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“You never fail, until you stop trying.”

Albert Einstein



Abstract
In this thesis, we introduce a novel consensus-based group decision making (CGDM)
model by integrating the notions of Social Network Analysis (SNA), clustering and
Social Influence Network (SIN). Four main contributions are presented in order to
handle a number of issues in CGDM.

In dealing with the issue of the consistency of preferences, we introduce a con-
sistency operator and construct a consistency control module for the purpose of
securing the correctness of expert preferences. The proposed work guarantees a
sufficient preference consistency level for each expert. In the case of inconsistent
experts, only minimum changes of preferences are required for them to be consis-
tent, depending on their personal level of inconsistency.

The second area of interest focuses on consensus modeling. We develop a novel
consensus model by firstly defining the preference similarity network based on the
structural equivalence concept. Structurally equivalent experts are partitioned
into clusters, thus intra-clusters’ experts are high in density and inter-clusters’
experts are rich in sparsity. A measure of consensus is defined and the consensus
degree of a group of experts obtained reflects the overall agreed solution.

A feedback mechanism is presented in dealing with insufficient consensus. We in-
troduce the influence-based feedback system by incorporating the influence score
measure in nominating a network leader. Our proposed procedure positively in-
fluenced the experts with low consensus contribution to change their preferences
closer to each other, by following recommendations from a network influencer.
This work guarantees a sufficient consensus level with better clustering solution.

Lastly, a procedure of aggregating preferences is laid out whereby the influence
function is used in defining a new fusion operator, which helps to aggregate all
individual expert preferences into a collective one. This is necessary to ensure that
all the properties contained in all the individual preferences are summarized and
appropriately taken into considerations.
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Chapter 1

Overview

1.1 Introduction

A social network is an association of individuals drawn together by interpersonal
relationships, such as family, friends, work or hobby. This term has become very
popular after the successful development of various internet-based social network-
ing websites such as Twitter, Instagram and Facebook. Hundreds of the millions
of users have embraced these sites for communication, business, entertainment
and educational purposes. This online platform allows users to share similar per-
sonal or career activities, knowledge, news and opinions. A related area of study,
named Social Network Analysis (SNA) has emerged in order to model, analyse
and visualise these social network structures and interaction patterns.

A network of interactions between users (experts) also appears in the group decision-
making (GDM) environment. GDM theory is concerned with the description and
analysis of the process by which individual opinions are aggregated into a decision
of the group as a whole. This is necessary to ensure that agreement (consensus)
is achieved before a final decision is executed by them.

In order to develop more accurate and realistic consensus based GDM (CGDM)
models, researchers have come up with the idea of integrating SNA concepts and
properties in this framework. However, this work is least explored and need to be
investigated further.

From the CGDM perspective, another important theory linked to SNA is the Social
Influence Network (SIN). Both SNA and SIN have been developed to achieve a
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sufficient consensus level, where all individual expert opinions are appropriately
considered in obtaining a final decision. However, SIN focuses on the interpersonal
influence process. In this context, conflicting influential opinions can be effectively
managed, revised and induced to be closer to the others, thus a sufficient consensus
state is achieved.

It is common to exchange opinion through interaction in a network, but it will
be difficult to get a high level of consensus when it involves a large number of
users. The clustering technique is one of the promising tools in partitioning a large
number of objects into small groups based on the similarity of certain criterion, for
example opinion, feeling, expertise and motivation. This advantage suggests the
application of the clustering technique in different area of studies, such as SNA
and GDM methodologies.

In this thesis, we place great attention on bridging the gap between CGDM, SNA,
clustering and SIN. Integration of these concepts encouraged us to develop a the-
oretical framework of Consistent Preference Similarity Network Clustering and
Influence Based Consensus Group Decision Making model.

1.2 Motivation

From the existing literature on the CGDM processes, we raise several interesting
subjects to be discussed further. We focus on five main situations or problems,
described in the following.

1. Consistency of expert preferences.

• In decision making, experts give their evaluations (preferences) over
a set of alternatives. Consistent preferences reflect correctness of ex-
pert evaluations, therefore misleading decisions can be avoided. It is
questionable on how to define and measure consistency of expert pref-
erences. We believe that a special consistency operator, that satisfies
certain desirable properties enable us to handle this problem.

• Inconsistency of expert preferences cannot be avoided. In this case, the
inconsistent experts need to be identified and a specific recommendation
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system has to be activated. This situation has prompted our develop-
ment of a promising consistency control module, which guarantees the
consistency degree of the inconsistent experts are improved.

2. Measurement and visualisation of experts’ preference similarities.
One of the important measures in presenting consensus of a group of experts
is their similarity of preferences. Difficulty occurs when they are unable
to envision the degree of their similarity/dissimilarity of preferences to each
other. They cannot clearly visualise the actual distance that they had in their
network connections. We are interested in investigating the development of
a relevant similarity function to measure the similarity of expert preferences.
This information is expected to be used in the construction and visualisation
of the expert network structure.

3. Consensus in GDM.
It is common to have groups of experts and multi-criteria/alternatives in
decision making process, but it is questionable on how to obtain an overall
agreed solution. There is a possibility that some experts may not accept
the decision made because their individual preferences have not considered
appropriately. Thus, it is worth to suggest that experts should engage in
a consensus process where they can discuss and change their preferences
to make them closer to each other in order to obtain a sufficient level of
group agreement. This procedure is expected to be cumbersome and time-
consuming due to diverse opinions from groups of experts. Their preferences
need to be extracted and effectively managed, thus the decision making pro-
cess becomes less expensive. Therefore, the development of a new CGDM
model with capability to handle this situation is necessary. A possible ap-
proach to be explored is a clustering algorithm.

4. Feedback mechanism and generation of advice.

• If the group consensus level is insufficient, it needs to be revised after
identifying a specific expert that disagrees or is against the decision. It
is unreasonable to iterate the consensus process without identifying the
correct person to be advised. This situation will affect the efficiency of
the decision making process and waste other experts’ time.

• If a moderator’s help is needed to improve the consensus, experts or the
system itself should determine who is eligible to be a moderator and
what criteria are required for that chosen person.
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• After specific experts are recognized as inefficient contributors to the
consensus, a special procedure has to be carried out for the revision
objective. What can a moderator do to influence the identified experts
in changing their preferences towards higher consensus level? How does
one generate advice so that experts willingly accept those recommen-
dations?

• As listed above, several problems arised when the consensus state is
insufficient. Thus, an effective feedback mechanism and advice genera-
tion needs to be introduced. We focus on the SIN theory because SIN is
capable to influence inefficient or conflicting experts toward achieving
consensus.

5. Aggregation (fusion) of expert preferences.

• When multi-experts give their evaluations towards alternatives in the
decision making process, there exists a challenge on how to fuse all
expert individuals preferences into a collective one. This issue moti-
vates us to introduce a new fusion operator, inspired by the well-known
proposal of IOWA-based aggregation operators [1].

1.3 Objectives

The main purpose of this research is to propose a novel CGDM model with inte-
gration of the notions from SNA, clustering and SIN frameworks. The Consistent
Preference Similarity Network Clustering and Influence Based CGDM model is
developed, aiming to achieve the following objectives.

1. To introduce a consistency operator, which verifies desirable properties of
consistent preferences.

2. To develop a personalized consistency control module, which will be acti-
vated when the consistency level is insufficient.

3. To measure the similarity of expert preferences and visualise them in an
informative network structure.

4. To propose a new CGDM model with clustering capability.



Overview 6

5. To develop a new feedback mechanism and advice generation procedure by
incorporating the SIN theory.

6. To present a new fusion operator in order to aggregate all individual expert
preferences into a collective one.

1.4 Thesis outline

This thesis comprises five parts.

PART I consists of two chapters. Chapter 1 introduces the research, and details
its main motivation and objectives. A literature review is presented in Chapter 2.

PART II contains Chapter 3, which sets out the research framework.

PART III presents the novel knowledge contributions, which are discussed in de-
tail in four chapters. The proposal of the geo-uninorm consistency control module
is presented in Chapter 4. Chapter 5 discusses on the preference similarity network
clustering based consensus model. The influence-driven feedback mechanism and
the resolution process appear in Chapter 6 and Chapter 7, respectively.

PART IV consists of two chapters. Chapter 8 focuses on the complexity com-
putation of the proposed model and its relevant real-life applications. Chapter 9
comparing our work with other methodologies.

PART V contains Chapter 10, which summarises the main conclusions of the
thesis and discusses possible future work.



Chapter 2

State of the Art

2.1 Consensus Group Decision Making

The decision making process begins with defining and analysing the problem.
Then, all possible alternatives/criteria need to be identified and the individual-
s/experts will evaluate the alternatives based on the considered criteria before
the best alternative will be chosen [2]. This decision making process seems un-
demanding to an individual, however when groups of people/experts are involved
and multi-criteria/alternatives have to be taken into accounts, it becomes complex,
cumbersome and time-consuming.

On the contrary, social psychologists in group performance research suggested that
decisions made by groups tend to be more effective than individuals [3] because
they can discuss systematically and obtain the final decision as representation of
the whole groups’ agreement.

Group decision making (GDM) formally defined as a process with possible alter-
natives to choose from and a group of experts with different background and level
of knowledge who give preferences about them and where they aim to obtain an
overall agreed solution [4, 5].

There exists two categories of GDM problems [6]; homogeneous, where experts’
opinions are equally assessed, and heterogeneous, when the opinions are treated
differently according to their importance. The heterogeneity occurs when experts
have distinct backgrounds, levels of knowledge, experience and expertise about
the issue/problem. As proposed by Yager [7], this situation can be handled by

7
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assigning a weight value to each expert reflecting his/her importance or knowledge
degree about the problem. One way of generating weight is by utilizing experts
opinion as an input in measuring their centrality, which reflects their individual
standard, position or status with respect to the opinion of the group [8].

A GDM procedure involves multi-experts interacting with each other in order to
reach a final decision. An important issue that has to be taken into account is the
level of group agreement before making the decision because some experts may not
accept the decision made because their individual preferences have not considered
appropriately [9, 10]. Thus, it is worth to suggest that experts should engaged
in a consensus process where they can discuss and change their preferences to
make them closer to each other with the purpose of obtaining a high level of group
agreement.

As defined by Saint and Lawson [10] and Herrera-Viedma et al. [11], consensus
is a mutual relationship agreement within a group of experts, where the feasible
solution gives satisfaction to the entire group. The pioneer research on consen-
sus reaching algorithm from a mathematical perspective were done by Coch and
French [12] and French [13].

Conventionally, consensus is considered as a full and unanimity agreement [14], by
assuming values in the interval [0,1], with 0 as no consensus, 1 as full consensus
and the rest of assessments in (0,1) as partial consensus degrees. However, this
objective is unreachable and might not be desirable nor necessary in real situa-
tions, thus the concept of achieving full unanimous consensus was replaced by the
introduction of milder definitions [9], which considered unanimity minus number
of individuals whose disagree on the decision.

Since GDM is human centered, imprecision and vagueness of opinions in consensus
reaching process exists. In order to handle this situation, the consensus based
GDM (CGDM) model in fuzzy environment was first addressed by Regade [15].
Otherwise, people are also willing to accept the consensus when most experts
agree on the preferences associated to the most relevant alternatives. This soft
definition of consensus makes use of fuzzy linguistic quantifier [16], e.g., most leads
the proposal of soft consensus decision making models presented by Kacprzyk and
Fedrizzi [17, 18, 19].

An insufficient consensus state may occur if some experts reject the final decision
made by assuming that their individual preferences are not appropriately taken
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into consideration [9, 10]. Therefore, it is suggested that an appropriate feedback
mechanism procedure need to be activated, where experts can discuss and modify
their preferences closer to each other for the purpose of achieving enough consensus
level.

The appointment of a consensus moderator as an advisor in giving advices on how
to change the expert preferences with low contribution to consensus toward the
collective one is necessary, thus group consensus state is improved [20]. Recently,
advanced models based on interactive tools or systems that substitute the role of
a consensus moderator are then introduced [21, 22, 23, 24, 25, 26, 27], enabling
the consensus reaching processes are automatically carried out.

Generally, the CGDM procedure involves six main stages, described as follows:

1. Define, analyse the problem and identify the alternatives : The problem to
be solved is presented to the experts, along with the possible alternatives
they have to choose the best one.

2. Experts’ discussion: Experts may discuss and share their knowledge, ex-
pertise or experience about the problem and alternatives for the purpose of
assisting the process of latterly providing their opinions.

3. Experts preferences : Experts evaluate the alternatives in the form of some
preference representation formats. Uniformity of information procedure need
to be done here if different formats are expressed by the individual experts.

4. Measure of consensus : The moderator receives all the experts’ preferences
and computes some consensus measures, such as consensus degree, proxim-
ity degree and consistency measure. The moderator then identifies whether
the consensus/consistency level is enough or not. If an enough consensus/-
consistency state has been achieved, the consensus process ends and the
selection procedure begins with two continuous phases; fusion (aggregation)
and exploitation. Otherwise, next step should be carried out.

5. Feedback mechanism: Based on collection of all the information (experts’
preferences, consensus criteria, consistency level), the moderator identifies
those experts and preference values that are contributing less to consensus.

6. Generation of advice: The moderator generates recommendation, guidance
or advice in order to help the experts in changing their opinions so as facil-
itating the reach of consensus. The advice provided to the experts will be
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used in the next discussion process to approach their points of view (Step 2).

2.2 Fuzzy Set Theory

When discussing human capability as decision makers, it is common that people
tend to use words or language during conversations. For example, a student tells
his/her friends about the classroom’s temperature, it makes more sense to say this
classroom is cold than this classroom temperature is 5oC. Similarly, we prefer to
say the bag is heavy rather than the bag is 20 kg weight. Words like cold and
heavy make our conversation more meaningful and close to human perception and
intuition.

However, words used in human thought processes are found uncertain, vague and
imprecise in many ways. Vagueness and imprecision in any notions exist when its
meaning is not fixed by sharp boundaries [28] and difficult to categorize into a
specific class. For instance, flowers, trees, vegetables etc. can clearly categorized
as the class of plants and exclude its members such objects like cats, mountains,
rivers, etc. However, it is ambiguous to classify algae and fungi into plants’ class
because they do not precisely verify membership criteria of plants.

Due to this lack of information in modeling language and human reasoning, Lotfi
A. Zadeh [29] first introduced fuzzy set theory (FST). From mathematical point of
view, FST is an extension of classical set theory. The boundary of a classical set
is sharp or well-defined, meaning that each element either belongs to (member) or
does not belong (non-member) to a given set. A classical set assigns a membership
of 1 to elements which are members of a set, and 0 to those which are not. In
other words, if x ∈ A is true, then x /∈ A is false.

For example, by using the classical way of evaluating social relationship, a network
can only be considered as has relation or no relation. This situation shows that
every set must be precise and well-defined. However, words like strong and weak
relationship are normally used in real life, expressing that they are not precise in
nature and carry a certain amount of fuzziness.

Fuzzy sets, though, capture this vagueness by characterizing the set membership
to some degree, represented by a membership function as presented in below def-
inition.
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Definition 2.2.1. A fuzzy set B of a universe of discourse X is characterized by its
membership function

µB(x) : X → [0, 1]

where µB(x) is the degree of membership of an element x in B for each x ∈ X

[29].

In fuzzy set, the value of an element is defined in terms of 0 to 1 interval de-
grees. If 0 is false, a value approaching 0 means the value is becoming ‘false’.
If 1 is denoted as true, a value approaching 1 means the value is approaching
‘true’. For instance, if µrelationship(x) is the membership function of relationship
and x is the measurement to indicate social network relations, then the closer the
value of µrelationship(x) is to 1, the more x belongs to relationship and the closer
µrelationship(x) is to 0, the less x belongs to relationship.

Human preferences may not be appropriately represented by crisp values. There-
fore, a linguistic variable which is expressed in terms of fuzzy numbers could be
more realistic approach in handling this problem. Linguistic variables such as
very weak, weak, fair, strong and very strong are normally used to measure social
network relationship regarding certain conditions or situations. According to Asai
[30], the linguistic variable can be defined as:

Definition 2.2.2. A linguistic variable is characterized by a quintuple

(x, T (x), U,G,M)

where x is the name of linguistic variable, T (x) is the term set of x, that is, the
set of names of linguistic values of x with each value being a fuzzy number defined
on U , U is the universal set or universe of discourse, G is a syntactic rule for
generating the names of value of x and M is a semantic rule for associating each
value with its meaning.

As an example, the linguistic variable, social relation in a network can take lin-
guistic terms very weak, weak, fair, strong and very strong as its linguistic values.
Thus,

T (social relation) = {very weak, weak, fair, strong, very strong}.

Fig. 2.1 illustrates the linguistic variable on the universal set, U .
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Figure 2.1: The linguistic variable on the universal set, U

It describes the graph of the function representing the linguistic value for the
linguistic variable, T (social relation) in a universe of discourse U = [0, 100]. The
syntactic rule, G generates very weak for scores obtained below 10, weak for scores
between 10 to 30, fair for scores between 30 to 70, strong for scores between 50
to 90 and very strong for scores above 70. The semantic rule, M is the linguistic
hedges, defined by the terms of very weak, weak, fair, strong and very strong.

2.3 Elementary of Preferences

In decision making, there exist various preference representation formats that can
be used by experts in expressing their opinions over a set of alternatives. These
preferences have their own characteristics, which are able to perform their consis-
tencies and similarities based on the certain functions or measures.

2.3.1 Preference Representation Formats

In real life, experts may have different backgrounds, motivation, levels of knowl-
edge and expertise in certain areas. Thus, it is reasonable to assume that they
might express their opinions or preferences over alternatives using different formats
of representation, whether in numerical or linguistic forms.
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Numerically, non-fuzzy preferences may be expressed in terms of the set of pre-
ferred alternatives (choice set), preference relations or utility functions (cardinal)
[31]. For fuzzy preferences, it can be considered as fuzzy choice sets, fuzzy prefer-
ence relations and fuzzy utility functions, as defined in the following:

• Preference ordering (choice set): The alternatives are ranked from the best
to the worst, without other additional information will be given.

• Fuzzy preference relations (FPR): Binary relation over the set of alternatives
is given by the expert, by means of, to what degree an alternative is preferred
to another (pair-wise comparison).

• Utility function: An expert provides a real evaluation (physical or monetary
value) for each alternative, i.e., a function that conjoins each alternative
with a real number implying the performance of that alternative based on
his/her judgement. The utility values can be presented in various ways, such
as ordinal, ratio, interval and difference.

Another representation format introduced in recent years is reciprocal preference
relation (RPR). The concept of RPR, that represents the intensities of preferences
was proposed by Bezdek et al. [32], comprehensively interpreted in Nurmi [33]
and broadly studied in [34, 35, 36, 37, 38, 39, 40, 41].

The RPR is related to a fuzzy binary relation and the definitions are stated as
follows:

Definition 2.3.1. Let a finite set of alternatives, X = {x1, x2, . . . , xn} (n > 2) be a
non empty set. A fuzzy binary relation R on X is a fuzzy subset of the Cartesian
product X × X characterized by a membership function µR : X × X −→ [0, 1],
where µR (xi, xj) = rij represents the strength of the relation between xi and xj.

