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Abstract. Shape gradients of shape differentiable shape functionals con-
strained to an interface problem (IP) can be formulated in two equiva-
lent ways. Both formulations rely on the solution of two IPs, and their
equivalence breaks down when these IPs are solved approximatively. We
establish which expression for the shape gradient offers better accuracy
for approximations by means of finite elements. Great effort is devoted
to provide numerical evidence of the theoretical considerations.
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1. Introduction

Optimal control of mathematical models is a core activity of applied mathe-
matics. The goal is to optimize model parameters with respect to target func-
tionals: real mappings on the set of all admissible configurations. In many
practical cases the control parameter is the shape of a structure [1, 18]. In
this case we speak of shape functionals and, in particular, of PDE constrained
shape functionals, when the mapping involves the solution of a PDE, the so-
called state problem.

The sensitivity of shape functionals with respect to perturbations of
shapes is expressed by the shape gradient : a linear bounded operator on
the space of perturbation directions. The knowledge of this mapping is the
starting point for gradient based shape optimization [1, 2, 9, 13,17,18].

Shape gradients of shape differentiable shape functionals can be stated
equivalently as an integration over the volume and as an integration on the
boundary [8, Ch. 9, Thm. 3.6]. In the case of PDE constrained shape func-
tionals, shape gradients depend on the solution of the state problem and,
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in general, on the solution of an additional PDE, the so-called adjoint prob-
lem. When the state and the adjoint solutions are replaced with numerical
approximations, the equivalence of the two representations of the shape gra-
dient breaks down [4].

Several authors suggested that the volume based formulation is bet-
ter suited, when discretizations by means of finite elements are considered,
cf. [4], [8, Ch. 10, Rmk. 2.3], and [11, Ch. 3.3.7]. However, to our knowl-
edge, thorough convergence analysis and numerical evidence have not been
provided. For the case of elliptic boundary value problem constraints, a first
theoretical investigation was conducted in [12]. The aim of this work is to
extend these results to the case of elliptic interface value problems. In partic-
ular, we devote great effort to provide numerical evidence through numerical
experiments. For the sake of simplicity, we restrict our considerations to a
class of shape functionals and interface problems. Nevertheless, we believe
that our test case is representative and that no important aspect is missing.

2. Shape Gradients

A shape functional is a real valued map J : A → R defined on a set of
admissible domains A, which is usually constructed starting from an initial
open bounded domain Ω. In the general approach by Delfour-Zolesio [8, Ch.
4], A comprises all domains Ts(Ω) that are generated through the evolution
Ts(·) of the flow of a non-autonomous vector field V.

For a fixed perturbation direction V, the Eulerian derivative

dJ (Ω;V) := lim
s↘0

J (Ts(Ω))− J(Ω)

s
(1)

expresses the sensitivity of the shape functional J with respect to the per-
turbation direction V. Without loss of generality, the vector field V can be
assumed to be autonomous [8, Ch.9, Sect. 3.1]. The shape functional J is
said to be shape differentiable at Ω if (1) defines a linear bounded mapping

dJ (Ω; ·) : W 1,∞(Rd,Rd)→ R, V 7→ dJ (Ω;V) , (2)

which is called the shape gradient of J at Ω. As already mentioned in the
Introduction, shape gradients play a key role in shape optimization.

Shape optimization literature mostly deals with PDE constrained shape
functionals that can be expressed as an integral on a subdomain D ⊂ Ω
[1,2, 4, 8, 9, 13,17,18]. Here we consider

J (Ω) =

∫
D

j(u) dx , (3)
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Figure 1. Computational domain Ω of (4).

where j : R → R is a Lipschitz continuos function and u is the solution the
scalar interface problem

− div(σ(x)∇u) = f in Ω = Ω1 ∪ Ω2 ,
[[u]] = 0 on Γ ,

[[σ ∂u
∂n ]] = 0 on Γ ,
u = 0 on ∂Ω ,

(4)

with real piecewise constant coefficient

σ(x) := σ1χΩ1(x) + σ2χΩ2(x) .

The jump symbol [[·]] denotes discontinuity across the interface Γ. Note that
for the Neumann jump the vector n points outward, see Figure 1.

