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Abstract  

Background – Neural stimulation leads to increases in cerebral blood flow (CBF), but simultaneous 
changes in co-variates, such as arterial blood pressure (BP) and PaCO2, rule out the use of CBF 
changes as a reliable marker of neurovascular coupling (NVC) integrity. 

Methods – Healthy subjects performed repetitive (1 Hz) passive elbow flexion with their dominant 
arm for  60 s. CBF velocity (CBFV) was recorded bilaterally in the middle cerebral artery with 
transcranial Doppler, BP with the Finometer device and end-tidal CO2 (EtCO2) with capnography. The 
simultaneous effects of neural stimulation, BP and PaCO2 on CBFV were expressed with a dynamic 
multivariate model, using BP, EtCO2, and stimulation [s(t)] as inputs. Two versions of s(t) were 
considered: a gate function [sG(t)] or an orthogonal decomposition [sO(t)] function. A separate CBFV 
step response was extracted from the model for each of the three inputs, providing estimates of 
dynamic cerebral autoregulation (CA, ARI index), CO2 reactivity (VMRSR) and NVC (STIMSR). 

Results – In 56 subjects, 224 model implementations produced excellent predictive CBFV correlation 
(median r=0.995). Model generated sO(t), for both dominant (DH) and non-dominant (NDH) 
hemispheres, were highly significant during stimulation (<10-5), and were correlated with the CBFV 
change (r=0.73, p = 0.0001). sO(t) explained a greater fraction of CBFV variance ( ~50%) than sG(t) 
(44%, p= 0.002). Most CBFV step responses to the three inputs were physiologically plausible, with 
better agreement for the CBFV-BP step response yielding ARI values of 7.3 for both DH and NDH for 
sG(t), and 6.9 and 7.4 for sO(t), respectively. No differences between DH and NDH were observed for 
VMRSR or STIMSR. 

Conclusion – A new procedure is proposed to represent the contribution from other aspects of CBF 
regulation than BP and CO2 in response to sensorimotor stimulation, as a tool for integrated, non-
invasive, assessment of the multiple influences of dynamic CA, CO2 reactivity, and NVC in humans. 

 

  



NEW & NOTEWORTHY 

A new approach was proposed to identify the separate contributions of stimulation, arterial blood 
pressure (BP), and arterial CO2 (PaCO2) to the cerebral blood flow (CBF) response observed in 
neurovascular coupling (NVC) studies in humans. Instead of adopting an empirical gate function to 
represent the stimulation input, a model generated function is derived as part of the modelling 
process, providing a representation of the NVC response, independent of the contributions of BP or 
PaCO2. This new marker of NVC, together with the model predicted outputs for the contributions of 
BP, PaCO2 and stimulation, have considerable potential to both quantify and simultaneously 
integrate, the separate mechanisms involved in CBF regulation, namely, cerebral autoregulation, CO2 
reactivity and other contributions. 

Keywords: cerebral blood flow, cerebral autoregulation, CO2 reactivity, neurovascular coupling, 
transcranial Doppler 

 

  



INTRODUCTION 

Neural stimulation, induced by cognitive or sensorimotor paradigms, leads to increases in cerebral 

blood flow (CBF), through a cascade of complex interactions, encapsulated in the concept of 

neurovascular coupling (Girourard and Iadecola 2006). At the core of this mechanism is the 

neurovascular unit, which translates neuronal action potentials into capillary and arteriolar 

vasodilation through the control of vascular smooth muscle by the combined actions of astrocytes, 

pericytes, endothelial cells and extracellular matrix components(Parkes et al. 2018; Peterson et al. 

2011).  

Human studies of neurovascular coupling (NVC) have been performed with non-invasive techniques 

for measuring CBF such as magnetic resonance imaging (MRI), near infrared spectroscopy (NIRS) 

and, increasingly, with transcranial Doppler ultrasound (TCD). Although functional MRI, based on the 

BOLD technique, has become the dominant approach in human studies, functional TCD (fTCD) also 

deserves attention due to its multiple advantages. Whilst fTCD does not have the spatial resolution 

of fMRI, its low-cost, very high temporal resolution, patient acceptance, and portability can make it 

the preferred tool for patient screening and follow up studies. 

fTCD measures CBF velocity (CBFV) in large intra-cerebral arteries. If the cross-sectional area of the 

insonated vessel remains constant, changes in CBFV will reflect changes in absolute CBF. For this 

reason, most studies of fTCD adopt the CBFV response to neural stimulation as a metric of NVC 

integrity and efficiency (Azevedo et al. 2011; Claassen and Zhang 2011; Deppe et al. 2004; Fritzsch et 

al. 2009; Kelley et al. 1992; Martens et al. 2009; Silvestrini et al. 1993; Stroobant and Vingerhoets 