Definition 2.3.2. A RPR on X is a fuzzy binary relation P where the preference
intensity of alternative xi over alternative xj, µP (xi, xj) = pij, verifies µP (xi, xi) =

0.5 ∀xi ∈ X and pij + pji = 1, ∀xi, xj ∈ X.

According to Definition 2.3.2, an expert not only declares his/her preference on
alternative xi over xj, but also establishes the intensity of preference by providing
the value of pij. The higher pij, the higher the preference intensity of alternative
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xi over xj. The associated semantic for the unit interval of a RPR is assumed to
be as follows:

pij =



0 if xj is definitely preferred to xi
pij ∈ [0, 0.5] if xj is preferred to xi
0.5 if xi and xj are equally preferred (indifference)
pij ∈ [0.5, 1] if xi is preferred to xj
1 if xi is definitely preferred to xj

Let Pn×n denotes the set of n× n matrices P constructed from all RPR on X:

P =


p11 p12 . . . p1n

p21 p22 . . . p2n
...

... . . . ...
pn1 pn2 . . . pnn


verifying: 0 ≤ pij ≤ 1 and pij + pji = 1 for i, j ∈ {1, 2, . . . , n}.

The RPR can also be mathematically represented by means of a vector known as
the intensity preference vector (IPV) [42].

Definition 2.3.3. The intensity preference vector (IPV) of a RPR P = (pij)n×n ∈
Pn×n is the vector of dimension n(n − 1)/2, V ∈ Rn(n−1)/2, with elements above
its main diagonal:

V =
(
p12, p13, . . . , p1n, p23, . . . , p2n, . . . , p(n−1)n

)
=
(
v1, v2, . . . , vr, . . . , vn(n−1)/2

)
.

The reciprocity property [43] allows the use of the preference values below the
main diagonal of P as components of its intensity preference vector:

Vlower =
(
p21, p31, . . . , pn1, p32, . . . , pn2, . . . , pn(n−1)

)
.

Notice that the representation of RPR in terms of preference intensities in fuzzy
set theory is referred as reciprocal fuzzy preference relations (RFPR), which are a
particular case of (weakly) complete FPR, i.e. FPR satisfying pij + pji ≥ 1,∀i, j.
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2.3.2 Consistency of Preferences

Consistency of preferences becomes one of the necessary consensus criterion in
GDM, where its appropriate integration ables to avoid misleading solutions and to
estimate unknown or missing information [44, 45, 46, 47]. When experts give their
evaluation towards alternatives, there exist three hierarchical levels of rationality
assumption;

Level 1. Indifference – indifference when comparing an alternative xi and itself xi;
Level 2. Asymmetry – an expert cannot prefer alternative xi to alternative xj and
alternative xj to xi simultaneously;
Level 3. Transitivity – if an expert prefers alternative xi to alternative xj, and
prefers alternative xj to alternative xk then this expert should prefer alternative
xi to alternative xk.

Reciprocity property in the pairwise comparison of two alternatives is verified at
Level 1 and 2, as declared by Saaty [43] as a ‘reasonable assumption’ for pairing
purpose. In the case of preference relations, it is classified as consistent when Level
3 is satisfied, in such a way that the transitivity in the pairwise comparison among
any three alternatives is guaranteed, commonly known as consistency property.

Particularly, transitivity explains that ‘if alternative xi is preferred to alternative
xj (pij ≥ 0.5) and this one to xk (pjk ≥ 0.5) then alternative xi should be preferred
to xk (pik ≥ 0.5)’. This kind of transitivity is known as weak stochastic transitivity
[48].

Other models under transitivity of RPR have been introduced and widely used
in the literature, such as min transitivity, moderate stochastic transitivity, max
transitivity, strong stochastic transitivity, additive transitivity and multiplicative
transitivity.

• Min transitivity [31]:
pik ≥ min {pij, pjk} ∀i, j, k.

• Moderate stochastic transitivity [31, 48, 49]:
min {pij, pjk} ≥ 0.5⇒ pik ≥ min {pij, pjk} ∀i, j, k.

• Max transitivity [31]:
pik ≥ max {pij, pjk} ∀i, j, k.
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• Strong stochastic transitivity [31, 48, 49]:
min {pij, pjk} ≥ 0.5⇒ pik ≥ max {pij, pjk} ∀i, j, k.

• Additive transitivity [48]:
(pij − 0.5) + (pjk − 0.5) = pik − 0.5 ∀i, j, k.

• Multiplicative transitivity [31, 48, 49]:
pij, pjk, pki /∈ {0, 1} ⇒ pij · pjk · pki = pik · pkj · pji ∀i, j, k.

Related to reciprocity property, Chiclana et al. [34] revealed that max transitivity
is only feasible for equally preferred alternatives and additive transitivity is con-
flicting with the unit interval scale, which makes both properties irrelevant to be
utilized in modeling consistency of RPR.

Literally, when consistency of preferences is designed as the ‘cardinal consistency
in the strength of preferences’, which was stated by Saaty in [43, page 7] as

“not merely the traditional requirement of the transitivity of prefer-
ences [. . . ], but the actual intensity with which the preference is ex-
pressed transits through the sequence of objects in comparison,”

Chiclana et al. [34] argued that consistency of RPR can be theoretically modeled
by means of a functional equation,

pik = f (pij, pjk) ∀i, j, k. (2.1)

being f a function f : [0, 1]× [0, 1] −→ [0, 1].

The function of f imposed the following properties [34]:

• Monotonicity:
f (x, y) ≥ f

(
x
′
, y
′) if x ≥ x

′ and y ≥ y
′
.

• Associativity:
f (f (x, y) , z) = f (x, f (y, z)) ∀i, j, k.

• Reciprocity:
f (x, y) + f (1− y, 1− x) = 1 ∀ (x, y) ∈ [0, 1]× [0, 1] \ {(0, 1) , (1, 0)} .

• Identity element:
f (0.5, x) = f (x, 0.5) = x ∀x ∈ [0, 1] .
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• Continuity:
f is continuous in [0, 1]× [0, 1] \ {(0, 1) , (1, 0)} .

• Cancellative:
f (x, y) = f (x, z)

∧
f (y, x) = f (z, x) ∀x ∈ ]0, 1[⇒ y = z.

Equation 2.1 is proven having the set of self-dual representable uninorms [50] as
its solution.

Proposition 2.1. Let P = (pij) be a RPR. A function f : [0, 1]× [0, 1] −→ [0, 1]

verifying pik = f (pij, pjk) (∀i, j, k) is self-dual, i.e.

f (x, y) + f (1− y, 1− x) = 1 ∀x, y ∈ [0, 1] .

Yager and Rybalov [50] firstly introduced uninorms as a generalization of the t-
norm and t-conorm, where it supported by almost associativity, continuity and
monotonicity conditions.

A t-norm, T [50], is a mapping, T : [0, 1] × [0, 1] −→ [0, 1] having the following
properties:

• Commutativity:
T (x, y) = T (y, x).

• Monotonicity:
T (x, y) ≥ T

(
x
′
, y
′) if x ≥ x

′ and y ≥ y
′ .

• Associativity:
T
(
x, T

(
y, x

′))
= T

(
T (x, y) , x

′).
• Boundary:
T (x, 1) = x.

Examples of t-norm functions, satisfying the above properties are Łukasiewicz t-
norm, G̈odel t-norm, Product t-norm and Drastic-Product t-norm [51].

A t-conorm, S [50], is a mapping, S : [0, 1] × [0, 1] −→ [0, 1] having the following
properties:

• Commutativity:
S (x, y) = S (y, x).
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• Monotonicity:
S (x, y) ≥ S

(
x
′
, y
′) if x ≥ x

′ and y ≥ y
′ .

• Associativity:
S
(
x, S

(
y, x

′))
= S

(
S (x, y) , x

′).
• Boundary:
S (x, 0) = x.

Bounded sum, Maximum and Probabilistic sum are some of the t-conorm functions
[51].

A uninorm, U [50], is a mapping, U : [0, 1] × [0, 1] −→ [0, 1] having the following
properties:

• Commutativity:
U (x, y) = U (y, x).

• Monotonicity:
U (x, y) ≥ U

(
x
′
, y
′) if x ≥ x

′ and y ≥ y
′ .

• Associativity:
U
(
x, U

(
y, x

′))
= U

(
U (x, y) , x

′).
• Identity:

There exists some elements e ∈ [0, 1] called the identity element such that
for all x ∈ [0, 1] , U (x, e) = x .

Other than cross-ratio uninorm, the Least and Greatest Uninorms [51] are also
considered as uninorm functions, which satisfy above properties.

Consistency of preferences are measured from the initial evaluations provided by
experts over alternatives in order to avoid misleading solution in the decision
making process [38, 52] and guarantee the final decision solution is acceptable
by a group of experts as a whole. For the purpose of achieving both objectives
(consistency and consensus), the following consecutive steps must be applied:

(1) achieving a minimum threshold of expert’s preference consistency level; and
(2) achieving a minimum threshold of experts group consensus level .
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The threshold value represents a minimum satisfied level of consistency or consen-
sus, set up by the group of experts and this particular value must be high enough
(the closer to one the better).

If low consistency level is obtained i.e., it is below the minimum threshold level of
consistency, the consistency control system need to be implemented, in such a way
that a sufficient consistency state is achieved [53, 54]. This step is strictly applied
before securing consensus to avoid divergence of the previously agreed consensus
position and leading to rejection of the final solution.

2.3.3 Similarity/dissimilarity of Preferences

Measurement of preference similarity/dissimilarity in consensus reaching process
is purposely conducted to determine how close experts’ preferences with each other
and between experts in a group with the collective ones [55, 56]. General definitions
of dissimilarity (distance) and similarity functions are provided below:

Definition 2.3.4. Let B be a set. A function D : B × B → R is called a distance
(or disimilarity) on B if, for all x, y ∈ B, there holds properties of non-negativity
(D(x, y) ≥ 0), symmetry (D(x, y) = D(y, x)) and reflexivity (D(x, x) = 0) [57].

Definition 2.3.5. Let B be a set. A function S : B×B → R is called a similarity on
B if S is non-negative, symmetric, and if S(x, y) ≤ S(x, x) holds for all x, y ∈ B,
with equality if and only if x = y [57].

The transformation of dissimilarity (distance) and similarity bounded by 1 [57]
can be done by:

D = 1− S;D =
1− S
S

;D =
√

1− S;D =
√

2(1− S)2;D = arccosS;D = − lnS.

The most common dissimilarity functions implemented in consensus processes are
Manhattan, Euclidean, Cosine, Dice and Jaccard. Let u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) be two vectors of real numbers.

• Manhattan, dM :

dM (u, v) =
n∑
i=1

| ui − vi | .
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• Euclidean, dE:

dE (u, v) =

√
n∑
i=1

| ui − vi |2.

• Cosine, dC :

dC (u, v) =

n∑
i=1

ui · vi√
n∑
i=1

u2i ·
√

n∑
i=1

v2i

.

• Dice, dD:

dD (u, v) =

2 ·
n∑
i=1

ui · vi
n∑
i=1

u2i +
n∑
i=1

v2i

.

• Jaccard, dJ :

dJ (u, v) =

n∑
i=1

ui · vi
n∑
i=1

u2i +
n∑
i=1

v2i −
n∑
i=1

ui · vi
.

The above functions were analysed in three different levels of expert evaluations:
pairs of alternatives, alternatives and relations [20]. Rather than the similari-
ty/dissimilarity functions, alternative measurements have been proposed in deter-
mining the closeness of experts’ preferences and the consensus state level, such as
in [58, 59, 60].

2.4 Feedback System and Advice Generation

The feedback mechanism and generation of advice needs to be activated when the
consensus level is insufficient. Formulations of feedback mechanism in consensus
reaching processes are categorized into two approaches: traditional and moderator-
based methods. On the one hand, matrix calculus or Markov chains has been
used to model the time evolution of changes of preferences toward the consensus
[12, 13, 61]. The second, consensus process supported by a moderator, act as an
advisor to the experts in modifying their preferences and controlling the consensus
state.
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Several consensus models based on feedback mechanism (with a moderator) can
be found in [17, 62, 63, 64, 20]. However, difficulty will happen if experts decide
not to accept the recommendations from the moderator. Medium to persuade the
experts to follow the moderator advices need to be taken into account, so that
enough consensus level can be achieved.

A recent study that considers the weapon of influence in psychology into negotia-
tion was carried out to change the individual attitudes, beliefs or the behaviour,
voluntarily without any force or pressure. Perez et al. [65] developed a feedback
mechanism, where points of references were obtained for the purpose of urging the
discussion towards optimal and consensus solution that limits the gap between
experts’ positions.

Since a moderator is a human, thus there exist some subjectivity in the consensus
control process, such as he/she might include bias on giving the advice or recom-
mendation to the experts. Therefore, advanced consensus approaches have been
developed in order to substitute the roles of moderator, in such a way that the
consensus process can be carried out automatically.

Herrera-Viedma et al. [66] designed a consensus support system for guiding the
consensus process based on the consensus measure and assisting feedback mech-
anism using the proximity measure. Herrera-Viedma et al. [67] presented an
automated consensus tool based on a multi-granular linguistic methodology, con-
sensus degree and proximity measure as consensus criteria and guidance advice
system in feedback mechanism phase. Other similar automated consensus control
systems can be referred further in Herrera-Viedma et al. [21] and Cabrerizo et al.
[22].

It is known that the moderator will act as a leader to bring experts’ opinions closer
to the consensus, which means the moderator knows the actual level of group
agreement, which experts are contributed less to consensus and which experts
need more advice than others. Since the moderator is not essential in automated
consensus systems, experts cannot visualise their current state of agreement and
they might have problems to identify who is not contributing towards the consensus
or who is not giving full cooperation during discussion.

Wu and Chiclana [24] proposed the information feedback mechanism in terms of
automated visualization to investigate the corresponding experts and alternative
preferences that less contribute to the consensus. The simulation provides rec-
ommendation towards better consensus direction and presented simulated future
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consensus scenarios using graphical representations if the suggested changes were
fully implemented. By providing more information to the experts, this model prac-
tised voluntarily mechanism in changing opinion and revisits the decision without
any pressure.

2.5 Resolution Process

When group consensus is sufficient, it means that experts individual preferences
have been considered appropriately and the feasible solution obtained in the res-
olution process will give satisfaction to the entire group. The resolution process
involves two main procedures: Fusion phase and ranking of alternatives. Experts’
opinions will be collectively aggregated in the fusion phase and a final ranking of
alternatives will be derived afterwards.

2.5.1 Fusion of Preferences

Fusion or aggregation phase in CGDM process consists of combination of the ex-
perts’ individual preferences into a collective one, thus all the properties contained
in all the individual preferences are summarized and appropriately taken into con-
siderations. There exist two (2) situations where fusion of information step is
needed:

1. Heterogeneous preference representation formats - In real life, experts are al-
lowed to give evaluations over alternatives in various ways, such as ordering,
utility functions or preference relations. These preferences must be trans-
formed into one particular preference structure as the aggregation base, thus
all preferences are homogeneous. Several successful proposals in handling
this problem were presented in [68, 69, 70, 71] and a brief survey on the
fusion process for heterogeneous preference structures was done by [72].

2. Heterogeneous experts’ importance weights - Due to different background,
motivations, knowledge and expertise, experts are having different impor-
tance weights. Other than that, different experts’ weights can be assigned
depending on their behaviours or positions with respect to the group’s opin-
ion position [73]. Therefore, appropriate aggregation operators need to be
utilized in order to properly handle the weights assigned to each of them.
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One of the powerful tools proposed in the literature is OWA operator, in-
troduced by Yager in 1988 [74] and the evolution of the OWA-based fusion
studies are progressively emerged.

Definition 2.5.1. An OWA operator of dimension n is a function φ : Rn −→ R
that has associated a set of weights or weighting vector, W = (ω1, . . . , ωn) to it,

so that ωi ∈ [0, 1] and
n∑
i=1

ωi = 1, and is defined to fuse a list of values {p1, . . . , pn}

according to the following expression,

φ (p1, . . . , pn) =
n∑
i=1

ωi · pσ(i)

being σ : {1, . . . , n} −→ {1, . . . , n} a permutation such that pσ(i) ≥ pσ(i+1), ∀i =

1, . . . , n− 1, i.e., pσ(i) is the i-th highest value in the set {p1, . . . , pn} [74].

It is questionable in the definition of the OWA operator on how to get the as-
sociated weighting vector and Yager [74] provided two solutions on this matter.
Firstly, by utilization of some kind of learning mechanism using some sample data.
Secondly, by giving some semantics or meaning to the weights, which leads to the
application of quantifier guided aggregations [75].

Quantifiers can be applied to express the amount of items satisfying a given predi-
cate, where in decision making context, it indicates that the proportion of satisfied
criteria ‘necessary for a good solution’ [76]. Yager linked the concept of fuzzy ma-
jority in OWA-based fusion functions, represented by natural language expressions
such as ‘most of ’, ‘all’, ‘many’, ‘at most one’, ‘few’ and many more. These quan-
tifiers are categorized into two: regular increasing monotone (RIM), such as ‘most
of ’, ‘all’, ‘many’ and regular decreasing monotone (RDM), such as ‘at most one’
and ‘few’.

Experts’ weights vector are generated through the mathematical formulation of
the fuzzy majority concept via an appropriate quantifier membership function
Q, known as quantifier guided linguistic OWA operators. In this research, we use
fuzzy linguistic quantifier most of represented by the parameterized family of RIM
quantifiers [76],

Q (r) = r
1
2 . (2.2)
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This type of RIM function guarantees that all experts contribute to the final fusion
value because it is a strictly increasing function [6]. In addition, the higher the
ranking of a value, the higher the weighting value associated to it.

The OWA weights generated based on a regular increasing monotone (RIM) quan-
tifier, Q : [0, 1] → [0, 1] such that Q (0) = 0, Q (1) = 1 and if x > y then
Q (x) ≥ Q (y) represent the proportion of criteria satisfied by an alternative [74]:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n. (2.3)

This concept was improved by providing the evaluation procedure of the overall
satisfaction of ‘Q important criteria or experts’ (µk or ek) by an alternative xj [76]
using the following expression:

wi = Q


i∑

k=1

µσ (k)

D

−Q


i−1∑
k=1

µσ (k)

D

 (2.4)

where D =
n∑
k=1

µk is the total sum of importance and σ is the permutation applied

to obtain the ordering of the values to be fused.

The extension work of OWA operator, Induced OWA (IOWA) had been done
by Yager and Filev [1], where the reordering step of the argument variable is
induced upon the magnitude of an additional variable, known as the order inducing
variable. The formulation of IOWA operator is presented as:

Definition 2.5.2. An IOWA operator of dimension n is a function ΦW : (R× R)n −→
R, to which a set of weights or weighting vector is associated W = (ω1, . . . , ωn)

such that ωi ∈ [0, 1] and
∑
i

ωi = 1, and it is defined to fuse the set of second

arguments of a list of n 2-tuples {〈µ1, p1〉 , . . . , 〈µn, pn〉} according to the following
expression,

ΦW {〈µ1, p1〉 , . . . , 〈µn, pn〉} =
n∑
i=1

ωi · pσ(i)

being σ : {1, . . . , n} −→ {1, . . . , n} a permutation such that µσ(i) ≥ µσ(i+1), ∀i =

1, . . . , n − 1, i.e.,
〈
µσ(i), pσ(i)

〉
is the 2-tuple with µσ(i) the i-th highest value in

the set {µ1, . . . , µn} .
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Based on above definition, the reordering of the set of values to fuse, {p1, . . . , pn}
is induced by the reordering of the set of associated values {µ1, . . . , µn}, where
it is based upon their magnitude. Specifically, the set of values {µ1, . . . , µn} is
known as an order inducing variable and {p1, . . . , pn} is the value of the argument
variable [1].