The shape gradient of shape differentiable PDE constrained shape func-
tionals can be expressed both as an integration in volume and as an integra-
tion on the boundary (the latter as a result of the Hadamard-Zolésio structure
theorem [8, Ch. 9, Thm. 3.6]). For instance, the shape gradient of (3) under
the constraint (4) takes the forms1

dJ (Ω;V) =

∫
Ω

(
σ∇u · (DV +DVT )∇p+ p∇f · V

+ div(V) (j(u)− σ∇u · ∇p+ fp)

)
dx (5)

and

dJ (Ω;V) =

∫
Γ

(V · n)

[[
2σ
∂p

∂n

∂u

∂n
− σ∇u · ∇p

]]
dS , (6)

where p is the solution of the adjoint problem
−div(σ(x)∇p) = j′(u)χD in Ω ,

[[p]] = 0 on Γ ,

[[σ ∂p
∂n ]] = 0 on Γ ,
p = 0 on ∂Ω .

(7)

1We tacitly assume that the vector field V vanishes on ∂Ω because we are mostly interested
in the contribution of the interface.
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Remark 1. Deriving explicit formulas of shape gradients is a delicate and
error prone task. Among the several techniques available in literature, the so-
called “fast derivation” method of Céa provides a formal shortcut to find the
boundary based formulation, cf. [7] and [1, Ch. 6.4.3]. However, great care
has to be taken with interface problems. In this case it is worth working out
the details in order to overcome the subtle issues induced by the presence of
the interface. A thorough derivation of (5) and (6) can be found in [13].

3. Approximation of Shape Gradients

The shape gradient dJ (Ω;V) of (3) depends on the solution of the two IPs (4)
and (7). To better stress this dependency, as well as to distinguish between
Formulas (5) and (6), we refer to them with the notation dJ (Ω, u, p;V)Vol

and dJ (Ω, u, p;V)Bdry, respectively.

Lemma 1. Let u and p be exact solutions of (4) and (7), respectively. Then,
the following equality holds

dJ (Ω, u, p;V)Vol = dJ (Ω, u, p;V)Bdry . (8)

Proof. Integration by parts on Formula (5) yields

dJ (Ω;V) =

∫
Ω

(
σ∇u · (DV +DVT )∇p

− V · (j′(u)∇u− σ∇(∇u · ∇p) + f∇p)
)

dx

+

∫
Γ

[[V · n (j(u)− σ∇u · ∇p+ fp)]] dS . (9)

With the vector calculus identity [4, Eq. (44)]

∇u ·(DV+DVT )∇p+V ·∇(∇u ·∇p) = ∇p ·∇(V ·∇u)+∇u ·∇(V ·∇p) , (10)

Formula (9) can be rewritten as

dJ (Ω;V) =

∫
Ω

(
σ∇p · ∇(V · ∇u) + σ∇u · ∇(V · ∇p)

− j′(u)V · ∇u− fV · ∇p
)

dx

+

∫
Γ

[[V · n (j(u)− σ∇u · ∇p+ fp)]] dS . (11)

Then, integration by parts yields

dJ (Ω;V) =

∫
Γ

[[
σ
∂p

∂n
V · ∇u

]]
−
∫

Ω

div(σ∇p)(V · ∇u) + j′(u)(V · ∇u) dx

+

∫
Γ

[[
σ
∂u

∂n
V · ∇p

]]
−
∫

Ω

div(σ∇u)(V · ∇p) + f(V · ∇p) dx

+

∫
Γ

[[V · n (j(u)− σ∇u · ∇p+ fp)]] dS . (12)
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The two domain integrals in (12) vanish because of (4) and (7). Moreover,
since [[u]] = 0 on Γ,[[

σ
∂p

∂n
V · ∇u

]]
= V · n

[[
σ
∂p

∂n

∂u

∂n

]]
and [[V · nj(u)]] = 0 ,

and since [[p]] = 0, [[V · nfp]] = 0, so that we retrieve

dJ (Ω;V) =

∫
Γ

V · n
[[

2σ
∂p

∂n

∂u

∂n
− σ∇u · ∇p

]]
dS . (6)

�

Remark 2. For dJ (Ω, u, p;V)Vol to be well-defined, it is sufficient to assume
that u, p ∈ H1(Ω). On the other hand, higher regularity of u and p is required
for dJ (Ω, u, p;V)Bdry to be well-defined because the latter is not continuous
on H1(Ω).