2001; Wolf 2015). One key limitation of focusing only on the CBFV response though, is the parallel 

physiological changes that take place with stimulation in important determinants of CBFV, such as 

arterial blood pressure (BP) and arterial CO2. Although these changes are usually not taken into 

consideration in most studies of fTCD, as is also the case with fMRI, they can be significant and have 

been described in several studies (Carter et al. 2008; Carter et al. 2005; Duschek et al. 2010; Moody 

et al. 2005; Panerai et al. 2005; Panerai et al. 2012b; Payne 2006). A prolonged respiratory pause at 

the beginning of a paradigm can lead to transient hypercapnia, with concomitant increases in CBF 

that will confound the transient CBFV response. A sudden rise in mean BP with stimulation will have 

a similar effect. Conversely, with more prolonged paradigms, increases in respiratory frequency will 

have the opposite effect of reducing CBFV due to hypocapnia induced by hyperventilation. 

In previous studies of NVC, involving both sensorimotor and cognitive paradigms, we have addressed 

the problem of BP and PaCO2 interference with the use of multivariate modelling, where the CBFV 

response is represented as the output of a linear model, having BP, end-tidal CO2 (EtCO2) and a 



neural stimulation signal, s(t) as inputs (Maggio et al. 2014; Panerai et al. 2012a; Panerai et al. 

2012b). One additional advantage of these models is the possibility of deriving estimates of dynamic 

cerebral autoregulation (CA) and CO2 vasomotor reactivity (VMR), from a single recording containing 

the CBFV response to stimulation. One existing limitation though, is the choice of function used to 

represent s(t) as the stimulation input to the model. These previous studies have adopted a 2-level 

‘gate’ function, simply representing the ON/OFF states of the paradigm. In the absence of additional 

information about the cognitive or sensorimotor load, or paradigm intensity, the gate function has 

provided meaningful results, but it might not represent the optimal solution for paradigms that 

present subjects with a variable metabolic demand. To address this limitation, we have expanded 

s(t) into an orthogonal series, and, with an increased number of model coefficients, it is then 

possible to obtain a representation of the distinct neural activation component in individual 

subjects. 

In summary, in a relatively large number of healthy subjects, undergoing stimulation with repetitive 

passive elbow flexion, we have tested the hypothesis that multivariate modelling of the interaction 

between CBFV, BP, and EtCO2,  using a more advanced representation of the neural activation 

component of the NVC response [s(t)], could potentially be used as a more specific and robust 

metric in human studies of CBF regulation. 

 

METHODS 

Subjects and measurements 

Healthy volunteers, aged 40 years old or over, were recruited from departmental staff or from 

relatives of patients attending University Hospitals of Leicester NHS Trust outpatient clinics. 

Exclusion criteria included physical disease in the upper limb, poor insonation of both temporal bone 

windows and any history of cardiovascular, neurological or respiratory disease. Ethical committee 

approval was granted by the Northampton REC (ref 11/EM/0369). All participants provided written 

informed consent.  

Volunteers avoided caffeine, alcohol, and nicotine for ≥4 h before attending a quiet laboratory with  

ambient temperature kept at  20-24°C. Handedness was assessed with the Edinburgh inventory 

(Oldfield 1971). Continuous non-invasive arterial BP was recorded with arterial volume clamping of 

the digital artery (Finometer, Finapres Medical Systems, Amsterdam, The Netherlands) and a 3-lead 

electrocardiogram was also recorded with the same equipment. End-tidal CO2 (EtCO2) was obtained 

by nasal capnography (Capnocheck Plus, Smiths Medical, Ashford, UK). CBFV (Vyasis Companion III, 



Vyasis Health Care) was measured bilaterally in the middle cerebral arteries (MCA) with a 2 MHz 

probe at depths of 48-55 mm. BP was also obtained by sphygmomanometry (OMRON Model 705IT) 

at the brachial artery prior to each measurement and used to calibrate the Finometer signal. 

After an initial period of 15 min stabilisation, a baseline 5 min recording was performed with 

subjects breathing normally at rest in the supine position. The passive elbow flexion paradigm 

(Salinet et al. 2013) was performed only with the dominant arm and consisted of an examiner 

performing repetitive flexion and extension of the subject's elbow within a range of movement of 

approximately 90° at a rate of 1 Hz, given by the sound of a metronome. Subjects were instructed to 

relax and not actively move the arm. All paradigm recordings started with a 90s baseline phase. 

Thereafter, the paradigm was performed over 60s, with a 90s recovery phase. Recordings were 

digitised at 500 samples/s with the PHYSIDAS data acquisition system (Department of Medical 

Physics, University Hospitals of Leicester) and transferred to a computer for subsequent analysis.  

These included the electrical output from the metronome as a two-level signal marking the 

beginning and end of the motor paradigm (Fig. 1.A). 