It is clear that the OWA operator is different with IOWA operator in terms of the
reordering step of the argument variable. The reordering of the OWA operator is
based upon the magnitude of the values to be fused. For IOWA operator, an order
inducing variable has to be used as the criterion to induce that reordering. Notice
that the IOWA operator is reduced to the OWA operator if the order inducing
variable is the argument variable [6].

Since reordering of the argument to be aggregated by means of additional order
inducing variables is a foundation feature of IOWA-based operators, many re-
searchers are motivated to propose extended versions of it [77, 78, 79, 6, 80, 81, 82].
It seems reliable to introduce some semantic meaning in these techniques, therefore
the fusion phase can be effectively controlled.

2.5.2 Ranking of Alternatives

Ranking of alternatives, also known as an exploitation procedure can be carried
out after the individual expert preferences are successfully fused into a collective
form. The objective of implementing this step is to select the best alternative(s)
that acceptable by the majority Q of the most important experts.

By means of the OWA operator guided by the linguistic quantifier Q, the Quan-
tifier Guided Dominance Degree (QGDD) or Quantifier Guided Non-Dominance
Degree (QGNDD) [68] can be utilized. Formal definitions of QGDD and QGNDD
are stated as follows:

Definition 2.5.3. Given a preference relation P c =
(
pcij
)
on a finite set of alterna-

tives X = {x1, x2, . . . , xn}, the quantifier guided dominance degree, QGDD (xi),
quantifies the dominance that an alternative xi has over all the other alternatives
in a fuzzy majority sense as:

QGDD (xi) = ΦQ

(
pcij, j = 1, . . . , n, j 6= i

)
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where ΦQ is an OWA operator guided by the linguistic quantifier Q representing
the fuzzy majority concept.

Definition 2.5.4. The quantifier guided non-dominance degree (QGNDD) quanti-
fies the degree to which the alternative xi is not dominated by a fuzzy majority of
the remaining alternative as:

QGNDD (xi) = ΦQ

(
1− psji, j = 1, . . . , n, j 6= i

)
where psji = max {pji − pij, 0} represents the degree to which xi is strictly domi-
nated by xj.

The final ranking solution is then determined according to the following expres-
sions, where the elements of the set,

XQGDD = {x | x ∈ X, QGDD (x) = supx∈X QGDD (x)} (2.5)

are called the maximum dominance elements of the fuzzy majority of X quantified
by Q

and,

XQGNDD = {x | x ∈ X, QGNDD (x) = supx∈X QGNDD (x)} (2.6)

are called maximum non-dominated elements by the fuzzy majority of X quanti-
fied by Q.

2.6 New Direction to Consensus

Most CGDM models have been dealing with few number of experts, because nor-
mally important decisions are only made by professional, skillful and authorized
person in the companies, administrations or organizations. However, current elec-
tronic technology and society demands lead us to a large-scale group decision



State of the Art 27

making paradigms, like social networks (Facebook, Instagram, Twitter, etc.) and
Web 2.0 (Wikipedia, Amazon online store, blogs, forums, etc.).

Some characteristics of these technologies [23] make CGDM processes complicated,
difficult to manage and may require high cost to carried out, such as:

• Large user base: These technologies might have thousands of users, thus
a large and diverse amount of opinions are unmanageable, difficult to be
extracted and utilized in obtaining a final decision about certain issue/prob-
lem.

• Heterogeneous user base: Users may come from different backgrounds, expe-
riences and level of knowledge, so it is unfair to treat each opinion equally
in the decision process. Other than that, heterogeneity also may exist in
the form of different representation formats provided by the web. For ex-
ample, some users prefer to use numerical ratings, others may like linguistic
assessments.

• Unstable contribution rates : Due to a large number of users, it is impossible
to ensure all users will take part in the decision process. Some of them
may collaborate half-way and others continue their contributions. These
situations develop unstable, temporarily and partial collaboration rates to
the whole decision procedures.

• Real time communications : These technologies mostly support real time
communications among its members, such as voting events or surveys. Time
given to the users is also limited and it is not easy to run second round of
consensus if there exist a problem in first one.

• Difficulty to form trust relations : Normally, most users on the web do not
know each other personally, therefore trust is difficult to build around them.
Trust is one of the necessary elements in obtaining high consensus or agree-
ment among groups of users.

• Effect of external factors (influence): Online stores mostly implement the
recommendation system to their users about related/similar products that
might interest them to buy. Rather than this automated recommendation,
there exist external factors, which will influence the users to/not to buy a
certain product, such as peer-reviews, reduction price in physical store, trial
kit service and so on.
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2.6.1 Social Network Analysis

Social Network Analysis (SNA) in social science focuses on the relationships, struc-
tures and patterns of social bodies and it has become popular in different areas
including but not limited to politics, economics, environment, health and finance.
Barnes [83] first introduced the use of the social network term and Harary [84][85]
and Lorrain and White [86] developed pioneer theories on mathematical social
networks perspectives. Early contributions of SNA in group problem solving and
community elite decision making have been investigated in Bavelas [87], Leavitt
[88], Laumann et al. [89] and Laumann and Pappi [90].

Essential focus on SNA is correlated to the structures and patterns formed by the
nodes (actors or group) connected by the links that represent their relationships or
flow. Previously, SNA considered crisp binary relation of the links between nodes,
expressed by 1 (exists relation) or 0 (no relation).

In order to cater to the vagueness in the network that exists in reality, such as
strong or weak relation, this hard definition is not suitable. Therefore, fuzzy set
theory introduced by Zadeh [29] is used in defining several social network terms
linguistically, such as fuzzy links, fuzzy relation, fuzzy connection, fuzzy network
and so on. Fuzzy Social Network Analysis (FSNA) is then introduced and some
related studies were proposed, including fuzzy social relational networks [91], fuzzy
technology innovation networks [92] and directed fuzzy social networks [93].

Another interesting area of study related to SNA methodology is network interac-
tions between individual and group of users/experts, that contributes to sufficient
agreement level in decision making processes. Thus, integration of SNA proper-
ties, such as centrality, adjacency, trust statements, prestige and structural balance
in the construction of consensual decision making models are recently presented
[35, 94, 95, 96, 97, 98, 99, 100, 101, 26, 102, 103, 104, 105].

Brief discussion and informative overview on consensus reaching decision making
within social network environments can be found in Herrera-Viedma et al. [106].
The challenges of huge number of users, heterogeneous user background with dif-
ferent importance weights, low contribution and involvement rates, intermittent
contributions and real time communication in societal technologies were success-
fully clarified by [23, 107, 108].
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2.6.2 Clustering Algorithms

One way of managing large number of users in social network environment is by
utilizing clustering techniques [109, 110, 111, 112, 103]. Users will be partitioned
into subgroups, thus complex interactions of opinion exchange in a network are
effectively treated.

In the context of consensus decision making, clustering approach is able to parti-
tion a finite set of individual experts into clusters (subgroups) by means of prefer-
ences similarity measures. This concept allocates experts with similar preferences
in the same cluster, which closer to each other and being far from other experts
with different preferences and cluster(s). Recent models development based on
clustering methodologies in decision making frameworks have been done by Per-
ony et al. [113], Garcia-Lapresta and Perez-Roman [114, 115, 116], Abel et al.
[117], Li et al. [118] and Palomares et al. [119].

2.6.3 Social Influence Network

Social influence network (SIN) has been developed continuously since the 1950s
by French [13], Harary [61], DeGroot [120] and Friedkin and Johnsen [121] and
it is one of the important fields that is directly linked to CGDM and SNA. The
attention of the researchers is quite similar, which is to achieve the global consensus
that represents solid agreement of a group. However, SIN focuses on interpersonal
influence process, where experts are able to manage the conflicting influential
opinions by revising it and then, they can induce the others to behave in a similar
way.

Friedkin and Johnsen [122] pointed out two main problems in SIN that effect
attitudes and opinions of the experts toward group agreement. First, how ex-
perts change their opinions and influence the others and second, how to develop
structure of social influence models with better configuration and strengthen the
interpersonal influence processes.

For the case of GDM, social influence is clarified by changes of attitudes, thoughts,
feelings, characters or behaviors of expert(s), if there exist interaction from another
expert in a group [123]. It is believed that experts’ preferences are possible to
be modified due to the social influence factor during interactions, discussions or
opinion exchange in a network.
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In recent times, influence-based consensus decision making models proposed sev-
eral measurements of social influence, including the normalization of network’s tie
strength [123], normalization of numerical trust level [35, 105] and estimation from
initial experts’ opinions over alternatives [95, 104].

Perez et al. [95] and Capuano et al. [104] modelled influence processes in GDM by
utilization of the recursive definition from [122]. Let a set of experts, E having an
m×m fuzzy adjacency matrix W = (wij) as their relative importance over other
preferences including themself and y1 be the initial experts’ preferences. After t
iterations, the generated preferences is presented as:

yt = AWy(t−1) + (I − A) y1, (2.7)

where A = diag (a11, a22, . . . , amm) is the susceptibility of experts to interpersonal
influences and I is the m×m identity matrix.

The above expression is able to estimate the evolution of experts’ preferences
iteratively until the process reaches an equilibrium, i.e. y∞ = limt−→∞y

t exist,
then:

y∞ = (I − AW )−1 (I − A) y1. (2.8)

Based on a predefined SIN, Capuano et al.’s [104] work provided a greater flexi-
bility compared to the results obtained by Perez et al. [95]. Capuano’s proposed
model proved that the complication of defining a numerical level expressing the
susceptibility of experts towards influence can be avoided, estimation of missing
preferences can be successfully operated and the convergence of experts’ prefer-
ences can be achieved.

An alternative influence measure, known as alpha-centrality , was introduced by Bo-
nancich and Llyod [124]. The alpha-centrality, denoted here by x, is an eigenvector-
like measure that determine expert’s status in a network by considering their in-
fluence pattern, and it is expressed as follows:

x =
(
I −ΥA

T
)−1

e (2.9)
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where A = (aij) is an adjacency matrix that represents the group’s influence
pattern, i.e. aij represents the degree of influence of expert i by expert j; Υ is a
scalar describing the relative importance degree of endogenous (internal) versus
exogenous (external) effects of experts in a group. Bonacich and Llyod suggested
that Υ should approach 1/λ1 from below in order to achieve convergence of the
solution, with λ1 being the largest eigenvalue of A. Notice that the endogenous
factor emerges from connections in the network itself while the exogenous factor,
e, is external to the network of experts, such as from third party involvements,
and that it can effect or change the experts’ status.

Variable e was introduced in order to allow some status over experts, rather than
dependent only on their connections in a network. The status, also known as
centrality of an expert is characterized as a function of an expert to whom his/her
is connected.

For example, the selection of the most popular student will involve schoolmate
reviews, which can be presented as a relationship network in a school and this
criteria is considered as an endogenous effect. In some situation, the selection
process involves evaluation from teachers and principles, which can be seen an
exogenous factor in that nomination process.
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Chapter 3

Research Framework

This chapter provides the framework of the consistent preference similarity network
clustering and influence based consensus group decision making model. Specifi-
cally, the model consists of four main stages: (1) the development of the geo-
uninorm consistency control module; (2) the preference similarity network clus-
tering based consensus; (3) the influence-based feedback mechanism; and (4) the
influence-driven resolution process. Based on Figure 3.1, the descriptions of all
stages are presented as follows.

• STAGE 1 – Geo-uninorm Consistency Control Module (Chapter 4):

In decision making process, experts are allowed to discuss on their evalua-
tions over a finite set of alternatives. They can expressed their evaluations by
means of reciprocal preference relations (RPR) (Definition 2.3.2 on page 13).
These preferences are extracted as the intensity preference vector (IPV) (Def-
inition 2.3.3 on page 14). In order to generate consistent preferences, the
geo-uninorm consistency operator (Equation 4.5 on page 42) is introduced.
The IPV of the geo-uninorm consistent preferences are then extracted. The
cosine-consistency degree (Definition 4.1.2 on page 45) of each expert pref-
erences is obtained by measuring the similarity between the initial IPV with
the constructed geo-uninorm consistent IPV. This measure presents the con-
sistency level of expert preferences, which is necessary to be carried out in
order to secure the correctness of information, thus misleading solution in
decision making process can be avoided.
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The personalized consistency feedback system (Section 4.2 on page 49) is
activated if expert’s consistency level is insufficient (lower than the pre-
determined consistency threshold). This procedure begins with the iden-
tification of inconsistent expert(s). These identified expert(s) will be per-
sonally advised to change their initial preferences closer to the constructed
geo-uninorm consistent preferences. Different experts will be treated differ-
ently, depending on their inconsistency levels. The revised preferences will be
utilized in the next consistency measure, in such a way that the consistency
level is improved. The proposed consistency feedback system guarantees a
sufficient consistency state of each expert preferences if all inconsistent ex-
perts accept those recommendations.

• STAGE 2 – Preference Similarity Network Clustering Based Consensus (Chap-
ter 5):

The RPR from the previous stage are now considered as consistent and their
consistent IPVs will be used in measuring the similarity of preferences. By
utilization of the cosine similarity function (Equation 5.1 on page 54), the ob-
tained similarity degrees express the strength of experts’ connections sharing
most similar preferences, rely on a concept of structural equivalence relation
(refer Page 53). This measure is then presented in terms of the preference
similarity matrix and visualises as an undirected weighted preference simi-
larity network (Definition 5.1.1 on page 55). The proposed network consists
of a set of experts nodes, connected to each other by links with a unique
weight (preference similarity degree) attached to them.

The undirected weighted preference similarity network is used as an input
in the agglomerative hierarchical clustering methodology (Algorithm 2 on
page 59). Experts are categorized into subgroups based on their preference
similarities and the clustering solution is displayed by the generated dendo-
gram at all α-levels (Figure 5.3 on page 60).

Since experts are structurally equivalence, the clustering result performs ho-
mogeneity, where the experts are strongly connected with each other within
the cluster, compared to the outsiders. We defined the cluster internal (Defi-
nition 5.2.1 on page 60) and external cohesions (Definition 5.2.2 on page 60),
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the α-level cluster consensus (Equation 5.2 on page 61) and the α-level clus-
ter consensus degree of the group of experts (Definition 5.2.4 on page 61).
The highest of all the α-level cluster group consensus degree is considered
as the global cluster consensus degree of the group at the optimal cluster-
ing level (Definition 5.2.7 on page 62). This network clustering consensus
measure guarantees the homogeneity of experts’ clusters, which indirectly
perform cohesiveness of preferences (consensus).

• STAGE 3 – Influence-based Feedback Mechanism (Chapter 6):

For the case of insufficient consensus state, a feedback mechanism need to
be activated. First effort to overcome this situation is identification of ex-
perts with low contribution to consensus (Section 6.1 on page 68). They
are having less cluster consensus degree than the average of the cluster con-
sensus degrees of all clusters at the optimal clustering α-level. The network
influencer (Section 6.2 on page 69) is determined using the σ-centrality mea-
sure (Definition 6.2.2 on page 70). The influence scores produce from the
σ-centrality measure presents the experts’ status (importance) weights in the
similarity network. The expert with maximum influence score is nominated
as a network influencer, who acts as a leader in giving recommendations or
advice on how to change their preferences closer to each other. The updated
IPV (Equation 6.6 on page 74) are then used in the second consensus round
(Section 6.4 on page 78). At this stage, the optimum revised global cluster
consensus degree achieves a sufficient consensus state with better clustering
solution.

• STAGE 4 – Influence-driven Resolution Process (Chapter 7):

After a satisfactory consensus level is obtained, the individuals expert prefer-
ences need to be fused into a collective form. A new IOWA operator, known
as σ-IOWA (Definition 7.1.1 on page 82) is introduced as a fusion function,
related on the set of influence scores from σ-centrality as a set of order in-
ducing aggregation variable, associating with most of RIM fuzzy liguistic
quantifier (Section 2.5.1 on page 23).
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It is necessary to have satisfaction of preference of one alternative towards
another for most of the more influential experts in the network. The QGDD
concept (Section 2.5.2 on page 25) is then implemented in order to rank the
alternatives by quantifying the dominance that one alternative has over all
the other alternatives in the fuzzy majority (Page 23) sense. It is finalized
that the first rank of alternative is the best alternative chosen by the group
of experts, representing their individual preferences are appropriately taken
into considerations and agreed as a whole.
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Chapter 4

Geo-uninorm Consistency

Control Module

The idea of having a consistency control module before the consensus decision
making process has been carried out is necessary to ensure the correctness of
information, thus misleading solutions can be avoided. For the purpose of meeting
this challenge, we construct the geo-uninorm consistency control module 1 and it
descriptions are presented in two sections: (1) the geo-uninorm based consistency
measure; and (2) the personalized consistency feedback system.

4.1 Geo-uninorm based Consistency

A review on the consistency of preferences is previously presented in Section 2.3.2
on page 15. In this chapter, we focus on the development of consistency of
RPR under the transitivity property (Page 15) and the uninorm operator con-
cept (Page 18).

It is realized that experts are assumed to be able to quantify their preferences in
the form of [0, 1], instead of {0, 1}, in such a way that they can make a selection
from an infinite set of possible alternatives. This assumption leads to the positive
outcome, saying that the consistency of RPR can be mathematically modelled via
a functional equation [34] (Equation 2.1 on page 16). Under the conditions of asso-
ciativity, almost continuity and monotonicity, via Aczél’s theorem [126, page 107],

1The content of this chapter has been published in [125].
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the set of self-dual representable uninorms [50, 127] (Proposition 2.1 on page 17)
is proved by Chiclana et al. [34] as the consistency functional equation of RPR
solution. For the purpose of modeling transitivity of RPR, Tanino’s multiplicative
transitivity property under reciprocity becomes

U(x, y) =

 0, (x, y) ∈ {(0, 1), (1, 0)},
xy

xy + (1− x)(1− y)
, otherwise. (4.1)

This is the cross ratio uninorm; a conjunctive self-dual representable uninorm (with
identity element 0.5), alternatively known as the symmetric sum [128]. Associa-
tivity of uninorms allow the extension of them into m arguments. The cross-ratio
uninorm becomes the three

∏
operator [50]:

U(x1, x2, . . . , xm) =


0, if ∃i, j : (xi, xj) ∈ {(0, 1), (1, 0)},

m∏
i=1

xi

m∏
i=1

xi +
m∏
i=1

(1− xi)
, otherwise.

(4.2)

Uninorm operators can be differentiated from mean operators by the property of
reinforcement. Given a set of input values, an operator is a reinforcement type
operator if the output is above the maximum of the input values when all input
values are ‘high’ and below the minimum of the input values when all input values
are ‘low’. Therefore, mean operators are not categorized as of the reinforcement
type operators, since they are located between the minimum and maximum of their
input values. On the other hand, uninorm operators are reinforcement operators
because all input values are above or below their identity element.