Usually, exact solutions of IPs are not available, and one has to rely
on numerical approximations uh, ph ∈ W 1,∞(Ω). Equality (8) breaks down
when u and p are replaced with their approximate counterparts [4], and both
formulas (5) and (6) become approximations

dJ (Ω, uh, ph;V)Vol ≈ dJ (Ω;V) ≈ dJ (Ω, uh, ph;V)Bdry (13)

of the exact value dJ (Ω;V). The natural question is then which among
dJ (Ω, uh, ph; ·)Vol and dJ (Ω, uh, ph; ·)Bdry is closer to dJ (Ω; ·).

The answer may depend on the underlying discretization scheme. Al-
though discretization by boundary element method is also possible [9, 18],
we focus on discretizations by means of finite elements. This is the most
popular choice in shape optimization because of its flexibility, which is much
appreciated among engineers.

In applied mathematics several operators that depend on the solution of
boundary value problems have equivalent volume and boundary based rep-
resentations. For instance, this is the case for lift functionals for potential
flow [10] and for far field functionals in electromagnetism [15,16]. When used
in the context of finite element approximations, volume based formulations
tend to exhibit faster convergence and superior accuracy than their counter-
parts formulated on the boundary. This can be motivated by volume integrals
being continuous in energy norm, whilst boundary integrals involve traces
that are not well-defined on the natural variational space. This difference de-
termines whether the formulation displays the superconvergence that holds
for the evaluation of continuous functionals on Galerkin solutions [3, Sect. 2].

On account of Remark 2, we heuristically expect the same trend in (13).
A rigorous statement can be made in case of smooth interfaces and sufficient
regular source function in (4). Following the same lines as for the proofs of
Theorems 3.1 and 3.2 in [12], it can be shown that2

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Vol| = Ch2‖V‖W 2,4(Rd;Rd) (14)

2 We denote by C a generic constant, which may depend on Ω, its discretization, the source
function f , and the coefficient σ. Its value may differ between different occurrences.
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and that

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Bdry| = Ch‖V‖L∞(Rd;Rd) , (15)

when uh and ph are Ritz-Galerkin solutions computed with piecewise linear
Lagrangian finite elements on a family of quasi-uniform triangular meshes
with nodal basis functions.

Remark 3. The result (14) is restricted to vector fields in W 2,4(Rd;Rd) be-
cause the proof relies on finite element duality techniques [6, Ch. 5.7]. How-
ever, the volume based formulation (5) is a continuous linear operator with
respect to W 1,∞(Rd;Rd), and it can easily be shown that

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Vol| = Ch‖V‖W 1,∞(Rd;Rd) . (16)

On the other hand, the estimate (15) relies on the nontrivial approximation
properties of finite element solutions in W 1,∞(Ω) [6, Cor. 8.1.12]. We are
not aware of a technique to improve the rate in (15) by restricting the space
of vector fields.

4. Numerical Experiments

We consider the quadratic shape functional

J (Ω) =

∫
Ω

u2 dx.

The shape gradient is a linear bounded operator on W 1,∞(Rd,Rd).
Hence, the quality of the approximation in (13) should be investigated in
the operator norm. Numerically, this is an extremely challenging task, if not
impossible. Therefore we have to content ourself with considering convergence
with respect to a more tractable operator norm over a finite dimensional space
of vector fields.

Since we are mainly interested in contributions of the interface, we select
vector fields that vanish on ∂Ω. We set Ω =]−2, 2[2 (a square centered in the
origin and with side equal 4), and we restrict ourself to the finite dimensional
space of vector fields of the form3

V(x, y) =
∑

m1+n1≤5
m2+n2≤5

m1,m2,n1,n2≥1

λm1,n1

(
v(x, y,m1, n1)

0

)
+ λm2,n2

(
0

v(x, y,m2, n2)

)

with v(x, y,m, n) = sin(mxπ/2) sin(n y π/2) and λmi,ni ∈ R. Moreover, we
replace the W 1,∞-norm with the more manageable H1-norm.

To investigate the convergence, we monitor the approximate dual norms

errVol :=

(
max
V

1

‖V‖2H1(Ω)

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Vol|2
)1/2

(17)

3Repeating the experiments for mi + ni ≤ 3 produces results in agreement with the
observations made for mi + ni ≤ 5. Therefore, the arbitrary choice of restricting the sum

of the indices to 5 does not seem to compromise our observations.
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and

errBdry :=

(
max
V

1

‖V‖2H1(Ω)

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Bdry|2
)1/2

(18)

on different meshes generated through uniform refinement4. The reference
value dJ (Ω;V) is approximated by evaluating both dJ (Ω, uh, ph;V)Vol and
dJ (Ω, uh, ph;V)Bdry on a mesh with an extra level of refinement. To avoid bi-
ased results we display convergence history both with self- and cross-comparison.