Data analysis 

Data editing involved detailed visual inspection of all signals. Occasional narrow spikes (< 100 ms) 

were removed by linear interpolation. The CBFV signal was passed through a median filter and 

expressed as the percent change from the mean value of the 60s period preceding the paradigm. All 

signals were low-pass filtered with a 8th order, zero-phase Butterworth filter with 20 Hz cutoff 

frequency. The R–R interval of the ECG was then automatically marked and mean BP and CBFV 

values were calculated for each cardiac cycle. The end of each expiratory phase was detected in the 

end-tidal  CO2 signal, linearly interpolated and resampled with each cardiac cycle. Beat-to-beat data 

were spline interpolated and resampled at 5 samples/s to produce signals with a uniform time-base.  

The simultaneous effects of BP, EtCO2 and the passive elbow flexion maneuver on CBFV were 

expressed with an autoregressive, moving average (ARMA) model as described previously (Maggio et 

al. 2014; Panerai et al. 2012b; Salinet et al. 2014) and detailed in the Appendix. In brief, at each 

instant of time, CBFV was expressed as the sum of Nv past samples, and corresponding sums of Np, 

Nc and Nm samples of BP, EtCO2 and s(t), respectively, where s(t) represents the neural activation 

input produced by the motor paradigm. The set of values [Nv,Np,Nc,Nm] represent the orders of the 

ARMA model and were chosen as [2,4,1,1] based on previous studies (Maggio et al. 2014; Panerai et 

al. 2012b; Salinet et al. 2014). Two versions of s(t) were considered: sG(t), to represent the gate 

function produced by the electrical output of the metronome (Fig. 1.A) and sO(t), corresponding to 



the new activation function resulting from the expansion of the ARMA model, incorporating an 

orthogonal decomposition as explained in the Appendix (Fig. 1.B). 

Once the ARMA model coefficients were estimated by means of least-squares, CBFV step responses 

were obtained for each input, by using one input at a time, leading to the CBFV-BP, CBFV-EtCO2 and 

CBFV-STIM step responses, respectively, where STIM represents either the sG(t) or sO(t) input (Fig. 1). 

The CBFV-BP step response reflects the dynamic CA mechanism. This response allows estimation of 

the autoregulation index (ARI), by comparison with one of the 10 template step responses proposed 

by Tiecks et al (Tiecks et al. 1995). The ARI ranges from zero (absence of autoregulation) to 9 (most 

efficient response usually observed). ARI values were only accepted if the normalised mean square 

error for fitting the Tiecks model to the estimated CBFV-BP step response was less than 0.30 

(Panerai et al. 2016).The CBFV-CO2 step response expresses VMR (Poulin et al. 1996). The plateau of 

the CBFV-CO2 step response, calculated for the mean of the 20-40 s interval (VMRSR) was used to 

express VMR in %/mmHg. Finally, to quantify the effects of motor stimulation, the CBFV-STIM step 

response was also averaged for the 20-40 s interval, generating the parameter STIMSR in arbitrary 

units (Salinet et al. 2014). 

 

Statistical analysis 

Normality of parameter distributions were tested with the Shapiro-Wilks test and differences 

involved in repeated measurements were assessed with the dependent t-test or the Wilcoxon test, 

accordingly. Two-way ANOVA was used to assess the simultaneous effects of model type (i.e. using 

either sG(t) or sO(t) inputs) or laterality (dominant vs. non-dominant hemisphere). A value of p<0.05 

was adopted as level of significance and repeated comparisons were adjusted with the Bonferroni 

procedure. 

  



RESULTS  

Fifty-six subjects (25 female), median age 62 (range 40-82) years provided good quality data at 

baseline and during repetitive elbow flexion for both MCA arteries. Only 9% (5/56) of the subjects 

were left-handed. Mean (SD) arterial BP was 90.5 (11.6) mmHg, heart rate 63.0 (8.9) bpm, EtCO2 

37.8 (4.8) mmHg, and CBFV of 51.1 (12.3) and 49.7 (13.9) cm/s for the non-dominant (NDH) and 

dominant (DH) hemispheres, respectively.  

In all subjects, repetitive passive elbow flexion led to changes in CBFV, but also in other parameters 

as shown in Fig. 2. Of particular relevance, were the changes in the activation signal, sO(t), identified 

with the additional terms in Eq. 4 (Appendix), coinciding with the duration of stimulation. These 

changes were confirmed in the population averages (Fig. 3), with excellent agreement between 

measurements from the DH and NDH. Differently from Fig. 2 though, the temporal pattern of 

changes in heart rate was less consistent for the population as a whole, and EtCO2 suggested a trend 

towards hypocapnia. Table 1 presents the mean changes resulting from stimulation (60 to 120 s), in 

comparison with the mean of the preceding 60 s. Despite the trend suggested in Fig. 3.C, EtCO2 did 

not show a significant difference due to stimulation, when averaged over the entire duration of the 

maneuver, similarly to heart rate (Table 1). On the other hand, CBFV, BP and the activation function, 

sO(t) showed highly significant differences due to stimulation (Table 1). However, neither CBFV or 

sO(t) showed any marked differences between values from the DH and NDH. The amplitudes of the 

CBFV and the sO(t) changes due to stimulation were significantly correlated, with r= 0.73 for both the 

DH and NDH.  