Associativity and idempotency are incompatible properties for operators which
are not minimum and maximum operators [129]. Yager [130] stated that the
reinforcement property was not considered essential for the case when the input
values correspond to criteria measuring the same property, and he added

“[. . . ] at a meta-level the use of mean type operators is appropriate in
situations in which the values being aggregated are essentially multi-
ple manifestations of the same variable. In this environment, the mean
operator is acting like a smoothing operator to unify the different man-
ifestations of the same concept.”
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Therefore, associativity is not important in the aggregation of individual informa-
tion into a collective form, when mean operators (simple or weighted averages) are
required, especially when the input values to aggregate measure the same property
[131].

We further explore Yager’s [130] extended mean operator concept, particularly
with regard to special class of extended mean operators that include the well-
known classical average operators, named classical mean operators. These opera-
tors satisfy commutativity, idempotency, monotonicity and self identity properties.
Because all of the input values of the cross-ratio uninorm refer to the same property
(preference modeling), we introduce a classical average operator application, by
means of the geometric mean operator, accordingly with the cross-ratio uninorm
operator (consistency modeling). This is relevant to work with because the cross
ratio uninorm is a particular type of the more general class of operators [132, 133],

PI (x1, · · · , xm) =



0, if ∃i, j : (xi, xj) ∈ {(0, 1), (1, 0)},
m∏
i=1

M (xi)

m∏
i=1

M (xi) +
m∏
i=1

M (1− xi)
, otherwise,

(4.3)

where M is a non-negative, increasing ‘it generating’ function. When the gener-
ating function M (x) = x

1
m , the following operator is obtained:

GU (x1, x2, · · · , xm) =



0, if ∃i, j : (xi, xj) ∈ {(0, 1), (1, 0)},
m∏
i=1

x
1
m
i

m∏
i=1

x
1
m
i +

m∏
i=1

(1− xi)
1
m

, otherwise.

(4.4)

We name this the geo-uninorm operator, which can be rewritten as
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GU (x1, x2, · · · , xm) =


0, if ∃i, j : (xi, xj) ∈ {(0, 1), (1, 0)},

1

1 +
m∏
i=1

(
1

xi
− 1

) 1
m

, otherwise.

(4.5)

The geo-uninorm operator is a classical mean operator and the following results
are proved.

Proposition 4.1. The geo-uninorm operator verifies the following properties:
(1) Commutativity (2) Idempotency (3) Monotonicity (4) Self identity.

Proof. Let G (x1, x2, · · · , xm) =
m∏
i=1

x
1
m
i be the geometric mean operator.

Commutativity. Because G satisfies commutativity it is clear that GU does so
also.

Idempotency. BecauseG satisfies idempotency, then for all x ∈ [0, 1]G (x, · · · , x) =

x, and G (1− x, · · · , 1− x) = 1− x. Consequently,

GU (x, · · · , x) =
x

x+ (1− x)
= x.

Monotonicity. Let us assume we have (x1, · · · , xm) and (y1, · · · , ym) such that:
0 < yi ≤ xi ≤ 1 ∀i. The case when some of the yi are zero is evident because
then

0 = GU (y1, · · · , ym) ≤ GU (x1, · · · , xm) .

In this case, we have that

∀i : 1 ≤ 1

xi
≤ 1

yi
⇐⇒ 0 ≤ 1

xi
−1 ≤ 1

yi
−1 ⇐⇒ 0 ≤

(
1

xi
− 1

) 1
m

≤
(

1

yi
− 1

) 1
m

.

This implies that

0 ≤
m∏
i=1

(
1

xi
− 1

) 1
m

≤
m∏
i=1

(
1

yi
− 1

) 1
m

⇐⇒ GU (y1, · · · , ym) ≤ GU (x1, · · · , xm) .



Geo-uninorm Consistency Control Module 43

Self identity. We prove that

GU (x1, · · · , xm, GU (x1, · · · , xm)) = GU (x1, · · · , xm) .

Again, if one of the xi is zero then the above is evident as both left and right
hand sides of the equation are zero. In all other cases, we have by definition:

GU (x1, · · · , xm, GU (x1, · · · , xm)) =
1

1 +

(
1

GU (x1, · · · , xm)
− 1

) 1
m+1

m∏
i=1

(
1

xi
− 1

) 1
m+1

However,

GU (x1, x2, · · · , xm) =
1

1 +
m∏
i=1

(
1

xi
− 1

) 1
m

⇐⇒ 1

GU (x1, · · · , xm)
−1 =

m∏
i=1

(
1

xi
− 1

) 1
m

.

Therefore,

GU (x1, · · · , xm, GU (x1, · · · , xm)) =
1

1 +
m∏
i=1

(
1

xi
− 1

) 1
m(m+1)

m∏
i=1

(
1

xi
− 1

) 1
m+1

=
1

1 +
m∏
i=1

(
1

xi
− 1

) 1
m+1

+ 1
m(m+1)

.

Because
1

m+ 1
+

1

m(m+ 1)
=

m+ 1

m(m+ 1)
=

1

m
, we conclude that

GU (x1, · · · , xm, GU (x1, · · · , xm)) =
1

1 +
m∏
i=1

(
1

xi
− 1

) 1
m

= GU (x1, x2, · · · , xm) .

As explained above, it is obvious that the geo-uninorm operator does not satisfy the
reinforcement property because it is a mean operator. In spite of that, it satisfies
weaker reinforcement properties which are desirable for transitivity of preferences.
Literally, denoting by x∗ = min{x1, x2, · · · , xm} and x∗ = max{x1, x2, · · · , xm},
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monotonicity of GU implies that

GU (x∗, x∗, · · · , x∗) ≤ GU (x1, x2, · · · , xm) ≤ GU (x∗, x∗, · · · , x∗) .

Idempotency of GU results in

min{x1, x2, · · · , xm} ≤ GU (x1, x2, · · · , xm) ≤ max{x1, x2, · · · , xm}.

Proposition 4.2. The geo-uninorm operator satisfies:

• Weak stochastic transitivity: xi ≥ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≥
0.5;

• Min transitivity: GU (x1, x2, · · · , xm) ≥ min{x1, x2, · · · , xm} ∀xi;

• Moderate stochastic transitivity: xi ≥ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≥
min
i
xi.

Moreover, since the function f(x) = log

(
1

x
− 1

)
is concave on [0.5, 1) (f ′′(x) ≤ 0)

and convex on (0, 0.5] (f ′′(x) ≥ 0), the following reinforcement properties were
proved in [132]:

(a) When xi ∈ [0.5, 1) ∀i =⇒ f

(
m∑
i=1

αixi

)
≥

m∑
i=1

αif(xi) subject to
m∑
i=1

αi =

1. Taking αi =
1

m
we have

log

 1
1

m

∑m
i=1 xi

− 1

 ≥ m∑
i=1

1

m
log

(
1

xi
− 1

)
= log

m∏
i=1

(
1

xi
− 1

) 1
m

.

Monotonicity of f implies that

1
1

m

∑m
i=1 xi

− 1 ≥
m∏
i=1

(
1

xi
− 1

) 1
m

=⇒ 1

m

m∑
i=1

xi ≤ GU (x1, x2, · · · , xm) .

(b) The case when xi ∈ (0, 0.5] ∀i is derived similarly to the above case by
changing the inequality symbols.

Proposition 4.3. The geo-uninorm operator satisfies mean reinforcement prop-
erties:
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• xi ≥ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≥ 1

m

m∑
i=1

xi;

• xi ≤ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≤ 1

m

m∑
i=1

xi.

Hence, the geo-uninorm operator captures properties from both the geometric
mean operator and the cross ratio uninorm operator. This means this operator is
appropriate to be used in modelling transitivity, which is related to the consistency
of fuzzy preferences.

In the following we propose the geo-uninorm consistency property of a RPR.

Definition 4.1.1. A reciprocal fuzzy preference relation, P = (pij) , on a finite set
of alternatives, A = {A1, A2, · · · , Am} , is geo-uninorm consistent when

pij = GU (pik, pkj) ∀i, j, k, such that (pik, pkj) 6∈ {(0, 1) , (1, 0)} .

Referring to Chiclana et al.’s work on construction of the uninorm-based consistent
RPR [34], we define the geo-uninorm consistent RPR, C = (cij) , based on the set
of (m− 1) RPR values P = {pi(i+1); i = 1, . . . ,m− 1} as:

1. Case 1 : For (i, j) such that j > (i+ 1): cij = GU

(
pi(i+1), p(i+1)(i+2), · · · , p(j−1)j

)
;

2. Case 2 : For (i, j) such that j < i: cij = 1− cji.

We further describe the consistency measure of RPR by firstly constructing the
associated geo-uninorm consistent RPR. These consistent preferences are then
utilized for the purpose of measuring the similarity between the initial preferences
and the consistent ones. This similarity degree represents the consistency level of
each expert preferences, defined using the cosine similarity measure between the
experts’ initial IPVs (Definition 2.3.3 on page 14) and the associated geo-uninorm
consistent IPVs.

Formal definition of the cosine-consistency degree of expert h, CCD
(
eh
)
, is pre-

sented as:

Definition 4.1.2. The cosine-consistency degree of expert h, CCD
(
eh
)
, is the

similarity degree between the IPV, V P h =
(
vphk
)
, and the geo-uninorm consistent
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IPV, V Ch =
(
vchk
)
,

CCD
(
eh
)

=

m(m−1)/2∑
k=1

(
vphk · vchk

)
√√√√m(m−1)/2∑

k=1

(
vphk
)2 ·
√√√√m(m−1)/2∑

k=1

(
vchk
)2 .

Example 4.1. A committee of eight (8) heads of department in ABC company,
also known as experts E = {e1, e2, . . . , e8}, give their evaluations over a set of six
(6) potential candidates, A = {A1, A2, . . . , A6} for nomination of the best employer
of the year 20XX, by means of RPR (Definition 2.3.2 on page 13).

For instance, the evaluation matrix from Expert 1, P 1 is given below. These values
are transformed in terms of IPV (Definition 2.3.3 on page 14). V P 1 is formed
from the boldfaced elements of P 1:

P 1 =



1 0.4 0.6 0.9 0.7 0.8

0.6 1 0.7 1 0.8 0.9

0.4 0.3 1 0.8 0.6 0.7

0.1 0 0.2 1 0.3 0.4

0.3 0.2 0.4 0.7 1 0.6

0.2 0.1 0.3 0.6 0.4 1


V P 1 = (0.4, 0.6, 0.9, 0.7, 0.8, 0.7, 1, 0.8, 0.9, 0.8, 0.6, 0.7, 0.3, 0.4, 0.6).

The rest of the experts, {e2, . . . , e8}, also expressed their evaluations towards al-
ternatives and their respective IPVs are extracted as follows:

V P 2 = (0.7, 0.8, 0.6, 1, 0.9, 0.6, 0.4, 0.8, 0.7, 0.3, 0.7, 0.6, 0.9, 0.8, 0.4);

V P 3 = (0.69, 0.12, 0.2, 0.36, 0.9, 0.06, 0.1, 0.2, 0.8, 0.64, 0.8, 0.98, 0.69, 0.97, 0.94);

V P 4 = (0.1, 0.36, 0.69, 0.16, 0.26, 0.84, 0.95, 0.62, 0.76, 0.8, 0.25, 0.39, 0.08, 0.14, 0.66);

V P 5 = (0.34, 0.25, 0.82, 0.75, 0.87, 0.25, 0.18, 0.82, 0.91, 0.94, 0.91, 1, 0.34, 0.75, 0.82);

V P 6 = (0.13, 0.18, 0.34, 0.75, 0.09, 0.66, 0.82, 0.91, 0.25, 0.75, 0.87, 0.82, 0.75, 0.91, 0.97);

V P 7 = (0.55, 0.45, 0.25, 0.7, 0.3, 0.7, 0.85, 0.4, 0.8, 0.65, 0.7, 0.6, 0.95, 0.6, 0.85);

V P 8 = (0.7, 0.75, 0.95, 0.6, 0.85, 0.55, 0.8, 0.4, 0.65, 0.7, 0.6, 0.45, 0.85, 0.4, 0.75).
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The geo-uninorm consistent RPR, Ch, associated to P h is then determined based
on the proposed geo-uninorm operator (Equation 4.4 on page 41) and the construc-
tion procedure of the geo-uninorm consistent RPR (Page 45).

For instance, using the preference values of P 1 : {p12 = 0.4, p23 = 0.7, p34 =

0.8, p45 = 0.3, p56 = 0.6}, upper diagonal elements for C1 (Case 1 on page 45) are
calculated and presented as follows:

c13 =
(p12 × p23)

1
2

(p12 × p23)
1
2 + [(1− p12)× (1− p23)]

1
2

=
(0.4× 0.7)

1
2

(0.4× 0.7)
1
2 + [(1− 0.4)× (1− 0.7)]

1
2

= 0.555;

c14 =
(p12 × p23 × p34)

1
3

(p12 × p23 × p34)
1
3 + [(1− p12)× (1− p23)× (1− p34)]

1
3

=
(0.4× 0.7× 0.8)

1
3

(0.4× 0.7× 0.8)
1
3 + [(1− 0.4)× (1− 0.7)× (1− 0.8)]

1
3

= 0.648.

The remaining values (lower diagonal entries) are determined using the reciprocity
property (Case 2 on page 45), resulting in:

c31 = 1− c13 = 1− 0.555 = 0.445;

c41 = 1− c14 = 1− 0.648 = 0.352.

After complete computations are carried out, the geo-uninorm consistent RPR
matrix, C1 is constructed as follows:

C1 =



1 0.4 0.555 0.648 0.561 0.569

0.6 1 0.7 0.753 0.614 0.610

0.445 0.3 1 0.8 0.567 0.578

0.352 0.247 0.2 1 0.3 0.445

0.439 0.387 0.433 0.7 1 0.6

0.431 0.389 0.422 0.555 0.4 1


From C1, the corresponding geo-uninorm consistent IPV, V C1 is:

V C1 = (0.4, 0.555, 0.648, 0.561, 0.569, 0.7, 0.753, 0.614, 0.610, 0.8, 0.567, 0.578,

0.3, 0.445, 0.6).
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Similarly, the rest of the experts’ geo-uninorm consistent IPVs are computed and
listed as follows:

V C2 = (0.7, 0.652, 0.534, 0.657, 0.608, 0.6, 0.445, 0.642, 0.584, 0.3, 0.663, 0.578,

0.9, 0.710, 0.4);

V C3 = (0.69, 0.274, 0.387, 0.464, 0.607, 0.06, 0.252, 0.387, 0.585, 0.64, 0.666, 0.798,

0.69, 0.855, 0.94);

V C4 = (0.1, 0.433, 0.570, 0.402, 0.454, 0.84, 0.821, 0.55, 0.578, 0.8, 0.371, 0.467,

0.08, 0.291, 0.66);

V C5 = (0.34, 0.293, 0.582, 0.520, 0.591, 0.25, 0.696, 0.582, 0.652, 0.94, 0.740, 0.769,

0.34, 0.605, 0.82);

V C6 = (0.13, 0.35, 0.488, 0.560, 0.708, 0.66, 0.707, 0.722, 0.830, 0.75, 0.75, 0.869,

0.75, 0.908, 0.97);

V C7 = (0.55, 0.628, 0.635, 0.76, 0.781, 0.7, 0.676, 0.813, 0.823, 0.65, 0.856, 0.854,

0.95, 0.912, 0.85);

V C8 = (0.7, 0.628, 0.653, 0.713, 0.720, 0.55, 0.628, 0.717, 0.725, 0.7, 0.784, 0.773,

0.85, 0.805, 0.75).

As per Definition 4.1.2 (Page 45), the cosine-consistency degree for each expert,
CCD

(
eh
)
is measured. The computation for CCD (e1) is shown below:

Previously, V P 1 = (0.4, 0.6, 0.9, 0.7, 0.8, 0.7, 1, 0.8, 0.9, 0.8, 0.6, 0.7, 0.3, 0.4, 0.6) and
V C1 = (0.4, 0.555, 0.648, 0.561, 0.569, 0.7, 0.753, 0.614, 0.610, 0.8, 0.567, 0.578, 0.3, 0.445, 0.6).

CCD
(
e1
)

=
(0.4× 0.4) + (0.6× 0.555) + . . .+ (0.6× 0.6)(√

(0.4)2 + (0.6)2 + . . .+ (0.6)2
)
×
(√

(0.4)2 + (0.555)2 + . . .+ (0.6)2
)

= 0.989.

Therefore, all CCD
(
eh
)
values are:

CCD
(
e2
)

= 0.989; CCD
(
e3
)

= 0.977; CCD
(
e4
)

= 0.976; CCD
(
e5
)

= 0.962;

CCD
(
e6
)

= 0.941; CCD
(
e7
)

= 0.960; CCD
(
e8
)

= 0.962.
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4.2 Personalized Consistency Feedback System

If the cosine-consistency degree of expert is insufficient, which is lower than the
pre-defined consistency threshold, the consistency feedback mechanism needs to
be activated. We proposed a procedure of the personalized consistency feedback
system in order to improve the consistency level of the inconsistency experts. In
this process, different inconsistent expert(s) will have different recommendations
depending on the optimal control parameter values, making sure that only mini-
mum changes are needed.

This feedback procedure begins with the identification of inconsistent expert(s),
elow who have cosine-consistency degree less than the consistency threshold, η. It
is formulated as:

elow =
{
ehlow | CCD

(
eh
)
< η
}
. (4.6)

These identified experts are then recommended to change their initial IPVs, V P h

to be closer to the geo-uninorm consistent IPVs, V Ch based on the following linear
combination with personalized consistency control parameter, γ:

V P h
γ = (1− γ) · V P h + γ · V Ch. (4.7)

This step is called consistency advice generation.

For the sake of simplicity, we suggest that the consistency control parameter, γ are
selected from the discrete set {0.1, 0.2 . . . , 0.9, 1}. The revised cosine-consistency

degree, CCDγ

(
eh
)
, is computed between V P h

γ =

{
vphγ1 , . . . , vp

h
γk
, . . . , vphγm(m−1)

2

}
and V Ch =

{
vch1 , . . . , vc

h
k, . . . , vc

h
m(m−1)

2

}
by:

CCDγ(e
h) =

m(m−1)/2∑
k=1

(
vphγk · vchk

)
√√√√m(m−1)/2∑

k=1

(
vphγk

)2 ·
√√√√m(m−1)/2∑

k=1

(
vchk
)2 . (4.8)

The value of γ controls the amount of change required for an expert to be consis-
tent. The larger the value of γ, the closer V P h

γ will be to V Ch, and concurrently
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increase the value of CCDγ(e
h). Notice that when γ = 0, V P h

0 = V P h and
CCD0(e

h) = CCD(eh) and when γ = 1, V P h
1 = V Ch and CCD1(e

h) = 1.

The optimal control parameter, γ̂ corresponds to the sufficient consistency degree,
CCDγ̂(e

h) = η is chosen as an optimize solution of the change cost (difference
between the initial preference values and the revised personalized consistent pref-
erence values) for an inconsistent expert to be classed as consistent.