As in [12], we consider finite element discretizations based on linear
Lagrangian finite elements on quasi-uniform triangular meshes with nodal
basis functions5. Integrals in the domain are computed by 7 point quadrature
rule in each triangle, while line integrals by 6 point Gauss quadrature on
each segment. In experiment 1, the interface is approximated by a polygon.
Nevertheless, the convergence of linear finite elements is not affected by this
discretization [14].

In the first numerical experiment the interface Γ is a circle centered in
(0.1, 0.2) and with radius equal 1, see Figure 2 (left). The problem data are

f(x) = 1 and σ(x) = 2χΩ1
(x) + 1χΩ2

(x) . (19)

The numerical results are displayed in Figure 3 (left column). We clearly
see that the volume based formulation converges faster and is more accu-
rate than its boundary based counterpart. The convergence rates agree with
what has been predicted by (14) and (15). In the cross-comparison plot
dJ (Ω, uh, ph;V)Vol saturates due to insufficient accuracy of the reference
solution computed with dJ (Ω, uh, ph;V)Bdry, whereas the boundary based
formulation converges with the same rate as for the self-comparison.

In the second numerical experiment the interface Γ is a triangle with
corners located at (−1,−1), (1,−1) and (0.2, 1), see Figure 2 (right). Interface
corners are known to affect the regularity of the solution of interface problems
[5]. Therefore, the estimates (14) and (15) can not be proved in this case, and
we expect to observe lower convergence rates. To better stress the impact of
the corners we increase the contrast of the diffusion coefficient by setting

σ(x) = 10χΩ1
(x) + 1χΩ2

(x) .

The source function is the same as in (19). From the results displayed in Fig-
ure 3 (right column) we observe that the volume based formulation converges
faster and is more accurate then its boundary based counterpart. Again, in
the cross-comparison the convergence history of the volume based formulation
saturates due to an insufficient accuracy of the reference solution computed
with dJ (Ω, uh, ph;V)Vol. We suspect that this inaccuracy gives rise to the dif-
ference in the convergence rates of the boundary based formulation between
self- and cross-comparisons.

4 In experiment 1 new meshes are always adjusted to fit the curved interface.
5The experiments are performed in MATLAB and are based on the library LehrFEM

developed at ETHZ. Mesh generation and uniform refinement are performed with the
functions initmesh and refinemesh of the MATLAB PDE Toolbox.
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Figure 2. Plot of the solution u of the state problem in the
computational domain Ω for the first (left) and the second
(right) numerical experiment. The interface is drawn with a
dashed line.

In the third numerical experiment we investigate the impact of the
choice of the diffusion coefficient σ on the results obtained in the first and in
the second numerical experiment. For σ2 = 1 fixed and σ1 = 0.1, 0.5, 0.8, 1.25, 2, 10,
we monitor the approximate relative error constructed by dividing the ap-
proximate dual norms (17) and (18) by

max
V

|dJ (Ω;V)|
‖V‖H1(Ω)

.

The reference solution is computed evaluating dJ (Ω, u, p;V)Vol on a mesh
with an extra level of refinement. In Figure 4 (left), we see that the choice of
the diffusion coefficient σ has no influence on the convergence rates in case of
a circular interface. On the other hand, for non-smooth interfaces, the effect
of the singularity in the functions u and p is visible only for high contrasts
σ1/σ2.

5. Conclusion

The shape gradient of shape differentiable PDE constrained shape function-
als is a linear bounded operator on W 1,∞(Rd,Rd), and its knowledge is the
starting point for gradient based shape optimization. The shape gradient can
be stated both as an integration in volume and as an integration on the
boundary, both of which depend on the solution of boundary value problems.
When used with discrete solutions, these two representations lose their equiv-
alence and become approximations of dJ (Ω; ·). Theoretical considerations in
Section 3 and numerical experiments in Section 4 convey that volume based
approximations of the shape gradient are better suited in the context of fi-
nite element discretizations. Although our investigations are conducted on a
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Figure 3. Convergence history for the first (left column)
and the second (right column) numerical experiment. In the
first row the reference value dJ (Ω;V) is computed with an
extra level of refinement. The second row displays cross-
comparisons.

chosen class of scalar interface problems, we believe that similar conclusions
can be drawn for the case of more general PDE constraints stemming from
electromagnetism and continuum mechanics.
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