All 224 model realisations (2 methods x 2 sides x 56 subjects) led to highly significant correlation 

coefficients for the predicted CBFV model output, with median r=0.995 (range 0.906 to 0.999), 

without any meaningful differences due to MCA side or the use of sG(t) or sO(t) to represent the 

stimulation input. The fraction of the CBFV variance explained by the three separate inputs 

(Appendix) is given in Table 2. sO(t) explained approximately 50% of the CBFV variance, significantly 

more (Wilcoxon NDH p=0.002; DH p=0.0004) than the sG(t) input. On the other hand, EtCO2 

explained a significantly larger fraction of the total CBFV variance with the sG(t) input, than was the 

case for the sO(t) input (Wilcoxon, NDH p=0.0004; DH p=0.001). 

Comparing model estimates using either sG(t) or sO(t), led to very similar CBFV-BP step responses 

(Figs. 4.A & 4.B), but different CBFV step responses for the EtCO2 (Figs 4.C & 4.D) and s(t) inputs 

(Figs. 4.E & 4.F). The corresponding values of ARI extracted from the step responses in Figs. 4.A & 4.B 

are given in Table 3, not showing differences due to the use of sG(t) or sO(t) as the stimulation input, 

but a slightly reduced ARI (p=0.038) for the DH when using the sG(t) input. The number of ARI values 



that were rejected due to poor fitting to Tiecks model (Methods) ranged from 2 to 4 (Table 3), 

without any differences due to the type of s(t) input function or hemisphere. For the EtCO2 input 

however, a larger number of CBFV step responses were rejected (Table 3) due to negative values, for 

the gate function input.  Due to their distinct scales, comparisons of STIMSR values in Table 3 for 

either sG(t) or sO(t), are not meaningful.  Nevertheless, the correlation coefficient between STIMSR 

values extracted for each type of stimulation input, was highly significant, corresponding to r=0.83 

(p<10-6) and r=0.73 (p<10-6) for the NDH and DH, respectively. 

Agreement between estimates of ARI, using either the sG(t) or sO(t) inputs, was expressed with the 

Bland-Altman plots in Figs 5.A (NDH) and 5.B (DH). Corresponding plots for VMRSR are given in Figs. 

5.C. and 5.D. As expected from the results in Table 3, the ARI shows a relatively good level of 

agreement, with reduced biases (NDH p=0.16; DH p=0.66) and limits of agreement (Fig. 5.A & 5.B). 

On the other hand, the limits of agreement for the plateau of the CBFV-EtCO2 step responses were 

considerable, with significant biases (NDH p=0.018; DH p=0.0094). Noteworthy, Figs 5.C and 5.D 

include values derived from negative step responses, that were not included in Table 3. Despite the 

poor agreement, VMRSR had highly significant correlation coefficients for values derived with sG(t) 

versus sO(t), corresponding to r=0.59 (p=0.000002) and r=0.64 (p<10-6) for the NDH and DH, 

respectively. Moreover, the correlation between hemispheres was also highly significant, with 

r=0.837 (p<10-6) and r=0.75 (p<10-6) for sG(t) and sO(t), respectively. 

 

DISCUSSION 

Main findings 

Previous attempts to provide an integrated model of the CBFV response to neural stimulation by 

means of cognitive (Panerai et al. 2012a), or sensorimotor (Panerai et al. 2012b) paradigms, adopted 

a gate function as the hypothetical input to the model to represent increased metabolic demand 

resulting from neural activation. In the current study, we demonstrated that the introduction of an 

arbitrary gate function to represent the stimulation input to the model is not strictly necessary as it 

can be derived by extending the ARMA model by means of orthogonal decomposition as described 

in the Appendix. 

Multivariate models of the combined effects of BP and PaCO2 on CBFV have been proposed 

previously (Chacon et al. 2011; Marmarelis et al. 2016; Mitsis et al. 2004; Panerai et al. 2000) but, to 

our knowledge, this is the first model that can also incorporate the effects of neural activation. 

Despite lacking a gate function to represent the stimulation input, the model allowed robust 



estimates of the ARI parameter, to express the contribution of dynamic CA, and CBFV-EtCO2 and 

CBFV-STIM step responses that were in broad agreement with corresponding responses obtained 

with the gate function. Nevertheless, interpretation of these findings, and disparities in parameters 

derived from these step responses, requires further consideration as discussed below. 