In summary, the personalized consistency feedback system is presented in Algo-
rithm 1 below:

Data: The IPV of expert eh, V P h =
{
vph1 , vp

h
2 , · · · , vph(m−1)m/2

}
;

the geo-uninorm consistent IPV of expert eh,
V Ch =

{
vch1 , vc

h
2 , · · · , vch(m−1)m/2

}
;

the cosine-consistency degrees of all experts,
CCD = {CCD(e1), CCD(e2), · · · , CCD(em)};
the personalized consistency control parameter, γ ∈ [0, 1];
the consistency threshold, η.

begin

1 Construct the geo-uninorm consistent RPR, C = (cij) , and extract its
respective IPV, V Ch ;

2 Compute the cosine-consistency degree of expert h, CCD
(
eh
)
;

3 if CCD
(
eh
)
< η then

activate personalized consistency control module;
begin

4 Identify inconsistent expert(s), elow ;
5 Recommend ehlow to change his/her V P h closer to V Ch ;
6 Compute the revised cosine-consistency degree, CCDγ

(
eh
)
;

7 Choose the optimal control parameter, γ̂: CCDγ̂(e
h) = η ;

end

else

proceed to consensus process (Chapter 5) ;
end

end
Algorithm 1: Personalized consistency feedback system

Example 4.2 (Continuation of Examples 4.1). Let the consistency threshold value
be as η = 0.962. Referring to CCD

(
eh
)
values in the Example 4.1 on page 48,

the inconsistent experts are e6 and e7, where both of them have smaller CCD
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values than η. Thus, e6 and e7 are required to get advice on how to change their
preferences in order to be consistent.

As suggested in Section 4.2 (Page 49), we use discrete values of γ from the set
{0.1, 0.2, . . . , 0.9, 1} in order to generate the revised preferences for each of them.
Each γ value produces a distinct revised consistency degree for each inconsistent
expert, meaning that the consistency control module is personally carried out de-
pending on their inconsistency level.

The computational example for inconsistent expert e7 is presented as follows:

Previously,

V P 7 = (0.55, 0.45, 0.25, 0.7, 0.3, 0.7, 0.85, 0.4, 0.8, 0.65, 0.7, 0.6, 0.95, 0.6, 0.85)

and

V C7 = (0.55, 0.628, 0.635, 0.76, 0.781, 0.7, 0.676, 0.813, 0.823, 0.65, 0.856, 0.854,

0.95, 0.912, 0.85).

Begin with γ = 0.1,

V P 7
0.1,1 = (1− 0.1) · V P 7

1 + 0.1 · V C7
1 = (0.9× 0.55) + (0.1× 0.55) = 0.55.

After complete calculation is carried out for all IPV elements of V P 7 and V C7,
the revised preferences of e7, V P 7

0.1, are,

V P 7
0.1 = (0.55, 0.468, 0.289, 0.706, 0.348, 0.7, 0.833, 0.441, 0.802, 0.65, 0.716, 0.625,

0.95, 0.631, 0.85).

The revised cosine-consistency degree, CCD0.1 (e7) is then obtained by measuring
the cosine-consistency degree between V P 7

0.1 and V C7.

CCD0.1

(
e7
)

=
(0.55× 0.55) + (0.468× 0.628) + . . .+ (0.85× 0.85)(√

(0.55)2 + (0.468)2 + . . .+ (0.85)2
)
×
(√

(0.55)2 + (0.628)2 + . . .+ (0.85)2
)

= 0.969.

Table 4.1 displayed the revised cosine-consistency degrees, CCDγ, of the inconsis-
tent experts e6 and e7 at each discrete γ value from the set {0.1, 0.2, . . . , 0.9, 1}.
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Table 4.1: Revised cosine-consistency degrees, CCDh
γ , for inconsistent experts

e6 and e7 at all discrete γ values

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CCDγ(e
6) 0.952 0.962 0.971 0.979 0.986 0.991 0.995 0.998 0.999 1

CCDγ(e
7) 0.969 0.976 0.982 0.988 0.992 0.995 0.997 0.998 0.999 1

According to Table 4.1, Expert e6 achieves consistency at γ = 0.2 and Expert e7

only requires a smaller γ-value, 0.1 to be consistent. It is because the amount of
changes in the consistency control module is depending on the inconsistency level
of each expert. Since the consistency threshold is 0.962, Expert e7 (previously has
CCD (e7) = 0.960) just need a small change to attain the threshold value, rather
than Expert e6 (previously has CCD (e6) = 0.941).



Chapter 5

Preference Similarity Network

Clustering Based Consensus

The expert preferences from the previous chapter (Chapter 4) are now considered
as ‘consistent’ and relevant to be utilized in the consensus decision making model.
We introduce the preference similarity network clustering based consensus process
2 and it descriptions are provided in two parts: (a) the construction of preference
similarity network; and (b) the network clustering consensus methodology.

5.1 Preference Similarity Network

Our proposed preference similarity network is derived based on the structural
equivalence concept [86], as appeared in the Social Network Analysis (SNA) frame-
work. Structural equivalence can be interpreted as: ‘two experts are structurally
equivalent if both of them are connected to the same experts or having the same
neighbors, making them share similar characteristics in their own network envi-
ronments’ [134].

In our case, the structural equivalence concept represents the idea of experts having
similar preferences with other experts and relies on the application of a similarity
function over the set of IPVs representing their preferences.

2The content of this chapter has been appeared in [8].

53
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We build our structural equivalence preference similarity network by measuring the
cosine similarity degree, Scd, between the pair of consistent IPVs from Expert ec,

V Cc =

{
vcc1, . . . , vc

c
k, . . . , vc

c
m(m−1)

2

}
and Expert ed, V Cd =

{
vcd1, . . . , vc

d
k, . . . , vc

d
m(m−1)

2

}
,

as the following expression:

Scd = S
(
V Cc, V Cd

)
=

m(m−1)/2∑
k=1

(
vcck · vcdk

)
√√√√m(m−1)/2∑

k=1

(vcck)
2 ·

√√√√m(m−1)/2∑
k=1

(
vcdk
)2 . (5.1)

The higher value of Scd indicates that the greater similarity of the preferences of
Experts ec and ed, thus the more strongly connected they are in the preference
similarity network.

Generally, structural equivalence is represented using a particular similarity func-
tion from three common groups of vector-based distances [57]:

(1) Linear correlation based distances – focus on the strength and direction of
association patterns, instead of the mean and variance as criteria of expert simi-
larities [135];
(2) Euclidean-based distances – insensitive to linear association (relationship);
(3) Exact matches-based distances (Jaccard, Hamming, etc.) – emphasis on exact
matches of vectors.

We pointed out that the first and second distance groups are normally utilized
for both binary and valued data (the degree of relationship), whereas the third
one is specifically applied to binary data, which is irrelevant for our preference
representation framework.

The cosine similarity function is observed as a special type of Pearson correlation
coefficient for the case when the mean of both vectors are considered as zero, i.e.
it is a type of Pearson correlation coefficient that is insensitive to the mean value.

In the consensus modeling context, the cosine similarity measure is shown as a
stable function regardless of the number of experts involved, compared to the
Euclidean distance [20]. Based of this justification, we use the cosine similarity
function in measuring the similarity of the preference network, by means of the
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structural equivalence relation. Notice that other similarity functions (the Eu-
clidean distance or correlation based) can also be applied and similar results to
the ones presented in this thesis will be produced.

We exploit the consistent IPVs in order to develop an undirected weighted pref-
erence similarity network, N, which consists of undirected complete links, T , that
connected to the expert nodes, E, with a set of similarity of preference weights,
S, attached to each pair of them. The similarity network is classed as undirected
pattern because of the symmetrical property on the similarity function, i.e, the
preference similarity of experts ec and ed coincides with the preference similarity
of ed and ec.

The mathematical formulation of an undirected weighted preference similarity
network, N, is given below and its general graphical representation is displayed in
Fig. 5.1.

Definition 5.1.1. Let E be a set of experts and VC = {V C1, V C2, . . . , V Cn} be
the corresponding set of geo-uninorm consistent IPVs on a set of alternatives A.
Let S be the IPVs of cosine preference similarity function, i.e., a reflexive and
symmetric function S : V (A) × V (A) → [0, 1]. Then, the set of experts, E, can
be connected by a set of links, T =

{
t12, . . . , t1m, t23, . . . , t2m, . . . , t(m−1)m

}
, with

the following set of preference similarity weights attached, S = S(VC × VC) ={
S12, . . . , S1m, S23, . . . , S2m, . . . , S(m−1)m}. The resulting undirected weighted pref-

erence similarity network will be denoted by N = 〈E, T,S〉.

Example 5.1 (Continuation of Examples 4.2). At this stage, all experts prefer-
ences are considered as consistent, consisting of the revised preferences of Expert
e6 at γ = 0.2 (V P 6

0.2), Expert e7 at γ = 0.1 (V P 7
0.1) (Page 51) and the initial

preferences of the rest of experts (V P 1, V P 2, V P 3, V P 4, V P 5, V P 8).

These IPVs are then utilized in order to develop an undirected weighted preference
similarity network, N, by means of structural equivalence relations. Structurally
equivalent experts in the network, N, can be represented by measuring their simi-
larities between all pairs of expert preferences.

From Example 4.1 on page 46,

V P 1 = (0.4, 0.6, 0.9, 0.7, 0.8, 0.7, 1, 0.8, 0.9, 0.8, 0.6, 0.7, 0.3, 0.4, 0.6)
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Figure 5.1: A general structure of undirected weighted preference similarity
network, N consisting 5 experts’ nodes

and

V P 2 = (0.7, 0.8, 0.6, 1, 0.9, 0.6, 0.4, 0.8, 0.7, 0.3, 0.7, 0.6, 0.9, 0.8, 0.4).

We measure the cosine similarity degree between V P 1 and V P 2, S12, using Equa-
tion 5.1 (page 54) as:

S12 =
(0.4× 0.7) + (0.6× 0.8) + . . .+ (0.6× 0.4)(√

(0.4)2 + (0.6)2 + . . .+ (0.6)2
)
×
(√

(0.7)2 + (0.8)2 + . . .+ (0.4)2
)

= 0.896.

After a complete computation for all pairs of experts is carried out, their cosine
similarity degrees are then presented in terms of a symmetric preference similarity
matrix, S, as follows:
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S =



1 0.896 0.769 0.929 0.909 0.872 0.905 0.945

0.896 1 0.829 0.711 0.878 0.850 0.909 0.926

0.769 0.829 1 0.610 0.906 0.817 0.855 0.814

0.929 0.711 0.610 1 0.777 0.812 0.828 0.839

0.909 0.878 0.906 0.777 1 0.879 0.859 0.868

0.872 0.850 0.817 0.812 0.879 1 0.938 0.843

0.905 0.909 0.855 0.828 0.859 0.938 1 0.929

0.945 0.926 0.814 0.839 0.868 0.843 0.929 1


.

From this matrix, the undirected weighted preference similarity network, N, is
constructed and visualised in the following figure (Figure 5.2). Notice that only a
few link weights, S are displayed for the sake of simplicity.

Figure 5.2: The undirected weighted preference similarity network, N of 8
experts

As referred to matrix S and Figure 5.2, the highest similarity degree is 0.945, comes
from Expert e1 and e8. This value represents Experts e1 and e8 are very closely
connected in the network, N. Contrary, Expert e3 and e4 has lowest similarity
degree (0.610), meaning that their preferences is far away from each other.
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5.2 Network Clustering Consensus

After the undirected weighted preference similarity network, N, has been success-
fully constructed, we partition all experts into clusters using an agglomerative
hierarchical clustering algorithm. This algorithm is chosen because it has the
ability to partition objects discretely into groups, while providing an explicit pro-
cedure and a clear interpretation [136]. The formation of clusters in our context is
referred to as a collection of experts, having similar preferences among them and
dissimilar preferences to the outsider experts (different clusters).

Since the agglomerative hierarchical clustering method has no predetermined num-
ber of clusters, a set of distinct α-levels needs to be provided. Let L = {αl : l = 2, . . . , n− 1}.
Notice that level α1 shows the extreme case of having a single cluster with all
experts inside and level αn places each member into its own cluster as the ini-
tial partition of the agglomerative hierarchical clustering solution. Practically, no
clustering technique effectively applies for these two extreme levels (α1 and αn).

In the clustering methodology, pairs of objects (experts) have to be connected
in close proximity using linkage functions. Complete link, average link, single
link and centroid link are some of the common linkage functions used in this
procedure. In this study, we apply a complete linkage function because it provides
more homogeneous and stable clusters, compared with the others and it is less
susceptible to noise and outliers [137].

The clustering procedure based on the agglomerative hierarchical clustering with
complete linkage, by means of structural equivalence preference similarity network
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environment, is presented in Algorithm 2 below.

Data: A profile of IPVs, V P = {vp1, vp2, . . . , vpn}, expressed by a set of experts,
E = {e1, . . . , en}, towards a set of alternatives, A = {A1, . . . , Am}.

Result: A hierarchical sequence of clustering solution: P n, P n−1, . . . , P 1.
begin

1 Start the clustering with partition P n = {K1, . . . , Kn} where each cluster Kp

has exactly one element ep:
P n = {{e1} , {e2} , . . . , {en}} = {{K1} , {K2} , . . . , {Kn}} ;
i←− n;
while i > 1 do

2 Identify clusters Kc and Kd in P i = {K1, . . . , Ki} with maximal distance(
Dcd
)
(complete link);

3 Merge clusters Kc and Kd to cluster Kk ;
4 Build new partition P i−1 by removing Kc and Kd and adding cluster Kk ;

i←− i− 1;

end

end
Algorithm 2: Agglomerative hierarchical clustering procedure with complete
linkage function

The hierarchical sequence of clustering solution, referred to as a dendogram is
generated after Algorithm 2 is implemented (Figure 5.3). This convenient graph-
ical visualization is horizontally cut at a certain α-level equivalent to the chosen
number of clusters at the level of the preference similarity matrix, S.

Referring to this clustering result, we develop a procedure for measuring consen-
sus based on the concept of cluster homogeneity, which is reasonable to be imple-
mented to achieve cohesiveness of preferences (consensus). Furthermore, experts
who are grouped according to their structural equivalence relations are expected to
have strong connections within their cluster’s members, compared to the outsider
experts in different clusters [8].

Let Kl = {Klr : r = 1, . . . , l} be the set of clusters at level αl and ]Klr be the
cardinality of Klr. For the purpose of measuring consensus with capability of
structural equivalent relations presented by the agglomerative hierarchical clus-
tering, the respective definitions are given.
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Figure 5.3: Dendogram, a hierarchical sequence of clustering solutions for 8
experts

Definition 5.2.1. The αl-level cluster internal cohesion degree of cluster Klr is

δint (Klr) =

∑
i∈Klr

∑
j∈Klr

Sij

(]Klr)
2 ,

where Sij is preference similarity degree between expert i and j in the cluster Klr.

Definition 5.2.2. The αl-level cluster external cohesion degree of cluster Klr is

δext (Klr) =

∑
i∈Klr

∑
j /∈Klr

Sij

]Klr (n− ]Klr)
,

where n = ]E (the total number of experts) and Sij is preference similarity degree
between expert i in the cluster Klr and expert j outside the cluster Klr.

Definition 5.2.3. The αl-level cluster consensus degree of cluster Klr, δCC (Klr), is
computed as:

δCC (Klr) =
]Klr · δint (Klr)

n
+

(n− ]Klr) · δext (Klr)

n
.
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The αl-level cluster consensus degree of cluster Klr can be re-written as:

δCC (Klr) =
]Klr (δint (Klr)− δext (Klr))

n
+ δext (Klr) . (5.2)

The following situations are observed:

Case 1: δint (Klr) > δext (Klr). Similarities of expert preferences are higher in-
ternally, meaning that they are closer within their group members than the
outsider experts, and they are high in homogeneity.

Case 2: δint (Klr) < δext (Klr). Similarities of expert preferences are higher exter-
nally, meaning that they are closer with outside members compared to their
own group members, and they are low in homogeneity.

Since experts are grouped according to their similarity of preferences, it is expected
that δint (Klr) > δext (Klr) will be satisfied in this consensus framework. They are
categorized as a very homogeneous group, meaning that the similarities between
experts within a cluster are greater internally because of their strong connections
with each other, rather than with experts in different clusters.

In order to measure the group consensus degree at each clustering α-level, all
clusters’ associated consensus degrees are combined to obtain the collective cluster
consensus degree at that cluster level. This can be formally defined by:

Definition 5.2.4. The αl-level cluster consensus degree of the group of experts E,
δLC (l), is computed as:

δLC (l) =

l∑
r=1

δCC (Klr)

l
.

δLC (l) expresses the homogeneity degree of experts’ preferences at each clustering
α-level, correlating with the measurement of consensus degree between the experts
at that cluster level. By aiming to have high consensus state, the maximum of
all the αl-level cluster consensus degrees is chosen as the criterion to select the
optimal agglomerative hierarchical clustering αl-level solution.

Definition 5.2.5. The optimal agglomerative hierarchical clustering level, αl̂-level,
is the solution to the following optimization problem

max
αl∈L

δLC (l) .
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We pointed out that the above optimization problem is solvable, i.e. there is a
solution in all cases because L has finite cardinality. However, the solution might
not be unique, i.e. there might be more than one αl-level with same maximum
cluster consensus degree.

For this kind of situation, an additional criterion is needed to discriminate further
between these αl-levels. It happens in statistical scenario where two sample distri-
butions with different size have the same average value, thus one of the statistical
measures that effectively compare these distributions is the coefficient of variation
(CV ). CV considers the standard deviation or dispersion of data with respect to
the mean value. For equal average values, lower CV is desired as homogeneity of
data will be higher.

Relating CV concept in our consensus framework, αl̂-level amongst all the αl-
levels with maximum cluster consensus degree will be the one with lowest cluster
consensus coefficient of variation, CCVLC(l). This is formally defined as:

Definition 5.2.6. The αl-level cluster consensus coefficient of variation, CCVLC (l)

is defined as:
CCVLC (l) =

CSDLC (l)

δLC (l)
,

where

CSDLC (l) =

√∑l
r=1 [δCC (Klr)− δLC (l)]2

l
.

In the situation where there are two or more αl-levels with same maximum cluster
level consensus degree and same cluster consensus coefficient of variation, the
lowest αl-level value will be chosen for the reason of having the lowest number
of clusters, which indirectly requires a lower number of rounds to achieve the
minimum consensus threshold in the feedback mechanism process (Chapter 6).

The global cluster consensus degree of a group of experts E, δLC
(
l̂
)
is then defined

as:

Definition 5.2.7. The global cluster consensus degree of a group of experts E is
δLC

(
l̂
)
, with αl̂-level being the optimal clustering level.
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Algorithm 3 summarizes the preference similarity network clustering based con-
sensus process.

