1
1.

60
12

lo
g
(e

n
er

gy
in

te
n
si

ty
)

0.
42

31
0.

04
19

10
.1

10
1

0.
43

53
0.

04
40

9.
89

37
lo

g
(e

n
er

gy
u
se

)
0.

21
88

0.
04

14
5.

28
08

0.
20

74
0.

04
51

4.
60

20
lo

g
(p

u
m

p
p
ri

ce
d
ie

se
l)

-0
.0

30
9

0.
00

71
-4

.3
33

4
-0

.0
30

8
0.

00
74

-4
.1

65
9

fo
ss

il
fu

el
co

n
su

m
p
ti

on
1.

30
43

0.
14

65
8.

90
51

1.
44

35
0.

12
12

11
.9

09
0

el
ec

t
p
ro

d
h
y
d
ro

el
ec

tr
ic

-0
.1

59
8

0.
03

52
-4

.5
43

2
-0

.1
59

1
0.

03
54

-4
.4

90
1

el
ec

t
p
ro

d
n
u
cl

ea
r

-0
.1

04
9

0.
11

80
-0

.8
89

1
n
u
cl

ea
r

en
er

gy
u
se

-0
.1

00
8

0.
13

09
-0

.7
69

5
u
rb

an
0.

49
15

0.
20

12
2.

44
30

0.
46

37
0.

19
88

2.
33

28
h
ig

h
p

op
d
en

si
ty

0.
05

72
0.

03
75

1.
52

67
0.

05
93

0.
03

72
1.

59
44

la
rg

e
co

u
n
tr

y
0.

61
36

0.
27

72
2.

21
35

0.
60

49
0.

25
67

2.
35

62
la

rg
e

fo
re

st
0.

00
16

0.
01

40
0.

11
56

m
er

ch
an

d
is

e
tr

ad
e

0.
07

52
0.

01
89

3.
98

08
0.

06
43

0.
01

82
3.

52
50

se
rv

ic
es

tr
ad

e
-0

.1
02

2
0.

06
35

-1
.6

10
6

n
on

O
E

C
D

-0
.5

01
5

0.
22

92
-2

.1
88

2
-0

.5
13

9
0.

20
64

-2
.4

90
4

tr
en

d
w

it
h

st
ru

ct
u
ra

l
b
re

ak
s

0.
00

05
0.

00
02

2.
74

65
0.

00
05

0.
00

02
2.

47
06

lo
g
(G

D
P

/P
op

)
0.

85
85

0.
02

49
34

.4
20

0
0.

84
73

0.
02

45
34

.5
92

8
σ

2 ε
0.

00
08

0.
00

09

T
ab

le
1

gi
ve

s
es

ti
m

at
ed

co
effi

ci
en

ts
,

st
an

d
a
rd

er
ro

rs
a
n

d
t-

st
a
ts

fo
r
β
R

a
n

d
β
G

a
n

d
th

e
es

ti
m

a
te

d
re

si
d

u
a
l

va
ri

a
n

ce
σ̂
2 ε
.

33



T
ab

le
2

-
B

o
ot

st
ra

p
p

ed
p-

va
lu

es
fo

r
th

e
sp

ec
ifi

ca
ti

on
te

st
s

of
C

ai
et

al
.

(2
00

0)
[C
F
Y

]
an

d
H

en
d
er

so
n

et
al

.
(2

00
8)

[H
C
L

].

C
F
Y

H
C
L

p-
va

lu
e

p-
va

lu
e

li
n
ea

r
E

K
C

O
W

E
C

0.
01

2
0.

04
0

R
C

M
0.

01
6

0.
04

4
q
u
ad

ra
ti

c
E

K
C

O
W

E
C

0.
00

8
0.

03
6

R
C

M
0.

01
4

0.
04

2

T
ab

le
2

gi
ve

s
b

o
ot

st
ra

p
p

ed
p
-v

al
u

es
of

th
e

b
o
ot

st
ra

p
te

st
s

o
f

th
e

n
u

ll
h
y
p

o
th

es
is

o
f

a
p

a
ra

m
et

ri
c

sp
ec

ifi
ca

ti
o
n

a
ga

in
st

th
e

a
lt

er
n

a
ti

ve
o
f

a
se

m
ip

a
ra

m
et

ri
c

M
F

V
B

sp
ec

ifi
ca

ti
on

.
E

K
C

:
en

v
ir

on
m

en
ta

l
K

u
zn

et
s

cu
rv

e.
O

W
E

C
:

o
n

e-
w

ay
er

ro
r

co
m

p
o
n

en
t

m
o
d

el
.

R
C

M
:

ra
n

d
o
m

co
effi

ci
en

t
m

o
d

el
.

34



Figure 1. Smoothed trends of CO2 emissions for some countries from locally weighted re-
gressions.

Figure 2. log CO2 emissions per capita against log GDP per capita (left panel) and zoom
on the richest countries (right panel).
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Figure 3. CO2 emissions per capita against GDP per capita (left panel) and zoom on the
richest countries (right panel).

Figure 4. CO2 emissions per capita against GDP per capita for the country means (left
panel) and for the time means (right panel).
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