Model validation 

The overall performance of the ARMA model was outstanding as represented by the correlation 

coefficient (median r=0.995) between model predictions and measured CBFV responses to 

stimulation. However, of greater importance for future applications of this approach to physiological 

and clinical studies, is the ability of the model to generate reliable estimates of parameters such as 

the ARI, VMRSR and STIMSR. Unfortunately, validation of these estimates is not straightforward. Each 

of these parameters aims to provide a single index for three distinct and complex phenomena, 

namely dynamic CA, CO2 reactivity and NVC. Each of these proposed mechanisms represent a 

conceptual model, involving a myriad of mediators, and none has a physical, measurable, reference 

value, often referred to as a ‘gold standard’. For this reason, optimal techniques for assessment of 

representative parameters have been widely discussed (Simpson and Claassen 2018; Tzeng and 

Panerai 2018) and are still evolving. Of particular relevance, when different techniques are 

compared, very poor inter-method agreement was found for parameters expressing dynamic CA or 

VMR (McDonnell et al. 2013; Tzeng et al. 2012). On the other hand, as will be discussed in the next 

section, parameters expressing dynamic CA, CO2 reactivity and NVC can reflect impairment of CBF 

regulation, thus showing considerable potential for clinical applications. However, at the current 

stage of development of these methods, there is little evidence to support the expectation that 

these parameters could be interchangeable across different measurement techniques or analytical 

methods. Consequently, in the context of the ARMA model proposed in this study, each of the 

estimated parameters needs to be considered as a distinct scale that can only be validated with 

future applications of the same model to different physiological interventions and clinical conditions. 

This work is ongoing in our laboratory and will be reported elsewhere. 

  

Clinical perspectives 

Despite lack of consensus about optimal methods for estimation of parameters that can reflect 

human CBF regulation, there is considerable evidence to demonstrate that several different indices 

can reflect changes in dynamic CA, CO2 reactivity or NVC due to physiological interventions or 

disease processes (Girourard and Iadecola 2006; Markus and Cullinane 2001; Panerai 2008; 



Silvestrini et al. 1998; Yonas et al. 1993), including early applications of the multivariate ARMA 

model, restricted to the use of sG(t) to represent the stimulation input (Maggio et al. 2014; Panerai 

et al. 2012a; Salinet et al. 2014). To focus the discussion on the present study, the relevant question 

is whether the use of sO(t), obtained with the orthogonal decomposition of s(t) (Appendix), could 

lead to better sensitivity and/or specificity, than other metrics of NVC. The rigorous answer to this 

question will need to wait for future clinical trials in which sO(t) could be compared to other metrics 

for assessment of NVC. At this stage though, there are a number of considerations that could be 

advanced. Intuitively, the relative change in CBFV (or other measures of CBF) in response to 

stimulation has been used as the main index of NVC. Two main arguments however suggest 

considerable limitations in this approach. Firstly, several studies have demonstrated a very poor 

correlation between the change in cerebral O2 consumption (CMRO2) and the change in CBF (Fox 

and Raichle 1986). Secondly, as mentioned in the Introduction, most cognitive or sensorimotor 

paradigms induce parallel changes in BP and PaCO2 that also contribute to the CBF change, thus 

distorting this metric as a reflection of the underlying additional metabolic demand resulting from 

stimulation. The significant contributions of BP and EtCO2 to explain the total variance of CBFV 

(Table 2) clearly demonstrate the importance of taking these co-variates into account. Both 

representations of the stimulation function (sG(t) or sO(t)), generate CBFV-STIM step responses, 

yielding the parameter STIMSR, that can be used to quantify the NVC response, without the 

interference of BP or PaCO2. As mentioned above, despite being highly correlated, both step 

responses have arbitrary units, which are not interchangeable, and for this reason need to be used 

as separate scales of measurement. What is novel, and promising, in the current study though, is the 

generation of the sO(t) function, that could also be considered a candidate for reflecting the NVC 

response, with greater accuracy than the relative change in CBFV. From a purely numerical 

perspective, it is appropriate to say that the orthogonal decomposition of s(t), that gives rise to sO(t), 

is simply helping to fit the model to the CBFV signal with a larger number of coefficients (Appendix). 

In doing this though, this function is removing the influences of BP and PaCO2 on the CBFV response 

and is showing a very significant, but limited association to CBFV, as reflected by correlation 

coefficients of r=0.73. These correlations indicate that sO(t) is explaining approximately 50% of the 

CBFV variance, in agreement with the values given in Table 2, that were obtained by a different 

route (Appendix). In other words, sO(t) is not entirely independent from CBFV, but neither is it 

providing redundant information and for this reason warrants further investigation in conditions 

where CBF regulation might be expected to be impaired, such as dementia, stroke, or severe head 

injury.  