Data: Dendogram:
A set of experts: E = {e1, e2, . . . , en};
Set of all different α-levels: L = {αl ; l = 2, . . . , n− 1};
Set of clusters at each αl-level: Kl = {Klr ; r = 1, . . . , l};
Consensus threshold value: = ρ

begin

1 Identify experts in each cluster of αl-level;
2 Compute δint (Klr) and δext (Klr) for each cluster in Kl;
3 Obtain δCC (Klr) for each cluster in Kl;
4 Calculate δLC (l) for all αl-level in L;
5 Identify optimum agglomerative hierarchical clustering level: αl̂-level;

6 if δLC
(
l̂
)
≥ ρ then

end consensus procedure and apply resolution process (Chapter 7);
else

apply feedback mechanism and advice generation phase (Chapter 6);
end

end
Algorithm 3: Preference similarity network clustering based consensus process

Example 5.2 (Continuation of Examples 5.1). We execute the agglomerative hier-
archical clustering procedure (Algorithm 2 on page 59) and the clustering solution
represented by a dendogram is acquired, as depicted in Figure 5.4.
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Figure 5.4: A dendogram consisting 8 experts, generated using Algorithm 2

By referring to Figure 5.4, each cluster at each αl-level is identified. For instance,
at α2, there exist two clusters. K21 has {e1, e2, e3, e5, e6, e7, e8, } and K22 has only
one expert, which is e4.

Example of the calculations of internal cohesion degree, δint (K21), external cohe-
sion degree, δext (K21), cluster consensus degree, δCC (K21), and level consensus
degree, δLC (2) are shown as follows:

δint (K21)

=

S11 + S12 + S13 + S15 + S16 + S17 + S18 + S11 + S12 + S13 + S15 + S16 + S17 + S18

+S11 + S12 + S13 + S15 + S16 + S17 + S18 + S11 + S12 + S13 + S15 + S16 + S17 + S18

+S11 + S12 + S13 + S15 + S16 + S17 + S18 + S11 + S12 + S13 + S15 + S16 + S17 + S18

+S11 + S12 + S13 + S15 + S16 + S17 + S18 + S11 + S12 + S13 + S15 + S16 + S17 + S18

72
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=

1 + 0.896 + 0.769 + 0.909 + 0.872 + 0.905 + 0.945 + 0.896 + 1 + 0.829 + 0.878+

0.850 + 0.909 + 0.926 + 0.769 + 0.829 + 1 + 0.906 + 0.817 + 1 + 0.855 + 0.814+

0.909 + 0.878 + 0.906 + 1 + 0.879 + 0.859 + 0.868 + 0.872 + 0.850 + 0.817 + 0.879

+1 + 0.938 + 0.843 + 0.905 + 0.909 + 0.855 + 0.859 + 0.938 + 1 + 0.929 + 0.945

+0.926 + 0.814 + 0.868 + 0.843 + 0.929 + 1

49

= 0.894.

δext (K21) =
S14 + S24 + S34 + S54 + S64 + S74 + S84

7(8− 7)

=
0.929 + 0.711 + 0.610 + 0.777 + 0.812 + 0.828 + 0.839

7

= 0.786.

δCC (K21) =
7(0.894− 0.786)

8
+ 0.786 = 0.880.

As calculated above, δCC (K21) = 0.880 and in Table 5.1, δCC (K22) = 0.813. Thus,
δLC (2) can be obtained by:

δLC (2) =
0.880 + 0.813

2
= 0.847.

The similar computations are executed and all values obtained are presented in
Table 5.1. Based on the Definition 5.2.7 on page 62, the global cluster consensus
degree is 0.868, with α7 as the optimal agglomerative hierarchical clustering level
(Definition 5.2.5 on page 61).
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Table 5.1: The cluster internal and external cohesions, cluster consensus and
level cluster consensus degrees at all α-levels

α K E δint δext δCC δLC

2 1 e1, e2, e3, e5, e6, e7, e8 0.894 0.786 0.880 0.847
2 e4 1 0.786 0.813

3 1 e1, e2, e5, e6, e7, e8 0.911 0.824 0.890 0.843
2 e3 1 0.8 0.825
3 e4 1 0.786 0.813

4 1 e1, e6, e7, e8 0.929 0.860 0.895 0.853
2 e2, e5 0.939 0.860 0.880
3 e3 1 0.8 0.825
4 e4 1 0.786 0.813

5 1 e1, e8 0.972 0.875 0.899 0.861
2 e6, e7 0.969 0.863 0.890
3 e2, e5 0.939 0.860 0.880
4 e3 1 0.8 0.825
5 e4 1 0.786 0.813

6 1 e1, e8 0.972 0.875 0.899 0.864
2 e6, e7 0.969 0.863 0.890
3 e2 1 0.857 0.875
4 e5 1 0.868 0.885
5 e3 1 0.8 0.825
6 e4 1 0.786 0.813

7 1 e1, e8 0.972 0.875 0.899 0.868

2 e6 1 0.859 0.876
3 e7 1 0.889 0.903
4 e2 1 0.857 0.875
5 e5 1 0.868 0.885
6 e3 1 0.8 0.825
7 e4 1 0.786 0.813
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Let the consensus threshold, ρ = 0.90. It is obvious that consensus level is insuf-
ficient. From the clustering result (Figure 5.4 on page 64), the optimum cluster
level is not led to a better solution in grouping the experts. This is because only 2
experts are grouped in a cluster (K71 = {e1, e8}), while the rest of the experts are
in single member clusters. For this case, a feedback mechanism need to be carried
out and this topic will be discussed further in the next chapter.



Chapter 6

Influence-based Feedback

Mechanism

The influence-based feedback mechanism 3 comprises three main phases: (1) iden-
tification of expert(s) with low contribution to consensus; (2) identification of a
network influencer; and (3) generation of advice. The purpose of implementing
this feedback system is to improve insufficient consensus state at the first consensus
round and make use of this group agreement in finalizing experts’ decision.

6.1 Identification of Experts With Low Contribu-

tion to Consensus

As defined in Definition 5.2.7 on page 62, the global cluster consensus degree of the
group of experts, δLC

(
l̂
)
, is the average cluster consensus degree of the experts at

the optimal consensus agglomerative hierarchical clustering αl̂-level. At this level,
those experts in a cluster Kl̂r with αl̂-level cluster consensus below the global
cluster consensus degree will be identified as contributing low to consensus (below
the average). This is mathematically formulated as follows:

elow = {eo ∈ E | eo ∈ Kl̂r ∧Kl̂r ∈ Klow} , (6.1)

3The content of this chapter has been presented in [138].

68



Influence-based Feedback Mechanism 69

Klow =
{
Kl̂r | δCC (Kl̂r) < δLC

(
l̂
)
∧ r = 1, . . . , l̂

}
; (6.2)

Example 6.1 (Continuation of Examples 5.2). By referring to Table 5.1 (page 66),
the global consensus degree of the group of experts, δLC

(
l̂
)
, is 0.868. Clusters

having less cluster consensus degrees, δCC (Kl̂r), than 0.868 are K76 and K77.
Thus, experts belong to these clusters (e3, e4) are experts who give insufficient
contribution towards achieving consensus and need to receive recommendations on
how to move their preferences closer to the group consensus.

6.2 Identification of a Network Influencer

After the procedure which identifies experts with low contribution to the consen-
sus, the experts identified need to be advised on how to change their preferences
in order to increase the consensus level.

We utilize the preference similarity matrix, S contained in the Definition 5.1.1
(Page 55) as historical information used to generate advice. This idea is mostly
used in collaborative filtering (CF), where the known (historical/initial) preferences
of a group of users are used to provide ‘valuable recommendations coming from
someone who has shared similar history with other people in a group’ [139].

According to this concept, we utilize the experts’ initial evaluations as historical
data to obtain the experts’ preference similarity matrix, S, as a criterion to be
composed in our proposed Social Influence Network (SIN), which is constructed
by a digraph that links the set of experts E (nodes), in such a way that every edge
connects Expert ei and ej, (ei, ej), with the influence strength weight of the jth

expert over the ith expert.

Our SIN comprises a set of experts, E = {e1, e2, . . . , en} and a row normalized
preference similarity matrix, Sη =

(
Sijη
)
n×n, where S

ij
η is the proportion of overall

group influence on i that comes from j. Notice that Sη is obtained by taking a
row normalization step on the preference similarity matrix, so that the following
property

∑n
j=1 S

ij
η = 1 for all i ∈ (1, . . . , n) [104] is verified. This property ensures

the influence of each expert towards all of his/her peers is 1 in total.

Formally, we name our SIN as similarity social influence network (SSIN), which
is visualised for a simple case of 3 expert nodes in Fig. 6.1 and defined below:
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Definition 6.2.1. A similarity social influence network (SSIN) is an ordered triple,
G = 〈E, T,Sη〉 comprising a set of nodes E, a set of edges T , which are ordered
pairs of experts in E, and a set of row normalized preference similarity weights,
Sη = (Sη)n×n attached to T .

Figure 6.1: The general representation of SSIN consisting 3-expert nodes

We make use of the previously described influence measure (Page 30) by Bonacich
and Llyod [124] . It is adapted to our preference similarity network CGDM model
in order to identify the most influential expert of the network. The identified
network influencer will act as the ‘leader’ in designing feedback rules with the aim
to increase the group consensus level when this is below a satisfactory threshold
value. We name our proposed influence measure the σ-centrality, which is formally
defined as follows:

Definition 6.2.2. Let Sη be a set of row normalized preference similarity weights
in G, the scalar σ be the relative importance of endogenous (internal network
connections) versus exogenous (external) effects, and Z = (z)m×1 be a set of
individual expert exogenous effect values. Then, the influence score or σ-centrality
of experts E, Y = (y1, . . . , ym), is:

Y =
(
I − σ STη

)−1
Z.
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In the absence of exogenous effect, Z is set as the unity vector, i.e. the vector with
all components equal to 1.

For example, selection of the best employer will involve peer reviews, which can be
presented as a relationship network in a workplace and this element is considered
as an endogenous effect. In some situations, the selection process might involve
evaluation from a company’s top management, which is an exogenous factor to be
included in the nomination of the best employer.

The combination of these two factors, endogenous and exogenous, produce sta-
bility in generating experts’ influence scores because it is dependent on internal
contributions to consensus from the generated preference similarity network and
third-party importance evaluations over experts when available. Indeed, the value
of Y represents the influence score of each expert, in such a way that both en-
dogenous (internal) and exogenous (external) factors are considered. Experts who
fall in clusters having higher cluster consensus degrees than or equal to the global
cluster consensus degree of the group can be classified as belonging to the group
of most influential experts in the network.

Let K∗
l̂r
be set of clusters at the optimum clustering αl̂-level with cluster consensus

degrees, δCC (r), above the global cluster consensus degree of the group of experts,
δLC

(
l̂
)
, and ey

∗

l̂r
be the experts belonging to the clusters in K∗

l̂r
. Identification of

possible network influencers can be formally written as:

ey
∗

l̂r
=
{
ey | ey ∈ Kl̂r ∧Kl̂r ∈ K

∗
l̂r

}
. (6.3)

K∗
l̂r

=
{
Kl̂r | δCC (r) ≥ δLC

(
l̂
)
∧ r = 1, . . . , l̂

}
(6.4)

Thus, the network influencer, e∗, is the expert with highest influence score among
those in ey

∗

l̂r
:

e∗ = max
ey∈K∗

l̂r

Y (ey) . (6.5)

The identified network influencer, e∗, will act as the leader for the experts who
contribute low to consensus on how to change their opinions with the aim to
increase and, subsequently, to reach the group consensus threshold level.

Example 6.2 (Continuation of Example 6.1). As presented in Example 5.1 (Page 57),
the matrix S is:
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S =



1 0.896 0.769 0.929 0.909 0.872 0.905 0.945

0.896 1 0.829 0.711 0.878 0.850 0.909 0.926

0.769 0.829 1 0.610 0.906 0.817 0.855 0.814

0.929 0.711 0.610 1 0.777 0.812 0.828 0.839

0.909 0.878 0.906 0.777 1 0.879 0.859 0.868

0.872 0.850 0.817 0.812 0.879 1 0.938 0.843

0.905 0.909 0.855 0.828 0.859 0.938 1 0.929

0.945 0.926 0.814 0.839 0.868 0.843 0.929 1


.

As an example, the Sη (1, 1) is calculated as follows:

Sη (1, 1) =
S11

S11 + S12 + S13 + S14 + S15 + S16 + S17 + S18

=
1

1 + 0.896 + 0.769 + 0.929 + 0.909 + 0.872 + 0.905 + 0.945

= 0.138.

The similar calculation process is carried out and a complete matrix of a row
normalised preference similarity weights, Sη, is constructed as:

Sη =



0.138 0.124 0.106 0.129 0.126 0.121 0.125 0.131

0.128 0.143 0.118 0.102 0.126 0.121 0.130 0.132

0.117 0.126 0.152 0.092 0.137 0.124 0.129 0.123

0.143 0.109 0.094 0.154 0.119 0.125 0.127 0.129

0.128 0.124 0.128 0.110 0.141 0.124 0.121 0.123

0.124 0.121 0.117 0.116 0.125 0.143 0.134 0.120

0.125 0.126 0.118 0.115 0.119 0.130 0.138 0.129

0.132 0.129 0.114 0.117 0.121 0.118 0.130 0.140


.

Based on Sη, the similarity social influence network (SSIN) (Definition 6.2.1 on
page 70) is then visualised as in Figure 6.2. Notice that only several row normalized
cosine-similarity weights are displayed for the sake of simplicity.

The main advantage of our influence score measure is that comprises both endoge-
nous (network connections) and exogenous (external) effects. In this study, SSIN
expresses the centrality degree with respect to the most influential expert status and
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Figure 6.2: The similarity social influence network (SSIN) consisting 8 experts’
nodes

exogenous factor involves third party opinion contributions, which is company’s top
management evaluations on experts’ status (importance).

We implement Z for both cases (‘no exogenous’ and ‘with exogenous’ effects)
in order to compare the impact of the influence factor in decision making pro-
cess. For the ‘no exogenous’ effect case, we set Z as a matrix of ones and
Z = [0.8, 0.5, 0.5, 0.1, 0.9, 0.5, 1, 0.7] for the case ‘with exogenous’ effect. We set
the scalar σ = 0.5, to represent equal (fair) status weights of relative importance
of endogenous (network connections) with respect to exogenous (external) effects.

Related values are substituted into Definition 6.2.2 (Page 70) and the computation
of the influence scores for ‘no exogenous effect’ case is stated in the following:
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Y =
(
I − σ STη

)−1
Z

=


I − (0.5)



0.138 0.124 0.106 0.129 0.126 0.121 0.125 0.131

0.128 0.143 0.118 0.102 0.126 0.121 0.130 0.132

0.117 0.126 0.152 0.092 0.137 0.124 0.129 0.123

0.143 0.109 0.094 0.154 0.119 0.125 0.127 0.129

0.128 0.124 0.128 0.110 0.141 0.124 0.121 0.123

0.124 0.121 0.117 0.116 0.125 0.143 0.134 0.120

0.125 0.126 0.118 0.115 0.119 0.130 0.138 0.129

0.132 0.129 0.114 0.117 0.121 0.118 0.130 0.140



T


−1 

1

1

1

1

1

1

1

1


= [2.035, 2.003, 1.947, 1.935, 2.014, 2.006, 2.034, 2.027] .

The same procedure is carried out for ‘with exogenous’ case, where

Z = [0.8, 0.5, 0.5, 0.1, 0.9, 0.5, 1, 0.7]

and the influence scores are shown below:

Y = [1.444, 1.130, 1.096, 0.676, 1.536, 1.128, 1.647, 1.343] .

Thus, the network influencer for ‘no exogenous’ case is e1 and is e7 for ‘with
exogenous’ effect because both of experts have highest influence scores (2.035) and
(1.647) respectively among others. This result proves that the exogoneous factor
gives an impact on the appointment of a network influencer.

6.3 Generation of Advice

This section focuses on the contribution of a network influencer in controlling
advice generation. As mentioned Section 6.1 (Page 68), in order to increase the
consensus level of the group, an expert eo in elow is feedback with the following
updated IPV, Ṽ o:

Ṽ o = (1− β) · V o + β · V ∗ (6.6)
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where V o is the IPV of eo, V ∗ is the IPV of the network influencer, e∗, and
β ∈ [0, 1] is a control parameter that can be used to adjust the extent of the
change of preferences feedback to the experts in elow. Obviously, if β = 0 no
changes are recommended and the original preferences of the expert, V o, remain
unchanged, while if β = 1 then the expert’s preferences are completely substituted
by those of the network influencer, V ∗.

It is worth mentioning that this model deals with willingness of experts to change
their preferences and accept those advises for the purpose of achieving consensus.
If the low contributed to consensus expert(s) are against these recommendations,
a sufficient consensus level will never be achieved.

In order to prove the validity of the proposed procedure, the following result proves
that when implemented it will lead to an increase in group consensus:

Proposition 6.1. Let V o be the initial IPV of the Expert eo, V ∗ be the IPV of
the network influencer and Ṽ o = (1− Ω) · V o + Ω · V ∗ be the updated IPV of eo

after the recommendation rule is implemented, where Ω ∈ [0, 1]. Then, we have:

S
(
Ṽ o, V ∗

)
≥ S (V o, V ∗) (6.7)

with equality holding if and only if Ω = 0.

Proof. There exist points A,B,C ∈ Rn(n−1)/2 such that V o =
−−→
OA, V ∗ =

−−→
OB and

Ṽ o =
−−→
OC, which can be represented as in Figure 6.3 below:

C = (1− Ω) ·A + Ω ·B ; Ω ∈ [0, 1]

c = ||
−−→
AB||; c′ = ||

−−→
CB||

A

O

B

a = ||
−−→
OA||

b = ||
−−→
OB||γ

β

α

γ′

β′

Figure 6.3: Spatial representation of intensity preference vectors

We have the following:
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1. Because coordinates of points A and B are greater than or equal to zero it
is γ ∈

[
0,
π

2

]
.

2. Clearly, ||
−−→
AB|| = c ≥ c′ = ||

−−→
CB||, with equality holding if and only if Ω = 0.

3. Because α + β + γ = π, we have: sin β = sinα · cos γ + cosα · sin γ.

The law of sines
a

sinα
=

b

sin β
=

c

sin γ

implies that
c = b · sin γ

sin β
.

From Item 3, we have

c = b · sin γ

sinα · cos γ + cosα · sin γ
= b · 1

sinα · cot γ + cosα
.

From Item 1, we have
0 ≤ cot γ ≤ cot γ′ ⇔ γ ≥ γ′.

From Item 2, we have that γ ≥ γ′, with equality holding if and only if Ω = 0.
Therefore, we have that

cos γ ≤ cos γ′

with equality holding if and only if Ω = 0. Finally, by Equation 5.1 (Page 54) we
conclude that

S
(
Ṽ o, V ∗

)
≥ S (V o, V ∗)

with equality holding if and only if Ω = 0.

This section concludes with the below algorithmic representation of the proposed
influence-based feedback mechanism procedure.
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begin

1 At αl̂-level, identify Klow, a set of clusters having less δCC than δLC
(
l̂
)
;

2 List all experts belong to Klow, denoted as elow;
3 Construct row normalized cosine-similarity matrix, Sη ;
4 Decide the individual expert exogenous effect, Z: (Assume Z as a vector of

ones if no exogenous effect involved) ;
5 Determine σ-centrality using Definition (6.2.2) ;
6 Rank experts according to Y scores in descending order: R (Y ) ;
7 Identify K∗

l̂r
as in Equation (6.4) ;

8 List all experts belonging to K∗
l̂r
(Equation (6.3)) ;

9 Identify the network influencer, e∗ by Equation (6.5) ;
10 Generate updated preferences, Ṽ o using Equation (6.6).

end
Algorithm 4: Influence-based Feedback Mechanism

Example 6.3 (Continuation of Examples 6.2). From the Example 6.1 (Page 69),
the experts with low consensus contributions are e3 and e4. In Example 6.2 (Page 74),
the network influencer for ‘no exogenous’ case is e1 and for ‘with exogenous’ is e7.

The example of calculation of generating advice for Expert e3 with ‘no exogenous’
case is presented as follows:

Let β = 0.1. e3 is adviced to change his/her preferences, V o closer to the network
influencer (e1) preferences, V ∗.

V o = (0.69, 0.12, 0.2, 0.36, 0.9, 0.06, 0.1, 0.2, 0.8, 0.64, 0.8, 0.98, 0.69, 0.97, 0.94);

V ∗ = (0.55, 0.45, 0.25, 0.7, 0.3, 0.7, 0.85, 0.4, 0.8, 0.65, 0.7, 0.6, 0.95, 0.6, 0.85)

Ṽ o = ((1− 0.1) · V o) + (0.1 · V ∗) = (0.9 · V o) + (0.1 · V ∗)

Ṽ o
1,1 = (0.9 · 0.69) + (0.1 · 0.55) = 0.676.

Therefore, the updated preferences for Expert e3 at β = 0.1 are:

Ṽ o = (0.676, 0.153, 0.205, 0.394, 0.840, 0.124, 0.175, 0.22, 0.8, 0.641, 0.79, 0.942,

0.716, 0.933, 0.931).
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6.4 Second Consensus Round

The generated updated preferences collected in the previous section will be utilized
in implementing the second round of consensus, for the purpose of achieving a suffi-
cient consensus state, if it is unsuccessful in the first round. For the influence-based
feedback mechanism to be effective, a control parameter β ∈ [0, 1] in Equation 6.6
(Page 74) should be selected to guarantee that the following two condition are
verified:

• Condition 1 : The global cluster consensus degree of the group of experts
of the second consensus round , δ2LC

(
l̂
)
must be greater than or equal the

consensus threshold, ρ and;

• Condition 2 : The optimal agglomerative hierarchical clustering level in sec-
ond round of consensus process, α2

l̂
must be less than the optimal agglom-

erative hierarchical clustering level of first round, αl̂.

For simplicity, we use discrete values of β from the set {0.1, 0.2, . . . , 0.9, 1}. No-
tice that the advice generation with β = 0 produces the first round of consensus
solution. The first condition above states that sufficient consensus level will be
achieved, while the second one is purposely introduced to achieve a better clus-
tered solution (lower number of clusters) after the implementation of the feedback
process.

Without imposing restrictions to the parameter of control, the above two condi-
tions will be achieve at some extent because when the feedback advices are imple-
mented, the experts will be more similar because the preferences will be closer to
the network influencer’s preferences, which also will have a positive effect on the
cohesiveness within clusters. These two conditions are formally presented in the
following definition.

Definition 6.4.1. The revised global cluster consensus degree, δ2
(
l̂
)
, of the group

of experts, E, for the second round of the consensus reaching process satisfies:(
δ2LC

(
l̂
)
≥ ρ
)
∧
(
α2
l̂
< αl̂

)
.

As mentioned before, the advice control paremeter, β, in recommendation rule of
change is setting up as a discrete set {0.1, 0.2, . . . , 0.9, 1}. For the second consensus
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round, the updated preferences at β = 0.1 are used in Algorithm 2 (Page 59) and
3 (Page 63) in order to obtain the global cluster consensus degree of the group of
experts, δ2LC

(
l̂
)
, and the optimal agglomerative hierarchical clustering level, α2

l̂
.

If the above two conditions are not satisfied, the updated preferences at β = 0.2

are generated and will be used in the consensus procedure. This step will continue
until the revised global cluster consensus degree of the group of experts, δ2

(
l̂
)
,

is obtained. There is a possibility when none of β-levels provide δ2
(
l̂
)
, thus the

process is repeated for the third round and so forth.

The algorithm to find the optimal parameter of control, within the discrete set of
values {0.1, 0.2, . . . , 0.9, 1}, with respect to Definition 6.4.1 is presented as:

begin

1 At β = 0.1, replace V o with Ṽ o for all elow in Klow ;
2 Run Algorithm 2 and 3 ;

3 Identify α2
l̂
-level and its corresponding δ2LC

(
l̂
)
;

4 if
(
δ2LC

(
l̂
)
≥ ρ
)
∧
(
α2
l̂
< αl̂

)
then

end second round consensus procedure ;
else

repeat this algorithm with next discrete β-level;
end

Run next round of consensus procedure;

end
Algorithm 5: The second round of consensus reaching procedure

Example 6.4 (Continuation of Examples 6.3). At each β-level, the initial prefer-
ences from the experts with low contribution to consensus will be replaced with the
updated preferences and the second round of consensus process is executed. The
optimal global consensus degrees and their corresponding optimal clustering solu-
tions at all discrete β-levels are obtained. The optimal revised global consensus for
the second consensus round is identified from the list of optimal global consensus
degrees based on the two conditions stated on Page 78.

Table 6.1 exhibits the optimal global consensus degrees and their corresponding
optimal cluster solutions at each β-level for the second round of consensus reaching
process for the cases ‘no’ and ‘with exogenous’ effects.
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As mentioned in page 67, the consensus threshold, ρ, is 0.9. It is shown in Table
6.1 that the optimal global consensus degrees for the second consensus round are 0.9
and 0.901, respectively, with updated preferences at β0.3 and the clustering solution
falls at α2 for both cases (‘no exogenous’ and ‘with exogenous’).

If the threshold is set at 0.910, different results are obtained. The optimal global
consensus degree for ‘with exogenous’ case is 0.916 at α2 and β0.6. But, for the
case of ‘no exogenous’, it falls at α6 and β1 with the degree of 0.911. At this
β-level (β1), the experts with low contribution to consensus have to replaced their
preferences with the network influencer’ preferences. Obviously, this is irrelevant
to be considered in real decision making because those expert preferences are totally
ignored.

However, the ‘with exogenous’ case provides more reasonable results when the op-
timal global consensus degree is 0.916 at α2 and β0.6. The experts with low consen-
sus contribution are only required to modify their initial preferences with minimal
amount of changes, while the clustering solution is better than the ‘no exogenous’
case. Notice that the global consensus degree at β0.5 achieved consensus threshold
(0.910), however the clustering solution is the same as the first consensus round,
in which Condition 2 (Page 78) is not satisfied.

In addition, the optimal global consensus degrees in the case of ‘with exogenous’
effect are mostly greater than the optimal global consensus degree for the case
of ‘no exogenous’. We can conclude that our proposed influence-based feedback
mechanism enables us to improve consensus to a sufficient state, by means of the
σ-centrality influence measure.

The influence scores are used to select the most influential expert in the network.
The chosen network influencer acts as a leader in giving recommendations to the
experts with low contribution to consensus. This nomination not only relies on the
network connections (consensus contribution) contructed in SSIN, but the external
evaluations from the third parties are also taken into consideration. It is obviously
shown that the utilization of exogenous effect in influence score measure positively
effects the consensus reaching process.



Chapter 7

Influence-driven Resolution

Process

This section describes two necessary phases involved in an influence-driven reso-
lution process: (1) fusion phase; and (2) exploitation phase. These phases are
described below.

7.1 Influence-based Preference Fusion

A brief review on the fusion of preferences is previously presented in Section 2.5.1
(Page 22). We focus on the development of new fusion operator based on the
proposal of the IOWA operator by Yager and Filev [1].

The influence score of each expert, Y , obtained using Definition 6.2.2 (Page 70) is
introduced in this context as the order inducing variable of the experts’ preference
evaluations to fuse,

{
p1ij, . . . , p

m
ij

}
, which leads to the following σ-IOWA operator :

Definition 7.1.1. The σ-IOWA operator of dimension n, Φσ
W , is an IOWA operator

with the set of influence score of experts in the network, Y = (y1, . . . , yn), as the
order inducing variable.

Thus, denoting byW the weighting vector calculated using Equation 2.4 (Page 24)
with Q a fuzzy linguistic quantifier (Page 23) representing the the concept of soft
majority desired to implement, collective preference relation that derived using

82
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the σ-IOWA operator, Φσ
W , will be

pcij = Φσ
W

(〈
y1, p1ij

〉
, . . . ,

〈
yn, pnij

〉)
. (7.1)

Clearly, the higher the influence score, the more influence an expert has in the
network, and consequently the higher the contribution (weighting value) of that
expert in the fusion process. Indirectly, the implication of less influential experts
can be mitigated.

This can be achieved by implementing the concept of fuzzy majority via an in-
creasing concave linguistic quantifier Q [6]. Yager [76] proposed the following
parameterized family of RIM quantifiers Q(r) = ra, a ≥ 0 (Page 23) to model the
majority concept ’most of ’ , which is concave when a ∈ [0, 1]. For illustrative pur-
pose, the value a = 1/2 will be used, and the collective preferences represent the
degree of “preference of one alternative over another for ‘most of ’ the influential
experts” in the network.

Example 7.1 (Continuation of Examples 6.4). As shown in Example 6.2 on
page 73, the influence score of experts for ‘no exogenous’ case is,

Y = [e1 = 2.035, e2 = 2.003, e3 = 1.947, e4 = 1.935, e5 = 2.014, e6 = 2.006,

e7 = 2.034, e8 = 2.027].

In order to obtain the weighting vector, W we have to compute the value of
D(1), . . . , D(8) and substitute those values into Equation 2.4 on page 24 as fol-
lows:

Rank Y in descending order,

Rank(Y ) = [e1 = 2.035, e7 = 2.034, e8 = 2.027, e5 = 2.014, e6 = 2.006, e2 = 2.003,

e3 = 1.947, e4 = 1.935].

From Rank Y ,
D(1) = 2.035

...

D(8) = 2.035 + 2.034 + 2.027 + 2.014 + 2.006 + 2.003 + 1.947 + 1.935 = 16.001.
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W1 = Q

(
D(1)

D(8)

)
−Q

(
D(0)

D(8)

)
= Q

(
2.035

16.001

)
−Q

(
0

16.001

)
= Q (0.127)−Q (0) = (0.127)

1
2 − 0 = 0.357

...

W8 = Q

(
D(8)

D(8)

)
−Q

(
D(7)

D(8)

)
= Q

(
16.001

16.001

)
−Q

(
14.066

16.001

)
= Q (1)−Q (0.879) = (1)

1
2 − (0.879)

1
2 = 0.062.

From above computations, the weighting vector, W is

(0.357, 0.147, 0.113, 0.095, 0.083, 0.075, 0.068, 0.062) .

Thus, the collective preference relations, derived using the σ-IOWA operator (Equa-
tion 7.1 on page 83) for pc12 can be computed as:

pc12 = Φσ
W (
〈
2.035, p112

〉
,
〈
2.003, p212

〉
,
〈
1.947, p312

〉
,
〈
1.935, p412

〉
,〈

2.014, p512
〉
,
〈
2.006, p612

〉
,
〈
2.034, p712

〉
,
〈
2.027, p812

〉
)

=
(
0.357× p112

)
+
(
0.147× p712

)
+
(
0.113× p812

)
+
(
0.095× p512

)(
0.083× p612

)
+
(
0.075× p212

)
+
(
0.068× p312

)
+
(
0.062× p412

)
= (0.357× 0.4) + (0.147× 0.55) + (0.113× 0.7) + (0.095× 0.34)

(0.083× 0.13) + (0.075× 0.7) + (0.068× 0.69) + (0.062× 0.1)

= 0.451.

The complete computation of the collective preference relations, PC is executed
and presented as follows:

PC =



1 0.451 0.500 0.681 0.661 0.678

0.549 1 0.595 0.749 0.658 0.783

0.500 0.405 1 0.727 0.666 0.692

0.319 0.251 0.273 1 0.557 0.562

0.339 0.342 0.334 0.443 1 0.717

0.322 0.217 0.308 0.438 0.283 1.
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7.2 Ranking of Alternatives

The second procedure involves in the influence-driven resolution process is the
exploitation phase. This is necessary to be carried out in order to rank the al-
ternatives so that the best one can be identified. A review on the ranking of
alternatives is previously given in Section 2.5.2 (Page 25).

After the collective preference relations, PC , are computed, the Quantifier Guided
Dominance Degree (QGDD) [68] (Definition 2.5.3 on page 25) based on the uti-
lization of the OWA operator (Definition 2.5.1 on page 23 and Equation 2.3 on
page 24) guided by the linguistic quantifier Q is applied.

We make use of the maximal dominance set concept (Equation 2.5 on page 26)
to choose the best alternative, meaning that ‘most of ’ the influential experts in
SSIN have high contribution towards consensus, their individual preferences are
appropriately considered and the decision made are accepted by the whole group
of experts.

Algorithm 6 shows the consecutive steps of the proposed influence-driven resolu-
tion process.

begin

1 Find IOWA weighting vector using Equation (2.4) ;
2 Rank Y = (y1, . . . , yn) in descending order, R (Y );
3 Determine pcij (Equation (7.1)) by making use of σ-IOWA operator;
4 Construct the collective preference matrix, PC =

(
pcij
)
;

5 Compute QGDD (Ai) based on Definition 2.5.3;
6 Rank the alternatives and choose the best one using Equation (2.5).

end
Algorithm 6: Influence-driven Resolution Process

Example 7.2 (Continuation of Examples 7.1). The computational example to rank
the alternatives begins with finding the OWA weights (Equation 2.3 on page 24).

w1 = Q

(
1

5

)
−Q

(
0

5

)
= Q (0.2)−Q (0) = (0.2)

1
2 − (0) = 0.447

...

w5 = Q

(
5

5

)
−Q

(
4

5

)
= Q (1)−Q (0.8) = (1)

1
2 − (0.8)

1
2 = 0.106.
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Thus, the OWA weighting vector, w, to rank the alternatives is

(0.447, 0.185, 0.142, 0.120, 0.106) .

From first row of PC, the collective elements for alternative A1 (excluding pc11)
are 0.451, 0.500, 0.681, 0.661, 0.678. These values are then ranked in descending
order.

Rank (P c
1 ) = [0.681, 0.678, 0.661, 0.500, 0.451].

Next, the QGDD (Definition 2.5.3 on page 25) for each alternative can be calcu-
lated and the example of QGDD (A1) is calculated as follows:

QGDD (A1) = ΦQ (
〈
0.447, pc1,4

〉
,
〈
0.185, pc1,6

〉
,
〈
0.142, pc1,5

〉
,〈

0.120, pc1,3
〉
,
〈
0.106, pc1,2

〉
)

= (0.447× 0.681) + (0.185× 0.678) + (0.142× 0.661) + (0.120× 0.500)+

(0.106× 0.451)

= 0.632.

The same computations are carried out for the rest of alternatives and presented
as:

AQGDD = {0.632, 0.712, 0.651, 0.459, 0.527, 0.356} .

Thus, the alternatives are ranked as the following:

A2 � A3 � A1 � A5 � A4 � A6.

Based on the Equation 2.5 (page 26), the final ranking solution is A2.

From Example 4.1 (Page 46), we concern that a committee of eight (8) heads of
department in ABC company gives their evaluations over six (6) potential candi-
dates for a nomination of the best employer of the year 20XX. After considering all
individuals heads of departments’ preferences, the best employer of the year 20XX
is A2. This final decision is accepted and agreed by the whole group of experts
because they already achieved a sufficient consensus level.
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The results of influence scores, IOWA weighting vectors, collective preferences,
maximal dominance degrees and final ranking of alternatives for both cases (‘no
exogenous’ and ‘with exogenous’) are presented in Table 7.1.

Referring to Table 7.1, all values obtained in the case of ‘with exogenous’ effect
are slightly different with the case of having ‘no exogenous’ factor. When external
(exogenous) factor is involved, the best employer of the year 20XX is remained A2.
But the overall ranking of alternatives is A2 � A1 � A3 � A5 � A4 � A6. This
means that the the exogenous factor affects the final ranking of alternatives.

As in Perez et al. [95], the ranking of alternatives obtained by their work is A3 �
A2 � A4 � A5 � A1 � A6. This different result is expected because of the
application of social influence in Perez et al. [95], which was implemented in a
different context and no external factor was involved in their study.
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Chapter 8

Complexity and Application of

the Proposed Model

This chapter focuses on the computational complexity and the relevant applica-
tions of the proposed model.

8.1 Computational Complexity

The computational complexity of our proposed model is determined based on each
algorithm involved as listed in the following:

• Algorithm 1 (Page 50):
The construction of the geo-uninorm consistent RPR (Step 1) involved a
loop for j > (i + 1) and j < i, thus the computation time is O (n). Step 2
requires 1 multiplication and 1 division, thus the operation order is O (1).
Step 3 until 7 requires O (n2), which is the number of nesting in the loops
of the personalized consistency control module. Thus, the total operation
involved in Algorithm 1 is O (n) +O (1) +O (n2) = O (n2).

• Algorithm 2 (Page 59):
The agglomerative hierarchical clustering with complete linkage function has
the worst case time complexity at most O (n2 log n) [140, 141, 142]. One
O (n2 log n) algorithm is to calculate the n2 distance metric and then to
sort each data point distance (overall time: O (n2 log n)). This distance
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metric can be updated in O (n) after each merging iteration. The next
pair is picked and merged based on its smallest distance. This traversing
step for the n sorted lists of distances produces n2 steps at the end of the
clustering procedure. By adding these orders, the complexity computation
of this algorithm is O (n2 log n).

• Algorithm 3 (Page 63):
In this algorithm, Step 1 until 4 has 1 addition and 1 division operation, and
one nesting in the loop in Step 5 and 6. Therefore, the complexity time is
O (n).

• Algorithm 4 (Page 77):
There exist 1 addition and 1 division operation in Step 3, a matrix multi-
plication in Step 5 and 1 maximum operation in Step 9. Thus, the total
operation time for this algorithm is O (n2).

• Algorithm 5 (Page 79):
There exist a loop in the procedure of second consensus round with a com-
bination of two previous algorithms (Algorithm 2 and 3). Thus the total
computation order is O (n) +O (n2 log n) +O (n) = O (n2 log n).

• Algorithm 6 (Page 85):
This algorithm involved n multiplications and 1 maximum operation, pro-
duces O (n+ 1) computation order.

According to the above analysis, the complexity computation of our proposed
framework is:

O
(
n2
)
+O

(
n2 log n

)
+O (n)+O

(
n2
)
+O

(
n2 log n

)
+O (n+ 1) = O

(
n2 log n

)
.

8.2 Relevant Applications

Generally, our proposed model is applicable in solving decision making problems,
which requires a sufficient agreement level of a group of experts before the final
decision is made. This decision making model allows bi-level experts’ evaluation
processes, where the internal and external (third party) opinions will also be taken
into consideration.
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Let assume that a government wants to implement new laws for the country. At the
first place, the government needs to know about the public opinion regarding the
proposed laws before it will be discussed further in the parliament. The simplest
way to examine public opinion is via social media platforms, such as voting or
polling using Facebook and Twitter. Other than ‘Yes’ or ‘No’ or a Likert-scale,
various preference representation formats can be used for the purpose of expressing
public opinions, such as ordering, preference relations and utility functions.