Of considerable relevance though, is the physiological interpretation of what is being represented by 

so(t). Given the complexity of CBF regulation (Fox and Raichle 1986; Girourard and Iadecola 2006; 

Parkes et al. 2018; Peterson et al. 2011; Tzeng and Panerai 2018; Wolf 2015), using only three inputs 

(Fig. 1) to express all possible influences on CBFV is still a substantial over-simplification, despite the 

advances provided by the possibility of replacing sG(t) with so(t). With the model accounting for the 

contributions of BP and PaCO2 to CBFV, the residual variance, of approximately 50%, represents a 

plethora of phenomena, including flow-mediated vasodilation, flow-metabolism coupling and micro-

vascular communication (Girourard and Iadecola 2006; Parkes et al. 2018; Peterson et al. 2011). 

Moreover, some of the effectors and cellular mechanisms involved, such as endothelial nitric oxide, 

adenosine, calcium and prostaglandin levels, as well as pericyte activity, are shared, to different 

extents, amongst the three distinct concepts of CA, VMR and NVC.  As a result of these limitations, 

caution is needed when interpreting estimates of so(t) and corresponding STIMSR parameters. On the 

other hand, to be able to advance beyond the reductionist concept of NVC, as adopted in this study, 

it will be necessary to extend the range of variables that can be measured in human physiological 

and clinical studies. One particular case is the need to incorporate the phenomenon of flow-

mediated vasodilation, which stimulates the release of endothelial nitric oxide by shear-stress (; 

Girourard and Iadecola 2006; Peterson et al. 2011; Wolf 2015). With the current model structure in 

Fig. 1, it is not possible to have CBFV as both input and output, as this would lead to ill-conditioned 

matrices (Appendix). To overcome this limitation, we would need to replace CBFV by vessel 

diameter, as the model output in Fig. 1, which would represent a formidable challenge with our 

current tool-box of physiological measurement techniques.  

 

Additional limitations of the study 

Estimates of CBF with fTCD are based on the assumption that the diameter of the insonated artery, 

in our case the MCA, remains constant to maintain the proportionality between CBFV and CBF. The 

MCA diameter has been shown to increase with extreme hypercapnia (Coverdale et al. 2014; 

Verbree et al. 2014), that was not the case with our study. On the other hand, the possibility that the 

MCA dilates in response to neural stimulation cannot be dismissed based on current evidence, and 

for this reason it is important to be cautious when interpreting absolute or relative changes in CBFV 

in response to cognitive or sensorimotor tasks. In our case, we expressed CBFV changes in % of 

baseline values. If MCA diameter increased due to neural stimulation, the values reported in Table 1 

and elsewhere would be an underestimate of the true changes in CBF.   



This study was limited to the use of passive arm movement to induce a neurovascular response. We 

have previously demonstrated that active arm movement, or even imagining movement, can lead to 

similar CBFV responses (Salinet et al. 2013; Salinet et al. 2014). Although the active or imagining 

paradigms could  help to identify different aspects of the NVC response, our preference for the use 

of the passive maneuver is its wider applicability, including stroke patients with hemiparesis. 

However, we have not included electromyographic recordings to assess the extent to which active 

muscle contraction might have also taken place during the passive arm maneuvers. 

One important limitation of the multivariate ARMA approach is the sporadic occurrence of step 

responses that are not physiologically consistent. For the CBFV-BP responses, the number of ARI 

estimates rejected were fairly small (Table 3), and in good agreement with other studies based on 

spontaneous changes in BP (Panerai et al. 2016; Patel et al. 2016). For VMRSR , the CBFV-EtCO2 step 

responses also generated negative values in a small number of cases, thus raising questions about 

the feasibility of using the multivariate approach to obtain reliable estimates of CO2 reactivity in all 

subjects (Panerai et al. 2000). One future improvement, that might reduce this problem, is the 

introduction of a pure time delay, to reflect the transit time for PaCO2 to be recorded as EtCO2 at the 

mouth, as adopted in univariate models of the CBFV step response to a rapid change in PaCO2 

(Poulin et al. 1996). The CBFV-STIM step responses also yielded negative values in a small number of 

subjects (Table 3), but in this case interpretation is more complex, because it has been reported that 

despite stimulation individuals can show an absence of the CBFV response or even decreased values 

(Beishon et al. 2018). Further work is needed to identify the reasons behind these non-physiological 

estimates; one strong possibility is the reduced BP or EtCO2 variability in many subjects. As shown in 

Table 1, the mean EtCO2 change, averaged for the duration of stimulation, was not significantly 

different from baseline. However, this result does not exclude intra-stimulation fluctuations in 

EtCO2, as shown in Figs. 2 & 3 and the fraction of CBFV variance explained by EtCO2 (Table2), but 

suggests considerable inter-subject variability in the temporal pattern and amplitude of EtCO2 

changes resulting from stimulation. Despite the limited agreement between estimates of VMRSR 

derived from sG(t) and sO(t), the highly significant correlation coefficients between these estimates 

suggest some degree of consistency that would warrant further studies, for example by adding a few 

breaths of higher concentration of CO2 in air during recordings, to increase the variability of EtCO2 

(Edwards et al. 2004; Maggio et al. 2013). 

The feasibility of TCD to provide information about NVC in humans has been questioned due to the 

poor lateralization obtained, that is not limited to the passive arm movement we adopted in this 

study, but was also reported in a number of other studies, using a diversity of cognitive or 



sensorimotor paradigms (Beishon et al. 2018; Maggio et al. 2013; Maggio et al. 2014; Moody et al. 

2005; Panerai et al. 2012a; Panerai et al. 2005; Panerai et al 2012b; Salinet et al. 2013; Salinet et al. 

2014). In cognitive paradigms, Stroobant and Vingerhoets found differences in a lateralization index 

that was dependent on the type of paradigm adopted (Stroobant and Vingerhoets 2001). The main 

reasons for the limited lateralization of TCD responses are not clear. This and previous studies 

(Duschek et al. 2010; Panerai et al. 2005; Panerai et al. 2012b; Salinet et al. 2013) have 

demonstrated that systemic influences, through concomitant changes in PaCO2 and BP, that would 

influence both DH and NDH changes in CBFV, are likely to be a significant component.  Despite 

removing the contribution of BP and PaCO2, the multivariate model, using either the gate function or 

the orthogonal decomposition, as inputs to reflect neural activation, was not able to improve 

lateralization and this is one key aspect that warrants further investigation. As suggested by one 

reviewer, further insight might be gained by using different paradigms, that separately target areas 

supplied by the MCA and PCA, to assess the discrimination power of the multivariate modelling 

approach.  

 

As a conclusion, we have shown that multivariate modelling of the cerebral haemodynamic response 

to neural stimulation does not necessarily require the use of an empirical gate function to represent 

the input to the NVC component, and can be replaced by a new orthogonal decomposition approach 

that can be built in as part of the ARMA model. Several advantages of the new approach have been 

described, but further work is needed for assessment of its sensitivity and specificity to detect 

alterations in NVC in physiological and clinical studies. 

 

 

 

 

  



APPENDIX 

 

Multivariate modelling of cerebral blood flow velocity responses 

A stimulation function s(t) can be used to represent the neural activation component of the 

repetitive elbow flexion paradigm, with concomitant fluctuations in mean BP and EtCO2 represented 

by p(t) and c(t), respectively. The resulting CBFV response to stimulation, and to the BP and EtCO2 

inputs, v(t) can then be expressed as a linear autoregressive-moving average process (ARMA): 
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where n is the discrete sample number and [Nv, Np, Nc, Nm] are the model orders for each of the 

autoregressive (AR) and moving-average (MA) terms in eq. [1]. ai are the AR coefficients and bj, dr 

and gq are the MA coefficients. 

From previous studies (Maggio et al. 2014; Panerai et al. 2012b; Salinet et al. 2014), suitable model 

orders for the passive elbow flexion paradigm were identified as Nv=2, Np=4, Nc=1 and Nm=1, leading 

to the simplified equation: 
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In earlier studies, s(t) was represented by a gate function, corresponding to the OFF/ON/OFF phases 

of the elbow flexion task, usually taken from the electrical output of a metronome used to maintain 

movement with a repetition rate of 1 Hz. In the new approach proposed, s(t) was expanded as a 

series of orthogonal functions, that is: 

𝑠𝑠(𝑛𝑛) = ∑ 𝑑𝑑𝑚𝑚𝑓𝑓𝑚𝑚(𝑛𝑛)𝑁𝑁𝐹𝐹
𝑚𝑚=1          [3] 

where fm(n) are a set of  NF orthogonal functions and dm are real value coefficients. Substituting eq. 

[3] into [2] results in: 
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The model coefficients ai, bj, d0, g0, and fm  were calculated by least-squares, and, for each of the 

input functions, a corresponding CBFV step response, SRx(n) was calculated by integration of the 

respective coefficients in eq. [4] (Panerai et al. 2012b) where x could be either the BP, EtCO2 or s(t) 

inputs. 

Finally, eq. [4] was used to calculate the predicted CBFV response for each input p(n), c(n) or s(n), 

one at a time, setting the other two inputs to zero, and the fractional contribution fx of each input x 

to the overall CBFV response was calculated as: 

v

x
xf

σ
σ

=           [5] 

where σv is the total variance of v(n) in the time interval [t1,t2] and σx the variance of the predicted 

velocity response due to input x, that is p(n), c(n) or s(n). 

 

  



Table 1. Mean (SD) average changes in parameter values during stimulation, compared with 
preceding baseline.  