Thousands or millions of public opinion can be collected and the agreement (con-
sensus) of their opinion can be measured using our preference similarity network
clustering based consensus procedure. It is well-known that the clustering method-
ologies have capabilities in handling large user-base data, so as our proposed model.
The implementation of the clustering algorithm can help the government to visu-
alise public opinion similarities, whether between cities or states.

If the public consensus level is insufficient, the low contribution to consensus peo-
ple, which disagree about the implementation of new laws is identified using our
feedback mechanism process. The identified people will be asked to change their
opinion towards the direction of a group consensus. This can be done by generat-
ing advises and guiding them on how to change their opinion, according to their
leader’s opinion. The leader is automatically appointed by the feedback system,
considering public opinion (internal factor) and the members of parliament (ex-
ternal factor). He/she must be the most trusted or influenced person in the public
network and also trusted by the parliament members.

After modifications of public opinion are considered, a sufficient consensus level
will be achieved. The decision on which laws need to be firstly implemented can
be obtained after considering both public opinion and members of parliament
preferences.

Other than this application, our proposed framework can be utilized in judging a
prestige entertainment award. The nominated actors or actresses will be voted by
their public fans and judging by the professional judges/panels. The final decision
made portrays both parties agreement, meaning that all individual preferences are
appropriately taken into considerations.

In addition, our proposed model also can be applied for marketing purposes. For
instance, a company wants to introduce new products. The company can identify
certain customers, who can act as influencers based on their history of similarity
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preferences on social media networks. The company can give those products for
free to the identified network influencers as trial packs. It is expected to have
positive recommendations from the influencers and the company will gain benefit
on it.

It is not limited to the above applications, but it is suitable to be implemented for
the purpose of handling selection problems, investment, policy making, marketing
and many more.



Chapter 9

Comparative Evaluations

This chapter focuses on the comparative analysis of our proposed model with
previous studies in the literature.

9.1 Impact of Consistency Control Module Towards

Consensus

From Kamis et al. [125], the comparison of results has been done between our
proposed consistency control module with Chu et al.’s [98] work. As depicted
in Table 9.1, five main elements are identified and the respective analyses are
discussed in the following points:

1. Both techniques provided different consistency degrees because:

• Chu focused on the reciprocity and additive consistency properties for
a collective preference relation. However, we construct the consistent
RPR based on the geo-uninorm operator, which is related to multiplica-
tive consistency, rather than the additive consistency.

• In obtaining consistency degree, we measure the similarity between the
initial experts’ preferences with the generated geo-uninorm consistent
preferences. Chu measured consistency by comparing the similarity of
individual expert’s preferences with collective ones.

94
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2. Identification of inconsistent experts with respect to the consistency thresh-
old:

• Both approaches had the same number and the same inconsistent ex-
perts (e4 and e8) at consistency threshold of 0.8. However, if the thresh-
old value had been set as 0.83, for example, our proposed model still
has the same inconsistent expert, but Chu added expert e5 in the incon-
sistent experts list because the consistency degree of expert e5 (0.8289)
was less than 0.83. We pointed out that when the threshold value is
increased, more notable differences between the approaches are appar-
ent.

3. Consistency control parameter in feedback mechanism:

• Chu’s work required the same parameter value (γ = 0.6) in controlling
the preference change recommendations for all inconsistent experts.

• In contrast, we provided personalized recommendations of change, de-
pending on the experts’ personal level of inconsistency. We restricted
ourselves to the set of discrete values of γ: {0.1, 0.2, . . . , 0.9, 1} for il-
lustrative purposes, so that the proposed model returns both experts
with the same value of γ = 0.2.

• Since γ = 0.2 is lower than γ = 0.6, we can say that our proposed model
guaranteed consistency by advising inconsistent expert(s) to modify
their preferences only with minimum changes, compared to the recom-
mendations from Chu’s proposal.

4. Different revised preferences between the two models:

• We proposed a uninorm-based construction of consistent preference re-
lations that makes use of (m− 1) original preference relation values,
which remain unchanged in the next stage of the consistency process.
This is not the case in the method implemented by Chu, since incon-
sistent experts are advised to change all of their preferences.

• Therefore, the proposed approach is shown to be less expensive, not
only in terms of the magnitude of the change recommended, but also
computationally because a lower number of changes is required for an
inconsistent expert to achieve the consistency threshold.

5. Both methods achieved a sufficient consistency level after the feedback mech-
anism is implemented:
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• Both methods successfully improved the consistency level of the incon-
sistent experts to be above the threshold.

• However, our model is more efficient than Chu’s work because consis-
tency is achieved with only minimum changes required, in such a way
that the inconsistent experts willingly accept those recommendations by
ensuring that their initial preferences are still taken into consideration.

Another comparative result was presented in Kamis et al. [125] for the purpose
of validating the effectiveness of the proposed consistency control module towards
a sufficient consensus state. Our preference similarity network clustering based
consensus model is implemented with and without the consistency control module
and the following results were obtained (see Table 9.2).

Table 9.2: Comparison of results in analyzing the impact of consistency control
module towards consensus

Elements With consistency module Without consistency module [8]

Consensus -

1st round

(Threshold

= 0.9)

0.901 0.893

Feedback

consensus

(2nd round)

Not required β Consensus Index Cluster Level

0 0.893 4

0.1 0.907 4

0.2 0.921 4

0.3 0.934 4

0.4 0.946 4

0.5 0.956 6

0.6 0.965 4

0.7 0.972 4

0.8 0.976 7

0.9 0.978 7

1 0.973 2
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Summarizing, we show that:

• First consensus round – The proposed consistency control module positively
contributes to achieving a sufficient consensus level. It is obvious in Table
9.2, the consensus degree is above the threshold value when consistency is
checked and improved, meaning that experts’ consistency also contributed
to expert’s agreement. Without the consistency module, the consensus level
is insufficient (lower than the threshold).

• Second consensus round – The activation of a consensus feedback mechanism
process was not required when the consistency control module was imple-
mented. Otherwise, a second round of consensus was needed, where it is
expected to be more tedious.

9.2 Impact of Social Network Connections in GDM

As discussed in our published paper [8], the comparative results on the impact of
social network connections in group decision making with Chu et al.’s work [98]
were presented, consisting of 3 main elements: (1) Aggregation weighting vector;
(2) collective preferences; and (3) ranking of alternatives. Referring to Table 9.3,
the following conclusions are drawn:

1. A social network provides an impact on the generation of experts’ associated
weights:

• The no network connection weighting vector is obviously different from
the directed network and both of the undirected weighted preference
similarity networks. This is because the weights are directly assumed
by the authors in [98] since the experts are considered completely inde-
pendent from each other.

• Otherwise, weights for experts linked by networks are generally ob-
tained from experts’ centrality measures.

• For the directed network in [98], the I-IOWA operator based on in-
degree and out-degree centrality indices was developed with experts’
weights being higher the higher their associated centrality indices.
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• The formation of the proposed preference similarity network implies the
contribution of experts to consensus. Thus, when measuring consensus
as well as in the proposed feedback mechanism, the similarity of opinion
between experts are increased accordingly because some experts need
to change their preferences closer to the network leader in order to
achieve sufficient agreement. This might increase the centrality indices,
which seems to be the explanation behind the slight difference between
the weighting vectors of the undirected weighted preference similarity
network without consensus and with sufficient consensus.

• In summary, the proposed novel preference network structure based on
similarities between nodes provides similar weighting vectors in the dif-
ferent rounds of consensus, with slight differences reflecting the increase
in experts centrality indices.

2. Social network effects the aggregation of preferences from an individual ex-
pert to a collective one, leading to an improved level of group consensus:

• The collective preference relations are all different due to the difference
in the aggregation operator used, and also due to the difference in the
weighting vectors implemented.

3. Social network connections influence the ranking of alternatives:

• Alternatives are ranked differently from the others when no network
connections are involved, implying that the social network connections
truly impact the decision making process. This is because the weigh-
tage from the experts’ networks are collected, propagated to the others,
and carried along the decision making procedure as additional input of
the consensus contributions. The higher the expert’s network weight,
the higher the consensus contribution. Thus, experts opinion are ap-
propriately taken into consideration with respect to their consensus
contributions, which indirectly practise a fair decision making process.

• The directed network in [98] and both the proposed undirected weighted
preference similarity network without consensus and with sufficient con-
sensus rank the same last three alternatives (x2 � x6 � x1) and slightly
differ in the ordering of the first three alternatives. The best alternative
solution for the directed and undirected weighted preference similarity
network (not enough consensus) are x4 and x5, respectively, with the



Comparative Evaluations 101

difference due to the different ranking approaches they use. The deriva-
tion of the priority weighting vector by Fedrizzi and Brunelli [143] was
applied in the directed network connection in [98], while the dominance
guided choice degree with fuzzy linguistic quantifier ‘most of ’ was ap-
plied in the proposed undirected weighted preference similarity network
(not enough consensus).

• The ranking of alternatives for the proposed undirected weighted pref-
erence similarity networks with enough consensus is slightly different
to the undirected weighted preference similarity networks (not enough
consensus) because the consensus feedback process introduced changes
in the individual preferences of half of the experts leading to the accep-
tance of the decision by the group as a whole.

• We can say that the proposed cluster based consensus measure gives
some flexibility to the experts to revise their opinion for the sake of
achieving sufficient group agreement and obtaining a good solution to
satisfy them all.

9.3 Non-clustering Versus Clustering Based Con-

sensus

For the purpose of validating our proposed clustering based consensus model in
this thesis, we provide the second round of consensus solution at optimal advice
control paremeter, β0.3 (refer Table 6.1 on page 80) for both non-clustering (α8)
and clustering based method (‘with exogenous’) at optimal clustering level, α2. At
α8, experts are not belong to any clusters or connected to other group members.
Meaning that no clustering procedure is involved at this α-level.

By referring to the Table 9.4, several conclusions can be drawn.
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• The clustering-based consensus model provides practical methodology com-
pared to the non-clustering approach.
The tediousness of computations (the internal, external, cluster consensus
etc.) can be reduced when the clustering-consensus model is implemented.
It is because the clustering-consensus technique presents group-based com-
putation, while non-clustering focuses on the individual context. When large
number of experts or alternatives are involved in the decision making pro-
cess, the clustering based model is believed to be manageable, easy to be
implemented and inaccuracy (error) can be minimised.

• Clustering-based consensus approach produces better consensus solution than
the non-clustering consensus measure.
The consensus degree obtained by the clustering-based model is higher than
the non-clustering. It is shown that the consensus level for the clustering
consensus procedure is sufficient (above the consensus threshold), thus no
further consensus round is required. In the case of non-clustering consensus
model, the experts with low contribution to consensus (e2, e3, e4, e5, e6) need
to be advised in the feedback mechanism. In addition, the third consensus
round need to be activated in order to improve the group consensus level.

9.4 Proposed Model With Respect to the Existing

Literature

In general, the main advantages of the proposed model and its differences with
respect to previous studies in the literature are presented as follows:

(i) Our propose geo-uninorm consistency operator is introduced for the purpose
of modelling transitivity, under the uninorm-based concepts. We prove that
the geo-uninorm operator captures properties from both the geometric mean
operator and the cross ratio uninorm operator. This work technically dis-
tincts from other existing uninorm-based operators, such as in [34, 144, 145].

(ii) Our preference network is constructed by incorporating generated weights
from the similarity of experts’ preferences based on the structural equivalence
concept. This measure conceptually differs from previous work done in most
similarity-based consensus models [24, 26] because they do not consider any
network criterion, such as the connected ties and structural classes.
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(iii) Our proposal provides an alternative solution to expert weight derivation,
which overcomes the assumption that the weights of experts are known be-
forehand [20]. Meanwhile, the absence of a weighting vector does not nec-
essarily mean that all of the experts are equally important. Indeed, once
experts provide opinions, their preference similarities can be used to derive
weighting values. This is an advantage in measuring consensus, as more
importance will be given to experts with higher centrality indices/influence
scores.

(iv) The cluster-based consensus model based on the proposed defined inter-
nal and external cohesions, cluster consensus and level consensus is one of
the first efforts in deriving cluster-based group consensus model in deci-
sion making. Previous works done by Garcia-Lapresta and Perez-Roman
[114, 115, 116], Abel et al. [117] and Li eta al. [118] focused on different
contexts of clustering-based consensus.

(v) The use of the influence score to determine the network influencer is defined
differently from Kamis et al. [8]. In this thesis, the identification procedure
of a leader (network influencer) based on σ-centrality is introduced as an
additional step in the feedback mechanism. The group consensus level is
guaranteed to increase when experts are advised to get closer to the network
influencer’s preferences.

(vi) The integration of SIN in this proposed model is carried out from different
perspectives from those in references [95, 123, 35, 105]. We reformulate the
SIN concept and utilize it in the consensus feedback mechanism, instead of
focusing on the evolution of preferences and estimation of missing informa-
tion.

(vii) A new σ-IOWA aggregation operator is introduced, which produces ordering
of the argument values based upon the influence score associated with each
expert. This provides an alternative information fusion approach in the
resolution process.
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Chapter 10

Conclusion and Future Work

10.1 Summary of Contributions

In this last chapter, we summarise the results obtained in this thesis with some
conclusions derived from them and suggests directions for future works.

We have developed a novel consistent preference similarity network clustering and
influence based group decision making model. From the development of this pro-
cess, we extract the following conclusions:

• Conclusion 1 – Through the introduction of geo-uninorm consistency opera-
tor, the correctness of expert preferences is secured and with less expense.

The transitivity property has been suggested in order to model consistency
because of its hierarchy status with other basic properties of pairwise compar-
isons, asymmetry and indifference. Our proposed geo-uninorm consistency
operator is a hybrid operator that is obtained by combining the best of the
geometric average, a mean operator that assures that moderate stochastic
transitivity is satisfied, and of the cross-ratio uninorm, which allows for the
mean reinforcement property. In the RFPR context, these properties secured
the consistency of experts’ preferences and misleading solution in decision
making can be avoided. In addition, validation via comparison with the
existing study in [98] (Section 9.1 on page 96) proved that the proposed con-
sistency module is less expensive, not only for the magnitude of the change
recommended, but also computationally because a smaller number of changes
is required for an inconsistent expert to achieve the consistency threshold.
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• Conclusion 2 – The consistency control module guarantees consistency only
with minimum changes and provides fair individual recommendations.

The proposed geo-uninorm consistency measure allowed the building of a
consistency control module based on a personalized feedback mechanism to
be implemented when the consistency level is insufficient. The recommen-
dation is personally generated for the specific identified inconsistent experts
depending on their current individual level of inconsistency. Only minimum
changes are considered for the purpose of improving consistency. This con-
sistency control module effectively handled the feedback and advice genera-
tion process, in such a way that experts willingly changed their preferences
without any pressure because the recommendation is considered as fair and
appropriate to be accepted.

• Conclusion 3 – Reformulations of SNA and SIN concepts in CGDM context
have been successful.

We bridge a gap between SNA and SIN with CGDM frameworks by defining
new terminologies and proposing algorithms related to experts preferences:
similarity measure, structural equivalence, network structure, cohesion sub-
groups, influence and consensus measure.

• Conclusion 4 – The clustering methodology helps in visualisation of the pref-
erence similarity network structure.

A group of experts is partitioned into subgroups, by means of structural
equivalence relations using an agglomerative hierarchical clustering algo-
rithm. A clustering solution, named as dendogram is used as a visualization
tool to envision current similarity network pattern.

• Conclusion 5 – The proposed clustering based consensus measure assures
experts’ homogeneity, leading to sufficient group agreement.

The use of the structural equivalence concept in representing the clustering
solution guaranteed the homogeneity of experts preferences because experts
are strongly connected with each other within the same cluster, rather than
outsider experts. This means that experts are strongly connected and have
very similar preferences among the clusters’ members. It is logical that
consensus (agreement) can easily be achieved when we are sorrounded by
people who have similar opinions, instead of different ones.
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• Conclusion 6 – The proposed advice generation provides a solution on how
to modify expert preferences towards sufficient consensus.

It is rational to focus on experts within cluster(s) with low consensus contri-
bution and activate an appropriate feedback mechanism by providing them
with appropriate recommendations on how to change their preferences to
increase consensus. The role of a network influencer as a leader urges the
experts with low contribution to consensus to modify their preferences closer
to each other. The recommendation rule of change with a minimal control
parameter generates advice to the identified experts, thus they are directed
to a sufficient consensus level.

• Conclusion 7 – The constructed preference network provides positive contri-
bution to the network influencer.

The experts’ preference similarity network, which is constructed based on
SNA concept generates more weightage on the network influencer prefer-
ences than the others. This situation makes advises or recommendations
propagated from the direction of the network influencer to the other experts
in the network.

• Conclusion 8 – The influence-driven feedback system improves consensus
state and provides better clustering solution.

The influence-driven feedback mechanism positively contribute in achieving
sufficient consensus state, when experts with low contribution to consensus
are succesfully moved closer to each other, following recommendations from
a network influencer. The updated preferences are then utilized in the sec-
ond consensus round and the revised global cluster consensus degree of the
group of experts, satisfying two important conditions is determined. These
conditions are needed to ensure that the revised consensus degree is above
the consensus threshold and the clustering solution is improved.

• Conclusion 9 – The influence model allows external opinions as decision
making contribution.

The σ-centrality allows both endogenous (internal) and exogenous (external)
factors in expressing experts’ importance weightage, where the endogenous
element is based on the internal SSIN connections and the exogenous con-
tribution from the third parties evaluations. Incorporation of both factors
provides fair nomination of a network influencer or a leader.
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• Conclusion 10 – The influence factor gives positive impact to the fusion of
preferences and alternative ranking.

The fusion of preferences is carried out by means of the σ-IOWA opera-
tor, where the experts’ influence scores act as a set of order inducing fused
vectors, associating with fuzzy majority environment. This makes the aggre-
gation stage perform well in a natural sense. Use of the maximal dominance
set concept helps to provide better ranking, ensuring that the decisions made
are accepted by the whole group of experts.

10.2 Future Directions

Out of the research presented in this thesis, certain issues have emerged that would
be interesting to be explored further, such as:

• It is well-known that knowledge contributions on decision making, SNA and
SIN provide huge areas of studies to be explored, therefore continuous works,
especially on consensual reaching process with application of SNA and SIN
concepts need to be considered.

• Clustering techniques as used in this thesis have the potential to benefit de-
cision making processes with big data arising from a large number of experts,
criteria and/or alternatives. Thus, construction of a user-friendly interface
is interesting to be explored.

• In this work, we utilized a symmetric similarity function to measure experts’
preference similarities. Because of this, the construction of the preference
similarity network produced undirected connections. In the future, asym-
metric similarity functions, such as the Tversky index can be used to handle
directed cases. Trust and influence networks, which are not symmetric, can
also be considered.

• Dynamic consensus decision making is a relevant topic to be explored due
to the demand of current web technologies that require real-time communi-
cations or time-varying individual relationships.

• It is worth mentioning that in any decision making model/process, no one
can guarantee whether the decision is correct until after it is made, as agreed
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by Marakas [146] and Wu and Chiclana [35]. This is because decisions are
theoretically based but might not be the best in practice as it relies on
information/opinion provided/collected by experts and this might not be
correct. Hence, post-decision evaluations are suggested to carry out in the
future to preserve the quality of the decision making output.
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