Parameter Baseline Stimulation P-value 

CBFVNDH (%) -0.01 (0.05) 8.88 (8.17) <10-5 

CBFVDH (%) -0.01 (0.05) 8.97 (7.08) <10-5 

BP (mmHg) 92.72 (11.29) 94.45 (11.73) 0.00001 

EtCO2 (mmHg) 37.28 (3.53) 37.27 (3.51) 0.87 

Heart rate (bpm) 62.49 (8.86) 63.23 (9.56) 0.08 

sO(t)NDH (a.u.) -0.24 (0.34) 0.45 (0.36) <10-5 

sO(t)DH (a.u.) -0.27 (0.43) 0.51 (0.36) <10-5 

CBFV: normalised cerebral blood flow velocity; BP: mean arterial blood pressure; EtCO2: end-tidal 
CO2; sO(t): activation function identified by orthogonal decomposition (Appendix) ; DH/NDH: 
Dominant/Non-dominant hemispheres. p-value for differences between stimulation and baseline. 

 

 

 

 

Table 2. Mean (SD) of CBFV fractional variance explained by the three distinct inputs, for the two 
different representations of the stimulation function, for each hemisphere. 

 Gate function Orthogonal decomposition 

 NDH DH NDH DH 

BP 0.31 (0.22) 0.31 (0.24) 0.30 (0.20) 0.32 (0.19) 

EtCO2 0.25 (0.20) 0.25 (0.19) 0.18 (0.15) 0.17 (0.14) 

s(t) 0.44 (0.19) 0.44 (0.19) 0.52 (0.17) 0.51 (0.16) 

DH/NDH, Dominant/Non-dominant hemispheres; BP mean arterial blood pressure input; EtCO2: end-
tidal CO2 input; s(t): either gate function or orthogonal decomposition representation of neural 
activation induced by repetitive elbow flexion. 

 

 

 



Table 3. Mean (SD) of autoregulation index (ARI), VMRSR, and STIMSR  for the two different 
representations of the stimulation function. 

 Gate function Orthogonal decomposition 

 NDH DH NDH DH 

ARI 7.32 (1.92) 
(n=52) 

7.28 (1.87) 
(n=52) 

7.37 (1.89) 
(n=54) 

6.91 (2.26) 
(n=53) 

VMRSR 
(%/mmHg) 

3.66 (2.33) 
(n=50) 

3.76 (2.32) 
(n=47) 

4.24 (2.22) 
(n=53) 

4.16 (2.36) 
(n=52) 

STIMSR  
(a.u.) 

7.4 (5.7) 
(n=55) 

8.8 (5.2) 
(n=54) 

11.3 (8.3) 
(n=53) 

11.4 (8.2) 
(n=55) 

VMRSR, mean plateau or the CBFV-EtCO2 step response; DH/NDH, Dominant/Non-dominant 
hemispheres; EtCO2: end-tidal CO2. (n) represents the number of values included in the mean (SD). 
See main text for criteria adopted for rejecting values of ARI or EtCO2  and stimulus (STIM) step 
responses. 

 

  



Figure legends 

Figure 1 – Schematic model of the contribution of blood pressure (BP), dynamic cerebral 
autoregulation (dCA), arterial CO2 (EtCO2), vasomotor reactivity (VMR), neural activation [s(t)], and 
neurovascular coupling (NVC) to the cerebral blood flow velocity (CBFV) response to a passive elbow 
flexion paradigm. A) sG(t) represented by a gate function, usually taken as the electrical output of a 
metronome; B) sO(t) estimated with ARMA model, using orthogonal decomposition (Appendix). 

Figure 2 – Representative recordings of a 75 year-old male subject undergoing passive repetitive 
elbow flexion during the time indicated by the horizontal grey bar. A) normalised CBFV for the right 
(continuous line) and left (dashed line) MCA; B) mean BP, C) end-tidal CO2; D) heart rate; and E) 
model identified activation function for the right (continuous line) and left (dashed line) MCA. 

Figure 3 – Population average of A) normalised CBFV for the non-dominant (NDH, continuous line) 
and dominant (DH, dashed line) hemispheres; B) mean BP, C) End-tidal CO2; D) heart rate; and E) 
Activation function for the NDH (continuous line) and DH (dashed line). The horizontal grey bar 
indicates the duration of the passive repetitive elbow flexion. The error bars represent the largest  ± 
SE at the point of occurrence. 

Figure 4 – Population average CBFV step responses for the non-dominant (A,C,E) and dominant (B, 
D, F) hemispheres for (A, B) BP input; (C, D) EtCO2 input; and (E, F) stimulation input. Estimates 
derived with orthogonal decomposition (continuous line) and gate function (dashed line). The error 
bars represent the largest  ± SE at the point of occurrence. 

Figure 5- Bland-Altman plots of agreement for estimates of ARI (A & B) and VMRSR (C & D), obtained 
with the gate function versus the orthogonal decomposition representation of the stimulation 
function. (A, C) non-dominant; (B, D) dominant hemisphere. The continuous horizontal lines 
represent the bias and the dashed lines the limits of agreement. 
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